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ABSTRACT
A novel approach that utilizes Fokas’s unified transform is employed for studying a reaction-diffusion equation with power nonlinearity
formulated either on the half-line or on a finite interval with data in Sobolev spaces. This approach was recently introduced for initial-
boundary value problems involving dispersive nonlinear equations such as the nonlinear Schrödinger and the Korteweg-de Vries equations.
Thus, the present work extends the new approach from dispersive equations to diffusive ones, demonstrating the universality of the unified
transform in the analysis of nonlinear evolution equations on domains with a boundary.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118767., s

I. INTRODUCTION
We consider the following reaction-diffusion equation with power nonlinearity formulated on the half-line with a nonzero Dirichlet

boundary condition:

ut − uxx = ∣u∣p−1u, x ∈ (0,∞), t ∈ (0, T), (1.1a)
u(x, 0) = u0(x), x ∈ [0,∞), (1.1b)
u(0, t) = g0(t), t ∈ [0, T], (1.1c)

where p = 2, 3, 4, . . ., T < 1, and u is real-valued. For initial and boundary data in appropriate Sobolev spaces, we shall show that the above
initial-boundary value problem (IBVP) is well-posed in the sense of Hadamard, i.e., it possesses a unique solution that depends continuously
on the data.

The reaction-diffusion equation (1.1a) has been studied extensively and from various points of view, see, for example, Refs. 1, 33,
19, 18, 4, 8, 28, 5, and 17, the books32,23 and the references therein. All of these works are concerned either with the initial value prob-
lem (IVP) or with IBVPs formulated with zero boundary conditions. In the case of the half-line IBVP (1.1), this corresponds to taking
g0 ≡ 0. On the contrary, here we consider the case of nonzero Dirichlet boundary conditions. In fact, the main objective of this work
is to take advantage of a new approach for the well-posedness of nonlinear evolution equations, which relies on the novel solution for-
mulae produced via the unified transform of Fokas9,10 for the forced linear counterparts of these equations and which was originally
developed for dispersive equations such as the nonlinear Schrödinger,11 the Korteweg-de Vries,12 and the “good” Boussinesq20 equations.
That is, the primary purpose of this work is to advance the aforementioned new approach from dispersive equations to diffusive ones and
thereby to demonstrate the universality of the unified transform as a tool for studying nonlinear evolution equations on domains with a
boundary.

The forced linear counterpart of the nonlinear IBVP (1.1) reads as follows:
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ut − uxx = f (x, t), x ∈ (0,∞), t ∈ (0, T), (1.2a)
u(x, 0) = u0(x), x ∈ [0,∞), (1.2b)
u(0, t) = g0(t), t ∈ [0, T]. (1.2c)

Once a solution formula is derived for the linear problem (1.2), an iteration map can be defined for the solution of the nonlinear problem (1.1).
Then, after establishing appropriate estimates on the linear solution formula, it is possible to show well-posedness of the nonlinear problem
via a contraction mapping argument. In this connection, we note that, since the boundary datum g0 is nonzero, problem (1.2) cannot be
solved by converting it into an IVP via the reflection method. Moreover, the well-known sine transform solution formula for this problem is
not convenient for the purpose of estimates due to its oscillatory nature. Thus, a significant obstacle is present already at the very beginning
of the analysis, namely, at the stage of simply specifying a suitable iteration map. This stands in stark contrast with the case of the IVP, where
the linear problem is solved by means of a straightforward application of the Fourier transform.

A novel approach was recently introduced for the study of IBVPs involving nonlinear evolution equations. This approach bypasses the
absence of Fourier transform in the IBVP setting by exploiting the unified transform of Fokas for the explicit solution of forced linear evolution
IBVPs.9,10 In the case of problem (1.2), Fokas’s method yields the formula

u(x, t) = S[u0, g0; f ](x, t)

=
1

2π ∫k∈R
eikx−k2t û0(k)dk −

1
2π ∫k∈∂D+

eikx−k2t û0(−k)dk

+
1

2π ∫k∈R
eikx−k2t

∫

t

t′=0
ek2t′ f̂ (k, t′)dt′dk −

1
2π ∫k∈∂D+

eikx−k2t
∫

t

t′=0
ek2t′ f̂ (−k, t′)dt′dk

−
i
π ∫k∈∂D+

eikx−k2t k̃g0(k2, T)dk, (1.3)

where û0 and f̂ are the half-line Fourier transforms of the initial datum u0 and the forcing f defined by

û0(k) = ∫
∞

x=0
e−ikxu0(x)dx, f̂ (k, t) = ∫

∞

x=0
e−ikxf (x, t)dx, (1.4)

the time transform g̃0 of the boundary datum g0 is given by

g̃0(k2, T) = ∫
T

t=0
ek2tg0(t)dt, (1.5)

and the contour of integration ∂D+ is the positively oriented boundary of the region D+
= {k ∈ C : Im(k) ⩾ ∣Re(k)∣} of the complex k-plane,

as shown in Fig. 1.
We shall begin our analysis by employing the unified transform formula (1.3) for studying the forced linear IBVP (1.2) with

data in Sobolev spaces Hs. For a function f on the whole line and s⩾ 0, these spaces are defined in terms of the Fourier transform
f̂ (ξ) = ∫x∈R e−iξxf (x)dx of f by

FIG. 1. The regions D± with their positively oriented boundaries ∂D±.
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Hs
(R) = {f ∈ L2

(R) : (1 + ξ2
)

s
2 f̂ (ξ) ∈ L2

(R)}.

For functions on an open set Ω such as the half-line or a finite interval, the relevant Sobolev spaces are obtained as restrictions of their
whole-line counterparts according to the definition

Hs
(Ω) = {f : f = F∣Ω with F ∈ Hs

(R)}, Ω ⊂ R.

Our main result for the forced linear IBVP (1.2) is the following:

Theorem 1.1 (Linear estimates on the half-line). Suppose 1
2 < s < 3

2 , u0 ∈ Hs
x(0,∞) and g0 ∈ H(2s+1)/4

t (0, T) with u0(0) = g0(0). Then, the
solution u = S[u0, g0; f ] to the forced linear heat IBVP (1.2) given by the unified transform formula (1.3) admits the space and time estimates,

sup
t∈[0,T]

∥u(t)∥Hs
x(0,∞) ⩽ cs(∥u0∥Hs

x(0,∞) + ∥g0∥
H

2s+1
4

t (0,T)
+
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,∞)), (1.6)

sup
x∈[0,∞)

∥u(x)∥
H

2s+1
4

t (0,T)
⩽ cs(∥u0∥Hs

x(0,∞) + ∥g0∥
H

2s+1
4

t (0,T)
+
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,∞)), (1.7)

where cs = c(s) > 0.

We shall see later that the correspondence s ↔ 2s+1
4 between the regularity (in x) of u0 and the regularity (in t) of g0 stated in Theorem

1.1 emanates from two independent directions: (i) the space regularity of a reduced version of the linear heat IBVP (1.2) with zero initial data
and zero forcing and (ii) the time regularity of the linear heat IVP with data in Hs

x(R). In regard to the latter direction, it is remarkable that
the space H(2s+1)/4

t (0, T) for the time regularity of the linear heat IVP is also associated with the linear Schrödinger IVP (see, for example,
Refs. 24 and 11).

The linear estimates of Theorem 1.1 combined with a contraction mapping argument give our next result, which is about the nonlinear
IBVP (1.1).

Theorem 1.2 (Well-posedness on the half-line). Suppose 1
2 < s < 3

2 and p−1
2 ∈ N. Then, for u0 ∈ Hs

x(0,∞) and g0 ∈ H(2s+1)/4
t (0, T) with

the compatibility condition u0(0) = g0(0), the reaction-diffusion IBVP (1.1) has a unique solution u ∈ C([0, T∗]; Hs
x(0,∞)) which satisfies the

estimate

sup
t∈[0,T∗]

∥u(t)∥Hs
x(0,∞) + sup

x∈[0,∞)
∥u(x)∥

H
2s+1

4
t (0,T∗)

⩽ 2cs∥(u0, g0)∥D, (1.8)

where ∥(u0, g0)∥D =∥u0∥Hs
x(0,∞) + ∥g0∥

H
2s+1

4
t (0,T)

and the lifespan T∗ is given by

T∗ = min{T,
1

p2(2cs)
2p
∥(u0, g0)∥

2(p−1)
D

}, cs > 0. (1.9)

Furthermore, the data-to-solution map {u0, g0}↦ u is locally Lipschitz continuous.

As noted earlier, the new “unified transform approach to well-posedness” has already been implemented for the nonlinear Schrödinger,
the Korteweg-de Vries and the “good” Boussinesq equations on the half-line.11,12,20 These three problems share two things in common: (i)
they involve dispersive equations and (ii) they are formulated on the half-line. The present work advances the unified transform approach to
well-posedness in two different directions: (i) from dispersive to diffusive equations and (ii) from the half-line to a finite interval. The former of
these two purposes is accomplished in Theorem 1.2. Concerning the latter one, we note that Theorem 1.1 for the forced linear heat equation
on the half-line (1.2) can also be exploited for the following reaction-diffusion IBVP on a finite interval:

ut − uxx = ∣u∣p−1u, x ∈ (0, ℓ), t ∈ (0, T), (1.10a)
u(x, 0) = u0(x), x ∈ [0, ℓ], (1.10b)
u(0, t) = g0(t), u(ℓ, t) = h0(t), t ∈ [0, T]. (1.10c)

Indeeed, thanks to the linear estimates of Theorem 1.1, it suffices to study the forced linear counterpart of problem (1.10) only in the special
case of f = u0 = g0 = 0. Then, similarly to the half-line, we prove the following result:
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Theorem 1.3 (Well-posedness on a finite interval). Suppose 1
2 < s < 3

2 and p−1
2 ∈ N. Then, for u0 ∈ Hs

x(0, ℓ), g0 ∈ H(2s+1)/4
t (0, T), and

h0 ∈ H(2s+1)/4
t (0, T) with the compatibility conditions u0(0) = g0(0) and u0(ℓ) = h0(0), the reaction-diffusion IBVP (1.10) has a unique solution

u ∈ C([0, T∗]; Hs
x(0, ℓ)) which satisfies the estimate

sup
t∈[0,T∗]

∥u(t)∥Hs
x(0,ℓ) + sup

x∈[0,ℓ]
∥u(x)∥

H
2s+1

4
t (0,T∗)

⩽ 2cs∥(u0, g0, h0)∥D, (1.11)

where ∥(u0, g0, h0)∥D =∥u0∥Hs
x(0,ℓ) + ∥g0∥

H
2s+1

4
t (0,T)

+ ∥h0∥
H

2s+1
4

t (0,T)
and

T∗ = min{T,
1

p2(2cs)
2p
∥(u0, g0, h0)∥

2(p−1)
D

}, cs > 0. (1.12)

Furthermore, the data-to-solution map {u0, g0, h0}↦ u is locally Lipschitz continuous.

We note that apart from the unified transform approach of Refs. 11, 12, and 20, there also exist other approaches in the literature for the
well-posedness of dispersive nonlinear IBVPs, namely, the works of Colliander, Kenig, and Holmer6,21,22 as well as of Bona, Sun, and Zhang2,3

for the Korteweg-de Vries and the nonlinear Schrödinger equations on the half-line. Furthermore, for a different treatment of linear and
nonlinear evolution IBVPs that combines the unified transform with inverse scattering techniques, we refer the reader to Fokas and Pelloni,15

Pelloni,29,30 Fokas, Its, and Sung,13 Fokas and Lenells,14,25,26 Fokas and Spence,16 Deconinck, Pelloni, and Sheils,7 Sheils and Smith,31 and the
references therein.
Structure of the paper. Section II is devoted to the analysis of the linear heat equation on the half-line in the case of zero initial data and
zero forcing. This problem is referred to as the pure linear IBVP. The relevant estimates are then combined with those of Sec. III for the
linear heat IVP to yield Theorem 1.1 for the forced linear IBVP on the half-line. In turn, this result is employed for carrying out a contraction
mapping argument that establishes Theorem 1.2 for the nonlinear IBVP on the half-line (1.1) in the case of “smooth” data (s > 1

2 ). The analog
of Theorem 1.1 for the forced linear heat equation on a finite interval is proved in Sec. IV, where Theorem 1.3 for the nonlinear IBVP on a
finite interval (1.10) in the case of smooth data is also established. Finally, the case of “rough” data (s < 1

2 ) both on the half-line and on a finite
interval is discussed in Sec. V along with some concluding remarks.

II. THE PURE LINEAR IBVP ON THE HALF-LINE
The estimates of Theorem 1.1 for the forced linear problem (1.2) are essential to the contraction mapping argument that leads to the

well-posedness of the nonlinear problem (1.1) (Theorem 1.2). Linearity and the superposition principle allow us to treat the IBVP (boundary
data) and the IVP (initial data and forcing) components of problem (1.2) separately. We begin with the more challenging IBVP component,
which reduces to the following problem that we identify as the pure linear IBVP (see Sec. III for more details on this reduction):

vt − vxx = 0, x ∈ (0,∞), t ∈ (0, 2), (2.1a)
v(x, 0) = 0, x ∈ [0,∞), (2.1b)

v(0, t) = g(t) ∈ H
2s+1

4
t (R), supp(g) ⊂ (0, 2). (2.1c)

In the case of the pure linear IBVP (2.1), the unified transform solution formula (1.3) becomes

v(x, t) = S[0, g; 0](x, t) =
1
π ∫

∞

k=0
eia3kx+ik2t k̂g(k2

)dk +
1
π ∫

∞

k=0
eiakx−ik2t k̂g(−k2

)dk, (2.2)

where a = ei π4 and ĝ(τ) = ∫t∈R e−iτtg(t)dt is the whole-line Fourier transform of g [note that the transform g̃ defined by (1.5) is equal to ĝ
thanks to the compact support of g]. Using formula (2.2), we shall establish the following estimates for problem (2.1):

Theorem 2.1 (Pure linear IBVP on the half-line). The solution v = S[0, g; 0] of the pure linear IBVP (2.1) given by the unified transform
formula (2.2) admits the space and time estimates,

sup
t∈[0,2]

∥v(t)∥Hs
x(0,∞)⩽ cs ∥g∥

H
2s+1

4
t (R)

, s ⩾ 0, (2.3)

sup
x∈[0,∞)

∥v(x)∥
H

2s+1
4

t (0,2)
⩽ cs ∥g∥

H
2s+1

4
t (R)

, s ∈ R. (2.4)
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Remark 2.1. The space estimate (2.3) is the one that motivates the space H(2s+1)/4
t (0, T) for the boundary data of IBVP (1.1). We shall

see later that another, less direct, source of motivation for the boundary data space is the time regularity (3.4) of the linear heat IVP.

Proof of Theorem 2.1. In order to prove the space estimate (2.3), we write v = v1 + v2 with

v1(x, t) = ∫
∞

k=0
eiγ1kxG1(k, t)dk, G1(k, t) =

1
π

eik2t k̂g(k2
), γ1 = a3

= ei 3π
4 , (2.5)

v2(x, t) = ∫
∞

k=0
eiγ2kxG2(k, t)dk, G2(k, t) =

1
π

e−ik2t k̂g(−k2
), γ2 = a = ei π4 . (2.6)

The estimation of v1 and v2 is entirely analogous. Thus, we only provide the details for v1. It is convenient to employ the physical space
definition of the Hs

x(0,∞) -norm,

∥v1(t)∥Hs
x(0,∞)=

⌊s⌋

∑
j=0
∥∂

j
xv1(t)∥L2

x(0,∞) +∥∂⌊s⌋x v1(t)∥β, s = ⌊s⌋ + β ⩾ 0, 0 ⩽ β < 1, (2.7)

where ⌊⋅⌋ denotes the floor function and, for 0 < β < 1, the fractional norm ∥⋅∥β is defined by

∥v1(t)∥2
β = ∫

∞

x=0
∫

∞

y=0

∣v1(x, t) − v1(y, t)∣2

∣x − y∣1+2β dydx ≃ ∫
∞

x=0
∫

∞

z=0

∣v1(x + z, t) − v1(x, t)∣2

z1+2β dzdx.

There are three cases to consider: (i) ⌊s⌋ = 0 and β ≠ 0; (ii) β = 0; (iii) ⌊s⌋ ≠ 0 and β ≠ 0.
(i) The case ⌊s⌋ = 0 and β ≠ 0. Then, s = β ∈ (0, 1) and we need to estimate ∥v1(t)∥L2

x(0,∞) and ∥v1(t)∥β. The first norm will be estimated
together with the L2

x(0,∞) -norms of the higher derivatives of v1 in case (ii). For the second norm, we have

∥v1(t)∥2
β ⩽ ∫

∞

z=0
∫

∞

x=0

1
z1+2β (∫

∞

k=0
∣eiγ1k(x+z)

− eiγ1kx
∣∣G1(k, t)∣dk)

2
dxdz

and use the following lemma:

Lemma 2.1 (Ref. 12, Lemma 2.1). If γ ∈ C with Im(γ) > 0, then

∣eiγkx
− eiγkz

∣ ⩽
√

2(1 +
∣Re(γ)∣
Im(γ)

)∣e−Im(γ)kx
− e−Im(γ)kz

∣ ∀k, x, z ⩾ 0.

Employing Lemma 2.1 with γ = γ1 = ei 3π
4 and subsequently making the change of variables

√
2

2 x → x,
√

2
2 z → z, we obtain

∥v1(t)∥2
β ≲ ∫

∞

z=0

1
z1+2β ∫

∞

x=0
(∫

∞

k=0
e−kx
(1 − e−kz

)∣G1(k, t)∣dk)
2
dxdz. (2.8)

We identify the k-integral in (2.8) as the Laplace transform of Qz,t(k) ≐ (1 − e−kz
)∣G1(k, t)∣. In this connection, we have the following result:

Lemma 2.2 (L2-boundedness of the Laplace transform). The map

L : ϕ↦ ∫
∞

τ=0
e−τtϕ(τ)dτ

is bounded from L2
τ(0,∞) into L2

t (0,∞) with

∥L{ϕ}∥L2
t (0,∞)⩽

√
π ∥ϕ∥L2

τ(0,∞) .

A Proof of Lemma 2.2 is available in Ref. 11. Using this lemma for ϕ = Qz ,t , we infer
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∥v1(t)∥2
β ≲ ∫

∞

z=0

1
z1+2β ∥Qz,t∥

2
L2

k(0,∞) dz

= ∫

∞

k=0
∣G1(k, t)∣2 ∫

∞

z=0

(1 − e−kz
)

2

z1+2β dzdk ≲ ∫
∞

k=0
k2
∣̂g(k2

)∣
2
∣k∣2βdk,

with the last inequality due to the definition (2.5) of G1 and the fact that

∫

∞

z=0

(1 − e−kz
)

2

z1+2β dz = k2β
∫

∞

ζ=0

(1 − e−ζ)2

ζ1+2β dζ ≃ k2β, 0 < β < 1. (2.9)

Then, making the change of variable τ = k2, we obtain

∥v1(t)∥2
β≲ ∫

∞

τ=0
∣τ∣

2β+1
2 ∣̂g(τ)∣2dτ ⩽∥g∥

H
2β+1

4
t (R)

, 0 < β < 1, (2.10)

which is the desired estimate for v1 and indicates that the optimal value of m is indeed 2s+1
4 .

(ii) The case β = 0. Differentiating formula (2.5) and taking its L2-norm, we have

∥∂
j

xv1(t)∥L2
x(0,∞) ⩽∥∫

∞

k=0
e−

√
2

2 kx
∣k∣j+1

∣̂g(k2
)∣dk∥L2

x(0,∞) .

Therefore, using again Lemma 2.2 for the L2-boundedness of the Laplace transform and estimating as in case (i), we find

∥∂
j

xv1(t)∥L2
x(0,∞) ≲ ∥∣k∣

j+1 ĝ(k2
)∥

L2
k(0,∞)

≲∥g∥2

H
2j+1

4
t (R)

, j = 0, 1, . . . , ⌊s⌋

so that

∥v1(t)∥H⌊s⌋x (0,∞) ≲∥g∥H
2⌊s⌋+1

4
t (R)

, ⌊s⌋ ⩾ 0. (2.11)

(iii) The case ⌊s⌋ ≠ 0 and β ≠ 0. We now have s = ⌊s⌋ + β with ⌊s⌋ ⩾ 1 and 0 < β < 1. Thanks to our earlier work in cases (i) and (ii), it
suffices to estimate the fractional norm ∥∂⌊s⌋x v1(t)∥β. Proceeding as in case (i), we obtain

∥∂
⌊s⌋
x v1(t)∥

2

β ≲ ∫
∞

k=0
k2(⌊s⌋+β)+2

∣̂g(k2
)∣

2dk = ∥k⌊s⌋+β+1ĝ(k2
)∥

2

L2
k(0,∞)

,

which can be estimated like the corresponding term in case (ii) to yield

∥∂
⌊s⌋
x v1(t)∥β ≲∥g∥H

2s+1
4

t (R)
, ⌊s⌋ ⩾ 1. (2.12)

Estimates (2.10)–(2.12) combined with the definition (2.7) imply the space estimate (2.3) for v1. As noted earlier, this estimate can be
established for v2 in the exact same way. Hence, the proof of the space estimate (2.3) for v is complete.

The time estimate (2.4) is easier to obtain. In particular, the change of variable k =
√
τ turns formula (2.2) into

v(x, t) ≃ ∫
∞

τ=0
eia3√τx+iτt ĝ(τ)dτ + ∫

0

τ=−∞
eia
√
−τx+iτt ĝ(τ)dτ.

Therefore, since the x-exponentials involved above are bounded by 1 for x ⩾ 0, we find

∥v(x)∥2

H
2s+1

4
t (R)

≲ ∫

∞

τ=0
(1 + τ2

)
2s+1

4 e−
√

2
√
τx
∣̂g(τ)∣2dτ + ∫

0

τ=−∞
(1 + τ2

)
2s+1

4 e−
√

2
√
−τx
∣̂g(τ)∣2dτ

⩽ ∫

∞

τ=0
(1 + τ2

)
2s+1

4 ∣̂g(τ)∣2dτ + ∫
0

τ=−∞
(1 + τ2

)
2s+1

4 ∣̂g(τ)∣2dτ =∥g∥2

H
2s+1

4
t (R)

.

The Proof of Theorem 2.1 is complete. ◽
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III. LINEAR IVP ESTIMATES AND PROOF OF THEOREMS 1.1 AND 1.2
In this section, we analyze the IVP component of the forced linear IBVP (1.1). Then, combining the relevant estimates with those

of Theorem 2.1 for the pure linear IBVP, we deduce the linear Theorem 1.1. Finally, we combine this result with a contraction mapping
argument in order to infer the nonlinear Theorem 1.2.

We begin with the homogeneous linear heat IVP

Ut −Uxx = 0, x ∈ R, t ∈ (0, T), (3.1a)

U(x, 0) = U0(x) ∈ Hs
x(R), (3.1b)

which can be solved via the whole-line Fourier transform Û(ξ, t) = ∫x∈R e−iξx U(x, t)dx to yield

U(x, t) = S[U0; 0](x, t) =
1

2π ∫ξ∈R
eiξx−ξ2t Û0(ξ)dξ. (3.2)

Theorem 3.1 (Estimates for the homogeneous linear IVP). The solution U = S[U0; 0] of the linear heat IVP (3.1) given by formula (3.2)
admits the estimates

sup
t∈[0,T]

∥U(t)∥Hs
x(R) ⩽∥U0∥Hs

x(R), s ∈ R, (3.3)

sup
x∈R
∥U(x)∥

H
2s+1

4
t (0,T)

⩽ cs ∥U0∥Hs
x(R), − 1

2 ⩽ s < 3
2 . (3.4)

Remark 3.1. The time estimate (3.4) provides a second source of motivation [in addition to the pure linear IBVP estimate (2.3)] for the
boundary data space of the half-line problem (1.1). It is interesting to note that, despite the diffusive nature of the heat equation, the Sobolev
exponent 2s+1

4 is precisely the one appearing in the corresponding estimate for the (dispersive) linear Schrödinger equation (see Refs. 24
and 11).

Proof of Theorem 3.1. The solution formula (3.2) combined with the definition of the Hs
x(R) -norm implies the space estimate (3.3) for

all s ∈ R and all t ⩾ 0,

∥U(t)∥2
Hs

x(R) = ∫ξ∈R
(1 + ξ2

)
s
∣e−ξ

2tÛ0(ξ)∣
2dξ ⩽ ∫

ξ∈R
(1 + ξ2

)
s
∣Û0(ξ)∣

2dξ =∥U0∥
2
Hs

x(R) .

The proof of the time estimate (3.4) is more involved. Letting m = 2s+1
4 and noting that − 1

2 ⩽ s < 3
2 corresponds to 0⩽m < 1, we employ

definition (2.7) to write

∥U(x)∥Hm
t (0,T) = ∥U(x)∥L2

t (0,T)
+ ∥U(x)∥

m
, 0 ⩽ m < 1, (3.5)

where for 0 <m < 1, the fractional norm ∥⋅∥m is defined by

∥U(x)∥2
m = ∫

T

t=0
∫

T

t′=0

∣U(x, t) −U(x, t′)∣2

∣t − t′∣1+2m dt′dt ≃ ∫
T

t=0
∫

T−t

z=0

∣U(x, t + z) −U(x, t)∣2

z1+2m dzdt.

For the norm ∥U(x)∥L2
t (0,T), we have

∥U(x)∥L2
t (0,T) ≲ ∫

T

t=0
[∫

1

ξ=0
e−ξ

2t
(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ]

2
dt (3.6a)

+ ∫
T

t=0
[∫

∞

ξ=1
e−ξ

2t
(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ]

2
dt. (3.6b)

By the Cauchy-Schwarz inequality, we find

(3.6a) ≲ ∫
T

t=0
(∫

1

ξ=0
e−2ξ2t

(1 + ξ2
)
−s

dξ) ∥U0∥
2
Hs

x(R) dt ⩽ csT ∥U0∥
2
Hs

x(R), s ∈ R. (3.7)

J. Math. Phys. 60, 081509 (2019); doi: 10.1063/1.5118767 60, 081509-7

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Moreover, making the change of variable ξ =
√
τ, we have

(3.6b) = ∫
T

t=0

⎛

⎝
∫

∞

τ=1
e−τt ∣Û0(−

√
τ)∣ + ∣Û0(

√
τ)∣

2
√
τ

dτ
⎞

⎠

2

dt ≲∥L{ϕ}∥2
L2

t (0,∞), (3.8)

where L{ϕ}(t) = ∫
∞

τ=0 e−τtϕ(τ)dτ is the Laplace transform of the function

ϕ(τ) = {
τ−

1
2 (∣Û0(−

√
τ)∣ + ∣Û0(

√
τ)∣), τ ⩾ 1,

0, 0 ⩽ τ < 1.

Hence, Lemma 2.2 yields

(3.6b) ≲ ∫
∞

τ=1
τ−1
∣Û0(−

√
τ)∣2dτ + ∫

∞

τ=1
τ−1
∣Û0(
√
τ)∣2dτ

and, letting ξ = −
√
τ and ξ =

√
τ in the first and the second integral, respectively, we obtain

(3.6b) ≲ ∫
∣ξ∣⩾1
∣ξ∣−1
∣Û0(ξ)∣

2dξ ⩽∥U0∥
2

H
− 1

2
x (R)

⩽∥U0∥
2
Hs

x(R), s ⩾ − 1
2 . (3.9)

Combining estimates (3.7) and (3.9), we find

∥U(x)∥L2
t (0,T) ≲∥U0∥Hs

x(R), s ⩾ − 1
2 , x ∈ R. (3.10)

For the fractional norm ∥U(x)∥m, starting from formula (3.2), we compute

∣U(x, t + z) −U(x, t)∣ ≲ ∫
1

ξ=0
e−ξ

2t
(1 − e−ξ

2z
)(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ

+ ∫
∞

ξ=1
e−ξ

2t
(1 − e−ξ

2z
)(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ.

Hence, from the definition of ∥U(x)∥m, we have

∥U(x)∥2
m ≲ ∫

T

t=0
∫

T−t

z=0

1
z1+2m [∫

1

ξ=0
e−ξ

2t
(1 − e−ξ

2z
)(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ]

2
dzdt (3.11a)

+ ∫
T

t=0
∫

T−t

z=0

1
z1+2m [∫

∞

ξ=1
e−ξ

2t
(1 − e−ξ

2z
)(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)dξ]

2
dzdt. (3.11b)

For any s ∈ R, the Cauchy-Schwarz inequality implies

(3.11a) ≲ T ∥U0∥
2
Hs

x(R) ∫
1

ξ=0
(1 + ξ2

)
−s
∫

T

z=0

(1 − e−ξ
2z
)

2

z1+2m dzdξ.

Therefore, employing (2.9) for k = ξ2 and β = m, we find

(3.11a) ≲ T ∥U0∥
2
Hs

x(R) ∫
1

ξ=0
(1 + ξ2

)
−s
ξ4mdξ = csT ∥U0∥

2
Hs

x(R), − 1
2 < s < 3

2 . (3.12)

Furthermore, letting ξ =
√
τ, we have

(3.11b) ≲ ∫
T

z=0

1
z1+2m ∥L{ϕ}(z)∥

2
L2

t (0,∞) dz,

where
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ϕ(τ) = {
τ−

1
2 (1 − e−τz

)(∣Û0(−
√
τ)∣ + ∣Û0(

√
τ)∣), τ ⩾ 1,

0, 0 ⩽ τ < 1.

Thus, by the Laplace transform bound of Lemma 2.2, we find

(3.11b) ≲ ∫
∞

ξ=1
ξ−1
(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)

2
∫

T

z=0

(1 − e−ξ
2z
)

2

z1+2m dzdξ

and, using (2.9) as before, we obtain

(3.11b) ≲ ∫
∞

ξ=1
ξ4m−1

(∣Û0(−ξ)∣ + ∣Û0(ξ)∣)
2dξ ≲∥U0∥

2
Hs

x(R), − 1
2 < s < 3

2 . (3.13)

Combining estimates (3.12) and (3.13), we deduce

∥U(x)∥m ≲∥U0∥Hs
x(R), − 1

2 < s < 3
2 , x ∈ R, (3.14)

which together with estimate (3.10) and the definition (3.5) yield estimate (3.4). ∎

After analyzing the homogeneous linear IVP (3.1), it remains to estimate the following forced linear IVP with zero forcing:

Wt −Wxx = F(x, t), x ∈ R, t ∈ (0, T), (3.15a)
W(x, 0) = 0, x ∈ R, (3.15b)

whose solution via the whole-line Fourier transform Ŵ(ξ, t) = ∫x∈R e−iξx W(x, t)dx is given by

W(x, t) = S[0; F](x, t) =
1

2π ∫ξ∈R ∫
t

t′=0
eiξx−ξ2

(t−t′)F̂(ξ, t′)dt′dξ (3.16a)

= ∫

t

t′=0
S[F(⋅, t′); 0](x, t − t′)dt′. (3.16b)

Theorem 3.2 (Estimates for the forced linear IVP). The solution W = S[0; F] of the forced linear heat IVP (3.15) given by (3.16) admits
the space and time estimates,

sup
t∈[0,T]

∥W(t)∥Hs
x(R) ⩽ T sup

t∈[0,T]
∥F(t)∥Hs

x(R), s ∈ R, (3.17)

sup
x∈R
∥W(x)∥

H
2s+1

4
t (0,T)

⩽ cs
√

T sup
t∈[0,T]

∥F(t)∥Hs
x(R),

1
2 < s < 3

2 . (3.18)

Proof of Theorem 3.2. The space estimate (3.17) follows by combining the Duhamel formula (3.16b) with Minkowski’s integral inequality
and the homogeneous space estimate (3.3).

Concerning the time estimate (3.18), we set m = 2s+1
4 and employ the physical space Sobolev norm (3.5). Since 1

2 < s < 3
2 corresponds to

1
2 < m < 1, we only need to estimate ∥W(x)∥L2

t (0,T) and ∥W(x)∥m. For the first term, starting from the Duhamel representation (3.16b) and
combining Minkowski’s integral inequality with the homogeneous time estimate (3.4), we find

∥W(x)∥L2
t (0,T) ⩽ ∫

T

t′=0
∥S[F(⋅, t′); 0](x, t − t′)∥L2

t (0,T) dt′ ⩽ T sup
t∈[0,T]

∥F(t)∥Hs
x(R) . (3.19)

For the second term, writing

W(x, t + z) −W(x, t) = ∫
t

t′=0
[S[F(⋅, t′); 0](x, t + z − t′) − S[F(⋅, t′); 0](x, t − t′)]dt′

+ ∫
t+z

t′=t
S[F(⋅, t′); 0](x, t + z − t′)dt′
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and recalling the definition of the fractional norm, we have

∥W(x)∥2
m ≲ ∫

T

t=0
∫

T−t

z=0

1
z1+2m ∣∫

t

t′=0
[S[F(⋅, t′); 0](x, t + z − t′) − S[F(⋅, t′); 0](x, t − t′)]dt′∣

2
dzdt (3.20a)

+ ∫
T

t=0
∫

T−t

z=0

1
z1+2m ∣∫

t+z

t′=t
S[F(⋅, t′); 0](x, t + z − t′)dt′∣

2
dzdt. (3.20b)

By Minkowski’s integral inequality and estimate (3.4), we obtain

(3.20a) ⩽ (∫
T

t′=0
∥S[F(⋅, t′); 0](x, t − t′)∥

m
dt′)

2

≲ (T sup
t∈[0,T]

∥F(t)∥Hs
x(R) )

2
. (3.21)

Furthermore, using the representation (3.16a), we have

(3.20b) ⩽ ∫
T

t=0
∫

T−t

z=0

1
z1+2m ∥

1
2π ∫ξ∈R

eiξx
∫

t+z

t′=t
e−ξ

2
(t+z−t′)F̂(ξ, t′)dt′dξ∥

2

L∞x (R)
dzdt.

Hence, the Sobolev embedding theorem for s > 1
2 implies

(3.20b) ⩽ ∫
T

t=0
∫

T−t

z=0

1
z1+2m ∥

1
2π ∫ξ∈R

eiξx
∫

t+z

t′=t
e−ξ

2
(t+z−t′)F̂(ξ, t′)dt′dξ∥

2

Hs
x(R)

dzdt

⩽ ∫

T

t=0
∫

T−t

z=0

1
z1+2m ∫ξ∈R

(1 + ξ2
)

s
(∫

t+z

t′=t
∣F̂(ξ, t′)∣dt′)

2
dξdzdt,

and Minkowski’s integral inequality further yields

(3.20b) ⩽ ∫
T

t=0
∫

T−t

z=0
sup

t′∈[t,t+z]
∥F(t′)∥2

Hs
x(R) ⋅ z

1−2mdzdt ≲ T3−2m sup
t∈[0,T]

∥F(t)∥2
Hs

x(R), (3.22)

after recalling that m < 1. Combining (3.20)–(3.22) and the fact that T < 1, we deduce

∥W(x)∥m≲
√

T sup
t∈[0,T]

∥F(t)∥Hs
x(R) . (3.23)

Overall, estimates (3.19) and (3.23) together with the definition (3.5) imply the desired time estimate (3.18), concluding the Proof of
Theorem 3.2. ∎

Thanks to the superposition principle, Theorems 2.1, 3.1, and 3.2 can be combined to infer Theorem 1.1 for the forced linear heat IBVP
on the half-line (1.2). In particular, let U0 ∈ Hs

x(R) and F ∈ C([0, T]; Hs
x(R)) be, respectively, whole-line extensions of the initial datum

u0 ∈ Hs
x(0,∞) and the forcing f ∈ C([0, T]; Hs

x(0,∞)) of problem (1.2) satisfying

∥U0∥Hs
x(R) ⩽ c ∥u0∥Hs

x(0,∞), sup
t∈[0,T]

∥F(t)∥Hs
x(R) ⩽ c sup

t∈[0,T]
∥f (t)∥Hs

x(0,∞) . (3.24)

Furthermore, let

G0(t) = g0(t) − S[U0; 0](0, t) (3.25)

and note that, thanks to the compatibility condition u0(0) = g0(0) of Theorem 1.1, for s > 1
2 we have G0(0) = 0. Then, by linearity, the solution

of IBVP (1.2) can be expressed in the form

S[u0, g0; f ] = S[U0; 0]∣
x∈(0,∞)

+ S[0; F]∣
x∈(0,∞)

+ S[0, G0; 0] − S[0, S[0; F]∣
x=0

; 0], (3.26)

where the first and second terms on the right-hand side are the solutions of problems (3.1) and (3.15), which have been estimated in Theorems
3.1 and 3.2, while the third and fourth terms satisfy the IBVP
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ut − uxx = 0, x ∈ (0,∞), t ∈ (0, T), (3.27a)
u(x, 0) = 0, x ∈ [0,∞), (3.27b)
u(0, t) = G(t), t ∈ [0, T], (3.27c)

with G = G0 and G = S[0; F]∣
x=0

, respectively. Note that in both cases we have G(0) = 0. Furthermore, the time estimates (3.4) and (3.18)
together with inequalities (3.24) imply

∥G0∥
H

2s+1
4

t (0,T)
⩽ cs ( ∥u0∥Hs

x(0,∞) + ∥g0∥
H

2s+1
4

t (0,T)
), 0 ⩽ s < 3

2 , (3.28a)

∥S[0; F]∣
x=0
∥

H
2s+1

4
t (0,T)

⩽ cs
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,∞), 1

2 < s < 3
2 , (3.28b)

i.e., in both cases G ∈ H(2s+1)/4
t (0, T). Thus, along the lines of Ref. 11, G can be extended outside (0, T) via the compactly supported function

g(t) = {Eθ(t), t ∈ (0, 2),
0, t ∈ (0, 2)c, (3.29)

where Eθ(t) = θ(t)E(t) with θ ∈ C∞0 (R) a smooth cutoff function such that 0 ⩽ θ(t) ⩽ 1 for all t ∈ R, θ(t) = 1 for |t| ⩽ 1, and θ(t) = 0 for
|t| ⩾ 2, and E ∈ H(2s+1)/4

t (R) an extension of G such that ∥E∥H(2s+1)/4
t (R)⩽ c∥G∥H(2s+1)/4

t (0,T). Importantly, by construction, we have supp(g) ⊂ (0, 2)
and

∥g∥
H

2s+1
4

t (R)
⩽ cs ∥G∥

H
2s+1

4
t (0,T)

, 1
2 < s < 3

2 . (3.30)

Thus, for the boundary datum g defined by (3.29), the pure linear IBVP (2.1) restricted on (0,∞) × (0, T) becomes precisely IBVP (3.27).
Therefore, for 1

2 < s < 3
2 , Theorem 2.1 and inequalities (3.28) imply the space estimates

sup
t∈[0,T]

∥S[0, G0; 0](t)∥Hs
x(0,∞) ⩽ cs ( ∥u0∥Hs

x(0,∞) + ∥g0∥
H

2s+1
4

t (0,T)
), (3.31a)

sup
t∈[0,T]

∥S[0, S[0; F]∣
x=0

; 0](t)∥Hs
x(0,∞) ⩽ cs

√
T sup

t∈[0,T]
∥f (t)∥Hs

x(0,∞), (3.31b)

and the time estimates

sup
x∈[0,∞)

∥S[0, G0; 0](x)∥
H

2s+1
4

t (0,T)
⩽ cs ( ∥u0∥Hs

x(0,∞) + ∥g0∥
H

2s+1
4

t (0,T)
), (3.32a)

sup
x∈[0,∞)

∥S[0, S[0; F]∣
x=0

; 0](x)∥
H

2s+1
4

t (0,T)
⩽ cs
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,∞) . (3.32b)

Estimates (3.31) and (3.32) combined with Theorems 3.1 and 3.2 and the superposition formula (3.26) yield Theorem 1.1.
Local well-posedness on the half-line. The linear estimates of Theorem 1.1 will now be combined with a contraction mapping argument in
order to prove Theorem 1.2 on the well-posedness of the nonlinear reaction-diffusion IBVP on the half-line (1.1).
Existence and uniqueness of solution. We set f = |u|p−1u = up, p−1

2 ∈ N, and use the unified transform formula (1.3) for the linear IBVP (1.2) to
define the following iteration map for the nonlinear IBVP (1.1):

u↦ Φu = Φu0 ,g0 u ≐ S[u0, g0; up
].

We shall show that for lifespan T∗ given by (1.9), this map is a contraction in the space

X = C([0, T∗]; Hs
x(0,∞)). (3.33)

The space estimate (1.6) together with the algebra property in Hs
x(0,∞) implies
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∥Φu∥X ⩽ cs(∥(u0, g0)∥D +
√

T∗∥u∥p
X),

1
2 < s < 3

2 .

Let B(0,%) = {u ∈ X :∥u∥X ⩽ %} be a ball centered at 0 with radius % = 2cs ∥(u0, g0)∥D, where the data norm ∥(u0, g0)∥D is defined in Theorem
1.2. Then, for u ∈ B(0, %), we have

∥Φu∥X ⩽
%
2

+ cs
√

T∗ %p.

Thus, the map u↦ Φu takes B(0, %) into B(0, %), provided that

%
2

+ cs
√

T∗ %p
⩽ % ⇔ T∗ ⩽

1

(2cs)2p∥(u0, g0)∥
2(p−1)
D

. (3.34)

Furthermore, using estimate (1.6) for Φu1 −Φu2 = S[0, 0; up
1 − up

2 ], we obtain

∥Φu1 −Φu2∥X ⩽ cs
√

T∗ sup
t∈[0,T∗]

∥(up
1 − up

2)(t)∥Hs
x(0,∞)

, 1
2 < s < 3

2 .

Thus, employing the identity up
1 − up

2 = (u
p−1
1 + up−2

1 u2 +⋯ + u1up−2
2 + up−1

2 )(u1 − u2) and the algebra property in Hs
x(0,∞), we deduce

∥Φu1 −Φu2∥X ⩽ p cs
√

T∗%p−1
∥u1 − u2∥X , 1

2 < s < 3
2 .

Hence, the map u↦ Φu is a contraction in B(0, %) with

∥Φu1 −Φu2∥X ⩽
1
2
∥u1 − u2∥X , ∀u1, u2 ∈ B(0,%), (3.35)

provided that

p cs
√

T∗%p−1
⩽

1
2
⇔ T∗ ⩽

1

p2(2cs)
2p
∥(u0, g0)∥

2(p−1)
D

. (3.36)

Since p > 1, condition (3.34) is weaker than condition (3.36) and they are both satisfied for T∗ given by (1.9). Therefore, by the contraction
mapping theorem, the map u↦ Φu has a unique fixed point in B(0, %). Equivalently, the integral equation u = Φu for the reaction-diffusion
IBVP (1.1) has a unique solution u ∈ B(0, %) ⊂ X.

Finally, we note that thanks to the time estimate (1.7) the contraction mapping argument can also be carried out in the finer space
C([0, T∗]; Hs

x(0,∞)) ∩ C([0,∞); H(2s+1)/4
t (0, T∗)) instead of just the space X, thus giving rise to estimate (1.8). The proof of existence and

uniqueness is complete.
Continuity of the data-to-solution map. We conclude the Proof of Theorem 1.2 by showing that the data-to-solution map Hs

x(0,∞)
× H(2s+1)/4

t (0, T) ∋ (u0, g0) ↦ u ∈ X is continuous. Let (u01 , g01) and (u02 , g02) be two pairs of data lying inside a ball Bδ ⊂ D of radius
δ > 0 centered at a distance a from the origin. Denote by u1 = Φu01 , g01

u1 and u2 = Φu02 , g02
u2 the corresponding solutions to IBVP (1.1), which

are obtained as fixed points in the spaces Xu1 and Xu2 defined by (3.33) with T∗ replaced by the relevant lifespans Tu1 and Tu2 according to
(1.9). Since max{∥(u01 , g01)∥D,∥(u02 , g02)∥D} ⩽ a + δ and p > 1, it follows that

min{Tu1 , Tu2} ⩾ min{T,
1

p2(2cs)
2p
(a + δ)2(p−1)

} ≐ Tc.

Hence, both u1 and u2 ⩽ t ⩽ Tc. The common lifespan Tc gives rise to the space Xc = C([0, Tc]; Hs
x(0,∞)). We shall now determine the radius

%c of a ball B(0, %c) ⊂ Xc such that u1, u2 ∈ B(0, %c) and

∥u1 − u2∥Xc⩽ 2cs∥(u01 − u02 , g01 − g02)∥D. (3.37)

Observe that Xu1 , Xu2 ⊆ Xc and hence u1, u2 are fixed points of Φ in Xc. Thus,
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∥u1 − u2∥Xc= ∥Φu1 −Φu2∥Xc
= ∥S[u01 − u02 , g01 − g02 ; up

1 − up
2]∥Xc

and estimate (1.6) together with the algebra property in Hs
x(0,∞) implies

∥u1 − u2∥Xc ⩽ cs∥(u01 − u02 , g01 − g02)∥D + p cs
√

Tc %p−1
c ∥u1 − u2∥Xc

.

Choosing %c = 2cs(a + δ) turns the above into the desired inequality (3.37), implying local Lipschitz continuity of the data-to-solution map.
The Proof of Theorem 1.2 is complete.

IV. THE CASE OF A FINITE INTERVAL: PROOF OF THEOREM 1.3
As in the case of the half-line, the analysis of the reaction-diffusion IBVP on a finite interval (1.10) depends crucially on the study of the

associated forced linear IBVP, namely,

ut − uxx = f (x, t), x ∈ (0, ℓ), t ∈ (0, T), (4.1a)
u(x, 0) = u0(x), x ∈ [0, ℓ], (4.1b)
u(0, t) = g0(t), u(ℓ, t) = h0(t), t ∈ [0, T]. (4.1c)

Actually, the analysis of problem (4.1) can be simplified significantly by exploiting the results of Theorem 1.1 for the linear half-line IBVP.
More specifically, we let U0 ∈ Hs

x(R) and F ∈ C([0, T]; Hs
x(R)) be whole-line extensions of the initial datum u0 ∈ Hs

x(0, ℓ) and the forcing
f ∈ C([0, T]; Hs

x(0, ℓ)) such that ∥U0∥Hs
x(R) ⩽ c ∥u0∥Hs

x(0,ℓ) and ∥F∥C([0,T];Hs
x(R))⩽ c ∥f∥C([0,T];Hs

x(0,ℓ)). Then, the solution of problem (4.1) can
be expressed as

S[u0, g0, h0; f ] = S[U0∣x∈[0,∞)
, g0; F∣

x∈[0,∞)
]∣

x∈[0,ℓ]
+ S[0, 0,w0; 0], (4.2)

where S[U0∣x∈[0,∞)
, g0; F∣

x∈[0,∞)
] is the solution of the linear half-line IBVP (1.2) restricted on the interval [0, ℓ] and S[0, 0,w0; 0] satisfies the

reduced finite interval problem,

ut − uxx = 0, x ∈ (0, ℓ), t ∈ (0, T), (4.3a)
u(x, 0) = 0, x ∈ [0, ℓ], (4.3b)
u(0, t) = 0, u(ℓ, t) = w0(t), t ∈ [0, T], (4.3c)

with

w0(t) ≐ h0(t) − S[U0∣x∈[0,∞)
, g0; F∣

x∈[0,∞)
](ℓ, t). (4.4)

Since the half-line solution S[U0∣x∈[0,∞)
, g0; F∣

x∈[0,∞)
] have already been treated in Theorem 1.1, relation (4.2) reduces the analysis of the finite

interval IBVP (4.1) to that of problem (4.3).
Note that for 1

2 < s < 3
2 the half-line estimate (1.7) combined with the inequalities for U0 and F stated above implies that

w0 ∈ H(2s+1)/4
t (0, T) with

∥w0∥
H

2s+1
4

t (0,T)
⩽ cs( ∥u0∥Hs

x(0,ℓ) + ∥g0∥
H

2s+1
4

t (0,T)
+ ∥h0∥

H
2s+1

4
t (0,T)

+
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,ℓ) ). (4.5)

Furthermore, observe that w0(0) = h0(0) − u0(ℓ) = 0 thanks to the second compatibility condition stated in Theorem 1.3. Thus, in analogy to
the half-line, IBVP (4.3) can be embedded in the pure linear IBVP,

vt − vxx = 0, x ∈ (0, ℓ), t ∈ (0, 2), (4.6a)
v(x, 0) = 0, x ∈ [0, ℓ], (4.6b)

v(0, t) = 0, v(ℓ, t) = h(t) ∈ H
2s+1

4
t (R), t ∈ [0, 2], (4.6c)

where h is an extension of w0 constructed analogously to (3.29) so that supp(h) ⊂ (0, 2) and

∥h∥
H

2s+1
4

t (R)
⩽ cs ∥w0∥

H
2s+1

4
t (0,T)

, 1
2 < s < 3

2 . (4.7)
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Hence, problem (4.3) can be estimated via problem (4.6), whose unified transform solution formula is10

v(x, t) = S[0, 0, h; 0](x, t)

=
1
π ∫

∞

k=0

eia3kx+ik2t

eia3kℓ − e−ia3kℓ kĥ(k2
)dk +

1
π ∫

∞

k=0

eiakx−ik2t

eiakℓ − e−iakℓ kĥ(−k2
)dk

+
1
π ∫

∞

k=0

e−ia3kx+ik2t

e−ia3kℓ − eia3kℓ kĥ(k2
)dk +

1
π ∫

∞

k=0

e−iakx−ik2t

e−iakℓ − eiakℓ kĥ(−k2
)dk, (4.8)

where a = ei π4 , ĥ is the whole-line Fourier transform of h (this is possible thanks to the compact support of h), and the contours ∂D± are
depicted in Fig. 1. Using formula (4.8), we shall prove the following result for the pure linear IBVP (4.6):

Theorem 4.1 (Pure linear IBVP on a finite interval). The solution v = S[0, 0, h; 0] of the pure linear IBVP (4.6) given by the unified
transform formula (4.8) satisfies the space and time estimates,

sup
t∈[0,2]

∥v(t)∥Hs
x(0,ℓ) ⩽ cs ∥h∥

H
2s+1

4
t (R)

, s ⩾ 0, (4.9)

sup
x∈[0,ℓ]

∥v(x)∥
H

2s+1
4

t (0,2)
⩽ cs ∥h∥

H
2s+1

4
t (R)

, s ∈ R. (4.10)

Proof of Theorem 4.1. The main ideas behind the proof are the same with those that form the backbone of the proof of the half-
line Theorem 2.1. Now, however, extra care is needed when handling the differences of exponentials appearing in the denominators of
formula (4.8).

We begin with the space estimate (4.9). Grouping together the first with the third and the second with the fourth term of (4.8), we
decompose v = v1 + v2 where

v1(x, t) = ∫
∞

k=0

eiγ1kx
− e−iγ1kx

eiγ1kℓ − e−iγ1kℓ G1(k, t)dk, γ1 = a3, G1(k, t) =
1
π

eik2tkĥ(k2
),

v2(x, t) = ∫
∞

k=0

eiγ2kx
− e−iγ2kx

eiγ2kℓ − e−iγ2kℓ G2(k, t)dk, γ2 = a, G2(k, t) =
1
π

e−ik2tkĥ(−k2
).

The estimation of v1 and v2 is analogous so we only provide the details for v1. We conveniently use the physical space definition of the Hs
x(0, ℓ)

-norm,

∥v1(t)∥Hs
x(0,ℓ)=

⌊s⌋

∑
j=0
∥∂

j
xv1(t)∥L2

x(0,ℓ) +∥∂⌊s⌋x v1(t)∥β, s = ⌊s⌋ + β ⩾ 0, 0 ⩽ β < 1, (4.11)

where ⌊⋅⌋ denotes the floor function and the fractional norm ∥⋅∥β is defined by

∥v1(t)∥2
β = ∫

ℓ

x=0
∫

ℓ−x

z=0

∣v1(x + z, t) − v1(x, t)∣2

z1+2β dzdx, 0 < β < 1.

(i) The case ⌊s⌋ = 0. Since s = β ∈ [0, 1), we only need to estimate ∥v1(t)∥β and ∥v1(t)∥L2
x(0,ℓ). For the fractional norm ∥v1(t)∥β, we write

v1(x, t) = J1(x, t) + J2(x, t), (4.12)

with

J1(x, t) = ∫
1

k=0

eiγ1kx
− e−iγ1kx

eiγ1kℓ − e−iγ1kℓ G1(k, t)dk, J2(x, t) = ∫
∞

k=1

eiγ1kx
− e−iγ1kx

eiγ1kℓ − e−iγ1kℓ G1(k, t)dk.

For J1, we have

∥J1(t)∥β =
⎛
⎜
⎜
⎝
∫

ℓ

z=0
∫

ℓ−z

x=0

1
z1+2β

RRRRRRRRRRRRRR

∫

1

k=0

(eiγ1kz
− 1)[eiγ1k(x+ℓ) + e−iγ1k(x+z−ℓ)

]

e2iγ1kℓ − 1
G1(k, t)dk

RRRRRRRRRRRRRR

2

dxdz
⎞
⎟
⎟
⎠

1
2

⩽ ∫

1

k=0

⎛
⎜
⎝
∫

ℓ

z=0
∫

ℓ−z

x=0

1
z1+2β

∣1 − eiγ1kz
∣
2

∣1 − e2iγ1kℓ∣
2 ∣G1(k, t)∣2dxdz

⎞
⎟
⎠

1
2

dk,
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after noting that x + ℓ ⩾ 0 and x + z − ℓ = x − (ℓ − z) ⩽ 0 and applying Minkowski’s integral inequality in k. Hence, using Lemma 2.1, integrating
in x and employing (2.9), we obtain

∥J1(t)∥β ≲
√
ℓ∫

1

k=0

∣G1(k, t)∣
1 − e−

√
2kℓ

⎛
⎜
⎝
∫

ℓ

z=0

(1 − e−
√

2
2 kz
)

2

z1+2β dz
⎞
⎟
⎠

1
2

dk ≲ ∫
1

k=0

k
1
2 +β

1 − e−
√

2kℓ
k

1
2 ∣̂h(k2

)∣dk.

Then, applying the Cauchy-Schwarz inequality and noting that ∫
1

k=0
k1+2β

(1−e−
√

2kℓ)
2 dk ≲ 1 since the singularity at k = 0 is removable and the

domain of integration is compact, we deduce

∥J1(t)∥β ≲∥h∥L2
t (R) ⩽∥h∥H

2β+1
4

t (R)
, 0 < β < 1. (4.13)

Regarding J2, writing J2 = J21 + J22 with

J21(x, t) = ∫
∞

k=1
eia3kxK1(k, t)dk, K1(k, t) =

G1(k, t)
eia3kℓ − e−ia3kℓ ,

J22(x, t) = ∫
∞

k=1
e−ia3k(x−ℓ)K2(k, t)dk, K2(k, t) =

G1(k, t)
1 − e2ia3kℓ

and employing once again Lemma 2.1, we infer

∥J21(t)∥2
β ≲ ∫

ℓ

z=0

1
z1+2β ∥∫

∞

k=1
e−

√
2

2 kx
(1 − e−

√
2

2 kz
)∣K1(k, t)∣dk∥

2

L2
x(0,∞)

dz.

Hence, combining the Laplace transform Lemma 2.2 with (2.9), we find

∥J21(t)∥2
β ≲ ∫

∞

k=1

k2
∣̂h(k2

)∣
2k2β

∣eia3kℓ − e−ia3kℓ∣
2 dk ≲ ∫

∞

k=1

k2
∣̂h(k2

)∣
2k2β

(e
√

2
2 kℓ − e−

√
2

2 kℓ)
2

dk (4.14)

with the last inequality due to the fact that ∣eia3kℓ
− e−ia3kℓ

∣ ⩾ e
√

2
2 kℓ
− e−

√
2

2 kℓ for k ⩾ 0.

Next, let ψ(k) = e
√

2
2 kℓ
− e−

√
2

2 kℓ and note that ψ(k) > 0 for k ⩾ 1 [importantly, ψ(k) = 0 only for k = 0, i.e., the integrand of (4.14) is

non-singular]. Moreover, observe that ψ is infinitely differentiable and, in particular, ψ is increasing on [1, ∞). Hence, 0 < e
√

2
2 ℓ
− e−

√
2

2 ℓ

⩽ e
√

2
2 kℓ
− e−

√
2

2 kℓ for k ⩾ 1. Thus, back to (4.14), we have

∥J21(t)∥2
β ≲ ∫

∞

k=1

k2
∣̂h(k2

)∣
2k2β

(e
√

2
2 ℓ − e−

√
2

2 ℓ)
2 dk ≃ ∫

∞

k=1
k1+2β
∣̂h(k2

)∣
2kdk ≲∥h∥2

H
2β+1

4
t (R)

. (4.15)

Concerning J22, we note that ∥J22(t)∥β= ∥̃J22(t)∥β, where J̃22(x, t) ≐ J22(ℓ − x, t). Therefore,

∥J22(t)∥2
β = ∥̃J22(t)∥

2
β ≲ ∫

ℓ

x=0
∫

ℓ−x

z=0

1
z1+2β (∫

∞

k=1
e−

√
2

2 kx
∣eia3kz

− 1∣∣K2(k, t)∣dk)
2
dzdx

and employing once again Lemma 2.1, we infer

∥J22(t)∥2
β ≲ ∫

ℓ

z=0

1
z1+2β ∥∫

∞

k=1
e−

√
2

2 kx
(1 − e−

√
2

2 kz
)∣K2(k, t)∣dk∥

2

L2
x(0,∞)

dz.

The Laplace transform Lemma 2.2, estimate (2.9), and the fact that ∣1 − e2ia3kℓ
∣ ⩾ 1 − e−

√
2kℓ for all k ⩾ 0 imply
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∥J22(t)∥2
β≲ ∫

√
2

2 ℓ

z=0

1
z1+2β ∥Qz,t∥

2
L2

k(0,∞) dz ≲ ∫
∞

k=1

k2
∣̂h(k2

)∣
2

(1 − e−
√

2kℓ)
2 k2βdk.

Similarly to the argument used for J21, for k ⩾ 1, we have 0 < 1 − e−
√

2ℓ
⩽ 1 − e−

√
2kℓ. Hence,

∥J22(t)∥2
β ≲ ∫

∞

k=1

k2
∣̂h(k2

)∣
2

(1 − e−
√

2ℓ)
2 k2βdk ⩽ ∫

∞

k=1
k1+2β
∣̂h(k2

)∣
2kdk ≲∥h∥2

H
2β+1

4
t (R)

. (4.16)

Overall, combining estimates (4.13), (4.15), and (4.16) with the writing (4.12), we find

∥v1(t)∥β ≲ ∥h∥
H

2s+1
4

t (R)
, s = β ∈ (0, 1). (4.17)

The norm ∥v1(t)∥L2
x(0,ℓ) will also be estimated using the splitting (4.12). In particular, for J1, we employ Lemma 2.1 to infer

∥J1(t)∥2
L2

x(0,ℓ) ≲ ∫

ℓ

x=0

⎛

⎝
∫

1

k=0

e
√

2
2 kx
− e−

√
2

2 kx

∣eia3kℓ − e−ia3kℓ∣
k∣̂h(k2

)∣dk
⎞

⎠

2

dx. (4.18)

The ratio of exponentials involved in the k-integral is bounded by 1 for all k⩾0. Thus, applying also the Cauchy-Schwarz inequality in k, we
obtain

∥J1(t)∥2
L2

x(0,ℓ) ≲ ∫

ℓ

x=0
(∫

1

τ=0
∣̂h(τ)∣2dτ)dx ≲∥h∥2

H
2s+1

4
t (R)

, s ⩾ − 1
2 . (4.19)

Concerning J2, similarly to (4.18), we have

∥J2(t)∥2
L2

x(0,ℓ) ≲ ∫

ℓ

x=0

⎛

⎝

1
π ∫

∞

k=1

e
√

2
2 kx
− e−

√
2

2 kx

∣eia3kℓ − e−ia3kℓ∣
k∣̂h(k2

)∣dk
⎞

⎠

2

dx.

Note that ∣eia3kℓ
− e−ia3kℓ

∣ ⩾ e
√

2
2 kℓ
− e−

√
2

2 kℓ and, furthermore,

1

e
√

2
2 kℓ − e−

√
2

2 kℓ
⩽

e−
√

2
2 kℓ

1 − e−
√

2ℓ
, k ⩾ 1. (4.20)

Using this bound and the fact that e−
√

2
2 kℓ
< 1 for all k ⩾ 1, we find

∥J2(t)∥2
L2

x(0,ℓ) ≲ ∫

ℓ

x=0
(∫

∞

k=1
(e

√
2

2 kx
− e−

√
2

2 kx
)e−

√
2

2 kℓ k∣̂h(k2
)∣dk)

2
dx

≲ ∫

√
2

2 ℓ

x=0
(∫

∞

k=1
e−kx k∣̂h(k2

)∣dk)
2
dx ⩽ ∫

∞

x=0
(∫

∞

k=1
e−kx k∣̂h(k2

)∣dk)
2
dx.

Therefore, by the Laplace transform Lemma 2.2, we get

∥J2(t)∥2
L2

x(0,ℓ)≲ ∫

∞

k=1
k2
∣̂h(k2

)∣
2dk = ∫

∞

τ=1
τ

1
2 ∣̂h(τ)∣2dτ ⩽ ∥h∥2

H
2s+1

4
t (R)

, s ⩾ 0. (4.21)

Combining (4.19) and (4.21), we obtain

∥v1(t)∥L2
x(0,ℓ) ≲ ∥h∥

H
2s+1

4
t (R)

, s ⩾ 0. (4.22)

(ii) The case ⌊s⌋ > 0. Now s = ⌊s⌋ + β with ⌊s⌋ ∈ N/{0} and β ∈ [0, 1). Thus, according to definition (4.11), we need to estimate the
fractional norm ∥∂⌊s⌋x v1(t)∥β and also the L2-norm ∥∂ j

xv1(t)∥L2
x(0,ℓ)

for all integers 0 ⩽ j ⩽ ⌊s⌋. Both of those norms can be handled in exactly
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the same way as the norms ∥v1(t)∥β and ∥v1(t)∥L2
x(0,ℓ) that were estimated in case (i) above, eventually yielding the space estimate (4.9) for

v1 for all s ⩾ 0. As noted earlier, the estimation of v2 is similar. Concerning the time estimate (4.10), the change of variable k =
√
τ in formula

(4.8) reveals the temporal Fourier transform of v, which is then used to infer

∥v(x)∥2

H
2s+1

4
t (R)

≲ ∫

∞

τ=0
(1 + τ2

)
2s+1

4

RRRRRRRRRRR

eia3√τx
− e−ia3√τx

eia3√τℓ − e−ia3√τℓ
ĥ(τ)
RRRRRRRRRRR

2

dτ

+ ∫
0

τ=−∞
(1 + τ2

)
2s+1

4

RRRRRRRRRRR

eia
√
−τx
− e−ia

√
−τx

eia
√
−τℓ − e−ia

√
−τℓ

ĥ(τ)
RRRRRRRRRRR

2

dτ.

Lemma 2.1 and the fact that k ⩾ 0 imply that the ratios of exponentials in the above integrals are bounded by 1, and hence we arrive at the
desired estimate (4.10). ∎

Overall, Theorems 1.1 and 4.1 combined with inequalities (4.5) and (4.7) and the superposition (4.2) yield the following result for the
forced linear IBVP on a finite interval (4.1):

Theorem 4.2 (Linear estimates on a finite interval). Suppose 1
2 < s < 3

2 , u0 ∈ Hs
x(0, ℓ), g0 ∈ H(2s+1)/4

t (0, T), and h0 ∈ H(2s+1)/4
t (0, T) with

u0(0) = g0(0) and u0(ℓ) = h0(0). Then, the solution u = S[u0, g0, h0; f ] to the forced linear heat IBVP (4.1) satisfies

sup
t∈[0,T]

∥u(t)∥Hs
x(0,ℓ) + sup

x∈[0,ℓ]
∥u(x)∥

H
2s+1

4
t (0,T)

⩽ cs( ∥u0∥Hs
x(0,ℓ) + ∥g0∥

H
2s+1

4
t (0,T)

+ ∥h0∥
H

2s+1
4

t (0,T)
+
√

T sup
t∈[0,T]

∥f (t)∥Hs
x(0,ℓ) ). (4.23)

Local well-posedness on a finite interval. The linear estimates of Theorem 4.2 allow us to prove Theorem 1.3 for the reaction-diffusion
equation on a finite interval (1.10) along the lines of the contraction mapping argument of Sec. III. Indeed, the only modification required in
the half-line proof of Sec. III is the replacement of the solution space X and of the data norm ∥⋅∥D by their finite interval counterparts that are
stated in Theorem 1.3.

V. ROUGH DATA AND CONCLUDING REMARKS
In Secs. II–IV, it was shown that the unified transform approach for showing well-posedness of nonlinear IBVPs is universal, in the sense

that it can be employed not only for dispersive equations such as NLS and KdV but also for diffusive ones such as the reaction-diffusion
equation (1.1a). Indeed, Theorem 1.2 provides the direct analog of the corresponding results for NLS11 and KdV,12 establishing local well-
posedness in Sobolev spaces with s > 1

2 . Moreover, Theorem 1.3 advances the unified transform approach from the half-line to a finite
interval.

In fact, the unified transform approach can also be employed for “rough” Sobolev data corresponding to s < 1
2 . In this case, the solution

space C([0, T]; Hs
x(0,∞)) of Theorem 1.2 must be refined by intersecting it with the space

Cα
([0, T]; Lp

x(0,∞)) = {u ∈ C([0, T]; Lp
x(0,∞)) : sup

t∈[0,T]
tα ∥u(t)∥Lp

x(0,∞)<∞},

where α = 1
p(

1
2 − b)with 2s+1

4 < b < 1
2 . The presence of this new space helps us bypass the lack of the algebra property in Hs

x(0,∞)when s < 1
2 .

In addition, in doing so, it removes the condition p−1
2 ∈ N, allowing for nonlinearities of any integer order p⩾2. Our result reads as follows:

Theorem 5.1 (Well-posedness on the half-line for rough data). Suppose 1
2 −

1
p < s < 1

2 and p = 2, 3, 4, . . .. Then, for u0 ∈ Hs
x(0,∞) and

g0 ∈ H(2s+1)/4
t (0, T), the reaction-diffusion IBVP (1.1) has a unique solution u ∈ C([0, T∗]; Hs

x(0,∞)) ∩ Cα
([0, T∗]; Lp

x(0,∞)) which satisfies

sup
t∈[0,T∗]

∥u(t)∥Hs
x(0,∞) + sup

x∈[0,∞)
∥u(x)∥

H
2s+1

4
t (0,T∗)

+ sup
t∈[0,T∗]

tα ∥u(t)∥Lp
x(0,∞) ⩽ 2cs ∥(u0, g0)∥D,

where T∗ = min{T, 1

(2p+2p)
1
α (2cs)

p
α ∥(u0 ,g0)∥

p−1
α

D

} with the data norm ∥(u0, g0)∥D as in Theorem 1.2. Furthermore, the data-to-solution map

{u0, g0}↦ u is locally Lipschitz continuous.
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Theorem 5.1 can be proved similarly to Theorem 1.2, once the linear estimates of Theorem 1.1 are supplemented with an additional
estimate in the new space Cα

([0, T]; Lp
x(0,∞)). This task concerns both the pure linear IBVP (2.1) and the linear IVPs (3.1) and (3.16). In

particular, the estimation of problem (2.1) in the space Cα
([0, T]; Lp

x(0,∞)) is straightforward. Decomposing v = v1 + v2 as in the Proof of
Theorem 2.1 and noting that v1 and v2 can be handled identically to each other, we use Minkowski’s integral inequality to obtain

∥v1(t)∥Lp
x(0,∞) ≲ ∫

∞

k=0
(∫

∞

x=0
∣eia3kx+ik2t k̂g(k2

)∣
p
dx)

1
p
dk

= ∫

∞

k=0
k∣̂g(k2

)∣(∫

∞

x=0
e−

1√
2

pkxdx)
1
p
dk ≃ ∫

∞

k=0
k1− 1

p ∣̂g(k2
)∣dk.

Thus, letting k =
√
τ and applying the Cauchy-Schwarz inequality in τ, we find

∥v1(t)∥Lp
x(0,∞) ≲ (∫

∞

τ=0
τ−

1
p (1 + τ2

)
− 2s+1

4 dτ)
1
2
∥g∥

H
2s+1

4
t (R)

≃∥g∥
H

2s+1
4

t (R)
, s > 1

2 −
1
p .

A similar estimate holds for v2 and, overall, we deduce ∥v∥Cα([0,T];Lp
x(0,∞))≲∥g∥H

2s+1
4

t (R)
.

The estimation of the linear IVPs (3.1) and (3.15) in the space Cα
([0, T]; Lp

x(R)) is also elementary. For 1
2 −

1
p < s < 1

2 and forcing of the
form F =∏p

j=1 Fj, we find

∥U∥Cα([0,T];Lp
x(R)) ≲ ∥U0∥Hs

x(R), ∥W∥Cα([0,T];Lp
x(R))≲ Tα

p

∏
j=1
∥Fj∥Cα([0,T];Lp

x(R)) .

Finally, the forced linear IVP estimates (3.17) and (3.18) are replaced by

sup
t∈[0,T]

∥W(t)∥Hs
x(R) + sup

x∈[0,∞)
∥W(x)∥

H
2s+1

4
t (0,T)

≲
√

T
p

∏
j=1
∥Fj∥Cα([0,T];Lp

x(R)) .

Combining all of the above estimates, we arrive at the analog of the linear Theorem 1.1 for 1
2 −

1
p < s < 1

2 , which in turn implies the nonlin-
ear Theorem 5.1 via a contraction mapping argument and the use of the well-known inequality ∣∣v∣p−1v − ∣w∣p−1w∣ ≲ (∣v∣p−1 + ∣w∣p−1

)∣v −w∣.
Furthermore, following the above outline, one can also establish the finite interval version of Theorem 5.1, which provides the analog of
Theorem 1.3 in the case of rough data 1

2 −
1
p < s < 1

2 .
We conclude by noting that diffusion equations are typically studied in the literature via more classical techniques developed specifically

for such equations with data in Lipschitz spaces (e.g., see Refs. 27, 1, 33, 18, and 32). However, as mentioned earlier, our objective here has
been to demonstrate that the reaction-diffusion equation (1.1a) can be included in the theory originally developed for dispersive equations
such as NLS,11 KdV,12 and “good” Boussinesq,20 which relies on employing the unified transform of Fokas for deriving novel linear estimates
along rays in the complex Fourier space.

VI. SUMMARY
In this work, a novel approach that was recently developed for the analysis of nonlinear dispersive equations on domains with a boundary,

such as the NLS and KdV equations on the half-line, has been advanced to study a reaction-diffusion equation with power nonlinearity both
on the half-line and on a finite interval. The new approach exploits the linear solution formulae produced by Fokas’s unified transform,
a powerful method for the solution of linear evolution equations of any order, on a variety of physical domains and with any admissible
boundary conditions. In this connection, the present work demonstrates that the novel unified transform approach is universal, in the sense
that it can be used for analyzing a wide range of nonlinear evolution equations beyond dispersive ones, formulated not only on the half-line
but also on a finite interval.
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