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Abstract 

The miniaturization of future microelectronics demands the development of high quality ultrathin 

(few to sub-nm) dielectric films for application in metal-insulator-metal (MIM) architectures. 

Among all other approach employed for ultrathin dielectric film fabrication, atomic layer 

deposition (ALD) provides a unique approach for the fabrication of ultrathin TBs with several 

advantages including an atomic-scale control on the TB thickness, conformal coating, and low 

defects density. Despite extensive efforts in ALD devices, the figure-of-merit dielectric constant 

(er) exhibits a significant monotonic decrease with the film thickness as compared to bulk single 

crystal value. Primarily, the control over metal-insulator (M-I) interface, specifically in ultrathin 

thickness range, remains a challenge due to the formation of defective oxides and interfacial layer 

(IL). This work demonstrates the development of high quality Al/ALD Al2O3/Al MIM trilayers 

using a unique in-house integrated in situ deposition (sputtering/ALD) method. These trilayers 

devices were characterization to understand and control the IL formation with atomic precision. 

To the best of our knowledge, high er ~8.9 that is within 3% of the bulk value ~9.2 has been 

achieved for the first time on the ALD Al2O3 films in thickness range ~3.3-4.4 nm. This 

corresponds to an effective oxide thickness ~1.4-1.9 nm comparable to High-K HfO2 of 3-4 nm. 

The low leakage current density (J) ~10-9 A/cm2 is an order of magnitude lower than the best 

previously reported values. These results suggest that the optimal ultrathin high quality ALD Al2O3 

provides a much lower-cost alternative for gate dielectric. Also, ALD Al2O3 seed layer (SL) 

approach was used to illustrate the critical importance of control over M-I interface to obtain dense 

hydroxylation and reduce incubation period, improving the dielectric properties of ultrathin ALD 
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MgO films. ALD MgO with SL demonstrated er ~8.8-9.4 in thickness range ~3.8-4.9 nm 

comparable to bulk MgO ~9.4. In contrast, low  er ~3.6-4.7 was observed for ALD MgO without 

Al2O3 SL in a similar thickness range. Both the scanning tunnelling spectroscopy and ab-initio 

molecular dynamics studies point out that SL allows the initial dense nucleation and perfect 

interface resulting in a high quality dielectric with tunnel barrier height (Eb)~1.5 eV compared to 

0.8 eV for MgO without SL. This result provides an approach to engineering incompatible M-I 

interface using a SL for obtaining high quality dielectric as required for applications in MIM tunnel 

junctions and CMOS. In addition, tuning thickness of Al wetting layer (𝑡"#) in capacitors consisting 

of Nb (25 nm)/Fe (20 nm)/ALD Al2O3 (2.2 nm)/	𝑡"#/Fe (20 nm)/Nb (50 nm) shows switching 

between pure dielectric behavior for 𝑡"#	>1 nm and ferroelectric/dielectric (FE/DE) bilayer at 𝑡"# ≤ 

1 nm. These FE/DE bilayer gate with ultrathin DE are promising for low power microelectronic 

devices. This helps to realize FE/DE bilayer capacitors with a total FE/DE total thickness < 3-4 

nm that show a dynamic switching on/off of the negative capacitance under the application of an 

external force. This result not only provides a viable approach for generating ultrathin FE/DE 

bilayer capacitors but also offers a promising solution to low-power consumption microelectronics 

and piezoelectric sensors applications. Pinhole-free and defect-free ultrathin dielectric tunnel 

barriers (TBs) is a key to obtaining high tunnelling magnetoresistance (TMR) and efficient 

switching in magnetic tunnel junctions (MTJs). Motivated by this, this work explores fabrication 

and characterization of spin-valve Fe/ALD-Al2O3/Fe MTJs with ALD Al2O3 TB thickness of 0.55 

nm using in situ ALD. Remarkably, high TMR values of ~77% and ~ 90% have been obtained 

respectively at room temperature and at 100 K, which are comparable to the best reported on MTJs 
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having thermal AlOx TBs with optimized device structures. In situ scanning tunnelling 

spectroscopy characterization of the ALD Al2O3 TBs has revealed a higher tunnel barrier height 

Eb of 1.33 eV, in contrast to Eb~0.3-0.6 eV for their AlOx TB counterparts, indicative of 

significantly lower defect concentration in the former. This first success of the MTJs with sub-nm 

thick ALD Al2O3 TBs demonstrates the feasibility of in situ ALD for fabrication of pinhole-free 

and low-defect ultrathin TBs for practical applications and the performance could be further 

improved through device optimization.  
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 Introduction 
 

Since the early 1970’s, Moore’s law is the driving principle behind the advancement in the 

semiconductor industry that predicted the density of transistors in an integrated circuit double 

approximately every two years [1]. Following this law, the size of transistors decreased from 10 

	𝜇𝑚 to 10 nm over the past few decades, with 7 and 5 nm technology are predicted to be prominent 

in future electronic devices [2]. Consequently, SiO2 gate dielectric has decreased its thickness from 

hundreds of nm to few nm [3]. The further miniaturization of microelectronics towards the reduced 

dimensions demands ultrathin dielectric (few nm to sub-nm thickness) in range of 1-2 nm or below 

[4-13]. The applications requiring such ultrathin high quality dielectrics include 

metal/insulator/metal (MIM) architectures [10, 12, 13] and tunnel junctions (TJs) [9, 14-18]. As 

technology approaches the end of Moore’s law and beyond the control over metal-insulator (M-I) 

interface with atomic precision, low defect density, and uniformity have become critically 

important for future microelectronics device applications [19].  

 Metal-Insulator-Metal Architecture  

MIM architecture is the simplest trilayer structure with insulating barriers (like Al2O3, MgO, HfO2, 

etc.) in the few nanometers thicknesses range sandwiched between two metal electrodes. These 

architectures are the building blocks for many microelectronic circuits like gate dielectrics in 

complementary metal-oxide-semiconductor (CMOS) technology [10, 12, 13]. CMOS technologies 

have been the driving principle for the innovation and advancement in logic-based devices over 
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the past decade due to a significant reduction in the dimension of gate dielectric. Along with the 

reduction in the gate dimension, SiO2 dielectric is approaching its physical limitations below 1.3 

nm thickness due to considerably increased leakage current density (J) of 1-10 A/cm2 that occurs 

primarily due to the difficulties in controlling the defects in ultrathin SiO2 [3]. This not only 

prevents achievement of the required gate voltages for device operation, but also exceeds the 

required threshold of ~10-3 A/cm2 for high-performance, low-power consumption microprocessors 

by several orders of magnitude [3, 20-23]. The difficulties in down-scaling the SiO2 dielectric 

gates have motivated an intensive research on high-K dielectric materials [24, 25]. Considering the 

higher dielectric constants (eHik) than that of SiO2 (er ~3.9), the high-K dielectric can achieve an 

effective oxide thickness (EOT=tHiK·3.9/eHik) in the range ~1-2 nm, with a larger thickness tHiK that 

reduces J [26-28]. For example, in order to achieve an equivalent SiO2 dielectric of 

thickness	𝑡2345~1.5 nm with the specific capacitance given as (Co=C/A=e6	3.9/	𝑡2345), the 

corresponding thickness of high-K material HfO2 with eHik ~20 is ~ 7.7 nm for same value of Co, 

which results in the lower J ~ 10-5 A/cm2 [22].  

Using high-K dielectric material new architectures designs like fin field-effect transistors 

(FinFETs) have been developed that uses a conformal spacer gate as shown in Figure 1.1(a) to 

decrease power consumption and efficiently control switching on/off operation [26-28]. Compared 

to a standard planar transistor, this allows for better performance and voltage scaling as the process 

node decreased, by minimizing the transistor limitations like high leakage and high-power 

consumption [26-28]. Despite the progress made in ultrathin high-K gate dielectric of a few nm in 
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thickness, further reduction of their thickness remains challenging due to the difficulties in 

controlling defects, which is similar to the SiO2 dielectric case [26, 28].  Recently, vertically 

aligned nanowires have been used in the development of three-dimensional (3D) gate architectures 

to keep up requirement of low power and high performance devices with scalability [29].  

Applications requiring ultrathin high quality dielectric include the Josephson junctions (JJs) for 

quantum computing. When two superconducting layers are brought together within a few 

nanometers range, the superconductor wave functions couple together, allowing Cooper pairs, 

which are paired electrons to tunnel through the ultrathin barrier as in Figure 1.1(b). For quantum 

computing, the superposition of quantum states must have long coherence times. If the qubits 

couple too strongly with defects, then the entangled state will be lost, and the computation cannot 

be performed. While JJ qubits are entangled, their short coherence times have been problematic 

due to two-level fluctuations (TLFs). Most studies shows that defects in the dielectric materials 

particularly oxygen vacancies and interstitials in the tunnel barrier (TB), are the primary source of 

TLFs [30]. This decoherence in JJs is a major challenge, that results in the collapse of qubits wave 

function before computation completes [30]. This requires better control over the fabrication 

process with stoichiometric and defect free ultrathin high quality dielectric critical for improving 

the performance of JJs, which is challenging using current state of the art processes [31].  

 Another TJs application includes magnetic tunnel junctions (MTJs), which uses an ultrathin 

insulator sandwiched between two ferromagnetic (FM) materials that allow spin polarized 

electrons to tunnel through the barrier as shown in Figure 1.1(c). The most important property of 
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MTJs is that the spin dependent  current depends on the relative orientation of the magnetization 

in ferromagnetic magnetic (FM) layers [31, 32]. In MTJs, defective oxides lead to the scattering 

and spin flip of spin polarized electrons passing through the FM layer. The oxygen vacancies and 

defects are unavoidable in the ultrathin dielectric films fabricated using the thermal oxidation 

process [31]. These vacancies and defects can effect the conductance by non-resonant scattering 

of  electrons causing a substantial reduction of  magnetoresistance (TMR). The fabrication of high 

quality TB with reduced oxygen vacancies and defects concentration results in the less scattering 

and coherent spin tunnelling resulting better TMR. The current approaches in achieving the logic 

functionality with MTJs include designing an integrated CMOS and MTJ circuit, where CMOS 

devices are used for implementing the required intermediate read and write circuitry. MTJ based 

logic has great potential because of the non-volatility, practically unlimited endurance, CMOS 

compatibility, and fast switching speed. By direct communication between spin-transfer torque 

(STT) in MTJs, several realizations of intrinsic logic-in-memory circuits have been demonstrated 

for which the MTJ devices are used simultaneously as fast access nonvolatile magnetic memory 

and computing elements [33-35]. 

 

 

 

 

 



 

 

  

5 

 

Navigating these trends of continuing miniaturization of devices, there is an increasing demand 

for the fabrication of ultrathin TB with low J, low defect concentration and uniform over the large 

wafer to increase device’ performances as demanded by today’s technological advancement. One 

critical issue with current state of the art thermal oxidation processes is the presence of defects and 

pinholes at ultrathin thickness, which is unavoidable [31]. Another challenge is precise control 

over dielectric thickness, its quality and interfaces with metals. However, the precision thickness 

control in sub nanometres range without pinholes and defects free uniform TB is demanded for 

future applications. Thus, the M-I interface needs to be controlled well to obtain high quality 

ultrathin dielectric for potential application in future microelectronics.  

 Gate Dielectric for CMOS 

There are several device architectures developed to address the critical issue with the increase in 

leakage current with a corresponding reduction in the dimension of gate dielectric approaching its 

Figure 1.1 Schematic of metal-insulator-metal architecture a) conformal ultrathin ALD sidewall spacer gate 

dielectric in field effect transistors (FinFETs) or Tri-Gate for complementary metal-oxide-semiconductor (CMOS) 

technology  b) Josephson Junction with ultrathin dielectric sandwich between two superconducting electrode with 

Copper pair tunnelling and c) Magnetic Tunnel Junctions with ultrathin dielectric  sandwich between two 

ferromagnetic electrode with  spin polarized electron tunnelling. 

FinFETs/ Tri-Gate 

a  
c  
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physical limitations [20, 21]. Among these, FinFETs architecture with uniform ultrathin spacer 

gate dielectric has been developed to increase the contact area between the channel of the transistor 

and the gate. By scaling in a vertical direction, this allows faster switching times and higher J. 

However, like planar transistors, FinFETs transistors will eventually reach a point where they 

cannot scale further as process technology nodes shrink. To scale, the contact area between the 

channel and the gate needs to increase. The way to implement this is to use a gate-all-around 

(GAA) architecture. The GAA design allows transistors to stack vertically, rather than laterally. 

Three-dimensional (3D) tri-gate fin transistors have been used for 14 nm technology node that 

deliver incredible performance, power, density, and better cost per transistor. This provides 

manufacturing of a wide range of high performance to low power devices. This advancement in 

3D architecture will continue with future complex device architecture demanding the fabrication 

of uniform, conformal, pinhole and defect-free ultrathin gate dielectrics to meet the requirement 

of low J. 

Following the exponential dependence in technology node as predicted by Moore's Law, the cost 

of a single transistor on silicon chip during the last few decades has decreased more than a million-

fold, as the number of devices on a single chip have also increased more than a million-fold. As 

the further advancement in microelectronics continues devices require a reduction in their 

dimensions. In CMOS technology, there is a continuing drive to shrink silicon devices that requires 

gate oxide layers with thickness ~1 nm or below [20, 21]. Future scaling has been the next 

important question in today’s semiconductor industry, especially because numerous challenges 

arise from both the device physics and manufacturing capabilities perspective. The traditional 
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scaling based on the reduction in the physical dimensions of CMOS transistors, with simultaneous 

reduction of supply voltages and dissipated power, is reaching its limits. Intel introduced its 

advanced manufacturing process technology to help deliver the expected benefits of Moore’s Law 

popularly known as the “Tick” cycle [36]. However, electron at this thickness produces high 

leakage current and device instability [20, 21]. The deposition of ultrathin uniform SiO2 films and 

maintaining the insulating properties has also become increasingly difficult. High-K dielectric 

materials are currently being investigated to achieve higher capacitances with thicker films to 

obtain low leakage current, a high dielectric constant (er), and high breakdown strength to achieve 

high capacitance densities [26, 27]. The continuous application in today’s process technologies 

includes the next big innovation in processor microarchitecture known as the “Tock” cycle. This 

“Tick-Tock” model still allows to follow with the empirical Moore's Law [36]. However, this 

decreasing size comes at an increasing cost, so most recent technology generations do not offer 

much advantage in terms of cost per transistor, or cost per function, when compared to the previous 

nodes. Intel recently announced its focus is now shifted on “Process-Architecture-Optimization”. 

This includes the introduction of new materials and innovative techniques for the optimization of 

device performance. The efficient control in the gate dielectric is the main reason for the success 

of CMOS technology that allows the integration of more than a billion transistors on a chip to 

make portable computers and smartphones viable. However, the increase in dissipation power 

density, especially standby power, has resulted in a trade-off between performance/speed and low-

power requirements. 
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As Moore’s law is approaching its physical limitations due to its increased energy consumption 

and complexity in design, the reduction in the size of transistors cannot keep up as demanded by 

today’s technological advancement. The International Technology Roadmap for Semiconductors 

predicts that the semiconductor technology will reach its last generation by the year 2025 [37]. In 

order to address these problems, the new paradigm called "More than Moore" is commonly used 

in today’s technology [38].  Ultimately, the devices that use charge as the fundamental element to 

store information will soon reach its power and capacity limitations. The new architecture and 

functionality with reduced device dimension demand high quality ultrathin dielectric. These results 

in an increase in coherent tunnelling improving the device performances as demanded by current 

technological advancement.  

 Magnetic Tunnel Junction 

Spintronics is a relatively new concept that utilizes the spin degree of freedom of electrons to 

control the flow of electrical current expanding the power and capability of electronic devices. 

Spin-polarized current can be generated by exploiting the influence of spins on the transport 

properties of electrons in FM, which has an imbalance in density of states (DOS) for majority and 

minority carriers due to spin-orbit interaction [39]. With the advancement in thin film deposition 

techniques, such as sputtering and molecular beam epitaxy (MBE), the fabrication of multilayered 

structures composed of thin individual layers in the order of nanometres became feasible. These 

layers have thickness smaller than the mean free path of electrons that helped to realize new 

quantum mechanical phenomenon. Fert et. al. [40] and Grunberg et. al. [41] in 1988,  first 
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discovered that the resistance of Fe/Cr/Fe multilayer structure changed based on the relative 

orientation of the two layers leading to the discovery of giant magnetoresistance (GMR). The 

orientation of FM layers depends on the direction of local spin polarized electrons with the 

majority carriers in the FM layers. Figure 1.2(a) shows anti-parallel orientation of two FM layers 

with majority spin carriers (i.e. red in top layer and blue in bottom layer) separated with non-

magnetic layer (yellow). The majority carriers in both layers suffer large scattering from either of 

these layers. This results in a low spin polarized current or high resistance through the multilayer 

structure. However, when orientation of these layers is parallel (i.e. blue electrons) as in Figure 

1.2(b), only minority carrier (i.e. red electrons) suffer scattering from both layers resulting in high 

majority blue spin polarized current or low resistance through the multilayer structure. This 

relative change in the resistance between parallel and anti-parallel orientation is known as GMR. 

The orientation of these layers can be changed by the application of the external magnetic field. 

These GMR structures were later commercialized to make magnetic sensors with an increase in 

the areal density of information stored on the hard disk drives. 
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 Physics of Spin Tunnelling 

Replacing the non-magnetic layer (i.e. yellow) in GMR structure with insulating material in the 

thickness range of 1-2 nm results in the spin polarized electron tunnelling between two FM layers 

[32]. Figure 1.3 shows the schematic of electron wave function incident on the potential barrier 

with the ultrathin insulator, the evanescent states in the barrier have a finite probability of 

tunnelling through the insulator. Consider the bias voltage (V) applied between two metal 

electrodes raises fermi energy (𝐸.) of one metal electrode relative to other by an electron volt (eV). 

The number of electrons/spins tunnelling from one electrode to another is given by the product of 

density of states (DOS) at the given energy of in the left electrode (rl(E)) and DOS at same energy 

in the right (rr(E)) multiplied by probability of transmission matrix (T) through the barrier. The 

probability that states are occupied in left electrode is ƒ(E) and in right is 1- ƒ(E-eV) respectively, 

Figure 1.2 Schematic of giant magnetoresistance device structure with two FM electrodes in a) anti-parallel 

orientation ( i.e. red and blue)  layers separated by non-magnetic electrode (i.e. yellow) resulting low spin 

polarized current (or  high resistance state)  and b) parallel orientation (i.e. blue and blue)  separated by non-

magnetic electrode (i.e. yellow) resulting high spin polarized current  (or  low resistance state). 

a  

b 



 

 

  

11 

where ƒ(E) is the Fermi-Dirac distribution function. The total tunnelling current (𝐼) is the 

difference between the left and right given by equation (1). 

I(V) = Il®r – Ir®l 

      = ∫ r#(E). r@(E − eV)ï𝑇ï
5
	ƒ(E)	[ƒ(E − eV) − ƒ(E)]dE	

															
IJ
KJ 																																										(1)  

 The expression for tunnelling current can be obtained by assuming the square type potential 

barrier from simple undergraduate quantum mechanics, where the tunnelling probability is 

obtained as  

𝑇 =
16	𝐸.. 𝐸/
	N𝐸. + 𝐸/P

5 	𝑒𝑥𝑝
K5T√5VℏX YZ																																																																(2) 

where 𝐸.	and 𝐸/ are the Fermi level of the metal electrode and the barrier height of the insulator 

respectively, m is the mass of electrons, ℏ is the Planck’s constant, and d is the thickness of the 

insulator.  
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From equations (1) and (2) the 𝐼 is proportional to~𝑒𝑥𝑝KT√YZ. Thus, the wave function decays 

exponentially across the barrier, which demands the fabrication of ultrathin dielectric to increase 

the tunnelling current. However, obtaining high quality dielectric at ultrathin thickness with fewer 

defects and pinholes with higher 𝐸/	is challenging. The external applied voltage (V) across the 

barrier effectively lowers the average 𝐸/ for electron tunnelling in one electron spin and raises the 

average 𝐸/ for electrons tunnelling in opposite spin by eV. This leads to the increase in current 

with increase in V, which is the characteristic for quantum tunnelling. Thus, the tunnelling 

conductance in low bias voltage is obtained by equation (3). 

𝐺 =
𝑑𝐼
𝑑𝑉 ~` ra(E). rb(E − eV)ï𝑇ï

5
ƒ(𝐸)	

𝑑𝑓((E − eV))
𝑑𝑉 dE

IJ

KJ
																																(3) 

Figure 1.3 Schematic of  the metal-insulator-metal structure with ultrathin 1D potential barrier with barrier 

height (𝐸/) and thickness (d) showing the basics of quantum tunnelling in which the electron wave function 

decays exponentially across barrier for electrons with the Fermi energy (Ef ). 
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 Tunnelling Magnetoresistance 

Tunnelling magnetoresistance (TMR) is the consequence of spin-dependent tunnelling through an 

ultrathin barrier in FM electrodes. In MTJs, the magnetization direction of one FM layer that is 

pinned known as the “fixed layer”, while the other FM layer known as the free layer can change 

its magnetization direction under the application of external magnetic field or spin polarized 

current known as “free layer” as in Figure 1.4(a). MTJ is designed to have two stable magnetic 

states (i.e. parallel and anti-parallel) depending on the local spin polarized electrons. When the 

orientation of two layers are in the parallel direction, both the majority and minority carriers have 

available states in other FM material to tunnel through the insulator, resulting in a high current or 

a low resistance state known as parallel resistance (𝑅d) configuration as in Figure 1.4(b). However, 

if the orientation of the two layers are in opposite direction, the majority (minority) states available 

in one FM have less available states in other FM, resulting in low current or a high resistance state 

known as anti-parallel resistance (𝑅"d) configuration as in Figure 1.4(c). Thus, depending upon 

the relative orientations of magnetic layers bit “0” and “1” can be stored for 𝑅d and 𝑅"d 

configuration respectively. The information about a stored bit is read out using low sensing current 

as in Figure 1.4(d).  
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TMR can be obtained as the difference of conductances or resistances in two resistance state as 

TMR =
Gi − Gji
Gji

× 100	% =
Rji − Ri

Ri
× 100	%.																																																		(4) 

where	𝐺"d and	𝐺d, and 	𝑅"d	 and 𝑅d are conductance and resistance for anti-parallel and parallel 

configuration respectively. The TMR can also be explained with the concept of DOS of FM as 

shown in Figure 1.5(a) and (b). With parallel configuration there are more available states for the 

majority spin polarized electrons tunnelling through one FM electrode to the other FM resulting 

low resistance state	𝑅d. However, in anti-parallel configuration there are less available states for 

the majority or minority spin polarized electrons tunnelling through one FM electrode to other FM 

resulting in the high resistance state	𝑅"d. Based on the assumption for high quality MTJ that during 

tunnelling the spin of electron is conserved with no spin-flipping occurs, TMR can also be 

expressed in terms of the magnitude of polarization of FM materials using Julliere model [32]
 
 

Free layer 

Barrier 

Fixed layer 

Writing bit “0” Writing bit “1” 

Transistor (ON) 

Reading 

stored bit 

using sense 

current  

MTJ device Structure  

a  c  b d 

Figure 1.4 Schematic of a) MTJ structure with free layer (top), fixed layer (bottom) and tunnel barrier (middle) 

b) writing bit "0"( with parallel resistance 𝑅d configuration) c) writing bit "1" (with anti-parallel resistance 

𝑅"d	configuration) and d) reading the stored bit using sense current and compare the output with transistor. 
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𝑇𝑀𝑅 = 5	dp	dX
qKdp	dX	

× 100	%																														(5)                                                                                                                                   

where 𝑃q		and 𝑃5		are the magnitude of spin polarization of two electrode materials. The 

conductance in each channel is thus proportional to the tunnelling probability, which is determined 

by Fermi’s golden rule [31]. Thus, the tunnelling probability which depends choice of FM material 

depends on the number of available free spin polarized electron as given by  

𝑃 = s↑(Y.)Ks↓(Y.)
s↑(Y.)Is↓(Y.)

                    (6)    

where N are the number of spin polarized electrons available for tunnelling near 𝐸..                                                                                                          

 

Most of the FM like Fe, CoFe and CoFeB have in-plane magnetization with easy magnetization 

axes that lie in-plane (i.e. 0 or 180°), while the hard axis lies perpendicular to plane (i.e. 90°) as in 

Figure 1.6. There is a difference in the energy between easy and hard axes in FM material known 

a b 

I 

Figure 1.5 Schematic of tunnelling magnetoresistance (TMR) in MTJ structure showing spin tunnelling with a) parallel 

configuration with spin up as majority carriers in both FM electrodes ( Bottom left figure shows density of states of 

corresponding to the FM electrodes in parallel configurations); and (b) anti-parallel configurations with spin up as 

majority carriers  in FM1 and spin down as majority carriers in FM2 ( Bottom right figure shows density of states of 

corresponding to the FM electrodes in anti-parallel configurations). This figure is adapted from reference [31]. 
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as magneto crystalline anisotropy. Thus, the randomization of stored bit prevented at room 

temperature (RT) unless the external energy is supplied to overcome this energy barrier, which is 

much higher than the thermal energy	𝐾w𝑇~25	meV available at RT.  

 

 Application of MTJs 

Over the past few decades, MTJ research has become an active area of research and significant 

progress has been made in the fabrication of devices for magnetic sensors and non-volatile 

magnetoresistive random-access memory (MRAM) devices, which plays a major role in a wide 

variety of microelectronics applications. The revolution in today’s digital information storage 

came with the increase of storage density of hard disk drives by several orders of magnitude. This 

became possible only when traditional anisotropic magnetoresistance sensors were replaced with 

GMR and TMR sensors allowing decreases in the size of a bit. Recent research includes the 

Figure 1.6 Schematic of switching energy of MRAM device structure where randomization of spin is prevented with 

energy barrier (U) required to overcome to switch from easy axis magnetization direction ( i.e. 0° to 180°) to 

perpendicular to the plane configuration (90°) for non-volatile memory applications. 

En
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fabrication of magnetic materials with perpendicular magnetization that utilize interface 

perpendicular anisotropy between the CoFeB–MgO interface resulting in a  large TMR [42]. 

MRAM based MTJs have now begun to commercialize and replace other random-access memories 

or embedded CMOS logic devices. Figure 1.7(a) shows a conventional MRAM device structure 

using magnetic field induced writing by the current passing through the bit line (BL) and write 

world line (WWL), where the magnetic field does not scale proportionally with current with 

decrease in the dimension of BL. The newly introduce spin transfer torque (STT) devices use 

torque exerted by a spin polarized current to the flip the magnetization direction in FM known as 

STT-MRAM as in Figure 1.7(b). This offers an efficient way of rewriting the memory with low 

power consumption and scales proportionally with current. The current STT-MRAM technology 

use an array of MTJs with an easy axis of magnetization oriented out of the plane of the layers to 

obtain high density MRAM devices [43, 44]. This offers an efficient way of reducing long start-

up power consumption but provides the key advantages of high density as in dynamic-

RAM, high speeds comparable to Static-RAM and non-volatility like Flash storage. 
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 Recent Progress in MTJs  

The discovery in1975 by Julliere [32] in Co/Ge/Fe with TMR~14% at 4.2 K did not receive much 

attention due to its limited low temperature applications. Moodera et al [45] and Miyasaki et al 

[46] in 1995 observed TMR~70% at RT on MTJs made with amorphous AlOx barrier that 

increased the intensive research in this area [47]. Due to the amorphous nature of the barrier FM 

electrodes do not have crystallographic symmetry, a variety of Bloch waves with 

different symmetries couple with evanescent states in AlOx TB as in Figure 1.8(a) [48]. However, 

at ultrathin dielectric thickness, AlOx suffers from defects and impurity creating a non-uniform 

insulator across the device that results in non-coherent spin tunnelling, where the spin of electrons 

is not conserve resulting in the scattering and spin flip as shown in the transmission electron 

microscope (TEM) image in Figure 1.9(a). However, highly crystalline TB 

Figure 1.7 Schematic of (a) conventional MRAM device using magnetic field induced writing by the current passing 

through bit line (BL) and write world line (WWL) and (b) STT-MRAM device with spin transfer torque magnetization 

switching with write operation performed by passing the current directly through MTJs.  This figure is adapted from 

reference [43,44]. 

a  b 
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preserved the symmetry of the electronic states tunnelling in FM electrodes known as coherent 

tunnelling as in Figure 1.8(b).  Figure 1.9(b) shows the corresponding TEM image with crystalline 

MgO barrier in CoFeB/MgO/CoFeB after post annealing at 500 °C [31]. This is the key to 

increasing tunnelling probability of majority and minority electronic states in FM electrodes with 

evanescent states in a highly crystalline MgO barrier [48]. Also, a first-principles theoretical 

calculation in epitaxial Fe/MgO/Fe MTJ shows the possibility of high TMR  ~1000% [49] that 

accelerated the research and development of MTJs using MgO TBs. 

 

Figure 1.8 Schematic of different electronic states tunnelling through (a) amorphous AlOx with variety of Bloch 

waves with different symmetries couple with evanescent states in barrier resulting non-coherent tunnelling and (b) 

crystalline MgO barrier that can preserve the symmetry of different electronic states tunnelling in FM electrodes 

resulting coherent tunnelling. This figure is adapted from reference [31]. 

a  b 
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Table 1 shows the progress made in fabrication of epitaxial MTJs fabricated using the molecular 

beam epitaxy (MBE) process under the same condition but with different FM electrodes showing 

an increase in TMR by changing from Fe to Co. The high TMR in epitaxial MTJs is due to coherent 

spin tunnelling as discussed before.  This improvement in TMR is in agreement with first-

principles calculations that predict the minority electronic states in Co lies well below EF. This is 

reflected during spin tunnelling at anti-parallel orientation [50]. Although, the MBE process uses 

layer-by-layer growth that allows atomic-scale control for the fabrication of epitaxial MTJs, this 

technology is expensive and is difficult to scale up for the industrial applications. Besides, large 

size crystalline MgO substrate is not available currently for large scale production in industry, 

which makes production process unreliable.  

 

Figure 1.9 Transmission Electron Microscope (TEM) image of a) Fe/AlOx/NiFe showing non-uniform 

amorphous AlOx. This figure is adapted from reference [31] and b) CoFeB/MgO/CoFeB showing crystalline 

MgO barrier after post annealing at 500 °C. This figure is adapted from reference [48]. 

a  b  

a  b 
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                        Table 1.1 Progress made in MBE fabricated MTJ. 

 

 

 

 

Magnetron sputtering is an industrial proven technique and has been applied for fabrication of 

MTJs on SiO2/Si substrate, which is the foundation for many electronic devices. However, SiO2/Si 

is not a well suited substrate for epitaxial growth of MTJs due to its amorphous nature and large 

lattice mismatch with popular FM materials such as Co, Fe, and their alloys. Sputtering process 

deposit amorphous MTJs on SiO2/Si substrate and post annealing is essential for improving the 

crystallinity. The sputtered polycrystalline CoFe and MgO based MTJ show TMR 220% [53] after 

annealing at 350 ℃ for 30 minutes. A slightly improved to TMR ~230% was observed after 

annealing at 360 ℃ for 2 hours under the magnetic field of 8KOe [54]. CoFeB is another popular 

FM with the highest degree of spin polarization and highest reported TMR so far. The 

improvement in TMR with CoFeB based MTJs is due to improved crystallinity of MgO after post 

annealing at high temperature ~ 500 ℃ [55]. This process is only limited for research and 

development with different challenges needing to be overcome to make its suitable for application. 

MTJ structure TMR in % (Year) 

Fe/MgO/Fe [51] 180 (2004) 

Fe/MgO/Co [52] 270 (2005) 

Co/MgO/Co [4] 410 (2006) 



 

 

  

22 

 Challenges and Alternative Approaches  

  Issues in Synthesis of Ultrathin Dielectric   

The current state of art fabrication process uses thermal or plasma assisted oxidation of Al or Mg 

for the fabrication of AlOx and MgO TB. This method is considerably much simpler and 

compatible with industrial applications. The thickness of a TB on the Al metal surface is estimated 

by controlling the exposure (i.e. pressure and time) and temperature during oxidation. Figure 

1.10(a) shows a schematic for the growth mechanism for thermal AlOx TB with defects and 

pinholes present at ultrathin thickness resulting in defective dielectric film. The TB growth 

increases exponentially with the oxygen exposure. Figure 1.10(b) shows 𝐽,	vs oxygen exposure 

for JJs, which clearly show two regions with two different slopes. The slope is almost constant 

with less scattering above 0.5 nm TB, which is an indication of low defects and pinholes. However, 

below 0.5 nm the slope is stepper with a sudden increase in 𝐽,	due to the presence of defects, such 

as oxygen vacancies and pinholes providing an additional tunnelling states resulting in an increase 

in leakage current. This led to the formation of a poor interface between M-I that cannot preserve 

the symmetry of electronic states due to coupling of the evanescent states in the TB resulting in 

incoherent  tunnelling that significantly reduces the spin current [31]. 
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Despite extensive effort with high TMR on MTJs with epitaxial MgO TB, they require a complex 

sample fabrication process and post annealing [53-55]. This post annealing has several 

disadvantages with recrystallization that occurs differently on different locations leading to a 

roughened FM/barrier interface with poor uniformity across the wafer, which makes scale-up and 

integration with CMOS difficult [56-60].  Figure 1.11(a) show that the high temperature annealing 

in range 350-500 ℃ results in the formation of grain boundaries (GBs) across TB. These GBs act 

like pinholes and defects increasing leakage current as in Figure 1.11(b) [61, 62], which reduces 

the figure-of-merit TMR. Thus, the current state of the art fabrication process remains a major 

challenge in the research and development of MTJs. The further reduction of TB to sub-nm 

requires an alternative method for fabrication of dielectric with atomic precision control and low 

defect density for future electronics.  

 

d increases 

High Defect 

d < ~0.5nm 

Pinholes Defective dielectric  

Figure 1.10 a) Schematic of growth mechanism for thermal AlOx TB with high defects and pinholes resulting 

defective dielectric and b) Jc vs exposure ( pressure* time ) for JJs show less stepper slope  for thickness >  0.5 nm 

and steeper slope at thickness < 0.5 nm indicative defective dielectric with low 𝐸/. This figure is adapted from 

 [5]. 

a  b 
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Among emerging technologies, spintronics offers the best candidates due to their engineering 

methods that intrinsically provide non-volatile magnetization states with zero standby power 

dissipation as well as potentially very high endurance making them ideal to construct memory 

devices. Highly functional spin-electronic devices such as spin transistors will be viable only after 

a better understanding of the mechanism of spin-polarized electron transport. This demands the 

fabrication of high quality MTJs with an ultrathin dielectric to improve the figure-of-merit for 

different devices. Atomic layer deposition (ALD) provides an alternative approach for the 

fabrication of ultrathin, uniform and leak free TBs for better device architecture and improving 

their performance. 

 Atomic Layer Deposition of Ultrathin Dielectric  

The various deposition techniques such as magnetron sputtering, [17, 63, 64] MBE, [4, 9] and 

ALD [10, 13, 18, 64-66] have been the focus of recent research for different microelectronic  

applications. Among all, ALD is an interesting chemical vapor deposition process that relies on 

Figure 1.11 a) Formation of grain boundaries in epitaxial CoFeB/Mgo/COFeB as indicated by dashed lines where 

MgO grains are indicated by arrows. This figure is adapted from reference [61] and b) defects and pinholes as observed 

in MgO barrier due to high temperature post annealing. This figure is adapted from reference [62]. 

a  b 
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well-defined chemical reactions. This reaction that occurs at the sample surface has several unique 

advantages [67, 68]. First, ALD is a chemical process that minimizes the formation of intermediate 

compounds and is important to reduce defects and impurities in the films. Second, ALD growth is 

self-limiting enabling atomic scale precision control of film thickness. Finally, ALD coating is 

highly conformal [69, 70], which is important to obtain pinhole and leak free ultrathin dielectric. 

Figure 1.12 shows the step-by-step growth of ALD Al2O3 dielectric films in the optimal case with 

no IL formation. First, the H2O precursor is pulsed into the chamber to create a hydroxylated metal 

surface. A purge step follows after the H2O reacts with the surface to remove excess molecules 

reacting with next chemical. Next, Al precursor tri-methyl aluminium (TMA) is pulsed into the 

chamber and purged after CH4 is produced as a by-product. Lastly, H2O is pulsed to produce single 

monolayer of Al2O3. Al2O3 thickness is controlled by varying the number of ALD cycles which 

consist of H2O-purge-TMA-purge-H2O. Each ALD cycle produces a single conformal monolayer 

with thickness well calibrated using ellipsometry to be 1.1-1.2 Å/cycle,[17, 18] which is consistent 

with the previous reports by other groups [68, 71, 72].  

ALD offers several advantages with atomically smooth surfaces with a well-controlled chemical 

stoichiometric composition. ALD creates layers that is extremely conformal to match well with 

the wafer topography, with identical film thicknesses on device features. This high conformity is 

a critical capability for coating high-aspect-ratio and 3D architectures. ALD also plays a key role 

in self-aligned multiple patterning, which is used to form patterns smaller than those that can be 

produced with current lithography technology. ALD is well suited for process variability control 
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and is used to form dielectric films on the sidewalls of memory holes. Metal ALD is also used for 

the lateral deposition that completely fills narrow, horizontal features. ALD is an excellent way of 

depositing thin gate sidewall spacers with extremely uniform thickness and no pinholes, which 

separates the control gate from the three-dimensional FinFETs structure. Its many advantages have 

led ALD to be used in several applications. The ALD process is capable of creating both dielectric 

and metal films, depending on the choice of precursors. ALD is also being explored as a means to 

improve overlay control, or precisely a new pattern to be aligned over an existing pattern. The use 

of ALD will continue to grow and play an increasingly important role in advancing semiconductor 

manufacturing for different applications. Proven as a key enabling technology, ALD continues to 

Figure 1.12 Step by step growth mechanism for ALD Al2O3 with optimal ALD parameters without an interfacial layer 

formation a) fabrication of thin film using ultra-high vacuum (UHV) using physical vapor deposition (PVD) b) 

exposure of H2O c) exposure of tri-methyl aluminium (TMA) d) exposure of H2O to complete one ALD-cycles 

producing monolayer of Al2O3 and e) each layer control by deposition of sequential exposure of chemical producing 

conformal, stoichiometric and low defects ALD dielectric. 
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evolve for use in challenging new structures and scaling strategies as they are integrated into next-

generation devices.  

 Ex-situ ALD of Ultrathin Dielectric 

Despite the exciting progress made in the fabrication of ALD dielectric thin films, such as  Al2O3, 

HfO2, ZrO2, MgO, Al-doped ZnO,[10, 12, 13, 17, 18, 64, 68, 70, 73, 74] the dielectric properties 

of ultrathin insulating films in MIM structures are not optimal. Most probably due to the influence 

of the interfacial layer (IL) formation at the M-I interface [68, 75]. Al2O3 is a technologically 

important material due to its excellent dielectric properties, good adhesion to many surfaces, and 

thermal and chemical stability. These properties make Al2O3 attractive in the silicon 

microelectronics and thin film device industry as an insulator, ion barrier, and protective coating. 

Al2O3 is being considered as a high-K material to replace SiO2 gate in microelectronic devices 

architectures such as MRAM, Dynamic Random-Access Memory (DRAM) and CMOS [26, 27]. 

Taking Al2O3 as an example, the initiation of ALD Al2O3 growth on metal typically requires a 

monolayer of hydroxyl groups formed controllably on a metal surface, which is by no means 

trivial. Metals are typically classified into two categories based on the nucleation for 

hydroxylation: noble (Au, Pt, Ir, and Ru) and reactive (Al, Nb, Fe, and Co). In the former case, the 

first 30-50 ALD cycles serve as the so-called incubation period since ALD growth cannot be 

initiated until the surface hydroxylation is complete [17, 75] . Unfortunately, this incubation period 

typically yields a defective M-I IL formation with the oxidation of the bottom electrode [17, 71, 

76]. On the other hand, reactive metals are more sensitive to air exposure especially oxygen 
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exposure and other chemicals during the ALD process. A defective surface layer, which is several 

nanometres in thickness can form upon exposure of the reactive metal surface to air or even low 

vacuum [17, 64, 77]. This sensitivity means a defective IL at the M-I interface may form before 

the ultrathin ALD dielectric film growth. This IL can in turn cause defects in the ALD dielectric.  

The control over M-I interface is critical as the dielectric layer in TJs and CMOS made using ex 

situ processes have a er significantly lower than the bulk single crystals values when the dielectric 

layer thickness is on the order of tens of nanometres or lower [11, 12, 71, 73, 74, 78-82]. Best 

reported results include an er in the range of 7-8.5 for with ALD Al2O3 dielectric thickness > 40 

nm, together with a leakage current density (J) ~ 10-10-10-8 A/cm2 [71, 78-81, 83, 84]. The 

considerable decrease in er ~4 is observed as the Al2O3 dielectric thickness approach ultrathin 

thicknesses with corresponding increases in J ~10-7 A/cm2 [71]. Indeed, a similar monotonic 

decrease of er with a decrease in film thickness has been observed [11, 12, 71, 73, 82, 85]. This 

trend indicates that the presence of an M-I IL, which when connected in series with the dielectric 

film can significantly reduce er and the reduction becomes more severe at smaller thicknesses. The 

primary challenge in the ALD growth of TBs of sub-nanometre thickness is the formation of an 

IL between the metal electrode and the dielectric ALD TB, typically formed when the metal 

surface is exposed to ambient or low vacuum in ex situ processes. This defective interface has a 

profound effect on the ALD dielectric film quality when dielectric thickness approaches the 

ultrathin regime.  
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 Dielectric Properties of Ultrathin Dielectric 

Table 1.2 compares ALD Al2O3 MIM capacitors with the thickness of dielectric in the range of 

few tens of nm to few hundreds of nm with their corresponding parameters like er, J and breakdown 

field. We can observe that even for hundreds of nm thick dielectric film er is in range ~7-7.5, which 

is 22.2-16.6 % lower compared to bulk single crystal er ~9.2. The decrease in er with decrease in 

the film thickness is attributed to the presence of defective IL in series with ALD Al2O3 dielectric. 

This leads to an increase in J and lower dielectric breakdown fields (E) ~ 5-8 MV/cm even for 

thicker dielectric film thickness. 

Table 1.2 Recent progress in dielectric property of ALD Al2O3 dielectric MIM capacitors with thickness of dielectric 

in range from few tens of nm to few hundreds of nm with their corresponding parameters. 

 

Al2O3 
thickness(nm) 

Growth 
temperature 

Dielectric 
constant (εr) 

Leakage current  
density (A/cm2)  

Breakdown 
field (MV/cm) 

References 

40 450 7 - 6-8 [86] 

> 100  150 7.1 6 e-10 6-7 [87] 

107 250 ~7 1 e-8 7-8  
[81] 101 350 ~7 1 e-8 7-8 

59-115 150-300 7.5 (5) 5.3 (2)  [88] 

115 177 7.5 1 e-10 5.3  
[71] 57 177 7.7 2 e-10 5.3 

12 350 5.9 2 e-9 5.3 
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Figure 1.13 shows the systematic study on thickness dependence of er for Al2O3 MIM capacitor 

deposited on n-Si(100) and Mo-coated Si(100) [71]. There is similar monotonic decreasing trends 

in er with a decrease in the dielectric film thickness with er ~8, which is 11.1 % lower than bulk er 

~9.2 [71]. This significance effect of IL observed when dielectric thickness reaches ultrathin 

thickness is primarily due to the presence of defective oxide dominating over the ALD film 

resulting in an increase in leakage current which are not suitable for applications that requires high 

quality dielectric films.  

 

 Critical Issues to Be Addressed 

The ex situ fabrication process itself is the bottleneck for obtaining high quality dielectric due to 

the exposure of fresh metal surface to atmosphere leading to the formation of defective oxides IL 

resulting defective dielectric growth on the top. However, only in situ fabrication is not enough to 

Figure 1.13 Measured dielectric constant for Al2O3 ALD films of different thicknesses grown at 177 °C on 

n-Si(1 0 0) and Mo-coated Si(1 0 0) . This figure is adapted from reference [71].  



 

 

  

31 

reduce the formation of IL to negligible. Several critical issues need to be resolved to obtain high 

quality dielectric growth [14, 15, 89, 90]. The pre-ALD IL formation on the metal surface is 

critically important which is primarily due to the formation of defective oxides resulting in 

defective dielectric growth. Even in the in situ ALD process, a prolonged exposure to vacuum 

(even at a high vacuum of ~10 -7 Torr) during heating of a metal electrode for ALD TB growth can 

cause the formation of such an interface 25. This interface is even more detrimental to ALD TBs 

for MTJs since the additional defects can impair spin current tunnelling current in MTJs 24-26. This 

dissertation addresses the critical issues of controlling the M-I interface to obtain ultrathin 

dielectric suitable for gate dielectric in CMOS and potential MTJs application for non-volatile 

MRAM. Chapter 2 discuss the experimental design and details of fabrication and characterization 

of devices. Chapter 3 presents the optimization of dielectric properties of Al/ALD Al2O3/Al MIM 

architecture. Chapter 4 discusses the effect of ALD Al2O3 seed layer in controlling M-I interface 

for the MgO dielectric. Finally, Chapter 5 presents the on/off of negative capacitance in ultrathin 

ferroelectric/dielectric capacitors. Finally, chapter 6 discusses the preliminary results obtained on 

the fabrication and characterization of MTJs using ultrathin ALD Al2O3 tunnel barriers for 

application in non-volatile memory applications. Chapter 7 discusses about overall conclusion and 

future prospective for ALD fabricated MIM architecture for microelectronics and memory devices.   
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 Experimental 
This chapter describes the relevant experimental procedure used throughout this dissertation. The 

first section introduces unique in situ ALD-PVD systems for the fabrication of MIM architecture. 

Other sections discuss the relevant details of experimental procedure related to MIM capacitors 

and MTJs along with their optimization procedure. Finally, the device characterization techniques 

with details of hardware and procedure will be discussed. 

 Fabrication of MIM Architecture 

Figure 2.1 shows a schematic diagram of in-house integrated all in situ ultra-high vacuum (UHV) 

physical vapor deposition (PVD), ALD and STS measurement system. The load lock chamber is 

used for loading and unloading the samples. It is separated from the UHV chamber by a gate valve. 

This chamber also contains a stage for plasma treatment for surface treatments and cleaning. The 

PVD deposition chambers (i.e. MTJ and JJ) are separated by the gate valves maintained at UHV 

by two separate turbo pumps (Leybold) for deposition of metals like Nb, Al for JJs; and magnetic 

materials like Fe, CoFeB, and an antiferromagnetic IrMn for MTJs. The viscous ALD chamber is 

maintained at low vacuum using a mechanical pump. It’s temperature is maintained by a heating 

tape and wrapped around with heating rope to its exterior for heating to the desired temperature. 

The ALD chamber is used for the deposition of ultrathin dielectrics like Al2O3, MgO, HfO2 etc 

and is isolated from the other chambers by two gate valves to ensure a proper flow from the ALD 

sources. The two magnetically coupled transport rod allow in situ transfer of sample from one 

chamber to another under UHV. This unique all in situ integrated PVD-ALD transfer system 
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allows the fabrication of high quality ultrathin dielectrics for MIM and TJ applications. Another 

transfer arm allows the transfer of samples onto STS chamber (RHK) for characterization of the 

barrier height along with atomic force microscopy (AFM) for surface morphology respectively. 

Figure 2.2 shows a photograph of all in situ PVD-ALD-STS chambers with each chamber are 

labelled as indicated. The detailed description of the design and transfer procedure is presented in 

an earlier thesis work by Alan Elliot [90] and Jamie Wilt [89]. 

 

 

Figure 2.1 Schematic of all in situ in-house integrated ALD-PVD-STS UHV system with load lock, ALD 

chamber, Josephson junction sputter chamber, Magnetic sputter chamber and STS characterization chamber.  

Figure 2.2 Photograph of all in situ in-house integrated ALD-PVD-STS along with each chamber label as 

indicated for fabrication and characterization of multi-layered MIM and TJs devices. 

Magnetic chamber 

Superconductor 

chamber 

STS chamber 

ALD Sources 

Transfer arm 

Transfer arm 
ALD 

Chamber 
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 Fabrication of Devices 

PVD method for metal deposition and ALD method for the ultrathin dielectric were used for 

fabrication of the capacitors and TJ devices. The in situ process for the fabrication of MIM 

capacitors and MTJ devices allows the transfer of samples and their characterization by 

minimizing IL formation between M-I interface. The IL is impossible to minimize with ex situ 

deposition process because the metal electrodes oxidize when exposed to air before the growth of 

the dielectric film. Our current design is versatile, unique and critical as in situ integration allows 

for the fabrication of ultrathin ALD dielectrics without the formation of IL or native oxides on 

metal electrodes for multi-functional MIM and TJ. 

 Capacitors 

Figure 2.3 shows a schematic of the MIM architecture for a MIM capacitor fabricated using the 

shadow mask process. First of all, bilayer devices with Nb (20 nm)/Al (7 nm) were in situ 

fabricated using UHV PVD-ALD system. Nb and Al were DC magnetron sputtered onto a Si/SiO2 

substrate with a deposition rate of 1.7 and 0.5 nm/s respectively at base pressure better than 10-7 

Torr using a shadow mask. After sputtering, the samples were transferred in situ under high 

vacuum to the ALD chamber and dynamically heated for a set period of time before the deposition 

of ALD TBs [15]. Following this dynamic heating, 40-10 cycles ALD Al2O3 were deposited with 

a 5 SCCM N2 carrier gas for the TB deposition. The ALD growth of Al2O3 occurs with alternating 

pulses of H2O and TMA via a ligand exchange at the heated sample surface. The two precursors 

steps are separated by a purge of an inert carrier gas N2 [68], to ensure the formation of a single 
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monolayer of amorphous Al2O3 with a deposition rate of ~1.1 Å/per cycle [17, 18]. Then, the top 

electrode was deposited using another shadow mask to define different capacitor areas with 

200x200, 200x300 and 200x400 𝜇𝑚5 [16]. The inset shows the cross-section of MIM architecture 

deposited to obtain optimal performances of MIM capacitors. The control of the thickness of the 

Al wetting layer is found to be critically important in tuning the properties of ALD Al2O3 with and 

without IL especially in the case of material sensitive for the oxidation like Fe. Using an Al wetting 

layer in the Fe/Al/ALD Al2O3 (2.2 nm)/Fe capacitors, we show a transition from a DE only 

capacitor for Al thicknesses greater than 1.0 nm to an ferroelectric/dielectric (FE/DE) bilayer 

capacitor at smaller Al thickness to promote the formation of ultrathin FeOx IL of thickness below 

2 nm at the Fe and ALD Al2O3 interface. This trend can be attributed to the formation of a native 

oxide IL at the Fe/ALD Al2O3 interface when the Al wetting layer is very thin or absent. This 

method provides an easy way to fabricate different bilayer stacks by tuning the thickness of Al 

wetting layer thickness in a multi-layered structure.  

 

Figure 2.3 (Left) Schematic diagram (viewed from above) of the bottom electrode (yellow) with a shadow mask used 

to define the 400, 300 and 200 µm wide bridges and the top electrode (brown) with a 200 µm wide bridge to define 

the corresponding MIM capacitors. 
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 Magnetic Tunnel Junctions  

Thin magnetic films like Fe and CoFeB were deposited using DC magnetron sputtering onto a 

Si/SiO2 substrate at base pressure less than 10-7 Torr. Several test runs were performed to optimize 

the properties of the magnetic thin film. The optimal condition was obtained at Ar pressure ~4 

mTorr, a power of 200 W and, the distance between sputtering gun and sample fixed at 6 cm, with 

a deposition rate of 1.0 nm/s. Then, a simple spin-valve structure was used for the fabrication of 

MTJs based on the magnetic hysteresis (M-H) loop measurement. The thickness of the FM layers 

is key for obtaining different coercive field allowing the observation of both anti-parallel 	(𝑅"d)	 

and parallel (𝑅d) configuration, which can be achieved using an external magnetic field. Based on 

the M-H loop of the Fe thin film, the thicknesses of the fixed and free layers were chosen as 50 

and 5 nm respectively. The multi layered structure consisting of Nb, Fe and Al layers with the Al 

wetting layer from 7-1 nm. After sputtering, these samples were in situ transferred under high 

vacuum to the ALD chamber [15] for deposition of 5-10 cycles of ALD Al2O3.  Figure 2.4(a) 

shows the MTJs structure with the Al wetting layer as Nb (50 nm)/Fe (50 nm)/Al (1 nm)/ALD 

Al2O3 / Fe (5 nm)/Nb (50 nm). After several optimizations, the Nb layer was used as a seed layer 

and capping layer for preventing the oxidation of Fe, since Fe oxidizes aggressively in the presence 

of an oxygen atmosphere. In the extreme limit, MTJs device with no wetting layer i.e without the 

Al wetting layer is obtained as Nb (50 nm)/Fe (50 nm)/ALD Al2O3 / Fe (5 nm)/Nb (50 nm) as 

shown in Figure 2.4(b). Thus, MTJs devices with and without the Al wetting layer were fabricated 

using in situ UHV PVD-ALD system. 
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Figure 2.5(a) shows  a multilayered MTJ device without the Al wetting layer deposited using PVD-

ALD system. This was processed into the MTJ devices structure, which is patterned into several 

devices using a standard photolithography (PL) process and the process flow shown in Figure 2.5. 

The main wiring of the MTJ was defined using the PL process (Figure 2.5b). An ion milling is 

used to etch the entire multilayer stack (Figure 2.5c). The PL photoresist mask is then removed 

and electron beam lithography (EBL) is used to define the MTJ mesa (Figure 2.5d) followed by 

an ion milling for mesa structure (Figure 2.5e). Then, the MTJ mesa is isolated using SiO2 

evaporation, which is then lifted off (Figure 2.5f). A second EBL is used to define the top wiring 

for the MTJ and followed up with plasma cleaning for a clean surface before the Nb sputter and 

lift off to complete the device structure (Figure 2.5g-i). 

 

Figure 2.4 Schematic for magnetic tunnel junction device structure a) Nb (50 nm)/Fe (50 nm)/Al (1 nm)/ALD 

Al2O3 / Fe (5 nm)/Nb (50 nm) with Al wetting layer and b) Nb (50 nm)/Fe (50 nm)/ALD Al2O3 / Fe (5 nm)/Nb 

(50 nm) without Al wetting layer. 

a  b 
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The micrographs and profilometry of the devices during each process flow are critical steps for 

optimization and better performance of the finished devices. Figure 2.6(a) shows a micrograph of 

the main wiring after the 1st ion milling resulting in the total step height measurement ~160 nm. 

Figure 2.6(b) shows 3D-profilometry after SiO2 evaporation showing all devices have EBL resist 

removed a with step height of SiO2 ~300 nm as shown in Figure 2.6(c). The final device after the 

2nd EBL, the 2nd ion milling and top Nb electrode deposition is shown in Figure 2.6(d), which is 

finished and device ready for four probe I-V and TMR measurement after wire bonding with the 

contact pads. 

 

 

 

Figure 2.5 Schematic flow chart of Magnetic tunnel junction fabrication with different steps of fabrication process. 



 

 

  

39 

 

Figure 2.7(a) shows the photolithography process used to define the wiring of the MTJ circuit 

using a photomask. Each MTJ has a pair of smaller pads associated with I+ and V+ terminals and 

the larger pads serve as I- and V- shared among 6 junctions. The trilayers have dimensions of 2.5 

x 2.5 cm, enough to fit six patterns were spin-coated with S1813 photoresist (Shipley) at 4000 rpm 

for a resist thickness of 1.75 μm. The resist was baked at 90 °C for six minutes before exposure to 

a 500 W UV lamp for 90 sec. The samples were then developed in a 1:3 solution of M351 

microposit developer and water for 100 sec, and then rinsed in deionized water and blown dry with 

N2. Each device in the photomask was designed for a four-probe measurement of 12 junctions of 

After ion milling 3D-profilometry  

After SiO
2
 evaporation Finished devices  

Figure 2.6 Real micrograph of devices after different steps of  fabrication process a) micrograph of 

main wiring after 1st ion milling b) 3D-profilometry after sio2 evaporation c) Step height 

measurement with Sio2 evaporation and d) Micrograph of finished devices.  

a  b 

d  c 
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size 10, 7 and 5 𝜇𝑚 to check the uniformity of devices. Figure 2.7(b) shows a photograph of a 

homemade probe designed to minimize the noise and wire bonding of the MTJ chip to the sample 

stage stage. Figure 2.7(c) shows the schematic of the physical property measurement system 

(PPMS) stage, wiring connector and sample stage ready for the for TMR measurement. The MTJs 

samples were current biased with the function generator (Agilent 33120 A) and temperature and 

magnetic field were set using automated PPMS (Quantum Design Evercool II system). 

 

The patterned sample using PL was attached to the sample stage using Ag paste after drying for 

about 15 min with a lamp. After that, the chamber was pumped with a turbo molecular pump to 

base pressure of below 5x10-6 Torr to avoid any contamination and chemicals. The key advantage 

of ion milling is anisotropy and non-selectivity, which was used to etch through the multi-layered 

structure. The optimal condition for ion milling was obtained at the ion beam voltage of 400 V 

with a corresponding beam current of 40 mA. Liquid N2 cooling was used to prevent the 

Figure 2.7 a) Schematic of photomask used to define MTJ circuit with each MTJ has pair of electrode and ground 

electrode shared among 6 MTJs for four probe measurement  b) photograph of MTJ chip  wire bonded to sample  

stage and c) Schematic showing PPMS stage, sample stage and wiring connector for TMR measurement. 

a  b  c  
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overheating of samples during ion milling. The milling rate for metals and insulator were well 

calibrated in a dummy sample of Nb, Fe, and Al2O3 with 11, 10 and 0.5 nm per minute respectively. 

To confirm etching of multi-layered structure, the samples were over milled ~5-7 % and multiple 

checks with optical image and profiler were performed during different stages of sample 

fabrication to make sure there were no shorts present. The first ion milling is easy to perform, after 

etching the underlying SiO2 was revealed as in Figure 2.5(c).  For etching through top metals 

during Figure 2.5(e) show 2nd ion milling the milling rate must be well controlled. The heating 

time was found to be crucial because overheating of EBL resist during ion milling makes resist 

harder and difficult to remove after SiO2 evaporation. After several tests and optimization, liquid 

N2 cooling was found to be efficient in preventing the overheating of EBL resist. The ion milling 

was then used to define lateral dimensions ranging from 5 – 10 μm as in Figure 2.5(d) called the 

MTJ mesa. The high performance positive electron beam resist (ZEP520A Zeon Chemicals) was 

spin coated onto the samples at 1000 rpm for a thickness of ~ 1 μm. The resist was then exposed 

to an electron beam and developed to reveal the pattern used as a mask for 2nd ion milling to define 

the MTJ mesa Figure 2.5(g).  After the definition of the mesa, SiO2 was evaporated onto the sample 

mounted to a water-cooled stage at operating pressures ~10Kz Torr. This was done to electrically 

insulate the MTJ mesa. The deposition rate ~ 5 nm/sec was monitored in situ with a quartz crystal 

monitor. To ensure a consistent deposition rate and high film quality, fresh SiO2 was ground into 

a powder before each deposition and placed into the evaporator’s crucible. After the evaporation 

was complete, the sample was brought to RT gradually over the course of 30 minutes, after which 

it was removed from the evaporation chamber. Lift off was then performed on the sample to 
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remove excess SiO2 using the same EBL mask and diethylacetamide (ZDMAC), which strips 

ZEP520A for about an hour. Finally, the sample was suspended in solution and ultrasonicated for 

60 seconds.  

After the insulation of MTJ mesa, the top must be electrically connected to the wiring leads defined 

by photolithography using a second round of EBL to define the area of the top wiring, shown in 

Figure 2.5(g). During the device processing steps, the top Nb film was exposed to air and 

chemicals, producing native NbOx on the surface. This was removed using a plasma cleaning 

procedure performed using an RF power supply in a load lock chamber before the deposition of 

the top Nb electrode as in Figure 2.5(h). The previously used optimized plasma cleaning condition 

for JJs with 80W RF plasma power ignited at 30 mTorr Ar, with the sample placed at 2 cm away 

and cleaned for 2 minutes from the top electrode. Then, sample was transferred into the sputtering 

chamber for the deposition of 300 nm and the device was finally finished after lift-off. However, 

this condition resulted in non-uniform resistance area (RA) across the junction. This may have 

been because the NbOx was still left on the surface. To optimize the plasma cleaning process the 

method of sheet resistance (𝑅□) was used. The resistance for each resistor in the MTJ circuit 

defined using photomask and top contact shown in Figure 2.14 is calculated using the equation as  

R = ρ L/A = ρ/t * ∑ }~
�~

 =𝑅□* ∑ }~
�~
,																																																																				(7)                                              

where ∑ }~
�~

  is the sum of  ratio of  }~
�~
, 𝐿3	𝑎𝑛𝑑	𝑊3	are lengths and widths of  resistors in series for 

each different path, 𝑅□ is sheet resistance.  
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The optimization of distance from stage to plate was done by fixing the power at 80W RF. The 

optimal distance was found to be 18.20 mm. Different powers 120 W and 80 W with different 

times, 2, 4 and 6 minutes were tested for the optimization. To confirm that plasma cleaning was 

optimal the measurement of contact resistance (𝑅�) was done for the Nb electrode using EBL to 

define the contact between top and bottom Nb electrode. 𝑅�  for 12 devices measured on a chip 

using different plasma cleaning condition were compared. Based on the comparison of𝑅□, all 

devices with 120 W power for 2 minutes plasma cleaning at 30 mTorr Ar show uniform 𝑅□ in 

range 2.33-2.09 Ω/square	within 15% variation showing best results. Thus, only 2 minutes of 

plasma cleaning at a higher power of 120 W was sufficient to remove NbOx on the top of the Nb 

film. The sample was then in situ transferred to the JJ chamber for deposition of the top 300 nm of 

the Nb electrode that connects the bottom contact pads to the top of the junction allowing current 

to pass through the junction of 25-100 𝜇𝑚5 cross sectional area Figure 2.12 (i). 

 Characterization 

 Vibrating Sample Magnetometer  

The Vibrating Sample Magnetometer (VSM) utilizes the principle that, if the magnetic field or 

flux that is enclosed by a coil changes, a voltage will arise across the terminals of that coil. The 

magnetic sample is placed in the middle of a set of pickup coils  and vibrates at a frequency of 75 

Hz in the vicinity of a set of the pickup coils creating a change in flux. This flux is proportional to 

the magnetic moment which is measured in emu and displayed as a function of the magnetic field 

(H). An electromagnet surrounds the sample and pickup coils, which is used for varying the field 
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to which the sample is exposed so that the magnetization (M) in emu/cc can be measured as a 

function of the H. The VSM’s operating software, EasyVSM can extract many different magnetic 

parameters to characterize a wide variety of magnetic samples of both high and low coercivity. 

Figure 2.8 shows the M-H hysteresis loop measurement performed using VSM on a Fe (50 nm) 

thin film structure showing high saturation magnetization confirming excellent magnetic property. 

 

 Atomic Force Microscopy 

Figure 2.9(a) shows a schematic of an atomic force microscope (AFM) consist of a sharp tip (<1 

nm) mounted onto a silicon or silicon-Nitride cantilever.  A laser reflects off the top surface of the 

cantilever and onto a quad-photodiode.  Piezoelectric elements scan the tip across the sample 

surface. As the tip deflects off surface features, the laser position onto the quad-photodiode 

changes slightly. By measuring the photocurrent in the photodiodes, angstrom level precision in 

the tip position can be achieved using both contact and tapping or non-contact modes as shown in 

Figure 2.9(b). However, thermal noise inherent in this flexible cantilever induces vibrations that 

Figure 2.8 Magnetization (in emu/cc) vs magnetic field (in Oe) (M-H) hysteresis loop for Fe (50 nm) 

characterized using vibrating sample magnetometer  
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reduce the maximum resolution of surface features.  The main drawback of AFM as compared to 

other instruments is that it’s slow scanning speed. To increase imaging speed and improve 

resolution, a feedback loop is used to allow the cantilever to quickly confirm to surface features. 

The control over surface roughness is critical for the fabrication of ultrathin and uniform ALD TB 

for MTJs application. AFM, WiTec Alpha 300 in contact mode and RHK-HV in situ non-contact 

AFM were used to characterize topography of the samples and surface roughness was calculated 

using root-mean square average of roughness within in the scan area. 

 

 Ex-situ C-V Measurement  

The dielectric properties of MIM structures with ultrathin ALD Al2O3 in thickness range 4.4-1.1 

nm were characterized using a B1500A Semiconductor Device Analyzer, which supports single 

pass capacitance-voltage (CV) and leakage current-voltage (IV) measurements within the same 

mainframe using a new, single-slot multifrequency capacitance measurement unit (MFCMU) and 

two Source/Measure Units (SMUs). However, performing both IV and CV measurements on a 

a  b 

Figure 2.9 a) Schematic of atomic force microscopy (AFM) for surface morphology study b) contact and 

tapping or non-contact AFM modes 
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single probe station is not easy. SMU-based IV use triaxial connectors, while CMU-based CV 

measurements use Bayonet Neill–Concelman connectors. The capacitance is measured by 

superimposing small ac signal on an applied dc gate voltage. The ac signal is necessary for the 

capacitance measurement while the dc voltage determines the bias condition. The measured 

capacitance is a function of applied dc voltage. During CV and IV measurement the tungsten probe 

scratches through the top few nanometres of the ALD Al2O3 layer to make an ohmic contact with 

the bottom electrode. Thus, the measurement can be performed between top and bottom electrodes 

to define Al/Al2O3/Al trilayer capacitors with a defined capacitor area.  

The working principle of the B1500A’s MFCMU is based on the auto balancing bridge using four 

terminal pair extension test cable. The CV meter consists of (1) AC signal source (Vx) with the DC 

bias source in the high terminal, (2) current (Ix) flowing through the DUT, and (3) low terminal 

vector current meter. The high current terminal applies the AC measurement signal and the DC 

bias voltage to the DUT, and the high potential terminal senses the actual AC signal applied to the 

DUT. The low current terminal sinks the DUT current through the reference resistor (Rr) and keeps 

the low terminal potential as close as possible to zero volts (called as virtual ground). This is done 

using a negative feedback loop consisting of the high gain amplifier with (Vr) in the low current 

terminal and the feedback resistor Rr. The current flowing through the DUT (Ix) is obtained as 

Vr/Rr, and the DUT impedance (Zx) is obtained as Zx = Vx / Ix = Rr (Vx/Vr). Based on the information 

about impedance and current through DUT the response of electrical component is calculated. The 

total capacitance is given by expression 𝐶 = ∆�
∆�
= 𝐼�.

∆�
∆�

 where ∆�
∆�
	is the scan rate, ∆𝑄 is the total 
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charges, and 𝐼� is the current through the DUT. Thus, open, shut and phase compensation must 

always be performed before making the measurement. Phase compensation improves the bridge 

balancing stability at high frequencies and minimizes the phase shift effects due to frequency and 

cable length. 

 Four Probe I-V Measurement  

IV measurements were taken at RT using a four-probe measurement configuration for initial check 

in quality control and analysis of uniformity of devices. The 25 μm diameter tungsten probes were 

connected to four channels of a semiconductor device analyzer (Agilent B1500A). This homemade 

chamber is equipped with linear motion controls with micrometer precision that allows probes to 

move from pad to pad inside to measure the junction resistance. The MTJs were current biased 

from 0 – 100 𝜇A, and the voltage developed was measured. From the slope of I-V, the RT 

resistances were calculated. For junctions of different sizes, the product of the resistance and the 

area should be constant across the wafer, and the resistance itself should be inversely proportional 

to the area of the junction. 

 TMR Measurement in PPMS System 

The TMR measurement on MTJ samples was done using PPMS which can vary temperature from 

RT to 4 K and H from 0 up to 9 T. MTJ samples were glued with silver paste in a Cu sample stage 

and dried in air for about 30 minutes. After that, each top and bottom pad were wire bonded using 

an Al wire bonder. Finally, MTJs with a four probe I-V measurement performed at RT were loaded 

in PPMS for TMR measurement. Figure 2.10 shows a plot of TMR in % obtained using equation 
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vs magnetic field in Oe for both RP and RAP configurations. An initial, H of 1500 Oe is applied 

where the orientation of both free and fixed layer magnetization is parallel as indicated by RP1 

(inset 1). Then, H is switched to negative value until the free layer magnetization is switched 

resulting in RAP1 (inset 2). The negative magnetic field is increased until both layers of 

magnetizations are parallel as indicated by RP2 (inset 3). Finally, H is switched to positive value 

and increased until the free layer magnetization is switched as indicated by RAP2 (inset 4). The 

applied magnetic field is further increased to get magnetization of both layers parallel as indicated 

by RP1 original (inset 5). The efficient switching of free layers for these MTJ devices was possible 

by the application of an external applied H. 
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Figure 2.10 TMR measurement procedure for magnetic tunnel junctions using physical property measurement system 
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 In situ STS Characterization  

For the STS studies Al/Al2O3 bilayers (without top Al electrode) in thickness range 0.11-1.10 nm 

were transferred in situ by Jamie Wilt et al [89] for characterization of TB height. The STS 

chamber was maintained at a pressure of about 2×10-10 Torr. A mechanically cleaved Pt-Ir tip was 

used for all STS studies at RT. The constant height I-V and dI/dV spectroscopy were taken 

simultaneously using a lock-in amplifier with a voltage modulation of 100 mV at 1 KHz. The TB 

height was used to estimate the barrier height by the intersection of the conduction band minimum 

(CBM) and valence band maximum (VBM) using similar two bisquare-method linear fits to 

ln(dI/dV) [91]. One line fits the band gap regime, and the other the CBM and VBM. This ln(dI/dV) 

linear fit method was chosen over I-V or (dI/dV)/(I/V) fit methods for its insensitivity to high noise 

in the STS spectra [8, 92]. To examine the dielectric breakdown of the Al2O3 TB, the STS tip was 

held fixed at each scanned location and the bias was sequentially ramped up and down 20 times. 

Detailed studies on the dielectric properties of Al/Al2O3/Al MIM structure will be discussed in the 

next chapter. 
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 Probing Effect of Interface on Dielectric 

Properties of Ultrathin Al/Al2O3/Al Trilayers 
Following empirical Moore’s law, miniaturization of microelectronic devices has been the main 

driving force behind the advancement in semiconductor industry and justifies an increasing 

demand for more densely integrated devices [2, 19, 93, 94]. One of the direct consequences of this 

demands the need for a continuous reduction of the gate dielectric thickness. Unfortunately, for 

SiO2 gates approaching ultrathin thickness range of 2-4 nm, have considerably increased J to 1-10 

A/cm2 [3, 24]. This occurs primarily due to the difficulties in controlling the defects in ultrathin 

SiO2 [3]. This not only prevents the achievement of the required gate voltages for device operation 

but also exceeds the required threshold of ~10-3 A/cm2 for high-performance, low-power 

consumption microprocessors by several orders of magnitude. The difficulties in down-scaling the 

SiO2 dielectric gates have motivated an intensive research on high-K dielectric materials [24, 25]. 

With considerably higher dielectric constants (eHik) considerably higher than that of SiO2 (er ~3.9), 

the high-K dielectric can reduce the J by using a larger thickness tHiK [26-28].  

Though Al2O3 is not a high-K material, it is being considered as technologically important material 

due to its excellent dielectric properties, good adhesion to many surfaces, and thermal and chemical 

stability to replace SiO2 in microelectronic devices architectures such as MRAM, Dynamic 

Random-Access Memory (DRAM) and CMOS [26, 27]. These properties make Al2O3 attractive in 

the silicon microelectronics and thin film device industry as an insulator, ion barrier, and protective 

coating. However, in most previous studies with Al2O3 dielectric layer MIM devices made using 
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ex situ processes have significantly lower er than the bulk single crystals values even when the 

dielectric layer thickness is on the order of tens of nanometres [11, 12, 71, 73, 74, 78-82]. This 

trend indicates the presence of a M-I IL, which when connected in series with the dielectric film 

can significantly reduce er and this reduction becomes more severe at smaller thicknesses. Indeed, 

a monotonic decrease of er with decreasing dielectric film thickness has been observed when the 

dielectric film thickness falls into the ultrathin regime [11, 12, 71, 73, 82, 85]. The best-reported 

er is in the range of 7.0-8.5 for ALD Al2O3 films with thickness exceeding 40 nm, together with a 

significant J in the range of 10-10-10-8 A/cm2 [71, 78-81, 83, 84]. The er decreases monotonically 

with further decrease in ALD Al2O3 film thickness [71, 82, 85]. Groner et al  reported er ~7.7 for 

a 60 nm thick ALD Al2O3 film, which decreases to ~5.9 and 4 at 12 nm and 3 nm ALD Al2O3 film 

thicknesses respectively [71]. J  increases to a high value ~10-7 A/cm2 as the Al2O3 dielectric 

thickness approach ultrathin thickness range approximately 6.5 nm [83] and 3 nm [71]. A similar 

trend has also been observed in high-K dielectric films. For example, er in the range of 8-20 were 

found for ultrathin HfO2 films of thicknesses range 1-4.5 nm, which is considerably lower than the 

bulk value of 25 [11, 12, 73]. Overall, the IL can strongly degrade the dielectric properties of the 

MIM structure preventing the high quality insulator from being achieved in ultrathin film thickness 

range.  

To address this critical issue, this chapter explores the effect of controlling M-I interface during 

pre-ALD exposure of the metal surface [14, 15] to minimize the formation of IL and its impact on 

the quality of ultrathin ALD Al2O3 dielectric thicknesses 1.1 – 4.4 nm ( or 10 -40 cycles) on an Al 
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electrode fabricated using in situ integrated sputtering/ALD system [18]. A defective IL can even 

form during the pre-ALD sample transfer even under HV. Such layers have a profound effect on 

the dielectric properties of the Al2O3 with a significantly reduced er of 0.5-3.3 as compared to the 

bulk er~9.2.  Remarkably, by controlling the pre-ALD exposure to reduce the IL to a negligible 

level by reducing the heating time to £15 min, a high er up to 8.9 was obtained on the ALD Al2O3 

films of thickness of 3.6-4.8 nm. This corresponds to an effective oxide thickness 

(EOT=tHiK·3.9/eHik) ~1.5-2.1 nm. These EOTs are comparable to the EOTs of a high-K dielectric 

such as 3-4.5 nm thick HfO2 [12]. This is the first time that close to bulk er value was obtained in 

Al2O3 films of thickness <5 nm [16] and suggests that the optimal ultrathin ALD Al2O3 may 

provide a low-cost alternative gate dielectric for CMOS. 

 Controlling Metal-Insulator Interface 

The in situ deposition process with optimal growth parameters like ALD temperature, precursor 

pulse time and purge time is not sufficient for obtaining high quality dielectric. Several issues need 

to be resolved for the growth of high quality ultrathin dielectric films. First, pre-ALD IL formation, 

which is primarily the formation of defective oxides on metals surface resulting defective dielectric 

growth on the top. Secondly, hydroxylation on the metal surface with a defective interface plays 

an important role in the growth of ALD dielectric, which need to be systematically optimized.  

Although, the defective IL formation is primarily formed due to ex situ exposure of the metal 

surface to atmosphere. However, only in situ fabrication is not enough to reduce the formation of 
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IL to negligible. Figure 3.1(a) shows systematic optimization of  pre-ALD exposure of metal 

surfaces by heating at different powers (154, 220 and 304 W) and heating time (75 and 15 min) 

using STS by Jamie Wilt et al. [89]. This study suggests that exposure of fresh metals surface to 

heat and low vacuum can result in a significantly different top surface. The extended exposure of 

metals surface at 154 W for 75 min results in the formation of defective IL with low-quality 

dielectric grown on top referred as “non-optimal condition” (Figure 3.1(b)). This defective IL is 

due to exposure of metal to O2 or chemical in chamber resulting defects like oxygen vacancies and 

interstitials with low 𝐸/ comparable to thermal AlOx ~0.6 eV. However, reduction in exposure 

time to 15 min at higher power 304 W, known as “optimal condition” (Figure 3.2(c)) can preserve 

metallicity of the bottom metal surface. When sub-angstrom thick Al2O3 dielectric material grown 

on top show high quality with 𝐸/ ~1.4 eV, which more than double as compared to thermal AlOx. 

 

Figure 3.1 a) Measured sample temperature as a function of exposure time in an ALD reaction chamber which has 
been preheated at the given wattages. The solid lines are fits to the data STS b) dI/dV spectra are plotted for an Al 
sample after 75 min heating in the ALD chamber and (c) after 15 min of heating. The arrows (blue) depict the TB 
height, calculated as the intersection of the fit lines (red). Diagrams (top) illustrate the expected surface as seen by 
the STM tip. The insert in (c) is the dI/dV spectrum of a sample that was directly transferred to the STM chamber 
after Al sputtering. This figure is adapted from reference [89]. 

75 min Heat 

(Non-optimal 

heating) 
15 min heat 

(Optimal heating) 

Al O 
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To control ALD Al2O3 nucleation during the first ALD cycles, the Al wetting layer was exposed 

to a pre-ALD H2O pulse to create adsorbed hydroxyl molecules on the metal surface. Figure 3.2 

shows an ab-initio molecular dynamics (AIMD) simulations were performed to study the kinetics 

for hydroxylation on a 2x2 supercell of face-centered cubic Al (111) under constant equilibrium 

volume and temperature by Jamie Wilt et al. [89]. The results show that when only one H2O 

molecule is present on the Al surface (i.e. without any other H2O in proximity), the dissociation 

into -OH is thermodynamically unfavorable Figure 3.2(a) (I and II). However, when multiple H2O 

molecules are nearby, dissociation occurs after just a few ps Figure 3.2(a) (III and IV). The 

mechanism is a proton transfer between nearby H2O, which creates an intermediate compound that 

dissociates to form -OH group. The areal density of the H2O pulse is crucial to facilitate an efficient 

hydroxylation reaction, which can form a uniform monolayer of -OH on the Al surface. These 

results agree well with the STS study on 1 cycles ALD Al2O3 showing an increase in surface 

coverage from ~54% at 1 s pulse duration to ~93% at 2 s duration as in Figure 3.2(b). Thus, 

experimentally observed time frames suggest that long initial H2O pulses ~2s, are required for H2O 

molecules to adsorbed to the Al surface and reach a high enough areal molecular density for an 

efficient dissociation into hydroxylation. Interestingly, longer than 2s H2O pulses led to a reduced 

ALD Al2O3 surface coverage due to steric hindrance as supported by the simulations.  
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After the optimization of dynamic heating conditions for pre-ALD IL formation and exposure time 

of Al metal surface for H2O pulse, the devices were tested for uniform and high quality ultrathin 

ALD Al2O3 barrier using MIM device structure, which are important components for today’s 

microelectronics device applications. First, the comparison of dielectric properties between 

optimal and non-optimal conditions with 4.4 nm ALD Al2O3 MIM devices will be discussed. 

Figure 3.3(a) shows the capacitance as the function of the applied electric field (E=V/d). Here d is 

the thickness of the ALD Al2O3 dielectric film and V is the applied voltage. E was restricted to ~2 

MV/cm for all samples to avoid dielectric breakdown. Figure 3.3(a) represents the comparison of 

Al/Al2O3/Al trilayer capacitors with a cross-sectional area 0.08 mm2. The observe capacitance for 

optimal devices is ~3 times higher as compared to non-optimal devices due to the presence of 

negligible IL between Al/Al2O3 interface leading to the perfect dielectric film growth. However, 

non-optimal condition shows the presence of IL which is defective is in series with the pure 

Figure 3.2  (a) AIMD simulations are shown for H2O adsorption onto an Al (111) surface. When only one is 
present on the Al surface, dissociation is thermodynamically unfavorable (I, II). However, when are in close 
proximity, dissociation into -OH and is nearly instantaneous (III, IV). (b) The percentage of the Al surface which 
had a barrier height consistent with ALD Al2O3 after one ALD Al2O3 cycle is shown verses a variable initial H2O 
pulse duration from. This figure is adapted from reference [89]. 

Optimized H2O pulse: 2 sec  

Al2O3 coverage ~ 93 % 

a b 
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dielectric film, which indeed reduces the total capacitance with a corresponding increase in the 

leakage current. As the defective dielectric acts like a pinhole or defects with the presence of 

conducting channel for the flow of current in dielectric film. Our observation is consistent with the 

increase in leakage current by more than 3 order of magnitude higher for non-optimal conditions 

as in Figure 3.3 b). Indeed, the optimal ALD condition results in the growth of high quality 

dielectric resulting better interface between Al/Al2O3 and negligible IL formation. 

Based on the above transport measurement on two different dielectric films, the proposed growth 

mechanism for non-optimal and optimal ALD Al2O3 dielectric growth is shown in Figure 3.4. 

Figure 3.4(a) shows the schematic for the non-optimal case of the formation of IL leading to the 

growth of defective Al2O3 with defects and pinholes. Thus, Al2O3 dielectric is in series with IL 

leading to an increase in the leakage current. However, at optimal conditions with well controlled 

ALD parameters IL formation is reduced to negligible resulting in perfect high quality dielectric 

as in Figure 3.4(b).  

Figure 3.3 Comparison of a) capacitance and b) leakage current for 4.4 nm Al/Al2O3/Al MIM device fabricated with 

optimal (red) and non-optimal (black) condition with maximum applied electric field 2 MV/cm. 
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 Properties of Optimal ALD Al2O3 Ultrathin Dielectric Films 

For further discussion properties of MIM devices fabricated with optimal ALD condition will be 

presented unless otherwise indicated. Figure 3.5(a) shows the measured capacitance for 

Al/Al2O3/Al trilayer capacitors with 10-40 ALD Al2O3 cycles, or 1.1-4.4 nm in thickness with area 

0.08 mm2 as a function of E. At larger thicknesses in the range 1.65-4.4 nm, the capacitance is 

independent of the E before dielectric breakdown. This constant capacitance indicates that high 

quality Al2O3 dielectric growth was achieved. At the smallest thickness of 1.1 nm, the capacitance 

has a moderate E dependence. Specifically, capacitance decreases with increasing E, which 

suggests an increase in the leakage current due to electron tunnelling [95]. It can be observed that 

the capacitance vs. thickness is not proportional to 1/d, as expected in the case of ideal capacitors. 

Thus, at smaller thickness below 2 nm MIM devices do not behave like ideal capacitors  as given 

Figure 3.4 Schematic showing the comparison non-optimal with the formation of interfacial layer in series with 

defective dielectric and optimal growth of ALD Al2O3 on metal surface resulting high quality dielectric. 

ALD Al2O3with no IL  

I 

Optimal growth 

ALD Al2O3 with IL  

I 

IL 

Non-optimal growth 
a b 

 



 

 

  

58 

by the equation 𝑐 = e6e@𝐴/𝑑, where e6	is the permittivity of free space and A is the area of the 

capacitor, which is due to the effect of quantum tunnelling. 

To further understand the performance of devices across the sample, the variation of specific 

capacitance (Co) = C/A= e6e@/𝑑,  with junction area of 0.08, 0.06 and 0.04 mm2 MIM trilayer 

samples for ALD Al2O3 thickness in the range 1.1- 4.4 nm with a negligible IL is shown in Figure 

3.5(b). The Co is expected to be a constant for ideal capacitors. A 10% variation of the specific 

capacitance was observed for 4.4 (black), 3.3 (red) and 2.2 nm (blue) thick Al2O3 chips. This 

variation is comparable to the capacitor area variation of the shadow mask. This result suggests 

that the ALD Al2O3 films are highly uniform in this thickness range. However, a higher variation 

of ~20-30% was observed on the 1.65 (dark cyan) and 1.1 (magenta) nm ALD Al2O3 chips, which 

is not surprising since the effect of defects and pinholes will be amplified at such a small thickness. 

 

Figure 3.5 Variation of a) capacitance and b) specific capacitance with junctions areas for MIM Al/ALD Al2O3 

(4.4-1.1 nm)/Al MIM capacitors fabricated using optimal ALD conditions. 

a  b 
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The mechanisms behind this decreasing trend in capacitance and large variation in Co was used to 

understand the properties of non-ideal capacitor behavior. er was calculated from the measured C 

values using the equation er= Cd/Ae0. Figure 3.6 compares the calculated er of the ALD Al2O3 

films made with the optimal ( black data)[14] (in the thickness range 1.1-4.4 nm) and non-optimal 

( red data) [15] (at two different thicknesses of 1.1 nm and 4.4 nm) ALD conditions. er values for 

the former are significantly higher than in the latter, suggesting that the dielectric properties of 

ultrathin ALD Al2O3 films strongly depends on the presence of the IL. With optimal ALD 

conditions the IL is negligible and er ~ 8.9 for 3.3–4.4 nm thick ALD Al2O3 was observed, 

corresponding to an EOT~1.4-1.9 nm, respectively. These EOTs are comparable to the EOTs of a 

high-K dielectric such as 3.0-4.5 nm thick HfO2 [11, 12] and this suggests that the optimal ultrathin 

ALD Al2O3 may provide a low-cost alternative gate dielectric for CMOS.  

Furthermore, er 8.9 for 3.3-4.4 nm thick ALD Al2O3 films is only about 3.3% lower than the bulk 

Al2O3 value of ~9.2 [82] and more than double than the best previously reported value er ~4.0 for 

3 nm thick ALD Al2O3 [71]. In contrast, with non-optimal ALD conditions at which an IL is 

present, er is considerably lower with a value in the range of 2.5-3.3 for 4.4 nm thick ALD Al2O3 

as shown in Figure 3.6. The difference in er illustrates the significant effect that an M-I IL has on 

the dielectric property of thin dielectric films. Specifically, a defective IL is in series with the ALD 

Al2O3 layer. This IL degrades the dielectric properties of the composite IL/ALD Al2O3 film. In 

addition to introducing a poor-quality IL capacitor, the ALD Al2O3 film grown on top of an IL is 

also defective, which can further decrease the er. Even at a substantially larger thickness of ~60 
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nm, the er was reported to be just 7.6 for ex situ deposited ALD Al2O3 film on n-type Si and Mo 

coated Si-substrate [71]. An IL ~1.1 nm was reported to form on n-type Si substrate and a similar 

IL is suspected to form on Mo-coated Si-substrate [71]. Since the IL is difficult to avoid in ex situ 

fabricated MIM trilayers, it is reasonable to expect lower er in the samples with more significant 

IL growth. The er ~ 7.2 is obtained for 2.2 nm ALD Al2O3 film without IL which corresponds to 

EOT~1.2 nm comparable to the EOT of a 4.5 nm of HfO2  high-K dielectric film [73]. However, 

based on EOT comparison the actual physical thickness of 2.2 nm ALD Al2O3 is much lower than 

high-K material. This result demonstrates the feasibility of incorporating ultrathin ALD Al2O3 with 

high-K material as a gate dielectric in CMOS. A significant decrease in er in the range of 0.4-0.9 

was observed for the 2.2 nm ALD Al2O3 film with non-optimal ALD conditions when an IL was 

present. The decrease in er with the film thickness have been observed for the high-K dielectric 

HfO2 [11, 12, 73] with thicknesses in the range of 1-4.5 nm and also for ZrO2 films in a comparable 

thickness range of 4-6.5 nm. This result illustrates the critical importance to elimination the IL to 

obtain high quality ultrathin dielectric films. er significantly reduced for the ALD Al2O3 thin films 

with poor dielectric films fabricated either in situ with the non-optimized conditions or ex situ due 

to the presence of IL. When the IL is negligible, er remains constant for the ALD Al2O3 films with 

3.3 and 4.4 nm thickness.  
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 Estimates of Thickness of Interfacial Layer 

When the thickness of the dielectric film is further reduced below 3 nm, a monotonic decrease of 

er with the dielectric film thickness is observed especially in the thickness range of 1.1-2.2 nm as 

in Figure 3.6. There are two possibilities for decreasing trend in er: 1) increase in quantum 

tunnelling that increases the leakage current subsequently decreasing capacitance and 2) presence 

of an IL in series with capacitance. To rule out the possibility that a thin IL with a substantial 

thickness for the data point as shown with star for pure dielectric capacitor could play a more 

significant role in this thickness range, a fitting of the measured capacitance (𝐶�) as function of 

the dielectric thickness was carried out with an assumption that an IL capacitor (𝐶�}) is connected 

in series with an ideal capacitor for ALD Al2O3 films (𝐶"}�) described by the equation (8). 

q
��
= q

����
+ q

���
                             (8)                                                  

The specific measured capacitance can then be calculated using equation (9). 
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Figure 3.6 Variation dielectric constant with thickness of ALD Al2O3 (1.1-4.4 nm) capacitors fabricated using optimal (black) 

indicating close to bulk er ~ 8.9 at 3.3-4.4 nm  and non-optimal (red) indicating ) er ~ 2.5-3.3 at 4.4 nm  ALD parameters. 
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where 𝑇�}	and 𝑇"}� are thicknesses of the IL and ALD Al2O3 films in nm, and e�} and e"}� are the 

dielectric constants for the IL and ALD Al2O3 dielectric films, respectively. 𝑇�}	(in	𝑛𝑚) and e�} 

are unknown parameters and several values of their ratio ���
e��

 from 0.01 to 0.3 were used in the 

fitting as in Figure 3.7. The ratio ���
e��

 = 0.01 curve (black) provides the best fit to the Co of the 4.4, 

3.3 and 2.2 nm thick ALD Al2O3 films (star data point shown with red circle). Assuming e�} = 1 

or 2	for the defective IL, the IL thickness would be 𝑇�} = 0.1	Å and 0.2	Å respectively. This means 

that the IL is indeed negligible and the decrease in the measured Co for ALD Al2O3 films in 

thickness range 1.1-2.2 nm is primarily due to the electron tunnelling. In this case, the circuit could 

be modelled as a resistor connected in parallel with the Al/ALD Al2O3/Al capacitor schematically 

shown in the inset of Figure 3.7. Our results show that 30 Ω resistor when connected in parallel 

with a 3.7 nF capacitor (comparable to the capacitance of 1.65 nm ALD Al2O3 film) results in a 

decrease in capacitance to 2 nF, which is 40% lower than a pure dielectric capacitor. This result 

suggests that the decrease in the measured specific capacitance of the 1.1-2.2 nm thick ALD Al2O3 

dielectrics (star data point shown with green circle) is due to tunnelling of electrons. To confirm 
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this argument, we have carried out an ac impedance measurement on the MIM samples which can 

give the information about the dominant components in the circuit.  

 AC Impedance Measurement  

The ac impedance spectroscopy measurement for MIM trilayers was performed using small time 

varying perturbation of 10 mV at a constant base potential. The difference between the input and 

output signal along with their phase angle gives more information about the dominant components 

within the circuit like a resistor or a capacitor over the different frequency range [96, 97]. The 

graphical representation using three different component, real and imaginary components of 

impedance (Z) i.e. real Z and imaginary (im) Z, and phase angle variation (ɸ) are widely used to 

represent impedance measurement data [96, 97]. To confirm that the electron tunnelling is 

responsible for the monotonic decreasing trend in er for 1.1-2.2 nm thick ALD Al2O3 dielectrics 

 
  

Figure 3.7 Comparison experimentally obtained specific capacitance data for ALD Al2O3 dielectric with the modelling 

based in the assumption that interfacial layer capacitance capacitor is connected in series with an ideal capacitor for ALD 

Al2O3 films. The inset shows an experimental verification of modelling showing the decrease in the measured 

capacitance for a standard 3.7 nF capacitor when connected in parallel with a 30 Ω resistor. 
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rather than IL formation, which is equivalent to a resistor connected in parallel with the Al/ALD 

Al2O3/Al capacitor i.e. RǁC behavior. Figure 3.8 summarizes the impedance results for 4.4 nm (40 

cycle) and 1.65 nm (15 cycle) ALD Al2O3 film. In the former the circuit is expected to consist of 

only a capacitor, while in the latter, a combined circuit of a RǁC behavior is anticipated considering 

the electron tunnelling (as form inset for Figure 3.7). Figure 3.8(a) shows the nature of Nyquist 

plot obtained using real Z against imaginary Z represent capacitive behavior for 4.4 nm ALD Al2O3 

film and RǁC behavior for 1.65 nm ALD Al2O3 film[96] in agreement with our experimental results 

and modelling. Quantitatively, the values of capacitance at 1 KHz for the 4.4 nm and 1.65 nm 

samples are 1.4 and 2.3 nF respectively, which are in good agreement with that obtained from the 

C-V measurement in Figure 3.8. The resistance of 52 ohm for the 1.65 nm sample is consistent 

with that used in the inset in Figure 3.7. The phase angle variation with frequency as in Figure 

3.8(b) confirms that 4.4 nm ALD Al2O3 film shows pure capacitive behavior with phase lag by 

90°. However, 1.65 nm ALD Al2O3 shows expected RǁC behavior with capacitive behavior with 

phase lag by 90° at a higher frequency and resistive without any phase variation i.e. 0° at lower 

frequency confirming the above observation of quantum tunnelling at thickness below 2 nm. 
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Figure 3.8 AC impedance measurement a) A Nyquist plot and b) a phase variation with frequency measured on  40 

cycle (4.4nm, black)) and 15 cycle (1.65 nm, blue) ALD Al2O3 MIM capacitors. 

 Leakage Current and Breakdown Characteristic of Dielectric 

The understanding of the growth mechanism and leakage characteristic is critically important for 

device application especially for ultrathin dielectric films. The properties of three ALD Al2O3 

dielectric films thicknesses 4.4, 2.2 and 1.1 nm were studied as shown in Figure 3.9. The 4.4 nm 

(black) thick ALD Al2O3 film with a negligible IL has a low J~10-9A/cm2 at zero bias, which 

increases to ~10-7A/cm2 with an increase in E to 2 MV/cm. This value of J at zero bias is two 

orders lower for ALD Al2O3 films even at 6.5 nm [83] and comparable to 12 nm [71] for ex-situ, 

which is an indicator of the higher quality of in situ fabricated TBs with a negligible IL. For 2.2 

nm thick ALD Al2O3 film (red) J ~10-6A/cm2 at zero bias and increases to 10-4 A/cm2 with the 

corresponding increase in E to 2 MV/cm. A similar increasing trend in J is observed for 1.1 nm 

thick Al2O3 films (black) with J~10-3 A/cm2 at zero bias, which significantly increases to ~1 A/cm2 

at 2 MV/cm. This increase in J is due to quantum tunnelling of electrons that start to dominate at 

a b 
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dielectric thickness below 2 nm as expected for ultrathin dielectric films [71, 95]. Thus, with a 

decrease in the thickness of ALD Al2O3 dielectric films makes MIM capacitors more susceptible 

to higher leakage current even at smaller E.  The similar trend is observed for SiO2 or for even 

high-K material when pushed to ultrathin thickness below 2 nm. This trend is not related to the 

quality of TB as explained with observe decrease in er but associated with an increase in quantum 

tunnelling as in Figure 3.6. Due to the higher quality of TB through reduction of the IL and in situ 

ALD fabrication, we can push the limit of our C-V measurement to ultrathin ALD Al2O3 thickness, 

which is not only an extension of previous work done by many research groups [71, 83, 84] but 

also finds an important application in CMOS and MIMTJs.  

 

The characteristics of TBs under intense electric field (>10 MV/cm) provides an additional insight 

into the quality, nature and significance of the IL often known as dielectric breakdown. There are 

mainly two main type of breakdown characteristics for ultrathin dielectric. First, soft breakdown 

Figure 3.9 Leakage current density vs. electric field (J-E) for MIM capacitors fabricated using optimal ALD condition 

for 4.4, 2.2 and 1.1 nm ALD Al2O3 dielectric film. 
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that occurs in gradual manner as disorder within the TB increases through defect migration 

eventually leading to the significant increase in J. This soft breakdown characteristic is observed 

in the TB with defective IL with high defects or pinholes leading to the growth of defective 

dielectric film on the top.  Interestingly after soft breakdown, the removal of E in the dielectric 

film can recover its insulating property. This is an important parameter to evaluate the strength of 

the ALD Al2O3 dielectric film. The breakdown dielectric behavior is studied using figure 3.10 with 

J vs. E by increasing E until the dielectric film shows a sudden increase in J. The 4.4 nm thick 

ALD Al2O3 (black) show J ~10-7 A/cm2 with E~2 MV/cm which significantly increases to ~10-5 

A/cm2 (blue) due to the corresponding increase in the leakage current when E approaches 5 

MV/cm, this is known as soft dielectric breakdown [98, 99] .  

 

 

Figure 3.10 Leakage current density vs. electric field for 4.4 nm Al2O3 before (black) and after (blue) soft 

dielectric breakdown where dielectric can recover its original I-V after removal of external field. 
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Next, hard breakdown occurs with the sudden breaking of Al2O3 bonds in dielectric film leading 

to the sudden increase in the leakage current. After this traumatic breakdown event, the insulator 

becomes metallic with a large spike in leakage current and result in a linear I-V after breakdown. 

Figures 3.11(a) and (b) show a hard-dielectric breakdown electric field (EHBR), which makes the 

dielectric film lose its insulating property and become conductive. The 4.4 nm thick ALD Al2O3 

film (black) shows EHBR ~6.2 MV/cm comparable to ~7-8 MV/cm reported for a thicker film ~100 

nm [71, 83] indicating the better quality of ultrathin dielectric ALD Al2O3 films fabricated using 

our in situ sputtering and ALD system [18]. The enhancement in EHBR ~10 MV/cm is observed 

when the film thickness is reduced to 2.2 nm (blue). The EHBR further increases to ~32 MV/cm for 

1.1 nm ALD Al2O3 film, which is consistent with the enhancement of EHBR ~30 MV/cm observed 

for 1.2 nm ALD Al2O3 film [95, 100]. The significant increase in EHBR is related to an increase in 

leakage current due to the quantum tunnelling of electrons through the ultrathin dielectric that 

prevents ALD Al2O3 films from a hard-dielectric breakdown at low E [95, 100].  With an increased 

contribution of tunnelling current to the total current, which reduces the number of ballistic 

collisions and therefore heating within the insulator. Thus, these observed high EHBR values in 

ultrathin ALD Al2O3 films show the potential for reducing the thickness of gate dielectrics used in 

CMOS.  
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 In situ STS Characterization of ALD Al2O3 Films  

Taking advantage of the unique all in situ fabrication and characterization system, the further 

studied the quality of dielectric using in situ STS method by Jamie Wilt et al.  [89]. Ex situ tunnel 

junction and capacitance measurements are limited to insulators, which are greater than 1nm in 

thickness due to the requirement of low leakage current [10, 18, 71, 95, 100]. In situ STS is not 

limited by such a constraint, in fact, a high leakage current is required for STS to measure 

insulators, thus limiting the maximum measurable insulator thickness, which is around 2-3 nm for 

high-k dielectric  [101].  Therefore, STS can quantify the ultrathin insulators based on 𝐸/  in tandem 

with the ex situ measurements. By varying the bias voltage applied between the sample and an 

atomically-sharp metallic tip and recording the tunnelling current along with its derivative, STS 

can probe the local density of states of the insulator [102]. To make electrical contact for the bias 

voltage, a molybdenum washer was mechanically clamped to the Si/Au substrate as shown in 

Figure 3.11 Leakage current density vs. electric field after hard dielectric breakdown for (a) 4.4 (black) and 

2.2(blue) nm ALD Al2O3 and (b) 1.1nm ALD Al2O3 cycles. 

a 
b 
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Figure 3.12(a). The M-I structure was then grown on top and the sample transferred to the STS 

chamber in situ under high vacuum to avoid additional alumina growth.  

The STS study on ALD Al2O3 TB in thickness range 0.1-1 nm or 1-20 cycles on Al has shown that 

𝐸/, defined as the CBM, is constant with Al2O3 thickness in the range of 1-10 ALD cycles with a 

value of about 1.5 eV [15].  This 𝐸/ constancy with thickness is an indicator that the quality of our 

ALD Al2O3 TB does not change with thickness. The IL formed primarily due to exposure of Al to 

trace O2 and/or H2O during the pre-ALD heating step was systematically reduced by controlling 

the heating parameters to obtain an increase in ALD Al2O3 𝐸/ from about 1.0 eV to about 1.5 eV 

(with a negligible IL) along with a transition from soft-type to hard-type dielectric breakdown [14, 

15]. Therefore, the ALD Al2O3 band gap, which is another good indicator for the quality of the 

insulator, must be constant as well. A representative STS dI/dV spectrum is shown in Figure 

3.12(b). The band gap is defined as the difference between the CBM and the VBM. On this log 

(dI/dV) scale the Valence and conduction bands should be roughly linear [91].  The band gap 

region of the STS dI/dV curve is nearly flat, indicating a low leakage current through the insulator 

[63]. We fit linear lines (bisquare method) to the valence band and the conduction band. The VBM 

and CBM were calculated to be about -1.0 eV and 1.6 eV respectively and were defined as the 

linear fit line’s intersection with the nearly flat band gap region. We found that the ALD Al2O3 

band gap was 2.63 eV +/- 0.30 eV. This band gap value is comparable to the ultrathin (1.3 nm) α-

Al2O3 band gap of 2– 4 eV [63, 103]. Together with the C-V measurements, this excellent band 

gap indicates that high quality ultrathin ALD Al2O3 growth has been achieved when the IL is 

minimized.  
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To expand upon the dielectric breakdown characteristics observed in Figure 3.9, the STS bias 

voltage was repeatedly ramped up and down with the tip height fixed over one location until 

dielectric breakdown. I-V and corresponding dI/dV spectra are shown in Figure 3.12(c) and (d) 

respectively for 10 cycle ALD Al2O3 films with a minimized IL. Our ultrathin ALD Al2O3 TB 

broke down in a hard-type breakdown behavior where the tunnelling current suddenly increased 

by a factor of ~1000. This breakdown event occurred near the end of the 13th spectra and can be 

seen in the corresponding IV curve (Figure 3.13(c)). Subsequent spectra had tunnelling current 

which was above the saturation current of the STM (~100 nA). This type of breakdown behavior 

is consistent with epitaxial Al2O3, indicating that no significant defective IL is present in our ALD 

Al2O3 TBs [104]. 
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 Chapter 3 Conclusion 

In summary, we have investigated the effect of control over M-I interface on the dielectric 

properties of in situ fabricated Al/Al2O3/Al trilayers with ultrathin (1.1 nm-4.4 nm) ALD Al2O3 

dielectric films. Several important observations have been made. First, an IL can still form at the 

Al/Al2O3 interface in high vacuum at a non-optimal ALD growth condition and it has a profound 

effect on the dielectric properties of the ALD Al2O3 dielectric films. Specifically, the IL at the 

Al/Al2O3 interface is defective like thermal AlOx with higher pinholes and defects on ALD Al2O3 

is defective, resulting in a low er of ~3.3 for the 4.4 nm thick ALD Al2O3 films and soft-type 

Figure 3.12 In Situ Scanning tunnelling spectroscopy for the ALD Al2O3 tunnel barrier (a) A schematic for 

the sample mounting scheme (b) A representative of dI/dV spectra with blue and red lines are bisquare method 

linear fits to the valence band and the conduction band respectively (c) The breakdown characteristics with I-

V and (d) corresponding dI/dV spectra where the bias voltage was sequentially ramped up and down with a 

fixed tip-sample distance. 
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dielectric breakdown ascribed to the mobile defects in the IL/ALD Al2O3. On the other hand, the 

IL can be systematically controlled by preventing pre-ALD exposure of trace amounts of H2O, 

oxygen and other chemical species in vacuum. For the 3.3-4.4 nm thick ALD Al2O3 dielectric films 

with a negligible IL, we obtained high er ~8.9 approaching that of the bulk Al2O3 ~9.2 

corresponding to EOT ~1.4-1.9 nm respectively and low J ~10-9 A/cm2 at zero bias. This high 

quality dielectric property is further confirmed by the hard-type dielectric breakdown with EHBR 

~32 MV/cm on the 1.1 nm thick ALD Al2O3. These results illustrate the critical importance in 

controlling the M-I interface to obtain high quality dielectric films. It also provides the feasibility 

to reduce the thickness of gate dielectrics for CMOS and MIMTJs, which are important to a large 

variety of microelectronic applications. 
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 Effect of Al2O3 Seed-Layer on Properties 

of Ultrathin MgO Films Fabricated using In Situ 

Atomic Layer Deposition 
Magnesium oxide (MgO), which is a wide band gap material of 7.80 eV with er ~9.80 and high 

stability, is an interesting dielectric material for MIM, TJs and other devices [105-109]. 

Specifically, MgO is the best TB material for magnetic tunnel junctions to allow coherent 

tunnelling of spin current, which leads to significantly higher tunnelling magnetoresistance up to 

200 % [9] in contrast to 70% in MTJs with Al2O3 as the TB [47]. MgO has been deposited using 

CVD [110], pulsed laser deposition [111], homogeneous precipitation, sol-gel processes [108, 109]  

and ALD [107]. This has motivated research on growth of ultrathin ALD MgO. A systematic study 

on the dielectric properties of ALD MgO for MIM devices is lacking, which is possibly due to the 

difficulties to obtain leak-free ultrathin ALD MgO films. However, the study of ALD MgO in the 

thickness range of 4.6-11 nm on Si for metal oxide semiconductor capacitor show close to single 

crystal bulk MgO [112]. 

Earlier studies on MgO dielectric suggest presence of more defects and pinholes as compared to 

Al2O3 characterized using STS and structural analysis [113-115]. To prevent the formation of an 

IL between the M-I interface a recent approach employs an Mg interlayer or graphene [116-118]. 

Despite this effort, the oxidation of the electrodes is still a potential cause for the formation of IL, 

resulting in defective dielectric films [118, 119]. It is therefore imperative to address the issue with 
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the IL formation in development of high quality ALD ultrathin dielectric films. As discussed in 

chapter 3, we have developed a dynamic heating process to reduce the exposure of the metal 

surface (in high vacuum) before deposition of ALD Al2O3 ultrathin films on Al and Fe using an in 

situ UHV sputtering/ALD process [18]. The M-I IL layer can effectively suppressed in both in situ 

STS studies of the 0.10-1.10 nm thickness ALD Al2O3 layer and ex situ studies of the MIM devices 

[16]. It is particularly worth mentioning that an er within 3% of the Al2O3 single-crystal bulk value 

has been demonstrated in 3.30-4.40 nm thick ALD Al2O3 films by reducing the Al/ALD Al2O3 IL 

effect to a negligible level [14-16]. Unfortunately, direct growth of ultrathin ALD MgO films on 

Al or Fe using the similar in situ sputtering/ALD processes failed to generate high quality dielectric 

films, which is attributed to different nucleation mechanisms of ALD MgO and ALD Al2O3 on 

metals [113, 114, 119]. This problem represents a general problem in the growth of ALD-dielectric 

on metals with an incompatible M-I interface that prevents uniform nucleation of an atomically 

thin ALD dielectric film.  

The incubation process in ALD of dielectric films is primarily generating oxides on the surface of 

metals to assist a more efficient ligand exchange between precursors on the sample surface. This 

means the many of the initial ALD cycles are used for the incubation of native oxides on the metal 

surface for nucleation of ALD MgO [118-120]. Unfortunately, the native oxides are typically 

defective as shown in a recent study by our group [14, 15]. ALD dielectric films grown on native 

oxides can have much degraded electronic and dielectric properties [16, 71, 82, 118-121]. In this 

chapter, we explore a novel approach of “incubating” a metal surface by in situ growth of a sub-

nm thick ALD Al2O3 seed layer (SL) that is high quality and hence will have a negligible negative 



 

 

  

76 

impact on the ALD MgO growing on top as compared to the native oxide IL. We show a 0.55 nm 

thick ALD Al2O3 SL enables high quality ALD MgO ultrathin (<5 nm) film growth.  Remarkably, 

an er up to 8.82-9.38 was achieved in ultrathin ALD MgO dielectric films of thicknesses ~ 3.30-

4.95 nm, which is in contrast with the leaky ALD MgO counterpart of significantly lower er ~3.55-

4.60 without the SL. These results are supported with higher 𝐸/~1.50 eV for MgO/SL and dense 

nucleation with 100% coverage. However, 𝐸/ is reduced to 0.80 eV for ALD MgO without SL and 

ALD coverage reduced to less than 80%. An ab-initio molecular dynamics simulation suggests 

that the SL layer allows for more regularly distributed Al and OH ligands leading to the growth of 

denser and high quality ALD MgO dielectric as compared to the case on Al films, which is by its 

nature not self-terminating and is anticipated to have a relatively rougher terrain for subsequent 

growth of dielectric films. Thus, the SL approach may be applied to engineering the M-I interface 

for growth of high quality ALD-dielectric ultrathin films on metals that would be otherwise 

incompatible [122]. 

 Controlling Interfacial Layer Formation for ALD MgO 

There have been difficulties in the direct growth of ALD MgO ultrathin (<5 nm) films on metals 

due to the low volatility of the Mg precursor which results in non-uniform nucleation. Typically, 

it requires an incubation stage, which means first tens or even more of ALD cycles are used to 

promote the formation of native oxides on the metal surface for nucleation of ALD MgO [118-

120]. The native oxides are typically defective as shown in our recent study. ALD dielectric films 

grown on native oxides have much degraded electronic and dielectric properties. The direct 
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comparison between ALD Al2O3 and native AlOx on the Al surface indicates that the former  has 

a significantly reduced defect concentration [14].  In STS study on AlOx < 0.6 nm thickness was 

found leaky with zero to very small 𝐸/~ 0.6 eV. We have found that the direct growth ALD of 

MgO ultrathin films on Al and Fe is difficult. However, MIM structures are leaky even when the 

MgO film thickness is 4.4 nm. This is a contrast to high quality ALD Al2O3 ultrathin films of 

thickness as small as 0.1 nm on Al and Fe [14, 15].  To resolve this issue in ALD growth of MgO 

on metals, a SL approach was developed to bypass the difficulty of ALD MgO growth directly on 

metals. The ALD Al2O3 SL differs fundamentally from native oxides on metal surfaces. Based on 

the nucleation mechanism, Figure 4.1 shows schematic for both optimal and non-optimal growth 

of MgO dielectric. Figure 4.1(a) shows a schematic of optimal MgO growth that results in the 

perfect interface between M-I interface resulting in the growth of high quality MgO film. The 

dielectric contribution of sub-nm SL is negligible as compared to thick MgO films. The primary 

influence of SL is for the dense nucleation leading to the growth of a perfect MgO dielectric film. 

However, Figure 4.1(b) shows the schematic for difficultly in nucleation for MgO with fist few 

incubation cycles for the formation of dense hydroxylation that results in the formation of IL which 

lead to defective MgO leading to low quality dielectric film.  
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 Ab initio Molecular Dynamics Simulations  

To shed light on the effect of the SL, reactive MD Simulations were carried out by our collaborator 

Ridwan Sakidja to compare the ALD MgO growth on two surfaces with different configurations 

of OH groups distribution: OH groups distribute in a regular pattern on top of Al (111) surface, 

which represents the case of MgO/SL as shown schematically in Figures 4.1(a); and OH  groups 

distribute disorderly on Al (111) wetting layer, which represents the case of MgO/WoSL as shown  

in Figures 4.1(b). The simulation results suggest that the OH pattern and density on the sample 

surface have a direct impact on the number of Mg-O bonds in subsequent Mg precursor pulse as 

in agreement with the proposed growth mechanism as in Figure 4.1. Figures 4.2(a) and (b) 

corresponds to the side view of atomic trajectories for “orderly placed” OH deposition after 0 and 

25,000 fs respectively. In this case, we barely see any occurrence of water vapor release implying 

the retention of OH molecules through the OH-OH lateral bonding formation of oxide cluster on 

Figure 4.1 Growth mechanism for a) ALD MgO with ALD Al2O3 (dielectric with dense -OH nucleation) with seed 

layer Al2O3  showing perfect dielectric growth b) ALD MgO without seed layer (dielectric with less -OH nucleation 

and possibility of pinholes for ALD MgO without Al2O3 seed layer forming interfacial layer resulting defective 

dielectric showing perfect dielectric growth. 

Non-optimal growth 
Optimal growth 

ALD MgO
 
without seed layer ALD MgO

 
with seed layer 

I 

IL 

I 

SL 

a 
b 



 

 

  

79 

the surface, presumably creating a denser dielectric film. Figure 4.1 (a) shows a schematic of the 

proposed growth of MgO directly on Al (111) surface, resulting in not self-terminating -OH and 

consequently a defective IL in series with MgO dielectric. To support the argument, Figures 4.2(c) 

and (d) depicts the side view trajectories with “randomly-placed” OH groups on the Al (111) 

surface after 0 and 25,000 fs respectively. Instead of forming a continuous OH layer as a result of 

the reaction between the adsorbed water molecules, some are deprotonated, releasing hydrogen 

and leaving oxygen on the Al surface. This leads to a low surface density and coverage of adsorbed 

OH on the Al surface, hence defective ALD MgO in subsequent ALD growth. Therefore, the SL 

allows for dense and ordered OH ligands to assist ALD MgO dielectric growth. 

 

 

Figure 4.2 a) and b) Side view of the atomic trajectories for the case of  ‘orderly placed” (representing -OH on the 

Al(111) surface after 0 and 25,000 fs respectively; c) and d) Side view of the atomic trajectories for the case of  

‘disorderly placed” (representing -OH on the Al(111) wetting layer after 0 and 25,000 fs respectively. 

a b 

c d 
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 Optimization of Thickness of ALD Al2O3 Seed Layer  

As the simulation results suggest that the hydroxyl monolayer formed on the Al surface may be 

partly destroyed through deprotonation upon ligand exchange with MgCP2, resulting in the release 

of oxygen and hence the formation of native AlOx on the Al surface. Also, we found that the 

residual hydroxyl groups left on the sample surface due to incomplete ligand exchange with 

MgCP2 may contribute to the surface charges. We should also mention that we have investigated 

the surface roughness of the ALD samples on flat and rough surfaces and found all ALD films are 

very smooth since the ALD coating is conformal and self-limiting. Based on the results from 

previous works by our group and others, we initiated the idea of using an ALD Al2O3 SL to 

facilitate the ALD MgO growth with the following hypotheses: 1) the hydroxyl groups on the 

oxide surfaces, such as the native oxides formed during the incubation mentioned above and the  

ALD Al2O3 SLwould be much more efficient in the ligand exchange with MgCP2; and 2) replacing 

the native oxides formed in the incubation with the ALD Al2O3 SL would minimize degradation 

of the electronic and dielectric properties of the ALD MgO.  

Figure 4.3 show the transport measurement on the MIM devices with variation of the SL 

thicknesses in the range of 0.22-0.55 nm (or 2-5 ALD Al2O3 cycles) to fabricate the capacitors of 

total 30 cycles ( 25 cycles + 5 SL, 26 cycles + 4 SL, and 26 cycles + 3 SL). The SL plays a 

significant role in initial nucleation and dense hydroxylation for subsequent ALD MgO. When there 

is no SL, deprotonated releasing hydrogen from water may leave oxygen on the Al surface, 

resulting in the formation of native oxides and incomplete coverage of the hydroxyl groups on the 
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sample surface. We observe that with a decrease in thickness of the SL the dielectric properties of 

MgO film decreases possibly due to non-uniform nucleation for MgO as discussed in Figure 4.2. 

For example, MgO with 5 cycles Al2O3 SL show er close to bulk value with 𝐸/ ~1.50 eV and 

almost 100% coverage. A further decrease in SL thickness er decreases and reduced to ~22-30 % 

for 3 cycles Al2O3 SL with a reduction in ALD coverage. Unfortunately, the dielectric study for 

SL thickness below 0.33 nm (or 3 cycles) is unreliable with high leakage due to non-uniform 

nucleation resulting defects and pinholes. This agrees well with the in situ STS result of incomplete 

coverage of MgO dielectric with 0.22 nm (or 2 cycles) SLor MgO directly on Al. Based on these 

studies, the 0.55 nm (or 5 cycle) ALD Al2O3 SL is optimal and results in the best dielectric 

properties of the ALD MgO. 
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Figure 4.3 Dielectric constant variation with frequency for total thickness of 3.3 nm MgO/SL with variation 

of seed layer thickness 0.33-0.55 nm  (or 3-5 ALD cycles). 
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 Dielectric Properties of MgO With and Without Seed Layer 

The confirmation of the growth of MgO was done using FTIR spectra taken on ALD MgO 2.2 nm 

(or 20 cycles) films deposited at the optimal conditions with substrate temperature 200 °C and 

source heated to 100 °C. The appearance of absorption peaks at 495, 640, 750 and 960 cm-1 are 

indexed to MgO [121, 123]. The dielectric properties of MgO with SL in thickness range 2.75-4.4 

nm or 25-40 cycles were compared to those of 4.4 nm MgO without SL have been deposited.  

Figure 4.4(a) shows variation of C0 with frequency in the range from 1 KHz-1 MHz measured on 

MIM capacitors with different “I” layers of ALD MgO of thicknesses of 2.20, 2.75, 3.30 and 3.85 

nm on the SL (colored curves). Also, a device with 4.4 nm thick ALD MgO without a SL is also 

included for comparison (black). The C0 is defined from C0 = C/A=e0er/d for different MIM devices 

and the dielectric thickness (d) regards the total thickness of the SL and the ALD MgO thickness. 

The error bars were calculated using the three devices fabricated on the same sample with different 

capacitor areas of 400x100, 300x100 and 200x100 µm2, respectively. The MIM devices with the 

ALD MgO/SL show an almost constant C0 in the frequency range from 1-100 KHz (within 4-6% 

variation). With a further increase in the frequency, C0 decreases due to dielectric loss [124, 125]. 

In addition, an almost constant C0 was observed on the composite devices with the ALD MgO/SL 

in the thickness range of 3.30-4.95 nm. At a smaller ALD MgO/SL thickness 2.75 nm, C0  decreases 

considerably by 35-50 % possibly due to effect of electron tunnelling which will be discussed later. 

In contrast, the MIM devices with the ALD MgO/WoSL show an overall lower C0 by a factor >2 

and more significant frequency dependence possibly due to defects initiated at the defective M-I 
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interface [126]. Figure 4.4(b) shows the variation of er with frequency calculated using er = C0t/e0 

from the data in Figure 4.4(a). The er shows a similar frequency dependence to that of C0, which 

is almost constant in the frequency range of 1-100 KHz with a small decrease of 4-5%. Further 

increasing frequencies, er shows a larger decrease and this decrease is significantly larger on 

samples with lower ALD cycles. This larger variation of both C0 and er at higher frequencies can 

be explained by a capacitive response and dielectric loss of the MIM capacitor with fast charging 

and discharging since at large frequency all charges or dipoles cannot respond with fast polarity 

switching [124, 125]. Our results indicate that these ALD MgO capacitors are well suited for 

application in the frequency range up to 100 KHz but are less suitable for application which 

requires higher frequency application in MHz or GHz. It should be noted that the independent 

measurement of er for the 0.55 nm ALD Al2O3 SL cannot be accomplished using the MIM structure 

since electron tunnelling become possible as the thickness of the ALD Al2O3 is comparable or 

below 2 nm and increases exponentially with decreasing ALD Al2O3 thickness reported earlier 

[16]. Considering the comparable single-crystal bulk dielectric constants of the Al2O3 (~9.2) and 

MgO (~9.8) and negligible electron tunnelling would occur at the dielectric thickness in exceeding 

2 nm, the er of the composite ALD MgO/SL film was  calculated using the total thickness of the 

ALD MgO and the ALD Al2O3 SL.                                
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Figure 4.5(a) shows the variation of er with the ALD cycle number for ALD MgO/SL at 1, 10, and 

100 KHz. In the frequency range of 1-100 KHz, the er values are comparable within 4-6 % of 

variation, and they increase monotonically with the cycle number (or thickness) of the ALD MgO.  

At 30-45 C (or thicknesses of 3.30-4.95 nm including the SL), er values of ~8.82-9.38 have been 

obtained on the ALD MgO/SL. To the best of our knowledge, this is the first time such a high er 

approaching to the single-crystal MgO’s value is obtained in ultrathin ALD MgO films. The 

effective oxide thickness, or EOT=tHiK·3.90/eHik used for evaluating high-K dielectric materials 

where tHiK and eHik are the thickness and er of the high-K dielectric materials, for the ALD MgO/SL 

is estimated to be ~1.45-2.05 nm. This suggests that the EOT of the ultrathin ALD MgO/SL films 

are around 1.1-0.95 nm that is comparable to that for high-K HfO2 of 3-4.5 nm in thickness and 

eHik in the range of 10-18.5 [11, 12, 127].  
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Figure 4.4 Variation of a) Specific capacitance and b) dielectric constant with frequency for Al/MgO(2.20-

3.85 nm )/SL (0.55 nm)/Al and Al/MgO (4.40) nm /Al MIM capacitor using previous shadow mask method. 
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Figure 4.5(b) shows a direct comparison of the er values of the ALD Al2O3, ALD MgO/SL and 

ALD MgO ultrathin films, illustrating a similar monotonic increasing trend with increasing ALD 

cycle numbers. At the optimal fabrication condition reducing IL to negligible thickness, er remains 

constant around 8.90-9.00 for 3.30-4.40 nm thick ALD Al2O3 films, which is comparable to the 

value for the Al2O3 single crystal[82] and is more than double of the best (er~4.0) previously 

reported on 3.00 nm thick Al2O3 films [71]. The reduced er values at smaller thickness are ascribed 

to the electron tunnelling through the ALD Al2O3 as reported in our previous work [16]. A similar 

thickness dependent trend on ALD MgO/SL with er values ~8.82- 9.38 for 3.30-4.95 nm and 

reduced er values at smaller thicknesses have been observed. Also, the er values measured on two 

ALD MgO samples of 4.40 nm (cyan) are also included for the comparison. However, 4.40 nm 

ALD MgO show significantly lower er ~3.55-4.60 is indicative of the formation of defective 

dielectric IL between the M-I interface with a possibility of non-uniform nucleation, which agrees 

with our detailed discussion later with STS. This argument agrees with previously reported results 

that MgO dielectric  is expected to have more defects and pinholes compared to Al2O3 [113, 114], 

suggesting the possibility of a different growth mechanism for MgO. A similar trend is shown in 

the er of the ALD MgO/SL samples (blue) indicating that the defect concentration has been 

significantly reduced with the adoption of the SL. 
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It should be mentioned that the ALD MgO and ALD Al2O3 films deposited at low temperatures of 

~200-220 °C  are amorphous [68], which means that TEM diffraction can be obtained on them and 

their interfaces with the metal electrode with an atomic resolution. To address this challenge, we 

recently implemented an ultrahigh vacuum scanning tunnelling spectroscopy (STS) to in situ study 

of the morphology and the electronic structure of the ultrathin ALD dielectric films with the 

thickness in the range of 0.1-1.0 nm. To complement the in situ STS measurement, devices of 

tunnel junctions and MIM trilayers (like the ones reported in this work) have also been fabricated 

to characterize the ALD dielectric films using electric transport measurement by Ryan et al [122]. 

The agreement between the in situ STS and transport measurements on these devices can be found 

in our previous works.  

In an attempt to further understand the role of Al2O3 SL, Figure 4.6(a) shows schematic of  an in 

situ STS  analysis carried out on TBs with a combination of 10 ALD cycles (10 C) of: Al2O3 (10 

Figure 4.5 Variation of a) dielectric constant for ALD MgO/SL with ALD cycles number at different frequencies (1, 10 

and 100 KHz) and b) Comparison of ALD Al2O3 dielectric (black) reported in a previous paper1 with ALD MgO with 

SL (ALD MgO/SL) (blue) and ALD MgO wo-SL) (cyan) deposited at substrate temperature 200 and 255 °C. 
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C), Al2O3 (5 C) + MgO (5 C), and MgO (10 C). The 5C Al2O3/5C MgO and 10 C Al2O3 were 

found to have nearly identical 𝐸/ ~1.50 eV as in Figure 4.6(b) representing TBs with excellent 

quality on both samples. This is in drastic contrast to the 10 C MgO grown directly on the Al 

wetting layer resulting in a poor 𝐸/ ~0.80 eV. These results illustrate the importance of SL to 

obtain high quality MgO dielectric. This difference may be observed by viewing Figures 4.6(c) 

and 4.6(d) which illustrate the difference in dI/dV spectra between the higher quality Al2O3/MgO 

and lower quality MgO barriers. The lower 𝐸/ is due to defects present in the TB, these defects 

became more obvious while probing the surface since approximately 20% of the spectra were 

conductive or defective and the rest showed relatively low 𝐸/.  Furthermore, at other locations on 

the surface, there was too much noise for the scanning tip to even settle to take dI/dV spectra. 

During ALD MgO growth without a SL, a complete layer of MgO is not grown, and what is grown 

is of lower quality due to defects.  
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 Effect of Interface on Leakage Current 

The proposed ALD MgO nucleation mechanism enabled by the SL is supported by a comparison 

of J measured on MIM capacitors with an “I” layer of 4.40 nm thick ALD Al2O3, ALD MgO/SL 

and ALD MgO/WoSL respectively (Figure 4.7). This result indicates that the J~10-7 A/cm2 for the 

4.40 nm ALD Al2O3 sample is the lowest among the three samples. The higher J values in the two 

ALD MgO samples may be ascribed to the higher defect concentrations in these samples as 

compared to that of ALD Al2O3. However, the implementation of a SL can effectively reduce the 

leakage by more than one order of magnitude than in the ALD MgO/WoSL. The ALD MgO 

growth on metals show a large incubation period is necessary for complete hydroxylation that 

d 
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Figure 4.6 a) Diagram of in situ deposited seed layer and TB for STS analysis  b) Comparison of barrier heights for 

TBs of total thickness 10 C using different amounts of Al2O3 in their compositions. c) representative dI/dV spectrum 

taken on a 5 C Al2O3/5 C MgO TB and d) a representative dI/dV spectrum taken on a 10 C MgO TB. 
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promotes the formation of native oxides on the metal surface [118-120]. We have attempted in situ 

ALD MgO growth on Al and Fe. But found the MIM structures are leaky even when the MgO film 

thickness is 4.4 nm. This is in contrast to high quality ALD Al2O3 ultrathin films of thickness as 

small as 0.1 nm on Al and Fe [14, 15].  To resolve this issue in ALD growth of MgO on metals, 

this work develops a seed-layer approach to bypass the difficulty of ALD MgO directly on metals. 

The ALD Al2O3 SL differs fundamentally from native oxides on metal surfaces. As we have shown 

in our previous work on the direct comparison between ALD Al2O3 and native AlOx on Al surface 

[14] the former  has a significantly reduced  defect concentration. 

 

 

 Chapter 4 Conclusion  

In summary, an ALD Al2O3 SL of 0.55 nm in thickness has been employed to grow MIM devices 

with ultrathin ALD MgO dielectric films in thickness 2.20-4.40 nm. The goal is to address critical 
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Figure 4.7 Comparison of leakage current for total 4.40 nm ultrathin ALD dielectric film with ALD Al2O3, 

ALD MgO/SL and ALD MgO/WoSL for  MIM capacitor  using log plot. 
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the issue in the nucleation of ALD MgO directly on metals that are incompatible to form a sharp 

M-I interface. Our results indicate that the SL can convert such an incompatible metal surface to 

compatible by regulating the surface OH density/pattern, and hence facilitating high quality ALD 

MgO growth. The ALD MgO/SL films at 3.30-4.95 nm thickness exhibit er ~8.82-9.40, approaching 

the er ~9.80 of the single-crystal MgO. STS demonstrates the ALD MgO/SL with 𝐸/~1.50 eV with 

almost 100% coverage. Also, our MD simulations indicate that ALD MgO/SL layer allows 

regularly distributed Al and OH ligands leading to the growth of denser and high quality MgO 

dielectric. In contrast, ALD MgO of comparable thickness is defective with low er of 3.55-4.66 

along with non-uniform nucleation on the Al surface with a significant portion of the Al surface 

remaining conductive as confirmed using the in situ STS. The reactive MD simulations on MgO 

growth directly on Al provides insights showing not self-terminating surface with rougher terrain 

for subsequent growth of a defective dielectric film. These results illustrate that the SL approach 

is promising to engineer otherwise incompatible M-I interface to enable in situ growth of MIM 

trilayers of ultrathin leak-free dielectric with low defect concentration required in a large variety of 

microelectronic and memory applications. 
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 Switching On/Off Negative Capacitance 

in Ultrathin Ferroelectric/Dielectric Capacitors 

To keep up with Moore’s Law, miniaturization of microelectronic devices demands the thickness 

of gate dielectric approaching ultrathin range in 1-2 nm thickness. Despite the significant progress 

made in ultrathin high-K gate dielectric of a few nm in thickness, further reduction of their 

thickness remains challenging due to the difficulties in controlling defects, which is similar to the 

SiO2 dielectric case [26, 28]. A promising resolution of this issue is to stack a ferroelectric (FE) 

layer with the dielectric (DE) layer to make a FE/DE bilayer stack [128-136]. FE materials can 

have significantly higher er values by a few orders of magnitude.  More than that of SiO2 or many 

other DE materials [137-139]. Using the FE gate alone remains difficult due to the hysteretic 

current-voltage characteristics and unstable negative capacitance as shown, for example, on the 

FE Hf0.5Zr0.5O2 (HZO). These issues could be minimized in the FE/DE bilayer stacks on which the 

polarization switching at a low applied voltage leads to an efficient control of gate switching 

on/off, hence low-power operation taking advantages of the negative capacitance in the FE layer 

[128-136]. In a recent study of the HZO/Al2O3 FE/DE bilayers with fixed FE layer thickness of 20 

nm, Si et al discovered that the DE layer thickness must be ≤ 4 nm in order to observe FE 

polarization switching [140]. When the DE thickness exceeds  4 nm, they observed that the 

HZO/Al2O3 FE/DE stack behaves like a regular DE layer with no polarization switching and 
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transient negative capacitance[140]. This observation revealed the importance of the FE/DE 

interface on controlling the polarization switching in PE layer through a balance of the gate 

voltages across the FE and DE layers in the FE/DE bilayer stack [140, 141]. Another related study 

on FE PbTiO3 nanodot capacitors with their radii of 2, 5 and 10 nm [142]. An interesting 

correlation between the nanodot radius and thickness was revealed from the observation of the 

static negative capacitance when the nanodots have comparable lateral and vertical dimensions 

[142].  

In this chapter, a new approach for the fabrication of ultrathin FeOx/Al2O3 FE/DE bilayer 

capacitors with total FE/DE stack thickness in range 3-4 nm using in situ ALD. FeOx thin films 

exhibit a multiferroic behavior at RT [143-146]. The FE properties of the FeOx have been 

investigated for potential future technological applications such as fast-writing, power-saving, and 

non-destructive data storage [144-146]. High quality, ultrathin dielectric ALD Al2O3 of thickness 

as low as ~ 2.2 nm has been recently demonstrated in Al/ALD Al2O3/Al capacitors with high er ~ 

8.0 that is close to the Al2O3 bulk crystal value of er~9.2 [16]. Using an Al wetting layer in the 

Fe/Al/ALD Al2O3 (2.2 nm)/Fe capacitors, we show a transition from a DE only capacitor at Al 

thickness in exceeding 1.0 nm to an FE/DE bilayer capacitor at smaller Al thickness to promote 

the formation of a sub-nanometer thick FeOx at the Fe and ALD Al2O3 interface. This allows the 

observation of a transition from positive capacitance on DE only capacitors to negative capacitance 

on FE/DE bilayer capacitors. Furthermore, we show that switching on/off of the negative 
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capacitance can be achieved using the piezoelectric effect of the FE layer in the ultrathin FE/DE 

bilayer capacitors via application of external mechanical deformation. 

 Device Structure and Growth Mechanism 

Figures 5.1(a) and (b) illustrate the schematic of the ultrathin capacitors of Nb (25 nm)/Fe (20 

nm)/ALD Al2O3 (2.2 nm)/Al (7nm or 0 nm)/Fe (20 nm)/Nb (50 nm) structure with and without a 7 

nm thick Al wetting layer respectively. With the 7 nm thick Al wetting layer, the bottom Fe 

electrode is protected from oxidation[17] and the interface between Al/Al2O3 has been found to 

have a negligible AlOx interface at the optimal ALD growth condition as illustrated schematically 

in Figure 5.1(c) [14, 15]. When the Al wetting layer is removed, reduced 𝐸/ for ALD Al2O3 was 

observed, suggesting an IL may form at the Fe/Al2O3 interface, most likely through the formation 

of FeOx as shown in Figure 5.1(d) [147]. Comparing to Al, Fe is a stronger oxygen getter, which 

means that FeOx is more likely to form than AlOx at a given dielectric growth condition. An Al 

wetting layer of thickness in greater than 1.0 nm seems adequate to prevent oxidation of Fe as 

illustrated with comparable to the optimal 𝐸/ ~1.55-1.66 eV of the ALD Al2O3 [147]. At smaller 

Al wetting layer thicknesses, the 𝐸/ shows monotonic decrease to 1.40 eV at ~ 1 nm-thick Al 

wetting layer on Fe and 1.30 eV when the Al wetting layer is completely removed. This trend can 

be attributed to the formation of a native FeOx oxide IL at the Fe/ALD Al2O3 interface when the 

Al wetting layer is very thin or absent [14]. This means instead of forming a simple Al/Al2O3/Al 

DE capacitor (Figure 5.1(c)), a FE FeOx capacitor is added to the Fe/FeOx/ALD Al2O3/Fe 
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capacitors that can be viewed as two capacitors in series: a sub-nm thick FE FeOx capacitor and a 

2.2 nm thick DE ALD Al2O3 capacitor as depicted in Figures 5.1(b) and (d). It should be noted 

that small thicknesses of both FE and DE layers are critical to the observation of the negative 

capacitance in the obtained FeOx/ALD Al2O3 FE/DE bilayer capacitors [140, 142, 148]. 

 

Figure 5.1 Schematic of the MIM capacitors with:  a) a thick 7 nm Al wetting layer; and b) no Al wetting layer. 

The schematic description of the M-I interface for:  c) ALD Al2O3/Al (7nm) with pure dielectric ALD Al2O3 and 

d) Al2O3/Fe with a ferroelectric FeOx interface in series with ALD Al2O3 dielectric layer. 

a b 
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 Dielectric Properties by Tuning Al Wetting Layer Thickness 

Figure 5.2(a) show a comparison of the specific capacitance (C0=C/A=e0er/t, where t is the 

thickness of dielectric) for the three sets of the ultrathin capacitors of Nb (25 nm)/Fe (20 nm)/ALD 

Al2O3 (2.2 nm)/Al (7nm, 1nm or 0 nm)/Fe (20 nm)/Nb (50 nm). Each set has three devices with 

junction areas of 200x200, 200x300 and 200x400 µm2 respectively, for examination of the sample 

uniformity. The three samples would be otherwise identical except for different Al wetting layer 

thicknesses of 7 nm (black), 1 nm (red) and zero (blue). As shown in Figure 5.2(b), with a 7 nm 

thick Al wetting layer, the value of C0 is around 0.032-0.04 F/m2 on chip with uniformity of ~15%. 

This is an indication of negligible IL formation at the Al/ALD Al2O3 interface. However, with the 

reduction in Al wetting layer thickness to 1 nm, the value of C0 decreases considerably to 0.021-

0.016 F/m2 on chip with variation ~23.8%. Interestingly, with the complete removal of the Al 

wetting layer, C0 becomes negative in the range of −0.005 to −0.015 F/m2. Figure 5.2(c) show er 

derived from er=C0t/e0. The ultrathin capacitors with a 7.0 nm Al wetting layer show er ~8.0 for 

2.2 nm thick ALD Al2O3 dielectric layer that is close to that for the bulk crystalline Al2O3 with an 

EOT ~1.0 nm. This EOT value is comparable to the EOT for 4.5 nm high-K HfO2 [73]. 

It should be noted that the observation of smaller and even negative er on capacitors with 1 nm or 

none Al wetting layer cannot be attributed to the poorer quality of the ALD Al2O3 DE layer at 

thinner Al wetting layer based on our earlier investigation of the ALD Al2O3 tunnel barriers 

(thickness from 0.1 nm-1.0 nm) on the Fe electrodes including 𝐸/ ~ 1.3 eV and ALD Al2O3 

coverage comparable to the counterparts with Al wetting layer.  In other words, this suggest that 
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the leak-free ALD Al2O3 tunnel barriers can form on Fe electrode without the Al wetting layer. 

However, the slightly lower 𝐸/ ~ 1.3 eV, as compared to the optimal value of 𝐸/~1.5-1.6 eV 

measured on ALD Al2O3 tunnel barriers on Al electrodes, suggests that a minor IL, most probably 

FeOx due to the subtle effect of the surface structure of Fe on the hydroxylation during the first 

H2O pulse, forms at the Fe/ALD Al2O3 interface [14, 15, 147]. While in many other devices, the 

native oxide IL is unfavourable, the ferroelectric FeOx IL is formed at the Fe/ALD Al2O3 interface 

[14, 15, 147] provides an excellent opportunity to achieve ultrathin FE/DE bilayer capacitors 

connected in series of a total thickness smaller than 3-4 nm, allowing direct observation of the 

static negative capacitance [140, 142, 148]. This means the measured C0 and er on these ultrathin 

FE/DE bilayer capacitors must be considered as the combined effect of the constituent FE and DE 

capacitors. 

 

Figure 5.2 Variation of a) specific capacitance with  three different junction areas 200x200, 200x300 and 

200x400 µm2 b) specific capacitance with thick 7 nm Al wetting layer, thin 1 nm Al wetting layer  and without 

Al wetting layer and c) dielectric constant (er) for MIM capacitor for 20 cycles Al2O3 . 
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 Mechanism for Observation of Negative Capacitance  

Figure 5.3(a) illustrates the working principle of the ultrathin Fe/Al/ALD Al2O3/Fe pure DE 

capacitors under the application of an external electric field (E). The blue ovals represent electrical 

dipoles aligned in response to the external E field. Figure 5.3(b) shows the electrical dipoles in the 

Fe/FeOx/ALD Al2O3/Fe FE/DE bilayer capacitors with coercive voltage (Vc) of few mV for 

polarization switching in FE material much smaller than total external applied external voltage 

(Vtot). At this ultrathin 2.2 nm thick ALD Al2O3 with ultrathin FE FeOx, the presence of stable 

negative capacitance is possibly due to formation of regular, nanoscale stable domains with the 

same orientation of the electric polarization that makes the FE layers extremely polarizable as 

shown with the corresponding polarization (𝑃£Y) under the application of E across the FE/DE 

stack. For ultrathin FE/DE capacitors the interfacial effects are more pronounced. Due to 

interfacial effect FE/DE stack capacitor fundamentally differ from the series combination of 

ferroelectric capacitance (𝐶£Y) and  dielectric capacitance (𝐶"#X4¤) [149, 150]. Considering pure 

dielectric as in the case of Al/Al2O3/Al ultrathin capacitors, the stored charges in DE is 𝑄"#X4¤. 

However, the FE layer shows polarization under externally applied field with	𝑄£Y = 𝑄d + 𝑄3, 

where 𝑄d	and 𝑄3	corresponds to the polarized charges in FE material and induced or interfacial 

trapped charges respectively. For a simple approximation, the Fe/FeOx/ALD Al2O3/Fe ultrathin 

capacitors can be considered as the two capacitors in series: DE ALD Al2O3 capacitor and FE FeOx 

capacitor, which can be estimated using q
��
= q

��¥X¦¤
+ q

�§¨
, where 𝐶� is the total capacitance of 

FE/DE stack. With observe value of 𝐶"#X4¤~	0.04 F/m2 and 𝐶�	~ −0.015 F/m2, the	𝐶£Y is estimated 
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to be~−0.010 F/m2, which is one fourth 𝐶£Y but with opposite polarization. Thus, the thickness of 

FE (𝑡£Y)	is approximated from equation 𝑡£Y=e0er/C0 ~ 0.88-1.77 nm corresponding to er,FE ~ −1 

to	−2. This indicates that the total thickness of FE/DE stack varies from 3-4 nm, which is ultrathin 

as compared to previous studies [140, 148]. However, at this ultrathin DE thickness of ~2.2 nm in 

presence of a FE layer in the FE/DE bilayer stack, there is the possibility of a leakage current due 

to the trapped charges at the FE/DE interface. Figure 5.3(c) shows the increase in the polarization 

of FE under the application of an external electric field or via external mechanical deformation in 

FE/DE bilayer capacitors. The induced charged at FE/DE interface 𝑄3 add to 𝑄d	that increases the 

total polarization charges of𝑄£Y. The increase in the polarization of FE corresponds with the 

decrease in DE contribution resulting in stable negative capacitance. Figure 5.3(d) shows leakage 

current assisted polarization switching behavior in FE/DE capacitors with polarization switching 

effect, which is in agreement with the previous study on HZO/Al2O3 FE/DE structure [140, 148]. 

DE material thickness has the determinant impact on the FE polarization switching effect, at DE 

thickness > 4 nm, HZO/Al2O3 stack behaves like pure DE insulator with no polarization switching 

of HZO [140]. However, at ultrathin DE thickness < 4 nm HZO/Al2O3 stack exhibit FE effect with 

stable and switchable electrical polarization resulting negative capacitance [140, 142]. 
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 Dynamic Response Under External Force 

Since all ferroelectric materials are piezoelectric, the response of FE/DE stack with FE FeOx would 

provide an interesting application for memory and sensors devices through the manipulation of 

electric dipoles [151]. Figure 5.4 shows the variation of specific capacitance with and without 

external deformation on the FE/DE stack. Before external deformation total capacitance is 

dominated by the series combination of FE and DE capacitance in FE/DE capacitors resulting 

negative capacitance (black) as shown in Figure 5.4(a). However, after the application of an 

external force in FE/DE capacitors, the contribution from DE remains the same but there is an 

increase in the FE capacitance due to the piezoelectric effect showing an increase in polarized 

charges at FE/DE interface. This results in the corresponding reduction in total negative 

Figure 5.3 Working principle of a) Fe/Al/FeOx/Al2O3/Fe dielectric (DE) capacitor under application of external electric 

field  i.e. blue ovals represent electrical dipoles aligned under E field b) Fe/Al/FeOx/Al2O3/Fe Ferroelectric/dielectric 

(FE/DE) bilayer capacitor with blue and light blue ovals represent electrical dipoles and polarization in aligned under 

E field at Vtot > Vc+ before switching ; c) Increase in FE capacitance due to external E field or via external deformation 

leading to increase in interfacial charges at FE/DE interface at Vtot > Vc+ after switching d) Leakage current assisted 

polarization switching with change in interfacial charges in FE/DE bilayer capacitors Vtot > Vc- after switching. 

    a b c d 
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capacitance (red) for a series combination of FE/DE stack. The further increase in the external 

force makes the total capacitance to be small at positive value (blue). Quantitatively, this changes 

in capacitance under the external deformation is the manifestation of the change in polarization 

switching behavior in ultrathin FE/DE capacitors. Figure 5.4(b) shows the dynamic reproducible 

polarization switching on/off of negative capacitance in FE/DE ultrathin capacitors corresponding 

to before/after the external deformation by the application of external force. This indicates that the 

capacitance can be tuned with the external force, which would find potential application in non-

volatile memory and piezoelectric force sensors application through the manipulation of the 

electric dipoles in FE/DE ultrathin capacitors.  

 

Figure 5.4 a) Comparison of C-V curve for MIM capacitor without Al wetting layer as measured and under the 

application of external force showing change in capacitance and  b) dynamic response curve for MIM capacitor 

before and after application of external force. 
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 Properties of FE/DE Stack 

To validate the presence of the FeOx IL in ultrathin FE/DE capacitors, Figure 5.5 shows the 

dependence of 𝐸/	on the Al wetting layer using ALD Al2O3/Al (7nm, 1nm or 0)/Fe (20 nm)/Nb 

(50 nm) half-cell structure studied using STS by Ryan et al. Our previous STS study suggest that 

compared to Al, Fe is a stronger oxygen getter, which means the oxidation of Fe forming FeOx is 

more likely than AlOx at a given ALD Al2O3 growth condition [147]. The Al wetting layer greater  

than 1 nm can result in negligible AlOx and can prevent the oxidation of Fe with 𝐸/	~1.55-1.66 eV 

for 5-cycles ALD Al2O3 on Fe [147] However, 1nm-thick Al wetting layer there is monotonic 

decrease in 𝐸/ to 1.40 eV and 1.30 eV when Al wetting layer is completely removed. This trend 

can be attributed to the formation of a native FeOx oxide interface layer at the Fe/ALD Al2O3 

interface when the Al wetting layer is very thin or absent [14, 147]. Specifically, the presence of 

FeOx IL affects the 𝐸/ of ALD Al2O3 in a similar way to the native AlOx case.[14] The dependence 

of 𝐸/ on Al wetting gives insight into the 𝐸/ for both pure Al/Al2O3/Al capacitor and FE/DE 

bilayer Fe/FeOx/Al2O3/Fe structure. However, decreasing trend in 𝐸/ with Al wetting layer 

thickness confirms our assumption for the formation of IL FeOx resulting FE/DE stack. 
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A series of I-V measurement were used to extract further information about properties of ultrathin 

FE/DE capacitors. Figure 5.6 provides two important pieces of information: 1) hysteretic I-V loop 

for ultrathin FE/DE capacitors show a strong evidence for the formation of FeOx IL with 

ferroelectric polarization switching behavior at ultralow applied voltage of a few mV and 2) linear 

I-V for 2.2 nm DE devices showing quantum tunnelling behavior. This observation shows that a 

key tuning parameter in generating the FE/DE bilayer capacitors is the thickness of an Al wetting 

layer between the bottom Fe electrode and the ALD Al2O3 DE layer. This work demonstrates the 

feasibility of successful fabrication and characterization of Fe/FeOx/Al2O3/Fe FE/DE ultrathin 

capacitors using in situ ALD method. This observation of static negative capacitance with FE/DE 

ultrathin capacitors finds potential application for lowering switching energy of transistor and 
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Figure 5.5 Barrier height comparison for MIM half-cell made for three different configurations with different 

thickness of Al wetting layer made using scanning tunnelling spectroscopy. 
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power dissipation with the possibility for ultralow power devices [128-132], piezoelectric sensors 

and non-volatile memory applications [144-146].  

 

 Chapter 5 Conclusions 

In summary, in situ ALD provides a unique approach to fabricate high quality ultrathin capacitors 

and has been applied for the first time in this work to generate FE/DE bilayer capacitors with a 

total FE/DE thickness < 3-4 nm. Specifically, the capacitors consist of a Nb (25 nm)/Fe (20 

nm)/ALD Al2O3 (2.2 nm)/Al (7nm, 1nm or 0 nm)/Fe (20 nm)/Nb (50 nm) stack and the Al wetting 

layer was employed as the tuning mechanism to obtain either DE only capacitors at the Al 

thickness >1 nm and FE/DE bilayer capacitors at thinner or none Al wetting layers. The obtained 

Figure 5.6 Comparison of I-V curve between MIM with 7 nm Al Fe/Al/Al2O3/Fe DE and without Al wetting 

layer Fe/FeOx/Al2O3/Fe FE/DE. 
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DE only capacitors exhibit high er ~8.0, which represents the best so far achieved on ultrathin 

capacitors of DE thickness around 2 nm. This value is close to the Al2O3 bulk single crystal value 

of er ~9.2. Interestingly, a sub-nm thick FeOx FE layer can form on the surface of the Fe bottle 

electrode when the Al wetting layer is thinner or completely removed. This could be attributed to 

the minor interaction of the first ALD H2O pulse with Fe surface through partial dissociations of 

the H2O monolayer into atomic oxygen. The obtained FE/DE bilayer capacitors show a dynamic 

switching on/off of the negative capacitance that can be achieved under the application of an 

external force. This result not only provides a viable approach for generating ultrathin FE/DE 

bilayer capacitors but also offers a promising solution to low-power consumption microelectronics 

and piezoelectric sensors applications. 
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 High Tunnelling Magnetoresistance in 

Magnetic Tunnel Junctions with Sub-nm thick Al2O3 

Tunnel Barriers Fabricated Using Atomic Layer 

Deposition 

MTJs formed by sandwiching an ultrathin insulating barrier between two FM electrodes are the 

subject of an intensive research recently due to their potential applications in spintronics such as 

non-volatile MRAM and logic devices [33-35]. The figure-of-merit TMR of MTJs depends 

critically on the quality of the insulating TB and the M-I Interface becomes more challenging at 

sub-nm dielectric thickness range. Specifically, the spin tunnelling current decays exponentially 

with the TB thickness, which means a stronger coherent tunnelling is anticipated at a smaller TB 

thickness. It should be noted that the presence of defects in the TB can lead to decoherence of the 

spin tunnelling, not to mention an increased leakage current. Therefore, research and development 

of sub-nm thick TBs that are pinhole free and defect-free is important to achieving high-

performance MTJs.   

PVD, including magnetron sputtering and molecular beam epitaxy, has been widely adopted for 

MTJ fabrication with both amorphous AlOx and epitaxial MgO TBs. The former can be obtained 

via thermal oxidation of ultrathin Al film on FM electrode in air or in oxygen [46, 47, 152] to allow 
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controlled oxygen diffusion into the Al to form AlOx TBs.  The best TMR~70 % at RT has been 

reported on MTJs with thermal AlOx TBs. The advantage of the thermal AlOx TBs is in the 

simplicity of the fabrication process and large-area uniformity due to the amorphous nature of the 

AlOx. However, the thermal AlOx TBs suffers several drawbacks including defects such as oxygen 

vacancies that are nonuniform through the TB thickness and can lead to soft dielectric breakdown 

along with high leakage current especially at sub-nm thicknesses [153-155]. The epitaxial MgO 

TBs, obtained through post annealing of MTJs at ~350-500℃, have advantages of enhanced 

coherent spin current tunnelling, which leads to enhanced TMR ~200-350 % at RT [4, 9, 156-159]. 

However, challenges remain in achieving high yield due to presence of defects including grain 

boundaries and oxygen vacancies in epitaxial MgO TBs, especially when the TB thickness is 

approaching 1 nm or smaller. Defects such as oxygen vacancies in both AlOx and MgO TBs are 

common and difficult to avoid in oxides fabricated using PVD process. In addition, grain 

boundaries can easily form in epitaxial MgO TBs during recrystallization in the post annealing 

process and can serve as leakage channels in MTJs. To efficiently control the performance of MTJ 

devices the optimization of FM electrode for its composition, crystallinity and oxidation along 

with the quality of interface [45, 160-163] is crucial demanding the smooth and conformal TB 

with better FM-insulator interface [164, 165].  

As discussed in Chapter 2, ALD provides a promising alternative for the fabrication of ultrathin 

leak-free and defect-free TBs. This can be attributed to the unique advantages the ALD techniques 

over the PVD approach [67, 68]. First of all, ALD is a chemical vapor deposition process that 

relies on well-defined chemical reactions, which occur only at the sample surface via a ligand 
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exchange between monolayers of the precursors. This minimizes the formation of defects such as 

oxygen vacancies in oxides. Secondly, ALD growth is self-limiting, enabling atomic control of the 

TB thickness [68]. Finally, ALD coating is conformal, [69, 70] which is important in obtaining 

pinhole-free ultrathin TBs over structured surfaces [166]. This has motivated researches recently 

in ALD growth of TBs of Al2O3, MgO and HfO2 for MTJs [107, 167, 168]. However, it has been 

found that the thickness of the TBs obtained using ex situ ALD process is typically in the range of 

2-5 nm to avoid leakage current. The TMR values reported on the MTJs with the ALD TBs are in 

the range of 1-20 % at RT, which is anticipated from the large thickness of these TBs [107, 109, 

167-169]. The challenge in achieving thinner ALD TBs is primarily associated to the formation of 

a native oxide interface between FM electrode and the ALD TB due to exposure of the FM 

electrode to air or other gases in the ex situ ALD processes, which is more stronger oxygen getter 

compared to other metal electrode.  

In this chapter, we explore the fabrication of ALD Al2O3 TBs using an in situ ALD process 

developed recently in our lab [14, 15, 147]. MTJs based on a simple Fe/ALD Al2O3/Fe structure 

was employed as a proof of concept in this study and the ALD Al2O3 TB thickness was selected 

to be 0.55 nm and 1.1 nm.  In order to probe the nucleation effect of the ALD Al2O3 TBs, two sets 

of devices were compared: one with and the other without a 1 nm thick Al wetting layer on the 

bottom Fe electrode using both in situ STS and ex situ transport measurement. Remarkably, TMR 

of 77% was demonstrated on Fe/ALD Al2O3/Fe MTJs with an ALD Al2O3 TB of 0.55 nm in 

thickness. In the following, we will report our experimental results to successfully demonstrate 
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fabrication of Fe/ALD Al2O3/Fe MTJs with 0.55 nm ALD Al2O3 TBs for potential application in 

future MRAM devices [9, 46, 152, 156, 157]. 

 Optimization of Multilayer Thin Films Structure  

Figure 6.1(a) show the M-H loops measured on several samples including Fe (50 nm), Fe (50 

nm)/Al (7 nm), Nb (50 nm)/Fe (50 nm) and Nb (50 nm) /Fe (50 nm)/Al (7 nm) fabricated using in 

situ DC sputtering. An overall improvement in saturated magnetization of the multi-layered 

samples as compared to the single-layered Fe ones is most likely due to the prevention of Fe from 

oxidation to form non-magnetic FeOx by the capping layers of Nb or/and Al. Based on the 

literature, negligible intermetallic formation between Nb/Fe or Fe/Al structure is anticipated [170, 

171]. Figure 6.1(b) show the M-H loops of two each of 50 nm (black and red) and 5 nm (purple 

and blue) thick Fe films and the overlap of the M-H loops for the samples of the same thickness 

illustrates reliable reproducibility from run to run. Based on the M-H loops, the coercive field of 

about 52 Oersted and 20 Oersted, respectively, can be estimated for the 50 nm and 5 nm thick Fe 

films. Thus, thicker Fe film serves as the fixed layer while the thinner one, the free layer in the 

MTJs of this work.  
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Figure 6.2 exhibits representative AFM images taken on three thin film samples:  Fe (50 nm), Nb 

(50 nm)/Fe (50 nm), and Nb (50 nm)/Fe (50 nm)/Al (7 nm). Overall, all three samples have very 

smooth surface that are featureless over the AFM scan area of 5x5 µm2. In fact, the similar AFM 

scans were performed on different locations of these samples to ensure uniformity. The surface 

roughness (Ra) calculated based on the AFM images are 0.90±0.05 nm, 0.85±0.05 nm and 

0.82±0.05  nm, respectively, on the Fe (50 nm), Nb (50 nm)/Fe (50 nm), and Nb (50 nm)/Fe (50 

nm)/Al (7 nm) samples. The low Ra values on each of the three layers of the bottom electrode for 

the MTJs has confirmed an ideal smooth surface of the metal electrode for growth of the ALD 

Al2O3 TBs.  

a  
b 

Figure 6.1 Magnetization vs magnetic field (M-H) loop for multi-layered structure with a) Fe (50 nm), Fe (50 

nm)/Al (7 nm), Nb (50 nm)/Fe (50 nm) and Nb (50 nm) /Fe (50 nm)/Al (7 nm) b) M-H loop for Fe (50 nm) and 

Fe (5 nm) showing the coercive field dependent on the Fe film thickness. 
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 MTJs Device Structures  

Figure 6.3 shows schematically the two device structures of the MTJs investigated in this work: 

one with (Figure 6.3(a)), and the other, without (Figure 6.3(b)) a 1 nm thick Al wetting layer on 

top of the bottom Fe electrode. The Al wetting layer has been found to allow better nucleation of 

the ALD Al2O3 TBs with a negligible defective metal-insulator interface [147]. Considering ALD 

is a chemical process, the improved nucleation of the ALD Al2O3 TBs on the metal surface can 

lead to improved TB quality, especially the defect concentration that affects the ALD Al2O3 TB’s 

height, and dielectric breakdown [14, 15].  However, the presence of a non-ferromagnetic layer of 

Al between the two ferromagnetic Fe electrodes is undesirable since it reduces the coherent spin 

tunnelling through the MTJ. Therefore, the Al wetting layer thickness was controlled to be around 

1 nm for a comparison of the MTJ performance of with and without such a wetting layer.  

 

a  b c 

Figure 6.2 AFM images of a) Fe (50 nm), b) Nb (50 nm)/Fe (50 nm), and c) Nb (50 nm)/Fe (50 nm)/Al (7 nm) 

thin films deposited on SiO2. The scale bar is 1.0 µm. 
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 Characterization of MTJ Devices 

Figure 6.4 compares a representative STS dI/dV spectra taken on 5 cycles (or 0.55 nm thick) ALD 

Al2O3 TBs with (Figure 6.4(a)) and without (Figure 6.4(b)) the 1 nm thick Al wetting layer on Fe 

bottom electrode, or the half cells of the two kinds of MTJs by Ryan et al as shown in Figure 6.3. 

The dI/dV spectra on the two devices show qualitatively similar characteristics of a dielectric TB, 

indicating that the ALD Al2O3 TBs can form on both surfaces of the Al and Fe. However, 

quantitative differences are clearly visible especially on values of the Eb’s.  Specifically, the  

𝐸/	~1.40	𝑒𝑉 observed on the ALD Al2O3 TB with the Al wetting layer in Figure 6.4(a) is higher 

than the  𝐸/	~1.33	𝑒𝑉 directly on Fe (Figure 6.4(b)), indicating a higher defect concentration in 

the latter [14, 15, 147]. This may be attributed to the formation of an IL of FeOx between the Fe 

and ALD Al2O3 TBs due to the less dense Fe atoms on the surface of the Fe as compared to the Al 

atom density on the Al surface [147]. The larger inter-atom distance on the Fe surface as compared 

to the Al surface would lead to more difficult hydroxylation of the Fe surface during the first H2O 

  

Figure 6.3 Schematic for the device structure for MTJs fabrication a) with 1 nm Al wetting layer and b) without 

Al wetting layer. 

b a 
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pulse of the ALD Al2O3 growth. When a partial decomposition of the H2O to oxygen and hydrogen 

occurs, instead of to hydroxyl groups (OH-1) on the metal surface, formation of defective FeOx IL 

may form. The ultrathin ALD Al2O3 TBs grown on the defective native oxide IL would be 

defective, which explains the reduced 𝐸/ of the ALD Al2O3 TB on Fe as compared to that on Al. 

Nevertheless, the  𝐸/	~1.33	𝑒𝑉 on the ALD Al2O3 TBs of 0.55 nm in thickness on Fe is only 5% 

lower than that on Al. This means the effect of the FeOx IL is insignificant. In addition, the  

𝐸/	~1.33	𝑒𝑉 of the 0.55 nm thick ALD Al2O3 TB on Fe is significantly better than the low Eb ~ 

0.3- 0.6 eV for thermal TB based devices [152, 154, 172]. This suggests that the defect 

concentration in ALD Al2O3 TBs is much reduced as compared to the thermal AlOx TB case. The 

argument is further supported by the significantly lower leakage current and harder dielectric 

breakdown observed in the former in contrast to the latter [14, 15, 147].  



 

 

  

113 

Figure 6.5 shows the RA vs. H hysteresis loops measured at 100 K and 300 K on the two 

representative Nb/Fe (50 nm)/ALD Al2O3 /Fe (5 nm)/Nb MTJs with an 1 nm thick Al wetting layer 

(Figures 6.5(a)-(b)) and without (Figures 6.5(c)-(d)), respectively, at 300 K (RT) and 100 K. The 

observed hysteretic behavior on both samples is anticipated for MTJs due to the switching of the 

magnetic moments in the free Fe layer (top Fe electrode) between parallel to anti-parallel 

orientations with respect to that in the pinned Fe layer (bottom Fe electrode) as the applied H field 

exceeds the coercive field of the free layer. The TMR values can be calculated from the R-H loops 

are 4.25 % and 4.26 % at 300 K and 100 K, as in Figures 6.5(a)-(b) respectively, for the MTJ with 

the 1 nm thick Al wetting layer. These low TMR values indicate that the presence of the non-

ferromagnetic Al wetting layer, even at the 1 nm thickness, between the two Fe electrodes is 

undesirable. Since it behaves like a barrier that could significantly reduce the coherent spin 

tunnelling. When the Al wetting layer is removed, significantly higher TMR ~77 % at 300 K and 

 
 

Figure 6.4 Scanning tunnelling spectroscopy to study dI/dV spectra for 5C-ALD Al2O3 a) with 1 nm Al wetting 

layer and b) without Al wetting layer. 

b a 



 

 

  

114 

~90 % at 100 K, respectively, are obtained on the counterpart MTJ without Al wetting layer as 

shown in Figures 6.5(c)-(d). The current state-of-the art MTJs with optimized FM electrode 

Co60Fe20B20, pinning layer IrMn, optimized AlOx TBs formed by oxidizing 1 nm Al in plasma of 

Ar/O2 and magnetic thermal annealing at 265℃ for 1 hour to achieve better FM-I interface 

demonstrates the maximum TMR ~70 % at RT [46, 47, 152, 155]. An improved TMR~81.3% at 

RT (and ~95 % at 100 K) was reported by further optimization of the AlOx TBs using inductively 

coupled plasma oxidation on Co40Fe40B20 electrodes [173]. Therefore, the TMR values obtained in 

the MTJs with ALD Al2O3 TBs of 0.55 nm in thickness are comparable to the best so far achieved 

in MTJs made with PVD approaches. The trend of increasing TMR	values with decreasing 

operation temperatures is anticipated from reduced scattering effect by phonons and magnons at 

lower temperatures [174, 175]. In fact, the 17% increase in the TMR value at 100 K as from that 

at 300 K in the MTJs with the 0.55 nm ALD Al2O3 TB is comparable to that previously reported 

on MTJs [173].  
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The current state-of-art MTJ fabrication uses optimized FM electrode, antiferromagnetic pinning 

layer, and magnetic thermal annealing and  the best figure-of-merit TMR is in the range of 10-70 

% for MTJs with AlOx TBs [33-35, 46, 47, 152, 173] and 200-350 % for MTJs having epitaxial 

MgO TBs [4, 9, 156-159]. However, further reduction of these TBs to sub-nm thickness range 
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Figure 6.5 Temperature dependence hysteresis loops  of RA vs magnetic field for Nb (50 nm)/Fe (50 nm)/Al (1 

nm)/ ALD Al2O3 / Fe (5 nm)/Nb (50 nm) MTJs structure with Al wetting layer at (a) at 300 K and  (b) 100 K 

respectively and Nb (50 nm)/Fe (50 nm)/ALD Al2O3 /Fe (5 nm)/Nb (50 nm) MTJs structure at (c) at 300 K and  (d) 

100 K without Al wetting layer respectively. 
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remains challenging due to  defects, such as grain boundaries and oxygen vacancies,  within the 

dielectric TBs, resulting in increased leakage current and incoherent tunnelling in both AlOx or 

MgO based MTJs [31, 56-62, 153-155]. This is in agreement with the observed reduced Eb in range 

of 0.3- 0.6 eV for thermal TB based devices [152, 154, 172]. In our previous study, STS analysis 

reveal the importance of controlling native oxide IL, which can leads to the formation of defective 

ALD TBs of reduced and thickness-dependent Eb along with the soft dielectric breakdown [14, 

15].  

While this work represents the first success in fabrication of MTJs with sub-nm think ALD Al2O3 

TBs, many efforts have been put in the synthesis of ALD TBs for MTJs in the past [107, 109, 167-

169]. The reported thickness of the ALD TBs is typically in the range 2-5 nm due to significant 

increase in leakage at smaller TB thicknesses [109, 167-169]. One of the primary reasons leading 

to the difficulties in achieving thinner, leak-free ALD TBs in the prior effort is that these ALD 

TBs were fabricated using ex situ processes. Thus, exposure of metal surfaces to an ambient 

condition before ALD TB growth implies that a native oxide IL forms before nucleation of the 

ALD TB [109, 116-118, 167-169]. The IL has a significant impact on the quality of the ALD TBs 

growth on top of it because it is typically defective with oxygen vacancies and pinholes leading to 

the defective growth continue to ALD TBs. This explains the significant increase in leakage with 

ex situ ALD TBs at thickness below 2-5 nm [153-155]. However, the control over the formation 

of a native oxide IL, which can even form in an in situ ALD process have been optimized in our 

previous work [14, 15]. The defective ALD TBs obtained in ex situ ALD processes is illustrated 
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in the low Eb together with soft dielectric breakdown. In the in situ ALD processes, the IL can be 

reduced to negligible level ~ 0.1-0.2 𝐴°	[16], which not only enables sub-nm think pin-hole free 

ALD TBs to be achieved, but also reduces the defect concentration in ALD Al2O3 TBs as 

illustrated in the Eb of 1.33-1.40 eV that is significantly higher than the previously reported Eb~0.3-

0.6 eV for AlOx TBs [152, 154, 172]. This work therefore illustrates the critical importance of 

controlling the FM/ALD TB interface and the potential of the in situ ALD process for fabrication 

of ultrathin, high quality TBs for MTJs [33-35, 46, 47, 152, 173]. 

 Improving MTJs Performances 

It remains to be seen that higher TMR values could be obtained on MTJs with ultrathin ALD TBs 

after optimization of the MTJ fabrication conditions, especially in control the interface between 

the metal electrodes and ALD TBs. This section discusses about the future direction to improve 

the performance of MTJs. One option includes the use of FM material like CoFeB which has high 

spin polarization as compared to Fe electrode and boron acts as an oxygen diffusion barrier 

forming boron oxides at interface, which prevents oxidation of FM electrode and results better 

interface [55, 158, 159]. Figure 6.7 shows saturated magnetization M-H loop of FM CoFeB 

showing much larger difference in coercive field of 50 nm and 5 nm CoFeB film making it suitable 

choice of FM material for MTJ fabrication.  
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Another option includes the use of antiferromagnetic pinning layer for the fabrication of exchanged 

bias MTJ, which shows more effective switching and increase the figure-of-merit TMR. Figure 

6.8(a) show the characterization of FM electrodes and the anti-ferromagnetic IrMn electrode using 

VSM, which shows expected M-H loops for both Fe 50 nm and IrMn 50 nm thin films. Figure 

6.8(b) compares the M-H loop for Fe films with different thickness of IrMn pinning layer, which 

clearly indicates that the pinning is efficient for FM thickness < 10 nmfor the fabrication of 

exchanged bias MTJ structure.  

 

 

Figure 6.6 Hysteresis loop for CoFeB ferromagnetic material with 50 and 5 nm thickness characterized using 

vibrating sample magnetometer showing feasibility for fabrication of spin valve MTJs structure. 
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Figure 6.8(a) compares the magnetization of Fe (3 or 5 nm)/IrMn (20 nm) bilayer structure before 

and after magnetic thermal annealing (MTA). The MTA condition was optimized after several 

tests run with annealing temperature in range between 160-175℃ with H ~1000 Oe for 30 min 

and cooled to RT under the external H. The M-H loop comparison shows the effect of exchange 

bias mechanism after annealing with Fe 5 nm. However, Fe 3 nm do not show much exchange bias 

mechanism possibly due to thin magnetic film. Figure 6.9(b) shows a multilayer structure with Fe 

5 nm consisting of Nb(10 nm)/IrMn(20 nm)/Fe(5 nm)/Al(1 nm)/Fe(5 nm)/Nb(10 nm), which shows 

an exchange bias mechanism after MTA at above specified condition. The fabrication of MTJs 

using ultrathin ALD Al2O3 is encouraging, and higher TMR values could be obtained by using 

optimized FM electrode like Co60Fe20B20, pinning layer like IrMn and magnetic thermal annealing 

to improve the interface between the FM electrodes and ALD TB. 

Figure 6.7 Hysteresis loop comparison for a) Fe (50 nm) and IrMn (50 nm) layers; b) Fe(50-3 nm)-IrMn (20 

nm) bilayer structure with different thickness of FM material for fabrication of exchanged bias MTJs 

respectively. 

b a 
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 Chapter 6 Conclusion  

In summary, pinhole-free and defect-free ultrathin dielectric TBs is a key to obtaining high 

TMR and efficient switching in magnetic tunnel junctions (MTJs). Among others, ALD provides 

a unique approach for the fabrication of ultrathin TBs with several advantages including an atomic-

scale control on the TB thickness, conformal coating, and low defect density. Motivated by this, 

this work explores fabrication and characterization of spin-valve Fe/ALD-Al2O3/Fe MTJs with 

ALD Al2O3 TB thickness of 0.55 nm using in situ ALD. Remarkably, high TMR values of ~77% 

and ~ 90% have been obtained respectively at RT and at 100 K, which are comparable to the best 

reported values on MTJs having thermal AlOx TBs with optimized device structures. In situ 

scanning tunnelling spectroscopy characterization of the ALD Al2O3 TBs has revealed a higher Eb 

of 1.33 eV, in contrast to Eb~0.3-0.6 eV for their AlOx TB counterparts, indicative of significantly 

b a 

Figure 6.8 Hysteresis loop comparison for a) Fe(5nm) /IrMn (20 nm) and  Fe (3 nm)/IrMn (20 nm) for bilayer 

structure before and after magnetic thermal annealing ; and b) Nb(10 nm)/IrMn (20 nm)/Fe( 5 nm) /Al (1 nm)/Fe (5 

nm)/ Nb (10 nm) before and after magnetic thermal annealing  for fabrication of exchanged bias MTJs respectively. 
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lower defect concentration in the former. This first success of the MTJs with sub-nm thick ALD 

Al2O3 TBs demonstrates the feasibility of in situ ALD for fabrication of pinhole-free and low-

defect ultrathin TBs. Eventually this breakthrough will lead to practical applications and the 

performance could be further improved through device optimization.  
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 Conclusion and Future Perspective 

Following the empirical Moore’s law during the past few decades, the research and development 

with reduced dimension of devices has been the main motivation for high-performance MIM 

architecture. The primary challenges include the difficulties in controlling the defects and pinholes 

in ultrathin insulator when it’s thickness approach ultrathin ~1-2 nm leading to an increase in J. 

Although MBE method allow the atomic layer-by-layer heteroepitaxy of different materials in the 

stack, the TB fabricated with PVD method is an issue. The presence of oxygen vacancies in PVD 

grown TBs, such as AlOx or MgO TBs is illustrated with an increase in J at small TB thickness <1 

nm, and much reduced TB height of a few sub-eV from the bulk value of a few eV detrimental to 

quantum coherent tunnelling that affects directly the TMR and coherence. Another challenge is 

the M-I interface plays a critical role in controlling the quality of the ultrathin dielectric including 

the barrier height, dielectric constant, electric breakdown, and uniformity. A critical step towards 

addressing this challenge is to establish research capability that allows for fabrication of dielectric 

materials and characterization of relevant properties with ultrathin, uniform, and pinhole/defect-

free insulating TB on metal substrates.  This would require removing the naturally formed native 

oxides on the surface of most metals and metallic compounds such as Al, Fe, Co, and Nb.  

This dissertation has addressed the imperative and urgent ALD method to explore new approach 

that can grow atomically thin insulating materials with atomic resolution control, excellent 

coverage conformal and low defect density on functional electrodes using unique in-house 
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integrated in situ deposition (sputtering/ALD) method for fabrication of MIM architecture. The 

high er ~8.9 within 3% of the bulk value ~9.2 and low J ~10-9 A/cm2 have been demonstrated for 

the first time on the ALD Al2O3 films in thickness range ~3.3-4.4 nm with an effective oxide 

thickness ~1.4-1.9 nm comparable to High-K HfO2 of 3-4 nm. The ALD Al2O3 seed layer approach 

was used to engineering incompatible M-I interface for obtaining high quality dielectric required 

for applications in MIM tunnel junctions and CMOS. This illustrates the critical importance of the 

control over M-I interface to obtain dense hydroxylation and reduce incubation period for 

improving the dielectric properties of ultrathin ALD MgO films. In addition, tuning thickness of Al 

wetting layer in capacitors helped in the realize FE/DE bilayer capacitors with a total FE/DE total 

thickness < 3-4 nm that show a dynamic switching on/off of the negative capacitance under the 

application of an external force. This not only provides a viable approach for generating ultrathin 

FE/DE bilayer capacitors but also offers a promising solution to low-power consumption 

microelectronics and piezoelectric sensors applications. The MTJs with 0.55 nm thick ALD Al2O3 

TBs represents the first success with sub-nm thickness TBs with observe TMR ~77% at 300 K.  

This work revealed the significance of controlling M-I interface at an atomic scale, and paves the 

way for the fabrication of high quality dielectric for future microelectronics and memory 

application. We demonstrated that low cost, versatile and industrial compatible ALD techniques 

with the pinhole and defect free ultrathin conformal dielectric material provides an alternative 

approach for conformal and precise sub-angstrom thickness control method potential for 

application in ultrathin gate dielectric, spintronics and neuromorphic memory devices. 



 

 

  

124 

There are many research directions that can be explored for making application of ultrathin defects 

free dielectric especially MTJs for their application in NV-MRAM devices. The preliminary 

results show that the MTJ devices with optimized structure can enhance its TMR and is more 

efficient with exchanged bias CoFeB based FM with MgO tunnel barrier for epitaxial growth. 

Alternatively would be to use perpendicular magnetic materials for efficiently switching the 

parallel and anti-parallel orientation with spin-polarized current that reduces the power 

consumption with NV-MRAM applications. 
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