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Abstract

Motivated by the operational challenges faced by a Regional Blood Bank (RBB) in distributing
the blood (and related products) among the hospitals in its service area, we study socially optimal
contracting decisions of an RBB serving multiple hospitals. The supply of blood can be uncertain and
insufficient to satisfy the total orders from hospitals. In the face of supply uncertainty, hospitals tend
to over-order to compensate for a potential supply shortfall. When all hospitals inflate their order
quantities, overall allocation of blood suffers and ultimately inflates the total cost of blood, which in
turn lightens the wallets of patients. We model the blood bank as a social planner with the objective
of minimizing the total cost of shortages and outdates throughout the supply chain. We assume
hospitals need some economic incentive to report demand honestly when multiple hospitals compete
for limited blood supply. We show that if the blood bank offers a suitable per unit subsidy for every
unit of shortage experienced by a hospital, then hospitals would be induced to report demand to
the blood bank without inflation. We also investigate whether or not a consignment contract can
be consistent with uninflated ordering by hospitals. Finally, we perform a detailed numerical study
based on real demand and supply data to investigate the impact of over-ordering by hospitals on
shortages and outdates in the supply chain, and the role of the appropriate contracts and allocation
policies in obviating the concomitant social costs.
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1 Introduction

The motivation for this paper is our realization - through our interactions with the managers at a

regional blood bank - that the efficiency with which blood banks operate, and therefore the total social

cost of the blood, depends both on logistics and on the contracts enforced by the blood bank for payment

of blood by the hospitals it serves. The logistics of blood banks has been well studied for many decades.

However, the problem of contract design in the specific context of blood banking has not - to the best

of our knowledge - been studied in detail. In this paper, we model the contracting relationship between

a regional blood bank and the hospitals in its service area, and derive some results that we hope have

interesting policy implications for blood bank operations.

The regional blood bank we studied has two general contractual models with hospitals - a consign-

ment model and a no-returns model. For hospitals where the blood bank provides most or all of their

blood inventory, the consignment model is common. Many community blood centers operate under the

consignment model. The hospital pays for a unit of blood only if it is removed from stock to be used
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Figure 1: Main blood components, shelf life, and use (Red Cross, 2015).

for a patient. The blood bank also provides full credit for outdated products. A consignment policy

of this sort creates an incentive for hospitals to order more blood than they need. An unintended con-

sequence is that blood units - particularly those with shorter lifespans - spoil raising the cost of blood

for the entire supply chain. The central question that we address in the current paper whether it is

possible for the blood bank to devise simple equitable contracts that can coax accurate order quantities

from hospitals. The no-returns model is often adopted when the regional blood bank functions as a

supplemental - as opposed to the primary - provider. In this model, the hospitals are fully responsible

for blood that outdates on their shelves. Typically, small rural hospitals operate under this model.

Our research suggests that the no-returns model, accompanied by an appropriate clause to deal with

shortages, should be more widely adopted by blood banks.

For each of 365 days of a year, we obtained data on order quantities for a specific blood product

(platelets) at three depots and the total supply available at the regional blood bank supplying the

depots (the depots in turn serviced hospitals in their specific local areas).

We note some salient facts about the data. We observed a supply shortfall on 2/3 of the days of the

year. Moreover, the order quantities at the depots had high variability while the variability in supply
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Metric Statistic

Total annual supply from the RBB
Total annual order quantity at the depots

0.75

Supply shortfall,i.e., Probability(Supply < total order quantity) 0.67
Coefficient of variation of total order quantity [0.5,1.5]
Coefficient of variation of supply 0.4

Table 1: Aggregate statistics.

Order Quantity Order Quantity Order Quantity Total Supply Total Order
at Depot-1 at Depot-2 at Depot-3 Quantity

Mean 13.07 97.05 19.2 97.88 129.32
Std.dev 9.55 52.82 29.16 40.78 71.94
Std.dev/Mean 0.73 0.544 1.52 0.42 0.56

Table 2: Summary statistics.
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Figure 2: Time phased data on order quantity at each depot.
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Figure 3: Time phased data on total excess and shortage in each period.

was less than that in order quantities. Table 1 provides the aggregate statistics while Table 2 provides

more detailed statistics on order quantites and supply. Figures 2 and 3 graphically illustrates the time

phased data. In Figure 3 we provide the data on the total excess and the shortage in the system.

Blood banks often operate under conditions of constrained supply. This implies that over time, there

will be many occasions when the blood bank must ration a limited stock of blood products amongst the
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hospitals in its service area in an equitable manner. Under constrained supply conditions, there is the

temptation for a rational but self-interested hospital to game the system by exaggerating its demand

for blood with the intent of increasing its share of the limited supply that is rationed out. This practice

has been documented in the medical literature; for instance, Williamson and Devine (2013) call for

‘standard protocols to minimize so-called just-in-case ordering behavior’ by hospitals (page 1871). Such

gaming leads to a loss of welfare for the blood bank supply chain as a whole, and imposes a social

cost. In this paper, we shall attempt to find simple contracting rules that induce hospitals to order

responsibly and honestly, and also allow the blood bank to allocate their limited supplies equitably.

The topology of the blood supply chain has three hierarchical levels: the hospital level, the regional

blood center level, and the supply chain level (Beliën and Forcé, 2012). The total demand for blood at a

hospital reflects the decisions made by transfusion medicine specialists in the hospital, and the temporal

variation in the demand of a hospital for blood depends on both the type of blood product (see Figure 1)

and the type of hospital. Generally speaking, there are dozens of blood products being kept at a blood

bank at any given time, but the most common are packed red blood cells (which have a stable and

constant demand and have a shelf-life of 6 weeks), platelets - either single-donor or pooled, depending

on the blood bank (which have a variable demand depending on what type of patients are being treated

in the hospital and have a shelf-life of 3-5 days), cryoprecipitate (variable demand, shelf-life 1 year),

and fresh frozen plasma (variable demand, shelf life 1 year)1. A regional blood center in the USA

typically has a few hundred hospitals spanning a few contiguous states in its service area. The regional

blood center produces blood, and allocates it to local depots or community blood centers, and these

entities directly service hospitals. The regional blood center and the hospitals sign a supply contract to

determine the terms of blood delivery - its price and mode of payment. It is this specific nexus of the

supply chain that we focus on in this paper. The statistics on the (i) total collection of whole blood

and red blood cells and (ii) transfusion (i.e., observable demand) in U.S.A. are given in Figure 4. U.S.

Department of Health and Human Services (2011) also provides details on other blood products and

corresponding transfusion. The Figure 5 provides a snapshot on the number of blood units outdated and

unaccounted for in year 2011. When a hospital experiences a short supply of blood, the regional blood

center requisitions additional units from other sources at a higher price. However, Figure 6 indicates

that, even in the presence of all these measures, the hospitals’ operations are significantly affected by

shortages. Figure 7 illustrates the national blood shortage. More national level data on blood supply –

1Information is obtained through personal communication with practitioners.
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Figure 4: Blood collection and transfusion statistics (U.S. Department of Health and Human Services,
2011).

Figure 5: Statistics on outdated blood units (U.S. Department of Health and Human Services, 2011).

blood availability for 0–1 days, 1–3 days, and 3+ days – can be obtained from America’s Blood Centers

(2016).

In this work we take the perspective of a regional blood bank and develop easy-to-implement con-

tracts to achieve equitable and efficient allocation of blood to the hospitals in its catchment area. The

contract design for a particular blood product is driven by demand characteristics as well as shelf life.

Motivated by our discussion with practitioners, we consider two settings: (i) a single period setting (Sec-
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Figure 6: Cancellation of surgeries due to shortage of blood products (U.S. Department of Health and
Human Services, 2011).

Figure 7: Statistics on blood shortages (America’s Blood Centers, 2016).

tion 4.1) with deterministic demand, and (ii) a single period setting with random demand (Section 4.2).

Then in Section 4.4 we model a situation in which a consignment contract can be shown to achieve the

socially optimal outcome. In Section 5 we describe several numerical experiments that we performed

- based on real demand and supply data - to investigate the impact of over-ordering by hospitals on

shortages and outdates in the supply chain, and the role of the appropriate contracts and allocation

policies in obviating the concomitant social costs. In Section 6 we summarize the contributions of our

paper and discuss some practical implications of our findings.
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2 Literature Review

The literature on blood inventory/distribution management, to the best of our knowledge, does not

model the specific nexus between the RBB and the hospitals. In contrast, contract design is the sole

focus of our paper. The capacity allocation literature in supply chain management assumes the contract

designer (i.e., the manufacturer) to be a self-interested expected profit maximizer who allocates capacity

to competing retailers. The contract designer in our paper (the RBB) is a social planner seeking to

minimize the societal cost of expected excess and shortage. To the best of our knowledge, our paper is

the first to explicitly model contracting between a blood center and hospitals.

The theme of our paper is contracting in a blood supply chain, but the effective allocation of blood

from the regional blood bank to hospitals is implicit in contract design. We first briefly review research

on the distribution of blood products. Prastacos (1978) studies a distribution system consisting of a

central blood bank and a number of local depots each of which services a number of hospitals in its

catchment area and faces random demand in every period. The regional blood bank receives a random

quantity of fresh units of blood product at the beginning of a period and decides the quantity and age

composition of product to be allocated to each depot. At the end of every period, all the good units

at the depots may be transported back to the central warehouse for reallocation in the next period

(the rotation model) or else the depots keep their ending inventories (the retention model). Prastacos

derives optimal single-period policies with the objective of minimizing the sum of expected shortage and

outdating costs in both the rotation and retention models. Prastacos (1981) derives some properties

of the optimal average cost policy, in the space of stationary policies, over an infinite horizon with

stationary demand and supply. Zhou, Leung, and Pierskalla (2011) take a closer look at the inventory

management of platelets that have shelf life of five days and an effective life span of three days (when

the transportation time and the handling and operational time is netted out). They assume that a

regular order is placed at the beginning of a period and an expedited order (order-up-to-level policy)

can be placed during the period. They prove the existence and the uniqueness of an optimal policy that

minimizes the expected cost. Duan and Liao (2013) study a supply chain with a highly perishable good

and use simulation optimization to obtain optimum inventory policies, while Duan and Liao (2014)

analyze an inventory model specifically for the red blood cell supply chain. Civelek et al. (2015) study a

discrete-time inventory system for blood platelets where there is demand for products of different ages.

A substitution cost is incurred when the demand for a certain-aged item is satisfied with a different-aged

item. They develop a policy that protects the newest items against excessive substitution to satisfy the
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demands for older products. Williamson and Devine (2013) give an insightful discussion of challenges

in blood supply chain management from the point of view of both suppliers and demand centers. They

stress that ‘decisions made by individual hospital blood banks ultimately affect the entire system’s

ability to meet demand, so considering the whole picture is important to the successful balance between

adequate supply and minimum wastage’; this is one of the important assumptions that underpin the

modeling approach in our paper. Osorio et al. (2016) present an integrated simulation-optimization

model wherein simulation is used to represent the flows through the supply chain, and an integer

programming model optimizing over a rolling planning horizon is used to support daily decisions, such

as the required number of donors. We also direct the interested readers to reviews by Beliën and Forcé

(2012) and Prastacos (1984) for comprehensive reviews on blood inventory management.

Next, we mention some papers that study models with uncertain supply or random yield. Moti-

vated by the frozen seafood industry, Khang and Fujiwara (2000) consider a setting with deterministic

demand and random supply limit, corresponding to a random harvest. They characterize the optimal

replenishment policy and establish a sufficient condition for the myopic policy to be optimal. Yang

(2004) studies inventory control for a raw material dual-sourced from one perfectly reliable and one

random supplier, and converted to a finished product with random demand. Li and Zheng (2006) study

the joint inventory replenishment and pricing problem for production systems with random demand and

yield in the framework of a periodic-review model, and show that the optimal policy is of the threshold

type (it is optimal to produce if and only if the starting inventory in a period is below a threshold value).

Bollapragada, Rao, and Zhang (2004) study an assembly system where the end-product has a random

demand and each component has a random supply capacity. They optimize the component base-stock

levels in order to minimize the total procurement cost subject to a minimum type-1 service level for the

end-product. Pan and So (2010) consider an assemble-to-order product that has a one-time, random

demand. One of the components of the product is subject to random yield; the authors analyze how this

randomness in component supply affects the optimal pricing and production decisions. Lin and Chen

(2010) model the problem of maximizing the total net profit of the perishable commodity supply chain,

the optimal orders placed to suppliers, and the allocation to retailers in the face of supply uncertainty.

In our setting, we are also faced with random demand and random supply. Further, in our case there is

information asymmetry between the players, which facilitates the need for a contract design to induce

truthful information from the hospitals.

We now turn to contract design for perishable goods. Although there are numerous papers in
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the operations management literature that are dedicated to contracting, we did not find many papers

dedicated specifically to contracting for blood products. However, we mention some noteworthy papers

dealing with contracting for perishable goods. There are several papers that discuss returns policies

and supply chain coordination. Pasternack (1985) investigates the pricing decisions and return policies

of a manufacturer who produces a short shelf product. Retail demand is stochastic while retail price

is fixed. Pasternack shows that neither a policy that allows unlimited returns with full refund nor

a one that does not allow returns is optimal. Webster and Weng (2000) investigate a setting where

a manufacturer sells a short life-cycle product to a risk-neutral retailer. They study returns policies

where the retailer’s expected profit is increased and the manufacturer’s profit is at least as large as

when no returns are allowed. The work by Wang and Webster (2009) considers a scenario where the

retailer liquidates the left over perishable goods inventory via clearance pricing. Two different types

of markdown policies - percent markdown and quantity markdown - are analyzed. They show that

both methods can coordinate the supply chain. Milner and Rosenblatt (2002) investigate a two-period

setting where the buyer adjust the order quantity, by incurring a penalty after observing the demand

for the first period. They compare the model and the results with a contract that does not allow for

order adjustment. The works by Chung and Erhun (2013) and Milner and Rosenblatt (2002) combine

contract design with order adjustment. Chung and Erhun (2013) consider a two-period setting where

the supplier needs to consider the existence of old and young products in making decisions. They

study a two-level wholesale price contract, a two-level buy-back contract, and a buy-back contract with

channel rebates (the term ‘two-level’ implies age-based price differentiation). When we compare the

contractual forms studied in these papers with the contractual forms that we study, we note that ours

is the only paper to study subsidy contracts, whereas penalty contracts have indeed been studied in

the published literature. Both our paper and the extant literature on perishable goods study returns

policies; in our paper we treat the special case of a consignment contract, whereas more general forms

of returns policies are studied in Pasternack (1985).

There is a vast stream of literature on contracting of non-perishable goods in operations and supply

chain management. The reader is referred to the excellent survey papers by Tsay and Agrawal (2004) and

Cachon and Lariviere (2003) for a comprehensive review of this research. Within this extant literature,

our work relates most closely to the capacity allocation problems under asymmetric information. The

classic work by Maskin (1989) develops an optimal auction mechanism for multi-unit auctions such as

the capacity allocation problems in supply chains. Cachon and Lariviere (1999b) consider the problem
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of capacity allocation problem of a manufacturer faced with demands from multiple retailers each having

private information about demand. In the presence of a capacity shortage a retailer might deliberately

inflate its order quantity. Cachon and Lariviere develop allocation rules under which truth telling is an

equilibrium strategy. They show that the lexicographic allocation rule, where a retailer’s allocation is

independent of its order quantity, is able to elicit private information. Various researchers have extended

the modeling framework of Cachon and Lariviere (1999b). Cachon and Lariviere (1999a) propose a two-

period game to model the turn-and-earn allocation observed in the automotive industry. Deshpande

and Schwartz (2002) develop optimal pricing and allocation rules for a manufacturer selling to multiple

retailers with private information about demand. Mallik and Harker (2004) extend the framework of

Cachon and Lariviere (1999b) to include multiple manufacturers/suppliers, while Mallik (2007) studied

contracting over multiple parameters in presence of multiple manufactures and multiple retailers. In

addition to capacity allocation problems, elicitation of private information has also been studied in other

related areas of supply chain management. For example, Corbett et al. (2004) develop contracts for a

supplier that elicit information about a buyers cost structure. Ozer and Wei (2006) develop contracts

for a supplier to elicit truthful demand forecasts from buyers. Finally, Zhang and Zenios (2008) consider

a very general multi-period principal agent problem that induces truthful state revelation by each agent

and maximizes the principal’s payoff.

2.1 Focus of the Present Paper

We consider a decentralized setting and model the blood bank as a social planner with the objective

of minimizing the total cost of shortages and outdates throughout the supply chain. We assume that

the hospitals have the objective of minimizing their own costs; therefore the hospitals are sure to report

their demand for blood and their current stock on blood inventories with complete accuracy only if they

are given sufficient economic incentive to do so. Specifically, we address the following questions:

1. Can the RBB devise a contract that induces rational hospitals to report their demands without

inflation?

2. Should consignment contracts be used by blood banks? Under what conditions? This is a pressing

question, in view of the prevalence of consignment contracts in blood supply chain practice.

3. Does the effectiveness of the proposed contracts depend on demand and supply conditions? Are

there any patterns to this variation?
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We answer the first question in affirmative in Section 4. The second question is analyzed in Section 4.4

while the last one is investigated using a computational experiment based on real-world data in Section 5.

To the best of our knowledge, this is the first paper to address these questions through analytical

modeling.

3 Model Setting

As elaborated in Section 1 of our paper, a regional blood bank produces and stores dozens of blood

products with differing shelf-life and demand characteristics. Packed red blood cells often exhibit

a stable, deterministic demand. Specialty hospitals (e.g., cancer research centers) performing only

scheduled surgeries/procedures also exhibit relatively stable demand for blood products. Blood platelets,

often used on trauma patients and often requisitioned by large hospitals with Level I Trauma Centers,

exhibit highly variable demand pattern. This necessitates us to consider the deterministic demand

scenario and the stochastic demand scenario separately. The single period model with deterministic

demand is presented in Section 4.1. The model formulation for single period stochastic demand case is

in Sections 4.2.

In accord with the standard game theoretic modeling paradigm, our fundamental assumption is that

a self-interested economic agent will share information only if it can be credibly demonstrated that it is

in its interest to do so; the challenge is to design mechanisms that create incentives for economic agents

to disclose private information honestly and accurately. Each hospital is concerned with minimizing

its own expected costs whereas the blood bank, as a social planner, is interested in minimizing the

social cost – the expected sum of the shortage costs and outdating costs – accruing at all the hospitals

taken together; the smaller the value of these costs, the smaller is the cost borne by society at large.

It is important to clarify that we are not assuming that every hospitals deliberately sets out to distort

information and harm society as a whole. Rather, we are assuming that it is a natural tendency for

hospitals to take a myopic view of the blood supply chain, and this has unintended adverse consequences

for society at large.

We consider a decentralized setting where single regional blood bank (RBB) serves n distinct hospi-

tals, denoted H1,H2, ..., Hn. We define a sequential game between the RBB and the hospitals. The RBB

is the leader of the game. In accordance with our real-world observations, the RBB signs a contract

with each hospital it serves and the allocation of blood is done accordingly. The sequence of events in

the game is as follows.
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1. At the start of the period, the RBB announces the terms of the contract, dealing with the price

and the allocation policy (we spell out the details regarding each part of the contract further on).

2. The demand of hospital i is a random variable qi (for i = 1, 2, ..., n), which is observed only by

hospital i. Each hospital also observes a random signal of the sum of the orders placed by the

other hospitals, which we denote by q̃−i.

3. All the hospital’s observe a random signal S of the RBB’s supply. The RBB privately observes

the realization Ŝ.

4. Hospital Hi orders a quantity Qi (for i = 1, 2, ..., n).

5. An allocation rule is a map from the vector of order quantities and the supply to a vector of quan-

tities supplied to hospitals. The RBB makes allocation decisions as per the following allocation

rule. If
∑

iQi ≤ Ŝ, then each Hi is allocated its order quantity Qi using the existing supply. If∑
iQi > Ŝ, then the RBB allocates a quantity Q̂i ≤ Qi such that

∑
i Q̂i = Ŝ from its existing

supply as per the announced allocation rule. That is, the blood received by Hi from the existing

stock is min{Qi, Q̂i}.

6. The deficit quantities max{Qi − Q̂i, 0} are supplied separately to Hi at a higher unit price which

is specified in the contract. That is to say that the RBB takes the responsibility of satisfying any

deficits in the current period by arranging for another regional blood bank to supply the deficit

quantities directly to the hospitals at a higher price per unit.

7. If a hospital requires more blood than the quantity Qi requisitioned by Hi at the outset, then, the

RBB will have it delivered at a higher unit price. This event will occur when demand realizes at

the hospitals at a later point (after the initial allocations are made by the RBB), and the realized

demand exceeds Qi.

8. Excess blood at each Hi must be disposed of at a per unit cost of e.

3.1 Inter-Relationships Between the Random Variables and Information Structure

We assume that corresponding to each i = 1, ..., n there exists a random variable qi that models the

demand of Hi during the upcoming period. Corresponding to each i = 1, ..., n there also exists a random

variable q̃−i; this random variable models the random signal that Hi observes about the sum of the order

order quantities of Hj , i ̸= j. Note that we do not assume any distributional relationship between any
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pair q̃−i, q̃−k where i ̸= k, other than their mutual independence. For the sake of notational convenience,

we assume that all the hospitals observe the same random signal S about the supply at the RBB, the

realization of which is observed privately by the RBB. All these random variables are assumed to be

mutually independent; consequently, only the marginal distributions of these random variables play a

role in the analysis.

An important point is that our model assumptions imply that each hospital Hi can estimate the

probability of a supply shortage in a given period. If all the hospitals know the distributions of the order

signals q̃−i and the distribution of the RBB supply S, then each hospital can compute the shortage

probability using the analytical method given in detail in our proofs (please see the Appendix). On the

other hand, even if none of the hospitals Hi know the distribution of q̃−i for j ̸= i, the rules governing

the RBB’s allocation policy and the subsidy contract ensure that each hospital will be aware of a supply

shortage, if it occurs. Thus, over time, each hospital can empirically estimate the probability of a supply

shortage before deciding on its order quantity. In other words, we can replace the assumption that for

all i hospital Hi knows the distributions of the random variables q̃−i with the assumption that the

hospitals can estimate the shortage probability before they place their orders. Thus, we obtain two sets

of theorems; Theorem 2 and Theorem 4 are valid even when Hi does not receive any signals q̃−i of other

hospitals’ order quantities, or a supply signal S, whereas the remaining theorems assume that these

signals are received.

Next we discuss the costs that we use to frame the objectives of the players in our model.

Price of blood: The RBB charges a per unit price p for each unit sold to a hospital from its own

supply. Thus Hi pays pQ̂i (for i = 1, 2, ..., n) to the RBB for the units supplied to it and the RBB

collects a total revenue of p
∑

i Q̂i on account of the units it supplies from its own stock. The unit price

of blood covers the processing cost and includes a surcharge to cover the labor cost and the overhead

cost of running a blood bank.

Shortage cost: χ denotes the average surcharge per unit of blood when blood has to be requisitioned

from an external source by the RBB. Thus the price of each unit supplied to a hospital from an outside

source is p + χ. Note that the unit cost χ may be affected by the ability of the hospital to secure

emergency supplies from the regular donors (Civelek et al., 2015; Fontaine et al., 2009; Haijema et al.,

2009). Also this cost includes possible social costs (e.g. rescheduling surgeries) as well as ordering costs.

Outdating cost: Blood left over at the end of the period is outdated and must be disposed. We let

the per unit outdating (disposal) cost of blood be e. This includes the disposal cost of the outdated
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units, as well as the associated social cost.

We collect frequently used notation in Table 3.

Notation/Parameters Description

Hi Hospital i (i = 1, 2, ..., n)
p Per unit purchasing cost of blood
χ Per unit premium for outside supply
e Per unit outdating cost
S Random variable representing supply at RBB

Ŝ Realized supply at RBB
Ri Deterministic (i.e., Observed) Demand at hospital i (privately known)
qi Random variable representing demand at Hi

q̃−i The random signal of the sum of orders placed by all the other hospitals
observed by Hi

Ω(S,Q1, Q2, . . . , Qn) Ω : Rn+1
+ → Rn

+ Allocation policy of RBB
Decision Variables

Qi Order quantity of Hi, i = 1, 2, . . . , n

Q̂i Allocated quantity to Hi from RBB’s supply
s Per unit subsidy for blood supplied from an external source

Table 3: Frequently used notation.

4 Analytical Results

First in Section 4.1 we formulate a model in which each hospital observes its demand realization Ri (for

i = 1, 2, ..., n) before placing its order quantity. This models the case when the hospital is requisitioning

blood supply for its planned surgeries during the upcoming period. Each hospital also observes the

random order signals q̃−i and S. In the following subsection (Section 4.2) we formulate a model in

which each hospital observes only its own demand distribution, as opposed to its demand realization, at

the time when the order quantities are submitted to the RBB. This models the case when the hospital

is requisitioning blood supply speculatively for random demand that may arise during the upcoming

period (for instance, blood demanding events that are emergencies or accidents). In both cases we show

that a shortage-subsidy contract achieves the desired outcome.

4.1 Deterministic Demand

We remark that in line with the convention in the operations management literature, we use the phrase

‘deterministic demand’ to capture the case when each hospital observes its demand realization before

placing its order. Let Ri be the demand at Hi. We propose a subsidy contract that induces truth-

ful demand requisitions from the hospitals. Let Ω denote the blood allocation policy. Ω is a map
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from the n-vector of orders and supply to the n-vector of quantities supplied. That is to say that

Ω(S,Q1, Q2 . . . , Qn) = {(Q̂1, Q̂2, . . . , Q̂n) : Q̂i ≤ Qi, }, where Qi is the quantity requested by Hi and Q̂i

is the quantity delivered to Hi from the RBB’s own supply. We formally define a subsidy contract as

follows.

Subsidy Contract SC:

1. Allocation Rule: If Ŝ ≥
∑

iQi, then Q̂i = Qi. If Ŝ <
∑

iQi, then Q̂i is a non-decreasing function

of Qi. All positive deficit quantities max{Qi− Q̂i, 0} will be supplied by an external source to Hi.

2. Purchasing cost of blood: Each hospital pays a unit price of p for blood supplied directly by the

RBB and a unit price of p+ χ for blood supplied by an external source.

3. Each hospital is responsible for incurring the per unit outdating cost e.

4. The blood bank supplies a per unit subsidy s for every unit of blood supplied by an external

source.

Note that the subsidy covers a portion of the extra cost of blood that results from the external shipment

that is requisitioned by the RBB to fill hospital demands in any given period. Thus the hospitals pay

for blood supplied directly by the RBB at the rate of p per unit and they pay the external supplier at

the rate of p+χ per unit for blood supplied by the external source. The RBB applies a subsidy of s per

unit of external supply when it bills the hospital, so the hospital ends up paying a net price of p+χ− s

per unit for blood supplied by the external source.

Next we formulate the objective functions of the players in the presence of the contract SC.

Objective function of hospital Hi

Each hospital Hi chooses Qi so as to minimize its own expected cost. Let CHi(Qi, Q−i) be the total

expected cost incurred by Hi in ordering Qi, given the orders Q−i of the other hospitals. Then each Hi

orders Qi so as to minimize

CHi(Qi, Q−i) =
{
emax{0, Qi −Ri}+ E

S,q̃−i

[
pQ̂i + (p+ χ− s)max{0, Qi − Q̂i}

]}
Note that the expectation in Hi’s objective function is taken with respect to the distribution of S and

q̃−i. The first term in the objective function is deterministic. Since the order quantity is Qi and the

total supply by the RBB (with its own supply and from outside sources) is Ri, the term max{0, Qi−Ri}

captures the number of units outdates at the end of the period. Thus the first term of the objective

function represents the outdating cost. The second term captures the total purchase cost for the hospital.
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Since the RBB only supplies a quantity Q̂i from its own supply, the hospital pays pQ̂i to secure this

quantity. Since any unfulfilled portion of the demand is satisfied using outside sources, the per unit

price paid by the hospital for that quantity is (p+χ− s). Consequently, (p+χ− s)max{0, Qi − Q̂i} is

the total amount paid to secure this quantity. Recall that since the allocation policy employed by the

RBB is a function of its supply as well as the order quantities placed by other hospitals we take the

expectation with respect to S and q̃−i.

Objective function of the RBB

Recall that once S realizes, the RBB observes whether there is sufficient supply to satisfy all the demands

or not. If there is sufficient supply, the RBB allocates each hospital the quantity demanded by it. If

there is insufficient supply, the RBB issues the external supplier the quantities to be supplied to each

hospital. Therefore, the objective of the RBB is to design a subsidy contract that ensures that the

hospitals report their true demands. Recall that the RBB minimizes the total social cost Csocial. Now

we can formulate RBB’s problem. We use the random variable q̂i to denote the RBB’s estimate of

Hi’s order quantity. We need to define the random variables q̂i to define the RBB’s objective function

precisely, but we shall see that the distribution of q̂i does not play any role in devising the subsidy

contract (please see Remark 3 below for further discussion of this point).

Minimize
s,Q̂i,i=1,2,...,n

Csocial =
n∑

i=1

E
q̂i

[
emax{0, Qi − q̂i}

]
+

n∑
i=1

E
q̂1,q̂2,...,q̂n

[
(p+ χ)max{0, Qi − Q̂i}

]
s.t. CHi(Ri, Q−i) ≤ CHi(Qi, Q−i), ∀Qi ∈ R+, ∀i = 1, 2, . . . , n.

Note that the RBB receives order quantities Qi, i = 1, 2, . . . , n from hospitals. Given these quantities,

the RBB minimizes the total social cost – sum of outdating cost due to excess at each hospital and the

shortage cost due to ordering extra units from an external source. Observe that the subsidy payment,

which is an internal transfer between the RBB and the hospitals, does not enter the objective function.

The expectation of each component (associated with Hi) of the first term of the objective function (total

outdating cost) is taken with respect to the distribution of q̂i while the expectation of each component

in the second term is taken with respect to the random vector q̂1, q̂2 . . . , q̂n.

Remark 1: It is apparent from the formulation of the hospital’s objective function that in case of a

supply shortage, each hospital would need to know the precise allocation rule chosen by the RBB in

order to compute its expected cost. We show in the proof of our first major result (Theorem 1 below)

that so long as the allocation rule belongs to the family of rules spelled out in Subsidy Contract SC

(that is, allocations that are increasing functions of order quantity), the hospitals can deduce that it is
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in their own interest to not inflate their order quantities.

Remark 2: It is worthwhile to note that if the per-unit subsidy s = χ, then the objective function

of Hi reduces to CHi(Qi, Q−i) = emax{0, Qi − Ri} + pQi. Then it is easy to see that the optimal

order quantity that minimizes the total cost of Hi is Q∗
i = Ri. Note that the subsidy cost s does

not appear in the RBB’s objective function, Csocial. Thus a per-unit subsidy s = χ induces truthful

demand reporting from each hospital, and is also socially optimal. However, the blood bank would like

to minimize their subsidy cost. Finding the minimal subsidy is a formidable task. Hence, we will focus

on a smaller per-unit subsidy than s = χ that still elicits truthful information from the hospitals and

social optimality.

Remark 3: In devising the appropriate subsidy contract, the knowledge that the RBB has about the

beliefs of the hospitals about supply and total orders are crucial because the RBB has to anticipate the

reasoning that the hospitals will carry out in order to determine its optimal order quantity Qi. The

RBB’s private knowledge about individual hospital orders or about its own supply distribution does

not matter as far as contract design is concerned unless the RBB uses such knowledge to influence the

hospitals’ beliefs about supply and demand. Indeed, we argue that it would be a good policy decision

for the RBB to give credible signals to all the hospitals about aggregate demand and supply, based on

its superior private knowledge. Such information sharing will lead to accurate belief-formation among

the hospitals and eventually lead to the minimization of total social cost.

Our first major result below specifies a subsidy contract that provides just the right economic

incentive for the hospitals to report demand honestly.

Theorem 1 A shortage-subsidy contract with per unit subsidy s = max(χ − e − p, 0) induces a truth-

revealing Bayesian Nash equilibrium under each of the following conditions:

(a) For each i = 1, 2, ..., n we have that S ≥st Ri + q̃−i;

(b) For each i = 1, 2, ..., n we have that S ≥icv Ri + q̃−i and q̃−i has a decreasing density function.

Recall that p+ χ is the premium price per unit to obtain blood from an external source. Applying

this observation to Theorem 1 we obtain the following corollary.

Corollary 1 If the conditions of Theorem 1 hold and if in addition the premium price is less than

twice the regular price, then no subsidy is needed to induce truthful demand reporting by hospitals in

equilibrium.
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Allocation policies: Recall that the RBB needs to specify the rule whereby it will allocate units to

the hospitals if supply falls short of total demand. In our definition of the subsidy contract SC we only

state that the allocation is non-decreasing in the hospitals’ order quantities. Thus, RBB can choose

from a variety of allocation policies that fall under above category. For example, proportional allocation

is one such rule. Our equilibrium result holds irrespective of the specific allocation rule chosen from

the class of permissible allocation rules. We remark that our proof of Theorem 1 does make use of the

assumption that a feasible allocation is non-decreasing in the hospitals’ order quantities, and that this

fact is known to the hospitals.

Corollary 2 The outcome of the subsidy contract SC valid under any allocation policy that ensures

the allocation to Hi is a non-decreasing function of the order quantity Qi. That is to say that the exact

allocation rule does not play a role in achieving a truth-revealing equilibrium, so long as the allocation

rule is non-decreasing in Qi for all i.

We make a few additional comments about the scope and significance of the result in Theorem 1.

• The total subsidy burden borne by the blood bank depends on demand and supply conditions.

Both conditions (a) and (b) hold when supply is adequate relative to total demand. When supply

is relatively tight the blood bank bears a greater financial burden in terms of the total subsidy it

provides to hospitals (Theorem 2 spells out this insight in a precise form). This contractual form

is not one that a profit-maximizing or cost-minimizing firm would consider adopting.

• It is important to clarify that the hospitals do not have any incentive to mis-state the number of

shortages they experience. This is because the subsidy does not cover the cost of the blood itself;

rather, it covers the extra cost that hospitals incur as a result of the emergency shipments needed

to fill the shortages. As a result, it would financially hurt the hospitals to over-report shortages.

The total quantity Qi requested by hospital i will be completely filled by the blood bank (for all

i); in case of a shortage, a portion of the order quantity will be filled by the outside supplier that

the blood bank has a prior arrangement with (this is actually the case with the blood bank we

studied). That is to say that if a hospital generates a fictitious shortage of one unit, it will pay

p + e + χ − s > 0 for that unit. It is clear that there is no incentive for a hospital to behave in

such a manner.

• We note that a simple, but socially unappealing, allocation mechanism induces a truth-revealing

dominant equilibrium in our game (see Cachon and Lariviere (1999b)). The mechanism is to
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sequence the hospitals in some arbitrary manner before they make their orders and fill the orders

of the hospitals completely from the supply available at the RBB in that sequence; the shortages

are filled from the external source at a premium price. The mechanism design literature defines

such a rule as a dictatorial rule (see Vohra (2001), page 8). Clearly, the arbitrariness of a dictatorial

rule makes it unattractive in our setting.

Our next result finds a truth-inducing subsidy contract without imposing any distributional constraints

on supply and demand.

Define νi := S − [Ri + q̃−i] and θ = P{νi < 0}. Then we have the following theorem.

Theorem 2 Suppose there are no constraints on the demand and supply distributions. Then a shortage-

subsidy contract with per unit subsidy s = max
(
[ θ
1−θ ]χ − e − p, 0

)
induces a truth-revealing Bayesian

Nash equilibrium. θ is the shortage probability as defined above.

Observe from the statement of Theorem 2 that the subsidy required increases with the shortage probabil-

ity θ. If the estimated subsidy budget appears to be too high for the RBB to sustain its own operations,

we suggest that the blood bank should consider raising the price of blood. In this connection, we recall

the standard precept from economics that the price of a good reflects the balance between supply and

demand. However, rather than directly making price a decision variable, our model allows the blood

bank to consider varying the price of blood parametrically and choosing the price that best fits with

the budget.

Let us apply the preceding theorems to real data. Recall from our real-world data that

Probability(Supply < Total Order Quantity) = 0.67.

We can use Theorem 2 to obtain an upper bound on the per unit subsidy required. Setting e = 0.1p and

p = 500 in the formula for s in Theorem 2 we get s = max
(
[ θ
1−θ ]χ−e−p, 0

)
≤ max

(
[ 0.67
1−0.67 ]χ−550, 0

)
≈

max
(
2χ− 550, 0

)
. Observe that the subsidy is positive only when the surcharge is more than USD275

(that is when emergency supply cost exceeds USD775).

4.2 Random Demand

In this subsection we investigate the case where, in contrast to the assumption underlying the results in

the previous subsection, each hospital does not observe its demand realization before deciding the order

quantity. We use the phrase ‘random demand’ to capture this situation. Suppose the demand at Hi is

a random variable qi. Note that qi does not realize at Hi at the start of the period when the hospitals
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have to submit their order quantities to the RBB. Recall that only Hi knows the distribution of qi; also

each hospital i observes a (potentially noisier) order signal q̃−i. The RBB observes q̃−i, i = 1, 2, . . . , n.

Under conditions of unlimited supply, suppose Hi’s order quantity is Q∗
i . However, under conditions

of limited supply, there is the temptation for each hospital to inflate its order quantity above Q∗
i . The

task of the RBB is to set the per unit subsidy high enough that each Hi is induced to report the order

quantity Q∗
i it would order without any ‘shortage gaming’.

Let CHi(Qi, Q−i) be the total expected cost incurred by Hi in ordering Qi, given the orders Q−i of

the other hospitals. Then the expected cost function of Hi is given by

CHi(Qi, Q−i) =
{

E
S,q̃−i

[
pQ̂i + (p+ χ− s)max{0, Qi − Q̂i}

]
+E

qi

[
emax{0, Qi − qi}+ (p+ χ− s)max{0, qi −Qi}

]}
The terms associated with the first expectation operator correspond to the cost of obtaining Qi from

RBB (using RBB’s own supply as well as from outside sources) while the terms associated with the

second expectation operator capture the excess and shortage costs that materialize after the realization

of the actual demand. The RBB’s problem formulation is as follows:

Minimize
s,Q̂i,i=1,2,...,n

Csocial =
n∑

i=1

E
q̂1,q̂2,...,q̂n

[
(p+ χ)max{0, Qi − Q̂i}

]
+

n∑
i=1

E
q̂i

[
emax{0, Qi − q̂i}+ (p+ χ)max{0, q̂i −Qi}

]
s.t. CHi(Q

∗
i , Q−i) ≤ CHi(Qi, Q−i), ∀Qi ∈ R+, ∀i = 1, 2, . . . , n.

Note that the terms associated with the first expectation operator pertain to costs associated with

the fulfillment of the order quantity, while the terms associated with the second expectation operator

account for the discrepancy between order quantity and actual demand at the hospital after it realizes.

We have the following result.

Theorem 3 (a) For each i = 1, 2, ..., n suppose (i) S ≥st qi + q̃−i and (ii) Q∗
i is greater than or equal

to the median of the demand distribution of Hi, for all i. Then in equilibrium, the hospitals will order

their uninflated quantities Q∗
i when the RBB provides a per unit shortage subsidy s = max(χ− e+p

2 , 0).

(b) Suppose (i) in (a) hold and Q∗
i is greater than or equal to the 67th percentile of the demand distri-

bution of Hi, for all i. Then in equilibrium, the hospitals will order their uninflated quantities Q∗
i when

the RBB provides a per unit shortage subsidy s = max(χ− e− p, 0).

(c) Both (a) and (b) above hold if condition (i) is replaced by the conditions S ≥icv qi+ q̃−i and qi+ q̃−i

has a decreasing density function, and the remaining conditions are unchanged.
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Theorem 3 states that if we make the same assumptions as we did in the case of deterministic

demand together with the reasonable condition that hospitals would order at least the 50th percentile

of their demand distribution if they were guaranteed to receive their entire order quantity at unit price

p, a higher unit shortage subsidy is needed to suppress order inflation by hospitals compared with the

case when the hospitals face predictable demand conditions. However, if the hospitals order at least

the 67th percentile of their demand distribution under unlimited supply, then precisely the same unit

subsidy that suppresses order inflation by hospitals in the deterministic case accomplishes the same end

in the case of random demand. Notice that the assumption that hospitals would order at least the 67th

percentile of their demand distribution says that hospitals have a target service level of at least 67%

with respect to the availability of blood; in reality we would expect the target service level to be much

higher than 67%.

As in the deterministic demand case, we note that the informational assumptions behind this result

are quite modest. In order to make equitable allocations in case of a supply shortage the RBB will

require some information about the hospital demand distributions, but we do not need a hospital to

have distributional knowledge of the demand at other hospitals to find the appropriate subsidy contract

for the RBB. Instead, as in the case of deterministic demand, the main distributional assumption that

drives our result is information at the aggregate level.

The next theorem spells out the truth-inducing subsidy contract as a function of the shortage

probability. Define νi := S − [qi + q̃−i] and let θ = P{νi < 0}. Then we have the following.

Theorem 4 (a) Suppose there are no constraints on the demand and supply distributions. Then pro-

vided Q∗
i is at least equal to the median of the demand distribution of Hi for all i, a shortage-subsidy

contract with per unit subsidy s = max
(
[ θ
1−θ ]χ− e+p

2 , 0
)
induces a truth-revealing Bayesian Nash equi-

librium.

(b) Suppose there are no constraints on the demand and supply distributions. Then provided Q∗
i is at

least equal to the 67th percentile of the demand distribution of Hi for all i, a shortage-subsidy contract

with per unit subsidy s = max
(
[ θ
1−θ ]χ− e− p, 0

)
induces a truth-revealing Bayesian Nash equilibrium.

Note that θ is the shortage probability as defined above.

4.3 Summary of the Deterministic and Random Demand Models

In this section, we first summarize the results obtained under observed and random demand models

(Tables 4 and 5). Then we illustrate the differences between the two models from the perspective of the
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supply chain partners, the RBB, and the hospitals. Finally, we examine the sensitivity of the proposed

shortage subsidy to parameters e and χ.

Conditions Shortage Subsidy, s

S ≥st Ri + q̃−i max(χ− e− p, 0)

S ≥icv Ri + q̃−i max(χ− e− p, 0)
q̃−i has a decreasing density function

Probability of shortage is θ max
(

θ
(1−θ)χ− e− p, 0

)
Table 4: Summary of results: deterministic demand model

Shortage Subsidy, s
Conditions Q∗

i ≥ median Q∗
i ≥ 67th percentile

of Hi, ∀i of Hi, ∀i
S ≥st qi + q̃−i max

(
χ− (e+p)

2 , 0
)

max(χ− e− p, 0)

S ≥icv qi + q̃−i max
(
χ− (e+p)

2 , 0
)

max(χ− e− p, 0)
qi + q̃−i has a decreasing density function

Probability of shortage is θ max
(

θ
(1−θ)χ− (e+p)

2 , 0
)

max
(

θ
(1−θ)χ− e− p, 0

)
Table 5: Summary of results: random demand model

Note that we consider two decentralized settings in which the RBB is the first mover. The differ-

ences between these two models from the perspective of the players, the RBB, and the hospitals, are

summarized in Table 6. Let us take a closer look at the impact of parameters e and χ on the per unit

Model
Player Deterministic Demand Random Demand

Hospital i observes own demand realization Ri and observes own demand distribution qi and
order distribution for q̃−i order distribution for q̃−i

observes supply distribution observes supply distribution

RBB observes supply before allocation observes supply before allocation
observes order distributions for q̃−i, ∀i observes order distributions for q̃−i, ∀i
contract to extract order quantities Ri contract to extract order quantities Q∗

i

Table 6: Differences between the two models from the perspective of the players

shortage subsidy that the RBB would need to provide. Figure 8 illustrates the variation of unit shortage

subsidy with e
χ , under the conditions of Theorem 1 and Theorem 2. To generate the graphs, we set

p = 500 and θ = 0.67. Note that when e ≥ χ the shortage subsidy is always zero. Thus we only consider

scenarios where e < χ. Figure 8 (a) corresponds to the subsidy under observed and random demand

cases under the first set of conditions shown in the summary tables above. Figure 8 (b) corresponds
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Figure 8: Change in shortage subsidy with e and χ: (a) s = max(χ−e−p, 0), and (b) s = max( θ
(1−θ)χ−

e− p, 0). We set p = 500 and θ = 0.67.

to the case where the shortage probability θ = 0.67. That is to say that Figure 8 (a) applies when the

RBB has more information about demand compared with the situation depicted in Figure 8 (b).

We make some observations based on these figures.

(i) In both Figure 8(a) and 8(b) we see that for any fixed value of χ, the subsidy is decreasing

in e. This is because the higher the cost of outdating, the lower the incentive for order inflation;

hence a lower subsidy is sufficient to induce truthful ordering.

(ii) Observe from both figures that when e/χ is fixed, an increase in χ leads to an increase in the

unit subsidy required. This can be explained by the fact that the higher the cost of shortage, the

greater the incentive for order inflation; thus, the subsidy needs to be higher in order to motivate

the hospitals to order truthfully.

(iii) Suppose that the RBB decides to calculate its shortage subsidy based on the shortage proba-

bility since the conditions in Theorem 1 do not apply. Then compared with the unit subsidy that

would be needed under the conditions spelled out in Theorem 1:

- the unit subsidy needed is higher;

- as excess cost e increases, the relative reduction in subsidy is lower;

- the relative increase in the subsidy is lower when (1) χ/p is higher, and (2) e/χ lower.

Next we study conditions under which a consignment contract may induce truthful ordering.
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4.4 Can a Consignment Contract be Socially Optimal?

Typically, some form of consignment contract is commonly used in regional blood banking practice. It is

apparent that a complete consignment contract without some checks and balances opens the door for a

hospital to order arbitrarily large quantities with impunity, to the detriment of the entire supply chain.

If the RBB has complete access to all the hospitals’ inventory records (which we call the verifiability

assumption), then we shall show that a variation of the complete consignment contract may indeed

be truth inducing. In some cases, the assumption of verifiability may hold in practice. For example, the

State of New York mandates the disposal of outdated blood at hospitals to be done within 72 hours of

the expiration. Furthermore, the outdated units need to be transferred to a different storage location

within 24 hours of expiration and required to be destroyed within 72 hours of expiration. Due to the

strict regulations on the handling of expired blood units many hospitals choose to return these units to

the collection facilities. The time period allowed for returning the expired units to collection facilities,

i.e., blood banks, is one week (State Government Sites, 2015). Similar guidelines may be observed in

other states. Under these circumstances, our assumption of complete verifiability of inventory may be

realistic.

We define a shortage-subsidy consignment contract to be the subsidy contract defined in the previous

subsection together with the clause that the hospitals pay only for blood that they actually use (in

particular, the hospitals are not responsible for disposing excess units, if any). We have the following

result.

Theorem 5 (a) A shortage-subsidy consignment contract with per unit subsidy s = max(0, χ − p
2)

induces a truth-revealing Bayesian Nash equilibrium provided (i) the verifiability assumption is satisfied,

(ii) r∗ ≥ 0.5, (iii) S ≥st qi + q̃−i.

(b) A shortage-subsidy consignment contract with per unit subsidy s = max(0, χ − p) induces a truth-

revealing Bayesian Nash equilibrium provided r∗ ≥ 0.67 and (i), (iii), and (iv), above hold.

(c) Both (a) and (b) above hold if condition (iii) is replaced by the following conditions: S ≥icv qi + q̃−i

and for each i we have that (qi + q̃−i) has a decreasing density function, and the remaining conditions

are unchanged.

This theorem implies that provided hospitals are responsible for a non-zero portion of the cost of

units that the blood bank has to procure from an external source, a consignment contract together with

a suitable subsidy scheme can induce truthful ordering by hospitals.

24



5 Numerical Study Based on Real Data

It is a worthwhile exercise to try and estimate the beneficial impact of the recommended subsidy

contracts on social cost. In this section we utilize the real world data described in Section 1 to generate

test instances which we use to get some insights into the interplay between contractual mechanism and

social cost.

First, we take a closer look at our data and try to identify the distributions that best describe

the demand at depots and the supply at the RBB. Note that we only observe the order quantities at

depots. In identifying the demand distributions, we assume that the order quantities are indicative

of true demand. We used the Kolmogorov-Smirnov test and the Chi-Squared test to identify the

best fit. Our analysis revealed the following. The demand at depot 1 and 2 can be described using

Generalized-Extreme-Value distribution. Despite out best efforts, we could not find a distribution that

describes the demand at depot 3 sufficiently closely to pass tests of statistical significance. However,

Generalized-Extreme-Value distribution is the best fit among all the tested distributions. Thus we

use the General-Extreme-Value distribution to generate our demand data. The supply at RBB also

fits a Generalized-Extreme-Value distribution, therefore, used for the generation of supply at RBB in

performing the computations. Recall that this distribution is characterized by three parameters: (i)

µ, location, (ii) σ, scale, and (iii) k, shape (Coles, 2001). The PDF of Generalized-Extreme-Value

distribution is 1
σ t(x)

k+1e−t(x) where,

t(x) =

{
[1 + (x−µ)k

σ ]−
1
k if k ̸= 0

e
(x−µ)

σ if k = 0

Below we provide the test statistics together with histograms.

µ σ k Kolmogorov-Smirnov Chi-Squared
(Location) (Scale) (Shape) Statistic p-value Statistic p-value

Demand at Depot-1 9.0307 8.4078 -0.10754 0.06843 0.06253 - -

Demand at Depot-2 77.869 53.201 -0.2708 0.04424 0.45968 13.834 0.08619

Demand at Depot-3 5.1621 10.177 0.45318 - - - -

Supply at RBB 82.054 38.507 -0.19727 0.04087 0.56141 13.128 0.10752

Table 7: Generalized-Extreme Value distribution parameters, test statistics, and p-values for demand
and supply

Next we discuss the goals of our experiment (Section 5.1). Then we provide the details of the data

generation and finally summarize the results from our experiment in Sections 5.2 and 5.3, respectively.
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(a) Probability Distribution of Demand at Depot-1 (b) Probability Distribution of Demand at Depot-2

(c) Probability Distribution of Demand at Depot-3 (d) Probability Distribution of Supply at RBB

Demand
565248444036322824201612840

f(
x
)

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Demand 
220200180160140120100806040200

f(
x
)

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Supply
220200180160140120100806040200

g
(x

)

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Demand
180160140120100806040200

f(
x
)

0.64

0.56

0.48

0.4

0.32

0.24

0.16

0.08

0

Figure 9: Histograms and probability distributions of demand at depots and the supply at RBB.

5.1 Goals of the Experiment

Our main goal is to illustrate the impact of proposed contracts in reducing the shortage and excess at

hospitals. Ideally, we would like to observe no excess at any hospital. To understand the impact of

various supply and demand conditions, we design experiments to achieve the following.

1. Impact of demand on social cost: Recall that each hospital has its own demand distribution.

Thus, the outcome of the contract may depend on the nature of the demand distributions. For

example, the effectiveness of the contract may differ when the hospitals are similar in terms of

their demand distributions as opposed to when they significantly differ in this respect.

2. Impact of order inflation on social cost: In the absence of a contract, the hospitals inflate their

order quantities resulting in undesirable shortage and excess at hospitals. In this experiment we

vary the level of order inflation to observe its impact on shortages and excesses at the hospitals.

3. Similarly, the ratio of supply to total demand also plays a role in determining the impact of the

contract on social cost.

4. Quantifying the subsidy: Since we use subsidy contracts to achieve the desired outcome, it is

worthwhile to determine the amount of subsidy needed under varying supply conditions.
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We note that the goal of this numerical experiment is to understand the impact of eliciting truthful

information from the hospitals on shortages and excesses. The generation of our test beds is to achieve

this objective. We clarify that we do not use the sufficient conditions specified in our analytical results

in this numerical analysis. Next we discuss the data generation process.

5.2 Data Generation

In our experiment, we consider a single period setting. Since our data is for platelets with a very short

shelf-life, a single period model is appropriate here. The base line values for the experiment are deter-

mined based on the analysis above. Note that the real world data was only for 3 depots. However, in

out experiment we consider 10 demand centers. Thus the supply needs to be appropriately adjusted to

obtain meaningful insights. To achieve this, we inflate the value of location parameter µ of the supply

distribution such that under the baseline setting we achieve supply/demand = 0.75. The table below

summarizes these values.

Parameter Baseline Value

Number of hospitals n = 10

µs = 350
Supply at RBB σs = 100

ks = −0.2

µi ∼ U [5, 100]
Demand at hospital i σi ∼ U [5, 60]

ki ∼ U [−0.5, 0.5]

Percentage of order inflation U [0, 10]

Table 8: Baseline values of the parameters

Test Bed 1: To observe the impact of demand on social cost, we fix the values of σi and ki at their base

values and vary µi. Specifically, we draw µi from the following: (i) [5, 25], [25, 45], [45, 65], [65, 85], [85, 105],

and (ii) [5, 100], [15, 90], [25, 80], [35, 70], [45, 60]. For each case we run 10, 000 instances and report the

average value. Thus we have 10, 000× (4 + 4) = 80, 000 instance in the test bed.

Test Bed 2: In this experiment we draw the percentage of order inflation by each hospital from the

following: (i) [0, 10], [10, 20], [20, 30], and (ii) [10, 20], [5, 25], [0, 30]. All the other parameters are set at

their base values. For each scenario we create 10, 000 instance and report the average outcome, thus,

the number of instances in this test bed is 60, 000.

Test Bed 3: To observe the impact of change in mean supply on the social cost, we fix the demand

distributions for the hospitals and vary the values of the supply distribution as follows. We fix the σs
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and ks at their base values. Then we set µs ∈ {100, 200, 300, 400, 500}. For each choice of µs we run

10, 000 instances and report the average resulting in 50, 000 instances in this test bed.

Test Bed 4: To quantify the subsidy, we generate the demand distributions using the base setting given

above. Then we generate the parameters for the supply distribution such that E[S] ≥ E[
∑10

i=1 qi]. Note

that the mean of Generalized-Extreme-Value distribution is given by µ+σΓ(1−k)−1
k . In this experiment

we let E[S]

E[
∑10

i=1 qi]
∈ {1.0, 1.1, 1.2, 1.3, 1.4}. We obtain the average for each case over 10, 000 instances

resulting in a total of 50, 000 instances in the test bed.

In testing each instance in each test bed we perform following steps. Note that in the last experiment

we avoid third and fourth steps.

1. First we randomly create the demand distributions.

2. We draw the supply from the specified distribution.

3. Then we consider the case where there is no contract.

– In this case each hospital reports its inflated order quantity which is calculated by multiplying

the randomly drawn percentage order inflation with corresponding µi. Note that since σi and ki

are fixed, inflating µi translates to inflating the mean value.

– We allocate the supply among the hospitals based on the inflated order quantities. In this

case we assume that the RBB considers the inflated value to be the true location parameter of

the distribution. The allocation is performed in such a way that the Type-1 service level at each

hospital to be the same.

4. Next we consider the case where the contract is in place.

– In this case each hospital reports its true location parameter µi as the order quantity.

– The supply is allocated in such a way that the Type-1 service level at each hospital to be

the same..

5. Now we draw the realized demand vector and calculate the total shortage and excess due to above

two allocations separately.
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5.3 Observations and Insights

To facilitate the discussion in this Section we define following two metrics.

ΛS =
[
1− Total shortage of blood in the presence of the contract

Total shortage of blood in the absence of a contract

]
× 100

ΛE =
[
1− Total excess of blood in the presence of the contract

Total excess of blood in the absence of a contract

]
× 100

Note that Λs (resp., ΛE) captures the percentage decrease in total shortage (resp., excess) due to the
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Figure 10: Impact of change in mean demand on percentage change in total shortage/excess: (a) increase
in average mean and (b) increase in range of mean.

implementation of the proposed contract. Figure 10 illustrates the impact of change in demand on the

above measures. Observe that in Figure 10 (a) we increase the mean of the uniform distribution used to

draw the values of µi while keeping the range the same. This eventually translates into increasing the

mean of the demand distributions at the hospitals while keeping the distribution of the size (in terms

of mean demand) of the 10 hospitals relative to one another the same. Observe from the figure that the

contract’s ability to better allocate the limited supply increases with mean demand. In other words,

when the mean demand from the hospitals is higher, the contract becomes more efficient in managing

both the shortage as well as the excess in the system.

Now consider Figure (b) which illustrates the impact of the contract on total shortage and excess

with increase in heterogeneity among the hospitals. Observe that in this case we increase the range

of the values µi. That is, as range increases, the µi values become relatively different from each other

allowing the demand distributions to be more heterogenous. This translates to the case where we

increase the heterogeneity of the pool of the hospitals. In a real world setting, we can consider a

situation where the RBB services a set of similar hospitals (that is, hospitals with same demand profile

in terms of the magnitude of demand) as opposed to a set of dissimilar hospitals (that is, a mixture of
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small and large hospitals). Observe form the figure that when the hospitals become more heterogeneous,

the effectiveness of the contract decreases in terms of managing the shortage. However the contract’s

ability to manage the excess increases.

Observation 1: (i) The contract becomes more effective in managing both shortage and excess as the

supply becomes more stringent. (ii) The heterogeneity among hospitals (in terms of demand) strengthens

our ability to contractually manage excess; however, it weakens our ability to manage shortage.
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Figure 11: Impact of change in order inflation by hospitals on percentage change in total shortage/excess:
(a) increase in average order and (b) increase in range of order inflation.

Let us now focus on the impact of order inflation in the absence of the contract on shortage and

excess. Recall that in this experiment we fix the demand distribution at each hospital and the supply

distribution at RBB. In Figure (a) we increase the average value of order inflation. Note that as the

mean of percentage order inflation increases, the contracts ability to manage shortage and excess slightly

decreases. Figure (b) illustrates the case where the hospital becomes heterogeneous in terms of the order

inflation. Now we observe that the more significantly the percentage inflation by the hospitals varies,

the more effective the contract becomes.

Observation 2: As the percentage of order order inflation increases the effectiveness of the contract

slightly reduces. However when the order inflation by the hospitals exhibits a significant variation the

contract achieves its objective better.

Figure 12 indicates the impact of increase in supply on the contract performance. In this experiment

we keep the demand distributions and the order inflation at their base values. As observed from

the figure, when there is extreme scarcity of supply (Probability(Supply > Demand) = 0.002 and

Supply = 0.27 × Demand), the contract has the ability to reduce the excess. However, the contract

cannot effectively manage the shortage. When the supply is more realistic and increases, we observe

that percentage reduction in shortage (resp., excess) due to the contract, ΛS (resp., ΛE) first increases
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Figure 12: Impact of change in mean supply on percentage change in total shortage/excess.

significantly (resp., decreases) and then slightly decreases (resp., increases). This behavior is driven by

the availability of ample supply. When the supply is very high, the RBB has the ability to better fulfill

the demand. Naturally we expect the excess to increase.

Observation 3: Estimating the subsidy budget.

The table below presents the shortage of blood as a percentage of total demand. Note that when

the expected supply is equal to the expected total demand, this percentage is about 30% and grad-

ually decreases as the mean supply increases. To get an estimation on amount of subsidy needed in

implementing the proposed contracts, let us set the disposal cost e = 0, and assume that the taregt

service level at each hospital is at least 67%. Note that for any e > 0, the required amount of subsidy is

lower than what is estimated. The cost of platelets is typically over USD 500 per unit (cost vary over

time and suppliers). Thus in our calculation we let the price p = 550. Recall from Theorem 3 that, a

unit subsidy of s = max(χ − p − e, 0) prevents order inflation. Note that s is positive only when the

emergency supply cost, pem = p + χ, exceeds 2p. Observe from the above results that the maximum

E[S]
E[

∑
i qi]

Shortage
Demand Dollar Value of Subsidy s per unit

pem = 2p pem = 2.25p pem = 2.5p pem = 2.75p pem = 3p

1.0 0.30 0 41.25 82.50 123.75 165.00

1.1 0.26 0 35.75 71.50 107.25 143.00

1.2 0.22 0 30.25 60.50 90.75 121.00

1.3 0.18 0 24.75 49.50 74.25 99.00

1.4 0.13 0 17.88 35.75 53.63 71.50

Table 9: Estimation of subsidy per unit required under varying supply/demand conditions when p = 550.

shortage is around 30% when expected supply is equal to expected total demand and it monotonically

reduces as the expected value of supply increases. Using above results, an RBB can estimate the budget

requirement based on its supply, total demand from the depots, and the cost of emergency supplies.
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For example, let us illustrate the budget required for the first case in our experiment where (i) average

of total demand over 10,000 instances is 452 and (ii) shortage is 137 units. Let pem = 2.5p = 1, 375.

In this case the total subsidy required is 82.50 × 137 = 11, 302.5. Note that the total revenue for the

blood bank in this case is (452 − 137) × 550 = 173, 250. Hence, we observe that the subsidy accounts

for around 6.5% of the blood bank’s revenue. Observe that when the emergency cost is lower than 2p

the subsidy is 0.

6 Concluding Remarks

We modeled the problem of designing contracts between a regional blood bank and the hospitals in

its service area. We were motivated by the high cost of blood shortages and outdates, a cost that is

ultimately borne by society at large. It is clear that managing the blood supply chain efficiently requires

good logistics practices. It is perhaps not as apparent that contract design also plays an important role

in an efficient blood supply chain. Our aim in this paper was to create parsimonious models of the blood

supply chain and design contracts geared towards creating incentives for honest information sharing,

maximizing efficiency and fairness in allocation, and minimizing total waste.

Our main findings were as follows. Our benchmark behavioral assumption, in accord with the

standard game theoretic paradigm, was that a rational and self-interested economic entity is certain to

disclose information honestly only if it is given sufficient economic incentive to do so. This assumption

precluded us from taking for granted that the hospitals would honestly share their demand estimates

with the blood bank; rather, we assumed that they would be tempted to exaggerate their actual needs

so as to garner a greater share of the available supply under constrained supply conditions. We showed

that under these conditions a per unit shortage subsidy contract can induce a truthful Bayesian Nash

equilibrium provided the subsidy is sufficiently generous to offset the financial incentive for hospitals

to over order, particularly under constrained supply conditions. The more constrained the supply, the

more generous the shortage subsidy is required to be. The shortage subsidy does not create an incentive

to mis-report shortages because the subsidy applies only to the extra cost incurred by the blood bank in

requisitioning emergency shipments of blood; in effect the hospitals share the emergency surcharge with

the blood bank. However, in general the hospitals still pay more for every unit of blood requisitioned

to offset a shortage than they pay for a regular unit of blood, under the shortage subsidy contract.

Let us compare and contrast our results with those in Cachon and Lariviere (1999b). Cachon and

Lariviere (1999b) emphasize that in contrast to comparable work in the social choice literature, in their
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setup the supplier is self-interested. We note that our setup also differs from that of Cachon and Lariviere

(1999b) in this critical facet. In their model, if a contracting mechanism is ‘individually responsive’ -

in the sense that the received quantity is a non-decreasing function of the order requisitioned - then

the retailers are sure to gain by inflating their orders. In our model too the blood bank designs an

individually responsive contract mechanism. However, we counter the incentive of hospitals to inflate

their orders by providing a sufficiently large subsidy. Of course, this pre-supposes a socially responsible

mechanism designer, which takes our model outside the domain of applicability of the results in Cachon

and Lariviere (1999b).

Let us note some key assumptions behind our work, as well as some limitations. We assume that

the most significant social costs were connected with shortages and outdates of blood. While there can

be no dispute about the extremely high human cost of blood shortages in hospitals, these costs may be

blunted if hospitals have recourse to cheap outside options for their blood supply. To the best of our

knowledge, finding alternative supplies of blood at short notice is not easy but our results certainly lose

some of their force for a set of hospitals with ready access to multiple sources of blood at a reasonable

cost. Our model does not study the interaction between hospitals on the one hand and two alternative

suppliers of blood on the other; we suggest that this is an interesting problem for future research. Our

own experience with blood banking in two large states in the USA is that hospitals sign on to supply

contracts with either a community blood center or the Red Cross, but not both. According to an article

in Slate (Engber , 2006), ‘local hospitals work out contracts with regional suppliers or their local Red

Cross facility. In general, they work with a single vendor, but they may shop around a bit to find the

best prices’.

We derive Bayesian Nash equilibrium contracts. We cannot in general show the existence of dominant

equilibrium contracts. Under severe supply constraints we would have to offer a generous subsidy

contract to induce truth revealing behavior from hospitals. This presupposes that the regional blood

bank has an external source of financial support so that it can tide over lean times, or else that it has

the flexibility to raise the price of blood.

In our work, we model the social objective to be the total cost incurred by the society due to

inefficient allocation of blood among the hospitals. The proposed social objective can also be translated

into the number of patients affected due to inefficient allocation of blood. To achieve this, we need

in-depth knowledge on types of patients using the considered blood type, the nature of the sickness,

and the individual health records, to estimate the amount of blood needed by each patient. Although
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obtaining this detailed level information is not practical, the blood bank may use the average use of a

blood type to estimate the impact of the contract (for example average use of red blood cells is around

3 pints per patient). In that case, we can show that the proposed contract still achieves the social

optimum (we can obtain this result by setting the outdating cost to zero).

We learned in the course of our discussions with practitioners that a contract between a blood bank

and a hospital typically does not depend on the type of blood product. However, contracts may vary

based on the geographical location of the hospital. Developing different types of contracts based on

the demand/supply characteristics of a particular type of a blood product may lead to an efficient

management of the blood units. We suggest that modeling this is an interesting problem for future

research.

Note: All the URL’s that appear below are last accessed on January 18th, 2017.
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Appendix

Proof of Theorem 1(b): We remark that it is more convenient to prove part (b) before part (a).

Please refer to the table below for definitions used in the proof. We break up the proof into two steps.

Notation Definition

f̂(x) (resp.,F̂ (x)) p.d.f (resp., c.d.f) of random variable q̃−i

g(y) (resp.,G(y)) p.d.f (resp., c.d.f) of random variable (S −Ri)
h(x, y) Joint density function of random variables q̃−i and (S −Ri)
H(x/z) c.d.f of random variable Uz

Table 10: Notation used in the proof of Theorem 1

Step 1: Consider any specific hospital i, and fix the order quantities of all the other hospitals. For

each i define

νi := S − [Ri + q̃−i].

We shall analyze Hi’s estimate of P{νi > 0}. Let f̂(x) be the density function of q̃−i and g(y) be the

density function of (S −Ri). Also let F̂ (x) and G(y) be the distribution functions of q̃−i and (S −Ri),

respectively. We assume that both these distribution functions are continuous. We note the following

simple lemma.

Lemma 1 Let H(x) be a continuous distribution function of a positive valued random variable. Then∫∞
0 H(x)dH(x) = 1

2 .

Proof: Integrating by parts, we get
∫∞
0 H(x)dH(x) = H2(x)|∞0 −

∫∞
0 H(x)dH(x) which, on rearrang-

ing, yields the claimed result.

First, suppose q̃−i is a unimodal random variable with mode 0; since q̃−i is positive valued, this is

equivalent to the assumption that q̃−i has a decreasing density function with mode 0. Then it follows

from a standard result on unimodal random variables - see Chapter 1 of the monograph by Dharmad-

hikari and Kumar Joag-dev (1988) for a thorough account - that the random variable q̃−i can be written

as UZ, where U is the uniform (0, 1) random variable, and Z is a random variable independent of U .

Since q̃−i is positive valued, Z must be positive valued too. Let us condition on Z. Given Z = z > 0,

we have that q̃−i ∼ Uz is uniformly distributed over (0, z). Let H(x|z) denote the distribution function

of Uz; note that this is an increasing concave function of x on [0,∞). We have by hypothesis that

S ≥icv Ri + q̃−i (1)

which implies that

S −Ri ≥icv q̃−i

since we obtain the latter from the former by adding the constant −Ri to the random variable on each

side (the icx ordering is closed under this operation, by Theorem 4.A.15 of Shaked and Shanthikumar
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(2007) and it follows that this applies to icv ordering too). The distribution function of UZ ∼ q̃−i is

F̂ (x). Since H(x|z) is an increasing concave function, we have∫ ∞

0
H(x|z)dF̂ (x) ≤

∫ ∞

0
H(x|z)dG(x). (2)

For ease of exposition and without loss of generality, let Z be a discrete random variable taking the

value z with probability p(z). Hence, we have∑
z

H(x|z)p(z) = F̂ (x). (3)

It follows directly from (2) that∑
z

p(z)

∫ ∞

0
H(x|z)dF̂ (x) ≤

∑
z

p(z)

∫ ∞

0
H(x|z)dG(x).

Interchanging the order of summation and integration - which, by Tonelli’s Theorem, is valid when the

functions are non-negative as in this case - this simplifies to∫ ∞

0
[
∑
z

H(x|z)p(z)]dF̂ (x) ≤
∫ ∞

0
[
∑
z

H(x|z)p(z)]dG(x). (4)

Substituting (3) into (4) yields ∫ ∞

0
F̂ (x)dF̂ (x) ≤

∫ ∞

0
F̂ (x)dG(x). (5)

Applying Lemma 1, we have from (5) that∫ ∞

0
F̂ (x)dG(x) ≥ 1

2
. (6)

Define h(x, y) as the joint density function of random variables q̃−i and (S − Ri). Now, we integrate

h(x, y) over the region y > x in the xy plane. Because of independence, we have h(x, y) = f̂(x)g(y).

Now we have

P (νi > 0) =

∫ ∞

0

∫ ∞

x
f̂(x)g(y)dxdy =

∫ ∞

0

{∫ ∞

x
g(y)dy

}
f̂(x)dx

=

∫ ∞

0
[1−G(x)]f̂(x)dx =

∫ ∞

0
[1−G(x)]dF̂ (x)

So we have

P (νi > 0) =

∫ ∞

0
[1−G(x)]dF̂ (x)

= 1−
∫ ∞

0
G(x)dF̂ (x) (7)

where we used the fact that
∫∞
0 dF̂ (x) = 1 to obtain the second identity. Now the following identity

can be verified by integration by parts:

1 =

∫ ∞

0
F̂ (x)dG(x) +

∫ ∞

0
G(x)dF̂ (x). (8)
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Combining (9), (7), and (8) we obtain

P (νi > 0) ≥ 1

2
. (9)

Now it is easy to see that (9) holds even when q̃−i is a random variable with a decreasing density

function, and support [a,∞) or [a, b], for some b > a, rather than [0,∞) or [0, b]. To see this, note that

we can write q̃−i in the form a+ V , where V is a positive valued unimodal random variable with mode

0. Further, we note that we can replace (1) by

S ≥icv Ri + q̃−i + a

and re-run the entire argument in the case when the mode was 0.

Step 2: Consider two cases, νi ≥ 0 and νi < 0. If νi ≥ 0 and Hi over-orders by δ - that is, orders Ri+δ

- then the extra cost borne by the hospital, relative to the case when it orders exactly its demand, is

at least δ(e+ p); note that the true value of the extra cost lies between δ(e+ p) and δ(e+ p+ χ), and

depends on exactly how many of the extra units come from the RBB and from the external source. On

the other hand, if νi < 0 and Hi over-orders by δ then the shortage cost of the hospital relative to the

case when it orders exactly its demand would be reduced by Y (δ)χ, where Y (δ) is equal to the additional

units received by Hi because it ordered δ more than its true demand. Note that 0 ≤ Y (δ) ≤ δ, since

the hospital receives at most δ more than the quantity it would have received had it ordered exactly its

demand.

Thus the expected cost of over-ordering by δ is greater than

P{νi ≥ 0}[δ(e+ p)] (10)

while the expected benefit of over-ordering by δ is at most

P{νi < 0}[δχ]. (11)

Suppose Ri + q̃−i has a decreasing density function for all i. Then it follows from Step 1 that P{νi ≥
0} ≥ 1

2 . Therefore it follows from (10) and (11) that if the RBB provides a unit subsidy of at least

max(χ − p − e, 0), the expected cost of over-ordering will exceed the expected benefit. The theorem

follows.

Proof of Theorem 1(a): If Y ≥st X, then it follows that P (Y − X > 0) ≥ 1
2 . Hence we directly

obtain the inequality

P (νi > 0) ≥ 1

2

and can therefore proceed directly to Step 2 of the proof of part (a) and repeat the argument there.

Proof of Corollary 1 : It is easily checked that if p + e > χ, the expected cost of over-ordering will

exceed the expected benefit even without a subsidy. The condition we state in the corollary reduces to

p > χ, which implies that p+ e > χ; the corollary follows.
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Proof of Corollary 2 : This corollary can verified by noting that in Step 2 of the proof of Theorem

1, we invoked a function Y (δ) that captures the additional units that a hospital receives when it over-

orders by δ. If the allocation policy is non-decreasing in Qi, then it follows that 0 ≤ Y (δ) ≤ δ. We

made use of this inequality in the proof of Theorem 1; nowhere else in the proof does the nature of the

allocation policy come into play.

Proof of Theorem 2 : For each i the expected cost of over-ordering by δ is greater than

P{νi ≥ 0}[δ(e+ p)]

while the expected benefit of over-ordering by δ is at most

P{νi < 0}[δχ]. (12)

Note that θ := P{νi < 0}. Hence the expected cost of over-ordering by δ is greater than

[δ(e+ p)][1− θ]

while the expected benefit of over-ordering by δ is at most

[δχ][θ].

The result now follows easily.

Proof of Theorem 3 : (a) Let Ei denote the event

qi ≤ Q∗
i .

We have that for all hospitals Hi

P (Ei) = r∗.

Define

νi := S − [qi + q̃−i].

Note that we had defined νi earlier (in the deterministic demand case), but with hospital i demand in

that case denoted by Ri rather than qi. For each i let Gi denote the event {νi ≥ 0}. Then it follows

that the expected cost when Hi orders δ more than Q∗
i is at least

P{Ei ∩ Gi}[δ(e+ p)]. (13)

Note that the events Ei and Gi are not independent, so P{Ei ∩ Gi} ̸= P{Ei}P{Gi}. We shall show that

it is the case that

P{Ei ∩ Gi} ≥ P{Ei}P{Gi}. (14)

We note that

Ei := {ω : qi ≤ Q∗
i }

Gi := {ω : qi ≤ S − q̃−i}
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where ω denotes a generic point in the probability space of the random variable qi. Therefore,

P{Ei ∩ Gi} = P{ω : qi ≤ Q∗
i , qi ≤ S − q̃−i}

= P{qi ≤ Min(Q∗
i , S − q̃−i)}

while

P{Ei}P{Gi} = P{qi ≤ Min(Q∗
i , S − q̃−i)}.P{qi ≤ Max(Q∗

i , S − q̃−i)}.

Now (14) follows immediately.

It follows from (13) and (14) that the expected cost when Hi orders δ more than Q∗
i is at least

P{νi ≥ 0}r∗[δ(p+ e)]. (15)

It is clear that the expected benefit of over-ordering by δ is at most

δχ(1− r∗). (16)

since over-ordering is beneficial only in the event that the demand at Hi exceeds Q∗
i , an event of

probability (1− r∗).

Further, we have assumed that r∗ > 1/2 for all the hospitals. Therefore it follows from (15) and (16)

that if the RBB provides of unit subsidy of at least max(χ − (p + e)/2, 0), the expected cost of over-

ordering will exceed the expected benefit. The theorem follows.

Remark: We showed in the proof of Theorem 1 that P{νi ≥ 0} ≥ 1
2 ; the same result holds in this

case and the proof is almost unchanged. The main change is that the real number Ri is replaced by a

random variable qi, but since this random variable is independent of S and q̃−i, the earlier proof goes

through. The statement S ≥icv Ri + q̃−i implies S − Ri ≥icv q̃−i in the proof of Theorem 1(b) has to

be replaced by the statement that S ≥icv qi + q̃−i implies S − qi ≥icv q̃−i; this is true because of the

mutual independence of the random variables (as spelled out in the previous sentence) and the closure

of the ‘icv’ order under mixtures.

(b) Using the assumption that r∗ > 2/3 we easily obtain that with a unit subsidy of at least

max(χ− p− e, 0), the expected cost of over-ordering will exceed the expected benefit.

(c) The stochastic ordering directly implies that P (νi > 0) ≥ 1
2 holds; we can therefore proceed

directly to Step 2 of the proof of part (b) and repeat the argument there.

Proof of Theorem 4 : The proof follows by combining the proof techniques of Theorem 2 and Theo-

rem 3.

Proof of Theorem 5 : The same proof as that of Theorem 3 applies with e = 0 since in a consignment

contract the hospitals do not bear the cost of outdated units.
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