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Abstract   

Carbonate rocks are well known for their highly complex petrophysical behaviors due to 

their intrinsically heterogeneous pore geometry and wide range of pore sizes. As a result, both 

effective characterization of carbonate pore systems and the prediction of fluid transport in 

carbonate reservoirs, remains challenging. This thesis focuses on using nuclear magnetic 

resonance (NMR) and complex conductivity to quantify carbonate pore structure and gain 

insights into fluid flow and lithology of carbonate reservoir rocks at the core and log scales. In 

the laboratory study, integrated NMR and complex conductivity data are used to characterize 

porosity, pore size distribution, and surface area-to-pore volume ratio, in grainstones, packstones, 

and mudstones from carbonate reservoirs in Kansas. Carbonate samples with varying pore types 

and depositional texture are characterized according to NMR porosity, log-mean of transverse 

relaxation time (𝑇𝑇2) value 𝑇𝑇2𝑀𝑀𝑀𝑀, real conductivity σ′, and imaginary conductivity σ". Widely 

used petrophysical relationships derived from NMR and complex conductivity data also are 

assessed, and alternative relationships appropriate for carbonate samples at laboratory scale are 

proposed.  

Furthermore, to test the proposed petrophysical relationships at a larger spatial scale, and 

to exploit the potential of borehole NMR data, this study analyzes NMR well log data from 

Wellington, KS. This study focus on the uses of NMR longitudinal and transverse relaxation 

time ratio (𝑇𝑇1/𝑇𝑇2) in electrofacies characterization. Through multivariate analysis of a suite of 

logs (e.g., sonic slowness, photoelectric factor, etc.), the results show that 𝑇𝑇1/𝑇𝑇2 ratio is 

uncorrelated with other logs which makes it a potentially independent indicator for rock typing. 

The data bear on the accuracy of predicted electrofacies using 𝑇𝑇1/𝑇𝑇2 ratio, and how factors such 

as lithology and fluid could impact the 𝑇𝑇1/𝑇𝑇2 ratio.  
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Extending beyond experimental observations, this work assesses and proposes new 

electrical and NMR petrophysical models, analyzes the factors controlling the variation within 

NMR logging data, and harnesses the complete NMR logging information to improve carbonate 

reservoir characterization. This work demonstrates the potential of combining NMR and 

electrical methods to advance understandings of fluid distribution and fluid flow in complex 

carbonate reservoirs.  
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Chapter 1. Introduction 

Pore characteristics (such as porosity, size distribution, surface area, type, shape, and 

connectivity) are fundamental to understanding the subsurface heterogeneity and constituent fluid 

flow in reservoir rocks. Applied hydrogeologic and energy industry needs require predicting fluid 

transport and chemical component exchange in the pore systems of both saturated consolidated 

reservoir rocks [Burdine, 1953; Johnson et al., 2006; Katz and Thompson, 1986] and unsaturated 

soils [Mualem, 1976; Van Genuchten, 1980]. Pore systems in complex carbonate rocks remain less 

understood, though expanding our knowledge in this area has the potential to improve subsurface 

modeling and carbonate reservoir evaluation. 

Previous studies have applied a variety of conventional techniques to porous media to 

qualitatively and quantitatively characterize the pore size of complex geological materials. The 

first category is direct imaging, including optical microscopy, electron microscopy [Curtis et al., 

2010; Ruppert et al., 2013], and X-ray computed tomography (CT) [Bultreys et al., 2016; Milliken 

and Curtis, 2016; Van Geet et al., 2000]. Using these direct imaging methods, studies have 

examined pore systems and the surrounding matrix visually, though these methods are only 

qualitative, and some (such as CT) requires highly complicated processes [Lin et al., 2016; Loucks 

et al., 2012; Menke et al., 2016; Milner et al., 2013].  

The second category to characterize pore size is indirect fluid intrusion, including mercury 

intrusion capillary pressure (MICP) to provide pore-throat size distribution [Abell et al., 1999; 

Diamond, 2000; Hinai et al., 2014], and low-temperature gas adsorption (N2, Ar, CO2), which 

provides pore-size distribution and surface area [Chalmers et al., 2012; Clarkson et al., 2013; 

Gregg et al., 1967; Gun'ko et al., 2007]. Fluid intrusion measures the bulk properties of pores, as 

the volume of intruded fluid is correlated to pore abundance. Using such techniques, 
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quantifications of pore size are derived from empirical or theoretical models that link the intrusive 

behavior to pore shape and the physicochemical properties of the pore-solid interface. However, 

for geologic materials with a broad range of pore sizes, such as carbonate rocks, fluid intrusion 

commonly fails to address and analyze the complex pore systems appropriately.   

Carbonate rocks, an important type of reservoir rocks, account for 40% of the total oil and 

gas production in the world [Akbar et al., 1995], and 25% of the world and 40% of the US 

groundwater resources [Ford and Williams, 2007]. Yet, problems persist regarding the evaluation 

of extraction of hydrocarbon and groundwater from carbonate reservoirs. Unlike siliciclastic rocks, 

which mostly include intergranular pores, carbonate rocks can have a variety of pore types, 

including interparticle, intraparticle, moldic, fracture, shelter and other touching and non-touching 

vuggy pores [Lucia, 1983; 1995]. The intrinsically heterogenous spatial distribution of pores and 

wide range of pore sizes in carbonate rocks make the behavior of these systems hard to predict and 

commonly cause issues in reservoir evaluation and management. Previous research shows that 

pore attributes in carbonates impact petrophysical properties [Anselmetti and Eberli, 1999; Melim, 

2001], and play an essential role in permeability estimation [Anselmetti and Eberli, 1999]. 

However, it is well-known that the porosity-permeability correlations of carbonate are distinct 

from those in siliciclastic rocks [Lucia, 2007] due to variable diagenetic overprinting that unique 

in carbonate rocks [Choquette and Pray, 1970]. 

Geophysical methods commonly are used to infer subsurface properties at large 

spatiotemporal scales. Realization of the importance of nanometer and micron-scale properties has 

led to increasing interest in using geophysical methods to estimate pore attributes. Recently, low-

field NMR and complex conductivity or spectral induced polarization (SIP) measurements have 

been applied to characterize subsurface and borehole hydrogeological characteristics, especially 
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fluid flow properties (e.g., for reviews, see Behroozmand et al. [2015] and Falzone et al. [2018]). 

NMR directly measures hydrogen abundance in pore fluids and characterizes the physiochemical 

environment of hydrogen in the sample. For fully saturated porous media, the NMR relaxation 

time is proportional to pore size. Therefore, the relaxation time distribution can be used to calculate 

a pore-size distribution. Porosity and pore-size distribution have also been used to predict 

permeability of geologic materials using calibrated NMR parameters. For a comprehensive review 

of the application of NMR in petrophysics, the reader is referred to Coates et al. [1999] and K-J 

Dunn et al. [2002]. 

Extending the widely applied DC-resistivity tool, SIP has been used to measure the 

frequency-dependent dielectric response of applied electric fields in porous media at low 

frequencies. SIP is sensitive to geometries of the pores and variations in the physiochemical 

properties of solid-fluid interfaces in porous media. SIP has also been reported to be a valid tool 

for estimating permeability and texture heterogeneity [A. Revil and Florsch, 2010] in both 

conventional and unconventional reservoirs. Joint use of NMR and SIP provides an advantage in 

characterizing porous media and has shown promise for predicting petrophysical properties such 

as surface area-to-pore volume ratio and permeability of sandstones [Niu and Revil, 2015; Niu and 

Zhang, 2018a; Andreas Weller et al., 2010a; Zhang et al., 2018]. However, the applicability of 

such geophysical methods to carbonates is far from understood, and many challenges related to 

the complex pore attributes of carbonates remain.  

This study aims to introduce an integrated method combining both NMR and SIP to 

quantitatively characterize the pore structure of carbonates and gain insights into fluid flow and 

lithology of carbonate reservoir rocks at the core and log scales. At the core scale, this study 

examines three types of carbonate rocks - grainstone, packstone, and mudstone from carbonate 
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reservoirs in Kansas. This study assesses widely-used NMR and SIP petrophysical relationships, 

and proposes new relationships applicable to carbonate rocks. At the larger spatial scale, it tests 

the proposed petrophysical relationships to examine the potential of NMR well-logging data in a 

cherty dolomite reservoir of Arbuckle, southern Kansas, with the aim of exploring the feasibility 

and sensitivity of using 𝑇𝑇1/𝑇𝑇2 ratio as a lithology indicator for characterizing electrofacies 

subclasses within these carbonates. 

 By combining different geophysical techniques, this study advances understanding of the 

complex structure and pore networks of carbonate rocks and how these pore attributes affect the 

geophysical response at the core and well-log scales. The results also reveal the full potential of 

NMR logging data in characterizing petrophysical properties of reservoir rocks, aspects that have 

traditionally been overlooked. These results are essential for accurate interpretations of borehole 

geophysical measurements into carbonate reservoirs properties.  

Chapter 2. Geological Settings of Core Samples and Well Logs 

The Lansing-Kansas City Group, Mississippian System, and the Arbuckle Group are three 

important carbonate reservoirs in Kansas and have produced oil since the early 20th century [Evan 

K Franseen, 2006; Evan K Franseen et al., 2003]. Due to the long production history of these sites, 

core analysis extends back to the 1950s, yet these data are poorly preserved and insufficiently 

cover the production area. Modern geophysical tests on cores are an essential component in 

reservoir characterization and are vital for engineering projects like CO2 injection at Wellington 

Field, where geophysical data are used to refine models to predict CO2 sequestration and evaluate 

the effectiveness of CO2 storage and incremental oil recovery.  
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Arbuckle Group 

The Cambrian-Ordovician Arbuckle Group is part of the Sauk Sequence [Sloss, 1964] 

developed in the southern Great American Carbonate Bank. The Arbuckle and its equivalent spans 

areas in Texas, Oklahoma, Arkansas, and Kansas. Locally in Kansas, the Arbuckle Group overlies 

an unconformity on Precambrian or Cambrian rocks, and is overlain by another regional 

unconformity [Evan K Franseen et al., 2003]. 

The Arbuckle Group rocks are described as deposits with cyclicity [Barwick, 1928; Cole, 

1975; Zeller, 1968] and the cyclical deposition of Arbuckle Group is reflecting a repeated change 

of depositional environment from shallow subtidal to peritidal facies (Franseen, 1994). Over 

hundred of meter-scale peritidal cycles stacked to form up to 420 m thick successions of carbonate 

in Kansas. The depositional facies of Arbuckle Group are skeletal, oolitic, intraclastic packstone 

to grainstone and wackestone to mudstone [E. K. Franseen, 2000]. The primary porosities formed 

during deposition comprise intercrystalline porosity and interparticle porosity.  

Dolomitization and recrystallization of dolomite happened simultaneously which either 

enhanced or occluded the porosity. Prolonged periods of subaerial exposure also created a vast 

system of dissolution features and breccia, aspects which complicate the pore attributes of the 

Arbuckle Group. Together, these comprehensive diagenetic overprints induce difficulties in 

reservoir characterization. For example, Evan K Franseen et al. [2004] and Zhang et al. [2017] 

showed that permeability could vary by at least two orders of magnitude for a given porosity, an 

observation interpreted as the result of lithologic variations, including change of pore size 

distribution, and interlaminated lithologies. 

Well-log part of this study centers on Wellington field which has 135 wells with logs, and 

two pioneer wells for CO2 sequestration. The Arbuckle Group is the targeted injection zone of the 
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CO2-Enhancing Oil Recovery (EOR) project [Holubnyak et al., 2017], and locally has high 

porosity and permeability.  It is capped by the Simpson Group, which includes shale with low 

porosity and permeability. 

Logging data used in this study is from the Wellington KGS 1-32, in Sumner County, 

Kansas. This well was drilled to a total depth of 5240 ft and included a suite of modern 

geophysical logs, including neutron, density, self-potential, resistivity, conductivity, 

photoelectric, caliper, gamma-ray, sonic slowness, microlog lateral and normal, and NMR 

imaging logs. Ten core samples from the same well (Wellington KGS 1-32) are tested for the 

core analysis part of this study. 

Lansing-Kansas City Group 

The Lansing-Kansas City Groups are part of the Missourian stage, Upper Pennsylvanian 

series, and occor throughout Kansas [Watney et al., 2001]. Observations of the Lansing-Kansas 

City Group in Kansas reveal the units display cyclical depositional patterns [R C Moore, 1949; 

Watney, 1980; Watney et al., 1989]. These cycles display depositional environments ranging from 

shallow-water, high-energy oolitic shoals (the focus of this study), low-energy marine 

environment, to offshore deepwater environment. These strata document rapid changes of sea level 

that caused transgression and regression, reflected in the interbedded limestone and shale of the 

Lansing-Kansas City Group. In a typical cyclothem of Lansing-Kansas City Group [Heckel and 

F. Baesemann, 1975], the shoal limestones locally are oolitic grainstones and skeletal grainstones.  

Extensive freshwater diagenesis significantly modified the oolitic and skeletal grainstones 

during subsequent subaerial exposure [Watney, 1980]. Partial dissolution forms secondary moldic 

pores that preserve the original shape of ooids and skeletons, but provides ample pore space. 

Micro-fracturing also had a positive influence on porosity [Watney, 1980]. 
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The oolitic grainstones, a major lithology of interest in this study, are a common reservoir 

rock among prolific pay zones in Kansas [Watney and Paul, 1983] due to the high porosity 

preserved in the moldic pore system. However, the relationship among porosity, permeability and 

petrophysical properties in oomoldic carbonate still is studied insufficiently, and varies case by 

case [Jewett and Merriam, 1959].  

Core plug samples of the Lansing-Kansas City Group for this study are extracted from 20 

wells at various locations in western Kansas (Figure 2.2). Wells are spudded in a broad range of 

time period from 1921 to 1985 but are all plugged from 1985 to 1989. These Lansing-Kansas City 

Group wells are all productive, but have distinctive porosity (3 – 36%) and permeability (0.01 – 

1500 mD), due to the varied facies and diagenesis [Watney, 1980]. 
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Chapter 3. Methodology 

NMR Principles 

Nuclear magnetic resonance (NMR) is a well-known, non-destructive method to determine 

physiochemical environments of pores in geologic media. In the past few decades, NMR has been 

successfully applied to well-logging and laboratory work to estimate petrophysical properties of 

reservoir rock such as porosity, pore size distribution, and permeability (for detailed reviews, see 

Coates et al. [1999] and K-J Dunn et al. [2002]).  

The fundamental physical principles of NMR are based on an understanding of the 

perturbation of the alignment of magnetic nuclear spins in a static magnetic field (𝑩𝑩0), resulting  

in a net nuclear magnetization (𝑀𝑀). After the alignment to the static magnetic field, nuclei spins 

can be tipped by an external radiofrequency (RF) magnetic field (𝑩𝑩1) out of alignment, which 

forces the nuclei to precess in phase with each other. Irradiation of resonant 𝑩𝑩1 results in a decrease 

in longitudinal magnetization (𝑀𝑀z) and generation of transverse magnetization (𝑀𝑀𝑥𝑥𝑥𝑥) [Simpson 

and Carr, 1958]. For core plug samples (as used here), the transverse (𝑇𝑇2) relaxation time usually 

is measured using a Carr-Purcell-Meiboom-Grill (CPMG) pulse sequence [Carr and Purcell, 

1954; Meiboom and Gill, 1958]. The amplitude of the transverse magnetization Mxy, is a function 

of transverse relaxation time (𝑇𝑇2) as shown here: 

 𝑀𝑀𝑥𝑥𝑥𝑥(𝑡𝑡) = 𝑀𝑀0,𝑥𝑥𝑥𝑥𝑒𝑒
− 𝑡𝑡
𝑇𝑇2 , (1) 

where t is the time for one pulse train, 𝑀𝑀0,𝑥𝑥𝑥𝑥 is the magnitude of the transverse magnetization at t 

= 0 and is proportional to the total volume of hydrogen nuclei. Thus 𝑀𝑀0,𝑥𝑥𝑥𝑥 can be scaled to provide 

the total fluid content and equivalent porosity.  
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The 𝑇𝑇2 relaxation time distribution is obtained through an inversion process solving the 

exponential equation. The relaxation time 𝑇𝑇2  is consist with three components linked to three 

different mechanisms [Kleinberg et al., 1994; Westphal et al., 2005]: 

 1
𝑇𝑇2

=
1
𝑇𝑇2𝐵𝐵

+
1
𝑇𝑇2𝑆𝑆

+
1
𝑇𝑇2𝐷𝐷

=
1
𝑇𝑇2𝐵𝐵

+ 𝜌𝜌2
𝑆𝑆
𝑉𝑉

+
1

12
(𝑇𝑇𝐸𝐸𝛾𝛾𝛾𝛾)2𝐷𝐷0, (2) 

where the subscripts B, S, D represent bulk fluid (free fluid) relaxation, surface relaxation, and 

molecular diffusion, respectively, 𝜌𝜌2 is the surface relaxivity corresponding to the capability of 

relaxation enhancement on the surface, S and V refer to the surface area and volume of pore space, 

respectively, 𝑇𝑇𝐸𝐸 is the interval echo time of the CPMG sequence, 𝛾𝛾 is the gyromagnetic ratio of 

the hydronic nuclei (which is constant and depends on fluid types), 𝐺𝐺 is the effective magnetic 

field gradient, and 𝐷𝐷0 is the molecular diffusion coefficient of the adsorbate.  

Bulk fluid relaxation time is the transverse relaxation time of fluid in a bulk state. For 

water, the bulk relaxation time is a temperature-dependent and salinity-independent constant of 

3.82 s at 30 ℃ [Simpson and Carr, 1958]. In geologic material, it generally is assumed that 

relaxation occurs in fast relaxation regime, in which the relaxation at the surface is slower than the 

transport of hydrogen nuclei to the surface, i.e., the bulk fluid relaxation 1
𝑇𝑇2𝐵𝐵

 is ≪ 1
𝑇𝑇2𝑆𝑆

, and is 

negligible. Similarly, the inhomogeneities in the magnetic field can be ignored as well [Latour et 

al., 1993], i.e., 1
𝑇𝑇2𝐷𝐷

 = 0. As a result, 𝑇𝑇2 relaxation time can be expressed as a function of only surface 

relaxation: 

 1
𝑇𝑇2
≈

1
𝑇𝑇2𝑆𝑆

= 𝜌𝜌2
𝑆𝑆
𝑉𝑉

= 𝜌𝜌2
𝑎𝑎
𝛬𝛬

, (3) 

where 𝑎𝑎 is the dimensionless geometry related factor, which equals to 1 for tabular pores, 2 for 

cylindrical pores and 3 for spherical pores. Λ is the characteristic size of pore space, for example, 

in samples with just spherical pores, Λ is the radius of the pore body. Therefore, 𝑇𝑇2 is proportional 
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to the surface area to volume ratio (S/V, presented as 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 , below) and characteristic pore size. The 

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  is an important quantity as it contains information of pore shapes and texture features 

[Santamarina et al., 2002; Wadell, 1932] and can be related to electrical properties like surface 

conductance [Slater et al., 2006] and tortuosity. Equation 3 is the basis of determining 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 , pore 

size distribution, and permeability and relies on the accurate acquisition of surface relaxivity (𝜌𝜌2). 

The methods of obtaining 𝜌𝜌2 include 1) calibrating 𝑇𝑇2 relaxation time using mercury intrusion 

[Kenyon et al., 1989; Morriss et al., 1993] and 2) calculating 𝜌𝜌2 using 𝑇𝑇2  multiplied by 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 

generated from gas adsorption experiments. The limitation of 𝜌𝜌2  determination and the pre-

assumptions used in deriving pore-size distributions will be discussed later.  

SIP Principles and Petrophysical Relationships 

Spectral induced polarization (SIP) or complex conductivity is a geophysical measurement 

probing the low-frequency electrical polarization mechanisms in porous media [A. Revil and 

Florsch, 2010]. Extending from bulk resistivity of porous media measured using DC-resistivity, 

SIP also is sensitive to capacitive properties of the mineral grain-fluid interface. The induced 

polarization phenomena is observed as the voltage between two potential electrodes do not 

promptly drop to zero. The measured complex conductivity σ∗(𝜔𝜔) is controlled by both the ionic 

conduction (𝜎𝜎′) and polarization 𝜎𝜎", and the latter is related to electrochemical and geometrical 

properties at the rock-fluid interface. The complex electric conductivity can be described as: 

 σ∗(𝜔𝜔) =
1

𝜌𝜌∗(𝜔𝜔)
= 𝜎𝜎′(𝜔𝜔) + 𝜎𝜎"𝑖𝑖(𝜔𝜔) (4) 

where, 𝜌𝜌∗(𝜔𝜔) is the frequency-dependent resistivity, 𝜔𝜔 is the angular frequency as 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, 𝑓𝑓 is 

the frequency with a unit of Hz, and 𝑖𝑖 is the imaginary number. The SI unit for conductivity is 

S/m. 
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The magnitude of conductivity |𝜎𝜎| and the phase shift φ can be calculated from the real 

and imaginary part of conductivity by the equation: 

 |𝜎𝜎| = �σ∗2 = �𝜎𝜎′2 + 𝜎𝜎"2 (5) 

and, 

 tan𝜑𝜑 =
𝜎𝜎"
𝜎𝜎′

. (6) 

The empirical Archie’s law [Archie, 1942] has been widely used to relate the electrical 

conductivity of rock to porosity by  

 𝜎𝜎0 =
1
𝐹𝐹
𝜎𝜎𝑓𝑓 , (7) 

where 𝜎𝜎𝑓𝑓  is the conductivity of saturating fluid and 𝜎𝜎0  is the bulk conductivity of the brine-

saturated samples. F is the formation factor.  𝐹𝐹 = 𝜑𝜑−𝑚𝑚, where 𝜑𝜑 is porosity and m is Archie’s 

porosity exponent ranging from 1.5 to 2 for most consolidated sandstones. However, m varies from 

1.3 to larger than 4 in carbonates with complex pores, as m is sensitive to the geometry and 

roughness of grains and pores. The formation factor represents the geometry of the interconnected 

electrical field, which is comparabe to the pathway of hydraulic flow [A. Revil et al., 2014b].  

The classic form of Archie’s Law ignores the electric conduction on the mineral surface, 

as it was developed using sandstone samples saturated at high salinities. This approximation might 

not be valid for clay-rich limestone or sandstone, where the effect of surface conductance 

dominates the conductivity at low salinities.  If so, the F defined by Archie’s procedure [Archie, 

1942] underestimates the actual formation factor [Andreas Weller et al., 2010a; A. Weller et al., 

2010b]. Waxman and Smits (1968) have developed an extended model for clay-rich sandstone that 

includes clay exchange cation-related conductivity 𝜎𝜎𝑒𝑒: 
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 𝜎𝜎0 =
1
𝐹𝐹
�𝜎𝜎𝑓𝑓 + 𝜎𝜎𝑒𝑒�. (8) 

Subsequent studies have derived the equations with consideration of surface conductivity. The real  

[Vinegar and Waxman, 1984] and imaginary [Börner et al., 1993] part of conductivities can be 

written as: 

 𝜎𝜎′ =
1
𝐹𝐹
𝜎𝜎𝑓𝑓 + 𝜎𝜎𝑠𝑠′,   (9) 

 𝜎𝜎" =
1
𝐹𝐹
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝛴𝛴𝑠𝑠𝑠𝑠". 

  (10) 

Here, 𝜎𝜎𝑠𝑠′  is the real part of surface conductivity and Σ𝑠𝑠𝑠𝑠" is the imaginary part of normalized 

surface conductance (sometimes called specific surface conductance [Niu et al., 2016]). The 

normalized surface conductivity mainly depends on the charge density and capacity of an electrical 

double layer (EDL) formed at the mineral-fluid interfaces. The intrinsic F can be estimated only 

by fitting the slope of the Equation 9 with data points measured at multiple pore-fluid salinities.  

Permeability 

Well-designed experiments and petrophysical models involving pore attributes have been 

used to address the fundamental challenges of predicting permeability k from petrophysical 

properties such as porosity. A commonly used equation is the semi-empirical Kozeny-Carman (K-

C) model, developed by Kozeny [1927] and modified by Carman [1937]. This model can be 

expressed as: 

 𝑘𝑘𝐾𝐾−𝐶𝐶 =
𝜑𝜑3

𝜏𝜏𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝2(1 −𝜑𝜑)2
, (11) 

 

where 𝜑𝜑 is the total porosity, 𝜏𝜏 is the tortuosity, 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  is the surface area to volume ratio. This 

model has shown excellent agreement with measured permeability for many reservoir rocks [Guo, 
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2012; Johnson et al., 2006; C H Moore, 2001; P Xu and Yu, 2008], even as its parameters remain 

complex. 

Among all the parameters of the K-C equation, tortuosity 𝜏𝜏 has been recognized as an 

important metric that describes the geometric complexity and macroscopic permeability of porous 

systems [Dullien, 1975; Johnson et al., 2006; Nashawi and Malallah, 2009]. The tortuosity 𝜏𝜏  is 

defined as the ratio between the distances that fluid actually travels, owing to the curvature and 

connectivity of pore spaces, and the length of the straight line between entry- and exit-points of a 

pore space. In general, tortuosity depends on numerous factors, including sorting, packing, grain 

shape and size, pore shape and size, as well as the spatial distribution of pores and grains [Barrande 

et al., 2007; Guo, 2012]. By definition, 𝜏𝜏 can be categorized in many different ways. This work 

defines the hydraulic tortuosity in the Kozeny – Carman equation [Carman, 1937] as the square 

of the ratio of the effective length of the hydraulic pathway (𝐿𝐿𝑎𝑎) to the distance through the straight 

line of two points (𝐿𝐿) in the direction of flow, or: 

 𝜏𝜏 = �
𝐿𝐿𝑎𝑎
𝐿𝐿
�
2

, (12) 

Therefore, under the assumption that rock resistance 𝑅𝑅𝑜𝑜 is roughly equal to fluid resistance 𝑅𝑅𝑤𝑤, 

the formation factor 𝐹𝐹 can be calculated from 𝜏𝜏 and porosity: 

 
𝐹𝐹 =

𝜌𝜌𝑜𝑜
𝜌𝜌𝑤𝑤

=
𝑅𝑅𝑜𝑜

𝐴𝐴
𝐿𝐿

𝑅𝑅𝑤𝑤
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿𝑎𝑎

≈
√τ
𝜑𝜑

, 

 

(13) 

where 𝐴𝐴 and 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 are the total, and pore space cross-section area, 𝜌𝜌𝑜𝑜 and 𝜌𝜌𝑤𝑤, are the reservoir and 

fluid resistivity. The equations 11 and 13 show that permeability estimation from resistivity 

measurement is feasible. 
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Permeability from SIP 

Following the pioneering work of Kozeny and Carman, numerous studies experimentally 

or theoretically estimated the permeability of porous media from pore space attributes like 

porosity, geometry, and size of pores and particles. Permeability can also be estimated using 

geophysical measurements such as electrical resistivity and SIP with the principle of estimating 

the effective pore size or hydraulic tortuosity from geophysical parameters such as imaginary 

conductivity, formation factor. 

This study applies the modified K-C equation (following Katz and Thompson [1986]) 

which links the electrical conductivity of bulk (𝜎𝜎′ ) and fluid (𝜎𝜎𝑓𝑓 ) to permeability k via a 

characteristic pore size 𝑑𝑑𝑐𝑐as: 

 𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐2
𝜎𝜎′
𝜎𝜎𝑓𝑓

, (14) 

where c is the Kozeny constant. Katz and Thompson [1986] define the 𝑑𝑑𝑐𝑐  as a percolation 

threshold, where a pore system becomes interconnected. In other studies [Barrande et al., 2007; 

Johnson et al., 1986], the dynamic pore size Λ (also in units of meters or micrometers) was 

introduced to replace 𝑑𝑑𝑐𝑐 to represent dynamically connected porosity. Assuming cylindrical pores, 

Equation 14 can be expressed by Λ as: 

 𝑘𝑘 =
Λ2

𝑐𝑐𝑐𝑐
. (15) 

In practice, this Λ can be derived from pore-throat size distribution from an MICP test [Johnson 

et al., 1986; A. Revil et al., 2014b]. This study uses the characteristic pore size deterimined from 

NMR as Λ, and constant c = 8 [A. Revil and Florsch, 2010]. 
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Electrofacies 

Petrophysical properties such as porosity, saturation, and permeability can be derived from 

well log responses, and represent the critical inputs of rock typing and subsurface geologic models 

[Busch et al., 1987; Delfiner et al., 1987]. Numerous logs, each providing distinct information on 

the reservoir, can be grouped or clustered to define electrofacies. These logs include environment 

logs, lithology logs, porosity logs, resistivity logs. Environment logs are the basic logs available 

to provide information of borehole environment for production efficiency and safety and include 

temperature log, pressure log, caliper log, fluid condition monitoring log, noise log, etc. Beyond 

allocating production, temperature and caliper logs are also utilized for porosity and resistivity log 

quality control. Apart from the environment control, the identification and discrimination of 

lithology from logging is crucial to reservoir evaluation as the log responses reflect the 

mineralogical and physical properties of the subsurface. For the detailed principle and 

development of each logging tool, the reader is referred to Ellis and Singer [2007].  

The most informative lithology log is spectral gamma ray (SGR), which is based on the 

gamma-ray response to identify clay minerals from radioactivity emitted by isotopes of potassium, 

thorium, and uranium (K, Th, and U, respectively) series. Since the uranium sometimes is high in 

minerals other than clays (for example, in dolomite), calibrated gamma-ray reading (CGR) which 

only includes potassium and thorium is used more commonly in determining clay content.  Units 

with high CGR suggest shaly lithofacies and low permeability zones, whereas low CGR commonly 

indicates clean sandstone or carbonate. The GR log usually is analyzed together with additional 

logs like density log, neutron log, or sonic slowness.  

Like the GR log, both density and neutron logs are nuclear tools responding to gamma-ray 

scattering and neutron scattering effects caused by the formation matrix and pore-filling fluids. 
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Porosity, bulk density and hydrogen content are the common outcomes of density and neutron logs. 

As a supplementary measurement of density log, photoelectric factor (PeF) provides a means to 

discriminate lithologies by analyzing the low-energy photoelectric (PE) absorption which is mostly 

independent of porosity. The sonic log is based on propagation of acoustic waves through the 

section. It not only is used for porosity estimation and cement volumetric evaluation, but is also 

combined with density to produce impedance logs and synthetic seismic profiles which can be 

used to correct depth and seismic travel times.  

Resistivity is another petrophysical property that indirectly reflects the permeability and 

fluid saturation of reservoirs which is challenging to measure. To solve the challenge of accurate 

measurement, numerous resistivity and induction logs have been introduced in modern wireline 

logging probes, including microlog (ML), medium and deep resistivity (MRT/DRT), conductivity 

(90 inches conductivity (CT90) is used in this thesis) and spontaneous potential (SP). These logs 

measure the resistivity of mudcake, flushed zone, uninvaded zone and formation fluid respectively.  

Additionally, recently developed electromagnetic logging tools provide additional 

information about pore structure and fluid type in the surrounding reservoir environment. Among 

those tools, magnetic resonance imaging logging (MRIL) has created excitement in the well 

logging community. Based on the same physical principles as its laboratory scale counterpart, 

MRIL is used in well logging to reveal total fluid-filled porosity, pore-size distribution, fluid types 

and fluid contents that can be used subsequently to determine permeability. Since the 1970s, 

important advances have been made in NMR wireline tools, the new acquisition schemes and 

processing methods significantly improved the data acquisition, data quality and resolution, as 

well as the data analysis and interpretation.  
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A lithofacies is a rock type distinct from adjacent rock types, as determined by its physical 

or chemical properties resulting from different facies, lithology, texture, and mineralogy. These 

lithofacies usually are interpreted in terms of environment of deposition and diagenesis. Although 

core data represent geological ‘ground truth,’ most wells are not cored and core data are sparse. 

However, most wells are logged with different tools. Early attempts in the early 1980s to predict 

lithofacies from log responses to augment core description used empirical geological facies-log 

response associations. Serra and Abbott (1982) developed the concept of electrofacies from well 

logs, as a measure to extend the petrophysical properties (e.g., porosity, permeability, saturation 

states) identified in the core to the well log. The electrofacies are defined as collective wireline 

logging responses that uniquely distinguish facies from one another. In many cases, such 

differentiations are robust as well log measurements are the direct reflection of facies 

characteristics and physiochemical properties of rocks. However, the correlation between rock 

physical properties and geology is non-unique. Electrofacies should match the lithofacies 

identified in the core if electrofacies are classified accurately and adequately [J H Doveton, 2014]. 

Numerous reservoir studies have illustrated the value and importance of electrofacies 

characterization for permeability estimation and improved reservoir characterization [Ali et al., 

2008; Bucheb and Evans, 1994; Kim et al., 2005; Lim et al., 2006; Mathisen et al., 2001; Perez et 

al., 2005; Sharma et al., 2011].  

 Single variable methods generally are used for early stage and current electrofacies 

recognition. For example, Flaum and Pirie [1981] applied spectral gamma ray to quantitatively 

subdivide sandstone, clay, limestone in strata of the Cotton Valley Group (Jurassic) in eastern 

Texas, and Lucia [2007] successfully subdivided mud-supported carbonate and grain-supported 

carbonate in San Andres and Grayburg formations (Permian) in western Texas using computed 
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gamma-ray log (CGR). The major shortcoming of single variable analysis is that it is not applicable 

for clean reservoirs with no clay and complex lithofacies – like many sandstone and carbonate 

reservoirs.   

In most strata, integrating more log responses is necessary for electrofacies recognition. 

Litho-porosity cross-plots like the M-N plot [Burke et al., 1969], which combines neutron log, 

density log, and sonic log, are another frequently used electrofacies discriminator. Yet, in this 

approach, ‘M’ and ‘N’ are created parameters and produced without regard to any specific physical 

properties. To improve the litho-porosity method, [Clavier and Rust, 1976]) developed the matrix-

identification (MID) plot, which is also called 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚vs. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  plot. It uses two quasi-physical 

quantities: apparent matrix density (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ) in g/cc and apparent volumetric cross section of 

photoelectric absorption (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚) in barns/cc calculated by:  

 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = (𝜌𝜌𝑏𝑏 − 𝜌𝜌𝑓𝑓𝜑𝜑𝑡𝑡)/(1 − 𝜑𝜑𝑡𝑡) (16) 

 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑃𝑃𝑃𝑃𝑃𝑃𝜌𝜌𝑏𝑏 − 𝑈𝑈𝑓𝑓𝜑𝜑𝑡𝑡)/(1 −𝜑𝜑𝑡𝑡) (17) 

where 𝜌𝜌𝑏𝑏 is bulk density, 𝜌𝜌𝑓𝑓 is fluid density, 𝜑𝜑𝑡𝑡 is true volumetric porosity, Pe is photoelectric 

absorption measurement, 𝑃𝑃𝑃𝑃𝑃𝑃 is the photoelectric absorption factor, and 𝑈𝑈𝑓𝑓 is the fluid volumetric 

photoelectric absorption. More recently, third-generation density logs (litho-density log) provide 

not only a bulk density (ρb) measurement but also the photoelectric measurement Pe, which reflects 

the average atomic number of the formation and is therefore a reliable indicator of the formation 

lithology [Dewan, 1983].  In carbonate reservoir logging analysis, and based on standard 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 values from various minerals, three end-member minerals (quartz, calcite, dolomite) can 

be plotted in a triangle on the 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  cross plot. End-member 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  values for pure 

quartz, calcite, and dolomite are 2.65, 2.71 and 2.87 g/cc, respectively, whereas end-member 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

for quartz, calcite, and dolomite are 4.78, 13.80 and 8.98 barns/cc, respectively [Poupon et al., 
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1971]. The artificial or formalized parameters are defined to be independent of porosity [J H 

Doveton, 2014], however, if the pore characteristics dominate the log signals, the MID and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚-

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 triangle approaches are less accurate.  

To attain more representative electrofacies from well logs, an alternative method is 

proposed to use multivariate data analysis to correlate well-log responses with core descriptions. 

A multivariate data analysis is expected to improve petrophysical properties estimation by 

clustering the well-log responses with similar characteristics into groups (electrofacies). With the 

blooming of computational power, use of mathematical procedures and computer programs to 

automatically classify electrofacies from even more complex set of variables has become more 

common [Bucheb and Evans, 1994; Busch et al., 1987; Delfiner et al., 1987; JH Doveton and 

Cable, 1979; Grimm, 1987]. One of the complete multivariate statistical analysis includes analysis 

of variance, nonparametric regression, clustering, and classification. In this thesis, the analysis 

utilizes the following steps: 1. Principal component analysis (PCA); 2. Fuzzy c-mean clustering; 

and 3. Classification. First, PCA transforms well log data to scores, which are then subjected to 

model-based clustering, and to be used to categorize the scores into groups interpreted as 

electrofacies. The details of each step are discussed below.  

Step 1: PCA 

Principal component analysis (PCA) is a multivariate technique in which a number of 

related variables are transformed to set of uncorrelated variables [Jolliffe, 2011]. The greatest 

advantage of PCA is the simplification of data by reducing its dimensionality, and it facilitates 

extraction of the structure of variables. This procedure is important in modern well-log analysis as 

logging suites provide log responses that are closely correlated, which challenges the multivariate 

analysis.  
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For PCA, all logs first should be normalized with zero-score standardization, which 

subtracts the mean and standardizes data to unit deviation of each log to ensure the equal weight 

of each response. If 𝑛𝑛  data points of 𝑚𝑚  types of log responses form a 𝑚𝑚 × 𝑛𝑛  matrix  𝑋𝑋 , the 

covariance matrix can be expressed as 𝑆𝑆𝑥𝑥 = 1
𝑛𝑛−1

𝑋𝑋𝑇𝑇𝑋𝑋. The variance of ith and covariance of the ith 

and jth principal components are: 

 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖) = 𝛽𝛽𝑖𝑖𝑇𝑇Σ𝛽𝛽𝑖𝑖 = 𝜆𝜆𝑖𝑖, (18) 

and 

 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑖𝑖,  𝑦𝑦𝑗𝑗� = 𝛽𝛽𝑖𝑖𝑇𝑇Σ𝛽𝛽𝑗𝑗, (19) 

where β is the coefficient and column eigenvector and 𝜆𝜆 is the eigenvalue. Therefore, the 

covariance matrix can be alternatively expressed as 

 𝑆𝑆𝑥𝑥 = Β𝑇𝑇ΛΒ, (20) 

And the ith principle component can be described as  

 𝑝𝑝𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖
𝑗𝑗
1 . (21) 

To achieve the reduction of dimensions, the reduced principal components should have the largest 

possible variance 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖) and lowest covariance 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑖𝑖,  𝑦𝑦𝑗𝑗�, essentially equal to 0. In this data 

reduction, the number of principal components is less than the number of original variables. Based 

on different criteria of maximum variation of principle components, eigenvalues for two or more 

principle components could be projected to a two or more-dimension coordinate system, which is 

called score plot. In this study, the first two principle components (PC1, PC2) are selected to 

address score plot. Since most of the variability in the dataset is contained in the first two PCs, 

noise that collected in the observations can be extracted and eliminated from original data suite. 

However, even if well logs can be projected into uncorrelated variables, it is unrealistic to build 
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connections for principal components against actual physiochemical properties as opposed to what 

core descriptions and well-log responses can do.  

Step 2: Clustering 

By definition, clustering is any technique that involves the grouping of data. Cluster 

analysis is used as a primary stage for unsupervised learning to group the dataset into subsets in 

such a manner that similar instances are grouped, whereas different instances belong to different 

groups [Rokach and Maimon, 2005]. The purpose of the cluster analysis as used here is to separate 

the data from a suite of logs into meaningful groupings that can be interpreted in terms of 

electrofacies. Common clustering algorithms mostly use a hard boundary, which allows a 

component belongs to only one cluster, that can be divided to several subgroups, including 

centroid-based algorithms (K-mean clustering, mean-shift clustering), density-based algorithms 

(Density-Based Spatial Clustering of Applications with Noise (DBSCAN)), hierarchical 

development (hierarchical agglomerative clustering, depth-constrained hierarchical clustering), 

and neural network algorithms (see Jain [2010] for a review of details of current pattern 

recognition and clustering methods). Centroid-based algorithms are the most popular and well-

known clustering methods due to their high efficiency and linear complexity. However, the cost 

of fast processing speed is that the number of centroids must be pre-assigned by the user, a situation 

which is not ideal. Centroid-based algorithms also start with unsupervised, random centroids, 

points which can drastically affect the final clustering result, and therefore lead to inconsistency, 

even among multiple analyses of the same data. Recently, approaches like DBSCAN and spectral 

clustering are designed to intentionally overcome the problems of imaging pattern recognition 

where the number of clusters represents previous information. Those algorithms fix the inherent 

disadvantages implemented by centroid-based algorithms as applied to large data set with irregular 

distribution and high standard deviations. However, since the underlying algorithms are intended 
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to be efficient for pattern recognition which is not associated with the physical model, these 

methods do not perform well if the clusters are not well separated, as is commonly the situation 

for lithofacies. Similarly, lithofacies with very similar petrophysical properties - like packstones 

and mudstones - are difficult to differentiate from the log responses, and usually overlap in the 

score maps. Therefore, hard boundaries are not preferred for electrofacies classification, instead, 

fuzzy-membership based algorithms have become popular in such circumstances.  

Fuzzy c-means (FCM) is a method of centroid-based clustering which employs fuzzy 

membership and allows one data point to belong to many (or even all) clusters with degrees of 

membership from 0 to 1 (e.g., the total membership = 1) (J C Dunn [1973]. This method 

bloomed after being optimized by Bezdek et al. [1984], and is now a common algorithm in many 

pattern recognition analyses. A fuzzy c-mean process tries to minimize the primary objective 

function: 

 𝐽𝐽𝑚𝑚 = ��𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗�
2

𝐶𝐶

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

, (22) 

where 𝑚𝑚  is a real number ∈ [1,∞] called fuzziness index or factor, 𝜇𝜇𝑖𝑖𝑖𝑖   is the degree of 

membership of 𝑥𝑥𝑖𝑖 in the cluster 𝑗𝑗, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖th of measured data in Euclidean space, 𝑐𝑐𝑗𝑗 is the center 

of the cluster in Euclidean space, and ||*|| is the Euclidean distance between data 𝑥𝑥𝑖𝑖 and the cluster 

center 𝑐𝑐𝑗𝑗. Fuzzy partitioning is calculated by updating of fuzzy membership 𝜇𝜇𝑖𝑖𝑖𝑖 

 
𝜇𝜇𝑖𝑖𝑖𝑖 =

1
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�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗�

�𝐶𝐶
𝑗𝑗=1

2
𝑚𝑚−1

 
(23) 

moreover, the cluster centers 𝑐𝑐𝑖𝑖 by： 
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 𝑐𝑐𝑖𝑖𝑖𝑖 =
∑ 𝑥𝑥𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝐶𝐶
𝑖𝑖=1

∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝐶𝐶
𝑖𝑖=1

. (24) 

Repeating above steps through an iterative operation until the minimum objective function 𝐽𝐽𝑚𝑚 

has been achieved or the termination criterion has been reached.  

This study considers two-dimensional FCM analysis of PC1 and PC2, as derived from the 

log data. If only two possible electrofacies (A and B) have been assigned, a membership 

partitioning matrix for both k-means and FCM algorithm as 𝑀𝑀𝐾𝐾𝐾𝐾 and 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 includes: 

 𝑀𝑀𝐾𝐾𝐾𝐾 =

⎣
⎢
⎢
⎢
⎡
0
0
1

1
1
0

⋮
0

⋮
1⎦
⎥
⎥
⎥
⎤

, 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡
0.3
0.4
0.8

0.7
0.6
0.2

⋮
0.1

⋮
0.9⎦

⎥
⎥
⎥
⎤
. (25) 

Numbers indicate the degree of membership that belongs to each electrofacies. For sample 1 in 

the first row, a data point belongs exclusively to electorfacies B with a degree of membership 

equal to 1 in the k-means algorithm, whereas in the FCM algorithm it belongs to electrofacies A 

with a membership coefficient of 0.3 and belongs to electrofacies B with a membership 

coefficient of 0.7. As an outcome, every data point will have a membership partitioning for each 

cluster and that membership represents the possibility of belonging to a cluster. Instead of 

unitary distribution of such association, FCM allows a changeable clustering result by adjusting 

the membership threshold to each cluster and gives the best result for the overlapped dataset, 

commonly better than the k-means algorithm in recognizing members that belong to multiple 

groups [Bezdek, 2013]. For instance, mudstone, packstone, and grainstone can have very similar 

PC1 and PC2 values thus very close cluster centers. FCM, therefore, would be less possible to 

include a mudstone that surrounded by the packstone and grainstone in the score plot which is 

critical to the recognition of subclasses.  
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Step 3: Classification 

The next step would be assigning lithofacies to clusters to make them meaningful electrofacies. 

This procedure is usually performed by either applying the lithofacies of centroid to the whole 

cluster universally [J H Doveton, 2014] or assigning lithofacies based on their corresponding 

logs and log interpretations [Roslin and Esterle, 2016]. However, those two methods are relying 

on 1) fairly large number of clusters, and 2) distinct log values among clusters and extensive 

understanding of these log values. These two conditions are not satisfied in this study since we 

are dealing with carbonate samples with fixed number of clusters and relatively small changes in 

log responses. To avoid human bias while assigning the lithofacies to clusters and make this 

interpretive procedure an unsupervised way, a more statistical way is then performed by 

minimizing the overall objective function, 𝑆𝑆: 

 𝑆𝑆 = 𝜙𝜙𝑚𝑚 + 𝛽𝛽𝜙𝜙𝑛𝑛 (26) 

where, 𝜙𝜙𝑚𝑚 is the term of data misfit and 𝜙𝜙𝑚𝑚 = ∑ �𝑑𝑑𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑑𝑑𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜

𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 , 𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜 are the 

electrofacies and lithofacies for 𝑖𝑖th data point respectively, 𝜎𝜎 is the standard deviation of the 

dataset, and 𝑛𝑛 is the total number of data points. 𝜙𝜙𝑛𝑛 is representing the model norm or regularizer 

and 

 
𝜙𝜙𝑛𝑛 = α��𝑑𝑑𝑖𝑖+1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

2
𝑛𝑛−1

𝑖𝑖=1

+ (1 − α)‖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚‖22 
(27) 

Eletrofacies that are not matching lithofacies would be considered as ‘mispredicted’ and 

therefore misprediction rate is simply equals to a number of mispredicted data points over the 

total number of data points. Therefore, 𝜙𝜙𝑛𝑛 contains the information of smoothness of rock type 

transactions and the success rate of prediction. Weighting parameter α and 𝛽𝛽 are used to adjust 
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the weight among terms and can be optimized, α is the weight between the smoothness of rock 

type transactions and the success rate of prediction and 𝛽𝛽 is the weight between data misfit and 

model norm.   
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Chapter 4. Core plug analysis 

Material and Methods 

Sample description and preparation  

A total of fifty-one samples including Lansing-Kansas City Group oomoldic limestone 

plugs and Cambro-Ordovician Arbuckle Group carbonate plugs, were taken from wells in central 

and southern Kansas. Evan K Franseen et al. [2003]; Watney [1980] interpreted depositional 

environments of the Lansing-Kansas City Group and Arbuckle Group to range from subtidal to 

peritidal and to include grainstones, packstones, and mudstones. The pore types include 

interparticle, intraparticle, moldic, isolated vuggy and touching vuggy [Lucia, 1983; 1995], as 

related to depositional facies, early diagenesis, and dolomitization [Evan K Franseen et al., 2004; 

Watney et al., 1989].  

 The forty-one grainstone samples were oomoldic limestones with diameter ~ 1 inch, 

whereas five packstone and five mudstone samples were plugs of mostly dolomite and chert with 

diameter ~ 1.5 inches. Samples were extracted from drilling core samples continuously at 4-5 inch 

scales to have higher analyzing resolution than well-log data. The Arbuckle samples came with 

well-log data, which serve as reference data. All samples have lithofacies descriptions, effective 

helium porosities, and air permeability with Klinkenberg correction (Kair) from specific core 

analysis done at CoreLab and Weatherford. Additional experiments, including low-pressure gas 

adsorption porosimetry and X-ray microtomography (µ-CT) scanning, are performed for four 

samples (two grainsotnes, one packstone, one mudstone), and is described below. 

Gas adsorption measurements were performed by the ASAP2020 Accelerated Surface 

Area and Porosimetry System (Micromeritics). The specific surface area (in units of area per unit 

of mass (m2/g)) were determined by the low-pressure gas adsorption of nitrogen onto the surface 
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of powdered samples (0.3 mm) at cryogenic temperatures of nitrogen. Nitrogen was chosen due to 

its small molecular size, low boil temperature, and reasonable saturated pressure. Brunauer, 

Emmett, and Teller (BET) surface area analysis was completed in the linear region of the 10-points 

BET plot, which was evaluated systematically using the Rouquerol transform. Two grainstones, 

one packstone, and one mudstone, are selected to perform low-pressure gas adsorption. All 

samples are ground into 250-300 µm, and 0.8-0.9 g ground powder for each sample is used in the 

test. 

To perform the µ-CT scanning, rock sticks were extracted from the four core plugs with 

dimensions of roughly 2 mm (length) by 2 mm (width) by 2 cm (height), chosen to achieve a high-

resolution pixel size of 1.69 µm. Original µ-CT images were collected using a ZEISS Xradia 400 

Versa µ-CT and post-processed using Avizo Fire to stack and reconstruct the grayscale 3-D digital 

data. For pore network separation and two-phase segmentation, a combined algorithm of manually 

picked threshold and watershed-based methods were applied on at 100*100*100 pixels. This Area 

of Interest (AOI) was applied to qualitatively differentiate pore space (deep color regions) from 

the matrix (light color regions). A minimum pore size of 3.38 µm (or minimum pore radius 1.69 

µm) is the effective resolution limit of µ-CT. Therefore, the total pore volume determined by µ-

CT and post-processes ignores pore space with radii smaller than 1.69 µm. Detailed information 

about our samples can be seen in Tables 4.1 and 4.2. 

Geophysical measurements (NMR, SIP) 

All samples were first oven dried at 70 ˚C for 72 hours and placed under a vacuum with 

specific saturation fluids to saturate the effective pore space. All samples were wrapped with 

Teflon tape to hold water and reduce background noise while performing the NMR tests. Samples 

analyzed by SIP were sealed with semi films and silicone gel to prevent dehydration, which could 

dramatically increase impedance.  
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Sodium-chloride brine concentrations for saturation were set as 0.01 mol/L, 0.03 mol/L, 

0.11 mol/L, and 0.12 mol/L for different fluid salinities, in order to extract formation factor F. 

After saturation, all samples were kept in the same holder with saturation fluids to stabilize and 

normalize the conductivity (see Table 4.1). The sample holder for the SIP test was built as a 

modified Wenner array with Ag/AgCl electrodes according to Binley et al. [2005], the distance 

between two potential electrodes changes and is 0.0179 m plus the sample height. SIP data were 

collected using a Portable SIP meter (Ontash & Ermac, Inc.) over a frequency range from 0.01 Hz 

to 10k Hz to ensure the datasets could capture the SIP responses from a broad range of pore-size 

distribution, especially macropores. The lower detection limit of phase shift was approximately 

0.2 mrad. The reference resistor at 10k Ohm was close to the same order of magnitude of the 

samples’ impedance and provided an optimal signal to noise ratio. The value of the 𝜎𝜎′ spectra and 

𝜎𝜎"spectra in 1Hz frequency was used as the characteristic 𝜎𝜎′ and 𝜎𝜎"  value for the sample.  

NMR measurements were performed by a 2MHz Rock Core Analyzer (Magritek Ltd) using 

CPMG pulse sequence with echo times of 300 μs and an inter-experiment time of 1600 μs to ensure 

collection of the signal of macropores. The inversion algorithm of FID curve provided by Magritek 

Ltd is based on the inversed Laplace transform with non-negative least squared (NNLS) inversion 

algorithm. Regularization parameters (also called smoothing parameters) were derived from L-

curve the regularization parameter selection method. The logarithmic mean of T2 (𝑇𝑇2𝑀𝑀𝑀𝑀 ), 

equivalent porosity, and T2 distribution are provided. 

Results and Discussion  

µCT image and BET surface area 

Figure 4.1 shows CT images of two grainstones, one packstone and one mudstone. The 

intensity of each pixel in grayscale (0-255, darkest to lightest) represent the hardness of material 

where harder materials cause less attenuation of X-ray. On these data, darker regions indicate softer 
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material and pore, lighter regions indicate harder material. Grainstone 1 (Figure 4.1 a) is an oolitic 

grainstone containing abundant oomoldic pores and is well cemented by calcite. Some moldic 

pores contain calcite spar. Grainstone 2 (Figure 4.1 b) is an oolitic grainstone in which ooids are 

mostly neomorphosed with very limited dissolution. The packstone (Figure 4.1 c) is a dolo-

packstone that has medium grained dolomite crystals, and consists of higher portion of interparticle 

pores than grainstones. Mudstone (Figure 4.1 d) is a dolo-mudstone that is argillaceous and has no 

or very low interparticle porosity. Evident from the µCT images, the heterogeneity and complexity 

of our samples became more apparent in low porosity samples where complex intra- or 

interparticle pores dominate the porosity [Evan K Franseen et al., 2003].  

Low-pressure nitrogen adsorption measurements were applied to the same four samples as 

the µCT scans, representing different lithofacies (two grainstones, one packstone, one mudstone).  

The data revealed 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 of 12.69 μm-1 for packstone, 8.55 μm-1 for grainstone 1, 73.47 μm-1 for 

grainstone 2 (mean of grainstones is 41.01 μm-1 ) and 114.10 μm-1 for mudstone. 

Characteristics of NMR porosity and 𝑻𝑻𝟐𝟐 distribution  

In general, the NMR porosity and conventional helium porosity correlate well 

(RMSE=0.24, Figure 4.2). In detail, with few exceptions, NMR porosity is up to 6.3 % p.u. lower 

than Helium porosity. Porosity for different lithologies varies drastically. Grainstone porosity 

extends from 2.8 % to 33.5 % with a median value of 16.9 % and standard deviation of 7.4% (n = 

45); packstone porosity ranges from 2.6 to 7.2 % with a median value of 5.1 % and standard 

deviation of 1.5% (n = 5); and mudstone porosity varies from 1.4 to 10.4 % with a median value 

of 3 % and standard deviation of 3.9% (n = 5).  

Several factors may explain the discrepancy between NMR porosity and helium porosity. 

First, NMR porosity is a function of saturation and calculated by the equivalent water volume over 

total sample volume. Loss of water then leads to underestimated porosity. Typically, the pore space 
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saturated by fluids is less than that which gas can intrude, especially in situations with poorly 

connected pore throats, because surface tension and low contact angle limit the saturation of fluid 

[Brooks and Corey, 1964]. Apart from the poorly connected pores, samples with vuggy open pores 

where grains are dissolved to be moldic space are unable to hold water in place during the 

experiment, resulting in lost signal strength and low porosity. Similarly, abundant micropores with 

relaxation time under the detection limit can cause porosity underestimation in NMR experiments 

[Kenyon, 1992; Kleinberg et al., 1994]. With the dead time of our experiments, relaxation below 

0.02 ms did not count into the total signal. 

The 𝑇𝑇2  relaxation times from representative grainstones, packstones, and mudstones 

(Figure 4.3) include unimodal and bimodal distributions for each class. Grainstone samples have 

a higher amplitude peak (up to 0.85), whereas packstone and mudstone samples have a lower 

amplitude peak (up to 0.26 and 0.19, respectively). These data reveal higher porosity in grainstones 

than in packstones and mudstones. Similar to the distinctive amplitude, the mode of 𝑇𝑇2 

distributions varies between grainstones, packstones, and mudstones. Grainstones have a larger 

peak 𝑇𝑇2 value (above 500 ms), whereas the peak 𝑇𝑇2 value of packstones is lower (around 200 ms), 

and the peak value of mudstones is lowest (generally less than 100 ms). Together, these data reveal 

smaller pores and less total porosity in packstone and mudstone samples than in grainstone 

samples.  

𝑇𝑇2𝑀𝑀𝑀𝑀 commonly is considered a length scale that represents characteristic pore size [Slater 

et al., 2014; Andreas Weller et al., 2010a]. 𝑇𝑇2𝑀𝑀𝑀𝑀 is calculated by the logarithmic mean theorem: 

 𝑇𝑇2𝑀𝑀𝑀𝑀 = e
∑ ln𝑇𝑇2

𝑁𝑁 , where N is the total sample size. Grainstones in general have high 𝑇𝑇2𝑀𝑀𝑀𝑀 (range 

from 10.94 ms to 844.29 ms). In contrast, packstones (range from 99.23 ms to 171.96 ms) and 
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mudstones (range from 24.60 ms to 225.98 ms) have lower 𝑇𝑇2𝑀𝑀𝑀𝑀. A positive linear correlation (R2 

= 0.77) between porosity and 𝑇𝑇2𝑀𝑀𝑀𝑀 is evident (Figure 4.4).  

According to the International Union of Pure and Applied Chemistry (IUPAC)’s definition 

for porous media [Thommes et al., 2015], three pore types can be divided based on size: micropores 

(diameter d < 2 nm), mesopores (2 nm < d < 50 nm), and macropores (d > 50 nm). For most geo-

materials, all three types of pores are formed simultaneously and may have been modified by 

syngenetic and diagenetic events. In many cases, bimodal or trimodal populations suggest two or 

three kinds of pore types and unimodal means the sample has relatively uniform pore size. For 

example, Gan et al. [1972] suggested 𝑇𝑇2 distributions of gas shale samples were bimodal due to 

the organic mesopores and inorganic micropores that dominate such dense reservoirs [Chalmers 

et al., 2012; Mehana and El-monier, 2016; Tinni et al., 2017]. Likewise, Yao and Liu [2012]; Yao 

et al. [2010] confirm trimodal 𝑇𝑇2 distribution in coal samples represent microfractures, primary 

macropores, and secondary mesopores. 

It would be easy to use the 𝑇𝑇2 distribution to differentiate pore types and conclude that 

unimodal samples have one pore type. However, a considerable amount of our samples show broad 

unimodal 𝑇𝑇2 distribution that includes up to four orders of magnitude of relaxation time. D Chang 

et al. [1994] and Marschall et al. [1995] also tested the observed unimodal 𝑇𝑇2  distribution in 

carbonate samples using MICP and thin section observations. The results, however, showed that 

those unimodal samples do have multiple pore sizes or pore throat sizes. This phenomenon, which 

causes 𝑇𝑇2  modes to merge, is called pore coupling [Ramakrishnan et al., 2001]. Due to the 

diffusion of protons from macropores (intraparticle and interparticle) to micropores, peaks of 𝑇𝑇2 

can shift and merge in some samples, to values that are not representative of the true pore size 

distribution. In previous research, pore coupling has been interpreted as a result of better 
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connectivity through pore systems [Fordham et al., 1999] and has also been shown to relate to a 

higher surface relaxivity 𝜌𝜌2 . The unimodal 𝑇𝑇2  distribution resulting from pore coupling in 

carbonate samples could be considered an implication of grain support [John Doveton and Watney, 

2014], whereas bimodal distributions suggest mud support. However, to calibrate and verify the 

actual pore size distribution and pore types from NMR data, complementary analyses like digital 

image analysis, gas adsorption, and MICP are necessary.  

Characteristics of complex conductivity spectra 

Under the condition of pore-fluid conductivity 𝜎𝜎𝑤𝑤 = 0.12 S/m, and room temperature Tr = 

24 ℃, the impedance and phase shift of the saturated samples are measured from 0.1 Hz to 10 

kHz. Frequency-dependent phase shifts of three representative grainstone, packstone and 

mudstone samples (Figure 4.5) show only data points in the frequency range of 0.1 Hz to 1000 Hz, 

to avoid the high-frequency coupling effect [Niu et al., 2016]. The phase shift of mudstone (6-7 -

mrad) and packstone (0.6-1.2 -mrad) are more pronounced than the phase shift of grainstone (0.8-

4.6 -mrad) and show a flat plateau from 0.1 Hz to 1000 Hz, distinct from the general positive trend 

of the grainstone spectrum. The impedance spectrums of samples can be decomposed into real part 

of conductivity 𝜎𝜎′ and imaginary part of conductivity 𝜎𝜎“  spectra (Figure 4.5).  Doing so illustrates 

several interesting trends. First, the real part of conductivities 𝜎𝜎′ show a similar range and narrow 

variability among all samples, between 0.001 and 0.006 S/m (Figure 4.5a). For 𝜎𝜎” spectrums 

(Figure 4.5b), vary considerably, the peak values for a given frequency can be up to one order of 

magnitude different, with grainstones and packstones lower than mudstones. Second, the 𝜎𝜎” 

spectrums demonstrate similar shape as phase shift spectrum. All samples have 𝜎𝜎” values that 

increase as frequency increases, and have no peak frequency.  

The low phase shift values are consistent with previous investigations of carbonate samples 

[Müller-Huber et al., 2018; Müller-Huber et al., 2016]. The phase shift of grainstone includes 
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exactly 1-5 –mrad,  a value consistent with Müller-Huber et al. [2018] for oomodic  Schaumkalk 

samples, although the packstone and mudstone have lower phase shift then they documented (5-

12 -mrad). Peak frequency in phase shift spectrum and 𝜎𝜎” spectrum usually is interpreted as a 

characteristic that related to the dominant pore size and pore space features [Luo and Zhang, 1998; 

A. Revil et al., 2014a; A. Revil et al., 2012]. However, absence of peak frequency is observed 

commonly in carbonate samples [Müller-Huber et al., 2018; Niu et al., 2016] and is interpreted to 

correlate with broad pore-size distribution [A Revil, 2013]. For instance, the flat spectrum is 

interpreted to result not only from large ‘broadness’ of the pore-size distribution, but also high 

‘evenness’ of the pore-size distribution where the ‘broadness’ and ‘evenness’ refer to the range of 

pore-size distribution and the fraction of each pore size in the spectrum. This argument is consistent 

with the 𝑇𝑇2 distributions (Figure 4.3). The grainstone has roughly the same 𝑇𝑇2 range (3-4 orders of 

magnitude) as 𝑇𝑇2  distributions of mudstone and packstone. Therefore ‘broadness’ seems not 

sufficient to be a controlling parameter for the shape of phase shift spectrums and 𝜎𝜎” spectrums. 

The difference of ‘evenness’ of pore size distribution, in contrast, is more significanFt among 

lithofaices. Mudstone and packstone have more evenly distributed amplitude than grainstone. 

Evenly distributed amplitude implies an even contribution to the complex conductivity from 

induced polarization in different pore sizes which are consistent with the phase shift spectrums 

and 𝜎𝜎” spectrums. In such scenarios, instead of picking a peak frequency, Revil et al. (2010) 

suggest using the data points at 1 Hz to represent the characteristic pore size and pore space 

features.  

The fact that 𝜎𝜎′ is not lithology dependent, but 𝜎𝜎” is lithology dependent, indicates that 

they are sensitive to different petrophysical features or processes. Based on the physical meaning 

of real part of conductivity 𝜎𝜎′, it may be the pore cross-sectional area and the effective path length, 



34 
 

or the effective flow path, that controls 𝜎𝜎′ [Vinegar and Waxman, 1984]. In contrast, the imaginary 

part of conductivity 𝜎𝜎”  has an additional dependency on the parameters that describe the 

complexity of the pore system, like pore-size distribution [Vinegar and Waxman, 1984], 

chargeability [A. Revil et al., 2014a; Scott and Barker, 2003] and surface area [A. Weller et al., 

2010b]. Therefore, it is reasonable that mudstones with higher surface area and inter-surface 

chargeability can have a higher 𝜎𝜎” than packstones and graistones, as discussed in detail in the 

following section.  

Petrophysical properties derived from NMR and SIP 

a. Pore-size distribution and characteristic pore size 

 As shown in Equation 3,  1
𝑇𝑇2

 is equal to 1
𝑇𝑇2𝑆𝑆

 under the assumption that relaxation phenomena 

represent a fast diffusion regime. Both pore-size distribution and surface area-to-volume ratio 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 

are derived from 𝑇𝑇2 distribution.  

 The BET-derived 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  are used to calculate 𝜌𝜌2 in this data set, revealing average 𝜌𝜌2 values 

of 2.8 μm/s for grainstone, 0.6 μm/s for packstone and 0.1 μm/s for mudstone (for individual 𝜌𝜌2 

for each sample, see Table 4.3).  These data match 𝜌𝜌2 values reported by previous studies on 

carbonate rocks, which range from 0.1 to 3.5 μm/s [Bhagat et al., 2012; Marschall et al., 1995]. 

Assuming nearly spherical pore shapes (geometry factor 𝑎𝑎=3), the pore-size distribution of same 

six samples used in Figure 4.2 can be calculated by Equation 3 (Figure 4.4). Since the Equation 3 

expresses a linear transformation, the shape of pore-size distribution is the same as the shape of 𝑇𝑇2 

distribution. Since the 𝑇𝑇2 for free water is about 2s, the corresponding pore size is 16.8 μm if we 

assume 𝜌𝜌2=2.8 μm/s. The pore-size distribution generated from NMR relaxation time covers a 

wide range of pore size from 0.1 nm to 100 μm. Water in pores beyond 100 μm then is considered 

‘bulk water’ and will have the same relaxation time as free water. Though signals from bulk water 
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are collected, they can’t be differentiated from the signals from water in 100 μm pores. This upper 

limit of NMR porosimetry may induce underestimation of characteristic pore size and average 

pore size of samples with pores > 100 μm, e.g. oomoldic grainstones.  

 Most commonly, comparing pore-size distribution with other petrophysical properties uses 

a representative value of the distribution. Corresponding to the characteristic value for 𝑇𝑇2 

distribution - 𝑇𝑇2𝑀𝑀𝑀𝑀, the characteristic pore size Λ can be calculated using Equation 3 as well (Table 

4.3). Grainstones in general have larger characteristic pore sizes (up to 4 μm) than packstones (50 

to 100 nm) and mudstones (less than 20 nm, except 33-25 which is 126.84 nm). To be noticed that, 

some grainstones have significant amount of vuggy pores and ooids that are larger than 100 μm 

according to the hand sample observation and µCT images. Apart from the underestimation of 

𝑇𝑇2𝑀𝑀𝑀𝑀  due to the limitation of NMR porosimetry, there are two more reasons that may cause 

characteristic pore sizes of grainstones to be underestimated. One is that 𝜌𝜌2  of grainstones is 

averaged down by grainstone samples that have less ooilitic pores. Another reason is that vuggy 

and oolitic pores don’t hold water very well in position, most of connected vuggy and oolitic pores 

can be under-saturated during measurement.  

 In porous media with one dominant pore size which is been defined as the size of pores 

that dominant the fluid flow behavior, 𝑇𝑇2𝑀𝑀𝑀𝑀 is proportional to the dominant pore size and therefore, 

characteristic pore size Λ can be used to represent the dominant pore size [Banavar and Johnson, 

1987].  

However, 𝑇𝑇2𝑀𝑀𝑀𝑀 most likely does not represent the dominant pore size in bimodal or trimodal 

samples since 𝑇𝑇2𝑀𝑀𝑀𝑀 gives the information of most abundant pore sizes while it’s usually the pore-

throat size dominant the fluid flow behavior. Many researchers have realized the limitation of 

using a single Λ value to represent the complex pore size distribution of samples and therefore, 
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related the Λ value with an imperial length - 1/𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 [Katz and Thompson, 1986; A. Revil et al., 

2014b; Robinson et al., 2018]. Osterman et al. [2016] and Robinson et al. [2018] compared 

permeability predicted using Λ, 1/𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑇𝑇2𝑀𝑀𝑀𝑀 and showed that it provided very similar results; 

from this observation, they suggested 1/𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑇𝑇2𝑀𝑀𝑀𝑀  both contain necessary pore space 

information for permeability prediction.  

b. 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 

 The lithofacies-specific 𝜌𝜌2  values were used to estimate 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  from the 𝑇𝑇2  distributions. 

The NMR-derived 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 plotted with porosities (Figure 4.8) demonstrates a power-law correlation 

(R2=0.82). One observation from this plot is the wide range of 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 from 0.2 μm-1 to over 200 μm-

1 in some low porosity (4 - 8 %) samples.  

This elevated 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 range is attributed to the roughness of pore surface and grain surface, 

as revealed by µCT images. Samples with higher 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 have rougher surfaces, less particle contact, 

and smaller grain size than samples with lower  𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝. This interpretation is consistent with previous 

work by Bang et al. [2012] in pure calcium carbonate precipitation and Walter and Morse [1984] 

in dissolution test of skeletal carbonate, which supports the conclusion that grains with rougher 

surfaces and smaller sizes have greater specific surface area. Although both are grainstone 

samples, sample LKC89 (𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 = 169.92/μm) has moldic pores filled by micrite which are small 

crystals that contribute a lot to the surface area, whereas sample LKC135 (𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 = 39.54/μm) has 

moldic pores that are well preserved and smooth where the inner surface of cortices are covered 

by recrystallized dolomite spars. This observation suggests that parameters like 𝑇𝑇2𝑀𝑀𝑀𝑀 and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  are 

sensitive to surface roughness.  
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 The imaginary conductivity 𝜎𝜎" has been related to pore attributes [A. Revil and Florsch, 

2010; A. Weller et al., 2010b]. The  𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  can be estimated from  𝜎𝜎"  (Equation 10), with the 

assumption that the change of bulk property formation factor F is insignificant. Studies like A. 

Revil and Florsch [2010]; A. Weller et al. [2010b] documented either well-defined linear 

correlation or power-law correlation between 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and 𝜎𝜎"  in consolidated sandstone and 

unconsolidated sand-clay mixed samples. Instead of a clear linear relationship, the carbonate 

samples from all three lithofacies in this study only define a general positive trend between 𝜎𝜎" and 

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  (Figure 4.8) with a weak power-law correlation between 𝜎𝜎" and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  (R2 = 0.17; with an 

exponent of 0.21), markedly less significant than the correlation in sandstone and sand samples 

[Kruschwitz et al., 2010; A. Weller et al., 2010b]. It is possible that 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 itself is not the parameter 

that controls the imaginary part of conductivity in carbonates. Additional parameters need to be 

considered and counted to correlate 𝜎𝜎" and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 in carbonate rocks.  

 Niu et al. [2016] concluded that the single linear relationship between 𝜎𝜎" and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 claimed 

by A. Revil and Florsch [2010] and A. Weller et al. [2010b] is not appropriate for low-porosity 

clayey samples. Niu et al. [2016] also emphasized on the importance of formation factor 𝐹𝐹 in 

relating 𝜎𝜎"  with 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 , and argued that 𝐹𝐹  should not be ignored (Equation 10) if it varies 

considerably. Equation 10 indicates that, theoretically, the 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝/𝐹𝐹 is the textural parameter that 

controls 𝜎𝜎" in porous media. To validate the relationship between 𝜎𝜎" and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and F as proposed 

by Niu et al. [2016] in carbonates, F values were estimated by measuring all fifty-one samples 

saturated with four fluids with different salinities. The results reveal that as porosity increases, F 

tends to decrease from over 700 down to 11 (see Table 4.3. for more details). Almost all packstones 

and mudstones have F greater than 50, with corresponding low porosity, high 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝, and low 𝜌𝜌2. In 

contrast, grainstones have F values lower than 50. The power-law correlation between 𝜎𝜎" · 𝐹𝐹 and 
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𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 (R2 = 0.62 for the power-law relationship; Figure 4.10) is evident and is stronger than it 

between 𝜎𝜎" and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝. Likewise, the power-law relation for σ" · 𝐹𝐹 − 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 correlation includes an 

exponent of 0.44, which is not quite similar to the exponents of the power-law relationship on σ" −

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 established for other samples (0.96 for sand + clay in Slater et al. 2006; 0.996 for sandstones 

and unconsolidated samples in Weller et al. 2010b). This result suggests that 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝/𝐹𝐹 has more 

important control than 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝on the imaginary conductivity in carbonate rocks. This observation is 

consistent with the empirical equation 10, and could directly help geophysicists calculate 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 

determine other hydraulic properties like hydraulic conductivity and tortuosity of porous media 

from SIP measurements.  

c. Porosity exponent m from Archie’s law 

 Generally, 𝐹𝐹 has an approximate exponential correlation with porosity, as expected from 

Archie’s Law where 𝐹𝐹 = 𝜑𝜑−𝑚𝑚. The range of calculated porosity exponent m is 1.19 to 3.63, with 

an average of 2.10. This range of m is comparable with the data demonstrated by Borai [1987] and 

Focke and Munn [1987]. Figure 4.11 shows that 𝐹𝐹 is generally following the Archie’s Law with 

porosity exponent m ranged from 1 to 3 while Figure 4.12 shows that the m is positively correlated 

with porosity.  

 This observation is opposite to the negative correlations between m and porosity in 

sandstones [Borai, 1987], shales [Cho et al., 2016], and even some oolitic and sucrosic limestones 

[Casteleyn et al., 2011; Focke and Munn, 1987], where m generally becomes larger as cementation 

occurs. However, similar positive correlations have been described by Borai [1987], Focke and 

Munn [1987], J H Doveton [2014], and Rankey et al. [2018] in moldic limestones, moldic 

dolostones and oomoldic dolostones.  
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 The variety of 𝑚𝑚 − 𝜑𝜑  correlations has inspired studies that focus on interpreting the 

physical meaning of m. Focke and Munn [1987] proposed that the 𝑚𝑚 is controlled by pore types 

where samples with dominantly intergranular or intercrytalline pores act like siliciclastics and 𝑚𝑚 

decreases or remains constant as porosity increases. On the other hand, in rocks with dominantly 

moldic pores, 𝑚𝑚 increases with increasing porosity. A more detailed investigation on the effect of 

moldic pores on m is performed by Ragland [2002], who finds that a higher percentage of isolated 

moldic pores relates to lower connectivity and consequently higher 𝑚𝑚. Ragland [2002] also finds 

that adding 10-15% percent of open fractures to moldic samples can decrease m from 3.2 to 2.1.  

To quantify the influence of pore-size distribution on 𝑚𝑚, Niu and Zhang [2018b] numerically 

studied the change of electric field density and 𝑚𝑚 in samples with a variety of grain size, grain 

shape, and pore size in granular material. They concluded that m is related to pore-scale variations 

in the electrical field, and increasing m is linked to the increasing volume fraction of pore throats 

(pore throat volume/total pore volume) regardless of the grain shape, grain size distribution, and 

porosity. Therefore, the m increases with increasing porosity is possibly because higher porosity 

samples typically have higher volume fraction of pore throats. 

 The grainstone samples consist of well-developed oomolds and well-preserved micritized 

cortices. Some of the moldic pores are partially or fully filled by cements. The CT images of a 

high porosity (33.5 %), high m (3.27) grainstone 1 (Figure 4.1 a) and low porosity, low m 

grainstone 2 (Figure 4.1 b) show that grainstone 1 is dominated by oomoldic pores which are either 

isolated or connected by micro-factures caused by a collapsed cortex. In contrast, grainstone 2 

includes more intraparticle pores and no long-narrow pores. As stated by Herrick and Kennedy 

[1994], it is the narrowest part of The moldic pores contribute to total porosity but do not contribute 

to the electrical current transportation unless localized micro-fractures, cortex crushing, or 
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dissolution connect the dissolved ooids with other ooids or with interparticle pores. Yet 

interconnecting moldic pores are connected by long-narrow pores (Figure 4.1 a)) and less 

conductive interparticle pores. In other words, those long-narrow pores or micro-fractures are 

considered pore throats regarding electrical properties. Therefore, the samples with poorly 

connected oomolds and an increasing percentage of pore throat are related to higher m. The more 

regular shape and point contact of the crystals (as shown in CT-images of mudstone and packstone) 

produce better connected intercrystalline pores, a low percentage of pore throats, and more 

effective electric conduction, resulting in higher formation factor F and thus lower cementation 

factor m. 

d. Permeability  

 In searching for the appropriate permeability models for the carbonate samples, 

relationships between permeability and complex conductivity parameters (𝜎𝜎′, 𝜎𝜎") were plotted 

(Figures 4.13 and 4.14). Figure 4.13 reveals two trends. First, an exponential relationship (linear 

in log-space) between real conductivity 𝜎𝜎′  and 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 is evident for grainstone samples (R2 = 0.67), 

however, no such correlation exists in packstone and mudstone. Second, mudstones and 

packstones have relatively invariant 𝜎𝜎′ comparing with grainstones that have similar  , especially 

in samples with low 𝑘𝑘. Compared with the 𝜎𝜎′ − 𝑘𝑘 plot (Figure 4.13), the 𝜎𝜎" − 𝑘𝑘 data (Figure 4.14) 

are more scattered (R2 = 0.09 versus 0.67). Grainstone samples appear to define a general 

exponential trend between 𝜎𝜎" and k, whereas packstones and mudstones are not having any evident 

trend.  

Several studies have built empirical or semi-empirical relationships that link 𝜎𝜎" to  𝑘𝑘 , 

especially for sandstones and unconsolidated samples [A. Revil et al., 2015; A. Revil and Florsch, 

2010; Andreas Weller et al., 2010a], mostly following the approach of linking 𝜎𝜎" to 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝, and then 
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calculating k from 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 using the Kozeny-Carman equation (Equation 11). Although linear [A. 

Weller et al., 2010b] or power-law [Slater, 2007] relationships between 𝜎𝜎" and k are evident in 

sandstone, unconsolidated sands, and sand clay mixtures, no such relationship is observed for these 

carbonate samples. As mentioned above, since 𝜎𝜎" is sensitive to the total pore surface that conducts 

charges, and 𝑘𝑘 is more sensitive to effective transport paths for hydraulic flow, the disconnection 

between these two parameters may be more common in carbonate samples that went through 

complex digenesis. A comparison of carbonate and sandstone samples [Ehrenberg and Nadeau, 

2005] revealed distinctive statistical trends between arithmetically averaged permeability and 

average porosity for sandstones and carbonate, and such results were interpreted to reflect diverse 

paragenetic and diagenetic histories.  

The real part of conductivity 𝜎𝜎′ has been used to calculate formation factor F, and then 

permeability 𝑘𝑘  based on the K-C model (Equations 13-15, Katz and Thompson [1986]). The 

observed versus expected data (Figure 4.15) illustrate a statistically significant correlation (R2 = 

0.67, P<0.001).  

The relationship among porosity, permeability, and 𝑇𝑇2𝑀𝑀𝑀𝑀 (Figure 4.16) suggests samples 

with higher 𝑇𝑇2𝑀𝑀𝑀𝑀 generally have higher porosity and higher permeability. On the contrary, samples 

with lower 𝑇𝑇2𝑀𝑀𝑀𝑀 have lower porosity but a wide range of permeability. Mudstone and packstone 

samples are completely overlapping with each other and all have relatively low 𝑇𝑇2𝑀𝑀𝑀𝑀  values 

(<150ms) except one with 253.7ms, whereas the grainstone samples covers a wide range of 𝑇𝑇2𝑀𝑀𝑀𝑀. 

Therefore, despite the reality of limited sample set, especially with few mudstone and packstone 

samples, 𝑇𝑇2𝑀𝑀𝑀𝑀  does not show well correlation with permeability in our data set. Thus, careful 

calibration and lab work is needed alongside further work that derives 𝑘𝑘 from 𝜎𝜎" on carbonate. 



42 
 

Permeability estimation from SIP and NMR is possible through empirical relationships, however, 

it also needs careful calibration and better petrophysical models.  

 Regarding the results above, the mixed pore types and broad pore size distribution in 

carbonate have impacts on both NMR and SIP responses. Results of this study suggest that NMR 

and SIP responses can be complementary to each other while interpreting the petrophysical 

properties of carbonate samples. NMR results can distinguish a variety of pore size distributions 

and SIP results could differentiate pore types. Clearly, the existing permeability models need to be 

improved to understand the different pore attribute controls on permeability better.  Moreover, the 

permeability estimation from multiple geophysical measurements might be feasible and provide a 

reliable estimation of the pore size distribution [Niu and Zhang, 2018a; Osterman et al., 2016].  

The complexity of the pore system in carbonate 

The purpose of comparing petrophysical parameters with each other is finding potential 

correlations that can be used to infer one parameter from others. Moreover, it is expected that by 

comparing NMR and SIP responses which are based on different physical principles, 

understanding of relations between geometric properties (i.e., pore size, pore shape, texture) and 

petrophysical properties can be improved. Based on their sensitivity to the pore space, the 

petrophysical parameters discussed in this study can be grouped into parameters sensitive to total 

pore space (𝑇𝑇2𝑀𝑀𝑀𝑀, 𝜎𝜎", m, F, and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝) and parameters sensitve to effective pore space (𝜎𝜎′, and 

permeability), where effective pore space refers to the effective hydraulic or electrical pathway. 

The relatively prononced correlation between porosity - 𝑇𝑇2𝑀𝑀𝑀𝑀 (Figure 4.4, with R2=0.77, P<0.001), 

porosity - 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  (Figure 4.8, with R2=0.82, P<0.01), 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  -  𝜎𝜎"𝐹𝐹  (Figure 4.10, with R2=0.62, 

P<0.01), porosity - m (Figure 4.12, with R2=0.65, P<0.001), permeability - 𝜎𝜎′ (Figure 4.13, with 

R2=0.67, P<0.001) and the relatively ambiguous correlation between permeability - 𝜎𝜎" (Figure 
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4.13, with with R2=0.09, P<0.05), porosity - permeability - 𝑇𝑇2𝑀𝑀𝑀𝑀  (Figure 4.16) therefore have 

shown better relevance among paramters that are sensitive to total pore space than with parameters 

that only sensitive to effeccticve pore space. The weak correlation between parameters sensitive 

to total pore sapce and parameters sensitive to effeictive pore space indicates that in some 

carbonate rock we tested, abundant pore space (i.e., semi-isolated and dead-end pores) only 

contribute to the total pore surface area and total porosity, but not to effective hydraulic and 

electrical pathways. 

One of the most evident observations in this study is that geophysical responses do not 

always exhibit distinct behavior among different lithologies. One explanation for this lack of 

correspondence could be that the study simply lacked enough packstone and mudstone samples to 

be statistically valid. That is, a total of five packstones and five mudstones are not sufficient to 

draw any definitive conclusions. Moreover, all packstone and mudstone samples are low porosity 

(<10%), which may not be representative of the range of variability.  

Beyond these limitations, however, petrophysical properties derived from NMR and SIP 

are more likely to sensitive to the pore geometry and fluid behavior in carbonate rocks rather than 

to depositional texture. That is saying depostional textures are not always distinguishable by NMR 

and SIP since different depositional textures could have very similar characterisitics and 

consequently similar NMR and SIP reponses. Janson and Lucia [2018] analyzed on carbonate 

with different depositional textures and claim that the combination of pore types and pore space 

heterogeneity due to diagenesis could lead to very similar geophysical responses (e.g., acoustic 

velocity and NMR responses) for different lithologies which validated those observations 

presented in this study where mudstones, packstones, grainstones can have very similar relations 

among petrophysical properties. 
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Another noteworthy observation is that none of these petrophysical parameters correlations 

conducted in this study yields as high coefficient of determination R2 as those correlations of 

sandstones or granular materials (R2 = 0.840 for 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  -  𝜎𝜎" relation of sandstones in A. Weller et al. 

[2010b], or R2 = 0.93 for 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  -  𝜎𝜎"𝐹𝐹 relation of porous borosilicate samples in Niu et al. [2016]). 

Similarly, the porosity - acoustic P-velocity and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  - acoustic P-velocity relations are not as 

pronounced as in sandstones [Casteleyn et al., 2011; Janson and Lucia, 2018] even though acoustic 

P-velocity is a geophysical response with more dependency on mechanical properties of the 

carbonate matrix than the NMR and SIP responses examined here. The weaker correlations 

between petrophysical parameters in carbonate, in comparison with the correlations developed in 

sandstones, could possible related to the characteristic of carbonate pore system. Unlike 

sandstones, which typically are composited by just relatively homogeneous interparticle pores , all 

carbonates contain multiple pore types, which consequently induce pronounced petrophysical 

heterogeneity even within subfacies [Choquette and Pray, 1970; Mazzullo, 2004]. The creation of 

such complicated pore system is related to the development of both primary and secondary 

porosity [Choquette and Pray, 1970; Lucia, 1983]. All carbonate sediments have elevated primary 

porosities (up to 70%), and include interparticle, intraparticle, framework pores and seltered pores 

before they have entirely solidified. Porosity can drop dramatically from 70% to 1% [Lucia, 2007] 

during diagenesis, due to factors such as compaction, cementation, recrystallization and other 

diagenetic processes [C H Moore, 2001]. Later on, other diagenesis processes (e.g., dissolution 

and dolomitization) can modify the pore attributes of rock and create secondary porosity, including 

intercrystalline, moldic, vuggy, and even cavernous pores. Of pore types, interparticle and 

intercrystalline pores are well connected and contribute more to the effective hydraulic and 

electrical paths, whereas moldic and solution-enlarged pores (vuggy, cavernous) can produce 
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semi-connected or isolated pores that have limited contribution to the effective hydraulic and 

electrical paths, but contribute to responses of total pore space-sensitive parameters. For instance, 

oomoldic grainstones in this study (Figure 4.1a) can have oomoldic pores that are connected by 

microfractures,  which result in rocks with high porosity and intermediate to high 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝. Those 

dead-end oomoldic pores increase porosity and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 , but will not help transport the fluid or transmit 

electrical current. On the contrary, crushing oomoldic pores can decrease the porosity, but improve 

the permeability, as illustrated by Hussain [2006]. This mechanism may be why samples with 

similar porosity or 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 but have wide range of permeability (Figure 4.16). In a more micro scope, 

the diagenesis that makes the pore interfaces rougher which increases the 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  but have little 

impact on the effective porosity and permeability.  

 Overall, as stated by Lucia [2007], the complexity of petrophysical responses of carbonates 

is controlled primarily by two geometric information of pore system: pore types and pore size 

distribution. Müller-Huber et al. [2018] claim that derivation of geometric information of 

carbonates requires validating petrophysical data with other methods to overcome the scale 

limitations and blind spots. For instance, the two geophysical methods applied in this study, NMR 

and SIP, are sensitive to pore attributes (e.g., porosity, pore size, 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝), but on different physical 

bases. By assessing the correlations among petrophysical parameters generated by two methods, 

this study helps building a integral methods of evaluating complex carbonate pore attributes and 

corresponding reservoir properties using NMR and SIP.   
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Chapter 5. Logging data analysis 

The primary task of reservoir evaluation is to provide a full picture of the nature, behavior 

and distribution of reservoir rocks and fluids. To fulfill the objective, multidisciplinary log analysis 

[Dewan, 1983] has served as the petrophysical basis for geological and geophysical data 

interpretation. Initiated by the oil and gas industry, conventional well-logging tools and 

interpretation methods are well developed, yet modern logs like NMR logs are not fully exploited 

in many workflows. To fill this gap, the aim of this part of the study is to harness the full potential 

of NMR logging data in carbonate reservoir characterization. Specifically, this study focuses on 

assessing the potential of 𝑇𝑇1/𝑇𝑇2 ratio being a lithology indicator by using it as an input variable to 

recognize subclasses of electrofacies within a carbonate succession.  

Lithofacies from core description 

Franseen (1994, 2000) and Steinhauff et al. (1998) identified facies characteristic of 

Arbuckle strata in Kansas. Their results reveal that although Arbuckle rocks have been 

extensively dolomitized, much of the dolomitization is non-fabric destructive, thereby original 

depositional facies and textures are preserved. Of ten principal facies, the target interval (from 

4900 to 5000 ft, 1633-1667 m) contains only five lithofacies: mudstone, packstone, grainstone, 

incipient breccia and breccia. Grainstone consist of intraclasts, ooids and peloids, skeletal 

fragments, and was interpreted to represent high-energy deposition in a subtidal to peritidal 

environment. Abundant cement nearly totally occludes porosity, and leads to low permeability. 

Packstone and mudstone typically are massive to horizontally laminated. Porosities range from 

3% to around 20%.  Breccias commonly are associated with subaerial exposure. The evaporation 

of sea water lead to evaporite depostion, and the dissolution of evaporite, in turn, induced 
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collapse horizons in Arbuckle strata. Due to the heterogeneous texture, porosities and 

permeabilities of breccias in this interval vary considerably.  

Data from NMR log 

As introduced in the methodology, the application of NMR logs in the petroleum industry 

facilitates reservoir evaluation by providing hydrogen content and relaxation time directly from 

the measurements [Kenyon, 1997]. Empirical relationships allow these information to be used to 

calculate apparent porosity, pore size distribution and permeability [Kleinberg et al., 1994]. The 

NMR logs we have access to provides both longitudinal relaxation and transverse relaxation 

measurements, describes as 𝑇𝑇1 and 𝑇𝑇2 distributions, respectively. Figure 5.1 shows lithofacies and 

corresponding 𝑇𝑇2 and 𝑇𝑇1 distributions within the depth interval of 4900 - 5000 ft. Overall, the 

transverse relaxation rate 1/𝑇𝑇2 is larger than the longitudinal relaxation rate 1/𝑇𝑇1. It is noteworthy 

that most of the porosities in 𝑇𝑇1 distributions are in the bin 𝑇𝑇1 = 2048 ms which is due to the 

detecting cap of the equipment is set to 2048 ms.  

𝑻𝑻𝟏𝟏/𝑻𝑻𝟐𝟐 ratio – a petrophysical property indicator 

From the NMR theory, both 𝑇𝑇1 and 𝑇𝑇2 spectra are represented by multi-exponential 

curves and should have very similar shapes.  The 𝑇𝑇1/𝑇𝑇2 ratio is a scaler of longitudinal relaxation 

time distribution versus transverse relaxation time distribution. The intensity function 𝑎𝑎1,2 of 

both longitudinal and transverse relaxation time [Khetrapal et al., 1975; Kleinberg et al., 1994] 

can be derived from following equations: 

 𝑀𝑀1(𝑡𝑡) = �𝑎𝑎1(𝑇𝑇1𝑖𝑖)
𝑖𝑖=0

�1 − 2𝑒𝑒−
𝑡𝑡
𝑇𝑇1i�, (28) 

 𝑀𝑀2(𝑡𝑡) = �𝑎𝑎2(𝑇𝑇2𝑖𝑖)
𝑖𝑖=0

𝑒𝑒−
𝑡𝑡
𝑇𝑇2i . (29) 
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To calculate 𝑇𝑇1/𝑇𝑇2 ratio, both 𝑎𝑎1 and 𝑎𝑎2 are required [Kleinberg et al., 1993a]. For instance, 𝑎𝑎1 

and 𝑎𝑎2 are intensity functions for discrete relaxation times 𝑇𝑇𝑖𝑖 (𝑖𝑖 = 4, 8 … 2048 ms). The zero-

normalized cross-correlation coefficient, Ρ, can be calculated from the equation: 

 Ρ𝑎𝑎1𝑎𝑎2(𝜔𝜔) = �
1

𝜎𝜎𝑎𝑎1𝜎𝜎𝑎𝑎2
[𝑎𝑎1(𝑇𝑇1𝑖𝑖) − 𝑎𝑎1(𝑇𝑇1� )] ∗ [𝑎𝑎2(𝜔𝜔𝜔𝜔2𝑖𝑖) − 𝑎𝑎2(𝜔𝜔𝑇𝑇2� )]

𝑖𝑖=0

, (30) 

where 𝜔𝜔 is the multiplier which is 𝑇𝑇1/𝑇𝑇2 ratio, 𝜎𝜎𝑎𝑎1 and 𝜎𝜎𝑎𝑎2 are the standard deviation of 

amplitudes of 𝑇𝑇1 and 𝑇𝑇2 spectrums, 𝑇𝑇1�  and 𝑇𝑇2�  are the mean value of 𝑇𝑇1 and 𝑇𝑇2. This simplified 

correlation function is constrained by the shape and range of 𝑇𝑇1 and 𝑇𝑇2 distributions. Although 𝜔𝜔 

can be obtained by maximizing Ρ𝑎𝑎1𝑎𝑎2(𝜔𝜔), the effective range of 𝑖𝑖 should be carefully selected 

with fully considering the saturation states, saturation fluids, and fractures [Kleinberg et al., 

1993b; Song et al., 2002].  

The 𝑇𝑇1/𝑇𝑇2 values calculated from the focus interval range from 0.89 to 7.62. As 

introduced in Chapter 3, a ternary plot of quartz, calcite and dolomite abundance can be used to 

represent the mineral constituents of a carbonate reservoir. To test for potential correlation 

between 𝑇𝑇1/𝑇𝑇2 and mineralogy, a plot of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 includes superimposed with 𝑇𝑇1/𝑇𝑇2 in 

color within the target interval (from 4900 to 5000 ft, or 1633-1667 m)  (Figure 5.2). 

Th𝑖𝑖𝑖𝑖 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  cross plot indicates that mineral components of the target interval are mostly 

quartz and dolomite with limited calcite. High 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and high 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 indicate more dolomite 

content, while lower 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 reflect increasing silica (quartz) content.  In the cross plot 

(Figure 5.2), relatively high 𝑇𝑇1/𝑇𝑇2values ( >5 ) and relatively low 𝑇𝑇1/𝑇𝑇2 values (<2) appear to 

correspond with highly dolomitic samples, whereas intermediate 𝑇𝑇1/𝑇𝑇2 (2-5) samples are broadly 

distributed. The correlation between dolomite percentage and 𝑇𝑇1/𝑇𝑇2 value suggests that 𝑇𝑇1/𝑇𝑇2 
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may be an indicator of lithology for the subclasses of carbonate like Arbuckle Group with high 

purity of dolomite.  

The 𝑇𝑇1/𝑇𝑇2 value has been interpreted as an indicator of the molecular environment of 

hydrogen proton [Callaghan, 1991]. In bulk and unrestricted space, without the participation of 

multiphase fluid or the impact from diffusion, the 𝑇𝑇1/𝑇𝑇2 value is equal to one [Kleinberg et al., 

1993b]. Callaghan [1991] concluded that, within a confined environment, such as a pore, 

decreasing 𝑇𝑇2 corresponds to the restricted motion of water molecules, whereas increasing 𝑇𝑇1 

indicates more ordered lattice structure and higher crystallinity. These results suggest that 𝑇𝑇1/𝑇𝑇2 

value would be higher in more ordered materials, and in materials with smaller pores. Therefore, 

changing of 𝑇𝑇1/𝑇𝑇2 calculated from the NMR log is expected to be related to variations in 

mineralogy and texture, e.g., lithofacies. 

To assess the potential of 𝑇𝑇1/𝑇𝑇2 as a lithology indicator, other well-defined lithology 

indicators, such as total gamma ray (GRTO) and conductivity (CT90), are used for comparison. 

Both comparisons between gamma ray and 𝑇𝑇1/𝑇𝑇2  (Figure 5.3a) and conductivity and 𝑇𝑇1/𝑇𝑇2 

(Figure 5.3b) show no obvious relationship. Based on these comparisons, 𝑇𝑇1/𝑇𝑇2 ratio may be as 

useful as other conventional lithology indicators (gamma ray and conductivity) in lithofacies 

recognition, yet 𝑇𝑇1/𝑇𝑇2 defines distinct petrophysical properties. Therefore, next section explores 

a more qualitative means to identify the utility of 𝑇𝑇1/𝑇𝑇2, by using 𝑇𝑇1/𝑇𝑇2 as a input to recognize 

electrofacies. 

Electrofacies Classification  

PCA 

 Eight logs, including 𝑇𝑇1/𝑇𝑇2 ratio (NMRR), apparent matrix density (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚), matrix 

volumetric photoelectric absorption (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚), total porosity (PHIT), lateral log 90 inch 
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conductivity (CT90), total Gamma-ray reading (GRTO), Thorium (THOR), and Potassium 

(POTA) were extracted from the NMR, spectral gamma-ray, photoelectric, density and neutron, 

porosity curves as input variable suite for electrofacies recognition. Data used in PCA are from 

the whole Arbuckle Group in Well Wellington #1-32 (4162-5160 ft, or 1387-1720 m) and 

average values of each log for five lithofacies are listed in Table 5.1. The Pareto distribution of 8 

eigenvalues for each eigenvector (Figure 5.4) illustrates that the first 2 principal components 

account for 59% of the total variability. Figure 5.5 shows the biplot of PC1 and PC2 where 

loading vectors show contribution of original variables (well logs) to PC1 and PC2 and the 

correlations among original variables. In detail, if two vectors are close and form a small angle, 

the two input well logs are well correlated [J H Doveton, 2014; Martinez and Kak, 2001]. The 

length of vectors represents the variance of each principle component gained from original well-

logs. By reading the biplot (Figure 5.5), Thorium (THOR), Potassium (POTA) and Total 

Gamma-ray (GRTO) have similar weight on each principle component. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 vectors 

point to high negative PC2 and low positive PC1 values, which are negatively correlated with 

total porosity (PHIT) and conductivity (CT90) that are almost 180 degrees away from 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 vectors. 𝑇𝑇1/𝑇𝑇2 (NMRR) is isolated from the other vectors, with relatively small PC1 (4.21) 

and PC2 (-1.67).  

The PHIT and CT90 vectors have very similar scores showing a strong correlation 

between porosity and conductivity. Conventionally, conductivity is considered positively 

correlated with porosity [Bernabe et al., 2011; Johnson et al., 1986]. However, breccias have 

lower porosity but higher conductivity compared with non-breccia carbonate in these Arbuckle 

data (Table 5.1). Those breccia samples were formed due to the collapse of paleokarst features, 

and they are locally cemented with micrite [E. K. Franseen, 2000; Evan K Franseen et al., 
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2003]. Brecciation and fracturing make vuggy porosity, whereas the autoclasts (typically from 

mudstones and wackestones) are better cemented than the matrix of breccia samples. Therefore, 

even the total porosity is low, the well connected vuggy pores and intercrystalline pores make 

breccia samples more conductive. THOR, POTA and GRTO are extracted from the spectral 

gamma-ray, and are indicators of clay content. Therefore, their scores are similar to each other 

(Figure 5.5). Another pair of lithology indicators are 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 (Table 5.2). The difference 

between breccia samples and other samples becomes distinctive, as breccia samples are low in 

both 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 values which is consistent with the observation (Evan K Franseen et al. 

[2004] that most Arbuckle breccias are autobrecciated and have very limited terrigenous 

constituents. NMRR does not carry as much variance as other vectors in PC1 and PC2 which 

means there are more information distributed in other principle components.  

Cluster Analysis 

In defining clusters, an important bit of a priori information is the number of expected 

clusters. In this study, since the clustering algorithm – FCM is an unsupervised method, an 

accurate number of clusters is required during the self-training process [Bezdek et al., 1984; 

Zadeh, 1996]. For instance, the number of clusters is fixed as five, corresponding to five primary 

lithofacies including mudstone, packstone, grainstone, incipient breccia, and breccia. Initially, 

five cluster centers are inserted randomly on the Euclidean space of the PC1-PC2 cross plot and 

self-training starts with an initial guess of cluster membership values 𝜇𝜇𝑖𝑖𝑖𝑖 . Objective function of 

all five clusters then are calculated and updated until the stopping criteria is reached. This 

analysis uses PCA and cluster analysis results of all eight input variables (well logs) as an 

example. The objective function meets the minimum threshold at iteration 11. Updated centers 

(crosses in color) are superimposed with clusters of principal component scores (Figure 5.6). 
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Five clusters are defined as five distinctive electrofacies from EF1 to EF5 for further 

interpretation. The PC1 reasonably maps EFs. EF1 and EF2 plot in negative PC1 regime whereas 

EF3-5 has positive PC1 values. EF1 tends to be more distinctive with lower PC1 values and can 

be easily differentiated from other EFs. Meanwhile, EF3, EF4, and EF5 heavily overlap with one 

another, indicating similarity among EF3-5.  

Classification 

To achieve the unsupervised classification of clusters generated in the last step, this 

procedure is simply decomposed as the following workflow. First, five clusters are assigned with 

five lithofacies with no repetition, and then S in Equation 26 is calculated. Next, the first step is 

repeated with different permutations of lithofacies k times, here k is 120 for 5 clusters. Finally, 

the analysis picks the combination that minimizes S as the ‘electrofacies’. The classifications 

show that clusters with positive PC1 scores tend to have more carbonate (mudstone, packstone, 

grainstone) and clusters with negative PC1 scores, suggesting breccia carbonate (incipient 

breccia and breccia) that contain more clay content and are a less pure carbonate. Within 

carbonate clusters, grainstone have higher matrix volumetric photoelectric absorption than 

packstone and mudstone, indicating higher dolomite content and lower abundance of clay 

minerals in grainstones. Three carbonate clusters are overlap, and have very close cluster 

centroids, suggesting the importance of a fuzzy clustering algorithm instead of hard-boundary 

algorithms.  

The outcome of overlapping clusters can be explained from a geological perspective.  

Specifically, petrophysical responses of different textures of carbonate (mudstone, packstone, 

grainstone) can be very similar, and similar petrophysical responses would have similar principle 

components scores. In contrast, incipient breccia and breccia can be distinguished very well 
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because of more distinctive PC1 and PC2 scores as a result of the dissimilarity of petrophysical 

responses. Specifically, compared with incipient breccia, breccia has lower dolomite content, 

higher porosity (because of dissolution), and higher clay content.    

Predicted Electrofacies 

To quantitatively validate if the 𝑇𝑇1/𝑇𝑇2 can improve the accuracy of prediction of 

lithofacies, a series of electrofacies discrimination employed different variable sets. Most well-

log based carbonate reservoir characterizations utlilize density, neutron, conductivity and 

gamma-ray logs as inputs, especially when no modern logs are available [Asgari and Sobhi, 

2006; Dorfman et al., 1990; Lee et al., 2002; Perez et al., 2005]. As a control group, this study 

also uses total porosity, total gamma ray and lateral log 90 inches conductivity as the primary 

input variable set (Set 1 for short) for electrofacies classification.  

To test whether NMRR improves classification, NMRR was added to the primary input 

dataset asto form the second input variable set (Set 2). Furthermore, a full log suite except 

NMRR was tested as a third input variable set (Set 3). Finally, the full log suite including NMRR 

serves as forth input variable set (Set 4). Each variable set was used as input for a PCA, a 

clustering analysis and a classification, thus generating four predictions of electrofacies. A 

graphic predicted electrofacies log of each of these variable sets provides a means to visually 

compare predictions with a full core description and special core analysis (Figure 5.7). For 

reference, a total gamma ray curve of this interval (Figure 5.7 a) is also provided for comparison. 

The core-plug profile (Figure 5.7 b) shows the lithofacies identified from both static rock typing 

(core-plug observation) and dynamic rock typing (special core analysis).  

Calculating the objective function S provides a means to compare the recognition 

accuracy of each variable set. Results of Set 1, 2, 3, and 4 have S = 1.81, 1.68, 1.55, and 1.54, 
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respectively, and a lower value means better accuracy on recognizing lithofacies. The outcome 

of Set 1 serves as a baseline of the recognition, and it has the lowest accuracy (Figure 5.7 c), 

especially in differentiating breccias from other lithofacies. Adding NMRR to Set 1 decreases the 

value of the objective function of Set 2 (Figure 5.7 d), from 1.81 to 1.68. Moreover, Set 2 lowers 

the misprediction rate of lithofacies from 0.79 to 0.66, and also decreases the number of incorrect 

predictions between non-breccia dolomites and incipient breccia and breccia. Therefore, the 

introduction of NMRR increased the recognition accuracy relative to the control group (Set 1). 

The results from Set 3 and Set 4, which includes more mineralogy related parameters (THOR, 

POTA, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚), outperform sets 1 and 2 with minimized objective function values. For 

example, both Set 3 and Set 4 successfully discern a breccia layer (4910 ft) that is missed in Set 

1 and 2. However, comparing the S values of Set 4 and Set 3, the inclusion of NMRR in Set 4 

does not improve the assessment of Set 3 markedly. This result indicates that NMRR provides 

information partly redundant with other mineralogy related well logs.  

Discussion 

The 𝑇𝑇1/𝑇𝑇2 values calculated from Wellington well 1-32 in this study are consistent with 

the measured values from Cheng et al. [2017]; Kenyon et al. [1988] study shows a wide range of 

𝑇𝑇1/𝑇𝑇2 from 1 to 6 in carbonate samples. The assumption of apparent 𝑇𝑇1/𝑇𝑇2 ratio is the reflection 

of lithology is based on the general correlation between NMRR and other lithology indicators such 

as porosity, conductivity, gamma-ray, and the 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 versus 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 plot. However, the parameters 

affecting 𝑇𝑇1/𝑇𝑇2 need to be discussed further. 

Impact of lithology on 𝑻𝑻𝟏𝟏/𝑻𝑻𝟐𝟐 

Numerous studies conducted on 𝑇𝑇1/𝑇𝑇2 indicate a correlation between 𝑇𝑇1/𝑇𝑇2 and lithology 

[D Chang et al., 1994; Kenyon, 1992; A Timur, 1969]. There are two major mechanisms that can 
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be used to explain this correlation. One mechanism is diffusion-induced shorting of 𝑇𝑇2 in 

samples that have well-connected small pores. As suggested by Equation 2, a total of three 

relaxation mechanisms (bulk, surface and diffusive relaxation) are involved in the transverse 

relaxation. whereas only bulk relaxation and surface relaxation are involved in longitudinal 

relaxation. In other words, 𝑇𝑇1 is not shortened by diffusion, although 𝑇𝑇2 is. If the fast diffusion 

regime is assumed, both bulk and diffusive relaxation can be neglected, therefore the 𝑇𝑇1/𝑇𝑇2 is 

simply the ratio of surface relaxivities, 𝜌𝜌1/𝜌𝜌2 , which should be a constant in one sample. 

However, the diffusion term is not always ignorable, especially when the connectivity between 

pores is good [Anand and Hirasaki, 2007; Hürlimann et al., 2003] or the localized magnetic field 

heterogeneity is significant [Kleinberg et al., 1994; Strange et al., 1993]. Song et al. [2002] 

demonstrates that in a water saturated oolitic limestone, 𝑇𝑇1/𝑇𝑇2 = 1.5 for long relaxation times and 

𝑇𝑇1/𝑇𝑇2 = 4 for short relaxation times. Due to the existence of two distinct environments, the 

authors concluded that higher 𝑇𝑇1/𝑇𝑇2 value is the result of more important diffusion among small 

pores. Therefore, high 𝑇𝑇1/𝑇𝑇2 values can be used to recognize samples with high amount of small 

pores.  

The second underlying mechanism of linking 𝑇𝑇1/𝑇𝑇2 to lithology is the change in surface 

relaxivity. Such change in relaxivity can be induced by changes in mineral surface environment, 

including variations in physicochemical properties like surface potential, ion concentration, and 

contact angle with pore fluid, affinity of pore surface and pore fluid [Daigle et al., 2014; Foley et 

al., 1996; Kleinberg et al., 1993a]. Aytekin Timur [1972] and D Chang et al. [1994] measured 

and compared transverse surface relaxivity 𝜌𝜌2 of carbonate and sandstone samples, and observed 

that dolomite and calcite have lower 𝜌𝜌2 than sandstones and pure quartz. Kleinberg et al. [1994] 

suggested an average 𝜌𝜌1/𝜌𝜌2 =1.6 for 6 sandstone samples, but also claim that the increasing of 
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anisotropic electron motion can decrease 𝜌𝜌1/𝜌𝜌2. One reason that causes low anisotropic electron 

motion is an increase in abundance of clay minerals which carry paramagnetic particles (Fe, Cu, 

Cr, and etc.) that eliminate the anisotropy of electron motion, and therefore slows longitudinal 

relaxation down. Therefore, the higher clay content and metal content will increase the 𝑇𝑇1/𝑇𝑇2 

ratio due to the higher content of the paramagnetic particle.  

Previous laboratory observations established the connection between 𝑇𝑇1/𝑇𝑇2 and lithology, 

or at least pore-size distribution and mineralogy. However, by comparing the accuracy of four 

different variable sets, no significant improvement in electrofacies recognition is observed by 

adding NMRR data into the variable set (Set 4 versus Set 3). This result suggests thar NMRR is 

not a valid rock type indicator, at least in these Arbuckle data.  

Impact of fluid on 𝑻𝑻𝟏𝟏/𝑻𝑻𝟐𝟐 

One consideration is that the changes in  𝑇𝑇1 and 𝑇𝑇2  depend on not just lithology but also 

the reservoir fluid types. Since the NMR signal is directly sensitive to the hydrogen content (water 

and hydrocarbon) and the corresponding environment, 𝑇𝑇1 and 𝑇𝑇2 are actually capturing the fluid 

properties and fluid-rock interactions instead of the solid properties. Viscosity, one of the most 

important fluid properties, turns to play a vital role in controlling the hydrogen motion and change 

of 𝑇𝑇1/𝑇𝑇2. The 𝑇𝑇1/𝑇𝑇2 ratio initially was considered a constant in brine-saturated rock samples under 

low-frequency magnetic field (2 MHz) [Freedman and Morriss, 1996; Kleinberg et al., 1993b], 

whereas later studies conducted on oil shale and gas shale [Coates et al., 1999; Straley, 1997] 

elucidate 𝑇𝑇1/𝑇𝑇2 fluid typing in the presence of mixed fluids in the same sample. Comparing with 

𝑇𝑇1/𝑇𝑇2  value of water (1-2), solid-like and highly viscous hydrocarbons generally have higher 

𝑇𝑇1/𝑇𝑇2 value (up to 100), whereas light oils and gas with low viscosity have lower 𝑇𝑇1/𝑇𝑇2 (4-20) 

[Coates et al., 1999; Freedman et al., 2001]. The results in Washburn and Birdwell [2013] and 
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Fleury and Romero-Sarmiento [2016] show that bitumen, heavy oil and methane have high 𝑇𝑇1/𝑇𝑇2 

and increase the overall 𝑇𝑇1/𝑇𝑇2.  

The test well, Wellington KGS 1-32, is not a producing well, and the Arbuckle Group in 

this area is extensively water-flooded with bare residual oil. However, gas may still be a 

confounding factor driving 𝑇𝑇1/𝑇𝑇2  values. The dependency of fluid in deriving 𝑇𝑇1/𝑇𝑇2  is also 

prominent in the PCA results. According to the loadings of each component referenced to input 

variables (Table 5.2), NMRR vector has relatively low loadings on both PC1 and PC2 compared 

with other logs and the maximum correlation between NMRR and principal component appears in 

principal component 4 with a very high loading 0.936. This indicates that the change in NMRR 

values heavily depends on the parameter(s) that are not strongly associated with other input 

variables. For instance, NMRR is the only input variable that both sensitive to the fluid types and 

lithologies which makes the similar results of Set 3 and 4 reasonable due to the low weight of fluid 

type in rock typing.   

However, the fact that 𝑇𝑇1/𝑇𝑇2 is sensitive to fluid type does not exclude it from being a 

potential indicator for rock typing since the behavior of fluids is also closely related to other 

petrophysical properties that are rock type indicators, like pore shape and pore size. Gas has a 

higher residual saturation with broader pore size distribution in the water-wet system [Zhou and 

Blunt, 1997] and holds a more stable water film in large pores [Blunt, 2001]. Higher complexity 

of pore shape is also corresponding to the higher capillary pressure [Or and Tuller, 1999; W Xu et 

al., 2014], which prevents water from displacing gas in the pore [Valvatne et al., 2005].  

Therefore, the appropriate use of NMRR in rock typing is interpreted to require calibration 

with fluids effects. With a more insightful understanding of multi-phase flow in carbonate under a 

low magnetic field, we expect to derive a modified 𝑇𝑇1/𝑇𝑇2 value that is exclusively representative 
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of the lithology. Recently, the application of 2-D 𝑇𝑇1 - 𝑇𝑇2  map gives a more effective way to 

recognize multi phases simultaneously and it has become a popular means for fluid typing [Fleury 

and Romero-Sarmiento, 2016; Mailhiot et al., 2017]. By using 2-D 𝑇𝑇1 - 𝑇𝑇2 maps, signals from 

hydrocarbons can be recognized and eliminated to minimize the impact on the 𝑇𝑇1/𝑇𝑇2 value from 

non-water phases. Nonethless, although it needs further investigation, the impact of multi-phase 

flow on NMR data is beyond the scope of this study.  

Other controls that may fail electrofacies recognition 

Lithofacies (geological facies) sometimes cannot be tied to electrofacies (petrophysical 

facies) due to 1) statistical analysis applied is not sensitive to the subtle changes of logs between 

facies [Brandsegg et al., 2010; J H Doveton, 2014], and 2) different resolution and scale of well 

and laboratory measurements [Hurlimann et al., 2005].  

In this case study, the targeting zone is restricted in one 100 feet interval where the 

change of lithology is limited, which also leads to an insignificant change of log data for 

electrofacies recognition. The gamma-ray log shows a very typical response for clean 

sedimentary rocks. Except for 4955-4961 ft, where gamma-ray values reach 45 API units, the the 

section has the uniformly low readings (Figure 5.7 a), indicating clean carbonate with low clay 

content. Similarly, the trace of deep resistivity (RDEP) changes only slightly, within one order of 

magnitude. The consistent formation resistivity cannot provide detail information for rock-

typing, and it suggests relatively homogenous pore attributes and mineral composition at the 

scale of the resolution of the log.  This interpretation is consistent with the concentrated readings 

in 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 MID plot (Figure 5.2). Therefore, although 8 different log data are applied to 

the electrofacies recognition, they may not provide enough variation that the statistical methods 

needed to differentiate sub-facies (mudstone, packstone, grainstone) inside of the carbonates. El 
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Sharawy and Nabawy [2016] document similar results, statistical methods that failed to discern 

the difference between dolomitic limestone and limestone, although they did successfully 

recognize sandstone, shale, and limestone. The difficulty of recognizing carbonate sub-

electrofacies in this study indicates those sub-electrofacies are too similar and not discernable by 

the proposed statistical method. As Brandsegg et al. [2010] and J H Doveton [2014] suggest, 

since PCA is a linear dimentionality reduction method, the distance between and within 

lithofacies are considered with the same scale. As a result, variability of sub-facies in a fairly 

uniform lithofacies will be masked by the varibility between major lithofacies. To solve that 

problem, either a structured PCA which analyzes sub-facies independently [Brandsegg et al., 

2010] or a non-linear dimensionality reduction method (e.g., T-distributed Stochastic Neighbor 

Embedding (t-SNE) method [Van Der Maaten, 2009]) should be considered to express the 

variablity within and without one lithofacies in different scale.    

Another possible reason that affects the accuracy of electrofacies recognition is the 

different resolution among logs and the different scale between log data and core observations. 

Take NMR as an example, NMR log is one of the most time-consuming logging tools, but also 

essentially penetrates a large area of detection [Coates et al., 1999].  This aspect induces so-

called ‘bed boundary effect,’ in which the NMR log may collect several geological bed volumes, 

each with distinct properties, in a single NMR measurement [Kleinberg et al., 1993b]. The bed 

boundary effect leads to merging of geophysical responses from thin layers and discrepancy on 

the resolution between NMR and other logs. This discrepancy of resolution even can be observed 

within between 𝑇𝑇1 and 𝑇𝑇2 measurement since 𝑇𝑇1 measurement requires an even longer time than 

𝑇𝑇2 measurement. This basically means 𝑇𝑇1/𝑇𝑇2 ratio is also affected by such bed boundary effect. 

Meanwhile, comparing with lithologies determined from core plug samples with a diameter of 
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3.8 cm, log data are more of a moving average of a much larger inverstigation area. Considering 

both vertical and lateral facies variance of the research area (introduced in Chapter 2), the 

mismatching between log data and core observations should not be surprising. 

Although the application of conventional multivariate statistical methods (e.g., PCA, 

cluster analysis, and discriminant analysis using well logs) have succeeded in predicting 

electrofacies and corresponding permeability in many carbonate reservoirs [Burke et al., 1969; 

H-C Chang et al., 1997; J H Doveton, 2014; Qi and Carr, 2006], this study is consistent with the 

results of Dorfman et al. [1990], Lee et al. [2002] and Criollo et al. [2016].  Those studies 

documented that, without core calibration, the accuracy of recognizing sub-facies of carbonate is 

low, compared to the accuracy of distinguishing between sandstone and shale. Meanwhile, the 

adding of 𝑇𝑇1/𝑇𝑇2 ratio does not improve the accuracy of rock typing much, due to the reasons and 

impacts that been discussed before. To improve the accuracy of recognizing electrofacies, 

alternate statistical methods like structured PCA, should be considered, and need to be 

constrained by more a priori information like depth. Furthermore, the infucluence from fluid 

should be eliminated by using 𝑇𝑇1 − 𝑇𝑇2 map and also permeability should be calculated to 

compare with core-permeability which provides a more practical evaluation of the reservoir 

quality.  

Chapter 6. Conclusion 

Core Analysis 

To explore possible correlations between geophysical responses and pore attributes in 

carbonate rocks, a workflow combines NMR and SIP measurements on core samples was applied 

to the investigation. Results reveal that (1) NMR and SIP responses of grainstone are distinct from 
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responses of mud-rich carbonate (packstone and mudstone whereas packstone and mudstone are 

quite similar, perhaps due to the small sample size); (2) Oppositely, the relations among 

petrophysical properties calculated from NMR and SIP display no distinct trend for different 

lithologies.  This result indicates those petrophysical properties are more sensitive to pore 

attributes (e.g., pore size distribution, pore shape, etc.) than to depositional textures. (3) NMR and 

SIP tools are complimentary to one another for deriving petrophysical properties like pore size 

distribution, pore types, surface area, and permeability. This result suggests that a combined 

method (using both NMR and SIP) has advantages to individual tools in identifying different 

carbonate textures and pore attributes; (4) The well-defined relations between σ" ∙ 𝐹𝐹 − 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 

implies it may be useful to estimate electrical properties and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝, independent of lithology. The 

presence of a power-law relation (akin to that present in siliciclastic rocks) suggests that some of 

the models well developed and applied to sandstones can be modified and applied to carbonates 

as well; (5) K-C equations are applied successfully to grainstones to estimate permeability, 

whereas the extreme sensitivity of σ"  to total pore surface area obscures relations between 

permeability and σ" in packstone and mudstone samples (muddy carbonates). Thus, a next step of 

estimating carbonate permeability should be developing a model that sensitive to pore types. (6) 

Based on their correlations with each other, the petrophysical parameters discussed in this study 

can be grouped into parameters sensitive to total pore space (porosity, 𝑇𝑇2𝑀𝑀𝑀𝑀, 𝜎𝜎", m, F, and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝) 

and parameters sensitive to effective pore space (𝜎𝜎′, and permeability) where effective pore space 

refers to the effective hydraulic or electrical pathway.  

Well Log Analysis 

To examine the potential application of the NMR log in reservoir characterization, this 

study explores the suitability of combining 𝑇𝑇1/𝑇𝑇2 (NMRR, derived from NMR log) with other 
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logs to recognize sub-electrofacies within a dolostone reservoir interval in the Arbuckle Group, 

of southern Kansas. Logs of a total interval of 100 ft of the Arbuckle dolostone in the Wellington 

KGS 1-32 well were classified in this study into five lithofacies (mudstone, packstone, 

grainstone, incipient breccia, and breccia). Correlations between 𝑇𝑇1/𝑇𝑇2 values and other lithology 

related indicators like 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, total gamma-ray (GRTO) and lateral log 90 inches 

conductivity (CT90) are tested. To validate the inference of NMRR as a lithology indicator, 

PCA, Fuzzy C-mean clustering, and an unsupervised classification with four distinct sets of input 

logs recognized five electrofacies corresponding to five lithofacies. The PCA and clustering 

results show that among five electrofacies, incipient breccia and breccia are more distinct while 

mudstone, packstone and grainstone heavily overlap. The comparison of classification results 

between Set 1 (PHIT, GRTO, and CT90), and Set 2 (Set 1 with NMRR) indicates that adding of 

NMRR reduced the recognition error from 1.81 to 1.68 (unitless) whereas the errors of Set 3 (Set 

1 with THOR, POTA, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚) and Set 4 (Set 3 with NMRR) are close (1.55 and 1.54). 

These outcomes suggest that adding 𝑇𝑇1/𝑇𝑇2 can improve the classification accuracy if THOR, 

POTA, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 data are not available; the ratio failed to improve the classification accuracy 

if all logs are available. There are three specific conclusions can be drawn from these results: 1) 

𝑇𝑇1/𝑇𝑇2 contains lithology information redundant to other logs; 2) 𝑇𝑇1/𝑇𝑇2 is not solely controlled by 

lithology, but also controlled by fluid types and fluid behaviors; 3) 𝑇𝑇1/𝑇𝑇2 is not sensitive enough 

to differentiate small changes among sub-classes in relatively pure dolostone. To make 𝑇𝑇1/𝑇𝑇2 

more representative to lithology, a 2-D 𝑇𝑇1 − 𝑇𝑇2 based analysis is needed to filter out signals from 

hydrocarbon in the future. 

This study exploits the potential of borehole NMR data which focuses on investigating 

the inferences from NMR longitudinal and transverse relaxation time ratio (𝑇𝑇1/𝑇𝑇2) on 
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electrofacies characterization. The analysis suggests that NMR logging data have considerable 

potential in characterizing petrophysical properties of reservoirs, beyond what traditionally has 

been analyzed and interpreted. Nonetheless, challenges remain in the interpretation of data, such 

as how to connect the physical meanings of relaxivity change to mineralogy change, and how to 

eliminate the impact of hydrocarbon to get a more representative NMRR for lithology.  

To conclude, this thesis proposes the possible electrical and NMR models for complex 

carbonate samples.  It demonstrates the benefits of integrating NMR and SIP in characterizing 

petrophysical and geometrical properties of carbonate samples by assessing petrophysical 

relationships among NMR and SIP responses. Meanwhile, this thesis work illustrates of the 

utilization of the NMR imaging log in determining electrofacies. Also, by analyzes the factors 

controlling the variation within NMR logging data, this study will help to better interpret NMR 

logging data and improve the carbonate reservoir characterization. This thesis demonstrates the 

potential of combining electrical and NMR methods to advance understandings of fluid 

distribution and fluid flow in carbonate. 
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Figures 

 

Figure 2.1. The location of well Wellington KGS 1-32 presented on a Kansas map. The light blue 

area with yellow outlines is the Wellington oil and gas field. The blue dot marks the location of 

Wellington KGS 1-32.  
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Figure 2.2. Well top map for Lansing-Kansas City Group (1524 Wells) in Kansas, generated by 

Kansas Well Top Stratigraphy Viewer (currently retired). The blue circles here mark out 20 wells 

from which LKC samples analyzed in this work. 
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Grainstone 1 Grainstone 2 

  

Packstone Mudstone 

  

Figure 4.1. µ-CT images of two grainstone samples (a,b), one packstone sample (c) and one 

mudstone sample (d). All images have pixel size of 1.69 µm, and the intensity of each pixel in 

grayscale (0-255, darkest to lightest) represents the hardness. Darker shades represents softer 

100 µm 100 µm 

100 µm 100 µm 
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material, whereas lighter shades represent harder material.  In these images, dark regions indicate 

pore space and light regions indicate solid. The X-ray strengths applied to each sample are 

different, so thresholds for recognizing different materials are different in each image. For 

example, pore regions in c) are more dark gray than black, in comparison to the pore regions in a). 

See text for detailed description of these images. Note the different size and abundances of pores 

among different textures observed here. 
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Figure 4.2. The relation between routine helium porosity (%) from specific core analysis (SCA) 

and NMR porosity (%) estimated from equivalent fluid content. The dashed line which is 1:1 line 

also shows in the figure with R2=0.90, P<0.0001. Note that NMR porosity seems to measure 

porosity slightly higher than helium porosity at low porosity (<10%) and under predict porosity at 

high porosity (>20%), a difference related to the selected echo time (see discussion in text). 
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Figure 4.3. The T2 distribution of representative core samples of grainstone, packstone and 

mudstone. For each lithofacies, there are two samples: one with unimodal distribution and another 

with bimodal distribution. The amplitude represents signal strength for each T2 time, and is 

normalized by total signal strength of grainstone sample. Note that grainstones have higher peak 

amplitude values and longer T2 than packstones, than mudstones.  
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Figure 4.4. The relation between porosity estimated from NMR and 𝑇𝑇2𝑀𝑀𝑀𝑀for samples of this study, 

noted by lithology (grainstone, packstone, and mudstone). The 𝑇𝑇2𝑀𝑀𝑀𝑀 is correlated positively with 

NMR porosity (R2=0.77, P <0.001).  
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Figure 4.5. The frequency-dependent phase shift spectrum for three representative samples. The 

pore-fluid conductivity 𝜎𝜎𝑤𝑤 is 0.12 S/m (NaCl, 24 ℃). Note that there are no visible peak values 

for phase shift spectrums. Phase shift of mudstone is higher than packstone and grainstone. The 

flat spectrum of mudstone are interpreted to indicate broad pore-size distribution [A Revil, 2013] 

and low chargeability of carbonate samples at low pore-fluid salinity [Cerepi, 2004]. The 

increasing phase shift of packstone and grainstone following by the frequency increasing indicate 

potential peak values at higher frequency (>1000 Hz), which is interpreted to be related to small-

size pores (with radius < 1nm) [Müller-Huber et al., 2018]. 
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Figure 4.6 a) 
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Figure 4.6 b) 

Figure 4.6. The frequency-dependent complex conductivity spectrums for the same three 

representative samples illustrated in Figure 4.5. a)  The frequency-dependent real part of 

conductivity 𝜎𝜎′ of grainstone, packstone mudstone; b) The frequency-dependent imaginary part of 

conductivity 𝜎𝜎" of grainstone, packstone, mudstone. The pore-fluid conductivity 𝜎𝜎𝑤𝑤 is 0.12 S/m 

(NaCl, 24 ℃). Note that relative small difference are observed in 𝜎𝜎′ comparing to the difference 

of  𝜎𝜎" among three lithofacies. Mudstone has the highest 𝜎𝜎" value and is one order of magnitude 

larger than packstone and grainstone in low frequency end (0.1 Hz). Also note that shape of 𝜎𝜎" 

spectrums are similar to phase shift spectrums in where mudstone exhibit a plat plateau while 

packstone and grainstone have 𝜎𝜎" rise with frequency increasing.  
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Figure 4.7. The pore size distribution of same representative core samples of grainstone, packstone 

and mudstone that be used in Figure 4.2. The amplitude represents signal strength for each pore 

size, and is normalized by total signal strength of grainstone sample. Note that the shape of pore 

size distribution is the same as 𝑇𝑇2 distribution.  
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Figure 4.8. The relation between NMR porosity and 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝, both plotted on a log scale. Note the 

power-law correlation of 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and porosity, for all three classes (R2=0.82, P <0.01). The best-fit 

line of the dataset is presented as a dashed line. 
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Figure 4.9. The relation between the surface-to-volume ratio 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and imaginary part of 

conductivity 𝜎𝜎"; both axes are plotted on a log scale.  Note the power-law correlation of 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 

𝜎𝜎" (the linear trend in log-log space) (R2=0.19, P <0.05). The best-fit line of the dataset is presented 

as a dashed line.   
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Figure 4.10. The relation between the surface to volume ratio 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and imaginary part of 

conductivity 𝜎𝜎" multiplied by formation factor F. Note that, as in Figure 4.9, the best fit power-

law relationship between 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and 𝜎𝜎" ∙ 𝐹𝐹  is shown (dashed line) (R2=0.62, P <0.01). Note the 

stronger correlation between 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜎𝜎" ∙ 𝐹𝐹 than between 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜎𝜎".   
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Figure 4.11. Cross plot of measured formation factor versus porosity; also superimposed are the 

theoretical formation factors calculated from conventional Archie’s law with varying porosity 

exponent m (1 to 3). The solid line represents m calculated from Archie’s law with the commonly 

applied porosity exponent m = 2. Dotted lines are Archie’s law with alternate m values.  Note that 

samples with lower porosities (<10%) have lower values than F that calculated from Archie’s law 

with m = 2, whereas samples with higher porosities (>15%) have higher values than F that 

calculated from Archie’s law with m = 2. 
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Figure 4.12. The relation between NMR porosity and measured porosity exponent m for all 

samples. Note the positive linear correlation between porosity exponent m and porosity.  Note the 

solid curve on Figure 4.11 is equivalent to a straight line of m = 2 on this figure. 
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Figure 4.13. Cross plot illustrating relation between air permeability (corrected by Klinkenberg-

correction factor) and real part of conductivity 𝜎𝜎′  (at 1 Hz) for grainstones, packstones and 

mudstones. Note the power-law correlation of 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and 𝜎𝜎′ (the linear trend in log-log space) 

(R2=0.67, P <0.001). The best-fit line of the grainstone samples is presented as a dashed line.  Since 

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜎𝜎′ of mudstones and packstones have no significant correlations, only grainstone samples 

are used to fit the correlation equation. 
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Figure 4.14. Cross plot illustrating relation between air permeability (corrected by Klinkenberg-

correction factor) and the imaginary part of conductivity 𝜎𝜎" (at 1Hz) for grainstones, packstones 

and mudstones. Note the power-law correlation of 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜎𝜎" (the linear trend in log-log space) 

(R2=0.09, P <0.05). Since 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝  and 𝜎𝜎"  of mudstones and packstones have no significant 

correlations, only grainstone samples are used to fit the correlation equation. The best-fit line of 

the grainstone dataset is presented as a dashed line. 
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Figure 4.15. Measured air permeability (corrected by Klinkenberg-correction factor) , 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎, plotted 

against the permeability estimated by K-C equation 𝑘𝑘𝐾𝐾−𝐶𝐶. The dashed line which is 1:1 line also 

shows in the figure with R2=0.67, P<0.001. The high R2 = 0.67 suggests a good agreement between 

the air permeability and K-C permeability.  
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Figure 4.16. Cross plot of air permeability versus NMR porosity, with measured characteristic 𝑇𝑇2 

value 𝑇𝑇2𝑀𝑀𝑀𝑀 superimposed in color. Three ellipses outline samples of grainstone, packstone, and 

mudstone. 
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Figure 5.1. Lithofacies of samples (where MS = mudstone, PS = packstone, GS = grainstone, IB 

= incipient breccia, BC = breccia) from the interval of interest (4900-5000 ft) are listed in the order 

of depth along with the corresponding 𝑇𝑇2 and 𝑇𝑇1 distributions. Note that NMR relaxation data are 

subdivided into bins with 2n (n ϵ [2,10]) ms (as provided by the service company). Also note some 

samples are missing from the lithofacies (4901, 4920-4923, and 4997-5000 ft) which will be 

removed from the subsequent analyses.   
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Figure 5.2 a) 
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Figure 5.2 b) 

Figure 5.2 a). 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 crossplot (MID plot) with superimposed 𝑇𝑇1/𝑇𝑇2. b) MID plot with only 

𝑇𝑇1/𝑇𝑇2 higher than 4.7 and lower than 1.3. 𝑇𝑇1/𝑇𝑇2 ratios are presented by circles in color with a range 

from 0.66 to 7.44. Gray lines link mineral end members of a ternary mixture of quartz, calcite and 

dolomite. Arrows indicate an increasing percentage of the end-member minerals. Note the extreme 

values of high and low 𝑇𝑇1/𝑇𝑇2 appear in high dolomite end. 
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Figure 5.3 a).  
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Figure 5.3 b) 

Figure 5.3 a). Total gamma-ray (GRTO) plotted against 𝑇𝑇1/𝑇𝑇2.  Note that no general correlation 

between 𝑇𝑇1/𝑇𝑇2 and GRTO can be visually recognized. b) 90 inches conductivity (CT90) plotted 

against 𝑇𝑇1/𝑇𝑇2. Note that no general correlation between 𝑇𝑇1/𝑇𝑇2 and GRTO or 𝑇𝑇1/𝑇𝑇2 and CT90 can 

be visually recognized. 
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 Figure 5.4. Pareto plot for PCA.  Note that PC1 and PC2 only explain 59% of the total variation. 
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Figure 5.5. Cross plot of PC1 versus PC2, with depth of each point noted in color. Arrows are 

loading of eigenvectors for the dataset of the whole Arbuckle Group from (4160 ft to 5160 ft). 

Note that smaller angle between two loading vectors indicating the closer correlation between the 

input variables (logs) corresponding to loading vectors. 
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Figure 5.6. Score plot of PC1 and PC2 with classified clusters and cluster centers as the results of 

cluster analysis. Five clusters are marked in different colors and symbols. The cluster centers are 

presented as ‘X’ marks with the same color of belonging clusters. Interpreted electrofacies by the 

classification analysis are assigned to corresponding clusters. Note the clusters of mudstones, 

packstones and grainstones overlap considerably.  
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 a) b) c) d) e) f)  

Figure 5.7. Comparison of Gamma-ray data, geologic lithofacies with eletrofacies predicted by 

alternative datasets, plotted against depth. a) Gamma-ray data. b) Geologic lithofacies determined 

from core observation.  Note that all five lithologies are evident. c) Electrofacies predicted with 

Dataset 1 including PHIT, GRTO and CT90 with a recognition error S = 1.81. d - f) Electrofacies 

predicted with Dataset 2 (PHIT, GRTO, CT90, NMRR) with S = 1.68, 3 (PHIT, GRTO, CT90, 

THOR, POTA, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚) with S = 1.55, and 4 (PHIT, GRTO, CT90, THOR, POTA, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 , 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, NMRR) with S = 1.54.  
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Table 5.1. Average values of calculated log responses including neutron porosity (NPHI), lateral 

log 90 inches conductivity (CT90), total gamma ray (GRTO), Potassium (POTA), Thorium 

(THOR), apparent matrix density (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚), matrix volumetric photoelectric absorption (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚),  

and 𝑇𝑇1/𝑇𝑇2 (NMRR) for Arbuckle Group dolomite of interval 4900-5000 ft, well Wellington #1-

32, Kansas. Lithofacies are discriminated based on core observation where MS=mudstone, 

PS=packstone, GS=grainstone, IB=incipient breccia, and BC=breccia.   

Lithofacies 

(Based on 

core) 

NPHI 

(%) 

CT90 

(.mmo/m) 

GRTO 

(.api) 

POTA 

(.ppm) 

THOR 

(.ppm) 

𝝆𝝆𝒎𝒎𝒎𝒎𝒎𝒎 

(gm/cc) 

𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎 

(barns/

cc) 

NMRR 

MS 7.553 62.935 9.274 0.128 1.229 2.770 7.596 2.556 

PS 7.847 63.429 9.659 0.144 1.096 2.774 7.786 2.502 

GS 7.267 50.465 11.743 0.192 1.308 2.784 7.855 2.339 

IB 6.272 76.566 9.238 0.150 1.381 2.764 7.492 1.834 

BC 6.990 83.632 8.063 0.118 1.000 2.741 6.839 2.820 
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Table 5.2. Correlations (or loadings), eigenvalues and variances of Principal Component 1 to 8 

referenced to neutron porosity (NPHI), lateral log 90 inches conductivity (CT90), total gamma 

ray (GRTO), Potassium (POTA), Thorium (THOR), apparent matrix density (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚), matrix 

volumetric photoelectric absorption (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚),  and 𝑇𝑇1/𝑇𝑇2 (NMRR) for Arbuckle Group dolomite of 

interval 4900-5000 ft, well Wellington #1-32, Kansas.  

 
Principal Components 

 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

NPHI -0.200 -0.386 0.545 0.083 -0.626 0.227 -0.070 -0.242 

CT90 -0.096 -0.451 0.514 0.012 0.687 0.049 0.028 0.219 

GRTO 0.508 -0.161 -0.181 -0.194 0.064 0.799 -0.039 -0.044 

POTA 0.538 -0.169 0.139 -0.070 -0.086 -0.330 0.713 -0.181 

THOR 0.519 -0.204 0.096 -0.219 -0.118 -0.417 -0.651 0.140 

𝝆𝝆𝒎𝒎𝒎𝒎𝒎𝒎 0.113 0.531 0.420 -0.141 0.261 0.031 -0.172 -0.640 

𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎 0.146 0.515 0.446 -0.080 -0.199 0.151 0.128 0.655 

NMRR 0.316 0.070 0.042 0.936 0.048 0.040 -0.116 -0.012 
         

Eigenvalue 2.616 2.162 1.326 0.824 0.374 0.301 0.218 0.179 

Variance 0.327 0.270 0.166 0.103 0.047 0.038 0.027 0.022 

Cumulative variance 0.327 0.597 0.763 0.866 0.913 0.950 0.978 1.000 
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