Unique Factorization Domains in Commutative Algebra

Yongjian Huang
Advisor: Prof. Daniel Katz
University of Kansas

May 20, 2021

1 Introduction

In this project, we learn about unique factorization domains in commutative algebra. Most importantly, we explore the relation between unique factorization domains and regular local rings, and prove the main theorem: If R is a regular local ring, so is a unique factorization domain.

2 Prime ideals

Before learning the section about unique factorization domains, we first need to know about definition and theorems about prime ideals.

Definition 2.1. In a commutative ring R, the ideal I is prime if $a b \in I$ implies $a \in I$ or $b \in I$. Alternatively, I is prime if R / I is an integral domain.

The following theorem tells us another way to define prime ideals.
Theorem 2.1. Let S be a multiplicatively closed set in a ring R and let I be an ideal in R maximal with respect to the exclusion of S. Then I is prime.

Proof. Given $a b \in I$, we want to show $a \in I$ or $b \in I$. We give a proof by contradiction, suppose $a \notin I$ and $b \notin I$, then the ideal (I, a) generated by I and a is strictly larger than I. So the ideal (I, a) intersects S. Thus, there exists an element $s \in S$ of the form $s_{1}=i_{1}+x a$, where $i_{1} \in I$ and $x \in R$. Similarly, we have $s_{2}=i_{2}+y b$, where $i_{2} \in I$ and $y \in R$.

$$
\begin{aligned}
s_{1} \cdot s_{2} & =\left(i_{1}+x a\right)\left(i_{2}+y b\right) \\
& =i_{1} i_{2}+i_{1} y b+i_{2} x a+x y a b
\end{aligned}
$$

Thus, $s_{1} s_{2} \in I$. However, S is multiplicatively closed set, then $s_{1} s_{2} \in S$, which is a contradiction. Therefore, $a \in I$ or $b \in I$, which implies I is prime.

Definition 2.2. The set S is saturated if $x \in S$ with $s_{1} \cdot s_{2}=x$ and both $s_{1}, s_{2} \in S$.
Theorem 2.2. The following are equivalent:
(1) S is a saturated multiplicatively closed set;
(2) The complement of S is a set theoretic union of prime ideals in R.

Proof. Assume (2) holds. Proof by contradiction. Suppose $s_{1} \cdot s_{2} \in S$ and s_{1} or $s_{2} \in \mathcal{I}$, where $\mathcal{I}=\bigcup I_{i}$ and I_{i} are prime ideals. Since I_{i} are the complement of S, \mathcal{I} is the complement of S. Without loss of generality, suppose $s_{1} \in \mathcal{I}$, then $s_{1} \cdot s_{2} \in \mathcal{I}$, which is a contradiction. Assume $s_{1}, s_{2} \in S$ and $s_{1} \cdot s_{2} \notin S$, then $s_{1} \cdot s_{2} \in \mathcal{I}$, so s_{1} or $s_{2} \in \mathcal{I}$, which is a contradiction.

Assume (1) holds. We can take x in the complement of S. Then the principal ideal (x) is disjoint from S, since S is saturated. Then using the Zorn's Lemma, we can expand (x) to an ideal I maximal with respect to the disjointness from S. Then by Theorem 2.1, I is prime. Thus, every x not in S has been inserted in a prime ideal disjoint from S. Therefore, (2) holds.

Prime elements and irreducible elements are very important concepts we need to learn for unique factorization domains.

Definition 2.3. $p \in R$ is called prime if $p \neq 0, p$ is not a unit in R, and $p \mid a b$ implies $p \mid a$ or $p \mid b$. An ideal generated by a prime element p, denoted by (p), is called principal prime.

Definition 2.4. $p \in R$ is called irreducible if $p \neq 0, p$ is not a unit in R, and $p=a b$ implies a is a unit or b is a unit.

Then we can find the relation between principal prime elements and irreducible elements in a integral domain.

Lemma 2.3. In an integral domain R with unity, a principal prime element p is an irreducible element.

Proof. Let p be a principal prime element is R, then (p) is a prime ideal in R. Assume p is not an irreducible element. Let $p=a b$, then neither a nor b is a unit in R. Moreover, $a b=p$ implies $a b \in(p)$. Since (p) is a prime ideal, we have either $a \in(p)$ or $b \in(p)$. Without loss of generality, suppose $a \in(p)$, then $a=p m$ for some $m \in R$, so we have $p=(p m) \cdot b$, which implies $m b=1$, since p is nonzero in an integral domain R. Thus, b is a unit, which contradicts the assumption. Therefore, p is an irreducible element.

Theorem 2.4. If an element in an integral domain is expressible as a product $p_{1} p_{2} \ldots p_{n}$ of principal primes, then that expression is unique, up to a permutation of $p^{\prime} s$, and multiplication of them by unit factors.

Proof. We prove by inducting on the number n of principal prime factors of an element a. When $n=1$, we let $a=p$, where p is a principal prime. Assume $a=x y$, where x and y are not units, but this assumption contradicts Lemma 2.3, so either x or y is a unit. Without loss of generality, assume x is a unit. Then we have $(1 / x) a=y$, then p is a principal prime, since the product of a unit $(1 / x)$ and a principal prime a is a principal prime. Thus the case for $n=1$ holds.

Suppose the theorem is true for all a that can be expressed as a product of $n-1$ principal primes. Let $a=p_{1} p_{2} \cdots p_{n-1} p_{n}=q_{1} q_{2} \cdots q_{k}$, where p_{i} and q_{j} are principal primes. Then q_{k} divides some p_{i}. Without loss of generality, assume q_{k} divides p_{n}, which implies $p_{n}=u q_{k}$, since p_{n} and q_{k} are irreducible. So we have

$$
a / p_{n}=p_{1} p_{2} \cdots p_{n-1}=q_{1} q_{2} \cdots q_{k-1}((1 / u))
$$

hence,

$$
a=p_{1} p_{2} \cdots p_{n-1} p_{n}=q_{1} q_{2} \cdots q_{k-1}\left((1 / u) p_{n}\right)
$$

Since a / p_{n} is the product of $n-1$ principal primes, by the induction hypothesis $n-1=k-1$. Therefore, $n=k$ and p_{i}, q_{i} differ by unit factors.
Theorem 2.5. Let R be an integral domain. Let S be the set of all elements in R expressible as a product of principal primes. Then S is a saturated multiplicatively closed set.

Proof. It is clearly that S is a multiplicatively closed set. Then we need to show that for all $a b \in S, a \in S$ and $b \in S$. Suppose $a b=p_{1} p_{2} \ldots p_{n}$, a product of principal primes, then p_{1} must divide a or b. Say $a=p_{1} a_{1}$. Then $a_{1} b=p_{2} p_{3} \ldots p_{n}$. By induction on n, we have that both a_{1} and b are in S, and hence $a, b \in S$.

3 Localization

Let S be a multiplicatively closed set in R. Let A be an R-module. Define A_{S} to be the set of equivalent classes of pairs (a, s) with $a \in A, s \in S$, the equivalent relation being $(a, s) \sim\left(a_{1}, s_{1}\right)$ if there exists $s_{2} \in S$, such that $s_{2}\left(s_{1} a-s a_{1}\right)=0$.

We can make A_{S} into an abelian group by $(a, s)+\left(a_{1}, s_{1}\right)=\left(s_{1} a+s a_{1}, s s_{1}\right)$, and then into an R-module by $x(a, s)=(x a, s)$. The notation for the equivalence class of (a, s) denoted as a / s or $\frac{a}{s}$. We assume S is saturated and $1 \in S$.

There is a natural ring homomorphism from R to R_{S}.
$I_{S} \subset R_{S}$ consists of all i / s with $i \in I, s \in S$. The ideal $I^{\prime \prime}$ explodes" to R_{S} (i.e. $I_{S}=R_{S}$) if and only if I contains an element in S, and I collapses to 0 if every element of I is annihilated by some element of S.

Given an ideal $J \subset R_{S}$, there is a well-defined complete inverse image I in R, it consists of all x with $x / 1 \in J$.

If we go from J to I and then back to I_{S}, we find $I_{S}=J$. If we start with $I \subset R$, pass to I_{S}, and then return to an ideal of R, we generally get a larger ideal.

Theorem 3.1. The mappings described above implement a one-to-one order-preserving correspondence between all the prime ideals in R_{S} and those prime ideals in R disjoint from S.

We note that the maximal ideals in R_{S} are the maximal primes disjoint from S.
Theorem 3.2. The mappings described above implement a one-to-one order-preserving correspondence between all the prime ideals in R_{P} and all the prime ideals in R contained in P. Thus R_{P} is a local ring with maximal ideal P_{P}.

We then define short exact sequences.
Definition 3.1.

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is called a short exact sequence if $\operatorname{im}(f)=\operatorname{ker}(g)$ and f is one-to-one and g is onto.
When we localize each R-module on a short exact sequence with a multiplicatively closed set S, we still get a short exact sequence of R_{S}-modules, as the following theorem:

Theorem 3.3. If

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is an short exact sequence of R-modules, then

$$
0 \longrightarrow A_{S} \xrightarrow{f_{s}} B_{S} \xrightarrow{g_{s}} C_{S} \longrightarrow 0
$$

is an short exact sequence of R_{S}-modules.
Proof. Define f_{s} as $f_{s}(a / s)=f(a) / s$. Let $f_{s}(a / s)=0 / 1$, which implies $f(a) / s=0 / 1$, so there exists $s^{\prime} \in S$ such that $s^{\prime} f(a)=0$, which means $f\left(s^{\prime} a\right)=0$. Then $s^{\prime} a=0$ implies $a / 1=0$ in A_{S}. Thus, f_{s} is one-to-one.

We claim that $\operatorname{im}\left(f_{s}\right)=\operatorname{ker}\left(g_{s}\right)$. Indeed, firstly let $f_{s}(a / s)=0$. Since $a / s \in A_{S}$, $f_{s}(a / s)=f(a) / s$, then $g_{s}(f(a) / s)=g(f(a)) / s=0 / s=0$. Thus, $\operatorname{im}\left(f_{s}\right) \subseteq \operatorname{ker}\left(g_{s}\right)$. Next, suppose $b / s \in \operatorname{ker}\left(g_{s}\right)$, then $g_{s}(b / s)=0 / 1$ in C_{S}, which implies $g(b) / s=0$ in C_{S}. So there exists $s_{0} \in S$ such that $s_{0} g(b)=0$, which implies $g\left(s_{0} b\right)=0$. Thus, $s_{0} b \in \operatorname{ker}(g)=\operatorname{im}(f)$. So $s_{0} b=f(a), a \in A$, then $b=f(a) / s_{0}$ in B_{S}. So $b / s=f(a) / s s_{0}=f_{s}\left(a / s s_{0}\right) \in i m\left(f_{s}\right)$. Thus, $\operatorname{ker}\left(g_{s}\right) \subseteq \operatorname{im}\left(f_{s}\right)$. Therefore, $\operatorname{im}\left(f_{s}\right)=\operatorname{ker}\left(g_{s}\right)$.

Since g is onto, for all $c \in C$, there exists $b \in B$ such that $g(b)=c$. So $g(b) / s=c / s$ for $0 \neq s \in S$. Then by definition, $g_{s}(b / s)=c / s$, where $b / s \in B_{S}, c / s \in C_{S}$. Thus, g_{s} is onto. Therefore,

$$
0 \longrightarrow A_{S} \xrightarrow{f_{s}} B_{S} \xrightarrow{g_{s}} C_{S} \longrightarrow 0
$$

is an short exact sequence of R_{S}-modules.

4 Noetherian Rings

Definition 4.1. A commutative ring R is Noetherian if it satisfies one of the followings:
(1) Every ideal in R is finitely generated;
(2) The ideals in R satisfy the ascending chain condition (ACC);
(3) If X is nonempty and is a collection of ideals, X has a maximal element, not need to be ideal.

Theorem 4.1 (Hilbert basis Theorem). If R is Noetherian, then $R[x]$ is also Noetherian.
Proof. Suppose R is Noetherian. Let I be an ideal of $R[x]$, to prove $R[x]$ is Noetherian, we need to show that I is finitely generated. We want to prove by contradiction, then suppose there exists an ideal I in $R[x]$ which is not finitely generated. We set $I_{0}=(0)$. Let $f_{1} \in I$ be a polynomial in I of least degree and $I_{1}=\left(f_{1}\right)$. Let f_{2} be a polynomial of least degree in $I \backslash\left(f_{1}\right)$ and $I_{2}=\left(f_{1}, f_{2}\right)$. Repeating the process, we let f_{m} be a polynomial of lease degree in $I \backslash\left(f_{1}, \ldots, f_{m-1}\right)$ and $I_{m}=\left(f_{1}, \ldots, f_{m}\right)$. By this setting, we have
(1) $\operatorname{deg}\left(f_{1}\right) \leq \operatorname{deg}\left(f_{2}\right) \leq \operatorname{deg}\left(f_{3}\right) \leq \cdots$
(2) $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$

Next, we let a_{m} be the leading coefficient of f_{m} and $J_{m}=\left(a_{1}, \ldots, a_{m}\right)$, so we get a chain of ideals $J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \cdots$. Since this is a chain of ideals in R and R is Noetherian, there exists $n \in \mathbb{N}$ such that $J_{n}=J_{n+1}=J_{n+2}=\cdots$. Thus, a_{n+1}, which is the leading coefficient of f_{n+1}, is in J_{n}, so we can write $a_{n+1}=\sum_{i=1}^{b} r_{i} a_{i}$ for some $r_{i} \in R$. We then let

$$
f=f_{n+1}-\sum_{i=1}^{n} r_{i}\left(x^{\operatorname{deg}\left(f_{n+1}\right)-\operatorname{deg}\left(f_{i}\right)}\right) f_{i},
$$

so $\operatorname{deg}(f)<\operatorname{deg}\left(f_{n+1}\right)$ and $f \in I_{n+1}$. Since f_{n+1} is a polynomial of least degree in $I \backslash\left(f_{1}, \ldots, f_{n}\right)$, we have $f \in I_{n}$. Moreover, because

$$
f_{n+1}=f+\sum_{i=1}^{n} r_{i}\left(x^{\operatorname{deg}\left(f_{n+1}\right)-\operatorname{deg}\left(f_{i}\right)}\right) f_{i}
$$

we then have $f_{n+1} \in I_{n}$, which is a contradiction by the setting of f_{n+1}. Thus, every I in $R[x]$ is finitely generated, which implies $R[x]$ is Noetherian.

Corollary 4.2. Let n be a positive integer. If R is a Noetherian ring, then the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ is also a Noetherian ring.

Proof. By iterating Hilbert basis Theorem.
Then we want to prove the Krull Intersection Theorem. Before the proof, we need to define Jacobson radical.

Definition 4.2. $J(R)=\{x \in R: \forall y \in R, 1+x y \in U(R)\}$ is called the Jacobson radical of R, where $U(R)$ is the group of units of R.

Theorem 4.3 (The Krull Intersection Theorem). Let R be a commutative Noetherian ring, and let $I=a_{1} R+\cdots+a_{n} R$ be an ideal of R. If an element b of R belongs to $\bigcap_{k=1}^{\infty} I^{k}$, then b is an element of $b I$.

In particular, if $a_{1}, \ldots, a_{n} \in J(R)$, or if R is an integral domain, then $b=0$ and therefore, $\bigcap_{k=1}^{\infty} I^{k}=0$.

Proof. For each $k \geq 1, b$ belongs to I^{k}, there exists a homogeneous polynomial $P_{k}\left(x_{1}, \ldots, x_{n}\right)$ of degree k such that $b=P_{k}\left(a_{1}, \ldots, a_{n}\right)$. In the Noetherian ring $S=R\left[x_{1}, \ldots, x_{n}\right]$, we consider the ascending chain of ideals defined by

$$
J_{k}=P_{1} S+\cdots+P_{k} S
$$

If we fix an integer m such that $J_{m}=J_{m+1}$, then we can write $P_{m+1}=Q_{m} P_{1}+\cdots+Q_{1} P_{m}$, where $Q_{i}\left(x_{1}, \ldots, x_{n}\right)$ is homogeneous of degree i. Substituting $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$, we obtain

$$
\begin{equation*}
b=b\left(Q_{1}\left(a_{1}, \ldots, a_{n}\right)+\cdots+Q_{m}\left(a_{1}, \ldots, a_{n}\right)\right. \tag{1}
\end{equation*}
$$

Now for $i=1, \ldots, m$, the polynomial Q_{i} is homogeneous of positive degree, so $Q_{i}\left(a_{1}, \ldots, a_{n}\right)$ is in the ideal (I). From this, it follows that b lies in $b I$.

In the particular case, with I is contained in $J(R)$, (1) leads to $(1-\lambda) b=0$, with $\lambda \in I \subseteq J(R)$. By the definition of $J(R), 1-\lambda$ is a unit, so $b=0$.

Suppose R is an integral domain. Since b lies in $b I$, then $b=b i$ with $i \in I$, so we have $b(1-i)=0$. Since $1-i \neq 0$ and R is an integral domain, $b=0$. Therefore, $\bigcap_{k=1}^{\infty} I^{k}=0$

Theorem 4.4 (Nakayama's Lemma). Let R be a commutative ring, let M be a finitely generated left R-module, and assume that $J(R) M=M$, where $J(R)$ is the Jacobson of R. Then $M=0$.

Proof. Let m_{1}, \ldots, m_{r} be a minimal generating set of M. Then we assume that $r>0$ and want to reach a contradiction. Since $J(R) M=M$, we have $m_{1}=j_{1} m_{1}+\cdots+j_{r} m_{r}$ for $j_{1}, \ldots, j_{r} \in J$, which is $\left(1-j_{1}\right) m_{1}=j_{2} m_{2}+\cdots+j_{r} m_{r}$. Since $\left(1-j_{1}\right)$ is invertible, this enables us to express m_{1} in terms of the remaining $m^{\prime} s$. However, m_{1}, \ldots, m_{r} is the minimal generating set, so this is a contradiction. Thus, $m_{i}=0$, which implies $M=0$.

5 Unique Factorization Domains

Now, we are ready to learn about unique factorization domains. This section includes important theorems and examples about unique factorization domains.

Definition 5.1. Suppose R is a commutative ring with unity $1_{R}, a, b \in R$ are associates if there exits u which is a unit of R such that $a=u \cdot b$.

After know the definition about two elements being associates, we can give the definition of unique factorization domains.

Definition 5.2. An integral domain R is called a unique factorization domain (or UFD) if it satisfies the following two conditions:
(1) For all $a \in R$ with $a \neq 0$ and a is not unit, we can write $a=p_{1} p_{2} \ldots p_{n}$, where $n \in \mathbb{Z}_{>0}$, and each p_{i} is irreducible in R.
(2) If $a=p_{1} p_{2} \ldots p_{n}=q_{1} q_{2} \ldots q_{m}$ with each q_{i} is irreducible in R, then $n=m$, and after possible rearrangement, p_{i} and q_{i} are associates for all i.

Theorem 5.1. Suppose R is a UFD. $p \in R$ is irreducible if and only if p is prime.

Proof. (\Leftarrow) Suppose $p \in R$ is prime and $p=a \cdot b$, so $p \mid a b$, then by definition $p \mid a$ or $p \mid b$. Without loss of generality, assume $p \mid a$, so $\exists c \in R$ such that $a=p \cdot c$. Then $p=a \cdot b=p \cdot c \cdot b$, which implies $p(1-c \cdot b)=0$. Since R is a UFD, then is an integral domain, so $(1-c \cdot b)=0$, since $p \neq 0$ by definition. Thus, $c \cdot b=1$, which implies b is a unit. So $p \in R$ is irreducible.
(\Rightarrow) Suppose $p \in R$ is irreducible and $p \mid a b$, then $\exists c \in R$ such that $a \cdot b=p \cdot c$. Since R is a UFD, we can express $a=a_{1} \cdots a_{n}, b=b_{1} \cdots b_{m}, c=c_{1} \cdots c_{k}$ with u_{i} is unit and a_{i}, b_{j}, c_{l} are irreducible, with $1 \leq i \leq n, 1 \leq j \leq m, 1 \leq l \leq k$. Thus,

$$
p \cdot c_{1} \cdot c_{2} \cdots c_{k}=a_{1} \cdot a_{2} \cdots a_{n} \cdot b_{1} \cdots b_{m}
$$

Then by the uniqueness of product of irreducibles, we get $n+m=k$. Thus, p is an associate of a_{i} for some i or b_{j} for some j. If p is an associate of a_{i}, then $p \mid a$, or if p is an associate of b_{j}, then $p \mid b$. Therefore, $p \in R$ is prime.
Corollary 5.2. Let R be an integral domain. R is a UFD if and only if every non-zero and non-unit element in R is a product of prime elements.
Proof. (\Rightarrow) Follows from Definition 5.2 and Theorem 5.1.
(\Leftarrow) Suppose an element $a \in R$ is a product of prime elements, say $a=p_{1} p_{2} \cdots p_{n}$, where p_{i} is prime. Since R is an integral domain, by the proof of Theorem 5.1, each p_{i} is irreducible. Next, we want to show that if $b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{m}$ are prime elements in R such that

$$
b_{1} \cdots b_{n}=c_{1} \cdots c_{m},
$$

then $n=m$ and after rearrangement, we have b_{i} and c_{i} are associates.
We prove by inducting on n. If $n=1$, then we have $b_{1}=c_{1} \cdots c_{m}$. Since b_{1} is irreducible, $m=1$, so $b_{1}=c_{1}$. Assume the uniqueness property holds for some n and then we have

$$
b_{1} \cdots b_{n} \cdot b_{n+1}=c_{1} \cdots c_{m}
$$

so $b_{n+1} \mid\left(c_{1} \cdots c_{m}\right)$. Since b_{i} is a prime element for $1 \leq i \leq n+1$, it follows that $b_{n+1} \mid c_{j}$ for $1 \leq j \leq m$, say $b_{n+1} \mid c_{m}$. Then there exists some $a \in R$ such that $c_{m}=a b_{n+1}$. Since c_{m}, b_{n+1} are irreducible, a must be a unit. So b_{n+1} and c_{m} are associates. Then we obtain that

$$
b_{1} \cdots b_{n} \cdot b_{n+1}=c_{1} \cdots c_{m-1} \cdot a b_{n+1} .
$$

Since R is an integral domain, we get

$$
b_{1} \cdots b_{n}=c_{1} \cdots c_{m-1} \cdot a
$$

Since c_{m-1} is irreducible and a is a unit, the product $c_{m-1} a$ is an irreducible element. Therefore, by the inductive assumption, $n=m-1$ and after rearrangement, we have b_{i} and c_{i} are associates. So R is a UFD.
Theorem 5.3. If R is a Noetherian integral domain, then R satisfies UFD 1.
Proof. Suppose R is a Noetherian integral domain and a non-zero and non-unit element a in R can not be written as a product of finitely many irreducibles, then a is not irreducible. So $a=a_{1} \cdot b_{1}$, where a_{1}, b_{1} are not units and at least one of a_{1} or b_{1} can not be written as a product of finitely many irreducibles. Without loss of generality, assume that it is a_{1}, then $a_{1}=a_{2} \cdot b_{2}$. We can continue the same process. In this way, we get the chain $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle \subsetneq \cdots$, which contradicting ACC condition. Thus, R satisfies UFD 1.

The first example of unique factorization domain we want to show is GCD domains and LCM domains as the following proposition:

Proposition 5.4. Suppose R be a UFD. Then R is also a GCD domain and an LCM domain, i.e., every pair of non-zero, non-unit elements in R has a greatest common divisor and a least common multiple.

Proof. Suppose R is a UFD and non-zero, non-unit elements $a, b \in R$, then we can write

$$
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}
$$

and

$$
b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}
$$

where p_{i} is irreducible and prime in R and $a_{i}, b_{i} \geq 0$.
Let $c_{i}=\min \left\{a_{i}, b_{i}\right\}$, consider

$$
c=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{n}^{c_{n}}
$$

then $c \mid a$ and $c \mid b$, so c is a common divisor of a and b. Let $d \mid a$ and $d \mid b$ where $d \in R$. If d is a unit, $d \mid c, \operatorname{sog} \operatorname{gcd}(a, b)=c$. If d is not a unit, we can write

$$
d=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{n}^{d_{n}}
$$

then $d \mid a$ for $d_{i} \leq a_{i} \forall i$ and $d \mid b$ for $d_{i} \leq b_{i} \forall i$. Also $d_{i} \leq \min \left\{a_{i}, b_{i}\right\} \Longrightarrow d_{i} \leq c_{i} \Longrightarrow d \mid c$. Thus, $\operatorname{gcd}(a, b)=c$.

Similarly, let $e_{i}=\max \left\{a, b_{i}\right\}$, consider

$$
e=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}
$$

then $a \mid e$ and $b \mid e$, so e is a common multiple of a and b. Let $a \mid f$ and $b \mid f$ where $f \in R$. If f is a unit, $e \mid f$, so $\operatorname{lcm}(a, b)=e$. If f is not a unit, we can write

$$
f=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}
$$

then $a \mid f$ for $f_{i} \geq a_{i} \forall i$ and $b \mid f$ for $f_{i} \geq b_{i} \forall i$. Also $f_{i} \geq \max \left\{a_{i}, b_{i}\right\} \Longrightarrow f_{i} \geq e_{i} \Longrightarrow e \mid f$. Thus, $\operatorname{lcm}(a, b)=\mathrm{e}$. Therefore, R is also a GCD domain and LCM domain.

However, the following proposition shows that a GCD domain is not necessary to be a UFD.

Proposition 5.5. Suppose $A=\mathbb{Z}+X \mathbb{Q}[X]$, then A is a $G C D$ domain, but not a UFD.
Proof. Since $\langle X\rangle \subsetneq\left\langle\frac{X}{2}\right\rangle \subsetneq\left\langle\frac{X}{4}\right\rangle \subsetneq \cdots$ is an ascending chain of principal ideals that does not terminate, A does not satisfy the ascending condition on principal ideals, so A is not a UFD.

To see that A is a GCD domain, let $f, g \in A$ be non-zero, non-unit elements. We will use the fact that f and g have a GCD in $\mathbb{Q}[X]$ and that GCDs in $\mathbb{Q}[X]$ are unique only up to units.

We write $f=n f_{0}$ and $g=m g_{0}$, where $n, m \in \mathbb{Z}$ are such that both f_{0} and g_{0} have constant terms equal to 1 . Let $d_{0} \in \mathbb{Q}[X]$ be the GCD of f_{0} and g_{0} so that d_{0} also has constant term equal to 1 . In $\mathbb{Q}[X]$ we have equations $f_{0}=d_{0} \cdot u$ and $g_{0}=d_{0} \cdot v$. Then u and
v must have constant term equal to 1 , and so belong to A. In other words, d_{0} is a common divisor of f_{0} and g_{0} in A.

Suppose $h \mid f_{0}$ and $h \mid g_{0}$ for some $h \in A$. Since the constant term of h is an integer, it must be ± 1. Since h is also a common divisor of f_{0} and g_{0} in $\mathbb{Q}[X], h$ divides d_{0} in $\mathbb{Q}[X]$, say $d_{0}=h \cdot q$, for $q \in \mathbb{Q}[X]$. Since the constant term of h is ± 1, it follows that the constant term of q is ± 1, so $q \in A$. In other words, d_{0} is a GCD of f_{0} and g_{0} in A.

Suppose $z \in \mathbb{Z}$ is the GCD of n and m, since d_{0} is a GCD of f_{0} and g_{0} in A, and $f=n f_{0}$ and $g=m g_{0}$, then $z \cdot d_{0}$ is a GCD of f and g in A. Thus, A is a GCD domain.

Theorem 5.6. An integral domain is a UFD if and only if every non-zero prime ideal in R contains a principal prime.

Proof. (\Rightarrow) Assume R is a UFD and P a non-zero prime ideal in R. Unless P is a field, P will contain an element a that is neither 0 or a unit. When a is written as a product of principal primes, $a=p_{1} p_{2} \ldots p_{r}$, one of the factors p_{i} must be contained in P.
(\Leftarrow) Assume that every non-zero prime ideal in R contains a principal prime. As in Theorem 2.5, denote by S, the set of all products of principal primes. It is to show that S contains every element in R that is neither 0 nor a unit. We want to prove by contradiction. Suppose c is an element of R that is not 0 , not a unit, and not in S. Since S is saturated, the principal ideal (c) is disjoint from S. Again, using the Zorn's Lemma, we can expand (c) to a prime ideal P disjoint from S, by Theorem 2.1 and Theorem 2.2. By hypothesis, P contains a principal prime in S, which is a contradiction. Thus, R is a UFD.

Corollary 5.7. Suppose S is multiplicatively closed in a UFD R, then R_{S} is a UFD.
Proof. Suppose R is a UFD and $Q \subseteq R_{S}$ is prime, then $Q=P_{S}$ where $P \subseteq R$ is prime. So there exists a prime element $p \in P$, such that $p / 1 \in R_{S}$ is prime. Thus, $p / 1 \in Q$. Then we can conclude that Q contains a principal prime. By theorem 5.6, R_{S} is a UFD.

Theorem 5.8 (Nagata's Lemma). Let R be an integral domain, $\mathcal{P}:=\left\{p_{i}\right\}_{i \in I}$ be a collection of prime elements, and let S be the multiplicatively closed set generated by the p_{i}. Assume that no element in R is divisible by infinitely many $p \in \mathcal{P}$ (e.g., R satisfies ACC on principal ideals) and R_{S} is a UFD, then R is a UFD.

Proof. By Theorem 5.6, it suffices to show every prime ideal contains a principal prime. Suppose R_{S} is a UFD. Let $P \subseteq R$ be a prime ideal. If $P \cap S \neq \emptyset$, then $\exists s \in P$, such that $s=p_{1} \cdots p_{r}$. Since P is prime, some $p_{i} \in P$. If $P \cap S=\emptyset$, then $P_{S} \subseteq R_{S}$ is a prime ideal, so $\exists p / s \in R_{S}$ is a principal prime in P_{S} with $p \in P$. Take $p \in P$ such that $p / 1 \in P_{S}$. Since no element in R is divisible by infinitely many $p \in \mathcal{P}$, we write $p=p_{0} \cdot p_{1} \cdots p_{t}$, where $p_{1} \cdots p_{t} \in S$ and p_{0} is not divisible by a prime in S. Then $p_{0} \notin S$. So we have $p / 1 \cdot R_{S}=p_{0} / 1 \cdot R_{S}$.

We claim that p_{0} is prime. Indeed, suppose $p_{0} \mid a b$, then $\exists c$ such that $p_{0} c=a b$ and so $\frac{p_{0}}{1} \cdot \frac{c}{1}=\frac{a}{1} \cdot \frac{b}{1}$ in $\left.R_{S} \Longrightarrow \frac{p_{0}}{1} \right\rvert\, \frac{a}{1}$ or $\left.\frac{p_{0}}{1} \right\rvert\, \frac{b}{1}$ in R_{S}. Without loss of generality, assume $\left.\frac{p_{0}}{1} \right\rvert\, \frac{a}{1}$ in R_{S}, then there exists $s \in S$ and $r \in R$ such that $s a=p_{0} r$. Since $s \in S$, we can write $s=q_{1} \cdots q_{k}$. Then we have $q_{1} \cdots q_{k} \cdot a=p_{0} \cdot r$, which implies $q_{1} \mid p_{0} r$. So by the choice of p_{0}, we have $q_{1} \mid r$. Thus, we get $q_{2} \cdots q_{k} \cdot a=p_{0} r^{\prime}$, where $r^{\prime} \in R$. By induction, we have $a=p_{0} r_{0}$, where $r_{0} \in R$, so $p_{0} \mid a$. Thus, p_{0} is prime. Then $p \in P$ is a principal prime.

So we have every prime ideal in R contains a principal prime, thus by Theorem $5.6, R$ is a UFD.

Definition 5.3. An ideal I of a commutative ring R with identity 1_{R} is principal if $I=\langle a\rangle$ for some $a \in R$, i.e.

$$
I=\{r a: r \in R\} .
$$

An integral domain R is a principal ideal domain (PID) if all the ideals of R are principal.
Theorem 5.9. Every PID is a UFD.
Proof. Let R be a PID and take P be prime in R. Then $p \in P$ is principal, so P contains a principal prime. Thus, by Theorem 5.6, R is a UFD.

Theorem 5.10. R is a UFD if and only if $R[X]$ is a UFD.
Proof. (\Rightarrow) Suppose R is a UFD, S is the set of all products of primes, and K is the field of fractions. Then $R_{S}[X]=(R[X])_{S}=K[X]$. Since $K[X]$ is a PID, then it is a UFD. So $R_{S}[X]$ is a UFD. Thus, by Nagata's Lemma, $R[X]$ is a UFD.
(\Leftarrow) Suppose $R[X]$ is a UFD. Let a be a non-zero, non-unit element in R, so also in $R[X]$, then by Corollary 5.2, a has a factorization

$$
a=p_{1} \cdots p_{n}
$$

where p_{i} is a prime element in $R[X]$. And we have $\operatorname{deg}(a)=\operatorname{deg}\left(p_{1}\right)+\cdots+\operatorname{deg}\left(p_{n}\right)=0$, which implies each p_{i} is in R and is prime. Again by Corollary 5.2, R is a UFD.

We would like to show more examples of unique factorization domains as following:
Proposition 5.11. Suppose $X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}$ are indeterminates over R. If R is a UFD and $n \geq 3$, then

$$
R\left[X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right] /\left(X_{1} Y_{1}+\cdots+X_{n} Y_{n}\right)
$$

is also a UFD.
Proof. The proof will require a couple of claims. Let

$$
A:=R\left[X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right] /\left(X_{1} Y_{1}+\cdots+X_{n} Y_{n}\right)
$$

First we want to show that A is an integral domain when $n \geq 2$. We claim that if A^{\prime} is a commutative ring, x in A^{\prime} is a non-zerodivisor, and A_{x}^{\prime} is an integral domain, then A^{\prime} is an integral domain.

We first prove the claim. Suppose $u \cdot v=0$ in A^{\prime}, then we get $\frac{u}{1} \cdot \frac{v}{1}=0$ in A_{x}^{\prime}. Since A_{x}^{\prime} is an integral domain, $\frac{u}{1}=0$ or $\frac{v}{1}=0$. Without loss of generality, assume $\frac{u}{1}=0=\frac{0}{1}$, then there exists x^{n} such that $x^{n}(1 \cdot u-0 \cdot 1)=0$, which is $x^{n} \cdot u=0$. Since x is a non-zerodivisor, $x\left(x^{n-1} \cdot u\right)=0$ implies $x^{n-1} \cdot u=0$. Then by induction, $u=0$. Thus, A^{\prime} is an integral domain.

We want to apply the claim to A, so we need to show that X_{1} is a non-zerodivisor in A and show $A_{X_{1}}$ is an integral domain.

To see X_{1} is a non-zerodivisor in A. Suppose $X_{1} f=0$ in A, then

$$
X_{1} f=g\left(X_{1} Y_{1}+\cdots+X_{n} Y_{n}\right)
$$

for some g in $R\left[X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right]$. Thus, $X_{1}\left(f-g Y_{1}\right)=g\left(X_{2} Y_{2}+\cdots+X_{n} Y_{n}\right)$. Since X_{1} does not divide $X_{2} Y_{2}+\cdots+X_{n} Y_{n}$, it divides g. Therefore, f is a multiple of $X_{1} Y_{1}+\cdots+X_{n} Y_{n}$, so $f=0$ in A.

To show $A_{X_{1}}$ is an integral domain, our second claim is that if A^{\prime} be a commutative ring, and W_{1}, \ldots, W_{n} are indeterminates over A^{\prime} and consider $F=u W_{1}+a_{2} W_{2}+\cdots+a_{n} W_{n}$, where u is a unit in A^{\prime}, and a_{2}, \ldots, a_{n} are arbitrary elements in A^{\prime}. Then

$$
A^{\prime}\left[W_{1}, \ldots, W_{n}\right] /(F) \cong A^{\prime}\left[W_{2}, \ldots, W_{n}\right] .
$$

The proof of the claim: we first define

$$
\phi: A^{\prime}\left[W_{1}, \ldots, W_{r}\right] \rightarrow A^{\prime}\left[W_{2}, \ldots, W_{r}\right]
$$

by sending W_{1} to $\left(-v a_{2} W_{2}-\cdots-v a_{n} W_{n}\right)$, where $v=u^{-1}$ and W_{i} to W_{i}, for $i \geq 2$ and extending it to all polynomial in W_{1}, \ldots, W_{n}. Then ϕ is a surjective ring homomorphism, and F is in the kernel of ϕ.

To see that F generates the kernel of ϕ, let H belong to the kernel of ϕ, and write H as a polynomial in W_{1} with coefficients in $A^{\prime}\left[W_{2}, \ldots, W_{n}\right]$. We induct on the degree of W_{1} in H. If it equals zero, then H has to be zero, since ϕ takes H to H in this case. Suppose the degree of W_{1} in H is greater than zero. Since F is a monic polynomial in W_{1}, we can use the division algorithm and write $H=F G+R$, where the W_{1}-degree of R is less than the W_{1}-degree of H. Since $R=H-F G, R$ is in the kernel of ϕ. By induction, R is a multiple of F, and thus H is a multiple of F, so we complete the proof of the claim.

We then apply the second claim to show $A_{X_{1}}$ is an integral domain by taking

$$
A^{\prime}=R\left[X_{1}^{-1}, X_{1}, X_{2}, \ldots, X_{n}\right]
$$

and $u=X_{1}^{-1}, a_{i}=X_{i}, W_{1}=Y_{1}, \ldots, W_{n}=Y_{n}$, and $F=X_{1} Y_{1}+\cdots+X_{n} Y_{n}$.
Thus, by the first claim above, we get A is an integral domain when $n \geq 2$.
Now we can give the proof of the Theorem. We have $A /\left(X_{1}\right)=R\left[Y_{1}\right] /\left(X_{2} Y_{2}+\cdots+X_{n} Y_{n}\right)$. Since $n \geq 3, A /\left(X_{1}\right)$ is an integral domain by the second claim above. Therefore, X_{1} is a prime element in A. On the other hand, $A_{X_{1}}$ is a polynomial ring over R, with one of the variables inverted, so then $A_{X_{1}}$ is a UFD by Theorem 5.10 and Corollary 5.7. Therefore, A is a UFD by Nagata's Lemma.

The next examples consider the UFD property of coordinate rings over the complex and real numbers.

Proposition 5.12. Suppose X, Y are indeterminates over \mathbb{C} and set

$$
A_{2}=\mathbb{C}[X, Y] /\left(X^{2}+Y^{2}-1\right)
$$

then A_{2} is a UFD.

Proof. Since $\mathbb{C}[X, Y]=\mathbb{C}[X+i Y, X-i Y]$ and $X^{2}+Y^{2}-1=(X+i Y)(X-i Y)-1$. We can set $U=X+i Y$ and $V=X-i Y$, then $A_{2}=\mathbb{C}[U, V] /(U V-1)$, which is $\mathbb{C}[U]_{S}$ with $S=\left\{1, U, U^{2}, \ldots\right\}$. We know that $\mathbb{C}[U]$ is a UFD, then by Corollary 5.7, the ring A_{2} is a UFD.

We would have a different conclusion if we change the field from \mathbb{C} to \mathbb{R}.
Proposition 5.13. Suppose X, Y are indeterminates over \mathbb{R} and set

$$
B_{2}=\mathbb{R}[X, Y] /\left(X^{2}+Y^{2}-1\right),
$$

then B_{2} is not a UFD.
Proof. To see that B_{2} is not a UFD, we show that the image of X in B_{2} is an irreducible element that is not a prime element.

Since $B_{2} / X B_{2}$ is isomorphic to $\mathbb{R}[Y] /\left(Y^{2}-1\right)$, which is not an integral domain, the image of X in B_{2} is not a prime element.

Next, suppose we could factor $X \equiv f \cdot g$ in B_{2} with $f, g \in \mathbb{R}[X, Y]$. Thus in $\mathbb{R}[X, Y]$, we can write $X=f \cdot g+h \cdot\left(X^{2}+Y^{2}-1\right)$. Write f and g as a sum of their homogeneous components, i.e., $f=f_{0}+\cdots+f_{n}$ and $g=g_{0}+\cdots+g_{m}$, where each f_{i} is a homogeneous polynomial degree i and each g_{j} is a homogeneous polynomial degree j. Then suppose f_{n} were divisible by $X^{2}+Y^{2}$, so $f_{n}=\left(X^{2}+Y^{2}\right) \cdot f_{n-2}^{\prime}$. If we set

$$
f^{\prime}=f_{0}+\cdots+\left(f_{n-2}+f_{n-2}^{\prime}+f_{n-1}\right),
$$

then it follows that $f \equiv f^{\prime}$ in B_{2}. Similarly, we may reduce g if g_{m} were divisible by $X^{2}+Y^{2}$. In other words, without loss of generality, we may write $X \equiv f \cdot g$ in B_{2} so that when we express f and g as a sum of their homogeneous components as above, $X^{2}+Y^{2}$ divides neither f_{n} nor g_{m}.

We claim that under this additional assumption, $n+m \leq 1$. Indeed, suppose $n+m \geq 2$. From the equation $X \equiv f \cdot g+h \cdot\left(X^{2}+Y^{2}-1\right)$, we obtain $0=f_{n} \cdot g_{m}+h_{n+m-2} \cdot\left(X^{2}+Y^{2}\right)$. But then this implies $X^{2}+Y^{2}$ divides either f_{n} or g_{m}, which is a contradiction. Thus, we have $n+m \leq 1$. So we get either $n=0$ or $m=0$,i.e., either f or g is a unit in $\mathbb{R}[X, Y]$. Therefore, the image of f or g in B_{2} is a unit in B_{2}, which implies that the image of X in B_{2} is irreducible.

From Proposition 5.11 to Proposition 5.13, we notice that the UFD property is a subtle one. To have a deeper view on that, we consider the following proposition:

Proposition 5.14. If X, Y, Z are indeterminates over \mathbb{C}, then for

$$
A_{3}=\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}-1\right) \quad \text { and } \quad B_{3}=\mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}-1\right)
$$

A_{3} is not a UFD and B_{3} is a UFD.
Sketch of Proof. Since

$$
X^{2}+Y^{2}+Z^{2}-1=(X+i Y)(X-i Y)+(Z-1)(Z+1)
$$

we have $(\overline{X+i Y})(\overline{X-i Y})+(\overline{Z-1})(\overline{Z+1})=0$ in A_{3}.
And so $(\overline{X+i Y})(\overline{X-i Y})=(\overline{1-Z})(\overline{Z+1})$. Since each expression is irreducible in A_{3}, there are two different factorizations in A_{3}, which means A_{3} is not a UFD.

The example B_{3} is a coordinate ring of the real 2-sphere, which is a UFD. We are giving a sketch of the proof and this sketch is based upon a proof given in [5].

Let \mathbb{R} denote the real numbers, and upper case X, Y, Z, U, V, W, T denote indeterminates over \mathbb{R} and lower case x, y, z, u, v, w, t denote homomorphic images of the variables. So, we start with the polynomial ring $\mathbb{R}[X, Y, Z]$ and \bmod out the principal ideal generated by $X^{2}+y^{2}+Z^{2}-1$, to get the ring B_{3}, which we want to show is a UFD. Taking T an indeterminate over B_{3}, it is enough to show $B_{3}[T]$ is a UFD by Theorem 5.10, and then by Nagata's Lemma, it is enough to show that $B_{3}\left[T, T^{-1}\right]$ is a UFD.

Now let S denote the ring $\mathbb{R}[U, V, W, T] /\left(U^{2}+V^{2}+W^{2}-T^{2}\right)$. Note that t in S is a prime element, since $S /(t)$ is isomorphic to $\mathbb{R}[U, V, W] /\left(U^{2}+V^{2}+W^{2}\right)$, an integral domain. If we show S is a UFD, then $S\left[t^{-1}\right]$ is a UFD. However, this latter ring is isomorphic to $B_{3}\left[T, T^{-1}\right]$ by the map from $\mathbb{R}\left[U, V, W, T, T^{-1}\right]$ that takes U to $x T, V$ to $y T, W$ to $z T, T$ to T in $B_{3}\left[T, T^{-1}\right]$.

Thus, it remains to see S is a UFD. However, $S=\mathbb{R}[U, V, C, D] /\left(U^{2}+V^{2}-C D\right)$ by setting $C=T-W$ and $D=T+W$. Note that $S /(c)$ is isomorphic to $\mathbb{R}[U, V] /\left(U^{2}+V^{2}\right)$, so c is prime in S. By the second claim on the proof of Proposition 5.11, $S\left[c^{-1}\right]=\mathbb{R}\left[U, V, C, C^{-1}\right]$, which is a UFD. Thus, by Nagata's Lemma, S is a UFD, and the sketch of the proof is complete.

6 Complexes and Homology

The goal of this section is to prove the theorem: a short exact sequence of chain complexes implies a long exact sequence on homology. We should first learn about chain complexes and cochain complexes.

Definition 6.1. (1) A chain complex is a collection \mathcal{C} of R-modules and R-module maps

$$
\mathcal{C}: \cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \longrightarrow \cdots
$$

satisfying $d_{n} \circ d_{n+1}=0$, for all n. The d_{n} are called "boundary maps" or "differentials".
$\left(1^{\prime}\right)$ A cochain complex is a collection \mathcal{C}^{\prime} of R-module and R-module maps

$$
\mathcal{C}^{\prime}: \cdots \longrightarrow C_{n-1}^{\prime} \xrightarrow{\delta_{n}} C_{n}^{\prime} \xrightarrow{\delta_{n+1}} C_{n+1}^{\prime} \longrightarrow \cdots
$$

satisfying $\delta_{n+1} \circ \delta_{n}=0$, for all n.
(2) Let \mathcal{C} be a chain complex. For each n we define $Z_{n}(\mathcal{C}):=\operatorname{ker}\left(d_{n}\right), B_{n}(\mathcal{C}):=\operatorname{im}\left(d_{n+1}\right)$ and $H_{n}(\mathcal{C}):=Z_{n}(\mathcal{C}) / B_{n}(\mathcal{C})$. These modules are, respectively, the module of " n-cycles", the module of " n-boundaries" and the $n^{\text {th }}$ "homology" module associated to \mathcal{C}. Note that
$B_{n}(\mathcal{C}) \subseteq Z_{n}(\mathcal{C})$, since $d_{n} \circ d_{n+1}=0$.
$\left(2^{\prime}\right)$ Let \mathcal{C}^{\prime} be a cochain complex. We define $Z^{n}\left(\mathcal{C}^{\prime}\right):=\operatorname{ker}\left(\delta_{n+1}\right), B^{n}\left(\mathcal{C}^{\prime}\right):=\operatorname{im}\left(\delta_{n}\right)$ and $H^{n}\left(\mathcal{C}^{\prime}\right):=Z^{n}\left(\mathcal{C}^{\prime}\right) / B^{n}\left(\mathcal{C}^{\prime}\right)$ for each n. These modules are, respectively, the module of " n-cocycles", the module of " n-coboundaries" and the $n^{\text {th }}$ "cohomology" module associated to \mathcal{C}^{\prime}. Note that $B^{n}\left(\mathcal{C}^{\prime}\right) \subseteq Z^{n}\left(\mathcal{C}^{\prime}\right)$, since $\delta_{n+1} \circ \delta_{n}=0$.
(3) A chain $\operatorname{map} f: \mathcal{C} \rightarrow \mathcal{D}$ between chain complexes \mathcal{C} and \mathcal{D} is a collection of homomorphisms $f_{n}: C_{n} \rightarrow D_{n}$ such that the diagram

commutes for all n. It follows that $f_{n}\left(Z_{n}(\mathcal{C})\right) \subseteq Z_{n}(\mathcal{D})$ and $f_{n}\left(B_{n}(\mathcal{C})\right) \subseteq B_{n}(\mathcal{D})$, So we obtain induced maps on homology $f_{*}: H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D})$.
(3') A cochain map between cochain complexes is defined analogously and induces maps on cohomology. If $f: \mathcal{C}^{\prime} \rightarrow \mathcal{D}^{\prime}$ is a cochain map, we denote the induced map on cohomology by $f^{*}: H^{n}\left(\mathcal{C}^{\prime}\right) \rightarrow H^{n}\left(\mathcal{D}^{\prime}\right)$.
(4) A sequence $\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}$ of chain complexes and chain maps is said to be exact, if for each n, the sequence $A_{n} \xrightarrow{f_{n}} B_{n} \xrightarrow{g_{n}} C_{n}$ is exact. A short exact sequence of complexes is an exact sequence of complexes $0 \longrightarrow \mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C} \longrightarrow 0$. Thus, a short exact sequence of complexes is a commutative diagram

To prove the theorem of this section, we need the Snake Lemma.

Lemma 6.1 (Snake Lemma). Consider the commutative diagram with exact rows

Then we have an exact sequence

$$
\operatorname{ker}(f) \longrightarrow \operatorname{ker}(g) \longrightarrow \operatorname{ker}(h) \xrightarrow{\partial} \operatorname{coker}(f) \longrightarrow \operatorname{coker}(g) \longrightarrow \operatorname{coker}(h) .
$$

Theorem 6.2. Let $0 \longrightarrow \mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{g} \mathcal{E} \longrightarrow 0$ be a short exact sequence of chain complexes. Then we have a long exact sequence on homology

$$
\cdots \longrightarrow H_{n+1}(\mathcal{E}) \xrightarrow{\partial_{n+1}} H_{n}(\mathcal{C}) \xrightarrow{f_{*}} H_{n}(\mathcal{D}) \xrightarrow{g_{*}} H_{n}(\mathcal{E}) \xrightarrow{\partial_{n}} H_{n-1}(\mathcal{C}) \longrightarrow \cdots .
$$

Proof. Consider the following snake diagram

The horizontal maps are derived from the chain maps f and g, and the vertical maps are given by $d\left(x_{n}+B_{n}\right)=d x_{n}$. The kernel of a vertical map is $\left\{x_{n}+B_{n}: x_{n} \in Z_{n}\right\}=H_{n}$, the cokernel is $Z_{n-1} / B_{n-1}=H_{n-1}$. The diagram is commutative by the definition of a chain map. But in order to apply the Snake Lemma, we must verify that the rows are exact, and this involves another application of the snake lemma.

Then consider the diagram

where the horizontal maps are again derived from f and g. Since $0 \longrightarrow \mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{g} \mathcal{E} \longrightarrow 0$ is a short exact sequence, each row of the second diagram is exact, then by Snake Lemma, we have an exact sequence

$$
\operatorname{ker}(c) \longrightarrow \operatorname{ker}(d) \longrightarrow \operatorname{ker}(e) \xrightarrow{\partial} \operatorname{coker}(c) \longrightarrow \operatorname{coker}(d) \longrightarrow \operatorname{coker}(e) .
$$

Now let us denote

$$
A^{\prime}=\operatorname{ker}(c), B^{\prime}=\operatorname{ker}(d), C^{\prime}=\operatorname{ker}(e), D^{\prime}=\operatorname{coker}(c), E^{\prime}=\operatorname{coker}(d), F^{\prime}=\operatorname{coker}(e) .
$$

Then we have the diagram

We claim that the first and forth sequences are exact. Indeed. We denote induced maps by an overbar. Let $x \in A^{\prime}=\operatorname{ker}(c)$ and $y=\bar{f}_{n} x=f_{n} x$, then $g_{n} y=g_{n} f_{n} x=0$, so $y \in \operatorname{ker}\left(\bar{g}_{n}\right)$. On the other hand, if $y \in B^{\prime} \subseteq D_{n}$ and $\bar{g}_{n} y=g_{n} y=0$, then $y=f_{n} x$ for some $x \in C_{n}$. Thus $0=d y=d f_{n} x=f_{n-1} c x$, and since f_{n-1} is injective, $c x=0$. Therefore $y=f_{n} x$ with $x \in A^{\prime}$, and $y \in i m\left(\bar{f}_{n}\right)$. So $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime}$ is exact.

Next, let $x \in C_{n-1}$, then $\bar{g}_{n-1}\left(f_{n-1} x+i m(d)\right)=g_{n-1} f_{n-1} x+i m(e)=0$ by the exactness of the sequence $0 \rightarrow C_{n-1} \rightarrow D_{n-1} \rightarrow E_{n-1} \rightarrow 0$, so $\operatorname{im}\left(\bar{f}_{n-1}\right) \subseteq \operatorname{ker}\left(\bar{g}_{n-1}\right)$. Conversely, if $y \in D_{n-1}$ and $\bar{g}_{n-1}(y+i m(d))=g_{n-1} y+i m(e)=0$, then $g_{n-1} y=e z$ for some $z \in E_{n}$. Since g_{n} is surjective, $z=g_{n} x$ for some $x \in D_{n}$. So we have $g_{n-1} y=e z=e g_{n} x=g_{n-1} d x$, so $y-d x \in \operatorname{ker}\left(g_{n-1}\right)=\operatorname{im}\left(f_{n-1}\right)$. Let $y-d x=f_{n-1} w$ with $w \in C_{n-1}$. Therefore, $y+i m(d)=\bar{f}_{n-1}(w+i m(c))$ and $y+i m(d) \in i m\left(\bar{f}_{n-1}\right)$. So $D^{\prime} \rightarrow E^{\prime} \rightarrow F^{\prime}$ is exact.

Moreover, we know that if f_{n} is injective, so is the map induced by f_{n} and if f_{n-1} is surjective, so is the map induced by f_{n-1}. Then we can show each row of the first snake diagram is exact by shifting indices from n to $n \pm 1$. Then by the Snake Lemma, it yields the exact sequence

$$
H_{n}(\mathcal{C}) \xrightarrow{f_{*}} H_{n}(\mathcal{D}) \xrightarrow{g_{*}} H_{n}(\mathcal{E}) \xrightarrow{\partial_{n}} H_{n-1}(\mathcal{C}) \xrightarrow{f_{*}} H_{n-1}(\mathcal{D}) \xrightarrow{g_{*}} H_{n-1}(\mathcal{E}) .
$$

Doing this for each n, we can get a long exact sequence on homology

$$
\cdots \longrightarrow H_{n+1}(\mathcal{E}) \xrightarrow{\partial_{n+1}} H_{n}(\mathcal{C}) \xrightarrow{f_{*}} H_{n}(\mathcal{D}) \xrightarrow{g_{*}} H_{n}(\mathcal{E}) \xrightarrow{\partial_{n}} H_{n-1}(\mathcal{C}) \longrightarrow \cdots .
$$

By Theorem 6.2, we know that every short exact sequence of chain complexes implies a long exact sequence on homology. Here, we show that a long exact sequence on homology arising from mapping cone.

Definition 6.2. The mapping cone $\mathcal{C} .(f)$ of a morphism of chain complexes $f: \mathcal{A} \rightarrow \mathcal{B}$ is the complex $\mathcal{C} .(f)$ given by $C(f)_{n}=A_{n-1} \oplus B_{n}$ and differential $\partial: C(f)_{n} \rightarrow C(f)_{n-1}$, with

$$
\partial=\left(\begin{array}{cc}
d & 0 \\
(-1)^{n-1} f & \delta
\end{array}\right)
$$

where $d: A_{n} \rightarrow A_{n-1}$ and $\delta: B_{n} \rightarrow B_{n-1}$ are maps in the complexes, and $f_{n-1} d=\delta f_{n}$.

With the definition above, we can show that the differential ∂ is complex as following: Since

$$
\begin{aligned}
\partial\binom{A_{n-1}}{B_{n}} & =\left(\begin{array}{cc}
d & 0 \\
(-1)^{n-1} f & \delta
\end{array}\right)\binom{A_{n-1}}{B_{n}} \\
& =\binom{d A_{n-1}}{(-1)^{n-1} f\left(A_{n-1}\right)+\delta\left(B_{n}\right)}
\end{aligned}
$$

then

$$
\begin{aligned}
\partial^{2}\binom{A_{n-1}}{B_{n}} & =\left(\begin{array}{cc}
d & 0 \\
(-1)^{n-1} f & \delta
\end{array}\right)\binom{d A_{n-1}}{(-1)^{n-1} f\left(A_{n-1}\right)+\delta\left(B_{n}\right)} \\
& =\binom{0}{(-1)^{n-2} f\left(d\left(A_{n-1}\right)\right)+(-1)^{n-1} \delta f\left(A_{n-1}\right)} \\
& =\binom{0}{0} .
\end{aligned}
$$

We have a short sequence of complexes of the form

$$
0 \rightarrow \mathcal{B} \rightarrow \mathcal{C} .(f) \rightarrow \mathcal{A}[-1] \rightarrow 0
$$

where $\mathcal{A}[-1]$ means $A[-1]_{n}=A_{n-1}$. The injection map $\mathcal{B} \rightarrow \mathcal{C} .(f)$ and the projection map $\mathcal{C} .(f) \rightarrow \mathcal{A}[-1]$ are given by the direct summands.

Then by Theorem 6.2, we get a long exact sequence

$$
\cdots \rightarrow H_{n+1}(\mathcal{A}[-1]) \rightarrow H_{n}(\mathcal{B}) \rightarrow H_{n}(\mathcal{C} .(f)) \rightarrow H_{n}(\mathcal{A}[-1]) \rightarrow H_{n-1}(\mathcal{B}) \rightarrow \cdots
$$

where $H_{n}(\mathcal{A}[-1])=H_{n-1}(\mathcal{A})$. Then we can rewrite the long exact sequence on homology as:

$$
\cdots \rightarrow H_{n}(\mathcal{A}) \rightarrow H_{n}(\mathcal{B}) \rightarrow H_{n}(\mathcal{C} .(f)) \rightarrow H_{n-1}(\mathcal{A}) \rightarrow H_{n-1}(\mathcal{B}) \rightarrow \cdots
$$

7 Regular Sequences and Koszul Complex

Definition 7.1. An element a in R-module A is called a zero divisor on A, if there exists a nonzero element x in R such that $r x=x r=0$. We write the zero divisors on A as $\mathcal{Z}(A)$.

Definition 7.2. Let R be any commutative ring, A be any R-module. The (ordered sequence of) elements x_{1}, \ldots, x_{n} of R is said to be an regular sequence or an R-sequence on A if
(1) $\left(x_{1}, \ldots, x_{n}\right) A \neq A$
(2) For $i=1, \ldots, n, x_{i} \notin \mathcal{Z}\left(A /\left(x_{1}, \ldots, x_{i-1}\right) A\right)$.

Part (b) of the definition says that x_{1} is not a zero-divisor on A, x_{2} is not a zero-divisor on $A / x_{1} A, \ldots, x_{n}$ is not a zero-divisor on $A /\left(x_{1}, \ldots, x_{n-1}\right) A$. Moreover, the case $A=R$ is of special importance. We then simply say that the sequence x_{1}, \ldots, x_{n} is an R-sequence.

Theorem 7.1. Let $x, y \in R$ be an regular sequence on the R, then $x \notin \mathcal{Z}(R /(y))$.

Proof. Since x, y is a regular sequence on $R, x \notin \mathcal{Z}(R)$ and $y \notin \mathcal{Z}(R /(x))$. We suppose $t^{\prime} \in R /(y)$ and $x t^{\prime}=0$ and want to show $t^{\prime}=0$. Pick any t in R mapping on t^{\prime}, then $x t \in y R$, say $x t=y u$. Since $y \notin \mathcal{Z}(R /(x)), u \in x R$, say $u=x u^{\prime} \Longrightarrow x t=x y u^{\prime}$. Since $x \notin \mathcal{Z}(R)$, we can cancel x in the equation $x t=x y u^{\prime}$ to get $t=y u^{\prime} \in y R$. So $t^{\prime}=0$, which means $x \notin \mathcal{Z}(R /(y))$.

Note that in general, if x, y, z is a regular sequence on R, z, y, x need not be a regular sequence on R. However, the statement holds in a local ring.

Definition 7.3. (R, m) is called a local ring if R is Noetherian and m is unique maximal ideal, that is m is all non-units in R.

Lemma 7.2. Let (R, m) be a local ring. If x, y is regular on R, then y, x is regular on R.
Proof. From Theorem 7.1, we know that $x \notin \mathcal{Z}(R /(x))$. Then we want to show $y \notin \mathcal{Z}(R)$. Suppose $y a=0$ in R, want to show $a=0$. Then $y a \equiv 0$ in $R /(x)$, which implies $a \equiv 0$ $\bmod x R$. Thus, $a \in x R$, say $a=x a_{0}$, we have $y\left(x a_{0}\right)=0$, which is $x\left(y a_{0}\right)=0$. Since $x \notin \mathcal{Z}(R)$, we get $y a_{0}=0$. We can repeat to get $a_{0}=x a_{1}$, then $a=x a_{0}=x^{2} a_{1}$, and so on. Thus inductively, for all n, there exists a_{n-1} such that $a=x^{n} a_{n-1} \in x^{n} R$, then by Krull Intersection Theorem, $a \in \bigcap_{n \geq 1} a^{n} R=0$. Therefore, y, x is regular on R.

Next, we want to introduce associated primes of R-module M and show $\operatorname{Ass}(M)$ is finite.
Definition 7.4. Let R be Noetherian, A be a finitely generated R-module and P be prime. P is called an associated prime if $P=\left(0:_{R} a\right)=\{r \in R \mid r a=0\}=A n n_{R}(a)$, for some non-zero $a \in A$. We say $P \in \operatorname{Ass}(A)$ if and only if $P=\left(0:_{R} a\right)$ for some $a \in R$-module A.

Proposition 7.3. Suppose R is Noetherian and A is a R-module. Then any zero divisor on A is contained in an associated prime.

Proof. Suppose $r \in R$ is a zero divisor on A, then $\exists a \neq 0$ such that $r a=0$, which means $r \in\left(0:_{R} a\right)$. Let $\mathcal{C}=\{(0: t a) \mid t \in R\}$. Since R is Noetherian, let $P=\left(0: t_{0} a\right)$ be a maximal element in \mathcal{C}. If P is prime, it is an associated prime and $r \in(0: a) \subseteq\left(0: t_{0} a\right)=P$. If not, suppose $x, y \in R, x y \in P$. If $x \notin P$, i.e. $x t_{0} a \neq 0$, then $\left(0: x t_{0} a\right) \neq R$, then $P \subseteq\left(0: x t_{0} a\right)$. However, since P is maximal, $P=\left(0, x t_{0} a\right)$, so $y \in P$, whcih means P is prime. Therefore, $r \in P$.

Lemma 7.4. Given a short exact sequence of R-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

where M^{\prime} is a submodule of M and $M^{\prime \prime}=M / M^{\prime}$, we have

$$
\operatorname{Ass}(M) \subseteq \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

Proof. Suppose $P \in \operatorname{Ass}(M)$ and let $P=A n n_{R}(x)$ for some nonzero $x \in M$. If $x \in M^{\prime}$, then $P \in \operatorname{Ass}\left(M^{\prime}\right)$. Otherwise, the image \bar{x} of x in $M^{\prime \prime}$ is nonzero and it is clear that $P \subseteq A n n_{R}(\bar{x})$. If this is an equality, then $P \in \operatorname{Ass}\left(M^{\prime \prime}\right)$. So assume there is $a \in A n n_{R}(\bar{x}) \backslash P$. In this case, $a x \in M^{\prime} \backslash\{0\}$, and the fact that P is prime implies the inclusion $A n n_{R}(x) \subseteq A n n_{R}(a x)$ is an equality. Thus, $P \in \operatorname{Ass}\left(M^{\prime}\right)$.

Proposition 7.5. Suppose R is a Noetherian ring, M is a finitely generated R-module, then the following hold:
(1) The set Ass (M) is finite.
(2) If $M \neq 0$, then $\operatorname{Ass}(M)$ is non-empty.
(3) The set of zero divisors of M equals to

Proof. Let us consider the set \mathcal{P} consisting of the ideals of R of the form $A n n_{R}(x)$ for some $x \in M \backslash\{0\}$. Since R is Noetherian, there is a maximal element $P \in \mathcal{P}$. We want to show P is a prime ideal so that $P \in \operatorname{Ass}(M)$.

By assumption, let $P=A n n_{R}(x)$ for some $x \in M \backslash\{0\}$. Since $x \neq 0$, we have $P \neq R$. Suppose $b \in R \backslash P$, then $b x \neq 0$ and we have $A n n_{R}(x) \subseteq A n n_{R}(b x)$. By the maximality of P, we conclude that this is an equality, so for every $a \in R$ such that $a b \in P$, we have $a \in P$. Thus, $\operatorname{Ass}(M)$ is non-empty. Moreover, we now know if M is nonzero, then we can find $x \in M \backslash\{0\}$ such that $A n n_{R}(x)=P_{1}$ is a prime ideal.

The map $R \rightarrow M$ with $a \rightarrow a x$ induces, thus we have an injection $R / P \rightarrow M$, so then we have a short exact sequence

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M / M_{1} \rightarrow 0,
$$

where $M_{1} \cong R / p_{1}$. Since P_{1} is a prime ideal in R, we have $\operatorname{Ass}\left(R / P_{1}\right)=\left\{P_{1}\right\}$, and Lemma 7.4 implies

$$
\operatorname{Ass}(M) \subseteq \operatorname{Ass}\left(M / M_{1}\right) \cup\left\{P_{1}\right\}
$$

then it suffices to show $\operatorname{Ass}\left(M / M_{1}\right)$ is finite.
If $M_{1} \neq 0$, we can repeat this argument and find $M_{1} \subseteq M_{2}$ such that $M_{2} / M_{1} \cong R / P_{2}$ for some prime ideal P_{2} in R. Since M is finitely generated as a Noetherian module, this process must terminate. So after finitely many steps, we conclude that $\operatorname{Ass}(M)$ is finite. By definition, for every $P \in \operatorname{Ass}(M)$, the ideal P is contained in the set of zero divisors of M.

On the other hand, if $a \in R$ is a zero divisor, then $a \in I$ for some $I \in \mathcal{P}$. If we choose a maximal P in \mathcal{P} that contains I, then we have $P \in \operatorname{Ass}(M)$. So a lies in the union of the associated primes of M. Thus, the set of zero divisors of M equals to

Then we can give a definition of Koszul complex.
Definition 7.5. Given a ring R and $x_{1}, \ldots, x_{n} \in R$, we define a complex \mathcal{K}. as follows: set $\mathcal{K}_{0}=R$ and $\mathcal{K}_{p}=0$ if p is not in the range $0 \leq p \leq n$.

We write for standard basis, using the symbols: $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}$, for $1 \leq i_{1}<\ldots<i_{p} \leq n$. For $1 \leq p \leq n$, we let $\mathcal{K}_{p}=\oplus R_{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}}$ be the free R-module of rank $\binom{n}{p}$ with basis $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}$.

The differential $f_{p}: \mathcal{K}_{p} \rightarrow \mathcal{K}_{p-1}$ is defined by setting

$$
f_{p}\left(e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}}\right)=\sum_{j=1}^{p}(-1)^{j-1} x_{i_{j}} e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p}}
$$

where the superscript $\overline{e_{i_{j}}}$ means the term is omitted and for $p=1$, set $f_{p}\left(e_{i}\right)=x_{i}$. This complex is called the Koszul complex, written as $\mathcal{K} .\left(x_{1}, \ldots, x_{n}\right)$ or $\mathcal{K} .(\underline{x})$.

To show f_{p} is indeed complex, we let

$$
\begin{aligned}
& f_{p} \circ f_{p+1}\left(e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p+1}}\right) \\
= & f_{p}\left(\sum_{j=1}^{p+1}(-1)^{j-1} x_{i_{j}} e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p+1}}\right) \\
= & \sum_{j=1}^{p+1}(-1)^{j-1} x_{i_{j}} f_{p}\left(e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p+1}}\right) \\
= & \sum_{j=1}^{p+1}(-1)^{j-1} x_{i_{j}}\left(\sum_{k=1}^{j-1}(-1)^{k-1} x_{i_{k}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{k}}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p+1}}\right. \\
+ & \left.\sum_{k=j+1}^{p+1}(-1)^{k} x_{i_{k}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge \overline{e_{i_{k}}} \wedge \cdots \wedge e_{i_{p+1}}\right) \\
= & \sum_{j=1}^{p+1} \sum_{k=1}^{j-1}(-1)^{k+j-2} x_{i_{j}} x_{i_{k}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{k}}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p+1}} \\
+ & \sum_{j=1}^{p+1} \sum_{k=j+1}^{p+1}(-1)^{k+j-1} x_{i_{j}} x_{i_{k}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{j}}} \wedge \cdots \wedge \overline{e_{i_{k}}} \wedge \cdots \wedge e_{i_{p+1}}
\end{aligned}
$$

Without loss of generality, assume $1 \leq k_{0}<j_{0} \leq p+1$, then we have

$$
\begin{aligned}
&(-1)^{k+j_{0}-2} x_{i_{j_{0}}} x_{i_{k_{0}}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{k_{0}}}} \wedge \cdots \wedge \overline{e_{i_{j_{0}}}} \wedge \cdots \wedge e_{i_{i_{p+1}}} \\
&+(-1)^{k_{0}+j_{0}-1} x_{i_{j_{0}}} x_{i_{k_{0}}} e_{i_{1}} \wedge \cdots \wedge \overline{e_{i_{k_{0}}}} \wedge \cdots \wedge \overline{e_{i_{j_{0}}}} \wedge \cdots \wedge e_{i_{p+1}}=0,
\end{aligned}
$$

then by induction, we have $f_{p} \circ f_{p+1}=0$.
Suppose we have the Koszul complex

$$
0 \rightarrow \mathcal{K}_{n} \rightarrow \cdots \rightarrow \mathcal{K}_{p} \rightarrow \mathcal{K}_{p-1} \rightarrow \cdots \rightarrow \mathcal{K}_{1} \rightarrow \mathcal{K}_{0} \rightarrow 0
$$

then $\mathcal{K}_{p} \cong R^{\binom{n}{p}}$, where a commutative ring R and elements $x_{1}, x_{2}, \ldots, x_{n}$ in R with the canonical basis $\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right) \in \mathbb{R}^{n}$.

For example, when $n=3$, we have x_{1}, x_{2}, x_{3} in R. Then \mathcal{K}_{1} has the basis $\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{K}_{2}$ has the basis $\left\{\begin{array}{l}e_{1} \wedge e_{2} \\ e_{1} \wedge e_{3} \\ e_{2} \wedge e_{3}\end{array}\right\}$, and \mathcal{K}_{3} has the basis $\left\{e_{1} \wedge e_{2} \wedge e_{3}\right\}$. In fact, for the basis of \mathcal{K}_{2}, we can have $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}$ on different rows to get different basis. So

$$
\begin{aligned}
& f_{1}\left(e_{1}\right)=x_{1}, f_{1}\left(e_{2}\right)=x_{2}, f_{1}\left(e_{3}\right)=x_{3} \Longrightarrow A=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right) . \\
& f_{2}\left(e_{1} \wedge e_{2}\right)=x_{1} e_{2}-x_{2} e_{1} \Longrightarrow\left(\begin{array}{c}
-x_{2} \\
x_{1} \\
0
\end{array}\right) \\
& f_{2}\left(e_{1} \wedge e_{3}\right)=x_{1} e_{3}-x_{3} e_{1} \Longrightarrow\left(\begin{array}{c}
-x_{3} \\
0 \\
x_{1}
\end{array}\right) \\
& f_{2}\left(e_{2} \wedge e_{3}\right)=x_{2} e_{3}-x_{3} e_{2} \Longrightarrow\left(\begin{array}{c}
0 \\
-x_{3} \\
x_{2}
\end{array}\right)
\end{aligned}
$$

Thus the matrix we have is $B=\left(\begin{array}{ccc}-x_{2} & -x_{3} & 0 \\ x_{1} & 0 & -x_{3} \\ 0 & x_{1} & x_{2}\end{array}\right)$.
$f_{3}\left(e_{1} \wedge e_{2} \wedge e_{3}\right)=x_{1} e_{2} \wedge e_{3}-x_{2} e_{1} \wedge e_{3}+x_{3} e_{1} \wedge e_{2}=\left(\begin{array}{c}x_{3} \\ -x_{2} \\ x_{1}\end{array}\right)$. Then we have the diagram:

Since $f_{1} f_{2}=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)\left(\begin{array}{ccc}-x_{2} & -x_{3} & 0 \\ x_{1} & 0 & -x_{3} \\ 0 & x_{1} & x_{2}\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ and $f_{2} f_{3}=\left(\begin{array}{ccc}-x_{2} & -x_{3} & 0 \\ x_{1} & 0 & -x_{3} \\ 0 & x_{1} & x_{2}\end{array}\right)\left(\begin{array}{c}x_{3} \\ -x_{2} \\ x_{1}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Thus, this sequence is complex.

Theorem 7.6. Let $\mathcal{K} .\left(x_{1}, \ldots, x_{n}\right)$ be Koszul complex on a regular sequence x_{1}, \ldots, x_{n}, then $\mathcal{K} .\left(x_{1}, \ldots, x_{n}\right)$ is isomorphic to mapping cone of

$$
f: \mathcal{K} .\left(x_{1}, \ldots, x_{n-1}\right) \xrightarrow{x_{n}} \mathcal{K} .\left(x_{1}, \ldots, x_{n-1}\right)
$$

Proof. By definition of cone, we have $C(f)_{n}=K_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) \oplus K_{n}\left(x_{1}, \ldots, x_{n-1}\right)$. On one hand,

$$
\partial_{C(f)}\left(0, e_{1} \wedge \cdots \wedge e_{n-1}\right)=f e_{1} \wedge \cdots \wedge e_{n-1}-\partial_{\mathcal{K} .\left(x_{1}, \ldots, x_{n-1}\right)}\left(e_{1} \wedge \cdots \wedge e_{n-1}\right)
$$

On the other hand,

$$
\begin{aligned}
& \partial_{\mathcal{K} .\left(x_{1}, \ldots, x_{n}\right)}\left(0, e_{1} \wedge \cdots \wedge e_{n-1}\right) \\
= & \sum_{i=0}^{n-1}(-1)^{i} x_{i} e_{0} \wedge \cdots \wedge \overline{e_{i}} \wedge \cdots \wedge e_{n-1} \\
= & f e_{1} \wedge \cdots \wedge e_{n-1}+\sum_{i=1}^{n-1}(-1)^{i} x_{i} e_{0} \wedge \cdots \wedge \overline{e_{i}} \wedge \cdots \wedge e_{n-1} \\
= & f e_{1} \wedge \cdots \wedge e_{n-1}-e_{0}\left(\sum_{i=1}^{n-1}(-1)^{i+1} x_{i} e_{1} \wedge \cdots \wedge \overline{e_{i}} \wedge \cdots \wedge e_{n-1}\right)
\end{aligned}
$$

which is the image of the result of the previous computation.
With a long exact sequence on homology arising from mapping cone and Theorem 7.6, we want to show that the Koszul complex on a regular sequence is acyclic. Before showing the theorem, we need to know the definition of acyclic.
Definition 7.6. A chain complex \mathcal{M} of the form

$$
\mathcal{M}: 0 \rightarrow M_{n} \rightarrow \cdots \rightarrow M_{p} \rightarrow M_{p-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow 0
$$

is called acyclic if $H_{i}(\mathcal{M})=0$ for each $i \neq 0$. In other words, \mathcal{M} is acyclic if and only if it is exact everywhere except possibly at M_{0}.

Theorem 7.7. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ in a ring R is a regular sequence, then the Koszul complex on this regular sequence is acyclic.
Proof. Suppose in a ring R, x_{1}, \ldots, x_{n} is a regular sequence. We use induction on n. When $n=1$, then we have $x_{1} \in R$ be regular, so we have the map

$$
f: \mathcal{K} . \xrightarrow{x_{1}} \mathcal{K} .
$$

and the Koszul complex is

$$
0 \rightarrow \mathcal{K}_{1} \xrightarrow{\cdot x_{1}} \mathcal{K}_{0} \rightarrow 0
$$

Since x_{1} is regular, the kernel of \mathcal{K}_{1} is 0 , which implies the Koszul complex is exact at \mathcal{K}_{1}, but not at \mathcal{K}_{0}.

When $n>1$, assume the theorem holds for the case $n-1$. Suppose x_{1}, \ldots, x_{n} is a regular sequence in R, let $\underline{x}=x_{1}, x_{2}, \ldots, x_{n-1}$ and $\underline{x^{\prime}}=x_{1}, \ldots, x_{n}$, then we have the map

$$
f: \mathcal{K} .(\underline{x}) \xrightarrow{x_{n}} \mathcal{K} .(\underline{x})
$$

So by Theorem $7.6, \mathcal{K} .\left(\underline{x^{\prime}}\right) \cong \mathcal{C} .(f)$. Thus, we have a long exact sequence on homology for $\mathcal{K} .\left(\underline{x^{\prime}}\right)$ and \mathcal{K}. (\underline{x}) :

$$
\cdots \rightarrow H_{i}(\mathcal{K} .(\underline{x})) \xrightarrow{x_{n}} H_{i}(\mathcal{K} .(\underline{x})) \rightarrow H_{i}\left(\mathcal{K} .\left(\underline{x^{\prime}}\right)\right) \rightarrow H_{i-1}(\mathcal{K} .(\underline{x})) \xrightarrow{._{n}} H_{i-1}(\mathcal{K} .(\underline{x})) \rightarrow \cdots
$$

By the assumption the theorem is true for the case $n-1$, we get $H_{i}(\mathcal{K})=$.0 for $0<i \leq n-1$. And so in the long exact sequence above, we get $H_{i}(\mathcal{K})=$.0 for $0<i \leq n$ by the exactness. Thus, Koszul complex on a regular sequence is acyclic.

By Theorem 7.7, we know that if the Koszul complex is acyclic, then

$$
\cdots \rightarrow \mathcal{K}_{2} \rightarrow \mathcal{K}_{1} \rightarrow R / I \rightarrow 0
$$

gives a free resolution of R / I, and we will talk about free resolution on section 9 .

8 Height and Dimension

Definition 8.1. In commutative algebra, the Krull dimension of a commutative ring R is the supremum of the lengths of all chains of prime ideals.

Definition 8.2. The dimension of a ring R, denoted by $\operatorname{dim} R$, is the maximum length n of a chain $P_{0} \subset P_{1} \subset \cdots \subset P_{n}$ of prime ideals of R.

Definition 8.3. The notion of height is defined for proper ideals in a commutative Noetherian ring R. The height of a proper prime ideal P, denoted by $\operatorname{ht}(P)$, of R is the maximum of the lengths n of the chains of prime ideals contained in P, i.e., $P_{0} \subset P_{1} \subset \cdots \subset P_{n}=P$. The height of any proper ideal I, denoted by $\mathrm{ht}(I)$, is the minimum of the heights of the prime ideals containing I.

To prove Kull's Principal Ideal Theorem, we need to define Artinian rings and state a theorem about the relation between Artinian and Noetherian.

Definition 8.4. An Artinian ring A is a ring that satisfies the descending chain condition on ideals.

Theorem 8.1. Suppose (A, m) is Quasi-local, A is Artinian if and only if A is Noetherian and $\operatorname{dim} A=0$.

Theorem 8.2 (Krull's Principal Ideal Theorem). Suppose R is a Noetherian ring, $0 \neq a \in R$ and a is not a unit. If P is a minimal prime over aR, then $\operatorname{ht}(P) \leq 1$.

Proof. Consider localize R at P, R_{P} is a local ring, then $\operatorname{ht}(P)=\operatorname{ht}\left(P_{S}\right)$, where $S=R \backslash P$. We can assume (R, P) is local.

If $\operatorname{ht}(P)=0$, then we are done.
If $\operatorname{ht}(P)=1$, then we are done.
Suppose $\operatorname{ht}(P) \geq 2$ and we want to find a contradiction. Assume there is $Q_{0} \subset Q_{1} \subset P$, a chain of prime ideals with $a R \subseteq P$. Then we can mod out Q_{0} to get the chain $\overline{0} \subset \overline{Q_{1}} \subset \bar{P}$, which means $\operatorname{ht}(\bar{P}) \geq 2$. So we can assume R is an integral domain and have the chain of prime ideals $0 \subset Q \subset P$ with $a R \subseteq P$, and P is the only prime containing a.

Define $Q^{(n)}=\left\{r \in R \mid s \cdot r \in Q^{n}\right.$, for some $\left.s \notin Q\right\}$. Since $R / a R$ has just one prime $P / a R, \operatorname{dim}(R / a R)=0$ and $R / a R$ is Noetherian. Then by Theorem 8.1, $R / a R$ is Artinian. Therefore it follows that

$$
\cdots \subseteq \frac{Q^{(n+1)}+a R}{a R} \subseteq \frac{Q^{(n)}+a R}{a R} \subseteq \cdots
$$

then there exists s such that $\frac{Q^{(s+1)}+a R}{a R}=\frac{Q^{(s)}+a R}{a R}$, so $Q^{(s+1)}+a R=Q^{(s)}+a R$, which means $Q^{(s)} \subseteq Q^{(s+1)}+a R$.

Let $x \in Q^{(s)}, y \in Q^{(s+1)}$, then $x=y+a \cdot r$, for $r \in R$. So $x-y=a \cdot r$, where $(x-y) \in Q^{(s)}$. There exists $t \notin Q$ with $t(x-y) \in Q^{s}$ and $a \notin Q$, so $r \in Q^{(s)}$. We have

$$
\begin{aligned}
& x \in Q^{(s+1)}+a \cdot Q^{(s)} \\
\Rightarrow & Q^{(s)} \subseteq Q^{(s+1)}+a \cdot Q^{(s)} \\
\Rightarrow & Q^{(s)}=Q^{(s+1)}+a \cdot Q^{(s)} \\
\Rightarrow & \frac{Q^{(s)}}{Q^{(s+1)}}=\frac{Q^{(s+1)}+a \cdot Q^{(s)}}{Q^{(s+1)}}=a \cdot\left(\frac{Q^{(s)}}{Q^{(s+1)}}\right) \\
\Rightarrow & \frac{Q^{(s)}}{Q^{(s+1)}}=0 \quad \text { (Nakayama's Lemma) } \\
\Rightarrow & Q^{(s)}=Q^{(s+1)}
\end{aligned}
$$

Then we want to find a contradiction. To see this, let $x \in Q^{(s)}$, then $\exists t \notin Q$ such that $t \cdot x \in Q^{s}$. Let $x_{0} \in Q^{s}$ such that $t \cdot x=x_{0}$, so we have $x=x_{0} / t$ in R_{Q}, which implies $Q^{(s)} \subset Q^{s} \cdot R_{Q}$. Then $Q^{(s+1)} \cdot R_{Q}=Q^{s+1} \cdot R_{Q}$, so $\forall n \geq s, Q^{n} \cdot R_{Q}=Q^{s} \cdot R_{Q}$, which implies that $\bigcap\left(Q^{n} \cdot R_{Q}\right)=Q^{s} \cdot R_{Q} \neq 0$. However, by the Kull's intersection theorem, in this local ring $(R, Q), \bigcap_{n \geq 1} Q^{n}=0$. Thus, $Q=0$, which is a contradiction. Therefore, $\operatorname{ht}(P) \leq 1$.

9 Projective Modules, Projective Resolutions and Projective Dimension

Definition 9.1. An R-module P is projective if for every R-linear map $f: P \rightarrow N$ and every surjective R-linear map $g: M \rightarrow N$, there is a unique R-linear map $h: P \rightarrow M$ such that $f=g \circ h$, i.e. the following diagram commutes:

Proposition 9.1. Suppose R-module P is a projective module, then there exists an R-module Q such that $P \oplus Q$ is a free R-module, which also means P is the direct summand of a free R-module.

Proof. Suppose P is a projective module and choose a surjection $\pi: F \rightarrow P$, where F is a free R-module. By the definition of a projective module, there is a map $i: P \rightarrow F$ satisfying $\pi \circ i=i d_{P}$. So we have $F=\operatorname{ker}(\pi) \oplus i(P)$. We name $Q=\operatorname{ker}(\pi)$ and we have $i(P)=P$, then we can conclude that there exists an R-module Q such that $P \oplus Q$ is a free R-module.

We need to note that if M^{\prime} is a submodule of M, then we have a short exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M / M^{\prime} \rightarrow 0
$$

Moreover, up to an isomorphism, every short exact sequence is of the form:

Proposition 9.2. Let R be a ring and let

$$
0 \longrightarrow N \xrightarrow{f} M \xrightarrow{g} K \longrightarrow 0
$$

be a short exact sequence of R-modules. The following conditions are equivalent:
(1)There exists a homomorphism $h: K \rightarrow M$ such that $g \circ h=i d_{K}$.
(2)There exists a homomorphism $k: M \rightarrow N$ such that $k \circ f=i d_{N}$.

If either condition holds, we say that the short exact sequence splits.
Proof. (1) \Rightarrow (2) Let $h: K \rightarrow M$ such that $g \circ h=i d_{K}$, then define a homomorphism $\phi: M \rightarrow M$ by $\phi=i d_{M}-h \circ g$. We can think of ϕ as a projection onto N, in that ϕ maps M into the submodule N and it is the identity on N.

We claim that ϕ is a projection. Indeed, we have $g \circ \phi=g-g \circ h \circ g=g-i d_{K} \circ g=0$. Thus, by the universal property of the kernel, ϕ factors through the kernel $f: N \rightarrow M$, which means there is a unique map $k: M \rightarrow N$ such that $f \circ k=\phi$, i.e. the image of ϕ is contained in the image of f.

In addition, since $g \circ f=0, f \circ k \circ f=\phi \circ f=f-h \circ g \circ f=f$. Thus, for all $n \in N$, $f(n)=f(k(f(n)))$. Since f is injective, $n=k(f(n))$, which means $k \circ f=i d_{N}$.
$(2) \Rightarrow(1)$ Similarly, let $k: M \rightarrow N$ such that $k \circ f=i d_{N}$, then define a homomorphism $\psi: M \rightarrow M$ by $\psi=i d_{M}-f \circ k$. So $\psi \circ f=f-f \circ k \circ f=f-f \circ i d_{N}=0$, then ψ is also a projection. Thus, by the universal property of the kernel, ψ factors through the kernel $g: M \rightarrow K$, which means there is a unique map $h: K \rightarrow M$ such that $h \circ g=\psi$.

Since $g \circ f=0, g \circ h \circ g=g \circ \psi=g-g \circ f \circ k=g$. Thus, for all $m \in M, g(m)=g(h(g(m)))$. Since g is surjective, for all $k \in K$, there exists $m \in M$ such that $g(m)=k$. Thus, we have $k=g(h(k))$, which means $g \circ h=i d_{K}$.

As a result of Proposition 9.2, suppose a short exact sequence $0 \rightarrow N \rightarrow M \rightarrow K \rightarrow 0$ splits, we have $M \cong N \oplus K$.

The following theorem tells us the relation between projective modules and short split exact sequences, and we are going to use the result of Proposition 9.2 for the proof of the theorem.

Theorem 9.3. Let R be a ring with identity and let P be an R-module. P is a projective module if and only if every short exact sequence $0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$ splits.

Proof. (\Rightarrow) Let f denote the map from M to P in the given exact sequence. Since P is projective, there exists $h: P \rightarrow M$ such that $f \circ h: P \rightarrow P$ is the identity. This shows that h is injective and $\operatorname{im}(h) \cap \operatorname{ker}(f)=0$. Also, every m in M can be written as

$$
m=h(f(m))+(m-h(f(m))) \in i m(h)+\operatorname{ker}(f)
$$

so $M=\operatorname{im}(h) \oplus \operatorname{ker}(f) \cong P \oplus N$.
(\Leftarrow) Suppose every short exact sequence $0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$ splits. We claim that if P is a R-module, then there exists a projective module M such that $M \rightarrow P \rightarrow 0$. Indeed, let S be a set of generators of P. Let F_{S} be the free module generated by elements e_{s} for s in S. Then F_{S} is projective and $f: F_{S} \rightarrow P$ given by

$$
f\left(\sum r_{s} e_{s}\right)=\sum r_{s} s
$$

is surjective. Name $M=F_{S}$, so such a projective module Q exists. Let N be the kernel of the projection $M \rightarrow P \rightarrow 0$. Then the hypothesis implies that $M \cong P \oplus N$. Moreover, the diagram

can be extended to a diagram

so N maps trivially to L. Since $M \cong P \oplus N$ is projective by the claim, there exists a map $h^{\prime}: P \oplus N \rightarrow M$ making the diagram commutative. Now put h to be the restriction of h^{\prime} to P. Thus, P is projective.

Corollary 9.4. If R is a ring with identity, P is a projective R-module and $f: M \rightarrow P$ is a surjective map of R-modules, then $M \cong P \oplus \operatorname{ker}(f)$.

Proof. Suppose P is projective. We have a short exact sequence

$$
0 \longrightarrow \operatorname{ker}(f) \longrightarrow M \stackrel{f}{\longrightarrow} P \longrightarrow 0
$$

which splits by Theorem 9.3. So $M \cong P \oplus \operatorname{ker}(f)$.
Proposition 9.5. Suppose (R, m) is local, P is finitely generated and projective, then P is free.

Proof. Suppose P is a finitely generated R-module, then let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a minimal system of generators of P. Then define a surjective map $\psi: R^{n} \rightarrow P$ by $\left(x_{1}, \ldots, x_{n}\right) \rightarrow \sum_{i=1}^{n} x_{i} p_{i}$, where $x_{i} \in R^{n}$. Since P is projective, by Corollary 9.4, we get $R^{n} \cong P \oplus \operatorname{ker}(\psi)$. Let $\operatorname{ker}(\psi)=O$, we have $R^{n} \cong P \oplus O$.

Then we want to show $O=0$. We first multiply m to $R^{n} \cong P \oplus O$, then we get $m R^{n} \cong m P \oplus m O$. We can \bmod out $R^{n} \cong P \oplus O$ by $m R^{n} \cong m P \oplus m O$ to get

$$
R^{n} / m R^{n} \cong P / m P \oplus O / m O
$$

Moreover, $P / m P, O / m O$ are vector spaces over the field R / m and the dimension of P is n, so by comparing the dimension, we get $O / m O=0$. Then by Nakayama's Lemma, we get $O=0$. Thus, $P \cong R^{n}$, which means P is free.

Proposition 9.6. Suppose R is a Noetherian ring and P is a finitely generated R-module. P is a projective R-module if and only if P_{Q} is a free R_{Q}-module for all primes ideals $Q \subseteq R$.

Proof. Suppose P is projective, then P_{Q} is projective over the local ring R_{Q} and so is free by Proposition 9.5.

For the converse, we use the fact that when R is Noetherian, and M, N are finitely generated R-modules, then $\operatorname{Hom}_{R}(M, N)_{S} \cong \operatorname{Hom}_{R_{S}}\left(M_{S}, N_{S}\right)$ for all multiplicatively closed sets S. Take a short exact sequence

$$
0 \longrightarrow K \longrightarrow F \xrightarrow{\pi} P \longrightarrow 0
$$

of R-modules, with F finitely generated and free. Since R is Noetherian, K is also finitely generated. We have an induced exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, K) \longrightarrow \operatorname{Hom}_{R}(P, F) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(P, P)
$$

If we show that π^{*} is surjective, then there exists $h \in \operatorname{Hom}(P, F)$ such that $\pi^{*}(h)=i d_{P}$. This means $h \circ \pi=i d_{P}$, so the sequence splits, and therefore P is a summand of F, by Proposition 9.2. Thus, P is projective.

To see that π^{*} is surjective, it suffices to show that $\left(\pi^{*}\right)_{Q}$ is surjective for all prime ideals Q. Then we take Q a prime ideal in R. By hypothesis, P_{Q} is projective, so the sequence

$$
0 \longrightarrow K_{Q} \longrightarrow F_{Q} \xrightarrow{\pi} P_{Q} \longrightarrow 0
$$

splits. Thus,

$$
0 \longrightarrow \operatorname{Hom}_{R_{Q}}\left(P_{Q}, K_{Q}\right) \longrightarrow \operatorname{Hom}_{R_{Q}}\left(P_{Q}, F_{Q}\right) \xrightarrow{\pi_{Q}^{*}} \operatorname{Hom}_{R_{Q}}\left(P_{Q}, P_{Q}\right) \longrightarrow 0
$$

is exact. Therefore,

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, K)_{Q} \longrightarrow \operatorname{Hom}_{R}(P, F)_{Q} \xrightarrow{\pi_{Q}^{*}} \operatorname{Hom}_{R}(P, P)_{Q} \longrightarrow 0
$$

is exact. Thus, π_{Q}^{*} is surjective.
Let R be a Noetherian local ring with maximal ideal m, then we will give the definition of projective resolution and projective dimension.

Definition 9.2. Given an R-module M, an exact sequence

$$
\mathcal{F}: \cdots \longrightarrow F_{n} \xrightarrow{\phi_{n}} \cdots \longrightarrow F_{2} \xrightarrow{\phi_{2}} F_{1} \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\pi} M \longrightarrow 0
$$

is called a projective resolution if all of the F_{i} are projective.
Definition 9.3. Suppose M has a finite projective resolution, the minimal length among all finite projective resolutions of M is called its projective dimension and denoted $\operatorname{pd}_{R}(M)$. If M does not admit a finite projective resolution, then by convention the projective dimension is said to be infinite.

To prove the following proposition, we need to know the definition of free resolutions, and then minimal free resolution.

Definition 9.4. A free resolution of a R-module M is a complex

$$
\mathcal{F}: \cdots \longrightarrow F_{i} \longrightarrow F_{i-1} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

with trivial homology such that $\operatorname{coker}\left(F_{1} \rightarrow F_{0} \cong M\right)$ and such F_{i} is a free R-module.
Definition 9.5. A complex

$$
\mathcal{F}: \cdots \longrightarrow F_{i} \longrightarrow F_{i-1} \longrightarrow \cdots
$$

over a local ring (R, m) is minimal if $\operatorname{im}\left(F_{i} \rightarrow F_{i-1}\right) \subset\left(m F_{i-1}\right)$.
In addition, to prove the following proposition we need the fact that if two out of three modules in a short exact sequence have finite projective dimension, the third does as well.

Proposition 9.7. Let R be local with maximal ideal m, and let x be a non-zero-divisor in R that is not contained in m^{2}. Write $\bar{R}=R /(x)$. Let A be a finitely generated R-module annihilated by x (thereby an \bar{R}-module). If $p d_{R}(A)<\infty$, then $p d_{\bar{R}}(A)<\infty$.
Proof. Let

$$
0 \longrightarrow K^{*} \longrightarrow F^{*} \longrightarrow A \longrightarrow 0
$$

be the start of a minimal free resolution of A over \bar{R}. Since $F^{*}=F / x F$, for an appropriate free R-module $F, p d_{R}\left(F^{*}\right)=1$, and in particular, it is finite. Since $p d_{R}(A)$ is finite, this forces $p d_{R}\left(K^{*}\right)$ to be finite, since if two out of three modules in a short exact sequence have finite projective dimension, the third does as well. By induction of projective dimension over R, K^{*} has finite projective dimension over \bar{R}. Thus, A has finite projective dimension over \bar{R}, by the reasoning just employed. So, this reduces the problem to the case that $p d_{R}(A)=1$.

So if $p d_{R}(A)=1$, we take a minimal free resolution

$$
0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0
$$

over R, where K and F are free R-modules, and the column vectors in F generating K have entries in m. Note that if we invert(localize) x, then $A_{x}=0$, which means $K_{x}=F_{x}$, and this implies that K and F are free R-modules of the same rank.

Assume $F=R^{n}$. We take v_{1}, \ldots, v_{n} in F that form a basis for K. Since the resolution is minimal, the entries of the v_{i} are in m. Let e_{1}, \ldots, e_{n} denote the standard basis for R^{n}. Then since x annihilates A, each $x e_{i}$ is in K. Thus, we can write $x e_{1}=r_{1} v_{1}+\cdots+r_{n} v_{n}$ for all $r_{i} \in R$. Now some r_{i} is not in m, otherwise, x is in m^{2}, contrary to the assumption. Without loss of generality, let r_{1} be a unit. Then we can write v_{1} in terms of $x e_{1}, v_{2}, \ldots, v_{n}$, so that $x e_{1}, v_{2}, \ldots, v_{n}$ generate K, and hence for a basis for K.

Now write $x e_{2}=s_{1}\left(x e_{1}\right)+s_{2} v_{2}+\cdots+s_{n} v_{n}$, where $s_{i} \in R$. Then since x is not in m^{2}, one of s_{2}, \ldots, s_{n} must not be in m. Also note that we do not need to consider s_{1}. Then without loss of generality, let s_{2} be a unit. This will give that $x e_{1}, x e_{2}, v_{3}, \ldots, v_{n}$ generate K. Continuing on this process, we end up with $x e_{1}, \ldots, x e_{n}$ is a basis for K, and

$$
A=F / K=F /(x F)
$$

showing that A is free over \bar{R}. Thus, $p d_{\bar{R}}(A)<\infty$.

10 Tensor product, Tor and Torsion

Definition 10.1. Let M, N and L be R-modules.

1. A function $f: M \times N \rightarrow L$ is said to be bilinear if it satisfies the following conditions:
(a) $f\left(m_{1}+m_{2}, n\right)=f\left(m_{1}, n\right)+f\left(m_{2}, n\right), \forall m_{1}, m_{2} \in M$ and $n \in N$.
(b) $f\left(m, n_{1}+n_{2}\right)=f\left(m, n_{1}\right)+f\left(m, n_{2}\right), \forall m \in M$ and $n_{1}, n_{2} \in N$.
(c) $r \cdot f(m, n)=f(r m, n)=f(m, r n), \forall m \in M$ and $n \in N$.
2. We say that a tensor product for M and N is an R-module P together with a bilinear function $h: M \times N \rightarrow P$ satisfying the following condition:

Given an R-module L and a bilinear function $f: M \times N \rightarrow L$, there exists unique R-module homomorphism $\phi: P \rightarrow L$ such that $\phi \circ h=f$. In other words, any diagram

with f bilinear, can be completed with a unique R-module map $\phi: P \rightarrow L$.
Proposition 10.1. Let M and N be R-modules. Then the tensor product of M and N exists and is unique (up to isomorphism).

Proof. Let \mathcal{F} denote the free-module on the set $\{(m, n)\}_{(m, n) \in M \times N}$. Let \mathcal{K} denote the submodule of \mathcal{F} generated by all expressions of the form:
(1) $\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right)$
(2) $\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right)$
(3) $r \cdot(m, n)-(r m, n)$
(4) $r \cdot(m, n)-(m, r n)$

We set $P:=\mathcal{F} / \mathcal{K}$ and let $h: M \times N \rightarrow P$ be the function taking (m, n) to $(m, n)+\mathcal{K}$, for all $(m, n) \in M \times N$. In other words, h is just the inclusion of the basis for \mathcal{F} into \mathcal{F} followed by the canonical projection onto the quotient $\mathcal{F} / \mathcal{K}$. The function h is bilinear, by definition. Let L be any R-module and $f: M \times N \rightarrow L$ any bilinear function. Since \mathcal{F} is a free module, we can define a map $\psi: \mathcal{F} \rightarrow L$ by sending each basis element $(m, n) \in \mathcal{F}$ to $f((m, n))$ and extending linearly to all of \mathcal{F}.

Since f is bilinear, $\mathcal{K} \subseteq \operatorname{ker}(\psi)$. Thus, we obtain an induced map $\psi: \mathcal{F} / \mathcal{K} \rightarrow L$ which sends each $(m, n)+\mathcal{K}$ to $f((m, n))$. In other words, ϕ is an R-module homomorphism satisfying $\phi \circ h=f$. Clearly, ϕ is the only R-module homomorphism having this property. Now suppose that T is an R-module and $\zeta: M \times N \rightarrow T$ is a bilinear function satisfying the requirement of a tensor product. Then, first thinking of P as a tensor product, we may complete the diagram.

with an R-module map $\phi: P \rightarrow T$ satisfying $\phi \circ h=k$. Interchanging the roles of P and T, we get an R-module map $\psi: T \rightarrow P$ satisfying $\psi \circ k=h$, then we get a diagram

which can be completed by $\psi \circ \phi$. But 1_{P} also completes the diagram, so $\psi \circ \phi=1_{P}$. Similarly, $\phi \circ \psi=1_{T}$, so ϕ is an isomorphism with inverse ψ. In particular, P is unique up to isomorphism and h is unique, up to composition with an isomorphism.

Now that the tensor product of modules M and N exists and is unique, we write $M \otimes_{R} N$ for tensor product. We also write $m \otimes n$ for the $\operatorname{coset}(m, n)+\mathcal{K}, \forall(m, n) \in M \times N$. Every element in the tensor product can be written in the form $r_{1}\left(m_{1} \otimes n_{1}\right)+\cdots+r_{k}\left(m_{k} \otimes n_{k}\right)$, for some $r_{i} \in R, m_{i} \in M, n_{i} \in N$.

Proposition 10.2. The tensor product satisfies the following properties with regard to R modules:

1. $M \otimes_{R} N \cong N \otimes_{R} M$.
2. If F is free with basis $\left\{v_{\alpha}\right\}$ and G is free with basis $\left\{w_{\beta}\right\}$, then $F \otimes_{R} G$ is free with basis $\left\{v_{\alpha} \otimes w_{\beta}\right\}$.
3. If $f: M \rightarrow M^{\prime}$ and $g: N \rightarrow N^{\prime}$ are R-module maps, then \exists ! R-module map

$$
f \otimes g: M \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N^{\prime}
$$

satisfying $(f \otimes g)(m \otimes n)=f(m) \otimes g(n), \forall m \otimes n \in M \otimes_{R} N$.
Proof. 1. Let $h: M \times N \rightarrow M \otimes_{R} N$ be the bilinear map given in the definition of tensor product and $f: M \times N \rightarrow N \otimes M$ be the bilinear map taking the pair (m, n) to $n \otimes m$. Then we may complete the diagram

with a unique R-module map $\phi: M \otimes_{R} N \rightarrow N \otimes_{R} M$ satisfying $\phi \circ h=f$. In particular, $\phi(m \otimes N)=n \otimes m, \forall m \otimes n \in M \otimes_{R} N$.

Similarly, $\exists!\psi: N \otimes_{R} M \rightarrow M \otimes_{R} N$ satisfying $\psi(n \otimes m)=m \otimes n, \forall n \otimes m \in N \otimes_{R} M$. Thus, $\psi \circ \phi$ completes the diagram

Since $1_{M \otimes_{R} N}$ also completes the diagram, $\psi \circ \phi=1_{M \otimes_{R} N}$. Similarly, $\phi \circ \psi=1_{N \otimes_{R} M}$, so $M \otimes_{R} N \cong N \otimes_{R} M$.
2. We note that the elements $\left\{v_{\alpha} \otimes w_{\beta}\right\}$ clearly span $F \otimes_{R} G$. Suppose we have a dependence relation

$$
r_{1}\left(v_{\alpha_{1}} \otimes w_{\beta_{1}}\right)+\cdots+r_{n}\left(v_{\alpha_{n}} \otimes w_{\beta_{n}}\right)=0
$$

Let \mathcal{F} be the free module on the elements $\left(v_{\alpha}, w_{\beta}\right) \in F \times G$ and let $f: F \times G \rightarrow \mathcal{F}$ be the map extending the canonical inclusion of the basis $\left(v_{\alpha}, w_{\beta}\right)$ into \mathcal{F}. Then f is bilinear, so there exists $\phi: F \otimes_{R} G \rightarrow \mathcal{F}$ satisfying $\phi \circ h=f$. If we apply ϕ to the dependence relation above, since ϕ applied to the element $v_{\alpha} \otimes w_{\beta}$ are basis elements in \mathcal{F}, we deduce that each $r_{i}=0$. Thus, $\left\{v_{\alpha} \otimes w_{\beta}\right\}$ forms a basis for $F \otimes_{R} G$.
3. Let $h: M \times N \rightarrow M \otimes_{R} N$ be the given map and $k: M \times N \rightarrow M^{\prime} \otimes_{R} N^{\prime}$ be the bilinear function which takes (m, n) to $f(m) \otimes g(n)$. Then there exists unique R-linear map $f \otimes g: M \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N^{\prime}$, satisfying $(f \otimes g) \circ h=k$.

In other words, $(f \otimes g)(m \otimes n)=f(m) \otimes g(n), \forall m \otimes n \in M \otimes_{R} N$.
Proposition 10.3. Let

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

be a short exact sequence of R-modules. For any R-modules D :

$$
A \otimes_{R} D \xrightarrow{f \otimes 1_{D}} B \otimes_{R} D \xrightarrow{g \otimes 1_{D}} C \otimes_{R} D \longrightarrow 0
$$

is exact.
Proof. We note that $g \otimes 1_{D}$ is clearly onto and $g \otimes 1_{D} \circ f \otimes 1_{D}=(g \circ f) \otimes 1_{D}=0$, since $g \circ f=0$. We need to see that $k e r\left(g \otimes 1_{D}\right) \subseteq i m\left(f \otimes 1_{D}\right)$. For this, let $\phi: B \otimes_{R} D / i m\left(f \otimes 1_{D}\right) \rightarrow C \otimes_{R} D$ be the map induced by $g \otimes 1_{D}$.

If we show ϕ is one-to-one, then $\operatorname{ker}\left(f \otimes 1_{D}\right)=\operatorname{im}\left(f \otimes 1_{D}\right)$, since $\operatorname{ker}\left(g \otimes 1_{D}\right) / \operatorname{im}\left(g \otimes 1_{D}\right)$ clearly belongs to the kernel of ϕ. For this, we let $h: C \times D \rightarrow C \otimes_{R} D$ be the given map and $k: C \times D \rightarrow B \otimes D / i m\left(f \otimes 1_{D}\right)$ be the bilinear map, which takes (c, d) to the class of $b \otimes d \in B \otimes_{R} D / i m\left(f \otimes 1_{D}\right)$, where $b \in B$ is any element satisfying $g(b)=c$.

If we show k is well-defined, then \exists an R-linear map $\psi: C \otimes_{R} D \rightarrow B \otimes_{R} D / i m\left(f \otimes 1_{D}\right)$ which satisfies $\psi \circ h=k$. In other words, $\psi(c \otimes d)=[b \otimes d]$.

But if we start with $[b \otimes d] \in B \otimes_{R} D / i m\left(f \otimes 1_{D}\right)$, and apply $\psi \circ \phi$, we get back to $[b \otimes d]$, since $\psi(c \otimes d)=[b \otimes d]$. This implies that ϕ is one-to-one.

To see k is well-defined, suppose $g\left(b^{\prime}\right)=c$. Then $b-b^{\prime} \in \operatorname{ker}(g)=i m(f)$, so $b-b^{\prime}=f(a)$ for some $a \in A$. Thus, $[b \otimes d]=\left[\left(b^{\prime}+f(a)\right) \otimes d\right]=\left[b^{\prime} \otimes d\right]+[f(a) \otimes d]=\left[b^{\prime} \otimes d\right]$ in $B \otimes_{R} D / i m\left(f \otimes 1_{D}\right)$, so k is well-defined.

Definition 10.2. (1) A commutative diagram \mathcal{A}

of R-modules and R-module maps is a double complex if each row and column form a complex.
(2) Let \mathcal{A} as above be a double complex. Associated to \mathcal{A} is a complex \mathcal{T}, the so-called total complex of \mathcal{A}. For $n \in \mathbb{Z}$, the $n^{\text {th }}$ module in \mathcal{T} is the module $T_{n}=\oplus_{i+j=n} A_{i j}$ and the $n^{\text {th }}$ boundary map (differential) $\partial: T_{n} \rightarrow T_{n-1}$ is the R-module map defined by the equation $\partial\left(a_{i j}\right)=\delta\left(a_{i j}\right)+(-1)^{j} d\left(a_{i j}\right), \forall a_{i j} \in A_{i j}$ satisfying $i+j=n$. Note that $\delta\left(a_{i j}\right) \in A_{i, j-1}$ and $d\left(a_{i j}\right) \in A_{i-1, j}$, so ∂ indeed takes values in T_{n-1}.

Also, since $\partial\left(a_{i j}\right)=\delta\left(a_{i j}\right)+(-1)^{j} d\left(a_{i j}\right)$,

$$
\begin{aligned}
\partial^{2}\left(a_{i j}\right) & =\partial\left(\delta\left(a_{i j}\right)+(-1)^{j} d\left(a_{i j}\right)\right) \\
& =\delta\left(\partial\left(a_{i j}\right)\right)+(-1)^{j} d\left(\partial\left(a_{i j}\right)\right) \\
& =\delta\left(\delta\left(a_{i j}\right)+(-1)^{j} d\left(a_{i j}\right)\right)+(-1)^{j} d\left(\delta\left(a_{i j}\right)+(-1)^{j} d\left(a_{i j}\right)\right) \\
& =\delta^{2}\left(a_{i j}\right)+(-1)^{j} \delta d\left(a_{i j}\right)+(-1)^{j} d \delta\left(a_{i j}\right)+d^{2}\left(a_{i j}\right) \\
& =0
\end{aligned}
$$

so \mathcal{T} is a complex.
We can give an example about double complex: let $\mathcal{A}: \cdots \longrightarrow A_{n} \xrightarrow{d} A_{n-1} \longrightarrow \cdots$ and $\mathcal{B}: \cdots \longrightarrow B_{m} \xrightarrow{\delta} B_{m-1} \longrightarrow \cdots$ be complexes. We obtain a double complex:

whose total complex is by definition $\mathcal{A} \otimes_{R} \mathcal{B}$. In other words, $\mathcal{A} \otimes_{R} \mathcal{B}$ is the complex whose $k^{\text {th }}$ module is $\oplus_{i+j=k} A_{i} \otimes_{R} B_{j}$ and whose $k^{\text {th }}$ differential satisfies

$$
\partial\left(a_{i} \otimes b_{j}\right)=a_{i} \otimes \delta\left(b_{j}\right)+(-1)^{j} d\left(a_{i}\right) \otimes b_{j}
$$

We note that following from the previous proposition for R-modules A and B, we calculate $\operatorname{Tor}_{n}^{R}(A, B)$ as follows: Let \mathcal{P}_{A} denote a projective resolution of A , with A deleted. Tensor \mathcal{P}_{A} with B and take homology as following:

Definition-Theorem If A and B are R-modules with deleted projective resolutions \mathcal{P}_{A} and \mathcal{P}_{B}, then $\operatorname{Tor}_{n}^{R}(A, B)$ is the $n^{\text {th }}$ homology of the complex $\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}, \forall n \geq 0$.

Proposition 10.4. Let A and B be R-modules. Write \mathcal{P}_{A} for a deleted projective resolution of A, \mathcal{P}_{B} for a deleted projective resolution of B. Then

$$
H_{n}\left(\mathcal{P}_{A} \otimes_{R} B\right) \cong H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right) \cong H_{n}\left(A \otimes_{R} \mathcal{P}_{B}\right)
$$

for all $n \geq 0$. In particular, $\operatorname{Tor}_{n}^{R}(A, B) \cong H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right)$.
Proof. Let \mathcal{D} denote the double complex whose $(i, j)^{t h}$ module is $P_{i} \otimes_{R} P_{j}^{\prime}$, where P_{i} is the $i^{\text {th }}$ term in \mathcal{P}_{A} and P_{j}^{\prime} is the $j^{\text {th }}$ term in \mathcal{P}_{B}. Thus, $\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}$ is the total complex associated to \mathcal{D}. Let \mathcal{C} denote the double complex obtained from \mathcal{D} by adding the complex $A \otimes_{R} \mathcal{P}_{B}$ above the $0^{\text {th }}$ row. Thus, $A \otimes_{R} \mathcal{P}_{B}$ is the $-1^{\text {st }}$ row of \mathcal{C}. Note that this is consistent with the view that A is the $-1^{\text {st }}$ term in the complex $\mathcal{P}_{A} \rightarrow A \rightarrow 0$. Thus, \mathcal{C} is the double complex

Write \mathcal{T} for the total complex associated to \mathcal{C}. $\forall n \geq-1$, we have short exact sequences

$$
0 \longrightarrow A \otimes_{R} P_{n+1}^{\prime} \longrightarrow T_{n} \longrightarrow\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right)_{n} \longrightarrow 0
$$

whose maps are given by inclusion and projection. It is straight forward to check that the inclusion and projection maps commute with the appropriate boundary maps, so these sequences fit together into an exact sequence of complexes

$$
0 \longrightarrow\left(A \otimes_{R} \mathcal{P}_{B}\right)(1) \longrightarrow \mathcal{T} \longrightarrow \mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B} \longrightarrow 0
$$

We therefore get a long exact sequence on homology

$$
\cdots \longrightarrow H_{n}(\mathcal{T}) \longrightarrow H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right) \longrightarrow H_{n-1}\left(\left(A \otimes_{R} \mathcal{P}_{B}\right)(1)\right) \longrightarrow H_{n-1}(\mathcal{T}) \longrightarrow \cdots
$$

However, all columns of \mathcal{C} are exact, so $H_{n}(\mathcal{T})=0, \forall n \geq 0$. Thus,

$$
H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right) \cong H_{n-1}\left(\left(A \otimes_{R} \mathcal{P}_{B}\right)(1)\right)=H_{n}\left(A \otimes_{R} \mathcal{P}_{B}\right) \quad \forall n \geq 0
$$

Similarly, we can prove $H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right) \cong H_{n-1}\left(\left(\mathcal{P}_{A} \otimes_{R} B\right)(1)\right)=H_{n}\left(\mathcal{P}_{A} \otimes_{R} B\right) \quad \forall n \geq 0$. Therefore, $H_{n}\left(A \otimes_{R} \mathcal{P}_{B}\right) \cong H_{n}\left(\mathcal{P}_{A} \otimes_{R} \mathcal{P}_{B}\right) \cong H_{n}\left(\mathcal{P}_{A} \otimes_{R} B\right), \forall n \geq 0$.

From Proposition 10.4, we may calculate $\operatorname{Tor}_{n}^{R}(A, B)$ by taking the homology of the complex $\mathcal{P}_{A} \otimes_{R} B$ or the homology of the complex $A \otimes_{R} \mathcal{P}_{B}$.

Theorem 10.5. $\operatorname{Tor}_{n}^{R}(A, B) \cong \operatorname{Tor}_{n}^{R}(B, A)$, for R-modules A and B with all $n \geq 0$.
Proof. Follow from the previous proposition.
We can use Tor to show that a finitely generated R-module M has a finite minimal free resolution in a local ring R.

Proposition 10.6. Suppose (R, m) is local, M is finitely generated, $p d_{R}(M)<\infty$, then M has a finite minimal free resolution.

Proof. Since $p d_{R}(M)<\infty, \operatorname{Tor}_{i}(k, M)=0$, for all $i>n$ with $\operatorname{pd}_{R}(M)=n$. Now compute $\operatorname{Tor}_{i}(k, M)$, using a minimal free resolution

$$
\cdots \longrightarrow F_{i+1} \xrightarrow{\phi_{i+1}} F_{i} \xrightarrow{\phi_{i}} F_{i-1} \xrightarrow{\phi_{i-1}} \cdots \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

Tensor with $k=R / m$ to get an exact sequence

$$
\cdots \longrightarrow F_{i+1} / m F_{i+1} \xrightarrow{\bar{\phi}_{i+1}} F_{i} / m F_{i} \xrightarrow{\bar{\phi}_{i}} F_{i-1} / m F_{i-1} \longrightarrow \cdots
$$

Since ϕ_{i} and ϕ_{i+1} have entries in $m, \bar{\phi}_{i}=\bar{\phi}_{i+1}=0$, for $i>n$. We have $\operatorname{ker}\left(\bar{\phi}_{i}\right)=F_{i} / m F_{i}$ and $i m\left(\bar{\phi}_{i+1}\right)=0.0=\operatorname{Tor}_{i}(k, M)=\operatorname{ker}\left(\bar{\phi}_{i}\right) / i m\left(\bar{\phi}_{i+1}\right)$ for $i>n$, which implies $F_{i} /\left(m F_{i}\right)=0$, then $F_{i}=m F_{i}$, which implies $F_{i}=0$ by Nakayama's lemma. Therefore, the minimal free resolution is finite.

11 Regular Local Rings

Recall that (Kull's Principal Ideal Theorem) Suppose R is Noetherian, if I is an ideal of R with $I=\left(x_{1}, \ldots, x_{n}\right) R$ and P is a minimal prime over I, then $\operatorname{ht}(P) \leq n$.

Consider R is a Noetherian local ring with the maximal ideal m, written as (R, m), and $\operatorname{dim}(R)=d$, then by the Kull's Principal Ideal Theorem, we have that the number of generators of m is greater than or equal to $d=\mathrm{ht}(m)$.

Definition 11.1. R is a regular local ring if d is the minimal number of generators of m.
Recall that (Nakayama's Lemma) If M is a finitely-generated R-module and the images of m_{1}, \ldots, m_{n} of M in $M / J(R) M$ generate $M / J(R) M$ as an R-module, then m_{1}, \ldots, m_{n} also generate M as an R-module.

For any local ring $(R, m), x_{1}, \ldots, x_{n}$ is a minimal generating set for m if and only if $\bar{x}_{1}, \ldots, \bar{x}_{n}$ is a basis in a vector space m / m^{2} over the field R / m, by Nakayama's Lemma.

In general, if $x \in m / m^{2}$, then:
(1) x is part of a minimal generating set for m since \bar{x} is part of a basis for m / m^{2}.
(2) The minimal number of generators of $m / x R$ is one less than the minimal number of generators for m, since if $\left\{x, x_{2}, \ldots, x_{n}\right\}$ is the minimal generating set for m, then $\left\{\bar{x}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$ is a basis for m / m^{2}.

To prove the following proposition, we need to use the fact of The Prime Avoidance Lemma, which says that If an ideal I in a commutative ring R is contained in a union of finitely many prime ideals $P_{i}^{\prime} s$, then it is contained in P_{i} for some i.

Proposition 11.1. If (R, m) is a regular local ring, then R is an integral domain with $\operatorname{dim}(R)=d$.
Proof. If I is an ideal, let $\mu(I)$ be the number of minimal generators of I.
Suppose $d=0$, then $\mu(m)=0$. We have $m=\langle 0\rangle \in R$, so R is a field, then also a domain.

Suppose $d=1$, then $m=(x)$. Suppose $a b=0$ and neither $a, b=0$. By the intersection theorem, we can write $a=\alpha x^{n}, b=\beta x^{m}$ with α, β are units. Then

$$
0=a b=\alpha x^{n} \beta x^{m}=\alpha \beta x^{n+m},
$$

so $x^{n+m}=0$. Thus, x is in the minimal prime, which implies m contained in a minimal prime, so we have $\operatorname{ht}(m)=0$, which is a contradiction. Then either $a=0$ or $b=0$. Therefore, R is a domain.

Suppose the result is true for dimension up to $d-1$. We need to prove that the result is true for R of dimension d. Suppose m was contained in the union of m^{2} and the finitely many minimal prime ideals. Then by Prime Avoidance Lemma, m must be contained either in m^{2} or in one of the minimal prime ideals. However, by Nakayama's Lemma, $m \neq m^{2}$, so m is a minimal prime ideal, which makes the dimension to be zero. This is a contradiction to the assumption. Thus, there exists an element $x \in m \backslash m^{2}$ is not in any minimal prime, which means $x \in m$ with $m \nsubseteq P_{1} \cup \cdots \cup P_{r} \cup m^{2}$, where P_{i} are minimal primes.

Let $A=m /(x)$, then A is the unique maximal ideal in $R /(x)$. By the choice of $R /(x)$, we have $\operatorname{dim}(R /(x))=d-1$. Now A / A^{2} is a proper homomorphic image of m / m^{2}, so it can be generated by $(d-1)$ elements. By Nakayama's Lemma, A can also be generated by $(d-1)$ elements. So $R /(x)$ is a regular local ring, and by the induction assumption, $R /(x)$ is an integral domain. Thus x is a prime ideal of R. Since x is not in any minimal prime ideal, there is a minimal prime ideal properly contained inside (x) and we call this minimal prime ideal Q. Suppose $y \in Q$, then we write $y=r x$ for some $r \in R$. But since $x \notin Q, a \in Q$, we have $Q=x Q$. Then by Nakayama's lemma, $Q=0$. Thus R is an integral domain.

From the prove of Proposition 11.1, in a regular local ring, there exists an element $x \in m \backslash m^{2}$ is not in any minimal prime, which means $x \in m$ with $m \nsubseteq P_{1} \cup \cdots \cup P_{r} \cup m^{2}$, where P_{i} are minimal primes.

Corollary 11.2. Let (R, m) be a local ring. Suppose x is not in m^{2}, then R is a regular local ring if and only if $R /(x)$ is a regular local ring.

Proof. (\Leftarrow) Suppose $R /(x R)$ is a regular local ring, so $\operatorname{dim}(R /(x R))=\mu(R /(x R))$. We also have $\operatorname{dim}(R / x R)=\operatorname{dim}(R)-1$. Since $x \notin m^{2}, \mu(m /(x R))=\mu(R)-1$. Thus, $\operatorname{dim}(R)=\mu(R)$, which implies R is a regular local ring.
(\Rightarrow) Suppose R is a regular local ring, so $\operatorname{dim}(R)=\mu(R)$, then $\operatorname{dim}(R / x R)=\operatorname{dim}(R)-1$. Since $x \notin m^{2}, \mu(m /(x R))=\mu(R)-1$. Thus, $\operatorname{dim}(R / x R)=\mu(R / x R)$, which implies $R / x R$ is a regular local ring.

Proposition 11.3. If R is a regular local ring with $\operatorname{dim}(R)=d$ and $m=\left(x_{1}, \ldots, x_{d}\right)$. Then x_{1}, \ldots, x_{d} is a regular sequence.

Proof. Suppose R is a regular local ring. We want to prove by inducting on d.
When $d=1$, then $x_{1} \neq 0$. Since R is a domain, x_{1} is regular.
When $d>1, x_{1} \notin m^{2}, x_{1}$ is nonzero divisor since R is a domain. Again, $R /\left(x_{1} R\right)$ is a regular local ring, so $\bar{x}_{2}, \ldots, \bar{x}_{d}$ is a regular sequence in $R /\left(x_{1} R\right)$ by induction. Thus, x_{1}, \ldots, x_{d} is a regular sequence.

Theorem 11.4. Suppose (R, m) is local, $\operatorname{dim}(R)=d$, then the following are equivalent:
(1) R is a regular local ring.
(2) $p d_{R}(k)$ is finite where $k=R / m$, i.e. R / m has a finite free resolution.
(3) $p d_{R}(M)$ is finite for all finitely generated R-modules M, i.e. all finitely generated R-modules have a finite free resolution.

Proof. (1) $\Rightarrow(2)$: Suppose R is a regular local ring and $m=\left(x_{1}, \ldots, x_{d}\right)$, consider the Koszul complex on x_{1}, \ldots, x_{d} :

$$
0 \longrightarrow \mathcal{K}_{d} \longrightarrow \cdots \longrightarrow \mathcal{K}_{1} \longrightarrow \mathcal{K}_{0} \longrightarrow R / m \longrightarrow 0
$$

which is exact, since R is regular local, and thus x_{1}, \ldots, x_{d} form a regular sequence. Then we have the diagram

$$
0 \longrightarrow R^{\binom{d}{d}} \longrightarrow \cdots \longrightarrow R^{\binom{d}{2}} \longrightarrow R^{\binom{d}{1}} \longrightarrow R^{\binom{d}{0}} \longrightarrow R / m \longrightarrow 0
$$

so $p d_{R}(k)<\infty$.
$(2) \Rightarrow(3)$: Let M be a finitely generated R-module and suppose $p d_{R}(k)<\infty$, then there exists n such that $\operatorname{Tor}_{i}(k, M)=0$, for all $i>n$ and M. Take a minimal free resolution

$$
\mathcal{F}: \cdots \longrightarrow F_{i+1} \xrightarrow{\phi_{i+1}} F_{i} \xrightarrow{\phi_{i}} F_{i-1} \xrightarrow{\phi_{i-1}} \cdots \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

$\operatorname{Tor}_{i}(k, M)=0$, for all $i>n$. Tensor with $k=R / m$ to get an exact sequence

$$
\cdots \longrightarrow F_{i+1} / m F_{i+1} \xrightarrow{\bar{\phi}_{i+1}} F_{i} / m F_{i} \xrightarrow{\bar{\phi}_{i}} F_{i-1} / m F_{i-1} \longrightarrow \cdots
$$

Since ϕ_{i} and ϕ_{i+1} have entries in $m, \bar{\phi}_{i}=\bar{\phi}_{i+1}=0$, for $i>n$. We have $\operatorname{ker}\left(\bar{\phi}_{i}\right)=F_{i} / m F_{i}$ and $i m\left(\bar{\phi}_{i+1}\right)=0.0=\operatorname{Tor}_{i}(k, M)=\operatorname{ker}\left(\bar{\phi}_{i}\right) / i m\left(\bar{\phi}_{i+1}\right)$ for $i>n$, which implies $F_{i} /\left(m F_{i}\right)=0$, then $F_{i}=m F_{i}$, which implies $F_{i}=0$ by Nakayama's lemma. Thus, we have $p d_{R}(M)<\infty$.
$(3) \Rightarrow(1)$: Consider the case $M=k$. Suppose $p d_{R}(k)<\infty$, take $x \in m \backslash m^{2}$ such that x is non-zero-divisor and $x \cdot k=0$. Then by the proposition 9.7, $p d_{R /(x R)}(k)<\infty$. Then by induction, we can show that $R /(x R)$ is a regular local ring. So by Corollary $11.2, R$ is a regular local ring.

Corollary 11.5. If R is a regular local ring and Q is a prime ideal of R, then R_{Q} is regular.
Proof. Since R is regular, R / Q has a finite R-free resolution by R-modules. We then localize at Q to obtain a finite R_{Q}-free resolution of $R_{Q} / Q R_{Q} \cong(R / Q)_{Q}$. Thus, R_{Q} is regular by Theorem 11.4.

12 Stably-free Modules

In this section, we introduce the definition and some propositions of stably-free modules that we need to use for the proof of the main theorem. The goal for this section is to show that if R-module P is stably-free with rank 1 , then P is free.

Definition 12.1. R-module P is stably free if there exists free modules F, G such that $F=G \oplus P$.

The following proposition connects projective modules and finite free resolutions that we learned on section 9 to stably-free modules.

Proposition 12.1. Suppose P is projective and there exists finite free resolution

$$
(*): 0 \longrightarrow F_{n} \xrightarrow{\phi_{n}} F_{n-1} \xrightarrow{\phi_{n-1}} \cdots \longrightarrow F_{1} \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\pi} P \longrightarrow 0
$$

then P is stably free.
Proof. We prove by inducting on n. When $n=1$, we have an exact sequence

$$
0 \longrightarrow F_{1} \longrightarrow F_{0} \xrightarrow{\pi} P \longrightarrow 0
$$

By Corollary 9.4, we have $F_{0} \cong F_{1} \oplus P$. Since F_{0} and F_{1} are free, P is stably free.
When $n>1$, we have

$$
0 \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} K \longrightarrow 0
$$

with $K=\operatorname{ker}(\pi)$, is a finite free resolution. If K is projective, then stably free by induction. Consider the exact sequence

$$
0 \longrightarrow K \longrightarrow F_{0} \longrightarrow P \longrightarrow 0
$$

So $F_{0} \cong K \oplus P$. Since F_{0} is free, so is $K \oplus P$, which implies K is projective, then K is stably free. So there exists F, G free modules such that $F=G \oplus K$, then $F_{0} \oplus G=G \oplus K \oplus P=F \oplus P$. Since F_{0}, F, G are free, P is stably free.

Lemma 12.2. Suppose there are column vectors $v_{1}, \ldots, v_{n} \in R^{n}$, $A=\left[v_{1}, \ldots, v_{n}\right]$ as a matrix. Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for R^{n} if and only if $\operatorname{det}(A)$ is a unit in R.
Proof. (\Rightarrow) Suppose v_{1}, \ldots, v_{n} is a basis for R^{n}. Let e_{1}, \ldots, e_{n} be the standard basis, then

$$
\begin{aligned}
& e_{1}=b_{11} v_{1}+\cdots+b_{n 1} v_{n} \Rightarrow e_{1}=A\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{n 1}
\end{array}\right] \\
& e_{2}=b_{12} v_{1}+\cdots+b_{n 2} v_{n} \Rightarrow e_{2}=A\left[\begin{array}{c}
b_{12} \\
b_{22} \\
\vdots \\
b_{n 2}
\end{array}\right] \\
& \vdots \\
& e_{n}=b_{1 n} v_{1}+\cdots+b_{n n} v_{n} \Rightarrow e_{n}=A\left[\begin{array}{c}
b_{1 n} \\
b_{2 n} \\
\vdots \\
b_{n n}
\end{array}\right]
\end{aligned}
$$

Then $B=\left(b_{i j}\right)=\left[e_{1}, \ldots, e_{n}\right]=A \cdot B$, where $I_{n}=\left[e_{1}, \ldots, e_{n}\right]$. Thus, $1=\operatorname{det}(A) \cdot \operatorname{det}(B)$, which means $\operatorname{det}(A)$ is a unit in R.
(\Leftarrow) Suppose $v_{1}, \ldots, v_{n} \in R^{n}$ and $\operatorname{det}(A)$ is a unit in R, then there exists C such that $I_{n}=A \cdot C$. So $R^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle \subseteq\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Thus, $\left\{v_{1}, \ldots, v_{n}\right\}$ spans R^{n}.

Let $r_{1} v_{1}+\cdots+r_{n} v_{n}=0$, then $A\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$
Since A is nonzero and invertible, $\left[\begin{array}{c}r_{2} \\ \vdots \\ r_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$
Thus, v_{1}, \ldots, v_{n} are linearly independent. Therefore, $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for R^{n}.
Theorem 12.3. Suppose $R^{n}=G \oplus K$, where G is free of $\operatorname{rank}(n-r)$ and $\left\{v_{1}, \ldots, v_{n-r}\right\} \subseteq R^{n}$ is a basis for G. Then K is free of rank r if and only if the columns v_{1}, \ldots, v_{n-r} can be extended to an invertible matrix, in other words, can be extended to a basis of R^{n}.
Proof. (\Rightarrow) Suppose K is free of rank r, then there exists $u_{1}, \ldots, u_{r} \in K$ is a basis for K. Since $R^{n}=G \oplus K,\left\{v_{1}, \ldots, v_{n-r}, u_{1}, \ldots, u_{r}\right\}$ is a basis for R^{n}. By Lemma 12.2, $\operatorname{det}\left(\left[v_{1}, \ldots, v_{n-r}, u_{1}, \ldots, u_{r}\right]\right)$ is a unit. Thus, v_{1}, \ldots, v_{n-r} can be extended to a basis for R^{n}.
(\Leftarrow) Suppose $v_{1}, \ldots, v_{n-r}, w_{1}, \ldots, w_{r}$ are such that $\left[v_{1}, \ldots, v_{n-r}, w_{1}, \ldots, w_{r}\right]$ is invertible, then $\left\{v_{1}, \ldots, v_{n-r}, w_{1}, \ldots, w_{r}\right\}$ is a basis for R^{n}. We write $w_{i}=u_{i}+k_{i}$, where $u_{i} \in G, k_{i} \in K$. Take $k \in K$, then

$$
k=a_{1} v_{1}+\cdots+a_{n-r} v_{n-r}+b_{1}\left(u_{1}+k_{1}\right)+\cdots+b_{r}\left(u_{r}+k_{r}\right) .
$$

So we have $k-\left(b_{1} k_{1}+\cdots+b_{r} k_{r}\right)=a_{1} v_{1}+\cdots+a_{n-r} v_{n-r}+b_{1} u_{1}+\cdots+b_{r} u_{r}$.
Since $G \cap F=0, k-\left(b_{1} k_{1}+\cdots+b_{r} k_{r}\right)=0$. So $k=\left(b_{1} k_{1}+\cdots+b_{r} k_{r}\right)$, then $K=\left\langle k_{1}, \ldots, k_{r}\right\rangle$. Thus, $\left\langle v_{1}, \ldots, v_{n-r}, k_{1}, \ldots, k_{r}\right\rangle=R^{n}$, let $A=\left\{v_{1}, \ldots, v_{n-r}, k_{1}, \ldots, k_{r}\right\}$.

$$
\text { Again, let } e_{1}, \ldots, e_{n} \text { be the standard basis, then }
$$

$$
\begin{aligned}
& e_{1}=A\left[\begin{array}{c}
c_{11} \\
c_{21} \\
\vdots \\
c_{n 1}
\end{array}\right] \\
& e_{2}=A\left[\begin{array}{c}
c_{12} \\
c_{22} \\
\vdots \\
c_{n 2}
\end{array}\right] \\
& \vdots \\
& e_{n}=A\left[\begin{array}{c}
c_{1 n} \\
c_{2 n} \\
\vdots \\
c_{n n}
\end{array}\right]
\end{aligned}
$$

So we have $I_{n}=A \cdot C$. By Lemma 12.2, A is invertible. So the columns are basis for R^{n}, which means k_{1}, \ldots, k_{r} are linearly independent. Thus, $\left\{k_{1}, \ldots, k_{r}\right\}$ is a basis for K.

Lemma 12.4. If P is stably free with rank 1, then P is free.
Proof. Suppose P is stably free with rank 1 , then we can write $R^{n}=R^{n-1} \oplus P$. Let $v_{1}, \ldots, v_{n-1} \in R^{n}$ is a basis for R^{n-1}. We want to show that v_{1}, \ldots, v_{n-1} can be extended to a basis for R^{n}. Let m be any maximal ideal. Since $R^{n}=R^{n-1} \oplus P$, we have

$$
k^{n}=R^{n} /\left(m R^{n}\right)=R^{n-1} /\left(m R^{n-1}\right) \oplus P /(m P),
$$

where $k=R / m$.
We then let $\bar{v}_{1}, \ldots, \bar{v}_{n-1}$ be a basis for $R^{n-1} /\left(m R^{n-1}\right)$ as column vector in k^{n}, then rank $\bar{C}=\left[\bar{v}_{1}, \ldots, \bar{v}_{n-1}\right]$ is $n-1$. So some $(n-1) \times(n-1)$ submatrix of \bar{C} has non-zero determinant, then some $(n-1) \times(n-1)$ submatrix of $\left[v_{1}, \ldots, v_{n-1}\right]$ is not in m.

Let Δ_{i} be the $(n-1) \times(n-1)$ minor obtained by deleting the $i^{\text {th }}$ row of $\left[v_{1}, \ldots, v_{n-1}\right]$. Then we have $I=\left(\Delta_{1}, \ldots, \Delta_{n}\right) R=R$, so there exists $a_{1}, \ldots, a_{n} \in R$, such that

$$
a_{1} \Delta_{1}-a_{2} \Delta_{2}+\cdots+(-1)^{n} a_{n} \Delta_{n}=1
$$

which means $A=\left|\begin{array}{cccc}a_{1} & v_{1} & \cdots & v_{n-1} \\ a_{2} & & & \\ \vdots & \vdots & \vdots & \vdots \\ a_{n} & & & \end{array}\right|$.
Thus, $\operatorname{det}(A)=a_{1} \Delta_{1}-a_{2} \Delta_{2}+\cdots+(-1)^{n} a_{n} \Delta_{n}=1$. So we know that A is invertible. Therefore, v_{1}, \ldots, v_{n-1} can be extended to a basis for R^{n}

13 Main Theorem

Theorem 13.1. Suppose R is a Noetherian ring. If R is a regular local ring, then R is a unique factorization domain.

Before the proof, let us learn some history about the theorem. This theorem is called Auslander-Buchsbaum theorem. And it was first proved by Maurice Auslander and David Buchsbaum in 1959.

Prior to the result, Zariski proved that if every complete regular local ring of dimension 3 is a unique factorization domain, then every complete regular local ring is a unique factorization domain. In addition, Mori and Krull proved that a local ring is a unique factorization domain if it's completion is a unique factorization domain.

In 1958, Nagata proved in [3] that if every regular local ring of dimension 3 is a UFD, then every regular local ring is a UFD. And then in 1959, Auslander and Buchsbaum proved in [4] that every regular local ring of dimension 3 is a UFD.

Proof. Since R is a regular local ring, R is an integral domain. Assume $\operatorname{dim} R=d$, then we can induct on d.

If $d=0, R$ is a field, so is a UFD.
If $d=1$, the maximal ideal $m=\langle a\rangle$ where $a \in R$ is prime. Then every prime ideal contains a principal prime, by Theorem 5.6, R is a UFD.

If $d>1, R$ is Noetherian. Let us take $x \in m \backslash m^{2}$, so x is prime. By Nagata's Lemma, it suffices to show that R_{x} is a UFD. Now, let us choose a height one prime P_{x} in R_{x}. We then want to show P_{x} is principal.

We claim that P_{x} is a stably-free R_{x}-module of rank 1 . Indeed, first take a finite free resolution of P over R

$$
0 \longrightarrow F_{n} \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow P \longrightarrow 0,
$$

then localize the resolution at x to get

$$
0 \longrightarrow\left(F_{n}\right)_{x} \longrightarrow\left(F_{n-1}\right)_{x} \longrightarrow \cdots \longrightarrow\left(F_{1}\right)_{x} \longrightarrow\left(F_{0}\right)_{x} \longrightarrow P_{x} \longrightarrow 0
$$

For the claim, we first want to show P_{x} is projective using Proposition 9.6. Take $Q \subseteq R_{x}$ be prime, then $Q=Q_{x}^{\prime}$ for some prime $Q^{\prime} \subseteq R$ with $x \notin Q^{\prime}$, and $R_{Q^{\prime}}=\left(R_{x}\right)_{Q}$ is a regular local ring by Corollary 11.5.

If $P_{x} \nsubseteq Q$, then $\left(P_{x}\right)_{Q}=\left(R_{x}\right)_{Q}=R_{Q}$ is a free R_{Q}-module, which implies P_{x} is projective.
If $P_{x} \subseteq Q$, then $\left(P_{x}\right)_{Q}=P_{Q} \subseteq R_{Q}$ is a height 1 prime in R_{Q}, where R_{Q} has dimension less than d. By induction on $d,\left(P_{x}\right)_{Q}=P_{Q}$ is principal, i.e. free of rank 1 over R_{Q}, so P_{x} is locally free over R_{x}, which implies P_{x} is projective by Proposition 9.6. Thus, P_{x} is projective and there is a finite free resolution of P_{x}. Since $P \subseteq R$ with $\operatorname{rank}(P)=1$, then by Proposition 12.1, P_{x} is a stably free R_{x}-module of rank 1 .

Therefore, by Lemma 12.4, P_{x} is free of rank 1, which implies P_{x} is principal. So by Theorem 5.6, R_{x} is a UFD. Then by Nagata's Lemma, R is a UFD.

References

[1] Kaplansky, Irving. Commutative Rings. Dillon's Q.M.C. Bookshop, 1968.
[2] Matsumura, Hideyuki. Commutative Ring Theory. 1st pbk. ed., with corrections. ed., Cambridge University Press, 1989.
[3] Nagata, Masayoshi. "A General Theory of Algebraic Geometry Over Dedekind Domains, II: Separably Generated Extensions and Regular Local Rings." American Journal of Mathematics, vol. 80, no. 2, 1958, pp. 382-420.
[4] Auslander, M, and Buchsbaum, D A. "UNIQUE FACTORIZATION IN REGULAR LOCAL RINGS." Proceedings of the National Academy of Sciences of the United States of America, vol. 45, no. 5, 1959, pp. 733-734.
[5] Richard G. Swan. Vector Bundles and Projective Modules. Transactions of the American Mathematical Society, vol. 105, no. 2, 1962, pp. 264-277.

