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Abstract

In this dissertation, we study a general stochastic volatility model for the VIX options
(Chicago Board Options Exchange) volatility index, which is a stochastic differential
equation with 8 unknown parameters. It originated from a nested stochastic model
based on several known models in the paper [7]], stochastic volatility models and the
Pricing of VIX Options. To estimate the parameters in these models from the real
financial data a commonly used approach is the Generalized Method of Moments of
Hansen (1982). We will study the model in more generality and we shall provide a

completely different parameter estimation technique using the ergodic theory.

Since our equation is more general and new and since our equation is singular in
the sense it does not satisfy the global Lipschitz condition, we shall first study the
existence, uniqueness and positivity of the solution of the SDE, in which Feller’s test
will be used to calculate a criteria of all parameters such that the SDE has a unique
and positive weak solution. The positivity property of the solution is crucial, since

volatility is always positive.

Then, we use the strong large law of numbers theorems given e.g. in [4] to give
the region for the parameters to live in order that the model is ergodic. In important
condition for the ergodicity is the positive recurrency. We give verifiable condition on
the parameters so that process is positive recurrent. This results also provide ways to

calculate the invariant distribution (limiting distribution).

The next step is to provide a theoretical methodology of parameter estimation. Simu-
lation process will be introduced with giving an example for each case. In the future

study, I will work on testing the model using numerical schemes.
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Chapter 1

Introduction

1.1 Introduction and Background

1.1.1 Introduction of Volatility Index (VIX)

In today’s stock market, there are many different players, including stockbrokers, traders, stock
analysts, portfolio managers and investment bankers. They are all interested in looking for various
financial instruments to decrease the volatility of their portfolios values. Volatility in Finance is the
degree of a trading price series over time as measured by standard deviation of logrithmic returns.
In Finance, the unit of volatility is a percentage, and they usually use percent per annum. If one
would like to know how the stock market is performing, they could look at an index of stocks for
either the whole market or for a specific segment of the market. Here index is the measurement of
how the whole stock market changes. In the United States, there are many kinds of various indices,
each made of a different pool of stocks. The major indices in financial market in the United States
are Dow Jones Industrial Average, NASDAQ Composite Index, Russell 2000, and Standard and
Poor’s 500 (S&P 500). The S&P 500 consists of the largest 500 capitalization stocks traded in
the United States. Thus, available financial tools to measure the volatility of those stock market

indices become very important for investors all over the world.



Among the past 25 years in the United States, one of the most popular indicator of the whole
stock market volatility is the CBOE (the Chicago Board Options Exchange) volatility index. CBOE
volatility index is shorted for VIX. VIX is also the first successful volatility index. It indicates the
stock market’s expectation of 30-day volatility. VIX offers a measurement of the implied volatility.
The implied volatility is an estimation of a security’s price, of options on the S&P 500 index from
eight different SPX option series within a maturity of thirty days. This volatility that is meant
to be forward looking is calculated for both call options and put options. It is widely used and
applied in measuring the market risk. VIX is also famous for the name of "investor fear gauge".
Because when it is during the severe market movement and dramatic market turmoil, the VIX tends
to increase, while as in the time of market is bullish, the VIX index remains in a low and gently

changing level.

VIX Option uses the CBOE volatility index as the underlying asset, and it is one type of non-
equity option. VIX option is the first exchange-traded option that enable investors to trade market
volatility. It is a very useful new financial instrument of VIX option offered to investors for hedg-
ing their portfolios against unexpected and sudden sharp stock market changes directly on the S&P
500 index, and also for speculating forward looking volatility movements. When traders think that
there might be increasing market volatility, they are able to make profit by purchasing VIX call
options as a method of hedging instead of purchasing the normal index options, because a bearish
market usually comes along with a large increase in market. So VIX option becomes a particu-
larly interesting and a useful financial tool to incorporate various kinds of advanced strategies for
professional investors in recent years. Although VIX is relatively new in the stock market, it has a

rich history of development.

1.1.2 History of VIX development

VIX was first introduced in 1993 by Whaley in [22]. It was originally a weighted measure of the

implied volatility of eight S&P100 at-the-money put and call options. In the beginning of VIX



construction process, the underlying security market is OEX options that trades on the Chicago
Board Options Exchange. OEX is the ticker symbol or the stock symbol to idendify S&P 100
index options. OEX option market is the most active and highly liquid index option market in the
United States. At any given time, the volatility index stands for the implied volatility of a hypothet-
ical at-the-money OEX option within 30 days to the expiration. Under the assumption that there
exists a futures contract on volatility with that the current index level equals to the futures price,
and based on a lognormal volatility process, Whaley himself uses the Black Scholes formula (See

Appendix B) in [11] to obtain the fair price of the volatility options.

Since Whaley introduced the VIX from 1993, an increasing amount of research activities has
emerged on the topic of pricing of VIX options. In some literature for example in Harvey and
Whaley’s [6], it is empirically proven that the volatility, V, is mean-reverting. That is to say, the
implied volatility V, over time, will move back or return to its average historical levels. However,
stock and option prices typically do not have such a mean reversion property, like a stock can go
up and keep going up, and it would not go back to its average price over any specific period of
time. This is also another reason why investors and traders care much about the volatility so that
more and more literature are about the valuation of volatility. In 1996, Grunbichler and Longstaff
in the article [3]] evaluated volatility futures and options by a mean-reverting stochastic volatility

process with a square-root diffusion term:

dV = (a—bV)dt +cVVdZ, b>0

assuming that the volatility risk premium was proportional to volatility risk. In the above equation
and in the remaining part of this dissertation, dZ refers to the Itd "differential”" of the Wiener pro-
cess or Standard Brownie Motion Process Z.

In 1999, Demeterfi et al. described how volatility swaps work and derives pricing and hedging

equations for them in his most influential paper [[14]. Demeterfi et al. replicated the payoff of a



variance swap pretty well by a static portfolio of ordinary European calls and puts on the price of
the underlying asset. With utilizing a portfolio of options in which weights are inversely propor-
tional to their strikes it realizes the replication of a log contract. Ever since 2003, the construction

of the VIX started to use the simple valuation process Demeterfi stated in [[14]].

Later in 2000, Detemple and Osakwa examined the valuation of European and American-style
volatility options based on a general equilibrium stochastic volatility framework under the volatility
model in [[12]:

dV = (a—bV)dt+cVVdZ. (1.1)

Valuation formulas have been derived in the following four specific cases depending on the param-

eters a, Y, b, and c:

(1) Geometric Brownian Motion (GMBP),a =0,y =1,

dV = =bVdt+cVdZ.

(2) Mean-Reverting Gaussian (MRGP), y =0,

dV = (a—bV)dt +cVdZ.

(3) Mean-Reverting Square-Root (MRSRP), y= 0.5, 2= 4a,

2

dv = (CZ —bV)dt + cVVdZ.

(4) Mean-Reverting Log Process (MRLP),

d(InV)=(A—BInV)dt+ CdZ.



The solutions of the above four volatility processes are also summarized and their distributional
properties are listed in [12]. There are a growing body of literature focusing on this area in the
following couple of years. Little and Pant in [21] developed a finite difference approach in an
extended Black-Scholes framework to evaluate variance swaps assumed that local volatility is a
known function of time and underlying asset price. In 2004, Howison, Rafailidis and Rasmussen
considered the pricing of a certain amount of volatility derivatives, including volatility and variance
swaps and swaptions in the paper [17] and generated closed solutions for volatility-average and
variance swaps under a range of diffusion and jump-diffusion models for volatility. One of the

models belongs to (1.1)) as followed:

dV = (a—bV)dt +cVdZ

and

dV = (a—bV)dt +cVVdZ.

Then in 2005, under the assumption that returns are pure jump processes with independent incre-
ments, Carr priced volatility options in [16] by models able to capture the observed variation of
market prices of vanilla stock options across strike and maturity. In [9]] in 2006, within a jump
diffusion asset model, in order to price some specific discretely sampled volatility derivatives,
Windcliff, Forsyth and Vetzal provided the solution for a partial integro-differential equation in a
numerical approach. In 2006, Buehler provided a general framework for modeling a joint market
of stock price and derived a term structure of variance swaps in a Heath-Jarrow-Morton (HIM)
arbitrage conditions in [5]]. Then in 2008 Sepp developed an analytical method to price and hedge
options on the realized variance within the Heston stochastic variance model under the assumption
that there are jumps in asset returns and variance in [20]. In 2009, Albaness and Mijatovic in [2]
proposed a new numerical method called spectral methods to develop a pricing framework such
that European options, forward-starts, options on the realized variance and options on the VIX can

be handled at the same time.



Since then, an enormous amount of research articles emerged in the area of volatility options
pricing under stochastic volatility models like what was stated in (I.1]) because of special properties
stochastic volatility models hold (See Appendix A). One of the very famous stochastic volatility
model is Heston’s model proposed in 1993 in [[10] which has the following form.

Let S = V2, the following model is a mean-reverting square-root process:

dS = (a—bS)dt +cV/SdZ. (1.2)

1.2 A General Model

1.2.1 Model Inspiration

All the models included in the previous section are particular cases of the model introduced in
Goard, Mazur and Mathew’s paper [7/]], Stochastic Volatility Models and the Pricing of VIX Op-
tions. And this is the inspiration of this dissertation. In the paper [7]], except the models mentioned

above, it also included the popular 3 /2-model:
dV = (aV +bV?)dt +cV3idZ. (1.3)

There are some distinguished characteristics of the model (1.3]). With the diffusion term having a
relatively higher exponent of % which is larger than any model stated in the history of development,
it reduces the volatility’s heteroskedasticity. Also, compared to other models possessing a linear
drift coefficient, the model with a nonlinear drift coefficient is able to behave good non-linear
mean-reversion activity in a long-term view. With these features, the volatility changes would be
more stable as if ever since a big volatility hit, it would also decrease fast, on the other hand,
when it is experiencing small volatilities, it would take longer time to go up. It also provided the

condition of (I.3)) to keep the volatility V always positive. This paper tested empirically the ability



to capture the dynamics of the VIX of those stochastic volatility models separately. Although in

the paper [/7], all of the models tested are nested within the large model:
_ 2 2 Y
dV = (ci —|—V—|—C3VIHV+C4V—|—C5V Ydt +kVVdZ. (1.4)

The testing process is still based on individual models mentioned previously. It was found in the
inspiration paper that the value of ¥ is a significant characteristic of distinguishing the volatility
models in various categories and % is the unconstrained estimate.

In this dissertation, inspired by the paper [7]], a more generalized model with one more item InV
in the drift coefficient is introduced, and all the research is based on the new model. We look at
the new model as a whole thing instead of only reserching on special known cases with assuming
some of the parameters equal to zero. The preconditions of the parameters will be calculated such
that the volatility model exists unique, positive solution and the model will be ergodic. Numerical
methods will be introduced related to parameters estimation and simulation. Simulation for case

one will be shown as an example. More testing will be carried out in the future studies.

1.2.2 Model Build-up

As is stated in the previous subsection, based on all the literatures mentioned, a new and more

general stochastic volatility model is proposed as the following:

P1

dV = (57 + P2+ p3InV + paV +psVInV + peV)dt + poV7dZ. (1.5)

In this model, the drift coefficient is:

#(V) =Bt oy pynV 4 paV -+ psVInV + eV, (1.6)
and the diffusion coefficient is:

o(V)=poV". (1.7)



It not only covers all the models in the drift coefficient existing in the literatures, but also
a newly added term InV is introduced to make the drift coefficient to exhibit a better nonlinear
mean-reverting behavior when the volatility is higher than its long-run mean. In the next chapter,

the existence, uniqueness and positivity of the solution of the model (1.5) will be given.



Chapter 2

Existence, Uniqueness and Positivity of the

Solution

2.1 Weak Solution

2.1.1 Weak Solution up to an Explosion

In this subsection, the definitive results of week solutions of the time-homogeneous stochastic
differential equation in 1-dimension are presented. These results are mainly taken from Engelbert
and Schmidt’s book. There are a certain number of textbooks providing a numerous amount of
knowledge of the solution of SDE theories. Here I will use [13]] as the main reference for the most
of the results in this Chapter.

Consider the stochastic differential equation as followed,

where 1 : R — R and 0 : R — R are Borel-measurable coefficients. Solutions of equation (2.1)
may not exist globally, but only up to an "explosion time" S. We first recall uniqueness of solution

for one-dimensional ODEs with Lipschitz-continuous condition.



Theorem 2.1 (Theorem 2.5 in [13]]). Suppose that the coefficients p(x) and o(x) in @.1) are
locally Lipschitz-continuous, i.e., for every integer n > 1 there exists a constant K, > 0 such that

for ||x|| < nand |[y[| < n:

11(x) =)+ lo(x) = o ()| < Kallx = yll.

Then equation [2.1)) has a unique solution up to a positive random time T > 0 a.s..

Example 2.2. Consider the stochastic differential equation,
t
X, =1+ / X2ds.
0

The solution of this equation is X; = ﬁ By theorem 2.5 in the book [13] that is stated above, the
solution is unique with Lipschitz continuous conditions satisfied.

With u(x) = x2, |u(x) — u(y)| = |x* —y*| = |(x +y)(x —y)|. For every integer n > 1, there exists

a constant K,, = 2n > 0 such that,for every |x| <n and |y| < n:
|(x+y) (e = ) < 2nlx =y = Kylx = yl.

Example [2.2] indicates that even for ordinary differential equation, it is not enough to ensure
the global solution when only a local Lipschitz condition is satisfied. The solution %_t in the above
example "explodes" as ¢ 1 1. This motivates us to introduce the concept of “explosion".

Based on the model we built in Chapter 1, we shall only look at the one-dimensional case.

Then we recall the definition of the weak solution up to an explosion time on the whole real line:

Definition 2.3. A weak solution up to an explosion time of equation (2.I) is a triple (X,Z),

(Q,F,P), {F}, where

i. (Q,F,P) is a probability space, and {JF,} is a filtration of sub-o-fields of F satisfying the

usual conditions;

10



ii. X ={X;,%;0 <t < oo} is a continuous, adapted, RU [0, co]-value process with |Xp| < o a.s.,

and {Z;,F;;0 <t < oo} is a standard, 1-dimensional Brownian motion;

iii. with
Sy :=inf{t > 0:|X;| > n}, (2.2)
we have forall n > 1
tASy
p[/ {106)] + (X)) ds < o] =1; YO <1 <o, 2.3)
0
and for VO <t < oo,
t t
P[Xz/\Sn ZX()-‘r-/ ."L(Xs)l{sgsn} ds+/ G(XS)IL{SSSH} dZs] =1. 2.4)
0 0
We refer to
S = lim §,, (2.5)
n—oo

as the explosion time of X.

2.1.2 Positivity of Weak Solution

Under the circumstance of this dissertation in the finance context, volatility must be nonnegative
over the timeline. Hence, rather than working on the process taking values on the entire real line
as we have mentioned, we look into the weak solution on the positive interval I = (0,0) to ensure

the process is always positive.

Definition 2.4. A weak solution in the interval I = (0,c0) of equation (2.1)) is a triple (X,Z),
(Q,F,P), {F;}, where

i. (Q,F,P) is a probability space, and {JF;} is a filtration of sub-o-fields of F satisfying the

usual conditions (the filtered space is complete and filtration is right-continuous);

11



ii. X ={X;,F;0 <t < oo} is a continuous, adapted, [0,c]-value process with Xy € I a.s., and

1il.

2.2

{Z;,F;;0 <t < oo} is a standard, 1-dimensional Brownian motion;

Let {a,} and {b, } be two strictly monotone sequences satisfying 0 < a,, < b;, < oo, limy,_,co @, =

0, lim;, e b, = o, and
Sy =inf{t >0:X; & (an,by)},n>1,
we have foralln > 1,
tAS,
P(/ {{u(Xs)|+0%(X,)}ds < o0) =1; YO <1< oo,
0

and V0 <t < oo,

t t
P(Xins, = Xo+ /0 (X)L gy, s+ /0 (X)L fyes,y dZs) = 1.

We refer to

S=inf{t > 0:X;, € (0,0)} = lim S,

n—o0

as the exit time from /.

Feller’s Test for Explosions

2.2.1 Precondition

(2.6)

Assume that the coefficients ¢ : I — R, u : I — R satisfy nondegeneracy and local integrability:

c%(x) > 0;Vxel,

x—I—Sl
Vx61738>05uchthat/ Mdy<oo.

e OXy)

12
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Fix a number ¢ € I, and we define the scale function p(x) as:

p(x):/cxexp{—Z/f “cgg()g)c}dé, x€landcel (2.7)

With p/(x) = exp{-2 [ K ;5() gdf} > 0, the scale function p(x) has a continuous, strictly positive
derivative, and p(x) is strictly increasing over I, hence the one-to-one function p(x) maps / onto
(p(0), p(eo)). We will be using this scale function in Chapter 3 when discussing the ergodicity of
the process and the invariant probability. Also we define the function v(x) which will be used in

Feller’s Test as:

x Y 2dz
/
vix)=[ py / —————dy. (2.8)
W= 70 [ e
Lemma 2.5. With the scale function p(x) and v(x) defined above, we have the following implica-
tions,
p(oo—) = o0 = v(oo—) = oo, (2.9)
P(0+) = —c0 = v(0+) = oo. (2.10)

Proof. For any € > 0, and x € [c+ €,0), we have

v Y 2dg
v(x) = /C Py /C 0@ dy

X ) c+E€ 2
= [ rma [ g

Hence, p(co—) = oo implies v(eo—) = oo. Equation (2.10) can be proved in a similar argument. [

2.2.2 Feller’s Test
Explosions in one dimensional ODE:s is quite common to see. Let u(f) be the solution of
u=>b(u), u(0)=uxo.

13



If b(-) > 0, then there exists a finite time T such that lim, 7 u(r) = oo if and only if | ﬁdu <
+oc0, In this case, we also have an explicit formula for the explosion time 7', which can be written

as,

<1
T:/XO Mdu. (2.11)

(See [8])

On the other hand, it is much more complicated in the case of a stochastic differential equation.
We may not find an exact formula for the time of the explosion as it happens in (2.11). However,
the Feller’s Test for explosions provides us a precise and concise criteria to determine, in terms of
u and o whether solutions explode with probability zero, positive or one.

Feller’s Test for explosions is stated in [13] as:

Theorem 2.6 (Feller’s (1952) Test for explosion, Theorem 5.29, [13]]). Assume that the nondegen-
eracy (NDJ)) and local integrability hold, and let (X,Z), (Q,F,P), {F;} be a weak solution in
I = (0,00) of 2.1)) with nonrandom initial condition Xy = x € I. Then P(S =) =1 or P(S =o0) <

1, according to whether v(0+) = v(co—) = o0 or not, where S = inf{t > 0: X; ¢ (0,0)}.

2.2.3 Uniqueness

A mild modification of Theorem 5.15 in [[13]] will give us a criteria to the uniqueness of the positive
solution of a stochastic differential equation. From the following theorem, we will note that if a
positive solution exist, the uniqueness of the positive solution can be easily determined with some

specific conditions.

Theorem 2.7. (Uniqueness) Assume that 62 is locally integrable at every point in I, and condition
(ND) and (LI) hold. Then for every initial distribution U, the equation (2.1)) has a weak solution

up to an explosion time, and this solution is unique in the sense of probability law.

14



2.3 Feller’s Test Applied to the Model

Now we have computable conditions that the equation model (1.5 will have unique positive so-
lutions, and we will apply these conditions to the model. The most difficult part is we have many
parameters to create too many cases. To avoid calculating each case separately, we will introduce a
Lemma to help simpify the process. Based on the stochastic differential equation model that
we have built up at the beginning, we start to let / = (0,0), and fix a constant ¢ = 1. Actually the
choice of this constant ¢ does not make any difference if it is chosen from /. Thus p(x) becomes

to be,

p(x):/lxexp{—2/1§‘;(§—()gl)§}d§. (2.12)

By the Lemma we can see a straight and transparent relationship between p(0+) and
v(0+), p(eo—) and v(eo—). Moreover, since p(x) is much less complicated to calculate explicitly
than v(x), we will determine the ranges of those eight parameters defined in the model (1.5]) with
the usage of Feller’s Test, thus to attain a sufficient condition such that positive solution to the

model (1.5) exists.
First, to satisfy both (NDJ)) and (LI), we just need py # 0. If py # 0, we have,

62(x) =p3x* >0, Vxel,

and Vx € I, 3 € > 0 such that

/M L+p1y~" +p2+p3lny+pay+psylny + pey’ dy < oo
e Py

Then, we would like to determine values of parameters in (I.5]) by satisfying p(0+4) = —eo and
p(eo—) = oo using Lemma 2.5 Based on the expression of p(x), and with that both drift coefficient
(T.6) and diffusion coefficient (I.7) in the model (1.5) are algebraic expressions, it should not be

challenging to calculate p(0—) and p(eo—). However, there would be an enormous amount of

15



workloads if we compute them one by one. Also, each parameter can be zero or nonzero, and it
would affect the choice of dominant terms to make p(0+) = —co and p(co—) = co. So we will

introduce the following proposition to better present the conditions and corresponding results.

Proposition 2.8. Define two functions f(x) and A(x) on I = (0,0) with p # 0 and py # O as:

f(x):/lxexp{—2/1§pﬂgcazydC}dé, 2.13)

X g
p a—2
h(x :/ exps -2 | — "InCd ;dE. (2.14)
()= [ ew{-2 [ 5" Hincacae
We have,
a+1
I. fa—-2y>—-1l,ory< T,then

(a) p < 0if and only if f(co—) = h(co—) = oo;

(b) f(0+) and h(0+) are always finite for any p.
2. fa—2y<—l,ory> OCT—H’ then

(a) p #0if and only if f(eo—) = h(co—) = oo}

(b) p > 0if and only if f(0+) = —eo;

(c) p <0if and only if 2(0+) = —co.

1
3. fa—2y=—1l,ory= %,then

2
(@ p< %) if and only if f(co—) = oo;

2
(b) p=> %) if and only if f(0+) = —co;
(c) p <O0ifand only if h(co—) = oo;

(d) p <0ifand only if h(0+4) = —oo.
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oa+1
Proof. f ot —2y+# —1,0r y# %, we have

a 13 ) 5
co—) = li — P ro=2y
fleom) = lim | exp{ 2/1 P dC}dé
a ¢
1 _ 2p a727+1‘
Jim | exp{— g e

_ . _ 2p oc72y+1}
ki fim, | CXP{ p&(oc—ZHI)g s (ki>0).

Similarly, we can have

b
— Ii . 2p a—2y+1
FTRIY S

py(a—=2y+1)
1

— _ . — a—2y+1
ki, , eXp{ o (a g }dé (k> 0).

h(eo—) = lim an {—2 gﬂC‘)‘_zyln(;cl(;'}dé
a ¢

_1; o a—2y+1
_c}grolo/l exp{ 2/1 —pé(a 71T Ingd(¢ )}d&
—tim [ ex {_ 1< 27+11m;‘ ga 74¢] }dé

a—eo [} p pg(o— 27/+1

a
1
_1; . a—2v7+1 a—-2y+1
= lim | exp{~ gl ng —a_zyH(é ]} dé
a
1

_ . _ 2p rzo-2y+1 s

kzgglolo ] exp{ p3(a— 2y+1€ (Ing a—2y+l)}d§ (k2 > 0).

and
; ’ ép a=2y
Ho+) = lim | exp{—z/1 B¢ 1ncdc}d§
1
— &y lim exp{—zz—”éaml(lng—;)}dg (ky > 0).
b—0+ J;, py(a—=2y+1) o—2y+1

With a — 2y # —1, f(x) and h(x) have the same conditions of p to make both f(eo—) and

h(eo—) equal to oo, and opposite conditions of p to make f(0+) and i(0+) equal to —oo because
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when & — co—, In§ > 0and when & — 01, In& < 0.

Now, let us split this case into 2 situations. When ot —2y > —1, ———2—— < 0. Then if and
py(a—2y+1)

only if p < 0 we will have f(co—) = h(co—) = oo,

In fact, if p < 0, —pz—” >0, and limg _,..(In& —

2(a—27+1) = oo, then we have both

1
oc72y+1)

. . 2p a—2}/+1}:°°
glfi,eXp{ 133(06—27+1)é

and
gf}oeXp{_ﬁgaNH(lné_#w)} ~ o
Then f(co—) = h(c0—) = o0.
If p >0, —m < 0, and limg Leo(In& — m) = oo, there must exist some finite

number s > 1, such that over the interval (s,0), we have that

1
2 a=2y+l —
eXp{ pé(a727+1)§ } < E2
and
exp{——z’) X2 (Iné — 1 )} < 1
pg(a—2y+1) a—2y+1 E2

Of course limg o [ é d& < 0. Therefore if f(co—) = h(c0o—) = o0, we must need p < 0.
However, while o« —2y > —1, f(0+) and h(0+) are both finite thus cannot reach —eo for any

p because over the bounded interval (0, 1)

2p a—2y+1
CXP{— 6 4 } < oo,
pg(a—2y+1)
and
_ 1
exp{—ﬁé“ 7 (Ing - m)} <o

On the other hand, when @ — 2y < —1, or ¢ —2y+ 1 < 0, let’s first consider the values of
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f(eo—) and (oo—).

—2P ga—2y+1 —2P

lim = lim =0,
e pF(a =274 1) E—veo P (00— 2y 4 1)§27-071
then we have
2p —2y+1
lim exp{— a—2rriy — 1,
E—voo { po(a—2y+1)§ }

Therefore, no matter what non-zero value p is, we have

a

o . 2y7+1 —
f(oo—)—kl lim | CXp{ Wga 4 }d(;: 0o,

a—roo

Similarly, when & goes up to positive infinity,

1
2p o—2y+1 _ } _
éﬂie"p{ PG (06*2Y+1)§ (Ins a—2y+1> L

then A(eo—) = oo no matter what non-zero value p is.

Now let’s consider the values of f(0+) and ~(0+), with o« —2y < —1,0or @ —2y+1 < 0, we

. . . — o B 2p
will show that if and only if p > 0, f(0+) = —eo. If p > 0, then a2y > 0, hence
2p 2p
lim a—2y+1 = o,
St T Uy nge)
then
2p _
lim exp{— a=2rHY — o
E—0+ pl po(a—2y+1)§ J

hence f(0+) = —co. On the other hand, if p <0,

2p _
l _ o 2y+1 — O
ajggfx p{ po(oc—2}/+1)g }=0,

then f(0+) is finite which is not the case we are looking for. Therefore, if and only if p > 0,
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f(0+) = —co.

1
Similarly, if and only if p < 0, with (In§ — G—-ry) <O when 0 < § < ™27 < 1,

1

2 go-2y+l - -
pé(oc—27/+1)5 (Ing a—2y+1> >0,
then
1
. . 2p o—2y+1 _ — 0

hence h(0+) = —oo. Clearly we can see that f(0+) and f(0+) have opposite condition to make
them —oo as we discussed in the beginning of the proof.

a+1
fa-2y=—-1,ory= %,Wehave

f(e0o—) = lim laexp{—Z/lé pﬂozé’ldé}dé

a—soo
N 2 |
= lim | exp{ -G mc] }ag
a
— 1 _2p
_35130 1 exp{ pglné}d?j
— i P
i | & iae

Similarly, we get

Therefore, if and only if p < %) we have that f(co—) = co while p > %) if and only if f(0+4) = —oo.
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And for h(eo—) = o0 and h(0+) = —oo, they both require p < 0. O

To apply Feller’s Test, we need to satisfy the condition that v(0+) = v(eo—) = co. However,
v(x) is much more complicated to calculated than p(x) and we have Lemma [2.5|to use, so we can
find the values for the coefficients such that p(co—) = o and p(0+) = —oo are satisfied. For the

convenience of notation, let’s assume that

p(V)=p1VH +paVE 4+ psVEInV + paV* + psVE InV + peV %, (2.15)
where ¢y = —1, 00 =0, 03 =0, 04 = 1, a5 = 1, ag = 2 and obviously ¢; is increasing.
In the order of & to &, we name the first nonzero parameter p,,, m = 1,--- ,6, and the last nonzero

we name it py;, M = 1,---,6. It is obvious that m < M and o, < oy;. Based on Proposition
the algebraic property of p(x), to make p(eo—) = oo, since the term with higher indicater number

is easier to explode in the infinity, we just need

a

g
. p ai
fm(eo—) = lim exp{—2 1 p_’;;’g 2Yd§}d5 -

a—roo 1

or
¢ S pu 2
hpy(oo—) = lim exp{—Z/ — L% ylngdg}dé = oo,
It depends on M = 3 or 5 or not to decide to use fys or hy. Similarly, to make p(0+) = —oo, we

need f,,(0+) = —oo or A, (0+) = —oo.
From Proposition [2.§] part 1.(b), we can see that ¢, — 2y < —1 must be satisfied. This leads us
to divide the problem to 5 cases. Now we use Proposition [2.8|to discuss the values of parameters

in model (1.5) case by case. Before we start it, we need to clarify that pg # O for all cases.
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2.3.1 Casel

o+ 1 oy +1

Ifoy,—2y<—-lory>

,and oy —2y < —lory>

, with o, < ayy, that is to say

(04 1
ify> M;— , by Proposition part 2 we have
] When m =3 or 5, then p,, <0, py # 0. \ (2.16)
] When m #3 and 5, then p,, >0, py # 0. \ (2.17)

Here pys # 0 is naturally satisfied because py is the last nonzero term.

2.3.2 Case?2

am+1 aM+1

fo,-2y<—-lory> ,and oy —2y > —lory<

, that is to say

o, +1 Q 1
if m;_ <Y< M;— where obviously o, < oy, by Propositionpart 1.(a) and part 2.(b)
and (c) we have
]When m=23 or 5, then p,, <O, pM<0.\ (2.18)
] When m #3 and 5, then p,, >0, py < O. \ (2.19)
23.3 Case3
o, +1

(07 1
fo,—2y<—-lory> ,and oy —2y=—lory= s , that is to say

oy+1 a,+1
:M >m

if y 5 5 by Propositionpart 2.(b) & (c) and part 3.(a) & (c) we have
02
When M # 3 and 5, m =3 or 5, then py < 70, pm < 0. (2.20)
’When M =3or5 m#3and5, then py <0, p,, > 0. (2.21)
p2
When M # 3 and 5, m # 3 and 5, then py < 70, Pm > 0. (2.22)
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’When M =5, m=3, then pyy =p5 <0, pp =p3 <O0.

2.34 Cased

oy + 1

oy +1
Ifam—Z}/:—lory:%,andaM—2y> —lory< , that is to say

1 1
if y= O + < am + , by Propositionpart 1.(a) and part 3.(b) & (d) we have

2 2

2
When m # 3 and 5, then p,, > %0, pm < 0.

’When m=3or5, then p, <0, py <O0.

2.3.5 CaseS5s

O

1 (07 1
fo,—2y=—lory= ,and oy —2y=—lory= , that is to say

o +1  ay+1

.
y=-— 2

(2.23)

(2.24)

(2.25)

where Q;, = oy, and m < M. In this case, we have 2 subcases, m = M or

m < M. When m < M, there would only be 2 cases, either m =2,M =3 or m = 4,M =5, then by

Proposition [2.8] part 4 we have

2
When m =M # 3 and 5, then pm:pM:%O.

When m =M =3 or5, then p,, = py <O0.

2
When m < M, then p,, > %0, pm =<0.

2.3.6 Conclusion

(2.26)

(2.27)

(2.28)

There are 5 cases above in which positive solution of the model exists. Note again that we have

the prerequisite py # 0 for all the 5 cases. To make the positive solution unique, by therom it
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is easy to see that since 62 is locally integrable in /, hence unique positive solution exists for the

model.
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Chapter 3

Ergodicity of the General Model (1.5

3.1 Ergodicity of a Diffusion Process

As Rabi and Edward defined in Chapter V of [4],

Definition 3.1. A one-dimensional unrestricted diffusion is defined as a Markov process in con-

tinuous time with state space S = (a,b), where —oo < a < b < oo, having continuous sample path.

As we stated in Chapter 1, the drift coefficient u(V;) is defined as (1.6), and the diffusion
coefficient is defined as (1.7). We have figured out that under the conditions of 5 cases in Chapter 2,
the stochastic volatility model we introduce in (1.5)) has a unique weak solution on the interval =
(0,00). The final goal of this dissertation is to technically provide a methodology of the parameter
estimation of the generated model (I.3) and the estimation method will be stated in Chapter 4. In
this process, the stationary distribution or invariant distribution or invariant measure will be needed.

We will need to define some more items before we start to calculate the invariant distribution.

3.1.1 Recurrence

We will start with the definition of recurrence of the process in [4].

First, let {X; : ¢ > 0} be a diffusion: on the interval S = (a,b), with drift and diffusion coefficients
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1 (x) and o (x), starting at x. Then we write
Pxy = P.({X;} ever reaches y), (x,y € S).

Definition 3.2. (From [4]] Definition 9.1) A state y is recurrent if p,, = 1 for all x € S such that
Pyx > 0, and is transient otherwise. If all states in § are recurrent, then the diffusion {X;} is said to

be recurrent.

From the definition, it is extremely hard to determine whether a given diffusion {X;} is recurrent
or not. In [4]], a calculation method is introduced in a corollary to determine whether and when
a given diffusion is recurrent. Here we will use the scale function we defined in Chapter 2 and a
speed function will also be needed.

Let us recall what is stated in Chapter 2, fix a number ¢ € S, the scale function p(x) is defined as:

p(x)z/cxexp{—Z/f ‘ucg()g)g}dé, x€S and c€S.

Then we define the speed function m(x),

muyzlfsi@em{zlgigg?}da xeS and c€S. 3.1)

Corollary 3.3. (From [4] Corollary 9.3) A diffusion {X;} on S = (a,b) with coefficients u(x),

o?2(x) is recurrent if and only if

p(a) = —eo and p(b) = ce.

We apply this Corollary [3.3|to our model (1.5), first through Chapter 2 we have that the unique
weak solution {V; :,r > 0} is a diffusion process on § = I = (0,0) with the following coefficients:
drift coefficient,

P1

p(x) = ~ + P2+ p3Inx + pax + psxlnx + p6x2;
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diffusion coefficient,

o (x) = pgx*".

We have found the 5 cases when p(0+) = —co and p(eo—) = o that satisfy Corollary So
the stochastic process {V;} is actually recurrent on I. This Corollary can be another view to
find the requirements such that the solution of the model [I.5] exists. However, recurrence is not
enough to show ergodicity of the process. Then we will introduce positive recurrence which will

give us the sufficient criteria.

3.1.2 Positive Recurrence

First, for a diffusion {X;}, let Ty denote the first passage time to a state y, and we write

T, =inf{t > 0:X; = y}.

Definition 3.4. (From [4] Definition 10.1) A diffusion {X;} on S = (a,b) is positive recurrent if

E Ty < o forall x,y €S.

A recurrent diffusion that is not positive recurrent is null recurrent.

It is easy to see that the positive recurrence of a diffusion can imply its recurrence, but not vice
versa. The following Proposition in [4] provides a straightforward criteria to determine whether a

diffusion is positive recurrent or not, which is easy to use.

Proposition 3.5. (From [4] Proposition 10.2) Suppose S = (a,b). Then the diffusion {X;} is

positive recurrent, if and only if

p((l) =% m(a) > —oo, (32)
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and

p(b) =00, m(b) < co. (3.3)

3.1.3 Invariant Distribution and the Strong Law of Large Numbers

In Proposition the p(x) and m(x) are the scale function and the speed function which we
defined previously. Also, it is obviously that our five cases generated in Chapter 2 satisfy the
criteria for the scale function if we apply the Proposition [3.5to our model (1.5). We will calculate
the requirements of all the parameters pg, p1, P2, P3, P4, P35, Pe and 7 such that the conditions for
the speed function in Prop will be satisfied. Here we will first see the relationship between
the ergodicity of the diffusion and positive recurrence. In other words, positive recurrence is a
necessary condition for the Strong Law of Large Numbers of a diffusion. We will utilize a theorem
in the book [4] to illustrate this relationship. We are needing the ergodicity of the Model[I.5]to do

the parameter estimation and process simulation in the following part of this dissertation.

Theorem 3.6. (From Theorem 12.2 in [4]) Suppose that the diffusion {X;} is positive recurrent on

S = (a,b), then we have the following results.
1. Then there exists a unique invariant distribution 7(dx).

2. For every real-valued f such that

/vwmww<w
S

the Strong Law of Large Numbers holds, i.e., with probability 1,

in + [ 0x)as = [ (e,

o0

no matter what the initial distribution may be.
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3. The invariant measure is the normalized speed measure,

m' (x)

) = m(b) —m(a)

Combining Proposition and Theorem it gives us a transparent method that is easy to
follow. It makes the process of calculation related to the Model (1.5) clear to see. Moreover,
it provides us a nice formula that we can use to calculate the invariant distribution or invariant
measure that is vital in the parameter estimation process. When we come to the step of calculating
invariant distribution, we actually will use a method provided in Samuel and Howard’s [18]]. This
also gives us an idea of how the how this formula is derived and applied on our Model (1.3). This

will be seen in the last portion of this Chapter.

3.2 Strong Law of Large Numbers applied to the Model

3.2.1 Positive recurrence for the Model

With Theorem [3.6] we can easily see the idea of how we can put restrictions on all parameters
such that the model (I.5)) is ergodic, and such that we can do parameter estimation and simulation.
Based on all the work we have done in Chapter 2, actually, the conditions for recurrence have been
already satisfied. Now we need to find the criteria of the parameters such that our model|I.5]is pos-

itive recurrent, then we can use the Strong Law of Large Numbers to do the parameter estimation.

When it comes to the model (I.5]), we need to assume that S = (a,b) =1 = (0,0) and ¢ = 1 in
both the scale function p(x) and the speed function m(x). Due to the property of the drift coeffi-
cient p(x) and the diffusion coefficient 6%(x), we just need to satisfy that the determinant term in
the integral would meet the conditions in Theorem @ Similar to what we did to find the 5 cases,
we will still start with a proposition to simplify the calculation process. The only difference here

is all the calculation and results will be based on the model (I.5) having solution or the model is
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recurrent. In the other words, we will assume we have the precondition that 5 cases are satisfied.
So we are generating a bigger Proposition than [2.§] such that both requirements related to the scale

function and speed function would be satisfied.

Proposition 3.7. Based on the conditions and results satisfied in Proposition assume that:

x :
P ra—2
- 2 [ EPeerrgrl e, 3.4
s09= [ ew{ 2 [" Beerrachag (3.4)
h(x)z/xexp{—Z/éﬁco‘_zylnCdC}dé. 3.5)
1 1 P§
Here we define two functions fi(x) and A (x) on I = (0,e) with pg # 0 and p # 0 as:
fl(x):/xiexp{z/éﬂga—”dg}dg, (3.6)
1 PEEY 1 pg
hl(x):/xiexp{z/éﬂgaZylncdc}dg. 3.7)
1 PgE2Y 1Py

Then we have,
a+1
I. fa—2y>—1,ory< T,then

(@) p <0if and only if f(co—) = h(co—) = oo, fj(e0—) < o0, and hy(c0—) < oo}

(b) f(0+) and h(0+) are always finite for any p. So there is no need to consider f;(0+)
and i1 (0+).

a—+1
2. Ifa—2y< —1,ory> %,then

(a) ¥> 1 if and only if f(co—) = h(0o—) = oo, fj(c0—) < o0, and /1y (c0—) < oo}
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(b) p > 0ifand only if f(0+) = —eo and f;(0+) > —oo;

(c) p <0if and only if #(0+) = —oco and /1 (0+) > —co.

a+1
3. fa—2y=—1,0r }/:%,then

2
@ p < %0 and 7> 1 if and only if f(eo—) = oo and f; (eo—) < oo;

22y —1
<P0(Y )

5 and 3 <vy<lifand only if f(co—) = o0 and fi(co—) < o0

P

2
Po
>
(b) p = )

2
po(2y—1)
)

(¢) p <O0ifand only if h(co—) = oo and Ay (c0—) < oo}

and § <y < lifand only if f(0+) = —co and fi(c0—) > oo;

P and y > 1 if and only if f(0+) = —co and fj(c0o—) > oo;

(d) p <0if and only if #(0+) = —oo and h(0+4) > —oo.

Proof. We would not restate any proof that has been shown in Proposition[2.§]

oa+1
Ifa—2y#—1,ory# %,Wehave

2 S b ray
fi(eo—) = lim 1 Wexp{z/l p—gC dC}a’<§

= lim aiexp{z—pga_zﬂl‘é}dg
a— [| pRE2Y Py (a—=2y+1) 1

a
g 2p o—2y+1
= lim exp{—pg(a_zyﬂ)é }d& (ky >0).

ame |1 pRE2Y

Similarly, we can have

b

_ - 2p oc72y+1}
f1(0+) k1b1_1>r(r)1+ | pg{;%/eXp{Pé(oc—murl)5

1

L 2k 2p a72y+1}
B bl—1>r51+ b p(%gz?eXp{Pg(a—ZYH)é ds (ki >0).
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co—) = =2y
hy ( 31_{130 2627/exp 2/1 £ lné_,’dc_‘j} d&
= lim exps 2 : lnCd(Ca 27’“)}(15
a—so0 627/ p 1 p oa— 2y+1

{
{
= lim | 2§2yeXp{p Hlee el [ e rag)ae
{wam
(e

—a11_I>I°1° 25276Xp p(a— 2y+1 7" g #}/Jrl(gazﬁl_l)]}dé
= lim [ e { e T e - D} eE (a0
and
b o &
h1(0+):b1_i>r(1)1+ 1 Wexp{2/l p%g“*zhngdg}dg

1
=— 1 2k 2p a—2y+1 _ ;
o bl_lf&/b pggzy eXp{pg(oc—zaurl)g (Ing o—2y+1 )}dé (k2 > 0).

Now, let us split this case into 2 situations. When o — 27y > —1, there is no need to look at
f1(0+) and A1 (0+). In order to satisfy the related scale function condition, first we need p < 0.

2p . o o . .
Then a2yt < 0. Tt is easy to see that fj(eo—) < co. Since with p < 0, and

1
_2p ga-—2y+l - _2p ga-—2y+l
ex]@){pé(a—wﬂ)g (Ing oc—2y—|—1)} < ex]@){poz(oc—wﬂ)5 }’

Then we also have /i (co—) < oo,
On the other hand, when o — 2y < —1, with Proposition case 2, we know f(co—) =
h(eo—) = oo for any p # 0.

However, over the interval (1,0), we have

2p _
1 a—27+1 —1.
xggoeXp{po(a 2y+1)§ }
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If we define

I(x) = p{po(a 2”1)5“’2”1},

then

/ P a— 2y 2P o—2y+1
/) = 58 Henp{ =),

Obviously, /(x) is either strictly increasing or decreasing over (1 ). There exist a finite number

M > 0 such that 1 < [(x) < M on (1,), where M > exp{ } With [(x) is always finite

2(o— 2y+1
in fj(eo—), then it is easy to see that if and only if 2y > 1 or y > i’ we will have f(co—) < oo,
Similarly, we could see ¥ < 3 is also the condition for A (co—) < co.

Meanwhile over the interval (0, 1), from [2.8| we know that p > 0 if and only if f(0+) = —

Then we will first see when p > 0 what would make f;(0+) > —eo. If p > 0, we have that

2p _
li o=2y+1y _ 0
527 fart p{po(oc—2)/+l)5 )=0,

hence f;(0+) < —
Similarly also, we have that p < 0 if and only if #(0+) = —oo, then we only need to look at /1 (0+).

When p < 0, we have that

2ky a—2y+1 1 —
pa i e e T e = G ) =0
hence h;(0+4) = —eo as we expected without any additional condition needed.
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o+1
fa—-2y=—-1,ory= %,wehave

a

fi(eo—) = lim @exp{Z/lé pﬂgc—ldé’}dﬁ

a—roo 1
3
ool

a

= lim
ames |1 pRE2Y
a
T 2p
=lim | e {fime jac
2
. “ 2 .3
=an ) et
2
42 —3-2
=lim [ &P d&
a—roo 1 po

Similarly, we get

h(0+) = lim /b@exp{pﬂg(lnﬁ)z}dé.

b—0+ Jq

2
We have known that if and only if p < %) we have that f(co—) = oo. For fj(eo—), we want that

2
—g—2y< —1.
Po

Thenbasedonp<p—gandf( —) =o0,if 1 <y < 1then <m' li — d
<3 o—) =oo,1if 5 <Y p 5— implies fj(eo—) < o0, an
2
if y > 1 then p < 22 implies fi(co—) < oo.
2
Meanwhile, since p > pjo if and only if f(04) = —e. Based on this result, if % <y <1 then

> P - i B £ > 1 th pE(2y-1) . T B
p > 5 implies fi(0+) > —eo, and if y > 1 then p > =-5—= implies fi(0+) > —oo.
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It is easy to see that for h(co—) = oo and h(0+) = —oo, they both require p < 0 from the

condition remains the same for i(eo—) < o0 and h(0+) > —oo. O

As we have a new proposition we will update the 5 cases to satisfy Theorem[3.6] Here we will
use the same set of notations as we used in Chapter 2 when we generated those 5 cases. We will

still assume that:

L(V)=p VI + V2 +p3VBInY + pgV* + psVS InV + pgV®, (3.8)

where ¢y = —1, 00 =0, 03 =0, 04 = 1, a5 = 1, ag = 2 and obviously ¢; is increasing.
From «; to o, P, m = 1,---,6, will still represent the first nonzero parameter and py;, M =
1,---,6 stands for the last nonzero parameter. Based on the property of equation [3.8] if a parameter

is nonzero then the term is nonzero on I = (0,c). It is obvious that m < M and oy, < oyy.

3.2.2 Casel

am+1 aM"‘l

foa,—2y<—-lory>

,and oy —2y < —lory> , with o, < ayy, that is to say

o+ 1
M2+ , by Proposition 3.7|part 2 we have

| When m =3 or 5, then p,, <0, pyy #0 and M >2.] (3.9)

ify>

’ When m # 3 and 5, then p,, >0, pyy #0 and M > 2.‘ (3.10)

Here pys # 0 is naturally satisfied because py, is the last nonzero term. From Proposition

Q, 1
M+ then

part 2 (a) we know that under case 1 we need y > % With the precondition that y >

Y > max{ %, “M;l }. Since oy can be only chosen from —1, 0, 1 and 2, then it is easy to see that

M >12.
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3.2.3 Case?2

o+ 1 oy +1

fo,—2y<—-lory> ,and oy —2y> —lory<

(xm + 1 Oy + 1
<
y T~
and (c) we have

, that is to say

if

where obviously o, < oy, by Proposition part 1.(a) and part 2.(b)

] When m =3 or 5, then p,, <O, pM<o.\ (3.11)

| When m #3 and 5, then p,, >0, py <0.| (3.12)

This one has no difference with the first version of 5 cases because the conditions in Proposition

[2.8]and [3.7) are not changed.

3.24 Case3

1 1
Ifo,, —2y<—lory> O ,and oy —2y=—lory= « , that is to say
1 1
ify= aM;— > am; , by Propositionpart 2.(b) & (c) and part 3.(a) & (c) we have
02
When M #3and 5, m=3or5, then py < 70 Pm < 0and M = 4 or 6. (3.13)
]When M=3o0r5 m+3and5, then py <0, pp > 0. (3.14)
02
When M # 3 and 5, m # 3 and 5, then py < 70, Pm>0and M =4 or6. (3.15)
]When M=5,m=23, then py=ps <0, pp=p3 <O0. (3.16)

For the case since m =3 or 5, and M # 3 and 5, then M can only be 4 or 6. With the
oy + 1

2
precondition that y = , we can make sure that ¥ > 1, hence py < %‘) and there is no need
to consider the case when % <y<l
For the case , since M # 3 and 5, then y = % or 1. From Proposition we need to drop
the case when y = % Then M =4 or 6.

There is no changes for the other 2 cases.
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3.2.5 Cased

o+ 1 oy +1

fo,—2y=—-lory= ,and oy —2y> —lory< , that is to say

1 1
ify= a’"; < aM; , by Propositionpart 1.(a) and part 3.(b) & (d) we have
2
When m # 3 and 5, then p, > 2, py < 0andm = 4. (3.17)
|When m =3 or5, then p,, <0, py <0.] (3.18)
Oy +1 . . . .
In the case(3.17, y = 5 by Proposition (3.7|part 3 (b), the only choice for yis Y= 1. Since

m cannot be 3 and 5, also as the first nonzero number, m cannot be 6, then what is left is the case

m=4.

3.2.6 CaseS5s

o, +1 a 1 )

fo,—2y=—lory= ,and oy —2y=—lory= i , that is to say

ocm-l-l_ocM-i-l
2 2

m < M. When m < M, there would only be 2 cases, either m =2,M =3 or m = 4,M =5, then by

ify= where o, = oy, and m < M. In this case, we have 2 subcases, m = M or

Proposition 3.7 part 4 we have

‘When m=M =3or5, then p,, =py <O0. (3.19)

2
When m < M, then p,, >0, pyy <Oandm=4, M =5. (3.20)

There would be no need to consider when m = M # 3 and 5 because in this case, to satisfy y > %,
2
M can only be 4 or 6. In this case, ¥ > 1 There is a contradiction between p,, = p;, < %0 and
200y
Pm = Pm > w where y > 1

For the case [3.20] there is no need to take a look at the situation when m = 2 and M = 3.

Because if m = 2, we need to apply Proposition part 3 (b) where y > % which leads to a
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contradiction. So there is only one possibility left, m =4 and M = 5 which is easy to analyze.
The updated 5 cases will ensure our model (I.5) to satisfy the condition in the Theorem [3.6]
That is to say, under these 5 cases, there exists an invariant measure, so the Strong Law of Large
Numbers can be applied in the process of parameter estimation and model simulation. Now we will
see how we can calculate the stationary distribution or invariant distribution. We will use Samuel
and Howard’s [18]] to show the calculation methodology and finally we can see it is the same thing

with the formula given in the Theorem [3.6]

3.3 Invariant Distribution for the Model

3.3.1 General Calculation of the Stationary Distribution

Generally saying, it is not very easy to determine whether a stationary distribution exists or not
for a given process. However in our model, we have calculated out when the invariant measure
exists and what does the formula looks like. Here Samuel and Howard’s [[18]] provided a general
calculation method under the assumption of an invariant measure or stationary distribution exists
just like the situation in our model (I.5])). We will first take a look at this method and then in next
subsection we will apply this method to our model to show that it will come up with the same
result as the formula given in the Theorem 3.6

If it exists, a stationary density y/(y) necessarily satisfies

y(y) = /l//(x)p(t,x,y) dx, foralls> 0. (3.21)

where p(z,x,y) is transition probability. In Samuel and Howard’s [[18] the authors deduce that y/(y)

satisfies

0=337 (6% () w(y)] - R )W) (3.22)
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In fact, If we took the derivative with respect to ¢ for the above equation (3.21]),

/ w0 2205 4 foralle > 0. (3.23)

Using the backward equation as followed:

dp 1 ,, . 9°p dp
E_EG (X)W‘H‘(X)a-

‘We will have that,

2
PO - [ w30t 55+ P ax.

Applying integration by parts we will have,

/w {c az}dx+/{u P
= [T y0) - 2w pa

Then by the definition of the (3.21) we will get (3.22).

Integrating (3.22) gives

w(y)] — () w(y) = 3Ci, (3.24)

[2u(8)
s =ew{ - [ 25|z .
o2(&)
We can rewrite in the compact form j [s(y)o2(y)w(y)] = Cis(y). Let another integration
S(x) = [*s(y)dy, and S(x) is actually p(x), the scale function (3.1.1)) we defined in the beginning.
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It gives

RO C) !
w( )—Cls(x)c2(x) s(x)02(x) (3.25)

= w(x) [ClS(x) —|—C2].

Actually the w(x) here has a close relation with the scale function m(x) with

The constants are determined to guarantee the constraints ¥ > 0 on (/,r) and [ y(&)d& = 1. If

this is possible then a stationary density exists and otherwise not.

3.3.2 Calculating the Invariant Measure in the Model

In order for y(x) to be non-negative, we need both w(x) > 0 and C;S(x) + C, > 0. With w(x) =

)
m, since s(x) = exp {— [* [i‘;gg” di} > 0 and o(x) > 0, then w(x) > 0 obviously.
P1

In the model (L.3), we have 6(&§) = p&>" and p(§) = F tP2tpsing bl tpsiing +pe&>.

To ensure that for x — 0,

X
ClS(x)-I-Cz:Cl/ s(y)dy+C,
1

S RIWAC I EIE

>0,

we need C; = 0. It follows that the unique stationary measure for the model (1.5) is
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V= e
ow {42}
Coexp{ =2 f7 (P1&™1 7+ pa& 2+ paE M InE + pa& !~ 4 psEl M InE + pe&? %) d }

)

2.2
pyx-7

(3.26)

where C; > 0. In fact, we can calculate out C, by utilizing the scale function m(x). We will

need [, w(&)d& = 1, then we have

/lrl[/(x)dx:/lrs(x)(jfzz(x)dx

o2
T2 ser
G
= () —m(1)
=1.
Then G, = m(r)zm(l). We can also rewrite (3.26)) to be
2 m'(x)

where is the same result as it shows in the Theorem

Then we calculate out y(x) in 5 cases.

1. Ify=0,

C
y(x) = p_g exp{2 [p11nx+ prx+ p3x(Inx—1)
0

P4 2 Ps 2 _ Ps 3
+512 4+ 22 2nx 1)+3x]}. (3.27)
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v (x)

3. Ify=1,

4. Ity=

o

[\S]LON]

5.Ify#0, 4, 1, 3,

G
2
p0x2y

+

+

C2 —1
= —exp{2 —p1x  +p2lnx+
Py |

&)
pox

%%mxﬂ

+pax+ psx(Inx — 1) + &xz} }

2

2

+p4lnx+ % (Inx)? + Pox] }

exp{Z[—%;ﬁ3 — %xfz — %

exp{2 [—&x_z —pox ' —paxI(Inx+1)

x2(2Inx+1)

_p4x*1 _psxfl(lnx—i— l) —|—p6lnx} }

exp{Z[
P3

(1-27)?
Ps

(2—27)

| R _

-2y 1-2y
X1 =2y) Inx— 1] +

T [2-2y)Inx—1] +

The C; is the above formulas is given by
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p 22

2-2y

P63 2y
3 —2yx ] } '

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



This result also shows us why we need the scale function m(x) to be bounded in the two
boundaries. And actually if we combine the result with the updated 5 cases we calculated for the
model to be ergodic, we need to drop the first case when ¥ = 0. Although looking complicated,
it actually gives us a relatively clear form of what the invariant measure is, which is also easier to

calculate using numerical methods.
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Chapter 4

Parameter Estimation

4.1 Introduction

Generally saying, in the real world, for a stochastic differential equation problem-solving issue,
there does not exist an analytical solution. An exceptional case could be the widely applied Black-
Scholes formula in Finance, which is briefly introduced in Appendix B.. It has an explicitly ana-
lytical solution since the underlying process is a Geometric Brownian Motion.

As a result, when it comes to a more complicated SDE problem, just like our model (I.5) ,
numerical methods will be necessary to estimate the solution. Here the main idea in the numerical
integration scheme of solving SDE is first discretization and then simulation. Usually in a SDE
with all coefficients of each term in drift term and diffusion term are known and fixed, discretization
and then simulation with a finite number of paths should be able to achieve a good estimation of
the solution, however in the models there are some unknown parameters, we should do parameter
estimation first and then do simulation to see whether the estimated values can perform a decent

convergence or not.
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4.2 GMM method

There are various numerical methods in parameter estimation methods in different papers related
to stochastic differential equation, especially when positive solutions are expected in Finance area.
Like in the inspiration paper [7]], to estimate parameters in the continuous-time based model in
the paper with utilizing the discrete-time econometric specification. The technique applied in this
paper to estimate the parameters and do comparison between models is the Generalized Method of
Moments (GMM) of Hansen raised in 1982.

A lot of authors chose to use the GMM method to do parameter estimation for their continuous-
time stochastic differential equation models based on different type of underlying including but not
limited to temperature indices used in weather derivatives and interest rates in stock and market.
Chan et al. who worked on interest rate models estimation in 1992 has proved that there is no as-
sumption needed of the distribution of the changes in volatility to be stationary and ergodic. More-
over, it is also shown that by Chan et al. that though the noises are conditionally heteroskedastic,

the standard errors for Generalized Method of Moments estimator are consistent.

4.3 A New Estimation Methodology using Theorem [3.6)

Unlike the inspiration paper [7|], we have proved and calculated the assumptions and requirements
for those parameters such that our model will be ergodic. Then we can utilize this good
property to do parameter estimation.

As is stated in Theorem [3.6] based on our model setting up in the beginning of the dissertation,
we have that {V;} is positive recurrent on (0,+o0) under those 5 cases stated in Section then

we have,

e There must exist a unique invariant distribution y/(dx).
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e For every real valued function f such that

/ 1£00) [ W(d) < oo,
S

and with probability 1,
1 t
im [ f()ds = [ ) wia)
0 S

f—oo

no matter what the initial distribution may be.

e The invariant measure y(x) is calculated as in Section

As we stated in the Introduction part of this Chapter, discretization is the first step as followed,

let us assume that a closed positive interval [c,d] in (0,00). Assign a grid of points with high

frequency and equal distance,

c=h<h<h<- - <t,=d.

Approximate x values are

‘/t() :W07‘/l‘1 :Wh"'a‘/l‘n = Wp.

They will be determined at the specific given time t points. The SDE initial value problem will be,

Vi = u(Vi)dt + o(V})dZ,
Ve = wo,

where

uvi) = % + P2+ p3InV, + paV, + psV; InV; + pg V2,

and :

o (Vi) = poVy".
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Then for every real valued function f such that

[ rla(an ~

with n large enough, we have that

SIH

L

1y 1y
nk_Zl W)=, X fon) =~ [ (), @3)

where Ef(Voo) = [ f(x)

New Estimation Methodology

e Assumed there are M (M < 8) non-zero parameters among the 8 parameters of py, pi1, P2,
P3, P4, Ps, P and ¥ in the SDE model (1.5]), and assign initial values for the M non-zero
parameters which satisfies the conditions according to the 5 cases in Chapter 3 to generate a
simulated SDE {V,}, where {V;, = wy}. For the numerical purpose, more requirements will

be added in the next Chapter;

e Find M real valued functions f1, - - -, fir, then we can generate the following equation system

with M unknown parameters and M equations,

/|fm )| 7(dx) _%Z|fm (wi)|

where m=1,--- M,
o Test the estimated parameters until passing equation (4.3))

Compared to the other previously used parameter estimation methodology, which tests the
SDE models directly without adding any criteria, this new estimation method has a lot preparation
calculation to provide pre-conditions, which could help narrow down the choice of parameters to

ensure the ergodicity of the SDE and the invariant measure existence. With all the requirements
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set up at the beginning of the parameters, the initial guess of the parameter values will be more
efficient for simulation. This could also provide another thought for people who are interested in

doing parameter estimations for SDE models.
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Chapter 5

Simulation of the model

In Chapter 4, we have seen, theoretically, the main idea of approaching the parameter estimation
and solution convergence using numerical methods. To start this process, we will do simulation
first. In this Chapter, we will see some numerical method we can use to simulate the parameters
in the model (1.5). In the paper [19], a number of methods of calculating numerical solution of

stochastic differential equations in Finance were introduced.

5.1 Explicit Numerical Methods

5.1.1 Euler-Maruyama Method

We will start with the very basic and the most familiar stochastic integration numerical, the Euler-
Maruyama method, also called the Euler method. This was also mentioned in the Diploma Thesis
of Christian Kahl’s [[1]].

wo = VC7
Wit = wi+ U(w;) At + 0 (wi)AZiy 1,
where

Aty =tip1 — 1,
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AZ,‘+1 = Z(l‘,‘+1) —Z(l‘i).

The vital question is how to model the Wienner process AZ;. In Timothy’s paper [19], each random

number AZ; is estimated as

AZiZZi\/A_ti,

where z; is chosen from N(0, 1) which is the standard random variable that is normally distributed
with mean 0 and standard deviation 1. In a couple of examples introduced in the paper [19]], this
method might not be fast enough compared to the other method like the following method Milstein

method.

5.1.2 Milstein Method

The Milstein stochastic integration scheme may have a faster convergence as followed
WO = VC7

Wist = Wit @ (wi)AG+ 6 (wi)AZi + %G(W,-)G’(w,-)(AZiz AL, 5.1)

Here the same method will be used to estimate AZ;. Note also that the Milstein Method is the same
with the Euler-Maruyama Method if the diffusion coefficient ¢ (x) is a constant. In the paper [[19],
Timothy shows that Milstein method converges faster than Euler-Maruyama method on the Black
Scholes stochastic differential equation.

The two basic numerical stochastic integration schemes are both explicit. However, they might
not work well on preserving positivity and averting instabilities due to stiffness. Under our stochas-
tic volatility model, positivity is a requirement. Although we have found the criteria for which the
model (I.5]) will have unique and positive weak solution on (0, o) theoretically, when it comes to
numerical schemes, positivity might not be preserved if choosing improper stochastic integration
methods. Christian Kahl stated a general result of numerical positivity of Milstein method. To start

with this result, we need to know the definition of finite and external life defined in [/1]].

50



Definition 5.1. Let {X;} be a stochastic process with

P({X; >0 for all ¢t})=1.

Then the stochastic integration scheme has an eternal life time if

P({Xp1 > 0[X, > 0}) = L.

Otherwise it has a finite life time.

Christian Kahl also stated and proved in [1] that Euler method has a finite life time for all
stochastic differential equations. However, he provided a theorem for Milstein method as a general

result of when the stochastic integration scheme possesses an eternal life time.

Theorem 5.2. (Theorem 4.7 in [1])

Based on the Milstein method in (5.1)), it has an eternal life time if the following conditions are

frue:
o(x)o’(x) >0, (5.2)
o (x)
> g (5.3)

At < (5.4)

The last property is needed only if

(o(x)0’(x) —2u(x))o"(x) > 0

To simulate our model (I.5) using Milstein method, we would like to apply Theorem[5.2]to get

a better estimation range for 7.
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As it is in the model (1.5), we know that,

p(x) = % + P2+ p3Inx+ pax+ psxinx+ pex’,

o (x) = pox”.

By Theorem (5.2)) condition (5.2), we have

0 (x)0’(x) = pox"poyx? ™!
=Py

> 0.

With volatility to be always positive, then x > 0. Obviously we can see that pg > 0. Then we need
Y > 0 to satisfy condition (5.2).

For condition (5.3)), we have that

o(x)
20'(x)
_ pox?
 2poyxt!
X

x>

With x > 0, then we will need y > % to satisfy the condition (5.3).

The last condition (5.4) gives a criteria of the choice of time step At; includes more complexity

and cannot be explicitly solved like condition (5.2) and (5.3).

2x0’ (x) — o (x)
(o(x)0’(x) —2u(x))o’(x)
2poyx” — pox”
(pgy®1=1 =2 (x)) poyx? !
@y
Pyl = 2yu(x)

At <
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Since there are all other parameters except pg and y including in u(x), then we have to consider this
condition when we are in the numerical test of the model based on different cases we generalized
in Chapter 3. And we also need to keep in mind that this only applies to the case when the
denominator is positive. If we could find a set of parameters such that the bottom is negative, then

we do not need to worry about the choice of time step At;.

5.2 Implicit Numerical Methods

Now we have seen basic explicit numerical stochastic integration schemes which might have issues
when it comes to the ability of preserving positivity and maintaining stability through a lot of re-
lated literatures. In the previous section, we have seen explicit Euler method and Milstein method.

Accordingly in this section, we will take a look at Implicit Euler and Implicit Milstein method.

5.2.1 Implicit Euler

The stochastic integration scheme for Implicit Euler scheme is as followed:
wo =V,

Wit1 = wi+ U(wip1)Atip +0(wi)AZiy g,

where Af;, | and AZ;; | are defined same as it is in the explicit Euler method. The implicit Euler
method varies from the explicit Euler method mainly just on the drift coefficient changing to the
next integration step, and it comes to be an issue of solving nonlinear equation systems. We
can imagine that this approach will be very expensive and may lead to a lower accuracy of the

simulation.
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5.2.2 Implicit Milstein Method

Similar to Implicit Euler method, if we change the drift coefficient to the next integration step, we

will have a relative Implicit Milstein method as followed:
1
Wit] = Wi+ ,LL(WH_l)Ali + G(Wl')AZl' + EG(WI')G/(W,') (AZIZ - All').

After seeing the numerical methods above theoretically, we will do Case one as an example for

simulation of using Milstein Method.

5.3 One Simulation Example Based on Case 1

In the previous Chapters, we are in a comfortable level theoretically on the existence, uniqueness
and positivity of the stochastic volatility model’s solution. We will show an example of simulation
based on case 1. The other cases will be similar.

We have known that y > % from Theorem (5.2). Recall Case 1, based on y > O‘MTH, let’s assume
Y =1, then M can only be chosen from 1, 2, 3,. We have 2 subcases under Case 1, and here we

can only apply the second subcase with:

m#3 and p, >0, ppy #0, M > 2.

Following the subcondition above, let’s assume Yy =1, py = p =1, p2 =1, p3 = pyr = 1. Then,
1
w(x) =—+1+Inx,
X

o(x)=x.
From condition (5.4) in Theorem (5.2)), we have the criteria for the time steps Az,

(2y—1)x B x
Pyt =2yu(x)  x—2(L+1+1nx)

At <
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X
x—2(1+1+1nx)

Assume that the control function of Az; above is f(x) = , and we will prove that

flx) > 1.
Proof.
X
S = x—2(1+1+1nx)
1

S 1-2(h L4y

Now assume that g(x) =1 — 2()% + 14105 then

1 1 Inx
—1-2(— 4 -4+
s =1-2(5+-+—)
2 2 2lnx
:1__2___
X X X
2  2Inx
<1-=-—
- x2 X
2

=1——(1+xlnx).
xz( +xInx)

1

e’

Let i(x) = 1 +xInx, then &' (x) = Inx+ 1. Solve the equation 4’(x) = 0, and we get when x =

Q |—=

h(x) will reach the minimum of Ay (x) = h(1) = 1—

Then we have

glx) <1-— 3(1 +xInx)

)C2

2
—1-

)

2 1
<l-Z(1--
- xz( e)

=1.

Therefore, the control function f(x) of As; is always less than or equals to 1.

]

On the other hand, we can see the range of Af; from a graphing view. Here is a graph plotted

in Matlab showing the activity of the control function of A¢;. There is no need to consider this
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restriction is the bottom is negative and we can easily see that we could ignore the graph under 0.
and for those positive values, it is obvious that the control function is always bigger than 1. So if

At; < 1, condition (5.4)) would be satisfied. Let’s assume Az; = 0.1.

TO00

6000 |-

5000

4000 |-

3000 |-

2000

1000 |-

-1000

Recall the explicit Milstein’s Method,
WO - VC
1 1 )
Wiyl = W; —1—01(; +1 —|—1nw,~) +wiAZ; + Ewi(AZi — 01)
l
Then we program this following the matlab code below:

Y%case 1

T=1;N=500;dt=T/N;

dW=zeros (1,N); J%Preallocate arrays
dW(1l)=sqrt(dt)*randn;
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W=zeros (1,N); J%for efficiency
W(1)=10;

for j=2:N
dW(j)=sqrt (dt)=randn; %General increament
W(j)=W(j—1)+0.1%(1/W(j —D+1+log (W(j —1)))
+ W —D*dW(j) +0.55W(j —1) % ((dW(j))*2—0.1);

end

plot (0:dt:T,[0,W], r=") %Plot W against t

Then we get the following graph of the simulation for case 1 under the condition that y =

1,p1 = pm = 1,p3 = py = 1. From the simulation we can see that all the volatilities are above 0
WW\WW _
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5.4 Future Study

In this dissertation, we mainly focused on and discussed a new parameter estimation methodology
theoretically based on a one-dimension stochastic volatility model (1.5 without doing much nu-
merical testing. In future studies, I would like to test the methodology numerically in matlab and

do analysis on the convergence of the estimated parameters.
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Appendix A

Stochastic Analysis

The stochastic analysis is a widely used mathematical tool in real world for modeling stochastic
processes based on Ito’s calculus. A thorough and complete understanding of Stochastic analy-
sis requires comprehensive knowledge in higher level probability theory and stochastic process.
Stochastic models are quite fundamental and indispensable in a lot fields including but not limited
to Finance, Economics, Biology, Geographic, Energy and Chemistry, especially for Finance in

stock market area. Most of this appendix is from [15] and [/13]].

A.1 Probability Theory

Definition A.1. A c-algebra on a space Q is a class J of subsets of Q such that the following

properties hold:
1. 0eT;
2. If A € F, then A€ € TF;
3. IfA,A,,--- € F, then the countable union ENAi €.
i
That is to say the o-algebra J is closed under complements and countable intersection.

We call (2,5) a measurable space.
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Definition A.2. A measurable map X : (Q,5) — (E, €), where both (Q,F) and (E, €) are mea-

surable spaces, is a map from Q to E s.t. for any set B € €,
X 'B)={wecQ:X(w)eB} 7.
A real valued random variable on (Q, ) is a measurable map from (Q,F) to (R, &), where € is a

Borel o-algebra.

Definition A.3. A probability measure P is defined as on the measurable space (Q,F) a measur-

able map from J to the closed interval [0, 1] such that the following properties hold:

(Q,F,P) is called a probability space.

A.2 Stochastic Process

Definition A.4. On a probability space (Q,F,P), a Stochastic Process {X;},>o is a family of
random variables X; : Q — R". If fix 1 > 0, ® — X;(®) is arandom variable. If @ € Q is fixed, then

t — X;(w) is a mapping from [0,0) to R”, and this is the so-called path of a stochastic process.

Definition A.5. A filtration F = {JF;},>( is a family of o-algebras F; on one probability space
(Q,F,P) such that: {F;},<¢ is non-decreasing, i.e., forany 0 < s <7, {F;} C {F;} C {F}.

Usually we assume that the filtration satisfies Usual condition, which is as followed:
1. F is right-continuous, that is, {F; } = Ny {Fs};

2. F is completed by null sets, i.e., any subset of a zero probability set is {Fp} measurable.
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A Filtered Probability Space (Q,F,F,P) is a probability space (Q,5,P) with a filtration F that

satisfies the usual conditions.

Definition A.6. A real value process X is progressively measurable with a filtration F = {F; },>¢

if Vt > 0, (@,s) — X;(®w) mapping from Q x [0,7] to R is F; x B([0,7]) - measurable.

Definition A.7. A process X on a filtered probability space (Q,F,F,P) is F-adapted if for any

t > 0, the random variable X; is F; measurable.

One of the most significant Stochastic Process is Brownian Motion, or the so-called Winner

Process we mentioned in the beginning of the dissertation.

Definition A.8. We say {W;} a Brownian Motion if the following properties hold:
1. W, is an F; adapted process
2. Wp=0
3. W; — W; is independent of the filtration F for any 0 < s <t

4. W, — W; is normally distributed with N(0,7 —s) for any 0 < s <t

A.3 Stochastic Integral

Here we assume that the processes satisfy the usual conditions.

Definition A.9. If 2 F;-adapted processes X = {X;;0 <t < oo} and Y = {V¥;;0 <1t < oo} satisfies
Xi(0) =Y (0); uy—ae.,
where the measure iy (A) = E [; 14(t,0)d < M >, (o) is on ([0,00) x Q,B([0,00) ® F)), , then

X and Y are equivalent.
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Definition A.10. We define that for a measurable and F;-adapted processes X, [X]r is the L?-norm
of the process X, where [X|3 = E [ X?d < M >; and E [| X?d < M >,< oo.
Denote that £* is the set of equivalent class of the progressively measurable processes such that

[X]7 is finite for VT > 0.

Definition A.11. On a measurable space (Q,F) with a filtration F, a Stopping Time 7 is a random

variable such that the event {7 <t} = {@;T(®) <t} € F for every t > 0.

Definition A.12. The process {X;;0 <t < oo} with a filtration F is a martingale if we have
E(X;|Fs) = X; for all 0 < s <t <oo. We say {X;} is a submartingale or a supermartingale

if E(X;|F;) > X; or E(X;|F) < X, respectively under the same conditions.

Definition A.13. If X = {X;;0 <7 < oo} is a right-continuous and F;-adapted martingale, then X
is said to be square-integrable with Eth < o0, YVt > 0. Moreover, if Xy = 0 a.s., then we denote

X € Mp. We write X € M5 if X is continuous.
Then we can define stochastic integral as followed.

Definition A.14. Suppose that X € L£* and M is a martingale with M € M¢, then I(X) is the

stochastic integral if it satisfies the following conditions:
1. I(X) ={L(X);0 <t < o} is a unique, square integrable martingale which is F;-adapted.
2. L(X) = [oX;dMg; 0 <t <oo
3. For V{X"}* a sequence in L converging to X, lim,, .. |[I(X")) —I(X)|| =0
One of the most famous result in stochastic integral is the Ito Rule or It6 formula.

Theorem A.15. If f € C? is a real value function on R and X = {X,} be a continuous semimartin-
gale with the decomposition X; = Xo + M; + B;, where M = {M,} is a continuous local martingale
with My = 0, and B = {B,} where B, = A" —A,, A, is continuous, nondecreasing F,-adapted

processes and A(j)E = 0 a.s. in probability, then the following formula is true a.s. in probability.

t t 1 t
70 = £00)+ [ Fxgantr [ 5 aas s [ roca <,
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Appendix B

Stock Market

This dissertation is based on stock and equity market. Naturally, Stochastic calculus is the most
significant and straightforward tool to model the stock prices and other financial index in financial
area. This portion of appendix will give a brief introduction of very basic concepts and idea in
financial market. First, we should assume in the financial market, stocks or asses are traded in

continuous time. We will use the following assumptions and notations,
e The stock prices S, i = 1,--- ,d for d assets, where S'’s are semimartingale J;-adapted.
e Denote the stock price of some underlying asset at a specific time ¢ S,
e Denote T as the maturity of a stock
e Denote the fixed number K as the strike price
e Assume the assets are riskless. We call those risky assets securities.
e Denote the interest risk-free rate r
e Denote the volatility o

The famous Black and Scholes model is a one important and special case of diffusion models.

Under the historical probability, the Black and Sholes model describes the dynamics of the price
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of the underlying asset S; at specific continuous time 0 <t < o as followed
dSt = St(‘udt + Gth),

which has a explicit solution that most diffusion models do not have,

2

(o3
Sy = SOGXP(H[+GM — 71‘)

where the risk free interest rate r, the trend or drift i, and the volatility o are constant.
In a variety of financial derivatives, European Call and Put Options are the most representative

ones.

Definition B.1. A European Call Option is an option for the right to buy a stock or an index at a
certain price, strick K on a specific time, maturity T. The price of a call is that the buyer of the call

will pay to the seller when ¢t = 0.

Theorem B.2. (Black and Schole Formula)
Suppose that the price of a risky asset follows the dynamics of the Black and Schole’s model: dS; =
S;(udt + odW,), then at a specific time t, with maturity T and strike K, the value C(S;,t,T,r,0,K)

of a European call option is
C(Si,t,T,1,6,K) = S;w(dy) — Ke " T y(dy),

where

g — In(S;/K) + (r+ 306%)(T —1)
L oVT —t ’

dr=dy—ovT —t
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In the Black and Scholes formula above, the volatility o is fixed with different maturity and
strikes. However, since the prices of the European call options are observable, then we define the

implied volatility as follows

Definition B.3. The Implied Volatility is defined as the solution ¢’ of the following equation,
with C° as the observed price of the European call option, S as the stock price, T as the maturity,

K as the strike,

C(S,t,T,r,0' ,K) =C
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