
Unique Factorization Domains in Commutative Algebra

Yongjian Huang

Advisor: Prof. Daniel Katz

University of Kansas

May 20, 2021

1 Introduction

In this project, we learn about unique factorization domains in commutative algebra. Most
importantly, we explore the relation between unique factorization domains and regular local
rings, and prove the main theorem: If R is a regular local ring, so is a unique factorization
domain.

2 Prime ideals

Before learning the section about unique factorization domains, we first need to know
about definition and theorems about prime ideals.

Definition 2.1. In a commutative ring R, the ideal I is prime if ab ∈ I implies a ∈ I or
b ∈ I. Alternatively, I is prime if R/I is an integral domain.

The following theorem tells us another way to define prime ideals.

Theorem 2.1. Let S be a multiplicatively closed set in a ring R and let I be an ideal in R
maximal with respect to the exclusion of S. Then I is prime.

Proof. Given ab ∈ I , we want to show a ∈ I or b ∈ I . We give a proof by contradiction,
suppose a /∈ I and b /∈ I, then the ideal (I, a) generated by I and a is strictly larger than I.
So the ideal (I, a) intersects S. Thus, there exists an element s ∈ S of the form s1 = i1 +xa,
where i1 ∈ I and x ∈ R. Similarly, we have s2 = i2 + yb, where i2 ∈ I and y ∈ R.

s1 · s2 = (i1 + xa)(i2 + yb)

= i1i2 + i1yb+ i2xa+ xyab

Thus, s1s2 ∈ I. However, S is multiplicatively closed set, then s1s2 ∈ S, which is a contra-
diction. Therefore, a ∈ I or b ∈ I, which implies I is prime.
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Definition 2.2. The set S is saturated if x ∈ S with s1 · s2 = x and both s1, s2 ∈ S.

Theorem 2.2. The following are equivalent:
(1) S is a saturated multiplicatively closed set;
(2) The complement of S is a set theoretic union of prime ideals in R.

Proof. Assume (2) holds. Proof by contradiction. Suppose s1 ·s2 ∈ S and s1 or s2 ∈ I, where
I =

⋃
Ii and Ii are prime ideals. Since Ii are the complement of S, I is the complement

of S. Without loss of generality, suppose s1 ∈ I, then s1 · s2 ∈ I, which is a contradiction.
Assume s1,s2 ∈ S and s1 · s2 6∈ S, then s1 · s2 ∈ I, so s1 or s2 ∈ I, which is a contradiction.

Assume (1) holds. We can take x in the complement of S. Then the principal ideal (x)
is disjoint from S, since S is saturated. Then using the Zorn’s Lemma, we can expand (x)
to an ideal I maximal with respect to the disjointness from S. Then by Theorem 2.1, I is
prime. Thus, every x not in S has been inserted in a prime ideal disjoint from S. Therefore,
(2) holds.

Prime elements and irreducible elements are very important concepts we need to learn
for unique factorization domains.

Definition 2.3. p ∈ R is called prime if p 6= 0, p is not a unit in R, and p|ab implies p|a or
p|b. An ideal generated by a prime element p, denoted by (p), is called principal prime.

Definition 2.4. p ∈ R is called irreducible if p 6= 0, p is not a unit in R, and p = ab implies
a is a unit or b is a unit.

Then we can find the relation between principal prime elements and irreducible elements
in a integral domain.

Lemma 2.3. In an integral domain R with unity, a principal prime element p is an irre-
ducible element.

Proof. Let p be a principal prime element is R, then (p) is a prime ideal in R. Assume p is
not an irreducible element. Let p = ab, then neither a nor b is a unit in R. Moreover, ab = p
implies ab ∈ (p). Since (p) is a prime ideal, we have either a ∈ (p) or b ∈ (p). Without
loss of generality, suppose a ∈ (p), then a = pm for some m ∈ R, so we have p = (pm) · b,
which implies mb = 1, since p is nonzero in an integral domain R. Thus, b is a unit, which
contradicts the assumption. Therefore, p is an irreducible element.

Theorem 2.4. If an element in an integral domain is expressible as a product p1p2...pn of
principal primes, then that expression is unique, up to a permutation of p′s, and multiplica-
tion of them by unit factors.

Proof. We prove by inducting on the number n of principal prime factors of an element a.
When n = 1, we let a = p, where p is a principal prime. Assume a = xy, where x and y are
not units, but this assumption contradicts Lemma 2.3, so either x or y is a unit. Without
loss of generality, assume x is a unit. Then we have (1/x)a = y, then p is a principal prime,
since the product of a unit (1/x) and a principal prime a is a principal prime. Thus the case
for n = 1 holds.
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Suppose the theorem is true for all a that can be expressed as a product of n−1 principal
primes. Let a = p1p2 · · · pn−1pn = q1q2 · · · qk, where pi and qj are principal primes. Then qk
divides some pi. Without loss of generality, assume qk divides pn, which implies pn = uqk,
since pn and qk are irreducible. So we have

a/pn = p1p2 · · · pn−1 = q1q2 · · · qk−1((1/u)),

hence,
a = p1p2 · · · pn−1pn = q1q2 · · · qk−1((1/u)pn).

Since a/pn is the product of n−1 principal primes, by the induction hypothesis n−1 = k−1.
Therefore, n = k and pi, qi differ by unit factors.

Theorem 2.5. Let R be an integral domain. Let S be the set of all elements in R expressible
as a product of principal primes. Then S is a saturated multiplicatively closed set.

Proof. It is clearly that S is a multiplicatively closed set. Then we need to show that for
all ab ∈ S, a ∈ S and b ∈ S. Suppose ab = p1p2...pn, a product of principal primes, then p1
must divide a or b. Say a = p1a1. Then a1b = p2p3...pn. By induction on n, we have that
both a1 and b are in S, and hence a, b ∈ S.

3 Localization

Let S be a multiplicatively closed set in R. Let A be an R-module. Define AS to be
the set of equivalent classes of pairs (a, s) with a ∈ A, s ∈ S, the equivalent relation being
(a, s) ∼ (a1, s1) if there exists s2 ∈ S, such that s2(s1a− sa1) = 0.

We can make AS into an abelian group by (a, s)+(a1, s1) = (s1a+sa1, ss1), and then into
an R-module by x(a, s) = (xa, s). The notation for the equivalence class of (a, s) denoted as

a/s or
a

s
. We assume S is saturated and 1 ∈ S.

There is a natural ring homomorphism from R to RS.

IS ⊂ RS consists of all i/s with i ∈ I, s ∈ S. The ideal I ′′explodes′′ to RS (i.e. IS = RS)
if and only if I contains an element in S, and I collapses to 0 if every element of I is anni-
hilated by some element of S.

Given an ideal J ⊂ RS, there is a well-defined complete inverse image I in R, it consists
of all x with x/1 ∈ J .

If we go from J to I and then back to IS, we find IS = J . If we start with I ⊂ R, pass
to IS, and then return to an ideal of R, we generally get a larger ideal.

Theorem 3.1. The mappings described above implement a one-to-one order-preserving cor-
respondence between all the prime ideals in RS and those prime ideals in R disjoint from
S.
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We note that the maximal ideals in RS are the maximal primes disjoint from S.

Theorem 3.2. The mappings described above implement a one-to-one order-preserving cor-
respondence between all the prime ideals in RP and all the prime ideals in R contained in P.
Thus RP is a local ring with maximal ideal PP .

We then define short exact sequences.

Definition 3.1.

0 // A
f // B

g // C // 0

is called a short exact sequence if im(f) = ker(g) and f is one-to-one and g is onto.

When we localize each R-module on a short exact sequence with a multiplicatively closed
set S, we still get a short exact sequence of RS-modules, as the following theorem:

Theorem 3.3. If

0 // A
f // B

g // C // 0

is an short exact sequence of R-modules, then

0 // AS
fs // BS

gs // CS // 0

is an short exact sequence of RS-modules.

Proof. Define fs as fs(a/s) = f(a)/s. Let fs(a/s) = 0/1, which implies f(a)/s = 0/1, so
there exists s′ ∈ S such that s′f(a) = 0, which means f(s′a) = 0. Then s′a = 0 implies
a/1 = 0 in AS. Thus, fs is one-to-one.

We claim that im(fs) = ker(gs). Indeed, firstly let fs(a/s) = 0. Since a/s ∈ AS,
fs(a/s) = f(a)/s, then gs(f(a)/s) = g(f(a))/s = 0/s = 0. Thus, im(fs) ⊆ ker(gs). Next,
suppose b/s ∈ ker(gs), then gs(b/s) = 0/1 in CS, which implies g(b)/s = 0 in CS. So there
exists s0 ∈ S such that s0g(b) = 0, which implies g(s0b) = 0. Thus, s0b ∈ ker(g) = im(f).
So s0b = f(a), a ∈ A, then b = f(a)/s0 in BS. So b/s = f(a)/ss0 = fs(a/ss0) ∈ im(fs).
Thus, ker(gs) ⊆ im(fs). Therefore, im(fs) = ker(gs).

Since g is onto, for all c ∈ C, there exists b ∈ B such that g(b) = c. So g(b)/s = c/s for
0 6= s ∈ S. Then by definition, gs(b/s) = c/s, where b/s ∈ BS, c/s ∈ CS. Thus, gs is onto.
Therefore,

0 // AS
fs // BS

gs // CS // 0

is an short exact sequence of RS-modules.

4 Noetherian Rings

Definition 4.1. A commutative ring R is Noetherian if it satisfies one of the followings:
(1) Every ideal in R is finitely generated;
(2) The ideals in R satisfy the ascending chain condition (ACC);
(3) If X is nonempty and is a collection of ideals, X has a maximal element, not need to

be ideal.
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Theorem 4.1 (Hilbert basis Theorem). If R is Noetherian, then R[x] is also Noetherian.

Proof. Suppose R is Noetherian. Let I be an ideal of R[x], to prove R[x] is Noetherian, we
need to show that I is finitely generated. We want to prove by contradiction, then suppose
there exists an ideal I in R[x] which is not finitely generated. We set I0 = (0). Let f1 ∈ I
be a polynomial in I of least degree and I1 = (f1). Let f2 be a polynomial of least degree in
I\(f1) and I2 = (f1, f2). Repeating the process, we let fm be a polynomial of lease degree
in I\(f1, . . . , fm−1) and Im = (f1, . . . , fm). By this setting, we have

(1)deg(f1) ≤ deg(f2) ≤ deg(f3) ≤ · · ·
(2)I1 ⊆ I2 ⊆ I3 ⊆ · · ·
Next, we let am be the leading coefficient of fm and Jm = (a1, . . . , am), so we get a chain

of ideals J1 ⊆ J2 ⊆ J3 ⊆ · · · . Since this is a chain of ideals in R and R is Noetherian, there
exists n ∈ N such that Jn = Jn+1 = Jn+2 = · · · . Thus, an+1, which is the leading coefficient
of fn+1, is in Jn, so we can write an+1 =

∑b
i=1 riai for some ri ∈ R. We then let

f = fn+1 −
n∑
i=1

ri(x
deg(fn+1)−deg(fi))fi,

so deg(f) < deg(fn+1) and f ∈ In+1. Since fn+1 is a polynomial of least degree in I\(f1, ..., fn),
we have f ∈ In. Moreover, because

fn+1 = f +
n∑
i=1

ri(x
deg(fn+1)−deg(fi))fi,

we then have fn+1 ∈ In, which is a contradiction by the setting of fn+1. Thus, every I in
R[x] is finitely generated, which implies R[x] is Noetherian.

Corollary 4.2. Let n be a positive integer. If R is a Noetherian ring, then the polynomial
ring R[x1, ..., xn] is also a Noetherian ring.

Proof. By iterating Hilbert basis Theorem.

Then we want to prove the Krull Intersection Theorem. Before the proof, we need to
define Jacobson radical.

Definition 4.2. J(R) = {x ∈ R : ∀y ∈ R, 1 + xy ∈ U(R)} is called the Jacobson radical of
R, where U(R) is the group of units of R.

Theorem 4.3 (The Krull Intersection Theorem). Let R be a commutative Noetherian ring,
and let I = a1R+ · · ·+ anR be an ideal of R. If an element b of R belongs to

⋂∞
k=1 I

k, then
b is an element of bI.

In particular, if a1, . . . , an ∈ J(R), or if R is an integral domain, then b = 0 and therefore,⋂∞
k=1 I

k = 0.
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Proof. For each k ≥ 1, b belongs to Ik, there exists a homogeneous polynomial Pk(x1, . . . , xn)
of degree k such that b = Pk(a1, . . . , an). In the Noetherian ring S = R[x1, . . . , xn], we
consider the ascending chain of ideals defined by

Jk = P1S + · · ·+ PkS.

If we fix an integer m such that Jm = Jm+1, then we can write Pm+1 = QmP1 + · · ·+Q1Pm,
where Qi(x1, . . . , xn) is homogeneous of degree i. Substituting x1 = a1, . . . , xn = an, we
obtain

b = b(Q1(a1, . . . , an) + · · ·+Qm(a1, . . . , an). (1)

Now for i = 1, . . . ,m, the polynomial Qi is homogeneous of positive degree, so Qi(a1, . . . , an)
is in the ideal (I). From this, it follows that b lies in bI.

In the particular case, with I is contained in J(R), (1) leads to (1 − λ)b = 0, with
λ ∈ I ⊆ J(R). By the definition of J(R), 1− λ is a unit, so b = 0.

Suppose R is an integral domain. Since b lies in bI, then b = bi with i ∈ I, so we have
b(1− i) = 0. Since 1− i 6= 0 and R is an integral domain, b = 0. Therefore,

⋂∞
k=1 I

k = 0

Theorem 4.4 (Nakayama’s Lemma). Let R be a commutative ring, let M be a finitely
generated left R-module, and assume that J(R)M = M , where J(R) is the Jacobson of R.
Then M=0.

Proof. Let m1, . . . ,mr be a minimal generating set of M . Then we assume that r > 0 and
want to reach a contradiction. Since J(R)M = M , we have m1 = j1m1 + · · · + jrmr for
j1, ..., jr ∈ J , which is (1 − j1)m1 = j2m2 + · · · + jrmr. Since (1 − j1) is invertible, this
enables us to express m1 in terms of the remaining m′s. However, m1, . . . ,mr is the minimal
generating set, so this is a contradiction. Thus, mi = 0, which implies M = 0.

5 Unique Factorization Domains

Now, we are ready to learn about unique factorization domains. This section includes
important theorems and examples about unique factorization domains.

Definition 5.1. Suppose R is a commutative ring with unity 1R, a, b ∈ R are associates if
there exits u which is a unit of R such that a = u · b.

After know the definition about two elements being associates, we can give the definition
of unique factorization domains.

Definition 5.2. An integral domain R is called a unique factorization domain (or UFD) if
it satisfies the following two conditions:

(1) For all a ∈ R with a 6= 0 and a is not unit, we can write a = p1p2...pn, where n ∈ Z>0,
and each pi is irreducible in R.

(2) If a = p1p2...pn = q1q2...qm with each qi is irreducible in R, then n = m, and after
possible rearrangement, pi and qi are associates for all i.

Theorem 5.1. Suppose R is a UFD. p ∈ R is irreducible if and only if p is prime.
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Proof. (⇐) Suppose p ∈ R is prime and p = a · b, so p | ab, then by definition p | a or p | b.
Without loss of generality, assume p | a, so ∃ c ∈ R such that a = p·c. Then p = a·b = p·c·b,
which implies p(1− c · b) = 0. Since R is a UFD, then is an integral domain, so (1− c · b) = 0,
since p 6= 0 by definition. Thus, c · b = 1, which implies b is a unit. So p ∈ R is irreducible.

(⇒) Suppose p ∈ R is irreducible and p | ab, then ∃ c ∈ R such that a · b = p · c. Since R
is a UFD, we can express a = a1 · · · an, b = b1 · · · bm, c = c1 · · · ck with ui is unit and ai, bj, cl
are irreducible, with 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ k. Thus,

p · c1 · c2 · · · ck = a1 · a2 · · · an · b1 · · · bm.

Then by the uniqueness of product of irreducibles, we get n+m = k. Thus, p is an associate
of ai for some i or bj for some j. If p is an associate of ai, then p|a, or if p is an associate of
bj, then p|b. Therefore, p ∈ R is prime.

Corollary 5.2. Let R be an integral domain. R is a UFD if and only if every non-zero and
non-unit element in R is a product of prime elements.

Proof. (⇒) Follows from Definition 5.2 and Theorem 5.1.
(⇐) Suppose an element a ∈ R is a product of prime elements, say a = p1p2 · · · pn, where

pi is prime. Since R is an integral domain, by the proof of Theorem 5.1, each pi is irreducible.
Next, we want to show that if b1, . . . , bn, c1, . . . , cm are prime elements in R such that

b1 · · · bn = c1 · · · cm,

then n = m and after rearrangement, we have bi and ci are associates.
We prove by inducting on n. If n = 1, then we have b1 = c1 · · · cm. Since b1 is irreducible,

m = 1, so b1 = c1. Assume the uniqueness property holds for some n and then we have

b1 · · · bn · bn+1 = c1 · · · cm,

so bn+1 | (c1 · · · cm). Since bi is a prime element for 1 ≤ i ≤ n + 1, it follows that bn+1 | cj
for 1 ≤ j ≤ m, say bn+1 | cm. Then there exists some a ∈ R such that cm = abn+1. Since
cm, bn+1 are irreducible, a must be a unit. So bn+1 and cm are associates. Then we obtain
that

b1 · · · bn · bn+1 = c1 · · · cm−1 · abn+1.

Since R is an integral domain, we get

b1 · · · bn = c1 · · · cm−1 · a.

Since cm−1 is irreducible and a is a unit, the product cm−1a is an irreducible element. There-
fore, by the inductive assumption, n = m− 1 and after rearrangement, we have bi and ci are
associates. So R is a UFD.

Theorem 5.3. If R is a Noetherian integral domain, then R satisfies UFD 1.

Proof. Suppose R is a Noetherian integral domain and a non-zero and non-unit element a
in R can not be written as a product of finitely many irreducibles, then a is not irreducible.
So a = a1 · b1, where a1, b1 are not units and at least one of a1 or b1 can not be written
as a product of finitely many irreducibles. Without loss of generality, assume that it is
a1, then a1 = a2 · b2. We can continue the same process. In this way, we get the chain
〈a〉 ( 〈a1〉 ( 〈a2〉 ( · · · , which contradicting ACC condition. Thus, R satisfies UFD 1.
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The first example of unique factorization domain we want to show is GCD domains and
LCM domains as the following proposition:

Proposition 5.4. Suppose R be a UFD. Then R is also a GCD domain and an LCM
domain, i.e., every pair of non-zero, non-unit elements in R has a greatest common divisor
and a least common multiple.

Proof. Suppose R is a UFD and non-zero, non-unit elements a, b ∈ R, then we can write

a = pa11 p
a2
2 · · · pann

and
b = pb11 p

b2
2 · · · pbnn

where pi is irreducible and prime in R and ai, bi ≥ 0.
Let ci =min{ai, bi}, consider

c = pc11 p
c2
2 · · · pcnn

then c | a and c | b, so c is a common divisor of a and b. Let d | a and d | b where d ∈ R. If
d is a unit, d | c, so gcd(a, b)=c. If d is not a unit, we can write

d = pd11 p
d2
2 · · · pdnn

then d | a for di ≤ ai ∀i and d | b for di ≤ bi ∀i. Also di ≤min{ai, bi} =⇒ di ≤ ci =⇒ d | c.
Thus, gcd(a, b)=c.

Similarly, let ei=max{a,bi}, consider

e = pe11 p
e2
2 · · · penn

then a | e and b | e, so e is a common multiple of a and b. Let a | f and b | f where f ∈ R.
If f is a unit, e | f , so lcm(a, b)=e. If f is not a unit, we can write

f = pf11 p
f2
2 · · · pfnn

then a | f for fi ≥ ai ∀i and b | f for fi ≥ bi ∀i. Also fi ≥max{ai, bi} =⇒ fi ≥ ei =⇒ e | f .
Thus, lcm(a, b)=e. Therefore, R is also a GCD domain and LCM domain.

However, the following proposition shows that a GCD domain is not necessary to be a
UFD.

Proposition 5.5. Suppose A = Z +XQ[X], then A is a GCD domain, but not a UFD.

Proof. Since 〈X〉 ( 〈X
2
〉 ( 〈X

4
〉 ( · · · is an ascending chain of principal ideals that does not

terminate, A does not satisfy the ascending condition on principal ideals, so A is not a UFD.
To see that A is a GCD domain, let f, g ∈ A be non-zero, non-unit elements. We will

use the fact that f and g have a GCD in Q[X] and that GCDs in Q[X] are unique only up
to units.

We write f = nf0 and g = mg0, where n,m ∈ Z are such that both f0 and g0 have
constant terms equal to 1. Let d0 ∈ Q[X] be the GCD of f0 and g0 so that d0 also has
constant term equal to 1. In Q[X] we have equations f0 = d0 ·u and g0 = d0 · v. Then u and
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v must have constant term equal to 1, and so belong to A. In other words, d0 is a common
divisor of f0 and g0 in A.

Suppose h | f0 and h | g0 for some h ∈ A. Since the constant term of h is an integer, it
must be ±1. Since h is also a common divisor of f0 and g0 in Q[X], h divides d0 in Q[X],
say d0 = h · q, for q ∈ Q[X]. Since the constant term of h is ±1, it follows that the constant
term of q is ±1, so q ∈ A. In other words, d0 is a GCD of f0 and g0 in A.

Suppose z ∈ Z is the GCD of n and m, since d0 is a GCD of f0 and g0 in A, and f = nf0
and g = mg0, then z · d0 is a GCD of f and g in A. Thus, A is a GCD domain.

Theorem 5.6. An integral domain is a UFD if and only if every non-zero prime ideal in R
contains a principal prime.

Proof. (⇒) Assume R is a UFD and P a non-zero prime ideal in R. Unless P is a field,
P will contain an element a that is neither 0 or a unit. When a is written as a product of
principal primes, a = p1p2...pr, one of the factors pi must be contained in P .

(⇐)Assume that every non-zero prime ideal in R contains a principal prime. As in
Theorem 2.5, denote by S, the set of all products of principal primes. It is to show that S
contains every element in R that is neither 0 nor a unit. We want to prove by contradiction.
Suppose c is an element of R that is not 0, not a unit, and not in S. Since S is saturated,
the principal ideal (c) is disjoint from S. Again, using the Zorn’s Lemma, we can expand
(c) to a prime ideal P disjoint from S, by Theorem 2.1 and Theorem 2.2. By hypothesis, P
contains a principal prime in S, which is a contradiction. Thus, R is a UFD.

Corollary 5.7. Suppose S is multiplicatively closed in a UFD R, then RS is a UFD.

Proof. Suppose R is a UFD and Q ⊆ RS is prime, then Q = PS where P ⊆ R is prime. So
there exists a prime element p ∈ P , such that p/1 ∈ RS is prime. Thus, p/1 ∈ Q. Then we
can conclude that Q contains a principal prime. By theorem 5.6, RS is a UFD.

Theorem 5.8 (Nagata’s Lemma). Let R be an integral domain, P := {pi}i∈I be a collection
of prime elements, and let S be the multiplicatively closed set generated by the pi. Assume
that no element in R is divisible by infinitely many p ∈ P (e.g., R satisfies ACC on principal
ideals) and RS is a UFD, then R is a UFD.

Proof. By Theorem 5.6, it suffices to show every prime ideal contains a principal prime.
Suppose RS is a UFD. Let P ⊆ R be a prime ideal. If P ∩ S 6= ∅, then ∃s ∈ P , such that
s = p1 · · · pr. Since P is prime, some pi ∈ P . If P ∩ S = ∅, then PS ⊆ RS is a prime ideal,
so ∃ p/s ∈ RS is a principal prime in PS with p ∈ P . Take p ∈ P such that p/1 ∈ PS.
Since no element in R is divisible by infinitely many p ∈ P , we write p = p0 · p1 · · · pt,
where p1 · · · pt ∈ S and p0 is not divisible by a prime in S. Then p0 /∈ S. So we have
p/1 ·RS = p0/1 ·RS.

We claim that p0 is prime. Indeed, suppose p0 | ab, then ∃ c such that p0c = ab and so
p0
1
· c
1

= a
1
· b
1

in RS =⇒ p0
1
| a

1
or p0

1
| b

1
in RS. Without loss of generality, assume p0

1
| a

1

in RS, then there exists s ∈ S and r ∈ R such that sa = p0r. Since s ∈ S, we can write
s = q1 · · · qk. Then we have q1 · · · qk · a = p0 · r, which implies q1 | p0r. So by the choice of
p0, we have q1 | r. Thus, we get q2 · · · qk · a = p0r

′, where r′ ∈ R. By induction, we have
a = p0r0, where r0 ∈ R, so p0 | a. Thus, p0 is prime. Then p ∈ P is a principal prime.
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So we have every prime ideal in R contains a principal prime, thus by Theorem 5.6, R is a
UFD.

Definition 5.3. An ideal I of a commutative ring R with identity 1R is principal if I = 〈a〉
for some a ∈ R, i.e.

I = {ra : r ∈ R}.

An integral domain R is a principal ideal domain (PID) if all the ideals of R are principal.

Theorem 5.9. Every PID is a UFD.

Proof. Let R be a PID and take P be prime in R. Then p ∈ P is principal, so P contains a
principal prime. Thus, by Theorem 5.6, R is a UFD.

Theorem 5.10. R is a UFD if and only if R[X] is a UFD.

Proof. (⇒) Suppose R is a UFD, S is the set of all products of primes, and K is the field
of fractions. Then RS[X] = (R[X])S = K[X]. Since K[X] is a PID, then it is a UFD. So
RS[X] is a UFD. Thus, by Nagata’s Lemma, R[X] is a UFD.

(⇐) Suppose R[X] is a UFD. Let a be a non-zero, non-unit element in R, so also in R[X],
then by Corollary 5.2, a has a factorization

a = p1 · · · pn
where pi is a prime element in R[X]. And we have deg(a) =deg(p1) + · · ·+deg(pn) = 0,
which implies each pi is in R and is prime. Again by Corollary 5.2, R is a UFD.

We would like to show more examples of unique factorization domains as following:

Proposition 5.11. Suppose X1, Y1, . . . , Xn, Yn are indeterminates over R. If R is a UFD
and n ≥ 3, then

R[X1, Y1, . . . , Xn, Yn]/(X1Y1 + · · ·+XnYn)

is also a UFD.

Proof. The proof will require a couple of claims. Let

A := R[X1, Y1, . . . , Xn, Yn]/(X1Y1 + · · ·+XnYn).

First we want to show that A is an integral domain when n ≥ 2. We claim that if A
′

is
a commutative ring, x in A

′
is a non-zerodivisor, and A

′
x is an integral domain, then A

′
is

an integral domain.
We first prove the claim. Suppose u · v = 0 in A

′
, then we get u

1
· v
1

= 0 in A
′
x. Since A

′
x

is an integral domain, u
1

= 0 or v
1

= 0. Without loss of generality, assume u
1

= 0 = 0
1
, then

there exists xn such that xn(1 ·u−0 ·1) = 0, which is xn ·u = 0. Since x is a non-zerodivisor,
x(xn−1 · u) = 0 implies xn−1 · u = 0. Then by induction, u = 0. Thus, A

′
is an integral

domain.
We want to apply the claim to A, so we need to show that X1 is a non-zerodivisor in A

and show AX1 is an integral domain.
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To see X1 is a non-zerodivisor in A. Suppose X1f = 0 in A, then

X1f = g(X1Y1 + · · ·+XnYn),

for some g in R[X1, Y1, . . . , Xn, Yn]. Thus, X1(f−gY1) = g(X2Y2+· · ·+XnYn). Since X1 does
not divide X2Y2 + · · ·+XnYn, it divides g. Therefore, f is a multiple of X1Y1 + · · ·+XnYn,
so f = 0 in A.

To show AX1 is an integral domain, our second claim is that if A
′

be a commutative ring,
and W1, . . . ,Wn are indeterminates over A

′
and consider F = uW1 + a2W2 + · · · + anWn,

where u is a unit in A
′
, and a2, . . . , an are arbitrary elements in A

′
. Then

A
′
[W1, . . . ,Wn]/(F ) ∼= A

′
[W2, . . . ,Wn].

The proof of the claim: we first define

φ : A
′
[W1, . . . ,Wr]→ A

′
[W2, . . . ,Wr]

by sending W1 to (−va2W2 − · · · − vanWn), where v = u−1 and Wi to Wi, for i ≥ 2 and
extending it to all polynomial in W1, . . . ,Wn. Then φ is a surjective ring homomorphism,
and F is in the kernel of φ.

To see that F generates the kernel of φ, let H belong to the kernel of φ, and write H as
a polynomial in W1 with coefficients in A

′
[W2, . . . ,Wn]. We induct on the degree of W1 in

H. If it equals zero, then H has to be zero, since φ takes H to H in this case. Suppose the
degree of W1 in H is greater than zero. Since F is a monic polynomial in W1, we can use
the division algorithm and write H = FG + R, where the W1-degree of R is less than the
W1-degree of H. Since R = H − FG, R is in the kernel of φ. By induction, R is a multiple
of F , and thus H is a multiple of F , so we complete the proof of the claim.

We then apply the second claim to show AX1 is an integral domain by taking

A
′
= R[X−11 , X1, X2, . . . , Xn],

and u = X−11 , ai = Xi,W1 = Y1, . . . ,Wn = Yn, and F = X1Y1 + · · ·+XnYn.
Thus, by the first claim above, we get A is an integral domain when n ≥ 2.
Now we can give the proof of the Theorem. We have A/(X1) = R[Y1]/(X2Y2+· · ·+XnYn).

Since n ≥ 3, A/(X1) is an integral domain by the second claim above. Therefore, X1 is a
prime element in A. On the other hand, AX1 is a polynomial ring over R, with one of the
variables inverted, so then AX1 is a UFD by Theorem 5.10 and Corollary 5.7. Therefore, A
is a UFD by Nagata’s Lemma.

The next examples consider the UFD property of coordinate rings over the complex and
real numbers.

Proposition 5.12. Suppose X, Y are indeterminates over C and set

A2 = C[X, Y ]/(X2 + Y 2 − 1),

then A2 is a UFD.
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Proof. Since C[X, Y ] = C[X + iY,X − iY ] and X2 + Y 2 − 1 = (X + iY )(X − iY )− 1. We
can set U = X + iY and V = X − iY , then A2 = C[U, V ]/(UV − 1), which is C[U ]S with
S = {1, U, U2, . . .}. We know that C[U ] is a UFD, then by Corollary 5.7, the ring A2 is a
UFD.

We would have a different conclusion if we change the field from C to R.

Proposition 5.13. Suppose X, Y are indeterminates over R and set

B2 = R[X, Y ]/(X2 + Y 2 − 1),

then B2 is not a UFD.

Proof. To see that B2 is not a UFD, we show that the image of X in B2 is an irreducible
element that is not a prime element.

Since B2/XB2 is isomorphic to R[Y ]/(Y 2−1), which is not an integral domain, the image
of X in B2 is not a prime element.

Next, suppose we could factor X ≡ f · g in B2 with f, g ∈ R[X, Y ]. Thus in R[X, Y ],
we can write X = f · g + h · (X2 + Y 2 − 1). Write f and g as a sum of their homogeneous
components, i.e., f = f0 + · · · + fn and g = g0 + · · · + gm, where each fi is a homogeneous
polynomial degree i and each gj is a homogeneous polynomial degree j. Then suppose fn
were divisible by X2 + Y 2, so fn = (X2 + Y 2) · f ′n−2. If we set

f
′
= f0 + · · ·+ (fn−2 + f

′

n−2 + fn−1),

then it follows that f ≡ f
′
in B2. Similarly, we may reduce g if gm were divisible by X2 +Y 2.

In other words, without loss of generality, we may write X ≡ f · g in B2 so that when we
express f and g as a sum of their homogeneous components as above, X2+Y 2 divides neither
fn nor gm.

We claim that under this additional assumption, n+m ≤ 1. Indeed, suppose n+m ≥ 2.
From the equation X ≡ f · g+h · (X2 +Y 2− 1), we obtain 0 = fn · gm +hn+m−2 · (X2 +Y 2).
But then this implies X2 + Y 2 divides either fn or gm, which is a contradiction. Thus, we
have n + m ≤ 1. So we get either n = 0 or m = 0,i.e., either f or g is a unit in R[X, Y ].
Therefore, the image of f or g in B2 is a unit in B2, which implies that the image of X in
B2 is irreducible.

From Proposition 5.11 to Proposition 5.13, we notice that the UFD property is a subtle
one. To have a deeper view on that, we consider the following proposition:

Proposition 5.14. If X, Y, Z are indeterminates over C, then for

A3 = C[X, Y, Z]/(X2 + Y 2 + Z2 − 1) and B3 = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1)

A3 is not a UFD and B3 is a UFD.

Sketch of Proof. Since

X2 + Y 2 + Z2 − 1 = (X + iY )(X − iY ) + (Z − 1)(Z + 1),

12



we have (X + iY )(X − iY ) + (Z − 1)(Z + 1) = 0 in A3.
And so (X + iY )(X − iY ) = (1− Z)(Z + 1). Since each expression is irreducible in A3,

there are two different factorizations in A3, which means A3 is not a UFD.

The example B3 is a coordinate ring of the real 2-sphere, which is a UFD. We are giving
a sketch of the proof and this sketch is based upon a proof given in [5].

Let R denote the real numbers, and upper case X, Y, Z, U, V,W, T denote indeterminates
over R and lower case x, y, z, u, v, w, t denote homomorphic images of the variables. So,
we start with the polynomial ring R[X, Y, Z] and mod out the principal ideal generated
by X2 + y2 + Z2 − 1, to get the ring B3, which we want to show is a UFD. Taking T an
indeterminate over B3, it is enough to show B3[T ] is a UFD by Theorem 5.10, and then by
Nagata’s Lemma, it is enough to show that B3[T, T

−1] is a UFD.
Now let S denote the ring R[U, V,W, T ]/(U2 + V 2 + W 2 − T 2). Note that t in S is a

prime element, since S/(t) is isomorphic to R[U, V,W ]/(U2 +V 2 +W 2), an integral domain.
If we show S is a UFD, then S[t−1] is a UFD. However, this latter ring is isomorphic to
B3[T, T

−1] by the map from R[U, V,W, T, T−1] that takes U to xT , V to yT , W to zT , T to
T in B3[T, T

−1].
Thus, it remains to see S is a UFD. However, S = R[U, V, C,D]/(U2+V 2−CD) by setting

C = T −W and D = T + W . Note that S/(c) is isomorphic to R[U, V ]/(U2 + V 2), so c is
prime in S. By the second claim on the proof of Proposition 5.11, S[c−1] = R[U, V, C, C−1],
which is a UFD. Thus, by Nagata’s Lemma, S is a UFD, and the sketch of the proof is
complete.

6 Complexes and Homology

The goal of this section is to prove the theorem: a short exact sequence of chain complexes
implies a long exact sequence on homology. We should first learn about chain complexes
and cochain complexes.

Definition 6.1. (1) A chain complex is a collection C of R-modules and R-module maps

C : · · · // Cn+1
dn+1 // Cn

dn // Cn−1 // · · ·

satisfying dn ◦ dn+1 = 0, for all n. The dn are called “boundary maps” or “differentials”.

(1′) A cochain complex is a collection C ′ of R-module and R-module maps

C ′ : · · · // C ′n−1
δn // C ′n

δn+1 // C ′n+1
// · · ·

satisfying δn+1 ◦ δn = 0, for all n.

(2) Let C be a chain complex. For each n we define Zn(C) := ker(dn), Bn(C) := im(dn+1)
and Hn(C) := Zn(C)/Bn(C). These modules are, respectively, the module of “n-cycles”,
the module of “n-boundaries” and the nth “homology” module associated to C. Note that
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Bn(C) ⊆ Zn(C), since dn ◦ dn+1 = 0.

(2′) Let C ′ be a cochain complex. We define Zn(C ′) := ker(δn+1), B
n(C ′) := im(δn)

and Hn(C ′) := Zn(C ′)/Bn(C ′) for each n. These modules are, respectively, the module of
“n-cocycles”, the module of “n-coboundaries” and the nth “cohomology” module associated
to C ′. Note that Bn(C ′) ⊆ Zn(C ′), since δn+1 ◦ δn = 0.

(3) A chain map f : C → D between chain complexes C and D is a collection of homo-
morphisms fn : Cn → Dn such that the diagram

· · · // Cn+1

fn+1

��

dn+1 // Cn

fn
��

dn // Cn−1

fn−1

��

// · · ·

· · · // Dn+1 δn+1

// Dn δn
// Dn−1 // · · ·

commutes for all n. It follows that fn(Zn(C)) ⊆ Zn(D) and fn(Bn(C)) ⊆ Bn(D), So we
obtain induced maps on homology f∗ : Hn(C)→ Hn(D).

(3′) A cochain map between cochain complexes is defined analogously and induces maps
on cohomology. If f : C ′ → D′ is a cochain map, we denote the induced map on cohomology
by f ∗ : Hn(C ′)→ Hn(D′).

(4) A sequence A f // B g // C of chain complexes and chain maps is said to be exact, if

for each n, the sequence An
fn // Bn

gn // Cn is exact. A short exact sequence of complexes

is an exact sequence of complexes 0 // A f // B g // C // 0.
Thus, a short exact sequence of complexes is a commutative diagram

0

��

0

��

0

��
· · · // An+1

fn+1

��

// An

fn
��

// An−1

fn−1

��

// · · ·

· · · // Bn+1

gn+1

��

// Bn

gn

��

// Bn−1

gn−1

��

// · · ·

· · · // Cn+1

��

// Cn

��

// Cn−1

��

// · · ·

0 0 0

To prove the theorem of this section, we need the Snake Lemma.
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Lemma 6.1 (Snake Lemma). Consider the commutative diagram with exact rows

C ′

f

��

i′ // D′

g

��

π′ // E ′

h
��

// 0

0 // C
i
// D π

// E.

Then we have an exact sequence

ker(f) // ker(g) // ker(h) ∂ // coker(f) // coker(g) // coker(h).

Theorem 6.2. Let 0 // C f // D g // E // 0 be a short exact sequence of chain com-
plexes. Then we have a long exact sequence on homology

· · · // Hn+1(E)
∂n+1 // Hn(C) f∗ // Hn(D)

g∗ // Hn(E)
∂n // Hn−1(C) // · · · .

Proof. Consider the following snake diagram

Cn/Bn(C)
dC
��

// Dn/Bn(D)

dD
��

// En/Bn(E)

dE
��

// 0

0 // Zn−1(C) // Zn−1(D) // Zn−1(E).

The horizontal maps are derived from the chain maps f and g, and the vertical maps are
given by d(xn + Bn) = dxn. The kernel of a vertical map is {xn + Bn : xn ∈ Zn} = Hn, the
cokernel is Zn−1/Bn−1 = Hn−1. The diagram is commutative by the definition of a chain
map. But in order to apply the Snake Lemma, we must verify that the rows are exact, and
this involves another application of the snake lemma.

Then consider the diagram

0 // Cn

c

��

fn // Dn

d
��

gn // En

e

��

// 0

0 // Cn−1 fn−1

// Dn−1 gn−1

// En−1 // 0

where the horizontal maps are again derived from f and g. Since 0 // C f // D g // E // 0
is a short exact sequence, each row of the second diagram is exact, then by Snake Lemma,
we have an exact sequence

ker(c) // ker(d) // ker(e) ∂ // coker(c) // coker(d) // coker(e).

Now let us denote

A′ = ker(c), B′ = ker(d), C ′ = ker(e), D′ = coker(c), E ′ = coker(d), F ′ = coker(e).
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Then we have the diagram

A′

��

// B′

��

// C ′

��
0 // Cn

c

��

fn // Dn

d
��

gn // En

e

��

// 0

0 // Cn−1

��

fn−1

// Dn−1

��

gn−1

// En−1

��

// 0

D′ // E ′ // F ′

We claim that the first and forth sequences are exact. Indeed. We denote induced maps
by an overbar. Let x ∈ A′ = ker(c) and y = fnx = fnx, then gny = gnfnx = 0, so
y ∈ ker(gn). On the other hand, if y ∈ B′ ⊆ Dn and gny = gny = 0, then y = fnx for
some x ∈ Cn. Thus 0 = dy = dfnx = fn−1cx, and since fn−1 is injective, cx = 0. Therefore
y = fnx with x ∈ A′, and y ∈ im(fn). So A′ → B′ → C ′ is exact.

Next, let x ∈ Cn−1, then gn−1(fn−1x+ im(d)) = gn−1fn−1x+ im(e) = 0 by the exactness
of the sequence 0 → Cn−1 → Dn−1 → En−1 → 0, so im(fn−1) ⊆ ker(gn−1). Conversely, if
y ∈ Dn−1 and gn−1(y + im(d)) = gn−1y + im(e) = 0, then gn−1y = ez for some z ∈ En.
Since gn is surjective, z = gnx for some x ∈ Dn. So we have gn−1y = ez = egnx = gn−1dx,
so y − dx ∈ ker(gn−1) = im(fn−1). Let y − dx = fn−1w with w ∈ Cn−1. Therefore,
y + im(d) = fn−1(w + im(c)) and y + im(d) ∈ im(fn−1). So D′ → E ′ → F ′ is exact.

Moreover, we know that if fn is injective, so is the map induced by fn and if fn−1 is
surjective, so is the map induced by fn−1. Then we can show each row of the first snake
diagram is exact by shifting indices from n to n ± 1. Then by the Snake Lemma, it yields
the exact sequence

Hn(C) f∗ // Hn(D)
g∗ // Hn(E)

∂n // Hn−1(C)
f∗ // Hn−1(D)

g∗ // Hn−1(E).

Doing this for each n, we can get a long exact sequence on homology

· · · // Hn+1(E)
∂n+1 // Hn(C) f∗ // Hn(D)

g∗ // Hn(E)
∂n // Hn−1(C) // · · · .

By Theorem 6.2, we know that every short exact sequence of chain complexes implies a
long exact sequence on homology. Here, we show that a long exact sequence on homology
arising from mapping cone.

Definition 6.2. The mapping cone C.(f) of a morphism of chain complexes f : A → B is
the complex C.(f) given by C(f)n = An−1 ⊕Bn and differential ∂ : C(f)n → C(f)n−1, with

∂ =

(
d 0

(−1)n−1f δ

)
where d : An → An−1 and δ : Bn → Bn−1 are maps in the complexes, and fn−1d = δfn.
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With the definition above, we can show that the differential ∂ is complex as following:
Since

∂

(
An−1
Bn

)
=

(
d 0

(−1)n−1f δ

)(
An−1
Bn

)
=

(
dAn−1

(−1)n−1f(An−1) + δ(Bn)

)
,

then

∂2
(
An−1
Bn

)
=

(
d 0

(−1)n−1f δ

)(
dAn−1

(−1)n−1f(An−1) + δ(Bn)

)
=

(
0

(−1)n−2f(d(An−1)) + (−1)n−1δf(An−1)

)
=

(
0

0

)
.

We have a short sequence of complexes of the form

0→ B → C.(f)→ A[−1]→ 0

where A[−1] means A[−1]n = An−1. The injection map B → C.(f) and the projection map
C.(f)→ A[−1] are given by the direct summands.

Then by Theorem 6.2, we get a long exact sequence

· · · → Hn+1(A[−1])→ Hn(B)→ Hn(C.(f))→ Hn(A[−1])→ Hn−1(B)→ · · ·

where Hn(A[−1]) = Hn−1(A). Then we can rewrite the long exact sequence on homology
as:

· · · → Hn(A)→ Hn(B)→ Hn(C.(f))→ Hn−1(A)→ Hn−1(B)→ · · ·

7 Regular Sequences and Koszul Complex

Definition 7.1. An element a in R-module A is called a zero divisor on A, if there exists a
nonzero element x in R such that rx = xr = 0. We write the zero divisors on A as Z(A).

Definition 7.2. Let R be any commutative ring, A be any R-module. The (ordered sequence
of) elements x1, . . . , xn of R is said to be an regular sequence or an R-sequence on A if

(1) (x1, . . . , xn)A 6= A
(2) For i = 1, . . . , n, xi 6∈ Z(A/(x1, . . . , xi−1)A).

Part (b) of the definition says that x1 is not a zero-divisor on A, x2 is not a zero-divisor
on A/x1A,. . . , xn is not a zero-divisor on A/(x1, . . . , xn−1)A. Moreover, the case A = R is
of special importance. We then simply say that the sequence x1, . . . , xn is an R-sequence.

Theorem 7.1. Let x, y ∈ R be an regular sequence on the R, then x /∈ Z(R/(y)).
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Proof. Since x, y is a regular sequence on R, x /∈ Z(R) and y /∈ Z(R/(x)). We suppose
t′ ∈ R/(y) and xt′ = 0 and want to show t′ = 0. Pick any t in R mapping on t′, then
xt ∈ yR, say xt = yu. Since y /∈ Z(R/(x)), u ∈ xR, say u = xu′ =⇒ xt = xyu′. Since
x /∈ Z(R), we can cancel x in the equation xt = xyu′ to get t = yu′ ∈ yR. So t′ = 0, which
means x /∈ Z(R/(y)).

Note that in general, if x, y, z is a regular sequence on R, z, y, x need not be a regular
sequence on R. However, the statement holds in a local ring.

Definition 7.3. (R,m) is called a local ring if R is Noetherian and m is unique maximal
ideal, that is m is all non-units in R.

Lemma 7.2. Let (R,m) be a local ring. If x, y is regular on R, then y, x is regular on R.

Proof. From Theorem 7.1, we know that x /∈ Z(R/(x)). Then we want to show y /∈ Z(R).
Suppose ya = 0 in R, want to show a = 0. Then ya ≡ 0 in R/(x), which implies a ≡ 0
mod xR. Thus, a ∈ xR, say a = xa0, we have y(xa0) = 0, which is x(ya0) = 0. Since
x /∈ Z(R), we get ya0 = 0. We can repeat to get a0 = xa1, then a = xa0 = x2a1, and so
on. Thus inductively, for all n, there exists an−1 such that a = xnan−1 ∈ xnR, then by Krull
Intersection Theorem, a ∈

⋂
n≥1 a

nR = 0. Therefore, y, x is regular on R.

Next, we want to introduce associated primes of R-module M and show Ass(M) is finite.

Definition 7.4. Let R be Noetherian, A be a finitely generated R-module and P be prime.
P is called an associated prime if P = (0 :R a) = {r ∈ R | ra = 0} = AnnR(a), for some
non-zero a ∈ A. We say P ∈ Ass(A) if and only if P = (0 :R a) for some a ∈ R-module A.

Proposition 7.3. Suppose R is Noetherian and A is a R-module. Then any zero divisor on
A is contained in an associated prime.

Proof. Suppose r ∈ R is a zero divisor on A, then ∃ a 6= 0 such that ra = 0, which means
r ∈ (0 :R a). Let C = {(0 : ta) | t ∈ R}. Since R is Noetherian, let P = (0 : t0a) be a maximal
element in C. If P is prime, it is an associated prime and r ∈ (0 : a) ⊆ (0 : t0a) = P . If not,
suppose x, y ∈ R, xy ∈ P . If x /∈ P , i.e. xt0a 6= 0, then (0 : xt0a) 6= R, then P ⊆ (0 : xt0a).
However, since P is maximal, P = (0, xt0a), so y ∈ P , whcih means P is prime. Therefore,
r ∈ P .

Lemma 7.4. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0

where M ′ is a submodule of M and M ′′ = M/M ′, we have

Ass(M) ⊆ Ass(M ′) ∪ Ass(M ′′).

Proof. Suppose P ∈ Ass(M) and let P = AnnR(x) for some nonzero x ∈M . If x ∈M ′, then
P ∈ Ass(M ′). Otherwise, the image x of x inM ′′ is nonzero and it is clear that P ⊆ AnnR(x).
If this is an equality, then P ∈ Ass(M ′′). So assume there is a ∈ AnnR(x)\P . In this case,
ax ∈M ′\{0}, and the fact that P is prime implies the inclusion AnnR(x) ⊆ AnnR(ax) is an
equality. Thus, P ∈ Ass(M ′).
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Proposition 7.5. Suppose R is a Noetherian ring, M is a finitely generated R-module, then
the following hold:

(1) The set Ass(M) is finite.
(2) If M 6= 0, then Ass(M) is non-empty.
(3) The set of zero divisors of M equals to⋃

P∈Ass(M)

P

.

Proof. Let us consider the set P consisting of the ideals of R of the form AnnR(x) for some
x ∈M\{0}. Since R is Noetherian, there is a maximal element P ∈ P . We want to show P
is a prime ideal so that P ∈ Ass(M).

By assumption, let P = AnnR(x) for some x ∈ M\{0}. Since x 6= 0, we have P 6= R.
Suppose b ∈ R\P , then bx 6= 0 and we have AnnR(x) ⊆ AnnR(bx). By the maximality of
P , we conclude that this is an equality, so for every a ∈ R such that ab ∈ P , we have a ∈ P .
Thus, Ass(M) is non-empty. Moreover, we now know if M is nonzero, then we can find
x ∈M\{0} such that AnnR(x) = P1 is a prime ideal.

The map R → M with a → ax induces, thus we have an injection R/P → M , so then
we have a short exact sequence

0→M1 →M →M/M1 → 0,

where M1
∼= R/p1. Since P1 is a prime ideal in R, we have Ass(R/P1) = {P1}, and Lemma

7.4 implies
Ass(M) ⊆ Ass(M/M1) ∪ {P1},

then it suffices to show Ass(M/M1) is finite.
If M1 6= 0, we can repeat this argument and find M1 ⊆ M2 such that M2/M1

∼= R/P2

for some prime ideal P2 in R. Since M is finitely generated as a Noetherian module, this
process must terminate. So after finitely many steps, we conclude that Ass(M) is finite. By
definition, for every P ∈ Ass(M), the ideal P is contained in the set of zero divisors of M .

On the other hand, if a ∈ R is a zero divisor, then a ∈ I for some I ∈ P . If we choose a
maximal P in P that contains I, then we have P ∈ Ass(M). So a lies in the union of the
associated primes of M . Thus, the set of zero divisors of M equals to⋃

P∈Ass(M)

P

Then we can give a definition of Koszul complex.

Definition 7.5. Given a ring R and x1, . . . , xn ∈ R, we define a complex K. as follows: set
K0 = R and Kp = 0 if p is not in the range 0 ≤ p ≤ n.

We write for standard basis, using the symbols: ei1∧ei2∧· · ·∧eip , for 1 ≤ i1 < . . . < ip ≤ n.
For 1 ≤ p ≤ n, we let Kp = ⊕Rei1∧ei2∧···∧eip be the free R-module of rank

(
n
p

)
with basis

ei1 ∧ ei2 ∧ · · · ∧ eip .
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The differential fp : Kp → Kp−1 is defined by setting

fp(ei1 ∧ ei2 ∧ · · · ∧ eip) =

p∑
j=1

(−1)j−1xijei1 ∧ ei2 ∧ · · · ∧ eij ∧ · · · ∧ eip

where the superscript eij means the term is omitted and for p = 1, set fp(ei) = xi. This
complex is called the Koszul complex, written as K.(x1, . . . , xn) or K.(x).

To show fp is indeed complex, we let

fp ◦ fp+1(ei1 ∧ ei2 ∧ · · · ∧ eip+1)

=fp(

p+1∑
j=1

(−1)j−1xijei1 ∧ ei2 ∧ · · · ∧ eij ∧ · · · ∧ eip+1)

=

p+1∑
j=1

(−1)j−1xijfp(ei1 ∧ ei2 ∧ · · · ∧ eij ∧ · · · ∧ eip+1)

=

p+1∑
j=1

(−1)j−1xij(

j−1∑
k=1

(−1)k−1xikei1 ∧ · · · ∧ eik ∧ · · · ∧ eij ∧ · · · ∧ eip+1

+

p+1∑
k=j+1

(−1)kxikei1 ∧ · · · ∧ eij ∧ · · · ∧ eik ∧ · · · ∧ eip+1)

=

p+1∑
j=1

j−1∑
k=1

(−1)k+j−2xijxikei1 ∧ · · · ∧ eik ∧ · · · ∧ eij ∧ · · · ∧ eip+1

+

p+1∑
j=1

p+1∑
k=j+1

(−1)k+j−1xijxikei1 ∧ · · · ∧ eij ∧ · · · ∧ eik ∧ · · · ∧ eip+1

Without loss of generality, assume 1 ≤ k0 < j0 ≤ p+ 1, then we have

(−1)k0+j0−2xij0xik0ei1 ∧ · · · ∧ eik0 ∧ · · · ∧ eij0 ∧ · · · ∧ eip+1

+(−1)k0+j0−1xij0xik0ei1 ∧ · · · ∧ eik0 ∧ · · · ∧ eij0 ∧ · · · ∧ eip+1 = 0,

then by induction, we have fp ◦ fp+1 = 0.

Suppose we have the Koszul complex

0→ Kn → · · · → Kp → Kp−1 → · · · → K1 → K0 → 0

then Kp ∼= R(n
p), where a commutative ring R and elements x1, x2, . . . , xn in R with the

canonical basis (ei1 , ei2 , . . . , ein) ∈ Rn.

For example, when n = 3, we have x1, x2, x3 in R. Then K1 has the basis {e1, e2, e3}, K2

has the basis


e1 ∧ e2
e1 ∧ e3
e2 ∧ e3

, and K3 has the basis {e1 ∧ e2 ∧ e3}. In fact, for the basis of K2, we

can have e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 on different rows to get different basis. So
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f1(e1) = x1, f1(e2) = x2, f1(e3) = x3 =⇒ A = (x1 x2 x3).

f2(e1 ∧ e2) = x1e2 − x2e1 =⇒

−x2x1
0


f2(e1 ∧ e3) = x1e3 − x3e1 =⇒

−x30
x1


f2(e2 ∧ e3) = x2e3 − x3e2 =⇒

 0
−x3
x2


Thus the matrix we have is B=

−x2 −x3 0
x1 0 −x3
0 x1 x2

.

f3(e1 ∧ e2 ∧ e3) = x1e2 ∧ e3−x2e1 ∧ e3 +x3e1 ∧ e2 =

 x3
−x2
x1

. Then we have the diagram:

0 // R

��


x3
−x2
x1


// R3

��

B // R3

��

A // R

��

// 0

0 // K3 f3
// K2 f2

// K1 f1
// K0

// 0

Since f1f2 = (x1 x2 x3)

−x2 −x3 0
x1 0 −x3
0 x1 x2

=(0 0 0)

and f2f3 =

−x2 −x3 0
x1 0 −x3
0 x1 x2

 x3
−x2
x1

 =

0
0
0

. Thus, this sequence is complex.

Theorem 7.6. Let K.(x1, . . . , xn) be Koszul complex on a regular sequence x1, . . . , xn, then
K.(x1, . . . , xn) is isomorphic to mapping cone of

f : K.(x1, . . . , xn−1)
·xn // K.(x1, . . . , xn−1)

Proof. By definition of cone, we have C(f)n = Kn−1(x1, . . . , xn−1) ⊕Kn(x1, . . . , xn−1). On
one hand,

∂C(f)(0, e1 ∧ · · · ∧ en−1) = fe1 ∧ · · · ∧ en−1 − ∂K.(x1,...,xn−1)(e1 ∧ · · · ∧ en−1)
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On the other hand,

∂K.(x1,...,xn)(0, e1 ∧ · · · ∧ en−1)

=
n−1∑
i=0

(−1)ixie0 ∧ · · · ∧ ei ∧ · · · ∧ en−1

=fe1 ∧ · · · ∧ en−1 +
n−1∑
i=1

(−1)ixie0 ∧ · · · ∧ ei ∧ · · · ∧ en−1

=fe1 ∧ · · · ∧ en−1 − e0(
n−1∑
i=1

(−1)i+1xie1 ∧ · · · ∧ ei ∧ · · · ∧ en−1)

which is the image of the result of the previous computation.

With a long exact sequence on homology arising from mapping cone and Theorem 7.6,
we want to show that the Koszul complex on a regular sequence is acyclic. Before showing
the theorem, we need to know the definition of acyclic.

Definition 7.6. A chain complex M of the form

M : 0→Mn → · · · →Mp →Mp−1 → · · · →M1 →M0 → 0

is called acyclic if Hi(M) = 0 for each i 6= 0. In other words, M is acyclic if and only if it
is exact everywhere except possibly at M0.

Theorem 7.7. Suppose x1, x2, . . . , xn in a ring R is a regular sequence, then the Koszul
complex on this regular sequence is acyclic.

Proof. Suppose in a ring R, x1, . . . , xn is a regular sequence. We use induction on n. When
n = 1, then we have x1 ∈ R be regular, so we have the map

f : K. ·x1 // K.

and the Koszul complex is

0→ K1
·x1 // K0 → 0

Since x1 is regular, the kernel of K1 is 0, which implies the Koszul complex is exact at K1,
but not at K0.

When n > 1, assume the theorem holds for the case n−1. Suppose x1, . . . , xn is a regular
sequence in R, let x = x1, x2, . . . , xn−1 and x

′
= x1, . . . , xn, then we have the map

f : K.(x)
·xn // K.(x)

So by Theorem 7.6, K.(x′) ∼= C.(f). Thus, we have a long exact sequence on homology for
K.(x′) and K.(x):

· · · → Hi(K.(x))
·xn // Hi(K.(x))→ Hi(K.(x

′
))→ Hi−1(K.(x))

·xn // Hi−1(K.(x))→ · · ·

By the assumption the theorem is true for the case n−1, we get Hi(K.) = 0 for 0 < i ≤ n−1.
And so in the long exact sequence above, we get Hi(K.) = 0 for 0 < i ≤ n by the exactness.
Thus, Koszul complex on a regular sequence is acyclic.
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By Theorem 7.7, we know that if the Koszul complex is acyclic, then

· · · → K2 → K1 → R/I → 0

gives a free resolution of R/I, and we will talk about free resolution on section 9.

8 Height and Dimension

Definition 8.1. In commutative algebra, the Krull dimension of a commutative ring R is
the supremum of the lengths of all chains of prime ideals.

Definition 8.2. The dimension of a ring R, denoted by dimR, is the maximum length n of
a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime ideals of R.

Definition 8.3. The notion of height is defined for proper ideals in a commutative Noethe-
rian ring R. The height of a proper prime ideal P , denoted by ht(P ), of R is the maximum
of the lengths n of the chains of prime ideals contained in P , i.e., P0 ⊂ P1 ⊂ · · · ⊂ Pn = P .
The height of any proper ideal I, denoted by ht(I), is the minimum of the heights of the
prime ideals containing I.

To prove Kull’s Principal Ideal Theorem, we need to define Artinian rings and state a
theorem about the relation between Artinian and Noetherian.

Definition 8.4. An Artinian ring A is a ring that satisfies the descending chain condition
on ideals.

Theorem 8.1. Suppose (A,m) is Quasi-local, A is Artinian if and only if A is Noetherian
and dimA = 0.

Theorem 8.2 (Krull’s Principal Ideal Theorem). Suppose R is a Noetherian ring, 0 6= a ∈ R
and a is not a unit. If P is a minimal prime over aR, then ht(P ) ≤ 1.

Proof. Consider localize R at P , RP is a local ring, then ht(P ) =ht(PS), where S = R\P .
We can assume (R,P ) is local.

If ht(P ) = 0, then we are done.
If ht(P ) = 1, then we are done.
Suppose ht(P ) ≥ 2 and we want to find a contradiction. Assume there is Q0 ⊂ Q1 ⊂ P , a

chain of prime ideals with aR ⊆ P . Then we can mod out Q0 to get the chain 0 ⊂ Q1 ⊂ P ,
which means ht(P ) ≥ 2. So we can assume R is an integral domain and have the chain of
prime ideals 0 ⊂ Q ⊂ P with aR ⊆ P , and P is the only prime containing a.

Define Q(n) = {r ∈ R|s · r ∈ Qn, for some s /∈ Q}. Since R/aR has just one prime
P/aR, dim(R/aR) = 0 and R/aR is Noetherian. Then by Theorem 8.1, R/aR is Artinian.
Therefore it follows that

· · · ⊆ Q(n+1) + aR

aR
⊆ Q(n) + aR

aR
⊆ · · · ,
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then there exists s such that
Q(s+1) + aR

aR
=
Q(s) + aR

aR
, so Q(s+1) + aR = Q(s) + aR, which

means Q(s) ⊆ Q(s+1) + aR.
Let x ∈ Q(s), y ∈ Q(s+1), then x = y+a·r, for r ∈ R. So x−y = a·r, where (x−y) ∈ Q(s).

There exists t /∈ Q with t(x− y) ∈ Qs and a /∈ Q, so r ∈ Q(s). We have

x ∈ Q(s+1) + a ·Q(s)

⇒Q(s) ⊆ Q(s+1) + a ·Q(s)

⇒Q(s) = Q(s+1) + a ·Q(s)

⇒ Q(s)

Q(s+1)
=
Q(s+1) + a ·Q(s)

Q(s+1)
= a · ( Q(s)

Q(s+1)
)

⇒ Q(s)

Q(s+1)
= 0 (Nakayama’s Lemma)

⇒Q(s) = Q(s+1)

Then we want to find a contradiction. To see this, let x ∈ Q(s), then ∃ t /∈ Q such that
t · x ∈ Qs. Let x0 ∈ Qs such that t · x = x0, so we have x = x0/t in RQ, which implies
Q(s) ⊂ Qs ·RQ. Then Q(s+1) ·RQ = Qs+1 ·RQ, so ∀ n ≥ s, Qn ·RQ = Qs ·RQ, which implies
that

⋂
(Qn · RQ) = Qs · RQ 6= 0. However, by the Kull’s intersection theorem, in this local

ring (R,Q),
⋂
n≥1Q

n = 0. Thus, Q = 0, which is a contradiction. Therefore, ht(P ) ≤ 1.

9 Projective Modules, Projective Resolutions and Pro-

jective Dimension

Definition 9.1. An R-module P is projective if for every R-linear map f : P → N and
every surjective R-linear map g : M → N , there is a unique R-linear map h : P → M such
that f = g ◦ h, i.e. the following diagram commutes:

P

M N

f
h
g

Proposition 9.1. Suppose R-module P is a projective module, then there exists an R-module
Q such that P ⊕Q is a free R-module, which also means P is the direct summand of a free
R-module.

Proof. Suppose P is a projective module and choose a surjection π : F → P , where F is a
free R-module. By the definition of a projective module, there is a map i : P → F satisfying
π◦i = idP . So we have F = ker(π)⊕i(P ). We name Q = ker(π) and we have i(P ) = P , then
we can conclude that there exists an R-module Q such that P ⊕Q is a free R-module.

We need to note that if M ′ is a submodule of M , then we have a short exact sequence

0→M ′ →M →M/M ′ → 0
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Moreover, up to an isomorphism, every short exact sequence is of the form:

0 // N

∼=
��

f //M

=

��

g // K

∼=
��

// 0

0 // ker(g) //M //M/ker(g) // 0

Proposition 9.2. Let R be a ring and let

0 // N
f //M

g // K // 0

be a short exact sequence of R-modules. The following conditions are equivalent:
(1)There exists a homomorphism h : K →M such that g ◦ h = idK.
(2)There exists a homomorphism k : M → N such that k ◦ f = idN .
If either condition holds, we say that the short exact sequence splits.

Proof. (1) ⇒ (2) Let h : K → M such that g ◦ h = idK , then define a homomorphism
φ : M →M by φ = idM − h ◦ g. We can think of φ as a projection onto N , in that φ maps
M into the submodule N and it is the identity on N .

We claim that φ is a projection. Indeed, we have g ◦ φ = g − g ◦ h ◦ g = g − idK ◦ g = 0.
Thus, by the universal property of the kernel, φ factors through the kernel f : N → M ,
which means there is a unique map k : M → N such that f ◦ k = φ, i.e. the image of φ is
contained in the image of f .

In addition, since g ◦ f = 0, f ◦ k ◦ f = φ ◦ f = f − h ◦ g ◦ f = f . Thus, for all n ∈ N ,
f(n) = f(k(f(n))). Since f is injective, n = k(f(n)), which means k ◦ f = idN .

(2)⇒ (1) Similarly, let k : M → N such that k ◦ f = idN , then define a homomorphism
ψ : M →M by ψ = idM − f ◦ k. So ψ ◦ f = f − f ◦ k ◦ f = f − f ◦ idN = 0, then ψ is also
a projection. Thus, by the universal property of the kernel, ψ factors through the kernel
g : M → K, which means there is a unique map h : K →M such that h ◦ g = ψ.

Since g◦f = 0, g◦h◦g = g◦ψ = g−g◦f◦k = g. Thus, for all m ∈M , g(m) = g(h(g(m))).
Since g is surjective, for all k ∈ K, there exists m ∈ M such that g(m) = k. Thus, we have
k = g(h(k)), which means g ◦ h = idK .

As a result of Proposition 9.2, suppose a short exact sequence 0 → N → M → K → 0
splits, we have M ∼= N ⊕K.

The following theorem tells us the relation between projective modules and short split
exact sequences, and we are going to use the result of Proposition 9.2 for the proof of the
theorem.

Theorem 9.3. Let R be a ring with identity and let P be an R-module. P is a projective
module if and only if every short exact sequence 0→ N →M → P → 0 splits.

Proof. (⇒) Let f denote the map from M to P in the given exact sequence. Since P is
projective, there exists h : P →M such that f ◦ h : P → P is the identity. This shows that
h is injective and im(h) ∩ ker(f) = 0. Also, every m in M can be written as

m = h(f(m)) + (m− h(f(m))) ∈ im(h) + ker(f)
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so M = im(h)⊕ ker(f) ∼= P ⊕N .
(⇐) Suppose every short exact sequence 0→ N →M → P → 0 splits. We claim that if

P is a R-module, then there exists a projective module M such that M → P → 0. Indeed,
let S be a set of generators of P . Let FS be the free module generated by elements es for s
in S. Then FS is projective and f : FS → P given by

f(
∑

rses) =
∑

rss

is surjective. Name M = FS, so such a projective module Q exists. Let N be the kernel of
the projection M → P → 0. Then the hypothesis implies that M ∼= P ⊕N . Moreover, the
diagram

P

M L 0

can be extended to a diagram

P ⊕N

M L 0

so N maps trivially to L. Since M ∼= P ⊕N is projective by the claim, there exists a map
h′ : P ⊕N →M making the diagram commutative. Now put h to be the restriction of h′ to
P . Thus, P is projective.

Corollary 9.4. If R is a ring with identity, P is a projective R-module and f : M → P is
a surjective map of R-modules, then M ∼= P ⊕ ker(f).

Proof. Suppose P is projective. We have a short exact sequence

0 // ker(f) //M
f // P // 0

which splits by Theorem 9.3. So M ∼= P ⊕ ker(f).

Proposition 9.5. Suppose (R,m) is local, P is finitely generated and projective, then P is
free.

Proof. Suppose P is a finitely generated R-module, then let {p1, . . . , pn} be a minimal system
of generators of P . Then define a surjective map ψ : Rn → P by (x1, . . . , xn) →

∑n
i=1 xipi,

where xi ∈ Rn. Since P is projective, by Corollary 9.4, we get Rn ∼= P ⊕ ker(ψ). Let
ker(ψ) = O, we have Rn ∼= P ⊕O.

Then we want to show O = 0. We first multiply m to Rn ∼= P ⊕ O, then we get
mRn ∼= mP ⊕mO. We can mod out Rn ∼= P ⊕O by mRn ∼= mP ⊕mO to get

Rn/mRn ∼= P/mP ⊕O/mO

Moreover, P/mP,O/mO are vector spaces over the field R/m and the dimension of P is n,
so by comparing the dimension, we get O/mO = 0. Then by Nakayama’s Lemma, we get
O = 0. Thus, P ∼= Rn, which means P is free.
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Proposition 9.6. Suppose R is a Noetherian ring and P is a finitely generated R-module.
P is a projective R-module if and only if PQ is a free RQ-module for all primes ideals Q ⊆ R.

Proof. Suppose P is projective, then PQ is projective over the local ring RQ and so is free
by Proposition 9.5.

For the converse, we use the fact that when R is Noetherian, and M,N are finitely
generated R-modules, then HomR(M,N)S ∼= HomRS

(MS, NS) for all multiplicatively closed
sets S. Take a short exact sequence

0 // K // F π // P // 0

of R-modules, with F finitely generated and free. Since R is Noetherian, K is also finitely
generated. We have an induced exact sequence

0 // HomR(P,K) // HomR(P, F ) π∗ // HomR(P, P )

If we show that π∗ is surjective, then there exists h ∈ Hom(P, F ) such that π∗(h) = idP .
This means h ◦ π = idP , so the sequence splits, and therefore P is a summand of F , by
Proposition 9.2. Thus, P is projective.

To see that π∗ is surjective, it suffices to show that (π∗)Q is surjective for all prime ideals
Q. Then we take Q a prime ideal in R. By hypothesis, PQ is projective, so the sequence

0 // KQ
// FQ

π // PQ // 0

splits. Thus,

0 // HomRQ
(PQ, KQ) // HomRQ

(PQ, FQ)
π∗Q // HomRQ

(PQ, PQ) // 0

is exact. Therefore,

0 // HomR(P,K)Q // HomR(P, F )Q
π∗Q // HomR(P, P )Q // 0

is exact. Thus, π∗Q is surjective.

Let R be a Noetherian local ring with maximal ideal m, then we will give the definition
of projective resolution and projective dimension.

Definition 9.2. Given an R-module M , an exact sequence

F : · · · // Fn
φn // · · · // F2

φ2 // F1
φ1 // F0

π //M // 0

is called a projective resolution if all of the Fi are projective.

Definition 9.3. Suppose M has a finite projective resolution, the minimal length among all
finite projective resolutions of M is called its projective dimension and denoted pdR(M). If
M does not admit a finite projective resolution, then by convention the projective dimension
is said to be infinite.
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To prove the following proposition, we need to know the definition of free resolutions,
and then minimal free resolution.

Definition 9.4. A free resolution of a R-module M is a complex

F : · · · // Fi // Fi−1 // · · · // F1
// F0

//M // 0

with trivial homology such that coker(F1 → F0
∼= M) and such Fi is a free R-module.

Definition 9.5. A complex

F : · · · // Fi //// Fi−1 // · · ·

over a local ring (R,m) is minimal if im(Fi → Fi−1) ⊂ (mFi−1).

In addition, to prove the following proposition we need the fact that if two out of three
modules in a short exact sequence have finite projective dimension, the third does as well.

Proposition 9.7. Let R be local with maximal ideal m, and let x be a non-zero-divisor in
R that is not contained in m2. Write R = R/(x). Let A be a finitely generated R-module
annihilated by x (thereby an R-module). If pdR(A) <∞, then pdR(A) <∞.

Proof. Let
0 // K∗ // F ∗ // A // 0

be the start of a minimal free resolution of A over R. Since F ∗ = F/xF , for an appropriate
free R-module F , pdR(F ∗) = 1, and in particular, it is finite. Since pdR(A) is finite, this
forces pdR(K∗) to be finite, since if two out of three modules in a short exact sequence have
finite projective dimension, the third does as well. By induction of projective dimension over
R, K∗ has finite projective dimension over R. Thus, A has finite projective dimension over
R, by the reasoning just employed. So, this reduces the problem to the case that pdR(A) = 1.

So if pdR(A) = 1, we take a minimal free resolution

0 // K // F // A // 0

over R, where K and F are free R-modules, and the column vectors in F generating K have
entries in m. Note that if we invert(localize) x, then Ax = 0, which means Kx = Fx, and
this implies that K and F are free R-modules of the same rank.

Assume F = Rn. We take v1, . . . , vn in F that form a basis for K. Since the resolution
is minimal, the entries of the vi are in m. Let e1, . . . , en denote the standard basis for Rn.
Then since x annihilates A, each xei is in K. Thus, we can write xe1 = r1v1 + · · · + rnvn
for all ri ∈ R. Now some ri is not in m, otherwise, x is in m2, contrary to the assumption.
Without loss of generality, let r1 be a unit. Then we can write v1 in terms of xe1, v2, . . . , vn,
so that xe1, v2, . . . , vn generate K, and hence for a basis for K.

Now write xe2 = s1(xe1)+s2v2 + · · ·+snvn, where si ∈ R. Then since x is not in m2, one
of s2, . . . , sn must not be in m. Also note that we do not need to consider s1. Then without
loss of generality, let s2 be a unit. This will give that xe1, xe2, v3, . . . , vn generate K.
Continuing on this process, we end up with xe1, . . . , xen is a basis for K, and

A = F/K = F/(xF ),

showing that A is free over R. Thus, pdR(A) <∞.
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10 Tensor product, Tor and Torsion

Definition 10.1. Let M , N and L be R-modules.
1. A function f : M ×N → L is said to be bilinear if it satisfies the following conditions:

(a) f(m1 +m2, n) = f(m1, n) + f(m2, n), ∀ m1,m2 ∈M and n ∈ N .
(b) f(m,n1 + n2) = f(m,n1) + f(m,n2), ∀ m ∈M and n1, n2 ∈ N .
(c) r · f(m,n) = f(rm, n) = f(m, rn), ∀ m ∈M and n ∈ N .

2. We say that a tensor product for M and N is an R-module P together with a bilinear
function h : M ×N → P satisfying the following condition:

Given an R-module L and a bilinear function f : M × N → L, there exists unique
R-module homomorphism φ : P → L such that φ ◦ h = f . In other words, any diagram

M ×N P

L

h

f
φ

with f bilinear, can be completed with a unique R-module map φ : P → L.

Proposition 10.1. Let M and N be R-modules. Then the tensor product of M and N exists
and is unique (up to isomorphism).

Proof. Let F denote the free-module on the set {(m,n)}(m,n)∈M×N . Let K denote the sub-
module of F generated by all expressions of the form:

(1) (m1 +m2, n)− (m1, n)− (m2, n)
(2) (m,n1 + n2)− (m,n1)− (m,n2)
(3) r · (m,n)− (rm, n)
(4) r · (m,n)− (m, rn)

We set P := F/K and let h : M ×N → P be the function taking (m,n) to (m,n) + K,
for all (m,n) ∈ M × N . In other words, h is just the inclusion of the basis for F into F
followed by the canonical projection onto the quotient F/K. The function h is bilinear, by
definition. Let L be any R-module and f : M ×N → L any bilinear function. Since F is a
free module, we can define a map ψ : F → L by sending each basis element (m,n) ∈ F to
f((m,n)) and extending linearly to all of F .

Since f is bilinear, K ⊆ ker(ψ). Thus, we obtain an induced map ψ : F/K → L which
sends each (m,n) + K to f((m,n)). In other words, φ is an R−module homomorphism
satisfying φ ◦ h = f . Clearly, φ is the only R-module homomorphism having this property.
Now suppose that T is an R-module and ζ : M × N → T is a bilinear function satisfying
the requirement of a tensor product. Then, first thinking of P as a tensor product, we may
complete the diagram.

M ×N P

T

h

k
φ
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with an R-module map φ : P → T satisfying φ ◦ h = k. Interchanging the roles of P and T ,
we get an R-module map ψ : T → P satisfying ψ ◦ k = h, then we get a diagram

M ×N P

P

h

h
ψ

which can be completed by ψ ◦ φ. But 1P also completes the diagram, so ψ ◦ φ = 1P .
Similarly, φ ◦ ψ = 1T , so φ is an isomorphism with inverse ψ. In particular, P is unique up
to isomorphism and h is unique, up to composition with an isomorphism.

Now that the tensor product of modules M and N exists and is unique, we write M⊗RN
for tensor product. We also write m⊗ n for the coset (m,n) +K, ∀ (m,n) ∈M ×N . Every
element in the tensor product can be written in the form r1(m1 ⊗ n1) + · · · + rk(mk ⊗ nk),
for some ri ∈ R,mi ∈M,ni ∈ N .

Proposition 10.2. The tensor product satisfies the following properties with regard to R-
modules:
1. M ⊗R N ∼= N ⊗RM.
2. If F is free with basis {vα} and G is free with basis {wβ}, then F ⊗R G is free with basis
{vα ⊗ wβ}.
3. If f : M →M ′ and g : N → N ′ are R-module maps, then ∃! R-module map

f ⊗ g : M ⊗R N →M ′ ⊗R N ′

satisfying (f ⊗ g)(m⊗ n) = f(m)⊗ g(n), ∀ m⊗ n ∈M ⊗R N .

Proof. 1. Let h : M × N → M ⊗R N be the bilinear map given in the definition of tensor
product and f : M × N → N ⊗M be the bilinear map taking the pair (m,n) to n ⊗ m.
Then we may complete the diagram

M ×N M ⊗R N

N ⊗RM

h

f
φ

with a unique R-module map φ : M ⊗R N → N ⊗R M satisfying φ ◦ h = f . In particular,
φ(m⊗N) = n⊗m, ∀ m⊗ n ∈M ⊗R N .

Similarly, ∃! ψ : N ⊗RM →M ⊗RN satisfying ψ(n⊗m) = m⊗ n, ∀ n⊗m ∈ N ⊗RM .
Thus, ψ ◦ φ completes the diagram

M ×N M ⊗R N

M ⊗R N

h

h
ψ◦φ
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Since 1M⊗RN also completes the diagram, ψ ◦ φ = 1M⊗RN . Similarly, φ ◦ ψ = 1N⊗RM , so
M ⊗R N ∼= N ⊗RM .

2. We note that the elements {vα⊗wβ} clearly span F⊗RG. Suppose we have a dependence
relation

r1(vα1 ⊗ wβ1) + · · ·+ rn(vαn ⊗ wβn) = 0

Let F be the free module on the elements (vα, wβ) ∈ F × G and let f : F × G → F be
the map extending the canonical inclusion of the basis (vα, wβ) into F . Then f is bilinear, so
there exists φ : F ⊗R G→ F satisfying φ ◦ h = f . If we apply φ to the dependence relation
above, since φ applied to the element vα ⊗wβ are basis elements in F , we deduce that each
ri = 0. Thus, {vα ⊗ wβ} forms a basis for F ⊗R G.

3. Let h : M × N → M ⊗R N be the given map and k : M × N → M ′ ⊗R N ′ be the
bilinear function which takes (m,n) to f(m)⊗ g(n). Then there exists unique R-linear map
f ⊗ g : M ⊗R N →M ′ ⊗R N ′, satisfying (f ⊗ g) ◦ h = k.

In other words, (f ⊗ g)(m⊗ n) = f(m)⊗ g(n), ∀ m⊗ n ∈M ⊗R N .

Proposition 10.3. Let

0 // A
f // B

g // C // 0

be a short exact sequence of R-modules. For any R-modules D:

A⊗R D
f⊗1D // B ⊗R D

g⊗1D // C ⊗R D // 0

is exact.

Proof. We note that g⊗1D is clearly onto and g⊗1D◦f⊗1D = (g◦f)⊗1D = 0, since g◦f = 0.
We need to see that ker(g⊗1D) ⊆ im(f⊗1D). For this, let φ : B⊗RD/im(f⊗1D)→ C⊗RD
be the map induced by g ⊗ 1D.

If we show φ is one-to-one, then ker(f ⊗1D) = im(f ⊗1D), since ker(g⊗1D)/im(g⊗1D)
clearly belongs to the kernel of φ. For this, we let h : C ×D → C ⊗R D be the given map
and k : C ×D → B ⊗D/im(f ⊗ 1D) be the bilinear map, which takes (c, d) to the class of
b⊗ d ∈ B ⊗R D/im(f ⊗ 1D), where b ∈ B is any element satisfying g(b) = c.

If we show k is well-defined, then ∃ an R-linear map ψ : C ⊗RD → B ⊗RD/im(f ⊗ 1D)
which satisfies ψ ◦ h = k. In other words, ψ(c⊗ d) = [b⊗ d].

But if we start with [b⊗d] ∈ B⊗RD/im(f ⊗1D), and apply ψ ◦φ, we get back to [b⊗d],
since ψ(c⊗ d) = [b⊗ d]. This implies that φ is one-to-one.

To see k is well-defined, suppose g(b′) = c. Then b− b′ ∈ ker(g) = im(f), so b− b′ = f(a)
for some a ∈ A. Thus, [b ⊗ d] = [(b′ + f(a)) ⊗ d] = [b′ ⊗ d] + [f(a) ⊗ d] = [b′ ⊗ d] in
B ⊗R D/im(f ⊗ 1D), so k is well-defined.
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Definition 10.2. (1) A commutative diagram A

...
...

...

· · · // Ai,j

OO

δ // Ai,j−1

OO

δ // Ai,j−2

OO

// · · ·

· · · // Ai+1,j

d

OO

δ
// Ai+1,j−1

d

OO

δ
// Ai+1,j−2

d

OO

// · · ·

...

OO

...

OO

...

OO

ofR-modules andR-module maps is a double complex if each row and column form a complex.

(2) Let A as above be a double complex. Associated to A is a complex T , the so-called
total complex of A. For n ∈ Z, the nth module in T is the module Tn = ⊕i+j=nAij and the
nth boundary map (differential) ∂ : Tn → Tn−1 is the R-module map defined by the equation
∂(aij) = δ(aij) + (−1)jd(aij), ∀ aij ∈ Aij satisfying i+ j = n. Note that δ(aij) ∈ Ai,j−1 and
d(aij) ∈ Ai−1,j, so ∂ indeed takes values in Tn−1.

Also, since ∂(aij) = δ(aij) + (−1)jd(aij),

∂2(aij) = ∂(δ(aij) + (−1)jd(aij))

= δ(∂(aij)) + (−1)jd(∂(aij))

= δ(δ(aij) + (−1)jd(aij)) + (−1)jd(δ(aij) + (−1)jd(aij))

= δ2(aij) + (−1)jδd(aij) + (−1)jdδ(aij) + d2(aij)

= 0

so T is a complex.

We can give an example about double complex: let A: · · · // An
d // An−1 // · · ·

and B: · · · // Bm
δ // Bm−1 // · · · be complexes. We obtain a double complex:

...
...

· · · // An ⊗R Bm+1

OO

1A⊗δ // An ⊗R Bm

OO

// · · ·

· · · // An+1 ⊗R Bm+1

d⊗1B

OO

1A⊗δ
// An+1 ⊗R Bm

d⊗1B

OO

// · · ·

...

OO

...

OO

whose total complex is by definition A⊗R B. In other words, A⊗R B is the complex whose
kth module is ⊕i+j=kAi ⊗R Bj and whose kth differential satisfies
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∂(ai ⊗ bj) = ai ⊗ δ(bj) + (−1)jd(ai)⊗ bj
We note that following from the previous proposition for R-modules A and B, we cal-

culate TorRn (A,B) as follows: Let PA denote a projective resolution of A, with A deleted.
Tensor PA with B and take homology as following:

Definition-Theorem If A and B are R-modules with deleted projective resolutions PA and
PB, then TorRn (A,B) is the nth homology of the complex PA ⊗R PB, ∀ n ≥ 0.

Proposition 10.4. Let A and B be R-modules. Write PA for a deleted projective resolution
of A, PB for a deleted projective resolution of B. Then

Hn(PA ⊗R B) ∼= Hn(PA ⊗R PB) ∼= Hn(A⊗R PB),

for all n ≥ 0. In particular, TorRn (A,B) ∼= Hn(PA ⊗R PB).

Proof. Let D denote the double complex whose (i, j)th module is Pi ⊗R P ′j , where Pi is the
ith term in PA and P ′j is the jth term in PB. Thus, PA⊗RPB is the total complex associated
to D. Let C denote the double complex obtained from D by adding the complex A ⊗R PB
above the 0th row. Thus, A⊗RPB is the −1st row of C. Note that this is consistent with the
view that A is the −1st term in the complex PA → A→ 0 . Thus, C is the double complex

0 0 0

· · · // A⊗R P ′2

OO

// A⊗R P ′1

OO

// A⊗R P ′0

OO

// · · ·

· · · // P0 ⊗R P ′2

d

OO

δ
// P0 ⊗R P ′1

d

OO

δ
// P0 ⊗R P ′0

d

OO

// · · ·

· · · // P1 ⊗R P ′2

d

OO

δ
// P1 ⊗R P ′1

d

OO

δ
// P1 ⊗R P ′0

d

OO

// · · ·

...

OO

...

OO

...

OO

Write T for the total complex associated to C. ∀ n ≥ −1, we have short exact sequences

0 // A⊗R P ′n+1
// Tn // (PA ⊗R PB)n // 0

whose maps are given by inclusion and projection. It is straight forward to check that
the inclusion and projection maps commute with the appropriate boundary maps, so these
sequences fit together into an exact sequence of complexes

0 // (A⊗R PB)(1) // T // PA ⊗R PB // 0
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We therefore get a long exact sequence on homology

· · · // Hn(T ) // Hn(PA ⊗R PB) // Hn−1((A⊗R PB)(1)) // Hn−1(T ) // · · · .

However, all columns of C are exact, so Hn(T ) = 0, ∀ n ≥ 0. Thus,

Hn(PA ⊗R PB) ∼= Hn−1((A⊗R PB)(1)) = Hn(A⊗R PB) ∀n ≥ 0.

Similarly, we can prove Hn(PA⊗RPB) ∼= Hn−1((PA⊗RB)(1)) = Hn(PA⊗RB) ∀n ≥ 0.
Therefore, Hn(A⊗R PB) ∼= Hn(PA ⊗R PB) ∼= Hn(PA ⊗R B), ∀ n ≥ 0.

From Proposition 10.4, we may calculate TorRn (A,B) by taking the homology of the
complex PA ⊗R B or the homology of the complex A⊗R PB.

Theorem 10.5. TorRn (A,B) ∼= TorRn (B,A), for R-modules A and B with all n ≥ 0.

Proof. Follow from the previous proposition.

We can use Tor to show that a finitely generated R-module M has a finite minimal free
resolution in a local ring R.

Proposition 10.6. Suppose (R,m) is local, M is finitely generated, pdR(M) <∞, then M
has a finite minimal free resolution.

Proof. Since pdR(M) < ∞, Tori(k,M) = 0, for all i > n with pdR(M) = n. Now compute
Tori(k,M), using a minimal free resolution

· · · // Fi+1
φi+1 // Fi

φi // Fi−1
φi−1 // · · · // Fn // · · · // F0

//M // 0

Tensor with k = R/m to get an exact sequence

· · · // Fi+1/mFi+1

φi+1 // Fi/mFi
φi // Fi−1/mFi−1 // · · ·

Since φi and φi+1 have entries in m, φi = φi+1 = 0, for i > n. We have ker(φi) = Fi/mFi and
im(φi+1) = 0. 0 =Tori(k,M) = ker(φi)/im(φi+1) for i > n, which implies Fi/(mFi) = 0,
then Fi = mFi, which implies Fi = 0 by Nakayama’s lemma. Therefore, the minimal free
resolution is finite.

11 Regular Local Rings

Recall that (Kull’s Principal Ideal Theorem) Suppose R is Noetherian, if I is an ideal of
R with I = (x1, . . . , xn)R and P is a minimal prime over I, then ht(P ) ≤ n.

Consider R is a Noetherian local ring with the maximal ideal m, written as (R,m),
and dim(R) = d, then by the Kull’s Principal Ideal Theorem, we have that the number of
generators of m is greater than or equal to d =ht(m).
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Definition 11.1. R is a regular local ring if d is the minimal number of generators of m.

Recall that (Nakayama’s Lemma) If M is a finitely-generated R-module and the images
of m1, . . . ,mn of M in M/J(R)M generate M/J(R)M as an R-module, then m1, . . . ,mn

also generate M as an R-module.

For any local ring (R,m), x1, . . . , xn is a minimal generating set for m if and only if
x1, . . . , xn is a basis in a vector space m/m2 over the field R/m, by Nakayama’s Lemma.

In general, if x ∈ m/m2, then:
(1) x is part of a minimal generating set for m since x is part of a basis for m/m2.
(2) The minimal number of generators of m/xR is one less than the minimal number of gen-
erators for m, since if {x, x2, . . . , xn} is the minimal generating set for m, then {x, x2, . . . , xn}
is a basis for m/m2.

To prove the following proposition, we need to use the fact of The Prime Avoidance
Lemma, which says that If an ideal I in a commutative ring R is contained in a union of
finitely many prime ideals P ′is, then it is contained in Pi for some i.

Proposition 11.1. If (R,m) is a regular local ring, then R is an integral domain with
dim(R) = d.

Proof. If I is an ideal, let µ(I) be the number of minimal generators of I.
Suppose d = 0, then µ(m) = 0. We have m = 〈0〉 ∈ R, so R is a field, then also a

domain.
Suppose d = 1, then m = (x). Suppose ab = 0 and neither a, b = 0. By the intersection

theorem, we can write a = αxn, b = βxm with α, β are units. Then

0 = ab = αxnβxm = αβxn+m,

so xn+m = 0. Thus, x is in the minimal prime, which implies m contained in a minimal prime,
so we have ht(m) = 0, which is a contradiction. Then either a = 0 or b = 0. Therefore, R is
a domain.

Suppose the result is true for dimension up to d − 1. We need to prove that the result
is true for R of dimension d. Suppose m was contained in the union of m2 and the finitely
many minimal prime ideals. Then by Prime Avoidance Lemma, m must be contained either
in m2 or in one of the minimal prime ideals. However, by Nakayama’s Lemma, m 6= m2, so
m is a minimal prime ideal, which makes the dimension to be zero. This is a contradiction
to the assumption. Thus, there exists an element x ∈ m\m2 is not in any minimal prime,
which means x ∈ m with m 6⊆ P1 ∪ · · · ∪ Pr ∪m2, where Pi are minimal primes.

Let A = m/(x), then A is the unique maximal ideal in R/(x). By the choice of R/(x),
we have dim(R/(x)) = d − 1. Now A/A2 is a proper homomorphic image of m/m2, so it
can be generated by (d− 1) elements. By Nakayama’s Lemma, A can also be generated by
(d−1) elements. So R/(x) is a regular local ring, and by the induction assumption, R/(x) is
an integral domain. Thus x is a prime ideal of R. Since x is not in any minimal prime ideal,
there is a minimal prime ideal properly contained inside (x) and we call this minimal prime
ideal Q. Suppose y ∈ Q, then we write y = rx for some r ∈ R. But since x /∈ Q, a ∈ Q, we
have Q = xQ. Then by Nakayama’s lemma, Q = 0. Thus R is an integral domain.
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From the prove of Proposition 11.1, in a regular local ring, there exists an element
x ∈ m\m2 is not in any minimal prime, which means x ∈ m with m 6⊆ P1 ∪ · · · ∪ Pr ∪m2,
where Pi are minimal primes.

Corollary 11.2. Let (R,m) be a local ring. Suppose x is not in m2, then R is a regular
local ring if and only if R/(x) is a regular local ring.

Proof. (⇐) Suppose R/(xR) is a regular local ring, so dim(R/(xR)) = µ(R/(xR)). We also
have dim(R/xR) =dim(R)−1. Since x /∈ m2, µ(m/(xR)) = µ(R)−1. Thus, dim(R) = µ(R),
which implies R is a regular local ring.

(⇒) Suppose R is a regular local ring, so dim(R) = µ(R), then dim(R/xR) =dim(R)−1.
Since x /∈ m2, µ(m/(xR)) = µ(R)− 1. Thus, dim(R/xR) = µ(R/xR), which implies R/xR
is a regular local ring.

Proposition 11.3. If R is a regular local ring with dim(R) = d and m = (x1, . . . , xd). Then
x1, . . . , xd is a regular sequence.

Proof. Suppose R is a regular local ring. We want to prove by inducting on d.
When d = 1, then x1 6= 0. Since R is a domain, x1 is regular.
When d > 1, x1 /∈ m2, x1 is nonzero divisor since R is a domain. Again, R/(x1R) is

a regular local ring, so x2, . . . , xd is a regular sequence in R/(x1R) by induction. Thus,
x1, . . . , xd is a regular sequence.

Theorem 11.4. Suppose (R,m) is local, dim(R) = d, then the following are equivalent:
(1) R is a regular local ring.
(2) pdR(k) is finite where k = R/m, i.e. R/m has a finite free resolution.
(3) pdR(M) is finite for all finitely generated R-modules M, i.e. all finitely generated

R-modules have a finite free resolution.

Proof. (1) ⇒ (2): Suppose R is a regular local ring and m = (x1, . . . , xd), consider the
Koszul complex on x1, . . . , xd:

0 // Kd // · · · // K1
// K0

// R/m // 0

which is exact, since R is regular local, and thus x1, . . . , xd form a regular sequence. Then
we have the diagram

0 // R(d
d) // · · · // R(d

2) // R(d
1) // R(d

0) // R/m // 0

so pdR(k) <∞.
(2)⇒ (3): Let M be a finitely generated R-module and suppose pdR(k) <∞, then there

exists n such that Tori(k,M) = 0, for all i > n and M . Take a minimal free resolution

F : · · · // Fi+1
φi+1 // Fi

φi // Fi−1
φi−1 // · · · // Fn // · · · // F0

//M // 0

Tori(k,M) = 0, for all i > n. Tensor with k = R/m to get an exact sequence

· · · // Fi+1/mFi+1

φi+1 // Fi/mFi
φi // Fi−1/mFi−1 // · · ·
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Since φi and φi+1 have entries in m, φi = φi+1 = 0, for i > n. We have ker(φi) = Fi/mFi and
im(φi+1) = 0. 0 =Tori(k,M) = ker(φi)/im(φi+1) for i > n, which implies Fi/(mFi) = 0,
then Fi = mFi, which implies Fi = 0 by Nakayama’s lemma. Thus, we have pdR(M) <∞.

(3) ⇒ (1): Consider the case M = k. Suppose pdR(k) < ∞, take x ∈ m\m2 such that
x is non-zero-divisor and x · k = 0. Then by the proposition 9.7, pdR/(xR)(k) < ∞. Then
by induction, we can show that R/(xR) is a regular local ring. So by Corollary 11.2, R is a
regular local ring.

Corollary 11.5. If R is a regular local ring and Q is a prime ideal of R, then RQ is regular.

Proof. Since R is regular, R/Q has a finite R-free resolution by R-modules. We then localize
at Q to obtain a finite RQ-free resolution of RQ/QRQ

∼= (R/Q)Q. Thus, RQ is regular by
Theorem 11.4.

12 Stably-free Modules

In this section, we introduce the definition and some propositions of stably-free modules
that we need to use for the proof of the main theorem. The goal for this section is to show
that if R-module P is stably-free with rank 1, then P is free.

Definition 12.1. R-module P is stably free if there exists free modules F,G such that
F = G⊕ P .

The following proposition connects projective modules and finite free resolutions that we
learned on section 9 to stably-free modules.

Proposition 12.1. Suppose P is projective and there exists finite free resolution

(∗) : 0 // Fn
φn // Fn−1

φn−1 // · · · // F1
φ1 // F0

π // P // 0

then P is stably free.

Proof. We prove by inducting on n. When n = 1, we have an exact sequence

0 // F1
// F0

π // P // 0

By Corollary 9.4, we have F0
∼= F1 ⊕ P . Since F0 and F1 are free, P is stably free.

When n > 1, we have

0 // Fn // · · · // F1
ϕ1 // K // 0

with K = ker(π), is a finite free resolution. If K is projective, then stably free by induction.
Consider the exact sequence

0 // K // F0
// P // 0.

So F0
∼= K⊕P . Since F0 is free, so is K⊕P , which implies K is projective, then K is stably

free. So there exists F,G free modules such that F = G⊕K, then F0⊕G = G⊕K⊕P = F⊕P .
Since F0, F,G are free, P is stably free.

37



Lemma 12.2. Suppose there are column vectors v1, . . . , vn ∈ Rn, A = [v1, . . . , vn] as a
matrix. Then {v1, . . . , vn} is a basis for Rn if and only if det(A) is a unit in R.

Proof. (⇒) Suppose v1, . . . , vn is a basis for Rn. Let e1, . . . , en be the standard basis, then

e1 = b11v1 + · · ·+ bn1vn ⇒ e1 = A


b11
b21
...
bn1



e2 = b12v1 + · · ·+ bn2vn ⇒ e2 = A


b12
b22
...
bn2


...

en = b1nv1 + · · ·+ bnnvn ⇒ en = A


b1n
b2n
...
bnn


Then B = (bij) = [e1, . . . , en] = A · B, where In = [e1, . . . , en]. Thus, 1 =det(A)·det(B),
which means det(A) is a unit in R.

(⇐) Suppose v1, . . . , vn ∈ Rn and det(A) is a unit in R, then there exists C such that
In = A · C. So Rn = 〈e1, . . . , en〉 ⊆ 〈v1, . . . , vn〉. Thus, {v1, . . . , vn} spans Rn.

Let r1v1 + · · ·+ rnvn = 0, then A


r1
r2
...
rn

 =


0
0
...
0



Since A is nonzero and invertible,


r1
r2
...
rn

 =


0
0
...
0


Thus, v1, . . . , vn are linearly independent. Therefore, {v1, . . . , vn} is a basis for Rn.

Theorem 12.3. Suppose Rn = G⊕K, where G is free of rank (n−r) and {v1, . . . , vn−r} ⊆ Rn

is a basis for G. Then K is free of rank r if and only if the columns v1, . . . , vn−r can be
extended to an invertible matrix, in other words, can be extended to a basis of Rn.

Proof. (⇒) Suppose K is free of rank r, then there exists u1, . . . , ur ∈ K is a basis for
K. Since Rn = G ⊕ K, {v1, . . . , vn−r, u1, . . . , ur} is a basis for Rn. By Lemma 12.2,
det([v1, . . . , vn−r, u1, . . . , ur]) is a unit. Thus, v1, . . . , vn−r can be extended to a basis for
Rn.

(⇐) Suppose v1, . . . , vn−r, w1, . . . , wr are such that [v1, . . . , vn−r, w1, . . . , wr] is invertible, then
{v1, . . . , vn−r, w1, . . . , wr} is a basis for Rn. We write wi = ui + ki, where ui ∈ G, ki ∈ K.
Take k ∈ K, then

k = a1v1 + · · ·+ an−rvn−r + b1(u1 + k1) + · · ·+ br(ur + kr).
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So we have k − (b1k1 + · · ·+ brkr) = a1v1 + · · ·+ an−rvn−r + b1u1 + · · ·+ brur.
SinceG∩F = 0, k−(b1k1+· · ·+brkr) = 0. So k = (b1k1+· · ·+brkr), thenK = 〈k1, . . . , kr〉.

Thus, 〈v1, . . . , vn−r, k1, . . . , kr〉 = Rn, let A = {v1, . . . , vn−r, k1, . . . , kr}.
Again, let e1, . . . , en be the standard basis, then

e1 = A


c11
c21
...
cn1



e2 = A


c12
c22
...
cn2


...

en = A


c1n
c2n
...
cnn


So we have In = A · C. By Lemma 12.2, A is invertible. So the columns are basis for Rn,
which means k1, . . . , kr are linearly independent. Thus, {k1, . . . , kr} is a basis for K.

Lemma 12.4. If P is stably free with rank 1, then P is free.

Proof. Suppose P is stably free with rank 1, then we can write Rn = Rn−1 ⊕ P . Let
v1, . . . , vn−1 ∈ Rn is a basis for Rn−1. We want to show that v1, . . . , vn−1 can be extended to
a basis for Rn. Let m be any maximal ideal. Since Rn = Rn−1 ⊕ P , we have

kn = Rn/(mRn) = Rn−1/(mRn−1)⊕ P/(mP ),

where k = R/m.
We then let v1, . . . , vn−1 be a basis for Rn−1/(mRn−1) as column vector in kn, then rank

C = [v1, . . . , vn−1] is n−1. So some (n−1)×(n−1) submatrix of C has non-zero determinant,
then some (n− 1)× (n− 1) submatrix of [v1, . . . , vn−1] is not in m.

Let ∆i be the (n− 1)× (n− 1) minor obtained by deleting the ith row of [v1, . . . , vn−1].
Then we have I = (∆1, . . . ,∆n)R = R, so there exists a1, . . . , an ∈ R, such that

a1∆1 − a2∆2 + · · ·+ (−1)nan∆n = 1,

which means A =

∣∣∣∣∣∣∣∣∣
a1 v1 · · · vn−1
a2
...

...
...

...
an

∣∣∣∣∣∣∣∣∣.
Thus, det(A) = a1∆1 − a2∆2 + · · · + (−1)nan∆n = 1. So we know that A is invertible.

Therefore, v1, . . . , vn−1 can be extended to a basis for Rn
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13 Main Theorem

Theorem 13.1. Suppose R is a Noetherian ring. If R is a regular local ring, then R is a
unique factorization domain.

Before the proof, let us learn some history about the theorem. This theorem is called
Auslander-Buchsbaum theorem. And it was first proved by Maurice Auslander and David
Buchsbaum in 1959.

Prior to the result, Zariski proved that if every complete regular local ring of dimension
3 is a unique factorization domain, then every complete regular local ring is a unique factor-
ization domain. In addition, Mori and Krull proved that a local ring is a unique factorization
domain if it’s completion is a unique factorization domain.

In 1958, Nagata proved in [3] that if every regular local ring of dimension 3 is a UFD,
then every regular local ring is a UFD. And then in 1959, Auslander and Buchsbaum proved
in [4] that every regular local ring of dimension 3 is a UFD.

Proof. Since R is a regular local ring, R is an integral domain. Assume dimR = d, then we
can induct on d.

If d = 0, R is a field, so is a UFD.
If d = 1, the maximal ideal m = 〈a〉 where a ∈ R is prime. Then every prime ideal

contains a principal prime, by Theorem 5.6, R is a UFD.
If d > 1, R is Noetherian. Let us take x ∈ m\m2, so x is prime. By Nagata’s Lemma,

it suffices to show that Rx is a UFD. Now, let us choose a height one prime Px in Rx. We
then want to show Px is principal.

We claim that Px is a stably-free Rx-module of rank 1. Indeed, first take a finite free
resolution of P over R

0 // Fn // Fn−1 // · · · // F1
// F0

// P // 0,

then localize the resolution at x to get

0 // (Fn)x // (Fn−1)x // · · · // (F1)x // (F0)x // Px // 0

For the claim, we first want to show Px is projective using Proposition 9.6. Take Q ⊆ Rx

be prime, then Q = Q′x for some prime Q′ ⊆ R with x /∈ Q′, and RQ′ = (Rx)Q is a regular
local ring by Corollary 11.5.

If Px 6⊆ Q, then (Px)Q = (Rx)Q = RQ is a free RQ-module, which implies Px is projective.
If Px ⊆ Q, then (Px)Q = PQ ⊆ RQ is a height 1 prime in RQ, where RQ has dimension

less than d. By induction on d, (Px)Q = PQ is principal, i.e. free of rank 1 over RQ, so
Px is locally free over Rx, which implies Px is projective by Proposition 9.6. Thus, Px is
projective and there is a finite free resolution of Px. Since P ⊆ R with rank(P ) = 1, then
by Proposition 12.1, Px is a stably free Rx-module of rank 1.

Therefore, by Lemma 12.4, Px is free of rank 1, which implies Px is principal. So by
Theorem 5.6, Rx is a UFD. Then by Nagata’s Lemma, R is a UFD.
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