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Abstract

Spectroscopy is a powerful tool for the identification, study, and selective control of molec-

ular processes. Raman scattering is particularly useful in observing the vibrational properties of

molecules, and identifying compounds based on structure. While the experimental measurements

provide structural information on the vibrational transitions, the detailed interpretation of Raman

spectra for complex molecules requires assignment of the observed Raman bands to specific vibra-

tional motions. As a result, experimental spectra are often compared with calculated vibrational

frequencies and Raman intensities. Therefore, it is necessary that the simulated spectra correctly

reproduce the experimental Raman spectra. Although simulations of Raman spectra generally

have good agreement with experiment, additional work is required to understand the effects of in-

tramolecular electronic and nuclear structure on the Raman intensities of molecules with extended

π conjugation.

Conjugated thiophene derivatives have a variety of interesting optical and electronic properties,

which makes them ideal targets for studies of charge-transport processes. Additionally, the delo-

calized π electron distribution gives these compounds relatively large scattering cross-sections,

making them excellent model compounds for Raman spectroscopic studies. In particular, time-

resolved techniques are able to measure transient Raman spectra in electronically excited states,

allowing for the direct observation of structural dynamics following optical excitation, which is

instrumental in understanding the charge separation processes in these molecules. Due to small

excited-state population, transient Raman measurements typically rely on electronic resonance en-

hancement, which increases the Raman transition intensities for specific vibrational modes by up

to several orders of magnitude. This mode-specific enhancement occurs for vibrations with large

displacements along the potential energy surfaces of the higher-lying electronic states, therefore,

detailed information can be obtained about the structure of higher-lying states based on which
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vibrations have enhanced Raman scattering intensity. Although resonance-enhanced excited-state

Raman measurements are often used to increase signal, the role of the resonant electronic transition

has been largely overlooked. By combining experimental measurements and theoretical simula-

tions of excited-state Raman spectra, it is possible to gain a more comprehensive understanding of

the structure of the higher-lying electronic states.

In this dissertation, we measured resonance-enhanced Raman spectra in excited singlet and

triplet electronic states for a set of conjugated thiophene derivatives, and compared the experi-

ments with calculated Raman intensities for the excited states. Using relatively inexpensive com-

putational methods, we were able to assign the experimental Raman bands to specific vibrational

motions by considering the resonance enhancement condition in detail. Additionally, it was found

that the experimental resonance Raman intensities can be qualitatively reproduced by calculations

of the energy gradient of the higher-lying electronic state along vibrational displacements, par-

ticularly for vibrations that have relatively large resonance enhancements. We also investigated

the effect of inter-ring torsion on the Raman intensities of aryl-substituted benzene and thiophene

compounds in the ground state, for which density functional theory calculations tend to overesti-

mate the delocalization of the π electron distribution between aryl rings. In addition to providing

a benchmark for the accuracy of theoretical methods, the combination of experimental and sim-

ulated Raman spectra provided more detailed insight into the electronic and structural properties

of the conjugated thiophene molecules than could be obtained by either approach alone. Finally,

we studied the excited-state dynamics of 2,5-diphenylthiophene (DPT) following photoexcitation.

We found that, by examining the potential energy gradients of higher-lying electronic states, it was

possible to characterize vibrational coherences observed in the excited-state absorption spectrum,

ultimately providing a more complete interpretation of the excited-state dynamics of this model

compound.
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Chapter 1

Introduction

Developments in the field of photochemistry, particularly over recent decades, have become in-

strumental in the characterization of materials,1 as well as the determination of the physical and

chemical properties of compounds.2 Through spectroscopic techniques, light-matter interactions

provide detailed information about the electronic and structural characteristics of the systems of in-

terest. Time-resolved electronic and vibrational spectroscopies are particularly useful for studying

the behavior of molecules following photoexcitation. Understanding the dynamical evolution of

compounds in photoexcited states can lead to the optical control of photochemical and photophys-

ical processes, where desired molecular dynamics are induced through vibrational3–5 or electronic

excitation6 and yield reaction products7,8 that would otherwise be unattainable. However, while

the experimental measurements provide an accurate observation of the excited-state dynamics,

it is necessary to complement experiments with accurate theoretical calculations of excited-state

properties in order to interpret the results and identify the specific electronic states and nuclear

motions that are observed. Characterizing the electronic and vibrational properties of the material

using both experimental and theoretical techniques gives valuable insight into how the nuclei will

respond to changes in the electronic state, and ultimately lead to a better understanding of how

photoexcitation induces the dynamics of the compounds.

In this dissertation, I focus on Raman spectroscopy, which is an indispensable tool in the iden-

tification and structural characterization of materials.9–12 This vibrational technique involves the

inelastic scattering of light due to its interaction with a molecule, which undergoes a transition

between two vibrational states. The difference in energy between the incident and scattered light is

related to the frequencies of the vibrational transitions, and, therefore, provides information on the

1



molecular structure of the compound. In order to efficiently determine the structure from Raman

spectra, the experimental measurements are often analyzed alongside simulations of these spectra

that utilize electronic structure methods.13,14 Thus, it is important that the simulated spectra pro-

vide an accurate representation of the experiment, and many studies have been performed to bench-

mark the accuracy of Raman intensities calculated using various computational methods.15–20 Nev-

ertheless, many of these benchmark studies have focused on relatively small molecules (e.g. H2O,

NH3, C2H6, etc.) in the ground electronic state,15,16,20 and, although the simulated Raman spectra

are generally in good agreement with experiment, the calculations still show some discrepancies

in the ground state, particularly for larger compounds with π conjugated structure (e.g. adenine,

thymine, or 4-aminobenzonitrile),13,17,21 and additional work is necessary.

Additionally, the development of ultrafast laser pulses allows for the measurement of transient

Raman spectra in electronically excited states of molecules, using the femtosecond stimulated Ra-

man spectroscopy (FSRS) technique. The FSRS measurement, which is given in detail in Chapter

3 and has been thoroughly described in the literature,22–24 involves an initial, actinic laser pump

pulse that photoexcites the molecule into an excited electronic state, after which a second, Raman

pump pulse interacts with the sample and, simultaneously, a probe pulse which stimulates Raman

scattering into the different vibrational energy levels of the excited electronic state. Thus, the ultra-

fast temporal resolution of FSRS allows for the measurement of the vibrational transitions of the

molecule as it evolves along the excited-state potential energy surface (PES), providing a direct

observation of molecular dynamics following optical excitation. However, the observed Raman

scattering intensity is limited by the excited-state population that is produced by the actinic laser

pulse. As a result, the majority of FSRS experiments use a Raman pump excitation energy that is

resonant with an electronic transition in order to take advantage of resonance enhancement, where

the Raman scattering intensities are increased by multiple orders of magnitude, allowing for an

observable signal in the experiment.24

Although the resonance-enhanced FSRS measurements provide a powerful means of observ-

ing excited-state vibrational dynamics, it is necessary to identify the specific vibrational motions
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that correspond to the experimental Raman bands in order to obtain a meaningful interpretation

of the results. The excited-state vibrational frequencies can be calculated using electronic struc-

ture methods, but accurate experimental band assignments also require a comparison with calcu-

lations of excited-state Raman intensities. Unfortunately, analytical methods for the simulation

of excited-state Raman intensities are currently unavailable in electronic structure software pack-

ages. Furthermore, the resonance enhancement is vibrational mode-specific, and Raman transi-

tions with the largest enhancement have significant nuclear displacements along the PES of the

resonant higher-lying electronic state.25–27 Therefore, accurate simulations of excited-state reso-

nance Raman spectra require careful consideration of the resonant electronic transitions, as well as

the vibrational modes that are most likely to be enhanced through that resonance condition. One

of the primary goals of our work is to compare resonance-enhanced FSRS spectra with relatively

inexpensive simulations of excited-state Raman spectra in order to develop methods for accurately

analyzing the FSRS measurements and, ultimately, interpret the experimental observations.

We focus our analysis on a series of conjugated organic molecules, with particular emphasis

on compounds containing aryl-substituted thiophene and benzene. The molecular polarizability

in these molecules is highly sensitive to the delocalized π electron distribution between aromatic

rings,28 therefore, Raman spectroscopy, which measures the change in polarizability as a function

of vibrational motion,29,30 is instrumental in identifying the structures of these compounds and

how that structure affects the physical applications.31–33 Due to their conjugated structure, these

aromatic derivatives also have a variety of optical and electronic applications as photoactive sub-

units of molecular photochromic switches,7,8,34 organic photovoltaics,35–37 and the monomers of

conductive polymers.38–40 These compounds experience rapid intersystem crossing (ISC) follow-

ing photoexcitation, and have relatively long-lived lifetimes of the triplet electronic states, which is

important for charge-separation and transport in conductive organic materials.38,41–43 Therefore, in

the particular application of charge transport, the performance of these aryl-substituted compounds

is directly related to their behavior in the excited state, and they have been the target of numerous

studies of transient electronic44–47 and vibrational48–51 dynamics. In addition to their interesting
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applications, the photophysical dynamics of these molecules in the excited state are reliable and

fairly well-understood, making them ideal model compounds for our analysis.

Previous studies characterizing the excited-state properties of the thiophene-based compounds

have shown that this class of molecules follows a consistent trend after photoexcitation at roughly

310 nm. The initial laser pulse causes a S1 ← S0 transition through π → π∗ excitation, then

the molecule undergoes structural relaxation via planarization of the aryl-substituted framework

and vibrational cooling on the order of a few ps.47 The S1 state of these compounds undergoes

ISC directly into the triplet state (T1), which eventually decays back to the ground electronic

state. Because the excited-state dynamics are relatively straightforward, we can tune the time

delay between the actinic and Raman pump pulses to measure Raman spectra of the vibrationally

relaxed S1 or T1 states, which is convenient for comparison with simulations of Raman spectra at

the excited-state equilibrium geometries. Additionally, the transient absorption (TA) spectra for

the singlet and triplet excited states are energetically well-separated. This separation allows for the

selective resonance enhancement of FSRS spectra in either the S1 or T1 state, which is particularly

beneficial in molecules with ISC rates fast enough that there is a simultaneous population of T1

and S1 states.

In this work, we utilize a combination of experimental time-resolved spectroscopic techniques

and theoretical calculations of excited-state properties in order to accurately assign and interpret the

resonance-enhanced FSRS spectra of conjugated thiophene derivatives, as well as to obtain a more

comprehensive description of their electronic and structural properties. Motivated by these goals,

we begin with a comparison of resonance-enhanced FSRS spectra with off-resonant excited-state

Raman spectra, in order to assign the experimental Raman bands to vibrational modes (Chapter

4).52 From the results of this work, we compared the FSRS spectra with simulations of excited-

state resonance Raman spectra, and further investigated the factors that led to the resonance en-

hancement conditions in both the singlet and triplet states of the thiophene derivatives (Chapters

5-6).53,54 We have also studied the dependence of the Raman spectra on the molecular orientations

of these molecules in the ground state (Chapters 7-8), which sheds additional light on the dis-
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crepancies between calculated and experimental Raman intensities that are observed in the excited

state due to delocalized π conjugation.55,56 We applied the knowledge gained from these stud-

ies to the excited-state dynamics of a di-phenyl substituted thiophene, which provided a detailed

interpretation of low-frequency vibrational coherences observed in the experiment (Chapter 9).

Chapter 4 details our work to accurately assign FSRS spectra to calculated excited-state vibra-

tional modes. We utilized numerical calculations of off-resonant excited-state Raman spectra to

assign the resonance-enhanced FSRS bands to the calculated modes based on symmetry consid-

erations, as well as the resonance enhancement condition for electronic transitions from a (π,π∗)

state. We benchmarked the band assignments for a series of conjugated thiophene molecules in

both the S1 and T1 states, supported by comparisons between molecules in the benchmark series

with similar structure, such as 2-phenylthiophene (PT), 2-methyl-5-phenylthiophene (MPT), and

2,5-diphenylthiophene (DPT).

The vibrational assignments are further supported by simulations of the resonance-enhanced

Raman spectra.This work is shown in Chapter 5, where we explored the resonance enhancements

of the S1 state of DPT in more detail. The FSRS spectrum was measured at different Raman

excitation wavelengths across the profile of the excited-state absorption (ESA) band, and compared

with simulations of resonance Raman spectra for SN ← S1 transitions that may be resonant with

the Raman excitation frequency. Since the simulated resonance Raman spectra are predicted for

individual SN ← S1 transitions, it is possible to identify the resonant electronic state that has the

largest contribution to the resonance-enhanced FSRS spectrum, which provides valuable insight

into the interpretation of the experimental FSRS spectrum of the S1 state.

However, the resonance enhancements in the triplet electronic states of the aryl-substituted

thiophenes are more complicated. Chapter 6 focuses on the enhancements due to the resonance

condition in the T1 state of PT. Similar to our study of the S1 state of DPT, we performed FSRS

measurements at different Raman excitation energies along the profile of the triplet ESA band,

and compared the experimental spectra to simulated resonance Raman spectra. Contrary to the

singlet excited state of DPT, for which the TA spectrum and calculated SN← S1 oscillator strengths
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consistently show one dominant electronic transition, the triplet absorption spectrum for PT, in both

the calculations and the TA measurement, have contributions from multiple TN ← T1 transitions.

Therefore, the simulated Raman spectra still provide important information for the interpretation

of the FSRS measurements, and the experiments are useful in benchmarking the accuracy of the

calculations.

In Chapter 7, we benchmark Raman intensities in the ground state calculated with a set of

density functionals and the second-order Møller-Plesset perturbation theory (MP2) method with

experimental measurements of spontaneous Raman spectra for a series of substituted benzene and

thiophene compounds. Although the simulated Raman spectra are generally in good agreement

with experiment, the calculations tend to overestimate the relative Raman intensities of higher-

frequency vibrations (1400-1600 cm−1) compared to those of lower-frequency bands, particularly

in molecules with multiple aryl rings such as biphenyl (BP), PT, MPT, and DPT.

This overestimation of calculated Raman intensities in high-frequency bands was investigated

further by examining the effects of anharmonicity and ring-ring torsion on the Raman spectrum,

which is presented in Chapter 8. In this study, we compared the ground-state experimental Raman

spectra of BP, PT, and 2,2-bithiophene (BT) with anharmonic corrections to the calculated Raman

intensities, as well as the calculated Raman spectra at different inter-ring dihedral angles. This

work provides important information on how the Raman intensities are affected by changes in the

π conjugation due to ring-ring torsion, which offers insight into the cause of the discrepancies

between calculated relative intensities and experiment.

In addition to the detailed analysis and interpretation of the ground- and excited-state Raman

spectra, it was demonstrated in Chapters 5-8 that our comparisons between calculated and experi-

mental results give a more comprehensive understanding of the characteristics and physical proper-

ties of the electronic transitions of the conjugated molecules. As a result, this insight becomes very

useful when interpreting excited-state dynamics. In Chapter 9, we present a study of the excited-

state dynamics in DPT immediately following S1← S0 photoexcitation. The TA spectrum of DPT

shows regular low-frequency oscillations (<200 cm−1) in the differential absorption at multiple
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probe wavelengths, which are attributed to vibrational coherences in the S1 state of DPT that alter

the Franck-Condon overlap in transitions to other SN states. Typically, vibrational coherences can

be identified through the time-resolved vibrational coherence spectroscopy (VCS),57–61 where a

Fourier transform is applied to the time-dependent oscillations to obtain the vibrational Raman

spectrum in the frequency domain.62–65 However, the vibrational coherences observed in DPT are

more difficult to assign based on calculated S1 normal mode frequencies alone. Nevertheless, our

extensive work characterizing the resonance-enhancement condition for the excited-state Raman

spectrum in DPT provides important insights into the SN ← S1 transitions. Thus, it is possible

to use the detailed information gained from our analysis of the PES gradients along S1 and the

higher-lying SN states to obtain a complete physical picture of the initial excited-state dynamics in

the molecule studied.

Our work has emphasized the value of studying complex physical and chemical processes

from both experimental and theoretical approaches. Through our measurements and calcula-

tions of excited-state Raman spectroscopy, we demonstrate methods of interpreting complicated

FSRS spectra using relatively inexpensive calculations, which gives a comprehensive picture of

the excited-state dynamics. Even in the ground-state Raman spectra, our investigations from both

theoretical and experimental perspectives reveal structure-dependent effects on Raman intensities

that are not fully understood. Our efforts not only provide a significant step forward in the efficient

analysis and detailed interpretation of the FSRS technique, but also shed light on the excited-

state properties of conjugated thiophenes. The information gained at every step of our investiga-

tions contributes to a much more complete understanding of Raman spectroscopy and conjugated

molecules in general, and, ultimately, highlights the importance of combining experimental and

theoretical methods.
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Chapter 2

Theory

2.1 Theory of Raman Scattering

When monochromatic radiation is incident on a material sample, the light-matter interaction pro-

duces scattered radiation through both inelastic and elastic processes, depending on whether or

not the light exchanges energy with individual molecules. The light scattered from a bulk sample

consists of a number of different frequency components that relate to how the molecules retain and

store that energy. The inelastic scattering of the incident light carries detailed information about the

structure of the material, an effect first recognized by C. V. Raman in 1927,66 hence, it is known as

Raman scattering, while the elastic scattering process is referred to as Rayleigh scattering. Shortly

after, the classical theory of polarizability was developed by Placzek in 1934,67 which included

the contributions from Kramers, Heisenberg, and Dirac,68 and outlined the generation of Rayleigh

and Raman scattering as a response to the oscillating electric dipole induced in a molecule by an

incident electric field of light.

From classical electrodynamics, the scattered intensity radiated by an induced dipole as a re-

sponse to incident radiation of frequency νp is given as I(θ),29,30

I(θ) =
π2cν̃4

p |µind(νs)|2 sin2(θ)

2 ε0
(2.1)

where ν̃p is the frequency (in cm−1) of the incident radiation, |µind(νs)| is the amplitude of the

induced dipole that oscillates at a frequency of νs, and θ is the angle between the dipole and

the direction of propagation of the light. Considering the incident field as a perturbation to the
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molecular dipole moment, the induced dipole moment can be written as a sum of time-dependent

induced dipole moments (omitting the dependence on νs for brevity),

~µind =~µ
(1)
ind +~µ

(2)
ind +~µ

(3)
ind + ... (2.2)

where ~µ(1)
ind » ~µ

(2)
ind » ~µ

(3)
ind and so on in a swiftly converging series. In relation to the perturbation

from the incident electric field of the light wave, ~Ep, the terms in Equation 2.2 are defined as,29

~µ
(1)
ind = ααα ·~Ep (2.3)

~µ
(2)
ind =

1
2

βββ ·~Ep ·~Ep (2.4)

~µ
(3)
ind =

1
6

γγγ ·~Ep ·~Ep ·~Ep (2.5)

where ααα , βββ , and γγγ are the tensors for the molecular polarizability, hyperpolarizability, and second

hyperpolarizability, respectively. Focusing on the largest term, ~µ(1)
ind (νs), which is linear in ~Ep,

there can be two components: one that is associated with Rayleigh scattering, ~µ(1)
ind (νp), and one

associated with Raman scattering, ~µ(1)
ind (νp± νk), where νk is a molecular vibrational frequency.

Equation 2.1 shows that the scattered intensity at a particular frequency is related to the amplitude,

|µind(νs)|, at that frequency. Therefore, we can rewrite Equation 2.3 for Rayleigh and Raman

scattering,

~µind(νp) = ααα
Ray ·~Ep(νp) (2.6)

~µind(νp±νk) = ααα
Ram ·~Ep(νp) (2.7)

where αααRay is the equilibrium polarizability tensor and αααRam is the polarizability tensor associated

with νk, in that it relates the field, ~Ep, which oscillates at a frequency of νp, to an induced oscillation

of the dipole at a frequency of νs = νp±νk. Since ααα is, in general, related to the nuclear motions

of the molecule, we can derive an expression for the tensor elements, αρσ (where ρ and σ are

Cartesian axes), through a Taylor series expansion of the polarizability with respect to the mass-
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weighted normal displacement coordinate, qk, of each vibrational mode k,

αρσ = (αρσ )0 +∑
k

(
∂αρσ

∂qk

)
0
qk +

1
2 ∑

k,l

(
∂ 2αρσ

∂qk∂ql

)
0
qkql + ... (2.8)

where the subscript 0 indicates that the terms are evaluated at the equilibrium molecular geometry.

Neglecting the terms that are 2nd order and higher in qk in Equation 2.8, and focusing on a single

normal mode, the polarizability tensor can be approximated as,29

ααα ' ααα0 +

(
∂ααα

∂qk

)
0
qk (2.9)

in which we define,

ααα
Ray = ααα0 (2.10)

ααα
Ram
k =

(
∂ααα

∂qk

)
0

(2.11)

Although this classical approach is sufficient for bulk material properties,69 it is necessary to in-

clude a quantum mechanical treatment of the polarizability in order to extract detailed information

about the molecular properties, such as the transitions between vibronic energy levels that are

involved in the Raman scattering process.

2.2 Quantum Mechanical Theory of Raman Scattering

From a quantum mechanical perspective, the oscillating dipole that produces Raman-scattered light

is defined as the time-dependent induced transition dipole, (~µind) f i, between an initial vibrational

state |νi〉 and a final state |ν f 〉. As a result, we can rewrite Equation 2.3 in Dirac notation,

〈(~µind) f i〉= 〈ν f |ααα ·~Ep |νi〉

≈ 〈ν f |ααα |νi〉 ·~Ep

≈ ααα f i ·~Ep

(2.12)
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where ααα f i is the transition polarizability, and ~Ep is the incident electromagnetic field, which is

approximated to be constant within the whole molecule. In this semi-classical approach, it is as-

sumed that the wavelength of the incident light is significantly larger than the size of the molecule.

This is valid for our work, which utilizes dilute samples of relatively small (<100 nm) conju-

gated thiophene derivatives, and the incident radiation is within the range of optical frequencies

(300-800 nm). Therefore, we use a classical treatment of the electric field, rather than full quantum-

mechanical treatment of both ~Ep and the molecule. In general, the transition polarizability between

the initial and final vibronic states |i〉 and | f 〉 can be derived from second-order time-dependent

perturbation theory in a sum-over-states approach,29,67

ααα f i =
1
h̄ ∑

n

(
〈 f | µ̂ |n〉〈n| µ̂ |i〉
ωni−ωp− iΓn

+
〈 f | µ̂ |n〉〈n| µ̂ |i〉
ω f n +ωp + iΓn

)
(2.13)

where |n〉 are all possible intermediate states, Γn are phenomenological broadening terms related

to the dephasing of each intermediate state, µ̂ is the electric dipole operator, and ωni and ω f n are

transition frequencies.

Due to the difficulty of calculating the vibronic states in Equation 2.13, we can separate the

nuclear and electronic parts of the transition polarizability and expand it as a Taylor series of the

electronic polarizability, similar to the classical case in Equation 2.8,

ααα f i = ααα0 〈ν f |νi〉+∑
k

(
∂ααα

∂qk

)
0
〈ν f |qk |νi〉+ ... (2.14)

where the subscript 0 again indicates values at the equilibrium geometry, which corresponds to

zero displacement along a vibration. Neglecting higher-order terms in the expansion, and assuming

harmonic normal modes and static conditions (ωp = 0), Equation 2.14 reduces to a single term that

describes the fundamental Raman transition for each mode k.29,30 Under these assumptions, the

transition polarizability is proportional to the electronic polarizability derivative with respect to qk,

ααα
k
f i ∝

√
h̄

4πνk

(
∂ααα

∂qk

)
0
. (2.15)

11



In order to relate the transition polarizability back to the Raman scattering intensity from Equa-

tion 2.1, we follow the steps outlined by Neugebauer et al., which describe the polarizability

derivative as a function of the intrinsic Raman activity of the molecule, Sk.30 The Raman activity

is defined along the molecule-fixed axes, (x′, y′, and z′). However, the components of the polariz-

ability tensor depend on the space-fixed coordinate system of the laboratory frame of reference, (x,

y, and z), therefore we can transform the coordinate system using direction cosines,

αρσ , f i = ∑
ρ ′σ ′

αρ ′σ ′, f i cos(ρρ
′)cos(σσ

′) (2.16)

where ρ ,σ = x,y,z and ρ ′,σ ′ = x′,y′,z′. Considering an experimental setup in which the incident

beam of light propagates along the z-axis of the laboratory reference and has an electric field that is

linearly polarized along the y-axis, and the scattered light is observed along the x-axis (θ = π/2),

the expectation value of the time-dependent induced transition dipole simplifies to,30

〈(~µind) f i〉2 = 〈(µind,y) f i〉2 + 〈(µind,z) f i〉2

=
(
〈αyy, f i〉2 + 〈αzy, f i〉2

)
|~Ep|2

(2.17)

where the scattered light that results from the 〈(µind,y) f i〉 and 〈(µind,z) f i〉 terms has an electric field

polarized along the y- and z-axes, respectively. Thus, the combination of the two components in

Equation 2.17 describes the unpolarized expectation value of the induced transition dipole. We

note that, for the unpolarized case, Equation 2.17 also holds for θ = 0,π . For a sample of Ni

molecules in the initial vibrational state, where we assume an isotropic distribution of molecular

orientations (thus, classically averaging the cosine terms in Equation 2.16), we can define the

unpolarized Raman activity as a function of the polarizability derivative terms,29,30

〈αyy, f i〉2 + 〈αzy, f i〉2 = Ni
45a′k

2 +7γ ′k
2

45
= Ni

Sk

45
(2.18)

a′k =
1
3
[
(α ′xx)k +(α ′yy)k +(α ′zz)k

]
(2.19)
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γ
′
k

2 =
1
2

{[
(α ′xx)k− (α ′yy)k

]2
+
[
(α ′yy)k− (α ′zz)k

]2
+
[
(α ′zz)k− (α ′xx)k

]2
+6
[
(α ′xy)

2
k +(α ′yz)

2
k +(α ′zx)

2
k
]} (2.20)

and, for the kth vibration, the elements of the polarizability derivative are given as:

(α ′ρσ )k =

(
∂αρσ

∂qk

)
0
. (2.21)

where a′k is the average isotropic polarizability, and γ ′k is defined as the anisotropy. Thus, the

Stokes Raman scattering intensity, Ik(θ), is primarily a function of (ααα ′′′)k and the frequency of the

scattered light, (ν̃p− ν̃k),

Ik(π/2) ∝
(ν̃p− ν̃k)

4

1− exp[−hcν̃k/kBT ]

(
1
ν̃k

)
Sk (2.22)

where the exponential term in the denominator accounts for the Boltzmann population summed

over all levels of mode k.

2.3 Time-Dependent Theory of Resonance Raman Scattering

In this section, we summarize the main equations for the time-dependent theory of resonance

Raman scattering for completeness, however, a more detailed theoretical formulation can be found

in Chapter 6. In the previous section, we restricted the treatment of Raman scattering to static

conditions (ωp = 0) under the assumption that the static case provides an accurate description of

the experiment when the incident field is off-resonance. However, when the incident excitation

field is at or near resonance with an electronic transition (ωp ≈ ωni), the Raman activity increases

substantially, and the transition polarizability is no longer simply described by Equation 2.15. The

enhancement of the Raman signal is a result of the small denominator in the first term of Equation

2.13, as ωp approaches ωni. The second term in Equation 2.13 is negligible under resonance or

near-resonance conditions.29

Assuming that the Born-Oppenheimer approximation holds, and in the limit of weak vibronic
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coupling,25,29,70,71 the expression for the transition polarizability under resonance conditions in

Equation 2.13 reduces to a sum over the intermediate vibrational states, |νn〉, of a single, resonant

electronic state, |N〉. In the time-dependent formalism for resonance Raman scattering, the denom-

inator in the first term of Equation 2.13 is converted from the frequency domain to the time domain

through a Fourier transform,27,29,72,73

ααα f i ≈
i
h̄ ∑

νn

ˆ
∞

0
〈ν f |~µIN |νn〉〈νn|~µNI |νi〉e−i(ωn−ωi−ωp−iΓn)tdt (2.23)

where 〈ν f | and |νi〉 are both within the initial electronic state |I〉, ~µNI is the electronic transition

dipole between the initial and intermediate electronic states, and ωn and ωi are the energies of the

intermediate and initial vibronic states, respectively. The sum over vibrational states |νn〉 gives

a time-dependent wavepacket, |νi(t)〉, that evolves according to the Hamiltonian, ĤN ,25,27,29,31

describing nuclear motion in the intermediate electronic state, |N〉. Thus, we recast Equation 2.23

as the time-integrated overlap of the wavepacket in the resonant state |νi(t)〉 = e−iĤNt/h̄ |νi〉 with

the vibrational wavefunction of the final state 〈ν f |,53

ααα f i ≈
i
h̄

ˆ
∞

0
|~µNI|2 〈ν f |e−iĤNt/h̄ |νi〉ei(ωi+ωp+iΓn)tdt . (2.24)

An implicit assumption in Equation 2.24 is that the electronic transition dipole follows the

Condon approximation, which gives only the A term in the Albrecht description of Raman scat-

tering.29,74,75 The other Albrecht scattering terms (B, C, and D) include Herzberg-Teller (HT)

vibronic coupling between electronic states. The vibronic coupling terms arise from a perturba-

tive expansion of the transition dipole in the nuclear coordinates of intermediate electronic state

|N〉,29,31

~µNI =
(
~µNI
)

0 + ∑
j

(
∂~µNI

∂q(N)
j

)
0

q(N)
j + ... (2.25)

The derivative of the electronic transition dipole with respect to the nuclear coordinates q(N)
j of the
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jth mode,29

(
∂~µNI

∂q(N)
j

)
0
=

1
h̄

{
∑

M 6=I

(
~µNM

)
0

〈M|
(

∂ Ĥelec

∂q(N)
j

)
|I〉

ωI−ωM
+ ∑

M 6=N

〈N|
(

∂ Ĥelec

∂q(N)
j

)
|M〉

ωN−ωM

(
~µMI

)
0

}
(2.26)

provides the vibronic coupling of electronic states |N〉 and |I〉 to other electronic states {|M〉}

through the perturbation of the electronic Hamiltonian (Ĥelec), where ωI , ωN , and ωM, are the

energies of the corresponding electronic states. Substituting the expansion for ~µNI and truncating

Equation 2.25 at first order yields:

ααα f i ≈
i
h̄

ˆ
∞

0
dt ei(ωi+ωp+iΓn)t

{∣∣∣(~µNI
)

0

∣∣∣2 〈ν f |e−iĤNt/h̄ |νi〉

+∑
j

(
~µIN
)

0

(
∂~µNI

∂q(N)
j

)
0
〈ν f |e−iĤNt/h̄q(N)

j |νi〉

+∑
j

(
∂~µIN

∂q(N)
j

)
0

(
~µNI
)

0 〈ν f |q
(N)
j e−iĤNt/h̄ |νi〉

+∑
j
∑

l

(
∂~µIN

∂q(N)
j

)
0

(
∂~µNI

∂q(N)
l

)
0
〈ν f |q

(N)
j e−iĤNt/h̄q(N)

l |νi〉

}
.

(2.27)

The first term on the right-hand side is the Albrecht A term from Equation 2.24. Together, the

second and third terms on the right-hand side are the Albrecht B and C terms, where the B term

includes coupling between intermediate state |N〉 and all other electronic states, and the C term

includes coupling of the initial electronic state to the other electronic states. Similarly, the final

term in Equation 2.27 accounts for D term scattering, which incorporates contributions from other

electronic states coupled to |N〉 and |I〉 simultaneously. As in Equation 2.26, the B, C, and D terms

scale with the inverse of the energy separation between coupled electronic states. It is worth noting

that the calculated polarizability derivative from Equation 2.15 implicitly contains some degree of

vibronic coupling for transitions in which only one vibrational quantum number changes.29
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2.4 Gradient Approximation to the TD-RR Formalism

Due to the difficulty of evaluating Equations 2.24 and 2.27, a popular approach is the semi-classical

“gradient approximation” to the TD-RR formalism.53,71,72 In this approach, which is described in

more detail in Chapter 6, the time-dependent overlap integral 〈ν f |νi(t)〉 is simplified by approx-

imating the initial wavefunction |νi(t)〉 with a Gaussian function at t = 0, which then propagates

in time on the intermediate state potential (VN) according to the Hamiltonian of the intermedi-

ate electronic state. Substituting a Gaussian wavefunction into Equation 2.24, and using classical

equations of motion to define the early time-evolution of the wavepacket based on the potential

energy gradient of state N, ∂VN
∂qk

, we obtain the simplified version of the time-dependent overlap

integral,53,72

ααα
k
f i ≈−

i
h̄
|~µNI|2

(
∂VN

∂qk

)ˆ
∞

0
exp
{

i(ωi +ωp−ωNI + iΓn)t−
(

∂VN

∂qk

)2 t2

4ωk

}
t dt (2.28)

where ωNI is the vertical transition energy between electronic states N and I. The spectral lineshape

information contained within the integral in Equation 2.28 can be computationally expensive to

evaluate. Nevertheless, the amplitude of the transition polarizability is proportional to the energy

gradient and the square modulus of the electronic transition dipole, and the resonance-enhanced

Raman scattering intensity of mode k can be obtained as,53,54,76

Ik ∝ F(ν̃p, ν̃k) |~µNI|4
(

∂VN

∂qk

)2

(2.29)

where F(ν̃p, ν̃k) contains the dependence of the resonance-enhanced intensity on the frequencies

of the incident and scattered light,

F(ν̃p, ν̃k) =
ν̃p(ν̃p− ν̃k)

3

1− exp[−hcν̃k/kBT ]

(
1
ν̃k

)
. (2.30)

We note that the frequency dependence differs from that in Equation 2.22 due to the resonance

condition. As detailed in the literature,29,70,72,77 the second term in Equation 2.13 becomes rel-
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atively insignificant on-resonance, which alters the dependence on the frequency of the incident

light from (ν̃p− ν̃k)
4 to ν̃p(ν̃p− ν̃k)

3. Although Equation 2.29 neglects the time-dependent in-

tegral in Equation 2.28, it allows for the determination of resonance-enhanced Raman intensities

from relatively inexpensive calculations of electronic transition dipoles and resonant-state poten-

tial energy gradients, which is particularly advantageous for simulating resonance Raman spectra

in electronically excited states.
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Chapter 3

Methods

3.1 Computational Methods

As outlined in Chapter 2, the calculation of Raman intensities both off- and on-resonance is deter-

mined by the transition polarizability, αααk
f i. In the off-resonance case, αααk

f i is related to the polariz-

ability derivative from Equation 2.15.67 Therefore, the off-resonance Raman intensities are calcu-

lated using Equation 2.22, where the Raman activity, Sk, is a function of the derivative of the elec-

tronic polarizability with respect to mass-weighted vibrational displacement coordinates.29,30,52

Although analytical polarizability derivatives have been implemented in various programs for

ground electronic states, they are currently unavailable for excited states. Accordingly, we cal-

culate the polarizability derivatives in electronically excited states numerically by stepping along

the mass-weighted vibrational displacement coordinates of the calculated normal modes. The nu-

merical derivative may contain errors due to the choice of step size of the vibrational displacements

of each mode. A large step size is susceptible to errors due to anharmonicity, while the change in

polarizability from very small displacements cannot be distinguished from computational noise.

To find a good compromise between these two factors, we optimized the step size for the vi-

brational displacements based on comparisons with analytical calculations of Raman spectra for

several small molecules (H2, H2O, CH4, NH3, methanol, and 2,2-dichloropropane) and theoretical

methods. We included both wavefunction and density functional based methods (HF and B3LYP,

respectively), and used the 6-31G* and aug-cc-pVDZ basis sets. The percent error between the

numerical and analytical Raman activity was determined for each vibration in all molecules, and

these errors were averaged to obtain the total average percent error at each step size. Figure 3.1,
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which comes from the Supporting Information for Ref. #52. After fitting the errors in Figure 3.1

to a high-order (20th) polynomial, the step size with the minimum average error was determined

to be at 7.408 x10−4 times the normalized displacement coordinate. As detailed in later chapters,

Figure 3.1: Standardization of the step size of the numerical polarizability derivative. The step
size ratio is defined as a fraction of the unitless normal mode displacement of mass-weighted
coordinates. The percent errors are averaged over each of the vibrations in the molecules at each
level of theory to obtain the colored bars, and those values are averaged over methods at each step
size to obtain the total average percent error.

the numerical derivative of polarizability was used primarily for time-dependent density functional

theory (TD-DFT) methods and equation of motion coupled cluster theory with single and double

excitations (EOM-CCSD), however, the derivative can be applied to any method for which the

polarizabilities and normal modes are available.

Simulations of resonance-enhanced Raman spectra are calculated using Equation 2.27, which

relies on the time-dependent theory of resonance Raman scattering (TD-RR) to define the time-

dependent wavepacket |νi(t)〉= e−iĤNt/h̄ |νi〉.25,27,29,31,72 Although the time-evolution of this wavepacket

depends on the topology of the potential energy surface (PES) of the resonant electronic state, |N〉,

the Raman intensity observed for a particular mode is calculated from the overlap of |νi(t)〉 with

the vibrational wavefunction, 〈ν f |, in |I〉, as well as the transition dipole, ~µNI , between |N〉 and

the initial electronic state, |I〉. A direct implementation of Equation 2.27 has been described in
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detail by Baiardi et al.,31 where the calculation of only the first term, which contains no implicit

vibronic coupling, corresponds to the Franck-Condon (FC) approximation, and the calculation of

the first three terms of Equation 2.27 is referred to as the “FCHT” approach to denote the inclusion

of Herzberg-Teller coupling. This approach, which is currently implemented in Gaussian,78 uses

the extrapolation of a harmonic potential expanded around the minimum-energy geometry of |N〉

in order to obtain the vibrational wavefunctions at the Franck-Condon geometry. Although the

FCHT approach works well for ground-state resonance Raman spectra with resonant excitation to

relatively low-lying electronic states,31,76,79 FSRS measurements of electronically excited systems

tend to be resonant with transitions to higher-lying states, where the density of states is larger and

the PES of the states are more anharmonic. Thus, we also simulate resonance Raman spectra using

Equation 2.29, which incorporates the gradient approximation to the TD-RR formalism.53,54,72 As

a result, the resonance-enhanced Raman intensities are obtained by calculating ~µNI and the po-

tential energy gradient in the resonant state,
(

∂VN
∂qk

)
, along the nuclear displacement coordinates of

the vibrational modes of |I〉, where VN is the potential energy of |N〉. The energy gradients are

calculated numerically, using the same step size optimized for the polarizability derivatives. The

transition dipoles between excited electronic states are obtained using Gaussian78 for EOM-CCSD,

and Dalton80–83 for TD-DFT methods.

3.2 Experimental Methods

3.2.1 Overview

The photophysical dynamics and kinetics in this dissertation are observed using time-resolved tran-

sient spectroscopy techniques that incorporate an actinic pump pulse, a continuum probe pulse,

and, in the case of transient Raman spectroscopy, a Raman pump pulse. Transient electronic ab-

sorption (TA) spectra are obtained by creating excited-state population with the actinic pump pulse

and then measuring the absorption and stimulated emission using the probe pulse, varying the time

delay between pulses to observe the kinetics following photo-excitation. We obtain resonance-

20



enhanced Raman spectra of transient electronic states in the molecules of interest by utilizing the

time-resolved vibrational technique of resonant femtosecond stimulated Raman spectroscopy (R-

FSRS).22–24,84 By varying the delay between the actinic pump and the Raman pump and tuning the

Raman pump excitation wavelength, we selectively probe the resonance Raman scattering in the

excited singlet or triplet state of each of the compounds measured. As a result, information on the

electronic transitions and excited-state dynamics observed in the TA spectra are complementary

to the R-FSRS experiment. The experimental details are discussed within each chapter, therefore,

Sections 3.2.2 and 3.2.3 will focus primarily on the technical aspect involved in the experimental

analysis.

3.2.2 Transient Absorption Spectroscopy

The TA measurements utilize the modified outputs of an amplified Ti:sapphire laser (Coherent,

Legend Elite) which produces 35 fs pulses at 800 nm with 1 kHz repetition rate. The tunable

actinic pump pulses are generated by splitting the 800 nm fundamental and passing part of it into

a commercial optical parametric amplifier (OPA) with two stages of frequency conversion that can

produce pulses in the range 260-2600 nm, however, since our experiments focus on substituted

thiophene compounds, we utilize actinic excitation wavelengths between 300 and 400 nm. The

actinic pulse is then compressed via a fused-silica prism pair to a duration of∼100 fs, as estimated

from the full width at half maximum (FWHM) of cross-correlation measurements of two-photon

absorption in glass. We generate fs probe pulses by focusing the other part of the 800 nm laser

output into a translating CaF2 window to produce broadband white-light (WL) pulses spanning

340-750 nm. Both pulses overlap in the sample, a flowing liquid jet with pathlength of 300 µm,

before being dispersed by a grating (300 line/mm) onto a 2068 pixel linear CCD array (Hamamatsu,

S11156-2048). A synchronized optical chopper is used to block every other pump pulse, allowing

for time-resolved measurement of differential absorption, ∆A,

∆A(t) =− log
(

ION

IOFF

)
(3.1)
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where IOFF is the intensity of light transmitted at each probe wavelength when the pump beam is

blocked, and ION is the intensity observed when both the pump and probe beams are incident on

the sample. To eliminate anisotropic effects, TA spectra are measured with the polarization of the

pump and probe pulses set to be at “magic angle” (54.7◦) with respect to each other. We account

for cross-phase modulation effects85,86 by plotting the peak intensity of the cross-correlation signal

against probe wavelength, and fitting the signal to a fifth-order polynomial. The fit is then used to

offset the time-dependence of the ∆A signal measured at each wavelength.

3.2.3 Resonant Femtosecond Stimulated Raman Spectroscopy (R-FSRS)

The R-FSRS technique utilizes an actinic pump pulse followed by a picosecond Raman pump pulse

that is temporally overlapped with a WL probe pulse in order to produce stimulated Raman scat-

tering with high spectral resolution (<30 cm−1). We generate our actinic pump and probe pulses

as described in Section 3.2.2, but, to maximize transient Raman signal, we set the polarization of

all three pulses to be parallel to each other, and they intersect at a small angle in a flow cell with 1

mm thick CaF2 windows and 0.5 mm pathlength. The Raman pump is generated by passing a third

portion of the 800 nm fundamental into an additional commercial OPA, which provides tunable

near-IR pulses that are subsequently passed through a 25 mm long β -barium borate (BBO) crystal

to produce Raman pump pulses with high spectral resolution (<0.5 nm) via spectral compression

of the second harmonic.87–89 The Raman pump is then passed through a 4f spectral filter,87 using

a set-up that is described in detail in the dissertation of Dr. Timothy Quincy,90 to produce pulses

that have ∼1 ps duration and <30 cm−1 bandwidth. We account for background signals obtained

from different combinations of the three pulses by chopping the actinic pump pulse at 500 Hz (as

in Section 3.2.2) and the Raman pump pulse at 250 Hz. The R-FSRS signal is measured as a

differential Raman gain, ∆Gain, which we calculate using the combinations of pump and probe

signals,

∆Gain =

(
ION−ON

ION−OFF

)
−
(

IOFF−ON

IOFF−OFF

)
(3.2)
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where IOFF−OFF is the signal measured when both actinic and Raman pumps are blocked, IOFF−ON

is measured with only the actinic pump blocked, ION−OFF is with only the Raman pump blocked,

and ION−ON is with all beams present. Thus, the ∆Gain is calculated as the difference between the

excited-state Raman gain and the ground-state Raman gain.

In order to isolate the R-FSRS signal from excited-state transient absorption, excited-state de-

pletion, and ground-state stimulated Raman scattering signals, we perform baseline subtractions

and solvent corrections. This steps for this procedure are displayed in Figure 3.2, which comes

from the Supporting Information for Ref. #54, where the measurement of the Raman spectrum of

the T1 triplet state of 2-phenylthiophene (PT) is used as an example. As illustrated in Figure 3.2(a),

the baseline corrections to the excited-state Raman gain,
( ION−ON

ION−OFF

)
, and ground-state Raman gain,( IOFF−ON

IOFF−OFF

)
, are obtained by fitting each to a 15th order polynomial, masking the signals of known

solvent bands. After subtracting the fits from the Raman gain signals, we obtain the baseline-

corrected Raman spectra in Figure 3.2(b). Based on the Raman intensities of the solvent bands, we

account for the attenuation of the Raman pump pulse due to resonant excitation of the T1 state by

scaling the ground-state Raman gain signal to match the intensities of the solvent Raman bands.

The final R-FSRS signal is then obtained by subtracting the scaled ground-state Raman Gain from

the excited-state Raman Gain spectrum, as shown in Figure 3.2(c).
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Figure 3.2: Sample procedure for the isolation of FSRS spectrum from background signals. (a)
Excited-state Raman gain (red) and ground-state Raman gain (blue) signals for a solution of PT in
cyclohexane at 365 nm Raman pump excitation. The baseline fits (orange, light blue) are subtracted
from the Raman gain curves to obtain the baseline-corrected spectra. (b) The baseline-corrected
ground-state Raman spectrum (dashed blue) is scaled by 0.877 (purple) to match the intensity of
the 801 cm−1 cyclohexane band in the baseline-corrected excited-state Raman spectrum (red). The
scaled Raman spectrum is then subtracted from the excited-state Raman spectrum to produce the
∆Gain signal. (c) The baselined and solvent-corrected FSRS of the T1 state of PT at 365 nm Raman
excitation.
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Chapter 4

Accurate Assignments of Excited-State Resonance Raman

Spectra: A Benchmark Study Combining Experiment and

Theory

(This work was published as Ref. #52. Supporting information is available online.)

4.1 Introduction

Femtosecond stimulated Raman scattering (FSRS) is a sensitive method for probing excited-state

dynamics.24,84 The technique reveals the structural evolution of a molecule by monitoring changes

in the vibrational spectrum as a function of time following optical excitation. Correctly interpret-

ing the excited-state dynamics therefore requires accurate assignments of the bands in the transient

Raman spectrum. While some assignments are possible based on simple chemical intuition or

comparison with known ground-state spectra, many assignments require at least some level of

comparison with excited-state calculations. In general, the excited-state vibrational frequencies

are relatively easy to calculate, but the Raman intensities are more difficult to obtain due to the

need to calculate changes of the excited-state polarizability tensor along each of the normal mode

coordinates. The intensities are important for comparison with experiment, because the frequen-

cies alone may not provide enough information in regions of the spectrum with a relatively high

density of states. An important and often overlooked complication is that experimental FSRS

measurements often rely on mode-specific resonance enhancement effects in order to compensate

for the small population of molecules in the excited state,24,84,91 or to selectively probe a sin-
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gle species in the transient spectrum.34 Resonance enhancement effects are difficult to include in

excited-state Raman calculations, because of challenges in treating higher-lying electronic states

that are responsible for the resonant condition.

This chapter examines the assignment of excited-state Raman bands by comparing off-resonance

calculations with experimental resonance-enhanced FSRS spectra for a series of π-conjugated

molecules. The resonance enhancements are vibrational mode-dependent, leading to relative in-

tensities in the experimental spectra that can be very different from the off-resonance calcula-

tions.25,26,92 We show that a comparison across the entire series of benchmark compounds fa-

cilitates the assignment of the experimental transitions, even though a direct comparison of the

calculated off-resonance intensities with the experimental spectrum for only a single molecule can

be misleading and could result in incorrect assignments. The vibrational frequencies depend on

the structure of the molecule, but modes with similar nuclear motions are enhanced for all of the

molecules in the series because resonant excitation into the excited-state absorption bands causes

a similar change of the π-conjugated structure for each molecule.

Our calculations neglect the resonance condition in an attempt to find a balance between accu-

racy and computational efficiency. More sophisticated methods that explicitly treat the resonance

enhancement by directly simulating the third-order polarization response of an excited molecule

are computationally expensive and would be prohibitive for calculating the spectra for a series of

relatively large compounds.23,93–99 Instead, our off-resonance calculations take advantage of effi-

cient analytical second derivatives of the energy that are now available for time-dependent density

functional theory (TDDFT) in order to calculate the excited-state polarizability.100–103 Specifically,

we calculate the excited-state Raman activities using single numerical differentiation of the (ana-

lytical) static polarizability tensor along each of the excited-state normal mode coordinates.30 This

method gives excited-state Raman spectra with DFT accuracy at relatively low computational cost.

Earlier attempts to calculate Raman spectra from the excited-state polarizability required numeri-

cal differentiation of the electric dipole moment with respect to the electric field, in addition to the

normal mode displacements.104–106

26



The series of compounds in our benchmark study consists of aryl-substituted thiophenes that

are representative π-conjugated systems. Thiophene derivatives have been the subject of previous

transient absorption45–47 and FSRS studies48–50,107 because of their importance as building blocks

for photoactive polymers and molecular switches. Conjugated thiophenes also undergo rapid in-

tersystem crossing (ISC), which is an important property for charge separation and transport in

conductive organic materials.38,41–43 The ISC rates depend on the structure of the compound, and

range from tens to hundreds of picoseconds.47 We compare the calculated and experimental Raman

spectra for both singlet and triplet excited states of each molecule in order to evaluate resonance en-

hancement effects in the different spin states. In general, we find that the calculated off-resonance

intensities are in better agreement with resonance-enhanced experimental spectra for triplet states

compared with singlet states. Comparing trends in the calculated and experimental spectra across

the entire series of molecules allows us to make accurate assignments for both the singlet and

triplet states using relatively low-cost off-resonance excited-state calculations, provided the elec-

tronic resonance condition is taken into consideration.

4.2 Methods

The series of aryl-substituted thiophene derivatives includes 2,5-diphenyl-thiophene (DPT), 2-

phenyl-thiophene (PT), 2-methyl-5-phenyl-thiophene (MPT), 2,4-dimethyl-5-phenyl-thiophene

(DMPT), 2,5-terthiophene (TT), 2,2’-bithiophene (2,2’-BT), 2,3’-bithiophene (2,3’-BT), and 3,4’-

dihexyl-2,2’-bithiophene (DHBT). All compounds were obtained commercially and used as re-

ceived by dissolving in cyclohexane (1-10 mM).

Transient absorption and stimulated Raman measurements use the modified output of an am-

plified Ti:Sapphire laser (Coherent Legend Elite). An optical parametric amplifier (OPA) and two

stages of nonlinear frequency conversion provide ∼80 fs actinic pulses at 310 nm that are attenu-

ated to 0.5-0.9 µJ at the sample. The frequency-doubled output of a second OPA passes through a

25 mm long BBO crystal to produce ps-duration Raman pump pulses via second harmonic genera-

tion (SHG), followed by a 4 f spectral filter for additional spectral narrowing and rectification.87,108
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The resulting Raman pump pulses are tunable over the range 350–650 nm, with bandwidths of

∼15-30 cm−1 and pulse energies up to 1 µJ. The fs broadband probe pulses come from continuum

generation in a circularly translating CaF2 substrate. After the sample, a spectrograph disperses

the probe light onto a linear CCD array detector with 2048 pixels. We use an adapted version of

the scanning multichannel technique developed by Challa et al.109 in order to reduce systematic

noise from the variable pixel response of the CCD array. Specifically, we obtain FSRS spectra by

averaging measurements at five different grating angles in the spectrograph with approximately 20

cm−1 shift between individual spectra. The baseline subtraction method is described in the supple-

mental information (SI). We record off-resonant ground-state Raman spectra using a commercial

Raman spectrometer (StellarNet) with 785 nm laser source and 4 cm−1 resolution. We remove

solvent bands from the ground- and excited-state Raman spectra by subtraction. The experimental

procedures are described in more detail elsewhere.53

We calculate off-resonance Raman spectra by applying the polarizability derivative approach

of Neugebauer et al.30. In the case of the excited-state Raman calculations, we first obtain the S1

or T1 minimum energy geometry and normal mode coordinates analytically using TDDFT with

the B3LYP functional110–112 and aug-cc-pVDZ basis set.113 The Raman activities are then ob-

tained by taking numerical derivatives of the excited-state static polarizability tensor with respect

to displacements along the normal mode coordinates. We determine the optimum step size for the

normal mode displacements based on comparison with analytical ground-state Raman calculations

for several small molecules and various levels of theory (Figure S1 in the SI). Numerical differen-

tiation at the standardized step size gives Raman activities that are nearly identical to the analytical

results for S0. We use the same step size for the excited-state calculations. A recent benchmarking

study by Staniszewska et al.114 motivates our choice of B3LYP/aug-cc-pVDZ. All calculations

were performed using a development version of the GAUSSIAN suite of programs.78
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4.3 Results and Discussion

4.3.1 Transient Absorption Spectroscopy and Excited-State Dynamics

Figure 4.1 shows the transient electronic absorption spectra for the series of aryl-substituted thio-

phene derivatives following π → π∗ excitation with an actinic pulse near 310 nm. The transient

spectrum of each compound is characterized by strong excited-state absorption (ESA) and stimu-

lated emission (SE) bands of the singlet S1 excited state at short time delays. Although not shown

here, the spectra evolve on a timescale of a few ps due to structural relaxation and vibrational cool-

ing, including planarization of the molecule in response to the increased double-bond character of

the inter-ring C–C bonds in the ππ∗ state.47 All of the molecules eventually undergo intersystem

crossing (ISC) to a triplet excited state, T1, at longer delay times. The intersystem crossing times

(τISC) vary from 22 to 267 ps, depending on the structure of the molecule, and are summarized

in Table 4.1. The triplet states are relatively long-lived (> 1 ns), and have ESA bands at shorter

wavelengths compared with the singlet excited states.

The relatively fast S1 → T1 relaxation times are a result of strong spin-orbit coupling of the

thiophene sulfur atom, with non-planar geometries accelerating the ISC.47 Accordingly, the ISC

rate increases for molecules with more than one sulfur atom, and for molecules that have steric

interactions that destabilize the planar geometry of the S1 excited state. The three-ring compounds

DPT and TT have the longest τISC due to increasing conjugation that favors a more planar structure

in the excited state.115

In order to measure the stimulated Raman spectra of the singlet and triplet excited states, we

tune the Raman pump wavelength close to the maximum of the respective ESA band (red and

green arrows in Figure 4.1), and adjust the delay between actinic pump and Raman probe pulses

accordingly. The S1 spectra are measured at delays ranging from 5 to 30 ps to allow vibrational

relaxation and cooling in the singlet state, but before ISC begins to populate the triplet state. The T1

spectra are obtained at delays that are about four times longer than the ISC time of each molecule

to ensure significant conversion to the triplet state. Table 4.1 gives the experimental time delays
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Figure 4.1: Transient absorption spectra showing the evolution from S1 (red) to T1 (green) excited
states for the series of aryl-substituted thiophene derivatives. Red and green arrows indicate the
Raman pump wavelengths for stimulated resonance Raman measurements of the singlet and triplet
excited states, respectively.
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Table 4.1: Intersystem crossing lifetimes and FSRS delay timesa

τISC S1 delay T1 delay
DPT 267 30 1000
PT 102 30 410

MPT 132 30 530
DMPT 22 5 85

TT 149 50 595
2,2’-BT 41 10 200
2,3’-BT 37 10 165
DHBT 29 5 125

a All times in ps.

for the singlet and triplet FSRS measurements.

4.3.2 Ground-State Raman Spectroscopy

Before examining the excited-state Raman spectra, we compare the calculated and experimen-

tal spectra for the ground electronic state of each molecule in Figure 4.2. The S0 spectra are

off-resonant for both experiment and theory. Comparing the calculated ground-state spectra with

experiment provides an important reference point for estimating the accuracy of the DFT calcu-

lations. The accuracy in the ground state is the best that can be expected for the excited-state

calculations based on inherent limitations of the method and basis set (B3LYP/aug-cc-pVDZ).

To facilitate the comparison between ground and excited states, the ground state calculations use

the same numerical differentiation along the normal mode coordinates that we use for the excited

states below, even though analytical derivatives are available for the ground state. The numerical

derivatives give Raman activities that differ from the analytical derivative results by <0.05%.

As expected, the calculated vibrational frequencies overestimate the experimental values, there-

fore we apply an empirical frequency scaling factor. A scaling factor of 0.976 gives the best agree-

ment across the entire series of molecules (see below), consistent with the commonly accepted

value of 0.970 for this level of theory and basis set.116 We also broaden each transition in the

calculated spectrum with a 15 cm−1 Gaussian in order to simulate the experimental line widths in
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Figure 4.2.

The ground-state calculations generally are in good agreement with the experimental Raman

spectra for S0. In most cases, the calculations reproduce the experimental frequencies within ∼20

cm−1 and the intensities within an order of magnitude, which is typical for DFT.14,117,118 For

example, the calculations accurately reproduce the dominant C=C ethylenic stretches in the fre-

quency range ∼1400-1700 cm−1. The only discrepancies in this region are for DHBT, DMPT,

and MPT, each of which has one or two bands with slightly higher relative intensity in the experi-

ments than predicted by theory. We note that these three are the only alkyl substituted compounds,

and that the orientations of the methyl and hexyl side groups might affect the calculated spectra.

Although the conformational dependence is important, it is beyond the scope of this work.

The S0 calculations also slightly underestimate the relative intensities of some of the lower-

frequency modes. Figure 4.2 shows the low-frequency region of the calculated spectra on an

expanded scale in order to facilitate the comparison in this region. Although the relative intensities

are underestimated by up to an order of magnitude, the calculated frequencies are in very good

agreement with experiment. The most notable discrepancy is the relatively strong experimental

band just below 1000 cm−1 for the phenyl-substituted thiophenes MPT, PT, and DPT, where the

experimental intensities more closely match the spectra on the 10x expanded scale. Previously

reported computational and experimental spectra for the S0 state of DPT also have an approxi-

mately tenfold difference in the relative intensity of the ∼1000 cm−1 band, consistent with our

observation.118

4.3.3 Resonance Raman Spectroscopy of T1

We examine the calculated and experimental Raman spectra of the triplet excited states in Figure

4.3. As is the case for the S0 spectra, the T1 calculations use the numerical differentiation proce-

dure, even though T1 is the lowest triplet state and therefore can be treated as a ground state to

obtain analytical derivatives of the polarizability. All of the spectra from the off-resonant T1 calcu-

lations are dominated by a single, strong band near 1500-1550 cm−1, with much weaker transitions
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Figure 4.2: Raman spectra of the ground electronic states. Calculated spectra (blue lines) are
shown on a common intensity scale, except TT and DPT are reduced by a factor of 5. The the low-
frequency region of each spectrum is also shown on an expanded scale (dotted blue lines, 10x).
Experimental spectra in cyclohexane solution (black lines) are measured off-resonance using either
spontaneous Raman at 785 nm (TT, MPT, PT, DPT) or stimulated Raman at 370 nm (DHBT, 2,3’-
BT, 2,2’-BT, DMPT). The solvent spectrum is shown for reference, and to indicate where there
may be subtraction errors in the experimental spectra.
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at lower frequencies. We obtain the best agreement with the experimental frequencies by using a

scaling factor of 0.964, as discussed in more detail below. We apply 25 cm−1 Gaussian broadening

to the calculated transitions in the figure in order to match the experimental resolution.

Unlike the S0 spectra, the experimental T1 spectra are obtained with Raman pump wavelengths

that are resonant with an excited-state (triplet-triplet) absorption band. Despite the resonance con-

dition, the calculated spectra are generally in good agreement with experiment, including the most

prominent transitions in the ethylenic stretching region,∼1400-1700 cm−1. The bithiophene com-

pounds (DHBT and BT) and terthiophene (TT) have only a single, strong band in this region,

whereas the spectra of all four phenyl-substituted thiophenes have an additional shoulder. The

shoulders appear as distinct transitions in the calculated spectra of MPT and PT.

Compared with the ethylenic stretching modes, many of the weaker transitions in the lower-

frequency regions of the experimental T1 spectra are more difficult to distinguish from noise. How-

ever, there are several transitions that are reproduced by the calculations, such as the pair of peaks

representing the phenyl stretching modes near 894 cm−1 and 986 cm−1 for DMPT, MPT, and

PT. In a few cases, the experimental bands are much stronger than the calculations predict. For

example, the prominent bands near 343 cm−1 in the experimental spectra of TT and DHBT are

significantly stronger than any of the calculated modes in that region.

The significantly higher experimental intensities of the low-frequency bands is probably due

to the resonance condition. Analogous with ground-state resonance Raman spectroscopy,26,92 we

expect an additional enhancement for vibrational modes that have a large displacement in the

upper triplet states relative to the minimum-energy structure of T1.38 Resonance enhancement

also explains the emergence of the broad Raman features near 650–750 cm−1 in the experimental

spectra of DMPT, MPT, and PT, as well as the relative increase in the intensity of the experimental

bands of DPT near 340, 541, and 1134 cm−1. Overall, the generally good agreement between the

off-resonant calculations and the resonant experimental stimulated Raman spectra suggest that the

resonance condition does not significantly affect the triplet spectra, with the exception of a few

specific low-frequency modes.
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Figure 4.3: Raman spectra of the triplet states. Calculated spectra (green lines) are normalized
to the most intense peak of each molecule, with the low-frequency region of each spectrum also
shown on an expanded scale (dotted green lines). Experimental spectra (black) are measured in
resonance with the T1-Tn absorption band of each compound, and are also normalized to the most
intense peak of each spectrum. The solvent spectrum is shown for reference, and to indicate where
there may be subtraction errors in the experimental spectra.
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4.3.4 Resonance Raman Spectroscopy of S1

The Raman spectra of the singlet excited states are the main focus of this work. Figure 4.4 shows

the experimental and calculated spectra for the S1 state of each molecule. The calculated spectra

include 25 cm−1 Gaussian broadening, and a frequency scaling factor of 0.977. As before, all of

the strongest bands in the calculated off-resonance spectra are in the ethylenic range, 1400–1700

cm−1, with the lower-frequency transitions having much lower intensity. In sharp contrast with the

S0 and T1 results, however, some of the low-frequency modes are among the strongest bands in

the experimental spectra of the S1 excited states.

The stark discrepancy between the relative intensities in the experimental and calculated spectra

indicates that the resonance condition plays a significant role for the S1 excited states. Based on

the time-dependent formalism for resonance Raman spectroscopy,26,92 the resonance enhancement

of a given vibrational mode depends on the relative displacement of the higher-lying excited-state

potential energy surface along the normal mode coordinate of the lower-lying electronic state. In

the case of the singlet excited-state FSRS spectra, the resonance enhancement comes from the

displacement of the molecule in the Sn excited states relative to the initial S1 state. We examine

this resonance condition in more detail elsewhere,53 but we note that all of the compounds in this

study have similar ESA bands due to secondary π excitation from S1. Therefore, we predict the

strongest enhancements for vibrational modes that are most sensitive to changes in the occupancy

of conjugated π and π∗ orbitals.

Some of the most notable resonance enhancements in the experimental S1 Raman spectra in-

clude the bands in the range 650–700 cm−1 for TT, 2,2’-BT, MPT, PT, and DPT, and near 333

cm−1 for DHBT, 2,3’-BT, and DMPT. These are the strongest bands in each of the experimental

spectra, even though the off-resonant calculations show only very weak transitions below ∼1400

cm−1. Despite neglecting the resonance condition in the calculations, we can still use the calcu-

lated spectra to help assign the experimental transitions based on the frequencies. However, we

show below that it is also important to consider the specific nuclear motions associated with each

vibration in order to determine which transitions gain intensity from the resonance condition. Fig-
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Figure 4.4: Raman spectra of the S1 excited states. Calculated spectra (red lines) are normalized
to the most intense peak of each molecule, with the low-frequency region of each spectrum also
shown on an expanded scale (dotted red lines). Experimental spectra (black lines) are measured in
resonance with the strong S1-Sn absorption band of each compound, and are also normalized to the
most intense peak of each spectrum. The solvent spectrum is shown for reference, and to indicate
where there may be subtraction errors in the experimental spectra.
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ure 4.4 shows each of the calculated spectra on an expanded scale below ∼1450 cm−1 to facilitate

the comparison.

4.3.5 Resonance Raman Band Assignments for S1

As a first step in assigning the S1 transitions, we evaluate the accuracy of the calculated frequen-

cies by considering the empirical scaling factors in more detail. The scaling factors reported above

for the S0, T1, and S1 states were obtained by comparing the most prominent experimentally ob-

served transitions with the calculated frequencies for all of the molecules. Rather than making

the assignments and frequency comparisons by inspection alone, we compare the calculated vibra-

tional motions across the series of molecules in order to refine our initial assignments, as described

in the example below. Table 4.2 lists the assigned transitions. The resulting calibration curves

in Figure 4.5 include a total of 30–40 transitions for each state, and give scaling factors for all

three states (0.976 ± 0.001 for S0, 0.964 ± 0.003 for T1, and 0.977 ± 0.003 for S1) that are in

close agreement with the commonly accepted value of 0.970 for ground-state calculations using

B3LYP/aug-cc-pVDZ.116

Table 4.2: Vibrational Band Assignmentsa

S0 T1 S1
Molecule Mode Calc. Exp. Mode Calc. Exp. Mode Calc. Exp.

TT ν54 1532 1528 ν55 1528 1506 ν55 1546 1547
ν52 1464 1459 ν47 1251 1272 ν52 1430 1417
ν50 1439 1417 ν45 1176 1207 ν45 1196 1197
ν25 720 741 ν38 1037 1034 ν32 847 873
ν23 679 678 ν30 781 810 ν25 695 693

ν6 331 339 ν17 560 597
ν10 336 388

DHBT ν118 1465 1454 ν120 1544 1531 ν120 1531 1562
ν98 1337 1348 ν103 1400 1394
ν51 787 780 ν41 652 685
ν26 287 355 ν31 414 354

2,3’-BT ν36 1549 1554 ν36 1548 1528 ν36 1535 1560
ν34 1451 1446 ν33 1314 1326 ν34 1426 1422

ν28 1091 1108 ν28 1111 1082
ν7 384 349 ν20 826 839

ν15 636 645
ν7 387 334

2,2’-BT ν36 1557 1550 ν36 1572 1551 ν36 1560 1575
ν34 1451 1446 ν27 1050 1043 ν35 1439 1427

ν7 365 335 ν29 1146 1152
ν26 1056 1056
ν20 826 841
ν16 674 690
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S0 T1 S1
Molecule Mode Calc. Exp. Mode Calc. Exp. Mode Calc. Exp.

ν14 637 656
DMPT ν57 1611 1601 ν56 1501 1502 ν54 1469 1420

ν54 1511 1507 ν50 1386 1392 ν43 1276 1282
ν49 1427 1448 ν34 983 999 ν22 667 690
ν42 1249 1255 ν28 881 894 ν16 504 496
ν36 1030 1059 ν14 422 326
ν32 987 1007

MPT ν50 1603 1599 ν49 1506 1501 ν50 1597 1564
ν47 1501 1499 ν44 1384 1379 ν49 1506 1511
ν46 1468 1470 ν31 978 986 ν42 1368 1363
ν38 1248 1260 ν24 872 889 ν36 1160 1167
ν29 982 997 ν32 1041 1044
ν17 677 689 ν20 670 688
ν16 654 667 ν13 524 522
ν15 613 616 ν10 391 330
ν9 389 399

PT ν43 1604 1599 ν42 1504 1501 ν43 1601 1566
ν41 1535 1530 ν39 1384 1394 ν42 1506 1521
ν39 1441 1429 ν28 975 989 ν35 1265 1277
ν37 1344 1351 ν22 871 895 ν32 1138 1176
ν34 1245 1253 ν29 1056 1056
ν26 982 997 ν23 891 897
ν14 678 689 ν17 679 690
ν11 604 612 ν11 558 537
ν10 583 583 ν7 374 343
ν5 307 315
ν4 254 264

DPT ν68 1611 1591 ν68 1532 1490 ν69 1606 1598
ν64 1500 1500 ν52 1141 1134 ν67 1519 1532
ν62 1464 1446 ν18 562 539 ν59 1384 1377
ν45 1056 1067 ν10 350 340 ν53 1186 1193
ν41 988 991 ν40 969 984
ν23 687 698 ν25 675 693
ν19 609 610 ν18 577 594
ν18 589 585 ν10 353 382
ν10 335 351
ν9 309 313

a) Calculated frequencies have been multiplied by a scaling factor of 0.976 for S0, 0.964 for T1, and 0.977 for S1.

The strong correlation between experimental and theoretical frequencies suggests that, on av-

erage, the calculations accurately reproduce the excited-state vibrations within ∼20-30 cm−1 after

applying the empirical scaling factor. Thus, relatively isolated vibrations are easy to assign based

on frequencies alone. More congested regions of the spectrum require closer inspection and careful

consideration of resonance enhancement effects. For example, Figure 4.6 shows the 450-900 cm−1

region of the S1 spectrum for MPT, PT, and DPT. In contrast with the single, strong experimental
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Figure 4.5: Calibration curves comparing the frequencies of the most prominent experimental
bands with the calculated frequencies of the assigned transitions for S0, T1, and S1. The slopes of
the best-fit lines give the frequency scaling factors.

bands near 690 cm−1, the strongest calculated transitions of the three molecules vary by almost 100

cm−1. Although it is tempting to assign the experimental transitions based on the most prominent

bands in the calculated spectra, the variation of the calculated frequencies compared with the rela-

tively invariant experimental values suggests that mode-specific resonance enhancement effects are

important. In order to make the assignments, we exploit the fact that only transitions to the totally

symmetric vibrational modes of a molecule are enhanced by resonant excitation.29,118 Transitions

to non-totally symmetric modes will not contribute to strongly resonance-enhanced FSRS spectra

like those considered here. Furthermore, resonance enhancement effects are most pronounced for

vibrational modes that are Franck-Condon active in the resonant (upper) electronic state.

The S1 state of DPT has fifteen calculated vibrations in the range 500-800 cm−1. Twelve of

those vibrations are non-totally symmetric modes that can be neglected using symmetry arguments
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Figure 4.6: Comparison of the experimental (black) and calculated (red) S1 spectra of MPT, PT,
and DPT. Black bars under the spectra indicate which of the calculated modes are totally symmetric
(a′ in PT and MPT; a1 in DPT). The images on the right-hand side show vibrational displacement
vectors for selected transitions that are indicated by bold black bars below the spectra.

from above.29 The transition energies of the three totally symmetric (a1) vibrations of DPT are in-

dicated by vertical black bars immediately below the experimental and calculated spectra in Figure

4.6. The nuclear displacement vectors on the right side of the figure show that the calculated vibra-

tions at 577 cm−1 (ν18) and 675 cm−1 (ν25) are combinations of in-phase phenyl ring distortions

with the symmetric C–S–C bending and stretching modes of the thiophene ring, respectively. The

phenyl motions are similar to the 6a vibration in Wilson’s notation for substituted benzene com-

pounds,119 which typically has strong Raman activity. In contrast, the third a1 vibration at 603

cm−1 involves a phenyl ring distortion that is similar to the 6b vibration in Wilson’s notation.119

The 6b vibration typically has very weak Raman activity, consistent with our calculated spectrum

for DPT.

In addition to the larger off-resonance Raman activities, modes ν18 and ν25 are more likely to

be Franck-Condon active under π excitation than the more localized motion of the 603 cm−1 mode

(ν21). We expect π excitation to be delocalized across the entire molecule, therefore the delocalized

modes are more likely to gain intensity in the resonance enhanced FSRS spectrum. Thus, we

identify the experimental FSRS bands at 594 cm−1 and 693 cm−1 as ν18 and ν25, respectively,
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based on symmetry and resonance enhancement considerations. The different relative intensities

of the transitions to ν18 and ν25 in the experimental and calculated S1 spectra are probably a result

of stronger resonance enhancement of the higher-frequency mode. A stronger enhancement of ν25

suggests that the upper state in the S1–Sn transition may have a larger displacement along the C–S–

C stretching coordinate compared with C–S–C bending. We tentatively assign the weak shoulder

near 670 cm−1 in the experimental spectrum of DPT as an overtone or combination mode, based

on the intensity dependence as a function of excitation wavelength, described elsewhere.53

The band assignments are not as obvious for the lower-symmetry molecules PT and MPT,

because fewer transitions can be excluded based on symmetry alone. Nevertheless, we determine

that the strongest experimental transitions in the 500-800 cm−1 region are not the same as the

strongest transitions in the calculated off-resonant spectra for these two molecules. Specifically,

we assign the dominant experimental bands of PT and MPT as the relatively weak calculated

transitions at 679 cm−1 (ν17) and 670 cm−1 (ν20), respectively, based on the strong correlation

between experimental and calculated frequencies, as well as the similar nuclear motions compared

with the ν25 mode of DPT.

The motions of the assigned vibrations for all three molecules, illustrated on the far right side

of Figure 4.6, have similar phenyl deformation (6a in Wilson’s notation) and delocalized character

that is likely to be Franck-Condon active. In contrast, the strongest transition in the calculated

spectrum of MPT (ν18, 656 cm−1) is primarily localized on the thiophene ring, and includes sig-

nificant displacement of the methyl group. Although the 656 cm−1 mode has more intensity in

the off-resonance spectrum, the π conjugated electronic resonance is not likely to give a strong

enhancement in this methyl rocking mode.

In the case of PT, the strongest calculated transition (ν14) is more than 65 cm−1 below the

experimental band, compared with only 11 cm−1 for the assigned mode, ν17. Furthermore, ν14

has an asymmetric distortion of the phenyl ring that is less likely to be Franck-Condon active

than the symmetric 6a-type distortion of the assigned mode. The next closest totally symmetric

(a′) vibration in the calculated spectrum is the mode at 586 cm−1, which has a 6b-type phenyl
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distortion (not represented in the figure) that is similar to the very weak 603 cm−1 mode in DPT.

Neither of the 6b-type modes contribute to the FSRS spectra.

The other band with notable intensity in this region of the spectrum for PT is the calculated

transition to ν11 at 558 cm−1. This mode is a combination of C–S–C bend and phenyl ring defor-

mation that is similar to the 577 cm−1 (ν18) mode in DPT and 524 cm−1 (ν13) mode in MPT. All

three of these calculated modes align well with weak transitions in the experimental spectra. Al-

though the experimental bands associated with these assignments are consistently weaker than the

higher frequency modes assigned above, these additional features support our overall assignment

of the vibrations in the FSRS spectrum. The similar relative intensities of the two experimental

bands for all three molecules show that resonance enhancement effects are conserved for vibrations

with the same types of motion.

Finally, we note that the assignment of the 690 cm−1 experimental band in PT as ν17 rather than

ν14 indicates that the π resonance condition favors the localized C–S stretching motion involving

the unsubstituted carbon (C5) rather than the phenyl-substituted carbon (C2). Interestingly, the

aryl-substituted C–S stretching motion has been implicated in the rapid ISC of phenyl- and thienyl-

substituted thiophenes.43,107 subtle distinction between modes ν14 and ν17 of PT highlights the

importance of accurately assigning transitions in experimental FSRS spectra. Mode ν14 should

be a better probe of the PT deactivation coordinate (C2–S stretching) compared with ν17. In fact,

while a shift of the former vibration to lower frequency would indicate weakening of the C2–S

bond, a concomitant shift to higher frequency would be expected for ν17 due to strengthening of

the C5–S bond.

Our calculations here consider only the minimum energy geometry of the S1 state of each

molecule, however transient FSRS calculations have the potential to use these spectroscopic signa-

tures to distinguish motions along the reaction coordinate.102 In fact, our assignments for MPT are

consistent with the recently reported dynamics of that molecule, where the intense band near 690

cm−1 was observed to shift slightly to higher energy following the initial excitation. Notably, the

shift to higher energy is consistent with the expected strengthening of the methyl-substituted C–S
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bond, based on the prominent motion along that bond for mode ν20, rather than the weakening of

the phenyl-substituted C–S bond for ν18. The shift to higher energy therefore provides additional

evidence that ν20 is the observed FSRS band, rather than ν18, even though the latter has the stronger

calculated off-resonance intensity. Without considering resonance enhancements across all three

compounds, it would be tempting to make incorrect assignments of the intense Raman bands of

PT or MPT based on the calculated intensities alone.

4.4 Conclusions

A key result of this work is that accurate excited-state resonance-enhanced Raman assignments are

possible using relatively low-cost off-resonant calculations, provided the effects of the electronic

resonance condition are taken into consideration. Importantly, the assignments are made possible

by comparing the spectra for several molecules with similar structure. Transitions in the 500-800

cm−1 region of the S1 spectra of DPT, PT, and MPT provide a representative example for mak-

ing assignments based on symmetry and resonance enhancement considerations across multiple

compounds.

Most FSRS measurements rely on an electronic resonance condition to obtain increased Raman

scattering signals, but there have not been any systematic studies examining how the resonance

condition affects the assignment of experimental spectra before now. Our benchmark study shows

that off-resonance calculations can be deceiving, and highlights the importance of mode-specific

resonance enhancement effects. While we have compared the experimental and theoretical Raman

spectra for a series of aryl-substituted thiophene molecules, we expect similar results for other sets

of structurally related compounds having similar excited-state absorption spectra.

We are currently working on a procedure to simulate excited-state resonance Raman enhance-

ments directly using the gradient approximation.72 After identifying the resonant Sn states re-

sponsible for the excited-state absorption, this approach would obtain the mode-specific resonance

enhancements by calculating the gradients of the relevant excited-state potential energy curves

along the S1 normal mode coordinates. A comprehensive understanding of resonance enhance-
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ment effects will provide more detailed insight on the structural evolution of molecules in excited

electronic states by allowing more precise tracking of the nuclear motions using FSRS spectra.
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Chapter 5

Probing Dynamics in Higher-Lying Electronic States with

Resonance-Enhanced Femtosecond Stimulated Raman

Spectroscopy

(Adapted from Ref. #53. Supporting information is available online.)

5.1 Introduction

Femtosecond stimulated Raman scattering (FSRS) is a time-resolved technique for probing the

structural dynamics of molecules in electronically excited states.22–24,120,121 Vibrational frequency

shifts reveal changes in molecular structure and bonding as a molecule evolves along an excited-

state potential energy surface. By measuring the time evolution with vibrational resolution, the

technique provides more detailed structural information about the excited-state dynamics than is

usually available from transient electronic absorption measurements alone.24 Transient Raman

measurements often take advantage of a tunable Raman excitation wavelength to target specific

electronic resonances. Matching a specific resonance in the transient electronic absorption spec-

trum allows one to selectively probe a specific intermediate or product species due to enhanced

Raman scattering.34,41,51,122–126 While the resonance condition serves the important purpose of

increasing the Raman signal in transient measurements, both for species selectivity and simply

to improve signal-to-noise, the influence on mode-dependent Raman intensities has been largely

ignored.

The resonance condition has long been recognized in ground-state Raman spectroscopy as a
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way to probe the Franck-Condon region of an electronically excited state.25,72–74 The vibrational

frequencies still report on the ground electronic state, but mode-dependent enhancements of the

vibrational intensities reflect the relative displacement of the upper potential energy surface along

each of the ground-state vibrational coordinates. Therefore, tuning the Raman excitation wave-

length into resonance with a specific electronic transition reveals detailed information about the

upper state through the excitation-wavelength dependent Raman gain profiles of the different vi-

brational modes. Modes with the largest displacement in the upper state give the largest relative

Raman scattering enhancements, thus reporting on the initial dynamics of the molecule moving out

of the Franck-Condon region of the upper state. Such detailed information about the upper elec-

tronic state has not been explored in FSRS measurements, where the focus of most experiments

remains on the time-evolving dynamics of the lower state.

Considering the upper electronic state in FSRS measurements is important in two contexts. On

one hand, the relative intensities in the transient Raman spectrum depend on the identity of the reso-

nant electronic state. We previously showed for a series of thiophene derivatives that the calculated

off-resonance Raman activities do not adequately represent the experimental intensities, and that

the correct assignment of FSRS bands requires careful consideration of the resonance condition.52

Neglecting mode-specific resonance enhancement effects can result in erroneous assignments that

could affect the interpretation of the transient dynamics. On the other hand, resonance-enhanced

FSRS measurements also provide novel information about the higher-lying potential energy sur-

face, analogous to ground-state resonance Raman spectroscopy.

In this chapter, we examine mode-specific resonance enhancements in the excited-state Ra-

man spectrum of a non-reactive model compound, 2,5-diphenylthiophene (DPT), in order to show

that it is feasible to extract information about the upper potential energy surface from FSRS mea-

surements. Specifically, we measure the excitation-wavelength dependence of the excited-state

resonance Raman spectrum of DPT in the relaxed (i.e. thermally equilibrated) S1 state. The

excitation-wavelength dependence of the excited-state Raman spectrum reveals strong enhance-

ment of several vibrational modes related to the secondary excitation of the conjugated π elec-
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tronic structure. We compare the experimental results with calculated excited-state Raman spectra

for resonant and off-resonant excitation from the relaxed S1 state. The resonant calculations con-

sider both the S1-Sn electronic transition strengths and the relative displacements of the upper (Sn)

potential energy surfaces in order to simulate resonance Raman spectra for each of the higher-lying

states. The experimental results provide a stringent test of the computational approach, and indi-

cate important limitations based on the level of theory and basis set, whereas the calculated spectra

facilitate the interpretation of the experimental spectra. This work provides a foundation for mak-

ing better assignments of resonance-enhanced excited-state Raman spectra, as well as extracting

novel information about higher-lying excited states from FSRS measurements.

5.2 Theory

We briefly summarize key results from the time-dependent formalism for resonance Raman scat-

tering theory in order to illustrate our approach to calculating resonance-enhanced FSRS spectra.

More detailed theoretical descriptions of resonance Raman scattering are available in Chapter 2, as

well as in the literature.27,29,30,73,74,92,127,128 The time-dependent formalism for resonance Raman

scattering71,72 provides an intuitive picture to relate the geometry change in an upper state with

the mode-dependent resonance Raman intensities. From Equation 2.13, which gives the general,

sum-over-states approach to the transition polarizability tensor, α f i, we assume that the Raman

excitation frequency, ωp, is resonant with a single transition from the initial state i to an upper

electronic state n, ωni. Thus, when ωp ≈ ωni, the summation reduces to include only the vibra-

tional levels, |νn〉, of the resonant state. Very briefly, after converting the frequencies in Equation

2.13 to energies (Eνi = h̄ωνi , etc.) and replacing the denominator with a formally equivalent half

Fourier transform,

1
(Eνn−Eνi−Ep− ih̄Γνn)

=
i
h̄

ˆ
∞

0
e−i(Eνn−Eνi−Ep−ih̄Γνn)t/h̄dt (5.1)
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the transition polarizability can be recast in terms of a time-dependent wave packet that propagates

on the upper electronic state, |νi(t)〉= e−iĤnt/h̄ |νi〉 .29 The resulting expression for the polarizabil-

ity term is essentially the time-integrated Franck-Condon overlap between the wavepacket |νi(t)〉

and the vibrational wavefunction of the final state, |ν f 〉,27,72,73

α f i ≈
i
h̄
|µni|2

ˆ
∞

0
〈ν f |νi(t)〉ei(Eνi+Ep)t/h̄−Γntdt (5.2)

where µni is the electronic transition dipole. Thus, the intermediate states in the Raman scatter-

ing process are replaced by the time-dependent wave packet, which represents the propagation

of the initial (ground-state) vibrational wavefunction on the potential energy surface of the upper

electronic state. As before, the damping term e−Γnt accounts for dephasing.

The expression further simplifies by using a Gaussian function to approximate the t = 0 wavepacket

along each vibrational coordinate qk, which then evolves in time according to Newton’s equation,

Fqk = −
∂Vn
∂qk

. The subscript n indicates that the motion follows the potential of the upper state,

whereas the vibrational coordinates qk are the normal modes of the lower electronic state. This

description of the time-dependent overlap integral using classical dynamics gives the transition

polarizability for each vibration k,71,72

α
k
f i ≈−

i
h̄
|µni|2

(2ωk)1/2

(
∂Vn

∂qk

)ˆ
∞

0
ei(Eνi+Ep−En)t/h̄−Γnte

−
(

∂Vn
∂qk

)2
t2/4ωktdt (5.3)

where ωk is the frequency of normal mode k in the lower electronic state, En is the vertical elec-

tronic transition energy, and the integral is the excitation profile as a function of Raman excitation

energy Ep. Finally, the intensity for a resonance Raman transition to the fundamental vibration of

mode k is proportional to the square of the polarizability term,

Ik ∝ EpE3
s |αk

f i|2 ≈ EpE3
s
|µni|4

2ωk

(
∂Vn

∂qk

)2

(5.4)

for incident and scattered photon energies Ep and Es, respectively.

Equation 5.4 introduces the crucial concept that the transition polarizability, and therefore the
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Raman intensity of a given mode k, depends on the slope of the resonant (upper) electronic state

along that vibrational coordinate. This result provides a foundation for calculating excited-state

resonance Raman spectra based on the electronic transition strength, |µni|2, and the gradients of

the upper-state potential, ∂Vn/∂qk. The frequencies are determined by the normal modes of the

lower electronic state, while the relative intensities depend on the slope of the upper-state potential

energy surface along each of those vibrational coordinates. For the excited-state resonance Raman

spectra shown below, |νi〉 represents the ground vibrational level of the first electronically excited

state S1, and the resonant states |νn〉 are the vibrational levels of a single higher-lying electronic

state Sn. The experimental Raman excitation wavelengths are resonant with a single excited-state

absorption band, and are sufficiently far from the stimulated emission band to exclude any contri-

butions from resonance with the ground electronic state. While the gradient approximation makes

several significant assumptions, this approach provides a valuable starting point for comparison

with the experimental resonance-enhanced FSRS spectra.

5.3 Experimental and Computational Methods

The experimental setup used to obtain the FSRS spectra has been described in detail in Chapter

3 and elsewhere.53,90 The sample consists of a 1.0 mM solution of 2,5-diphenylthiophene (TCI

America) in cyclohexane (spectroscopic grade, Fisher). Irradiating the sample with∼0.8 µJ actinic

pump pulses gives a maximum transient absorption of approximately 200 mOD at 560 nm. We

measure the ground-state Raman spectrum of DPT (15 mM in cyclohexane) using a commercial

Raman spectrometer (StellarNet) with 785 nm cw pump laser and 4 cm−1 resolution.

We use a development version of the GAUSSIAN software package78 for all calculations, ex-

cept where indicated. First, we calculate off-resonant Raman spectra for both the ground and first

excited electronic states using time-dependent density functional theory (TD-DFT) with B3LYP/aug-

cc-pVDZ. We obtain the mode-dependent Raman activities by numerical differentiation of the po-

larizability tensor along each of the normal mode coordinates at the optimized geometry of each

state.30 Our excited-state calculations use analytical polarizabilities for S1.53,78 Using this method,
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we previously compared the calculated off-resonance excited-state Raman intensities with exper-

imental resonance-enhanced FSRS spectra for a series of eight aryl-substituted thiophene deriva-

tives, including DPT.53 Our earlier work shows good agreement between the calculated and exper-

imental frequencies, even though the resonance condition significantly alters the intensities of the

experimental spectra.

In order to account for the resonance condition explicitly, we simulate the excited-state Raman

spectrum of DPT based on the time-dependent formalism described above. In short, we calculate

the Sn ← S1 transition moments and the gradients of the Sn potential energy surfaces at the S1

optimized geometry for states up to n = 20. For the resonance Raman calculations, we use both

TD-DFT and equation of motion coupled-cluster theory with single and double excitations (EOM-

CCSD) to obtain the excited states.129 We obtain the TD-DFT electronic transition moments from

the double residues of the quadratic response functions using the Dalton software package,80–83

and calculate EOM-CCSD transition moments using the unrelaxed transition density approxima-

tion.130 The TD-DFT calculations are more efficient, but the EOM-CCSD calculations should

provide a more accurate representation of the excited states. Due to the computational cost of the

EOM-CCSD calculations, we only calculate gradients for a few vibrational modes. Additional

details are provided below.

5.4 Results

5.4.1 Excited-State Dynamics

Figure 5.1 shows the evolution of the transient electronic absorption spectrum of DPT following

excitation at 310 nm. At early delay times, the transient spectrum has a strong excited-state absorp-

tion band centered near 565 nm and a weaker stimulated emission band near 390 nm. We observe

quantum beating in the excited-state absorption band within the first few ps (not shown), and the

band narrows slightly on a ∼15 ps time scale due to structural relaxation and vibrational cooling

in the S1 excited state. Integrating the singlet absorption band at 1 ps after excitation gives an
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experimental oscillator strength of ∼0.3 for the Sn-S1 transition. Both the excited-state absorption

and stimulated emission bands decay with a single exponential time constant of 270 ± 7 ps due

to intersystem crossing (ISC) to a long-lived triplet state. A weaker triplet-triplet absorption band

near 430 nm appears on the same timescale as the decay of S1, similar to previous measurements

of two- and three-ring aryl-substituted thiophene derivatives in solution.44,47,48,53,118

Transient stimulated Raman (FSRS) measurements track the structural dynamics of DPT in

more detail by following the evolution of the excited-state vibrational spectrum. In Figure 5.2, we

show the transient FSRS spectrum of DPT following actinic excitation at 310 nm. The Raman

excitation wavelength of 620 nm is on the low-energy tail of the S1 excited-state absorption band.

All of the FSRS bands decay to the baseline on a similar timescale as the ISC observed in the

transient electronic absorption spectrum, and therefore are assigned as S1 vibrations.53 We do

not readily observe triplet bands because the Raman pump wavelength is off-resonant of the T1

absorption band.

The most dominant features in the transient Raman spectrum include a pair of delocalized ring

deformation modes in the 600-700 cm−1 range, phenyl and thiophene distortion modes near 988

and 1191 cm−1, and a pair of ethylenic stretching modes in the 1500-1600 cm−1 region that are

characteristic of π-conjugated molecules.53 The assignments are discussed in more detail below.

Notably, the relative intensities of the 1529 and 1596 cm−1 vibrations change within the first few

ps following excitation, as highlighted in the lower panel of Figure 5.2. Bragg and coworkers48

recently showed that the relative intensities of the analogous in-phase and out-of-phase ethylenic

stretching modes of quaterthiophene track the evolution of the molecule to a more planar structure

in the excited state. Similarly, a change in the relative intensities of the two modes in DPT indicates

rapid planarization on a timescale of 0.8± 0.2 ps, due to the quinoidal character of the (π,π∗)

excited state. We note that there is a slight increase in the intensity of the transient electronic

absorption signal on this timescale as well, although the transient electronic spectrum does not

provide the same level of insight about the structural evolution of the molecule that is available

from the Raman measurement.
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Figure 5.1: Evolution of the transient electronic absorption spectrum of DPT following 310 nm
excitation. Inset shows the structure of the molecule and a schematic energy level diagram.

Figure 5.2: Evolution of the FSRS spectrum of DPT following excitation at 310 nm. The Raman
pump wavelength is 620 nm. The negative signal at 800 cm−1 is an artifact from subtraction of
the solvent signal. Panel (b) shows the integrated intensities of the 1529 and 1596 cm−1 bands as
a function of time. Solid lines are fits to the data using a sum of two exponentials.
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5.4.2 Ground- and Excited-State Raman Spectroscopy

While the evolution of the FSRS spectrum reveals information about the structural dynamics on

S1, the primary focus of this chapter is using the mode-specific resonance Raman enhancements

to probe the higher-lying excited states, Sn. In order to separate the effects of the time-evolving

wavepacket on S1, we measure the wavelength-dependent transient Raman spectrum of DPT at

a fixed delay of 30 ps following the initial excitation. This delay allows the molecule to relax

and dissipate excess vibrational energy to the solvent. In other words, the 30 ps delay allows us

to probe DPT at the minimum-energy geometry of the S1 potential energy surface, and therefore

simplifies the comparison of the experimental and computational spectra.

Before making a direct comparison between experiment and theory for the excited-state Raman

spectrum, we first compare the experimental and computational Raman spectra for the ground

state of DPT in Figure 5.3. The ground-state calculation provides a reference for the best level

of agreement that can be expected for a given computational method and basis set, because both

the experimental and computational spectra are off-resonant for the ground state of DPT. One

complication in simulating the ground-state spectrum of DPT is the conformational flexibility due

to rotation of the phenyl rings. DPT has a non-planar optimized ground-state geometry, with

roughly 20◦ dihedral angle between the central thiophene and each of the phenyl rings. The relative

orientation of the two phenyl rings results in two nearly iso-energetic structures with CS and C2

symmetry, separated by a torsional barrier smaller than kBT at room temperature. Even the fully

planar (C2v) structure is accessible at room temperature. Figure 5.3 shows the calculated Raman

spectrum of the lower-energy C2 species; however, the spectra for the CS and C2v structures are

nearly identical. The spectra for all three species are available in the supporting information (SI),

along with a table of vibrational frequencies for the ground state of DPT.

The calculated ground-state frequencies (B3LYP/aug-cc-pVDZ) are within ∼20 cm−1 of the

experimental values. The calculated intensities are also in reasonably good agreement with the

experimental spectrum, although the calculations underestimate the relative intensities of some of

the lower frequency bands by up to an order of magnitude. This systematic underestimation of
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Figure 5.3: Calculated (B3LYP/aug-cc-pVDZ) and experimental off-resonance ground-state Ra-
man spectra of DPT. Calculated spectrum includes 10 cm−1 Lorentzian broadening, and is also
shown on an expanded scale below 900 cm−1. For reference, the top panel (a) shows all of the cal-
culated vibrational frequencies after applying an empirical frequency scaling factor of 0.970.116

the low-frequency modes is consistent with our previous results across a series of aryl-substituted

thiophenes.53 The most notable discrepancy for DPT is the phenyl ring breathing mode near 996

cm−1, which is stronger than predicted by theory, as is also apparent in earlier work by Castro

et al.118 We are currently exploring the reason for this systematic underestimation of the low-

frequency intensities, and early indications suggest that including anharmonic effects accounts for

some, but not all, of the discrepancy. Nevertheless, the calculated off-resonance Raman spectrum

provides a good representation of the experimental ground-state spectrum of DPT.

In contrast with the ground-state, the calculated off-resonance Raman spectrum for the excited

state of DPT does not adequately reproduce the experimental FSRS spectrum, as shown in Figure

5.4. The figure compares the experimental FSRS spectrum at 600 nm Raman pump wavelength

with the calculated off-resonance Raman spectrum at the optimized S1 geometry.53 Although the

600 nm Raman pump wavelength is only on the tail of the excited-state absorption band, we ob-

serve mode-specific resonance enhancement effects compared with the off-resonance calculation.

Most notably, the low-frequency mode near 695 cm−1 is the strongest band in the experimen-

tal spectrum, even though the off-resonance calculation predicts relatively weak scattering at low

frequencies. The discrepancy is much more significant than in the ground-state spectrum. Fur-
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thermore, the off-resonance calculations predict the wrong relative intensities of the two phenyl

deformation modes (ν18 and ν25), and also of the two ethylenic stretching modes (ν67 and ν69).

The mode-specific enhancements are even more pronounced when the Raman excitation wave-

length approaches the maximum of the excited-state absorption band (see below), which is a clear

sign of resonance-enhancement.

Figure 5.4: Calculated (B3LYP/aug-cc-pVDZ) and experimental excited-state Raman spectra of
DPT. The calculated off-resonance spectrum includes 25 cm−1 Lorentzian broadening, and is also
shown on an expanded scale below 1300 cm−1 to emphasize the low intensity bands in this region.
The experimental FSRS spectrum is measured at a time delay of 30 ps using 600 nm Raman excita-
tion wavelength, and the asterisk indicates an artifact from subtraction of the solvent background.
For reference, the top two panels show (a) all of the calculated vibrational frequencies, and (b) only
the totally symmetric vibrations. The calculated frequencies include an empirical scaling factor of
0.970.116

Even though the calculated off-resonance spectrum does not accurately reproduce the experi-

mental intensities due to mode-specific enhancements, the calculated frequencies provide a foun-

dation for assigning vibrations in the excited-state Raman spectrum.53 The top panel of Figure 5.4

shows the full set of calculated vibrational frequencies for the optimized S1 excited state using

B3LYP/aug-cc-pVDZ.53 The optimized structure is planar, with C2v symmetry. In the absence

of Herzberg-Teller coupling, only totally symmetric (and degenerate) vibrations are symmetry-

allowed in resonance Raman,29 therefore the second panel shows only the subset of a1-symmetry

modes for the DPT excited state. This narrower collection of states provides the basis for our as-
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signment of the experimental spectrum. For example, the experimental bands at 1529 and 1596

cm−1 are relatively easy to assign as delocalized ethylenic stretching modes ν67 and ν69, respec-

tively, because these are the only two totally symmetric modes in this frequency range. The delo-

calized character of the two vibrations and the strong coupling with the conjugated π backbone of

the molecule explain the strong intensities in both the on- and off-resonant spectra.

We assign other experimental bands in comparison with the calculated frequencies, but also

considering which motions are likely to be enhanced by the resonance condition.53 The S1 excited-

state absorption band represents excitation of π electrons, therefore we anticipate the largest en-

hancements for modes that are sensitive to changes of the π bonding framework, as these modes

should have the largest displacement between S1 and the upper electronic state. For example, we

assign the most intense Raman band at 695 cm−1 as ν25, which is a totally symmetric vibration

that includes symmetric phenyl ring distortion and thiophene C-S-C stretching motions. This delo-

calized mode has large displacement along the π-conjugated framework of DPT, consistent with a

strong resonance enhancement under π-excitation. Similarly, the 597 cm−1 vibration is assigned as

ν18, a delocalized phenyl ring distortion and thiophene C-S-C bending mode that is also sensitive

to π excitation.

Although the above assignments are supported by the appearance of the corresponding bands

in the calculated off-resonance spectrum, we reiterate that assignments should not be made based

on intensity alone. We previously showed that the calculated off-resonance intensities can be

deceiving if the resonance enhancement effects are not carefully considered.53 This cautionary

point is highlighted by our assignment of the experimental band of DPT at 988 cm−1 as ν40,

rather than ν43. Based on intensity alone, it would be tempting to assign the experimental FSRS

band as the more intense ν43 from the calculated spectrum, but the primarily C-H bending motion

associated with that mode is not expected to have the same degree of resonance enhancement

as the in-plane C-C-C bending and ring deformation of ν40. Instead, the shoulder at roughly

1025 cm−1 is tentatively assigned as C-H bending and weak phenyl ring distortion associated

with ν43. Similarly, the experimental band at 1191 cm−1 could be assigned as either ν51 or ν53
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based on calculated frequencies and intensities alone, but we assign this band as ν53 based on the

more delocalized C=C and C-S stretching character of the latter, which is likely to have stronger

resonance enhancement. Table 1 shows the experimental and calculated vibrational frequencies

and assignments for several transitions. All of these modes are expected to have strong resonance

enhancement related to the distortion of the molecular structure upon secondary excitation of π

electrons from the S1 state of DPT. The assignments are further supported by calculated resonance

enhancements that we discuss below.

Table 5.1: Assignment of Experimental Excited-State Raman Bands

Vibration Calc. Frequency (cm−1)a Exp. Frequency (cm−1) Relative Gainb Motionc

ν18 572 597 29.5 C-S-C bend and phenyl def.
ν25 669 695 13.5 C-S-C sym. str. and phenyl def.
ν40 962 988 15.9 C-C-C bend/phenyl def.
ν43 1000 1025 – C-H bend and phenyl def.

ν10 + ν25 – 1048 – –
ν51 1163 – – C-H bend
ν53 1178 1191 6.4 C-H bend and thiophene def.

ν18 +ν25 – 1267 >100 –
2ν25 – 1375 14.9 –
ν67 1509 1529 4.1 delocalized C=C str.
ν69 1596 1596 5.1 delocalized C=C str.

ν18 +2ν25 – 1899 – –
3ν25 – 1986 – –

a B3LYP/aug-cc-pVDZ with empirical scaling factor of 0.970.116 b Ratio of integrated band
intensities for 565 and 600 nm Raman excitation wavelengths. c See Figure 1 in the SI for images
of the displacement vectors.

5.4.3 Resonance Raman Excitation Profiles

We examine the relative enhancements of the excited-state resonance Raman bands in more detail

by tuning the Raman excitation wavelength across the S1 absorption band. Figure 5.5 shows the

experimental Raman spectrum at eight different pump wavelengths ranging from 560 to 600 nm.

We limit the Raman pump wavelength to the low-frequency side of the absorption band to prevent
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dispersive peak shapes, as described in the literature,51,124,131 and to avoid becoming resonant with

the stimulated emission band below ∼500 nm.

Figure 5.5: Excited-state resonance Raman spectra at t = 30 ps delay for eight different Raman
excitation wavelengths. Spectra are scaled by 1/6 intensity below 825 cm−1 to facilitate compari-
son of these high-intensity transitions with other regions of the spectrum. Inset shows the Raman
excitation wavelengths in reference to the excited-state absorption spectrum.

In order to better highlight the mode dependence of the resonance enhancement effect, Fig-

ure 5.6 shows the excitation profiles for eight of the most dominant FSRS bands. The excitation

profiles show the variation of the frequency-integrated band intensities as a function of Raman

excitation wavelength. We use integrated band intensities to account for small variations in fre-

quency resolution due to changing experimental parameters at the different excitation wavelengths.

By normalizing the integrated intensity of each band to the value obtained at 600 nm, the figure

shows the relative enhancements as a function of decreasing wavelength. For reference, the figure

also includes the intensity profile of the S1 excited-state absorption band, which increases by a
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factor of 9.0 from 600 to 565 nm.

Figure 5.6: Excitation profiles for several excited-state Raman bands, normalized to the value at
600 nm. For reference, solid black lines are the excited-state absorption spectrum. The three panels
show (a) modes with modest gain profiles, (b) modes with stronger resonance enhancement, and
(c) overtone and combination modes.

We group the excitation profiles into three different categories based on the relative increase

of the Raman gain between 600 and 565 nm. The first group includes the bands at 1191, 1529,

and 1596 cm−1, which have modest gain across the spectrum, increasing slightly less than the S1

absorption band increases over the same range, and centered at a Raman excitation wavelength be-

tween 565 and 575 nm, which is slightly red-shifted from the peak of the excited-state absorption

band. The second group includes bands that increase more rapidly than the excited-state absorption

profile, including those at 597, 695, and 988 cm−1. These two categories have gain profiles that

generally follow the intensity of the excited-state absorption band at the Raman excitation wave-

length, with the main difference being whether the bands have significant off-resonance intensity

or not. Bands with off-resonance intensity are already fairly strong for 600 nm Raman excitation,

and therefore tend to have more modest gain profiles, while bands that have lower intensity in the
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off-resonance spectrum increase more rapidly when moving on-resonance.

Finally, a third group of gain profiles includes the bands at 1267 and 1375 cm−1. Notably, these

bands are indistinguishable from noise in the early resonance regime, but gain significant intensity

as the Raman pump wavelength approaches the S1 absorption maximum. The delayed onset of

the excitation profile for these bands is consistent with the expected behavior for overtone and

combination modes in a resonance Raman spectrum, having essentially no intensity off-resonance,

but becoming quite strong when the resonance condition is fully realized.27,29,132 Thus, we assign

the 1267 and 1375 cm−1 bands as the ν18+ν25 combination and 2ν25 overtone modes, respectively.

Two features also emerge at 1899 and 1986 cm−1 that we assign as transitions to the ν18 + 2ν25

combination and 3ν25 overtone modes. A band near 1048 cm−1 has similar behavior, consistent

with the ν10 +ν25 combination mode, based on our previous assignment of the ν10 fundamental at

382 cm−1.53 Strong overtone and combination modes are a signature of large geometry changes

in the resonant (upper) electronic state, therefore the prominent progression in ν25 points to a

very large displacement and correspondingly intense Franck-Condon activity along the thiophene

symmetric C-S-C stretching coordinate for Sn← S1 excitation of DPT.

5.4.4 Calculated Excited-State Resonance Raman Spectra

For comparison with experiment, we simulate the excited-state resonance Raman spectrum of DPT

using either TD-DFT or EOM-CCSD, and the time-dependent formalism described above. In

short, we find the optimized S1 geometry and then use Equation 5.4 to calculate resonance Raman

intensities from the Sn-S1 transition strengths and Sn gradients for states up to n = 20. We obtain

the gradients numerically by calculating the energies at small positive and negative displacements

along each of the S1 normal mode coordinates relative to the S1 equilibrium geometry. All of the

calculated frequencies, transition strengths, and gradients are listed in the SI.

Figure 5.7 shows the results from TD-DFT with B3LYP/aug-cc-pDVZ. The top panel of the

figure compares the experimental transient absorption spectrum with the calculated Sn← S1 transi-

tions, including a simulated excited-state absorption spectrum with 0.25 eV Gaussian broadening.
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We estimate an experimental oscillator strength of f ≈ 0.3, but only two of the calculated tran-

sitions have f > 0.01, and both are at much longer wavelength. Nevertheless, the lower panel

of the figure compares the experimental FSRS spectrum at an excitation wavelength of 570 nm

with the simulated excited-state resonance Raman spectra for each of the higher-lying states with

f > 0.004. The simulated Raman spectra include 25 cm−1 Lorentzian broadening, and we divide

the spectrum for each state by the oscillator strength ( f ∝ Ep|µni|2) to allow comparison among

states with very different transition strengths.

The simulated spectra in the lower panel of Figure 5.7 highlight the important role of geome-

try changes in the upper states in determining the relative resonance Raman scattering intensities.

Each of the electronic states gives a distinct resonance Raman spectrum, but most have a rela-

tively large gradient in the ethylenic stretching modes at 1509 and 1596 cm−1 due to excitation

of conjugated π electrons for each of the Sn ← S1 transitions. In contrast with the calculated off-

resonance spectrum in Figure 5.4, several of the states also have noticeable intensity in the lower

frequency thiophene distortion modes below ∼700 cm−1, although none are as intense as the as-

sociated experimental bands (note the different intensity scaling factors for the experimental and

computational spectra below 850 cm−1). A few of the states also correctly predict that there are

some Raman bands with intensity in the intermediate frequency range (not including overtone and

combination modes, which are excluded from our simulation), but none of the calculated states

matches both the experimental FSRS spectrum and the electronic transition strength. Most of the

electronic transitions have either very low oscillator strength (<0.01) or much longer wavelength

than the experimental band at 560 nm. The generally poor agreement with the experimental spec-

tra suggests that TD-DFT does not accurately reproduce the higher-lying electronic states of DPT.

This result is not unexpected, because TD-DFT is a single reference method that neglects double

excitation and other effects that are likely to play a role in states that are accessible by sequential

two-photon excitation.133,134

The top panel of Figure 5.8 compares the experimental transient absorption spectrum with

the calculated Sn ← S1 transitions and simulated S1 absorption spectrum from EOM-CCSD/6-
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Figure 5.7: Comparison of experimental spectra at t = 30 ps with calculated spectra from TD-
DFT (B3LYP/aug-cc-pVDZ). Panel (a) shows transient absorption spectrum and calculated Sn ←
S1 electronic transitions, including a simulated spectrum with 0.25 eV Gaussian broadening. The
lower panel compares (b) experimental FSRS spectrum at 570 nm Raman excitation wavelength,
with (c) the simulated resonance Raman spectra for calculated transitions with f > 0.004. Sim-
ulated Raman spectra include 25 cm−1 Lorentzian broadening, and have been divided by f to
facilitate comparison for states with low Sn-S1 transition strength.

31G*. The higher-level EOM-CCSD calculations are computationally more expensive than TD-

DFT, but explicitly treat double excitations. We use a relatively small basis set for the EOM-

63



CCSD calculations because the S1 geometry optimization and vibrational frequency calculations

are computationally expensive. Even with the smaller basis set, the calculated electronic transitions

from EOM-CCSD are in better agreement than TD-DFT with the experimental transient absorption

spectrum. Specifically, the S5← S1 transition has the correct oscillator strength, and is within 0.64

eV of the experimental wavelength. State S5 has up to ∼25% double excitation character in the

EOM-CCSD calculation, which might explain the absence of a similar transition from TD-DFT.

For reference, EOM-CCSD underestimates the S1-S0 transition energy by ∼0.3 eV at both the

S0 and S1 optimized geometries, compared with the experimental ground-state absorption and

excited-state stimulated emission spectra, respectively.

The lower panel of Figure 5.8 shows the simulated resonance Raman spectra using EOM-

CCSD/6-31G* for all of the electronic states with f > 0.004. Although EOM-CCSD is too expen-

sive for a complete vibrational analysis, we simulate two key regions of the Raman spectrum by

calculating Sn gradients along seven of the S1 normal mode coordinates (see SI). Some of these

modes are responsible for the strongest transitions in the experimental spectrum, while others are

not as prominent. Several of the simulated resonance Raman spectra have features that resemble

the experimental FSRS spectrum, but the best agreement is for state S5, which also has the largest

oscillator strength. The simulated spectrum for S5 correctly predicts the relative Raman intensities

in both the high- and low-frequency regions of the experimental spectrum, including most notably

the relatively strong transition near 700 cm−1. The S4 ← S1 transition, which has the second

largest oscillator strength and is relatively close in energy (∼0.5 eV) to S5, also has some favorable

features. Additionally, while the resonance Raman intensities calculated for S5 predict a relatively

weak ν67 band compared to experiment, the spectrum simulated for S4 predicts a relatively strong

intensity for ν67. Considering both the electronic transition strengths and the simulated resonance

Raman spectra, S5 provides the best individual representation of the upper electronic state in the

experimental transient absorption spectrum of DPT.

The electron density difference maps in panels (a) and (b) of Figure 5.9 show the electronic

structure changes associated with transitions to S4 and S5 from the EOM-CCSD calculation, re-
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Figure 5.8: Comparison of experimental transient absorption and FSRS spectra with the simulated
spectra from EOM-CCSD/6-31G*. See Figure 5.7 caption for details. The simulated Raman spec-
tra in (c) include only seven vibrations due to computational cost. The calculated S1 frequencies
and Sn gradients are listed in the SI, and include an empirical scaling factor of 0.944.116

spectively. The electron density alternates along the long axis of the molecule due to the change in

π bonding pattern, along with a reduction of electron density in non-bonding sulfur orbitals. The

net change in electron density is responsible for the displacement of the upper potential energy sur-

face relative to S1, but the gradients provide a more intuitive picture by projecting those structural
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changes onto the S1 normal modes.

Figure 5.9: Electron density difference maps for the (a) S4 ← S1 and (b) S5 ← S1 transitions
calculated with EOM-CCSD/6-31G*. Blue indicates a decrease in density and purple indicates an
increase. The ball-and-stick model shows the orientation of the molecule for visual reference.

Although we are limited to a relatively small basis set for the S1 geometry optimization and

frequency calculations using EOM-CCSD, we examine the basis set dependence using the opti-

mized geometries from lower-level calculations. Specifically, we simulate the excited-state ab-

sorption and resonance Raman spectra using a larger aug-cc-pVDZ basis set at the optimized

S1 geometries and normal mode displacements obtained from B3LYP/aug-cc-pVDZ and EOM-

CCSD/6-31G* (Figures S4 and S5 in the SI). Comparing the full EOM-CCSD/6-31G* results with

EOM-CCSD/aug-cc-pVDZ calculations at the lower-level optimized geometries indicates that the

calculated Sn ← S1 electronic transitions depend on the basis set, but are relatively insensitive to
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small changes of the nuclear geometry. In contrast, the calculated resonance Raman spectra (Fig-

ure S5) are sensitive to small geometry changes, even for the same basis set. Resonance Raman

calculations using a lower-level optimized geometry not only suffer from using normal modes that

are obtained at a different level of theory, but also from non-zero gradients of S1 due to the different

geometry.

5.5 Discussion

Mode-specific resonance enhancements in the experimental FSRS spectrum of DPT probe the up-

per electronic state in the Sn ← S1 transient absorption. The strong resonance enhancement of

ν25, including a prominent progression of overtone and combination bands involving this mode,

indicates that the primary motion in Sn is initially along a delocalized thiophene C-S-C symmetric

stretching and phenyl deformation coordinate, with additional contributions from the ring distor-

tion and ethylenic stretching motions identified in Table 6.1. While some of these motions could

be predicted a priori based on the change in π bonding between the two states (as in Figure 5.9),

or even from the vibronic structure of the experimental excited-state absorption spectrum (Figure

5.1), the relative Raman intensities provide a more quantitative picture of the upper-state potential

energy surface by mapping the initial dynamics onto the S1 normal modes.

There are many examples where resonance Raman spectroscopy probes the ultrafast dynamics

of a molecule excited above S1.48,123,125,135,136 In the present case, however, we use the transient

FSRS spectrum to probe the upper-state dynamics after excitation from the relaxed S1 geome-

try, rather than the equilibrium ground-state geometry. Not only is it possible to access different

electronic states using sequential excitation, but also the geometry change between S0 and S1 al-

lows access to new regions of the upper potential energy surfaces. In the case of DPT, secondary

excitation simply induces a structural distortion due to changes in the conjugated π bonding con-

figuration. In more reactive molecules, a similar measurement could reveal new reaction pathways

that are not accessible directly from S0. For example, we have shown elsewhere that the sequential

two-photon excitation of a photochromic molecular switch leads to a different reaction efficiency
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than single photon excitation from the ground-state geometry.7,8

The dynamics of higher-lying excited states are extremely difficult to probe using other meth-

ods, because strong coupling and a high density of states above S1 leads to rapid non-adiabatic

dynamics. As Kasha’s rule predicts, molecules typically relax back to S1 within ∼200 fs or

less.137,138 This rapid electronic relaxation does not leave much time for the system to evolve

on the upper surfaces, therefore the initial, impulsive motions out of the Franck-Condon region

are likely to determine the efficacy of reaction channels that are accessible from the higher-lying

states. Given the very short lifetimes, transient electronic absorption measurements do not usu-

ally have sufficient time resolution to observe wave packet motions in the higher-lying states of a

polyatomic molecule.8 However, resonance Raman inherently probes the motion out of the Franck-

Condon region of the upper state following Sn← S1 excitation, and thus provides a direct window

on the ultrafast dynamics within the first few tens of fs following secondary excitation, including

structural information based on the vibrational motions involved.

Our work also shows that experimental resonance-enhanced FSRS measurements can provide

a valuable benchmark for comparison with excited-state calculations. For example, there has been

growing interest in calculating accurate excited-state absorption spectra of conjugated polymers

and related compounds, in order to better understand the nature of the electronic transition.134

Comparison of the calculated and experimental excited-state resonance Raman spectra could pro-

vide an important reference point for assessing the quality of calculated transient absorption spec-

tra. Higher-lying electronic states are particularly challenging to calculate because of strong elec-

tronic coupling and the rapidly increasing density of states above S1. The situation is even more

complicated for transitions between two excited states, due to additional contributions from states

with double (or higher) excitation character. Although it can be difficult to evaluate the quality of

excited-state calculations based on electronic transition energies and oscillator strengths alone, a

comparison of the experimental Raman intensities with the calculated gradients is a more sensitive

test of the calculated upper-state potential energy surface.

In the case of DPT, poor agreement between the simulated spectra and experiment reveals sig-
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nificant short-comings in the TD-DFT calculations for predicting the upper electronic states, pos-

sibly due to multiple excitation character for transitions originating from the S1((π,π∗)) state. The

EOM-CCSD calculations are more promising, although further evaluation is necessary to confirm

that the better agreement with experiment is not fortuitous. The theoretical treatment in this case

is simplified by making several key approximations. For example, we neglect any contributions

from Herzberg-Teller coupling or Duschinsky rotation, which often complicate even ground-state

Raman measurements. In addition, Raman de-enhancement effects due to competing contributions

from different upper states could be significant for higher-lying states due to the rapidly increasing

density of states above S1.139–141 Fortunately, DPT has many favorable characteristics that sim-

plify the comparison between experiment and theory, including an isolated excited-state absorption

band and sufficiently long excited-state lifetime to allow relaxation into the thermally equilibrated

S1 state following the initial excitation. This work represents a proof of concept measurement to

show that we are able to probe the upper states in a simple case of the relaxed S1 geometry. Similar

measurements for a reactive system with shorter excited-state lifetime are forthcoming.

5.6 Conclusions

Although most FSRS studies do not explicitly consider the resonance condition, experimental res-

onance Raman spectra are sensitive to the upper electronic state. Using a tunable Raman excitation

wavelength, we have investigated the mode-specific resonance enhancements for DPT in order to

probe the higher-lying excited state. The Raman gain profiles indicate that the resonant upper

electronic state (Sn) is primarily displaced along delocalized coordinates with significant C-S-C

bending and symmetric stretching due to secondary excitation of the conjugated π electrons. Sim-

ulated spectra based on the time-dependent formalism for resonance Raman scattering reproduce

the basic details of the excited-state spectra, depending on the level of theory. Although limited to

only a few vibrations, the simulated resonance Raman spectrum using EOM-CCSD/6-31G* pro-

vides a more accurate representation of the experimental spectrum than TD-DFT. The agreement of

our simulated spectra in spite of a simplified theoretical formalism emphasizes the significance of
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the resonant electronic state in reproducing the observed mode-specific resonance enhancements.

This work highlights the ability of resonance-enhanced FSRS measurements to provide new infor-

mation about higher-lying electronically excited states.
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Chapter 6

Femtosecond Stimulated Raman Scattering from Triplet

Electronic States: Experimental and Theoretical Study of

Resonance Enhancements

(This work was published as Ref. #54. Supporting information is available online.)

6.1 Introduction

Femtosecond stimulated Raman scattering (FSRS) is a time-resolved technique that provides de-

tailed information about the structural evolution of molecules.22–24,84 By monitoring changes in

the vibrational spectrum following photo-excitation, the dynamics of the molecular structure and

bonding are observed as the system evolves along the excited- and/or ground-state potential energy

surfaces. FSRS measurements often tune the Raman excitation wavelength to match an electronic

transition of a target molecule in order to give a resonance enhancement of the transient Raman

signal. Resonance with a specific electronic state increases the Raman transition strength of some

modes by up to several orders of magnitude, depending on the character of the resonant electronic

state.25–27 Thus, tuning to a particular resonance in the transient absorption spectrum allows for

the selective measurement of Raman transitions from a particular species along the reaction path,

while also significantly improving the signal-to-noise ratio.34,41,51,107,123–126

However, mode-specific resonance enhancements complicate the interpretation of FSRS spec-

tra, particularly the assignment of the observed Raman bands to specific vibrational modes of

the molecule in an excited state.25,26,92 Although some assignments are possible based on simple
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chemical intuition and comparison with vibrational frequencies from the ground electronic state,

calculated frequencies and intensities are important for making accurate assignments in the ex-

cited state, particularly in regions of the spectrum with a high density of vibrational states. The

excited-state vibrational frequencies are relatively easy to compute, but the Raman intensities are

more challenging because they require the evaluation of changes in the excited-state polarizability

tensor along each of the vibrational coordinates.29,30,52,105,106,142

Using a series of conjugated thiophene derivatives for benchmark comparison, we showed

that it is possible to assign resonance-enhanced FSRS bands for a series of structurally similar

molecules by calculating the off-resonant excited-state Raman spectra, and carefully considering

which vibrational modes are most likely to be enhanced by the electronic resonance.52 Vibra-

tions with the strongest scattering signals have significant nuclear displacement along the potential

energy surface of the resonant higher-lying excited state relative to the initial state upon SN ←

S1 or TN ← T1 excitation with the Raman pump pulse. In a second contribution, we examined

the resonance condition explicitly using a gradient approximation of the time-dependent reso-

nance Raman (TD-RR) theory to simulate the experimental FSRS spectrum of the S1 state of 2,5-

diphenylthiophene (DPT).53 The simulated spectrum qualitatively reproduced the mode-specific

resonance enhancements by matching the gradients in a specific excited state (SN) to the assigned

vibrations of S1.

In contrast with the S1 spectra, where the resonance enhancement is strongly mode-dependent,

the calculated off-resonance Raman spectra of the triplet states are in close agreement with the

experimental FSRS spectra for the T1 states of DPT and other aryl thiophenes in our benchmark

series.52 A similarly weak wavelength dependence of the resonance Raman spectrum has been ob-

served for triplet states of other conjugated organic systems,38,143,144 suggesting that triplet states

may be less sensitive to mode-dependent resonance enhancement compared with the singlet states

of the same molecules. In this chapter, we explore the weak wavelength dependence of the triplet

Raman spectrum of the model compound 2-phenylthiophene (PT) in more detail. Comparing ex-

perimental FSRS spectra at different Raman excitation energies with theoretical simulations of the
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on- and off- resonance spectra, we determine that the weaker mode-dependence of the T1 Raman

intensities compared with S1 is a result of contributions from overlapping electronic transitions and

increased homogeneous broadening of resonant TN states, possibly due to non-adiabatic coupling

within the triplet manifold.

This chapter is organized as follows. We briefly recount the relevant aspects of the time-

dependent theory for resonance Raman scattering in Section 2, then summarize our experimental

and theoretical approaches in Section 3. We compare the experimental and calculated electronic

absorption spectra for the triplet state of PT in Section 4.1, and assign the vibrational bands of

the FSRS spectrum with off-resonant calculations of the T1 Raman spectrum in Section 4.2. In

Sections 4.3 and 4.4, we examine the excitation wavelength dependence of the T1 FSRS spectrum

and then compare it to simulations of resonance Raman spectra obtained using two methods: an

extrapolation of harmonic potentials, and the gradient approximation of TD-RR theory. Finally,

we discuss the results in Section 5, and summarize our main conclusions in Section 6.

6.2 Theory

In order to motivate the different computational approaches used in the following sections, we

begin with a brief summary of Raman scattering theory. More extensive descriptions of Raman

and resonance Raman (RR) scattering are available in the literature.27,29,30,72–74,92,127,128

The intensity of a Raman transition from an initial vibrational state |νi〉 to a final state |ν f 〉 is

proportional to the square of the transition polarizability tensor,

I ∝ ωp(ωp−ω f i)
3 |α f i|2 (6.1)

where ωp is the incident photon frequency and ω f i is the frequency of the vibrational transition. As

introduced by Kramers, Heisenberg, and Dirac,68 and also in the Placzek formulation of second-

order time dependent perturbation theory,67 the generic expression for the transition polarizability
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between any two initial and final states |i〉 and | f 〉 can be written as a sum over states,

α f i =
1
h̄ ∑

n

(
〈 f | µ̂ |n〉〈n| µ̂ |i〉
ωni−ωp− iΓn

+
〈 f | µ̂ |n〉〈n| µ̂ |i〉
ωn f +ωp + iΓn

)
(6.2)

where {|n〉} are all possible intermediate vibronic states, Γn are phenomenological broadening

terms related to the dephasing of each intermediate state, µ̂ is the electric dipole operator, and ωni

and ωn f are the transition frequencies.

Due to the difficulty of evaluating the full sum-over-states expression in Equation 6.2, the

transition polarizability can instead be recast in terms of a Taylor series expansion of the full

electronic polarizability (α) with respect to the mass-weighted displacement of each vibrational

coordinate, qk,

α f i = α0 〈ν f |νi〉+∑
k

(
∂α

∂qk

)
0
〈ν f |qk |νi〉+ ... (6.3)

where the subscript 0 indicates values at zero displacement of a vibration. Neglecting higher-order

terms in the expansion, and assuming harmonic normal modes and an off-resonance electronic

condition (ωp = 0), the transition polarizability for the fundamental of each vibrational mode k is

proportional to the electronic polarizability derivative with respect to qk,29,30

α
k
f i ∝

√
h̄

2ωk

(
∂α

∂qk

)
0

(6.4)

where ωk is the vibrational frequency of the mode.

The Raman activity increases substantially when the incident pump field is at or near reso-

nance with an electronic transition, in which case the transition polarizability is no longer simply

described by Equation 6.4. The enhancement of the Raman signal is a result of the small de-

nominator in the first term of Equation 6.2 as ωp approaches ωni. Thus, the expression for the

transition polarizability in Equation 6.2 reduces to a sum over intermediate vibrational states, |νn〉,

assuming that the Born-Oppenheimer approximation holds and in the limit of weak vibronic cou-

pling.25,29,71,74 For resonance with a single electronic state, the sum includes only vibrational levels
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of the resonant electronic state, |N〉. The second term in Equation 6.2 is negligible under resonance

or near-resonance conditions.29

In the time-dependent formalism for resonance Raman scattering, the denominator in the first

term of Equation 6.2 is converted from the frequency domain to the time domain through a Fourier

transform,27,29,72,73

α f i ≈
i
h̄ ∑

νn

ˆ
∞

0
〈ν f |µIN |νn〉〈νn|µNI |νi〉e−i(ωn−ωi−ωp−iΓn)tdt (6.5)

where 〈ν f | and |νi〉 are both within the initial electronic state |I〉, µNI is the electronic transition

dipole between the initial and intermediate electronic states, and ωn and ωi are the frequencies of

the intermediate and initial vibronic states, respectively. The sum over states |νn〉 gives a time-

dependent wavepacket that evolves according to the Hamiltonian, ĤN ,25,27,29,31 describing nuclear

motion in the intermediate electronic state, |N〉. Thus, we recast Equation 6.5 as the time-integrated

overlap of the wavepacket in the resonant state |νi(t)〉 = e−iĤNt/h̄ |νi〉 with the vibrational wave-

function of the final state 〈ν f |,53

α f i ≈
i
h̄

ˆ
∞

0
|µNI|2 〈ν f |e−iĤNt/h̄ |νi〉ei(ωi+ωp+iΓn)tdt . (6.6)

An implicit assumption in Equation 6.6 is that the electronic transition dipole follows the Con-

don approximation, which gives only the A term in the Albrecht description of Raman scatter-

ing.29,74,75 The other Albrecht scattering terms (B, C, and D) are a result of Herzberg-Teller (HT)

vibronic coupling between electronic states. The vibronic coupling terms arise from a perturba-

tive expansion of the transition dipole in the nuclear coordinates of intermediate electronic state

|N〉,29,31

µNI =
(
µNI
)

0 + ∑
j

(
∂ µNI

∂q(N)
j

)
0

q(N)
j + ... (6.7)

The derivative of the electronic transition dipole with respect to the nuclear coordinates q(N)
j gives

the vibronic coupling of electronic states |N〉 and |I〉 with all other states {|M〉} as a perturbation
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of the electronic Hamiltonian, Ĥelec.29

(
∂ µNI

∂q(N)
j

)
0
=

1
h̄

{
∑

M 6=I

(
µNM

)
0

〈M| ∂ Ĥelec

∂q(N)
j

|I〉

ωI−ωM
+ ∑

M 6=N

〈N| ∂ Ĥelec

∂q(N)
j

|M〉

ωN−ωM

(
µMI
)

0

}
(6.8)

Substituting the expansion for µNI and truncating Equation 6.7 at first order yields a more complete

form of the transition polarizability,

α f i ≈
i
h̄

ˆ
∞

0
dt ei(ωi+ωp+iΓn)t

{∣∣∣(µNI
)

0

∣∣∣2 〈ν f |e−iĤNt/h̄ |νi〉

+∑
j

(
µIN
)

0

(
∂ µNI

∂q(N)
j

)
0
〈ν f |e−iĤNt/h̄q(N)

j |νi〉

+∑
j

(
∂ µIN

∂q(N)
j

)
0

(
µNI
)

0 〈ν f |q
(N)
j e−iĤNt/h̄ |νi〉

+∑
j
∑

l

(
∂ µIN

∂q(N)
j

)
0

(
∂ µNI

∂q(N)
l

)
0
〈ν f |q

(N)
j e−iĤNt/h̄q(N)

l |νi〉

}
.

(6.9)

The first term on the right-hand side is the Albrecht A term from Equation 6.6. Together, the

second and third terms on the right-hand side are the Albrecht B and C terms, where the B term

includes coupling between intermediate state |N〉 and all other electronic states, and the C term

includes coupling of the initial electronic state to the other electronic states. Similarly, the final

term in Equation 6.9 represents D-term scattering, which includes contributions from electronic

states coupled to |N〉 and |I〉 simultaneously. Equation 6.8 shows that the B, C, and D terms scale

with the inverse of the energy separation between the coupled electronic states, and therefore are

most important for states nearby in energy. It is worth noting that the calculated polarizability

derivative from Equation 6.4 implicitly contains some degree of vibronic coupling for transitions

in which only one vibrational quantum number changes.29

The implementation of Equation 6.9 using computational methods has been described in detail

by Baiardi et al.,31 where the first term, containing no implicit vibronic coupling, corresponds to

the Franck-Condon (FC) approximation, and the B-C terms are labeled as FCHT to denote the
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inclusion of Herzberg-Teller coupling. This implementation uses the extrapolation of a harmonic

potential expanded around the minimum-energy geometry of |N〉 in order to obtain the vibrational

wavefunctions at the Franck-Condon geometry. This approach works well for ground-state reso-

nance Raman spectra with resonant excitation to relatively low-lying electronic states.31,76,79 How-

ever, FSRS measurements of electronically excited systems tend to be resonant with transitions to

higher-lying states, where the density of states is larger and the states become more anharmonic.

An alternative to the FC and FCHT approach is the semi-classical “gradient approximation”

to the TD-RR formalism,53,71,72 where the time-dependent overlap integral 〈ν f |νi(t)〉 is simplified

by approximating the initial wavefunction |νi(t)〉 with a Gaussian function at t = 0, which then

propagates in time on the potential energy surface (PES) of the intermediate electronic state, VN ,

according to the Hamiltonian of that state. Although the time-evolution of this wavepacket depends

on the topology of the PES of |N〉, the Raman intensity observed for a particular mode, k, depends

on the time-integrated overlap of |νi(t)〉 with the vibrational wavefunction 〈ν f | of the final state.

Thus, the time-evolution of the wavepacket using classical equations of motion depends, to first

order, on the gradient of the upper-state PES along each of the vibrational coordinates of the lower

state, ∂VN
∂qk

. Substituting a Gaussian wavefunction into Equation 6.6 gives the simplified version of

the time-dependent overlap integral,53,72

α
k
f i ≈−

i
h̄
|µNI|2

(
∂VN

∂qk

)ˆ
∞

0
ei(ωi+ωp−ωNI+iΓn)te

−
(

∂VN
∂qk

)2 t2
4ωk t dt (6.10)

where ωNI is the vertical transition energy between electronic states N and I. The final expression

for the resonance-enhanced Raman scattering intensity of mode k is proportional to the square

of the transition polarizability term, and therefore depends on the square of the gradient of the

potential along qk.53,76

Ik ∝ ωp(ωp−ωk)
3 |αk

f i|2 ≈ ωp(ωp−ωk)
3 |µNI|4

2ωk

(
∂VN

∂qk

)2

(6.11)

Due to computational cost, our calculations using the gradient approximation neglect vibronic
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coupling, and therefore include only A-term scattering. However, by numerically calculating the

adiabatic PES of the resonant electronic state along the nuclear displacement coordinates of T1,

the resonance Raman spectra obtained with the gradient approximation partially account for the

anharmonicity of the potentials of higher-lying electronic states, contrary to the FC and FCHT

approaches.

In Section 4, we compare the experimental FSRS spectrum with both the off-resonance calcu-

lations and the simulated resonance Raman spectra using the FC/FCHT models (Equation 6.9) and

the gradient approximation (Equation 6.11).

6.3 Experimental and Computational Methods

The experimental setup for transient absorption (TA) and FSRS measurements was described pre-

viously,53 therefore we only summarize the main points here. We split the output of an amplified

Ti:Sapphire laser (Coherent, Legend Elite HP) into three portions and use nonlinear frequency con-

version to generate actinic pump, Raman pump, and Raman probe pulses. A commercial optical

parametric amplifier (OPA) with two additional stages of nonlinear frequency conversion produces

actinic pump pulses at 300 nm (∼90 fs and ∼1.0 µJ at the sample). A second commercial OPA

provides tunable near-IR pulses that we subsequently pass through a 25 mm long β -barium borate

(BBO) crystal to produce spectrally narrow (<0.5 nm) Raman pump pulses ranging from 360-385

nm via spectral-compression of the second harmonic.87–89 We generate Raman pump pulses at 400

nm by passing a portion of the 800 nm fundamental directly through the long BBO. Passing the

narrowband pulses through a 4 f spectral filter eliminates asymmetry in the temporal profile and

further narrows the bandwidth.87 The resulting Raman pump pulses have ∼1 ps duration, 0.3-0.7

µJ per pulse, and <30 cm−1 bandwidth. Using a focal diameter of ∼100 µm at the sample mini-

mizes excited-state population depletion and ensures that the resonant-FSRS signal scales linearly

with pulse energy.145 We generate fs Raman probe pulses by focusing a small portion of the 800

nm laser fundamental into a translating CaF2 window to produce white-light continuum spanning

340-750 nm.52,53 We use the full bandwidth of the probe pulses for TA measurements, but only a
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narrow range of ∼25-30 nm for FSRS. Dispersion of the uncompressed probe pulses over the nar-

row range of the FSRS measurement is negligible compared with the duration of the pump pulse.

All three pulses overlap in the sample with parallel polarization.

After the sample, a 1/8 m imaging spectrograph with 1800 line/mm grating disperses the Ra-

man probe pulses onto a 2068 pixel linear CCD array (Hamamatsu, S11156-2048) with instrument-

limited resolution that ranges from ∼45 to ∼29 cm−1 as we tune the excitation wavelength from

360 to 400 nm. We measure the intensity of the transmitted probe light at 1 kHz, chopping the

actinic pump pulses at 500 Hz and the Raman pump pulses at 250 Hz for active background sub-

traction. Averaging 4×106 laser pulses per spectrum gives a standard deviation of <10−5 in the

Raman gain signal. The baseline subtraction method is described in the Supporting Information

(SI). The sample consists of a 1.2 mM solution of 2-phenylthiophene (TCI America) in cyclohex-

ane (spectroscopic grade, Fisher).

We calculate electronic absorption and Raman spectra using either unrestricted open-shell time-

dependent density functional theory (TD-DFT) with the B3LYP or BHLYP functionals,110,111 or

the equation of motion coupled cluster theory with single and double excitations method (EOM-

CCSD).146–148 B3LYP and BHLYP are global hybrid functionals with 20% and 50% Hartree-Fock

(HF) exchange, respectively, that typically give good agreement with experimental ground-state

Raman spectra.114,149 In all cases, we use the aug-cc-pVDZ basis set113 for a good compromise

between accuracy and computational cost for the CCSD calculations. We calculate off-resonant T1

Raman spectra analytically for DFT and numerically for CCSD.150–153 We simulate the resonance

Raman spectra using both the FC and FCHT approaches (B3LYP only), as well as the gradient

approximation (TD-DFT and EOM-CCSD), as described above.

Due to the difficulty in optimizing the geometry of high-lying states, our resonance Raman

calculations using the FC and FCHT approaches (without and with HT coupling, respectively)31

only include the spectrum for resonance with a single upper state TN having the strongest elec-

tronic transition strength. The contribution from TN is determined following the adiabatic Hessian

model, which includes both Duschinsky rotation and the normal mode frequency changes between
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states.31 Both the FC and FCHT calculations were carried out with an incident energy equal to the

adiabatic transition energy of the resonant state.

For the gradient approximation, we calculated the TN ← T1 transition moments for states up

to N = 20 with either TD-DFT or EOM-CCSD. The gradients of the TN potential energy surfaces

were determined numerically by fitting a second-order polynomial to three points along each of

the T1 normal mode coordinates, including the optimized geometry and ±7.408 x10−4 times the

normalized displacement. The magnitude of the displacement was optimized in previous work

to minimize the errors in calculated Raman activities.52 All calculations were performed using

a development version of the GAUSSIAN software package,78 and all simulated Raman spectra

include 25 cm−1 Gaussian broadening.

6.4 Results and Analysis

6.4.1 Excited-State Absorption Spectroscopy

The evolution of the transient absorption (TA) spectrum of PT is displayed in Figure 6.1. After S1

← S0 excitation at 300 nm, the TA spectrum has a strong excited-state absorption band at 475 nm

and a stimulated emission band at 340 nm. The 475 nm band is attributed to transitions from the S1

state, and narrows within the first∼10 ps due to structural relaxation and vibrational cooling.47,107

The excited molecule undergoes intersystem crossing (ISC) to T1 with a single-exponential time

constant of τISC = 102 ± 5 ps, resulting in the appearance of a series of triplet-triplet absorption

bands that includes a strong transition centered near 360 nm and several weaker transitions at

longer wavelengths.47,52,107

Figure 6.2 compares the experimental absorption spectrum of T1 at a time delay of 408 ps (4

× τISC), with the calculated spectra of the triplet state from EOM-CCSD, TD-B3LYP, and TD-

BHLYP. The figure includes a deconvolution of the experimental triplet absorption spectrum with

a sum of five Lorentzian bands. The deconvolution uses the same adjustable bandwidth for all of

the transitions. The best fit to the data gives a bandwidth of 0.197 ± 0.001 eV, with relatively
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Figure 6.1: Evolution of the transient electronic absorption spectrum of PT following 300 nm
excitation. Green arrows in the top panel indicate Raman excitation wavelengths for FSRS mea-
surements (360-400 nm) at 408 ps delay. The lower panel shows the kinetics at 475 and 360 nm to
illustrate the simultaneous decay of S1 and rise of T1.

small uncertainties in the band positions and amplitudes. Details of the deconvolution are given in

Figure S3 of the SI.

For comparison, the simulated spectra in Figure 6.2 have been shifted to align the strongest

calculated transitions in each case with the maximum of the TA spectrum. The simulated spectra

include Lorentzian broadening with a FWHM of 0.2 eV, consistent with the deconvolution of the

experimental spectrum. The three computational methods give slightly different TN ← T1 excita-

tion energies, but the qualitative structure of all three calculated spectra are in good agreement with

experiment. Each of the calculated spectra has a single, strong transition to T12 or T13, depending

on the method, as well as several weaker transitions. Although TD-B3LYP requires the smallest
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Figure 6.2: Electronic absorption spectra for the T1 state of PT. Calculated spectra are shifted by
0.720 eV (EOM-CCSD), 0.575 eV (TD-BHLYP), and 0.110 eV (TD-B3LYP) to align the strongest
transition with experiment. Simulated spectra use 0.2 eV Lorentzian broadening. Pink lines show
a deconvolution of the experimental spectrum with 5 Lorentzian bands.
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shift to align the strongest transition with experiment, the other methods reproduce the shape better,

particularly EOM-CCSD. The calculations indicate that there are as many as 6 optically accessible

states within ∼0.4 eV of the state with the strongest transition.

6.4.2 Vibrational Assignments for the T1 FSRS Spectrum

The experimental FSRS spectrum for the T1 state of PT is shown in Figure 6.3, along with the

calculated off-resonance Raman spectra using B3LYP, BHLYP, and CCSD. A complete list of

calculated frequencies and Raman activities is included in Table S2 of the SI. The frequencies

of the calculated spectra in Figure 6.3 are multiplied by empirical scaling factors of 0.970,116

0.924,154 and 0.963116 for B3LYP, BHLYP, and CCSD, respectively. The experimental spectrum

was measured with the Raman pump excitation at 365 nm and a delay of 408 ps. The long time

delay and resonance with the triplet absorption band ensure that the resonance enhanced FSRS

spectrum includes contributions from only the T1 state.

Using the calculated frequencies as a foundation, we assign the Raman bands by identifying

the vibrations most likely to have strong resonance enhancement.52 We predict the resonance en-

hancements of the vibrational modes based on two criteria: the mode must be totally symmetric

(a’) to provide a non-zero contribution to the resonance Raman activity,29,72 and the PES of the

resonant electronic state will have a large gradient along the vibrational displacement coordinate

of the T1 normal mode.26,27,73,76 We expect that the TN ← T1 transitions are most likely π-π∗ ex-

citations, and therefore the largest gradients in TN will be along vibrational modes with significant

distortion of the π-conjugated framework of the molecule.52,53

The vibrational assignments based on B3LYP are listed in Table 6.1 and the nuclear displace-

ment vectors for the assigned vibrations are represented in Figure 6.4. The majority of assignments

are straightforward, as there is only one calculated totally symmetric vibration within∼40 cm−1 of

the experimental bands. Two noteworthy exceptions are the bands at 1402 cm−1 and 1444 cm−1,

for which there are three possible assignments: ν38, ν39, and ν40. While the FSRS signals may be

attributed to any combination of these C=C stretching and C–H bending vibrations, our calcula-
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Figure 6.3: Raman spectra for the T1 state of PT. Calculated off-resonance Raman spectra include
25 cm−1 Gaussian broadening and frequency correction factors given in the text. The experi-
mental spectrum was measured with 365 nm Raman excitation and 408 ps delay, with thin black
lines showing a deconvolution of the 1350-1600 cm−1 region using four Gaussian functions. The
cyclohexane solvent spectrum (grey) is included for comparison.

tions of the resonance-enhanced Raman spectra (presented in a later section) predict ν38 and ν40

to have the strongest resonance enhancements, despite their small amplitudes in the off-resonance

spectra. Similarly, the band at 987 cm−1 could be assigned as either ν27 or ν28, but the calculations

are most consistent with the latter. The results for BHLYP and CCSD are similar to B3LYP, and

the assignments for all three methods are listed in Table S3 of the SI.

For a more quantitative comparison, Table 6.1 shows the relative intensities of the assigned

Raman bands in the experimental and calculated (B3LYP) spectra. The ratios for the calculated

intensities are relative to the strongest transition at 1513 cm−1. The relative experimental intensi-

ties are obtained by integrating each Raman band and taking the ratio relative to the strongest band

at 1501 cm−1. To deconvolute the overlapping high-frequency Raman bands in the experimental

FSRS spectrum, we fit the 1350-1600 cm−1 region of the spectrum to a sum of four Gaussian
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Figure 6.4: Vibrational displacement vectors for assigned vibrations of the T1 state of PT (B3LYP).

Table 6.1: Assignment of T1 Raman Transitions

Vibration Symmetry
Calc. Frequencya Calc. Relative Exp. Frequency Exp. Relative

Motion
(cm−1) Raman Intensityb (cm−1) Raman Intensityb

ν11 a’ 544 0.035 562 0.030 C-S-C bend and phenyl dist.
ν14 a’ 622 0.027 652 0.071 C-S-C str. and phenyl dist.
ν22 a’ 877 0.096 891 0.146 C-C-C bend/ring dist.
ν28 a’ 981 0.234 987 0.396 C-C-C bend/phenyl dist.
ν38 a’ 1370 0.005 1402 0.295 c bridging C=C str. and C-H bend
ν39 a’ 1392 0.019 - - bridging C=C str. and C-H bend
ν40 a’ 1427 0.007 1444 0.208 c thienyl C=C str. and C-H bend
ν42 a’ 1513 1.000 1501 1.000 c C=C str. and phenyl dist.
ν43 a’ 1551 0.322 1548 0.339 c C=C str. and ring dist.

a B3LYP, includes frequency scaling factor of 0.970. 116 See Table S3 for assignments using BHLYP and CCSD.
b Ratio of integrated band intensities relative to the band at 1513 cm−1 (calc.) or 1501 cm−1 (exp.). The experimental Raman excitation
wavelength is 365 nm.
c From deconvolution of the 1350-1600 cm−1 region of the FSRS spectrum.

functions. We use a single, adjustable FWHM parameter of 46 cm−1 to match the experimental

line width based on the instrument resolution. The deconvolution, shown in Figure 6.3, reveals at

least four bands, including a band at 1548 cm−1 that appears as a shoulder of the stronger 1501

cm−1 band, and the two bands at 1402 and 1444 cm−1, respectively. See Figure S4 in the SI for a
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more detailed description of the deconvolution.

Comparing the spectra in Figure 6.3 and the relative intensities in Table 6.1, we find good

agreement between experiment and theory for most of the assigned vibrations. The relative inten-

sities of the experimental bands agree with the calculations to within 10%, except for the bands at

1402 and 1444 cm−1, which are significantly stronger in the experiment. The other computational

methods have similar agreement with the experimental FSRS spectrum, and relative intensities that

differ from B3LYP by less than 20% in most cases (Table S3). Therefore, all of the simulated off-

resonance spectra are in good agreement with the experimental FSRS spectrum, other than the 1402

and 1444 cm−1 bands, with B3LYP performing slightly better than the other methods. Good agree-

ment between off-resonance calculations and the resonance-enhanced Raman spectra also has been

reported in the literature for the triplet states of a number of other molecules.38,144,155,156 In con-

trast, our previous studies of the excited singlet (S1) states of PT, DPT, and other aryl-thiophenes

showed significant disagreement in the intensities between the resonance-enhanced FSRS spectra

and the calculated off-resonant S1 Raman spectra.52,53 To the best of our knowledge, the reason for

the much weaker mode dependence of the resonance Raman enhancement for the triplet spectra

compared with singlet spectra has not been addressed.

6.4.3 Wavelength Dependence of the T1 FSRS Spectrum

In order to explore resonance-enhancement effects in the T1 spectrum of PT, we measure the Ra-

man excitation wavelength dependence by tuning the Raman pump from the maximum absorption

at 360 nm to a weaker band in the triplet absorption spectrum at 400 nm in ∼5 nm increments (see

green arrows in Figure 6.1). The FSRS signal is too weak to observe at longer wavelengths. Figure

6.5 shows the FSRS spectrum at each Raman excitation wavelength. To account for differences in

the signal strength due to slight variation of the Raman pump power and beam overlap at the dif-

ferent pump wavelengths, we normalize the transient spectra based on the intensities of the solvent

Raman bands at the different excitation wavelengths (Figure S2 of the SI). We use the integrated

intensities of the four dominant Raman bands of the pure solvent (801, 1028, 1266, and 1444 cm−1
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of cyclohexane) to normalize the spectrum at each excitation wavelength. We also account for the

ωp(ωp−ωk)
3 frequency dependence of the solvent Raman signal (Equation 6.1) by multiplying

each of the normalized spectra with an additional correction factor relative to the value at 400 nm.

Figure 6.5: Excitation wavelength dependence of FSRS spectrum for the T1 state of PT. Vertical
dashed lines indicate assigned vibrations from Table 6.1. Cyclohexane solvent spectrum (grey)
shown for comparison.

The Raman intensities of PT become significantly weaker in Figure 6.5 as the excitation wave-

length moves off resonance with the strongest TN ← T1 transition at 360 nm. Even at longer

wavelengths, all of the bands assigned in Figure 6.3 are resolved, except the 652 and 1548 cm−1

bands, which fall below the noise level. We also observe a change in the relative intensities of

the high-frequency bands. The 1501 cm−1 band, which dominates the spectrum at Raman pump

wavelengths ≤ 375 nm, becomes weaker in intensity than the 1402 and 1444 cm−1 bands at 400

nm excitation.

Figure 6.6 compares the Raman excitation profiles for each of the assigned vibrational bands

with the profile of the triplet absorption spectrum. The intensities of the 1402, 1444, 1501, and

1548 cm−1 bands are obtained through the same deconvolution procedure at each wavelength as
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Figure 6.6: Raman excitation profiles for the assigned FSRS bands. The top panel compares
integrated intensities of Raman bands with the profile of the triplet absorption spectrum. The
lower panel shows the same excitation profiles divided by the square of the triplet absorption (∆A)2

at each Raman excitation wavelength to compensate for the strong electronic contribution to the
resonance enhancement. The T1 absorption spectrum (thick black) and Lorentzian deconvolution
(grey) from Figure 6.2 are included for comparison.
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described above for the FSRS spectrum at 365 nm. The deconvolution at each wavelength is shown

in Figure S5 of the SI. The relative behaviors of the mode-specific excitation profiles at longer

wavelengths are difficult to distinguish in Figure 6.6(a) due to the strong resonance enhancement,

therefore we scale the excitation profiles by dividing the Raman gain at each excitation wavelength

by the square of the triplet absorption signal (∆A)2 at that wavelength in Figure 6.6(b). The result

is similar to dividing the Raman gain by a factor |µNI|4 in order to eliminate the mode-independent

electronic contribution to the resonance enhancement (see below). Although the (∆A)2 term is

phenomenological, dividing by this value allows for a better comparison of the relative wavelength

dependence of the Raman gain profiles for the individual Raman bands by compensating for the

strong electronic resonance enhancement of the experimental FSRS signal.

Figure 6.6(b) shows that the excitation profile of the 1548 cm−1 band closely follows the shape

of the deconvoluted absorption band at 360 nm, and the profile of the 1444 cm−1 band has a

maximum near 385 nm that roughly matches the center wavelength of a second transition in the

deconvolution of the TA spectrum. The 987, 1402, and 1501 cm−1 bands have excitation profiles

that follow both electronic transitions, initially dropping in intensity from 360 to 370 nm, increas-

ing at 380-385 nm, then decreasing again at longer wavelengths. In contrast, the 562, 652, and 891

cm−1 bands have comparatively little variation in normalized intensity with the Raman excitation

wavelength. In order to explore the resonant TN ← T1 transitions that contribute to these mode-

specific enhancement trends, we simulate the resonance-enhanced excited-state Raman spectrum

in the next section.

6.4.4 Simulated Resonance Raman Spectra

First, we simulate the resonance Raman spectrum of the triplet state of PT with the FC and FCHT

methods using TD-B3LYP. The calculated spectra are shown in Figure 6.7 for a single electronic

state at a frequency resonant with the adiabatic transition energy. It is immediately apparent that

the calculations do not accurately reproduce the experimental spectrum, regardless of the inclusion

of vibronic coupling. Both the FC and FCHT results are dominated by several strong bands below
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Figure 6.7: Comparison of simulated resonance Raman spectra from FC and FCHT approaches
with calculated off-resonance and experimental FSRS spectra. FC/FCHT spectra are calculated
for resonance with state T12 at the adiabatic transition energy (26470 cm−1). All simulated spectra
are from B3LYP and include 0.970 frequency scaling factor and 25 cm−1 Gaussian broadening.
Asterisk denotes an artifact from the CaF2 sample window.
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1000 cm−1, which contrasts with the experimental FSRS spectrum in the bottom panel of the

figure.

Next, we simulate the resonance Raman spectrum using the gradient approximation71,72,76

with TD-BHLYP, TD-B3LYP, and EOM-CCSD, as shown in Figure 6.8. The calculated Raman

intensities have a strong dependence on the electronic absorption strength that makes it difficult to

distinguish qualitative features for the weaker TN ← T1 transitions. Thus, the simulated resonance

Raman spectra in Figure 6.8 are divided by the square of the electronic oscillator strength, f 2,

which is proportional to |µNI|4 for each transition. This scaling is similar in approach to the

phenomenological scaling of the experimental Raman gain profiles in Figure 6.6(b), and reveals

the gradients of each excited state TN along the totally-symmetric (a1) normal modes of T1. The

figure only shows simulated spectra for the two states with the strongest electronic transitions

at each level of theory. Gradient calculations for additional electronic states TN are shown in

Figure S6 of the SI. Due to computational cost, we restrict the EOM-CCSD gradient calculations

to include only the vibrations within a limited range of frequencies near the assigned experimental

bands.

The simulated resonance Raman spectra from the gradient method have several features that

are in good agreement with experiment. For example, many of the vibrations that have intensity

in the simulated spectra match the assigned vibrations in Figure 6.3, including the 1501 and 1548

cm−1 bands. Notably, the Raman spectra for resonance with the strongest (T12 or T13) and second

strongest (T9 or T10) electronic transitions at each level of theory predict significant intensity in

ν38 and ν40, respectively. The resonance enhancement of ν38 and ν40 is consistent with the rela-

tively strong experimental FSRS bands at 1402 cm−1 and 1444 cm−1. Furthermore, the stronger

enhancement of ν40 for resonance with T9/T10 compared with T12/T13 matches the experimental

excitation profile for the 1444 cm−1 band in Figure 6.6. We also point out that the Raman inten-

sities of the low-frequency vibrations using the gradient method are much more reasonable than

those from the FC/FCHT methods in Figure 6.7.

However, there are also some important discrepancies using the gradient approach that require
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Figure 6.8: Comparison of simulated resonance Raman spectra from the gradient approximation
with calculated off-resonance and experimental FSRS spectra. Simulated spectra are shown for
resonance with the two strongest electronic transitions only, and include frequency scaling and 25
cm−1 Gaussian broadening. Asterisk denotes an artifact from the CaF2 sample window.

closer investigation, such as the relative intensities of the 1501 and 1548 cm−1 Raman bands. The

gradient calculations consistently predict stronger enhancement of the 1548 cm−1 band, in contrast

with the dominant 1501 cm−1 band in both the experimental FSRS and calculated off-resonance

spectra. To highlight this point, Figure 6.9 compares the high-frequency region of the experi-

mental and simulated resonance Raman spectra. The figure shows the FSRS spectrum measured

at 360 nm, and includes only the calculated resonance Raman spectrum for the electronic state

with the strongest transition strength (T12 or T13) in each computational method. The simulations

also predict the wrong relative intensities of these high-frequency modes for resonance with the

second strongest transition (T9 or T10, depending on the level of theory). The enhancement of

the higher-frequency mode for both electronic states contrasts the experimental excitation profile,

which decreases sharply with increasing wavelength for the 1548 cm−1 band. Similarly, the sim-

ulated resonance Raman spectra for T9/T10 have much lower intensity in the 987, 1402, and 1501

cm−1 bands compared with T12/T13, which does not match the recurrence of the experimental

excitation profiles around 380-385 nm.
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Figure 6.9: High-frequency region of the simulated resonance Raman spectra for the strongest
TN ← T1 transitions. Assigned vibrations are indicated by vertical dotted lines. Simulated Raman
spectra are normalized, and include 25 cm−1 Gaussian broadening. Experimental FSRS spectrum
at 360 nm Raman pump is shown for comparison, including deconvolution with 4 Gaussian bands.
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6.5 Discussion

The simulated Raman spectra using resonance and off-resonance methods agree with different

aspects of the experimental FSRS spectrum of the T1 state of PT, but neither approach fully repro-

duces the experimental results. Off-resonance calculations generally are in good agreement with

the experimental spectrum, with a few notable exceptions where the calculations underestimate

the intensities of the experimental bands. Simulated resonance Raman spectra using the FC/FCHT

methods and the gradient approximation introduce the effects of electronic resonance, but do not

provide a better overall agreement with the experimental spectrum than the off-resonance calcula-

tions. The failure of the FC/FCHT methods in reproducing the experiment is likely a consequence

of using the harmonic approximation to extrapolate the PES of the higher-lying triplet state from

its minimum to the Franck-Condon geometry. On the other hand, simulated resonance Raman

spectra using the gradient approximation correctly predict strong enhancements for several of the

high-frequency vibrations (>1200 cm−1), and explain the strong 1402 and 1444 cm−1 bands that

are absent from the off-resonant spectra. However, the gradient approach does not accurately pre-

dict the relative intensities for many of the bands in the FSRS spectrum, for example the bands at

1501 and 1548 cm−1, or give the correct excitation profiles for many of the assigned vibrations.

In the limit of energetically well-separated electronic transitions, resonance Raman spectra are

dominated by contributions from a single electronic state, as observed in our previous work on

the resonance Raman spectrum for the S1 state of DPT.53 The experimental FSRS spectrum of

DPT has strongly mode-dependent resonance enhancements, and excitation profiles that follow

the amplitude of the excited-state absorption spectrum. However, considering that the approach

of calculating resonance enhancements for individual excited states is not sufficient to reproduce

the observed spectra for the T1 state of PT, we speculate that in this case it is necessary to con-

sider the combined effect of multiple states simultaneously. This hypothesis is consistent with the

deconvolution of the experimental TA spectrum in Figure 6.2, which shows multiple overlapping

electronic transitions. The simultaneous signal enhancement from multiple states can be described

in terms of additive and non-additive effects. The gradient approximation should be able to cap-
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ture the former by summing the properly weighted contributions from each adiabatic state TN , but

not the latter without including non-adiabatic (i.e. HT) coupling. In principle, the FCHT method

should be able to partially capture both effects, but the reliance on the harmonic approximation

severely limits the applicability of that approach in this case, because the harmonic potentials do

not accurately represent the interacting electronic states far from their equilibrium geometries.

The role of multiple electronic states in the T1 spectrum of PT is supported by the mode-specific

experimental excitation profiles in Figure 6.6(b). The Raman bands with vibrational frequencies

above ∼900 cm−1 have the greatest intensity for either ∼360 or ∼380 nm excitation, suggesting

resonance enhancement from at least two separate electronic transitions. The lower intensities

for these vibrations near ∼370-375 nm may indicate a possible resonance de-enhancement due to

non-adiabatic coupling between electronic states. As detailed in the literature,140,157,158 resonance

de-enhancement is a result of population transfer between coupled electronic states, and would

manifest as a decrease in the Raman excitation profile near the energy of the non-adiabatic curve

crossing. Non-adiabatic effects are likely for the triplet states of PT, given the close proximity of

several electronic transitions in both the calculated and experimental absorption spectra. However,

our simulations do not account for these non-additive de-enhancement effects.

Notably, the resonance Raman calculations using the gradient approximation correctly predict

the strong resonance enhancement of the 1402 and 1444 cm−1 bands based on specific electronic

resonances (T12/T13 and T9/T10, respectively). Although these modes are very weak in the off-

resonance calculation, the gradient calculations indicate strong enhancement of the two vibrations

in resonance with the two different electronic states. The character of the vibrations may explain

both the different intensities in the off-resonant and resonant spectra, as well as the different elec-

tronic states responsible for enhancement of the two modes. The displacements in Figure 6.4 show

that modes ν38 and ν40 have more in-plane C–H bending than C=C stretching character. The C–H

bending motion is not expected to significantly change the polarizability of the conjugated system,

which would explain the relatively weak off-resonance intensity for these vibrations (cf. Equation

6.4). In contrast, the calculated gradients along the normal mode coordinates for ν38 in T12/T13
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and for ν40 in T9/T10 are larger than the gradients of most other vibrations, which explains the rel-

atively large resonance Raman intensity of the experimental bands (Equation 6.11). The different

gradients for the two modes in the two electronic states may reflect the relative degree of delocal-

ization of the C=C stretching excitation. Both vibrations have similar C–H bending character, but

the C=C stretching is more localized on the thienyl ring for ν40.

In contrast with the excitation profiles of the higher-frequency vibrations, the bands at 562,

652, and 891 cm−1 are relatively insensitive to the Raman excitation wavelength. The weak mode-

specific enhancements of these FSRS bands may be a result of non-additive homogeneous broad-

ening effects and the overlapping contributions from several electronic transitions. Homogeneous

broadening is likely to play a more significant role for low-frequency vibrations, where the vibra-

tional period is comparable to the dephasing time.159–161 Homogeneous broadening is related to

the phenomenological damping term iΓn in the denominator of Equation 6.2, which represents the

dephasing of each vibronic state |n〉. Typical homogeneous broadening for vibronic transitions

of a molecule in the condensed phase is of the order 101-102 cm−1.29,76,161 Thus, the denomina-

tor ωni−ωp− iΓn for each term in the sum-over- states expression of the transition polarizability

(Equation 6.2) is of the order 104 cm−1 for off-resonance transitions (ωni ≈ 104, ωp = 0), or

101-102 cm−1 for resonance terms (ωni−ωp ≈ 0) where the denominator is determined by the

magnitude of Γn. As a result, the contributions to the transition polarizability for resonant elec-

tronic transitions are generally ∼102-103 times larger than off-resonant transitions, which gives an

enhancement of ∼104-106 in the intensity (Equation 6.1).

The FWHM broadening in the triplet spectrum of PT is 0.197 eV (or ∼1590 cm−1). This

is more than twice that of the relatively well isolated SN ← S1 absorption band of DPT (∼0.09

eV).53 Thus, the deconvolution of the experimental TA spectrum of PT provides an upper limit for

the magnitude of homogeneous broadening of ∼103 cm−1. The additional broadening compared

with a more typical value of Γn ∼101-102 cm−1 reduces the maximum amplitude of the resonance

enhancement for any individual electronic transition by 1-2 orders of magnitude, and also spreads

out the resonance across a wider range of excitation wavelengths. At the same time, the broadening
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of nearby transitions leads to contributions from those states as well. For example, the B3LYP

calculations predict transitions to T11 and T14 that are 0.24 eV below and 0.17 eV above the

strongest transition to T12, respectively. These differences in energy are comparable to the upper

limit of Γn from the deconvolution of the experimental spectrum. Therefore, all three of these

states could contribute to the Raman spectrum simultaneously.

Vibronic coupling may also play a role in determining the relative intensities in the resonance

Raman spectrum of the T1 state of PT. The off-resonance Raman spectra calculated with Equa-

tion 6.3 already include contributions from B-term scattering, because the polarizability derivative

implicitly contains some vibronic coupling terms through the dipole derivative with respect to vi-

brational displacements, as described by Long.29 Thus, the consistently good agreement between

the off-resonance Raman spectra and the experiment could be an indication that vibronic coupling

is involved. As mentioned above, the FC and FCHT calculations are not helpful in evaluating this

effect due to shortcomings of the harmonic approximation, whereas the gradient approach neglects

any explicit vibronic coupling contributions. Although beyond the scope of this work, it would be

desirable to extend the gradient approximation to include such non-additive, higher-order effects.

6.6 Conclusions

We report the excitation wavelength dependence of the FSRS spectrum for the T1 state of PT, and

compare the trends we observe to simulated on- and off-resonance Raman spectra using several

theoretical approaches. The experimental results provide a rigorous benchmark for the accuracy

of the computational techniques, whereas the computational results highlight the difficulties of in-

terpreting FSRS spectra involving more than one resonant or nearly resonant electronic transition.

These results also point to important limitations of the FC and FCHT approaches for the calculation

of resonance Raman spectra in the presence of broad, overlapping transitions. The more densely

packed manifold of the high-lying electronic states makes it difficult to extrapolate the PES from

the excited-state minimum to the Franck-Condon geometry using the harmonic approximation.

The mode-specific excitation profiles in the experimental FSRS spectrum may be explained by
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homogeneous broadening of the TN ← T1 transitions. A Lorentzian deconvolution of the triplet

absorption spectrum indicates several overlapping transitions, each with significant homogeneous

broadening. Estimates of an upper limit to the Γn values, based on the experimental TA spectrum,

show that these values are roughly an order of magnitude larger than what is typically observed in

resonance Raman measurements. The reasonably large Γn values increase the relative importance

of the mode-specific resonance enhancement contributions from nearby transitions, which may

explain the broad excitation profiles observed for the Raman bands. The significant homogeneous

broadening is possibly a result of increased vibronic coupling between the electronic states of the

triplet manifold. Thus, the good agreement between the off-resonance Raman calculations and the

experimental spectrum may indicate that the contributions from multiple transitions and vibronic

coupling effects have an influence on the FSRS spectrum that is comparable to or even larger than

the electronic resonance condition. In summary, this work highlights the necessity of considering

multiple contributions when extracting information about resonant electronic states in FSRS and

helps explain the good agreement of off-resonant calculations with the resonance-enhanced FSRS

spectra of the triplet states of PT.
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Chapter 7

A Benchmark Study of Ground State Raman Spectra in

Conjugated Molecules

(This work was published as Ref. #55. Supporting information is available online.)

7.1 Introduction

Raman spectroscopy is an indispensable tool in the identification and structural characterization of

molecules, especially aromatic compounds where electron conjugation effects increase the polariz-

ability of the molecule and give relatively strong Raman scattering cross-sections.9–12 Conjugated

organic polymers and oligomers are particularly good targets for Raman studies due to increased

polarizability and sensitivity of the Raman bands to the structure of the conjugated molecular

backbone.28 Electronic conjugation along the molecular backbone of a polymer or oligomer is

responsible for efficient charge mobility that makes these compounds valuable components for

photovoltaic materials and other applications.38,40,162,163 Some of the more common conjugated

polymers include phenyl and thienyl derivatives, for which the charge-transport properties are sen-

sitive to the orientation between the aromatic rings and their substituents.31,40,47–49,107,162,164–166

Raman spectroscopy provides valuable information about the structure and the dynamics of these

conjugated systems, but requires accurate assignments of the observed vibrational bands.

Computational studies are particularly useful in predicting the Raman spectra and assigning

bands to specific vibrational motions.52 Thus, it is important to know which methods provide the

best balance between computational cost and accuracy for the calculation of Raman intensities and

vibrational frequencies. Several benchmarking studies have been performed to evaluate the accu-
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racy of Raman intensity calculations using density functional theory (DFT) and other electronic

structure methods. However, these studies either examined the density functional dependence

across a series of small molecules (e.g. H2O, NH3, C2H6, etc.),15,16 or for a single medium-size

molecule (e.g., adenine or 4-aminobenzonitrile),13,14,17,20 or they compared a series of medium-

size molecules using a single density functional.33,167 The studies on small molecules showed that

the accuracy of Raman intensities calculated with hybrid density functionals is not significantly

different from the results at higher levels of theory.15,16 Other benchmark studies that examine the

basis set dependence in conjugated systems (e.g., benzene and α-pinene) concluded that polariza-

tion functions and especially diffuse functions are necessary to reproduce accurate Raman inten-

sities, but that the results obtained with DFT show little variation between double- and triple-zeta

basis sets.18,19 These findings are generally supported by similar studies of basis set and functional

dependence that include at least one medium-size molecule (e.g., thymine), and typically give the

best agreement with experiment using B3LYP and a medium basis set, such as 6-311++G** or

aug-cc-pVTZ.13,14,20,21 Additionally, a benchmark investigation of range-separated functionals on

several small molecules and adenine showed that, while B3LYP gives the most accurate vibra-

tional frequencies, the best performance for Raman intensities is obtained with M06-L, M06-HF,

and LC-ωPBE.17

However, to the best of our knowledge, a systematic examination of the accuracy of Raman

spectra calculated using multiple density functionals benchmarked against experiment has not

been performed for phenyl and thienyl oligomers. These systems are the building blocks of

the most common conducting polymers,40,162,168 and determining the best level of theory for

accurate simulations of their Raman spectra is therefore of great importance. We previously

compared experimental ground-state Raman spectra with spectra calculated using B3LYP/aug-cc-

pVDZ for a series of aryl-substituted thiophene derivatives.52,53 The calculated Raman intensities

are generally in good agreement with experiment, as expected for this level of theory.13,14,18–21

However, we observed a discrepancy in the relative Raman intensities for three of the phenyl-

containing molecules in our set: 2-phenylthiophene (PT), 2-methyl-5-phenylthiophene (MPT),
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and 2,5-diphenylthiophene (DPT). We find that the calculated intensities of the lower-frequency

bands in the range 200-1000 cm−1 are weaker than the higher-frequency bands (1400-1600 cm−1)

compared with the experimental spectra. Similar discrepancies in the relative Raman intensi-

ties of high- and low-frequency modes calculated with DFT are observed in the literature, and

are most evident in the Raman spectra of substituted benzene derivatives such as toluene,169 4-

aminobenzonitrile,13 and thioanisole.33 To our knowledge, this discrepancy between the high- and

low-frequency vibrations of substituted benzenes has not been addressed. Thus, a major goal of

this study is to determine whether a more accurate description of the electron conjugation effects

can resolve this issue.

In this chapter, we study seven substituted benzene and thiophene compounds, including ben-

zene (Bz), toluene (Tol), 2,2’-bithiophene (BT), biphenyl (BP), 2-phenylthiophene (PT), 2-methyl-

5-phenylthiophene (MPT), and 2,5-diphenylthiophene (DPT). We examine the density functional

dependence of the Raman spectra using a set of seven functionals at various levels of the “Jacob’s

Ladder” hierarchy of chemical accuracy,170 along with second-order Møller-Plesset perturbation

theory (MP2), and compare the calculations with experiment. The chapter is organized as follows.

We first introduce the computational methods and experimental details in Section 2. In Section

3.1, we compare the experimental and calculated Raman spectra for each molecule. We then ana-

lyze the performance of each functional in Section 3.2, comparing the accuracy of the calculated

frequencies and the relative intensities across our test set. Finally, we discuss our results and sum-

marize our main conclusions in Section 4.

7.2 Computational and Experimental Methods

We calculate ground-state Raman spectra using a set of density functionals with increasing com-

plexity in the physical description of the electron exchange-correlation.170 The range of func-

tionals extends from the generalized gradient approximation (GGA) to include meta-GGA (M-

GGA), hybrid-GGA (H-GGA), hybrid-meta-GGA (HM-GGA), hybrid-GGA with separation of

short- and long-range exchange contribution, and double-hybrid-GGA (DH-GGA).110,111,171–177
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We also compare the DFT results with MP2.178–181 The methods are listed in Table 7.1 in ascend-

ing order of complexity, along with the percentage of Hartree-Fock (HF) exchange for the hybrid

functionals, the basis sets used, and the empirical vibrational frequency scaling factors.116,182,183

Table 7.1: Methods used to calculate Raman intensities.

Method Type % HFa Basis Set Freq. Scaling
PBE171 GGA aug-cc-pVTZ 0.993183

M06-L172 M-GGA aug-cc-pVTZ 0.965183

B3LYP110,111 H-GGA 20 aug-cc-pVTZ 0.968116

TPSSh173,174 HM-GGA 10 aug-cc-pVTZ 0.968183

M06-HF175 HM-GGA 100 aug-cc-pVTZ 0.932183

CAM-B3LYP176 H-GGA 19b, 65c aug-cc-pVTZ 0.954183

B2PLYP177 DH-GGA 53, 27d aug-cc-pVDZ 0.963182

MP2178–181 WFe aug-cc-pVDZ 0.959116

a Percentage of Hartree-Fock exchange contribution.
b Short-range.
c Long-range.
d Percentage of perturbative correlation contribution.
e Wave function-based method.

The optimized geometries, vibrational frequencies, and Raman intensities for each molecule

were calculated using all of the functionals and MP2. For BT, we optimized both the cis and

trans conformers, and report the calculated Raman spectrum as a Boltzmann-weighted average of

the two structures. All other molecules have a single minimum-energy structure. We used the

aug-cc-pVTZ basis set184 with most functionals to provide the diffuse and polarization functions

necessary to accurately calculate Raman intensities,19 but we used aug-cc-pVDZ113 with B2PLYP

and MP2 due to computational cost. The frequencies of the calculated spectra were multiplied

by the uniform scaling factors shown in Table 7.1. These commonly used scaling factors were ob-

tained empirically by comparison with the experimental frequencies for sets of diatomic, triatomic,

and other small organic molecules.116,182,183 The calculated Raman intensities, In, were obtained

as:29,30

In = Sn
(ν̃p− ν̃n)

4

ν̃n

[
1− exp

(
−hcν̃n

kBT

)]
(7.1)

where Sn is the calculated static Raman activity (in Å4/amu), ν̃p is the Raman excitation frequency
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(12,739 cm−1 or 785 nm), ν̃n is the calculated vibrational frequency for the nth band (in cm−1), h

is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant, and T is the temperature

(300 K). The simulated Raman intensities include 15 cm−1 Gaussian broadening. All calculations

were performed using a development version of the GAUSSIAN software package.78

All compounds were obtained commercially and used without further purification. We pre-

pared samples of liquid benzene, liquid toluene, and solutions of BP (0.6 M in cyclohexane), BT

(0.3 M in DMSO), PT (0.2 M in cyclohexane), MPT (0.2 M in cyclohexane), and DPT (15 mM in

cyclohexane) in a 2 cm diameter glass vial. We measured the ground-state Raman spectra using

a commercial spectrometer (StellarNet) with 785 nm cw pump laser and 4 cm−1 resolution. Pure

liquid samples were irradiated from above in order to avoid contributions to the Raman signal from

the glass walls of the vessel. The other samples were irradiated from the side, in which case we

subtracted the solvent-only spectra to remove contributions from the solvent and the glass walls.

We tested the effect of solvation on the spectra by comparing the gas and condensed phase

vibrational frequencies for three molecules for which gas-phase infrared (IR) data is available in the

literature: Bz,185,186 Tol,187 and BP188, and the Raman fractional intensities for the two molecules

for which gas-phase Raman spectra are available: Bz,185,186 and BP.188 The experimental gas and

condensed-phase Raman stick spectra for Bz and BP are reported in Figures S1-S2, the vibrational

frequencies are reported in Tables S1-S3, the Raman fractional intensities in Tables S4-S5, and the

statistical analysis in Tables S6-S7 in the Supporting Information (SI). These data show that the

experimental Raman spectra in gas and condensed phase are indeed very similar. The changes in

frequencies are at most 12-16 cm−1, which is much smaller than the shift in frequencies due to

the scaling factors for the calculations. The differences in fractional intensities are also relatively

small. The statistical analysis of the errors shows that for benzene (Table S6) some methods agree

better with the gas phase data than with the condensed phase data (while other methods do not),

which is not too surprising given that benzene is a relatively simple molecule. On the other hand,

the errors for BP (Table S7) are essentially identical when using the experimental gas or condensed

phase data as reference. We also computed the Raman spectra in solution for PT and DPT using the
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polarizable continuum model of solvation (PCM):189 the intensities increased by∼80% in solution

compared to gas phase, but the relative intensities were essentially unchanged. Therefore, since

the solvation effect is overall significantly smaller than the intrinsic errors of each computational

method, and the continuum models are not able to reproduce this effect anyway, we only performed

gas phase calculations to reduce computational cost.

7.3 Results and Analysis

7.3.1 Simulated and Experimental Raman Spectra

Figure 7.1: Calculated and experimental Raman spectra for Bz. Each spectrum is normalized to
the largest band in the observed region.
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Figure 7.2: Calculated and experimental Raman spectra for Tol. Each spectrum is normalized to
the largest band in the observed region.

We begin our comparison of the experimental and calculated data from a qualitative analysis

of the actual Raman spectra, reported in Figures 7.1-7.7 for all systems. In each plot, the spectra

are normalized to the strongest transition. For the first three compounds, benzene, toluene, and

BP, the most intense band in each experimental spectrum is near 1000 cm−1, corresponding to a

phenyl distortion mode, where three alternating C atoms on the ring simultaneously bend inward

(mode 12 in Wilson’s notation), see Figures 7.1-7.3. While this feature is reproduced correctly by

all theoretical methods for benzene, there is not as good agreement for the other two molecules.

For toluene, some methods reproduce the qualitative relative intensities of the measured spectrum

(e.g., B3LYP), while others predict that the most intense band is at 800 cm−1 (e.g., M06-HF),
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Figure 7.3: Calculated and experimental Raman spectra for BP. Each spectrum is normalized to
the largest band in the observed region.

which corresponds to a phenyl-bending and ring-substituent C-C stretching vibrational mode (19a

in Wilson’s notation). For BP, the calculated spectra are similar across all methods, and they

consistently give the wrong relative intensities of the three most intense Raman bands at 999,

1281, and 1608 cm−1 compared with experiment. A few additional discrepancies are due to the

effect of solvation in the experiments. For instance, in benzene, the signal at ∼1600 cm−1 is

due to a doubly-degenerate vibrational mode in the gas-phase calculations and experiments (i.e.,

the 9a and 9b ethylenic stretching motions, in Wilson’s notation190,191). In the solution-phase

experiment, these vibrations split into two partially overlapping bands at 1582 and 1605 cm−1,

as determined from a Gaussian deconvolution of the spectrum in Figure S3 of the SI. Similarly,
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for BP there are also two overlapping bands at ∼1600 cm−1 in the condensed-phase experiment,

while the gas phase calculations and experiment only have one. The four normal modes of BP (D2

point-group symmetry) with frequencies between 1600 and 1700 cm−1 are the symmetric and anti-

symmetric combinations of the 9a and 9b local modes. The intense ∼1600 cm−1 band calculated

with each method only has contributions from the symmetric combination of the 9a local modes

(where the normal mode has a symmetry). The calculations give negligible Raman activity in the

anti-symmetric combination of 9a (b3 symmetry), the symmetric combination of 9b (a), and the

anti-symmetric combination of 9b (b2). Therefore, we treat the two experimental bands at ∼1600

cm−1 for Bz and BP as a single one for the comparison with the simulations, see Figure S3 of the

SI for the deconvolution details. Despite these differences, the calculated spectra are generally in

good agreement with experiment for all levels of theory, and do not differ significantly between

methods.

In the thiophene derivatives, the most intense experimental bands are in the ethylenic stretch-

ing region (1400-1600 cm−1), see Figures 7.4-7.7. Note that the Raman spectrum of BT has a

smaller signal-to-noise ratio due to a weaker Raman scattering cross-section compared to the other

thiophene compounds. Additionally, to account for the two conformers of BT that are thermally

accessible at room temperature, the calculated Raman spectra in Figure 7.4 are averaged based on

the Boltzmann weighting of the two structures determined with each method. All computational

methods reproduce the experimental observation that the high-frequency bands are the most intense

in this subset of molecules. However, the relative intensities of these bands are often incorrectly

predicted; a few significant examples include the MP2 spectrum for PT in Figure 7.5 and DPT in

Figure 7.7, and the CAM-B3LYP spectrum for MPT in Figure 7.6. A quick visual inspection of the

figures reveals that the relative intensity of the 1000 cm−1 band is also consistently underestimated

by the calculations with respect to the intensities of the high-frequency bands for all four com-

pounds. In fact, the same trend holds that the calculated intensities of most low-frequency bands

are underestimated compared to the high-frequency bands, as we discuss more quantitatively in the

next section. Nevertheless, the simulations provide a reasonable description of the experimental
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Figure 7.4: Calculated and experimental Raman spectra for BT. The calculated spectra are aver-
aged based on the Boltzmann population factors for the two rotational conformers of BT, and each
spectrum is normalized to the largest band in the observed region.

spectra with all methods.

7.3.2 Analysis of the Errors in the Simulated Raman Spectra

We assess the performance of each computational method based on the accuracy of the vibrational

frequencies and relative intensities of the calculated Raman bands compared with the experiment.

We focus on the strongest bands in each experimental spectrum, which are identified in Table 7.2.

A full comparison with the calculated Raman bands at each level of theory is included in Tables

S8-S14 in the SI. In the case of overlapping transitions that coalesce into a single band in the
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Figure 7.5: Calculated and experimental Raman spectra for PT. Each spectrum is normalized to
the largest band in the observed region.

simulated spectra, we report the frequency of the band maximum and the sum of the fractional

intensities for the contributing modes. The fractional intensities in the calculated and experimental

spectra are defined as:

Īn =
In

Itotal
(7.2)

where In is the integrated intensity of the nth Raman band, see Eq. 8.1, and Itotal = ∑
n

In is the

integrated intensity of all the Raman bands of a molecule in the region of interest (200-1800 cm−1).

In each compound, we consider only the contributions from experimental Raman bands that are

clearly above the signal-to-noise ratio, see Tables 7.2 and S8-S14. In all cases, the experimental

Itotal includes 83-98% of the total Raman intensity obtained by integrating over the entire 200-
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Figure 7.6: Calculated and experimental Raman spectra for MPT. Each spectrum is normalized to
the largest band in the observed region.

1800 cm−1 region for a given molecule (see Table S15 for details specific to each compound).

In cases where there is clearly more than one contribution to an experimental Raman band, we

use a Gaussian deconvolution to obtain the individual vibrational bands (Figure S3 of the SI).

The experimental bands are then matched with the Raman bands in the simulated spectra, and we

obtain the calculated band intensities by summing over all the calculated vibrational transitions

that overlap within a simulated band.

Figure 7.8 (a) displays the cumulative errors of the calculated frequencies compared with the

experimental frequencies for all of the Raman bands identified in our test set. Each of the eight bars

in panel (a) of the figure is obtained by stacking the signed errors for that method normalized by the
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Figure 7.7: Calculated and experimental Raman spectra for DPT. Each spectrum is normalized to
the largest band in the observed region.

total number of modes across all molecules (N f req): (ν̃calc
n − ν̃

exp
n )/N f req. Thus, the length of each

bar is equal to the mean unsigned error (MUE) of the Raman band positions for a given method.

Panel (b) in the figure reports the mean signed errors (MSE), and the standard deviations (σMSE).

The results in Figure 7.8 are summarized in Table 7.3 for each method, including the maximum

unsigned error (Max). The errors are evaluated with the empirically scaled frequency values (using

the standard vibrational frequency correction factors from Table 7.1). Results for the unscaled

frequencies are included in Figure S4 of the SI. Based on the errors in scaled frequencies, M06-

L performs best in both accuracy and precision. B3LYP and CAM-B3LYP provide the next best

agreement with experiment, but the smaller spread of the errors (σMSE) in B3LYP indicates slightly
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Table 7.2: Experimental Raman band positions (ν̃n) and fractional intensities (Īn).

Bz Tol BP BT PT MPT DPT
ν̃n Īn ν̃n Īn ν̃n Īn ν̃n Īn ν̃n Īn ν̃n Īn ν̃n Īn

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

603 0.082 217 0.166 264 0.040 706 0.092 264 0.038 399 0.025 237 0.020
845 0.015 516 0.093 309 0.049 1019 0.109 314 0.023 667 0.011 612 0.011
987 0.737 618 0.051 405 0.032 1219 0.099 612 0.032 689 0.048 700 0.034

1172 0.094 781 0.205 610 0.026 1410 0.103 689 0.062 740 0.023 993 0.115
1582 0.039 1000 0.218 738 0.058 1441 0.413 1000 0.117 997 0.115 1028 0.025
1605 0.032 1024 0.093 834 0.014 1549 0.185 1079 0.032 1028 0.031 1069 0.065

1151 0.020 961 0.011 1254 0.042 1260 0.056 1186 0.017
1175 0.023 999 0.229 1352 0.044 1331 0.032 1283 0.043
1206 0.065 1027 0.054 1429 0.347 1445 0.053 1336 0.059
1374 0.022 1151 0.012 1530 0.082 1469 0.206 1440 0.148
1582 0.015 1175 0.011 1600 0.180 1501 0.191 1454 0.194
1601 0.029 1281 0.218 1549 0.022 1502 0.118

1500 0.014 1599 0.189 1593 0.150
1593 0.233

Table 7.3: Statistical error analysis of the calculated Raman frequencies (cm−1).

Method MSE σMSE MUE Max
PBE -7.8 8.1 9.3 43.0

M06-L -3.4 8.1 5.8 45.0
B3LYP -5.8 10.1 8.8 44.9
TPSSh -9.3 9.1 11.2 45.8

M06-HF -32.4 17.3 32.6 101.3
CAM-B3LYP -3.8 11.5 9.0 43.8

B2PLYP -15.6 10.2 16.3 70.4
MP2 -28.1 11.9 28.4 55.5
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Figure 7.8: Cumulative signed errors normalized by the total number of modes (a) of the calculated
Raman frequencies for each method, after empirical scaling. Contributions are color-coded based
on vibrational frequency. Mean signed errors (MSE) are shown in panel (b), along with standard
deviations (σMSE) as error bars.
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better performance than CAM-B3LYP. The largest errors and standard deviation are observed with

M06-HF, MP2, and B2PLYP, and are most evident in Figures 7.2, 7.4, and 7.7 for Tol, BT, and

DPT, respectively. These three methods systematically underestimate the Raman shifts by 10-40

cm−1.

Overall, the calculated spectra are in reasonably good agreement with experiment, as the aver-

age unsigned error in band position is <40 cm−1 for each method, and many of the qualitative as-

pects of the band positions are reproduced even at the lowest level of theory. However, we observe

a systematic discrepancy in the relative Raman intensities across each spectrum. The differences

are more apparent in Tol, BP, and BT, although there is a considerable disagreement for the∼1000

cm−1 band in each of the phenyl-thiophene derivatives (PT, MPT, and DPT). The calculated Raman

spectra for all six of these molecules generally have relative intensities of high-frequency bands

(>1200 cm−1) that are larger than those of low-frequency bands, compared to experiment. It is not

immediately clear whether the calculations overestimate the intensities of higher frequency bands,

underestimate intensities of lower frequency bands, or both.

We examine the accuracy of each method in terms of the fractional intensities Īn, see Eq. 7.2.

Figure 7.9 (a) gives the cumulative signed errors (normalized by the total number of modes) in

fractional intensities observed over all Raman bands in each method. The MSE with the standard

deviations (σMSE) are in panel (b). Having defined Īn relative to the total integrated intensity of all

Raman bands considered, the MSE is equal to zero for each method because both the calculated and

experimental fractional intensities, by definition, sum to unity. The majority of the signed errors

of low-frequency bands (colored red in Figure 7.9a) are negative, and the errors in high-frequency

bands (colored blue in Figure 7.9a) are mostly positive. In other words, the fractional intensities

in each method are generally underestimated for Raman bands with frequency <1200 cm−1, and

overestimated for vibrations at higher frequency. The results of Figure 7.9 are summarized in Table

7.4.

There is relatively little variation in the MUEs (i.e. length of the colored bars in Figure 9a) be-

tween the different functionals. However, taking into consideration both the MUE and the spread of
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Figure 7.9: Cumulative signed errors normalized by the total number of modes (a) in calculated
Raman fractional intensities for each method. Contributions are color-coded based on vibrational
frequency. MSEs are shown in panel (b) along with standard deviations (σMSE) as error bars.

Table 7.4: Statistical error analysis of the calculated fractional Raman intensities.

Method σMSE MUE Max
PBE 0.0556 0.0353 0.1862

M06-L 0.0541 0.0348 0.2086
B3LYP 0.0470 0.0294 0.2324
TPSSh 0.0510 0.0313 0.2247

M06-HF 0.0521 0.0331 0.2081
CAM-B3LYP 0.0532 0.0337 0.1933

B2PLYP 0.0614 0.0363 0.2509
MP2 0.0619 0.0342 0.2724
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the signed errors (σMSE), the results show that B3LYP gives the best agreement between calculated

and experimental fractional intensities. TPSSh provides the next best agreement, and although the

MUEs of M06-HF and CAM-B3LYP are nearly identical, the range-separated functional has a

smaller σMSE . The largest errors are observed in B2PLYP, MP2, and PBE, although the latter has

a somewhat smaller σMSE .

We further analyze the trends in intensities between the low and high frequency regions of the

spectrum by defining the ratio of fractional intensities, ρn:

ρn =
Īcalc
n

Īexp
n

(7.3)

where Īn is defined in Eq. 7.2. The ρn value reveals the level of agreement between the fractional

intensities of the calculated and experimental Raman bands. However, in order to simplify the

comparison between functionals, we show log(ρn) in Figure 7.10, where log(ρn) = 0 indicates

perfect agreement between calculated and experimental relative intensities. The figure shows that

the fractional Raman intensities are consistently underestimated for the majority of bands with

frequencies <1200 cm−1, and the relative intensities of higher frequency transitions are more likely

to be overestimated, for each individual compound.

Although we do not necessarily expect a correlation between the relative intensity and the

vibrational frequency of a band, Figure 7.10 reveals a clear (and approximately linear) increase of

log(ρn) with increasing frequency for all of the compounds and all levels of theory. To highlight

the apparent trend, the figure includes linear fits to the data for each compound. For clarity, Figure

7.10 shows only a single fit across all methods. Results of the fits for individual methods are

listed in Table S16 of the SI, and show generally the same behavior in slope and correlation across

all methods. The fit lines in the figure are only a visual guide, nonetheless, they highlight several

outlying bands, particularly in BT, BP, and DPT. Single outliers, like the M06-HF intensity ratio for

the 961 cm−1 band in BP, and the MP2 value for the 1440 cm−1 band in DPT, are shoulder bands

in Figures 7.3 and 7.7 that are not well-reproduced by particular methods. However, other bands
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Figure 7.10: Log plot of the ratios of calculated and experimental fractional intensities for (a) Bz,
(b) Tol, (c) BP, (d) BT, (e) PT, (f) MPT, and (g) DPT.
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stand out as consistent outliers across multiple methods, such as the 1219 and 1410 cm−1 bands in

BT. The 1410 cm−1 band appears as the shoulder of a more intense band at 1441 cm−1, assigned

as the anti-symmetric and symmetric combinations of an ethylenic stretching mode, respectively.

On the other hand, the 1219 cm−1 band is mainly a C-H bending mode, and the fractional intensity

appears to be consistently underestimated by the calculations with each method.

Previous studies of substituted benzene molecules have observed a conformational dependence

between Raman intensities and the orientation of the substituent.32,33,192 To ensure that the differ-

ences between methods for the conjugated compounds in our test set are not affected by differences

in the minimum geometries, we also calculated Raman spectra with each method for PT at a fixed

torsion angle of φ = 27◦ (the optimized angle in B3LYP). The Raman spectra for the fixed tor-

sion are shown in Figure S7 of the SI, and are essentially identical to the spectra calculated at the

optimized geometry for each method, as shown in Figure 7.5 (the torsion angles of the optimized

geometries with all methods are reported in Table S33).

7.4 Discussion and Conclusions

We have performed DFT and MP2 calculations for the Raman spectra of a set of substituted ben-

zene and thiophene compounds, and benchmarked the accuracy of each method with experimental

Raman spectra. For all tested methods, we find generally good agreement with the measurements.

The methods that give the most accurate vibrational frequencies are similar to those that give the

most accurate Raman intensities. With the available scaling factors, the frequencies calculated with

M06-L, B3LYP, and CAM-B3LYP have the lowest MUEs, while the functionals with the lowest

σMSE are M06-L, PBE, and TPSSh. On the other hand, the errors in the average fractional inten-

sities show less variation across methods, but Figure 7.9 and Table 7.4 indicate two functionals

that perform slightly better than the rest. The MUEs in the intensities of B3LYP and TPSSh are

roughly ∼11%-19% and ∼5%-14% smaller than the remaining methods, respectively. The σMSE

values are ∼10%-24% smaller with B3LYP, and ∼2%-17% smaller with TPSSh, than the other

methods. The higher accuracy of the relative intensities calculated with hybrid density functionals
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may indicate a cancellation of errors related to the amount of exact HF exchange.

However, the better agreement with experiment in the fractional intensities for some of the

functionals still does not account for the discrepancy in relative intensities between high- and

low-frequency vibrations of a molecule. The trends in Figures 7.9 and 7.10 show that, with the

exception of a few outliers in M06-HF and MP2, all methods consistently overestimate the frac-

tional intensities in high-frequency bands and underestimate those of low-frequency transitions.

The discrepancy between high and low-frequency intensities is likely due, in part, to the effects of

conjugation across aromatic rings, which is tuned by the relative orientation dynamics between the

rings.32,33,192 We will focus on this issue in a separate study.

Although the discrepancies in relative intensities are largely the same across the various meth-

ods, the best performance for frequencies and intensities is obtained with the hybrid functionals

B3LYP and TPSSh, which, respectively, provide a ∼11%-19% and ∼5%-14% better agreement

between calculated and experimental Raman spectra than the other methods.
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Chapter 8

On the Discrepancy between Experimental and Simulated

Ground-State Raman Intensities for Conjugated Phenyl and

Thiophene Derivatives

(This work was published as Ref. #56. Supporting information will be available online.)

8.1 Introduction

Aromatic organic compounds continue to be the focus of numerous studies of charge-transfer,162

intermolecular π −π interactions,164,193 and ring-ring delocalization.163 In particular, polymeric

chains of phenyl and thienyl derivatives have efficient inter- and intra-molecular charge mobility

due to the extended π-conjugated structure,38,48,49,162 which makes them ideal compounds for

organic solar cells.40,168 The charge-transport properties of these compounds are sensitive to the

relative orientation of the aromatic rings and their substituents.31,164–166,194 As a result, many

studies have examined the torsional energy barriers in oligothiophenes,166,195,196 biphenyl and

substituted biphenyl derivatives,197–201 and the effects of torsion angle on the vibrational properties

of substituted benzenes.202,203 The conjugation in these substituted aryl molecules has a significant

effect on the polarizability,28 therefore Raman spectroscopic techniques have been a powerful tool

in characterizing the structures of these compounds and determining their effects on the physical

properties of the molecules.31–33

Computational studies are particularly useful in assigning the Raman bands observed in exper-

imental spectra,52 and predicting the structures that correspond to the experiment. Recently, we
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benchmarked calculations of ground state Raman spectra using density functional theory (DFT)

and second-order Møller-Plesset perturbation theory (MP2) with experiment for a set of substi-

tuted benzene and thiophene compounds.55 Our study indicates that, although the Raman spectra

calculated with each method are in fairly good agreement with experiment, all of the calculated

spectra tend to overestimate the intensities of higher-frequency Raman bands (>1200 cm−1) rela-

tive to those of lower frequency transitions. We found that B3LYP gives the best agreement with

the experimental relative intensities (∼5-19% better than the other methods), although there is still

a discrepancy between low- and high-frequency Raman intensities.

The overestimation of high-frequency Raman intensities has been reported in the literature,

and is most evident in the Raman spectra of substituted benzene derivatives, including toluene,169

4-aminobenzonitrile,13 and thioanisole derivatives.33,192 Ohno et al. observed that the Raman

intensities of low-frequency ring-substituent torsion (13-45 cm−1) and out-of-plane bending (86-

192 cm−1) modes are particularly sensitive to the orientation of the substituent in analogues of

thioanisole.192 However, to our knowledge, the conformation-dependent effects of ring-ring con-

jugation on the Raman spectra of di-aryl molecules have not been investigated, nor has the overes-

timation of calculated relative Raman intensities in high-frequency modes compared with experi-

ment.

In this chapter, we compare the experimental Raman spectra of biphenyl (BP), 2-phenylthiophene

(PT), and 2,2’-bithiophene (BT) with calculations that explore the anharmonic corrections to the

Raman intensities as well as the torsion angle dependence. The torsional energy barriers are cal-

culated with DFT, and the coupled cluster with single, double, and noniterative triple excitations

[CCSD(T)] method. The chapter is organized as follows. We introduce the computational and

experimental details in Section 8.2. In Section 8.3.1, we compare the experimental Raman spectra

of all three compounds to calculations with and without anharmonic correction, and assign the

vibrational bands. We present the torsional dependence of the relative Raman intensities of the

molecules in Section 8.3.2, as well as the comparison of DFT and CCSD(T) potential energy sur-

faces along the inter-ring torsion. Finally, we discuss the results in Section 8.4, and summarize our
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main conclusions in Section 8.5.

8.2 Computational and Experimental Methods

We calculated ground-state Raman spectra using the B3LYP functional,110,111 which was previ-

ously shown to provide the most accurate description of relative Raman intensities in BP, PT, and

BT.55 For BT, we optimized both the cis and trans isomers, and computed Raman intensities as

a Boltzmann-weighted average of the two structures. PT and BP have a single minimum-energy

structure. All calculations utilize the aug-cc-pVDZ basis set,113 which provides an effective com-

promise between accurate Raman intensities and computational cost.18,19 For BP, PT, and BT, the

fractional Raman intensities, defined relative to the total integrated intensity within the range 200-

1800 cm−1, calculated using B3LYP/aug-cc-pVDZ differ from those of B3LYP/aug-cc-pVTZ with

a mean unsigned discrepancy of <2% for each molecule. Additionally, the dihedral angles of the

equilibrium geometries calculated for each molecule differ between basis sets by less than 2◦, ex-

cept for trans-BT, for which the dihedral angles calculated using aug-cc-pVDZ and aug-cc-pVTZ

are 15.7◦ and 20.7◦, respectively. The harmonic frequencies obtained for the Raman spectra are

scaled by 0.970, the empirical vibrational scaling factor that has been determined for this level of

theory.116 The calculated Raman intensities, In, were obtained as:29,30,55

In = Sn
(ν̃p− ν̃n)

4

ν̃n

[
1− exp

(
−hcν̃n

kBT

)]
(8.1)

where Sn is the calculated static Raman activity (in Å4/amu), ν̃p is the Raman excitation frequency

(12,739 cm−1 or 785 nm), ν̃n is the calculated vibrational frequency for the nth band (in cm−1), h

is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant, and T is the temperature

(300 K). Fractional intensities are computed as:55

Īn =
In

Itotal
(8.2)
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where In is the integrated intensity of the nth Raman band, and Itotal = ∑
n

In is the integrated in-

tensity of all assigned Raman bands of the molecule in the region of interest (200-1800 cm−1).

In order to quantify the agreement in relative intensities, we also define the ratio of fractional

intensities, ρn:55

ρn =
Īcalc
n

Īexp
n

(8.3)

where Īn is defined in Eq. 8.2.

Perturbative quartic anharmonic corrections to the fundamental, first overtones, and combina-

tion bands transitions of the Raman spectra are computed through numerical differentiation of the

potential with respect to normal mode vibrational displacement coordinates.204,205 Comparisons

of the anharmonic corrections with experiment in all three compounds, given in Figure S1 of the

Supporting Information (SI), show that the the overtones and combination bands have negligible

contribution to the calculated Raman spectra. Therefore, the anharmonic spectra in the following

figures only show the corrections to the fundamental Raman transitions. Raman spectra at different

torsion angles were calculated with B3LYP/aug-cc-pVDZ. We explored the torsional dependence

by optimizing the structure around fixed values of the ring-ring dihedral angle. Torsional energies

at these geometries are also calculated with CCSD(T). A full table of calculated energies along

the dihedral angle is available in Table S1 in the SI (including the CCSD data). The simulated

Raman spectra include 15 cm−1 Gaussian broadening. All calculations were performed using a

development version of the GAUSSIAN software package.78

The ground-state Raman spectra were measured using a commercial spectrometer (StellarNet)

with 785 nm cw pump laser and 4 cm−1 resolution. All three compounds were obtained commer-

cially and solutions of BP (0.6 M in cyclohexane), PT (0.2 M in cyclohexane), and BT (0.3 M in

DMSO) were prepared in a 2 cm diameter glass vial. For each sample, we subtract the solvent-only

spectrum to remove contributions from the solvent and the glass walls. The solvents used in the

experiments are not expected to significantly affect the Raman spectra of the solutes. We verified

this in Ref. 55, comparing the error of the calculations with available experimental data in gas

phase and in condensed phase for benzene and BP. Additionally, we computed the Raman spec-
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tra of each compound in solution using the polarizable continuum model of solvation (PCM),189

shown in Figure S2 of the SI. Generally, the intensities increased relative to the gas phase, but their

relative magnitudes are unchanged. Thus, we neglect solvent effects in the calculations to reduce

computational cost. We explored the effect of solute aggregation on the Raman spectra with DFT

calculations of stacked dimers of PT. The calculated spectra are included in Figure S3 of the SI,

and show little to no change in the relative Raman intensities of the various dimers. Therefore, we

do not discuss aggregation effects in the following. We also investigated possible pre-resonance

effects by calculating Raman intensities of each molecule in the presence of an incident field of

light, which was set to 785 nm as in experiment. The results, given for each molecule in Figure

S4 of the SI, show that the incident field generally increases the Raman intensities of individual

bands by an average of ∼30-50%, but the differences in relative Raman intensities are negligible.

Therefore, the calculations in the chapter were performed in static conditions.

8.3 Results

8.3.1 Band Assignments and Anharmonic Corrections

A comparison of the experimental and calculated Raman spectra for BP is shown in Figure 8.1.

We focus on the strongest bands in the experimental spectrum, which are assigned to the harmonic

vibrations based on the calculated Raman intensities. Anharmonic corrections to the Raman spec-

trum are also shown in Figure 8.1. The vibrational displacement vectors for the assigned transitions

are included in Figure S5 of the SI. The assignments are also listed in Table 8.1. In Table 8.1, we

define in-plane and out-of-plane motions relative to the individual phenyl rings.

As outlined in our previous study,55 the harmonic calculations provide generally good agree-

ment in frequencies (accurate to within <40 cm−1) and predict relatively strong intensities in most

of the Raman bands observed in the experiment. However, there are discrepancies in the Īn values

of transitions at frequencies lower than ∼800 cm−1 and at frequencies higher than ∼1400 cm−1.

The percent error in Īn for each of the Raman bands >1400 cm−1 is between 95% and 154%. The
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Figure 8.1: Ground-state Raman spectra of BP. The Raman transitions calculated with harmonic
potentials (top) and anharmonic corrections (middle) are shown with the experimental spectrum
(bottom). Experimental band assignments are indicated in the calculated spectra (dotted lines). All
results are normalized to the strongest band in each spectrum.

remaining bands have <60% error compared to experiment. The anharmonic corrections to the

fundamental transitions, shown in Figure 8.1 and Table 8.1, show better agreement in Īn for a ma-

jority of bands, with the error reduced by between 6% and 28%. The better agreement is mainly

observed for the bands <800 cm−1, although the largest error reduction of 28% occurs in ν28 (from

43% error in the harmonic Ī28 to 15% error in the corrected intensities). While a few bands have

worse agreement, such as ν38, for which the error increases by 19%, the anharmonic corrections

generally provide more accurate fractional intensities. The mean unsigned error (MUE) in Īn de-

creasing from 0.035 in the harmonic calculations to 0.030, which reduces the overall error by 13%.

The Raman spectra of PT are shown in Figure 8.2. As with BP, the strongest experimental

bands are assigned, and the vibrational displacements of the assigned bands are included in Figure

S6 in the SI. The assignments are listed in Table 8.2, along with the fractional intensities.

The calculated harmonic Īn are generally in better agreement with experiment than in BP, with
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Table 8.1: Assignment of BP Raman Transitions

Vibration
Harm.a

Īn
Anharm.

Īn
Exp.

Īn Motion
ν̃n (cm−1) ν̃n (cm−1) ν̃n (cm−1)

ν4 256 0.017 262 0.024 264 0.040 out-of-plane phenyl rocking
ν5 303 0.029 310 0.041 309 0.049 in-phase ring dist.
ν8 404 0.026 407 0.035 405 0.032 out-of-plane phenyl C−C−C bend
ν12 603 0.019 619 0.024 610 0.026 antisym. phenyl C−C−C bend
ν17 729 0.026 745 0.037 738 0.058 sym. phenyl C−C−C bend
ν19 818 0.022 826 0.027 834 0.014 out-of-plane phenyl C−H bend
ν23 946 0.010 952 0.008 961 0.011 out-of-plane C−H bend and C−C−C bend
ν28 979 0.131 1006 0.195 999 0.229 C−C−C bend/phenyl dist.
ν30 1019 0.066 1034 0.060 1027 0.054 outer phenyl C−C−C bend
ν34 1135 0.012 1161 0.018 1151 0.012 antisym. in-plane C−H bend
ν37 1164 0.015 1186 0.014 1175 0.011 sym. in-plane C−H bend
ν38 1259 0.247 1284 0.148 1281 0.218 bridging C−C stretch and C−H bend
ν46 1482 0.035 1510 0.038 1500 0.014 bridging C−C stretch and asym. phenyl dist.
ν48 1575 0.004 1590 0.004 1589 0.079 antisym. phenyl C−−C stretch
ν49 1595 0.341 1606 0.325 1608 0.154 bridging C−C stretch and sym. phenyl dist.

a B3LYP with empirical scaling factor of 0.970. 116

Table 8.2: Assignment of PT Raman Transitions

Vibration
Harm.a

Īn
Anharm.

Īn
Exp.

Īn Motion
ν̃n (cm−1) ν̃n (cm−1) ν̃n (cm−1)

ν4 252 0.018 256 0.030 264 0.038 out-of-plane thienyl rocking
ν5 305 0.019 312 0.031 314 0.023 in-phase ring dist.
ν11 601 0.022 613 0.033 612 0.032 C−S−C bend and phenyl dist.
ν14 675 0.035 705 0.049 689 0.062 C−S−C stretch and phenyl dist.
ν26 976 0.073 1001 0.113 1000 0.117 C−C−C bend/phenyl dist.
ν29 1059 0.024 1080 0.028 1079 0.032 thienyl C−H bend
ν34 1238 0.074 1254 0.080 1254 0.042 thienyl C−H bend and bridging C−C stretch
ν37 1336 0.041 1352 0.022 1352 0.044 thienyl C−−C stretch and thienyl C−H bend
ν39 1432 0.355 1444 0.362 1429 0.347 thienyl C−−C stretch and delocalized C−H bend
ν41 1526 0.120 1535 0.034 1530 0.082 thienyl C−−C stretch and bridging C−C stretch
ν43 1594 0.220 1606 0.217 1600 0.180 C−−C stretch and phenyl dist.

a B3LYP with empirical scaling factor of 0.970. 116
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Figure 8.2: Ground-state Raman spectra of PT. The Raman transitions calculated with harmonic
potentials (top) and anharmonic corrections (middle) are shown with the experimental spectrum
(bottom). Experimental band assignments are indicated in the calculated spectra (dotted lines). All
results are normalized to the strongest band in each spectrum.

a MUE of 0.021.The percent error for all bands remains within <60%, except for ν34, for which

the fractional intensity is overestimated by ∼76%. Similar to BP, the anharmonic corrections to

the fundamental Raman transitions reduce the overall MUE by 15%, and the largest reduction of

errors (between 12% and 34%) occur in the bands below 1100 cm−1. The error is reduced by 34%

for ν26 in PT (mode 12 in Wilson’s notation190,191), and is analogous to ν28 in BP).

The Raman spectra of BT are given in Figure 8.3, where the calculated spectra include the

contributions from both cis and trans conformations according to Boltzmann weighting factors.

Similar to the spectrum of PT, the Raman bands with the largest intensity in BT are in the high-

frequency region of both the calculated and experimental spectra (1400 to 1600 cm−1). However,

BT has a weaker scattering cross-section than PT, and the experimental spectrum has a noticeably

smaller signal-to-noise ratio. As a result, we tentatively assign the strongest Raman bands in the

experiment based not only on their position and relative intensities in the calculated spectra, but
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Figure 8.3: Ground-state Raman spectra of BT. The Raman transitions calculated with harmonic
potentials (top) and anharmonic corrections (middle) are shown with the experimental spectrum
(bottom). Experimental band assignments are indicated in the calculated spectra (dotted lines). All
results are normalized to the strongest band in each spectrum.

on analogous vibrations of the thienyl substituent that are observed in PT. For example, the 706

cm−1 band is assigned to the symmetric C−S−C bending motion, ν12, which has the strongest

calculated intensity in the BT spectrum within 100 cm−1, and is also analogous to the ν11 mode

in PT. Additionally, the band at 1019 cm−1 has been tentatively assigned to both ν24 and ν26, as

these thienyl C−H bending vibrations are not only similar to each other and relatively isolated in

the calculated spectra, but they are also analogous to the ν29 mode assigned in the spectrum of PT.

The vibrational displacements of the assigned bands are shown in Figure S7 of the SI for the trans

conformer. The assignments are identical for the cis conformer, and the displacement vectors are

included in Figure S8. Table 8.3 lists the Boltzmann averages of the fractional intensities of these

bands.

The overall errors in Īn between the experiment and the harmonic calculations are larger in

BT than in BP or PT, based on the MUE of 0.096. All bands in Table 8.3 have between 44 and
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Table 8.3: Assignment of BT Raman Transitions

Vibration
Harm.a

Īn
Anharm.

Īn
Exp.

Īn Motion
ν̃n (cm−1) ν̃n (cm−1) ν̃n (cm−1)

ν12 662 0.051 671 0.073 706 0.092 sym. C−S−C bend
ν24 + ν26 1043 0.049 1063 0.062 1019 0.109 in-plane C−H bend

ν30 1228 0.011 1243 0.010 1219 0.099 sym. C−H bend and bridging C−C stretch
ν33 1428 0.004 1429 0.005 1410 0.103 antisym. thienyl C−−C stretch
ν34 1442 0.602 1451 0.622 1441 0.413 bridging C−C stretch and out-of-phase thienyl C−−C stretch
ν36 1526 0.284 1561 0.228 1549 0.185 bridging C−C stretch and in-phase thienyl C−−C stretch

a B3LYP with empirical scaling factor of 0.970. 116

97% error with experiment, where the fractional intensities of ν34 and ν36 are overestimated by

the calculations and all other bands are underestimated. Due to the fewer band assignments, it

is difficult to confirm the trend observed in BP and PT, where agreement in Īn was substantially

better for most bands <1100 cm−1. Nevertheless, the corrections to the intensities of the ν12

and ν24 + ν26 bands reduced the error by 24% and 12%, respectively. Similar to BP and PT, the

anharmonic corrections decreased the MUE by 12%.

The anharmonic corrections generally increase the agreement between experimental and calcu-

lated fractional intensities. Relatively significant reductions of error of roughly 10% to 30%) occur

in the majority of bands <1100 cm−1, and the anharmonic corrections provide an overall decrease

in the MUE of Īn by 12% to 15%. Nevertheless, the calculated Raman spectra with perturbative

anharmonic corrections still overestimate the relative intensities of the higher-frequency vibrations

and underestimate those of lower-frequency bands.

8.3.2 Torsion Angle Analysis

We explore the impact of the inter-ring torsion angle on the Raman intensities of these test molecules

by performing a relaxed scan along this internal coordinate, from 0◦ to 90◦. In each molecule, the

internal coordinate is the dihedral angle between the planes of each of the rings. For BP, our cal-

culations define each plane by the carbon atom that forms the bridging C−C bond and the carbon

that is adjacent to it (Cα , relative to the inter-ring bond). Similarly, the dihedral angle in PT is that
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between the planes formed by the C−S bond on the thiophene and the C−−Cα bond on the phenyl

ring. In BT, the global minimum along the torsion coordinate occurs in the trans isomer, therefore,

the dihedral is also defined by the C−S bond on the thiophene and the C−−Cα bond on the phenyl.

The relaxed scan for BT is performed from 0◦ to 180◦ in order to explore the local minimum of

the cis isomer. For brevity, we refer to the 90◦ to 180◦ structures along this torsion coordinate as

the 90◦ to 0◦ geometries of the cis isomer, which are identical due to symmetry, defined along a

dihedral angle between the planes formed by each thiophene ring’s inner C−S bond.

The angle dependence of the Raman spectrum of BP is shown in Figure 8.4, which displays

the Raman spectrum at each dihedral angle. As shown in the inset of the figure, which gives the

Itotal values at each angle, the overall Raman intensities decrease significantly as the aryl rings

approach a perpendicular orientation. The largest change in intensity occurs in bands >1200 cm−1,

which are reduced by up to an order of magnitude, while the intensities of bands <1000 cm−1 are

significantly less sensitive to the torsion. For comparison of relative intensities, the Raman spectra

normalized by the corresponding Itotal are included in Figures S9-S11 of the SI for BP, PT, and

BT, respectively. Additionally, the ν48 shoulder band, which is observed in the experiment, is only

visible at dihedral angles >60◦.

The torsional dependence of ρn in BP is displayed in Figure 8.5(a), along with a dotted line at

ρn = 1 to indicate perfect agreement between calculated and experimental intensities. Included in

Figure 8.5(b) is the torsion potential energy surface, along with the value of kT at room temperature

(thin green line). The calculated torsional energy barriers are roughly 1.46 and 2.15 kcal/mol for

the planar and perpendicular orientations of the rings, respectively. As in Figure 8.4, we observe a

significant torsion-dependent change in the Raman intensities of the assigned bands as the dihedral

angle increases from 0◦ to 90◦ and the inter-ring conjugation breaks. Although the traces in Figure

8.5(a) are generally different for each Raman band, the best agreement, on average, is observed at

a dihedral angle around 70◦, which is ∼30◦ displaced from the energetic minimum. Relative to

the equilibrium structure, the bands for which the error in ρn is reduced the most (by a factor of 3

to 10) are assigned to ν17, ν28, ν46, and ν49. Each of these vibrations (modes 6a, 12, 18a, and 9a
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Figure 8.4: Dihedral angle dependence of Raman intensities in BP. Total integrated Raman inten-
sities for the 200-1800 cm−1 region are shown in the inset, along with the Raman spectrum at each
fixed angle. The experimental spectrum is shown at the bottom. Equilibrium geometry of BP has
38.8◦ dihedral angle. Dotted lines indicate band assignments.

in Wilson’s notation) involves significant distortion of the phenyl rings and/or the bridging C−C

bond.
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Figure 8.5: Torsion angle dependence in BP of (a) fractional intensity ratio and (b) the calculated
energies. The potential energy surface is calculated with B3LYP, and shown with the ambient
energy at room temperature (thin green).

The calculated Raman spectra of PT as a function of torsion angle are shown in Figure 8.6,

along with the corresponding Itotal values. Similar to BP, the overall Raman intensities generally

decrease as the dihedral angle increases and the ring-ring conjugation breaks, with the largest

changes occurring in the high-frequency bands >1400 cm−1. The mode-specific ρn values and

calculated torsional barrier are displayed in Figure 8.7. The potential energy surface in panel

(b) shows that the torsional barrier at 90◦ (2.57 kcal/mol) is comparable to that of BP, but, due

to the reduced steric strain in PT, the energy minimum occurs at a smaller torsion angle of 25◦.
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Figure 8.6: Dihedral angle dependence of Raman intensities in PT. Total integrated Raman inten-
sities for the 200-1800 cm−1 region are shown in the inset, along with the Raman spectrum at each
fixed angle. The experimental spectrum is shown at the bottom. Equilibrium geometry of PT has
25.4◦ dihedral angle. Dotted lines indicate band assignments.

Additionally, the ratios of fractional intensities in panel (a) generally follow more consistent trends

than the ρn values in BP. Nevertheless, the best overall agreement in PT also occurs at a dihedral

angle of 70◦. The vibrations for which the error in ρn reduces the most (by a factor of between 3

and 11) are ν11, ν14, ν26, and ν41. With the exception of ν11 (mode 6b in Wilson’s notation), the
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Figure 8.7: Torsion angle dependence in PT of (a) fractional intensity ratio and (b) the calculated
energies. The potential energy surface is calculated with B3LYP, and shown with the ambient
energy at room temperature (thin green).

remaining vibrations are analogous to those with the largest reduction in error in BP, where ν14,

ν26, and ν41 correspond to the 6a, 12, and 18a modes in Wilson’s notation, respectively.

Figures 8.8 and 8.9 display the calculated Raman spectra at the different torsion angles in the

trans and cis conformers of BT, respectively. Similar to BP and PT, the Itotal values in either

conformer are significantly reduced as the angle approaches 90◦. The calculated potential energy

surface is plotted in Figure 8.10(b), and predicts torsional barriers of 2.56 and 1.87 kcal/mol for the

trans and cis conformers, respectively. As in the two phenyl-substituted compounds, the optimal

agreement with experiment occurs at around 75◦ and 105◦ along the dihedral coordinate. However,
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Figure 8.8: Dihedral angle dependence of Raman intensities in trans-BT. Total integrated Raman
intensities for the 200-1800 cm−1 region are shown in the inset, along with the Raman spectrum
at each fixed angle. The experimental spectrum is shown at the bottom. Equilibrium geometry of
trans-BT has 20.7◦ dihedral angle. Dotted lines indicate band assignments.

unlike BP and PT, the angle dependence of ρn in Figure 8.10(a) displays a weaker trend for the

assigned vibrations in BT. The vibrations with ρn values most sensitive to the torsion are ν12,
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Figure 8.9: Dihedral angle dependence of Raman intensities in cis-BT. Total integrated Raman
intensities for the 200-1800 cm−1 region are shown in the inset, along with the Raman spectrum
at each fixed angle. The experimental spectrum is shown at the bottom. Equilibrium geometry of
cis-BT has 31.6◦ dihedral angle. Dotted lines indicate band assignments.

ν24+ν26, and ν34, each of which involve significant distortion of the C−−C bonds in the thiophene

rings.
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Figure 8.10: Torsion angle dependence in BT of (a) fractional intensity ratio and (b) the calculated
energies. The potential energy surface is calculated with B3LYP, and shown with the ambient
energy at room temperature (thin green).

The fractional intensity ratios for the bands in all three molecules generally tend toward better

agreement with experiment at torsion angles that break conjugation. Thus, we use CCSD(T) cal-

culations of the potential energy to obtain more accurate values of the torsional barrier, and of the

range of angle values accessible at room temperature. The torsion potentials are shown in Figure

8.11, and are given relative to the energy minimum. In all three molecules, the CCSD(T) results

reduce the energy barrier at 90◦ by >0.5 kcal/mol relative to the barrier computed with B3LYP. The

higher-level calculations also consistently give larger energy barriers at planar orientations, which,

together with the lower barrier at perpendicular orientations, predicts a slight shift of the energy

minimum in the torsional potential to between 30◦ and 50◦ for each molecule.
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Figure 8.11: Torsional energy barriers in (a) BP, (b) PT, and (c) BT.

The calculated torsional barriers are also in reasonably good agreement with results from the

literature. In the case of biphenyl, Johansson and Olsen performed a very similar calculation
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using B3LYP/TZVPP to optimize the geometries, and then computed single-point energies using

CCSD(T)/aug-cc-pVDZ.198 The 0◦ and 90◦ barriers in Figure 8.11(a) are 2.22 and 1.56 kcal/mol,

respectively, and are within 0.03 kcal/mol of the results obtained from the literature. Additionally,

a benchmark study by Bloom and Wheeler calculated the torsional barriers in BT with a variety of

theoretical methods, using geometries optimized with MP2/aug-cc-pVTZ.166 The energy barriers

obtained with CCSD(T)/cc-pVTZ are still within 0.16-0.25 kcal/mol of the calculated barriers in

Figure 8.11(c).

8.4 Discussion

The calculated harmonic Raman spectra for these conjugated aryl compounds consistently over-

estimate the high-frequency intensities relative to the lower frequency bands compared with ex-

perimental measurements. The inclusion of perturbative anharmonic corrections to the Raman

intensities only reduces the error with experiment by about 12% to 15%, on average. On the other

hand, the fractional intensities observed in the experiment are in significantly better agreement (on

average, a factor of 2.2 in the errors in ρn values) with the majority of calculated vibrational bands

as the torsion angle increases and the ring-ring conjugation breaks. In general, the agreement in

Īn does not change appreciably until the torsion angle is at least ±20◦ from the energy minimum,

which suggests that the perturbative approach for the anharmonic corrections is not capturing a

sufficient sample of the potential energy surface.

Although the DFT energy barriers along the inter-ring torsion degree of freedom indicate a

small population at large angles at room temperature, the CCSD(T) data show that the DFT torsion

angles at the minimum geometry are underestimated while the barriers are overestimated. Further-

more, the CCSD(T) barriers would be even lower if the relaxed scan had been fully performed at

this level of theory (which is below our current computational capabilities). This points to an over-

estimation of the inter-ring conjugation in DFT, which leads to minimum geometries with angles

that are too small, and is supported in the literature.206

As seen in the work of Ohno et al., the low-frequency (<200 cm−1) Raman bands of substituted
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benzene compounds can be highly sensitive to ring-substituent orientation.33,192 In particular, they

observed a stereo-specific enhancement of Raman intensities of the ring-substituent torsion and

out-of-plane bending modes in thioanisole compounds, resulting in roughly an order of magnitude

increase in relative intensity of Raman bands when the substituent was oriented perpendicular to

the phenyl ring. However, this strong enhancement is limited to the low-frequency torsional and

bending motions, and the conformational change had negligible effect on the relative intensities of

the higher-frequency bands of the thioanisoles.

On the other hand, in the conjugated systems studied in this work, the largest torsion-dependent

effects are observed primarily in the high-frequency C−C and C−−C stretching vibrations, in the

1200-1800 cm−1 region. At the same time, bending motions and other ring distortions that do not

directly involve the inter-ring C−C bond are much less sensitive to the torsion angle. Although

many of these bending motions, which lie roughly between 600-1100 cm−1, have a large reduction

of error in the relative Raman intensities in Figures 8.5(a), 8.7(a), and 8.10(a), the Raman spectra

in Figures 8.4, 8.6, 8.8, and 8.9 show that the absolute intensities change by significantly less

than those of the higher-frequency bands. Both types of motion have considerable Raman cross

section, because they both affect the π cloud on the aromatic rings and, thus, the polarizability.

However, the polarizability change with stretching motions is considerably larger at small torsion

angles, because the electron density is conjugated across both rings. Once the conjugation is

broken at large torsion angles, the change in polarizability decreases and so do the intensities of

these bands, see bands ν38, ν46, and ν49 in Figure 8.4, ν34-ν43 in Figure 8.6, and ν34 and ν36

in Figures 8.8 and 8.9. Conversely, bending motions and other ring distortion modes where the

C−C bond is not involved are localized on the individual rings, and the change in torsion angle

affects them considerably less, see bands ν12-ν28 in Figure 8.4, ν11-ν29 in Figure 8.6, and ν12 and

ν24+ν26 in Figures 8.8 and 8.9. A noticeable effect is observed for high-frequency C−−C stretching

vibrations, for which the normal mode is the anti-symmetric combination of two local modes in

the benzene or thiophene rings, as exemplified by ν48 in BP (the anti-symmetric combination

of the 9b mode in Wilson’s notation) and ν33 in BT. Contrary to ν46 and ν49 in BP (symmetric
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combinations of the 18a and 9a local modes, respectively), ν48 increases in intensity as the torsion

angle approaches 90◦ in Figure 8.4. The ν33 band of BT, however, increases in intensity as the

dihedral coordinate approaches 180◦, and is only visible in the Raman spectra of the cis isomer

in Figure 8.9. We note that we focused on the lowest-frequency internal coordinate that is most

responsible for breaking conjugation between the rings, and whose energy profile is low enough

that a large motion is allowed at room temperature. However, other low-energy modes, such as

ν2, ν3, and ν4 at 89, 122, and 256 cm−1 in BP (which are analogous to ν2-ν4 at 99, 134, and

252 cm−1 in PT and at 110, 124, and 269 cm−1 in BT), can also break conjugation, possibly in

combination with the torsional motion due to anharmonic coupling. Therefore, these contributions

to the change in relative intensities may need to be considered to further increase the agreement

with the experimental spectra.

Direct solute-solvent interactions, beyond the electrostatic bulk effects recovered by PCM,

may also affect the dynamics around the average geometry of these chromophores. These effects

may be recovered through a combination of large-scale quantum and classical molecular dynamics

simulations. Finally, pre-resonance effects at geometries away from equilibrium should also be

investigated. However, all of these issues are beyond the scope of this work, and they will be

addressed in future contributions.

8.5 Conclusions

In this chapter, we investigate the possible causes of the consistent overestimation of calculated

high-frequency Raman intensities relative to lower-frequency transitions of conjugated molecules.

Specifically, we examine the effects of anharmonic corrections and torsion angle. We show that

perturbative anharmonic corrections provide better predictions of relative intensities, but that the

experimental fractional intensities are almost perfectly reproduced only when the inter-ring torsion

angle is ∼70◦ and the ring-ring conjugation breaks. We explain this phenomenon in terms of

Raman band intensities that are affected by inter-ring conjugation for certain vibrations (i.e., bond

stretching), and those that are not affected by conjugation (i.e., bending and ring distortion that do
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not involve the inter-ring C−C). The energy profile along the torsion coordinate shows that DFT

overestimates the barriers compared to CCSD(T), and that the former method predicts minimum

geometries that are too planar. This indicates a tendency of DFT to overemphasize conjugation

across multiple rings, consistently with previous studies. Therefore, although DFT still represents

the best compromise between cost and accuracy for the simulation of Raman spectra of conjugated

polymers, caution must be exercised in the analysis of the relative intensities when comparing with

experimental measurements.
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Chapter 9

Identifying Low-Frequency Vibrational Coherences in the

Excited-State Dynamics of 2,5-Diphenylthiophene

9.1 Introduction

The excited-state photophysics of substituted thiophene molecules are of great interest to re-

searchers due to their optical and electronic applications, among which is their use as charge-

transport devices in organic photovoltaics.35,36,43–46 The conjugated organic structure of these

compounds allows for efficient electrical conductivity across polymeric chains,207,208 and the

thiophene-based structures facilitate the formation of long-lived triplet states following photoex-

citation.36–38,42,54 Therefore, understanding the dynamical evolution of the electronic and nuclear

properties of these molecules in the excited state is of key importance in constructing devices for

the desired opto-electronic applications.

The majority of studies on the excited-state dynamics of these compounds use time-resolved

electronic and vibrational spectroscopy techniques, such as transient absorption (TA),41,47,209 fem-

tosecond stimulated Raman spectroscopy (FSRS),41,48–50,52–54 and vibrational coherence spec-

troscopy (VCS).57–61 Whereas TA and FSRS provide direct measurements of the excited-state

electronic absorption and vibrational Raman spectra, respectively, VCS is a pump-probe technique

that utilizes ultrafast pulses on the order of 10-100 fs to impulsively excite the molecule and, by

taking a Fourier transform of oscillations observed in the TA spectrum, indirectly obtain Raman

transition intensities in the low-frequency region of the spectrum.62–65 As a result, VCS is a unique

method of observing excited-state structural dynamics immediately following photoexcitation, as
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it involves simultaneous excitation to two different vibrational states, creating a vibrational co-

herence that is observed as an oscillation in the absorption/emission intensity at a frequency that

is the difference between their excitation frequencies.210–213 These coherent oscillations provide

valuable insight into the structural evolution of the molecule along the excited-state potential en-

ergy surface (PES), as well as information on how the Franck-Condon (FC) overlap of the wave-

functions involved in the electronic excitation/emission changes due to the excited-state nuclear

dynamics.

In this chapter, we study the excited-state dynamics of 2,5-diphenylthiophene (DPT) following

S1 ← S0 excitation at 310 nm. The TA of DPT has been previously investigated, where it was

observed that the initial dynamics in the S1 state include structural relaxation into a planar con-

formation (as a result of π-π∗ excitation) and vibrational cooling that occur on the order of ∼15

ps, followed by intersystem crossing (ISC) with a lifetime of 270 ± 7 ps into a long-lived triplet

state.52,53 The resonance-enhanced FSRS spectrum of the S1 state of DPT has also been mea-

sured,52 and the resonance condition was investigated in detail by observing the FSRS spectrum as

a function of Raman excitation frequency across the main SN ← S1 excited-state absorption (ESA)

band.53 The Raman excitation profiles indicated strong resonance enhancement contributions from

a single electronic transition at 566 nm, with possible contributions from a second, lower-energy

electronic transition centered between 570-580 nm. In other words, the FSRS measurements sug-

gested the presence of two electronic transitions within the singlet ESA band that had not been

distinguished through TA measurements alone.

Additionally, a strong, characteristic quantum beating pattern of ∼ 105 cm−1 was observed

within the first few ps in the SN ← S1 absorption band of the TA spectrum that has not been ex-

plored in detail. Here, we present a more in-depth analysis of the initial excited-state dynamics

of the S1 state of DPT, where we observe multiple low-frequency (>700 cm−1) vibrational co-

herences in the TA spectrum. The experimental observations are complemented with calculations

of electronic-state energy gradients along vibrational displacement coordinates, and facilitate the

assignment of the observed coherences to modes with motion along the torsion coordinate as well
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as the C−S bonds in the thiophene ring. This chapter is organized as follows. After introducing

the experimental parameters of our setup and our computational methods in Section 9.2, we then

present the observed oscillations in the TA spectrum in both the time and frequency domains in

Section 9.3.1. In Section 9.3.2, we display calculated vibrational frequencies in the S1 state, cal-

culated PES gradients along the vibrational displacements, and electron density difference maps

that provide a visual guide for the changes in the electronic structure as a result of SN ← S1 tran-

sitions. We discuss the assignments of the vibrational coherences in Section 9.4, and present our

conclusions in Section 9.5.

9.2 Experimental and Computational Methods

The transient absorption measurements utilize the modified output of an amplified Ti:sapphire

laser (Coherent, Legend Elite), which produces 35 fs pulses with 1 kHz repetition rate at 800

nm. The actinic pump pulse at 310 nm is generated by splitting the 800 nm output and passing

it into a commercial optical parametric amplifier (OPA) with two stages of frequency conversion.

The actinic pulse is then compressed via a fused-silica prism pair to 100 ± 10 fs pulse duration,

estimated from the pump-probe cross-correlation signal. We generate broadband (340-750 nm)

white-light continuum (WLC) fs probe pulses by focusing a small portion of the remaining 800

nm laser fundamental into a translating CaF2 window. The pump and probe pulses overlap in the

sample, a 0.5 mM solution of DPT (TCI America) in cyclohexane (spectroscopic grade, Fisher),

which is flowed through a windowless liquid jet with pathlength of 300 µm. After the sample, the

transmitted probe light is dispersed by a grating (300 line/mm) onto a 2068 pixel linear CCD array

(Hamamatsu, S11156-2048). A synchronized optical chopper is used at 500 Hz to block every

other pump pulse, allowing for time-resolved measurement of differential absorption, ∆A. To

eliminate anisotropic effects, TA spectra are measured with the relative polarization of the pump

and probe pulses set to “magic angle” (54.7◦). Cross-phase modulation effects85,86 are corrected

for by plotting the peak intensity of the cross-correlation signal against probe wavelength, and

fitting the signal to a fifth-order polynomial. The fit is then used to offset the time-dependence of
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the ∆A signal measured at each wavelength.

The calculations are performed with both time-dependent density functional theory (TD-DFT)

and equation of motion coupled cluster theory with single and double excitations (EOM-CCSD).147

For comparison with results from our previous work,52,53 the calculated equilibrium structures of

the S0 and S1 states, as well as the S1 normal modes, are obtained using TD-B3LYP/aug-cc-

pVDZ.110,111,113 Calculated vibrational frequencies are scaled by an appropriate empirical factor

of 0.970.116 This level of theory is then used to calculate gradients of the potential energy surface

of the S1 state, ∇1,

∇1 =

(
∂V1

∂qS1
k

)
(9.1)

where V1 is the potential energy of the S1 state, and qS1
k are the mass-weighted displacement coor-

dinates of the normal mode vibrations calculated for the S1 state. Due to the steric strain between

the thiophene and phenyl rings, there are two energetic minima in the S0 state of DPT, correspond-

ing to parallel (Cs symmetry) and anti-parallel (C2) orientations of the phenyl rings relative to each

other. Therefore, the TD-DFT gradients of the S1 state are calculated at each of the S1 ← S0

Franck-Condon (FC) geometries.

However, it has been shown that, for SN ← S1 transitions, TD-DFT does not provide an accu-

rate representation of the higher-lying SN electronic states in DPT, which can have up to ∼25%

double excitation character.53 Instead, we calculate gradients of the PES of SN states with EOM-

CCSD and, due to computational cost, we use the 6-31G(d) basis set.214,215 Our work in Chapter

5 showed that SN gradients calculated with EOM-CCSD/6-31G(d) were more successful in repro-

ducing SN← S1 transition energies and electronic resonance effects in higher-lying states than gra-

dients calculated with TD-B3LYP/aug-cc-pVDZ. Therefore, we also use EOM-CCSD/6-31G(d)

to calculate the S1 equilibrium geometry, normal mode displacements, the SN ← S1 oscillator

strengths, and the gradients along SN states, ∇N ,

∇N =

(
∂VN

∂qS1
k

)
(9.2)
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where VN is the energy of the SN state, and ∇N is calculated at the SN ← S1 FC geometry. The

main electronic transitions of the experimental ESA band have been assigned as excitations to the

S5 and, possibly, S4 states.53 We visualize the electron density difference maps for these two SN

← S1 transitions, which are reproduced from our work in Chapter 5, and include energy gradients

calculated at the S1 equilibrium geometry for selected vibrational displacements along the S4 and

S5 potentials. All calculations were performed using a development version of the GAUSSIAN

software package.78

9.3 Results and Analysis

9.3.1 Excited-State Dynamics

The evolution of the transient absorption spectrum of DPT is shown in Figure 9.1. At early time

delays, the excited-state singlet absorption spectrum appears as an intense band centered at 566

nm, with a weaker stimulated emission band at 391 nm. The excited-state absorption (ESA) and

stimulated emission (SE) bands decay with the same time constant of 270 ps as the molecule under-

goes ISC to the triplet state, which appears as a relatively weak absorption band centered around

430 nm. For comparison with calculations, we include Figure 9.2, which has been reproduced

Figure 9.1: Transient absorption spectrum of DPT in cyclohexane at 310 nm excitation. Green
markers at 396, 566, and 589 nm indicate the probe wavelengths at which the coherent oscillations
are observed.

here from our work in Chapter 5 of this dissertation. Figure 9.2 displays the calculated oscillator
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strengths for the SN ← S1 transitions with 0.25 eV Gaussian broadening. As determined through

Figure 9.2: Calculated SN ← S1 absorption spectrum of DPT (black) and experimental TA spec-
trum (blue) at a time delay of 30 ps.

the electronic resonance contributions to the FSRS spectra in our previous study, the intense peak

of the experimental ESA band is attributed as an excitation to the S5 state, while the weak signal

around ∼600 nm is possibly from the transition to S4. Although the calculated transition energies

are roughly ∼0.6 eV lower than those observed in the experiment, the spectrum simulated with

EOM-CCSD gives a qualitatively accurate representation of the SN ← S1 transitions.

While not visible in Figure 9.1, there are time-dependent oscillations of the TA spectrum that

are observed within the first few ps at multiple probe wavelengths. Figure 9.3(a) displays the tran-

sient absorption signal in the time domain for the peak absorbance wavelength in the ESA band.

In order to analyze the quantum beating frequencies, we isolate the oscillations in ∆A by fitting

the background absorption signal to a double exponential function, and subtract that fit from the

differential absorption signal to obtain the residual beating pattern in Figure 9.3(b). The same

procedure is applied to the TA spectrum at every probe wavelength, and the time-dependent oscil-

lations are converted to the frequency domain using a Fast Fourier Transform (FFT). Figure 9.4

displays the Fourier-transformed TA spectrum as a two-dimensional plot of the frequency-domain

oscillations at each probe wavelength. Other than the consistent, low-frequency fluctuations of 1-6

cm−1, which are possibly an artifact of the baseline fit due to laser drift, Figure 9.4 shows that there

are oscillations at multiple probe wavelengths which have relatively large amplitude compared to

the rest of the transformed signal at that wavelength. The most distinguishable oscillations have
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Figure 9.3: Coherent oscillations in the TA spectrum observed at 566 nm. The time-dependent
∆A signal (a) is fit to a double- exponential function (red), and the oscillations are isolated in panel
(b) by subtracting the fit from the differential absorption signal.

Figure 9.4: Time-dependent oscillations in the TA spectrum transformed into the frequency do-
main for each probe wavelength. The upper limit of the frequency domain is 324 cm−1, based on
the time-resolution of the actinic pump pulse.
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peak amplitudes centered around 566 and 589 nm in the ESA band, and a third centered around

396 nm in the SE band.

These three oscillations are examined in more detail in Figure 9.5, which displays the time-

dependent oscillations. As seen in Figure 9.4, the beating pattern in the SE band oscillation is of

Figure 9.5: Time-dependent oscillations observed at each probe excitation wavelength. Dotted
lines are included for visual comparison.

relatively low frequency compared to the others, and decays within ∼1 ps after excitation, while

the two oscillations in the ESA band are of roughly twice the frequency of that in the SE band, and

decay within∼5 ps. The oscillations in the ESA band appear to be of the same frequency, however,

they oscillate with opposite phase, where the peak amplitudes in the 566 nm trace coincide directly

with the troughs in the 589 nm absorption. The frequencies of the oscillations in the ESA band are

104 and 105 cm−1 for absorption at 589 and 566 nm, respectively, and, though the rapid decay of

the SE band oscillation leads to a broad band in the frequency domain, the beating pattern at 396

nm is centered around 62 cm−1.

9.3.2 Calculated Vibrational Mode Analysis

The three main time-dependent oscillations in Section 9.3.1 each decay within a few ps, therefore,

it is possible that they are a result of vibrational coherences in the S1 electronic state. The coherent

150



Figure 9.6: FFT of the oscillations in the TA spectrum of DPT. The peak FFT magnitude for each
of the probe wavelengths of 589, 566, and 396 nm has a frequency of 104, 105, and 62 cm−1.

oscillations are observed in the TA spectrum, therefore, the Franck-Condon (FC) overlaps for the

electronic transitions are sensitive to the nuclear displacements that correspond to the vibrational

coherences. Accordingly, we focus our analysis on the normal mode vibrations calculated for the

S1 state. Figure 9.7 displays the displacements for selected low-frequency vibrations calculated

in S1 with TD-DFT. The figure includes all vibrations with a frequency <200 cm−1 (ν1−ν7), as

well as two C−S stretching motions (ν18 and ν25), which we have previously determined to have a

large ∇N for the higher-lying electronic states involved in the SN ← S1 transitions in DPT.53 Thus,

it is likely that vibrational displacements of these two modes will have a significant effect on the

FC overlap between the S1 and SN states. Table 9.1 lists the vibrational motions, as well as the

gradients of the S1 state at the two S1← S0 FC geometries of DPT.

In order to determine the vibrational motions that have the most significant effect on the FC

overlaps of the electronic transitions, it is important to examine the changes in the structure of

the electronic state. The initial S1 ← S0 transition involves a π − π∗ transition that alters the

electronic configuration to adopt a more quinoid-like character, which results in the planarization
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Figure 9.7: Normal mode displacements for low-frequency vibrations calculated for the S1 state
of DPT. The ν2−ν7 vibrations are paired according to the anti-symmetric (left column) and sym-
metric (right) combinations of specific local modes. Results are calculated with TD-B3LYP/aug-
cc-pVDZ, and the frequencies have been scaled by a factor of 0.970.116

Table 9.1: Calculated Normal Modes (S1) and Potential Energy Gradients

Mode Symmetry
Freq.a ∇1

b
Motion

(cm−1) Cs Geometry C2 Geometry
ν1 b1 35 -0.29 -0.10 sym. out-of-plane inter-ring bending
ν2 a2 54 0.38 2.11 anti-sym. inter-ring torsion
ν3 a1 74 0.60 0.64 sym. in-plane Ph−C−S bending
ν4 b1 90 1.37 -0.28 sym. inter-ring torsion
ν5 a2 103 0.04 -0.05 anti-sym. inter-ring rocking
ν6 b1 160 0.17 0.11 sym. inter-ring rocking
ν7 b2 169 0.00 0.00 anti-sym. in-plane Ph−C−S bending
ν18 a1 572 5.68 5.82 sym. C−S−C bend and phenyl distortion
ν25 a1 670 4.72 4.75 sym. C−S−C stretching and phenyl distortion

a Frequencies are scaled by a factor of 0.970. 116

b Potential energy gradients along mass-weighted displacement coordinates, reported in units of mHartree/Å·
√

amu.
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of DPT after excitation to S1.47,53 However, the transitions to the S4 and S5 states (assigned to

589 and 566 nm excitation in the ESA band, respectively) are more complicated to determine.

The electron difference density (EDD) maps in Figure 9.8 are reproduced from Chapter 5,53 and

show the change of electron density associated with the SN ← S1 transitions from the EOM-CCSD

calculation. As a visual guide, the EDD maps indicate that both of the electronic transitions to

Figure 9.8: Reproduced from Chapter 5. Electron density difference maps for the (a) S4← S1 and
(b) S5← S1 transitions calculated with EOM-CCSD/6-31G*. Blue indicates a decrease in density
and purple indicates an increase. The ball-and-stick model shows the orientation of the molecule
for visual reference.

higher-lying states involve a reduction of electron density in non-bonding sulfur orbitals and an

alternation of the bonding pattern in the delocalized π electron distribution. However, the change

in electron densities in the π bonding pattern is opposite for the two states, where an increase in
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π electron density for a particular C atom via transition to S4 is a reduction in the transition to S5.

The ∇N values observed in Chapter 553 for the ν18 and ν25 vibrations in the S4 and S5 states are

included in Table 9.2.

Table 9.2: Calculated SN Potential Energy Gradients

Mode ∇4
a ∇5

a

ν18 5.47 2.14
ν25 0.48 -4.89

a Potential energy gradients along mass-weighted displacement coordinates, reported in units of mHartree/Å·
√

amu.

9.4 Discussion

The low-frequency oscillations observed in the SE and ESA bands of the TA spectrum decay within

∼1 and ∼5 ps, respectively. The decays occur on roughly the same timescale as the vibrational

cooling in the absorption spectrum, and the experiment is measured at magic angle polarization

conditions to eliminate anisotropy effects. Therefore, it is likely that the oscillations are indicative

of vibrational coherences, rather than electronic coherence, for which the nearest electronic state

transitions (to S4 and S5) differ in excitation energy by about 690 cm−1.

The gradient values at the vertical excitation geometries provide insight into the vibrations

that may be responsible for the observed coherences. The coherences decay soon after the actinic

excitation, therefore, the initial excited-state nuclear dynamics along S1 are expected to involve

FC-active modes that have a large ∇1 value at the FC geometries of the S1 ← S0 transition. Ac-

cordingly, a relatively large ∇1 suggests a vibrationally excited population in the S1 state for these

modes, which indicates that they may be responsible for the observed vibrational coherences.

Additionally, the oscillations are observed in the TA signal, meaning that the change in ab-

sorption is most sensitive to the S1 nuclear displacements that affect the FC overlap with the final

electronic state (S0 in the SE band, and S4 or S5 in the ESA band). Similarly, these FC-active

vibrations will have relatively large gradients along the final state PES (∇0, ∇4, or ∇5) at the S0←
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S1 or SN ← S1 FC geometries, since displacement along these coordinates will produce significant

changes to the FC overlap. The gradients along the S0 state (∇0) at the S1 equilibrium geometry

were not calculated directly, however, the ∇1 values in Table 9.1 indicate that there is a large dis-

placement along the coordinates of both torsional vibrations between the S1 minimum geometry

and either of the S0 minima, which is supported by the fact that DPT planarizes after S1 ← S0

excitation.47,216 Thus, the vibrational coherence that is observed in the stimulated emission band

is relatively straightforward to assign as a torsional motion. Based on the calculated frequencies

of the S1 normal modes, as well as the fact that the ∇1 value for ν2 at the C2 geometry of the S0

state is slightly larger than the ∇1 for ν4 at the Cs geometry, the beating pattern observed in the SE

band is tentatively identified as a vibrational coherence between excited vibrational energy levels

of the anti-symmetric torsion mode. Although it is not immediately clear why nuclear displace-

ment along ν2 should be favored over ν4, the broad frequency band in Figure 9.6 for the oscillation

at 396 nm (which is a result of the relatively short dephasing time) may include contributions from

both vibrations. Nevertheless, the ∇1 values were only calculated at the S0 minima, therefore, as

the molecule evolves along S1 and planarizes due to the quinoid-like C−−C bonds between the aryl

substituents, it is likely that there is more steric strain along the symmetric torsion coordinate that

makes it less favorable than the anti-symmetric mode.

The ESA band coherences are less straightforward to identify, as the vibration that most closely

matches the oscillation frequency is the anti-symmetric rocking motion, ν5, which involves signif-

icant out-of-plane displacement and has a particularly small ∇1. Given that vibrational coherences

oscillate at the difference frequency between any two populated vibrational states,210–213 the ob-

served frequency could be a result of simultaneously populating vibrational levels in two separate

modes. However, there are multiple pairs of vibrations in DPT with relatively large ∇1 and fre-

quencies that differ by∼90-120 cm−1. Thus, the ∇N values can be used to further narrow the list of

candidates. Furthermore, the EDD maps serve as a visual guide for identifying which motions are

expected to have large ∇4 and ∇5. Accordingly, a coherence will most likely occur in vibrations

that not only have large values for ∇1 and ∇N , but involve significant distortion of the electron den-
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sity around the sulfur atom and in the π-conjugation of the phenyl rings. The two modes that fit all

these criteria are ν18 and ν25, which not only have relatively large ∇N in Table 9.2, but the largest

of these two gradients in S4 has a slope that is in the opposite direction of the larger gradient in S5.

This relationship indicates that, as the molecule undergoes nuclear displacements that are a result

of the combined excitation of ν18 and ν25, the FC overlap for the S4 ← S1 transition will increase

as the overlap for the S5 ← S1 transition decreases. Figures 9.7 and 9.8 are useful in visualizing

this concept. Not only do ν18 and ν25 both have significant C−S stretching motions, but, as seen in

Figure 9.7, the distortion of the phenyl rings in ν18 is in-phase with the C−S stretching while the

same phenyl distortion in ν25 is out-of-phase with the thiophene motion. Therefore, the combined

nuclear motion of ν18 and ν25, which oscillates within the two-dimensional well of the S1 potential

at a frequency of ∼105 cm−1, has the net effect of reducing the FC overlap with the wavefunction

of one state while simultaneously increasing overlap with the other.

9.5 Conclusions

In this chapter, we have utilized calculations of vibrational frequencies and potential energy gra-

dients along characteristic nuclear displacements in order to identify vibrational coherences that

are present in the excited-state dynamics of DPT immediately following S1← S0 photoexcitation.

Based on the Fourier-transforms of the time-dependent signals in the TA spectrum, the coher-

ent oscillation observed in the SE band is directly attributed to a coherence between vibrational

overtones of a torsional mode. This method of assignment is well-documented in VCS measure-

ments, however, the low-frequency oscillations observed in the ESA band were instead assigned

to a coherence between vibrational levels in two separate modes. Thus, the combination of ex-

perimental and computational methods to investigate the SN ← S1 electronic resonance condition

in Chapter 5 provided invaluable information on the electronic transitions in DPT, allowing for a

more complete physical interpretation of the excited-state dynamics. Future work will likely in-

volve computational confirmation of these vibrational coherence assignments through simulations

of wavepacket dynamics in the S1 state of DPT.
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Chapter 10

Summary and Future Directions

In this dissertation, we have used a combination of electronic structure calculations and experimen-

tal measurements to obtain a comprehensive understanding of Raman spectroscopic techniques and

the information they provide on the physical properties of molecules. Focusing on excited-state

vibrations observed through resonance-enhanced femtosecond stimulated Raman spectroscopy

(FSRS) measurements, our goals have been to use calculations of excited-state polarizabilities and

electronic state transitions to interpret the experiment, while also using the experimental results to

help benchmark the computational methods and highlight limitations that are necessary to consider

when comparing the two approaches. In addition to developing the analysis of transient Raman

techniques, the combination of both experimental and theoretical approaches provides valuable

insight into the dynamics of molecules in the excited state. Using conjugated thiophene derivatives

as model systems, we have shown that studying the electronic resonance conditions and the effects

of conjugation on the polarizability of these compounds provides a more complete understanding

of the behavior of molecules following photoexcitation than can be obtained with either approach

alone.

Our first step toward interpreting the resonance-enhanced FSRS spectra was the assignment of

experimentally observed Raman bands to calculated vibrational modes in the electronically excited

state. We utilized time-dependent density functional theory (TD-DFT) to calculate off-resonance

excited-state Raman spectra for a series of aryl-substituted thiophene derivatives in both the singlet

(S1) and triplet (T1) excited states.52 The resonance enhancement is vibrational mode-specific, and

Raman transitions with the largest enhancement have significant nuclear displacements along the

potential energy surface (PES) of the resonant higher-lying electronic state. Based on this res-
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onance condition, it was shown in Chapter 4 that relatively inexpensive calculations, which do

not explicitly model the enhancements, can be used to assign the FSRS bands to specific vibra-

tional modes on the basis of vibrational symmetry, as well as the consideration of the resonant

electronic transition from the excited (π,π∗) state of the conjugated molecule to a higher-lying

electronic state. Our vibrational assignments were supported by comparisons between molecules

in the benchmark series with similar structure, which further highlighted the necessity of consid-

ering the resonance condition when assigning vibrations to resonance-enhanced Raman bands, as

there can be significant mode-specific enhancement of Raman transitions that are relatively weak

in the off-resonance calculations.

The excited-state vibrational assignments are further supported by simulations of the resonance-

enhanced Raman spectra, in which we directly calculated the gradient of the PES of the resonant

electronic state along the vibrational displacement coordinates. In Chapter 5, we explored the

resonance enhancements for Raman transitions in the S1 state of 2,5-diphenylthiophene (DPT) in

more detail by measuring the FSRS spectrum at different Raman excitation wavelengths across

the profile of the excited-state absorption (ESA) band, and compared the excitation profile with

simulations of resonance Raman spectra for SN ← S1 transitions which may be resonant with the

Raman excitation frequency.53 Based on the Raman excitation profiles of the FSRS spectra and the

resonance Raman spectra simulated using equation of motion coupled cluster theory with single

and double excitations (EOM-CCSD), it was found that the strongest bands in the FSRS spectrum

can be reproduced from the contributions of resonant electronic transitions to two SN states: a

strong transition to a state that mainly enhances low-frequency (500-700 cm−1) C−S stretching

vibrations, and a weaker transition to a neighboring state that mainly enhances high-frequency

(1400-1600 cm−1) C−−C stretching vibrations. Therefore, the simulated Raman spectra are instru-

mental in the identification of the resonant electronic states, and provide valuable insight into the

interpretation of the experimental FSRS spectrum of the S1 state.

However, the resonance enhancements in the triplet electronic states of the aryl-substituted

thiophenes are more complicated. In Chapter 6, we performed FSRS measurements at different
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Raman excitation energies along the profile of the ESA band in the T1 state of 2-phenylthiophene

(PT), and compared the experimental spectra to simulated resonance Raman spectra using both

TD-DFT and EOM-CCSD.54 Although the simulated spectra have several features that agree well

with the experiment, there are important discrepancies in the relative Raman intensities of both

DFT and CCSD methods, and the FSRS spectra are consistently in better agreement with the

calculated off-resonance spectra, which suggests a weaker mode-specific resonance enhancement

than is observed in the S1 state. Comparisons of the broadening in the triplet ESA spectrum

relative to that of the S1 state revealed that the presence of multiple nearby TN ← T1 transitions

leads to significantly more homogeneous broadening, possibly due to vibronic coupling between

higher-lying triplet states, which results in an overall reduction of mode-specific enhancements.

Therefore, while the simulated Raman spectra still provide valuable insight for the interpretation

of the FSRS measurements, the experiments also help benchmark the accuracy of the calculations.

On a more fundamental level, the delocalized π conjugation of aromatic thienyl- and phenyl-

based compounds has a significant effect on the molecular polarizability,28 and, hence, on the

Raman spectra in general.29,30 In Chapter 7, we compared calculations of ground-state Raman

spectra for a series of benzene and thiophene compounds with aryl substituents. The calculations

were performed using a set of DFT functionals and the second-order Møller-Plesset perturbation

theory (MP2) method, and we benchmarked the accuracy of the calculated Raman intensities with

experimental measurements of spontaneous Raman spectra. It was found that, although the sim-

ulated Raman spectra are generally in good agreement with experiment, the calculations tended

to overestimate the relative Raman intensities of higher-frequency vibrations (1400-1600 cm−1)

compared to those of lower-frequency bands. This discrepancy between calculated and experi-

mental relative Raman intensities is consistent for all methods, and especially noticeable in the

Raman spectra of molecules with multiple aryl rings, such as biphenyl (BP), PT, 2-methyl-5-

phenylthiophene (MPT), and DPT.55 While the mean unsigned errors (MUE) in relative Raman

intensities were roughly similar across methods, B3LYP and TPSSh had ∼11%-19% and ∼5%-

14% smaller MUE values than the remaining methods.55
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This overestimation of calculated Raman intensities in high-frequency bands was explored fur-

ther by examining the effects of anharmonicity and inter-ring torsion on the Raman spectrum. Our

work in Chapter 8 compared the ground-state experimental Raman spectra of BP, PT, and 2,2-

bithiophene (BT) with anharmonic corrections to the calculated Raman intensities, as well as the

calculated Raman spectra at different inter-ring dihedral angles.56 Although the anharmonic cor-

rections provide, on average, 12-15% better agreement with experimental intensities, the relative

Raman intensities are still overestimated for higher-frequency (>1200 cm−1) vibrations. However,

the Raman spectra calculated at various dihedral angles showed that the absolute Raman inten-

sities of the higher-frequency bands, which involve distortion of the bridging C−C bond, were

substantially reduced as the dihedral angle increases and breaks the ring-ring conjugation, whereas

the lower-frequency (<1200 cm−1) vibrations were generally less sensitive. This resulted in sig-

nificantly better agreement between the experimental and calculated relative intensities for the

majority of Raman bands at dihedral angles of∼70◦ in all three molecules. This provides valuable

insight into the cause of the discrepancy between calculated relative intensities and experiment,

and it was concluded that the DFT results are likely overestimating the strength of the inter-ring

conjugation, predicting equilibrium structures that are too planar compared to what is observed

in the experiment. Future efforts toward the accurate prediction of calculated Raman spectra for

molecules with delocalized π conjugation would involve similar investigation of the Raman inten-

sities along the internal coordinate of other low-frequency motions that break conjugation, such

as the Ph−C−C bending along the inter-ring bond. Given that the anharmonic corrections to the

Raman intensities at the DFT level provided a noticeable increase in the agreement of the rela-

tive intensities, another future direction could include an optimization of the equilibrium structure

using anharmonic force constants, which may obtain a more accurate minimum energy structure.

Our comparisons between calculated and experimental Raman spectra in both ground and ex-

cited states offered comprehensive insights into the potential energy gradients of the states involved

in electronic transitions, which become very useful when interpreting excited-state dynamics. This

was demonstrated in our work from Chapter 9, which studied the excited-state dynamics in DPT
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immediately following S1← S0 photoexcitation. The TA spectrum of DPT shows two major quan-

tum beating patterns in the differential absorption of the SN ← S1 ESA band, and a third located

in the S0 ← S1 stimulated emission (SE) band. The oscillations were attributed to vibrational

coherences in the S1 state of DPT that alter the Franck-Condon overlap with the resonant elec-

tronic SN or S0 states. Using DFT calculations of the S1 vibrations, the oscillation in the SE band

was straightforward to assign as a coherence between vibrational overtones of the same torsional

mode. However, based on our work from Chapter 5 characterizing the resonance-enhancement

condition for the excited-state transitions in DPT, we were able to identify both of the beating

patterns in the ESA band as a coherence between vibrational states of two different modes, which

oscillates at a frequency that is the difference between the vibrational frequencies of the two modes.

Thus, the comparisons between calculated and experimental excited-state Raman spectra provided

invaluable information on the electronic transitions in DPT, allowing for a more complete phys-

ical interpretation of the excited-state dynamics of this molecule. Future work confirming the

assignments of the vibrational coherences would involve modeling the structural evolution of the

time-dependent wavepacket along the S1 PES. Additionally, further determination of the initial

dynamics of DPT may be obtained by reducing the pulsewidth of the actinic pump pulse toward

the sub-10 fs level, increasing the time resolution of the transient absorption measurement and

observing higher-frequency oscillations in the absorption spectrum.

In addition to giving specific insights into the behavior of the electronic and molecular struc-

tures of the molecules studied, our computational and experimental studies of Raman scattering

provide significant contributions to the detailed analysis of excited-state resonance Raman spectra.

While our work serves as a foundation on which researchers may utilize relatively inexpensive

calculations to interpret the vibrational and electronic properties of molecules, additional efforts

are necessary to accurately predict FSRS measurements. Although the simulations of resonance-

enhanced Raman spectra appear to be successful in reproducing the mode-specific enhancements

for low-frequency (500-800 cm−1) and high-frequency Raman transitions (1400-1600 cm−1), the

simulated intensities for the intermediate frequency region between 800 and 1400 cm−1 still do
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not reproduce the bands in the experiment. This may be due to the fact that the gradient approxi-

mation is most valid for A term scattering. Therefore, the calculated resonance Raman intensities

are expected to be more accurate for vibrations with large gradients along the resonant state po-

tential. For the thiophene derivatives, these are the C−S, C−C, and C−−C stretching vibrations

within the low- and high-frequency regions. On the other hand, the intensities are less accurate for

vibrations like the C−H bending modes between 1100-1300 cm−1. The gradient approximation

also does not include vibronic coupling between electronic states, which can play a significant role

in FSRS measurements, which typically involve resonant transitions to higher-lying states that are

closely spaced and are more likely to have contributions from multiple states in the transient Raman

spectrum. Thus, more accurate simulations of resonance-enhanced Raman intensities will require

calculation of Herzberg-Teller vibronic coupling between electronic states, which will account for

contributions from B and C term Raman scattering. However, the methods currently available for

simulating Herzberg-Teller coupling effects on the resonance Raman spectrum rely on the overlap

between harmonic vibrational wavefunctions at the equilibrium structure of the resonant electronic

state, for which the harmonic approximation breaks down considerably when extrapolating to the

Franck-Condon (FC) geometry.54 Future work in detailing the effects of multiple state resonance

on the FSRS spectrum would involve calculations of the vibronic coupling at the FC geometry for

the vertical excitation to higher-lying states. In addition to a more accurate reproduction of the

excited-state resonance Raman spectrum, these calculations would determine whether or not the

coupling provides a substantial contribution to the homogeneous broadening of the TA spectrum,

which ultimately provides a better understanding of the ways in which multiple electronic state

transitions affect the dynamics observed for excited-state molecules.

It is also possible to measure the vibronic coupling between resonant transitions experimentally,

using two-dimensional electronic-vibrational (2D EV) spectroscopy,217 a coherent four-wave mix-

ing technique that uses electronically resonant and vibrationally resonant transitions to elucidate

couplings between electronic and vibrational degrees of freedom.218 Comparisons between the 2D

EV results and the calculated vibronic couplings will not only lead to a better understanding of

162



the advantages and limitations of the experimental and computational techniques, as we have seen

in our work comparing FSRS with simulated Raman spectra, but the results will also provide a

more detailed picture of the energy transfer dynamics observed for molecules in the excited state.

Future developments in the measurement and analysis of FSRS and 2D EV spectra are expected to

equip researchers with the tools necessary to map the topography of the multiple electronic state

potential energy surfaces involved in complex photochemical reactions.

In addition to the vibrational dynamics along the initial excited state, our work will assist

resonance-enhanced FSRS measurements in determining information about the nuclear dynamics

along the PES of the resonant states involved in subsequent electronic transitions. The Raman

bands with the strongest enhancements can identify the nuclear vibrations that will have the largest

displacement along the potential energy surface of the resonant electronic state, and, therefore,

allow for the tentative prediction of how the structure of the molecule will evolve, following a

secondary excitation to that state. With complementary information on the coupling between elec-

tronic and vibrational transitions, obtained through both theoretical calculations and future 2D EV

measurements, it may be possible to selectively induce nuclear motion along a desired reaction

coordinate by exciting the molecule to an electronic state with a large gradient along that coordi-

nate.7 Therefore, utilizing both experimental and computational techniques to fully understand the

potential energy surfaces and interactions of multiple electronic states will allow for more specific

photochemical control of reaction yields, helping to guide the efficient formation of specific reac-

tion products for use in material applications, and offering even more detailed information on the

excited-state electronic and nuclear dynamics of molecules.
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