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Abstract

The three essays included in this dissertation are on three di�erent popular computational

approaches that are widely applicable in economics. In Chapter 1, a state-space model is

constructed which is linear in state variables and nonlinear in parameters. From the model,

the time-varying level of natural interest rate is estimated using Kalman �lter and Gibbs

sampling algorithms. Chapter 2 proposes a new algorithm, called Implicit Particle Gibbs,

to solve nonlinear state-space models. And Chapter 3 reviews recent development of deep

learning and reinforcement learning algorithms and their applications in economics.
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Chapter 1

A Decline in the Natural Rate of Interest: Is it Real?

1.1 Introduction

The federal funds rate in the United States was at or near historic low in most of the years

since the Great Recession. The persistence of low level of interest rates suggests that their

long-run natural level is likely to have declined. The long-run level, known as the r∗ or

the natural rate of interest since Wicksell (1898), has taken the central stage in monetary

policy discussions. Woodford (2003) de�nes r∗ as the equilibrium real rate of return in an

economy with full price �exibility. In empirical researches, most papers follow Laubach &

Williams (2016) and de�ne r∗ as �the level of real interest rates expected to prevail, say, �ve

to ten years in the future, after the economy has emerged from any cyclical �uctuations and

is expanding at its trend rate.� Monetary authorities focus on r∗ for two reasons: not only

does it provide a guidepost on how tight or loose the policy is, but also an persistently low

r∗ poses serious challenges on future ammunition of conventional policy tools.

Despite its merits, how useful the notional rate is in practice remains in question. r∗ is

the benchmark against which several popular policy rules are implemented. A policy rule

cannot prescribe with con�dence until r∗ is pinned down. However, as a latent variable, r∗

can only be inferred from observable data. Although many estimates have been proposed,

policymakers still �nd di�culty in pinning down r∗ with con�dence. In the literature, esti-

mates of r∗ are usually reported with fairly large uncertainty band. The Laubach & Williams

(2003) estimates have a standard error ranging from 97 basis points to 383 bp depending

on speci�cation, which translate into a 95% uncertainty band at least 400 bp wide. Most
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other researches also give estimates �anked by quite large uncertainty bands 1 Low precision

hampers the use of r∗ in policy discussion.

The literature has made many e�orts to address the precision challenge, and most of

these e�orts have adopted a direct strategy. At the core of this strategy is an assessment of

what accounts for the changes in r∗. Economic theory ties r∗ to the growth rate of potential

output and explains a lower level of r∗ with a slower pace of potential growth. This connection

is central to many researches including Laubach & Williams (2003), Holston et al. (2017)

and Johannsen & Mertens (2018). However, since potential output is also unobservable,

linking r∗ to the potential growth is not likely to improve the estimates precision. More

researches explain r∗ with other variables. Hamilton et al. (2016) �nd evidence that the

U.S. r∗ is related with the long-run world real rate. Gagnon et al. (2016) demonstrate how

demographic changes account for most of the decline in r∗ since the 1980s. Summers (2014)

discusses how savings and investment could have lowered r∗. Hakkio & Smith (2017) assume

that the movement of r∗ is partly explained by bond premiums. And Del Negro et al. (2017)

�nd that the main drivers of the decline in r∗ are rising premiums for safety and liquidity.

Using di�erent explaining factors, these researches produce various estimates of r∗, but none

of them comes with satisfactory precision. This leads us to postulate that the movement

of r∗ is the result of a compound of factors and to conclude that the direct strategy is

counterproductive for the purpose of estimating with precision.

In contrast to the direct strategy, we take an indirect approach. Instead of examining

what accounts for r∗, we explore what r∗ gives rise to. The ups and downs on the Treasury

bonds market are partly engendered by economic variables including r∗. Following Johannsen

& Mertens (2018), we decompose macroeconomic variables into long-run trends and short-

run cyclical components. While short-run variables including the cyclical component of

the federal funds rate impinge mainly on the short-end of the yield curve, long-run economic

variables such as r∗ are able to a�ect both ends. For that reason, we postulate the infomation

1For example, the 95% uncertainty bands of the Kiley (2015), Lubik & Matthes (2015) and Johannsen &
Mertens (2018) estimates are respectively about 3%, 4.5% and 3.5% wide.
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of r∗ has been encoded into the level of the Treasury yield curve, and propose to decode

with a macro-�nance term-structure model. The dynamics of macroeconomic variables and

Treasury yields constitute a state-space model wherein r∗ together with other latent economic

variables can be estimated using a Kalman �lter.

Consistent with other researches, our r∗ estimates exhibit a downward trend since the

early 1990s. The decline accelerated since the beginning of the century. The uncertainty

bands surrounding our estimates are considerably narrower than in most other researches.

The decline in our r∗ estimates is signi�cant. We �nd the level of the Treasury yield curve ex-

hibits a strong correlation with r∗, while the slope of the yield curve has a strong comovement

with the federal funds rate gap.

1.2 The Model

Our whole model consists of two blocks: the macroeconomic block and the �nance block.

The macroeconomic block describes long-run and short-run dynamics of in�ation, output and

federal funds rate. The �nance block connects macroeconomic variables with the Treasury

yield curve rates. The two blocks together make up a state-space model, where the �nance

block provides extra measurement equations and reinforces the identi�cation of latent state

variables.

1.2.1 Macroeconomic Block

The macroeconomic variables are modeled in a fashion with an �independent trend/cycle

decomposition�. We assume that in�ation, real GDP and e�ective federal funds rate vary

around their respective trends. In general, for each of the three variables Yt, we write

Yt = Y ∗t + Ỹt,

3



where Y ∗t denotes the trend; Ỹt denotes the gap between a variable from its trend. Similar

to Johannsen & Mertens (2018), the de�ning feature of the cyclical component is that they

are zero mean ergodic where

lim
T→∞

1

T

T∑
t=1

Ỹt −→ E
[
Ỹt

]
= 0.

As for the trend component, we take the long-run perspective as advocated by Laubach &

Williams (2003) and de�ne the trend as

Y ∗t ≡ lim
h→∞

Et [Yt+h] . (1.1)

Speci�cally,

1.2.1.1 In�ation

We decompose the in�ation rate into a trend, a cyclical component and an error term

πt = π∗t + π̃t + eπ,t, (1.2)

where eπ,t ∼ N(0, σ2
π) denotes a one-o� measurement error that does not have any impact on

economic dynamics; the trend π∗t is believed to be determined by long-run monetary factors

such as the policymaker's in�ation target. According to de�nition (1.1), π∗t is a martingale

. We assume a random walk process for π∗t ,

π∗t = π∗t−1 + επ∗,t, επ∗,t ∼ N(0, σ2
π∗). (1.3)

1.2.1.2 GDP Growth

Let Xt denote the U.S. real GDP and X∗t denote its potential level.

Published each quarter by the Bureau of Economic Analysis, GDP growth rate gt is,
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roughly speaking, computed by evaluating today's GDP against its level three months ago

gt = ln
Xt

Xt−3
.

By de�nition, real GDP deviates from its potential by the output gap x̃t,

Xt = X∗t (x̃t + 1) .

So gt can be decomposed into two parts:

ln
Xt

Xt−3
≈ ln

[
X∗t
X∗t−3

]
+ ln

(
x̃t + 1

x̃t−3 + 1

)
.

We denote the growth rate of potential real GDP by g∗t , and rewrite the above equation into

gt = g∗t + (x̃t − x̃t−3) + eg,t, (1.4)

where, again, we assume an error term et ∼ N(0, σ2
g) since ln(x̃t + 1) ≈ x̃t for a small

magnitude of x̃t.

The growth rate of potential GDP is determined by exogenous variables such as tech-

nological progress or demographics. We assume it is a random walk process according to

(1.1)

g∗t = g∗t−1 + εg∗,t, εg∗,t ∼ N(0, σ2
g∗). (1.5)

The output gap data are published by the Congressional Budget O�ce. We assume they

are measured with noise in the manner that

x̃CBOt = x̃t + ex̃,t, ex̃,t ∼ N(0, σ2
x̃). (1.6)
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1.2.1.3 Federal Funds Rate

The federal funds rate is often described with a Taylor rule

it = r∗t + πt + φπ (πt − π∗t ) + φxx̃t,

where r∗t stands for the neural rate of real interest. Equivalently, we can rewrite the above

equation into

it = r∗t + π∗t + (φπ + 1) (πt − π∗t ) + φxx̃t,

≈ r∗t + π∗t + (φπ + 1)π̃t + φxx̃t (1.7)

where r∗t + π∗t is sometimes called the neutral rate of nominal interest and forms the bench-

mark of the policy rule. According to the Taylor rule, the gap from the benchmark, it−r∗t−π∗t ,

is chosen by policymakers from time to time based on the in�ation gap π̃t and the output

gap x̃t. Denote the federal funds rate gap by ĩt. Then we can write

it = r∗t + π∗t + ĩt + ei,t, (1.8)

Note that a measurement error ei,t ∼ N(0, σ2
i ) is included here, although it might be small.

We assume r∗t evolves according to a random walk process

r∗t = r∗t−1 + εr∗,t, εr∗,t ∼ N(0, σ2
r∗). (1.9)

1.2.1.4 Cyclical Components

In a basic New Keyesian model, the cyclical dynamics of economy are explained by three

equations. The IS equation relates the federal funds rate gap ĩt with output gap x̃t. The

Phillips curve explains how output gap x̃t leads to the deviation π̃t of in�ation from its trend.

And a monetary policy rule such as (1.7) describes how �uctuations in output and in�ation

6



feed into monetary policy decisions ĩt. Solved for rational expectation, a New Keynesian

model admits a �rst-order VAR as its reduced form and, in practice, is usually �tted with

quarterly or annual data. In order to work with a monthly data set, we generalize the New

Keynesian idea into a VAR(p) model

Φ(L)Ỹ t = εGAP,t, εGAP,t ∼ N (0,ΣGAP) . (1.10)

where Ỹ t =
(
π̃t, x̃t, ĩt

)′
; the value of p is chosen to be four so that a policy action one quarter

ago continues to impinge on today's economic activities.

All roots of the polynomial

Φ(z) = I −Φ1z −Φ2z
2 · · ·

are assumed to lie outside of a unit circle so that the gaps (π̃t, x̃t, ĩt)
′ admit the value 0 as

their unconditional mean. As a result, if free of any shocks, maintaining monetary policy at

the natural level (̃it+h = 0, h = 1, 2, . . .) would direct the economy toward its potential over

time (limh→∞ x̃t+h → 0).

Note that under the above setup, we have

lim
h→∞

Et [πt+h] = π∗t ,

lim
h→∞

Et [gt+h] = g∗t ,

lim
h→∞

Et [it+h] = r∗t + π∗t ,

as de�ned in (1.1). So the trends represent the market's expectation of each of the three

headline data series in the far future.

επ∗,t, εg∗,t, εr∗,t are each assumed to be i.i.d. and independent of short-run risks εGAP,t so

that the forces which shape the long-run equilibrium are independent of the shocks which

cause the business cycle.

7



1.2.1.5 r∗t & g∗t

In contrast to the economic theory, we do not assume a direct relation between the natural

rate r∗t and growth of potential output g∗t . Some researchers including Hamilton et al.

(2016) and Borio et al. (2018) �nd the link between these two variables empirically weak.

Other researchers propose other factors that potentially contribute to the movement of r∗t

Summers (2014); Gagnon et al. (2016); Hakkio & Smith (2017). We remain skeptical of these

explanations, and choose to keep maximum �exibility by assuming a random walk for either

r∗t or g
∗
t .

1.2.1.6 State-Space Model

The macroeconomic block of our model constitutes a state-space model with six latent vari-

ables, {π̃t, x̃t, ĩt, π∗t , g∗t , r∗t }. Their dynamics are described by transition equations (1.3), (1.5),

(1.9) and (1.10). They are related with four observed data series through measurement equa-

tions (1.2), (1.4), (1.6) and (1.8).

1.2.2 Finance Block

The �nance block provides more measurement equations for the latent macroeconomic vari-

ables.

The yields of U.S. Treasury bonds are described in a no-arbitrage term-structure model.

As advocated by Dai & Singleton (2000), the whole yield curve is assumed to be spanned by

a small number of factors. Following the macro-�nance literature, the factors are assumed

to evolve under the in�uence of macroeconomic variables. The cross-sectional variations of

the yields are regulated by no-arbitrage conditions.

1.2.2.1 Three Factors

One salient feature of the Treasury yield curve is that its cross-sectional variation is well

explained by only a small number of factors. 99.92% of the variations of the nine yields in

8



our data set are explained by their �rst three principal components - usually called the level,

slope and curvature. We denote the three factors by

P t ≡ (Lt, St, Ct)
′ .

1.2.2.2 Factors and the Economy

Following the macro-�nance literature e.g. Creal & Wu (2017), we assume the macroeco-

nomic variables have a contemporaneous impact on P t

P t = K0P +K1PP t−1 + ΨM t + ΣPeP,t, eP,t ∼ N(0, I), (1.11)

where M t stands for the trends and gaps of the headline economic variables elaborated in

section 1.2.1

M t ≡
(
π̃, x̃t, ĩt, π

∗
t , g
∗
t , r
∗
t

)′
; (1.12)

the coe�cient matrix Ψ is speci�ed in the following form

Ψ =


ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

ψ21 ψ22 ψ23 0 0 0

ψ31 ψ32 ψ33 0 0 0

 , (1.13)

where the bottom-right block is assumed to be 0 so that the slope and curvature bear the

imprints of only the gaps (π̃t, x̃t, ĩt)
′.

To see the reason, let Mt+1 denote the stochastic discount factor of a representative

agent, and

mt ≡ logMt.
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Let ym,t denote the yield of a Treasury bond that matures in m months, m = 1, 2, . . . It can

be shown that ym,t is determined by the expectation of the future path of 1-month Treasury

yields, y1,t+i, plus a term premium

ym,t =
1

m
Et

[
m−1∑
i=0

y1,t+i

]
− 1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) , m = 1, 2, . . . ,

where the second term stands for the term premium. Historically 1-month Treasury yield

and the federal funds rate tracked each other closely. If we assume these two are roughly

the same,

y1,t ≈ it, t = 1, 2, . . . ,

then, from (1.8), ym,t can be written in the following form

ym,t = π∗t + r∗t +
1

m
Et

m−1∑
i=0

ĩt+1 −
1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) , m = 1, 2, . . . (1.14)

Note that, at time t, the trend components π∗t and r∗t anchor the yield of each and every

maturity. Intuitively, trends such as π∗t or r∗t are the permanent components underlying

headline economic variables. A permanent change tends to alter the market's expectation

of short-term interest rate forever, and the Treasury yields of all maturities at time t will be

a�ected as a result. For illustration purposes if we write the slope and curvature as

St = ym+1,t − y1,t,

Ct = (y2m+1,t − ym+1,t)− (ym+1,t − y1,t),

then from (1.14) we can see that St and Ct will not change from a move of π∗t or r
∗
t . In this

spirit, we postulate that the long-run trend variables (π∗t , r
∗
t ) as well as g

∗
t have little impact

on the slope and curvature.
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1.2.2.3 Pricing Kernel and the Q-Measure

Following the literature, a representative agent values Treasury bonds using a stochastic

discount factor of the following form

Mt+1 = exp

{
−y1,t − λ′tνt+1 −

1

2
λ′tλt

}
,

where y1,t denotes the yield of a one-month Treasury bill; νt denotes a three-dimensional

risk vector that are priced on the bond market; and λt is the so-called price of risks. νt

is generated by both macroeconomic risks and non-economic risks, and the macroeconomic

risks {εGAP,t, επ∗,t, εg∗,t, εr∗,t} impinge on the bond market through only three channels as

made clear by (1.11).

Under the risk-neutral measure Q, we assume that P t follows a VAR(1) process as

advocated by Joslin et al. (2014)

P t = KQ
0P +KQ

1PP t−1 + ΣPe
Q
t , eQt ∼ N(0, I). (1.15)

1.2.2.4 Yields

Under these assumptions, the yield of an m-month Treasury bond is an a�ne function of

P t,

ym,t = Ãm + B̃mP t + em,t, em,t ∼ N(0, σ2
m), m = 1, 2, . . . ,M, (1.16)

where the loadings
{
Ãm

}M
m=1

and
{
B̃m

}M
m=1

are regulated by no-arbitrage conditions along

the maturity spectrum. They are known functions of the parameters governing the Q dy-

namics in (1.15) (see Joslin et al. (2011) for details).

11



1.2.2.5 State-Space Model

(1.11) and (1.16) form the second group of measurement equations in our model. The factors

P t are observable from principal analysis of the yields data. Note that although (1.16) does

not directly provide information of the state variablesM t, it a�ect their inference indirectly

through no-arbitrage conditions.

1.2.3 Summary

In summary, the macroeconomic block speci�ed in Section 1.2.1 together with the �nance

block developed in Section 1.2.2 makes up our fully-�edged model. In the model, the econ-

omy is shaped by both long-run and short-run economic forces. These economic forces are

assumed to have left varied traces on the Treasury bonds market. As a result, complement-

ing headline economic data, the Treasury yield curve provides another angle of observing

the latent economic factors.

From the perspective of a state-space model, the transition equations are (1.3), (1.5),

(1.9) and (1.10), and the measurement equations include (1.2), (1.4), (1.6), (1.8), (1.11) and

(1.16).

1.3 Empirical Results

1.3.1 Data

Our data set is at a monthly frequency starting from Jan. 1987 and ending in Sep. 2008.

We focus on the relatively tranquil Great Moderation era to avoid the structural breaks such

as time-varying volatility or zero-lower bound bought about by the Great In�ation and the

Great Recession.

The data set is made up of two groups of series.

The macroeconomic group includes core PCE in�ation rate, real GDP growth rate, out-

put gap and e�ective federal funds rate. The output gap is constructed as the percentage

12



deviation of the BEA's real GDP from the CBO's real potential GDP, both of which are

available at a quarterly frequency. We construct the monthly series by interpolating the

original quarterly observations.

The �nance group is composed of Treasury yields of nine di�erent maturities. All are

available at a monthly frequency. 3-month and 6-month yields are published by the Federal

Reserve Board of Governors. Longer-term yields including 1, 2, 3, 5, 7, 10 and 20-year ones

are retrieved from the widely-used Gürkaynak et al. (2007) data set.

Prior Shape Scale Posterior

Φ, K0P , K1P , Ψ Flat NA Gaussian(
ΣGAP, σ

2
π∗ , σ

2
g∗ , σ

2
r∗
)

Inv Gamma 0

(
0.5× I4×4 0

0 0.15× I2×2

)
Inv Gamma(

σ2π, σ
2
g , σ

2
i , σ

2
x̃

)
Inv Gamma 0 0.01 ×I4×4 Inv Gamma

σ2m, m = 1, . . . ,M Flat after log NA Inv Gamma

ΣP , k
Q
∞, λ1, λ2, λ3 Flat NA. Simulated using independent M.H.

Table 1.1: Priors of Parameters

1.3.2 Estimation Methodology

We estimate parameters and the latent economic variables M t de�ned in (1.12) employing

a Gibbs sampling. Given the parameters, the posterior distribution of M t can be derived

with a Kalman �lter. And givenM t, most parameters can be sampled from their conjugate

posteriors. The parameters governing the loadings in (1.16) do not have posteriors conjugate

to priors, and a random-walk Metropolis-Hastings algorithm is called in to generate a sample.

We assume uninformative priors for most of the parameters and all latent variables.

Several variance parameters are assigned informative priors as detailed in Table 1.1 in order

to avoid model degeneracy.

13



1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r*
 (

%
)

95%
68%
Median

Figure 1.1: Posterior Distribution of r∗t
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1.3.3 Results

1.3.3.1 r∗t Estimates

Figure 1.1 depicts our estimates of r∗t . The solid line on the graph is the smoothed (or

two-sided) posterior median, and the shaded bands �anking the median are the 68% and

95% con�dence bands.

According to the estimates, we are 95% con�dent that r∗t was somewhere between 2.5%

and 4% in the late 1980s with median around 3.5%. It stayed roughly unchanged before

1991. Starting from 1992, the rate entered a downward trajectory and lost one percentage

point in the next decade. After 2001, the decline accelerated, with another 1.5 percent lost

in less than �ve years. By the end of our sample period, r∗t was 95% likely to be between 0

and 1.5% in round number. Our estimates suggest that the year of 2007 saw the rate �nally

dropped below 1%. The 95% con�dence band remains approximately 1.5% wide throughout

the sample period.

Figure 1.2 illustrates how real federal funds rate moves from side to side around r∗. The

solid line in the upper panel is our estimates (the posterior median) of r∗t , and the dashed

line stands for ex post real federal funds rate. The shaded rectangles illustrate the NBER's

recession periods. Our data sample extends over three recessions, with r∗t exhibiting little

cyclical movement as mandated by its long-run nature.

r∗t estimates crossed the real rate each time right in the middle of a recession, despite the

limited width of each recession rectangle. That is, our estimates demonstrate that monetary

policy historically tends to �ip from the restrictive side to the accommodative side as the

economy slips downhill. Real policy rate before the 2001 recession was as much as 2.5% above

neutral. As the economy peaked, real policy rate quickly turned around, broke neutral in

May 2001 and recorded a low of 2.5% below in late 2002. Similar pattern is recorded for the

other two recessions. It demonstrates that historically the Federal Reserve never aimed the

policy rate at neutral. Although r∗ has been the anchor, monetary policy has been allowed
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plenty of leeway swinging around the anchor to lean against the wind. The distance of

monetary policy from the neutral provides a gauge of how much accommodation/restriction

the policy provides.

1.3.3.2 r∗t , ĩt, and Yield Curve
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Figure 1.3: The Slope and Policy Rate Gap

We �nd natural rate r∗t and rate gap ĩt are associated with di�erent facets of the yield

curve.

Figure 1.3 illustrates our estimates of federal funds rate gap ĩt (dashed line) de�ned

in (1.8) together with the (negative of) yield curve slope (solid line). With a correlation

coe�cient of -0.87 between these two, our model provides direct evidence supporting the

suggestion of using the slope as a quick proxy for the federal funds rate gap Laurent (1988);

Bernanke & Blinder (1992); Bom�m (1997).
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Intuitively, ceteris paribus if the Federal Reserve lowers the federal funds rate, the short

end of the Treasury yield curve will dip simultaneously while the long-end tends to remain

largely unchanged. As a result the slope heads upward. Speci�cally, from (1.8) and (1.14),

the slope and the funds rate gap ĩt are related in the following way

St ≈ −ĩt +
1

m
Et

m−1∑
i=0

ĩt+1 −
1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) . (1.17)

Since ĩt is stationary, any deviation of ĩt from zero is expected to die out in the far future.

So, when m is large, the 2nd term on the right hand side will be dominated by the �rst one,

and the equation suggests a strong negative correlation between St and ĩt. Although in the

model we postulate that the slope is shaped by all three cyclical components (π̃t, x̃t, ĩt), as

made clear by (1.13), it turns out that ĩt alone explains 75.5% of the slope variation.

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

Level / 7
r*

Figure 1.4: The Level and r∗t
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On the other hand, our r∗t estimates exhibit a strong correlation (ρ = 0.82) with the level

as illustrated by Figure 1.4, where the solid line stands for the level (scaled down by a factor

of 7) and the dashed line is our estimates of r∗t . In Equation (1.11), the level is assumed to

be related with all six latent economic variables. But the result shows that r∗t alone explains

66.4% of level variation. Intuitively, the reason lies in the dual-role r∗t is playing: at the

short-end of the yield curve, it forms the basis of federal funds rate and short-term yields

through the Taylor rule; and at the long-end, it is the expected short rate and factored

into longer-term yields. When r∗t changes, both ends of the yield curve moves and the level

changes in the same direction. 2

1.4 Conclusion

This paper contributes to the discussion of r∗ by signi�cantly improving its estimates preci-

sion. We explore how the information of r∗ is encoded into not only macroeconomic variables

but also Treasury yield curve rates. We model economic variables and Treasury yields to-

gether using a no-arbitrage macro-�nance framework, and estimate the model using Gibbs

sampling and Kalman �lter. We �nd r∗ highly correlated with the yield curve level. The

uncertainty band surrounding our r∗ estimates is narrower compared with other researches.

We �nd r∗ has been declining since the early 1990s, and the hypothesis that r∗ is a constant

can be rejected with con�dence.

2The macro-�nance literature e.g. Dewachter & Lyrio (2006) and Rudebusch & Wu (2008) usually
identi�es the level with the long-run in�ation trend π∗ exclusively, assuming a constant natural r∗. Under
the more general setup, we do �nd a high correlation (ρ = 0.70) between the level and π∗, but the correlation
between the level and r∗ (ρ = 0.82) turns out to be even stronger.
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Chapter 2

Implicit Particle Gibbs

Hidden Markov models, or called state-space models, have wide applications in economics

researches. With transition equations specifying the dynamics of state variables, which

are usually from economic theories, and measurement equations connecting state variables

to data, HMM are found extremely useful in �nding latent economic variables. In state-

space systems with linear measurement equations, Kalman �lter is well known to provide

the benchmark solution. But when the system is equipped with non-linear measurement

equations, Kalman �lter is not applicable and alternative methods must be resorted to.

Among these alternative algorithms of solving a hidden Markov model, particle �lter

methods haven been found to be highly �exible and e�cient. A sequence of particles are

sampled for state variables of each time period using sequential Monte Carlo methods. The

particles are then weighted to approximate state variables' posterior distributions given the

information available each period. The weights can then be further adjusted to approximate

all states' joint distribution given all information available through the dataset. However,

the computational e�ciency of particle �lter in practice faces several well-known challenges,

including but not limited to the problems of weights degeneracy and path degeneracy. Many

researches have been devoted to the mitigation of these computational challenges.

We contribute to the particle �lter literature by proposing a algorithm that infusing two

cutting-edge algorithms, with one devoted to addressing the weights degeneracy problem and

the other focusing on path degeneracy. The new algorithm is tested in a simple non-linear

HMM model and found to exhibit superior e�ciency.
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2.1 Inference in Hidden Markov Models

Let (X, X ) and (X,Y) be two measurable spaces. Let M be a Markov kernel on X×X , and

G a Markov kernel on X× Y . Then the map K de�ned as

K(x;C) ≡
∫∫

C

M(x, dx′)G(x′, dy′), x, x′ ∈ X, C ∈ X ⊗ Y (2.1)

is Markov kernel de�ned on X× (X ⊗ Y).

Let {Xt}t∈N and {Yt}t∈N be two discrete-time stochastic processes whose state spaces are

given by (X, X ) and (Y, Y) respectively and transition probability is given by K. If {Xt}t∈N

is not observable, then the Markov chain {(Xt, Yt)}t∈N following kernel K is called a Hidden

Markov model (HMM).

Statistical inference for Hidden Markov models involves computing the posterior distri-

bution, φs:s′|t, of a collection of state variables Xs:s′ ≡ (Xs, . . . , Xs′), with s < s′ conditional

on a batch of observations, Y0:t ≡ (Y0, . . . , Yt).

2.1.1 �ltering

Filtering is the inference of φt|t, i.e. the posterior distribution of Xt given Y0:t. We abbreviate

φt|t to φt.

If there exists a probability measure ν on (Y,Y) such that for all x ∈ X, the probability

measure G(x, ·) is absolutely continuous with respect to ν(·), then there exist a density

function g(x, ·) such that for A ∈ Y ,

G(x,A) =

∫
A

g(x, y)ν(dy)

Let f be a measurable function de�ned on (X,X ), and Ψ a probability measure de�ne
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on (X,X ). If we denote the kernel

Qt(xt−1, f) ≡
∫
A

M(xt−1, dxt)g(xt, yt)f(xt), A ∈ X , (2.2)

and denote

γt(f) ≡
∫
· · ·
∫
Xt+1

Ψ(dx0)g(x0, y0)Q1(x0, dx1) . . . Q(xt−1, dxt)f(xt)

then

γt(f) =

∫∫
X2

γt−1(dxt−1)Qt(xt−1, dxt)f(xt) (2.3)

The posterior distribution of Xt conditional on Y0:t, be de�tion, is given by

φt(f) =
γt(f)

γt(1)
(2.4)

∝ γt(f)

Therefore, the �ltering distribution of time t can be derived using the �ltering distribution

of the previous period using Equation (2.3).

Algorithm 2.1.1 (Forward Filtering). Compute forward in time the �ltering distributions

φ0, . . . , φT using the recursion (2.3).

2.1.2 Smoothing

Smoothing is the inference of φ0:t|t, i.e. the joint posterior distribution of X0:t given Y0:t.

2.1.2.1 Backward Kernel

If there exists a probability measure µ on (X,X ) such that for all x ∈ X, the probability

measure M(x, ·) is absolutely continuous with respect to µ(·), then there exist a density
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function m(x, ·) such that for A ∈ X ,

M(x,A) =

∫
A

m(x, x′)µ(dx′)

Let f be a measurable function de�ned on (X2,X⊗2). De�ne

Bφt−1(xt, f) ≡
∫∫

X2 φt−1(dxt−1)m(xt−1, dxt)f(xt−1, xt)∫∫
X2 φt−1(dxt−1)m(xt−1, dxt)

Then Bφt−1 is a backward kernel that when Xt and Y0:(t−1) are known, gives the probability

of Xt−1.

2.1.2.2 Backward Recursion

Let 0 ≤ s ≤ t. Let f be a measurable function de�ned on (Xt−s+2,X⊗(t−s+2)).

Given φs:t|t, then

φ(s−1):t|t =

∫
· · ·
∫
Xt−s+2

φs:t|t(dxs:t)Bφs−1(xs, dxs−1)f(x(s−1):t) (2.5)

So the smoothing distribution of time s can be derived from the smoothing distribution of

the later period using the above recursion.

Algorithm 2.1.2 (Backward Smoothing). From φt, compute backward in time the smooth-

ing distribution φt, φt−1:t|t, . . . , φ0:t|t using the recursion (2.5).

2.1.3 Forward Filtering Backward Smoothing

In summary, the inference of the distribution of the hidden state X0:T can be implemented

in two steps:

Algorithm 2.1.3 (Forward Filtering Backward Smoothing). For t = 0, 1, . . . , T , φ0:t|t can

be derived by completing the following Filtering and Smoothing steps:
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1. Compute forward in time the �ltering distributions φ0, . . . , φT using the recursion (2.3).

2. From φt, compute backward in time the smoothing distribution φt, φt−1:t|t, . . . , φ0:t|t

using the recursion (2.5).

2.2 Particle Filters

2.2.1 Particle Filtering

The �ltering state of Particle Filters are a combination of the sequential importance sampling

method introduced in Handschin & Mayne (1969) and the sampling importance resampling

algorithm proposed in Rubin (1987).

2.2.1.1 Sequential Importance Sampling

µ denotes a probability measure on a measurable space (X,X ), which is referred to as the

target distribution. The aim of importance sampling is to get a set of sample points that

approximates the target distribution well. The plain Monte Carlo approach consists in

drawing an i.i.d. sample {X i}Ni=1 of size N from the target distribution µ.

But in some situations, it is more appropriate to sample from another probability distri-

bution ν on (X,X ) called the proposal distribution. Assume that the target distribution µ

is absolutely continuous with respect to ν, and denote by w ≡ dµ/dν the Radon-Nikodym

derivative of µ with respect to ν, referred to in the sequel as the weight function. Then, for

f ∈ L1(µ),

µ(f) =

∫
f(x)µ(dx) =

∫
f(x)w(x)ν(dx) = ν(fw).

If {X i}Ni=1 is an i.i.d. sample from ν, the above equation suggests the following estimator of
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µ(f):

N−1
N∑
i=1

f(X i)w(X i),

which is called the importance sampling estimator. {(X i, w(X i))Ni=1} is called a weighted

sample. So each sample points, or particle X i is labeled by weight w(X i).

Importance sampling introduces little restrictions on the choice of the proposal distribu-

tion. The choice is typically guided by two requirements: the proposal distribution should

be easy to simulate and should lead to e�cient estimator.

According to Equations (2.3) and (2.4), the �ltering distribution

φt(f) =

∫∫
X2

φt−1(dxt−1)Qt(xt−1, dxt)f(xt)

Suppose that the weighted sample {(X i
t−1, ω

i
t−1)}Ni=1 is consistent for φt−1. We can con-

struct a weighted sample {(X i
t , ω

i
t)}Ni=1 that approximates φt as follows. In the proposal

step, each particle X i
t−1 gives a single o�spring X

i
t , i ∈ {1, . . . , N}, of which the distribution

is speci�ed by the proposal kernel Rt(X
i
t−1, ·). Next, we assign to the new particle X i

t the

importance weight

ωit = ωit−1wt(X
i
t−1, X

i
t) (2.6)

where, given xit−1, wt is the Radon-Nikodym density of Q(xit−1, ·) with respect to R(X i
t−1, ·).

The �rst obvious choice is to set Rt = M , which is called the prior kernel. The weight

function wt then, according to (2.2), simpli�es to

wt(X
i
t−1, X

i
t) = g(X i

t , Yt)

This kernel is often convenient: sampling particles from M is often straightforward, and
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computing the incremental weight amounts to evaluating the conditional likelihood of the

new observation given the current particle.

Another obvious choice of the proposal is Q(X i
t−1, ·) with incremental weight 1, which is

the optimal case we can get. The optimal kernel was introduced in Zaritskii et al. (1976) and

Akashi & Kumamoto (1977). When the observation equation is linear, the optimal kernel is

convenient.

The key problem of sequential importance sampling is that the weights will degenerate

as the time index t goes forward, as can be seen from (2.6). Most of the normalized weights

ωit/
∑

i ω
i
t close to 0 except for a few. Weight ωit measures the adequacy of the particle

X i
t to the target distribution φt. A particle with small weight does not contribute to the

approximation. If there are too many ine�ective particles, the particle approximation is

ine�cient.

2.2.1.2 Resampling

To avoid the degeneracy of the importance weights, Gordon et al. (1993) proposed a solution

based on resampling using the normalized weights as probabilities of selection. That resam-

pling method is rooted in the sampling importance resampling, or SIR, method to sample a

distribution µ, introduced by Rubin (1987, 1988).

In the setting of a single step importance estimator, the SIR process proceeds in two

stages. In the sampling stage, an i.i.d. sample {X i}Ni=1 is drawn from the proposal distribution

ν. The importance weights are then evaluated at particle positions, ωi = w(X i). In the

resampling state, a sample of size N denoted by {X̃ i}Ni=1 is drawn from the set of points

{X i}Ni=1, with probability proportional to the weights ωi. Doing so we obtain an equally

weighted sample {X̃ i, 1}Ni=1 also targeting µ.

Algorithm 2.2.1 (Sequential Importance Sampling with Resampling).
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Initial State Draw an i.i.d. sample {XN,i
0 }Ni=1 from R0, and set

ωN,i0 = g0(X
N,i
0 )w0(X

N,i
0 ) for i = 1, . . . , N.

Recursion For t = 1, 2, . . . , T ,

• Draw {XN,i
t }Ni=1 conditionally independently from the distribution Rt(X

N,i
t−1, ·).

• Compute the updated importance weights

ωN,it = ωN,it−1wt(X
N,i
t−1, X

N,i
t ), i = 1, . . . , N.

Resampling (Optional) Draw a multinomial trial {I it}Ni=1 with probabilities of success

{ωit/ΩN
t }Ni=1, and set X i

t = X
N,Iit
t and ωit = 1 for i = 1, . . . , N .

2.2.2 Particle Smoothing

2.2.2.1 Poor Man's Smoothing

From particle �ltering, we generate the weighted samples {(X i
t , ω

i
t)}Ni=1 targeting the �ltering

distribution φt.

Let I it denote the index of the ancestral particle from which the particle X i
t originates.

We call I it the one-step ancestor index of the particle X i
t . Then from these one-step ancestor

indexes, we can construct the ancestral path of X i
t . Let

Bi
t = i,

Bi
s = I

Bi
s+1

s+1 , s = 0, . . . , t− 1

be the ancestor indexes or X i
t . Then the ancestral path, X i

0:t, of X
i
t , is simply

X i
0:t = (X

Bi
0

0 , . . . , X
Bi

t
t ).
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Then the weighted sample {(X i
0:T , ω

i
T )}Ni=1 is consistent for the joint smoothing distribution

φ0:T |T . That is, if we sample a full time 0 to time T path from {(X i
0:T , ω

i
T )}Ni=1, the path will

be distributed according to φ0:T |T .

Despite this favorable theoretical result, approximating the joint smoothing distribution

with the ancestral path of {X i
t}Ni=1 is doomed to failure. The later particles tend to be all

generated by a couple of particles from the previous time step. This is a problem known

as path degeneracy. If the time steps are sensibly long, the approximation of smoothing

distribution near the beginning of the time always fails.

The problem of path degeneracy is solved in two step. Andrieu et al. (2010) proposed a

algorithm called conditional particle Gibbs. And then Lindsten et al. (2012, 2014) augmented

this algorithm with a ancestor sampling step.

2.2.2.2 Conditional Particle Gibbs

The smoothing distribution φ0:T |T can be viewed as a marginal distribution of a bigger

distribution π(X0:T , I0:T , J), where J is an index variable following the multinomial dis-

tribution {ωiT/
∑

i ω
i
T}Ni=1; I0:T are the one-step ancestor indexes as de�ned in the section

2.2.2.1. And then π(X0:T , I0:T , J) can be viewed as a distribution of compound variables

{X−B
J
0:n

0:n , I
−BJ

0:n
0:n , X

BJ
0:n

0:n , BJ
0:n}.

Condition particle Gibbs sampling from π(X
−BJ

0:n
0:n , I

−BJ
0:n

0:n , X
BJ

0:n
0:n , BJ

0:n) consists of sampling

iteratively from π(X
−BJ

0:n
0:n , I

−BJ
0:n

0:n |XBJ
0:n

0:n , BJ
0:n) and π(X

BJ
0:n

0:n , BJ
0:n|X

−BJ
0:n

0:n , I
−BJ

0:n
0:n ). To sample

the �rst part,

Algorithm 2.2.2. [Particle Gibbs Part 1]

For t = 0:

• For ` 6= bj0, draw X`
0 ∼ r0(·);

• set Xbj0
0 = x

bj0
0 .

• For ` = 1, . . . , N , compute ω`0 = g0(X
`
0)w0(X

`
0) .
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For t = 1, . . . , n: Given {X t−1,ωt−1},

• for ` 6= bjt , draw (I`t , X
`
t ) ∼ pt(·, ·);

• set Xbjt
t = x

bjt
t . Set I

bjt
t = bjt−1.

• For ` = 1, . . . , N , compute ω`t = wt(X
I`t
t−1, X

`
t )/ϑt(X

I`t
t−1).

And to sample the second part,

Algorithm 2.2.3. [Particle Gibbs Part 2]

For t = n,

• sample

J ∼
{
ω1
n

ΩN
n

, . . . ,
ωNn
ΩN
n

}
.

• Set BJ
n = J .

• Set XJ
n = xJn.

For t = n− 1, . . . , 0,

• Set BJ
t = i

BJ
t+1

t+1 .

• Set XJ
t = x

BJ
t

t .

We get the conditional Particle Gibbs algorithm by combining the two parts

Algorithm 2.2.4. [Particle Gibbs]

1. Initialize. Set {X0:n[0], B0:n[0]} arbitrarily.

2. For Iteration k ≥ 1,

(a) run a CPF algorithm 2.2.2 conditional on {X0:n[k − 1], B0:n[k − 1]}, and
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(b) run Algorithm 2.2.3 and set {X0:n[k], B0:n[k]} = {XBJ
0:N

0:n , BJ
0:n}.

This Gibbs algorithm, as introduced in the seminal paper by Andrieu et al. (2010), is the

most straightforward. However, this method is known to su�er from path degeneracy Douc

et al. (2014). Hence, for this method to worker properly, the number of particles N needs to

be large enough. For many problems, this is unrealistic from a computational point of view.

This issue can be addressed by modifying the Gibbs sweep.

2.2.2.3 Conditional Particle Filter with Ancestor Sampling

This method, which aims to address the degeneracy problem of conditional particle Gibbs

sampler, was introduced by Lindsten et al. (2012, 2014) and Lindsten & Schön (2013). The

idea is to sample new values of the ancestor indexes BJ
0:n−1 as part of procedure 2.2.2. For

t = 1, . . . , n, after having sampled (I
−bjt
t , X

−bjt
t ), we add a step in which we sample a new

value for Ib
j
t
t , resulting in the following sweep:

Algorithm 2.2.5. [Particle Gibbs with Ancestor Sampling Part 1]

Input:

• Conditioned particles (x
bj0:n
0:n , j).

For t = 0:

• For ` 6= bj0, draw X`
0 ∼ r0(·);

• set Xbj0
0 = x

bj0
0 .

• For ` = 1, . . . , N , compute ω`0 = g0(X
`
0)w0(X

`
0) .

For t = 1, . . . , n: Given {X t−1,ωt−1},

• for ` 6= bjt , draw (I`t , X
`
t ) ∼ pt(·, ·);

• set Xbjt
t = x

bjt
t .
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• Draw I
bjt
t with conditional probability of Ib

j
t
t = ` given by

ω`t−1m(X`
t−1, x

bjt
t )∑N

`=1 ω
`
t−1m(X`

t−1, x
bjt
t )
.

• For ` = 1, . . . , N , compute ω`t = wt(X
I`t
t−1, X

`
t )/ϑt(X

I`t
t−1).

Output:

• (X0:n, I1:n−1, I
−j
n ).

2.3 Implicit Particle Gibbs

The choice of a good proposal is vital to solving the problem of weights inbalance. As

discussed in Section 2.2.1.1, the proposal distribution of generating X i
t has many options.

The optimal proposal isQt(X
i
t−1, ·), and yet direct sampling from it is in most cases infeasible.

Actually, the optimal proposal is feasible only when the measurement equations of the model

are linear. Chorin et al. (2010) proposed the implicit particle �lter method to �nd an

approximation of the optimal proposal.

2.3.1 Implicit Particle �lter

Although direct sampling is di�cult, we can sample the optimal proposal Qt(X
i
t−1, ·) indi-

rectly using importance sampling techniques from another proposal distribution. To get the

particle positions, the optimal proposal Qt(X
i
t−1, ·), in its density function, can be explicitly

written into

qt(X
i
t−1, xt) ∝ exp

{
−F i

t (xt)
}
. (2.7)
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Suppose xt is an m-dimensional random variable. We sample ϕ from an m-dimensional

standard normal distribution

ϕ ∼ 1

(2π)m/2
exp

{
−ϕ

Tϕ

2

}
,

and solve the equation

F i
t (xt)− Ci

t =
ϕTϕ

2
, (2.8)

where Ci
t is a constant. The value of ϕ is most likely in the neighborhood of 0. Therefore,

if the constant is chosen in a way such that Ci
t = minxt F

i
t (xt), then Equation (2.8) ensures

that the solution xt is a high probability position for Qt(X
i
t−1, ·).

To derive the particle weights, suppose (2.8) is solved by xit(ϕ). Then, each value xt of

X i
t appears with probability density

1

(2π)m/2
exp

{
−ϕ

T (xt)ϕ(xt)

2

}
|J |−1,

where J is the Jacobian of X i
t(ϕ), while the target density qt(X i

t−1, ·), from (2.7) and (2.8),

is proportional to

exp
{
−Ci

t

}
exp

{
−ϕ

T (xt)ϕ(xt)

2

}
.

Therefore, the weight of the particle should be

exp
{
−Ci

t

}
· |J |(2π)m/2.

2.3.1.1 Implementation

As proposed by Morzfeld et al. (2012), we could implement the importance sampling in three

steps.

32



Firstly, we need to solve the minimization problem, minxt F
i
t (xt), using standard tools,

e.g. Newton's method, a quasi-Newton method, or more sophisticated minimization strate-

gies. Denote

mi
t = arg min

xt
F i
t (xt),

Ci
t = F i

t (m
i
t).

And if we use Newton's method, then in the neighborhood of mi
t, we have

F i
t (xt) ≈ Ci

t +
1

2
(xt −mi

t)
TH i

t(xt −mi
t),

where H i
t denotes the Hessian evaluated at the minimum. Cholesky decompose the Hessian

H i
t = (U i

t )
T
U i
t .

Secondly, we solve (2.8). As we noted before, (2.8) has multiple solutions. One of them

can be found by letting

xt = mi
t + λitU

i
tϕ, (2.9)

where U i
t is some m × m matrix under our control and remains to be chosen. Substitute

(2.9) into (2.8), and we get an algebraic equation with one single variable λit

F i
t (m

i
t + λitU

i
tϕ)− Ci

t =
ϕTϕ

2
. (2.10)

To initialize the numerical computation, choose λi0t = 1. Intuitively, Equation (2.8) has a

solution in various directions geometrically. We pick a direction, U i
tϕ, and determine how

far we need to walk along the direction to reach the solution.
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What remains to be done is to determine the Jacobian. From (2.9), we know

∂xt
∂ϕ

= U i
t

(
ϕ
∂λit
∂ϕ

+ λitI

)
,

where ∂λit/∂ϕ is a row vector, which can be derived implicitly from (2.10) as follows:

(∇F i
t )

(
λitU

i
t + U i

tϕ
∂λit
∂ϕ

)
= ϕT ,

∂λit
∂ϕ

=
ϕT − λit(∇F i

t )U
i
t

(∇F i
t )U

i
tϕ

with ∇F i
t being a row vector denoting the gradient of F i

t . So

∂xt
∂ϕ

= U i
t

[
1

(∇F i
t )U

i
tϕ
ϕ
(
ϕT − λit(∇F i

t )U
i
t

)
+ λitI

]
.

We the derive the Jacobian:

J = det(U i
t ) · (λit)m−1 ·

ϕTϕ

(∇F i
t )U

i
tϕ
.

2.3.2 Implicit Particle Gibbs

We propose to incorporate the implicit particle �lter step in a Gibbs sampler as part of

procedure 2.2.5. The idea is to always sample new particles from a near-optimal proposal

distribution as discussed in the previous section. For t = 1, . . . , n, when we draw (I
−bjt
t , X

−bjt
t ),

we add a step of implicit �ltering, solving the maximization problem of the optimal proposal

and sampling a new value around its maximizer.

We implemented this algorithm in the following example, and compared its performance

with Lindsten et al. (2012)'s particle Gibbs with ancestor sampling.
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Example 2.3.1 (NGM Model).

xt = αxt−1 + β
xt−1

1 + x2t−1
+ γ cos[1.2(t− 1)] + ηt,

yt =
x2t
20

+ εt,

where yt is a function of x2t .

The result is shown in Figure 2.1. We �nd that both algorithms �ltered out the true

states reasonably well. But the con�dence band around the implicit particle Gibbs results

is usually smaller than that of the other algorithm, demonstrating an improved e�ciency

gained from the implicit particle �ltering step.

2.4 Conclusion

Particle Filter methods, or known as Sequential Monte Carlo methods, are a powerful class

of algorithms in solving non-linear state-space models. Although widely used, particle �lter

methods are known to su�er two challenges in practice. The optimal proposal distribution is

vital to mitigate the problems of both weights degeneracy and path degeneracy. But direct

sampling from the optimal proposal is usually not possible. Implicit Particle Filtering,

proposed by Chorin et al. (2010) and Morzfeld et al. (2012), gives an algorithm to sample

indirectly from the optimal proposal using importance sampling techniques. A Gibbs sampler

can then be constructed by modifying the Particle Gibbs with Ancestor Sampling algorithm

proposed by Lindsten et al. (2012), replacing the particle �ltering step in that algorithm by

implicit particle �ltering. We tested the socalled Implicit Partile Gibbs algorithm in a small

non-linear state-space model and found superior inference performance.
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Figure 2.1: NGM Model - Particle Gibbs v.s. Implicit Particle Gibbs
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Chapter 3

Deep Reinforcement Learning

The recent wave of advancement in arti�cial intelligence is driven mainly by the breakthrough

in one sub�eld of machine learning - deep neural networks. The technological breakthroughs

in DNN since late 2000s greatly improve the performance of machine learning problems. Re-

searchers could now delegate one most important job - feature engineering - to an automated

algorithm. As result, reliance on domain knowledge is greatly weakened and performance

has been improved signi�cantly.

Reinforcement learning is one �eld of machine learning that has bene�ted from DNN. In

a reinforcement learning problem, an agent is trained to make automatic decisions through

interactions with the environment. Commercial AI applications, e.g. self-driving cars, needs

the agent to achieve human-level performance on a speci�c task. Therefore, the algorithm

underlying the agent is required to be able to handle large and complex state space and

to evolve quickly in real time as interactions with environment are underway. The state

space of a self-driving system can be conceived as a collection of data, ranging from camera

videos to radar signals, collected by various types of sensors. Traditional RL algorithms

have been successfully applied to state spaces of moderate dimensions. But applicability to

a high dimensional state space like that of a self-driving system remained impractical until

reinforcement learning is combined with deep neural networks. Deep reinforcement learning

enables a reinforcement learning agent to deal with large batches of data quickly, and hence

gives rise to advanced algorithms that defeated world champions in a game called Go. And

thus we are seeing the ever growing popularity in AI in almost every �eld of studies.

In addition, many commercial applications like a self-driving system cannot a�ord to
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wait for a big batch of accidents data before updating its algorithm. Quickly evolving

to �x problems that have newly emerged is everything to a self-driving agent's success.

Reinforcement leaning techniques including temporal di�erence (TD) and dyna-TD cater to

this need.

In this chapter, we review the core ideas of both reinforcement learning and deep learning

from the vantage of economics research. We point out the connection between RL and

dynamic programming in Section 3.1, and then explains how RL caters to the two goals

of a practical AI project in late Section 3.1 through Section 3.4. Section 3.5 introduces

the architecture of deep neural network, especially one architecture is interesting particular

to time series modeling. In Section 3.6, we review the applications of deep reinforcement

learning in �nancial economics, game theory and macroeconomics.

3.1 Temporal Di�erence

Suppose we are playing a game that involves multiple time steps, and, across the time steps

of the game, the state St follows a Markov process. A policy function π prescribes the action

At a player could take under each state. By taking a certain action under a certain state,

the player can earn some reward Rt each time step.

At time t, suppose the environment is in state s and the player plays action a. He will

play in the subsequent time steps according to the policy function π. Then the value function

q of following a policy function π can be de�ned as the expectation of the sum of all the

following rewards

qπ(s, a) ≡ Eπ

[
Rt+1 + γRt+2 + . . .+ γT−1RT |St = s, At = a

]
, for s ∈ S (3.1)

where the subscript π denotes that the expectation is taken with respect to the probability

distribution de�ned by policy function π.

The goal of solving the Markov decision problem is to �nd the optimal policy function
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π∗ that prescribes the best action each and every state. Denote the value function under π∗

as q∗. Then by de�nition

π∗(s) = arg max
a∈A

q∗(s, a).

3.1.1 Dynamic Programming

Dynamic programming methods point out that the optimal value function and optimal policy

can be easily found using a loop of a two-step iteration

1. q(k+1)(s, a)← Eπ(k)

[
Rt+1 + γq(k)(St+1, At+1)

∣∣St = s, At = a
]
, s ∈ S

2. π(k+1)(s)← arg maxa∈A q
(k+1)(s, a)

Step 1 illustrates that the value function following a certain policy function could be found

at the �xed point of its Bellman equation, and Step 2 points to the direction at which the

rewards is improving. Therefore, the iteration constantly improves on the policy function

towards the optimal.

However, in dynamic programming , we assume the best situation in a sense. By taking

expectation with respect to the distribution de�ned by the policy π, we assume the exact

knowledge of how the Markov decision process works, i.e. p(S ′, R|S,A). That is, dynamic

programming requires a complete and accurate model of the environment (Sutton & Barto,

2018, p 89). This is an assumption that is often too strong in practice when the state space

alone can be so enormously big that a computation of the transition probabilities become

prohibitively expensive.

In contrast, reinforcement learning methods do not require a complete and accurate model

of the environment. Actually, most reinforcement learning algorithms can be seen as an ap-

proximation to dynamic programming without knowing exactly the transition probabilities.
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3.1.2 Monte Carlo Method

In many cases, deriving a full picture of transition probabilities is not necessary. In most

real world games, we play without knowing exactly the probabilities of how an action moves

the environment from one state to another. In other words, in many cases simulating many

episodes of a game is computationally more feasible than modeling the Markov decision

process.

By de�tion, the value function following a policy is the expectation of the sum of all

future rewards. If we can simulate arbitrarily many episodes of games following a policy, the

value function can simply be estimated as the sample averages. Therefore, as a substitute for

dynamic programming methods, Monte Carlo methods propose to �nd the optimal policy

by looping over the following three-step iteration

1. Play one episode of the game following policy π(·). Record the sequence of realized

states, actions and rewards S0, A0, R1, S1, A1, R2, S2, A2, . . ., RT , ST .

2. For St, At, compute G ≡ Rt+1 + γRt+2 + · · · + γT−1RT . Update value function as a

sample average

qk+1(St, At)← qk(St, At) + α(G− qk(St, At))

3. Update policy function π(k+1)(St)← arg maxa∈A q
(k+1)(St, a)

Monte Carlo methods demonstrates that there is no need to compute the transition

probabilities if we can simulate a large sample of episodes of a game. Actually, any realized

sample can be viewed as a noisy estimate of the expectation. As we accumulate more samples,

noises cancel out and expectation emerges as the sample's arithmetic average.

While Monte Carlo methods o�ers a way to bypass the need for computing the transition

probabilities, the player has to wait until the end of one game before he can update value

function and improve on his policy. In many real-world and academic applications, a game
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seems to continue forever with no clear ending. The longer a game episode lasts, the slower

the convergence is. Computational cost increases quickly in the length of a game that it

prohibits the application of Monte Carlo methods in many situations.

3.1.3 Temporal Di�erence

Note that in dynamic programming, an expectation is evaluated at Step 1 of the iteration.

As we discussed above, the expectation actually can be approximated by a body of samples.

At each time step of a game, the player plays following π, and then observes a reward and

the next state. Given the old value function q(k)(·, ·), that is to say that he gets a new sample

of Rt+1 + q(k)(St+1, At+1)|St, At.

The new sample then can be averaged with the old samples, i.e. q(k), to derive a new

estimate of the expectation q(k+1). Speci�cally, the algorithm can be written in the following

loop. At time step t and in state St,

1. take action At following policy π(k)(St). Observe reward Rt+1 and next state St+1

2. Update value function

q(k+1)(St, At)← q(k)(St, At) + α
[
Rt+1 + γq(k)(St+1, At+1)− q(k)(St, At)

]

3. Update policy function π(k+1)(St)← arg maxa∈A q
(k+1)(St, a)

In Step 2, our estimates of the value function is guided towards the �xed point of its cor-

responding Bellman equation. And in Step 3, policy function is improved one step towards

the optimal policy.

So temporal di�erence methods draw on both Monte Carlo and dynamic programming

methods. On one hand, TD methods learns from samples, instead of exact knowledge of

transition probabilities, to update value and policy functions just as Monte Carlo methods

do. And on the other hand, TD updates fully utilizes its old estimates of value function just
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as dynamic programming does. As result, updates happen in real time at each time step,

without the need to wait until the game episode comes to an end. Therefore, TD methods

applies to problems with in�nite time horizons.

The TD class of algorithms, e.g. SARSA, Q-learning, and expected SARSA, are today

the most widely used reinforcement learning methods Sutton & Barto (2018). They can be

implemented online in real time with minimal computational cost. And these two attributes

are extremely important in business applications. For example, a self-driving car cannot

a�ord to wait until a whole batch of accidents data �oods in before it updates. It is by

nature required to be able to evolve timely. And TD reinforcement learning methods with

online updates and minimal amount of computation is what make self-driving system a

prospect.

3.2 Value Function Approximation

Note that in all the above algorithms, our estimate of value function q(S,A) is updated

pointwisely. The value of each state-action pair is computed and recorded one by one and

none. Speci�cally, the value function estimate is in a form of an linear combination of each

and every state-action pair's indicator functions. It approaches the true value function at

each point as the iteration goes into the limit

∑
s∈S,a∈A

(q̂s,a · 1S=s,A=a) −→ q(S,A).

Although well applicable to many small games, the task of learning the values pointwisely

would become intractably di�cult if the state-action space {S,A} is so big that we could

not list all state-action pair exhaustively. For example, the number of states in a chess game

is roughly in the order of 1046.

More practically, the value function can be approximated using a more general functional

form. The approximation does not approach the true value function at each and every point.
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Let v̂(S,w) denote the parameterized approximation of the value function, i.e.

q̂(S,A,w) ≈ q(S,A)

where w denotes a weight vector; q̂ can be seen as an estimate of q and therefore is capped

with a hat symbol by convention. We may want q̂ approximates the value function at

better accuracy in certain part of the state space than in the rest. For example, we may be

more interested in the area where the states are visited most frequently. Let u(S) denote a

probability distribution de�ned on the state space that speci�es which states we care more

than the others. Then we can try to �nd (i.) a functional form q̂ and (ii.) a vector of weights

w that minimize the expected mean squared error

∑
s∈S,a∈A

µ(s) (q(s, a)− q̂(s, a,w))2

3.2.1 Updating Weights w

Let's discuss the functional form problem in the next section. Now suppose we've already

decided on what functional form we want in value function approximation. Again, the issue

we want to solve is a control problem: we have a robot player that learns how to play a game.

But the state space of the game is so large that the simple update of the policy function π

on each and every state is not possible.

With a function approximation, the update of the value function is equivalent to the

update of the weights vector w. As discussed before, we want to update the weights in a

direction that minimized the distance between the true and approximate value functions

min
w

∑
s∈S,a∈A

µ(s) (q(s, a)− q̂(s, a,w))2 .

Here µ is a probability distribution that describes which part of the state space we need to be
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approximated more accurately. Since usually we care more about the states that are visited

the most frequently, a natural choice for µ is the stationary distribution of environment state

under policy π. In that case, the target we want to minimize, the mean squared error, can

be viewed as an expectation under the stationary probability distribution, and therefore can

be estimated by a sample average.

At time t, suppose the robot player follows a policy function π and soon observes a reward

Rt+1 and the next state St+1. According to what we discussed in Section 3.1.3, given the old

estimates w(k),

Rt+1 + γq̂(St+1, At+1,w
(k)) (3.2)

could be treated as a noisy estimate of q(St, At).

The direction where w should be updated to is the opposite of the gradient of the target

w(k+1) ← w(k+1) + α
(
Rt+1 + γq̂(St+1, At+1,w

(k))− q̂(St, At,w(k))
)
∇q̂(St, At,w(k))

where ∇q̂(St, At,w(k)) denotes the gradient of q̂ with respect to w. Given the functional

form of q̂, the gradient is easily got.

So the robot player can learn how to best play the game in a similar loop as in Section

3.1.3:

1. take action At following policy π(k)(St). Observe reward Rt+1 and next state St+1

2. Update value function

w(k+1) ← w(k+1) + α
(
Rt+1 + γq̂(St+1, At+1,w

(k))− q̂(St, At,w(k))
)
∇q̂(St, At,w(k))

3. Update policy function π(k+1)(St)← arg maxa∈A q̂(St, a,w
(k+1))

The robot player still learns in a real-time fashion. But note that, di�erent from in the
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old TD methods, the update at time t changes not only the value function at state St. Since

an change in w a�ects the value function at numerous states, the knowledge it learns at time

t could be generalized to the decision under many di�erent environment states.

Generalization is a very important attribute of human intelligence. A person who knows

how to use a Windows system usually learns how to operate under MacOS quickly. Be able

to generalize knowledge from one state to similar states greatly lowers the computational

cost of training a robot player. With function approximation, robot playing a game that

was considered too complicated for machine, e.g. the game called Go, becomes a possibility.

3.2.2 Functional Form: Supervised Machine Learning

Now we come back to the problem of how to �nd a good approximation functional form.

This is the task of another group of machine learning method called supervised learning.

Supervised learning is very di�erent from reinforcement learning. In reinforcement learning,

the core task is to �nd a good policy function, while in supervise learning the core task is to

approximate a function.

Supervised learning learns from a set of input-target examples. For example, imagine we

have a dataset of pictures where some pictures are of cat and the rest are not. We draw some

examples, label each example whether it has a cat in it or not, and presented the labeled

pictures to a robot. Then the robot can learn what a cat looks like using supervised learning

methods and tell if a new picture contains a cat. Or suppose we have a dataset of prices and

attributes of many houses. Then supervised learning can take the attributes as inputs and

prices as target and estimate the price of a new house. In other words, the function from

house attributes to house price can be approximated using supervised learning methods.

Linear regression models, for example, are a subset of supervised learning. Suppose given

the environment state S and the robot's action A, we researchers can devise a set of features

x(S,A). Each feature captures a certain attribute of the state-action pair. The robot learns
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how to �t these attributes in a linear regression model to predict the value function q(S,A)

q̂(S,A,w) = w′x(S,A)

The weights vector w can be learnt with the TD methods we discussed in Section 3.2.1.

The goodness of �t of the regression comes from the relevance of the features. In the

example of predicting housing prices, an house appraisal expert might come up with many

features that an specialist of other profession cannot, and, other things equal, the function

approximation built on his features would outperform the rest. That is why expertise or

called domain knowledge is extremely important for the performance of supervised learning.

Besides linear regression models, a function can be approximated by any other supervised

learning methods as well. For example, trees type of models are also widely used in many

applications. But again, on top of a supervised learning algorithm, feature construction is

another equally if not more important job that takes a lot e�ort. In many applications, top

performance comes from an advanced algorithm with superior theoretic properties and a set

of informative features.

State S can be thought of as a collection of raw data, and features can be considered

as some linear/non-linear function of those raw data. Suppose we are building a learning

system that helps to predict the probability that a loan might default. State S of a loan in

question might be the amount, borrow's annual income, and borrow's credit card balance.

Then the borrower's debt/income ratio can be constructed from the raw data as a very infor-

mative feature. Since a linear regression does not model the nonlinear interactions between

the features, features that captures the features' non-linear relations can be particularly

important.

Traditionally, researcher spend huge amount of e�ort on feature construction. But the

situation has changed dramatically since 2012 when deep neural network was introduced.

Deep neural network is a new architecture of supervise learning methods. Since non-linear
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relationships between features can be automatically constructed by a deep neural network,

emphasis shifts back towards the quality of raw data away from feature construction. For

more information on deep neural network, please refer to Section 3.5 where this topic is

discussed in detail.

3.3 Policy Gradient Methods

The goal of solving a Markov decision problem is to �nd a policy function that maximizes

rewards of a game. As dynamic programming pointed out, the goal can be achieved by �rst

�nding the optimal value function and then picking the best response under the optimal

value function. Temporal di�erence type of learning methods follows the two-step scheme

laid out by dynamic programming. But note that the optimal policy found under such a

strategy is always deterministic. Given a value function, there is always one action that's is

the best under a state. And therefore the policy learnt this way is always deterministic.

However, in many cases a deterministic policy might not be optimal. Suppose robot

player is learning to play the following game in which it moves left or right to try to reach

the terminal T as soon as possible. Suppose the state space is too large that the algorithm

needs to divides the space using a grid, and approximate the value function on each grid. As

a result, states S1, S2, S3 look all the same to the robot. He cannot tell which state he is in

if the game happens to be in that state grid. It turns out that S2 is special. In state S2, if

the robot chooses to move right, it actually moves left and vice versa. States S1 and S3 are

normal.

Figure 3.1: Corridor Game

Suppose the game in state S1 right now. But again, the robot cannot tell if he is in S1, S2
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or S3 because of value function approximation. A deterministic policy would be a disaster

in this case. A deterministic policy in state S1 leaves us only two options: always move right

or always move left. If the robot chooses to always go right, he will move to S2 and then

bounce back to S1. So he will be trapped in that grid forever. But if he chooses to go left, he

will move away from the terminal. So a deterministic policy would leave the robot trapped

in his loop forever and he could never �nish this game. You can imagine a cleaning robot is

trapped at the corner of a room forever.

That is, with imperfect information, a deterministic policy is often not the optimal. In

many applications, we cannot tell for sure in what situation we are right now at the moment,

and best reaction is often to explore as many options as possible instead of sticking to one

action. In the above example, the optimal policy in S1 grid is to try right 59% of the time

and left 41%. Actually any stochastic policy is better than a deterministic one.

Actually the policy function does not have to be learnt after learning the value function.

Policy gradient provides a methods where the robot can directly learn the best decision from

experience. Because it is not derived as the best action under a value function, the policy

function learnt this way does not have to be deterministic.

3.3.1 Objective

Let π(a|s,θ) denote a policy function, where θ denotes a weights vector. Suppose the

functional form is known. Then di�erent values of θ determines the probabilities of di�erent

actions under each state. The robot wants to learn the optimal weights θ∗ such that the

expected reward following policy π(a|s,θ∗) can be maximized. Let µ denote the stationary

distribution under policy π. Then the learning problem can be formalized as

max
θ

∑
s∈S

µ(s)
∑
a∈A

π(a|s,θ)qπ(s, a)
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where qπ is the value function under policy π as before. In a in�nite time horizon setting,

the robot's reward in the long run is maximized when the expected reward at each time step

is maximized.

To maximize the objective, the direction to which θ should be changed is given by the

gradient. The derivation of the gradient seems tricky, because µ is the stationary distribution

under π and is a complicated function of the weights vector θ. But Policy Gradient Theorem

gives the convenient result that the gradient is simply

∑
s∈S

µ(s)
∑
a∈A

∇π(a|s,θ)qπ(s, a)

or equivalently

∑
s∈S

µ(s)
∑
a∈A

π(a|s,θ)

[
∇ lnπ(a|s,θ)qπ(s, a)

]
.

So Policy Gradient Theorem guarantees that we can just ignore the complicated dependence

of µ on θ.

The gradient can be viewed as the expectation of ∇ lnπ(a|s,θ)qπ(s, a) under policy pi,

and therefore can be noisily estimated using samples directly generated by playing the game

following π.

3.3.2 Actor-Critic Algorithm

At each time step, the robot player plays action a following policy π. Then he receives a

reward and observes the next state. He computes ∇ lnπ(a|s,θ) using the new data. At this

point, he gets an estimate of the gradient of the objective function. Then he can update his

policy function by moving the weights vector w in the direction of the estimated gradient

θ(k+1) ← θ(k) + αθ∇ lnπ(a|s,θθ)qπ(s, a)
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Note that the gradient of the policy function ∇π(a|s,θ) gives the direction where the

probability of taking action a can be increased. And qπ(s, a) gives is the value of taking action

a. Therefore, ∇ ln π(a|s,θθ)qπ(s, a) guarantees that the actions that has higher values will

be assigned higher probability after the update. So the update always moves in the direction

that increases the reward in the long run.

But the problem of implementing the update is that we do not have the value function q.

So actually the value functions needs to be approximated using the function approximation

methods discussed in Section 3.2. With q̂ denote the approximate value function, at each

time step,

qπ(s, a) ≈ q̂(s, a,w(k))

So in a shell, the algorithm goes as follows. Each time step after receiving the reward and

new state, the robot update his value function estimates and policy function

1. update value function

w(k+1) ← w(k+1) + αw
(
r + γq̂(s′, a,w(k))− q̂(s, a,w(k))

)
∇q̂(s, a,w(k))

2. update policy function

θ(k+1) ← θ(k) + αθ∇ ln π(a|s,θθ)q̂π(s, a,w(k+1))

This algorithm is called the actor-critic algorithm. Here policy function is the actor and

value function is the critic. The critic points out which actions' probabilities should be

increased in a new policy, and the actor improves following the direction laid out by the

critic.

Note that in this policy gradient method, a value function approximation is necessary

just as before. But the role the value function plays in the derivation of policy function is
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quite di�erent than in the past. The policy is not derived as the deterministic optimizer of

the approximate value function. Instead, policy updates the probabilities of those actions

that value function identi�es as high-value ones. Policy is not required to be deterministic.

If the functional form allows, the optimal policy is free to stay stochastic.

3.3.3 Policy Parameterization

Now we come back to the functional form of policy function π(s, a,θ). Similar to the problem

in value function approximation, the parameterization of policy function can take various

forms as long as the policy function is di�erential be the weights vector. Generally, the state

space in an application is much larger than the action space. For example, in a self-driving car

problem, the state space involves multiple types of data ranging from radar signals to videos.

And di�erent combinations of the state might calls for quite di�erent actions. Complicated

non-linear functional forms like deep neural network might have its merits. But typically

the action space tends to be much smaller than the state space, and choices of actions are

usually quite limited. So policy function often takes a quite simple form.

Two functional forms are frequently used. In discrete action space problems, the choice

of softmax function is natural. Similar to in Section 3.2.2, we use x(s, a) denote a vector

of features at state s and action a. Let h(s, a,θ) denote the preference over the actions at

state s, then the softmax function

π(a|s,θ) =
eh(s,a,θ)∑
a∈A e

h(s,a,θ)

de�nes a probability distribution over the action space A. Here h(s, a,θ) can take any

functional form that is di�erentiable to θ. In contrast to the dynamic programming strategy,

the distribution de�ne this way allows for the possibility of stochastic policies. Of course,

the distribution could converge to a deterministic policy in limit if the optimal policy is

deterministic by nature.
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In continuous action space problems, a Gaussian distribution is a natural and common

choice

π(a|s,θ) =
1√

2πσ(s, a,θσ)
exp

{
−(a− µ(s, a,θµ)2

2[σ(s, a,θσ)]2

}

where the mean µ is often taken as a linear combination of features and standard deviation

σ is often the exponential of another linear combination

µ(s, a,θµ) = θµ,T · x(s, a),

σ(s, a,θσ) = exp
{
θσ,T · x(s, a)

}
.

The Gaussian distribution also allows the policy function to be deterministic by degenerating

and concentrating the probability mass towards a certain action.

3.4 Planning and Learning

In TD type of reinforcement learning algorithm, the robot player plays a game following a

policy function. One time step later, he receives a reward and observes the new state in the

environment. Then he applies the new data he collects during the time step to update his

value function and policy function

q(k+1)(s, a)← q(k)(s, a) + α
[
r + γq(k + 1)(s′, r)− q(k)(s, a)

]
where s, a denote the state-action pair at time t. So only the state and action that he

experienced will be updated. All the other state-action pairs will stay untouched. As a

result, after playing one episode of the game, only the situations he has experienced during

the game will be updated. In order to master the game, the robot player needs to play many

episodes.

Intuitively we would think that we could improve on the algorithm using the following
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scheme. Once the value estimate in state s is updated, the values of all states that could

transition to state s should be updated. Clearly there is a connection between the states

that are adjacent to each other, as pointed out by dynamic programming (Step 1). If

the knowledge we gain at one state can be propagated to the related states, the learning

processing would become much faster. The whole state space could be swept quickly, and

the robot might be able to master the game in a much short period of time.

However, propagation is di�cult in this environment, because the transition probabilities

are unknown. Without a complete knowledge of the transition probabilities, we could not

know which state-action pair leads the environment to which state, and therefore could not

propagate knowledge from one state to a more general set of states - except for the states

the robot has experienced, e.g. s, s′.

So in order to make propagation of knowledge practical, we need to know the transition

probabilities, or at least an approximation of these probabilities

p̂(s′, r|s, a) ≈ p(s′, r|s, a)

Note that the robot learns part of the transition probabilities each game. During each

episode of the game, he would experience many state-action pairs and observe where these

state-actio pair leads the environment to. As he plays more episodes, he knows more and

more of the transitions. When he looks back after say 10 games, he might be able to see

that historically state s and action a leads to state s′1 four times and s′2 six times. That is,

he will be able to build a model of the transition probabilities that get closer and closer to

the true probabilities as he gains more experiences.

With p̂, knowledge he learnt at time (s, a) in a game could be propagated back to an

upper level of states, and then the further upper level, following the roadmap laid out by

dynamic programming. So the robot player could learn much faster than without p̂.
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3.4.1 Dyna-TD

The name dyna-TD might come from the fact that the algorithm is a TD reinforced with

dynamic programming. As we mentioned before, TD class of methods has multiple im-

plementation, e.g. Q-learning algorithm. The dynamic programming reinforced version of

Q-learning is called dyna-Q, and is widely used in many applications.

Dyna-TD, although a little bit more complicated, proceeds in a similar way to TD. At

each time step t, the robot plays the game following the policy function π. Soon he receives

a reward r and observes what new state s′ the environment is going into. He then updates

his value function and policy function as the TD algorithm describes in Section 3.1.3.

As the game goes, he has been building a model of the game at the same time. He has

recorded all the transition pairs (s, a, s′, r) that he has experience during this game and the

games that have happened in the past. After step t, he adds the newly observed transition

pair to the model. Since the model records all historic experiences, the collection of historic

transition pairs will approximate the transition probabilities reasonably well eventually as

he gains more experiences from playing the game.

He then simulate the game using the model he has built. He could simulate as many

episodes of the game as he would like. At each time step of a simulated game, he plays under

policy pi, and then arbitrarily simulate the reward and next state based on the model, or

historic experiences. And after that he use the simulated data to update his value estimate

and policy function. This is the dynamic programming past implemented in a sampling

method.

In a sense, the dyna part of the algorithm is like a replay and post-game analysis in a

basketball game. A player grows through playing. Each game the player gains experiences

about the game, and eventually he will master the game after a reasonable amount of games.

But if he replays and studies a game many times after each game experience, thinks of all

the possibilities that could have played the game di�erently, he learns much more from one

game experience. And therefore he might master the game with a much smaller number of
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game experiences.

3.4.2 Inaccurate Model

The dyna part of dyna-TD methods helps to optimize the policy function with respect

to the model instead of to the real game environment. However, the model and the real

environment usually will not be the same. So sometimes dyna-TD might orient the policy

towards a direction that is suboptimal with respect to the environment. Since the model can

only simulate the transitions it has recorded before, the policy function might be optimized

in a way that the robot will only take actions he is already familiar with. Under such a policy,

new territories of the state-action space will never be visited and, as a result, new information

stops to feed into the model. The model and the policy function will stay suboptimal.

The problem is particularly important when the game environment is changing quickly.

Feed of new information in this case is extremely important to ensure that the model stays

updated and accurate. Otherwise, new features emerged in the environment might render

the policy function irrelevant quickly.

The key to solving this problem is to prompts the policy function to keep exploring. One

way to achieve this is to attach a bonus reward to the territory of the state-action space

that has not been visited for a long time. For example, Dyna-Q+ method keep track for

each state of how long has elapsed since the state has been visited in a real interaction with

the real game environment. The longer time that has elapsed, the bigger the bonus reward.

Under such an arrangement, the policy function will be twisted more towards environment

exploration. The model will keep updating and iterating.

As new exploration from real game experiences feeds into the model, the dyna part will

propagate the new information through the state space quickly. This way, the dyna part

contributes the exploitation of new information, and a dyna-TD robot could quickly discover

and correct and modeling error.
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3.5 Deep Neural Network

The current wave of popularity of arti�cial intelligence is mainly driven by advancements

in the �elds of building up deep neural networks. Although proposed decades ago, the

applicability of neural network models has been limited by the large size of parameters that

need to be trained, and limit availability of data in an application.

Di�erent architectures of deep neural networks have been proposed and applied. In its

most basic form is the feedforward arti�cial neural network. In a feedforward ANN, data

is feed into the model as inputs, propagated through the layers of neurons, and �nally

produces the output at approximates a target value. The layers between the input layer and

the output layer are called hidden layers. Viewed as a function of the inputs, an ANN is a

non-linear function of the independent variables. In theory, an ANN with a single hidden

layer can approximate any continuous function on a compact region of input space to any

degree of accuracy, if the size of the hidden layer is su�ciently large, known as the university

approximation property Cybenko (1989).

But in practice, ANN with multiple hidden layers is usually adopted, with shallower

layers capturing lower-level features and deeper layers capturing higher-level features. So

adding more layers, not only helps to approximate more complex functions, but also allows

for higher levels of abstraction. For example, in a typical neural network that is trained to

recognize cat, shallower layers are found to be devoted to the recognition of lines of di�erent

angles while deeper layers tend to be able to compose lines into various shapes. In a sense,

features are engineered automatically without human domain expertise in a neural network.

And this has been proven to be particular useful in various �elds of machine learning.

Other popular architectures of deep neural networks include convolutionary neural net-

work and recurrent neural network. CNN is good at abstracting information from image

data and RNN has proven to work well with time series data.
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3.5.1 Recurrent Neural Network

Of particular interest to economics research is the recurrent type of architecture. As il-

lustrated in Figure 3.2, di�erent from feedforward neural network, RNN encodes data into

neurons and then feed the neurons back into the model to derive the next batch of neurons

together with a new batch of data. As a result, the information of time t will be stored in

the form of neuron activations in a and a�ect future predictions ŷt+s, s = 0, 1, . . ..

Figure 3.2: Recurrent Neural Network

The two boxes in Figure 3.2 stand for a function that takes old information and new data

as inputs and outputs prediction ŷ. In conventional time series models, the function usually

takes the form of a linear function. But in RNN models, the function is usually non-linear,

as illustrated in Figure 3.3. In Figure 3.3, old information at−1 and contemporary data xt

are encoded using a non-linear function, and then decoded to generate prediction ŷt. The

encoder could be a tahn function or a recti�ed linear function. And the decoder could be

a linear, logistic or a softmax function, depending on the type of output data. Overall, the

function from input xt to output yt represented by the box in Figure 3.2 could be highly

nonlinear and is highly �exible. The values of parameters in each encoder-decoder unit is
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determined by an optimization problem to minimize the prediction error

∑
t

(yt − ŷt)2 (3.3)

just as the familiar OLS minimization problem. Because the function form is highly �exible

Figure 3.3: Recurrent Unit

and basically model free (not from economic theory), the input xt is free to include any data

that might help with model prediction.

The lag e�ect of xt on yt can be customized by altering the RNN function unit (the box in

Figure 3.2). A standard RNN unit updates the stored information at at each time step and

therefore tends to have short memory. Information from long in the past is lost through the

information �ow. Long memory can be realized by adding an update gate to the RNN unit.

The update gate, as illustrated in Figure 3.4, can be a logistic function that chooses whether

to update at using new data xt or to keep at the same as at−1. Suppose at is n-dimensional,

then the gate can be made n-dimensional so that each individual element of at can choose to

update or not independently. As a result, the lag e�ect of each data series can be staggered.

The RNN unit in Figure 3.4 is known as the Gated Recurrent Unit proposed in Cho et al.
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(2014). Another popular RNN unit widely used is called Long-Short Memory Unit proposed

by Hochreiter & Schmidhuber (1997), which can be viewed as a reinforced version of a gated

recurrent unit.

Figure 3.4: Gated Recurrent Unit

The RNN architecture as illustrated in Figure 3.2 has only one layer of recurrent units

and in that sense is shallow. It can be made deeper by adding more layers of RNN units as

illustrated in Figure 3.5. Additional layers help to identify more complicated relationships

between xt and yt and in theory could improve on prediction accuracy.

When combined with reinforcement learning, the optimization problem (3.3) can be

twisted slightly as discussed in Section 3.2.1. The target yt in a reinforcement learning

problem is the value function of a state-action pair and can be estimated using the temporal

di�erent method as illustrated at Equation (3.2).

3.6 Applications of Deep Reinforcement Learning

The application of reinforcement learning has been gaining momentum in the domains in

�nancial economics, microeconomics and macroeconomics since the introduction of deep

neural network methods in 2012.
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Figure 3.5: Deep Recurrent Neural Network

3.6.1 Finanial Economics

Training AI agents for automated �nancial asset treating is a topic that is received broad

attention. Deng et al. (2016) builds a robot trader by combining recurrent neural network

architecture with reinforcement learning framework. The RNN part automatically senses

dynamic market conditions and creates features, while the RL part make trading decisions

based on the featured constructed by the RNN model. They tested their robot on futures

markets, including stock-index future markets and commodity future markets, and found

its performance robust to various market conditions. They claim their robot could make

reliable pro�ts on multiple future markets.

Lu (2017) constructs their robot trader for the foreign exchange market using a similar

scheme. Their build their decision making agent using a policy gradient method. Function

approximation is accomplished using a long-short term memory recurrent neural network

architecture. They tested the performance of the robot on GBPUSD trading.

Kanwar et al. (2019) applies deep reinforcement learning methods to explore how to

optimally manage a portfolio of a given set of stocks. The robot is trained to maximize long

term wealth of the portfolio. Their workhorse model is the Actor-Critic method.
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Buehler et al. (2019) applies deep RL methods to a more complicated trading environ-

ment. The robot is trained to hedge a portfolio of derivatives in the presence of market

frictions, e.g. transaction costs, market imperfections, liquidity constraints, or risk limits.

Reward structure in their model, therefore, is nonlinear. They claim their algorithm can

be implemented e�ciently in high-dimensional situations. The model structure does not

depend on market dynamics and can be generalized across various instruments. They �nd

the model's computational performance is largely invariant in the size of portfolios.

In addition to trading and hedging, deep learning methods have also been applied to

energy price forecasting Zhao et al. (2017), mortgage risk management Sirignano et al. (2016),

stock market predictions Dixon et al. (2017), and limit order books predictions Sirignano

(2019); Dixon (2018).

3.6.2 Game Theory

The connection between reinforcement learning and game theory has been noted since

decades ago. Reinforcement learning features a decision-making agent in a Markov deci-

sion process. Stochastic multi-agent games, on the other hand, are a natural extension of

Markov decision process into multi-agent environment. And learning behavior is crucial for

multi-agent systems. Littman (1994) generalize reinforcement learning from a single agent

framework into a multi-agent one. He demonstrated its application to a single two-agent

game, each of which adopts a Q-learning type algorithm, and found stochastic optimal poli-

cies. Bowling & Veloso (2000) examined a number of algorithms for solving stochastic games

from both the game theory and reinforcement learning communities. Tuyls & Nowé (2005)

showed the remarkable similarities between reinforcement learning and evolutionary game

theory, and pointed out some problems that are interesting in both �elds and yet have not

been solved.

Leibo et al. (2017) applied deep reinforcement learning to the study of social dilemmas.

Generalized from Prisoner's Dilemma, they introduced sequential social dilemmas, where

61



cooperativeness is a property that applies to policies instead of individual actions. Agents

learn policies that implement their strategies. Each agent adopts its own deep q-network.

They characterized two agents' behavior changes as a function of environment factors includ-

ing resource abundance. And showed how the sequential nature of social dilemmas a�ects

cooperation.

Tampuu et al. (2017) worked on the study of how cooperation and competition emerge

between agents that learn using deep q-networks. They simulated the interaction in the well-

known video game Pong. The demonstrated the evolution from competition to cooperation

when the reward to cooperation is increased. They also showed that learning by playing

against another agent results in more robust strategies.

3.6.3 Macroeconomics

Did neural network architecture takes a �exible model free approach that can be trained

only on a large amount of data. Researches on macroeconomics using deep learning methods

have been focused on variable forecasting so far. Önder et al. (2013) explored the applica-

bility of arti�cial neural network for forecasting economic variables in the long run. Cook

& Hall (2017) employed four di�erent neural network architectures on predicting civilian

unemployment rate. Their best performing modal build on an encoder-decoder architecture

outperforms the Survey of Professional Forecasters (SPF) at every forecast horizon. They

claim their approach provides good single serious performance and can incorporate novel

data series.

3.7 Conclusion

In a reinforcement learning problem, an agent learns how to make automatic decisions to

maximize its reward through interactions with the environment. Given the high dimen-

sionality of the state space of many potential reinforcement learning applications, practical
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implementation of reinforcement learning algorithm in many cases is not possible without

a deep neural network approximation. Deep reinforcement learning, which incorporates a

deep neural network in a reinforcement learning algorithm, has empowered the development

of advanced algorithms that have been deployed in many economic researches, ranging from

�nancial economics to game theory. We are looking forward to seeing more applications of

recurrent neural network, a particular architecture of deep neural network specializing in

time-series data, in macroeconomic researches.
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Appendix A

Appendix to Chapter 1

A.1 Macro-Finance Term Structure Model

A.1.1 Dynamics under the Real-World Probability Measure

Let M t denote some macroeconomic variables, and F t denote three latent variables which

are priced on the Treasury securities market. Consider a macro term-structure model where

the variables evolve in the following way

M t = ΦM t−1 + ΣMεM,t, εM,t ∼ N(0, I), (A.1)

F t = K0 +K1F t−1 + ΓM t + ΣFεF,t, εF,t ∼ N(0, I), (A.2)

where εM,t and εF,t are independent. Equivalently, the second equation can be re-written

into the following form

F t = K0 +K1F t−1 + ΓΦM t−1 + ΓΣMεM,t + ΣFεF,t.

Denote

Σννt ≡ ΓΣMεM,t + ΣFεF,t, (A.3)
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with

νt ∼ N(0, I),

ΣνΣ
′
ν = ΓΣMΣ′MΓ′ + ΣFΣ′F .

Then we have

F t = K0 +K1F t−1 + ΓΦM t−1 + Σννt. (A.4)

A.1.2 Pricing Kernel and Prices of Risks

Following Joslin et al. (2014), we assume the pricing kernel

Mt+1 = exp

{
−y1,t − λ′tνt+1 −

1

2
λ′tλt

}
,

according to which only a small number of risk factors νt+1 are priced on the bond market.

Note that the macroeconomic risk factors εM,t+1, albeit not directly priced, span the bond-

market risk factors together with some other risks εF,t+1, as made clear by (A.3). The prices

of risk factors λt are related to the market's risk attitude which in turn is assumed to be

determined by the state of the economy and the state of the bond market

λt = λ0 + λ′1MM t + λ′1FF t.

WithMt+1 as the Radon-Nikodym derivative, we can de�ne a new probability measure,

denoted as Q, under which the probability density function of νt+1 conditional on the current
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state variables (M t,F t)

fQ
εt+1|M t,F t

(νt+1) ≡Mt+1f(νt+1)

∝ exp

{
−y1,t − λ′tνt+1 −

1

2
λ′tλt

}
exp

{
−1

2
ν ′t+1νt+1

}
∝ exp

{
−λ′tνt+1 −

1

2
λ′tλt−

1

2
ν ′t+1νt+1

}
= exp

{
−1

2
(νt+1 + λt)

′ (νt+1 + λt)

}
.

That is, under the Q-measure,

νt+1|M t,F t
Q∼ N (−λt, I) .

De�ne

νQ
t+1 ≡ νt+1 + λt.

Then (A.4) can be written as

F t = K0 +K1F t−1 + ΓΦM t−1 + Σν(ν
Q
t − λt−1)

= (K0 −Σνλ0) + (K1 −Σνλ
′
1F )F t−1 + (ΓΦ−Σνλ

′
1M)M t−1 + Σνν

Q
t .

Let's denote

KQ
0 ≡K0 −Σνλ0,

KQ
1 ≡K1 −Σνλ

′
1F .

Suppose F t is identi�ed under the normalization conditions of Joslin et al. (2011) as

detailed in Section A.1.3, and suppose all parameters (including KQ
0 and KQ

1 ) are given

except those in λt. We parameterize λt as Joslin et al. (2014) did
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1. λ0 = Σ−1ν
[
K0 −KQ

0

]
,

2. λ1F =
[
Σ−1ν (K1 −KQ

1 )
]′
,

3. λ1M =
(
Σ−1ν ΓΦ

)′
,

such that the dynamics of F t under the Q-measure does not depends on the macroeconomic

variables M t

F t = KQ
0 +KQ

1F t−1 + Σνν
Q
t .

A.1.3 Normalization

We take the normalization conditions of Joslin et al. (2011) and assume

1. the yield of a 1-month Treasury bill

y1,t = ι′F t,

2. KQ
0 =

(
kQ∞, 0, 0

)′
,

3. KQ
1 is diagonal with its eigenvalues ordered increasingly.

A.1.4 Yields

The yield and price of a zero-coupon Treasury bond that matures in m-periods, m =

1, 2, . . . , J .

ym,t =
1

m
(Am +B′mF t) , (A.5)

Pm,t = e−m·ymt ,
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where Am and Bm are given as follows

Am = Am−1 +B′m−1K
Q
0 −

1

2
B′m−1ΣFΣ′FBm−1, (A.6)

Bm =


1−λm1
1−λ1
1−λm2
1−λ2
1−λm3
1−λ3

 ,

where (λ1, λ2, λ3) denote the three eigenvalues of K
Q
1 .

Let yt denote the set of Treasury yields of all maturities at time t. According to (A.5),

the yields are an a�ne function of F t

yt = A+BF t, (A.7)

A =

(
Am1

m1

,
Am2

m2

, . . . ,
AmJ

mJ

)′
, (A.8)

B =

(
Bm1

m1

,
Bm2

m2

, . . . ,
BmJ

mJ

)′
, (A.9)

A.1.5 Observationally-Equivalent JSZ Canonical Form

Suppose the yields of three portfolios are observed with no error,

P t = Wyt.

Then, according to (A.7), we have

P t = WA+WBF t

≡ AW +BWF t. (A.10)
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So the factors

F t = B−1W (P t −AW ). (A.11)

Suppose (P t,AW ,BW ) are given, F t can be derived accordingly. Plug (A.11) into (A.7),

and we get

yt =
(
A−BB−1W AW

)
+BB−1W P t, (A.12)

where A was given by (A.8), B was given by (A.9), and AW and BW were de�ned in (A.10).

Plug (A.11) into (A.2), and we get

P t =
(
BWK0 +AW −BWK1B

−1
W AW

)
+BWK1B

−1
W P t−1 +BWΓM t +BWΣFεF,t.

Let's denote

K0P ≡ BWK0 +AW −BWK1B
−1
W AW ,

K1P ≡ BWK1B
−1
W ,

Ψ ≡ BWΓ,

ΣPεP,t ≡ BWΣFεF,t, with ΣPΣP ≡ BWΣFΣ′FB
′
W . (A.13)

And we write

P t = K0P +K1PP t−1 + ΨM t + ΣPεP,t.

Suppose (K0P ,K1P ,Ψ,ΣP ,AW ,BW ) are given, then (K0,K1,Γ,ΣF ) can be derived ac-
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cording to the above four equations. Plug (A.13) into (A.6), and we get

Am = Am−1 +B′m−1K
Q
0 −

1

2
B′m−1B

−1
W ΣPΣ′PB

−1′
W Bm−1. (A.14)

A.1.6 Empirical Implementation

Firstly, we estimate the JSZ canonical model as detailed in Section A.1.5. Secondly, the

latent factors model (including the pricing kernel and prices of risks) constructed in Section

A.1.1 and A.1.2 can then be derived as discussed in Section A.1.5.

A.2 Bayesian Estimation

Denote the observed macroeconomic data at time t by

MO
t ≡

(
πt, gt, it, x̃

O
t

)′
,

and denote the whole macroeconomic data sample by

MO
1:T ≡

(
MO

1 , . . . ,M
O
T

)′
.

Denote the principal components data sample by

P1:T ≡ (P1, . . . ,PT )′ .

Denote the Treasury yields data sample by

y1:T ≡ (y1, . . . ,yT )′ .

Let f(·) denote a probability density function. The posterior distribution of the latent
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macroeconomic variables M t and the parameters

f
(
M 1:T ,Φ,ΣM ,ΣMO ,K0P ,K1P ,Ψ,ΣP , k

Q
∞, λ1, λ2, λ3,Σy

∣∣MO
1:T ,P1:T ,y1:T

)
can be simulated with the following Gibbs Sampler:

1. sample from f(M 1:T |Φ,ΣM ,Σ
O
1:T ,K0P ,K1P ,Ψ,ΣP), which is derived from a Kalman

�lter;

2. sample from f(Φ,ΣM ,Σ
O
M ,K0P ,K1P ,Ψ|M 1:T ,M

O
1:T ,P1:T ,ΣP), which is a Gaussian-

Inverse Wishart distribution;

3. sample from f(ΣP |M 1:T ,P1:T ,y1:T ,K0P ,K1P ,Ψ, kQ∞, λ1, λ2, λ3,Σy) with a Random-

Walk Metropolis-Hastings algorithm;

4. sample from f(kQ∞, λ1, λ2, λ3|M 1:T ,P1:T ,y1:T ,K0P ,K1P ,Ψ,ΣP ,Σy) with a Random-

Walk Metropolis-Hastings algorithm;

5. sample from f(Σy|P1:T ,y1:T ,ΣP , k
Q
∞, λ1, λ2, λ3), which is an Inverse-Wishart distribu-

tion.

The prior distributions of parameters are detailed in Table 1.1.

A.3 The Yield of an m-Period Bond

Let Mt denote a representative consumer's stochastic discount factor, and y1,t denote the

yield of a bond that matures in one period. From the Euler equation, we have

1 = Et [Mt+1 exp (y1,t)] .
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Similarly, let ym,t denote the annualized yield of a bond that matures in m periods. Then

from the Euler equation, we have

1 = Et

[
m∏
i=1

Mt+i exp (mym,t)

]
. (A.15)

Denote

mt ≡ logMt.

Then (A.15) can be rewritten into the following form

exp (−mym,t) = Et

[
exp

(
n∑
i=1

mt+i

)]
.

Suppose mt+i, i = 1, . . . , n has a Gaussian distribution, then we have

exp (−mym,t) = exp

(
Et

n∑
i=1

mt+i +
1

2
Vart

(
n∑
i=1

mt+i

))
.

Take log on both sides, and we get

ym,t = − 1

m

[
Et

m∑
i=1

mt+i +
1

2
Vart

(
m∑
i=1

mt+i

)]
.

To see how them-period yield is related with the future 1-period yields, rewrite the above

equation in the following form

ym,t = − 1

m

[
Et

m∑
i=1

(
mt+i +

1

2
Vart(mt+i)

)
+

1

2
Vart

(
m∑
i=1

mt+i

)
− 1

2

m∑
i=1

Vart(mt+i)

]

=
1

m

[
Et

m−1∑
i=0

y1,t+i −
m∑

i>j;i,j=1

Covt (mt+i,mt+j)

]
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Because

y1,t ≈ it,

the yield of an m-period bond can be re-written into the following form

ym,t ≈
1

m

[
Et

m−1∑
i=0

it+1 −
m∑

i>j;i,j=1

Covt (mt+i,mt+j)

]

=
1

m

[
Et

m−1∑
i=0

(
π∗t+1 + r∗t+1 + ĩt+1

)
−

m∑
i>j;i,j=1

Covt (mt+i,mt+j)

]

= π∗t + r∗t +
1

m
Et

m−1∑
i=0

ĩt+1 −
1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) ,

= it − ĩt +
1

m
Et

m−1∑
i=0

ĩt+1 −
1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) .

Therefore, we get the slope

ym,t − y1,t ≈ −ĩt +
1

m
Et

m−1∑
i=0

ĩt+1 −
1

m

m∑
i>j;i,j=1

Covt (mt+i,mt+j) .
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