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Abstract

The capacity of agents to act rationally, that is to
make choices that positively reflect their interests, is a
core assumption underlying democratic governance sys-
tems, microeconomics, decision science, market driven
economies, and many agent based modeling efforts. In
this paper we investigate axiomatic theories of ratio-
nal choice from the perspective of computability. Using
algorithmic complexity, we show highly general condi-
tions under which no effective procedure can exist en-
abling these theories to identify sequences of choices as
random. While axiomatic theories of rational choice
yield powerful descriptions of choice behavior, this
power comes at the expense of axioms which can be brit-
tle with regard to computability limits.

1. Introduction

To say of someone that they are rational is to de-
scribe them in a particular way and it is reasonable to ask
what are the consequences of such a description. The
purpose of this paper is to explore this question from
the perspective of computability. Whether or not hu-
mans are subject to fundamental computational limits, it
is our argument that scientific theories of agents as ratio-
nal choosers depend on an assumption that people can be
usefully described as entities whose choices are calcu-
lated and thus subject to computational constraints. Ra-
tional choice assumptions are common in areas includ-
ing decision science, microeconomics, voting behavior,
and agent-based modeling.

Within the axiomatic or formal theory of rationality
tradition1 there is a broadly shared sense that rationality

1Here we refer to theories of rationality which state explicit axioms
about rational choice and use these to derive statements about what we
should expect from agents whose behaviors satisfy those axioms.

requires some sort of positive responsiveness between
underlying preferences and visible choices [1]. When
offered a pair of items from which to make a choice, a
rational agent will choose the one she most prefers from
the two.

A basic intuition is that a choice by a rational agent
is a choice that can be made sense of by knowing the
agent’s underlying preferences. However, it is precisely
these underlying preferences which we, as external ob-
servers, generally cannot directly measure. We must
infer them from choices we can observe. Any partic-
ular axiomatic theory of rational choice will then tell
us something about what to expect about choice behav-
iors given inferred information about underlying pref-
erences. A theory of rational choice should provide in-
formative predictions regarding a rational agent’s choice
behavior.

The literature contains many examples of rigor-
ously formulated rational choice theories. With a no-
table exception being those influenced by Herbert Simon
[2], these rarely address issues of a person’s actual ca-
pacity to make choices in accord with the theory. While
they identify formal conditions under which a rational
choice can exist, they do not provide rules for actually
computing that choice [3].

A key insight of Simon’s was that complexity can
affect a person’s choice behavior and sometimes pre-
clude making a globally best choice. In selecting a life
partner there are billions of possible alternatives from
which to select. However, a person will have relevant in-
formation about only a subset of these. Additionally, the
final choice may be influenced by prior considerations of
alternatives. The result is a satisficing or good enough
selection exemplifying Simon’s notion of bounded ra-
tionality.

Simon emphasizes processing limitations on human
choices resulting from complex information environ-

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 1415
URI: https://hdl.handle.net/10125/70783
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



ments such as where the number of alternatives is large.
As further developed by Selten [4], this fundamentally
involves empirical questions. In contrast, following [5]–
[8] we aim to identify basic computability constraints on
assessing the rationality of choices.

We proceed by noting that axiomatic theories can
be understood or interpreted as computer programs, or
equivalently as Turing machines. These theories are in-
tended to produce (permit derivations of) descriptions
that are informative with regard to rational choice be-
havior. We should be able to provide a formal the-
ory of rationality some input, say preferences and a
set of alternatives from which a choice is to be made,
and have the theory produce as output descriptions of
the choice an agent satisfying the axioms of the theory
would make.

Moreover, not just any such theory would do. A the-
ory which takes as input the choices made by an agent
and then reproduces as output descriptions of those
choices would add no new information. We expect ratio-
nal choice axioms together with a set of inference rules
to offer a compressed account of patterns of choice be-
havior in a manner analogous to how a PNG image to-
gether with an appropriate decompression program pro-
vides a compressed description of a photograph. This
expectation is grounded on the intuition that an agent’s
choices, if rational, should exhibit some sort of pattern-
ing. That is, they should not be algorithmically random.
The particular patterning will depend upon the axioms
of the theory being used. Using algorithmic complex-
ity we show general conditions under which no effec-
tive procedure can exist to enable these theories to iden-
tify sequences of choices as maximally random. While
axiomatic theories of rational choice yield powerful de-
scriptions of choice behavior, this power comes at the
expense of axioms which can be brittle with regard to
computability limits.

2. Axiomatic Theories of Rationality and
Computability

Theories of rationality discussed here are those con-
sisting of axioms which, together with fairly basic arith-
metic and logic operators, permit derivation of state-
ments describing observable patterns of behavior by a
rational chooser. We abbreviate class of these axiomatic
theories of rational choice as AT RC. While there are

a variety of axiom sets within AT RC, at core they in-
volve describing what happens when a rational chooser
is faced with a number of options from which some sort
of choice is to be made. We will assume the consistency
of theories within AT RC.

Our interest is in the axiomatic structure of the class
of formal theories of rational choice once computability
condition is required. These theories typically begin by
positing the existence of a set of alternatives, X , from
which an agent is to make a choice. A preference rela-
tion is a binary relation on the Cartesian product of the
alternative set, X ×X . Typical conditions are those of
the strict preference relation, P defined to be:

i Irreflexive: ∀x ∈ X ,¬(xPx),
ii Asymmetric: ∀x,y ∈ X ,¬(xPy∧ yPx),

iii Transitive: ∀x,y,z ∈ X ,xPy∧ yPz =⇒ xPz, and
iv Complete: ∀x,y ∈ X ,xPy∨ yPx∨ y = x.

P then yields a strict total order on X .
Some axiomatic theories of rationality consider the

choice process as deterministic while others see it as
probabilistic. Then there are theories of individual
choice behavior [9] and those that focus on the behaviors
of groups or aggregates. In this paper we consider the-
ories of single-agent rationality where rational choices
are assumed to flow in a positive fashion from underly-
ing preferences. Our interest is in the relation between
preferences and choices and we will not be concerned
with numeric representations of preferences via utility
functions 2

Our example formalization of choice is patterned
after the fundamental work of Uzawa [11], Arrow [12],
and Richter [13] but most other formalizations should
work as well. We begin with an agent faced with mak-
ing a choice. The objective is to establish conditions
for deciding whether or not the agent’s choice behavior
can be described as rational. Consider a choice space
< X ,B > where X represents a nonempty set of alterna-
tives possibly available for choice and B is comprised of
nonempty subsets of X where each B ∈B corresponds
to a set of alternatives actually available for choice on a
given occasion.3

2For utility representations see [3], [10].
3Some theories require X to be finite and others assume it is denu-

merably infinite or even uncountably infinite (e.g., [13, p. 635] con-
siders the case where X is represented by the “nonnegative orthant of
the n-fold Cartesian product of the real line”). We require X to be
countable.
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Computational complexity issues arise depending
upon, for instance, whether B is assumed to include
all nonempty subsets of X . In such a case, B would
grow exponentially with the size of X according to
the formula 2n − 1 where n is the number of alterna-
tives in X . For n = 3, the size of B would be only
seven. However, if there are 20 alternatives, B grows
to 1,048,575.

In an economics context, a B might be the various
bundles of goods affordable given a budget. In a vot-
ing context, a B might be a particular ballot consisting
of names of candidates from which to choose. We shall
refer to the pair < X B > as a ballot space with the un-
derstanding that the particular interpretation will depend
upon the contents of X . So if X consists of candidates
for office, B would be subsets of candidates and a par-
ticular element of B would describe a possible ballot. A
choice function is a function h which for every B ∈B
yields a nonempty subset h(B) ⊆ B representing the se-
lection or choice made from each B in B[13].

Our focus is on preference-based individual choice
and we define a strict preference binary relation P on X
as above such that P is irreflexive, asymmetric, transi-
tive, and total.4 The intended interpretation here is that
P is a preference relation such that for any (xi,x j) where
i 6= j in X either (xiPx j) or x jPxi. If xiPx j we say xi
preferred to x j.

Since P is a total and transitive binary relation,
choices may reveal information about preferences even
though those preferences are not directly observable.
An agent can be described as choosing rationally if,
given a set of alternatives, the choice is the P greatest
one. Formally, a P greatest choice is one which can be
described by a choice function h defined on B such
that:
∀B ∈ B,h(B) = x∗ : x∗ ∈ B ∧ ∀(xi 6= x∗) ∈
B,x∗Pxi.

This account of a best choice tells us that to describe
an agent as choosing rationally is to say that the choice
can be described by an h that rationalizes it. But how are
we to know whether an agent’s choice is, in empirical
fact, rational? One approach would be to first suppose
a person to be rational and then note that each time a

4The reason for requiring X to be denumerable is now apparent. If
X were uncountably infinite as with the real line, then how could we
define an effective procedure for determining for every distinct pair in
X whether or not it was in P? [8] provides an extended discussion of
this.

person chooses an alternative from a B she does reveal
something about her preferences. Imagine we observe a
person’s choice behaviors over the full range of Bs while
keeping h fixed. If a chooser selects alternative xi from
a B when, say, x j and xk are also in B we can say that
xi has been revealed as being preferred to both x j and
xk. This then leads to identifying a rational agent as one
whose observable choice behavior satisfies the principle
that for every possible B in B her choice consists of the
P greatest alternative.

A concrete example, though tedious, will clarify the
preceding discussion and help set up what follows. Con-
sider a case in which there are three brands of tooth-
paste being considered for purchase–AIM, BABOOL,
and CREST represented using the first letter of their
name: X = {a,b,c}. The maximal size of any B is 2n−
1 (the total number of possible subsets of a set with n dis-
tinct elements is 2n and from that we subtract 1 since the
definition of B stipulates that it contains only nonempty
subsets) yielding, in this instance 7. So the largest pos-
sible B would consist of all nonempty subsets of X or
B =

{
{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}

}
.

Suppose a person’s preferences happen to order the pos-
sible purchases alphabetically:
P =

{
(a,b),(a,c),(b,c)

}
. P is irreflexive, asymmetric,

transitive, and total. If the person chooses rationally
we would expect her choice function to look as fol-
lows: h({a})→ a,h({b})→ b,h({c})→ c,h({a,b})→
a,h({a,c})→ a,h({b,c})→ b, and h({a,b,c})→ a. It
is straightforward to verify that the preferences revealed
by these choices do indeed rationalize the choices indi-
cated by h.

This example can be modified to construct an exam-
ple of an irrational choice. Consider a function h∗ every-
where identical to h above except that h∗({b,c})→ c.
It is simple to verify that there is no total, transitive and
strongly reflexive P∗ that could rationalize those choices
and thus an agent whose choices were those of h∗ would
be not be describable as making everywhere rational
choices. This demonstrates the logical possibility of an
irrational choice.

The logical possibility of a person making an irra-
tional choice suggests that rationality is an assumption
and not merely a tautology asserting anything a person
chooses to be rational by virtue of its having been cho-
sen when some other alternative could have been se-
lected. This is significant as rationality arguments are
often criticized as shape shifting when shown that an
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agent’s choices deviate from what a particular rational
choice theory predicts. A response to the faulty predic-
tion might be that, in this particular context, P ought re-
ally be thought of as probabilistic relation and we should
be speaking of, say, the probability that a person will se-
lect chicken over beef when at a restaurant rather than
requiring a deterministic chicken preference over beef.
In this paper we will sidestep debates as to precisely
which axioms are best suited to describing rationality
and focus on computational constraints relevant to the
class of axiomatic rational choice arguments.

A common thread in AT RC is that a person’s
choices are not random but rather reveal something
about the structure and, perhaps, content of their un-
derlying preferences at the time of their choice. Addi-
tionally, the context or environment in which a choice
is made may matter. For example, in a context of
risk, probabilistic assumptions about P may make sense.
While in determining how to fill out election ballots,
viewing P as deterministic may be compelling.5 In other
words, if we consider a person’s choice behavior over
time it is reasonable to think that a person may deploy
different procedures for making choices depending upon
conditions at the time.

Therefore to determine whether a person’s choices
can be said to be rational in both a single choice situa-
tion and when looking at that person’s choices over time
we must go beyond asking whether a particular choice is
rational and decide whether the choices a person makes
tend to positively reflect their preferences. Here we rec-
ognize that a choice which is rational under one set of
AT RC assumptions might appear not so under a differ-
ent set. Further, there is the possibility that, on occa-
sion, a person, from her own perspective, errs in making
a choice. A particular choice may result from intend-
ing to do one thing yet actually doing another (as in in-
tending to vote for candidate A but mistakenly pulling
the lever for candidate B) or from doing what we in-
tended but having that doing’ incorrectly recorded (as in
properly casting a ballot for A on a flawed voting ma-
chine).

As a person lives her life, she makes a sequence of
choices, {c1,c2, . . . ,cn}. A person can be described as
rational if that string of choices tends to positively re-

5A claim that different contexts require different axioms may be
seen begging the question unless accompanied by guidance as to how
an agent should rationally determine which axioms to use when. But
then must not that guidance also be justified? And so on.

flect her underlying preferences. For that to be the case,
it should be her choices exhibit patterning suggesting
they can be rationalized by some, though not necessar-
ily everywhere the same, choice function. By patterned
here we mean that the relation between preferences and
choices is not random. Equivalently, knowing a per-
son’s preferences over time should enable us to make
better than chance predictions about her choice behav-
ior.

When being rational, a person acts with intention.
She intends her choices to positively reflect her pref-
erences. Second, as with most intentions, they can be
overridden by circumstance and for that reason we can-
not anticipate every ci for a rational person to be ratio-
nalized by her preferences. For example, it is not un-
common to make a purchasing decision and later, upon
reflection, conclude that our preferences would have led
us to a different choice.

We take as a given that to model a person’s choices
computationally is to assume that an agent can be sim-
ulated, to any desired precision, by a mechanism that
computes. By computation we mean a discrete state
mechanism of unbounded size capable of reading from a
tape, writing on that tape, and executing loops and con-
ditional branches. Such a machine, a Turing machine
(TM), defines the class of recursively enumerable lan-
guages about which anything can be computed. To say
that a function is computable is equivalent to saying the
function can be executed on a suitable coded TM. This is
the Church-Turing thesis and it is from this perspective
that we investigate consequences of modeling rational-
ity computationally; that is simulating rational choice
as calculations made by an appropriately programmed
Turing machine. We assume what Aaronson’s terms the
physical Church-Turing thesis that any device that ex-
ists in the physical world, if it behaves in a predictable
way at all, can be simulated, given input data by a TM
machine to any desired precision [14].

TMs are quite general and a given TM can be en-
coded and simulated on another TM. With suitable en-
coding, data and programs become interchangeable. By
convention the encoding will be in terms of bit strings,
strings of 0s and 1s. Any particular program can be
encoded without loss as a string of bits as can num-
bers, photographs, or this paper. This permits reason-
ing about what is and is not computable and, given
the Church-Turing thesis, what we can computationally
simulate.
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Of particular interest is the fact that any given TM
can be uniquely described by the binary string that de-
fines it. This gives rise to the notion of a universal Turing
machine which takes the binary string description of any
particular TM together with binary string input for that
TM and then computes the same output string as would
the TM. An example of this sort of thing is provided by
programs emulating Windows machines under the Ma-
cOS operating system enabling using programs (that is,
strings of bits) originally compiled for Windows under
MacOS (another string of bits). Programs and data can
each be encoded as binary strings.

Computability immediately imposes conditions
that, while perhaps initially unfamiliar, are quite com-
patible with our desire to focus on what a chooser could,
from a logical perspective, possibly do. In particular,
there are problems which are known to be not com-
putable. A well known example is the halting prob-
lem. Turing proved [15] that in general determining
in advance from the description of a computer program
whether that program will finish running (halts) or run
forever is not a computable problem. There can be no
effective procedure for taking any string of bits repre-
senting a computer program and deciding whether that
program will halt or run forever.6 Beyond this, it is also
known that there are classes of problems with solutions
that are computable but nonetheless are practically in-
tractable in the sense of taking a very long time to actu-
ally compute the results.

Our interest is in the computability of rational
choices. This requires that alternatives not be repre-
sented by real numbers as the set of real numbers is
uncountably infinite. Indeed, the computable reals, a
subset of the real numbers, do not form a computable
field as no effective equality relation can be defined as
was proven by Rice [16]. This has particular impor-
tance given our focus on rationality, and provides a for-
mal reason we focus on the strict preference relation, P
[7].

We will now use this to identify a computational
limitation to testing for rationality. Imagine we had a
Laplacian Demon [17] able to calculate a person’s pref-
erences and choices. This would mean Demon could
also identify which choices positively reflected prefer-
ences and thus were rational in the sense we have been

6Of course, such a decision can be made for some programs. For
there to be an effective procedure, it must yield a yes/no decision for
all of the countable set of computer programs.

discussing. Demon will have to compute answers to
counterfactual questions of the sort “what would the per-
son prefer if presented with the set {xi,x j}?” for all
distinct pairs in the alternative set in order to calculate
P.

Here a strictly rational chooser would be expected
to choose the most preferred of the two alternatives for
that would positively reflect the preference for that pair.7

However, as noted above, even a rational person may on
occasion make mistakes or there may be exogenous cir-
cumstances affecting a choice. Demon, of course, can
identify these choice “deviations” and properly catego-
rize them as not rational without regard to the cause or
reason.

Demon encodes a rational choice over a pair with
a 1 and a choice that is not rational with a 0. A per-
son’s possible choices over pairs in the alternative set
could then be encoded as a string of 1s and 0s. So, for
example, if Demon looked at a person making choices
over a three alternative set as in the AXP, BA, and
CAG example it would calculate what the person would
do over each of the three possible paired comparisons,{
{a,b},{a,c},{b,c}

}
. If the person chose rationally in

every instance we would have the string “111”. Or if the
person made a non rational choice over the third pair,
the string might be “110”.

As the number of alternatives increases, the length
of the bit string increases as well. Suppose there are ten
brands of toothpaste under active consideration for pur-
chase. The number of distinct pairs with ten alternatives
is 45 and the number of unique bit strings of length 45
is 245 or 35,184,372,088,832. A fairly large number.
A recent check on Wikipedia indicated about there were
about 50 brands of toothpaste. Here the number of dis-
tinct pairs is 1,225 and the number of unique bit strings
is ∼ 5.8×10368. Compare this the estimated number of
atoms in the universe, ∼ 1080.

This poses no particular computation problem to ei-
ther the chooser or Demon as the number of paired com-
parisons to be made for small n alternative sets is mod-
est and there do exist time efficient algorithms for do-
ing paired comparisons. However, issues do arise when
we consider the possibility of deviations in choices over
paired comparisons. Even for a person intending to
make rational choices over all the pairs, mistakes or er-

7Of course what that choice would be expected to be would depend
upon the particular AT RC.
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rors, might occur. Consequently, rather than Demon cal-
culating a bit string of all 1s, “1,1,1, . . .1,1”, for a per-
son intending to be rational, the actual calculated string
may look like “1,0,1,1,0, . . . ,1,0”. Suppose then that
Demon provides us the bit string and invites us to de-
cide whether it encodes the choices of a rational chooser.
Here we do have to confront the combinatorial explosion
of possible bit strings.

A way to proceed would be to note that a string
from a rational agent, even one who makes many mis-
takes, will not be random and should exhibit some pat-
terning. This can be used to compress the string without
loss of information in much the same way the bit string
describing pixels of a photograph can be compressed. A
discrepancy-free rational person’s string would simply
be a string of 1s as long as the number of choices. On
the other hand, if a person’s choices are fully non ratio-
nal, we would expect no structure as the person would
be simply selecting alternatives with no intent beyond
making a selection. This is not to say the chooser has no
preferences, only that the choices made were not driven
by them. Demon, as stipulated, calculates preferences
and can accurately predict choices so can readily cate-
gorize a given choice as 1 or 0. Since paired compar-
isons are binary choices and we are assuming people
have preferences, there is always the possibility that act-
ing without intention, that is ignoring preferences, will
still produce a rational selection.

However, we do not have a probability distribution
of choice strings from which we are sampling. We have
only the single string.

Classical probability theory provides guides for cal-
culating the likelihood of particular outcomes given that
those outcomes are generated by a stochastic process
with known, or assumed to be known, properties. This is
not helpful in our case as we have a single binary string
and no particular warrant for assuming the existence of
an underlying generating distribution.

This leads to looking at a given string in terms of its
algorithmic complexity [18]. The basic idea is that some
long strings can be described by simple algorithms. For
example, we might be interested in the string represent-
ing the first trillion digits of π . A relatively short com-
puter program can compute these digits and the same
program is also be capable of computing only the first
million digits of π . Moreover, that program would be
considerably shorter than the string of digits it was com-
puting. In this sense, the first trillion digits of π is highly

compressible; it can be described by a much shorter
string (the computer program that computes it plus over-
head to generate that string).

Our interest is in a binary string provided by De-
mon describing a sequence of choices. Each such string
uniquely describes a sequence of binary choices under
the encoding outlined above. For sake of discussion,
suppose we have some particular AT RC and we accept
that the theory is both consistent and sound.

Let’s further assume that our AT RC contains
enough arithmetic to do simple operations. Given a bi-
nary string describing choices, s, we can conceptualize
the algorithmic complexity of s, K(s), as the size of
the smallest string consistent with our AT RC that, to-
gether with an appropriate input, permits us to compute
s.

There will always exist at least one string which is
maximally incompressible. As a matter of notation, let
|s| denotes the length of string s. The number of pro-
grams (strings) shorter than length |s| is at most 2|s|−1
while the number of strings of size |s| is 2|s|. In other
words, there must be at least one string which cannot be
described by a string shorter than itself for every value
of |s|. Interestingly, as the length of a string gets large,
say greater than around 1000, the vast majority of strings
of that length will be maximally incompressible. These
strings can be considered random in that they exhibit no
pattern that can be exploited to compress them. An algo-
rithm for generating such strings can do no better than to
simply list the string. RANDOM (the set of all random
bit strings) and INCOMPRESSIBLE (the set of all in-
compressible bit strings) are equivalent for the processes
we are examining.

However, can even Demon decide for all bit strings
whether it is an element of INCOMPESSIBLE? Is there
an effective procedure which Demon can use to estab-
lish for any given string whether it is maximally incom-
pressible? Such a procedure would be of more than
purely theoretical interest.8 A person whose choices
are described by an algorithmically random (maximally
incompressible) string of 0s (not rational) and 1s (ra-
tional) should most certainly fail a test for being ratio-
nal.

To illustrate compressibility, Figure 1 shows results
of simulating the choice bit strings Demon might cal-

8Indeed, the existence of such a procedure would imply a solution
to the halting problem!
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culate for agents selecting a toothpaste from 50 avail-
able brands. In order to arrive at an agent’s total order,
Demon would compute preferences and choices over
1,225 distinct pairs. As above, there are then 21225 or ∼
5.8× 10368 distinct bit strings which could possibly re-
sult from a given agent’s choices. Generating this num-
ber of strings is well beyond the capacity of the com-
puter we are using so our simulation generates, with re-
placement, pseudo-random samples of the strings. The
bit string for a person whose preferences formed a to-
tal order over the 50 brands and who unerringly chose
positively with regard to those preferences would be a
string of 1,225 1s. The plot in 1 shows the results
for different likelihoods of discrepancies from making
rational choices for 1000 agents for discrepancy likeli-
hoods ranging from 0 to 1 in .1 increments. This was
done 1225 times for each of the 1000 agents being sim-
ulated at each likelihood of deviating from a rational
choice.9

The plot shows average byte size for compressed
choice bit strings at each discrepancy likelihood level.
Strings were compressed using Mathematica’s built in
lossless compression algorithm, COMPRESS[19]. The
fences around each mean denote the maximum and min-
imum compressed byte sizes at each likelihood level. As
expected, mean deviation likelihoods from 0 (no devia-
tions) to .5 (random choosing) monotonically increase
and beginning at .1, there is overlap between the max-
imum compressed size at one level and the minimum
compressed size at at the next level.

Byte size is an imperfect proxy for string size as
the specific byte count will depend upon the compres-
sion algorithm used as well as specifics of how data are
stored on a particular machine. Once compressed, a
1225 length bit string of all 1s describing each choice
as rational is reduced to 64 bytes. To that must be
added a constant, c, reflecting the size of the com-
pression/decompression code. That program code can
be thought of as a string of bits encoding the patterns
looked for by the particular compression algorithm.
Similarly, particular AT RC sentences can be expressed
as a string of bits which, among other things, can be
used to predict patterns in choice data. Those predictive

9These 1000 choice bit strings are an exceedingly small sample of
the ∼ 5.8× 10368 set of all possible bit strings of length 1225. The
proportion is so close to 0 that attempting to display it as an approx-
imate real number signals a “too small to represent as a normalized
machine number” warning on our machine.
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Figure 1: Mean Byte Size for 50 Alternatives as
Function of n

sentences will also have a constant bit size the value of
which, c, will depend upon the precise encoding used.
In the example of Figure 1, the size of the compression
code, c, is the same for each choice bit string so we can
look at the relative compressibility of the strings with-
out knowing the value of c.10 The importance of c will
become more apparent below.

As discrepancy likelihoods go from .5 to 1 (always
deviate from a rational choice), we see a mirror image of
what happened between 0 and .5. Interestingly these are
data Demon will have since, by assumption, Demon has
perfect knowledge of both preferences and choices. As
mere human observers without direct access to prefer-
ence information, an agent with a deviation likelihood of
1 would look to us like a rational chooser whose prefer-
ences are revealed as reversed from what Demon knows
them to be. From Demon’s perspective agents whose
likelihood of deviating from a rational choice are greater
than .5 would appear as perverse choosers in that their
preferences inform their choices though in a negative
way.11 The irrational agents would be those choosing
randomly. They are irrational in that there is no informa-
tive relation between their preferences and their choices.
Knowing with certainty a random chooser’s preferences
provides no advantage in predicting his choices.

Figure 1 is intended to illustrate the relation pattern
between the compressibility of a choice string and the
propensity of an agent to exhibit discrepancies between
preferences and choices. The specific amount of com-

10The source code for COMPRESS has not been made available
though it appears to be based on Zlib[20].

11Oddly enough, reversibility of preferences does not always work
as expected. [21] shows that reversibility has unexpected conse-
quences with an AT RC based upon Luces’s choice axiom.
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pression we can get for a given bit string will depend in
part upon the specific compression algorithm used. A
particular compression algorithm gives an initial upper
bound estimate regarding how much a bit string can be
compressed. There may well be another algorithm, per-
haps yet to be discovered, that will do better. Put differ-
ently, if the AT RC we are using fails to see compressible
patterns in the choice bit string, perhaps another, more
complex, AT RC would reveal those patterns. All this
must be understood knowing that that for long bit strings
the vast majority will not be compressible.

There is an important sense in which Figure 1 is
misleading as it displays choice bit strings generated
from known probability distributions. The assumption
of stochastic randomness, that is that each choice bit
string at each discrepancy level are independent and
identically distributed, is not compatible with the indi-
vidual choice problem as we have described it. Demon
calculates a choice bit string only using knowledge of
an agent’s preferences and choices. There is no known
underlying distribution of deviations for any particular
agent and no expectation that any two agents would de-
viate from rationality in accord with a common random
process. For a given agent, Demon mechanically calcu-
lates a single choice bit string of finite length and must
then decide whether that string is patterned or if it is ran-
dom. Demon is in the domain of algorithmic random-
ness and must first decide whether the single calculated
choice bit string is random and thus describes choices
from an irrational chooser. Equivalently, Demon has to
decide whether the bit string is compressible.

A theorem due to Chaitin [22] proves there can be
no effective procedure for deciding that any given bit
string is maximally incompressible. Given a formal sys-
tem, T (and recall that any AT RC theory would be such a
T ), then there is a number c, depending upon T such that
there is no effective procedure derivable from T that can
decide whether the statement asserting “K(s), the com-
plexity of string s, is greater than c” is true. What is
surprising is that we know such complex strings must
exist by the simple counting argument above. Indeed, as
the length of strings gets long, the vast majority will be
incompressible. Thus there exist statements of the form
“the complexity of string s is greater than c” that are un-
decidable in T . Even Demon, assuming it to be a Turing
compatible entity, will not be able to decide whether ev-
ery string of choices is irrational, in the sense of bein
complex g random and thus incompressible, under a

given AT RC. Importantly, even if we attempt to aug-
ment a particular AT RC with additional assumptions, as
long as the resulting theory continues to be consistent
and sound, the result will continue to hold though per-
haps with a different value of c. Put differently, no mat-
ter how many axioms we add or refine, there will con-
tinue to exist choice bit strings which we can not prove
to be irrational; that is, random.

In Chaitin’s colorful words introducing his the-
orem, “. . . if one has ten pounds of axioms and a
twenty-pound theorem, then that theorem cannot be
derived from those axioms” [23, p. 942]. The the-
orem can be proved by first assuming that member-
ship in INCOMPRESSIBLE is decidable by a Tur-
ing machine M. Since INCOMPRESSIBLE was pro-
duced by M its elements are denumerable and can be
ordered lexicographically. We can then construct an-
other Turing machine, M∗ that takes as input a decimal
number, n, and looks sequentially through elements of
INCOMPRESSIBLE and returns sn, the lexicographi-
cally first bit string in INCOMPRESSIBLE, which is of
length n. The binary representation of the decimal num-
ber n will be ≈ log2(n) bits long. That is, sn, an element
of INCOMPRESSIBLE, is uniquely described by the bit
string made up of the code for M∗ followed by the binary
representation of n or sn ≡ {〈M∗〉〈n〉}.

We also know that since sn produced by M∗ in an
n-bit string element of INCOMPRESSIBLE, K(sn) ≥
n. The length of sn ≡ {〈M∗〉〈n〉} which describes sn is
equal to the length of M∗ which is a constant, c once M∗

is fixed plus the length of the binary string encoding n,
log2(n).

Taken together, this yields: n ≤ log2(n)+ c. This
inequality cannot be true any sufficiently large value of
c. Therefor we conclude that Turing machine M cannot
exist and membership in the set INCOMPRESSIBLE is
undecidable. In turn this means RANDOM is also unde-
cidable.

The impossibility of an effective procedure does not
mean that it is never possible to decide whether a fi-
nite length choice bit string is random. In fact, for cer-
tain choice strings such as those containing only 1s, this
will be straightforward. Also, for choice strings that are
short relative to a given AT RC, proper determinations
may be possible. The impossibility of an effective pro-
cedure means that there can be no decision algorithm
derivable from any AT RC which is guaranteed to work
for any choice bit string it encounters. Demon will, in
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general, be unable to decide whether a choice bit string
came from an irrational agent.

3. Conclusion

We argue that for a person to be described as ra-
tional does not mean that all her choices are rational.
Mistakes, for example, are possible. Rather, rationality
requires at minimum that one’s choices not be random.
In this paper, we show that even for a Turing compat-
ible Demon with full knowledge of an agent’s prefer-
ences and choices, it will be undecidable whether or not
any given sequence of that agent’s choices is random in
the algorithmic complexity sense of being incompress-
ible. This result reflects the challenges of conceptualiz-
ing rational choice while respecting computability con-
straints. As has been pointed out by others [3], [6],
[8], [21], [24], much extant rational choice theory has
been developed using the mathematics of real analysis
with little concern for whether the underlying alterna-
tive sets and choice functions were computable under
the Church-Turing thesis.

While this result suggests that we will not have ax-
iomatic theory capable of deciding the rationality of all
possible strings of choices, it also illustrates that con-
sidering the compressibility of these strings will provide
upper bounds on their algorithmic complexity. Those
bounds can improve as new theories identify patterns
not derivable from previous ones. Compressibility mea-
sures, as defined within particular theories, offer com-
putable metrics for assessing relative rationality even
as the Kolmogorov complexity of a string is not com-
putable.

Rational choice theorists generally use classical
stochastic models in reasoning about uncertainty in the
decision process. While often appropriate, they can be
misleading when there is no estimable underlying distri-
bution from which observed data were drawn. In such
cases, algorithmic randomness, as discussed in this pa-
per, becomes significant.

Public policy problems have been analyzed repre-
senting preferences with real valued utility functions and
using real analysis to identify optimal policies. Alter-
natives are modeled as an uncountably infinite set of
real numbers most of which are not computable. If util-
ity functions are restricted to computable reals, many
optimality arguments, which depend upon topological

fixed point theorems, break down [6], [8]. As the num-
ber of alternatives grows, axiom sets would have to be
ever more complex if they are to be of use in decid-
ing whether choice strings are non-random in situations
where each choice string is sui generis.

It is not an adequate defense to argue that axiomatic
rational choice theories merely posit that agents be-
have “as if” they could make these calculations and it
thus is not important to know whether they actually do.
This would have us focus only on predictions and not
worry about the underlying mechanisms required for the
theory to make those predictions. However, it is pre-
cisely those mechanisms that are significant in address-
ing counterfactual questions arising in debates over best
decisions.

On the one hand, axiomatic theories of rational
choice yield powerful descriptions of choice behavior.
On the other, this power comes at the expense of axioms
which can be brittle with regard to computational lim-
its. The kind of conclusion reached in this paper is not
unusal as impossibility and undecidability results have
become standard fare post Gödel [25] and Turing [15].
As an increasing number of decision support models be-
come implemented on digital computers, it is important
to scrutinize underlying assumptions of computability.
We suggest the challenge is to develop theories of hu-
man decision-making and rational choice which have
computability built firmly into their axiomatic founda-
tions.
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