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Abstract  
 

High b-value, proper stress orientation and low stress drop are three factors that support the 

suggestion that a majority of events in central Kansas are induced as a result of changes in pore 

pressure. Furthermore, stress orientation and seismic trends align with regional lineations interpreted 

from magnetic data. These linear trends are likely influencing seismicity in the northern part of the state 

and the feature that supports the suggestion that injection of wastewater in an area 90km away is 

influencing seismicity in Smith, Jewell and Republic counties in Kansas.  

Kansas seismicity started in 2014 and rapidly increased in frequency, culminating in the largest 

recorded earthquake in state history on November 12th, 2014. This size event led to a drastic increase in 

interest and therefore the number of seismic stations distributed in areas previously determined 

aseismic. This resulted in the discovery of new earthquake clusters located outside historically active 

seismic areas. The Kansas Geological Survey (KGS) deployed a temporary and permanent station array to 

significantly improve coverage offered by a temporary network installed by the United States Geological 

Survey in 2013. This enhanced KGS network along with other stations installed across the state revealed 

new clusters in Jewell and Saline County, areas that were considered seismically quiescent.  

The focus of this research is to explore the characteristics of seismic activity clustering in 

locations outside the high profile area in south-central Kansas with the most proliferate seismic activity 

(Harper and Sumner Counties). These focus areas include Reno, Salina, and Jewell Counties where new 

clusters of seismic activity have developed since 2016. These three areas are host to notable clusters 

and were chosen base on unique and historically inconsistent seismic activity.   

For each of the three study areas (Jewell, Saline, and Reno) four focal mechanism algorithms 

determined the focal sphere orientation of 95 events using 34 different stations and the maximum 

horizontal stress for each area was calculated using a Michael 1984 inversion. Stress orientations in 
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Reno County are consistent with those calculated in Oklahoma but rotates almost 90ᵒ further north in 

Jewell County. Brune stress drop was calculated for 90 events in each of the three study areas to 

compare with stress drops calculated in the south portion of the state (Harper and Sumner counties) 

and across the Central United States. Low stress drops throughout the state are consistent with the 

range of stress drops found for induced events in Oklahoma (Hough, 2014; Sumy et al., 2014) and other 

parts of the Central United States (Boyd et al., 2017).   
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Chapter 1 – Introduction 
 

Since the late 2000’s, seismicity has become a growing concern for politicians, regulators, 

companies, farmers and families across the Central United States (Ellsworth, 2013). The rise in 

anthropogenic/induced seismicity has been observed in Ohio (Kim, 2013), Texas (Frohlich, 2012), 

Oklahoma (Keranen et al., 2013 and 2014), Colorado (Rubenstein, 2014) and Arkansas (Horton, 2012). In 

2014, the dozen available stations in Kansas began detecting an increase in seismic activity in several 

areas, with the most significant increases in the two-county area in south-central Kansas (Harper and 

Sumner) (Figure 1.1). These two adjacent counties are located on the Kansas-Oklahoma border.  

Of the thousands of waste water disposals wells in the United States, only a few can be linked to 

local anthropogenic seismicity (Frohlich, 2012). The two most commonly referenced cases were at Rocky 

Mountain Arsenal, Colorado in the 1960’s (Evans, 1966; Healey et al., 1968) and Paradox Valley, 

Colorado, in the 1990’s (Ake et al., 2005). In both of these cases, fluid injected into the subsurface was 

interpreted to trigger seismic activity.  

Elevated levels of fluid injection and seismicity have been generating considerable research 

interest over the last half dozen years.  Two mechanisms are thought to explain how injection can 

induce seismicity. The first is that injection volumes above critically stressed faults change the shear and 

normal stresses on a fault, bringing it to the point of failure (Ellsworth, 2013) (Figure 1.2).  Other studies 

have shown that locally elevated pore pressures from nearby wastewater disposal wells reduce the 

effective stress resulting in critical failure along optimally oriented and critically stressed basement 

faults (Raleigh et al., 1976; Hubbert and Rubey, 1959; Nicholson and Wesson, 1990). In Kansas, the most 

active injection interval is the Cambrian-Ordovician Arbuckle Group.  With excellent porosity, 

permeability, depth of burial and thickness, from 350 feet thick in the north to almost 1200 feet in the 
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thick in the south, the Arbuckle is extensively used for waste water disposal. In many places faults 

hydraulically connect the Arbuckle with seismically active crystalline basement.  

Historically, Kansas has experienced a magnitude (M) 3 or larger earthquake every one to two 

years with a total of 96 +M2 between 1977 and 2013 (National Earthquake Information Center (NEIC), 

2019; Steeples et al., 1987, 1990). Starting in 2013 the rate at which Kansas experienced a +M2 

earthquake began drastically increasing.  Through 2018, over 3600 +M2 earthquakes have been 

recorded (Figure 1.3).  Over 80% of these earthquakes were located in the southern portion of the state 

and have been well studied (Ellsworth, 2013, Keranen et al., 2014, Walsh and Zoback, 2015, 

Langenbruch and Zoback, 2016; Rubenstein, 2018; Choy et al., 2016). 

The Central Kansas Uplift has been seismically active since the first statewide network was 

installed in 1977. Other parts of the state have been seismically quiet for the majority of the state’s 

recording history. The ground shaking hazards map published by the United States Geological Survey 

(USGS) in 2018 shows a majority of the state having a <1% chance of minor-damage (Figure 1.4).  The 

USGS did not have access to the greatly enhanced monitoring network in Kansas and did not locate 

earthquakes in the central and northern part of the state that began in 2016. The USGS reported only 

one earthquake in Jewell County (NEIC, 2019) leading up to the immergence of this unique cluster.  

Kansas has had minimal station coverage from 1989 to around 2013 with the recent uptick in 

seismicity.  The underutilized EarthScope Transportable Array (TA) project (Figure 1.3) was a temporary, 

portable station array that operated in Kansas as part of the national program for a period of 24 months 

per station. The data from this project has seen little utility in cataloging and studying seismicity in 

Kansas. The timing of this array provides greatly increased network coverage for this study in the time 

period immediately preceding drastic increases in wastewater disposal in 2013. 
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Discriminating naturally occurring events from induced events has vast economic, political and 

scientific implications. In Kansas, it has proven difficult to characterize properties that discriminate 

natural from induced events because of an erratic monitoring history with predominately light 

monitoring experience, short lived with a transitory monitoring effort in the early 2000’s and is currently 

being monitored with a dense array in the south.  

The wave of new research in seismicity in Kansas is principally exploring various mechanisms 

potentially responsible for this surge in seismicity. These research focus areas include pore pressure 

diffusion and far field effects (Peterie et al., 2018), shear wave anisotropy (Nolte, 2017) and Arbuckle 

structure mapping (Schwab et al., 2017).  

Although the goal of this study is to discriminate which earthquakes within the selected areas of 

study are natural from those that are induced, a rigorous investigation into the geological structures, 

stress field and pressure regimes require more seismic stations near these previously quiescent areas.  

As data quality increases in both sensitivity and abundance, other analysis may be appropriate for active 

areas in Kansas.  No single test can be used to determine the mechanism of an earthquake; presented in 

this paper are a few indicators that can be interpreted to suggest nearly all the earthquakes occurring in 

the state today are related to injection.  

Following the emplacement of the initial networks by the KGS and USGS, three areas of 

increased seismicity have developed that may provide a unique look into changes in geologic and 

physical properties (Figure 1.1). These three areas vary in location uncertainty, station coverage, 

proximity to high injection areas and an understanding of the regional stress field.  

The northern most area includes three adjacent counties along the Kansas-Nebraska border: 

Smith, Jewell, and Republic.  We will refer to these three counties as the Jewell County Area since Jewell 

County has a majority of the located seismic events. Saline County is 100km to the southeast of Jewel 
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County; since January of 2016, 68 seismic events have been located in this area. The third area of 

interest is approximately 2 miles by 3 miles section of Reno County that has included over 100 seismic 

events that have been located from 2016 to 2018.  

Within these three areas of dense earthquake epicenters, focal mechanism inversion should 

extend our understanding of the stress field similar to advancements in previous studies (Alt and 

Zoback, 2017). Mapping optimally oriented faults in relation to the maximum horizontal stress 

determines the risk of damaging earthquakes. In addition to this stress drop for each event may be an 

additional discriminating factor. Low stress drop has been suggested as a discriminating factor in 

induced seismicity (Boyd et al., 2017). In addition to the above three areas, we will look at the area and 

events relating to the largest earthquake in Kansas history, the Mw 4.9 earthquake near the City of 

Milan, Kansas on November 12, 2014. Since this event predates the KGS catalog, we will benchmark the 

stress drop results against those of Choy et al., 2016. 

From a catalog of over 12,000 seismic events from across the state, b-value since 2014 was 

calculated to be higher than historical and regional values. Stress drop calculations within the areas of 

interest are an order of magnitude lower than regional stress drops. The low median stress drop of each 

area may be on indication that many of these seismic events are injection related. In addition to the 

stress drop calculations the focal mechanisms were calculated for events with adequate station 

coverage. Inversion of these focal mechanisms indicate the regional stress field rotating from the 

southern portion of the state to the northern portion of the state. The rotated stress field would suggest 

that faults not previously thought to be optimally oriented to slip could in fact be optimally oriented.  
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Figure 1-1 - Map of historical earthquakes in Kansas from 1867 to 2018 (www.kgs.ku.edu). Areas of 
interest outlined in red; from north to south – Jewell County Area, Saline County, Reno County (City of 
Hutchinson) and the City of Milan, near the Mw 4.9 earthquake in 2014.  
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Figure 1-2 - Diagram from Ellsworth, 2013 depicting the two most likely mechanisms of inducing 
earthquakes. The first (left side), is from increased pore pressures, and the second (right side), is from 
changes in the shear and normal stresses from loading acting on a fault.  
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Figure 1-3 - (a) Count of operational seismometer stations in Kansas per quarter. (b) Quarterly 
earthquake rates for the state of Kansas with overlain cumulative number of >M2 earthquakes. Gray 
shading outlines Kansas-Nebraska network. Green shading outlines the EarthScope Transportable Array 
network (TA). Orange shading outlines more recent networks operational (KM, ZA, GS, US, etc.). White 
space denotes relative state network hiatus (no monitoring). 
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Figure 1-4 - Map showing the 2018 chance of minor damaging earthquakes in the United States 
(Modified from Peterson et al., 2018). 
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Chapter 2 – Geologic Setting  
 

 Kansas is situated on a stable, platform-like extension of the Canadian Shield (Merriam, 1963). 

Within Kansas, there are four major geologic structures likely influencing the four areas with increased 

seismicity that are the subject of this study: 1) Salina Basin 2) Central Kansas Uplift 3) Midcontinent 

Geophysical Anomaly 4) Nemaha Ridge - Humboldt Fault Zone.   

The Salina Basin underlies a large portion of north-central Kansas. The west most boundary of 

the basin is defined by the Cambridge Arch and Central Kansas Uplift and the east most boundary is the 

Nemaha Uplift (Figure 2.1). The Salina Basin extends to a southern saddle point between it and the 

Sedgwick Basin formed from the Chautauqua arch and the Barton arch (Barwick, 1928). At its thickest, 

the Mississippian limestone of the Salina Basin can be up to 350 feet thick but thins or is completely 

removed on the margins due to pre-Pennsylvanian erosion (Lee, 1956). There has been no oil or gas 

production nor any deep disposal in Smith, Jewell or Republic County since 2000 (Figure 2.2).   

The western extent of the Salina Basin is defined by the Central Kansas Uplift, a Precambrian age 

northwest-trending arch developed from multiple periods of warping and erosion during the Paleozoic 

and Mesozoic time (Koester, 1935). A late Cambrian compressional event related to the midcontinent 

rift resulted in northwest trending normal faults that would later form the Ancestral Central Kansas 

Uplift (Gerhard, 2004). Reactivation of these faults in late Mississippian and Early Pennsylvanian due to 

the Auachita Orogeny reactivated uplift in portions of the Central Kansas Uplift (Ramaker, 2009). This 

structural feature is the largest in Kansas and underlies ~7,500 mi2 of the state. At the crest of the uplift, 

Precambrian rocks are overlain by Pennsylvanian sediments, and on the flanks pre-Pennsylvanian strata 

are upturned, truncated, and overstepped by Pennsylvanian beds (Merriam, 1963).   

The Midcontinent Geophysical Anomaly (MGA) is the largest gravity anomaly in North America 

(Figure 2.3) and extends from Lake Superior area southwestward into the midcontinent with no surface 
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topographic expression (Ocola and Meyer, 1973). More recent gravity and magnetic data shows that the 

MGA extends down into Oklahoma (Yarger, 1983). During late Precambrian rifting, basalts and gabbros 

developed forming a thick layer of mafic igneous rocks over most of the rifted section. These igneous 

rocks manifest as the bright pink gravity high (Figure 2.3); surrounding the gravity high is a large gravity 

low of the Rice Formation which is composed of arkosic sandstones to siltstones (Yarger, 1983). Striking 

similar to this geologic feature are various magnetic lineations. Several different spectral filters were 

used to eliminate unwanted characteristics of the original magnetic data. As a result of these filters 

various magnetic lineations were interpreted. From the aeromagnetic data in Yarger (1983) magnetic 

lineations are revealed in the northeast direction and the northwest direction (Figure 2.4). These drastic 

changes in magnetic susceptibility may be caused by offset due to faulting in the basement.  

To the east and striking similar to the MGA lies the Nemaha Ridge (Figure 2.5). The Nemaha 

Ridge is a granitic uplift formed during a post-Mississippian uplift of granite. The ridge is bounded to the 

east by the Humboldt fault system and dominated by right-lateral, strike-slips crosscut by northwest, 

left-lateral shears (Jewett, 1951; Hildebrandt, 1988; McBee, 2003). The northwest trending extensional 

faults are pre-Phanerozoic and associated with midcontinent rifting (Gerhard, 2004). This structure 

extends from northeast Kansas down into central Oklahoma. 

The Cambrian-Ordovician Arbuckle Group is mostly composed of a cherty dolomite and extends 

across much of the state. However, portions of the Group thin or are absent on parts of the Central 

Kansas Uplift and Nemaha Ridge (Merriam, 1963). The Arbuckle Group is approximately 400 ft thick in 

the northern most area of Jewell County (Figure 2.6) and thickens, southward to almost 1200 ft thick in 

the Sumner County area (Merriam, 1963; Franseen et al., 2004). The thickness of the Arbuckle Group 

was primarily determined from well data and interpolated across the state. Due to weathering and 

erosion, the upper most section of the Arbuckle has increased porosity and permeability making it a 

good candidate for waste water disposal. The weathering and erosion are limited to the upper portion 
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(30-50 feet) of the Arbuckle Group and the continuity and intensity of weathering is relatively unstudied 

but is present in various parts of the state (Steinhauff et al., 1998). The Arbuckle Group is thought to 

have slightly sub-hydrostatic pore pressures associated with adjacent under-pressure crystalline 

basement (Nelson et al., 2015). 

Various studies have shown portions of the Arbuckle Group are hydraulically connected to the 

crystalline basement with multiple faults extending from the basement into the Arbuckle in Sumner, 

Kansas (Schwab et al., 2017). Induced seismicity in crystalline basement has been linked to injection in 

the Arbuckle in Oklahoma (Keranen et al., 2014). The crystalline basement is composed primarily of 

igneous and metamorphic rock (Merriam, 1963).   

Kansas is situated in the middle of a relatively stable midplate region (Merriam, 1963). It is 

unlikely that any shear forces associated with remote faults outside the midcontinent would influence 

the stress field in the central United States (Zoback and Zoback, 1989), Figure 2.7. Although Kansas has 

been relatively quiet seismically, a small number of faults related to the four major structures are 

optimally oriented to slip under the existing in situ stress state thereby accounting for the natural 

seismicity rates in the state. The stress state within Kansas is not well understood, the most recent study 

finds the maximum horizontal stress orientation within Harper and Sumner Counties to be 71 ± 6ᵒ (Alt 

and Zoback, 2017). Alt and Zoback (2017) utilize both focal mechanism inversion and wellbore data to 

determine the stress orientation in north-central Oklahoma (Figure 2.8). 
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Figure 2-1 - Map of Kansas showing the relationship between the Central Kansas Uplift, the Salina Basin 
and the Nemaha Ridge (Merriam, 1963).  Up to the creation of this map there were 24 earthquakes 
located in Kansas from 1867. These earthquakes were given their respective Mercalli magnitudes. 
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Figure 2-2 – Map of Kansas showing all Underground Injection Control (UIC) Class I and Class II wells 
from 2000-2017 (KGS, 2018). Areas of interest vary in proximity to high injection areas.  

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

Figure 2-3 - Residual Bouguer gravity anomaly map (Top) from Xia et al., 1995a and Aeromagnetic map 
(Bottom) from Xia et al., 1995b. Blues represent low residual Bouguer gravity values and magnetic 
values. The bright pink spot is the strongest expression of this anomaly in the state. Reds represent high 
residual Bouguer gravity values and magnetic values. Maps modified to include areas of interest in this 
study (red lines). 
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Figure 2-4 - Magnetic lineations derived from magnetic data in figure 2.3. Area of study for this paper 
are outlined in red. (Modified from Yarger, 1983). 
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Figure 2-5 - Map of basement faults in Kansas. Counties outline in red from North to South are 
Smith/Jewell/Republic, Saline, Reno, and Sumner (Modified from Baars, 1995). 
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Figure 2-6 - Arbuckle Group isopach map from well data up to 1965 (Cole, 1975). 
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Figure 2-2-8 – Map of stress orientations calculated from both wellbore data and focal mechanism 
inversion. Red Box outlines Sumner County, an area of interest in this study. (Modified from Alt and 
Zoback, 2017). 
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Chapter 3 – Kansas Station History and Installation 
 

Frequency of felt seismicity in the CUS has recently increased well above historical levels in the 

region. There have been few earthquake studies conducted specifically in Kansas since 1867. The 

number of stations within the state peaked in late 2017 at 65 stations but has had long periods of none 

to two active monitoring stations at scientific quality within the state (Figure 3.1).  

Section 3.1 - Seismic Station History      
 

The first government funded regional seismic network in Kansas was deployed in 1977 original 

designed to focus on US Army Corps of Engineers and Nuclear Regulatory Commission assets. The 

network would later expand into Nebraska and included 15 stations (Figure 3.2); nine stations in 

northeastern Kansas and six stations southeastern Nebraska. A 1987 study was the culmination of 13 

years of earthquake records and attempted to relate seismic activity to tectonic features to establish a 

better understanding of seismicity in Kansas; namely active faults, recursion relationships and max 

ground shaking potential in a 100 year time frame. The study specifically focused on the nuclear power 

plant site and proposed flood control reservoir safety plans (Steeples et al., 1987).  

After the decommissioning of this KGS operated 15 station network in 1989 no more than two 

seismic stations were located in Kansas and providing regional monitoring until 2009. These two stations 

are the longest continuously operating stations within the state and are located at Cedar Bluff and 

Manhattan.   

In 2009, the EarthScope Transportable Array was temporarily deployed along a grid through the 

central portion of the United States (ANF, 2019). This project featured a temporary station array 

designed for investigations into local, regional and teleseismic events as well as 3D resolution of crustal 

and upper mantle structures (Busby, et al., 2018, Astiz et al., 2014). Overall, 45 stations were installed 
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across the state between April 2009 and May 2010. Stations recorded for approximately 24 months and 

then were decommissioned and moved to the next planned location elsewhere in the country (Figure 

3.2).  

The next regional network that operated in Kansas was deployed by the USGS. The USGS 

installed a dense network of 13 seismic stations in Harper and Sumner counties in reaction to the area 

experiencing a drastic increase in felt seismic activity. In late 2014, the Kansas Geological Survey (KGS) 

deployed six additional stations designed to surround the dense USGS network in hopes of extending 

the coverage and sensitivity to a ten county area.  As seismicity continued with the development of new 

swarms outside the original ten county area, the KGS installed eight additional regional stations. These 

regional stations were installed and designed for long term monitoring of the entire state. At its peak, 

Kansas was home to 65 seismic stations (22 USGS (IRIS-DMC), 15 Wellington CO2 Sequestration Project 

(Nolte, 2018), 16 KGS (above) and 12 proprietary), and has had an average of 58 stations from 2017-

2018 (Figure 3.3). 

Section 3.2 - Station Configuration 
 

Each KGS seismic station contains a three-component seismometer placed on a buried concrete 

pad within a vault approximately 1m beneath the ground surface. A solar panel, antenna, digitizer, 

cellular modem, battery and charge controller were installed on a pole approximately three meters from 

the sensor (Figure 3.4). A major difference between the regional/permanent and temporary stations is 

the sensor container. Temporary stations are covered with an inverted bucket and the regional stations 

are installed in a standard water meter vault with a fourth recording channel collecting data from a 

downhole vertical seismometer. Figure 3.5 shows a schematic rendition of a typical temporary seismic 

station installed by the KGS.  
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Seismometers are Guralp CMG-6T Broadband sensors which are capable of sensing ground 

motion over a wide range of frequencies with the flat-to-velocity portion of the bandwidth from 1sec to 

100Hz. Data was recorded at 100Hz (100 samples per second) using a Reftek RT130S Digitizer and then 

transmitted, via cellular telemetry, to the KGS. The KGS stores, analyzes, maintains and archives all 

seismic data acquired from this network.  Stations outside of the KGS (network code KM) have varying 

configurations that can be found using IRIS gmap tool (IRIS-DMC, cite).  

Section 3.3 – Historical Seismicity in Kansas 
 

Historical seismicity in Kansas dates back to 1867 and was originally compiled by Merriam 

(1956). Between 1867 and 1961 Merriam (1956), with later additions from Dubois and Wilson (1978) as 

well as Steeples (1990), compiled a catalog of 29 felt earthquakes located in Kansas (Figure 3-6). The first 

felt earthquake located in Kansas was later determined to have a magnitude of 5.1 (Stover and Coffman, 

1993). Many of these earthquakes are located on or associated with the Nemaha ridge (Steeples et al., 

1979).  

From 1977 to 1989 the Kansas-Nebraska seismic network located 171 events within the state 

(Steeples 1989 and 1990). The network located numerous events in the western portion of the state 

despite only have stations for this network deployed in the eastern and central portion of the state 

(Figure 3-7). A majority of the events are likely from faults associated with the two prominent structures 

in the state – the Central Kansas Uplift and the Nemaha Ridge. Steeples (1990) notes the drastic increase 

in seismicity on the Central Kansas Uplift, this area has continued to be seismically active to today. In 

addition to this new cluster, a small trend of earthquakes in the north-central portion of the state run 

roughly parallel to MGA.  

 From 1990 to 2014 the USGS located 23 earthquakes in Kansas (Figure 3-8). From the 

decommissioning of the Kansas-Nebraska network to 2013 the network configuration of seismographs 
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monitoring Kansas reliably detected all earthquakes M3.4 and above (Rubinstein et al., 2018). Over half 

these events are located on the Central Kansas Uplift.  

From 1867 to 2014 various networks have cataloged two earthquakes in Jewell County, the 

most recent event being a M3.3 in January 2013. During the same time there were no earthquakes 

located in Saline or Reno County. One of the most seismically active counties in Kansas today, Sumner 

County, had two small (>M2.0) earthquakes in 1979, more recently a M2.7 in 2008 and a M3.8 in 2013 

(NEIC, 2019).  
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(a) 

(b) 

Figure 3-1 - (a) Count of operational seismometer stations in Kansas per quarter. (b) Station installation 
timeline, horizontal blocks represent a stations active period. Color groupings represent network, as 
indicated. Certain Transportable Array stations were converted into permanent stations making up a 
new network – Central and Eastern US Network (CEUSN), network code N4. One station in Kansas was 
converted (R32A, now R32B). Operational efficiency of various stations installed after 2014 and not part 
of the KGS network may be poor. These data points do not reflect station downtime, only commission to 
decommission time periods.  
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Figure 3-2 - Map showing the locations of seismometers that operated in Kansas from 1977 to 2013 – 
Kansas-Nebraska Network (KSNE – not in IRIS) operated from 1977 to 1989, Rocky Mountain Front II 
(XG) operated in 1992, and the EarthScope Transportable Array (TA) had varying station coverage from 
2009 to early 2012. 
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Figure 3-3 - Map showing the locations of seismometer that operated in Kansas from 2014 to present 
day – Kansas Geological Survey Primary and Temporary networks (KM) deployed in 2014, US Geological 
Survey networks (GS/US) deployed in early 2014, and the Wellington CO2 Sequestration Monitoring 
Project (ZA) deployed in mid-2014. The single Transportable Array Station converted to a permanent 
station can be seen in the middle of the state, this station is now actively apart of the Central and 
Eastern US Network (CEUSN), network code N4. All networks are still operating in Kansas to some 
extent. Red Boxes outline counties of interest.  
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Figure 3-4 – Typical earthquake seismic station (top right), inverted bucket housing seismometer 
(bottom right) and equipment box attached to the solar panel pole (left).  
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Figure 3-5- KGS Station schematic depicting all the components needed for a seismic station. (Credit: 
Mary Brohammer, KGS) 
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Figure 3-6 - Felt earthquakes located in Kansas from 1867 to 1961 (Dubois and Wilson, 1978). 
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Figure 3-7 - Historical seismicity in Kansas from 1977 to 1989 (Steeples et al., 1990). 
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Figure 3-8 - USGS located earthquakes in Kansas between 1990 and 2013 (NEIC, 2019). 
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Chapter 4 – Cataloging Earthquakes in Kansas (2015-2018) 
 

Earthquakes across the state have been cataloged by the KGS since January of 2015. Continuous 

data is recorded across the state, transmitted via cellular telemetry to the KGS where it is processed, 

analyzed and archived. Data used in this study from 2015 to current include the KGS waveforms 

combined with data from the three other networks operating within the state.  

The KGS utilizes an automated analysis procedure followed by a manual process requiring human 

interaction. Resulting waveforms and epicenters provide scientists and government officials with the 

necessary information to make up-to-date and informed decisions.  

Section 4.1 - Identifying and locating Earthquakes from Seismic Data 
 

Continuous data for all stations are processed using Earthworm, which is an open source software 

package commonly used in seismology for data processing and archiving seismic events (www.ISTI.com). 

This processing routine provides automated detection and location of events in Kansas including an 

initial calculation of basic earthquake attributes. Simultaneously, raw data are converted into hour long 

MiniSEED files which are then analyzed using SeisAN, an industry standard software package used in 

earthquake analysis (Ottmoller et al., 2016).  

Earthworm uses a ratio of sliding averages of the long term amplitude (LTA), 8 seconds long, to short 

term amplitude (STA), 1 second long, to determine anomalous spikes in the seismic data. When the 

LTA/STA ratio reaches a certain threshold there is a “trigger”. One benefit of this method over other 

more sophisticated methods is there is no requirement for an example event waveform or specific 

source mechanisms; as is the case with cross-correlation or any template matching method. This 

method is especially effective at detecting new clusters outside a known seismic area.  
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When multiple stations trigger coincidentally, Earthworm generates a file of raw seismic data from 

all the stations used to locate the event. An automated email is sent to the analyst with location, 

attributes, and waveform data. Each data file is manually inspected to establish if the detected event is 

an earthquake or a false trigger. False triggers are thrown out. Analysts process the raw data sometime 

after the event triggers while Earthworm produces an earthquake parameter list in real time. This 

results in a lag between the catalog of events Earthworm produces (higher magnitude of completeness) 

and the final generated events from the KGS analyst.  

Each hour of raw seismic data is inspected by a human analyst. This process is necessary to identify 

any events the Earthworm software did not detect. There are various reasons an automated system 

would not identify (or trigger on) an event. These include low signal-to-noise ratio, delayed telemetry of 

data, false triggers overlapping actual triggers or the event was just too small for the algorithm to detect 

but they could be confidently identified with a human eye. False triggers could include: pump jack noise 

(Figure 4.1), which are easily identified by cadenced impulses and quarry blasts (Figure 4.2) that are 

similar to earthquakes. Quarry blasts typically have much more prominent surface waves, lack clear p- 

and s- wave arrival and sometimes can contain an airwave.  

Manual processing and analysis requires the analyst to first inspect the hour long MiniSEED files 

of raw seismic data generated as data stream in from the stations. Then any events of interest are cut 

from the hour long files into smaller segments containing the entire earthquake waveform as well as 

adequate background signal before and after to help identify different parts of the wavetrain.  

To locate an earthquake from seismic data the first step is to identify the compressional wave 

and shear wave arrival at each station. The compressional P-Wave is the first body wave to reach the 

sensor. A P-Wave’s particle motion is in the direction of propagation making it the fastest wave and is 

typically smaller in amplitude than the shear wave amplitude. The shear, or S-Wave, arrives after the P-
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Wave, but is easily identifiable by it’s the larger amplitude compared to the background signal (Figure 

4.3). The larger amplitude can often be mistaken for the surface arrival which is similar in velocity to the 

S-Wave velocity, Vsurface ≈ 0. 9Vs.This misidentification contributes to the error in origin time and location 

of the event but is negligible. The P-Wave is picked on the vertical (or Z) channel and the S-Wave is 

picked on the horizontal channels (E and N, or 1 and 2).  

After identifying all possible p- and S-Wave arrivals from each station the distance to the epicenter 

for each station can be calculated using a generalized velocity model of Kansas (Figure 4.4) from 

Steeples et al., 1987. The distance from each station to the epicenter is then used to triangulate the 

location of the event. The S-Wave velocity is calculated from the P-Wave velocity and Vp/Vs ratio. This 

model differs from models used in other studies (Rubenstein, 2018; Nolte, 2017; Choy, 2016) and 

calculated from a reverse seismic refraction study done by the USGS (Warren, 1975; Steeples, 1976; 

Steeples et al., 1988). Having an accurate velocity model is vital to accurately locate earthquakes and 

calculating magnitudes (Haskov, and Alguacil, 2016).   

Section 4.2 - Earthquake Magnitudes 
 

There are various calculations that quantify the strength, or magnitude, of an earthquake. The goal 

of these calculations are to quantify the energy release to estimate the potential damage of an 

earthquake, express the physical size of the earthquake and predict seismic hazards (Havskov and 

Ottemoller, 2010). Some of these methods for calculating magnitude are derived from the duration of 

shaking, that is the coda, and other are more complex and are derived from spectral characteristics.  

Coda Magnitude - Mc 

The simplest magnitude to calculate for an earthquake is the coda magnitude, or duration 

magnitude (Havskov and Ottemoller, 2010). After the primary waves from a local earthquake have 

passed the seismometer, a complex series of small vibrations that originated with the earthquake arrive 
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from diverse travel paths with decreasing amplitudes over time. This portion of the wave field is called 

the coda. These smaller vibrations are the backscattered primary waves due to lateral inhomogeneities 

in the crust (Aki and Chouet, 1975), the coda can be used to estimate magnitude. The coda magnitude 

can be expressed as a function of the duration of the coda and the spatial distance from the earthquake 

epicenter:  

𝑀𝑐 =  𝑎 ∗ log(𝑐𝑜𝑑𝑎)  +  𝑏 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +  𝑐                         (Equation 4.1) 

Here, coda is the duration of the backscattered waves in seconds and a, b and c are constants. Smaller 

events that are only detected on noisy stations have smaller primary wave amplitudes and spectral 

characteristics that are unreliable. These factors make it difficult to estimate any other magnitude than 

duration magnitude.  

Local Magnitude - Ml 

The Local Magnitude (Ml), or Richter Magnitude, scale is defined such that a M3 earthquake 

recorded using a Wood-Anderson seismometer at 100km from the event would record a peak of 1mm 

(Richter, 1935). Data acquired on modern systems must be corrected for this standard to calculate Ml. A 

displacement trace can be produced by using the seismograph’s poles and zeros response curves (Figure 

4.5). Multiplying the new displacement trace calculated with the seismographs response curve with the 

Wood-Anderson instrument response generates a simulated Wood-Anderson Seismogram (Figure 4.6). 

The Wood-Anderson instrument poles and zeroes instrument response is similar to a 2 pole Butterworth 

high-pass filter at 3Hz and approximates the response such that Ml is within 0.1 magnitude units 

(Ottemoller, 2016). The maximum amplitude from the simulated seismogram is used in calculating the 

Ml according the equation below.  

𝑀𝑙  =  𝑙𝑜𝑔(𝑎𝑚𝑝) +  𝑎 ∗  𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) –  𝑏 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 –  𝑐              (Equation 4.2) 
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Here, amp is the maximum ground amplitude from zero to peak in nanometers and distance is in km.  

Moment Magnitude - Mw  

The moment magnitude (Mw) is the seismological standard for seismic events and can be calculated 

for any size event using both p- or S-Waves (Havskov and Ottemoller, 2010). This quantification of 

earthquake magnitude is related to the seismic moment (MO) and is a direct measurement of the 

radiating energy from the area of the fault that ruptured. This value is derived from spectral 

characteristics and used to calculate the moment magnitude (Kanamori 1977; Hanks and Kanamori, 

1979; Ottemoller, 2016)  

𝑀𝑤 =  
2

3
log10 𝑀𝑂 − 6.06                                                   (Equation 4.3) 

MO is calculated from the cornering frequency (f0) of the energy spectra and fundamental in calculating 

stress drop (Chapter 6). Mw is derived from source characteristics, MO, whereas other magnitude 

calculations are empirically defined as a distance corrected measurement of ground motion strength 

(Aki and Richards, 2009).   

Section 4.3 – Magnitude vs. Frequency 
 

All of these methods of quantifying earthquake strength generally follow the Gutenberg-Richter 

power law distribution of the magnitude and total number of earthquakes in an area (Gutenberg and 

Richter, 1956): 

log 𝑁 = 𝑎 − 𝑏𝑀                                                    (Equation 4.4) 

Here, N is the number of events with magnitude M, and a and b are coefficients. In natural cases b is 

expected to be at or near 1. This law states that for a b-value of 1 every M2 earthquake that occurs 

there should be 10 M1 events; likewise, for every M3 event that occurs there should be 10 M2 events 
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and 100 M1 events. The b-value can be calculated for any catalog using a plot of frequency vs. 

magnitude (Figure 4.4). Where the trend is flattest, the slope will be the b-value. B-values that exceed 

the standard Gutenberg-Richter value (1) for regions with natural earthquakes is one indication that 

seismicity may be related to increase pore pressures and as a result induced (Bachmann et al., 2012).  

One of the most important quantities in assessing the quality of a catalog is the magnitude of 

completeness. This value quantifies the sensitivity of the network used to build the catalog and is the 

lowest magnitude at which the network confidently detects 100% of the events (Wiemer and Wyss, 200; 

Woessner and Wiemer, 2005). The point of greatest curvature at which the frequency vs. magnitude 

trend diverges from the Gutenberg-Richter relationship (Equation 4.1) is the magnitude of 

completeness. Below the magnitude of completeness, the network still detects earthquakes but only a 

fraction of the events. These events are missed because of various reasons; the event is too small to 

record on enough stations, the event was not locatable within a reasonable error threshold, or the event 

is too small to be discriminated from other larger seismic events happening concurrently.  

Section 4.4 - Earthquake Catalog and Database 
 

A catalog of earthquakes that have occurred in the state is important for determining future seismic 

hazards. The primary components of the earthquake catalog are origin time, longitude, latitude and 

depth of the epicenter as well as magnitude. Mw was the primary magnitude reported for events that 

MO was able to be confidently calculated, Ml was reported after that and if all other variations of 

magnitude were unreliable the duration magnitude was reported.  

The earliest published earthquake within Kansas was cataloged by Dubois and Wilson (1976) and 

dated back to 1867. From 1867 to 1972, 28 felt earthquakes were reported. These events were excluded 

from the catalog used in this study due to a lack of analog data and uncertainty in epicenters and 

magnitudes. 
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For events from 2015-2018 located using KGS stations the average longitude error was 1.54km and 

the average latitude error was 1.48km. The Jewell County area had the highest longitude and latitude 

errors, 1.88km and 1.87km respectively. The Reno County area had to smallest longitude and latitude 

errors, 0.88km and 0.86km respectively. It is important to note that a portion of this discrepancy is likely 

due to variations in velocity models, different station coverage, and depth of events. Clusters near the 

KGS temporary stations will have less spatial errors than clusters further away. Events located by the 

KGS have a fixed depth of 5km. The catalog of earthquakes used in the subsequent chapters can be seen 

in the Appendices with a complete catalog of all events located by the KGS since 2015 on the KGS web 

site (www.kgs.ku.edu).  

To aid in managing and utilizing the large volume of data generated by the various networks located 

in Kansas, the KGS developed its own relational database that merges the historical data sets (i.e. 

Steeples et al., 1987), NEIC, and KGS data sets into a single database.  As new data are being 

continuously recorded, raw data files are processed and integrated into the database in real time, 

parsing out the requested usable information, and the results displayed in real time on KGS supported 

online GIS (mapping) systems.  Simple SQL statements can be used to analyze the data, generate 

statistics, or other activities useful to scientists and policy makers. For example, Table 4-1 shows the 

number of earthquakes located in each Kansas county (earthquake events >= 100).  

Section 4.5 - Earthscope Transportable Array (TA) Data 
 

From 1989 to 2014, there were only two stations operated by the USGS in Kansas (Figure 3.1). 

However, a relatively unknown network did operate in Kansas during this time period, the Earthscope 

TA network.  19 stations were installed in the western half of the state by mid-2009, by the end of 2009 

a large portion of the central part of the state had seismic coverage; it wasn’t until May of 2010 that the 

eastern portion of Kansas began installation (ANF, 2019). To date, there are no USGS publications on 
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seismicity within the northern part of Kansas utilizing the TA data. In fact, aside from the initial analysis 

of the data (Asitz et al., 2014), no published catalog of earthquakes includes this data.  

The Frohlich criteria for discriminating earthquakes hinges on the accuracy and understanding of 

historical seismicity in an area (Davis and Frohlich, 1993; Davis et al., 1995). Our understanding of 

historical seismicity was outlined In Chapter 1 and concluded that based on the catalogs published to 

date much of the state is seismically quiescent up to the development of new clusters in the south-

central Kansas in 2014. The TA provides a short period of time where large portions of the state were 

monitored using a network with 60-80km station spacing, a drastic improvement on the two stations 

operated by the USGS during the same time period. The emplacement of this network in late 2010 and 

early 2011 predates the proliferation of saltwater disposal in Kansas around 2012 (Peterie et al., 2018). 

The incorporation of the TA data thus significantly improves our understanding of background seismicity 

in the state. 

One of the most seismically inactive counties in the state historically is Jewell County. However, 

this area has recently experienced new clusters of earthquakes developing since 2016. Prior to the 

increase in seismic activity Jewell County has recorded one earthquake in 2013 (NEIC, 2019). We looked 

at the TA data to better understand the background seismicity of the area.  The Jewell County Area has 

the best TA station coverage from May 2009 to March 2011. Raw seismic data was pulled for the nine 

TA stations surrounding Jewell County (Figure 4.7) from the IRIS website from May 2010 to March 2011. 

This approximately 10 month time period was selected despite each station being emplace for nearly 

two years because all nine stations were installed and collecting data giving the best azimuthal coverage 

of the study area. The same automatic detection method used today (Chapter 4 Section 1) to identify 

earthquakes in real time was used to process and identify the 10 months of data.  
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The analysis from this data set provides a link between historical seismicity and provides a 

better understanding of pre-injection seismic activity in the area. Although no earthquakes were 

recorded as located within Jewell County (Figure 4.8) between May 2009 and March 2010, nine 

additional earthquakes in the area were identified and located that were not detected in the past.  This 

leads us to believe that the network would have detected any earthquake in Jewell County over the time 

period. The fact it did not supports our historical understand of seismicity in the county.   
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Figure 4-1- Example of pump jack noise from a KGS Regional Station. In an effort to place regional 
network stations in areas with the best signal to noise ratio for optimal monitoring, this station was 
moved further away from the noise source. The cyclicity of a pump jack degrade the signal continuously 
and interferes with both the automated and manual process of detecting earthquakes.  
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Figure 4-2– A) Vertical component seismograms from an earthquake (top) and quarry blast (bottom) 
taken from Frohlich, 2012. The prominent surface wave of the quarry blast is easily identifiable within 
raw seismic data. B) Example of quarry blast observed in Barber County, Kansas.  
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Figure 4-4 - Plot of earthquake frequency versus magnitude. Earthquakes were grouped every 1/10th of 
a magnitude. Gutenberg-Richter Relationship (Green) is used to describe the recursion of higher 
magnitude events and assess the completeness of the catalog used. 
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Figure 4-5 - Instrument response correction generates simulated Wood-Anderson seismographs which is 
used in determining Magnitudes. 

 

 

 

 



46 
 

 

Figure 4-6 - Instrument response correction generates simulated Wood-Anderson seismographs which is 
used in determining Magnitudes. 
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Figure 4-7 - Map of earthquakes in Kansas detected from the Earthscope Transportable Array data 
between May 2009 and March 2010. The nine stations shown are a sub-network of a larger array. 
Earthquakes located using this data can be found in Appendix A. 

 

 

  



48 
 

Chapter 5 – Focal Mechanisms and Inversion 
 

 Fault motion can be described by the orientation of the fault plane (strike and dip) and the 

direction of slip (rake). This is known as the focal mechanism. This motion, in our case, is considered to 

be double coupled motion resulting in two possible solutions of fault planes, or focal planes (Aki and 

Richards, 2009). Standard plots of double coupled sources and focal mechanisms are commonly referred 

to as beachball plots (Figure 5.1). There are three fault mechanisms: strike-slip, thrust and normal 

(Figure 5.2). These diagrams are an equal-area projection of the lower hemisphere of the focal sphere 

(Aki and Richards, 2009).  

Focal mechanisms are calculated from waveform analysis of the P-Wave first motion polarity (or 

displacement) and amplitude ratios of the P-Wave and S-Wave (Snoke, 2003). The first motion polarity 

of the P-Wave retains the seismic character of the section of the focal sphere the raypath originating at 

the epicenter. These first motion displacements can then be mapped back to create the dilatational and 

compressional quadrants of the focal sphere. Amplitude ratios are more reliable than body wave 

amplitudes since the effects of geometric spreading, wave directivity and instrument cancel out 

(Havskov and Ottemoller, 2010). The focal mechanism depends on the source strength and fault 

orientation to characterize the source (Aki and Richards, 2009). The principal axes of the focal 

mechanism are the pressure-axis (P) located at the center of the dilatational quadrant and the tension-

axis (T) located at the center of the compressional quadrant (Figure 5.1). The dilatational and 

compressional quadrants are separated by the nodal planes.   

All P-Wave polarities were picked on the Z-component trace from each seismograph. P-Wave 

and S-Wave amplitude were automatically picked for each station within 200km of the epicenter using 

SeisAn’s AUTORATIO (Ottemoller et al., 2016). The maximum amplitude was determined using a 1-10hz 

band-pass filter, 1.5 sec window around each p- and s-arrival pick and only on the horizontal 
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components for the S-Wave. The resulting horizontal component S-Wave to P-Wave amplitude ratio 

(SH/P) is used in two of the algorithms (HASH and FOCMEC) and adds constraints to the range of 

potential fault plane solutions (Hardebeck and Shearer, 2003). The highest P-Wave amplitudes occur 

near the P- and T-axis and the lowest near the nodal planes. This makes identifying P-Wave polarities for 

stations that resolve near the nodal planes difficult. At the nodal plane the P-Wave amplitude is zero 

making the SH/P ratio very large; and near the P- and T-axes very high, making the SH/P ratio very small 

(Kisslinger, 1980).  

For the earthquakes analyzed in the Jewell County Area, Reno County and Salina County we 

used multiple fault plane solution algorithms to compute the focal mechanisms. This included PINV, 

FPFIT, HASH and FOCMEC (Ottemoller et al., 2016). PINV calculates the focal mechanisms by using only 

the P-Wave polarities (Suetsugu, 1998). This is the least rigorous calculation and only serves to 

corroborate other solutions. FPFIT is similar to PINV in that it only uses P-Wave polarities, but this 

algorithm assesses the fit of the solution based on a weighted sum error of the polarities and a station 

distribution ratio that describes how well the stations are spaced on the focal sphere (Raesenberg and 

Oppenheimer, 1985). HASH uses both P-Wave polarities and amplitude ratios and uses a grid search to 

find the solution with less than a given polarity error and amplitude error (Hardebeck and Shearer, 2002 

and 2003). FOCMEC is the most user intensive algorithm. Similar to HASH, a user defined grid search is 

used to find solutions under a given polarity and amplitude error. All solutions are then displayed and 

the analyst selects the solution that best fits (Snoke et al., 1984 and 2003). PINV and FPFIT were used to 

corroborate solutions from HASH and FOCMEC that utilized wave field amplitude information. FOCMEC 

solutions were preferred over all other solutions.     

Potential earthquake hazards can be determined from the optimal orientation of faults within a 

particular stress field. Faults optimally oriented with respect to the stress field are more likely to fail. The 

orientation of the stress field can be determined from the calculated focal mechanisms through various 
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inversion methods; the method used in this study was developed by Michael, 1984. This method 

assumes each earthquake is independent but representative of a constant stress field in the region 

(Angelier, 1979; Michael, 1984 and 1987). A best fit direction of slip is calculated using the vector normal 

to the fault plane; this is the slip vector (Gephart and Forsyth, 1984). In a double couple system with two 

fault planes, this method uses non-parametric bootstrap statistics to select one of the orientations 

(Michael, 1984). The solution is then calculated for the second fault plane and compared with the first. If 

the solution from the second calculation is congruent with the first, the first solution is kept. If the 

second solution improves the solution using a least squares criteria, then the second solution is kept. It 

is suggested at least 10 events be used for this inversion method (Ottemoller et al., 2016). The SLICK 

software is implemented within SeisAn (Michael, 1984). A catalog of fault planes are provided and the 

program generates the orientation and shape of the stress ellipsoid using the method above. 
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Figure 5-2 - Idealized beachball diagrams showing mapview and side view of basic fault mechanisms. 
(Stein and Wysession, 2003). 
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Chapter 6 – Stress Drop 
 

Stress drop can be defined as the difference between the shear stress acting on a fault before 

and after rupture (Wu et al., 2018).  Stress drop is not invariant across all geologic settings. It has been 

shown that stress drops of intraplate earthquakes are larger than interplate earthquakes (Kanamori and 

Anderson, 1975; Scholz et al., 1986). Induced seismicity near geothermal fields have been shown to have 

lower stress drop near the injection site and increase with distance (Goertz-Allman et al., 2011). Other 

studies have shown the possible decrease in stress drop can be a distinguishing characteristic in induced 

earthquakes – Reiter et al., 2012; Hough, 2014; Sun and Hartzell, 2014; Sumy et al., 2017. Boyd et al., 

2017 reported that earthquakes in the eastern part of North America with +Mw3 have mainshock stress 

drops that range from 2.6 to 26MPa. These studies further show that mainshocks potentially related to 

wastewater disposal had stress drops that ranged from 0.6-5.6 MPa for the central US. Other studies 

have shown no discriminating qualities between induced and natural seismicity from stress drop (Clerc 

et al., 2016; Zhang et al., 2016).   

According to the Theory of Self Similarity, stress drops are predicted to be constant for 

earthquakes of various sizes in the same tectonic environment (Figure 6.1).  There are a few ways to 

calculate the stress drop from seismic waveforms (i.e. conventional method of corner frequency from 

seismic spectra or empirical Green’s function (Hough, 1997)) and various source models that can be 

used (i.e. Brune, 1970 or Madariaga, 1976). In this paper we used the conventional method using a 

Brune, 1970 source model.  

Brune stress drop (Δσ) can be measured from an earthquake’s source properties. In modeling 

earthquake rupture, if the area of slip is circular the radius would be r=
2.34𝛽

2𝜋𝑓𝑐
, where the corner 

frequency (fc) is inversely proportional to the faulting duration (Td) and β is the shear wave velocity. 

Equation 8.1 describes stress drop (Eshelby, 1957; Brune, 1970): 
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 ∆𝜎 =  
7

16

𝑀𝑂

𝑟3
=

7𝑀𝑂

16
(

2𝜋𝑓𝑐

2.34𝛽
)

3

 Equation 8.1 

According to this model, MO is proportional to fc
3 for a constant stress drop. To calculate these values 

SeisAn uses various assumptions about the geometrical spreading and anelastic attenuation in a 

multistep process to generate a theoretical displacement spectrum (Figure 6.2) as defined in Brune, 

1970 (Ottemoller et al., 2016). These assumptions correct for small overestimates in the seismic 

moment calculated and are within reason given the low resolution of the shear wave velocity model. 

SeisAn will fit a Brune curve to the observed displacement spectra. The software uses an acceptable 

signal-to-noise range to find an acceptable frequency range and then fits by grid search; measured fits of 

0.2 or better were kept. MO is calculated using these various properties and assumptions, such that 

                𝑀𝑂 = 4𝜋𝜌𝑉3 10𝑂𝑀

𝐺(𝑟,ℎ)∗𝐾𝐾
 Equation 8.2 

where ρ is density, V is the seismic wave velocity at the course, OM is the spectral flat level (blue line) on 

the attenuation corrected displacement spectrum (Figure 6.2), and G(r,h) and KK are the geometric 

spreading and free surface effect and radiation pattern corrections (Ottemoller et al., 2016). From the 

spectral parameters source radius and stress drop can also be calculated using the following equations: 

 𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑎𝑑𝑖𝑢𝑠, 𝑟 = 0.37
𝑉

𝑓𝑐
 Equation 8.3 

 𝑆𝑡𝑟𝑒𝑠𝑠 𝐷𝑟𝑜𝑝, 𝛥𝜎 = 0.44 
𝑀0

𝑟3
 Equation 8.4 

where V is the P- or S-velocity at the source for their respective spectra. Due to the highly variable 

source model and attenuation model, stress drop can have upwards of 30% uncertainty (Sonley and 

Abercrombie, 2006).  Since all epicenter depths have been fixed to 5.0km many of the attenuation and 

velocity parameters are kept constant in the software parameter files.  
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Figure 6-1 – Log frequency vs. log seismic moment graph of an Idealized source spectra characterized by 
the flat portion for frequencies smaller than the fc. The amplitude for each flat portion (f < fc) increases 
with seismic moment M0 while the fc decreases proportional to M0

-3. (Modified from Stein and 
Wysession, 2003)  
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Figure 6-2 – Sample waveform used to determine source parameters (top) and an example of seismic 
source spectra (Bottom) of ground displacement (green) overlain by the calculated Brune Displacement 
Spectra (Blue).  
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Chapter 7 – Results and Conclusion 
 

Section 7.1 – Results 
 

A total of 95 focal mechanisms were calculated from seismic data using 34 different stations 

between September 2016 and November 2018 (Figures 7.1, 7.2, 7.3 and Appendix B). The regional 

geology suggests that both strike-slip and normal faulting are highly likely in this region (Jewett, 1951; 

Merriam, 1963; Hildebrandt, 1988; Barr, 1995; McBee, 2003; Gerhard, 2004). A majority of the focal 

mechanisms calculated support this claim. Despite having over 60 seismic stations concurrently 

recording in the state, azimuthal coverage is a concern when assessing the focal mechanism solutions. 

Some solutions have stations in only three of the focal sphere quadrants, making it difficult to constrain 

the solution. 

The misfit, β, is the average difference between the slip vector calculated from the fault plane 

solution and the slip vector calculated from the new stress tensor (Michael, 1984). Large β values 

suggest poorly constrained stress tensor. The results of running the inversion on the Jewell County Area, 

Saline County, and Reno County area clusters (Figure 7.4) have a wide range of solutions. Initially 

running the inversion with all 50 focal mechanisms in the Jewell County Area resulted very high misfit 

and standard deviation (>50ᵒ and >55ᵒ, respectively), very similar to Saline County results (Table 5.1). 

Removing all events within the Jewell County Area with less than M3.0 and two events with unusually 

high misfit the resulting stress orientation misfit was 21.9ᵒ, comparable to Reno County. Jewell County’s 

results drastically improved after lower magnitude and poorly confined events were removed. 

Reno County has the best misfit with 16.8ᵒ and a standard deviation of 12.9ᵒ with a maximum 

horizontal stress of 47.1ᵒ. The maximum horizontal stress of the Jewell County Area was -48.7ᵒ. The 

results of the Saline County area show a large misfit suggest that better and closer station coverage may 
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help in constraining the stress tensor. Applying the same magnitude threshold for the Jewell County 

Area to the Saline County area inversion did not yield better misfit. 

81 earthquakes from the three main study areas (Appendix C) had sufficient data quality to 

calculate stress drop (Figure 7.5). We find that the stress drops for the Jewell County Area have highest 

range of values, 0.2-4.0MPa (Figure 7.6), of the three study areas. The range of stress drop values for 

Reno County and Saline County areas are 0.1-1.6MPa (Figure 7.7) and 0.4-2.3MPa (Figure 7.8), 

respectively.  Stress drop values this low when compared to values reported by Boyd et al. (2017) may 

be one indication that these events are induced. Nine additional seismic events were analyzed in the 

Milan Event (Figure 7.9) and compared with stress drop reported by Choy et al., 2016. Many of these 

clusters are in close proximity to UIC Class I and Class II wells (Figure 7.10).  

Although stress drop values in the Jewell County Area are consistent with the other areas of 

investigation, there is only one seismic station within 100km of the central cluster. The high variability in 

stress drop depends on the source model, using different source models could better constrain the 

calculated stress drop. With such low station coverage for many of these events the likely greatest 

source of uncertainty is the source geometry. Source geometry, rupture directivity, and rupture speeds 

have all been found to influence the stress drop up to a factor of eight (Kaneko and Shearer, 2015).  

Section 7.2 - Discussion 
 

 From 1967 to 2000, the Central United States (CUS) experienced on average 21 magnitude (M) 3 

or larger earthquakes per year (Ellsworth, 2013); since then we’ve seen an unusual and dramatic 

increase in anthropogenic/induced seismicity (Kim, 2013; Keranen et al., 2013 and 2014; Rubenstein 

2014 and 2018). A new catalog of earthquakes in areas of Kansas not expected to be influenced by 

induced seismicity resulting from high volume injection wells shows new seismic clusters developing 

away from areas historically producing earthquakes.  
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Previous studies in Kansas focusing on the abnormal seismic activity have included pore 

pressure diffusion and far-field effects (Peterie et al., 2017), rupture process and geometry of particular 

clusters (Choy et al., 2016), stress state (Alt and Zoback, 2017; Schwab et al., 2017) and shear wave 

anisotropy (Nolte, 2018). These studies all target the south-central portion of the state nearest the most 

seismically active areas. Station locations shows a predominant focus on monitoring the southern 

portion of the state, with new clusters developing to the north in areas with minimal historical 

earthquakes and some with no historical earthquakes. Discriminating natural from induced earthquakes 

is very difficult when the historical average for Kansas is one M3 or greater every one to two years. This 

rate contrasted with the current rate makes it hard to identify natural events occurring in today’s 

environment. Processing the Earthscope TA data has shown that in the current areas of developing 

seismicity there is little to no historic activity. Although this claim is made from less than two years 

worth of data, the alternative historical interpretation utilizes data acquired from a network of 2 

stations within the state. The TA dataset utilizes over 45 stations to monitor seismicity and provides a 

better estimate of historical seismicity rates. This is an important distinction to make when the state 

lacks sufficient seismic monitoring network for 22 years to claim a historical rate of seismicity.  

The b-value for the catalog used in this study was 1.21 with a magnitude of completeness of 1.8 

for the network of stations, but is likely variable across the state with higher network sensitivity in the 

south than in the north. This is an increase from the historical b-value of 1.09 calculated from the KSNE 

network from 1977 to 1989. The current monitoring of earthquakes across the state has revealed this is 

an increase in b-values compared to the regional b-value of 1.06 (Rubinstein et al., 2018). Rubenstein 

(2018) has shown an increase in b-value across the two-county area of Harper and Sumner counties; in 

2016 the area had a b-value of 1.26. B-value is inversely proportion to differential stress and could be a 

side-effect of increased pore pressures resulting in more smaller events relative to larger ones 

(Bachmann et al., 2012, Scholz, 1968 and 1972). Increases in pore pressure decreases the shear stress 
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needed to result in failure, this occurs when the shear stress exceeds the critical stress (Wyss, 1973). 

This has been observed both in a laboratory setting and from earthquake databases (Amitrano, 2003 

and Schorlemmer et al., 2005). Scholz (1968) also showed that where b-values where highest failure was 

likely due to sliding along pre-existing fractures. The observed increase in b-value from normal tectonic 

regimes is one indicator that earthquakes in Kansas are occurring along existing fractures and in larger 

numbers of smaller magnitudes mainly due to increased pore pressures. Continued monitoring 

variations in b-value for different parts of the state can help to indicate areas of changing seismicity.   

Predominately strike-slip and normal faulting are common in this area. Thrust faulting is rare, 

possibly nonexistent. Almost all of the focal mechanisms from the three study areas are either strike-slip 

or normal faulting. The maximum stress calculated for Reno County was 47.1ᵒ which is consistent with 

other stress studies further south (Zoback and Zoback 1980; Dart, 1990; Alt and Zoback, 2016; Schwab 

et al., 2017). The Jewell County Area maximum horizontal stress calculation was moderately constrained 

at -48.7ᵒ with a misfit of 21.9ᵒ despite poor azimuthal coverage and no data for an entire quadrant of 

the focal sphere. Limiting the magnitude of events used in the inversion drastically improved the 

solution. Saline County had a principle stress orientation of -166.7°, but due to high misfit, 60.2°, results 

lacked sufficient certainty to be reliable. A magnitude threshold similar to the Jewell County data set 

was used, but misfit was still outside the bounds for a reliable solution. It may be feasible with better 

station coverage or inversion method to calculate a better stress orientation solution. 1-3 seismic 

stations on the northeast side of the trend would provide better azimuthal coverage of the focal sphere. 

A more complete azimuthal coverage of the focal sphere for the Jewell County Area and Saline County 

would lead to better constrained focal mechanisms and inversion.  

From Alt and Zoback (2017) the stress orientation from wellbore and seismic data was 

calculated to be approximately N85E in south-central Kansas. This orientation matches well with the 

stress orientation calculated for Reno County and likely implies that the same basement structure that 
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influences the stress field in Oklahoma is the same as far north as Reno County. Although, Reno County 

is just south of the confluence of two large structures, the Central Kansas Uplift and the NE-SW trending 

MGA (Figure 2.5), the stress orientation north of Reno County may rotate.  

The stress field in Jewell County is rotated over 90° from the stress field measured in Reno 

County. This orientation is also inline with many of the NW-SE trending magnetic lineations proposed by 

Yarger (1983). These lineations are thought to be associated with pre-rift structural anomalies (Yarger, 

1983). Basement structure associated with pre-rift structures along with the influence of the Central 

Kansas Uplift could result in the rotated stress orientation we observe between Reno and Jewell 

counties. The observed rotation in the stress field would indicate faults of various orientations not 

historically predicted to be optimally oriented may in fact be preferentially oriented and more likely to 

slip.  Focal mechanisms in Saline County would allow for more insight into how the stress field changes 

from south to north. Seismic events on the CKU and in Saline County near the MGA may provide a 

contrast of stress orientations that could explain and confirm the rotation of the stress field between 

Reno and Jewell County.   

Yarger, 1983 interpreted various magnetic lineations (Figure 2.4), generally trending NW-SE and 

NE-SW, that line up well with seismic trends (Figure 6.4). Faults associated with these lineations would 

trend similarly. For the Jewell County Area, the principle horizontal stress is in the same direction at the 

NW-SE magnetic lineation. From lack of earthquakes along these NE-SW trends it is reasonable to 

interpret that faults associated with the NE-SW trending lineations must not be optimally oriented for 

slip with respect to the calculated stress field. Pressure increases on the Central Kansas Uplift from 

disposal wells (Figure 2.2) could preferentially diffuse NE via these sub-critical faults. Once the increased 

pressure field intersected the critically stressed NW trend faults associated with the lineations and 

optimally oriented to the larger stress field, slip would occur. Far-field pressure diffusion as far as 90km 
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away, if possible, would explain drastic increases in seismicity in a seismically quiescent county that has 

zero oil or gas production and no disposal wells since 2000.  

Saline County has similarly NE-SW trending magnetic lineations (Figure 5.4). These lineations 

trend similar to the NE-SW trending MGA and likely associated with faulting in Keweenwan time (Yarger, 

1983).  The lack of earthquake seismic data, well data, and poorly constrained stress orientation make 

interpreting the cause of the recent dramatic increase in earthquakes along this trend difficult. A 

majority of the focal mechanisms in this area suggest normal faulting striking parallel to the lineations. If 

these are correct then it would suggest a stress field similar to Reno County and not the Jewell County 

Area. A better understand of the stress field in other parts of the state as more data becomes available 

could lead to a better interpretation of why the stress field changes across the state.  

Although stress drop has been suggested as a discriminating factor between induced and 

natural events, the stress drop analysis calculated for these three areas does not reveal a separation in 

stress drop between the two mechanisms. Induced and natural earthquakes should have separate 

trends when plotting the seismic moment versus corner frequency (Figure 7.5). There is no indication of 

two separate trends within this data set and suggests that nearly all these events are induced or natural. 

The stress drops found in Kansas are of similar magnitude as found by Boyd (2018) and are much 

smaller, up to an order of magnitude, than the stress drop range for tectonic earthquakes in Central and 

Eastern North America found by Atkinson and Boor (2006). This would suggest that, although we don’t 

have two trends to separate natural from induced, the trend we do observe suggests that nearly all 

these events are induced. 

It still stands that the complex geology of the crystalline basement and its hydraulic interaction 

with the injection target Arbuckle Group, make it difficult to determine precisely the far-field effects of 
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wastewater disposal. Lack of well data in certain areas make it difficult to model pressure changes 

between the areas of high injection and high seismicity.  

Section 7.3 - Conclusion 
 

High b-value, proper stress orientation and low stress drop are three factors that support the 

suggestions that a majority of events since 2014 are induced as a result of changes in pore pressure. On 

November 14th, 2014 Kansas experienced its largest recorded earthquake to date (Mw 4.9) near Milan, 

KS. Since then, a comprehensive network of seismic stations has been installed across the states to 

investigate mechanisms responsible for the dramatic increase in seismicity. The three areas presented in 

this paper vary in location uncertainty, station coverage, proximity to high injection areas and an 

understanding of the regional stress field. As a result of our analysis increased b-value, spatial and 

temporal changes in seismicity and low stress drop discriminate induced events from natural events.  

More recent data, predominately from the KGS with some additional stations from the USGS 

and other projects in the state now make up a catalog of earthquakes with over 12,000 events since 

2014. This catalog has a Mc of 1.3 and a b-value of 1.21. An analysis of seismic data by the EarthScope 

Transportable Array acquired prior to the 2012 increase in injection activity suggests that the 

northernmost study area was seismically quiescent over the 1-2 year recording period but now has 

experienced two of Kansas’ largest earthquakes to date. Using this catalog developed from the KGS 

network and supporting stations, 95 events were used to determine the focal mechanisms and stress 

orientations throughout the central part of the state. From this inversion, the maximum horizontal 

stress for Reno County was 47.1ᵒ; this orientation is within reason when compared to other studies from 

northern Oklahoma and south-central Kansas. The stress orientation of the Jewell County Area is -48.7ᵒ, 

nearly a 90ᵒ rotation. This change in orientation may be related to the MGA and Central Kansas Uplift 
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and indicate the optimal orientation for faults is different than previously determined in the southern 

portion of the state. 

Form the same catalog 90 events were used to calculate Brune stress drop from the three study 

areas and Milan event. Stress drop calculations in this study near Milan, KS matched well with those 

calculated in other studies. The median stress drop for Milan, Reno County, Saline County, and Jewell 

County Area were 1.7MPa, 0.8MPa, 1.7MPa and 1.2 MPa respectively. These values match well with 

other studies within the Central United States (CUS) and suggest these clusters of earthquakes are 

related to injection activities despite the lack of local high-volume injection. In particular, the nearest 

wastewater disposal wells in proximity to the seismicity increases in the Jewell County Area are 90km 

away on the Central Kansas Uplift. Stress orientation, focal mechanisms and stress drop just a few of the 

methods and indicators that may help discriminate natural from induced earthquakes in the future. 

The methods presented in this study show that discriminating earthquakes as natural or induced 

is very challenging and that no single method can solve this. High b-value and low stress drop compared 

to regional studies have indicated that nearly all the new seismicity in Kansas is induced. In addition to 

these findings, focal mechanism inversion indicates that the stress field changes drastically from south 

to north within the state. With better station coverage near the norther developing clusters of seismicity 

better methods using spectral characteristics could be used to better explore the problem of 

discriminating earthquakes.   
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Figure 7-4 – Rose diagram depicting the orientation of the P-axis orientations (Right) 
and the T-axis orientations (Left) for each of the 3 areas. Michael, 1984 focal 
mechanisms inversion method was used in conjunction with SeisAn.  
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Table 7.1 - Results of the focal mechanism inversion showing the principle horizontal stress orientation 
and the statistical misfit from the data. 

  

Area n 
Principle 

Horizontal 
Stress (ᵒ) 

Average 
Misfit, β (ᵒ) 

Misfit 
Standard 

Deviation (ᵒ) 

Jewell 18 -48.7 21.9 21.6 

Saline 24 -166.7 60.2 52.3 

Reno 21 47.1 16.8 12.9 
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Appendix A: Catalog of Earthquakes - Earthscope Transportable Array Data 
 

Origin Time (UTC) Latitude Longitude Mc Ml  

7/9/2010 16:48 38.826 -98.899 1.8 1.8  
7/12/2010 6:42 39.076 -99.336 2.0 1.4  
7/16/2010 8:15 39.626 -98.838 1.9 -  
8/16/2010 1:56 40.061 -99.271 2.5 2.2  
9/10/2010 8:37 39.866 -100.02 2.8 2.5  

9/19/2010 23:08 39.141 -99.207 2.5 -  
9/22/2010 9:20 38.934 -99.193 1.3 -  

11/18/2010 13:22 39.122 -99.61 2.5 1.8  
11/20/2010 13:25 38.832 -98.667 2.2 -  

12/23/2010 3:08 38.974 -99.336 2.5 2.2  
12/31/2010 12:05 39.134 -99.607 2.6 2.3  

1/2/2011 8:57 39.134 -99.736 2.4 -  
1/2/2011 9:15 39.132 -99.718 2.1 -  
1/5/2011 8:19 38.942 -99.364 2.5 2.3  

1/5/2011 14:06 39.842 -99.461 2.3 2.1  
1/14/2011 12:59 39.289 -96.402 2.5 2.2  
1/28/2011 13:18 39.093 -98.465 2.3 1.9  
2/16/2011 21:56 39.338 -99.321 1.5 -  
2/26/2011 17:11 39.157 -99.731 2.1 1.9  

3/11/2011 1:27 39.139 -99.718 2.2 -  
3/18/2011 18:51 39.314 -99.458 1.5 -  
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Appendix B: Catalog of Earthquakes – Focal Mechanisms Data 
 

Origin Time (UTC) Latitude Longitude Ml Strike Dip Rake Method 

9/15/2016 3:55 38.68841 -97.497 2.8 19.66 74.24 -37.25 FOCMEC 

11/16/2016 17:58 39.68029 -98.597 3.9 2.78 73.73 53.31 FOCMEC 

12/4/2016 8:54 39.65219 -98.5481 3.3 6.33 33.23 -24.15 FOCMEC 

12/5/2016 10:22 39.62785 -98.5281 2.8 88.00 68.00 116.00 FPFIT 

1/25/2017 4:39 38.03223 -98.0056 2.4 351.70 37.30 -169.10 PINV 

1/25/2017 5:51 38.01862 -98.0184 2.4 238.92 62.97 -37.45 FOCMEC 

1/26/2017 21:09 38.02743 -97.9741 2.5 247.66 72.61 42.19 FOCMEC 

1/26/2017 23:49 38.02264 -98.0014 2.3 83.00 48.00 -42.00 FPFIT 

1/27/2017 12:33 38.02893 -97.986 2.2 171.10 54.10 -175.80 PINV 

1/29/2017 3:33 38.02687 -97.9852 2.4 72.00 48.00 -42.00 FPFIT 

1/31/2017 11:08 38.01791 -97.989 3.0 28.90 59.80 -152.40 HASH 

2/17/2017 6:16 38.84468 -97.3929 2.3 336.01 71.25 -23.86 FOCMEC 

2/18/2017 8:19 38.64372 -97.5688 2.1 269.10 50.00 -32.50 HASH 

3/7/2017 3:12 38.6716 -97.5141 2.7 14.40 32.60 -144.90 HASH 

4/4/2017 17:54 39.7225 -98.1519 3.7 9.57 50.18 -4.18 FOCMEC 

4/5/2017 10:36 39.8004 -98.2099 3.0 297.00 33.30 -173.50 HASH 

4/6/2017 16:01 39.7518 -98.1633 3.3 2.21 31.12 -72.81 FOCMEC 

4/7/2017 0:13 39.80494 -98.1718 3.1 90.00 78.00 -167.00 FPFIT 

4/7/2017 20:08 39.76637 -98.1701 3.5 15.00 63.00 18.00 FPFIT 

4/7/2017 20:16 39.7805 -98.262 2.5 216.70 74.90 -45.50 HASH 

4/7/2017 22:03 39.81622 -98.1738 2.5 14.00 75.00 -104.00 FPFIT 

4/8/2017 5:15 39.70083 -98.1524 3.3 3.88 85.47 64.92 FOCMEC 

4/8/2017 15:49 39.76141 -98.1876 2.8 92.90 60.00 142.40 HASH 

4/8/2017 18:49 39.7578 -98.1525 2.7 294.10 42.40 -121.30 HASH 

5/21/2017 4:54 39.77372 -98.1832 3.4 4.87 46.92 14.51 FOCMEC 

5/21/2017 7:04 39.78082 -98.2277 2.7 207.00 68.10 1.50 PINV 

5/21/2017 7:45 39.77676 -98.19 2.5 276.30 78.90 171.40 HASH 

5/22/2017 20:48 38.02411 -97.9955 2.4 12.00 48.00 -162.00 FPFIT 

5/23/2017 16:17 39.76194 -98.1968 3.1 1.30 55.61 -77.85 FOCMEC 

5/24/2017 7:19 39.77565 -98.148 3.0 19.00 88.00 18.00 FPFIT 

5/24/2017 9:28 39.69468 -98.1823 3.1 4.42 61.98 -49.48 FOCMEC 

5/24/2017 15:04 39.75666 -98.1654 2.8 8.87 51.13 42.55 FOCMEC 
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Origin Time (UTC) Latitude Longitude Magnitude Strike Dip Rake Method 

5/24/2017 15:57 39.80502 -98.1528 2.8 1.72 71.94 63.61 FOCMEC 

5/28/2017 18:45 39.79057 -98.1789 2.8 1.09 67.48 -45.90 FOCMEC 

5/29/2017 4:25 39.79641 -98.1907 2.9 48.00 58.00 -165.00 FPFIT 

5/30/2017 6:24 39.73425 -98.1867 2.5 21.00 88.00 34.00 FPFIT 

5/31/2017 19:04 39.81363 -98.1751 2.6 3.41 57.20 32.73 FOCMEC 

6/3/2017 20:29 39.73636 -98.1606 3.3 83.00 45.00 158.00 FPFIT 

6/4/2017 19:35 39.79479 -98.1563 2.9 277.00 73.20 -175.60 HASH 

6/12/2017 11:18 39.74621 -98.1599 3.9 8.22 84.28 -34.59 FOCMEC 

6/12/2017 11:32 39.74369 -98.1547 3.4 7.33 65.10 -84.49 FOCMEC 

6/13/2017 9:40 39.7672 -98.1643 4.1 84.20 89.70 -145.60 PINV 

6/13/2017 10:05 39.76622 -98.1583 2.9 50.00 58.00 -163.00 FPFIT 

6/13/2017 10:24 39.76532 -98.2342 2.4 46.00 63.00 138.00 FPFIT 

6/13/2017 17:07 39.7642 -98.1907 3.2 2.67 62.97 -30.68 FOCMEC 

6/19/2017 7:02 39.75368 -98.1489 3.2 68.00 48.00 -162.00 FPFIT 

6/20/2017 3:26 39.62234 -98.0206 2.5 185.00 85.00 -135.00 HASH 

6/27/2017 2:20 38.0326 -97.9914 2.4 243.84 76.00 -43.22 FOCMEC 

6/27/2017 2:36 38.03051 -97.9847 2.3 246.79 81.82 -54.59 FOCMEC 

7/30/2017 0:16 38.01791 -97.98 2.9 87.00 68.00 -42.00 FPFIT 

8/3/2017 13:16 39.62465 -98.499 2.4 143.00 38.00 -45.00 FPFIT 

8/4/2017 14:13 39.66571 -97.8696 2.8 276.10 56.50 161.20 HASH 

8/15/2017 1:29 39.66106 -98.5359 2.4 123.00 78.00 -180.00 FPFIT 

8/15/2017 15:15 38.04222 -97.9916 2.6 191.20 36.60 -155.00 HASH 

8/23/2017 7:34 38.00946 -98.003 2.3 78.98 40.26 -5.93 FOCMEC 

8/31/2017 17:12 39.66622 -97.9262 2.4 209.10 70.00 -90.00 HASH 

8/31/2017 17:21 39.69881 -97.9187 3.0 7.24 83.07 -43.56 FOCMEC 

9/29/2017 23:28 39.74943 -98.1723 2.5 125.10 35.00 -157.50 HASH 

9/30/2017 0:55 39.75033 -98.1805 2.6 2.12 60.13 84.23 FOCMEC 

10/10/2017 10:21 38.66874 -97.4717 2.1 9.00 48.00 -127.00 FPFIT 

10/10/2017 20:25 38.67369 -97.497 2.9 35.59 25.46 -78.30 FOCMEC 

10/13/2017 12:04 38.65496 -97.5027 2.6 31.70 82.90 -154.70 HASH 

10/13/2017 22:11 39.74302 -98.1425 3.0 12.00 77.00 -42.00 FPFIT 

10/13/2017 22:19 39.74735 -98.1575 2.5 64.00 68.00 -162.00 FPFIT 

10/14/2017 2:13 39.7286 -98.1474 3.0 113.30 68.20 -135.00 HASH 

10/14/2017 4:33 39.76966 -98.1305 2.6 272.60 72.00 131.00 HASH 

10/14/2017 5:01 39.73782 -98.1801 2.6 18.00 64.00 -102.00 FPFIT 

10/16/2017 7:09 39.76355 -98.1496 2.3 8.48 47.85 -39.32 FOCMEC 

10/28/2017 22:51 39.65764 -97.9124 2.8 8.00 54.07 -37.45 FOCMEC 

12/27/2017 2:55 39.65601 -98.2203 2.3 3.42 35.31 7.10 FOCMEC 

2/22/2018 23:43 38.66248 -97.5484 2.1 296.00 82.20 178.20 HASH 

3/1/2018 20:27 38.01608 -97.9877 3.3 209.60 89.20 156.50 HASH 

3/8/2018 10:48 38.01406 -97.9995 3.6 28.70 89.60 179.80 HASH 

3/18/2018 2:17 38.01108 -97.9965 3.3 23.20 54.60 -137.30 HASH 



85 
 

Origin Time (UTC) Latitude Longitude Magnitude Strike Dip Rake Method 

3/29/2018 21:03 38.882 -97.4052 2.6 195.34 80.95 -64.66 FOCMEC 

4/3/2018 19:26 38.01604 -97.9918 2.6 56.01 71.25 -23.86 FOCMEC 

4/3/2018 21:56 38.02092 -98.0005 2.6 55.00 58.00 -82.00 FPFIT 

4/8/2018 23:34 38.01904 -98.0036 2.7 31.70 65.00 -123.10 HASH 

4/14/2018 2:46 38.01603 -97.9894 3.4 211.20 73.30 -90.00 FOCMEC 

4/14/2018 2:59 38.02148 -97.9926 2.6 22.00 57.00 -102.00 FPFIT 

4/17/2018 23:05 38.01285 -98.0058 3.2 17.00 68.00 -168.00 FPFIT 

4/18/2018 9:14 38.01891 -97.9918 2.7 29.20 84.20 -162.40 HASH 

5/15/2018 1:37 38.87186 -97.3807 2.1 16.00 38.00 47.00 FPFIT 

5/23/2018 17:05 38.64669 -97.603 2.3 65.00 68.00 -2.00 FPFIT 

5/24/2018 6:50 38.64846 -97.629 2.2 10.70 21.10 -169.50 PINV 

6/2/2018 3:43 38.01574 -97.9953 2.9 86.00 85.00 -42.00 FPFIT 

6/4/2018 11:17 38.80225 -97.5197 2.5 212.33 65.10 -84.49 FOCMEC 

6/5/2018 4:15 38.78802 -97.4752 2.6 20.00 22.00 -122.00 FPFIT 

6/17/2018 22:05 38.85138 -97.4873 2.4 2.00 28.00 57.00 FPFIT 

7/18/2018 19:28 38.7832 -97.4939 2.4 197.33 65.10 -84.40 FOCMEC 

8/4/2018 0:49 38.801 -97.508 2.7 80.00 1.00 146.00 FPFIT 

10/21/2018 22:01 38.8 -97.512 2.6 0.00 39.00 -122.00 FPFIT 

11/17/2018 21:34 38.747 -97.542 3.0 43.00 68.00 -176.00 FPFIT 

11/19/2018 7:44 38.744 -97.548 2.9 49.60 28.90 -57.62 FOCMEC 

11/19/2018 9:01 38.732 -97.541 2.8 323.10 33.23 -24.15 FOCMEC 
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Appendix C: Catalog of Earthquakes – Stress Drop Data 
 

Origin Time (UTC) Latitude Longitude MW County Moment 

Stress 
Drop 
(Mpa) 

Cornering 
Frequency 

(Hz) 
Radius 
(km) 

11/15/2015 16:48 39.6229 -98.6969 2.3 Smith 12.6 3.00 15.10 0.094 

3/23/2016 4:35 38.7559 -97.4171 2.5 Saline 12.8 3.49 12.50 0.152 

4/4/2016 12:34 38.7471 -97.5586 2.6 Saline 12.9 5.71 12.40 0.126 

8/12/2016 13:56 37.2829 -97.6395 2.2 Sumner 12.4 1.04 12.90 0.125 

8/12/2016 20:39 37.2863 -97.6323 2.2 Sumner 12.4 0.37 8.41 0.162 

9/10/2016 10:08 38.6997 -97.4234 2.2 Saline 12.4 1.46 11.30 0.136 

9/15/2016 3:55 38.6884 -97.4970 2.3 Saline 12.6 0.97 9.76 0.149 

11/16/2016 17:58 39.6803 -98.5970 3.2 Smith 13.9 3.50 6.34 0.239 

11/16/2016 21:45 39.6308 -98.5762 2.7 Smith 13.1 1.08 6.67 0.183 

11/26/2016 2:57 37.2413 -97.6785 2.6 Sumner 12.9 0.55 6.41 0.224 

12/4/2016 8:54 39.6522 -98.5481 2.6 Smith 12.9 0.55 6.47 0.194 

12/5/2016 10:22 39.6279 -98.5281 2.3 Smith 12.5 0.81 0.63 0.148 

12/6/2016 2:53 39.6237 -98.5305 2.3 Smith 12.5 0.90 13.20 0.128 

12/8/2016 12:35 39.6576 -98.5416 2.3 Smith 12.5 0.59 9.20 0.148 

1/25/2017 7:29 38.0263 -97.9896 2.2 Reno 12.4 0.24 7.80 0.200 

1/26/2017 21:09 38.0274 -97.9741 2.1 Reno 12.3 0.18 7.13 0.205 

1/31/2017 11:08 38.0179 -97.9890 2.9 Reno 13.4 0.23 3.66 0.588 

3/7/2017 3:12 38.6716 -97.5141 2.3 Saline 12.5 0.62 9.26 0.156 

4/4/2017 17:54 39.7225 -98.1519 3.3 Jewell 14 1.75 4.62 0.314 

4/5/2017 10:36 39.8004 -98.2099 2.5 Jewell 12.8 0.80 7.72 0.166 

4/6/2017 16:01 39.7518 -98.1633 2.8 Jewell 13.3 1.12 6.20 0.199 

4/7/2017 0:13 39.8049 -98.1718 3.0 Jewell 13.6 2.15 5.98 0.207 

4/7/2017 20:08 39.7664 -98.1701 3.1 Jewell 13.7 0.30 6.28 0.200 

4/7/2017 20:16 39.7805 -98.2620 2.4 Jewell 12.7 3.67 14.40 0.117 

4/7/2017 22:03 39.8162 -98.1738 2.3 Jewell 12.6 0.73 9.46 0.176 

4/8/2017 5:15 39.7008 -98.1524 2.7 Jewell 13.2 3.99 9.63 0.140 

4/8/2017 15:49 39.7614 -98.1876 2.3 Jewell 12.6 0.96 0.92 0.171 

4/8/2017 18:49 39.7578 -98.1525 2.4 Jewell 12.7 2.18 12.40 0.121 

4/20/2017 0:17 39.7503 -98.1629 2.1 Jewell 12.3 0.40 9.61 0.134 

5/21/2017 4:54 39.7737 -98.1832 3.4 Jewell 14.1 1.04 3.55 0.462 

5/21/2017 7:04 39.7808 -98.2277 2.3 Jewell 12.6 0.40 7.84 0.174 

5/21/2017 7:45 39.7768 -98.1900 2.3 Jewell 12.5 0.92 10.60 0.132 

5/23/2017 16:17 39.7619 -98.1968 3.0 Jewell 13.6 0.24 3.00 0.500 

5/24/2017 7:19 39.7757 -98.1480 2.7 Jewell 13.2 0.70 5.70 0.267 

5/24/2017 9:28 39.6947 -98.1823 2.6 Jewell 13.1 1.74 8.44 0.153 

5/24/2017 15:04 39.7567 -98.1654 2.4 Jewell 12.6 1.09 9.90 0.131 

5/24/2017 15:57 39.8050 -98.1528 2.4 Jewell 12.7 1.50 9.73 0.146 
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Origin Time (UTC) Latitude Longitude MW County Moment 

Stress 
Drop 
(Mpa) 

Cornering 
Frequency 

(Hz) 
Radius 
(km) 

5/28/2017 18:45 39.7906 -98.1789 2.5 Jewell 12.9 0.69 7.96 0.187 

5/29/2017 4:25 39.7964 -98.1907 2.4 Jewell 12.7 0.96 9.39 0.147 

5/31/2017 19:04 39.8136 -98.1751 2.3 Jewell 12.6 2.23 13.80 0.105 

6/3/2017 20:29 39.7364 -98.1606 2.8 Jewell 13.3 2.20 7.70 0.177 

6/4/2017 19:35 39.7948 -98.1563 2.6 Jewell 13 1.91 9.58 0.166 

6/12/2017 11:18 39.7462 -98.1599 3.4 Jewell 14.2 3.14 4.85 0.327 

6/12/2017 11:37 39.6892 -98.1750 2.5 Jewell 12.9 1.24 8.76 0.161 

6/13/2017 9:40 39.7672 -98.1643 3.5 Jewell 14.3 3.31 4.99 0.359 

6/13/2017 10:05 39.7662 -98.1583 2.5 Jewell 12.8 3.77 13.60 0.116 

6/13/2017 17:07 39.7642 -98.1907 2.7 Jewell 13.2 2.31 8.20 0.156 

6/19/2017 7:02 39.7537 -98.1489 2.7 Jewell 13.1 1.87 7.82 0.182 

6/20/2017 3:26 39.6223 -98.0206 2.3 Jewell 12.5 0.72 9.14 0.168 

7/30/2017 0:13 38.0349 -97.9743 2.7 Reno 13.2 0.89 6.29 0.210 

8/4/2017 14:13 39.6657 -97.8696 2.4 Republic 12.6 2.12 13.00 0.119 

8/5/2017 15:52 37.2837 -97.6174 2.4 Sumner 12.6 1.74 11.20 0.147 

8/5/2017 20:13 37.2873 -97.6209 3.2 Sumner 13.9 1.82 4.57 0.341 

8/6/2017 2:38 37.2809 -97.6137 2.7 Sumner 13.2 2.23 7.95 0.184 

8/15/2017 15:15 38.0422 -97.9916 2.4 Reno 12.6 0.76 8.63 0.228 

8/20/2017 23:07 37.2697 -97.6212 2.4 Sumner 12.7 2.33 11.30 0.361 

8/31/2017 17:21 39.6988 -97.9187 2.5 Republic 12.9 1.49 9.54 0.144 

9/16/2017 12:42 37.3395 -97.5831 2.3 Sumner 12.5 0.97 9.93 0.160 

9/29/2017 23:28 39.7494 -98.1723 2.3 Jewell 12.4 0.58 9.11 0.152 

9/30/2017 0:55 39.7503 -98.1805 2.4 Jewell 12.7 0.68 8.87 0.171 

10/10/2017 20:25 38.6737 -97.4970 2.5 Saline 12.8 4.38 11.70 0.185 

10/13/2017 12:04 38.6550 -97.5027 2.3 Saline 12.6 1.84 10.40 0.166 

10/13/2017 22:11 39.7430 -98.1425 2.7 Jewell 13.1 1.54 8.24 0.176 

10/13/2017 22:19 39.7474 -98.1575 2.3 Jewell 12.5 1.04 10.30 0.153 

10/14/2017 2:13 39.7286 -98.1474 2.5 Jewell 12.9 0.67 7.09 0.188 

10/14/2017 4:33 39.7697 -98.1305 2.5 Jewell 12.8 2.62 12.30 0.335 

10/14/2017 5:01 39.7378 -98.1801 2.4 Jewell 12.7 1.70 11.30 0.119 

10/28/2017 22:51 39.6576 -97.9124 2.4 Republic 12.7 0.56 7.63 0.171 

11/8/2017 3:18 37.2715 -97.6222 2.4 Sumner 12.6 1.73 11.40 0.125 

2/16/2018 6:23 39.6469 -98.5683 2.2 Smith 12.4 2.33 14.20 0.099 

3/1/2018 20:27 38.0161 -97.9877 2.8 Reno 13.3 0.94 5.78 0.231 

3/1/2018 20:30 38.0238 -97.9950 2.2 Reno 12.3 0.21 7.88 0.190 

3/2/2018 7:29 38.0181 -97.9963 2.3 Reno 12.5 0.09 9.92 0.158 

3/8/2018 10:48 38.0130 -98.0015 3.1 Reno 13.7 1.27 4.60 0.285 

3/18/2018 2:17 38.0110 -97.9965 2.7 Reno 13.2 0.83 6.06 0.247 

3/27/2018 20:44 39.6392 -98.0182 2.3 Jewell 12.5 2.04 14.10 0.101 

3/29/2018 21:03 38.8820 -97.4052 2.3 Saline 12.6 0.74 8.71 0.162 
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Origin Time (UTC) Latitude Longitude MW County Moment 

Stress 
Drop 
(Mpa) 

Cornering 
Frequency 

(Hz) 
Radius 
(km) 

4/3/2018 19:26 38.0163 -97.9917 2.3 Reno 12.5 1.02 9.33 0.164 

4/3/2018 21:56 38.0209 -98.0002 2.1 Reno 12.2 1.55 14.10 0.104 

4/14/2018 2:46 38.0162 -97.9889 2.8 Reno 13.3 1.47 6.65 0.221 

4/14/2018 2:59 38.0213 -97.9940 2.1 Reno 12.3 0.30 9.04 0.195 

4/17/2018 23:05 38.0136 -98.0036 2.7 Reno 13.1 1.32 7.08 0.210 

4/18/2018 9:14 38.0189 -97.9918 2.1 Reno 12.3 1.17 12.10 0.126 

6/2/2018 3:43 38.0158 -97.9959 2.8 Reno 13.2 0.73 6.63 2.615 

6/4/2018 11:17 38.8023 -97.5197 2.1 Saline 12.2 2.53 16.10 0.100 

6/5/2018 4:15 38.7880 -97.4752 2.2 Saline 12.4 1.12 10.80 0.139 

7/24/2018 12:15 39.6413 -98.5172 2.2 Smith 12.4 0.79 11.00 0.308 

7/25/2018 18:16 38.0104 -98.0003 2.1 Reno 12.3 0.24 7.81 0.171 
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Appendix D: Earthquake S-files 
 
A file containing all phase readings with source parameters (i.e. location, magnitude, etc.) used 
in this thesis can be found at the following location: 

http://www.kgs.ku.edu/Geophysics/Reports/Intfen/AppendixD.pdf 

 

http://www.kgs.ku.edu/Geophysics/Reports/Intfen/AppendixD.pdf

