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Abstract The one-dimensional steady state analytical solution of the energy conservation equation
obtained by Robin (1955, https://doi.org/10.3189/002214355793702028) is frequently used in glaciology.
This solution assumes a linear change in surface velocity from a minimum value equal to minus the
mass balance at the surface to zero at the bed. Here we show that this assumption of a linear velocity
profile leads to large errors in the calculated temperature profile and especially in basal temperature.
By prescribing a nonlinear power function of elevation above the bed for the vertical velocity profile
arising from use of the Shallow Ice Approximation, we derive a new analytical solution for temperature.
We show that the solution produces temperature profiles identical to numerical temperature solutions
with the Shallow Ice Approximation vertical velocity near ice divides. We quantify the importance of strain
heating and demonstrate that integrating the strain heating and adding it to the geothermal heat flux at
the bed is a reasonable approximation for the interior regions. Our analytical solution does not include
horizontal advection components, so we compare our solution with numerical solutions of a
two-dimensional advection-diffusion model and assess the applicability and errors of the analytical
solution away from the ice divide. We show that several parameters and assumptions impact the spatial
extent of applicability of the new solution including surface mass balance rate and surface temperature
lapse rate. We delineate regions of Greenland and Antarctica within which the analytical solution at any
depth is likely within 2 K of the actual temperatures with horizontal advection.

1. Introduction
Variations in ice temperature affect the deformation rate by altering the rate factor several orders of mag-
nitude (e.g., Hooke, 1981), as well as the occurrence of sliding when basal temperatures reach the melting
point (e.g., Iken & Bindschadler, 1986). Therefore, robust estimation of ice sheet temperatures is essential
for modeling of ice flow. The temperature fields of ice sheets can be calculated using a variety of numerical
models (e.g., SICOPOLIS, Greve & Hutter, 1995; ISSM, Larour, Seroussi, et al., 2012; VarGlaS, Brinkerhoff
& Johnson, 2013; PISM, Aschwanden et al., 2012). However, applying these models often requires compu-
tationally expensive simulations. In contrast, analytical temperature solutions are useful because (1) they
are significantly easier to implement, (2) they serve as a validation tool for numerical models, (3) they facil-
itate analyzing the sensitivity of temperature profiles to various input parameters, and (4) they can provide
efficient tools for initializing numerical ice sheet simulations (e.g., Adalgeirsdottir et al., 2014; Aschwanden
et al., 2013).

The only analytical temperature solution widely used in glaciology is the Robin (1955) solution. Robin
emphasizes that his model is suitable only for the “temperature distribution near the centre of an ice
sheet.” This model is often used as a “back-of-the-envelope” means for estimating basal temperatures (e.g.,
Anandakrishnan et al., 1998; Jezek et al., 2015; Palmer et al., 2013; Portnov et al., 2016; Siegert, 2000); how-
ever, there has been no attempt to validate or quantify uncertainties associated with this solution or define
the area within which the Robin solution can be applied.

The Robin solution approximates the distribution of the vertical velocity as increasing linearly from the
surface value, equal to minus the surface mass balance rate, to zero at the bed. Here we show that this
assumption leads to an underestimation of temperatures, owing to extreme sensitivity of the energy con-
servation equation to parameterization of vertical velocity (section 2.1). In order to resolve this issue, we
approximate the vertical velocity obtained from the Shallow Ice Approximation (SIA; Hutter, 1983) with a
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Table 1
Symbols, Values, and Units

Symbol Value Unit Description
A 5 × 10−8 kPa−3year−1 deformation rate factor
.
b m/year basal melt rate
c 2097 J/kg.K heat capacity
erf(x) error function
.
𝜀xz year-1 strain rate of vertical shear
G 50 mW/m2 geothermal heat flux
Gs mW/m2 depth-integrated strain heating
𝛾 nonlinear exponent of vertical velocity
𝛾+ optimal exponent
Γ(a, x) upper incomplete gamma function
H m ice thickness
K 34.4 m2/year thermal diffusivity
𝜅 2.10 W/m.K thermal conductivity
L m ice sheet length
Lf 333.5 kJ/kg laten heat of fusion
.

M m/year surface mass balance rate (ice equivalent)
n 3 Glen's flow law exponent
n = {nx ,nz} normal vector
Qs mW/m2 strain heating
𝜌 910 kg/m3 ice density
T ◦C temperature
Ts

◦C surface temperature
Tb

◦C basal temperature
𝜏dx kPa driving stress
v⃗ = {vx , vz} m/year horizontal and vertical velocity

power function of elevation above the bed. We then implement this velocity profile in the one-dimensional,
steady state advection-diffusion equation and derive a new analytical solution that substantially improves
the temperature estimates (sections 2.2 and 2.3).

The presented analytical solution does not include strain heating, and therefore, we evaluate its importance
on the temperature profile (section 3). Additionally, we confirm the applicability of a previous suggestion of
incorporating strain heating by adding the depth-integrated strain heating to the geothermal heat flux at the
bed (Fowler, 1992) in the analytical solutions (section 3). Since the new analytical solution ignores horizontal
heat advection, we also compare the temperatures from the analytical solution to that of a two-dimensional
steady state ice sheet model, aiming at approximating the spatial extent away from the ice divide where our
solution can be applied (section 4). Finally, the results, implications, and spatial extent of applicability to
Greenland and Antarctic ice sheets are discussed (section 5).

2. One-Dimensional Models
In the interior of ice sheets, where horizontal velocities are small, the energy conservation can be considered
in the vertical (z) direction only. That is, horizontal advection and diffusion of heat are assumed small and
negligible. In steady state conditions, the 1-D energy conservation with constant heat flux at the bed (G) and
constant temperature at the surface (Ts) for an ice thickness of H is (Van der Veen, 2013, Section 6.2)

−K 𝜕
2T
𝜕z2 + vz

𝜕T
𝜕z

=
Qs

𝜌c
, for z ∈ Ω = (0,H) (1a)

𝜕T
𝜕nz

= −G
𝜅
, for z on ΓN (z = 0) (1b)

T = Ts, for z on ΓD(z = H), (1c)

REZVANBEHBAHANI ET AL. ANALYTICAL TEMPERATURE SOLUTION 272



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004774

Figure 1. Parameterization of vertical velocities (a) and their corresponding temperature profiles (b) from the SIA (equation (4)) with different exponents of
Glen's flow law and the Robin solution (equation (3)). The linear vz from the Robin solution (red dotted) is compared with the exact vertical velocity from SIA
(dashed). Surface mass balance rate,

.
M, is 0.3 m/year, and geothermal heat flux is G=50 mW/m2. SIA = Shallow Ice Approximation.

where T is the ice temperature, K is thermal diffusivity, and 𝜅 is thermal conductivity; vz is the vertical
velocity; 𝜌 and c are ice density and specific heat capacity, respectively. The surface and basal boundaries
are denoted by ΓD and ΓN , while Ω refers to the ice column (minus the boundaries). The quantity n is the
unit normal vector with components {nx,nz} in horizontal and vertical directions, respectively. Symbols and
their values are defined in Table 1.

In this study we initially ignore strain heating (Qs) in the analytical derivation. We then include Qs in the
numerical solution and examine how it affects the temperature profile. We also evaluate a simple method to
include strain heating in the analytical solution in section 3. Since we focus on nontemperate ice, the surface
temperatures that we use are cold enough to ensure that the basal temperatures will not reach the pressure
melting point throughout the study, and consequently, frictional heating arising from sliding at the bed can
be ignored.

2.1. Accuracy of Robin's Analytical Solution
In the absence of basal melting, if the vertical ice velocity, vz, is assumed to vary linearly from minus the
surface mass balance rate, −

.
M, at the ice surface to zero at the bottom (with z axis positive upward), where

the bed is at z = 0

vz = −
.

Mz
H
, (2)

then the analytical solution obtained by Robin (1955) for ice temperature at a given depth reads

T(z) = Ts −
G
√
𝜋

2𝜅q
[erf (zq) − erf (Hq)], (3)

with q =
√ .

M
2KH

and the error function is defined as erf (z) = 2√
𝜋
∫ z

0 exp(−z′2)dz′, where z′ is a dummy vari-
able. The basal temperature can be obtained by setting z = 0 in equation (3). Equation (2) holds when the
bed is frozen, and therefore, basal vertical velocity is 0. However, extensions to the Robin solution have been
proposed by Zotikov (1986, Section 4.2) and Hindmarsh et al. (2009) to include basal melt by introducing a
nonzero vertical velocity at the bed in the analytical solution.

Robin's linear approximation for the vertical velocity does not substantially deviate from vertical velocities
obtained by using the SIA. However, the system of equations (1a)–(1c) is very sensitive to the choice of
vertical velocity distribution and inappropriate approximations lead to incorrect temperature estimates.

Using the SIA and further assuming that the surface vertical velocity equals the surface mass balance rate,
the vertical velocity for z ∈ (0,H) is (Hindmarsh, 1999),

vzSIA
= −

.
M

n + 1

[(
1 − z

H

)n+2
− 1 + (n + 2) z

H

]
. (4)
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We use a finite element framework, FEniCS (Logg et al., 2012), to solve equation (1) numerically, given
the SIA vertical velocity profile for equation (4). Comparison of the numerical temperature solution with
that of the Robin solution (Figure 1) shows that small differences in the vertical velocity distribution can
lead to the underestimation of the basal temperature by ∼8 K in the Robin solution. This is because the
linear velocity profile systematically overestimates the vertical velocity at depth and thus overestimates the
downward advection of colder ice from the surface to deeper ice layers. Therefore, the Robin solution must
be cautiously used as a back-of-the-envelope method to estimate temperature in the interior regions. In the
following section, we address this issue by proposing a new analytical solution to equation (1). Note that
in reality, warmer, less viscous ice near the bed (produced by the geothermal heat flux) changes the profile
from the form of (4) to more resemble the Robin solution profile (2), reducing the numerical error associated
with the Robin solution. However, simulating this process requires thermomechanical coupling, which is
not considered in the Robin or the present solution.

2.2. New Analytical Temperature Solution
Assuming n = 3, the vertical velocity profile in the SIA (equation (4)) is a fifth-order polynomial. Deriving
an analytical solution for the temperature profile in equation (1) using this equation is not straightforward
and may not be possible. However, equation (4) can be approximated with a similar form to that of the
Robin's approximation but with an exponent greater than unity for the z∕H term so as to introduce a con-
cavity to the vertical velocity profile, similar to that produced by modeling internal deformation using the
SIA (Figure 1). Thus

vz = −
.

M
( z

H

)𝛾
. (5)

To find an analytical solution to the temperature equation (1) using this form for the velocity profile, we
follow the classic procedure for solving second-order ordinary differential equations without the source term
outlined by, for example, Boyce et al., (1969, Chapter 3).

Substituting profile (5) in equation (1) and for now setting Qs to 0, the 1-D advection-diffusion equation
becomes

𝜕2T
𝜕z2 +

.
M

KH𝛾
z𝛾 𝜕T
𝜕z

= 0. (6)

Next, we define 𝜆 as

λ =
.

M
KH𝛾

. (7)

The heat equation can then be written as

𝜕2T
𝜕z2 + (z)𝜕T

𝜕z
= 0, (8)

where (z) = λz𝛾 .

We define the temperature gradient term as 𝜕T
𝜕z

= 𝜓(z), so that the heat equation becomes

𝜕𝜓(z)
𝜕z

+ (z)𝜓(z) = 0. (9)

The solution of the function 𝜓(z) is (Boyce et al., 1969, Chapter 3)

𝜓(z) =
C1

𝜇(z)
, (10)

where 𝜇(z) is the integrating factor defined as

𝜇(z) = exp
(
∫ (z)dz

)
= exp

(
∫ λz𝛾dz

)
= exp

(
λ

𝛾 + 1
z𝛾+1

)
. (11)
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At the ice sheet bed, 𝜓(z) = 𝜕T
𝜕z
|||z=0

represents the geothermal flux boundary condition on a flat bed
(equation (1b)).

𝜓(0) =
C1

𝜇(0)
= −G

𝜅
. (12)

From equation (11) we know that 𝜇(0) = 1, meaning that C1 = −G
𝜅

and the full expression for 𝜓(z) is

𝜓(z) =
−G
𝜅

𝜇(z)
= −G

𝜅
exp

(
− λ
𝛾 + 1

z𝛾+1
)
. (13)

Then, by defining 𝜙 = − λ
𝛾+1

, the temperature profile T(z) can be obtained by integrating 𝜓(z) as

T(z) = ∫ 𝜓(z)dz = −G
𝜅 ∫ exp

(
𝜙z𝛾+1) dz. (14)

Therefore, the general solution to the temperature profile is

T(z) = −G
𝜅

⎛⎜⎜⎝
−z

(
−𝜙z𝛾+1) −1

𝛾+1

𝛾 + 1

⎞⎟⎟⎠Γ
(

1
1 + 𝛾

,−𝜙z𝛾+1
)
+ C2. (15)

where Γ(·, ·) is the upper incomplete gamma function (also known as the Euler integral of second kind)
defined by Boyce et al., (1969, Chapter 6) as

Γ(a, x) = ∫
∞

x
ta−1e−tdt. (16)

The value of Γ(·, ·) can be found in ordinary differential equation textbooks or standard numerical tables
(e.g., Abramowitz & Stegun, 1964), as well as in several standard software packages, for example, NAG®,
MATLAB®.

The integration constant, C2, is found by setting T(H) equal to the surface temperature, Ts. Substitution of
this into equation (15) produces

T(z) = Ts +
G(−𝜙)

−1
𝛾+1

𝜅(𝛾 + 1)

[
Γ
(

1
1 + 𝛾

,−𝜙z𝛾+1
)
− Γ

(
1

1 + 𝛾
,−𝜙H𝛾+1

)]
. (17)

Equation (17) is a general form of the analytical steady state solution to the 1-D energy equation with a
prescribed heat flux at the bed, surface temperature Ts, and a velocity parameterization of the form −

.
M( z

H
)𝛾

with 𝛾 > 0. In the special case where 𝛾 = 1, the error function emerges from the upper incomplete gamma
function through erf(x) = 1 −

Γ( 1
2 ,x

2)√
𝜋

(Amore, 2005; Gautschi, 1998) and the Robin solution is reproduced.
The difference between basal and surface temperature can be obtained by setting z = 0 in equation (17):

Tb − Ts =
G(−𝜙)

−1
𝛾+1

𝜅(𝛾 + 1)

[
Γ
(

1
1 + 𝛾

, 0
)
− Γ

(
1

1 + 𝛾
,−𝜙H𝛾+1

)]
. (18)

The value of 𝛾 that produces the best fit for approximating the vertical velocity profile obtained from the
SIA (equation (4)) is 𝛾 = 1.397. However, comparing the temperature profile calculated with this value in
the analytical solution with the temperature profile obtained numerically (with the vertical velocity profile
given by equation (4)) shows that the analytical solution does not quite match the numerical solution with
𝛾=1.397. Further adjustment of 𝛾 is required to match the temperature profile from analytical solution with
that of the numerical solution.

To find the optimal 𝛾 (hereafter 𝛾+), we plot temperature profiles from the analytical solution for a range of 𝛾
values in order to match this solution with the numerical solution (Figure 2). For the specific case shown in
Figure 2 (i.e.,

.
M=0.3 m/year and H = 3,000 m), we find that 𝛾+=1.523. However, 𝛾+ depends upon surface

mass balance rate and thickness values, which is investigated in section 2.3.
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Figure 2. Parameterization of vertical velocity with different exponents (a) and their corresponding temperature profiles (b). The exact vz from the Shallow Ice
Approximation (equation (4), dashed black) is compared with nonlinear power functions. A range of 𝛾 values are used to estimate velocities (colored lines). In
this specific case, 𝛾 = 1.532 shows the optimal exponent to match temperature calculations from our solution with that of Shallow Ice Approximation exact
vertical velocities (inset).

.
M is 0.3 m/year.

2.3. Finding 𝜸+
We perform a series of experiments to investigate parameters that affect 𝛾+. We find that 𝛾+ is sensitive to
surface mass balance rate (

.
M) and ice thickness (H). Since

.
M has the unit of velocity, the vertical Péclet

number can be defined as Pe =
.

MH
K

(hereafter we drop “vertical”). The Péclet number is a nondimensional
number that represents the ratio of advective to diffusive heat transfer (Bergman et al., 2011, Section 6.6). The
vertical temperature distribution of the ice sheet strongly depends on Pe number. If Pe = 0 (i.e., no vertical
advection), the vertical temperature distribution becomes linear with slope determined by the geothermal
heat flux. In steady state conditions with large Pe, advective heat transfer dominates the upper part of the
ice sheet, causing the upper layers to become isothermal (equal to the surface temperature), while the lower
parts of the column will be mostly modulated by conductive heat transfer forming a conductive boundary
layer near the bottom (Cuffey & Paterson, 2010; Zotikov, 1986). The normalized thickness of the conductive
boundary layer near the bottom is Pe−1/3 for the case of internal shearing and Pe−1/2 for plug flow (Morland,
1984).

The range of Péclet numbers considered here is between ∼2 and 100, corresponding to
.

M values from 0.1 to
1.5 m/year and thickness values from 1,000 to 3,000 m (e.g., Van den Broeke et al., 2011). In the thick interior
regions of ice sheets, vertical velocity as measured by the Péclet number is often insubstantial. For example,
in the East Antarctic Ice Sheet the Péclet number lies between 2 and 4. Although Pe values as high as 100
are atypical in Greenland and Antarctica, they can occur in ice caps of Iceland or Antarctic Peninsula. We
include this wide range of Pe numbers for completeness.

In order to find the 𝛾+, we iteratively solve for the 𝛾 in equation (18) with a fixed surface temperature Ts, in
order to match the basal temperature from the analytical solution with the numerical solution. The iteration
is terminated when the difference between basal temperatures from the two models is less than 0.05 K.
Results are summarized in Figure 3 where 𝛾+ is shown to have a logarithmic relationship with Péclet number
as

𝛾+ = 1.39 + 0.044 ln(Pe). (19)

Hereafter, all the calculations from the analytical solution are with 𝛾+ obtained from equation (19), unless
otherwise specified. Note that since our analysis is thermomechanically decoupled, the vertical velocity
distribution is independent of the ice temperature. Therefore, the value of 𝛾+ does not vary with changing
Ts or G.

3. Effect of Strain Heating
The analytical solution (17) is obtained in the absence of strain heating in (1). Since strain heating is a
depth-dependent term, it cannot be easily incorporated in the analytical solution. However, because most
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Figure 3. Dependence of 𝛾+ on vertical Pe. The value for 𝛾+ is calculated
by iterative adjustment of 𝛾 in our solution to match the numerical solution
(black circles), and the logarithmic fit (red line) provides an expression for
finding the optimal gamma value. The value of 𝛾+ is independent of basal
and surface boundary conditions (G and Ts).

of the vertical shear is concentrated in the basal ice layers, Fowler (1992)
suggests that a good approximation is that the strain heating can be
included by adding it to the basal boundary condition (equation (1b)).
In this section, we investigate under which conditions this “lumping”
of strain heating to the basal boundary condition is valid, by compar-
ing the basal temperatures estimated from the analytical solution with
those obtained from the numerical solution (which includes explicit
calculation of strain heating at depth).

Heat released by internal deformation of ice can be expressed in terms of
vertical shear strain rate ( .

𝜀xz) and shear stress (𝜏xz) at depth through (e.g.,
Van der Veen, 2013, Section 4.2)

Qs = 2 .
𝜀xz𝜏xz. (20)

This equation is a valid approximation when SIA constraints hold. For
lamellar flow the shear stress increases linearly from 0 at the surface to
maximum shear stress at the bed. In case of SIA, the basal shear stress
equals the driving stress, which is calculated by 𝜏dx = −𝜌gH 𝜕H

𝜕x
(Nye,

1952). Applying Glen's constitutive relation with n = 3, and rate factor
A to express the vertical strain rate in terms of the shear stress, the strain
heating at depth becomes (Blatter & Greve, 2015; Van der Veen, 2013),

Qs = 2A
(

1 − z
H

)4
𝜏4

dx. (21)

If the temperature is solved numerically, this term can be added explicitly at every depth (note that depen-
dence of rate factor, A, on temperature is neglected). However, including the source term in the form of
equation (21) in the 1-D energy conservation equation would further complicate the analytical temperature
solution, if a solution exists at all. Therefore, we evaluate whether the strain heating can be incorporated
by elevating the heat flux at the bed. The total strain heating in an ice column (Gs) can be obtained by
integrating equation (21) along a vertical profile; therefore,

Gs = ∫
H

0
Qsdz = ∫

H

0
2A

(
1 − z

H

)4
𝜏4

dxdz = 2
5

AH𝜏4
dx. (22)

This amount of strain heating needs to be added to the basal boundary condition used in the analytical
solution.

To assess the importance of strain heating for temperature of an ice column, we compare temperature pro-
files from (1) temperature profile from the analytical solution without strain heating, (2) temperature profile
from the analytical solution with Gs added to the geothermal heat flux, and (3) numerical solution with Qs
as strain heating at depth. The ice thickness is 3,000 m with Ts of −30◦C,

.
M of 0.3 m/year (which results in

Pe = 26.16) and G of 50 mW/m2. Since strain heating depends on rate factor and driving stress, different
values of rate factor are chosen to represent the effect of hard and soft ice, in addition to three driving stress
values (Figure 4). The three driving stress values of 20, 40, and 60 kPa are chosen as typical values in the
interior regions of ice sheets (see Figure 1 in Sergienko et al., 2014).

Our results indicate that for low driving stresses (∼20 kPa), regardless of the rate factor, the effect of strain
heating is negligible, and all three profiles (with different rate factors) produce nearly identical tempera-
tures (Figures 4a, 4d, and 4g). At a driving stress of 40 kPa, temperature estimates from both the numerical
inclusion of strain heating (Qs) and the “lumped” strain heating (Gs) increase, with the lumped strain
heating slightly overestimating the basal temperatures compared with the numerical solutions. For a soft
ice with the rate factor of 10−7 kPa−3∕year (corresponding to ∼ −5◦C), the basal temperature with Gs
exceeds that of Qs by less than 2 K. However, ignoring the strain heating underestimates the basal tem-
perature by about ∼4 K (Figure 4h). With the driving stress of 40 kPa, these two approaches of including
the strain heating (i.e., Qs and Gs) produce relatively similar temperature profiles, confirming the pre-
vious suggestion by Fowler (1992). With the driving stress of 60 kPa, temperature overestimation of the
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Figure 4. (a–i) Incorporating strain heating in the temperature profile. The analytical solution without strain heating (dashed gray) is compared with the
numerical solution with strain heating (solid black) and addition of depth-integrated strain heating to the geothermal heat flux in the analytical solution
(dashed red). Temperature profiles at each row have the same rate factor that correspond to −20, −10, and −5◦C, respectively.
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Figure 5. Effect of strain heating on the basal temperature of an ice column with varying ice thickness and rate factors. (a) The difference between basal
temperature from the analytical solution without strain heating and the numerical solution with strain heating, and (b) The same temperature difference but
depth-integrated strain heating is added to the heat flux at the bed. In the numerical solution, strain heating expression (Qs, equation (21)) is incorporated as a
source term in the solution (right-hand side of equation (1)). For the analytical solution the depth-integrated strain heating (Gs, equation (22)) is added to the
geothermal heat flux of 50 mW/m2 at the bottom. Results are shown for three different values of rate factor as A = 10−8 (dotted), A = 5 × 10−8 (solid), and
A = 10−7 kPa−3∕year (dashed) lines. Note the difference in y axes.

lumped strain heating compared with the numerical inclusion of Qs is small for a hard ice with a rate fac-
tor of 10−8 kPa−3∕year (Figure 4c). However, this overestimation rapidly increases for softer ice with rate
factors of 5 × 10−8 and 10−7 kPa−3∕year, making the lumping method less accurate (Figures 4f and 4i).

Since both Gs and Qs are related to the fourth power of driving stress, the significance of including strain heat-
ing (either through Gs or Qs) sharply increases with increase in driving stress. Therefore, ignoring the strain
heating in the analytical solution results in erroneous underestimation of temperature profile. Although the
lumping method suggested by Fowler (1992) slightly overestimates the basal temperature compared with the
numerical inclusion of Qs, the magnitude of its overestimation is significantly smaller than the magnitude
of underestimation when strain heating is ignored.

Figure 5 shows a similar comparison to that in Figure 4 but for basal temperatures of ice columns with differ-
ent thickness and rate factors. For a hard ice with rate factor of 10−8 kPa−3∕year (corresponding to ∼ −20◦C)
ignoring strain heating results in underestimation of basal temperature in the analytical solution by ∼2 K.
For softer ice the underestimation becomes more marked and rapidly increases with larger driving stress
values (Figure 5a). However, lumping the depth-integrated strain heating with geothermal heat flux, despite
the slight overestimation of basal temperature compared with the numerical solution with Qs, produces a
more reliable approximation of the basal temperature. Although the difference between the analytical and
numerical solutions (with Gs and Qs, respectively) increases with driving stress (Figure 5b), the difference
in basal temperatures remains within ∼2 K up to driving stress of ∼50–60 kPa. Ignoring the strain heating
in the analytical solution, however, results in substantial underestimation of basal temperatures even with
small driving stresses and rate factors (Figure 5a). Therefore, our results corroborate the findings of Fowler
(1992) and Gs obtained from equation (22) must be incorporated in the analytical solution.

Note that a uniform rate factor over the depth of the ice column has been used throughout this study. The rate
factor is, however, a temperature-dependent parameter, but that is not considered here. In order to properly
account for the changes of rate factor, the energy equation must be solved numerically by parameterizing
the rate factor as a function of temperature (e.g., Clarke et al., 1977), which is not included in this study.

Although the driving stress is 0 at the ice divide (and strain heating is consequently 0), our temperature
solution does not accurately estimate the basal temperature at the ice divide locations. Since the basal shear
stress becomes 0 at the ice divide, the SIA assumptions are violated, and therefore, the vertical velocity shape
function at the ice divide is different from the SIA-derived vertical velocity (Raymond, 1983). Our solution
incorporates an approximation to the SIA-derived vertical velocity profile, and therefore, it cannot be used
at the ice divide where SIA assumptions are violated (see section 5 for discussion).

REZVANBEHBAHANI ET AL. ANALYTICAL TEMPERATURE SOLUTION 279



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004774

Figure 6. (a–d) Difference between the analytical solution and the full 2-D solution (Tanalytical − Tnumerical) for a Vialov profile with different
.

M values and
geothermal heat flux of G = 50 mW/m2. The analytical solution is calculated using 𝛾+ as a function of Péclet number (equation (19)). Surface temperature lapse
rate of 7.1 K/km is used as an average annual value representing Greenland (Steffen & Box, 2001). Contour lines representing 2k intervals are shown (solid
black). The second y axis shows the surface horizontal velocity of the Vialov profile (green line).

4. Effect of Horizontal Advection
Since the upstream high-elevation regions have a colder surface temperature (owing to temperature lapse
rates being negative), the ice that is advected downstream has a lower temperature than the ice deposited
immediately above. Hence, the horizontal ice flow lowers the temperature of the downstream regions.
Since equation (17) is derived as a solution of the 1-D temperature equation and ignores the effect of hor-
izontal heat advection, we compare temperatures from our solution with those obtained numerically for a
two-dimensional ice sheet. As with the one-dimensional numerical solutions, we use FEniCS to solve the
temperature equation:

−K
(
𝜕2T
𝜕z2 + 𝜕2T

𝜕x2

)
+
(

vz
𝜕T
𝜕z

+ vx
𝜕T
𝜕x

)
= 0, on Ω, (23a)

𝜕T
𝜕nz

= −G
𝜅
, for z on ΓN1

(z = 0), (23b)

𝜕T
𝜕nx

= 0, for x on ΓN2
(x = 0), (23c)

T = Ts, for z on ΓD(z = H), (23d)

with ΓN1
denoting the basal boundary and ΓN2

denoting the boundary at the ice divide. We apply a range of
surface mass balance and temperature lapse rates for 2-D simulations with surface temperature of −20◦C at
zero elevation, chosen sufficiently low to keep basal temperatures below the pressure melting point. Strain
heating is also ignored for 2-D simulations.

For the ice sheet profile, we use the Vialov (1958) steady state profile, which is based on horizontal ice
velocity determined by the SIA and constant surface mass balance rate. The Vialov profile is(

H
H0

)2+ 2
n
+
( x

L

)1+ 1
n = 1, (24)
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Figure 7. Same as Figure 6 but with different values for surface temperature lapse rates. The
.

M of 0.3 m/year is used in the Vialov profile, and geothermal heat
flux is G = 50 mW/m2.

with thickness at the ice divide, H0, defined as

H0
2+ 2

n = 2
( .

M
A0

) 1
n

L1+ 1
n , (25)

and the constant A0 defined as

A0 = 2A
n + 2

(𝜌g)n. (26)

Since the ice thickness goes to 0 at the edge of the Vialov profile, we artificially assign a thickness of 5 m to the
downstream edge of the profile to prevent singularity in the continuity equation. We adopt the Vialov profile
to avoid introducing too many variables and feedbacks. The two-dimensional temperature equation (23) is
solved numerically for this profile. The artificially modified 5-m thickness at the edge of the profile has a
constant temperature boundary condition of −20◦C.

The Vialov profile (equation (24)) is calculated for an ice sheet of length L = 750 km and rate factor of
A = 5 × 10−8 kPa−3∕year, roughly corresponding to −10◦C temperature. The uniform rate factor implies
that we are not accounting for thermomechanical coupling between temperature and ice flow (similar to
section 3). We use different surface mass balance rates between 0.3 and 1 m/year. After obtaining the surface
profile and driving stress through 𝜏dx = −𝜌gH 𝜕H

𝜕x
, we calculate the horizontal and vertical velocities {vx, vz}

from the SIA (Van der Veen, 2013, equations (4.22)–(4.30)). We then apply the calculated velocities into the
2-D energy conservation equation (23) and solve for the temperature distribution using the Galerkin finite
element method. The streamline upwind Petrov-Galerkin method (Brooks & Hughes, 1982) is implemented
to stabilize the spurious oscillations arising from the advection terms (similar to Brinkerhoff & Johnson,
2013; Cummings, 2016).

So far in the analysis, the surface kinematical condition has been equating the surface vertical velocity to
−

.
M. While this is a reasonable approximation close to the ice divide, farther away, the effect of surface slope

on the kinematical condition has to be accounted for. For steady state conditions, the vertical velocity at
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Figure 8. The basal temperature difference between the analytical solution
and 2-D numerical solution as a function of surface temperature lapse rate.
The x axis shows the range of lapse rates, and the y axis is the maximum
normalized distance from the ice divide where the difference between the
two solutions is less than defined temperature thresholds. At lapse rates
lower than where the peak occurs, our analytical solution overestimates the
basal temperatures and vice versa.

.
M of 0.3 m/year and G of 50 mW/m2 are

used for simulations.

the surface is related to the mass balance and horizontal velocity at the
surface as (Van der Veen, 2013, equation (9.77)),

vz
||surface = vx

||surface
𝜕H
𝜕x

−
.

M. (27)

The surface vertical velocities are calculated from equation (27) and
applied in the analytical solution.

We present a series of comparisons between our analytical solution and
the 2-D thermal model. For clarity, only one parameter is changed at
a time. Figure 6 shows the difference between the analytical and the
numerical solution for a range of surface mass balance rates with a lapse
rate of 7.1 K/km (the annual average for Greenland, Steffen & Box, 2001).
A new Vialov profile and corresponding SIA velocity fields are calculated
for every surface mass balance rate, and the surface horizontal velocity
along the ice sheet is plotted over the Vialov profile (Figure 6). This com-
parison shows that the 1-D analytical solution overestimates englacial
temperatures away from the ice divide (owing to the absence of horizon-
tal advection terms). However, the basal temperature differences remain
within 1−2 K for a large portion of the distance from the ice flow center.
Use of the SIA in the creation of the Vialov profile shows that the horizon-
tal velocities increase with an increase in the surface mass balance rate.
Hence, the effect of horizontal advection lowers the downstream temper-
atures (as shown in Figure 6). Although the location of the 2 K offset in

basal temperatures varies with changes in
.

M values, the magnitude of surface velocities remains between
∼100 and 200 m/year for all profiles (Figure 6).

We assess the effect of surface temperature lapse rate on horizontal heat advection. We use a range of lapse
rates from 5 to 8 K/km to a Vialov profile with

.
M of 0.3 m/year (Figure 7). Since the surface mass balance

rate is taken uniform for all comparisons, velocities for all simulations are identical and surface temperature
is the only different parameter between these simulations. With a lower lapse rate of 5 K/km our solution
slightly overestimates the basal temperature farther from the ice divide. As the lapse rate increases, the
colder ice advected from upstream regions increases and shortens the extent of our 1-D solution's applica-
bility within a 2-D Vialov profile. The surface horizontal velocity at the location where the offset in basal
temperatures is 2 K is ∼100 m/year (similar to Figure 6).

We summarize the results of experiments with different lapse rates in Figure 8, which shows the maximum
normalized distance from the ice divide where the difference between the basal temperatures from the two
solutions less than a defined threshold. The thresholds, arbitrarily defined at 0.5, 1, and 2 K, are plotted with
respect to the range of lapse rates. The extents of applicability show a notable peak at certain lapse rates,
below which the analytical solution overestimates and above which it underestimates the basal temperature
profiles. For lapse rates between 5.5 and 7.5 K/km, the difference in basal temperature estimates is small for
much of the ice sheet length. However, for low lapse rates of 3–4 K/km and lapse rates larger than 8 K/km,
the extent of applicability of the 1-D analytical solution is more limited.

5. Discussion
We have presented a new analytical solution to the 1-D vertical heat transport equation with flow field con-
strained by the SIA by parameterizing the vertical velocity of the SIA as a power function. In the absence
of horizontal velocities, the temperatures from the new analytical solution match those from the numerical
solution with the exact SIA vertical velocity. The analytical solution incorporates an optimal exponent, 𝛾+,
which depends on surface mass balance rate,

.
M, and thickness of the ice column, H. In order to use this solu-

tion, one must first calculate the vertical Péclet number as Pe =
.

MH
K

and use it to obtain 𝛾+ (equation (19)).
The value of 𝛾+ can be used to calculate the temperature profile using equation (17), and basal temperature
can be obtained through equation (18). In order to include the strain heating in the analytical solution, the
depth-integrated strain heating obtained from equation (22) can be added to the geothermal heat flux at the
bed (following Fowler, 1992).
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Figure 9. Difference between basal and surface temperature (Tb − Ts)
from the analytical solution (equation 18) with respect to surface mass
balance rate near ice divide for different thickness values.

The Péclet number includes the effects of two parameters that have
an opposite effect on the temperature of an ice column: ice thickness
has an insulating effect, so that thicker ice results in warmer temper-
atures at depth, while increase in surface mass balance rate results in
increased vertical advection of cold surface ice, lowering the tempera-
ture at depth. According to equation (19), 𝛾+ increases with an increase
in

.
M, and higher 𝛾+ results in warmer temperature profiles (Figure 2).

This may appear contradictory because surface mass balance acts as a
cooling agent. However, the magnitude of 𝛾+ increases marginally with
an increase in

.
M, while changes in 𝜙 and Γ(·, ·) in the analytical solu-

tion (equation (17)) cancel the small increase in basal temperature due
to increased 𝛾+. Therefore, the analytical solution is robust in captur-
ing the thermal effect of increased vertical advection. This is evident in
Figure 9, where larger surface mass balance rates reduce the difference
between surface and basal temperature hence cooling the temperature
profile, while the Tb − Ts increases with an increase in ice thickness.

Note that at close proximity to ice divides (i.e., a few ice thicknesses) the
basal shear stress becomes zero, violating SIA assumptions (Raymond,
1983) and having the consequence of inducing formation of a stagnant

plug near the base under the divide. Also, it has been suggested that Glen's flow exponent near ice divides is
close to 1 (Pettit & Waddington, 2003), which also results in lower rate of vertical advection of cold ice and
leads to a warmer basal ice (Figure 1, blue curves). Therefore, our analytical solution likely underestimates
the basal temperatures in a region about ∼3–4 ice thicknesses away from ice divides.

In all comparisons, the parameters of interest are kept uniform along the ice flow. This is certainly an
oversimplification; surface mass balance clearly is not uniform on the ice sheet with higher rates near the
margins than the interiors (e.g., Ettema et al., 2010), and spatial variations of geothermal heat flux (e.g., Fox
Maule et al., 2009; Rezvanbehbahani et al., 2017) have been shown to significantly impact the velocity field
of ice sheets (e.g., Larour, Morlighem, et al., 2012; Schlegel et al., 2015). Surface temperature lapse rate is
also unlikely to be uniform along the surface of an ice sheet (e.g., Erokhina et al., 2017; Hanna et al., 2005),
which can alter the ice sheet temperature distribution. In the present study, the Vialov profiles and the cor-
responding velocities are obtained from an ice sheet-wide uniform rate factor, and the mechanical model
is decoupled from the thermal model. The interaction between the flow regime and thermal field requires
thermomechanical coupling, which is not included and is beyond the scope of this study (see, e.g., Bondzio
et al., 2017; Clarke et al., 1977; Dahl-Jensen, 1989; Greve & Blatter, 2016). Thermal coupling can also lead to
stream formation and oscillations, (e.g., Brinkerhoff & Johnson, 2015; Hindmarsh, 2009; MacAyeal, 1993;
Payne, 1995).

The goal of the presented comparisons with the 2-D thermal model is not to mathematically quantify the
effect of the horizontal advection term. Rather, our goal is to demonstrate the limitations of the 1-D analyti-
cal solution in a simple 2-D ice sheet profile and setting loose constraints beyond which the solution cannot
be applied. Evidently, even in these simplest cases quantifying the impact of horizontal advection is not
straightforward. Despite these limitations, we delineate the interior regions of the Greenland and Antarctic
ice sheets where the effect of horizontal advection and strain heating are likely less than 2 K compared with
the analytical solution. In all the comparisons between the analytical solution and the 2-D numerical solu-
tion shown in section 4, the horizontal surface velocity that corresponds to the location of a 2 K difference
was more than 100 m/year. Owing to all the simplifications associated with the 2-D simulations, we chose
a significantly more conservative range of 20 m/year for the limit of 2 K offset in the analytical tempera-
ture solution. Also, as shown in section 3, strain heating can be incorporated in the analytical solution by
adding the depth-integrated strain heating to the geothermal heat flux up to driving stresses of ∼50–60 kPa
and produce basal temperatures within ∼2 K of the actual value. Therefore, the boundaries marked in
Figure 10 show the regions with both surface velocities less than 20 m/year and driving stresses smaller
than ∼60 kPa. Ice streams are excluded from the marked regions, because their inherent shelfy stream
characteristic (MacAyeal, 1989) makes horizontal advection the dominant heat transport mechanism.
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Figure 10. Approximate delineation of the regions where the analytical temperature solution can be used on the
Greenland and Antarctic ice sheets with less than 2 K error (green regions). The boundaries mark the interior of both
the driving stress of ∼60 kPa (pink contour) and surface velocity of 20 my/year (blue contour). Greenland and Antarctic
velocities are from Joughin et al. (2010) and Rignot et al. (2011), respectively. The driving stresses for Greenland and
Antarctica are calculated from surface digital elevation models of Bamber et al. (2013) and Fretwell et al. (2013),
respectively, and all parameters are resampled to 10-km spatial resolution.

Throughout this study, the surface temperatures are chosen sufficiently low so as to avoid melting of the
basal ice. However, assessing whether basal ice is at the pressure melting point can be done using our solu-
tion, since one can solve for the heat flux in (18) that is required for the basal ice to reach the pressure melting
point, Gpmp, as

Gpmp =
(Tpmp − Ts)𝜅(𝛾 + 1)(−𝜙)

1
𝛾+1

Γ
(

1
1+𝛾
, 0
)
− Γ

(
1

1+𝛾
,−𝜙H𝛾+1

) . (28)

The pressure melting temperature can be estimated by Tpmp = 273.16 − 𝛽P, where P = 𝜌gH is the over-
burden pressure and 𝛽 is the Clausius-Clapeyron constant of 9.8 × 10−8 kPa−1 (Cuffey & Paterson, 2010). If
the sum of geothermal heat flux and strain heating close to the ice divide exceeds Gpmp, the melt rate,

.
b can

be estimated by

.
b =

G + Gs − Gpmp

L𝑓 𝜌
, (29)

where Lf is the latent heat of fusion (see Table 1). This can be used as a first-order approximation for assessing
the thermal condition at the bed (e.g., Van Liefferinge & Pattyn, 2013) or find the minimum amount of heat
required to thaw the bed at the radar-detected locations with basal thaw (e.g., Oswald et al., 2018). If it is
concluded that the bed is at the pressure melting temperature, frictional heating can be readily added to the
geothermal heat flux as Gsliding = 𝜏 × vsliding.

6. Conclusion
We present a new analytical solution to the one-dimensional heat transport equation by parameterizing the
vertical velocity profile as a power function. Temperatures from the analytical solution match numerical
results obtained using vertical velocities derived from the SIA. We show that strain heating plays an impor-
tant role in calculating the temperature profile of ice sheet interiors. We validate the approach suggested by
Fowler (1992) that strain heating can be integrated at depth (Gs) and added to the geothermal heat flux at the
bed. We show that with driving stresses of up to ∼50–60 kPa, the analytical solution with Gs overestimates
the basal temperature by less than 2 K.
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We evaluate errors in temperature estimates from the analytical solution arising from ignoring horizon-
tal advection, by calculating the offset between the analytical solution and two-dimensional temperature
estimates of a Vialov profile. The comparison results depend on various parameters such as surface mass bal-
ance rate, geothermal heat flux, and surface temperature lapse rate. The effect of horizontal heat advection
is more pronounced on the englacial temperatures, but the basal temperatures from the analytical solution
remain within 2 K of the numerically computed temperatures for a large portion of the ice sheet length.
Finally, we mark approximate boundaries where the new analytical solution can be used with less than 2 K
error in Greenland and Antarctica. The analytical solution presented can be used to validate temperature
calculations from numerical ice sheet models.
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