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ON THE GENERATION OF STABLE KERR FREQUENCY COMBS
IN THE LUGIATO–LEFEVER MODEL OF PERIODIC OPTICAL

WAVEGUIDES∗
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Abstract. We consider the Lugiato–Lefever (LL) model of optical fibers. We construct a two
parameter family of steady state solutions, i.e., Kerr frequency combs, for small pumping parameter
h > 0 and the correspondingly (and necessarily) small detuning parameter, α > 0. These are O(1)
waves, as they are constructed as a bifurcation from the standard dnoidal solutions of the cubic
nonlinear Schrödinger equation. We identify the spectrally stable ones, and more precisely, we show
that the spectrum of the linearized operator contains the eigenvalues 0,−2α, while the rest of it is a
subset of {µ : <µ = −α}. This is in line with the expectations for effectively damped Hamiltonian
systems, such as the LL model.
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1. Introduction. Optical frequency combs are a series of precisely spaced, sharp
spectral lines, which provide a new level of capabilities in the field of precision mea-
surements as well as many other exciting applications. The discovery that these Kerr
combs can be generated by a special class of microresonators, called whispering gallery
mode (WGM) resonators, has recently renewed physicists’ interest in this already ac-
tive area of research [2, 12, 13, 16, 14].

Mathematically, this is modeled by a variant of the Lugiato–Lefever equation, in-
troduced in 1987 in [13]. The equation, which is a version of the nonlinear Schrödinger
equation that includes driving, damping and detuning, was shown to be the appro-
priate spatiotemporal model for Kerr-comb generation in whispering-gallery-mode
resonators (see [3]). There are numerous papers dealing with the model derivation,
as well as further reductions to dimensionless variables (see, for example, [15, 7, 14]
among others). The model equation, considered in [5, 6] as well as [17, 18], is given
by

(1.1) ψt + iβψxx + (γ + iδ)ψ − i|ψ|2ψ = F.

Here, one distinguishes between the cases β > 0 and β < 0, the former one being
the case of standard dispersion, whereas the latter is referred to as anomalous disper-
sion (see [5, 6] for further discussion). The other parameters have distinct physical
meaning, which is explained below, for a slightly more specific version of the model.
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In this work, we shall be concerned with the model with anomalous dispersion
β < 0. In addition, it is convenient, after several equivalent scaling transformations, to
reduce to an equivalent format, which works better for our purposes. More precisely,

(1.2)

{
iut + uxx − u+ 2|u|2u = −iαu− h, t ≥ 0,−T ≤ x ≤ T,

u(t,−T ) = u(t, T ), u′(t,−T ) = u′(t, T )

shall be referred to as the Lugiato–Lefever (LL) equation. Here, u denotes the field
envelope, a (complex-valued) function, t is the normalized time, and x is the azimuthal
coordinate, while α > 0 is the detuning/damping parameter and the normalized
pumping strength parameter is h > 0. It is important to state that T is a fixed
parameter, which shall be kept fixed throughout.

We are interested in time independent solutions, that is, frequency/Kerr combs
u(t, x) = ϕ(x) and their stability, as solutions of the full time dependent problem
(1.2). These satisfy the time-independent equation

(1.3) − ϕ′′ + ϕ− 2|ϕ|2ϕ = iαϕ+ h,−T ≤ x ≤ T,

where ϕ satisfies the periodic boundary conditions.
A few words about the range of the parameters. Physically, it is preferred that

the pumping parameter h be small. In fact, the case h = 0 is used by many authors as
a bifurcation point to construct such waves, starting with a “good” solution at h = 0.
On the other hand, in a recent paper [14], the authors have studied the relationship
between α and h, which supports the existence of Kerr combs. The case α = 0
offers another useful starting point for bifurcation analysis, when h 6= 0. This point
of view is explored via formal methods in [16], by using the approach in [1], in the
related context of the forced nonlinear Schrödinger equation (NLS) model. Similar
construction was carried out in the periodic case in [19], since one can write an explicit
solution in the case α = 0 in terms of Jacobi elliptic functions.

In the periodic setting, there are numerous recent developments as to the existence
(and, subsequently, stability) of periodic solitary waves, which are close to constants,
both in cases of standard and anomalous dispersion. In [19, 18, 17, 5, 6], the authors
have studied stationary solutions of (1.1), close to constants. More precisely, in [5, 6],
the close to constant periodic solutions have been constructed, by means of bifurca-
tions close to points of Turing instabilities. In [17] the authors proved asymptotic
stability of close to constant solutions, given their spectral stability.

In the whole line case, two families of explicit solutions were explicitly found in [1]
for the case α = 0. Their spectral stability was also discussed there, in the setting of
forced NLS—one family was found to be unstable, whereas the stability of the other
family was left as an open question. To the best of our knowledge, no solutions of
(1.3) have been constructed, when α 6= 0, h 6= 0, so this seems to be an interesting
direction for future research.

Our goal in this paper is to explore the existence and the stability properties of
the solutions of (1.3), in the physically relevant regime 0 < h << 1. Mathematically
(and also from a physical perspective), it turns out that α is also necessarily a small
parameter; in fact α ∼ h. In addition, we are looking for large solutions close to the
standard dnoidal solutions for NLS, with h = α = 0, as these are well-known in both
the theoretical context and also easily physically realizable. Most importantly, we
are interested in such solutions that are dynamically stable as solutions of (1.2). We
achieve all of these goals, by first constructing a family of such solutions, as long as
the necessary conditions on α, to be established below, are met. Next, we provide an
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STABLE FREQUENCY COMBS IN PERIODIC WAVEGUIDES 479

explicit characterization of their spectral stability; in fact, we provide a fairly explicit
description of spectrum of the linearized operator, which should be useful in further
studies of its semigroup properties. We postpone these considerations for a future
publication.

1.1. Construction of stationary solutions. It will be important to under-
stand the behavior of the solutions of (1.2) in the case when one of the parameters is
zero. This is interesting in itself, but it will also give us important clues as to what is
important (and reasonable to expect) in the case of interest 0 < α, h << 1.

Proposition 1 (h = 0 does not support stationary solutions). The equation

(1.4) ϕ′′ − ϕ+ 2|ϕ|2ϕ+ iαϕ = 0,−T ≤ x ≤ T

does not have nontrivial periodic classical solutions ϕα.

In the case h > 0, α = 0, one looks for spatially periodic, time-independent
solutions of (1.2), u = ϕ(x). That is, we look to solve the equation

(1.5) ϕ′′ − ϕ+ 2ϕ3 = −h,−T ≤ x ≤ T.

Proposition 2 (the stationary waves for α = 0, h > 0). There exists h0 > 0,
so that for each h : 0 < h < h0, there is a one parameter family of solutions ϕc,h of
(1.5), where c is a real-parameter, so that the quartic equation

(1.6) z4 − z2 + 2hz + c = 0

has four different real roots. We have the following explicit formula for it:

(1.7) ϕ(x) =
ζ4(ζ3 − ζ1) + ζ1(ζ4 − ζ3)sn2( x√

g , κ)

(ζ3 − ζ1) + (ζ4 − ζ3)sn2( x√
g , κ)

,

where ζ1 < ζ2 < ζ3 < ζ4 are the roots of the quartic equation (1.6) and

κ2 =
(ζ4 − ζ3)(ζ2 − ζ1)

(ζ4 − ζ2)(ζ3 − ζ1)
, g =

2√
(ζ4 − ζ2)(ζ3 − ζ1)

.

The function ϕ is 2T periodic, with T = Th,c =
√
gK(κ), which is a continuous

function of c, h. Finally, for small enough h, there are 2T periodic solutions with
period satisfying

(1.8) T ∈
(

2−3/4π +O(h), 2−
11
4
π

h
+O(1))

)
.

Remarks.
1. In the case h = 0, one sees that the parameter c must range within (0, 1

4 ) and
we may explicitly compute the roots as follows:

ξ4 = −ξ1 =

√
1 +
√

1− 4c

2
, ξ3 = −ξ2 =

√
1−
√

1− 4c

2
.

After some algebraic manipulations, the solution for h = 0, ϕ0, turns out to
be a rescaling of the standard dnoidal solution of the cubic NLS, parametrized
by c, to account for all possible periods T = T (c) ∈ (2−3/4π,∞).
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2. For small h 6= 0, one needs to require c ∈ (0, 1
4 ) +O(h). In addition, a better

parametrization is via m = min−T≤x≤T ϕ(x), where m ∈ (0, 1√
2
). More

precisely, one can write
(1.9)

ζ1 = −
√

1−m2 +O(h), ζ2 = −m+O(h), ζ3 = m, ζ4 =
√

1−m2 +O(h).

We now turn to a necessary condition for the existence of the waves, when both
parameters are nonzero, h, α > 0. Our first result in this direction states that if h is
small and ϕ is an O(1) solution, then α = O(h).

Proposition 3. Let 0 < h << 1. Assume that (1.3) has a solution ϕ. Then

α ≤ h
√

2T

‖ϕ‖−1
L2[−T,T ]

.

For the proof, take a dot product with ϕ = ϕ1 + iϕ2 in (1.3). Then, since its left-hand
side is real, taking imaginary parts results in

α‖ϕ‖2 = h

∫ T

−T
ϕ2(x)dx ≤ h

√
2T‖ϕ‖.

Thus, if ‖ϕ‖L2[−T,T ] = O(1) and T = O(1), we have that α = O(h).
Now that we know that α = O(h), we take the ansatz α = α0h per Proposition

3. Our next result describes the existence of waves for 0 < h << 1, α = α0h, which
only holds for a specific range of values α0.

In order to state the result, fix the period 2T and for small enough h > 0, denote
ϕh to be the solution produced in Proposition 2. Indeed, as we will show in the proof
of Proposition 2, for a fixed and sufficiently small h and T inside the prescribed range,
(1.8), there is a c = c(h), for which there is a solution ϕh, with the prescribed period.
Note that for h = 0, one obtains the classical dnoidal solutions, ϕ0, as discussed
earlier. With that, introduce the self-adjoint operators L±, with domains H2[−T, T ],

L+,h = −∂2
x + 1− 6ϕ2

h,

L−,h = −∂2
x + 1− 2ϕ2

h,

L± := L±,0,

which will be important for our arguments in what follows. The next result is the
main existence result of the paper. Note that all implicit constants will depend on
the fixed period T .

Theorem 1. Let α0 : 0 < α0 <
〈1,ϕ0〉
‖ϕ0‖2 . There exists h0 = h0(α0) > 0, so that for

every h : 0 < h < h0 and α := α0h, there exists a stationary solution ϕα = ϕα,1+iϕα,2
of (1.3) and there is the following Taylor expansion formula for it:

ϕα,1 =

(
a0 +

b0
2
hD0

2 +O(h2)

)
ϕ0 + hΨ0

1 +O{ϕ0}⊥(h2),(1.10)

ϕα,2 =
(
b0 −

a0

2
hD0

2 +O(h2)
)
ϕ0 + hΨ0

2 +O{ϕ0}⊥(h2),(1.11)

where q = O{ϕ0}⊥(h2) denotes a function, with q ⊥ ϕ0 : ‖q‖L2[−T,T ] ≤ Ch2. In
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addition, there are the following relations:

a0 = σ0
‖ϕ0‖2

〈1, ϕ0〉
, b0 = α0

‖ϕ0‖2

〈1, ϕ0〉
, σ0 = ±

√
〈1, ϕ0〉2
‖ϕ0‖4

− α2
0;

D0
2 = 8

〈ϕ2
0L
−1
+ [1], L−1

− [b0 − α0ϕ0]〉
〈1, ϕ0〉

;

Ψ0
1 = a2

0L
−1
+ [1] + b0L

−1
− [b0 − α0ϕ0];

Ψ0
2 = a0b0L

−1
+ [1]− a0L

−1
− [b0 − α0ϕ0].

Remarks.
1. Note that there are two solutions constructed in Theorem 1—one for σ0 > 0

and another for σ0 < 0.
2. Note that by Proposition 5 below, Ker[L−] = span[ϕ0],Ker[L+] = span[ϕ′0].

Therefore, the expression L−1
− [b0−α0ϕ0] is well-defined, since by the definition

of b0, we have that b0 − α0ϕ0 ⊥ Ker[L−]. Similarly, 1 ⊥ Ker[L+], whence
L−1

+ [1] is well-defined.
3. The theorem applies under the more general ansatz α = α0h + O(h2). In

fact, since its statement is of first order in h, the proof in this more general
case goes without any changes or modifications.

1.2. Stability of the stationary solutions. Before we discuss our stability
results, let us emphasize that all of them are regarding spectral stability with respect
to co-periodic perturbations—that is, the perturbations are taken to be 2T periodic.
The question for stability in the spaces with more general periods 2nT, n = 2, . . .
or more generally with localized perturbations is undoubtedly interesting and highly
nontrivial, but it falls outside the scope of this paper.

Our first result is regarding the instability of ϕh for α = 0.

Proposition 4. Let α = 0. Then, for all sufficiently small values of h : 0 <
h << 1, the waves (1.7) are spectrally unstable solutions of (1.2), with respect to
co-periodic perturbations. Moreover, the instability presents itself in the linearized
operator by a single real unstable eigenmode.

The proof of Proposition 4 is presented in section 2.4 below. It is a direct conse-
quence of the spectral properties of the operators L±,h, presented in Lemma 1 below,
and the instability index count.

Regarding the waves constructed in Theorem 2.1, we have the following complete
characterization.

Theorem 2. Let h, α0, ϕα be as in Theorem 1. Then, ϕα is spectrally stable with
respect to co-periodic perturbations if and only if

σ0 = −

√
〈1, ϕ0〉2
‖ϕ0‖4

− α2
0.

In addition, in the stable case, the spectrum of the full linearized operator has two
real simple eigenvalues 0 and −2α, and the rest of the spectrum is on the vertical line
{µ : <µ = −α}.
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In the spectrally unstable case, which occurs for σ0 =
√
〈1,ϕ0〉2
‖ϕ0‖4 − α

2
0, there is a

single real unstable eigenvalue in the form µ0

√
h+O(h), where1

µ0 =

√
σ0‖ϕ0‖2

−〈L−1
+ ϕ0, ϕ0〉

> 0.

We briefly explain our approach toward the proof of Theorem 2. It turns out,
rather unsurprisingly, that the linearized problem looks like a damped version of the
linearized NLS. This is manifested in the form of the linearized operator, JNh − α,
with J ∗ = −J ,N ∗h = Nh (see (4.1) below). Note that this looks like a standard
Hamiltonian linearized operator, moved α units to the left. Since the translational
symmetry persists even when both α 6= 0, h 6= 0, the system keeps its zero eigenvalue
due to the translational invariance. More concretely, a simple differentiation in the

profile equation yields (JNh − α)(
ϕ′α,1
ϕ′α,2

) = 0, while Hamiltonian symmetry dictates

another eigenvalue at −2α. These are the movements of the algebraic multiplicity two
eigenvalue at zero (with one eigenvector and one adjoint), present at α = 0, due to
translational invariance. These arguments account for the translational eigenvalue(s)
for the case 0 < h << 1, α = α0h.

For the original Schrödinger problem, with α = h = 0, there is a modulational
invariance, i.e., u → eiθu preserves solutions. In its linearized operator, one finds
another pair of eigenvalues at zero, again with one eigenvector and one adjoint. Once
h > 0, modulational invariance is broken, but as we are still close to the problem for
h = 0, this double eigenvalue is expected to move close by. The main focus is then on
the movement of this pair of eigenvalues.

We show that there are two scenarios—for the wave ϕα with σ0 > 0, the modula-
tional eigenvalue splits into a pair of positive and negative real eigenvalues, of order
O(
√
h), so it presents itself as instability even after taking into account the damping,

which moves the spectrum to the left α = α0h units, thus still resulting in instability
since

√
h >> h.

In the other case σ0 < 0, the multiplicity two eigenvalue at zero for h = 0 splits
into a pair of two marginally stable eigenvalues, with negative Krein signature. At
the same time, the self-adjoint operator N0 has initially only one negative eigenvalue
and an eigenvalue at zero, generated by the modulational invariance, and in fact
N0( ϕ0

0 ) = 0. After we turn on the h > 0, we show that the zero eigenvalue moves to
the left, creating a second negative eigenvalue for Nh, so n(Nh) = 2. This presents
an interesting stability configuration—while it has two negative (potentially unstable)
directions for Nh, we encounter two marginally stable eigenvalues with negative Krein
signature, which allows us to conclude spectral stability, by instability index count.

Let us mention that an approach similar to the one offered here definitely fails in
the case of periods 2nT, n = 2, . . . . Even for the standard case of the cubic NLS, the
stability of dnoidal waves in the spaces L2[−nT, nT ] [4, 8] uses additional structure,
like higher order conservation laws, available only for this specific model. This is
unlikely to work in this case, so we leave this question for future investigation.

The plan of the paper is as follows. In section 2, we start with the details of the
construction for the case α = 0, h > 0 and the nonexistence of stationary waves for
h = 0, α > 0. Then, we present the spectral properties of the linearized operators

1Note that by Proposition 5 below, the expression under the square root is positive, since
〈L−1

+ ϕ0, ϕ0〉 < 0.
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L±—most of them are well-known from previous investigations, but a few are not
and are necessary for our arguments.2 Next, we extend some of these results by
perturbative methods to the waves ϕh and the operators L±,h. This allows us to
show rigorously the instability of the waves arising for α = 0, namely, ϕh, and we can
in fact compute its single unstable mode to its leading order O(

√
h). In section 3, we

proceed with the construction of the waves in the case 0 < h << 1, α = α0h.
We perform first an informal analysis of the problem. In particular, we show

solvability of an appropriate formally linearized system, which then allows us to set the
nonlinear problem in a way so that the implicit function theorem applies rigorously—
to establish the desired existence of ϕα. In section 4, we study the linearized stability
of the waves ϕα, as explained above.

2. Preliminaries. We first present the proofs of Propositions 1 and 2.

2.1. The stationary waves for h = 0, α > 0 and h > 0, α = 0.

Proof of Proposition 1. Let ϕα = ϕα,1 + iϕα,2 be a solution of (1.4). Then, we
have

(2.1)

∣∣∣∣∣∣
ϕ
′′

α,1 − ϕα,1 + 2(ϕ2
α,1 + ϕ2

α,2)ϕα,1 − αϕα,2 = 0,

ϕ
′′

α,2 − ϕα,2 + 2(ϕ2
α,1 + ϕ2

α,2)ϕα,2 + αϕα,1 = 0.

Denoting the second order self-adjoint differential operator L := −∂2
x + 1 −

2(ϕ2
α,1 + ϕ2

α,2), we see that (2.1) is a relationship in the form∣∣∣∣ L[ϕα,1] = −αϕα,2,
L[ϕα,2] = αϕα,1.

Thus, applying L to to first equation, we obtain L2[ϕα,1] = −α2ϕα,1. By taking a
dot product with ϕα,1, we obtain

0 ≤ ‖Lϕα,1‖2 = 〈L2[ϕα,1], ϕα,1〉 = −α2‖ϕα,1‖2 < 0,

which is a contradiction.

Proof of Proposition 2. We integrate once (1.5) to get

(2.2) ϕ′2 = −ϕ4 + ϕ2 − 2hϕ− c,

where c is a constant of integration. Recall that our interest is in the regime 0 <
h << 1. We demand that ζ1 < ζ2 < ζ3 < ζ4 are four real roots of the polynomial
z4 − z2 + 2hz + c. Then, we rewrite (2.2) in the form

(2.3) ϕ′2 = (ζ4 − ϕ)(ϕ− ζ1)(ϕ− ζ2)(ϕ− ζ3).

The solution of (2.3) is given by (1.7), where

(2.4)

∣∣∣∣∣∣∣∣
ζ1 + ζ2 + ζ3 + ζ4 = 0,
ζ1ζ2 + ζ1ζ3 + ζ1ζ4 + ζ2ζ3 + ζ2ζ4 + ζ3ζ4 = −1,
ζ1ζ2ζ3 + ζ1ζ2ζ4 + ζ2ζ3ζ4 + ζ1ζ3ζ4 = −2h,
ζ1ζ2ζ3ζ4 = c.

2Some of the more technical calculations are actually left for the appendix; see Proposition 8.
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484 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

These are the solutions that we shall be interested in. These solutions have been
found in the Lugiato–Lefever context in [1] and [16] (see also [15]). In the whole line
case, the explicit formulas appear, for example, in [1].

The current construction gives us a parametrization in terms of c, h. We now
comment on the range of c, for which the condition that the polynomial z4−z2+2hz+c
has four different and real roots. At least for h = 0, this is easy to characterize.
Namely, the quartic has four real roots exactly when c ∈ (0, 1

4 ). Then, for 0 < h << 1,
we clearly must require that c ∈ (0, 1

4 ) within an error of O(h).
For future purposes, however, it will be beneficial to parametrize the waves in

terms of a different set of parameters m,h, where m = min−T≤x≤T ϕ(x). In fact, m is
exactly the root ϕ3 above, since the explicit solution ϕ varies in the interval [ϕ3, ϕ4],
and hence c = −m4 +m2 − 2hm.

We proceed as follows—set ϕ = m + ψ in (2.2), whence we require that ψ ≥ 0
and we obtain the following equation for ψ:

(2.5) (ψ′)2 = ψ[−ψ3 − 4mψ2 + (1− 6m2)ψ + (2m− 4m3 − 2h)].

In order for such ψ to exist, we clearly need (2m − 4m3 − 2h) > 0, that is, m ∈
(0, 1√

2
) within O(h). Note that this is consistent with the relations c ∈ (0, 1

4 ) and

c = −m4 + m2 within O(h). In addition, the polynomial z → −z3 − 4mz2 +
(1 − 6m2)z + (2m − 4m3 − 2h) has a positive root—denote the smallest positive
root by ψ1. In this case there is unique solution to the equation

(2.6) ψ′ = −
√
ψ[−ψ3 − 4mψ2 + (1− 6m2)ψ + (2m− 4m3 − 2h)],−T ≤ x ≤ T,

which satisfies the following:
• ψ is even, decaying in [0, T ] (and so ψ′(0) = 0),
• ψ(0) = ψ4 − ψ3, ψ(T ) = 0,

since ψ(0) = ϕ(0) −m = ψ4 − ψ3. Now, it is much easier to parametrize the roots
ζ1, . . . , ζ4, which will be useful in what follows. Take again h = 0, and then the final
result will be within O(h). We have the equation

z4 − z2 = −c = m4 −m2.

This has solutions z1,2 = ±m, z3,4 = ±
√

1−m2. By the restriction, m ∈ (0, 1√
2
), we

have that
√

1−m2 > m, whence we arrive at (1.9).
We now compute the range of the T = Tc,h. As it is a continuous function of c, h,

it will cover an interval, so we aim at computing its endpoints, modulo errors O(h),
as h will be small in the applications. It is worth rewriting an equivalent definition of
the roots, in order to discuss the asymptotics of κ, g, which enter the formula for the
period. We have

ζ4 =

√
1

2
+

√
1

4
− c− 2hζ4, ζ3 =

√
1

2
−
√

1

4
− c− 2hζ3,

ζ2 = −

√
1

2
−
√

1

4
− c− 2hζ2, ζ1 = −

√
1

2
+

√
1

4
− c− 2hζ1.

Clearly, as c → 1
4 , we have that ξ4, ξ3 → 1√

2
+ O(h), ξ2, ξ1 → − 1√

2
+ O(h), so

κ→ O(h), g →
√

2 +O(h). So, using that limκ→0K(κ) = π
2 , we conclude that in this
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STABLE FREQUENCY COMBS IN PERIODIC WAVEGUIDES 485

limit, limc→ 1
4
Tc,h = 2−3/4π + O(h). For the other limit, as c → 0 and small enough

h, write

1− κ2 =
(ζ4 − ζ1)(ζ3 − ζ2)

(ζ4 − ζ2)(ζ3 − ζ1)
.

Note that (ζ4−ζ1) = 2+O(h), ζ4−ζ2 = 1+O(h), ζ3−ζ1 = 1+O(h), so g = 2+O(h).
Note, however, that

ζ3 =

√
1

2
−
√

1

4
− c− 2hζ3 =

√√√√ c+ 2hζ3

1
2 +

√
1
4 − c− 2hζ3

≥
√
c+ 2hζ3.

In addition, ζ3 − ζ2 ≥ ζ3. Thus, the expression ζ3 − ζ2 is minimized, exactly at
c = 0, ζ2 = 0, in which case ζ3(0, h) = 2h + O(h2). Plugging this in the formula
T0,h =

√
gK(κ(0, h)), we obtain

T0,h = (21/4 +O(h))K(1− 4h+O(h2)).

Note that since limx→0+ xK(1−x) = π
2 , we conclude that T0,h = 2−

11
4
π
h+O(1). Thus,

we see that the period sweeps the interval T ∈ (2−3/4π +O(h), 2−
11
4
π
h +O(1)).

We now give the basic spectral properties of the linearized operators associated
with ϕh.

2.2. Spectral properties. Before listing these properties, let us state them in
the easier case h = 0, of which we bifurcate as h 6= 0.

Proposition 5. The linearized operators L± satisfy the following spectral prop-
erties:

• L− ≥ 0 with L−[ϕ0] = 0, L−|{ϕ0}⊥ > 0,
• n(L+) = 1, L+[ϕ′0] = 0 and 0 is a simple eigenvalue for L+.

In addition, the following two relations hold:

〈L−1
+,0ϕ0, ϕ0〉 < 0, 〈L−1

+,0[1], ϕ0〉 = 0.

Remark. The condition 〈L−1
+,0ϕ0, ϕ0〉 < 0 is equivalent to the stability of the wave

ϕ0, in the context of the periodic NLS problem (1.2), with h = 0.

Proof. Note that ϕ0 satisfies (1.2) with h = 0, and hence L−[ϕ0] = 0. Since
ϕ0 > 0, it follows by the Sturm–Liouville theory that L− ≥ 0 and 0 is the bottom of
the spectrum and L−,0|{ϕ0}⊥ > 0.

Next, we show the properties of L+. By differentiating the profile equation (1.5),
L+[ϕ′0] = 0, that is, 0 is an eigenvalue for L+. Since

〈L+ϕ,ϕ〉 = −4

∫ T

−T
ϕ4

0(x)dx < 0,

it follows that L+ has a negative eigenvalue. Since ϕ′0 has exactly one change of sign,
it follows that there is a unique simple negative eigenvalue, so n(L+) = 1.

Finally, it remains to show that Ker[L+] = span{ϕ′0}. In order to do that, we
will show that the second independent solution of the equation L+[g] = 0 does not
belong to the space L2

per.[−T, T ]. Normally, such a solution g can be written down by
the reduction of order formula as follows:

g(x) = ϕ′0(x)

∫ x

a

1

(ϕ′0(y))2
dy.
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486 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

The problem is that such a formula blows up whenever the interval of integration
contains 0. So, we use an alternative description of the eigenfunction, due to Rofe-
Beketov (see [20, Exercise 5.11, p. 154]),

g(x) = ϕ′0(x)

∫ x

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy − ϕ′′0(x)

(ϕ′0(x))2 + (ϕ′′0(x))2
.

This function is well-defined and satisfies L+,0[g] = 0. In order to show that the
eigenvalue at zero is simple, it suffices to prove that g is not 2T periodic. Clearly, the
second part of the formula in g is 2T periodic, so we concentrate on showing that the
first piece, g1(x), is nonperiodic. In fact, g1(−T ) = g1(T ), since ϕ′0(T ) = ϕ′0(−T ) = 0.

We show that in fact g′1(−T ) 6= g′1(T ). Since, ϕ′′0(−T ) = ϕ′′0(T ) 6= 0, it suffices to
show that∫ T

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy 6=

∫ −T
0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy.

Since the integrand is even, this is equivalent to

(2.7)

∫ T

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy 6= 0.

We postpone the verification of (2.7) and the proofs of 〈L−1
+,0ϕ0, ϕ0〉 < 0 and

〈L−1
+,0ϕ0, 1〉 = 0 to the appendix. The computations are somewhat long and tech-

nical, but otherwise standard.

We now continue with our investigation of the behavior of L± when 0 < h << 1.
By a simple differentiation of (1.5), we still obtain, even for h 6= 0, L+,h[ϕ′] = 0, so
0 is still an eigenvalue. This is of course due to the translational invariance, which is
preserved even after adding h.

2.3. The waves ϕh and their linearized operators L±,h. In order to set
the stage for our later considerations, it is helpful to observe that given the relations
(1.9),

ϕh = ϕ0 +O(h), L±,h = L±,0 +OB(L2)(h), λj(L±,h) = λj(L±) +O(h),

where we have used the notation λ0(L) ≤ λ1(L) ≤ . . . to enumerate the eigenvalues of
a self-adjoint operator L bounded from below, in an increasing order. In particular, it
follows that λ0(L+,h) = λ0(L+) +O(h) < 0 for small values of h, whereas λ1(L+,h) =
0, while λ2(L+,h) = λ2(L+)+O(h) > 0. Thus, the structure of the spectrum for L+,h

is the same as L+ as described in Proposition 5. In particular, the operator L+,h has
a one dimensional kernel, spanned by ϕ′h, and it is hence invertible on the subspace
of even functions.

Our next result concerns the structure of L−,h when h 6= 0. Note that the
modulational invariance is lost after the addition of h, which is why the zero eigenvalue
for L− is expected to move away from zero once we turn on the h parameter. Let us
record the formula L−,hϕh = h, which is just a restatement of (1.5). We have the
following lemma.

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

29
.2

37
.3

5.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Lemma 1. There exists h0 > 0, so that for all |h| < h0, we have the following
formulas:

ϕh = ϕ0 + hL−1
+ [1] +O(h2),(2.8)

λ0(L−,h) =

∫ T
0
ϕ0(x)dx∫ T

0
ϕ2

0(x)dx
h+O(h2),(2.9)

ϕ̃h = ϕ0 + L−1
−

[
4ϕ2

0L
−1
+ [1] +

∫ T
0
ϕ0(x)dx∫ T

0
ϕ2

0(x)dx
ϕ0

]
h+O(h2),(2.10)

where3 ϕ̃h : L−,h[ϕ̃h] = λ0(L−,h)ϕ̃h is the ground state of L−,h. In particular, L−,h >
0 for 0 < h << 1.

Remark. A simple perturbation argument shows that λ1(L−,h) = λ1(L−)+O(h),
which is well-separated from zero.

Proof. By differentiating with respect to h the profile equation, we obtain
L+,h[∂hϕh] = 1. As a consequence, since we know Ker[L+,h] = span[ϕ′h] (and hence
1 ⊥ Ker[L+,h]),

∂hϕh = L−1
+,h[1] + δϕ′h

for some δ. We claim δ = 0. Indeed, we know that ϕh is an even function, and so
is ∂hϕh. Clearly L+,h (and its inverse on Ker[L+,h]⊥) acts invariantly on the even
subspace, so L−1

+,h[1] is even as well. Thus, the odd piece δϕ′h is actually zero, whence
δ = 0. Thus,

(2.11) ϕh = ϕ0 + hL−1
+,h[1] +O(h2).

Next, since L− has a simple eigenvalue at zero, L−,h has a single eigenvalue close to
zero, in the form λ0(L−,h) = ah + O(h2). Say the corresponding eigenfunction is in
the form ϕ0 + hz, z ∈ H2[−T, T ]. Thus,

(2.12) L−,h[ϕ0 + hz] = ah(ϕ0 + hz).

However, by (2.11),

L−,h = −∂2
x + 1− 2ϕ2

h = −∂2
x + 1− 2ϕ2

0 − 4hL−1
+,h[1]ϕ0 +O(h2)

= L−5− 4hϕ0L−1
+,h[1] +O(h2).

By taking the first order in h terms in (2.12), we obtain

L−[z] = 4ϕ2
0L−1

+,h[1] + aϕ0.

Now, take dot product with ϕ0. Note that since 1 ⊥ Ker[L+,h], we have that L−1
+,h[1] =

L−1
+ [1] +O(h). Since 〈L−[z], ϕ0〉 = 〈z, L−[ϕ0]〉 = 0, we obtain the relation

a‖ϕ0‖2 + 4〈ϕ3
0, L
−1
+ [1]〉 = 0.

Thus, a = − 4
‖ϕ0‖2 〈L

−1
+ [ϕ3

0], 1〉. However, the profile equation can be rewritten as

L+[ϕ0] = −4ϕ3
0,

3The quantity

(
4ϕ2

0L
−1
+ [1] +

∫ T
0 ϕ0(x)dx∫ T
0 ϕ2

0(x)dx
ϕ0

)
⊥ ϕ0, whence L−1

− is well-defined.

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

29
.2

37
.3

5.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

488 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

whence L−1
+ [ϕ3

0] = − 1
4ϕ0 + δϕ′0 and

a =

∫ T
−T ϕ0(x)dx∫ T
−T ϕ

2
0(x)dx

> 0.

Also,

z = L−1
−,0

[
4ϕ2

0L
−1
+ [1] +

∫ T
−T ϕ0(x)dx∫ T
−T ϕ

2
0(x)dx

ϕ0

]
+O(h),

which is (2.10).

Next, we linearize about ϕh. Let u(t, x) = ϕh(x) + v(t, x), where v is a complex-
valued function. Plugging this in (1.2) and ignoring the contributions of all terms in
the form O(v2), we obtain

−v2t + v1xx − v1 + 6ϕ2
hv1 = 0,

v1t + v2xx − v2 + 2ϕ2
hv2 = 0.

This is clearly in the form

J
(
L+,h 0
0 L−,h

)(
v1

v2

)
=

(
v1t

v2t

)
,

where J = ( 0 1
−1 0 ). Introduce Lh := (

L+,h 0
0 L−,h ). Taking the ansatz ( v1v2 )→ eλt( llv1v2 ),

(2.13) JLh
(
v1

v2

)
= λ

(
v1

v2

)
.

Thus, the stability of the wave ϕh is determined from the eigenvalue problem (2.13).
Following the usual notions of spectral stability, we say that the wave is spectrally
stable if (2.13) has no nontrivial solutions (that is, ~v 6= 0), (λ,~v) : ~v ∈ H2[−T, T ] with
<λ > 0.

2.4. Proof of Proposition 4. As an immediate consequence of the results of
Lemma 1, we can conclude the instability for the eigenvalue problem (2.13). Indeed,
we have that n(Lh) = n(L+,h) + n(L−,h) = 1, while Ker[L−,h] = {0}, Ker[L+,h] =
span[∂xϕh]. In addition, since 〈L−1

−,h[∂xϕ
h], ∂xϕ

h〉 > 0, by the positivity of L−,h
(whence L−1

−,h > 0), we conclude n(D) = n(〈L−1
−,h[∂xϕh], ∂xϕh〉) = 0. By the instability

index counting theory, we conclude that the eigenvalue problem (1.9) has a single real
unstable eigenvalue for all small values of h. This completes the proof of Proposition
4.

2.5. A precise asymptotic for the unstable eigenvalue. For the purposes
of the analysis of the full problem (that is, with h 6= 0, α 6= 0), we need to compute
the unstable eigenvalue of the eigenvalue problem (2.13), at least to leading order in
h.

To this end, for the spectral analysis of (2.13), we are looking to find the pair λ =
0, ~v = ( 0

ϕ0
), which solves (2.13) for h = 0. In other words, we claim that the instability

established in Proposition 4 is due to the bifurcation of the zero eigenvalue, present
at h = 0 and corresponding to the modulational invariance. Due to the Hamiltonian
symmetries, this multiplicity two eigenvalue at zero splits into one positive and one
negative eigenvalues, once h > 0.
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Multiplying (2.13) by J and taking the ansatz v2 = ϕh + hz, z ∈ L2
even[−T, T ]

(and observing that L+,h is invertible on the even subspace), we obtain

(2.14) L−,h[ϕh + hz] = −λ2L−1
+,h[ϕh + hz].

Taking into account L−,h[ϕh] = h and L−1
+,h[ϕh] = L−1

+ [ϕ0] +O(h), we arrive at

(2.15) h(1 + L−,h[z]) = −λ2[L−1
+ [ϕ0] + F (h, z)], F (h, z) = O(h) +O(z).

It becomes clear that the ansatz for the eigenvalue λ must be in the form λ = a
√
h+

O(h), whence by taking dot product of (2.15) with ϕh, and taking only O(h) terms

−a2〈L−1
+ ϕ0, ϕ0〉 =

∫ T

−T
ϕ0(x)dx.

Recalling 〈L−1
+ ϕ0, ϕ0〉 < 0, we derive the formula

a =

√√√√ ∫ T
−T ϕ0(x)dx

−〈L−1
+ ϕ0, ϕ0〉

> 0.

Furthermore, (2.15) is solvable for small h, by the inverse function theorem. In this
way, we have rigorously shown the following, more precise and quantitative, version
of Proposition 4.

Proposition 6. There exists h0 > 0, so that for all h : 0 < h < h0, the eigen-
value problem (2.13) has the unstable eigenvalue in the form

λh =

√√√√ ∫ T
−T ϕ0(x)dx

−〈L−1
+ ϕ0, ϕ0〉

√
h+O(h).

Beyond this point λh, the rest of the spectrum is stable. In fact,

σ(JLh) \ {λh,−λh} ⊂ iR.

3. The construction of the waves for 0 < h << 1, 0 < α << 1. We
now proceed with the construction of the waves in the regime where both parameters
h, α are turned on. We henceforth assume h > 0. In addition, we wish to keep the
solutions in the even class.

Let ϕα(x) = ϕα,1 + iϕα,2 be a solution of (1.2). That is,

(3.1)

∣∣∣∣∣∣
ϕ
′′

α,1 − ϕα,1 + 2(ϕ2
α,1 + ϕ2

α,2)ϕα,1 = αϕα,2 − h,

ϕ
′′

α,2 − ϕα,2 + 2(ϕ2
α,1 + ϕ2

α,2)ϕα,2 = −αϕα,1.

For a more symmetric formulation, introduce

ϕ̃1 := ϕα,1 + ϕα,2, ϕ̃2 := ϕα,1 − ϕα,2.

We have the equations

(3.2)

∣∣∣∣∣∣
ϕ̃
′′

1 − ϕ̃1 + (ϕ̃2
1 + ϕ̃2

2)ϕ̃1 = −αϕ̃2 − h,

ϕ̃′′2 − ϕ̃2 + (ϕ̃2
1 + ϕ̃2

2)ϕ̃2 = αϕ̃1 − h.
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Introducing the operator L̃ = −∂2
x + 1− (ϕ̃2

1 + ϕ̃2
2) = −∂2

x + 1− 2(ϕ2
α,1 +ϕ2

α,2), we can

rewrite the previous relations in the form L̃[ϕ̃1] = αϕ̃2 + h, L̃[ϕ̃2] = h − αϕ̃1. Apply
L̃ to the first equation. We obtain

(3.3)

∣∣∣∣ (L̃2 + α2)[ϕα,1] = hL̃[1],

(L̃2 + α2)[ϕα,2] = αh.

It is now useful to perform some analysis in the regime h << 1. If L̃ does not
have any eigenvalues close to zero, that is, L̃2 ≥ δ2, δ = O(1), we will have from (3.3)
that ϕα,1 = O(h), ϕα,2 = O(h), whence we have L̃ = −∂2

x + 1 + O(h). In this case,
one can show that (3.3) has (small) solutions, given approximately by

(3.4)

∣∣∣∣ ϕα,1 = h(−∂2
x + 1)−1[1] +O(h2),

ϕα,2 = αh(−∂2
x + 1)−2[1] +O(h2).

So, we have shown the following.

Proposition 7 (existence of small solutions). There exists h0 > 0, so that for
all 0 < h < h0, α > 0 there exists a solution of (3.3), in the form (3.4).

Unfortunately, these solutions are not very useful from a practical point of view,
since they are small. On the other hand, one can show that they are spectrally stable
in a straightforward manner. Indeed, this follows once we recall the observation above
that L̃ = −∂2

x + 1 +O(h) is a strictly positive operator. Then, it is easy to conclude
the stability of the linearization around the solutions (3.4).

3.1. O(1) solutions of (3.2)—An informal analysis of the profile equa-
tion. As we have mentioned above, we shall use h as a small parameter, by taking
α := α0h, α0 = O(1). Next, we assume that (3.2) (or equivalently (3.3)) has a solu-
tion. In addition, we model L̃ to be a small perturbation of L−. In particular, it has
a small and simple eigenvalue close to zero. This is needed in order to produce O(1)
solutions of (3.3). Denote the small eigenvalue by σh = σ0h + O(h2), with a corre-
sponding eigenfunction ϕh = ϕ0 + O(h). In addition, the next eigenvalue is positive
and order O(1).

By projecting (3.3) onto ϕh and its complementary subspace {ϕh}⊥, we arrive at
the formula

ϕα,1 =
hσ

σ2 + α2

〈1, ϕh〉
‖ϕh‖2

ϕh + q1, q1 = O(h), q1 ∈ {ϕh}⊥,(3.5)

ϕα,2 =
αh

σ2 + α2

〈1, ϕh〉
‖ϕh‖2

ϕh + q2, q2 = O(h2), q2 ∈ {ϕh}⊥.(3.6)

One can in principle continue with the construction of ϕα,1, ϕα,2 based on (3.5) and
(3.6), but it becomes hard to keep track of the expansion of σh in powers of h.
Instead, we will pass to the known waves ϕ0, since we have a good understanding of
the operator L−. More precisely, we take the ansatz

ϕα,1 = (a0 + a1h+O(h2))ϕ0 + hΨ1, Ψ1 ⊥ ϕ0,(3.7)

ϕα,2 = (b0 + b1h+O(h2))ϕ0 + hΨ2, Ψ2 ⊥ ϕ0.(3.8)

Comparing the expansions (3.5) with (3.7) (and (3.6) with (3.8), respectively), we
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have the formula

a0 =
σ0

σ2
0 + α2

0

〈1, ϕ0〉
‖ϕ0‖2

,(3.9)

b0 =
α0

σ2
0 + α2

0

〈1, ϕ0〉
‖ϕ0‖2

.(3.10)

Next, using the form of the operator L̃, we have

L̃ = −∂2
x + 1− 2(ϕ2

α,1 + ϕ2
α,2) = −∂2

x + 1− 2(a2
0 + b20)ϕ2

0 +O(h).

Since we expect that L̃ is a perturbation of L−, we must require a2
0 + b20 = 1. This,

together with (3.9) and (3.10), implies that σ0 is completely determined by α0 and in
fact,

(3.11) σ2
0 + α2

0 =
〈1, ϕ0〉2

‖ϕ0‖4
.

We can rewrite (3.2) equivalently as follows:

(3.12) (L̃ − iα)[i(ϕα,1 + ϕα,2) + (ϕα,1 − ϕα,2)] = h(1 + i).

Denoting q := i(ϕα,1 + ϕα,2) + (ϕα,1 − ϕα,2), we can write L̃ = −∂2
x + 1 − |q|2. In

addition, q has the representation

(3.13) q = (c0 + c1h+O(h2))ϕ0 + hΨ, Ψ ⊥ ϕ0,

where clearly c0 = i(a0 +b0)+(a0−b0) can be expressed in terms of α0. For example,
|c0|2 = 2(a2

0 + b20) = 2. Compute

|q|2 = |c0|2ϕ2
0 + 2hϕ2

0<[c0c̄1] + hϕ0[c0Ψ̄ + c̄0Ψ] +O(h2) = 2ϕ2
0 + hVΨ +O(h2),

upon introducing VΨ := 2ϕ2
0<[c0c̄1] + ϕ0[c0Ψ̄ + c̄0Ψ]. It follows that

L̃ = −∂2
x + 1− |q|2 = L− − hVΨ +O(h2),

whence (3.12) becomes

(3.14) (L− − h(VΨ + iα0) +O(h2))((c0 + c1h+O(h2))ϕ0 + hΨ) = h(1 + i).

In order to resolve this equation, we need to go in powers of h. The terms with power
h0 are clearly absent, due to L−[ϕ0] = 0, which is just the profile equation. For the
first order in h terms, we have the equation

(3.15) L−Ψ− (VΨ + iα0)c0ϕ0 = 1 + i.

Taking (3.15), and its complex conjugate, and in addition the form of VΨ and |c0|2 = 2,
we arrive at the system
(3.16)(

−∂2
x + 1− 4ϕ2

0 −c20ϕ2
0

−c̄20ϕ2
0 −∂2

x + 1− 4ϕ2
0

)(
Ψ
Ψ̄

)
=

(
1 + i+ iα0c0ϕ0 + 2ϕ3

0c0<[c0c̄1]
1− i− iα0c̄0ϕ0 + 2ϕ3

0c̄0<[c0c̄1]

)
.

Diagonalizing the system leads to the equations

L+[c̄0Ψ + c0Ψ̄] = c0 + c̄0 + i(c̄0 − c0) + 8ϕ3
0<[c0c̄1],(3.17)

L−[−c̄0Ψ + c0Ψ̄] = c0 − c̄0 − i(c0 + c̄0)− 4iα0ϕ0.(3.18)
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Note that one solvability condition for (3.18) is exactly 〈c0−c̄0−i(c0+c̄0)−4iα0ϕ0, ϕ0〉
= 0. Elementary computations show that this is equivalent to b0〈1, ϕ0〉 = α0‖ϕ0‖2,
which is exactly the relation (3.10) and (3.11).

The other relation is that since Ψ ⊥ ϕ0, we need to have c̄0Ψ + c0Ψ̄ ∈ {ϕ0}⊥.
This imposes the relation, from (3.17), L−1

+ [c0 + c̄0 + i(c̄0− c0) + 8ϕ3
0<[c0c̄1]] ∈ {ϕ0}⊥

or equivalently

[c0 + c̄0 + i(c̄0 − c0)]〈L−1
+ [1], ϕ0〉+ 8<[c0c̄1]〈L−1

+ [ϕ3
0], ϕ0〉 = 0.

In fact, since 〈L−1
+ [1], ϕ0〉 = 0 and 〈L−1

+ [ϕ3
0], ϕ0〉 = − 1

4 〈ϕ0, ϕ0〉 6= 0, it follows that
<[c0c̄1] = 0. It even looks as if we have one degree of freedom, since c1 is complex
valued (and hence two parameters are involved). In the actual nonlinear problem,
however, we need to involve a higher order solvability condition for (3.18), which will
finally yield the right number of equations.

3.2. Solutions of (3.2)—Rigorous construction. We now set up the full
nonlinear problem (3.2), with 0 < h << 1, in the equivalent formulation (3.12). More
precisely, armed with the results from our informal analysis, we set the unknown
function

q = ϕα,1 − ϕα,2 + i(ϕα,1 + ϕα,2) ∈ L2
per.[−T, T ]

in the form

q = (c+ dh)ϕ0 + hΨ,Ψ ⊥ ϕ0, c = a0 − b0 + i(a0 + b0),

and a0, b0 are given by (3.9), (3.10), and (3.11) in terms of α0. Note that |c|2 = 2.

Also, in accordance with (3.11), we require α0 : 0 < α0 <
〈1,ϕ0〉
‖ϕ0‖2 .

Now that we have set q (and in particular a0, b0), we are looking for a scalar
function d = d(h) and a function Ψ(h) ∈ {ϕ0}⊥, so that (3.12) holds. We compute

|q|2 = 2ϕ2
0 + hV + h2[|d|2ϕ2

0 + ϕ0(dΨ̄ + d̄Ψ) + |Ψ|2],

where
V = 2ϕ2

0<[cd̄] + 2ϕ0<[cΨ̄]

is a real-valued function as before. Introduce the real-valued function

G = G(d,Ψ) = |d|2ϕ2
0 + ϕ0(dΨ̄ + d̄Ψ) + |Ψ|2.

We thus have a formula for L̃ as follows:

L̃ = −∂2
x + 1− |q|2 = −∂2

x + 1− 2ϕ2
0 − hV − h2G = L− − hV − h2G.

Plugging this into (3.12), we obtain the following relation:

(3.19) (L− − h(V + iα0)− h2G)[(c+ dh)ϕ0 + hΨ] = h(1 + i).

After some algebraic manipulations, we obtain

(3.20) L−Ψ− c(V + iα0)ϕ0− (1 + i)−h[(V + iα0)(dϕ0 + Ψ) + cϕ0G] = h2G(d,Ψ)Ψ.

Similar to the derivation of (3.16), we take (3.20) and its complex conjugate to obtain
the following nonlinear in h system of equations:(

−∂2
x + 1− 4ϕ2

0 −c2ϕ2
0

−c̄2ϕ2
0 −∂2

x + 1− 4ϕ2
0

)(
Ψ
Ψ̄

)
=

(
1 + i+ iα0cϕ0 + 2ϕ3

0c<[cd̄]
1− i− iα0c̄ϕ0 + 2ϕ3

0c̄<[cd̄]

)
+ h

(
(V + iα0)(dϕ0 + Ψ) + cϕ0G
(V − iα0)(d̄ϕ0 + Ψ̄) + c̄ϕ0G

)
+ h2

(
G(d,Ψ)Ψ
G(d,Ψ)Ψ̄

)
.
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Diagonalizing yields the equivalent equations

L+[c̄Ψ + cΨ̄] = 4a0 + 8ϕ3
0<[cd̄] + hE1(h, d,Ψ)(3.21)

L−[−c̄Ψ + cΨ̄] = 4i(b0 − α0ϕ0) + 2ih[V ϕ0=[cd̄](3.22)

+ V =[cΨ̄]− α0ϕ0<[cd̄]− α0<[cΨ̄]] + h2E2,

where E1, E2 are smooth functions of the respective arguments. This is the system
that we need to solve—that is, the goal is to find a neighborhood (0, h0), so that for
every h ∈ (0, h0), there is a scalar function d = d(h) and a function Ψ = Ψ(h) ∈ {ϕ0}⊥,
so that the pair satisfies the previous two relations.

To that end, we shall use the implicit function theorem. It is clear that it is more
convenient to introduce two real variables4 D1 := <[cd̄], D2 := =[cd̄]. Clearly, the
system requires some solvability conditions. We have already established that with
our choice of c, we have that

c− c̄− i(c+ c̄)− 4iα0ϕ0 ⊥ ϕ0.

So, from (3.22), we need to require

0 = 〈V ϕ0=(cd̄) + V =[cΨ̄]− α0ϕ0<[cd̄]− α0<[cΨ̄], ϕ0〉+O(h)

= 〈D2V ϕ0 −D1α0ϕ0 + V =[cΨ̄], ϕ0〉+O(h).

In the last identity, we used that Ψ ⊥ ϕ0, whence by the reality of ϕ0, we have that
Ψ̄ ⊥ ϕ0 as well (and thus any linear combination of Ψ, Ψ̄ is perpendicular to ϕ0).
Thus, we end up requiring

(3.23) 〈D2V ϕ0 −D1α0ϕ0 + V =[cΨ̄], ϕ0〉+O(h) = 0.

Since c̄Ψ + cΨ̄ ⊥ ϕ0 , we need to have

0 = 4a0〈L−1
+ [1], ϕ0〉+ 8D1〈L−1

+ [ϕ3
0], 1〉+O(h).

Recalling that 〈L−1
+ [1], ϕ0〉 = 0 and L+[ϕ0] = −4ϕ3

0, whence L−1
+ [ϕ3

0] = − 1
4ϕ0 and

the previous relation reads

(3.24) − 2D1〈ϕ0, 1〉+O(h) = 0.

The analysis so far allows us to solve the system (3.21), (3.22) for h = 0. Namely,
from (3.24), we infer that

(3.25) D0
1 = 0.

The next step is to find Ψ0, from (3.21) and (3.22), at h = 0. Inverting L+ in (3.21)
and L− in (3.22) and taking the difference, and taking into account that <[cd̄] =
D0

1 +O(h) = O(h), we obtain5

(3.26) Ψ0 =
4a0L

−1
+ [1]− 4iL−1

− [b0 − α0ϕ0]

2c̄
= ca0L

−1
+ [1]− icL−1

− [b0 − α0ϕ0].

Note that Ψ0 ⊥ ϕ0 (as it should be), since L−1
+ [1] ⊥ ϕ0, and Image[L−1

− ] ⊥ ϕ0.

4Recall that c is already fixed in terms of α0, so finding D1, D2 is akin to finding the complex
number d.

5Recall that b0 − α0ϕ0 ⊥ ϕ0, so taking L−1
− is justified. Similarly, with the definition of D0

1 in

(3.25), taking L−1
+ is justified as well.
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Finally, we use (3.23) to determine D0
2. We obtain the formula

(3.27) D0
2〈V 0ϕ0, ϕ0〉 = −〈=[cΨ̄0], V 0ϕ0〉.

We clearly need to compute <[cΨ̄0],=[cΨ̄0]. We have from (3.26),

<[cΨ̄0] = 2a0L
−1
+ [1],

=[cΨ̄0] = 2L−1
− [b0 − α0ϕ0].

According to its definition

V 0 = V (0,Ψ0) = 2ϕ2
0D

0
1 + ϕ0[cΨ̄0 + c̄Ψ0] = 2ϕ0<[cΨ̄0] = 2a0ϕ0L

−1
+ [1].

Consequently, since L−1
+ [ϕ3

0] = − 1
4ϕ0,

(3.28) 〈V 0ϕ0, ϕ0〉 = 4a0〈ϕ3
0, L
−1
+ [1]〉 = −a0〈1, ϕ0〉.

Finally,

〈=[cΨ̄0], V 0ϕ0〉 = 8a0〈ϕ2
0L
−1
+ [1], L−1

− [b0 − α0ϕ0]〉.

From (3.27), we deduce

(3.29) D0
2 = 8

〈ϕ2
0L
−1
+ [1], L−1

− [b0 − α0ϕ0]〉
〈1, ϕ0〉

.

To recapitulate, we have determined, in (3.26), together with D0
1, D

0
2 as deter-

mined above, the unique solutions of (3.21) and (3.22), when h = 0. We now set
up the implicit function argument, which will work in a neighborhood of the solution
h = 0, Ψ0, given by (3.26), and D0

1, D
0
2.

First, we set the solvability condition arising in (3.22), namely, the scalar function6

Q1(h; Ψ, D1, D2) = 2i〈D2V (D1,Ψ)ϕ0 + V =[cΨ̄]− α0ϕ0D1 − α0=[cΨ̄], ϕ0〉
+ h〈E2(h,Ψ, D1, D2), ϕ0〉 = 2i〈D2V (D1,Ψ)ϕ0 + V (D1,Ψ)=[cΨ̄]− α0ϕ0D1, ϕ0〉
+ h〈E2(h,Ψ, D1, D2), ϕ0〉,

where V (D1,Ψ) = 2D1ϕ
2
0 +ϕ0(c̄Ψ+cΨ̄). The other function is constructed as follows:

apply L−1
+ in (3.21) and L−1

− in (3.22) (once we make sure that the right-hand side is
orthogonal to ϕ0). After subtracting and simplifying,

Q2(h; Ψ, D1, D2) = 2c̄Ψ−
[
4a0L

−1
+ [1]− 2D1ϕ0 + hL−1

+ [E1(h; Ψ, D1, D2)]
]

+ 4iL−1
− [b0 − α0ϕ0] + L−1

− [P{ϕ0}⊥ [2ih(D2V (D1,Ψ)ϕ0 −D1α0ϕ0 + V (D1,Ψ)=[cΨ̄]

− α0=[cΨ̄]) + h2E2(h; Ψ, D1, D2)]].

Note that the projection P{ϕ0}⊥ becomes irrelevant, once we impose the condition
Q1(h; Ψ, D1, D2) = 0! On the other hand, we need it in the definition of Q2 to keep
it well-defined, even when Q1(h; Ψ, D1, D2) = 0 is not enforced. We now consider

(Q1, Q2)(h; Ψ, D1, D2) : R× {ϕ0}⊥ ×R×R→ R× L2
per.[−T, T ]

6Here we use again that 〈=[cΨ̄], ϕ0〉 = 0.
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and we would like to solve

(3.30)

∣∣∣∣ Q1(h; Ψ, D1, D2) = 0,
Q2(h; Ψ, D1, D2) = 0.

We again note that if one obtains solutions to (3.30), the projection P{ϕ0}⊥ becomes
irrelevant and the system Q1 = Q2 = 0 becomes equivalent to the system (3.21) and
(3.22). Observe that by our earlier considerations, for h = 0, we have a solution that
is ∣∣∣∣ Q1(0; Ψ0, 0, D0

2) = 0,
Q2(0; Ψ0, 0, D0

2) = 0,

where Q0
2 is given in (3.29). Our construction of the family Ψ(h), D1(h), D2(h) in a

neighborhood of (0, h0) will follow, once we can verify that

d(Q1, Q2)(0; Ψ0, 0, D0
2)[·, ·, ·] : {ϕ0}⊥ ×R×R→ R× L2

per.[−T, T ]

is an isomorphism. That is, for every χ ∈ L2
per.[−T, T ] and z ∈ R, there must be

unique solution ψ ∈ {ϕ0}⊥, d1 ∈ R, d2 ∈ R of the linear system

dQ1(0; Ψ0, 0, D0
2)[ψ, d1, d2] = z,

dQ2(0; Ψ0, 0, D0
2)[ψ, d1, d2] = χ

so that the linear mapping (χ, z)→ (ψ(χ, z), d1(χ, z), d2(χ, z)) is continuous.
First, we compute dQ2(0; Ψ0, 0, D0

2)[ψ, d1, d2] = 2c̄ψ+ 2d1ϕ0. In order to prepare
the calculation for dQ1(0; Ψ0, 0, D0

2)[ψ, d1, d2], observe that

V (D1,Ψ) = 2D1ϕ
2
0 + 2ϕ0<[cΨ̄],

dV (0,Ψ0)(d1, ψ) = 2d1ϕ
2
0 + 2ϕ0<[cψ̄].

Consequently,

dQ1(0; Ψ0, 0, D0
2)[ψ, d1, d2] = 2i〈d2V

0ϕ0 +D0
2(2d1ϕ

2
0 + 2ϕ0<[cψ̄]), ϕ0〉

+ 2i〈(2d1ϕ
2
0 + 2ϕ0<[cψ̄])=[cΨ̄0], ϕ0〉+ 2i〈V 0=[cψ̄], ϕ0〉 − 2iα0d1‖ϕ0‖2.

Now, the equation χ = dQ2(0; Ψ0, 0, D0
2)[ψ, d1, d2] has the form

χ = dQ2(0; Ψ0, 0, D0
2)[ψ, d1, d2] = 2c̄ψ + 2d1ϕ0.

It clearly has the unique solution

d1 =
〈χ, ϕ0〉
2‖ϕ0‖2

, ψ =
1

2c̄
(χ− 2d1ϕ0) ∈ {ϕ0}⊥.

Plugging the expressions for d1 and ψ into the equation dQ1 = z produces a linear
equation for d2, once we take a dot product with ϕ0. More precisely,

d2〈V 0ϕ0, ϕ0〉 =
z

2i
− 〈D0

2(2d1ϕ
2
0 + 2ϕ0<[cψ̄]), ϕ0〉 − 〈(2d1ϕ

2
0 + 2ϕ0<[cψ̄])=[cΨ̄0], ϕ0〉

+ α0d1‖ϕ0‖2 − 〈V 0=[cψ̄], ϕ0〉,

which also has a unique solution, provided the coefficient in front of it, 〈V 0ϕ0, ϕ0〉 6= 0,
is nonzero. But we have already verfied that (see (3.28)). We also see that the solution
d2 depends linearly, through a nice formula on χ, z. It follows that the mapping
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(χ, z) → (ψ, d1, d2) is indeed an isomorphism, in the sense specified above. The
implicit function theorem thus applies and we have constructed the solutions.

It remains to verify the formulas (1.10) and (1.11). First, we have that cd̄ =
D0

1 + iD0
2 +O(h) = iD0

2 +O(h), whence

(3.31) d0 = − ic
2
D0

2 =
a0 + b0

2
D0

2 + i
b0 − a0

2
D0

2.

Thus, starting with the relation ϕα,1 − ϕα,2 + i(ϕα,1 − ϕα,2) = q = (c+ dh)ϕ0 + hΨ,
we deduce

ϕα,1 =

(
a0 +

b0
2
hD0

2

)
ϕ0 + h(a2

0L
−1
+ [1] + b0L

−1
− [b0 − α0ϕ0]) +O(h2),

ϕα,2 =
(
b0 −

a0

2
hD0

2

)
ϕ0 + h(a0b0L

−1
+ [1]− a0L

−1
− [b0 − α0ϕ0]) +O(h2),

which is the final claim in Theorem 1.

4. Stability analysis for the waves. The linearization of (1.2) around the
solution ϕα from Theorem 1 is constructed as follows. Set u = ϕα + v, ϕα = ϕα,1 +
iϕα,2, v = v1 + iv2. After ignoring O(|v|2) terms (and keeping in mind that α = α0h),
we obtain the following system:(
−∂tv2

∂tv1

)
=

(
−∂2

x + 1− (6ϕ2
α,1 + 2ϕ2

α,2) −4ϕα,1ϕα,2
−4ϕα,1ϕα,2 −∂2

x + 1− (2ϕ2
α,1 + 6ϕ2

α,2)

)(
v1

v2

)
+α

(
v2

−v1

)
.

Introduce the self-adjoint operator (with domain H2[−T, T ]×H2[−T, T ])

Nh :=

(
−∂2

x + 1− (6ϕ2
α,1 + 2ϕ2

α,2) −4ϕα,1ϕα,2
−4ϕα,1ϕα,2 −∂2

x + 1− (2ϕ2
α,1 + 6ϕ2

α,2)

)
.

In the eigenvalue ansatz, vj(t, ·)→ eλtzj(·), the problem becomes

(4.1) JNh
(
z1

z2

)
= (λ+ α)

(
z1

z2

)
.

Introducing µ := λ + α, note that (4.1) is a Hamiltonian eigenvalue problem in the
form JNh~z = µ~z, enjoying all the symmetries afforded by the Hamiltonian structure.
Let us record it as

(4.2) JNh
(
z1

z2

)
= µ

(
z1

z2

)
.

In addition, λ = 0 and z1 = ϕ′α,1, z2 = ϕ′α,2 is an eigenvalue (of algebraic multiplicity
two) for (4.1), in accordance with the translational invariance of the system (1.2).

Our task here is a bit unusual in that we need to make a good distinction be-
tween (4.1) and (4.2). More precisely, our goal is to find conditions for (or actually
characterize) the waves that are stable, or equivalently, we need to ensure that the
eigenvalue problem (4.1) and λ satisfy <λ ≤ 0. In terms of µ, the stability is equiv-
alent to <µ ≤ α. Here and below, we use the instability index theory developed for
eigenvalue problems in the form (4.2), which among other things counts eigenvalues
with positive real parts for (4.2). Let us reiterate again that the existence of those
does not necessarily mean instability for (4.1), unless <µ > α = α0h. In fact, we have

already one “instability” for (4.2), namely, an eigenvalue µ = α with e-vector (
ϕ′α,1

ϕ′α,2
).
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To this end, we need to track the evolution of the eigenvalues at zero, as we turn
on h. Before we get on with this task, we need a few preparatory calculations. We
need to compute

W :=

(
6ϕ2

α,1 + 2ϕ2
α,2 4ϕα,1ϕα,2

4ϕα,1ϕα,2 2ϕ2
α,1 + 6ϕ2

α,2

)
in powers of h. Expanding in orders of h, we obtain

W = ϕ2
0

(
2 + 4a2

0 4a0b0
4a0b0 2 + 4b20

)
+ 2hϕ0

(
6a0Ψ0

1 + 2b0Ψ0
2 + 2a0b0D

0
2 2a0Ψ0

2 + 2b0Ψ0
1 + (b20 − a2

0)D0
2

2a0Ψ0
2 + 2b0Ψ0

1 + (b20 − a2
0)D0

2 2a0Ψ0
1 + 6b0Ψ0

2 − 2a0b0D
0
2

)
+O(h2).

Diagonalizing the matrix(
2 + 4a2

0 4a0b0
4a0b0 2 + 4b20

)
= S

(
6 0
0 2

)
S−1

via

S =

(
a0 −b0
b0 a0

)
, S−1 =

(
a0 b0
−b0 a0

)
leads to the representation

W = S

[
ϕ2

0

(
6 0
0 2

)
+ 2hϕ0[Ψ0

1

(
6a0 −2b0
−2b0 2a0

)
+ Ψ0

2

(
6b0 2a0

2a0 2b0

)
−D0

2

(
0 1
1 0

)
]

]
S−1 +O(h2).

Upon the introduction of the new variables(
Z1

Z2

)
= S−1

(
z1

z2

)
,

and since S−1J S = J , we can rewrite the eigenvalue problem (4.2) in the form

JMh

(
Z1

Z2

)
= µ

(
Z1

Z2

)
,(4.3)

where

Mh =

(
L+ 0
0 L−

)
− 2hϕ0

[
Ψ0

1

(
6a0 −2b0
−2b0 2a0

)
+ Ψ0

2

(
6b0 2a0

2a0 2b0

)
−D0

2

(
0 1
1 0

)]
+O(h2).

Note thatNh = SMhS
−1 and JNh = SJMhS

−1, so the spectra of the full linearized
operator, JNh, is equivalent to JMh. Also, σ(Nh) is equivalent to σ(Mh).

Since the two problems are equivalent, we note that the form (4.3) of the eigen-
value problem is more suggestive of our approach. For h = 0, we have two dimensional
Ker[M0], spanned by the vectors is7 ( ϕ

′
0

0
) and ( 0

ϕ0
). We need to see what the evolu-

tion of the modulational eigenvalue is as h : 0 < h << 1, i.e., the one corresponding
to the eigenvector ( 0

ϕ0
). This is because, by index counting theory, the instability can

only appear in the even subspace of the problem. Also, we can clearly consider Mh

instead of Lh as the two operators are similar through the matrix S.

7Both vectors have one additional generalized eigenvector, so an algebraic multiplicity four at
zero.
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4.1. Tracking the modulational eigenvalue for Nh 0 < h << 1. Since
Nh is similarlily equivalent toMh, we might as well considerMh instead. We set up
the following ansatz for the eigenvalue problem for Mh:

(4.4) Mh

(
hp1

ϕ0 + hp2

)
= σh

(
hp1

ϕ0 + hp2

)
.

Using the precise form of Mh, to the leading order h, we have

L+p1 + 2ϕ2
0(2b0Ψ0

1 − 2a0Ψ0
2 −D0

2) = 0,

L−p2 − 4ϕ2
0(a0Ψ0

1 + b0Ψ0
2) = σϕ0.

The first equation is resolvable, since 2ϕ2
0(2b0Ψ0

1 − 2a0Ψ0
2 − D0

2) is even and hence
perpendicular to Ker[L+] = span[ϕ′0]. The solvability condition for the second one,
σϕ0 + 4ϕ2

0(a0Ψ0
1 + b0Ψ0

2) ⊥ ϕ0, is what yields the formula for σ0, namely,

(4.5) σ0 = −4
〈ϕ2

0(a0Ψ0
1 + b0Ψ0

2), ϕ0〉
‖ϕ0‖2

= −4a0
〈L−1

+ [1], ϕ3
0〉

‖ϕ0‖2
= a0

〈1, ϕ0〉
‖ϕ0‖2

,

since a0Ψ0
1 + b0Ψ0

2 = a0L
−1
+ [1] and L−1

+ [ϕ3
0] = − 1

4ϕ0.
In conclusion, the modulational eigenvalue at zero for h = 0 has moved to the left

for a0 < 0, while it moves to the right for a0 > 0.

4.2. Tracking the modulational eigenvalue for JNh 0 < h << 1. Taking
cues from the proof of Proposition 6, we take the following ansatz for the former
modulation eigenvalue at zero and its corresponding eigenvector ( 0

ϕ0
)—we take µ =

µ0

√
h and ( Z1

Z2
) = (

√
hq1

ϕ0+hq2
). Plugging this in (4.3), we obtain, after some elementary

algebraic manipulations,(
L+ +O(h) O(h)
O(h) L− − 4hϕ0(a0Ψ0

1 + b0Ψ0
2)

)( √
hq1

ϕ0 + hq2

)
= µ0

√
h

(
−ϕ0 − hq2√

hq1

)
.

Resolving the first equation, to its leading order
√
h, yields the relation L+q1 =

−µ0ϕ0, or, since L+ is invertible on ϕ0,

(4.6) q1 = −µ0L
−1
+ [ϕ0] +O(h).

In the second equation, the leading order is h, whence we get the equation

(4.7) L−q2 − 4ϕ2
0(a0Ψ0

1 + b0Ψ0
2) = µ0q1 = −µ2

0L
−1
+ [ϕ0].

This equation is solvable, provided we ensure 4ϕ2
0(a0Ψ0

1 + b0Ψ0
2) − µ2

0L
−1
+ [ϕ0] ⊥ ϕ0,

whence
q2 = L−1

− [4ϕ2
0(a0Ψ0

1 + b0Ψ0
2)− µ2

0L
−1
+ [ϕ0]].

Thus, we have located the former modulational invariance eigenvalue. Namely, it is
µ0

√
h, where µ0 ensures 4ϕ2

0(a0Ψ0
1 + b0Ψ0

2)− µ2
0L
−1
+ [ϕ0] ⊥ ϕ0. Equivalently

(4.8) µ2
0 = 4

〈ϕ2
0(a0Ψ0

1 + b0Ψ0
2), ϕ0〉

〈L−1
+ ϕ0, ϕ0〉

.

It remains to compute this last expression. We have

µ2
0 = 4

〈ϕ3
0, a0Ψ0

1 + b0Ψ0
2〉

〈L−1
+ ϕ0, ϕ0〉

= 4
a0

〈L−1
+ ϕ0, ϕ0〉

〈ϕ3
0, L
−1
+ [1]〉 = −a0

〈ϕ0, 1〉
〈L−1

+ ϕ0, ϕ0〉
.
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Since 〈L−1
+ ϕ0, ϕ0〉 < 0, we have that sgn(µ2

0) = sgn(a0). In other words, if a0 > 0,
we have the instable mode

(4.9) µ0 =

√
a0〈ϕ0, 1〉

−〈L−1
+ ϕ0, ϕ0〉

√
h+O(h),

while for a0 < 0, we have a marginally stable pairs of eigenvalues

±i

[√
a0〈ϕ0, 1〉
〈L−1

+ ϕ0, ϕ0〉
√
h+O(h)

]
.

4.3. Stable and unstable eigenvalues: Putting it together. Before we
proceed with our arguments, let us discuss our findings so far.

In the case a0 > 0 (or equivalently σ0 > 0), we have an unstable eigenvalue in the
form µ0

√
h+O(h), where µ0 is real and determined from (4.9).

The case where µ0 is purely imaginary is more complicated and it needs extra
arguments, based on our earlier computations of the sign of the eigenvalues and the
index theory. We deal with it below. Henceforth, assume a0 < 0. Note that both the
even and odd subspaces are invariant under the action of Nh and JNh, so we will
consider them separately.

4.3.1. Spectral analysis on the even subspace. In this case, we have estab-
lished the emergence, from the modulational eigenvalue at h = 0 (which has algebraic
multiplicity two), of a pair of marginally stable eigenvalues i[±µ0

√
h+O(h)]. We now

compute the Krein index of this marginally stable pair of eigenvalues8 ±i√µ0

√
h +

O(h).
For a simple pair of eigenvalues, the Krein index coincides with the sign of the

expression 〈<(
√
hq1

ϕ0+hq2
),Mh<(

√
hq1

ϕ0+hq2
)〉 (see [10, p. 267]). To this end, realizing from

(4.6) that q1 is purely imaginary to the leading order (in the case under consideration),〈
<
( √

hq1

ϕ0 + hq2

)
,Mh<

( √
hq1

ϕ0 + hq2

)〉
= −4h〈ϕ0, ϕ

2
0(a0Ψ0

1 + b0Ψ0
2)〉+O(h3/2)

= −4a0h〈ϕ3
0, L
−1
+ [1]〉+O(h3/2) = a0h〈ϕ0, 1〉+O(h3/2).

It follows that for a0 < 0, the problem has a pair of marginally stable eigenvalues
±i[√µ0

√
h+O(h)] with a negative Krein signature.

Recall that n(N0) = n(M0) = 1, which arises in the even subspace. Moreover,
dim(Ker[N0]) = dim(Ker[M0]) = 2, but recall that one of them occurs in the even
subspace, namely, ( 0

ϕ0
), while the other occurs in the odd subspace, namely, ( ϕ

′
0

0
).

In order to alleviate the notation, for a self-adjoint, bounded from below operator
M , acting invariantly on the even and odd subspaces, we introduce Meven/odd :=
M |even/oddsubspace and then neven(M) = n(Meven), and similarly for nodd(M).

We claim that for small enough h > 0, neven(Nh) = 2, due to (4.5). Indeed,
neven(N0) = neven(L+) = 1, according to Proposition 5—this O(1) eigenvalue re-
mains negative, after the perturbation. In addition, as we have shown in (4.5), the
modulational eigenvalue at zero for h = 0 has become negative. Thus, all potentially
negative eigenvalues in the even subspace are accounted for. (Recall the translational

8Which is of course relevant computation, only if b0 > a0.
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eigenvalues appear when one considers the action on the odd subspace.) By the index
counting formulas

0 ≤ nunstable,even(JNh) ≤ n(Nh)−#{λ ∈ iR : λ has negative Krein signature}
≤ neven(Nh)− 2 = 0,

since we have already verified that there is at least one pair of purely imaginary
eigenvalues, ±i√µ0

√
h + O(h) with negative Krein signatures (and even eigenfunc-

tions!). Thus, nunstable,even(JNh) = 0, proving that no instability can occur in the
even subspace. By the Hamiltonian symmetry considerations, σ(JNh) ⊂ iR and
σ(JNh − α) ⊂ −α + iR. This concludes the analysis on the even subspace, and we
have stability there, for a0 < 0.

4.3.2. Spectral analysis on the odd subspace. For the odd subspace, the
index count is somewhat simpler. Recall there is the “unstable” eigenvalue at µ =
α = α0h for the eigenvalue problem (4.3), which corresponds to the translational
invariance; see (4.2) and the discussion immediately after. So, this implies that
nunstable,odd(JNh) ≥ 1. On the other hand, initially nodd(N0) = nodd(M0) = 0.
So, nodd(Nh) ≤ 1 if the translational eigenvalue has moved to the left, or if it has
moved to the right, then9 nodd(Nh) = 0. Applying index counting theory, however,
we have that on the other hand nodd(Nh) ≥ nunstable,odd(JNh), whence

1 ≤ nunstable,odd(JNh) ≤ nodd(Nh) ≤ 1.

In particular, 1 = nunstable,odd(JNh) = nodd(Nh), and so the translational eigenvalue
has moved to the left to become a negative eigenvalue for Nh,odd. In addition, the
“unstable eigenvalue” is exactly the one computed explicitly, namely, µ = α, and there
are no other unstable eigenvalues in the odd subspace. Note that by the Hamiltonian
symmetry the eigenvalues of (4.3) are symmetric with respect to the imaginary axes,
so there is another, stable one at µ = −α. We mention that there is a lot of point
spectrum on the imaginary axes as well, since the problem is of periodic nature and
the resolvents are compact operators, forcing the discreteness of the spectrum.

In terms of the original spectral variables, by combining the conclusions for the
even and odd subspaces, we obtain that if λ ∈ σ(JNh − α), then

λ = µ− α ⊂ {{α} ∪ {−α} ∪ {λ : <λ = 0}} − α = {0} ∪ {−2α} ∪ {λ : <λ = −α}.

This is exactly the statement of Theorem 2 and its proof is now complete.

Appendix A. Tracking the translational eigenvalue for Nh 0 < h << 1.
Again, we work with Mh, since Nh and Mh are equivalent. We set up the following
ansatz for the eigenvalue problem for Mh:

(A.1) Mh

(
ϕ′0 + hp1

hp2

)
= σh

(
ϕ′0 + hp1

hp2

)
.

In other words,(
L+ − 12hϕ0(a0Ψ0

1 + b0Ψ0
2) O(h)

2hϕ0(2b0Ψ0
1 − 2a0Ψ0

2 −D0
2) L− +O(h)

)(
ϕ′0 + hp1

hp2

)
= σh

(
ϕ′0 + hp1

hp2

)
.

9See the appendix for a calculation involving the direction of the move, which turns out to be
inconclusive to its leading order, so this calculation is not sufficient to establish n(Nh) = 1.
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To the leading order h, we have the equations

L+p1 − 12ϕ0(a0Ψ0
1 + b0Ψ0

2)ϕ′0 = σϕ′0,

L−p2 + 2ϕ0(2b0Ψ0
1 − 2a0Ψ0

2 −D0
2)ϕ′0 = 0.

The second equation always has a solution as 2ϕ0(2b0Ψ0
1 − 2a0Ψ0

2 −D0
2)ϕ′0 is an odd

function, so it is perpendicular to Ker[L−] = span[ϕ0].
The first equation requires the solvability condition σϕ′0+12ϕ0(a0Ψ0

1+b0Ψ0
2)ϕ′0 ⊥

ϕ′0. Noting that a0Ψ0
1 + b0Ψ0

2 = a0L
−1
+ [1], we derive the formula for σ0,

(A.2) σ0 = −12
〈ϕ0ϕ

′
0(a0Ψ0

1 + b0Ψ0
2), ϕ′0〉

‖ϕ′0‖2
= −12

a0

‖ϕ′0‖2
〈L−1

+ [1], ϕ0(ϕ′0)2〉.

This quantity can be computed explicitly; in fact 〈L−1
+ [1], ϕ0(ϕ′0)2〉 = 0, see Propo-

sition 8 below. So σ0 = 0. Thus, our analysis is not precise enough10 to compute
explicitly the next order term. As we have shown above, with index counting calcu-
lations, it turns out that this eigenvalue must have moved to the left (of order o(h))
to become a negative one.

Appendix B. Computation of the relevant quantities involving L−1
+ .

Proposition 8. In the setup of Proposition 5, we have the following formulas:

〈L−1
+ ϕ0, ϕ0〉 < 0,(B.1)

〈L−1
+ [1], ϕ0〉 = 0,(B.2)

〈L−1
+ [1], ϕ0(ϕ′0)2〉 = 0,(B.3) ∫ T

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy 6= 0.(B.4)

Proof. For the proof of (B.1), recall the basic properties at h = 0. In this case
(1.5) has a solution

ϕ0(x) = αdn(αx, κ),

where κ2 = 2α2−1
α2 . Also L+ = −∂2

x + 1− 2(ϕ0)2. Since L+ϕ
′
0 = 0, the function

ψ(x) = ϕ′0(x)

∫ x 1

ϕ′20 (s)
ds,

∣∣∣∣ ϕ′0 ψ
ϕ′′0 ψ′

∣∣∣∣ = 1

is also solution of L+ψ = 0. Formally, since ϕ′0 has zeros using the identities

1

cn2(y, κ)
=

1

dn(y, κ)

∂

∂y

sn(x, κ)

cn(y, κ)
,

1

sn2(y, κ)
= − 1

dn(y, κ)

∂

∂y

cn(x, κ)

sn(y, κ)

and integrating by parts we get

ψ(x) =
1

α2κ2

[
1− 2sn2(αx, κ)

dn(αx, κ)
− ακ2sn(αx, κ)cn(αx, κ)

∫ x

0

1− 2sn2(αs, κ)

dn2(αs, κ)
ds

]
.

10We do not have the precise asymptotic expressions of order O(h2) above, although this is in
principle possible, after heavy computations.
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Fig. 1. The function k → E2(κ)−(1−κ2)K2(κ)

2[2(1−κ2)K(κ)−(2−κ2)E(κ)]
.

Thus, we may construct the Green function

L−1
+ f = ϕ′0

∫ x

0

ψ(s)f(s)ds− ψ(s)

∫ x

0

ϕ′0(s)f(s)s+ Cfψ(x),

where Cf is chosen such that L−1
+,0f is periodic with the same period as ϕ0(x). After

integrating by parts, we get

(B.5) 〈L−1
+ ϕ0, ϕ0〉 = −〈ϕ3

0, ψ〉+
ϕ2

0(T ) + ϕ2
0

2
〈ϕ0, ψ〉+ Cϕ0

〈ϕ0, ψ〉.

We have

(B.6)

〈ϕ0, ψ〉 = 1
α2κ2 [E(κ)−K(κ)],

〈ϕ3
0, ψ〉 = 1

2κ2 [(2− κ2)E(κ)− 2(1− κ2)K(κ)],

Cϕ0 = −ϕ
′′
0 (T )

2ψ(T ) 〈ϕ0, ψ〉+
ϕ2

0(T )−ϕ2
0(0)

2 .

With this finally we get

〈L−1
+ ϕ0, ϕ0〉 =

E2(κ)− (1− κ2)K2(κ)

2[2(1− κ2)K(κ)− (2− κ2)E(κ)]
< 0.

See Figure 1.
For the proof of (B.2), we have

L−1
+ [1] = ϕ′0

∫ x

0

ψ(s)ds− ψ(x)

∫ x

0

ϕ′0(s)ds,

and

〈L−1
+ [1], ϕ0〉 =

ϕ2
0(T )

2

∫ T

−T
ψ(x)dx−3

2

∫ T

−T
ψ(x)ϕ2

0(x)dx+[C1+ϕ0(0)]

∫ T

−T
ψ(x)ϕ0(x)dx,

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

29
.2

37
.3

5.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE FREQUENCY COMBS IN PERIODIC WAVEGUIDES 503

where

C1 = ϕ0(T )− ϕ(0)− ϕ′′0(T )

ψ′(T )

∫ T

0

ψ(x)dx.

Using that d
dxdn(x) = −κ2sn(x)cn(x) and integrating be parts, we get∫ T

−T
ψ(x)ϕ0(x)dx

=
2

κ2

[
2

3

∫ T

0

dn(αx)(1− 2sn2(αx))dx+
1

3
dn3(αT )

∫ T

0

1− 2sn2(αx)

dn2(αx)
dx

]

=
2

3κ2
dn3(K)

∫ T

0

1− 2sn2(αx)

dn2(αx)
dx.

Similarly, integrating by parts∫ T

−T
ψ(x)dx =

2dn(αT )

α2κ2

∫ T

0

1− 2sn2(αx)

dn2(αx)
dx.

Thus,

ϕ2
0(T )

2

∫ T

−T
ψ(x)dx− 3

2

∫ T

−T
ψ(x)ϕ2

0(x)dx = 0.

Using that ϕ′′0(T ) = α3κ2
√

1− κ2, and ψ′(T ) =
√

1− κ2
∫ T

0
1−2sn2(αx)
dn2(αx) dx, we get

C1 + ϕ0(0) = ϕ0(T )− ϕ′′0(T )

ψ′(T )

∫ T

0

ψ(x) = 0.

For the proof of (B.3),

〈L−1
+ [1], ϕ0(x)(ϕ′0(x))2〉 =

∫ T

−T
ϕ0(x)(ϕ′0(x))3

∫ x

0

ψ(s)dsdx−
∫ T

−T
ψ(x)ϕ2

0(x)(ϕ′0(x))2dx

+ (C1 + ϕ0(0))

∫ T

−T
ψ(x)ϕ0(x)(ϕ′0(x))2dx.

Again integrating by parts, we get∫ x

0

ψ(s)ds =
dn(αx)

α2κ2

∫ x

0

1− 2sn2(αs)

dn2(αs)
ds,

and ∫ T

−T
ϕ0(x)(ϕ′0(x))3

∫ x

0

ψ(s)dsdx−
∫ T

−T
ψ(x)ϕ2

0(x)(ϕ′0(x))2dx

=

∫ T

−T
ϕ0(x)(ϕ′0(x))2

[
ϕ′0(x)

∫ x

0

ψ(s)ds− ψ(x)ϕ0(x)

]
dx

= −α3κ2

∫ K(κ)

0

(1− 2sn2(x))sn2(x)cn2(x)dn(x)dx = 0.
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Fig. 2. The function k → 2K(k)− (2−k2)
1−k2 E(k).

Now, using that κ2 = 2α2−1
α2 , we get∫ T

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy

=

∫ K(κ)

0

(
2− 6

2−κ2 dn
2(y)

)(
sn2(y)cn2(y)− 1

2−κ2 [cn2(y)− sn2(y)]2dn2(y)
)

[
sn2(y)cn2(y) + 1

2−κ2 [cn2(y)− sn2(y)]2dn2(y)
]2 dy.

Using Mathematica, we are able to compute this last expression explicitly∫ T

0

(2− 6ϕ2
0(y))((ϕ′0(y))2 − (ϕ′′0(y))2)

((ϕ′0(y))2 + (ϕ′′0(y))2))2
dy = 2K(k)− (2− k2)

1− k2
E(k) < 0,

as is clear from Figure 2.

REFERENCES

[1] I. V. Barashenkov and Yu. S. Smirnov, Existence and stability chart for the ac-driven,
damped nonlinear Schrödinger solitons, Phys. Rev. E, 54 (1996), 5707.

[2] Y. K. Chembo and N. Yu, Modal expansion approach to optical-frequency-comb generation
with monolithic whispering-gallery-mode resonators, Phys. Rev. A, 82 (2010), 033801.

[3] Y. K. Chembo and C. R. Menyuk, Spatiotemporal Lugiato–Lefever formalism for Kerr-comb
generation in whispering-gallery-mode resonators, Phys. Rev. A, 87 (2010), 053852.

[4] B. Deconinck and T. Kapitula, The orbital stability of the cnoidal waves of the Korteweg-de
Vries equation, Phys. Lett. A, 374 (2010), pp. 4018–4022.

[5] L. Delcey and M. Haragus, Periodic waves of the Lugiato-Lefever equation at the onset of
Turing instability, Philos. Trans. R. Soc. A (2018), 20170188.

[6] L. Delcey and M. Haragus, Instabilities of periodic waves for the Lugiato-Lefever equation,
Rev. Roumaine Math. Pures Appl., 63 (2018), pp. 377–399.

[7] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippen-
berg, Nature, 450 (2007), pp. 1214–1217.

[8] T. Gallay and D. Pelinovsky, Orbital stability in the cubic defocusing NLS equation: I.
Cnoidal periodic waves, J. Differential Equations, 258 (2015), pp. 3607–3638.

[9] T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves, Appl.
Math. Sci., 185 (2013), Springer, New York.

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

29
.2

37
.3

5.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE FREQUENCY COMBS IN PERIODIC WAVEGUIDES 505

[10] T. Kapitula, P. Kevrekidis, and B. Sandstede, Counting eigenvalues via the Krein signa-
ture in infinite-dimensional Hamiltonian systems, Phys. D, 195 (2004), pp. 263–282.

[11] T. Kapitula, P. Kevrekidis, and B. Sandstede, Addendum: Counting eigenvalues via
the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D, 201 (2005),
pp. 199–201.

[12] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Microresonator-based optical fre-
quency combs, Science, 332 (2011), 555–559.

[13] L. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys.
Rev. Lett., 58 (1987), pp. 2209–2211.

[14] R. Mandel and W. Reichel, A priori bounds and global bifurcation results for frequency combs
modeled by the Lugiato–Lefever equation, SIAM J. Appl. Math., 77 (2017), pp. 315–345.

[15] A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki,
in Proceedings of 7th Symposium of Frequency Standards and Metrology, L. Maeki, ed.,
World Scientific, River Edge, NJ, 2009, 539.

[16] A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki,
Mode-locked Kerr frequency combs, Optics Lett., 36 (2011), pp. 2845–2847.

[17] T. Miyaji, I. Ohnishi, and Y. Tsutsumi, Bifurcation analysis to the Lugiato-Lefever equation
in one space dimension, Phys. D, 239 (2010), pp. 2066–2083.

[18] T. Miyaji, I. Ohnishi, and Y. Tsutsumi, Stability of a stationary solution for the Lugiato-
Lefever equation, Tohoku Math. J. (2), 63 (2011), pp. 651–663.

[19] Z. Qi, G. D’Aguanno, and C. Menyuk, Nonlinear frequency combs generated by cnoidal
waves in microring resonators, J. Opt. Soc. Amer. B, 34 (2017), pp. 785–794.

[20] G. Teschl, Ordinary differential equations and dynamical systems, Grad. Stud. Math. 140.,
AMS, Providence, RI, 2012.

[21] W. Magnus and S. Winkler, Hill’s Equation, Wiley Interscience, New York, 1966.

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

29
.2

37
.3

5.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	Construction of stationary solutions
	Stability of the stationary solutions

	Preliminaries
	The stationary waves for h=0, >0 and h>0, =0
	Spectral properties
	The waves h and their linearized operators L,h
	Proof of Proposition 4
	A precise asymptotic for the unstable eigenvalue

	The construction of the waves for 0<h<<1, 0<<<1
	O(1) solutions of (3.2)—An informal analysis of the profile equation
	Solutions of (3.2)—Rigorous construction

	Stability analysis for the waves
	Tracking the modulational eigenvalue for Nh 0<h<<1
	Tracking the modulational eigenvalue for JNh 0<h<<1
	Stable and unstable eigenvalues: Putting it together
	Spectral analysis on the even subspace
	Spectral analysis on the odd subspace


	Appendix A. Tracking the translational eigenvalue for Nh 0<h<<1
	Appendix B. Computation of the relevant quantities involving L+-1
	References

