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Abstract 

Kevin M. Allegre and Jon A. Tunge 

Department of Chemistry, July 2019 

University of Kansas 

Anion Relay Chemistry is a powerful tool for the rapid development of molecular 

complexity in an operationally simple manner. Much of the work in this field has been pioneered 

and developed by the Smith group, whose work has primarily focused on silicon and phosphorus 

Brook rearrangements to effect anion relay. Presented herein is the development of a retro-Claisen 

condensation protocol to effect anion relay in the synthesis of vinyl cyclopropanes, and subsequent 

aromatic Cope rearrangement of those vinyl cyclopropanes. This protocol provides a 

supplementary method of anion relay utilizing readily accessible nucleophiles, which obviates the 

need for synthesis of alkyl silanes or phosphines as starting materials. 

Chapter 1 is a review of anion relay chemistry, which focuses on through-space anion relay 

over 3 or more bonds. It covers both new developments and applications to total synthesis of 

through-space anion relay more than three bonds since the field was last reviewed by Smith in 

2008. 

Chapter 2 begins with an overview of retro-Claisen activation of allylic alcohols and its 

application to decarboxylative and deacylative allylation reactions (DcA and DaA). This synopsis 

is followed by an overview of a novel anion relay cyclopropanation accomplished through a retro-

Claisen activation of a nascent allylic alcohol following an initial Tsuji-Trost allylation between a 

carbon nucleophile and a vinyl epoxide. This reaction constitutes the latest example of retro-

Claisen activation of allylic alcohols presented by our group, and a novel application of anion relay 

chemistry. Of note is that the anion relay is accomplished without a Brook rearrangement, 
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obviating the necessity to synthesize alkyl silanes or phosphonates. Furthermore, it is an example 

of [1,6]-anion relay, examples of which are much less common than [1,2]-and [1,4]-anion relay. 

In chapter 3, aromatic vinyl cyclopropane Cope rearrangements are reviewed. This review 

is followed by a description of the aromatic Cope rearrangement of the vinyl cyclopropanes made 

using the methodologies outlined in Chapter 2. While divinyl cyclopropane Cope rearrangements 

are common and facile at room temperature, aryl vinyl cyclopropane Cope rearrangements are 

much less common, tend to require forcing conditions such as high temperatures and usually 

further require rigorously stereodefined starting materials to take advantage of the cyclopropane 

strain release to drive dearomatization. The reaction described in this document features a dynamic 

equilibrium of aryl vinyl cyclopropane diastereomers prior to Cope rearrangement, allowing the 

difficult Cope rearrangement to be accomplished even without stereodefined starting materials. 
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TEA – Triethylamine 
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A note on compound numbering: Compounds are numbered in the order in which they are 
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The meanings of the letters in the first digit are as follows; A designates a compound from a 

literature source, S designates a starting material, I indicates an intermediate, and P denotes a 

product. 

An example compound number is shown below: 

P2.1a – a product, first appearing in chapter 2, first class to appear, first listed within its class. 

 

Note: even though vinyl cyclopropanes are starting materials in chapter 3, they will still be 

referred to by the number given to them in chapter 2. The initially observed benzocycloheptene 

will be named P3.1, even though it first appears in chapter 2. 
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Chapter 1: Review of Anion Relay Chemistry
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§ 1.1 Introduction 

Anion relay is defined by Smith as a multicomponent coupling protocol wherein negative 

charge migrates from one part of a molecule to another through the transformation.1 Smith 

categorizes anion relay into two major classes, through-bond and though-space, and reviewed the 

subject in 2008.1 According to this definition, however, an extremely broad array of 

transformations can be considered “anion relay” including Michael/aldol chemistry, proton 

transfers, etc. Therefore, it is prudent to adjust this definition to cover a narrower field. As such, 

the working definition of through-space anion relay for the purposes of this review shall be the 

transfer of a group other than a proton involving the migration of negative charge through a 

molecule. While the validity of through-bond anion relay will not be entirely disregarded, it shall 

be considered a field much too broad for the scope of this review of anion relay. Therefore, we 

shall focus solely on what Smith calls through-space anion relay. The majority of through-space 

anion relay involves 1,2-Brook rearrangements, which are often not considered in the anion relay 

literature.2 Herein, we present an updated review on through-space anion relay since 2008, which 

will focus on anionic migration over more than two bonds. First, an overview of different types of 

anion relay will be given, highlighting some examples. Then, recent developments in through-

space anion relay over distances longer than two bonds will be presented. Finally, recent 

applications of anion relay chemistry to total synthesis will be reviewed. 

1.1.1 – Types of Anion Relay 

There are two major classes of anion relay reactions: through-bond and through-space 

transfers. The latter is further divided into two types:1 type I and type II. Through-bond anion relay 

involves the migration of negative charge though the bonding network of a molecule, as in Michael 
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addition. This migration of negative charge is generally accomplished by formation of a sigma 

bond and movement of electrons through resonance in a π-system, resulting in anionic charge in a 

new locus on the molecule (Scheme 1.1). Through-space anion relay, on the other hand involves 

a migration of a group other than a proton, resulting in the breaking of a sigma bond and 

development of anionic charge at the atom where the sigma bond was broken, as in the Brook 

rearrangement (Scheme 1.2). Here, we present several examples typical of each type. 

Scheme 1.1 – Through-Bond Anion Relay 

 

Scheme 1.2 – Through-Space Anion Relay 

 

1.1.2 – Through-Space Anion Relay 

Through-space anion relay comprises the relay of anionic charge within a molecule by the 

migration of some group through breaking of a sigma bond, which localizes anionic charge on the 

atom where the sigma bond was broken. Through-space anion relay can be roughly divided into 

two types (Scheme 1.3) distinguished by the nature and locus of anionic charge relative to the 

linchpin (the coupling partner containing the migrating group). In type I anion relay, the linchpin 

is the initial nucleophile. After coupling with an electrophile, anionic charge is relayed via a group 

migration back to the original locus on the linchpin (Scheme 1.3a).1 Alternatively, type II anion 
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relay involves an electrophilic linchpin, which is activated by a nucleophile to undergo anion relay 

wherein anionic charge migrates to a new locus on the linchpin (Scheme 1.3b).1 

Scheme 1.3 – Types of Through-Space Anion Relay 

 

By far, the most commonly employed reaction in through-space anion relay is the Brook 

rearrangement. Discovered by Brook in 1958, the initial examples were [1,2]-C to O silyl 

migrations.3 Since then, [1,2]-Brook rearrangements continue to be the most commonly employed 

type of anion relay, especially [1,2]-Brook rearrangements induced by [1,2]-addition onto acyl 

silanes4 and phosphonates.5 For example, in 2000, the Ohnishi group demonstrated the ability of 

acylsilanes to undergo [1,2]-Brook rearrangements upon nucleophilic addition of cyanide (Scheme 

1.4).6 The nascent carbanion could then be utilized for nucleophilic addition reactions or 

intramolecular nucleophilic cyclizations to form cyclopropanes. 
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Scheme 1.4 – [1,2]-Brook Rearrangement Induced by [1,2]-Addition onto Acyl Silanes 

 

Since the pioneering work of Brook, the rearrangement has been expanded to include [1,n]-

C to O silyl migrations,1 most commonly [1,4]- and [1,5]-migrations, which have 5- and 6-

membered transition states respectively. The subject of this review shall be primarily concerned 

with these longer range motifs (> 2 bonds) of through-space anion relay that have been developed 

in the last decade. The reactions used for anion relay, including Brook rearrangements as well as 

other reactions will be examined.  

§ 1.2 Recent Developments in Through-Space [1, > 2]-Anion Relay 

Herein shall be presented a review of through-space anion relay characterized by a charge 

migration of more than two bonds. These reactions will be primarily organized by the distance of 

anion relay and will be subdivided by class of migrating group. 

1.2.1 – Through-Space [1,3]-Anion Relay 

[1,3]-Brook rearrangements are much less common than [1,2]- or [1,4]-rearrangements, 

but they have seen some application in anion relay. In 2011, the Xi group reported an interesting 

example of the use of a [1,3]-Brook rearrangement in type I anion relay (Scheme 1.5).7 A dianionic 
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bis(silyl)-butadiene, A1.5 was carbonylated to form a type I anion relay linchpin. This bis-silylated 

alkoxycyclopentadiene was acetylated, and after an acyl migration, sequential 1,3-Brook 

rearrangement and retro-Brook rearrangements were initiated resulting in a gem-

bis(trimethylsilyl)cyclopentadienone, A1.6. Of note is that the anion relay does not occur until 

after acylation of the initial anion and is initiated by an acyl transfer event rather than deprotonation 

or nucleophilic attack, as is common. The equilibrium of the Brook rearrangement depends on the 

stability of the carbanion and the relative strength of the silicon-oxygen bond.1 The driving force 

of the retro-Brook rearrangement is likely thermodynamic as the extent of conjugation increases 

throughout the transformation. 

Scheme 1.5 – Through-Space ARC via Sequential [1,3]-Brook and retro-Brook 

Rearrangement 
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1.2.2 – Through-Space [1,4]-Anion Relay 

Perhaps not as common as through-space [1,2]-anion relay, but certainly more common 

than [1,3]-transfers, are through-space [1,4]-anion relays. As with [1,2]-rearrangements, the vast 

majority of applications in through-space [1,4]-ARC reactions has utilized Brook rearrangements. 

1.2.2.1 – [1,4]-Brook Rearrangements 

In Smith’s type II anion relay chemistry, [1,4]-Brook rearrangements are ubiquitously 

employed. The first example of the combination of a [1,4]-Brook rearrangement with through-

bond anion relay was reported by Smith and coworkers in 2014 (Scheme 1.6a).8 Three vinyl 

epoxide linchpins (A1.7) were developed and were used to combine through-bond anion relay and 

through-space type II anion relay in 3-component coupling reactions. Through-bond anion relay 

was effected by the SN2' opening of the vinyl epoxide, resulting in a vinyl alkoxide species, which 

is poised to undergo a [1,4]-Brook rearrangement. These linchpins complemented the existing 

epoxide linchpins developed in the Smith group, which were activated for anion relay by the direct 

opening of the epoxide via SN2 reactions. 

The She group was the first to use palladium-mediated opening of vinyl epoxides to effect 

anion relay (Scheme 1.6b).9 Using a silane-containing vinyl epoxide linchpin (A1.8) similar to 

those developed by Smith, they utilized palladium to open the vinyl epoxide to form a Pd-π allyl 

alkoxide species that underwent anion relay via a [1,4]-Brook rearrangement. The resulting 

carbanion spontaneously cyclized, regenerating the palladium catalyst and forming a synthetically 

useful vinyl cyclobutane. Interestingly, the carbanion intermediates did not require stabilization 

by dithiane groups or other electron withdrawing groups. 
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Scheme 1.6 – [1,4]-Brook Rearrangement Combined with Through-Bond ARC 

  

Compared with type II reactions, type I anion relay reactions have seen relatively less 

development over the last decade. Since 2008, only a few examples of new type I anion relay 

reactions have been developed. However, in 2017, Smith et al. described the use of α-silyl amides 

as linchpins (A1.10) for type I anion relay utilizing [1,4]-Brook rearrangements (Scheme 1.7).10 

These linchpins exhibited good reactivity with a variety of different epoxides and electrophiles in 

3-component couplings (16 examples, 89-98 % yields). Furthermore, the amide was useful as a 

synthetic handle for subsequent functionalization. This amide linchpin demonstrated the utility of 

an alternative stabilizing group to the commonly utilized dithianes, thus expanding the scope of 

type I anion relay. 
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Scheme 1.7 – [1,4]-Brook Rearrangement with Type I Amide Linchpins 

 

In 2010, Smith developed another new class of bifunctional type II linchpin that did not 

include dithianes (A1.11, Scheme 1.8).11 In this publication, they introduced ten new linchpins, 

most of which were epoxides, but some examples of aldehyde linchpins were also provided. 

Phenyl and thiophenyl groups were used as anion stabilizers rather than dithianes, effectively 

expanding the scope of type II anion relay to a new class of compounds. The use of phenyl groups 

as anion stabilizing groups increased diastereoselectivities relative to use of the thiophenyl 

substrates, but the yields were acceptable in all cases. 

Scheme 1.8 – Non-Dithiane Linchpins for Type II ARC 

 

While a variety of electrophiles are useful in 3-component anion relay coupling reactions, 

Smith and coworkers demonstrated the first use of aziridines as the terminal electrophiles in type 

II ARC (Scheme 1.9) in 2011.12 The 3-component amination reactions occurred in one pot, and 
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after mesylation of the alcohol and treatment with base, subsequently cyclized to form biologically 

relevant piperidines. As in other ARC protocols, these reactions were stereospecific, yielding 

chiral non-racemic material from enantiopure starting materials. The authors additionally showed 

conversion of the dithianes to ketones and subsequent reduction to provide alcohols.  

Scheme 1.9 – [1,4]-Brook Rearrangement ARC Utilizing Aziridnes as the Terminal 

Electrophiles 

 

The majority of these Brook rearrangement ARC reactions involve formation of C(sp3) 

anions, but in 2008, Smith and Wuest developed a [1,4]-Brook rearrangement protocol to generate 

C(sp2) anions from aryl silanes, A1.12 for use in electrophilic aromatic substitution reactions 

(Scheme 1.10a).13 This chemistry has enabled a new area of development for the Smith group, as 

many advancements in this motif have been made in the past decade (vide infra). A similar but 

complementary approach was developed by Smith and Maio in 2011 (Scheme 1.10b).14 Rather 
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than generating an alkoxide via nucleophilic addition onto a carbonyl, the silicone “ate” 

intermediate of the Brook rearrangement, A1.13 was generated via nucleophilic addition onto a 1-

oxa-2-silacyclopentane, A1.14. The silicon “ate” complex was able to be trapped with 

electrophiles constituting a three-component coupling, and subsequently the trimethylsilyl group 

was easily removed to reveal functionalized benzyl alcohols.  

Phenyl rings are not the only aromatic compounds that can be functionalized in this way. 

In 2009, Smith and Tong demonstrated that the same protocol could be used to functionalize furans 

and thiophenes (Scheme 1.10c).15 These reactions again tolerated a variety of alkyl and aryl lithium 

nucleophiles. Furthermore, the authors demonstrated that when lithium ester enolates were utilized 

as the nucleophiles with thiophenes, the carbanion resulting from the Brook rearrangement could 

cyclize onto the ester to form bicyclic thiophenes A1.15. 

In addition to electrophilic aromatic substitution, the aryl intermediates generated by O to 

C(sp2) anion relay could also be utilized for palladium-catalyzed cross coupling reactions with a 

variety of allyl, aryl and benzyl halide electrophiles, as shown by Smith in 2010 (Scheme 1.10d).16 

In this work, six new linchpins were introduced and investigated, including both aldehyde and 

epoxide linchpins with β- or γ-electrophilic sites, which could be useful for downstream synthetic 

applications. This tactic of combining anion relay with palladium-catalyzed cross coupling greatly 

increases the scope of reactions for which type II ARC linchpins could potentially be used. 
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Scheme 1.10 – O-C(sp2) Anion Relay 
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Beyond being used as reagents in coupling reactions, these aryl silane linchpins can be 

utilized as aryl transfer reagents. In 2012, Smith combined this same ARC tactic with Takeda and 

Hiyama cross coupling processes to lead to biaryl and allyl arene products, respectively (Scheme 

1.10e).17 In this case, the linchpin, A1.16 was utilized as a stoichiometric aryl transfer reagent 

rather than a substrate. Continued efforts to develop a catalytic-in-silicon version are underway. If 

successful, these efforts could lead to a new form of transition metal-free catalytic cross-coupling 

reactions, greatly increasing the utility of anion relay linchpins.  

Ogoshi et al. developed a related enantio- and diastereoselective synthesis of benzosiloles 

(A1.17) via a nickel/NHC-catalyzed intramolecular aryl transfer (Scheme 1.11).18 They further 

showed enantiospecific functionalization of these benzosiloles via anion relay, constituting an 

asymmetric formal [1,4]-Brook rearrangement anion relay protocol. 

While the above methods effectively demonstrate the migration of anionic charge by four 

bonds, even longer distances can be achieved by utilizing sequential Brook rearrangements. In 

2012, Smith et al. developed a "long range" type II ARC tactic that involved two sequential [1,4]-

Brook rearrangements prior to electrophile coupling, effectively migrating anionic charge five 

bonds away (Scheme 1.12).19 The authors demonstrated the utility of this method for both 

nucleophilic alkylation and palladium-catalyzed cross coupling reactions. 
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Scheme 1.11 – Ni-Catalyzed Aryl Transfer/Anion Relay 

 

Scheme 1.12 – Long-Range O-C(sp2) ARC 

 

Additionally, this type of [1,4]-C(sp2)-O Brook rearrangement ARC has been extended to 

reactions beyond electrophilic aromatic substitution. In 2011, Kim and Smith developed a linchpin 

(A1.18) that formed benzyne intermediates through anion relay. These linchpins were activated 

with Grignard or alkyllithium nucleophiles and were utilized in cyclization reactions with various 

arynophiles such as furans and azides (Scheme 1.13).20 

In 2012, the Lin group developed a (bis)silyl enal as a useful linchpin (A1.19) for [1,2]-

addition-initiated [1,4]-Brook rearrangement anion relay (Scheme 1.14a).21 A variety of 

electrophiles were tolerated, such as alkyl aryl and benzyl halides, disulfides, aldehydes and 
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ketones. Alkyl, vinyl, aryl and propargyl lithium reagents were used as nucleophiles giving 14 

examples with yields ranging between 62-81%. The reaction is γ-selective with respect to 

regioselectivity and was E selective with respect to the olefin geometry in all cases, often giving 

100 % E selectivity. 

Scheme 1.13 – O-C(sp2) Anion Relay Linchpins with Benzyne Reactivity 

 

In 2015 Laali and co-workers performed DFT calculations on activation energies of the 

Brook rearrangement and subsequent nucleophilic addition reactions of these bissilylated enals 

(A1.19) (Scheme 1.14a).22 They found the O-attack on silicon was essentially barrierless, and that 

the regio- and stereoselectivity was attributable to the steric environment about the bulky silyl 

group. 

A similar reaction that utilized a complementary substrate class was developed by Liu et 

al. in 2013. Geminally γ-bissillyated enals (A1.20) were treated with a nucleophile followed by an 

electrophile in the presence of CuCN (Scheme 1.14b).23 The authors demonstrated 21 examples 

with yields ranging from 40-95% and showed that the products could be further functionalized to 
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homoallylic methyl ethers (A1.21), which were E-selective with respect to the olefin geometry and 

syn-selective with respect to the nucleophilic addition. 

Scheme 1.14 – Anion Relay with Bis(silyl)enals 

 

 

In 2016, the Smith group developed a class of synthetically useful Weinreb amide ARC 

linchpins (A1.22) that were utilized in three component coupling protocols (Scheme 1.15).24 These 

linchpins were useful for the synthesis of [1,3]-diketones and decreased the need for protecting 

group and oxidation state manipulations, allowing for a more direct synthetic route than with 

previous linchpins. Furthermore, they developed a one-pot protocol for the synthesis of di- and 

tetrahydropyrans and spiroketals using the Weinreb amide linchpins. 
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Scheme 1.15 – Weinreb Amide Linchpins for Type II ARC 

 

Finally, in 2017, the Smith group developed a formal [3+2]-cycloaddition tactic employing 

an anion relay aldol-Brook rearrangement-nucleophilic cyclization cascade (Scheme 1.16).25 They 

provided 20 examples with yields ranging from 35-87% and excellent diastereoselectivities. 

Scheme 1.16 – Aldol-Brook-Cyclization Cascade 

 

1.2.2.2 – [1,4]-Phosphorus Brook Rearrangement 

While the majority of [1,4]-rearrangements in anion relay chemistry are Brook 

rearrangements involving silicon migration from carbon to oxygen, phosphorus Brook 

rearrangements are also known and have been applied to ARC in the same way. For example, in 

2012, Smith and co-workers demonstrated the utility of phosphonate groups for anion relay via a 

[1,4]-phosphorus Brook rearrangement, thus expanding the scope of through-space anion relay 

beyond alkyl silanes (Scheme 1.17).26 They demonstrated this [1,4]-phosphorus Brook 
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rearrangement anion relay with a variety of linchpins and utilized the intermediate nucleophile 

either for nucleophilic addition reactions or intramolecular nucleophilic cyclizations to form 

cyclopropanes.  

Scheme 1.17 – Phosphorus Brook Rearrangement

 

1.2.2.3 – [1,4]-C to C Anion Silyl Migration 

While most examples of silyl migrations in anion relay occur between oxygen and carbon, 

in 2011, the Harmata group reported a two-component coupling involving a carbon-to-carbon 

[1,4]-silicon shift to generate a nucleophilic allyllithium species that were trapped with an 

electrophile (Scheme 1.18).27 Their computational studies indicated that, although the pKas of 

benzene and propene are similar, the reaction is exothermic. 
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Scheme 1.18 – [1,4]-C(sp3) to C(sp2) Anion Relay 

 

1.2.3 – Through-Space [1,5]-Anion Relay 

1.2.3.1 – [1,5]-Brook Rearrangements 

In 2017, the Smith group demonstrated the first application of a [1,5]-Brook rearrangement 

in type II anion relay (Scheme 1.19).28 These reactions utilized cyclic linchpins (A1.23) that forced 

the migrating silyl group within close proximity to the initially generated alkoxide anion. Both aryl 

and alkyl linchpins were competent for the reaction. DFT calculations were performed on the 

reaction with different substrates and reagents, compared with related [1,4]-Brook rearrangements. 

They found that, for [1,5]-Brook rearrangements vs. [1,4]-Brook rearrangements, the change in 

energy between the lithium alkoxide species and the copper coordinated intermediate (see ref. 28) 

is comparable, but the main difference is in a conformational change in the tether. There is a 15° 

conformational change in dihedral angle between the copper-coordinated intermediate and the 

transition state required for bond Cu-C bond formation in [1,5]-Brook rearrangements. This 

change in angle amounts to an energy difference of about 4 kcal/mol between the two transition 

states, which explains why [1,5]-Brook rearrangements are more challenging. However, through 
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the use of cis-cyclohexyl or phenyl linchpins, the activation energy of the [1,5]-Brook 

rearrangement is reduced by imposing conformational constraints on the tether.  

Scheme 1.19 – [1,5]-Brook Rearrangement ARC 

 

In 2013, the Yin group reported a 2-component coupling featuring a [1,5]-Brook 

rearrangement following deprotonation of a bis(silyl)ene alcohol, A1.24 (Scheme 1.20).29 The 

reaction was compatible with a variety of aldehyde electrophiles, as well as ketones and aryl 

bromides. Yields were acceptable, the majority being above 50%, with bromobenzene giving a 

low yield of 31%. The reaction was generally regioselective, giving ≥ 95:5 selectivity in favor of 

γ-addition, except in the case of the aryl bromide, which gave 50:50 regioselectivity. Interestingly, 

the reaction was selective for Z-olefin geometry of the intermediate silyl ether giving a ratio of ≥ 

95:5 in all cases. This stereoselectivity is based on steric influence of the bulky silyl group, as 

shown in Scheme 1.20. 
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Scheme 1.20 – [1,5]-Brook Rearrangement ARC with Bis(Silyl) Ene Alcohols 

 

1.2.3.2 – Silver-Mediated [1,5]-Anion Relay 

In 2018, Xu et al. utilized a combination of through-bond and type II through-space anion 

relay to effect a formal [3,3]-annulation between an active methylene isocyanide (A1.25) and ene-

yne-ketone A1.26 (Scheme 1.21).30 The reaction was initiated by a silver-mediated Michael 

addition of the isocyanide onto the eneyne-containing ketone to generate a silver-alkoxide species, 

A1.27. The alkoxide then cyclized onto the propargyl moiety, constituting type II through-space 

ARC. The resulting vinyl silver species then underwent a second cyclization, followed by 

protonation and rearomatization to yield biologically relevant furo-[3,2-c]-pyridines, A1.28.  
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Scheme 1.21 – Silver-Mediated [1,5]-Anion Relay 

 

1.2.3.3 [1,5]-Anion Relay via Julia-Kociensky Reaction 

Another anionic group transfer reaction that has been utilized in an anion-relay contest is 

the Julia-Kociensky reaction. In 2015, Bray et al. reported an interesting anion relay approach to 

sultines, using a homologous Julia-Kociensky reaction with epoxides (Scheme 1.22).31 Under the 

normal course of the reaction, the Julia-Kociensky sulfone (A1.29) reacted with epoxides to form 

γ-alkoxy sulfones, which simply cyclized with loss of tert-butyl tetrazole (TBT) to form cyclic 

sulfones, A1.30. However, in the absence of HMDS and presence of DBU, the γ-alkoxy sulfones 

underwent anion relay to generate sulfinates, which underwent intramolecular cyclization to form 

sultines, A1.31. The sultines can subsequently be oxidized to sulfones or undergo photochemical 

ring contraction to form cyclopropanes. 
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Scheme 1.22 – [1,5]-Anion Relay via Julia-Kociensky Reaction 

 

§ 1.3 Recent Applications of ARC to Total Synthesis 

1.3.1 – Type I [1,4]-Brook Rearrangements 

Type I anion relay has seen several applications to total synthesis in the last decade; not 

surprisingly most have been Brook rearrangements. Here, we will examine the applications of type 

I ARC [1,4]-Brook rearrangement protocols to total synthesis since 2008.  

(-)-2-epi-Peluroside is a complex natural product isolated from the sea sponge Mycale. In 

2008, the Smith group reported the total synthesis of (-)-2-epi-peluroside A in 25 steps (LLS) with 

an overall yield of 0.56% (Scheme 1.23).32 The key step of this synthesis involved the type I anion 

relay three-component coupling of a dithiane linchpin and two enantiopure epoxide electrophiles 

in a stereospecific manner. The resulting intermediate was carried forward for the synthesis of the 

title compound in 20 additional steps. 
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Scheme 1.23 – Smith’s Total Synthesis of (-)-2-epi-Peluroside A 

 

The Cryptocarya family of natural products come from the plant Cryptocarya latifolia and 

have biological activities and a variety of medicinal applications.33 In 2009, the She group reported 

a unified path to the asymmetric total synthesis of three natural products of the Cryptocarya family 

including cryptocaryolone diacetate utilizing a three-component anion relay protocol in the first 

step (Scheme 1.24).33 Starting from chiral starting materials, the Type I anion relay protocol 

allowed the stereospecific formation of material B in 74 % yield, which was carried forward to 

their target molecules in 6-8 additional steps. 
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Scheme 1.24 – She’s Total Synthesis of Cryptocaryolone Diacetate 

 

Spirastrellolide is a complex natural product, which is a potent inhibitor of phosphatase 

2A. In 2015, the Smith group published their work on synthesis of Spirastrellolide (Scheme 

1.25).34,35 After developing a lengthy synthesis of the southern hemisphere utilizing type II anion 

relay (33 steps LLS, Scheme 1.25a),34 they used type I anion relay to improve their route by 

considerably reducing the step count and improving the yield (19 steps LLS, 2 % overall yield, 

Scheme 1.25b).35  
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Scheme 1.25 – Synthesis of Two Advanced Fragments of Spirastrellolide 

 

 

In 2015, the Smith group synthesized anti-tumor agent (-)-enigmazole A in 4.4 % overall 

yield with a longest linear sequence of 22 steps from commercially available chiral starting 
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materials (Scheme 1.26).36 One of the key steps of this synthesis utilized a type I ARC tactic to 

stereospecifically synthesize chiral epoxide A1.32. This intermediate was successfully carried 

forward in the synthesis of the target in an additional 15 steps including a late-stage Petassis-Ferrier 

union/rearrangement protocol. They then published a more detailed account of this same synthesis 

three years later.36b 

Scheme 1.26 – Smith’s Total Syntheses of (-)-Enigmazole A 

 

1.3.2 – Type II [1,4]-Brook Rearrangements 

Type II anion relay has also been applied to a number of total syntheses in the last decade. 

Similar to type I anion relay, the application of type II anion relay in total synthesis has largely 

involved Brook rearrangements. Here, examples of type II [1,4]-Brook rearrangement ARC 

protocols applied to total synthesis in the last decade are presented. 
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Sec’uamamine A is a member of the Securinega alkaloids, a class of biologically active 

natural products isolated from the plants Securinga and Phyllanthus. In 2015, Smith et al. reported 

a formal synthesis of (-)-secu'amamine A, utilizing a type II anion relay protocol to couple four 

components in a single pot, generating the full linear carbon and nitrogen skeleton as the first and 

key step of the synthesis (Scheme1.27).37 The reaction was stereospecific and led to the product in 

64 % yield, which was then carried forward to complete the tetracyclic core of (-)-secu'amamine 

A in a further 5 steps. 

Scheme 1.27 – Total Synthesis of (-)-Secu’amamine A 

 

In 2015, Smith and co-workers constructed and advanced C16-C29 fragment of the actin-

binding macrolide rizodopin (Scheme 1.28).38 After somewhat arduous preparation of the starting 

materials for the ARC reaction, they elegantly coupled the fragments together in a single flask 

yielding the intermediate A1.33 in 69 % yield. This intermediate was carried forward to their 

advanced fragment A1.34 in a mere 3 additional steps. 
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Scheme 1.28 – Synthesis of C16-C29 Fragment of Rizodopin 

 

In 2016 Isobe, et al. described a one-pot anion relay protocol to diastereoselectively 

generate substituted cyclopentanones (Scheme 1.29).39 This protocol incorporated syn-selective 

heteroatom-directed conjugate addition (HADCA), and intramolecular anion relay cyclization via 

Brook rearrangement followed by intramolecular [1,2]-addition in a single pot. In the same paper, 

they utilized an asymmetric Reformatsky reaction to generate chiral vinyl sulfones, which 

stereoselectively underwent the anion relay cyclization and was carried forward for the asymmetric 

synthesis of prostaglandin E2 methyl ester. 
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Scheme 1.29 – Synthesis of Prostaglandins Using Type II ARC 

 

1.3.3 – Total Syntheses Employing both Type I and Type II [1,4]-Brook Rearrangements 

(+)-Rimocidin aglycone is a member of a family of antifungals isolated from Steptomyces 

rimosus that are composed of polyene macrocycles. In 2009, Smith and Orbin undertook the 

synthesis of this complex molecule featuring an all-trans tetraene and 9 stereogenic centers 

(Scheme 1.30).40 Although they did not complete the synthesis in this publication, they did 

complete the macrocyclic skeleton, including all 9 stereogenic centers with the correct 

configurations to form a molecule that is only a number of protecting group manipulations away 

from the target molecule. Their advanced intermediate A1.35 was reached in 31 steps (LLS), and 

was carried forward to A1.36 in 29% yield over two steps. 



31 
 

Scheme 1.30 – Synthesis of the Aglycone Skeleton 

  

In 2013, Smith demonstrated the use of Type I and Type II ARC protocols for the synthesis 

of 5 members of the Cryptocarya class of natural products (A1.37-A1.41, Scheme 1.31).41 The 

syntheses were relatively short, being only 5-7 steps from commercially available starting 

materials. 
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Scheme 1.31 – Type I and II Synthesis of Several Members of the Cryptocarya Family

 

The combination of types I and II ARC also proved successful in the total synthesis of (-) 

madelalide, a cytotoxic marine macrolide (Scheme 1.32).42 Type II ARC was utilized in the 

construction of fragment A1.42 (Scheme 1.32a), wherein dithiane was deprotonated and 

nucleophilically added to the vinyl epoxide species A1.43, leading to alkoxide species A1.44. A 

vinyl iodide was added to this intermediate to complete the 3-component coupling protocol, giving 

intermediate A1.42. Intermediate A1.45 was constructed utilizing a type I ARC 3-component 

coupling protocol to lead to deprotonated chlorohydrin species A1.46 (Scheme 1.32b). 

Spontaneous ring closure followed to provide epoxide A1.47, to which vinyl Grignard was added 

to give intermediate A1.45. Finally, A1.42 and A1.45 were coupled and elaborated over to give 

the target molecule (-)-Madelalide A in 64% yield over three steps. 
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Scheme 1.32 – Total Synthesis of (-)-Madelalide A Using both Types of Through-Space ARC 
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§ 1.4 Conclusion 

Anion Relay Chemistry is a powerful tool for the rapid development of molecular 

complexity in an operationally simple manner. The most common types of anion relay are through-

bond anion relay via conjugate addition and [1,2]-Brook rearrangements. Here, through-space 

anion relay reactions exhibiting a negative charge migration over three or more bonds and their 

applications to total synthesis have been reviewed. By far, the most common motif for such 

reactions are [1,4]-Brook rearrangements, but there are some examples of silyl migration from 

atoms other than oxygen to carbon, and some examples of non-silyl migration being utilized for 

anion relay. Still, there seems to be a need for further development of the concept of anion relay 

beyond silyl migrations, which would allow chemists to capitalize on the rapid building of 

complexity possible with anion relay chemistry, without the need to synthesize alkylsilanes. 
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§2.1 Introduction 

As shown in Chapter 1, anion relay chemistry is an effective way to build molecular 

complexity in three-component coupling reactions. The majority of applications in anion relay 

involve Brook rearrangements, which necessitate the synthesis of alkyl silanes. Furthermore, 

examples of non-silyl migration anion relay are rare, so there is need for further development of 

anion relay beyond silyl migrations. Retro-Claisen condensation reactions provide an attractive 

potential alternative to Brook rearrangement chemistry, as they would involve acyl migration 

rather than silyl migration, obviating the need to synthesize alkyl silanes. Furthermore, since retro-

Claisen reactions involve the nucleophilic substitution of a carbonyl with an alkoxide generating 

a carbanionic species, they can be utilized for further nucleophilic functionalization.  

Described in this chapter is a type I anion relay protocol in which an allyl alcohol, formed 

from a Tsuji-Trost allylation between a vinyl epoxide and an acyl containing nucleophile, 

subsequently undergoes a TBD-mediated retro-Claisen condensation to generate a carbanion and 

an allyl acetate. This reaction is followed by intramolecular palladium-catalyzed allylation 

between the nascent carbanion and allyl acetate forming a vinyl cyclopropane. Hence, in one pot, 

Tsuji-Trost allylation, retro-Claisen activation and Tsuji-Trost cyclopropanation are combined to 

access synthetically useful vinyl cyclopropanes from vinyl epoxides using a mild and operationally 

simple procedure (Scheme 2.1). Where most examples of through-space anion relay chemistry 

involve [1,2]- or [1,4]-charge migration, this reaction utilizes TBD as an acyl transfer reagent to 

accomplish [1,6]-anion relay. Finally, this protocol provides an important novel complement to 

the ubiquitous Brook rearrangement anion relay tactics, in that it provides a way to achieve anion 

relay without the need to form alkyl silanes or phosphonates, but rather utilizes easily synthesized 

ketone linchpins.  
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Scheme 2.1 – Proposed Anion Relay Cyclopropanation 

 

§2.2 Background 

2.2.1 – Retro-Claisen Activation of Allyl Alcohols 

The key enabling aspect of this chemistry is the retro-Claisen activation of the allylic 

alkoxide formed by the initial Tsuji-Trost reaction. Retro-Claisen activation of allyl alcohols 

(A2.1) allows the in situ generation of nucleophilic carbanions (A2.2) and simultaneous generation 

of an allyl acetate pro-electrophile (A2.3) for palladium-catalyzed cross-coupling reactions 

(Scheme 2.2).43,44,45,46 The work described herein is the intramolecular version of chemistry that 

was coined as deacylative allylation (DaA), by Alex Grenning in 2011.43a,b 

Scheme 2.2 – Retro-Claisen Activation Concept 

 

The publication by Grenning described the deacylative allylation of acyl-containing 

nitroalkanes (A2.4) with allyl alcohols (Scheme 2.3a).43a The retro-Claisen event was facilitated 

by the high pKa of allylic alkoxides in DMSO (~30). In this way, nucleophiles having a pKa lower 

than 25 in DMSO could be readily generated for use in DaA with the nascent allyl ester in the 

presence of palladium. Also in 2011, Grenning extended this concept to bisallylations using allyl 

esters (A2.5) and allyl alcohols with acyl nitroalkanes (A2.6) (Scheme 2.3b).43b The first 
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deacylative alkylation occurred with the boc allyl ester, being more facile and not requiring pre-

activation to participate in coupling. Once the first allylation was complete, a retro-Claisen reaction 

transferred the acyl group from the nitroalkane to the allyl alcohol, simultaneously generating the 

nucleophile and pro-electrophile for a second deacylative alkylation. An asymmetric version of 

this chemistry was developed in 2013 (Scheme 2.3c).43c Using chiral PHOX ligands in the presence 

of a palladium(0) precatalyst, quaternary acyl bezocyclohexanones were asymmetrically allylated 

with allyl alcohols. To demonstrate the utility of this method, synthetically useful enantioenriched 

[1,6]-heptadienes were synthesized. Furthermore, the authors demonstrated the utility of 

asymmetric DaA to the synthesis of the Clive-Stoltz intermediate for the synthesis of (+)-

hamigaren, synthesizing the intermediate in greater yield than Stoltz had using decarboxylative 

allylation.47 

Scheme 2.3 – Retro-Claisen Chemistry in the Tunge Group 
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In 2014, Maji and Tunge developed a catalytic α-allylation of aryl acetonitriles, A2.7 

(Scheme 2.3d).43d In this reaction, an aldehyde group served to activate the aryl acetonitrile for α-

allylation and prevented multiple allylations and was catalytically removed by 1,5,7-

Triazabicyclo[4.4.0]dec-5-ene (TBD). The alcohol produced during decarboxylation subsequently 

removed the aldehyde, turning over TBD for additional formyl abstraction. The choice of metal 

catalyst controlled the regiochemistry, with iridium giving branched products (A2.8) and 

palladium giving linear products (A2.9).  

Finally, in 2014, Maji and Tunge showed that in addition to allyl alcohols, benzyl alcohols 

(A2.10) could be activated for palladium catalyzed DaA by a retro-Claisen reaction (Scheme 

2.3e).43e The retro-Claisen reaction generated a benzylic ester that was activated to participate in 
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Tsuji-Trost allylation with the nascent α-nitrile nucleophile. Furthermore, the retro-Claisen 

benzylation could also be combined with DaA of phenyl acetonitriles to perform a three-

component coupling reaction. 

Other groups have applied the retro-Claisen activation of allylic alcohols to the 

functionalization of indole and oxindole derivatives.44,45 Bisai, et al. have done so utilizing retro-

Claisen activation in combination with DcA (Scheme 2.4).44 In 2017, they demonstrated a retro-

Claisen reaction between carboxylated oxindoles (A2.11) and allyl alcohols to generate 

nucleophilic enolates (A2.12) and allyl carbonates (A2.13), which then spontaneously underwent 

DcA in the presence of palladium (Scheme 2.4a).44a Furthermore, starting from oxindole 

derivatives, that were both N- and O-carboxylated (A2.14), they achieve a three-component 

coupling. Retro-Claisen benzylations were also demonstrated in the same publication. In 2018, the 

same group extended the concept to synthesis of hexahydropyrrolo[2,3-b]indole alkaloids (A2.15) 

from N-acyl indole derivatives (A2.16) utilizing a reactive carboxamide handle to effect 

cyclization after the initial DcA reaction (Scheme 2.4b).44b Also in 2018, they reported the 

application of their hexahydropyrrolo[2,3-b]-indole alkaloid synthesis protocol to the total 

synthesis of racemic (±)-deoxyeseroline, and (±)-esermethole.44c  
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Scheme 2.4 – Bisai’s Retro-Claisen DcA of Indoles and Oxindoles 

 

 

The use of retro-Claisen initiated DaA for the functionalization of oxindoles was reported 

in 2018 by Najera (Scheme 2.5a).45a In this report, retro-Claisen reactions between acylated 

oxindoles (A2.17) and allyl alcohols to generated nucleophilic enolates and allyl acetates for DaA 
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in the presence of palladium. In 2019, they demonstrated a similar protocol utilizing fluorinated 

oxindoles (A2.28), for the synthesis of 3-functionalized fluorinated oxindole species, A2.19 

(Scheme 2.5b).45b  

Scheme 2.5 – Najera’s Retro-Claisen DaA of oxindoles 

 

 

Clearly, retro-Claisen activation of allylic alcohols has been shown to be effective in 

palladium-catalyzed allylic alkylations. To extend this concept to anion relay reactions, we 

envisioned that an acyl-stabilized nucleophile could couple with a vinyl epoxide to form an acyl-

containing alkoxide.48 If this alkoxide were to undergo a retro-Claisen reaction, migrating the 

negative charge from the oxygen to form a nucleophilic carbanion, it would constitute type I anion 

relay (Scheme 2.6). Moreover, the resulting allylic acetate would be activated for palladium-

catalyzed intramolecular Tsuji-Trost-type cyclopropanation.49 The resulting vinyl cyclopropanes 

would be synthetically useful molecules, giving us sufficient motivation to move forward. These 

types of Tsuji-Trost cyclopropanations are well known and have been accomplished in a variety of 

contexts, as shall be elucidated in the following section. 
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Scheme 2.6 – Envisioned Retro-Claisen Anion Relay Strategy 

 

2.2.2 – Intramolecular Pd-catalyzed Cyclopropanation 

Vinyl cyclopropanes are synthetically tractable molecules that can undergo a variety of 

useful transformations, including nucleophilic ring opening reactions,50 cycloadditions,49,51 and 

rearrangements.50,52,53 Consequently, vinyl cyclopropanes are valuable intermediates in the 

synthesis of biologically active compounds.51,54 Previous methods of making vinyl cyclopropanes 

involve metal carbenoids derived from diazo compounds55 or Simmons-Smith-like reactions,56 

Michael-initiated ring closure (MIRC) reactions of ylides,57 or functional group interconversion of 

appropriately functionalized cyclopropanes.54,58,59 (Scheme 2.7) These methods can suffer from 

poor atom-economy,57 poor step-economy,52,58 or involve the use of dangerous/toxic reagents.55,56 

Thus, the direct conversion of readily-available vinyl epoxides to vinyl cyclopropanes could 

complement these existing methods.   
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Scheme 2.7 – Ways of making cyclopropanes 

 

Tsuji-Trost cyclopropanation utilizing bis-electrophiles with stabilized carbon nucleophiles 

was originally demonstrated in a stepwise fashion by Genêt in 1980 (Scheme 2.8a).60 In this initial 

application, a (±)-trans-crysanthemic acid derivative (A2.20) was synthesized utilizing an 

intramolecular deacylative allylation reaction to form the cyclopropane. Although palladium was 

not required for this reaction, it did increase the rate while not significantly affecting the 

stereochemical outcome of the reaction. Later, in 1996, the same group utilized a similar reaction 

to stereospecifically form vinyl cyclopropanes (Scheme 2.8b).60e 

In 1987, Bӓckvall and coworkers showed that the stereochemical outcome of the 

cyclopropanation was dependent on the geometry of the starting allyl acetate (Scheme 2.8c).61 

Allyl acetates with the pro-nucleophilic carbon and the acetate group syn to one another (A2.21) 

provided to the trans cyclopropanes in the presence of palladium, whereas, the epimeric acetates 

(A2.22) afforded the cis cyclopropanes. The reactions were E-selective in terms of olefin geometry, 

but in some cases Z-crotyl cyclopropanes were also observed. 
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One-pot cyclopropanations incorporating sequential Tsuji-Trost reactions were later 

reported by Ito62 in 1988 and Salaun63 in 1999 (Scheme 2.8d, e). Ito performed the reaction 

asymmetrically using palladium in the presence of the chiral ferrocene ligand, (R),(S)-BPPFA, 

achieving modest to good enantioselectivities (up to 70 % ee Scheme 2.8d). Salaun also achieved 

asymmetric cyclopropanation using either a chiral catalyst or a chiral ketimine auxiliary as the 

electron withdrawing group, but only modest enantioselectivities were induced in this way (≤ 32% 

ee). However, the reactions were stereospecific, and enantioenriched cyclopropanes were obtained 

by using chiral starting materials (> 83% ee, > 88% cee, Scheme 2.8e). 

In 2015, Nemoto demonstrated a similar decarboxylative allylic cyclopropanation reaction 

beginning from α-aryl lactones, A2.23 (Scheme 2.8f).64 They demonstrated a substrate scope of 

12 examples with various substituents on the aryl ring with yields ranging from 81-94% and 

diastereomeric ratios as high as 15.1:1. However, α-alkyl lactones were incompetent for the 

reaction. In the same paper, the authors put forth an asymmetric version of the reaction utilizing 

chiral phosphoramidite ligands on palladium and achieved modest enantioselectivities (as high as 

55 % ee), albeit with slightly lower diastereoselectivity (10:1). 

Scheme 2.8 – Intramolecular Tsuji-Trost Cyclopropanation 
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As can be seen, formation of vinyl cyclopropanes by intramolecular Tsuji-Trost reactions 

is well known. However, one common feature of most of the above reactions is that they utilize 

highly stabilized carbon nucleophiles, such as malonates and other active methylene compounds. 
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Herein, we report that less stabilized carbon nucleophiles can be used for the synthesis of vinyl 

cyclopropanes via a Tsuji-Trost/ARC/Tsuji-Trost sequence from readily available vinyl 

epoxides.64 Furthermore, the cyclopropanation reaction presented below constitutes a new form of 

through-space anion relay that provides a new complement to the ubiquitous silyl migrations 

utilized in anion relay, and furthermore achieves a heretofore uncommon [1,6]-anion relay. As 

such, the methodology described herein constitutes a relatively mild and operationally simple 

procedure that constructs synthetically useful vinyl cyclopropanes from easily accessible starting 

materials, combining three reactions in a single pot. 

§2.3 Synthesis of Vinylcyclopropanes via Anion Relay Chemistry 

2.3.1 – Reaction Optimization 

Initial experiments revealed that formation of the vinyl cyclopropane was feasible starting 

from the corresponding allyl ester in the presence of palladium(0) (Scheme 2.9). This experiment 

demonstrated that the desired Tsuji-Trost cyclopropanation reaction was possible starting from the 

phenyl acetonitrile containing allyl ester, I2.2a. In order to combine the cyclopropanation with 

retro-Claisen activation chemistry, we then sought to develop conditions for the acyl transfer. 

Scheme 2.9 – Initial observation 

 

The base required for the retro Claisen reaction was then explored (Table 2.1). DABCO, 

imidazole, and benzimidazole were not competent for the retro-Claisen reaction (entries 1, 3, 4). 
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Sodium hydride only led to acyl transfer in 17% yield (entry 2). Interestingly, in the absence of 

any base, the acyl transfer occurred in 6 % yield (entry 5). TBD (1,5,7-triazabicyclo[4.4.0]dec-5-

ene) was the only base that was effective (entries 6, 7) at transacylation. Notably, it was equally 

effective when used stoichiometrically or in catalytic amounts. 

Table 2.1 – Base Screening 

 

Having found an optimal acyl transfer agent, the conditions for the terminal Tsuji-Trost 

cyclopropanation were further investigated (Table 2.2). Using Pd(dba)2 as the palladium source, 

various ligands were screened for their ability to promote the reaction. Without any ligands, 

Pd(dba)2 did not catalyze the reaction (entry 1). Monodentate phosphine ligands performed the 

best (entries 2-4). Bidentate phosphine ligands were capable of catalyzing the reaction, but the 

reactions were more sluggish (entries 6-10). The hemilabile ligand DavePhos performed quite well 

(entry 5). Pyridine based ligands were not competent at all for the reaction (entries 11-12). 



55 
 

Ultimately, it was determined that the optimal conditions for the reaction were with 2.5 mol % 

Pd(PPh3)4 with no additional ligands (entry 13).  

Table 2.2 – Ligand Screening 

   

Attention was then turned to optimization of the one-pot sequential allylation, retro-

Claisen, cyclopropanation (Scheme 2.10). When TBD was omitted, the Tsuji-Trost allylation of 

S2.2a with S2.1 proceeded readily in DCM in the presence of 2.5 mol % Pd(PPh3)4, however, the 

reaction stopped at the allyl alcohol intermediate. The addition of 1.1 equiv. of  TBD to facilitate 

acyl migration led to the vinyl cyclopropane,43d,65 albeit in only 14 % yield (entry 4).  
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Scheme 2.10 – Initial Attempts at One-Pot Reactions 

  

Nitrile (S2.2a, 0.25 mmol), Pd source, TBD, solvent and vinyl oxirane (S2.1, 1 equiv.) were mixed in that order and 

allowed to stir at the indicated temperature for the indicated amount of time. *89 % of the alcohol intermediate (I2.1a) 

was formed, but no vinyl cyclopropane was observed. rt = room temperature ~22 °C. 

Gratifyingly, when addition of TBD was delayed until after the formation of the allyl 

alcohol intermediate, the product was formed in appreciable yield (75 %, table 2.3 entry 1). 

Further optimization was conducted, exploring different solvents, temperatures, catalyst loading 

and base loading, but ultimately the optimal conditions were determined to be those shown in 

entry 1 (Table 2.3). 
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Table 2.3 – Reaction Optimization 

 

Nitrile (S2.2a, 0.25 mmol), Pd source, solvent and vinyl oxirane (S2.1a, 1 equiv.) were mixed in that order and allowed 

to stir at the temperature indicated and for the amount of time indicated for the first step. Then TBD was added and 

the reaction was allowed to stir at the temperature indicated and for the amount of time indicated for the second step.  

In order to demonstrate that the reaction could be performed on a preparative scale, it was 

performed on a 4.24 mmol scale using the prototypical substrates S2.1 and S2.2a. For convenience, 
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the reaction was carried out at a slightly higher concentration of 0.21 M. Under these conditions, 

the product P2.1a was obtained in 81 % yield with a dr of 81:19. Furthermore, the reaction was 

conducted under these same conditions with 2-(3,4-dimethylphenyl)-3-oxobutanenitrile (S2.2k) 

on gram scale, and the corresponding cyclopropane, P2.1k was obtained in 85 % yield (0.946 g, 

79:21 d.r.). 

2.3.2 – Reaction Scope 

Next, the most successful conditions were used to explore the scope of the reaction. First, 

the scope of nitriles that undergo anion relay cyclopropanation with butadiene monoxide was 

explored (Scheme 2.11). Toward this end, the reactions of 2-phenyl-2-acetylacetonitriles that 

contained various substituents on the phenyl ring were examined. Compared with the unsubstituted 

substrate, which formed product P2.1a in 75 % yield, mono-substituted substrates bearing 

electron-withdrawing groups led to similar yields (P2.1b-d, 77-90 %), except in the case of the 

more strongly withdrawing m-CF3 substituent (P2.1e, 58 %). Of note, a p-Br substrate that could 

suffer from competing C–Br oxidative addition provided the product in acceptable yield (P2.1f, 

67 %). Electron-donating groups also provided similar yields of vinyl cyclopropanes P2.1g-j, 

indicating that the reaction efficiency is not strongly dependent on the electronic character of the 

nitrile. The diastereoselectivities of the substituted products also did not show a strong dependence 

on electronic character and were consistently in the range of 75:25–81:19. However, the most 

electron-rich substrate (p-OMe) did furnish the corresponding vinyl cyclopropane P2.1h with 

significantly lower diastereoselectivity (66:34). Disubstituted phenylacetonitriles were also briefly 

explored. Again, these substrates were all well-tolerated and provided the vinyl cyclopropanes 

P2.1k-n in good yield and moderate diastereoselectivity. 
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Scheme 2.11 - Scope of Nitriles 

 

Reaction conditions: nitrile (S2.2, 0.25 mmol), Pd(PPh3)4 (2.5 mol %), DCM (1.9 mL), butadiene monoxide (S2.1 0.1 

mL 2.5 M in DCM), rt, 30 min, then TBD (1.1 equiv.), rt, 1 h.  Isolated yields. *gram scale 

In order to determine the stereochemistry of the major diastereomer, compound P2.1b was 

hydrolyzed by treatment with NaOH/EtOH, at 105 °C overnight, followed aqueous workup and 

recrystallization from hot Et2O. The resulting carboxylic acid formed X-ray quality crystals, which 

were analyzed to reveal the cis stereochemistry of the major product (Scheme 2.11 inset).  The 
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relative stereochemistry can also be straightforwardly determined by analysis of the 1H NMR 

spectroscopy; the internal alkene proton of the trans diastereomer is shifted significantly upfield 

(4.75-5.0 ppm) of its corresponding terminal protons, while the internal proton of the cis 

diastereomer has a normal shift of ca. 5.75 ppm and is downfield of its terminal protons (Figure 

2.1).66 Presumably, this is due to shielding of this proton by the electron cloud of the aromatic ring 

when the vinyl and phenyl groups are cis to one another. This observation was used diagnostically 

in the assessment of diastereoselectivity of the cyclopropanes. Ultimately, the stereochemistry is 

under thermodynamic control. Thus, treatment of either pure cis or pure trans vinyl cyclopropane 

with palladium leads to rapid equilibration to the thermodynamic ratio of diastereomers. 67
 

Figure 2.1 – Diagnostic 1H NMR Resonances for Diastereoselectivity 
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Internal Olefin Proton Resonances in 3a: Major (cis) isomer - 1H NMR (500 MHz, 

Chloroform-d) δ 5.80 (ddd, J = 16.9, 10.3, 8.3 Hz, 1H). Minor (trans) isomer - 4.87 (ddd, J = 17.0, 

10.3, 8.8 Hz, 1H). 

Next, various 4-aryl-3,4-butadiene monoxides (S2.3) were evaluated in the reaction with 

2-phenyl-2-acetylacetonitrile, S2.2a (Scheme 2.12). The prototypical example, with an 

unsubstituted phenyl substituent, resulted in a 72 % yield of the cyclopropane as an 80:20 mixture 

of diastereomers P2.2a. Again, substitution at the para-position of the arene (P2.2b, d, f, g) had 

little effect on the yield or diastereoselectivity of the transformation, while ortho substitution had 

a deleterious effect on the yield (P2.2c), and the diastereoselectivity was slightly decreased 

(76:24). Importantly, functionally useful aryl bromides and chlorides P2.2d-f were tolerated by the 

anion relay cyclization. In all cases where geometric isomers were possible with respect to the 

olefin, the E isomer was obtained exclusively as determined by 1H NMR spectroscopy (P2.2a-k, 

>95:5).   
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Scheme 2.12 – Scope of Epoxides 

  

Reaction conditions: nitrile (0.25 mmol), Pd(PPh3)4 (2.5 mol %), DCM (1.9 mL), butadiene monoxide (0.1 mL 2.5 M 

in DCM), rt, 30 min, then TBD (1.1 equiv.), rt, 1 h. Isolated yields.a)1.5 h after addition of TBD b) 45 °C, 3.5 h after 

addition of TBD. Observed diastereomers of P2.2n are C3-epimers, differing at the vinylic carbon.  

Disubstitution of the arene was also tolerated (P2.2i), however, the naphthyl substituents 

led to lower yield of the cyclopropane P2.2j and P2.2k. Vinyl epoxides that bear a 3-substituent 
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reacted more sluggishly (S2.2l, m). Nonetheless, the R2 phenyl-substituted reactant provided the 

cyclopropane P2.2l in 34 % yield, while the smaller R2 methyl substituent furnished the 

cyclopropane P2.2m in 48 % yield. In this case, presumably, slow palladium-catalyzed cyclization 

is responsible for the lack of formation of the cyclopropane.43a Long-chain alkanes were tolerated 

at the R1-position. As such, the reaction of (E)-2-(non-1-enyl)oxirane with 2-phenyl-2-

acetylacetonitrile furnished the desired cyclopropane in acceptable yield, but the 

diastereoselectivity was low (P2.2n, 63 %, dr = 52:48). Unfortunately, a longer-chain alkyl 

substituent at the R3-position failed to produce the desired product. Instead, the reaction stopped 

after acyl transfer, providing compound P2.3, as an E/Z mixture of olefins, in good yield (Scheme 

2.13). Finally, the spirocyclic vinyl epoxide, 2-vinyl-1-oxaspiro[2.5]octane, did not lead to the 

desired product, but instead led to product P2.4 (Scheme 2.13). Inspection of this product revealed 

that the reaction did not proceed due to a failed transacylation.65 We hypothesize that the acyl 

group was effectively transferred to TBD, but the resulting intermediate was not capable of 

acylating the bulky tertiary alkoxide.43e 

Scheme 2.12 – Failed cyclization 

 

*Same conditions as those used in Scheme 2.11 
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Scheme 2.13 – Interrupted Transacylation 

 

*Same conditions as those used in Scheme 2.11 

2.3.3 – Mechanistic Considerations 

Ultimately, these observations support a reaction sequence involving Tsuji-Trost allylation 

followed by deprotonation of the resultant alcohol in the presence of TBD to form an allyl 

alkoxide, I2.1a (Scheme 2.14). TBD catalyzes the anion relay via retro-Claisen reaction and 

transacylation, yielding an allyl ester, I2.2a.65 The allyl ester is then activated to undergo oxidative 

addition and alkylation in the presence of palladium. Reversible ring-closure forms the 

thermodynamically favored cis arrangement of the vinyl group with the small nitrile substituent. 

Use of this strategy allows the direct conversion of readily-available vinyl epoxides and 

cyanoketones into versatile vinyl cyclopropanes.  
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Scheme 2.14 – Proposed mechanism. 

 

§2.4 Utilization of Cyclopropanes 

Generally, cyclopropanes formed using intramolecular Tsuji-Trost reactions are produced 

from dicarboxylate pro-nucleophiles. Because these cyclopropanes are formed using significantly 

less activated pro-nucleophiles, it was of interest to demonstrate the ability of these cyclopropanes 

to participate in reactions typical of donor-acceptor cyclopropanes. In fact, they readily 

participated in ring-opening amination reactions.68 Two examples are provided (Scheme 2.15).  
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Scheme 2.15 – Utility of Vinyl Cyclopropanes in Ring Opening Amination  

 

Reaction conditions: 2.5 mol % Pd(PPh3)4 was added to a flame dried vial under argon. 0.63 mL of 0.32 M vinyl 

cyclopropane solution in THF was added. Then 2 equiv. morpholine was added and the reaction was heated to 70 °C 

overnight. The reaction was quenched by running through a plug of silica in EtOAc. Yields reported are isolated 

yields after flash chromatography. 

The ability of these vinyl cyclopropanes to participate in [3+2]-cycloadditions with methyl 

acrylate was explored. Initial attempts using conditions previously reported for a similar 

cycloaddition with 2,2-dicarboxylate-1-vinyl cyclopropanes were not successful.69 Results of our 

optimization of this reaction are given in table 2.4.70 When the cyclopropanes were combined with 

methyl acrylate in the presence of palladium with dppe at 150 ℃, the [3+2]-cycloaddition only 

occurred to a small extent, and the majority of the product was ascribed to an interesting aryl vinyl 

cyclopropane Cope rearrangement product (P3.1a) (Table 2.4, entry 1). Interestingly, under the 

same conditions using PHOX ligands in place of dppe, the cycloaddition proceeded at room 

temperature (Table 2.4, entry 2). Increasing the temperature to 70 ℃ allowed the reaction to 

proceed to completion (Table 2.4, entry 3). Other PHOX ligands did not perform as well (Table 

2.4, entries 4-5). Finally, it was found that heating to only 50 ℃ was sufficient for full conversion 

to the cycloaddition product (P2.6, Table 2.4, entry 6).  
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Table 2.4 – Optimization of Cycloaddition 

  

Conditions: Pd2(dba)3•CHCl3 (x mol %), ligand (10 mol %) and DMSO were added to a flame dried flask under argon. 

Methyl acrylate and cyclopropane were added via syringe. The reaction was stirred at the given temperature for 10 h. 

* area % a on GC. ** area % b on GC. *** isolated yield, d.r. 57:29:14:0, determined by 1H NMR. 

Aryl vinyl cyclopropane Cope rearrangements are quite rare, so we optimized the 

transformation for formation of the benzocycloheptene side product (Table 2.4, entry 1). 

Interestingly, when the reaction was run in the absence of ligand, we saw nearly full conversion to 

the benzocycloheptene (Table 2.4, entry 7). Indeed, when the reaction was run in the absence of 

any catalyst, the reaction still proceeded almost completely to the benzocycloheptene, with small 

amounts of cycloaddition product (Table 2.4, entry 8). Under the same conditions, but in the 

absence of methyl acrylate the reaction proceeded fully to the benzocycloheptene and no other 

products were observed by GC (Table 2.4, entry 9). This rare aryl vinyl cyclopropane Cope 
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reaction was explored in greater depth and will be elaborated upon in Chapter 3. On the basis of 

these observations, the optimal conditions were used for the isolation of the cycloaddition product, 

which was thus obtained in 94% isolated yield (Table 2.4, entry 10). 

§2.5 Attempts at Asymmetric Cyclopropanation 

Attempts were made to develop conditions for an asymmetric cyclopropanation. The 

cyclopropanation from the ester, being the potential enantio-determining step in the above one-pot 

protocol was isolated for optimization (Table 2.5). We began our investigation using a PHOX 

ligand, which was successful in the cyclopropanation developed by Nemoto et al.64 Using a 4-

tbutyl-substituted PHOX ligand with Pd2(dba)3 and otherwise standard conditions for the above 

developed cyclopropanation, we observed 24% yield of the cyclopropane P2.1a by NMR, with an 

approximately 4:1 dr in favor of the cis isomer. After a brief catalyst screen (Table 2.5, entries 2-

4), the three dibenzylideneacetone palladium complexes were found to be acceptable, and a cost 

analysis revealed that Pd(dba)2 was the optimal choice. A brief ligand screen (Table 2.5, entries 5-

6) revealed that bis-phosphine ligand BINAP was not competent for the reaction, whereas the 

slightly less strongly coordinating (R)-MOP led to a greater yield (50 %, Table 2.5,  entry 6). Using 

DBU as the base led to no conversion to the cyclopropane (Table 2.5, entry 7). Higher temperatures 

were not beneficial to the reaction (Table 2.5, entries 8-9).  Increasing the amount of palladium 

from 2.5 mol % to 5 mol % increased the yield by 20 % with no significant effect on 

diastereoselectivity (Table 2.5, entry 10). A brief solvent screen revealed that DCM was an optimal 

solvent (Table 2.5, entries 10-13). Next, the loadings of the catalyst and ligands were explored in 

more detail (Table 2.5, entries 14-18). In order to see if increasing the amount of (R)-MOP had the 

same effect as increasing the amount of catalyst, the reaction was run with 20 mol % (R)-MOP 

and 2.5 mol % catalyst (see Table 2.5, entries 6, 10, 14). Indeed, increase in yield by doubling the 
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amount of ligand was comparable to that when the catalyst was increased two-fold. However, since 

(R)-MOP is more expensive than the palladium catalyst, increasing the catalyst two-fold was a 

more economical decision. Decreasing the amount of catalyst by half did not have the same effect 

as doubling the ligand (Table 2.5, entry 17). Lower loadings of ligand were explored, and 3.4 mol 

mol % ligand to mol 5 mol % catalyst was settled upon (Table 2.5, entries 15-16, 18).  Higher 

loading of TBD was explored, to see if greater amounts of base could push the ester to higher 

conversion, however, adding additional base had detrimental effects to the yield (Table 2.5, entries 

19-20). With these conditions in hand, the ligand screening was revisited in more detail (Table 2.5, 

entries 21-27), but it was determined that (R)-MOP was best, with RajPhos being a close second. 

It appears that bidentate ligands featuring a strongly coordinating phosphine in combination with 

a less strongly coordinating handle such as an ester are optimal for this transformation. Finally, 

slightly more dilute conditions were tried, and a very slight increase to the yield was observed 

(Table 2.5, entry 27). This optimization was done in the absence of an acceptable chiral HPLC 

separation method, so enantioselectivities were not routinely determined. 

Subsequently, an HPLC method was developed and the enantioselectivity was determined 

for some of these conditions. First, the diastereomers of the cyclopropane had to be separated. This 

separation was accomplished on a flash column that was ½ in. wide and 10 in. tall. Initially packing 

the column with hexane and eluting the product with 0.5 % EtOAc in hexane, collecting fractions 

in 100x13 mm tubes, then flushing with EtOAc if recovery of the ester was desired. The isolated 

cis diastereomer of cyclopropane was injected on HPLC. The HPLC method used was isocratic, 

2% isopropanol in hexane with a flow rate of 1 mL per minute through an IA column (Daicel 

Chiralpak IA, 4.6 X 250 mm, 5 mic) with 2 L injections. One enantiomer eluted at about 6.5 

minutes and the other eluted at 10 minutes using this method. The enantiomeric excess was  
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Table 2.5 – Attempted Asymmetric Cyclopropanation
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determined for entries 15, 21 and 27 (Table 2.5,), and were 4.6, -1.5 and 7.2 % respectively. 

Therefore, while an enantioselective transformation is possible, acceptable enantioselectivities 

have not been achieved. Furthermore, bidentate phosphine ligands inhibit the reaction to some 

extent, whereas monodentate phosphine ligands containing another weakly coordinating 

heteroatom, such as oxygen, allow the reaction to proceed, but may not be optimal in terms of 

inducing enantioselectivity.  

During the course of mechanistic studies on the aryl Cope rearrangement (see Chapter 3, 

Figure 3.17), it became apparent that palladium phosphine complexes catalyze the reversible ring 

opening of these vinyl cyclopropanes and under these conditions the reaction will inevitably 

progress toward the racemate over time. Therefore, at that time it was determined that our efforts 

were best focused elsewhere. 

§2.6 Conclusion 

We have developed an effective type I anion relay protocol that utilizes retro-Claisen 

condensation reactions to relay anionic charge. Beginning from α-cyano acyl nucleophiles and 

vinyl epoxides, this protocol combines Tsuji-Trost allylation, retro-Claisen anion relay and 
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intramolecular Tsuji-Trost cyclopropanation in a single pot to afford synthetically useful 

vinylcyclopropanes. Furthermore, these vinylcyclopropanes were utilized in amination reactions 

and [3+2]-cycloadditions typical of donor-acceptor cyclopropanes. This new anion relay protocol 

obviates the need to synthesize alkyl silanes and complements existing non-silyl migration ARC 

tactics. 

2.4.1 – Potential Future Directions 

Further development of the retro-Claisen ARC concept is certainly possible and may 

prove fruitful for future research endeavors. One potential area of development could be the 

extension of the retro-Claisen anion relay concept to type-II anion relay. Such a project would 

necessitate the synthesis of a linchpin, such as the one shown in Scheme 2.16. As found 

previously, retro-Claisen reactions are not effective unless the pKa of the conjugate acid of the 

resultant carbanion is less than about 25.43a Therefore, such a linchpin will have to be designed 

with electron-withdrawing groups that would impart an appropriately low pKa.  

Scheme 2.16 – Type II Retro-Claisen ARC Concept 

  

Smith has developed a similar type of linchpin for his [1,4]-Brook rearrangement 

chemistry using a dithiane group as an anion stabilizing moiety. In 5 steps, starting from 

commercially available starting materials, Smith et al. synthesized the brominated vinyl epoxide 
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shown in scheme 2.17a.8 However, dithianes would not impart the anion stability required to 

drive a retro-Claisen reaction. Nonetheless, initial efforts in synthesizing a type II linchpin for 

retro-Claisen anion relay were done following a route similar to that used by Smith for the 

synthesis of his type II Brook rearrangement linchpins. Several attempts were made to synthesize 

an acceptable linchpin for retro-Claisen ARC using a similar strategy, but all attempts failed 

(unpublished results). In some cases, the epoxide was opened via the SN2 or SN2’ pathways, and 

in other cases the kinetic enolate was formed preferentially and led to isomeric products. This 

problem of kinetic enolate formation could be prevented by using a diester, such as that shown in 

Scheme 2.17c. 

Scheme 2.17 – Attempts to Synthesize a Type II retro-Claisen ARC linchpin 

 

Other types of linchpins could also be developed for use in retro-Claisen anion relay for 

use in both type I and type II protocols, such as aldehyde linchpins. Outlined in Scheme 2.18 is a 
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potential alternate route to type II linchpins that avoids both problems encountered above. 

Starting from commercially available brominated alcohol S2.6, the bromine could be displaced 

by an appropriately functionalized acyl containing nucleophile. The alcohol could then be 

oxidized to give an aldehyde I2.4, which itself could be a useful linchpin for retro-Claisen anion 

relay or could be epoxidized to make additional linchpins P2.9 and P2.10.  

Scheme 2.18 – Other Potential Routes to Type II retro-Claisen ARC Linchpins 

. 
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Chapter 2 Appendix 

Experimental methods and spectral analysis for chapter 2 
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§2.A.1 General Information 

All reactions were performed in flame dried glassware under an argon atmosphere unless 

otherwise noted. THF was dried over sodium in the presence of benzophenone. Cyanoketones 

were prepared according to a literature procedure (vide infra). Preparation of 2-aryl-3-vinyl 

oxiranes was accomplished according to a literature procedure (vide infra).  

All other materials were obtained from Sigma-Aldrich, Acros Organics, Alfa Aesar or Fisher 

Scientific and were used without further purification. Reactions were monitored using either 

GC/MS on a Shimadzu GCMS-QP2010 SE or TLC on silica gel HL TLC plates w/UV254 from 

Sorbent Technologies. Compound purification was affected by flash chromatography using 

230x400 mesh, 60 A porosity silica, using mixtures of hexane and EtOAc (EA) as eluent as 

noted. 1H NMR and 13C NMR spectra were obtained on a Bruker Avance 400 or a Bruker 

Avance 500 DRX spectrometer equipped with a QNP Cryoprobe and referenced to residual 

protio solvent signals. Structural assignments are based on 1H, 13C, DEPT135, COSY and 

NOESY techniques. J values are reported in Hz. High resolution mass spectral analysis was done 

on a Waters LCT Premeir mass spectrometer with a quadrupole and time of flight tandem mass 

analyzer and an electrospray ion source, or via LCMS using a Waters Q-Tof Premier in tandem 

with an Aquity UPLC using toluene assisted atmospheric pressure chemical ionization (TAPCI), 

as noted. Infrared analysis was performed on a Shimadzu FTIR-8400S infrared spectrometer. 

Melting points were obtained on a Digimelt MPA160 melting point apparatus. 

§2.A.2 Synthesis and Characterization of Starting Materials 

2.A.2.1 – Cyanoketone Preparation43a 
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General Procedure 2.B: Lithium hydride (96.5 mg, 12 mmol, 2 equiv.) was added to a flame 

dried flask in a glove box. DMSO (3 mL, 2.0 M) and a benzyl cyanide (0.705 g, 6 mmol, 1 equiv.) 

were added, and the flask was removed from the glove box and sealed. The suspension was cooled 

to 0 ℃ with stirring and N-acetyl imidazole (0.723 g, 6.6 mmol, 1.1 equiv.) was added. The 

solution was stirred for one hour, and then diluted with diethyl ether (~3X) and quenched with 

aqueous HCl (2 N). The aqueous layer was extracted with diethyl ether, then EtOAc. The combined 

organic layer was washed with hydrochloric acid, then brine and dried over magnesium sulfate. 

After filtration, the solvent was removed by rotary evaporation at 40 °C. The solid thus obtained 

was purified by recrystallization from Et2O/hexane three times. A white solid was generally 

obtained (62% yield for 1a).  

S2.2a 

 

2-phenyl-2-acetylacetonitrile 

0.598 g, white solid, m.p.:84.4-86.5 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.29 (m, 5H), 

4.68 (s, 1H), 2.27 (s, 3H). 

2.A.2.2 – Preparation of 2-aryl-3-vinyl oxiranes71a 

General Procedure 2.C: To a flame dried flask was added ZnCl2 (2 equiv.) and diluted to 0.1 M 

with THF.  This was followed by addition of 1.5 equiv. of allyl chloride. The flask was cooled to 

-78 °C in a dry ice/ acetone bath. With stirring, 2 equiv. LDA was added, and the reaction was 

allowed to stir for 30 minutes. At the same temperature 1 equiv. of aryl aldehyde was added and 
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the reaction was allowed to stir for 30 minutes. Note: removing the cold bath and quenching the 

reaction at 30 minutes, and not later, was crucial to the yield. The reaction was allowed to warm 

to room temperature followed by quenching with saturated aqueous sodium bicarbonate. The 

layers were separated, and the aqueous layer was extracted 3 times with ether. The combined 

organic layer was washed with brine. The solvent was removed from the organic layer en vacuo, 

and the residue was treated with saturated ethanolic KOH at room temperature in an open flask for 

30 minutes. The mixture was placed on a rotary evaporator to remove the ethanol. Water and 

diethyl ether were added, the layers were separated and the aqueous layer was extracted with ether 

3x. The combined organic layers were washed with brine and then dried over magnesium sulfate. 

The solvent was removed en vacuo and the product was purified by chromatography on silica gel 

using an EtOAc/hexane mixture as eluent (generally 1 % to 2 % EtOAc).  

S2.3a 

 

2-phenyl-3-vinyloxirane71a,72  

Prepared from 0.51 mL benzaldehyde (5 mmol) according to general procedure 2.C. Purified by 

flash chromatography on deactivated silica with 5 % EA:Hexane containing 1 % triethylamine. 

Obtained 0.259 g colorless oil, yield: 35 % cis:trans ratio: 94:6. Spectral data was in agreement 

with published results. 1H NMR (400 MHz, Chloroform-d) δ 7.43 – 7.27 (m, 5H aromatic), 5.76 

(ddd, J = 17.5, 10.4, 7.4 Hz, 1H  minor alkene CH), 5.64 – 5.24 (m, 3H overlapping major and 

minor alkene CH and CH2), 4.28 (d, J = 4.2 Hz, 1H major epoxide CH), 3.80 (d, J = 1.9 Hz, 1H 
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minor epoxide CH), 3.69 (dd, J = 8.1, 4.3 Hz, 1H major epoxide CH), 3.39 (dd, J = 7.5, 1.9 Hz, 

1H minor epoxide CH). 

S2.3b  

 

2-(p-tolyl)-3-vinyloxirane71a  

Prepared from 1.77 mL p-tolualdehyde (15 mmol) according to general procedure 2.C. Purified by 

flash chromatography on deactivated silica with 5 % EA:Hexane containing 1 % triethylamine. 

Obtained 0.918 g colorless oil, yield: 38 % cis:trans ratio: 91:9. 1H NMR (400 MHz, Chloroform-

d) δ 7.24 (d, J = 7.9 Hz, 2H aromatic), 7.17 (d, J = 7.8 Hz, 2H aromatic), 5.74 (ddd, J = 17.6, 10.4, 

7.4 Hz, 1H minor alkene CH), 5.61 – 5.23 (m, 3H overlapping major and minor alkene CH and 

CH2), 4.23 (d, J = 4.2 Hz, 1H major epoxide CH), 3.75 (d, J = 2.0 Hz, 1H minor epoxide CH), 

3.66 (dd, J = 8.1, 4.3 Hz, 1H major epoxide CH), 3.37 (dd, J = 7.4, 1.9 Hz, 1H minor epoxide CH), 

2.36 (s, 3H CH3). 

S2.3c  

 

2-(o-tolyl)-3-vinyloxirane 71b 

Prepared from 1.2 mL o-tolualdehyde according to general procedure 2.C. Purified by flash 

chromatography on silica with EA:Hexane. Obtained 0.217 g yellow oil, yield: 13.4 % cis:trans 

ratio: 94:6. 1H NMR 1H NMR (500 MHz, Chloroform-d) δ 7.38 – 7.34 (m, 1H aromatic), 7.23 – 
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7.18 (m, 2H aromatic), 7.17 – 7.13 (m, 1H aromatic), 5.78 (ddd, J = 17.7, 10.4, 7.5 Hz, 1H 

alkene CH, minor), 5.57 – 5.47 (m, 1H alkene CH, major), 5.36 (d, J = 10.6 Hz, 2H alkene CH2, 

minor), 5.28 – 5.17 (m, 2H alkene CH2, major), 4.22 (d, J = 4.2 Hz, 1H epoxide CH, major), 

3.91 (d, J = 2.1 Hz, 1H epoxide CH, minor), 3.74 (ddd, J = 6.0, 4.2, 1.2 Hz, 1H epoxide CH, 

major), 3.26 (dd, J = 7.6, 2.1 Hz, 1H epoxide CH, minor), 2.39 (s, 3H methyl CH3, minor), 2.30 

(s, 3H methyl CH3, major). 13C NMR (126 MHz, CDCl3) δ 136.0, 133.8, 132.7, 129.8, 127.8, 

126.5, 125.8, 121.7, 59.3, 58.1, 18.9. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3084, 3069, 3028, 2994, 2972, 2926, 

2861, 1491, 1460, 1441, 1381, 1044, 988, 945, 928, 882, 775, 741, 610. HRMS (ESI, m/z) calcd. 

for C10H10O, [M+] 146.0732; found 146.0732. 

S2.3d  

 

2-(4-chlorophenyl)-3-vinyloxirane 71a,72  

Prepared from 2.110 g p-chlorobenzaldehyde (15 mmol) according to general procedure 2.C. 

Purified by flash chromatography on deactivated silica with 5 % EA:Hexane containing 1% 

triethylamine. Obtained 1.848 g colorless oil, yield: 68 % cis:trans ratio: 92:8. 1H NMR (400 MHz, 

Chloroform-d) δ 7.39 – 7.19 (m, 4H aromatic), 5.73 (ddd, J = 17.5, 10.3, 7.3 Hz, 1H minor alkene 

CH), 5.62 – 5.49 (m, 1H overlapping 1H major and minor alkene CH2), 5.43 – 5.26 (m, 2H 

overlapping 1H major alkene CH and 1H alkene CH2), 4.22 (d, J = 4.2 Hz, 1H major epoxide CH), 

3.76 (d, J = 2.0 Hz, 1H minor epoxide CH), 3.72 – 3.64 (m, 1H major epoxide CH), 3.33 (dd, J = 

7.4, 1.9 Hz, 1H minor epoxide CH). 
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S2.3e 

 

2-(3-chlorophenyl)-3-vinyloxirane  

Prepared from 1.70 mL m-chlorobenzaldehyde (15 mmol) according to general procedure 2.C. 

Purified by flash chromatography on deactivated silica with 5 % EA:Hexane containing 1 % 

triethylamine. Obtained 1.565 g colorless oil, yield: 58 % cis:trans ratio: 92:8. 1H NMR (400 MHz, 

Chloroform-d) δ 7.37 – 7.16 (m, 4H aromatic), 5.71 (ddd, J = 17.5, 10.3, 7.4 Hz, 0H minor alkene 

CH), 5.62 – 5.48 (m, 1H overlapping major and minor alkene CH2), 5.43 – 5.26 (m, 2H overlapping 

1H major alkene CH and 1H alkene CH2), 4.21 (d, J = 4.2 Hz, 1H major epoxide CH), 3.74 (d, J 

= 1.9 Hz, 1H minor epoxide CH), 3.70 – 3.63 (m, 1H major epoxide CH), 3.33 (dd, J = 7.4, 1.9 

Hz, 1H minor epoxide CH).  13C NMR (126 MHz, CDCl3) δ 137.5, 134.9, 134.5, 131.7, 130.0, 

129.7, 128.6, 128.2, 126.8, 125.7, 124.9, 124.0, 122.67, 120.4, 63.3, 60.0, 59.7, 58.4. IR (𝜈̅ −

𝜈̅𝐼𝑅 , neat) 3088, 3069, 3030, 2994, 1946, 1867, 1640, 1600, 1574, 1481, 1429, 1385, 1337, 1180, 

1094, 1076, 1042, 986, 931, 887, 779, 719, 683. HRMS (ESI, m/z) calcd. for C10H9ClO, [M+Na] 

203.0240; found 203.0242 
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S2.3f  

 

2-(4-bromophenyl)-3-vinyloxirane  

Prepared from 0.463 g p-bromobenzaldehyde (2.5 mmol) according to general procedure 2.C. 

Purified by flash chromatography on deactivated silica with 5 % EA:Hexane containing 1% 

triethylamine. Obtained 0.191 g colorless oil, yield: 34 % cis:trans ratio: 93:7. 1H NMR (500 MHz, 

Chloroform-d) δ 7.54 – 7.47 (m, 2H aromatic), 7.27 – 7.16 (m, 2H aromatic), 5.74 (ddd, J = 17.2, 

10.4, 7.4 Hz, 1H minor alkene CH), 5.62 – 5.50 (m, 1H overlapping major and minor alkene CH2), 

5.42 – 5.27 (m, 2H overlapping major and minor alkene CH2 and major alkene CH), 4.22 (d, J = 

4.2 Hz, 1H major epoxide CH), 3.76 (d, J = 1.9 Hz, 1H minor epoxide CH), 3.73 – 3.65 (m, 1H 

major epoxide CH), 3.34 (ddd, J = 7.4, 1.6, 0.7 Hz, 1H minor epoxide CH). 13C NMR (126 MHz, 

CDCl3) δ 136.3, 134.9, 134.4, 131.9, 131.8, 131.5, 128.4, 127.4, 122.5, 122.3, 121.9, 120.2, 63.2, 

60.0, 59.9, 58.6. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3030, 2994, 1908, 1867, 1638, 1595, 1487, 1441, 1410, 

1379, 1337, 1300, 1248, 1179, 1105, 1071, 1040, 1011, 986, 930, 872, 814, 762, 723, 689, 635. 

HRMS (TAPCI, m/z) calcd. for C10H9BrO [M+H] 224.9915, found 224.9902 

S2.3g  

 

2-(4-methoxyphenyl)-3-vinyloxirane 71a,72 
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Prepared from 1.83 mL p-anisaldehyde (15 mmol) according to general procedure 2.C. Purified 

by flash chromatography on deactivated silica with 5 % EA:Hexane containing 1 % triethylamine. 

Obtained 1.712 g colorless oil, yield: 65 % cis:trans ratio: 91:9. 1H NMR (400 MHz, Chloroform-

d) δ 7.29 – 7.18 (m, 2H aromatic), 6.93 – 6.85 (m, 2H aromatic), 5.73 (ddd, J = 17.6, 10.3, 7.4 Hz, 

1H minor alkene CH), 5.59 – 5.23 (m, 3H overlapping major alkene CH and CH2), 4.20 (d, J = 4.2 

Hz, 1H major epoxide CH), 3.81 (s, 3H OCH3), 3.72 (d, J = 1.9 Hz, 1H minor epoxide CH), 3.63 

(dd, J = 8.1, 4.2 Hz, 1H major epoxide CH), 3.36 (dd, J = 7.4, 2.0 Hz, 1H minor epoxide CH). 

S2.3h 

 

2-(3-methoxyphenyl)-3-vinyloxirane  

Prepared from 1.83 mL m-anisaldehyde (15 mmol) according to general procedure 2.C. Purified 

by flash chromatography on deactivated silica with 5 % EA:Hexane containing 1 % triethylamine. 

Obtained 1.138 g colorless oil as an 85:15 mixture of diastereomers, yield: 43 %. 1H NMR (500 

MHz, Chloroform-d) δ 7.29 – 7.23 (m, 1H aromatic), 6.95 – 6.80 (m, 3H aromatic), 5.72 (ddd, J 

= 17.3, 10.4, 7.5 Hz, 1H minor alkene CH), 5.60 – 5.49 (m, 1H overlapping major and minor 

alkene CH2), 5.42 (ddd, J = 17.1, 10.4, 8.3 Hz, 1H major alkene CH), 5.35 (ddd, J = 10.4, 1.3, 0.6 

Hz, 1H minor alkene CH2), 5.29 (ddd, J = 10.4, 1.6, 0.6 Hz, 1H major alkene CH2), 4.23 (d, J = 

4.3 Hz, 1H major epoxide CH), 3.81 (d, J = 1.5 Hz, 3H OCH2), 3.76 (d, J = 2.0 Hz, 1H minor 

epoxide CH), 3.66 (dd, J = 8.3, 4.3 Hz, 1H major epoxide CH), 3.37 – 3.32 (m, 1H minor epoxide 

CH). 13C NMR (126 MHz, CDCl3) δ 160.1, 159.7, 138.9, 137.0, 135.2, 132.3, 129.8, 129.5, 122.3, 

120.0, 119.0, 118.2, 114.3, 113.7, 111.9, 110.6, 63.2, 60.4, 60.1, 59.0, 55.50, 55.48. IR (𝜈̅ −
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𝜈̅𝐼𝑅 , neat) 3086, 2997, 2963, 2837, 1940, 1858, 1605, 1487, 1435, 1385, 1317, 1277, 1261, 1234, 

1155, 988, 928, 787, 739, 698. HRMS (TAPCI, m/z) calcd. for C11H12O2 [M-H] 175.0759, 

[M+H]M 177.0916, found 175.0752, 177.0906 

S2.3i 

 

5-(3-vinyloxiran-2-yl)benzo[d][1,3]dioxole 71c 

Prepared from 2.25 g piperonal (15 mmol) according to general procedure 2.C, with the exception 

that the material was not treated with KOH/EtOH. Purified by flash chromatography on 

deactivated silica with 10 % EA:Hexane containing 1 % triethylamine. Obtained 1.92 g white 

solid, m.p.: 44.3-48.9 °C, yield: 67 % cis:trans ratio: 92:8. 1H NMR (400 MHz, Chloroform-d) δ 

6.86 – 6.77 (m, 3H aromatic), 5.97 (s, 2H acetal CH2), 5.72 (ddd, J = 17.5, 10.3, 7.4 Hz, 1H minor 

alkene CH), 5.62 – 5.24 (m, 3H overlapping alkene CH and CH2), 4.17 (d, J = 4.1 Hz, 1H major 

epoxide CH), 3.70 (d, J = 2.0 Hz, 1H minor epoxide CH), 3.62 (dd, J = 8.0, 4.2 Hz, 1H major 

epoxide CH), 3.32 (dd, J = 7.3, 2.0 Hz, 1H minor epoxide CH). 

S2.3j 

 

2-(naphthalen-1-yl)-3-vinyloxirane 71c 
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Prepared from 0.784 g 1-napthaldehyde (5 mmol) according to general procedure 2.C. Purified by 

flash chromatography on deactivated silica with 1 % EA:Hexane. Obtained 0.832 g white solid, 

m.p.: 35.7-38.2 °C, yield: 84 % cis:trans ratio: 93:7. 1H NMR (400 MHz, Chloroform-d) δ 8.05 – 

7.95 (m, 1H aromatic), 7.93 – 7.86 (m, 1H aromatic), 7.81 (d, J = 8.2 Hz, 1H aromatic), 7.60 – 

7.44 (m, 4H aromatic), 5.90 (ddd, J = 17.6, 10.4, 7.6 Hz, 1H minor alkene CH), 5.64 – 5.39 (m, 

1H overlapping major and minor alkene CH2), 5.35 – 5.07 (m, 2H overlapping alkene CH and 

CH2), 4.71 (d, J = 4.2 Hz, 1H major epoxide CH), 4.40 (s, 1H minor epoxide CH), 3.92 (dd, J = 

8.0, 4.2 Hz, 1H major epoxide CH), 3.37 (d, J = 6.2 Hz, 1H minor epoxide CH). 

S2.3k 

 

2-(naphthalen-2-yl)-3-vinyloxirane 71d 

Prepared from 0.788 g 2-napthaldehyde (5 mmol) according to general procedure 2.C. Purified by 

flash chromatography on deactivated silica with 1 % EA:Hexane. Obtained 0.769 g colorless oil, 

yield: 78 % cis:trans ratio: 89:11. 1H NMR (500 MHz, Chloroform-d) δ 7.98 – 7.77 (m, 4H 

aromatic), 7.61 – 7.34 (m, 3H aromatic), 5.81 (ddd, J = 17.2, 10.5, 7.5 Hz, 1H minor alkene CH), 

5.67 – 5.56 (m, 1H overlapping major and minor alkene CH2), 5.54 – 5.35 (m, 1H overlapping 

major alkene CH and minor alkene CH2), 5.34 – 5.21 (m, 1H alkene CH2), 4.44 (dd, J = 4.3, 0.8 

Hz, 1H major epoxide CH), 3.97 (d, J = 1.9 Hz, 1H minor epoxide CH), 3.77 (dd, J = 8.4, 4.3 Hz, 

1H major epoxide CH), 3.50 (dd, J = 7.5, 2.0 Hz, 1H minor epoxide CH). 13C NMR (126 MHz, 

CDCl3) δ 135.3, 134.7, 133.5, 133.4, 133.2, 133.2, 132.9, 132.3, 128.6, 128.12, 128.11, 128.02, 

128.00, 126.63, 126.56, 126.3, 126.2, 125.6, 125.3, 124.5, 123.0, 122.4, 120.0, 63.3, 60.7, 60.3, 
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59.3. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3055, 3022, 2986, 1695, 1634, 1603, 1510, 1435, 1397, 1366, 1333, 

1271, 1238, 1165, 1126, 140, 986, 943, 928, 862, 808, 752, 723, 897, 887. HRMS (ESI, m/z) calcd. 

for C14H12O [M+H] 197.0966; found 197.0968 

S2.3p 

 

2-vinyl-1-oxaspiro[2.5]octane 71a 

Prepared from 1.97 g cyclohexanone according to general procedure 2.C. Purified by flash 

chromatography on silica with 5 % EA:Hexane. Obtained 0.876 g colorless oil, yield: 32 %. 1H 

NMR (500 MHz, Chloroform-d) δ 5.76 (ddd, J = 17.5, 10.5, 7.3 Hz, 1H alkene CH), 5.45 (dt, J = 

17.2, 1.0 Hz, 1H alkene CH2), 5.35 – 5.28 (m, 1H alkene CH2), 3.19 (d, J = 7.3 Hz, 1H epoxide 

CH), 1.85 – 1.65 (m, 3H cyclohexane ring), 1.64 – 1.40 (m, 7H cyclohexane ring). 13C NMR (126 

MHz, CDCl3) δ 133.4, 120.2, 65.0, 64.7, 35.7, 29.6, 25.8, 25.3, 25.0. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 2934, 

2666, 1842, 1640, 1447, 1398, 1301, 1119, 986, 895, 821, 797, 727, 681. HRMS (TAPCI, m/z) 

calcd. for C9H14O [M+H] 139.1123; found 139.1122 

2.A.2.3 – Preparation of 2-aryl-2-vinyl oxiranes 

General Procedure E: Acetophenone was added to acetonitrile (0.125 M) at room temperature 

and stirring was initiated. N-chlorosuccinimide (1 equiv.) and p-toluenesulfonic acid monohydrate 

(1 equiv.) were added. The reaction was allowed to stir for 1 hour at room temperature, followed 

by reflux (~77 °C) for 3 hours. The solvent was removed en vacuo, and water was added. The 

resulting mixture was extracted 3x with EtOAc, washed with brine and dried over magnesium 
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sulfate. The chloroacetophenone was purified by chromatography on silica gel using an EtOAc 

and hexane mixture as eluent. (2-5 %) often the starting material co-eluted with the mono-

chlorinated product under these conditions. The chloroacetophenone/acetophenone mixture was 

used for the next step without further purification.73  

Vinyl Grignard (1 equiv. as 1 M solution in THF) was diluted in THF to a concentration of 0.67 

M and was cooled to ~ 0 °C in an ice/salt water bath. The product mixture from the previous step 

was added and allowed to stir in the bath for ½ hour. The reaction was allowed to warm to room 

temperature over ½ hour. It was then quenched with saturated aqueous ammonium chloride. The 

layers were separated and the aqueous layer was extracted with ether three times. The combined 

organic fractions were treated with 1 N NaOH, and the mixture was allowed to stir for 3 hours. 

The layers were separated, and the aqueous layer extracted with ether. The combined organic 

layers were washed with brine, dried and concentrated by rotary evaporation. Some chlorohydrin 

remained and the residue was reconstituted in ether, and treated again with NaOH (1 N) for 3 hours 

at room temperature. Worked up as before and the product was purified by chromatography on 

silica gel using an EtOAc hexane mixture as eluent.74  

S2.3l 

 

 2-phenyl-2-vinyloxirane 74 
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18 % over 2 steps. 1H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.28 (m, 5H), 6.06 (dd, J = 17.2, 

10.6 Hz, 1H), 5.34 (dt, J = 10.7, 1.0 Hz, 1H), 5.26 (d, J = 17.1 Hz, 1H), 3.10 (dd, J = 5.7, 0.8 Hz, 

1H), 3.03 (dd, J = 5.7, 0.8 Hz, 1H). 

 

Synthesis of 2-(hept-1-en-2-yl)oxirane S2.3o 

 

Heptanal was obtained from Alfa Aesar and was used without purification. To a flask was added 

formaldehyde (1.62 g, 37 wt % in water, 20 mmol, 1 equiv.), 20 mmol of heptanal (2.28 g, 20 

mmol, 1 equiv.) and 1 mL iPrOH (13.1 mmol). Then 2 mmol of each of propanoic acid (0.148 g, 

2 mmol, 10 mol %) and pyrrolidine (0.142 g, 2 mmol, 10 mol %) were added. The reaction was 

heated to 45 °C and left to stir and monitored for the disappearance of the starting material. The 

reaction was allowed to cool, and the reaction was quenched by addition of water. The aqueous 

phase was extracted with DCM. The combined organic layers were washed with brine, dried 

(MgSO4) and concentrated by rotary evaporation. 2-methyleneheptanal was obtained with a yield 

of 30% and was used without further purification.75 1H NMR (400 MHz, Chloroform-d) δ 9.55 (s, 

1H) δ 6.25 (s, 1H), 5.99 (s, 1H), 2.24 (t, J = 7.7 Hz, 2H), 1.51 – 1.40 (m, 2H). 

To a flask was added 50 mmol 2-methyleneheptanal (6.31 g) and 90 mL THF and cooled to -78 

°C. Chloroiodomethane (12.8 g, 75 mmol, 1.5 equiv.) was added followed by the slow addition of 

1.5 equiv. nBuLi over about 30 minutes (46.5 mL, 75 mmol, 1.6 M in hexanes). The reaction was 

held at the same temperature and monitored for disappearance of the starting material. After about 
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1 hour the starting material had been consumed. The reaction was removed from the bath and 

allowed to stir as it warmed to room temperature and overnight. The following day the reaction 

was quenched with saturated aqueous ammonium chloride. The reaction mixture was separated in 

a separatory funnel, rinsing in with additional ammonium chloride solution. The layers were 

separated and the aqueous layer extracted with ether. The combined organic layer was dried with 

magnesium sulfate, the mixture was filtered and concentrated by rotary evaporation. 2-(hept-1-en-

2-yl)oxirane  27 % yield over 2 steps.76,77 1H NMR (400 MHz, Chloroform-d) δ 5.17 – 5.11 (m, 

1H), 4.95 (q, J = 1.5 Hz, 1H), 3.38 – 3.30 (m, 1H), 2.88 (dd, J = 5.5, 4.2 Hz, 1H), 2.65 (dd, J = 

5.5, 2.7 Hz, 1H), 2.04 – 1.89 (m, 2H), 1.54 – 1.20 (m, 6H), 0.98 – 0.81 (m, 3H). 

2.A.2.4 – Other Vinyloxirane Syntheses 

Synthesis of trans-2-(non-1-en-1-yl)oxirane S2.3n 

 

Following a known procedure,76  trans-2-decenal (3.08 g, 19.9 mmol) was added to 40 mL THF 

(distilled over Na/Benzophenone). The solution was cooled to -78 ° C in a dry ice/acetone bath. 

Chloroiodomethane (5.28 g) was added, followed by the slow addition of 12 mL of 2.5 M nBuLi 

solution in hexanes over 30 minutes. The reaction was quenched with 40 mL saturated aqueous 

ammonium chloride. The layers were separated, and the aqueous layer was extracted with ether. 

The organic layers were combined and dried over magnesium sulfate, filtered and concentrated by 

rotary evaporation. The oil thus obtained was used without further purification. 1-chloroundec-3-

en-2-ol 1H NMR (400 MHz, Chloroform-d) δ 5.81 (dtd, J = 14.9, 6.7, 1.2 Hz, 1H), 5.46 (ddt, J = 

15.4, 6.5, 1.5 Hz, 1H), 4.30 (dd, J = 7.5, 4.2 Hz, 1H), 3.61 (dd, J = 11.0, 3.7 Hz, 1H), 3.49 (dd, J 
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= 11.0, 7.5 Hz, 1H), 2.17 (d, J = 4.1 Hz, 1H), 2.05 (q, J = 7.0 Hz, 2H), 1.66 – 1.13 (m, 10H), 1.00 

– 0.79 (m, 3H).77 

To 25 mL THF was added 0.9 g NaH and 0.375 g NaI, and the suspension was cooled to 0 ° C and 

allowed to stir for 5 minutes. The oil obtained above was added slowly to avoid excessive bubbling 

and the reaction was allowed to warm to room temperature. The reaction was quenched with 

aqueous ammonium chloride. The layers were separated and the aqueous layer was extracted with 

Ether. The organic layers were combined and dried over magnesium sulfate, filtered and 

concentrated by rotary evaporation. Obtained 2-(non-1-en-1-yl)oxirane 2.80 g 16.6 mmol 83 % 

over 2 steps 1H NMR (400 MHz, Benzene-d6) δ 5.72 (dt, J = 15.5, 6.8 Hz, 1H), 5.08 (ddt, J = 15.4, 

8.0, 1.5 Hz, 1H), 3.06 (ddd, J = 8.0, 4.0, 2.6 Hz, 1H), 2.52 (dd, J = 5.5, 4.0 Hz, 1H), 2.28 (dd, J = 

5.4, 2.5 Hz, 1H), 1.95 – 1.87 (m, 1H), 1.58 – 1.12 (m, 10H), 0.90 (t, J = 7.0 Hz, 3H)77. (benzene 

referenced to 7.16) 

§2.A.3 General Procedure 2.A for Anion Relay Cyclopropanation 

In a flame dried 20 mL sealable flask or vial Pd(PPh3)4 (7.2 mg, 2.5 mol%), nitrile, (0.25 mmol, 1 

equiv.), and 1.9 mL of DCM were combined in the glove box.  In a separate vial 38.2 mg (0.275 

mmol, 1.1 equiv.) of TBD was added and sealed.  A 2.5 M solution of vinyl epoxide in DCM was 

prepared in a resealable container under argon (Note: the exact concentration of the vinyl epoxide 

solution was unimportant as long as the molar quantity used in the next step was consistent). Under 

an argon atmosphere, 100 μL of the 2.5 M solution (0.25 mmol, 1 equiv.) was added and the 

reaction was allowed to stir for 30 to 60 min. or until all starting material was consumed (observed 

by GC/MS).  TBD (1.1 equiv.) was then added to the reaction mixture and allowed to stir for 60 

min. or until all of the intermediate was consumed.  The reaction was quenched by filtering through 
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a 1" plug of silica in a pipette and washing the plug with EtOAc. The crude product was then 

purified by flash chromatography on silica using an eluent of 1-5 % EtOAc in hexanes. 

 

 

§2.A.4 Characterization Data for Vinylcyclopropanes 

P2.1a 

  

1-phenyl-2-vinylcyclopropane-1-carbonitrile was prepared following General Procedure 2.A. 

32.7 mg, colorless oil, yield: 75 %, d.r.: 85:15. Purified by flash chromatography on silica with 5 

% EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.26 (m, 5H, overlapping major and 

minor, aromatic), 5.80 (ddd, J = 16.9, 10.3, 8.3 Hz, 1H major, alkene CH), 5.40 – 5.25 (m, 

overlapping 2H major alkene CH2, 1H minor alkene CH2), 5.04 (ddd, J = 10.3, 1.4, 0.6 Hz, 1H 

minor, alkene CH2), 4.87 (ddd, J = 17.0, 10.3, 8.8 Hz, 1H minor alkene CH), 2.56 – 2.50 (m, 1H 

minor, cyclopropane CH), 2.24 – 2.16 (m, 1H major, cyclopropane CH), 1.92 (dd, J = 9.2, 5.9 Hz, 

1H minor, cyclopropane CH2), 1.83 (dd, J = 8.6, 5.9 Hz, 1H major, cyclopropane CH2), 1.76 (dd, 

J = 7.3, 5.9 Hz, 1H major, cyclopropane CH2), 1.65 (dd, J = 7.0, 5.9 Hz, 1H minor cyclopropane 

CH2). 
13C NMR (126 MHz, CDCl3) δ 135.9, 134.5, 133.9, 133.5, 130.4, 129.7, 129.2, 129.1, 128.8, 

128.6, 128.0, 125.8, 120.5, 119.0, 34.2, 31.9, 30.0, 23.5, 22.2, 19.4. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3063, 3030, 
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2236, 1723, 1694, 1640, 1601, 1493, 1451, 1111, 986, 953, 918, 754, 696. HRMS (TAPCI, m/z) 

calcd. for C12H11N [M-H] 168.0813; found 168.0801. 

 

 

 

P2.1b  

  

1-([1,1'-biphenyl]-4-yl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-([1,1'-biphenyl]-4-yl)-3-oxobutanenitrile. 

55.1 mg, white solid, m.p.: 86.0-91.4 °C, yield: 90 %, d.r.: 80:20. Purified by flash chromatography 

on silica with 5 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.62 – 7.54 (m, 4H 

overlapping major and minor aromatic), 7.48 – 7.34 (m, 5H overlapping major and minor 

aromatic), 5.82 (ddd, J = 17.0, 10.3, 8.3 Hz, 1H major alkene CH), 5.39 (dt, J = 17.0, 0.9 Hz, 1H 

major alkene CH2), 5.36 – 5.29 (m, 1H overlapping major and minor alkene CH2), 5.08 (dd, J = 

10.4, 1.4 Hz, 1H minor alkene CH2), 4.94 (ddd, J = 16.9, 10.3, 8.7 Hz, 1H minor alkene CH), 2.56 

(td, J = 9.0, 7.0 Hz, 1H minor cyclopropane CH), 2.24 (td, J = 8.5, 7.5 Hz, 1H major cyclopropane 

CH), 1.96 (dd, J = 9.2, 5.9 Hz, 1H minor cyclopropane CH2), 1.88 (dd, J = 8.6, 5.9 Hz, 1H major 

cyclopropane CH2), 1.80 (dd, J = 7.4, 5.9 Hz, 1H major cyclopropane CH2), 1.69 (dd, J = 7.0, 5.9 

Hz, 1H minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 141.5, 141.0, 140.4, 140.4, 
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134.9, 134.4, 133.5, 131.3, 130.1, 129.1, 129.1, 127.9, 127.9, 127.8, 127.3, 127.3, 126.2, 123.1, 

120.5, 119.2, 119.1, 34.4, 32.1, 23.6, 22.0, 19.9, 19.5. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3057, 3032, 2922, 

2236, 1638, 1601, 1524, 1487, 1447, 1408, 1109, 986, 916, 847, 762, 729, 698. HRMS (ESI, m/z) 

calcd. for C18H15N [M+Na] 268.1102, [M-CN] 219.1179; found 268.1112, 219.117. 

 

P2.1c  

  

1-(4-fluorophenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General Procedure 

2.A with 2-(4-fluorophenyl)-3-oxobutanenitrile. 

38.3 mg yellow oil, yield: 82 %, d.r.: 76:24. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.34 – 7.24 (m, 2H overlapping major and 

minor aromatic), 7.09 – 7.01 (m, 2H overlapping major and minor aromatic), 5.78 (ddd, J = 17.0, 

10.3, 8.3 Hz, 1H major alkene CH), 5.38 (dt, J = 17.0, 0.9 Hz, 1H major alkene CH2), 5.33 (dt, J 

= 10.4, 0.8 Hz, 1H major alkene CH2), 5.28 (ddd, J = 17.0, 1.4, 0.7 Hz, 1H minor alkene CH2), 

5.06 (ddd, J = 10.3, 1.4, 0.6 Hz, 1H minor alkene CH2), 4.85 (ddd, J = 17.0, 10.3, 8.7 Hz, 1H minor 

alkene CH), 2.56 – 2.48 (m, 1H minor cyclopropane CH), 2.19 – 2.11 (m, 1H major cyclopropane 

CH), 1.93 (dd, J = 9.2, 5.9 Hz, 1H minor cyclopropane CH2), 1.81 – 1.69 (m, 2H major 

cyclopropane CH2), 1.63 – 1.57 (m, 1H minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) 

δ 163.8, 163.4, 161.8, 161.5, 134.3, 133.3, 131.8, 131.8, 131.7, 131.6, 128.27, 128.25, 128.0, 
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127.9, 122.9, 120.4, 119.3, 119.2, 116.3, 116.2, 116.10, 116.06, 33.8, 31.7, 30.0, 23.3, 21.5, 19.7, 

19.4. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 3013, 2990, 928, 2857, 2236, 1640, 1605, 1514, 1449, 1412, 1236, 

1165, 1109, 988, 921, 837, 808, 723, 700. HRMS (TAPCI, m/z) calcd. for C12H11FN [M+H] 

188.0876; found 188.0874. 

 

P2.1d 

  

 1-(3-fluorophenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3-fluorophenyl)-3-oxobutanenitrile. 

36.1 mg, yellow solid, m.p.: 38.0-43.2 °C, yield: 77 %, d.r.: 81:19. Purified by flash 

chromatography on silica with 5 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.37 – 7.29 

(m, 1H overlapping major and minor aromatic), 7.17 – 7.08 (m, 1H overlapping major and minor 

aromatic), 7.07 – 6.95 (m, 2H overlapping major and minor aromatic), 5.78 (ddd, J = 16.9, 10.3, 

8.2 Hz, 1H major alkene CH), 5.39 (dt, J = 17.0, 0.9 Hz, 1H major alkene CH2), 5.35 (dt, J = 10.4, 

0.8 Hz, 1H major alkene CH2), 5.30 (ddd, J = 16.9, 1.3, 0.8 Hz, 1H minor alkene CH2), 5.08 (ddd, 

J = 10.4, 1.3, 0.6 Hz, 1H minor alkene CH2), 4.90 (ddd, J = 16.9, 10.3, 8.7 Hz, 1H minor alkene 

CH), 2.59 – 2.51 (m, 1H minor cyclopropane), 2.25 – 2.16 (m, 1H major cyclopropane), 1.94 (dd, 

J = 9.2, 6.0 Hz, 1H minor cyclopropane), 1.85 – 1.77 (m, 2H major cyclopropane), 1.65 (dd, J = 

7.1, 6.0 Hz, 1H minor cyclopropane). 13C NMR (126 MHz, CDCl3) δ 164.3, 164.0, 162.3, 162.0, 

138.6, 138.5, 134.81, 134.75, 134.0, 132.9, 130.8, 130.8, 130.7, 130.6, 125.44, 125.41, 122.6, 
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121.44, 121.42, 120.0, 119.6, 119.5, 116.9, 116.7, 115.9, 115.7, 115.1, 114.9, 113.0, 112.8, 34.5, 

32.2, 23.8, 21.97, 21.95, 19.90, 19.88, 19.5. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3090, 3015, 2990, 2926, 2846, 2238, 

1640, 1616, 1589, 1495, 1451, 1275, 1244, 1190, 1167, 1109, 988, 924, 876, 858, 777, 708, 687. 

HRMS (TAPCI, m/z) calcd. for C12H11FN [M+H] 188.0876; found 188.0876. 

 

P2.1e  

  

1-(3-(trifluoromethyl)phenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following 

General Procedure 2.A with 2-(3-(trifluoromethyl)phenyl)-3-oxobutanenitrile. 

34.5 mg, yellow oil, yield: 58 % d.r.: 81:19. Purified by flash chromatography on silica with 5 % 

EA:Hexane.  1H NMR (500 MHz, Chloroform-d) δ 7.65 – 7.46 (m, 5H overlapping major and 

minor aromatic), 5.80 (ddd, J = 17.0, 10.3, 8.2 Hz, 1H major alkene CH), 5.41 (dt, J = 17.0, 1.0 

Hz, 1H major alkene CH2), 5.37 (dt, J = 10.3, 0.8 Hz, 1H major alkene CH2), 5.31 (dt, J = 17.0, 

1.0 Hz, 1H minor alkene CH2), 5.09 (dt, J = 10.4, 0.9 Hz, 1H minor alkene CH2), 4.86 (ddd, J = 

17.0, 10.3, 8.6 Hz, 1H minor alkene CH), 2.60 (td, J = 9.0, 7.3 Hz, 1H minor cyclopropane), 2.24 

(td, J = 8.4, 7.5 Hz, 1H major cyclopropane), 1.99 (dd, J = 9.2, 6.1 Hz, 1H minor cyclopropane), 

1.91 – 1.81 (m, 2H major cyclopropane), 1.69 (dd, J = 7.1, 6.1 Hz, 1H minor cyclopropane) 13C 

NMR (126 MHz, CDCl3) δ 137.2, 133.8, 133.6, 133.31, 132.6, 131.9, 131.6, 129.8, 129.7, 129.4, 

126.41, 126.38, 125.59, 125.56, 125.0, 124.91, 124.88, 124.85, 124.82, 122.9, 122.42, 122.39, 

122.36, 122.33, 120.0, 119.8, 119.1, 34.5, 32.1, 23.7, 22.0, 19.9, 19.6. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3090, 
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3019, 2994, 2928, 2857, 2238, 1491, 1449, 1437, 1344, 1331, 1260, 1171, 1128, 1076, 988, 922, 

808, 791, 700. HRMS (TAPCI, m/z) calcd. for C13H11F3N = [M+H] 238.0844; found 238.0849. 

 

 

P2.1f 

  

1-(4-bromophenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-bromophenyl)-3-oxobutanenitrile. 

42.1 mg, yellow solid, m.p. 82.6-84.7 °C, yield: 67 %, d.r.: 79:21. Purified by flash 

chromatography on silica with 2 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.53 – 7.45 

(m, 2H overlapping major and minor aromatic), 7.24 – 7.12 (m, 2H overlapping major and minor 

aromatic), 5.78 (ddd, J = 17.0, 10.3, 8.3 Hz, 1H major alkene CH), 5.38 (dt, J = 17.0, 1.0 Hz, 1H 

major alkene CH2), 5.34 (dt, J = 10.4, 0.9 Hz, 1H major alkene CH2), 5.28 (ddd, J = 17.0, 1.3, 0.7 

Hz, 1H minor alkene CH2), 5.07 (ddd, J = 10.3, 1.4, 0.6 Hz, 1H minor alkene CH2), 4.86 (ddd, J 

= 17.0, 10.4, 8.7 Hz, 1H minor alkene CH), 2.57 – 2.49 (m, 1H minor cyclopropane CH), 2.16 

(tdd, J = 8.3, 7.6, 0.8 Hz, 1H major cyclopropane CH), 1.93 (dd, J = 9.2, 6.0 Hz, 1H minor 

cyclopropane CH2), 1.84 – 1.74 (m, 2H major cyclopropane CH2), 1.61 (dd, J = 7.1, 6.0 Hz, 1H 

minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 135.1, 134.0, 133, 132.31, 132.29, 

131.5, 131.4, 127.5, 122.8, 122.6, 121.9, 120.0, 119.6, 119.4, 34.3, 32.0, 30.0, 23.5, 21.8, 19.5. IR 
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(𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 2963, 2926, 2853, 2236, 1640, 1491, 1447, 1400, 1261, 1109, 1076, 1011, 

986, 920, 827, 789, 712 HRMS (TAPCI, m/z) calcd. for C12H10BrN [M-H] 245.9918; found 

245.9911. 

 

P2.1g  

  

1-(m-tolyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General Procedure 2.A 

with 2-(m-tolyl)-3-oxobutanenitrile. 

38.1 mg, brown oil, yield: 83 %, d.r.: 80:20. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.25 – 7.22 (m, 1H overlapping major and 

minor aromatic), 7.17 – 7.04 (m, 3H overlapping major and minor aromatic), 5.79 (ddd, J = 17.0, 

10.3, 8.4 Hz, 1H major alkene CH), 5.37 (dt, J = 17.0, 1.0 Hz, 1H major alkene CH2), 5.32 (dt, J 

= 10.4, 0.8 Hz, 1H major alkene CH2), 5.28 (ddd, J = 16.9, 1.5, 0.7 Hz, 1H minor alkene CH2), 

5.04 (dd, J = 10.3, 1.4 Hz, 1H minor alkene CH2), 4.88 (ddd, J = 16.9, 10.3, 8.8 Hz, 1H minor 

alkene CH), 2.51 (td, J = 8.9, 6.9 Hz, 1H minor cyclopropane CH), 2.38 – 2.33 (m, 3H overlapping 

major and minor CH3), 2.23 – 2.14 (m, 1H major cyclopropane CH), 1.90 (dd, J = 9.2, 5.9 Hz, 1H 

minor cyclopropane CH2), 1.82 (dd, J = 8.6, 5.8 Hz, 1H major cyclopropane CH2), 1.74 (dd, J = 

7.3, 5.9 Hz, 1H major cyclopropane CH2), 1.64 (dd, J = 7.0, 5.9 Hz, 1H minor cyclopropane CH2). 

13C NMR (126 MHz, CDCl3) δ 139.0, 138.9, 135.8, 134.6, 133.6, 132.2, 130.5, 129.4, 129.1, 

128.9, 128.7, 126.6, 123.3, 122.6, 120.7, 118.93, 118.86, 34.1, 31.9, 23.4, 22.1, 21.7, 21.6, 20.1, 
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19.3. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 2988, 2922, 2862, 2234, 1640, 1609, 1589, 1493, 1447, 986, 916, 

795, 773, 708, 696 HRMS (ESI, m/z) calcd. for C13H13N, [M+] 183.1048, [M+H] 184.1126, 

[M+Na] 206.0946; found 183.1040, 184.1130, 206.0953. 

 

P2.1h 

  

1-(4-methoxyphenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-methoxyphenyl)-3-oxobutanenitrile. 

37.3 mg, yellow oil, yield: 75 %, d.r.: 66:34. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.27 – 7.20 (m, 2H overlapping major and 

minor aromatic), 6.90 – 6.86 (m, 2H overlapping major and minor aromatic), 5.78 (ddd, J = 17.0, 

10.3, 8.4 Hz, 1H major alkene CH), 5.36 (dt, J = 17.0, 1.0 Hz, 1H major alkene CH2), 5.31 (ddd, 

J = 10.3, 1.2, 0.6 Hz, 1H major alkene CH2), 5.27 (ddd, J = 16.9, 1.5, 0.7 Hz, 1H minor alkene 

CH2), 5.04 (ddd, J = 10.4, 1.5, 0.6 Hz, 1H minor alkene CH2), 4.87 (ddd, J = 17.0, 10.3, 8.8 Hz, 

1H minor alkene CH), 3.80 (s, 3H overlapping major and minor CH3), 2.48 (td, J = 9.0, 6.9 Hz, 

1H minor cyclopropane CH), 2.13 (tdt, J = 8.6, 7.3, 0.8 Hz, 1H major cyclopropane CH), 1.89 (dd, 

J = 9.2, 5.8 Hz, 1H minor cyclopropane CH2), 1.75 (dd, J = 8.6, 5.8 Hz, 1H major alkene CH2), 

1.69 (dd, J = 7.3, 5.8 Hz, 1H major alkene CH2), 1.57 (dd, J = 6.9, 5.8 Hz, 1H minor alkene CH2). 

13C NMR (126 MHz, CDCl3) δ 159.8, 159.4, 134.7, 133.8, 131.1, 127.9, 127.6, 124.31, 123.3, 



105 
 

120.9, 118.7, 114.6, 114.5, 55.63, 55.55, 33.4, 31.7, 23.0, 21.5, 19.7, 19.4. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 

3009, 2961, 2831, 2234, 2048, 1640, 1613, 1582, 1514, 1464, 1454, 1444, 1306, 1258, 1184, 1113, 

1031, 988, 831, 786. HRMS (ESI, m/z) calcd. for C13H13NO [M+H] 199.0997; found 199.0997. 

 

P2.1i  

  

1-(3-methoxyphenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3-methoxyphenyl)-3-oxobutanenitrile. 

37.0 mg, brown oil, yield: 74 %, d.r.: 80:20. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.30 – 7.24 (m, 1H overlapping major and 

minor aromatic), 6.94 – 6.80 (m, 3H overlapping major and minor aromatic), 5.79 (ddd, J = 16.9, 

10.3, 8.3 Hz, 1H major alkene CH), 5.37 (dt, J = 17.0, 1.0 Hz, 1H major alkene CH2), 5.32 (dt, J 

= 10.3, 0.8 Hz, 1H major alkene CH2), 5.28 (ddd, J = 16.9, 1.5, 0.7 Hz, 1H minor alkene CH2), 

5.05 (dd, J = 10.4, 1.4 Hz, 1H minor alkene CH2), 4.90 (ddd, J = 17.0, 10.3, 8.8 Hz, 1H minor 

alkene CH), 3.82 (s, 3H major OCH3), 3.81 (s, 3H minor OCH3), 2.52 (td, J = 9.0, 7.0 Hz, 1H 

minor cyclopropane CH), 2.23 – 2.15 (m, 1H major cyclopropane CH), 1.90 (dd, J = 9.2, 5.9 Hz, 

1H minor cyclopropane CH2), 1.82 (dd, J = 8.6, 5.9 Hz, 1H major cyclopropane CH2), 1.74 (dd, J 

= 7.4, 5.9 Hz, 1H major cyclopropane CH2), 1.64 (dd, J = 7.1, 5.8 Hz, 1H minor cyclopropane 

CH2). 
13C NMR (126 MHz, CDCl3) δ 160.3, 160.0, 137.5, 134.4, 133.8, 133.5, 130.3, 130.1, 123.1, 
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121.9, 120.5, 119.1, 119.0, 117.9, 115.5, 114.0, 113.2, 111.9, 55.59, 55.55, 34.2, 32.0, 29.9, 23.6, 

22.2, 20.2, 19.5. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 3009, 2961, 2940, 2837, 2236, 1603, 1584, 1493, 1454, 

1435, 1288, 1219, 1051, 988, 920, 790, 773, 708, 692. HRMS (TAPCI, m/z) calcd. for C13H14NO 

[M+H] 200.1075; found 200.1083. 

 

P2.1j 

  

1-(4-isopropylphenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-isopropylphenyl)-3-oxobutanenitrile. 

35.2 mg, yellow oil, yield: 61 %, d.r.: 80:20. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.28 (d, J = 18.6 Hz, 4H overlapping major and 

minor aromatic), 5.83 (ddd, J = 16.9, 10.3, 8.3 Hz, 1H major alkene CH), 5.39 (dt, J = 17.0, 0.9 

Hz, 1H major alkene CH2), 5.37 – 5.30 (m, 1H overlapping major and minor alkene CH2), 5.08 

(dd, J = 10.3, 1.4 Hz, 1H minor alkene CH2), 4.93 (ddd, J = 17.0, 10.3, 8.9 Hz, 1H minor alkene 

CH), 2.94 (pd, J = 6.9, 1.8 Hz, 1H overlapping major and minor CH), 2.54 (td, J = 9.0, 6.9 Hz, 1H 

minor cyclopropane CH), 2.21 (q, J = 8.2 Hz, 1H major cyclopropane CH), 1.93 (dd, J = 9.2, 5.8 

Hz, 1H minor cyclopropane CH2), 1.84 (dd, J = 8.6, 5.8 Hz, 1H major cyclopropane CH2), 1.76 

(dd, J = 7.3, 5.8 Hz, 1H major cyclopropane CH2), 1.65 (dd, J = 7.0, 5.8 Hz, 1H minor 

cyclopropane CH2), 1.29 (s, 3H overlapping major and minor CH3), 1.27 (s, 3H overlapping major 
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and minor CH3). 
13C NMR (126 MHz, CDCl3) δ 149.4, 148.8, 134.1, 133.8, 133.3, 129.7, 129.6, 

127.3, 127.1, 125.8, 123.3, 120.7, 118.82, 118.75, 34.0, 34.0, 31.9, 30.0, 24.2, 24.11, 24.08, 23.4, 

21.9, 19.8, 19.5. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 3051, 3028, 2963, 2930, 2872, 2236, 1629, 1516, 1458, 

1438, 1420, 1120, 1057, 1018, 986, 918, 843. HRMS (ESI, m/z) calcd. for C15H17N [M-CN] 

185.1336; found 185.1343. 

P2.1k  

  

1-(3,4-dimethylphenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3,4-dimethylphenyl)-3-oxobutanenitrile. 

38.0 mg, yellow solid, m.p.: 43.0-49.0°C, yield: 77 %, d.r.: 79:21. Purified by flash 

chromatography on silica with 5 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.14 – 7.07 

(m, 2H overlapping major and minor aromatic), 7.02 (ddd, J = 17.1, 7.8, 2.2 Hz, 1H overlapping 

major and minor aromatic), 5.79 (ddd, J = 17.0, 10.3, 8.4 Hz, 1H major alkene CH), 5.36 (dt, J = 

17.0, 1.0 Hz, 1H major alkene CH2), 5.33 – 5.30 (m, 1H major alkene CH2), 5.27 (dd, J = 16.6, 

1.4 Hz, 1H minor alkene CH2), 5.04 (dd, J = 10.4, 1.5 Hz, 1H minor alkene CH2), 4.89 (ddd, J = 

17.0, 10.4, 8.8 Hz, 1H minor alkene CH), 2.49 (td, J = 9.0, 6.9 Hz, 1H minor cyclopropane), 2.26 

(d, J = 9.7 Hz, 6H), 2.15 (td, J = 8.4, 7.4 Hz, 1H major cyclopropane) 1.88 (dd, J = 9.2, 5.8 Hz, 

1H minor cyclopropane), 1.79 (dd, J = 8.6, 5.8 Hz, 1H major cyclopropane), 1.71 (dd, J = 7.3, 5.8 

Hz, 1H major cyclopropane), 1.62 (dd, J = 7.0, 5.8 Hz, 1H minor cyclopropane). 13C NMR (126 

MHz, CDCl3) δ 137.6, 137.4, 137.1, 136.5, 134.7, 133.8, 133.3, 130.9, 130.3, 130.2, 129.6, 127.3, 
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126.9, 123.4, 123.0, 120.8, 118.7, 118.7, 33.9, 31.8, 23.2, 21.8, 20.05, 20.02, 19.8, 19.7, 19.6, 19.3. 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3015, 2972, 2922, 2864, 2234, 1638, 1616, 1506, 1450, 1136, 986, 916, 

824, 787, 718, 704. HRMS (ESI, m/z) calcd. for C14H15N [M+Na] 220.1102, [M-CN] 171.1179; 

found 220.1109, 171.1174. 

 

P2.1l  

  

1-(3,4-dimethoxyphenyl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3,4-dimethoxyphenyl)-3-oxobutanenitrile. 

48.6 mg, brown oil, yield: 85 %, d.r.: 75:25. Purified by flash chromatography on silica with 10 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 6.89 – 6.76 (m, 3H overlapping major and 

minor aromatic), 5.79 (ddd, J = 17.2, 10.4, 8.5 Hz, 1H major alkene CH), 5.37 (dt, J = 17.0, 0.9 

Hz, 1H major alkene CH2), 5.32 (dd, J = 10.3, 1.0 Hz, 1H major alkene CH2), 5.30 – 5.26 (m, 1H 

minor alkene CH2), 5.04 (dd, J = 10.3, 1.3 Hz, 1H minor alkene CH2), 4.88 (ddd, J = 17.0, 10.3, 

8.9 Hz, 1H minor alkene CH), 3.93 – 3.85 (m, 6H overlapping major and minor OCH3), 2.48 (td, 

J = 9.0, 6.9 Hz, 1H minor cyclopropane CH), 2.14 (q, J = 8.2 Hz, 1H major cyclopropane CH), 

1.89 (ddd, J = 9.1, 5.8, 0.8 Hz, 1H minor cyclopropane CH2), 1.77 (dd, J = 8.6, 5.8 Hz, 1H major 

cyclopropane CH2), 1.69 (dd, J = 7.2, 5.8 Hz, 1H major cyclopropane CH2), 1.57 (dd, J = 6.9, 5.8 

Hz, 1H minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 149.5, 149.3, 149.3, 149.0, 
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134.6, 133.8, 128.4, 124.7, 123.3, 122.1, 120.9, 118.8, 118.7, 118.3, 113.0, 111.5, 111.2, 110.0, 

56.3, 56.23, 56.21, 56.1, 33.5, 31.7, 22.9, 21.8, 19.81, 19.76. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3007, 2961, 2938, 

2839, 2234, 1605, 1591, 1520, 1464, 1454, 1416, 1250, 1223, 1177, 1150, 1026, 990, 920, 851, 

810, 766, 708. HRMS (TAPCI, m/z) calcd. for C14H15NO2 [M-H] 228.1025, [M+H] 230.1181; 

found 228.1029, 230.1175. 

P2.1m  

  

1-(benzo[d][1,3]dioxol-5-yl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(benzo[d][1,3]dioxol-5-yl)-3-oxobutanenitrile. 

45.2 mg, brown solid, m.p.: 53.6-56.0 °C, yield: 85 %, d.r.: 76:24. Purified by flash 

chromatography on silica with 10 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 6.85 – 

6.73 (m, 3H overlapping major and minor aromatic), 6.00 – 5.95 (m, 2H overlapping major and 

acetal CH2), 5.77 (ddd, J = 16.9, 10.3, 8.4 Hz, 1H major alkene CH), 5.36 (dt, J = 17.0, 1.0 Hz, 

1H major alkene CH2), 5.33 – 5.25 (m, 1H overlapping major and minor alkene CH2), 5.06 (ddd, 

J = 10.4, 1.4, 0.5 Hz, 1H minor alkene CH2), 4.90 (ddd, J = 17.0, 10.3, 8.8 Hz, 1H minor alkene 

CH), 2.47 (td, J = 9.0, 7.0 Hz, 1H minor cyclopropane CH), 2.15 – 2.08 (m, 1H major cyclopropane 

CH), 1.88 (dd, J = 9.2, 5.8 Hz, 1H minor cyclopropane CH2), 1.73 (dd, J = 8.6, 5.8 Hz, 1H major 

cyclopropane CH2), 1.68 (dd, J = 7.3, 5.8 Hz, 1H major cyclopropane CH2), 1.54 (dd, J = 7.0, 5.8 

Hz, 1H minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 148.5, 148.2, 148.0, 147.6, 

134.5, 133.6, 129.7, 126.0, 123.6, 123.1, 120.7, 120.2, 118.9, 118.9, 110.3, 108.72, 108.68, 107.1, 
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101.7, 33.4, 31.1, 23.0, 21.9, 19.9, 19.8. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3011, 2988, 2903, 2780, 2235, 

1682, 1640, 1613, 1504, 1445, 1233, 1039, 932, 920, 815. HRMS (ESI, m/z) calcd. for C13H11NO2 

[M+Na] 236.0687; found 236.0696. 

 

P2.1n 

  

1-(naphthalen-2-yl)-2-vinylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(napthalen-2-yl)-3-oxobutanenitrile. 

42.0 mg, brown oil, yield: 77 %, d.r.: 78:22. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.88 – 7.79 (m, 3H aromatic), 7.56 – 7.45 (m, 

2H aromatic), 7.33 (dd, J = 8.6, 2.0 Hz, 1H aromatic), 7.25 – 7.11 (m, 3H aromatic, minor), 6.75 

– 6.64 (m, 2H aromatic, minor), 5.85 (ddd, J = 17.0, 10.3, 8.3 Hz, 1H, alkene CH, major), 5.70 

(ddtd, J = 13.5, 8.4, 2.6, 1.8 Hz, 1H alkene CH2 minor), 5.56 (ddt, J = 11.4, 5.5, 2.7 Hz, 1H alkene 

CH2, minor), 5.41 (dt, J = 17.0, 1.0 Hz, 1H, alkene CH2, major), 5.36 (dt, J = 10.3, 0.8 Hz, 1H 

alkene CH2, major), 4.66 (dd, J = 12.6, 3.5 Hz, 1H alkene CH, minor), 3.56 (dtt, J = 18.0, 5.1, 2.9 

Hz, 1H cyclopropane CH2, minor), 2.74 (ddd, J = 17.8, 8.5, 1.0 Hz, 1H cyclopropane CH2, minor), 

2.46 – 2.33 (m, 1H cyclopropane CH, minor), 2.36 – 2.24 (m, 1H cyclopropane CH, major), 1.96 

(dd, J = 8.7, 5.9 Hz, 1H, cyclopropane CH2, major), 1.84 (dd, J = 7.4, 6.0 Hz, 1H cyclopropane 

CH2, major). 13C NMR (126 MHz, CDCl3) δ 155.9, 138.4, 134.5, 133.4, 133.2, 132.8, 131.2, 129.9, 
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129.2, 129.1, 128.08, 128.05, 128.0, 127.9, 127.5, 127.1, 126.7, 125.2, 124.7, 123.4, 123.2, 120.6, 

119.3, 119.1, 109.2, 40.4, 36.4, 34.1, 28.9, 23.4, 22.4. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3084, 3059, 3025, 2924, 

2851, 2236, 1634, 1601, 1510, 1435, 1354, 1200, 988, 737, 704. HRMS (TAPCI, m/z) calcd. for 

C16H13N [M+Na] 242.0946; found 242.0945. 

P2.2a  

 

(E)-1-phenyl-2-styrylcyclopropane-1-carbonitrile was prepared following General Procedure 2.A 

with 2-phenyl-3-vinyloxirane. 

44 mg, colorless oil, yield: 72 %, d.r.: 80:20. Purified by flash chromatography on silica with 2 % 

EA:Hexane. Major diastereomer (syn) 1H NMR (500 MHz, Chloroform-d) δ 7.46 – 7.29 (m, 10H 

aromatic), 6.71 (d, J = 15.8 Hz, 1H alkene CH), 6.14 (dd, J = 15.7, 8.7 Hz, 1H alkene CH), 2.35 

(ddd, J = 9.0, 8.1, 7.1 Hz, 1H cyclopropane CH), 1.95 (dd, J = 8.6, 6.0 Hz, 1H cyclopropane CH2), 

1.87 (dd, J = 7.3, 5.9 Hz, 1H cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 136.6, 135.9, 

134.2, 129.2, 128.9, 128.1, 128.0, 126.5, 126.1, 125.7, 120.6, 34.4, 24.1, 22.5. Minor diastereomer 

(anti) 1H NMR (500 MHz, Chloroform-d) δ 7.42 – 7.31 (m, 5H aromatic), 7.25 – 7.15 (m, 3H 

aromatic), 7.13 – 7.08 (m, 2H aromatic), 6.63 (d, J = 15.8 Hz, 1H alkene CH), 5.21 (dd, J = 15.8, 

9.1 Hz, 1H alkene CH), 2.69 (tdd, J = 9.1, 7.0, 0.7 Hz, 1H cyclopropane CH), 2.02 (dd, J = 9.2, 

5.9 Hz, 1H cyclopropane CH2), 1.74 (dd, J = 7.0, 5.9 Hz, 1H cyclopropane CH2). 
13C NMR (126 

MHz, CDCl3) δ 136.7, 133.9, 132.4, 129.8, 129.2, 128.8, 128.7, 127.0, 126.3, 125.1, 123.1, 31.9, 

20.5, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3082, 3059, 3028, 2932, 2228, 1599, 1497, 1448, 959, 748, 696. 
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HRMS (ESI, m/z) calcd. for C18H15N [M+H] 246.1283, [M-CN] 219.1179; found 246.1287, 

219.1173. 

 

P2.2b 

 

(E)-2-(4-methylstyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(p-tolyl)-3-vinyloxirane. 

major (syn): white solid, m.p.: 91.0-95.2 °C, minor (anti): white solid, m.p.: 95.0-97.4 °C. 47 mg, 

yield: 72 %, d.r.: 79:21 Purified by flash chromatography on silica with 2 % EA:Hexane. Major 

(syn) 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.36 (m, 2H), 7.35 – 7.29 (m, 5H), 7.14 (d, J = 

7.9 Hz, 2H), 6.67 (d, J = 15.7 Hz, 1H), 6.09 (dd, J = 15.7, 8.8 Hz, 1H), 2.35 (s, 3H), 2.33 (dd, J = 

7.6, 0.9 Hz, 1H), 1.94 (dd, J = 8.6, 5.9 Hz, 1H), 1.85 (dd, J = 7.4, 5.9 Hz, 1H). 13C NMR (126 

MHz, CDCl3) δ 138.0, 136.0, 134.0, 133.8, 129.6, 129.2, 127.9, 126.4, 125.7, 125.0, 120.7, 34.6, 

24.1, 22.4, 21.5. Minor (trans) 1H NMR (500 MHz, Chloroform-d) δ 7.40 – 7.29 (m, 5H), 7.06 – 

6.97 (m, 4H), 6.59 (d, J = 15.8 Hz, 1H), 5.16 (dd, J = 15.8, 9.1 Hz, 1H), 2.68 (tdd, J = 9.0, 7.0, 0.7 

Hz, 1H), 2.28 (s, 3H), 2.01 (dd, J = 9.2, 5.9 Hz, 1H), 1.72 (dd, J = 7.0, 5.9 Hz, 1H). 13C NMR (126 

MHz, CDCl3) δ 137.8, 133.9, 133.8, 132.5, 129.8, 129.5, 129.1, 128.7, 126.2, 124.0, 123.2, 32.0, 

21.4, 20.4, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3086, 3026, 2920, 2860, 2228, 1601, 1514, 1448, 960, 800, 
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764, 698. HRMS (ESI, m/z) calcd. for C19H17N 260.1441 [M+H], 2802.1266 [M+Na], 233.1336 

[M-CN]; found 260.1441, 282.1266, 233.1336. 

 

 

P2.2c  

 

(E)-2-(2-methylstyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(m-tolyl)-3-vinyloxirane. 

30 mg, white solid, m.p.: 78.2-84.3 °C, yield: 46 %, d.r.: 76:24. Purified by flash chromatography 

on silica with 2 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.55 – 6.96 (m, 9H 

overlapping major and minor aromatic), 6.94 (d, J = 15.6 Hz, 1H major alkene CH), 6.83 (d, J = 

15.7 Hz, 1H minor alkene CH), 6.05 (dd, J = 15.6, 8.7 Hz, 1H major alkene CH), 5.13 (dd, J = 

15.6, 8.9 Hz, 1H minor alkene CH), 2.75 (tdd, J = 9.1, 7.1, 0.8 Hz, 1H minor alkene CH), 2.44 – 

2.36 (m, 4H overlapping major CH3 and cyclopropane CH), 2.30 (s, 3H minor CH3), 2.05 (dd, J = 

9.1, 5.9 Hz, 1H minor cyclopropane CH2), 1.98 (dd, J = 8.6, 6.0 Hz, 1H major cyclopropane CH2), 

1.90 (dd, J = 7.3, 5.9 Hz, 1H major cyclopropane CH2), 1.78 (dd, J = 7.0, 5.9 Hz, 1H minor 

cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 135.94, 135.88, 135.7, 135.4, 135.4, 132.4, 

132.1, 131.9, 130.52, 130.48, 129.8, 129.2, 129.2, 128.7, 128.0, 127.9, 127.8, 127.4, 126.5, 126.4, 

126.2, 126.1, 125.72, 125.66, 123.2, 120.6, 34.7, 32.0, 24.2, 22.6, 20.6, 20.10, 20.05, 20.0. IR (𝜈̅ −
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𝜈̅𝐼𝑅 , neat) 3011, 2928, 2868, 2234, 1946, 1915, 1800, 1601, 1381, 1265, 1192, 1159, 1113, 1080, 

1055, 1038, 961, 909, 839. HRMS (TAPCI, m/z) calcd. for C19H17N [M-H] 258.1283; found 

258.1291. 

 

P2.2d 

 

 (E)-2-(4-chlorostyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-chlorophenyl)-3-vinyloxirane. 

55mg, white solid, m.p.: 78.2-89.3 °C, yield: 79 %, d.r.: 79:21. Purified by flash chromatography 

on silica with 2-5 % EA:Hexane. Major (syn) 1H NMR (500 MHz, Chloroform-d) δ 7.44 – 7.34 

(m, 2H aromatic), 7.38 – 7.25 (m, 7H aromatic), 6.65 (d, J = 15.7 Hz, 1H alkene CH), 6.11 (dd, J 

= 15.7, 8.7 Hz, 1H alkene CH), 2.33 (tdd, J = 8.6, 7.3, 0.7 Hz, 1H cyclopropane CH), 1.95 (dd, J 

= 8.6, 6.0 Hz, 1H cyclopropane CH2), 1.86 (dd, J = 7.3, 6.0 Hz, 1H cyclopropane CH2). 
13C NMR 

(126 MHz, CDCl3) δ 135.7, 135.1, 133.7, 132.9, 129.3, 129.0, 128.0, 127.7, 126.8, 125.8, 120.6, 

34.2, 24.0, 22.6. Minor (anti) 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.29 (m, 5H aromatic), 

7.22 – 7.15 (m, 2H aromatic), 7.05 – 6.98 (m, 2H aromatic), 6.57 (d, J = 15.8 Hz, 1H alkene CH), 

5.17 (dd, J = 15.8, 9.1 Hz, 1H alkene CH), 2.68 (tdd, J = 9.2, 7.0, 0.7 Hz, 1H cyclopropane CH), 

2.07 – 1.96 (m, 1H cyclopropane CH2), 1.74 (dd, J = 7.0, 5.9 Hz, 1H cyclopropane CH2). 
13C NMR 

(126 MHz, CDCl3) δ 135.1, 133.5, 132.7, 132.3, 129.8, 129.2, 129.0, 128.8, 127.5, 125.9, 123.0, 
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31.7, 20.6, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3090, 3063, 3030, 2930, 2233, 1601, 1492, 1450, 1089, 961, 

812, 750, 696. HRMS (ESI, m/z) calcd. for C18H14ClN 253.0787 [M-CN]; found 253.0787. 

 

 

P2.2e 

 

(E)-2-(3-chlorostyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3-chlorophenyl)-3-vinyloxirane. 

37 mg, yellow oil, yield: 70 %, d.r.: 78:22. Purified by flash chromatography on deactivated silica 

with 5 % EA:Hexane containing 1% triethylamine. Major (syn) 1H NMR (400 MHz, Chloroform-

d) δ 7.43 – 7.18 (m, 9H aromatic), 6.64 (d, J = 15.7 Hz, 1H alkene CH), 6.14 (dd, J = 15.7, 8.7 Hz, 

1H alkene CH), 2.33 (q, J = 8.3 Hz, 1H), 1.96 (dd, J = 8.6, 6.0 Hz, 1H), 1.87 (dd, J = 7.3, 6.0 Hz, 

1H). Minor (anti) 1H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.30 (m, 5H aromatic), 7.18 – 7.10 

(m, 2H aromatic), 7.07 (d, J = 1.4 Hz, 1H aromatic), 6.97 (td, J = 4.6, 1.7 Hz, 1H), 6.56 (d, J = 

15.7 Hz, 1H alkene CH), 5.22 (dd, J = 15.8, 9.1 Hz, 1H alkene CH), 2.74 – 2.60 (m, 1H 

cyclopropane CH), 2.03 (dd, J = 9.2, 5.9 Hz, 1H cyclopropane CH2), 1.74 (dd, J = 7.0, 6.0 Hz, 1H 

cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 138.5, 138.4, 135.6, 134.8, 134.7, 132.8, 

132.6, 132.2, 130.1, 130.0, 129.8, 129.3, 129.2, 128.9, 128.1, 128.0, 127.8, 127.7, 126.8, 126.5, 

126.2, 125.8, 124.7, 124.5, 122.9, 120.5, 34.2, 31.7, 24.0, 22.6, 20.7, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 
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3061, 3030, 2937, 2233, 1682, 1593, 1566, 1497, 1450, another at about 1400, 1027, 1078, 959, 

880, 779, 750, 696. HRMS (ESI, m/z) calcd. for C18H14ClN [M-CN] 253.0790; found 253.0791. 

 

 

P2.2f  

 

(E)-2-(4-bromostyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-bromophenyl)-3-vinyloxirane. 

61 mg, white solid, m.p. 70.0-85.4 °C, yield: 80 %, d.r.: 80:20. Purified by flash chromatography 

on silica with 2 % EA:Hexane. Major (syn) 1H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.24 (m, 

9H aromatic), 6.63 (d, J = 15.7 Hz, 1H alkene CH), 6.12 (dd, J = 15.7, 8.7 Hz, 1H alkene CH), 

2.36 – 2.28 (m, 1H cyclopropane CH), 1.96 (dd, J = 8.6, 6.0 Hz, 1H cyclopropane CH2), 1.86 (dd, 

J = 7.3, 6.0 Hz, 1H cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 135.7, 135.5, 133.0, 132.0, 

129.3, 128.1, 127.0, 126.9, 125.8, 121.9, 120.6, 34.3, 24.0, 22.5. Minor (anti) 1H NMR (500 MHz, 

Chloroform-d) δ 7.41 – 7.30 (m, 7H aromatic), 6.99 – 6.94 (m, 2H aromatic), 6.56 (d, J = 15.8 Hz, 

1H alkene CH), 5.19 (dd, J = 15.8, 9.1 Hz, 1H alkene CH), 2.67 (tdd, J = 9.1, 6.9, 0.7 Hz, 1H 

cyclopropane CH), 2.02 (dd, J = 9.2, 5.9 Hz, 1H cyclopropane CH2), 1.74 (dd, J = 7.0, 5.9 Hz, 1H 

cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 135.5, 132.7, 132.3, 131.9, 129.8, 129.2, 
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128.8, 127.8, 126.0, 122.9, 121.7, 31.7, 20.6, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 3061, 3028, 2234, 

1601, 1487, 1448, 1404, 1072, 1009, 959, 808, 747, 969. HRMS (ESI, m/z) calcd. for C18H14BrN 

[M+] 323.310, [M+Na] 346.0207; found 323.0310, 346.0199. 

 

 

P2.2g  

 

(E)-2-(4-methoxystyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(4-methoxyphenyl)-3-vinyloxirane. 

44 mg, white solid, m.p: 68.1-75.6 °C, yield: 64 %, d.r.: 82:18. Purified by flash chromatography 

on silica with 5 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.43 – 7.28 (m, overlapping 

7H major, 5H minor, aromatic), 7.08 – 7.01 (m, 2H, aromatic, minor), 6.91 – 6.84 (m, 2H, 

aromatic, major), 6.76 (dd, J = 8.8, 2.0 Hz, 2H, aromatic, minor), 6.64 (d, J = 15.7 Hz, 1H, alkene 

CH, major), 6.57 (d, J = 15.7 Hz, 1H, alkene CH, minor), 6.00 (ddd, J = 15.8, 8.6, 1.8 Hz, 1H, 

alkene CH, major), 5.07 (ddd, J = 15.7, 9.0, 1.6 Hz, 1H, alkene CH, minor), 3.82 (s, 3H, CH3, 

major), 3.76 (s, 3H, CH3, minor), 2.67 (td, J = 9.0, 7.0 Hz, 1H, cyclopropane CH, minor), 2.32 (q, 

J = 8.2 Hz, 1H, cyclopropane CH, major), 2.00 (dd, J = 9.1, 5.9 Hz, 1H, cyclopropane CH2, minor), 

1.93 (dd, J = 8.6, 6.0 Hz, 1H, cyclopropane, CH2 , major), 1.84 (dd, J = 7.3, 6.0 Hz, 1H, 
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cyclopropane, CH2 , major), 1.71 (dd, J = 7.1, 5.9 Hz, 1H, cyclopropane, CH2 , minor). 13C NMR 

(126 MHz, CDCl3) δ 159.6, 159.5, 136.0, 133.6, 133.4, 132.5, 129.8, 129.5, 129.4, 129.2, 129.1, 

128.6, 128.3, 127.87, 127.8, 127.5, 127.0, 125.7, 123.7, 123.2, 122.8, 120.7, 114.3, 114.2, 34.6, 

32.0, 24.1, 22.4, 20.3, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 3030, 3007, 2957, 2936, 2837, 2234, 1607, 

1514, 1450, 1304, 1252, 1178, 1109, 1031, 959, 818, 762, 741, 696. HRMS (TAPCI, m/z) calcd. 

for C19H17NO [M-H] 274.1232; found 274.1234. 

P2.2h  

 

(E)-2-(3-methoxystyryl)-1-phenylcyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-(3-methoxyphenyl)-3-vinyloxirane. 

36 mg colorless oil, yield: 52 %, d.r.: 78:22. Purified by flash chromatography on silica with 5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.42 – 6.56 (m, 10H overlapping major and 

minor 9H aromatic, 1H alkene CH), 6.19 – 6.07 (m, 1H major alkene CH), 5.25 – 5.16 (m, 1H 

minor alkene CH), 3.83 (d, J = 1.5 Hz, 3H major OCH3), 3.74 (d, J = 1.5 Hz, 3H minor OCH3), 

2.68 (td, J = 9.1, 8.6, 6.8 Hz, 1H minor cyclopropane CH), 2.39 – 2.29 (m, 1H major cyclopropane 

CH), 2.02 (dd, J = 9.2, 6.0 Hz, 1H minor cyclopropane CH2), 1.98 – 1.92 (m, 1H major 

cyclopropane CH2), 1.86 (td, J = 6.7, 5.8, 1.4 Hz, 1H major cyclopropane CH2), 1.77 – 1.71 (m, 

1H minor cyclopropane CH2) 
13C NMR (126 MHz, CDCl3) δ 160.1, 159.9, 138.1, 138.0, 135.9, 

134.1, 133.8, 132.4, 129.9, 129.8, 129.8, 129.3, 129.2, 128.8, 128.0, 126.4, 125.8, 125.6, 123.1, 
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120.6, 119.2, 118.9, 113.8, 113.2, 111.9, 111.8, 55.5, 55.4, 34.4, 31.8, 24.1, 22.5, 20.5, 20.2. IR 

(𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 3028, 2957, 2940, 2835, 2234, 1599, 1580, 1495, 1452, 1290, 1267, 1157, 

1040, 961, 777, 760, 694. HRMS (ESI, m/z) calcd. for C19H17NO [M+H] 276.1388, M-CN = 

249.1285; found 276.1388, 249.1282. 

 

 

P2.2i  

 

(E)-2-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)-1-phenylcyclopropane-1-carbonitrile was prepared 

following General Procedure 2.A with 5-(3-vinyloxiran-2-yl)benzo[d][1,3]dioxole. 

52 mg, white solid, m.p.: 111.4-114.3 °C, yield: 73 %, d.r.: 79:21. Purified by flash 

chromatography on silica with 5 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.28 

(m, 5H overlapping major and minor aromatic), 6.98 – 6.49 (m, 4H overlapping major and minor 

3H aromatic 1H alkene CH), 6.01 – 5.86 (m, 3H overlapping major and minor 2H acetal CH2 and 

1H major alkene CH), 5.03 (dd, J = 15.7, 9.0 Hz, 1H minor alkene CH), 2.65 (tdd, J = 9.1, 7.0, 0.7 

Hz, 1H minor cyclopropane CH), 2.30 (tdd, J = 8.5, 7.3, 0.7 Hz, 1H major cyclopropane CH), 2.00 

(dd, J = 9.2, 5.9 Hz, 1H minor cyclopropane CH2), 1.93 (dd, J = 8.6, 6.0 Hz, 1H major 

cyclopropane CH2), 1.84 (dd, J = 7.4, 6.0 Hz, 1H major cyclopropane CH2), 1.71 (dd, J = 7.0, 6.0 
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Hz, 1H minor cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 148.3, 147.7, 135.9, 133.7, 

133.5, 132.4, 131.2, 131.1, 129.8, 129.2, 129.1, 128.7, 127.9, 126.9, 125.7, 124.2, 123.2, 121.2, 

121.1, 120.6, 108.54, 108.52, 108.45, 105.9, 105.4, 101.5, 101.4, 101.3, 34.5, 31.8, 24.0, 22.4, 

20.4, 20.1. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 3028, 3009, 2895, 2234, 1601, 1505, 1487, 1447, 1350, 1252, 

1196, 1105, 1037, 959, 928, 802, 746, 696. HRMS (ESI, m/z) calcd. for C19H15NO2 [M+Na] 

312.1000; found 312.1002. 

 

P2.2j  

 

(E)-2-(2-(naphthalen-1-yl)vinyl)-1-phenylcyclopropane-1-carbonitrile was prepared following 

General Procedure 2.A with 2-(naphthalen-1-yl)-3-vinyloxirane. 

38mg, white solid, m.p.: 99.3-101.4 °C, yield: 61 %, d.r.: 74:26. Purified by flash chromatography 

on silica with 2 % EA:Hexane. Major (syn) 1H NMR (500 MHz, Chloroform-d) δ 8.21 – 7.29 (m, 

13H overlapping 12H aromatic and 1H alkene CH), 6.21 (ddd, J = 15.5, 8.7, 2.7 Hz, 1H alkene 

CH), 2.49 (q, J = 8.3 Hz, 1H cyclopropane CH), 2.00 (ddd, J = 8.4, 6.0, 1.5 Hz, 1H cyclopropane 

CH2), 1.94 (t, J = 6.7 Hz, 1H cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) δ 135.8, 134.3, 

133.8, 131.4, 131.1, 129.24, 129.18, 128.79, 128.47, 127.96, 126.36, 126.03, 125.91, 125.68, 

124.43, 123.86, 120.6, 34.6, 24.2, 22.6. Minor (anti) 1H NMR (500 MHz, Chloroform-d) δ 7.98 – 

7.26 (m, 12H aromatic), 7.11 (dt, J = 7.2, 1.0 Hz, 1H alkene CH), 5.27 (dd, J = 15.6, 8.8 Hz, 1H 
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alkene CH), 2.84 (tdd, J = 9.1, 7.0, 0.8 Hz, 1H cyclopropane CH), 2.08 (dd, J = 9.1, 6.0 Hz, 1H 

cyclopropane CH2), 1.83 (dd, J = 7.0, 6.0 Hz, 1H cyclopropane CH2). 
13C NMR (126 MHz, CDCl3) 

δ 134.5, 133.7, 132.5, 131.4, 131.0, 129.9, 129.2, 128.8, 128.7, 128.4, 128.3, 126.3, 126.1, 125.7, 

124.1, 123.9, 123.1, 32.0, 20.7, 20.0. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 3046, 2955, 2236, 1601, 1503, 1451, 

1398, 1265, 1173, 1111, 957, 797, 775, 756, 733, 696. HRMS (ESI, m/z) calcd. for C22H17N 

[M+Na] 318.1259; found 318.1265. 

 

 

P2.2k  

 

(E)-2-(2-(naphthalen-2-yl)vinyl)-1-phenylcyclopropane-1-carbonitrile was prepared following 

General Procedure 2.A with 2-(naphthalen-2-yl)-3-vinyloxirane. 

39 mg, white solid, m.p.: 131.0-140.1 °C, yield: 62 %, d.r.: 80:20. Purified by flash 

chromatography on silica with 2 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.87 – 7.19 

(m, 12H overlapping major and minor aromatic), 6.86 (d, J = 15.7 Hz, 1H major alkene CH), 6.79 

(d, J = 15.7 Hz, 1H minor alkene CH), 6.26 (dd, J = 15.7, 8.8 Hz, 1H major alkene CH), 5.37 – 

5.29 (m, 1H minor alkene CH), 2.75 (tdd, J = 9.1, 7.0, 0.7 Hz, 1H minor cyclopropane CH), 2.40 

(tdd, J = 8.6, 7.3, 0.7 Hz, 1H major cyclopropane CH), 2.06 (dd, J = 9.1, 6.0 Hz, 1H minor 

cyclopropane CH2), 1.99 (dd, J = 8.6, 6.0 Hz, 1H major cyclopropane CH2), 1.91 (dd, J = 7.3, 6.0 
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Hz, 1H major cyclopropane CH2), 1.78 (dd, J = 6.9, 6.1 Hz, 1H minor cyclopropane CH2). 
13C 

NMR (126 MHz, CDCl3) δ 135.9, 134.3, 134.0, 133.8, 133.3, 129.9, 129.3, 129.2, 128.8, 128.56 

128.4, 128.3, 128.2, 128.0, 127.94, 127.85, 126.60, 126.58, 126.45, 126.3, 126.24, 126.22, 125.8, 

125.5, 123.7, 123.3, 123.1, 120.7, 100.2, 34.6, 32.0, 24.2, 22.6, 20.6, 20.3. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3088, 

3053, 3028, 3003, 2236, 1599, 1505, 1452, 1265, 1109, 959, 812, 746, 735, 696. HRMS (ESI, 

m/z) calcd. for C22H17N [M+] 295.1361, [M+H] 296.1439, [M+Na] 318.1259; found 295.1357, 

296.1435, 318.1263. 

 

P2.2l  

 

1-phenyl-2-(1-phenylvinyl)cyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-phenyl-2-vinyloxirane. 

15 mg, slightly yellow needles, m.p.: 118.4-122.6 °C, yield: 34 %, d.r.: 77:23. Purified by flash 

chromatography on silica with 1 % EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.49 – 7.27 

(m, 8H overlapping major and minor aromatic), 7.20 – 7.13 (m, 1H overlapping major and minor 

aromatic), 5.76 (s, 1H major methylene CH2), 5.39 (s, 1H minor methylene CH2), 5.28 (d, J = 1.4 

Hz, 1H major methylene CH2), 4.90 (d, J = 1.4 Hz, 1H minor methylene CH2), 2.98 (ddd, J = 9.0, 

7.6, 1.4 Hz, 1H  minor cyclopropane CH), 2.55 (td, J = 8.2, 1.3 Hz, 1H major cyclopropane CH), 

2.13 (dd, J = 7.8, 6.0 Hz, 1H major cyclopropane CH2), 2.04 (dq, J = 9.1, 6.3 Hz, 2H minor 

cyclopropane CH2), 1.91 (dd, J = 8.5, 6.1 Hz, 1H major cyclopropane CH2). 
13C NMR (126 MHz, 
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CDCl3) δ 142.7, 140.4, 139.7, 139.6, 136.0, 131.2, 129.3, 128.80, 128.77, 128.5, 128.4, 128.3, 

128.2, 128.1, 128.0, 126.1, 126.0, 125.5, 123.4, 120.0, 115.4, 114.7, 35.7, 34.3, 23.9, 21.7, 21.1, 

17.4. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 2926, 2236, 1726, 1694, 1601, 1495, 1449, 1317, 1279, 1111, 1071, 

1026, 910, 758, 698. HRMS (ESI, m/z) calcd. for C18H15N [M+H] 246.1283; found 246.1281. 

 

 

 

P2.2m  

 

1-phenyl-2-(prop-1-en-2-yl)cyclopropane-1-carbonitrile was prepared following General 

Procedure 2.A with 2-methyl-2-vinyloxirane. 

22 mg, yellow oil, yield: 48 %, d.r.: 85:15. Purified by flash chromatography on silica with 1 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.42 – 7.27 (m, 5H aromatic), 5.12 (h, J = 1.4 

Hz, 1H major alkene CH2), 4.95 (q, J = 1.1 Hz, 1H major alkene CH2), 4.83 – 4.78 (m, 1H minor 

alkene CH2), 4.71 (q, J = 1.3 Hz, 1H minor alkene CH2), 2.54 – 2.47 (m, 1H minor cyclopropane 

CH), 2.17 – 2.06 (m, 1H major cyclopropane CH), 2.04 – 1.92 (m, 1H), 1.89 (dd, J = 7.7, 6.2 Hz, 

overlapping 1H major cyclopropane CH2, 3H major CH3), 1.83 (dd, J = 9.2, 6.2 Hz, 1H minor 

cyclopropane CH2), 1.72 (dd, J = 8.5, 5.9 Hz, 1H minor cyclopropane CH2). 1.43 (t, J = 0.9 Hz, 

3H minor CH3). 
13C NMR (126 MHz, CDCl3) δ 139.9, 138.2, 136.5, 131.7, 129.3, 129.2, 128.63, 

128.59, 128.2, 127.9, 126.0, 123.7, 120.4, 115.4, 114.2, 37.2, 36.1, 22.9, 22.5, 22.3, 21.6, 21.5, 
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19.9, 17.3. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 2974, 2939, 22341651, 1601, 1497, 1451, 1385, 1234, 1196, 

1119, 902, 760, 721, 696. HRMS (ESI, m/z) calcd. for C13H13N [M+H] 184.1126; found 184.1123. 

  

 

 

 

P2.2n 

 

2-heptyl-1-phenyl-3-vinylcyclopropane-1-carbonitrile was prepared following General Procedure 

2.A with (E)-2-(non-1-en-1-yl)oxirane. 

42 mg, yellow oil, yield: 62 %, d.r.: 52:48. Purified by flash chromatography on silica with 0.5 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.39 – 7.26 (m, 5H aromatic), 5.82 (ddd, J = 

17.0, 10.4, 9.4 Hz, 1H alkene CH), 5.41 (ddd, J = 16.9, 1.5, 0.7 Hz, 1H alkene CH2), 5.35 (ddd, J 

= 10.4, 1.5, 0.6 Hz, 1H alkene CH2), 5.24 (ddd, J = 16.9, 1.5, 0.6 Hz, 1H alkene CH2), 5.05 – 4.98 

(m, 1H alkene CH2), 4.88 (ddd, J = 16.9, 10.3, 8.9 Hz, 1H alkene CH), 2.31 (t, J = 9.1 Hz, 1H 

cyclopropane CH), 2.19 (dd, J = 8.9, 5.8 Hz, 1H cyclopropane CH), 1.88 – 1.12 (m, 13H 

overlapping aliphatic CH2 and cyclopropane CH), 0.89 (q, J = 7.1 Hz, 3H CH3).
  13C NMR (126 

MHz, CDCl3) δ 136.9, 133.9, 133.3, 132.4, 132.3, 132.20, 132.18, 131.4, 129.9, 129.2, 129.1, 

129.0, 128.8, 128.7, 128.5, 127.8, 125.9, 121.6, 120.2, 119.2, 118.3, 38.9, 37.8, 34.7, 32.0, 32.0, 
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31.4, 30.8, 29.6, 29.5, 29.5, 29.4, 29.0, 28.9, 27.2, 26.5, 26.3, 22.90, 22.89, 14.4, 14.3. IR (𝜈̅ −

𝜈̅𝐼𝑅 , neat) 3086, 3061, 3030, 2928, 2857, 2230, 1715, 1634, 1601, 1495, 1449, 1377, 1298, 1175, 

1120, 1030, 986, 912, 696. HRMS (TAPCI, m/z) calcd. for C19H25N [M-H] 266.1909, [M+H] 

268.2065; found 266.1907, 268.2062 

 

 

P2.3  

 

3-(2-cyano-2-phenylethyl)oct-2-en-1-yl acetate was prepared following General Procedure 2.A 

with 2-(hept-1-en-2-yl)oxirane at 0.75 mmol scale. 

61mg, yellow oil, yield: 87 %, E:Z: 53:47. Purified by flash chromatography on silica with 2-10 

% EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.43 – 7.29 (m, 5H aromatic), 5.51 (tt, J = 

7.1, 1.3 Hz, 1H alkene CH, major), 5.46 (tt, J = 6.9, 1.0 Hz, 1H), 4.59 (d, J = 6.9 Hz, 1H), 4.47 – 

4.32 (m, 2H, CH2, major), 3.89 (ddd, J = 8.7, 6.5, 5.0 Hz, 1H, CH, major), 2.80 (dd, J = 13.7, 8.7 

Hz, 1H CH2, major), 2.68 – 2.49 (m, 3H overlapping 1H CH2, major and 2H CH2, minor ), 2.15 

(dt, J = 13.7, 7.7 Hz, 1H CH2, minor), 1.49 – 1.19 (m, 9H, overlapping 2H CH2, 3H CH3, major 

and 1H CH2 minor 3H CH3, minor), 0.89 (td, J = 7.1, 2.5 Hz, 6H overlapping CH3 major and 

minor). 13C NMR (126 MHz, CDCl3) δ 171.2, 171.0, 140.9, 140.5, 135.8, 135.6, 129.39, 129.35, 
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128.54, 128.45, 127.6, 127.5, 123.6, 123.3, 120.7, 120.6, 77.3, 60.9, 60.7, 43.1, 37.2, 36.9, 36.7, 

36.7, 31.9, 31.7, 30.6, 28.4, 27.7, 22.7, 21.3, 21.2, 14.28, 14.25. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3065, 3032, 

2957, 2932, 2861, 2241, 1732, 1667, 1601, 1497, 1454, 1374, 1233, 1078, 1024, 961, 754, 700, 

608. LRMS (EI, m/z) parent mass 299.19 found 299.15 rel. intensity 0.06 HRMS via LCT ESI 

TOF MS and LC TAPCI QTOF MS was attempted. 

 

 

 

P2.4  

 

(E)-5-(1-hydroxycyclohexyl)-2-phenylpent-4-enenitrile was prepared following General 

Procedure 2.A with 2-vinyl-1-oxaspiro[2.5]octane. 

68 mg, yellow oil, yield >99 %. Purified by flash chromatography on silica with 0-30 % 

EA:Hexane. 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.29 (m, 3H), 5.75 

– 5.60 (m, 2H), 3.84 (dd, J = 7.7, 6.6 Hz, 1H), 2.68 – 2.56 (m, 2H), 1.70 – 1.40 (m, 9H), 1.34 – 

1.19 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 143.2, 135.4, 132.4, 132.3, 129.3, 128.8, 128.7, 

128.4, 127.6, 121.9, 120.6, 71.6, 38.8, 38.1, 38.1, 25.7, 22.3. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3452 (broad), 3063, 

2932, 2857, 2241, 1601, 1497, 14541346, 1261, 1173, 1055, 1034, 972, 754, 698. HRMS (TAPCI, 

m/z) calcd. for C17H21NO [M-H] 238.1596; found 238.1595. 
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Large scale synthesis of P2.1a 

3a was prepared on large scale by combining 0.675 g (4.24 mmol) of 1a, 0.12 g Pd(PPh3)4 (0.107 

mmol, 2.5 mol %) in 20 mL DCM (0.212 M) in a flame dried schlenk flask under argon. 2a was 

added directly by syringe (0.308 g, 4.38 mmol, 1.03 equiv.) and the solution was allowed to stir at 

room temperature for 30 minutes. 0.682 g of TBD (4.91 mmol 1.16 equiv.) was added and the 

resulting solution was allowed to stir for 1 hour at room temperature. The solvent was evaporated 

at reduced pressure until it was mostly gone, and the mixture was quenched on the column.  

0.717 g, colorless oil, yield: 81 %, d.r.: 81:19. Purified by flash chromatography on silica with 2 

% EA:Hexane. 1H NMR (400 MHz, Chloroform-d) δ 7.42 – 7.27 (m, 5H, overlapping major and 

minor, aromatic), 5.80 (ddd, J = 17.0, 10.3, 8.3 Hz, 1H major, alkene CH), 5.43 – 5.23 (m, 

overlapping 2H major alkene CH2, 1H minor alkene CH2), 5.04 (ddd, J = 10.3, 1.4, 0.5 Hz, 1H 

minor, alkene CH2), 4.88 (ddd, J = 16.9, 10.3, 8.7 Hz, 1H minor alkene CH), 2.53 (td, J = 9.0, 7.0 

Hz, 1H minor, cyclopropane CH), 2.20 (tdt, J = 8.2, 7.4, 0.7 Hz, 1H major, cyclopropane CH), 

1.92 (dd, J = 9.2, 5.9 Hz, 1H minor, cyclopropane CH2), 1.83 (dd, J = 8.6, 5.9 Hz, 1H major, 

cyclopropane CH2), 1.76 (dd, J = 7.4, 5.9 Hz, 1H major, cyclopropane CH2), 1.65 (dd, J = 7.0, 5.9 

Hz, 1H minor cyclopropane CH2). 

§2.A.5 Amination 

General Method  

 



128 
 

Based on a previously developed method,68 5.8 mg of Pd(PPh3)4 (2.5 mol %) and 0.63 mL  of a 

0.32 M solution of 1-phenyl-2-vinylcyclopropane-1-carbonitrile in THF were added to a flame 

dried flask in a glove box. An excess ( > 2 equiv.) of amine was added and the flask was sealed. 

The reaction was allowed to stir at room temperature for 48 hours, and was quenched on a silica 

plug in EtOAc. The eluate was evaporated, and diluted with EtOAc. The solution was acidified 

by adding 5 mL of 1M HCl, the layers were separated and the aqueous layer was extracted 4X 

with EtOAc. Solid NaOH was added until the aqueous layer was markedly basic and it was 

extracted again with EtOAc. The second extract was dried over MgSO4, filtered and evaporated 

to yield the pure amination product. 

 

P2.5a 

 

(E)-6-morpholino-2-phenylhex-4-enenitrile 

Isolated yield, 93 %. 1H NMR (500 MHz, Chloroform-d) δ 7.42 – 7.28 (m, 5H), 5.69 – 5.53 (m, 

2H), 3.86 (t, J = 7.2 Hz, 1H), 3.67 (t, J = 4.7 Hz, 4H), 2.99 – 2.91 (m, 2H), 2.70 – 2.61 (m, 2H), 

2.44 – 2.29 (m, 4H). 

13C NMR (126 MHz, CDCl3) δ 135.29, 131.70, 129.31, 128.38, 128.34, 127.56, 120.53, 77.26, 

67.15, 61.02, 53.69, 38.83, 37.83. HRMS (ESI, m/z) calcd for C16H20N2O [M+H] 257.1654, 

[M+Na] 279.1473; found 257.1655, 279.1484. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3032, 2957, 2855, 2808, 2241, 

1601, 1495, 1454, 1354, 1285, 1117, 1071, 1005, 980, 866, 758, 700. 
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P2.5b 

 

(E)-6-(diethylamino)-2-phenylhex-4-enenitrile 

Isolated yield, 89 %. 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.29 (m, 5H), 5.67 – 5.53 (m, 

2H), 3.85 (t, J = 7.1 Hz, 1H), 3.06 (dd, J = 6.2, 1.0 Hz, 2H), 2.64 (ddt, J = 9.0, 6.7, 1.2 Hz, 2H), 

2.47 (q, J = 7.2 Hz, 4H), 1.00 (t, J = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 135.39, 132.66, 

129.28, 128.35, 127.56, 127.27, 120.61, 54.91, 46.66, 38.92, 37.97, 11.77. HRMS (ESI, m/z) 

calcd. for C16H22N2 [M+H] 243.1861, [M+Na] 256.1681; found 243.1864, 256.1686. IR (𝜈̅ −

𝜈̅𝐼𝑅 , neat) 2969, 2934, 2807, 2241, 1497, 1454, 1371, 1200, 1165, 1082, 974, 756, 698. 

§2.A.6 Cycloaddition 

General Procedure 

To a flame dried flask in a glove box were added 2.7 mg of Pd2(dba)3·CHCl3 (2.5 mol %), 4.4 

mg (R)-Phenyl PHOX ligand (L2, 10 mol %) and 0.25 mL of DMSO. The solution was allowed 

to stir at room temperature for ½ hour. Then 0.1 mL of 1 M 1-phenyl-2-vinylcyclopropane-1-

carbonitrile solution in DMSO was added, followed by 0.15 mL of 1M methyl acrylate solution 

in DMSO (1.5 equiv.). The resulting solution was heated to 70 ° C overnight (previous 

monitoring had shown 10 hours to be sufficient for disappearance of 1-phenyl-2-

vinylcyclopropane-1-carbonitrile). The sample was quenched on a silica plug in EtOAc. The 

eluate was evaporated until only DMSO remained and it was loaded directly onto a silica gel 
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column (5 % EtOAc/Hexane). Evaporation of column fractions responsive to KMnO4 yielded a 

mixture of diastereomers of methyl 4-cyano-4-phenyl-2-vinylcyclopentane-1-carboxylate. 

P2.6 

  

methyl 4-cyano-4-phenyl-2-vinylcyclopentane-1-carboxylate 

Major Diastereomer 

1H NMR (400 MHz, Chloroform-d) δ 7.62 – 7.55 (m, 2H), 7.45 – 7.37 (m, 2H), 7.37 – 7.30 (m, 

1H), 5.73 (ddd, J = 17.0, 10.2, 7.7 Hz, 1H), 5.17 (ddd, J = 17.1, 1.4, 0.8 Hz, 1H), 5.11 (ddd, J = 

10.2, 1.4, 0.6 Hz, 1H), 3.69 (s, 3H), 3.49 – 3.36 (m, 2H), 2.77 – 2.69 (m, 1H), 2.64 (dd, J = 13.9, 

7.4 Hz, 1H), 2.54 (ddt, J = 12.8, 5.5, 1.5 Hz, 1H), 2.31 – 2.21 (m, 1H). 13C NMR (126 MHz, 

CDCl3) δ 174.36, 138.41, 135.97, 129.55, 129.26, 128.44, 126.28, 126.07, 123.95, 117.66, 52.03, 

47.99, 46.87, 45.94, 45.33, 42.87.  

1st minor diastereomer 

1H NMR (500 MHz, Chloroform-d) δ 7.52 – 7.47 (m, 2H), 7.43 – 7.37 (m, 2H), 7.35 – 7.30 (m, 

1H), 5.93 (ddd, J = 16.9, 10.2, 7.5 Hz, 1H), 5.14 (dt, J = 17.0, 1.1 Hz, 1H), 5.11 – 5.07 (m, 1H), 

3.73 (s, 3H), 3.18 – 3.05 (m, 2H), 2.81 – 2.74 (m, 1H), 2.57 – 2.43 (m, 3H). 13C NMR (126 MHz, 

CDCl3) δ 174.00, 139.42, 139.02, 129.34, 128.40, 126.29, 126.06, 124.29, 116.52, 52.38, 50.22, 

47.18, 46.53, 46.39, 44.19. 

2nd minor diastereomer 
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1H NMR (500 MHz, Chloroform-d) δ 7.47 – 7.44 (m, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.28 (m, 

2H), 5.85 (ddd, J = 17.3, 10.3, 7.2 Hz, 1H), 5.20 (dt, J = 17.1, 1.3 Hz, 1H), 5.12 (dt, J = 10.4, 1.1 

Hz, 1H), 3.76 (s, 3H), 3.40 – 3.31 (m, 1H), 3.00 – 2.92 (m, 1H), 2.89 (td, J = 9.8, 7.1 Hz, 1H), 

2.75 – 2.46 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 173.84, 137.87, 129.35, 128.78, 128.67, 

128.40, 126.91, 126.02, 116.75, 52.50, 49.16, 47.65, 46.86, 43.13. 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3065, 3030, 2953, 2234, 1732, 1643, 1601, 1495, 1449, 1435, 1371, 1206, 

1173, 993, 922, 760, 698. LRMS (EI, m/z) parent mass 255.13; found 255.10 rel. int. 0.71. 

HRMS via LCT ESI TOF MS and LC TAPCI QTOF MS was attempted 
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Chapter 3: Synthesis of Benzocycloheptenes via Aromatic Vinylcyclopropane 

Cope Rearrangements 
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§3.1 Introduction 

Vinyl cyclopropanes are synthetically useful molecules that undergo a variety of 

rearrangements. For example, vicinal cis-divinyl cyclopropanes undergo facile Cope 

rearrangements at room temperature. While the divinyl cyclopropane Cope rearrangement is 

well-known and has been broadly applied in synthesis,78 examples of the aryl vinyl cyclopropane 

Cope rearrangement (AVCPR) are less common and generally limited in scope or reaction yield. 

Furthermore, these aryl vinyl cyclopropane Cope rearrangements generally require sterically 

predefined starting materials that place the vinyl and aryl groups cis to one another. This 

relatively rare rearrangement gives access to the benzocycloheptene scaffold. Benzocycloheptene 

derivatives and other benzo-fused 7-membered rings are found in a variety of medicinally 

relevant natural compounds (Figure 3.1). For example, NESS 0327 is a potent cannabinoid 

receptor agonist.79a Benzosuberone is an important chemical building block for the synthesis of 

various medicinally relevant compounds, such as colchicines. Colchicine itself and its 

derivatives are potent anticancer agents. For instance theaflavin, a compound isolated from black 

tea regulates the growth and survival of cancer cells and can also regulate metathesis. Brussonol 

is a compound isolated from salivabroussonetii that exhibits anticancer activity against murine 

cancer cells.79b Gamma-Lumicolchicine is a photodegradation product of colchicine, which does 

not exhibit the same biological effects, but has found use as a standard in colchicine activity 

studies.79c (Figure 3.1) . Herein, we report a method to obtain either of two regioisomeric 

benzocycloheptene products via an aryl vinyl cyclopropane Cope rearrangement, featuring 

additive-controlled regioselectivity. Mechanistic studies indicate a dynamic equilibration of 

cyclopropane stereoisomers, followed by rearrangement of the cis diastereomer. 
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Figure 3.1 – Natural and Biologically Active Benzo-fused 7-membered Rings 

 

§3.2 Overview of Aromatic Vinylcyclopropane Cope Rearrangements 

Cope rearrangements are well-known and powerfully useful reactions in organic 

synthesis.80 The Cope rearrangements of cis divinyl cyclopropanes are particularly interesting 

because they are facile at relatively low temperatures due to the rigidity of the system and the strain 

release that provides a thermodynamic driving force.78 The related aromatic Cope rearrangements, 

however, are less common due to the low reactivity of the aryl ring and the need to transiently 

destroy aromaticity.81 Thus, aromatic Cope reactions tend to require forcing conditions and/or 

stereodefined starting materials, and suffer from low yield or limited scope.81
 

The first evidence for the possibility of aryl vinyl cyclopropane Cope rearrangements was 

presented by Marvell and Lin in 1973.81a The authors attempted to form and trap dearomatized 

intermediate A3.1 via a Diels-Alder reaction with various dienophiles with no success. However, 
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treatment of the cyclopropane with tert-butoxide/tert-butyl alcohol, at 150 ℃, mainly generated 

the conjugated diene product A3.2. Based on deuterium incorporation studies, they proposed the 

mechanism shown in Scheme 3.1 for the formation of the diene product. This experiment provided 

evidence in support of an aryl vinyl cyclopropane Cope rearrangement mechanism, although the 

rearomatized benzocycloheptene was not observed at that time. 

Scheme 3.1 – Initial Evidence for Aryl Vinyl Cyclopropane Cope Rearrangement 

 

Continuing their studies in 1977, Marvell and Lin reported the first definitive example of 

the aryl vinyl cyclopropane Cope rearrangement (Scheme 3.2).81b Treatment of m-methoxy 2-

phenyl-1-vinylcyclopropane with ethanethiolate at 121 ℃ in DMF led to the desired aryl vinyl 

cyclopropane Cope product A3.3 in 28 % yield along with the diene (A3.4, 24 %), which form via 

the same intermediate, as well as the cis- and trans-isomers of the starting material (Scheme 3.2a). 

Interestingly, although there is a possibility for two different regioisomers to form in the aryl vinyl 

cyclopropane Cope rearrangement with these m-substituted aryl vinyl cyclopropanes, the authors 

only observed one of the two possibilities (Scheme 3.2b). They hypothesized that the retro-Cope 

rearrangement was more facile than prototropic conversion of intermediate A3.5 to the 

rearomatized product A3.4.  
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Scheme 3.2 – First Example of Aromatic Double Bond Participating in Cope Rearrangment 
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In 1979, Maas et al. reported several examples of aryl vinyl cyclopropane Cope 

rearrangements in 1979 (Scheme 3.3).82 This report included 8 examples (A3.6a-h) with yields 

ranging from trace amounts to 75 % and included some containing phosphonate and carbonate 

esters. Of note, a pyridinyl cyclopropane underwent the aryl Cope rearrangement (A3.6h), 

constituting the first example of a heteroaromatic ring participating in an aryl Cope rearrangement, 

further highlighting the synthetic utility of cyclopropane strain release as a driving force for 

dearomatization. 

Scheme 3.3 – More Early Examples of AVCPR Including Heterocyclic ARVCP 
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In 2000, Aggarabeitia reported the first photochemical aryl vinyl cyclopropane Cope 

rearrangement. They photochemically rearranged 1-(2,2-diphenylvinyl)cyclopropanes (A3.7) to 

benzocycloheptenes (A3.8), but only reported 4 examples with yields all below 20 % (Scheme 

3.4).83 The authors postulated that the reaction proceeded via a diradical intermediate (A3.9), 

which generated a dearomatized intermediate (A3.10) upon recombination of the radicals. 

Rearomatization by a proton transfer then led to the conjugated benzocycloheptene product. 

Without the electron withdrawing group in the C1 position as shown in Scheme 3.4, the 

benzocycloheptene products would not be observed, but rather only cyclopentenes would be 

formed. 

Scheme 3.4 – Photochemical Aryl Vinyl Cyclopropane Cope Rearrangement 
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Martin et al. reported the thermal rearrangement of several aryl vinyl cyclopropane fused 

lactones (A3.11a-d) to seven membered rings (Scheme 3.5).84 Although spectroscopic data was 

given for four of the rearrangement products, the yield was only reported for one (A3.12a). 

Interestingly, in the case of those reported without yields, non-rearomatized structures were 

reported (A3.12b-d), possibly due to a slow [1,3]-proton transfer preventing rearomatization. 

Furthermore, the reactions did require stereodefined starting materials and were apparently 

stereospecific. 

Scheme 3.5 – Isolation of Dearomatized Products from AVCPR 
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In 2008, Davies et al. reported the tandem Rh-catalyzed carbene cyclopropanation/aryl 

vinyl cyclopropane Cope rearrangement of diazo compounds with dienes (Scheme 3.6).85 The 

diastereo and enantioselective synthesis of cis cyclopropanes was followed by the rearrangement 

to benzocycloheptenes at high temperatures in a single pot. The authors reported seven examples 

of the formal [4+3]-cycloadditions with yields ranging from 66 to 92 % with diastereoselectivities 

all above 97:3 d.r. and enantioselectivities all above 90 % ee. Furthermore, they applied this 

method to the formal synthesis of (+)-frondosin B. 

Scheme 3.6 – One-Pot Cyclopropanation/AVCPR protocol 
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Aryl vinyl cyclopropane Cope rearrangements sometimes occur unexpectedly in the course 

of other pursuits. In 2011, the Stephenson group reported a tandem photochemical cyclization and 

aryl vinyl cyclopropane Cope rearrangement (Scheme 3.7).86 Geminally substituted bromo 

cyclopropanes bearing propargyl amide substituents (A3.13) underwent an iridium-catalyzed 

photochemical cyclization leading to necessarily cis aryl vinylcyclopropanes. Initially, upon 

heating, the spirocyclic cyclopropanes (A3.14) would undergo a retro-ene reaction to form 

cyclopentenes, A3.15. In order to suppress this pathway, they synthesized geminally substituted 

diaryl cyclopropanes (A3.16) and subjected them to the reaction conditions. Rather than 

undergoing retro-ene reactions, these substrates readily rearranged to form benzocycloheptenes, 

A3.17 via AVCPR reactions. The authors reported ten examples of the one-pot protocol, with 

yields ranging from 32 % to 91 %.  

Scheme 3.7 – Stephenson’s Tandem Radical Cyclization/Cope Rearrangment 
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The biosynthesis of ergot alkaloids is initiated by prenylation of indole by DMAT synthase. 

An aryl Cope rearrangement mechanism has been proposed as a potential biosynthetic mechanism 

for this transformation.87 Inspired by this hypothesis, Gaich and coworkers developed a 

prenylation of indole at the C4 position via an aryl vinyl cyclopropane Cope rearrangement 

(Scheme 3.8).88 Utilizing stereochemically predefined spiro-fused vinylcyclopropane indoles 

(A3.18) to mimic the conformational restrictions likely imposed by the enzyme in the biosynthetic 

pathway, they accomplished the rearrangement at room temperature. 

Scheme 3.8 – Gaich’s Bioinspired C4 Prenylation of Indole 

 

More recently, the Curran group disclosed a variety of rearrangements of 1,1-

divinylcyclopropanes (A3.19), including five examples that underwent aromatic Cope 

rearrangements with yields ranging from 44 % to 73 % (Scheme 3.9).89 Those reactions cleverly 

utilized an ene reaction to drive rearomatization after the initial Cope rearrangement. Typically in 

AVCPR, a [1,3]-proton transfer is exploited for the rearomatization;86 however, with substrates 

that required [1,3]-proton transfer for rearomatization, rearrangement to form cyclopentenes was 

favored over AVCPR. Aryl vinyl cyclopropane Cope rearrangements were only observed in allyl 

and propargyl amide substrates where rearomatization by ene reaction was possible.  
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Scheme 3.9 – Curran’s ene-driven Aryl Vinyl Cyclopropane Cope Rearrangement 

 

Finally, Ávilla-Zárraga and coworkers reported an aryl vinyl cyclobutane rearrangement 

to form a benzocyclooctene (A3.20, Scheme 3.10).90 In the initial report, a single product was 

obtained in an optimized yield of just 45 %. However, a subsequent publication in 2017 

demonstrated an improved yield of 60 % en route to the synthesis of (+/-)-parvifoline.91 Given the 

target-oriented nature of the synthesis, only a single example was demonstrated. To accomplish 

the reaction, control of the stereochemistry of the cyclobutanes was required to ensure that the 

aromatic ring and vinyl group were cis to one another.  

Scheme 3.10 – Ávilla-Zárraga’s Cope Rearrangement of Aryl Vinylcyclobutanes 

  

This chapter describes a method for the synthesis of benzocycloheptenes from aryl 

vinylcyclopropanes wherein dynamic equilibration of the diastereomers of the cyclopropane 

precedes the rearrangement, obviating the need to laboriously prepare cyclopropanes as a single 

diastereomer (Scheme 3.11).92 Furthermore, a conjugation-driven isomerization of the initially 

formed benzocycloheptenes occurs in the presence of the base TBD. This protocol allows the 
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highly selective synthesis of either of two isomers of the benzocycloheptene products. Styrenyl 

vinylcyclopropanes underwent the more common vinylcyclopropane rearrangement to 

cyclopentenes, likely due to increased steric hindrance in the AVCPR transition state. This reaction 

constitutes an operationally simple and high-yielding complement to existing AVCPR protocols.  

Scheme 3.11 – Dynamic Aryl Vinyl Cyclopropane Cope Rearrangements 

 

§3.3 Synthesis of Benzocycloheptenes via Dynamic Vinyl Cyclopropane Cope 

Rearrangements 

3.3.1 – Optimization 

During our optimization of the cycloaddition with vinylcyclopropanes (vide supra), it was 

noted that at elevated temperatures, the reaction formed an isomeric byproduct that was tentatively 

assigned as a benzocycloheptene. To further investigate benzocycloheptene formation, the 

vinylcyclopropane product was isolated and subjected to palladium catalysis at 150 oC. Indeed, the 

benzocycloheptene product (P3.1a) was formed in 73 % isolated yield (Table 3.1, entry 1).93 This 

rearrangement warranted further investigation, since reports of such aromatic Cope rearrangements 

are generally limited in scope and produce products in low yield. Next, the same rearrangement 

was performed in the presence of TBD, which is also present during cyclopropane formation. 

Under these conditions, the desired benzocycloheptene was not observed, but rather the 

regioisomeric benzocycloheptene P3.2a was obtained in low yield (entry 2). The addition of dppe 

as a ligand increased the yield of P3.2a significantly (entry 3). This result could be interpreted to 
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mean that deactivation of Pd through chelation was beneficial to the reaction. Indeed, control 

reactions showed that palladium is not required for the isomerization (entries 4–5). In fact, 

conducting the reaction at 150 oC in the absence of palladium provided benzocycloheptenes in 

better yield than when palladium was present.  

Table 3.1 – Optimization of Cope Rearrangement 

 

Interestingly, when acetic acid was used in place of TBD, the majority of the product 

obtained was a diene resulting from ring-opening of the vinylcyclopropane followed by β-

hydride elimination and alkene isomerization (P3.3, entry 6). A control experiment in the 

absence of palladium showed that palladium was required for the formation of this diene 

(entry 7). The proposed mechanism for the formation of this diene is shown in Scheme 3.12.94 

The vinyl cyclopropane can undergo reversible ring opening in the presence of palladium. 

Subsequent β-hydride elimination from the resulting π-allyl species occurs via a base-

mediated anti-elimination, resulting in a palladium hydride species. Then either the palladium 
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hydride or the base can isomerize the resulting diene to the lower energy conjugated isomer, 

P3.3. 

Scheme 3.12 – Catalytic Formation of Diene 

 

While the optimal conditions for the rearrangement are metal-free, the above studies show 

that the rearrangement is compatible with palladium. This observation led us to explore a protocol 

that would incorporate the anion relay cyclopropanation and aryl vinyl cyclopropane Cope 

rearrangements in a single pot (Table 3.2). In DCM containing Pd(PPh3)4, the benzocycloheptene 

P3.1a was formed in 20 % yield (entry 1). When the amount of palladium was increased, a mixture 

of the conjugated benzocycloheptene, P3.2a and the diene P3.3 was obtained, but the yield of each 

was low (entry 2). Addition of dppe favored the non-conjugated isomer P3.1a and the yield was 

slightly improved (entry 3). Interestingly, by simply allowing less time for the cyclopropane 

formation, the yield of P3.1a was improved to 40 % (entry 4). 
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Table 3.2 – Sequential ARC/AVCPR

 

a Conditions: 1) S2.2a and the Pd source were dissolved in the solvent and allowed to stir under Argon. S2.1 was then 

added, and the reaction was stirred at room temperature for the given time. TBD was added, and the reaction was 

stirred at room temperature overnight. 2) The ligand was added, and the reaction was stirred at 150 °C overnight. a) 

Monitored for completion of the Tsuji-Trost allylation before adding TBD. b) Additional palladium was added along 

with TBD in the second step. 

An improved yield of the conjugated isomer P3.2a was obtained when the reaction was 

carried out in DMSO (entry 5). Doubling the palladium concentration increased the yield slightly 

(entry 6). The yield of P3.2a was further improved by using Pd(dba)2 instead of Pd(PPh3)4 to effect 

the cyclopropanation (entry 7). Addition of 10 mol % of dppe decreased the yield, but 20 mol % 
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of dppe increased the yield (entries 8-10). Unfortunately, while the one-pot ARC 

cyclopropanation–aromatic Cope rearrangement sequence was viable, the product yields were 

lower than desired.  

Since the cyclopropane is an intermediate in formation of the benzocycloheptene, but the 

diene can be formed directly from the π-allyl complex formed from the ester and does not require 

the intermediacy of the cyclopropane, we hypothesized that avoiding formation of the 

cyclopropane while simultaneously increasing catalyst loading would favor β-hydride elimination 

and formation of the diene, P3.3. Operating under this hypothesis, the reaction was run in DCM 

with 10 mol % Pd(PPh3)4 and a catalytic amount of TBD in the presence of a bulky phosphine 

ligand. These conditions did indeed favor the formation of P3.3 (entries 11-12). The reaction was 

run with 2.5 mol % catalyst for the formation of the ester, and then additional catalyst was added 

along with TBD prior to heating. This protocol slightly increased the yield (entry 13). Ultimately, 

the bulky 1-naphthyl phosphine formed P3.3 in one pot with an appreciable yield of 47% (entry 

14). 

Next, in order to determine whether the initial Tsuji-Trost reaction contributed to the low 

yield of benzocycloheptenes, that process was circumvented by isolating and purifying the allylic 

acetate intermediate necessary for cyclopropane formation. From this intermediate (I2.2a), 

attempts were made to optimize a one-pot Tsuji-Trost cyclopropanation–aromatic Cope 

rearrangement protocol (Table 3.3).   
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Table 3.3 – Optimization of the Tsuji-Trost/Cope Rearrangement Sequence 

 

Conditions: 1) The Pd source, the ligand and TBD were dissolved in the solvent in a dry flask under Argon. I2.2a 

was added, and the reaction was stirred at room temperature for 5 minutes. 2) The reaction was stirred at 150 °C 

overnight. a) The first step was allowed to continue overnight, the ligand was added in a second step, and  the 

solvent was changed from DCM to DMSO between first and second steps.  

Initial attempts with conditions known to affect cyclopropanation generated the 

benzocycloheptene P3.1a, but the yield was low (entry 1). To investigate whether dppe could be 

used to inhibit palladium’s interference with the aromatic Cope rearrangement, the 

cyclopropanation was performed first, followed by addition of dppe. Under these conditions, P3.1a 

was formed in 38 % yield, but that procedure also required a solvent swap prior to heating 

overnight (entry 3). However, when the catalyst was changed to Pd(dba)2, formation of the 

conjugated benzocycloheptene was favored, resulting in 53 % of P3.2a (entry 4). A brief ligand 
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screen did not result in improved yields (entries 5-6). When the reaction was performed solely in 

DMSO with Pd(PPh3)4, benzocycloheptene did not form; instead, elimination to form the diene 

P3.3 was favored (entry 7). When the reaction was performed in DCM with a higher loading of 

Pd(PPh3)4, the diene was always preferentially formed (compare entries 2,8), and catalytic loadings 

of TBD also seemed to contribute to the formation of the diene (entries 9-10). Under these 

conditions, P3.3 could be formed selectively in appreciable amounts; however, it was not 

considered of interest to pursue the diene further, as β-hydride elimination from π-allyl complexes 

to form dienes is quite well known94. Ultimately, while a moderate yield of the benzocycloheptene 

could be obtained in a one-pot transformation, the focus was shifted to maximizing the yield of 

benzocycloheptene synthesis through a one-step procedure. 

3.3.2 – Scope 

Scheme 3.13 – Scope of Benzocycloheptene Formation 
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The scope of the aromatic Cope rearrangement was then investigated using various 

substituted vinylcyclopropanes, P2.1 (Scheme 3.13). These studies showed that para-substituted 

aryl vinylcyclopropanes generally produced benzocycloheptenes in excellent yields (P3.1b–e). 

Substrates with extended aromatic systems performed equally well (P3.1f, g). Meta-substituted 

aryl rings were also well-tolerated but led to regioisomeric products resulting from aromatic Cope 

rearrangement at both the proximal and distal positions to the substituent. While relatively small 

substituents (F and OMe, P3.1h, i) imparted little regioselectivity, the larger methyl substituent 

more effectively forced reaction at the distal position (P3.1j, 89:11 regioselectivity). 

Scheme 3.14 - Scope of Cyclopentene Formation 

  

Interestingly, when styrenyl cyclopropanes were subjected to the conditions for aromatic 

Cope rearrangement, isomerization to cyclopentenes was observed instead (P3.4a-h, Scheme 
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3.14). 81b-d,91,52 Unfortunately, the products formed with low diastereoselectivity, indicating that 

this rearrangement occurs via an indiscriminate cyclization 

Next, on the basis of our optimizations (vide supra), the use of triazabicyclodecene (TBD) 

base was expected to equilibrate the benzocycloheptene isomers to form the conjugated isomer. 

Indeed, applying these basic reaction conditions to aromatic Cope rearrangements of terminal 

vinylcyclopropanes had the same effect, leading to good yields of conjugated benzocycloheptenes 

P3.2 (Scheme 3.15).  

Scheme 3.15 - Scope of Conjugated Benzocycloheptenes 

  

Interestingly, the presence of TBD affected the regiochemistry of the aromatic Cope 

rearrangement (Scheme 3.16). For example, P3.1j was obtained as an 89:11 mixture of 

regioisomers, but the conjugated analog P3.2h was formed with only 56:44 regioselectivity. 
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Furthermore, in the case of P3.2h the regioselectivity favored cyclization at the more sterically 

hindered carbon, indicating the presence of an electronic influence on regioselectivity. 

 

Scheme 3.16 – Effect of TBD on Regioselectivity of AVCPR 

 

3.3.3 – Mechanistic Considerations 

It is interesting that high yields of benzocycloheptenes are observed starting from 

reactants on which the vinyl and aryl groups primarily have a trans disposition; aromatic Cope 

rearrangements are known to require the cis-orientation of the aryl and vinyl groups.81b Thus, 

we hypothesized that the cyclopropane reactants were undergoing stereochemical equilibration 

on the timescale of the rearrangement.81b To investigate this potential isomerization, the 

stereochemical fidelity of a diastereomerically pure cis cyclopropane was investigated at 

various temperatures in DMSO (Scheme 3.17). While no isomerization occurred at room 

temperature, the cyclopropane epimerized at 100 ℃, reaching the expected diastereomeric 

equilibrium within 3 hours. The aromatic Cope rearrangement was only slightly slower, 

having reached 13 % conversion at 3 hours and 31 % conversion after 20 hours. As expected, 
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a styrenyl cyclopropane underwent more rapid epimerization, reaching equilibrium after 1 

hour at 100 ℃. The fact that no cyclopentene was formed under these conditions indicates that 

cyclization to form the cyclopentene is the rate-limiting step in forming P3.4c. The thermal 

epimerization of cyclopropanes could occur through diradical81b-d,52c or zwitterionic 

intermediates.82,50 We favor the latter pathway since cyclopropanes P2.2d are typical donor-

acceptor cyclopropanes, which would be expected to form zwitterionic intermediates in 

DMSO at elevated temperature. Indeed, addition of 2.5 mol % Pd(PPh3)4, which can stabilize 

zwitterionic intermediates of ring opening,48a,b,49,64,68,69,95 catalyzed the cis/trans equilibration 

of cyclopropane P2.2d in just 1 hour at room temperature.  

Scheme 3.17 – Stereochemical Fidelity of Cyclopropanes 

 

It was hypothesized that TBD (pKa ~ 26)96 plays a role in the isomerization of the 

benzocycloheptene P3.1a (pKa ~ 33)97 to its conjugated form P3.2a by acting as a proton shuttle. 

This isomerization would clearly require the reversible deprotonation of the far more acidic proton 

alpha to the nitrile (pKa ~ 22).96 In order to investigate this hypothesis, the non-conjugated 

benzocycloheptene P3.1a was isolated and exposed to TBD in DMSO at different temperatures. 

The isomerization was slow at room temperature (t1/2 ~ 12 h) but occurred rapidly at 60 °C (t1/2 < 
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1 h) and 100 °C (t1/2 < 5 min) (Scheme 3.18). This result indicates that, under the Cope 

rearrangement conditions, the non-conjugated benzocycloheptene is rapidly isomerized to the 

conjugated isomer in the presence of TBD. 

 

Scheme 3.18 – Role of TBD in the Observed Isomerization 

 

As noted above, when TBD was used to effect the isomerization of the non-conjugated 

benzocycloheptenes to their conjugated isomers, the regioselectivity was markedly less (Scheme 

3.16). In order to investigate the role of TBD in the regiochemical outcome of the AVCPR reaction, 

a control experiment was run wherein the isolated non-conjugated benzocycloheptene P3.1a was 

exposed to TBD in DMSO at 150 ℃. Under these conditions, the regiochemistry of the Cope 

rearrangement was conserved (Scheme 3.19a). This observation suggested that the influence of 

TBD on the regiochemistry of the AVCPR reaction occurs through trapping of a non-equilibrium 

mixture of regioisomeric intermediates by catalyzing rearomatization, thus preventing the retro-

Cope rearrangement (Scheme 3.19b). Initially, due to bond rotation about the C(sp3)-C(sp2) bond 

the aryl vinyl Cope rearrangement leads to a 50:50 mixture of regioisomeric intermediates. Under 

normal conditions, the slow [1,3]-proton transfer allows the retro-Cope rearrangement to occur, 

allowing the regioisomers to equilibrate and reach their thermodynamic ratio before 
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rearomatization occurs. On the other hand, in the absence of TBD, the [1,3]-proton transfer 

required for rearomatization is thought to be the rate limiting step, allowing the regioisomers of 

the Cope rearrangement to reach thermodynamic equilibrium prior to rearomatization. 

 

Scheme 3.19 – Effect of TBD on Regiochemistry of AVCPR 

 

 

In light of this new mechanistic insight into the origin of the regioselectivity of P3.2h, an 

attempt was made to improve the regioselectivity of the conjugated benzocycloheptene P3.2h by 

first forming the Cope product P3.1j prior to initiating the alkene isomerization by adding TBD. 

Indeed, when vinylcyclopropane P2.1k was heated to 150 ℃ overnight, then TBD was added in a 

second step, P3.2h formed in 53 % yield with 94:6 regioselectivity in favor of the distal 

regioisomer within two hours after TBD addition (Scheme 3.20). 

Scheme 3.20 – Improved Regioselectivity of 5h by Sequential AVCPR/Alkene Isomerization 
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*Yield was obtained by 1H NMR with 1,3,5-trimethoxybenzene as an internal standard. 

Given these observations, we hypothesized that by utilizing TBD’s ability to catalyze the 

rearomatizing [1,3]-proton transfer, and further isomerize the resulting benzocycloheptene to the 

lower energy conjugated isomer, it may be possible to trap the aryl vinyl cyclopropane Cope 

intermediate, even in the case of the styrenyl substrates. Indeed, when P2.2d was exposed to 

elevated temperatures in the presence of TBD, the conjugated benzocycloheptene P3.5 was 

observed as the major product (Scheme 3.21). However, P3.5 was only isolated in ~10 % yield, 

due in part to the difficulty of completely separating it from the isomeric by-products, and the yield 

could likely be improved with an optimized separation technique. 

Scheme 3.21 – Synthesis of a Styrenyl Benzocycloheptene 

 

Our observations led us to propose the following mechanism (Scheme 3.22). At high 

temperatures, the epimerization of the vinylcyclopropane via I3.1 becomes facile. The trans 

isomer has the vinyl and aryl groups cis to one another, and at 150 ℃, the Cope rearrangement via 

TS3.1 leading to I3.2 is facile. In the absence of TBD, the [1,3]-proton transfer required for 

rearomatization is slow. This situation allows the reverse Cope rearrangement to occur. In the case 
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of styrenyl substrates, the reverse Cope rearrangement and subsequent rearrangement to form 

cyclopentenes (P3.4) in low diastereoselectivity dominates. In the case of simple 

vinylcyclopropanes, however, the [1,3]-proton transfer dominates over cyclopentene 

rearrangement, and benzocycloheptenes P3.1 are formed. Under these conditions the reverse Cope 

rearrangement is still more facile than proton transfer. However, in the presence of TBD, the 

rearomatizing [1,3]-proton transfer and subsequent isomerization to the more stable conjugated 

benzocycloheptene P3.2 or P3.5 is facile. This fast rearomatization makes the reverse Cope 

rearrangement less competitive, so conjugated benzocycloheptenes are selectively formed, even 

from styrenyl cyclopropanes. 

Scheme 3.22 – Proposed Mechanism 

 

§3.4 Conclusion 
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In conclusion, we have described an aryl vinyl cyclopropane Cope rearrangement protocol 

for the conversion of vinylcyclopropanes to benzocycloheptenes. A key feature of this reaction is 

the dynamic equilibration of the diastereomers of the starting vinylcyclopropane that obviates the 

need to laboriously synthesize vinylcyclopropanes of a particular diastereomer, yet still allows 

capitalization upon the thermodynamic driving force of the cyclopropane strain release to 

accomplish the difficult rearrangement. Furthermore, the base-mediated isomerization of the 

initially formed benzocycloheptenes is driven by conjugation. This isomerization provides a means 

of selectively forming either of two isomers of benzocycloheptene products depending solely on 

the presence or absence of base. As such, this transformation provides an important complement 

to currently known aryl vinyl cyclopropane Cope rearrangements. 

3.4.1 – Potential Future Directions 

The potential to control the stereochemistry of the product by controlling the rate of the 

retro-Cope rearrangement vs. the rearomatizing [1,3]-proton transfer could potentially provide a 

means of inducing asymmetry in the reaction. One could envision a chiral dynamic kinetic 

resolution situation in which the Cope rearrangement would give rise to a pair of enantiomeric 

intermediates. If an appropriate chiral base were used, it could catalyze an enantiospecific [1,3]-

proton transfer, selectively reacting with only one of the two enantiomeric Cope intermediates. 

The other enantiomer would be able to undergo the retro-Cope rearrangement and racemize. 

Eventually, all the material could be asymmetrically rearomatized giving rise to chiral 

benzocycloheptenes. The challenge in executing such a strategy would lie in the careful control of 

the sterics of the base, to prevent epimerization of the α-nitrile stereocenter. Furthermore, careful 

control over the relative rates of the reverse Cope rearrangement and the [1,3]-proton transfer 
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would be required so that the proton transfer was slow enough to allow the reverse Cope reaction 

to occur, but fast enough to prevent rearrangement to the cyclopentene. 

 

 

 

 

Scheme 3.23 – Enantioselective Aryl Cope via Asymmetric [1,3]-Proton Transfer DKR 
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Experimental methods and spectral analysis for chapter 3 
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§3.A.1 General Experimental Procedures 

All reactions were performed in flame dried glassware under an argon atmosphere unless 

otherwise noted. THF was dried over sodium in the presence of benzophenone. All other 

materials were obtained from Sigma-Aldrich, Acros Organics, Alfa Aesar or Fisher Scientific 

and were used without further purification unless otherwise noted. Reactions were monitored in 

50 μL aliquots, performing a simple aqueous workup, and observing the proton NMR spectrum 

in CDCl3. Flash chromatography was performed using 230x400 mesh, 60 Å porosity silica, using 

mixtures of hexane (Hex) and ethyl acetate (EA) as eluent as noted. 1H NMR and 13C NMR 

spectra were obtained on a Bruker Avance 400 or a Bruker Avance 500 DRX spectrometer 

equipped with a QNP Cryoprobe and referenced to residual protio solvent signals. 

 Structural assignments are based on 1H, 13C, DEPT135, COSY and NOESY techniques. J values 

are reported in Hz. High resolution mass spectral analysis was done on a Waters LCT Premier 

mass spectrometer with a quadrupole and time of flight tandem mass analyzer and an 

electrospray ion source, or via LCMS using a Waters Q-Tof Premier in tandem with an Aquity 

UPLC using toluene assisted atmospheric pressure chemical ionization (TAPCI), as noted. 

Infrared analysis was performed on a Shimadzu FTIR-8400S infrared spectrometer. Melting 

points were obtained on a Digimelt MPA160 melting point apparatus. 

 3.A.1.1 General Experimental Procedures for Synthesis of Benzocycloheptenes 

General Procedure 3.A for Synthesis of Benzocycloheptenes P3.1: A 100 mg/mL solution of 

vinylcyclopropane in DMSO was prepared, and 0.5 to 1 mL of this solution was added to a flame 

dried vial equipped with a stir bar and diluted to 0.2 M with DMSO. The vial was sealed and the 

atmosphere was replaced with argon by purging and refilling with argon 3×. The mixture was 
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heated to 150 °C and monitored via NMR. Once the reaction was complete (generally 1–6 

hours), the mixture was diluted with EtOAc (2 mL) and washed with water (5 mL). The first 

wash was back extracted with EtOAc (1mL), and the combined organic extracts were washed 

again with water (5 mL) and brine (1 mL). The organic layer was then dried with MgSO4, 

filtered, and the solvents were evaporated to afford the non-conjugated benzocycloheptene. For 

most products, no further purification was needed. In some cases, additional purification via 

flash chromatography was required. 

General Procedure 3.B for Synthesis of Conjugated Benzocycloheptenes P3.2: A 100 mg/mL 

solution of vinylcyclopropane in DMSO was prepared, and 0.5 to 1 mL of this solution was 

added to a flame dried vial equipped with a stir bar and diluted to 0.2 M with DMSO. TBD 

(1,5,7-Triazabicyclo[4.4.0]dec-5-ene) was added (0.5 mmol, 1 equiv.), the vial was sealed and 

the atmosphere was replaced with argon by purging and refilling with argon 3×. The mixture was 

heated to 150 °C and monitored via NMR. Once the reaction was complete (generally 1–6 

hours), the mixture was diluted with EtOAc (2 mL) and washed with water (5 mL). The first 

wash was back extracted with EtOAc (1 mL), and the combined organic extracts were washed 

again with water (5 mL) and brine (1 mL). The organic layer was then dried with MgSO4, 

filtered, and the solvents were evaporated to afford the non-conjugated benzocycloheptene. For 

most products, no further purification was needed. In some cases, additional purification via 

flash chromatography was required. 
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§3.A.2 Compound Characterization 

3.A.2.1 – Non-Conjugated Benzocycloheptenes P3.1 Generated Using General Procedure 3.A: 

P3.1a  

 

6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 0.057 g (0.34 mmol) 1-phenyl-2-vinylcyclopropane-1-carbonitrile according to 

General Procedure 3.A to yield 0.056 g yellow of oil P3.1a (0.0.33 mmol, 98 %). IR (𝜈̅ −

𝜈̅𝐼𝑅 , neat) 3029, 2903, 2903, 2839, 2241, 2225, 1660., 1602, 1492, 1456. 1H NMR (500 MHz, 

Chloroform-d) δ 7.50 (dd, J = 7.5, 1.5 Hz, 1H Aromatic CH), 7.31 – 7.21 (m, 2H Aromatic CH, 

solvent overlap), 7.15 – 7.11 (m, 1H, Aromatic CH), 5.82 (dddt, J = 11.5, 7.1, 4.3, 2.2 Hz, 1H, 

Alkene CH), 5.49 (ddddd, J = 11.6, 4.6, 3.5, 2.4, 1.0 Hz, 1H Alkene CH), 4.47 (dd, J = 10.4, 3.2 

Hz, 1H α-CN CH), 3.67 (dp, J = 17.5, 3.4 Hz, 1H, Alkane CHaHb), 3.47 – 3.36 (m, 1H Alkane 

CHaHb), 2.83 – 2.74 (m, 1H Alkane CHaHb), 2.66 – 2.54 (m, 1H Alkane CHaHb).
13C NMR (126 

MHz, CDCl3) δ 140.6, 134.5, 129.1, 128.3, 127.5, 126.9, 126.5, 126.0, 120.4, 34.1, 33.6, 33.1. 

HRMS (ESI, m/z) calcd. for C12H11N [M+Na] 192.0784; found 192.0782. 

 

 

 



171 
 

P3.1b 

  

2-bromo-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 0.0747 g (0.301 mmol) 1-(4-bromophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A. The crude product was purified by flash chromatography 

(silica gel, 2.5 % EtOAc in Hexanes) to yield 0.0393 g of white solid P3.1b (0.158 mmol, 53 %). 

Melting point 85.1-89.2 °C. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3026, 2921, 2850, 2238, 1695, 1584, 1484, 1397. 

1H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.23 (m, 3H Aromatic CH), 5.78 (dddt, J = 11.5, 

6.6, 4.3, 2.2 Hz, 1H Alkene CH), 5.48 (ddddd, J = 11.6, 4.6, 3.5, 2.4, 0.9 Hz, 1H Alkene CH), 

4.42 (dd, J = 10.4, 3.3 Hz, 1H α-CN CH), 3.63 (dp, J = 17.5, 3.4 Hz, 1H Alkane CHaHb), 3.40 – 

3.28 (m, 1H Alkane CHaHb), 2.77 (dtdd, J = 18.0, 5.1, 3.5, 1.8 Hz, 1H Alkane CHaHb), 2.56 

(ddtt, J = 17.9, 10.8, 3.7, 1.9 Hz, 1H Alkane CHaHb). 
13C NMR (101 MHz, CDCl3) δ 142.6, 

133.5, 132.0, 130.3, 128.5, 126.1, 125.7, 122.0, 119.8, 33.7, 33.3, 32.7. HRMS (ESI, m/z) calcd. 

for C12H10BrN [M+Na] 269.9889; found 269.9898. 
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P3.1c 

 

2-chloro-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 0.0833 g (0.409 mmol) 1-(4-chlorophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 0.0747 g of yellow oil P3.1c (0.367 mmol, 90 %). 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3025, 2917, 2846, 2243, 1661, 1597, 1574, 1487, 1407. 1H NMR (500 MHz, 

Chloroform-d) δ 7.42 (d, J = 8.2 Hz, 1H, Aromatic CH), 7.27 – 7.24 (m, 1H, Aromatic CH, 

solvent overlap), 7.14 (d, J = 2.2 Hz, 1H, ArH), 5.79 (dddt, J = 11.4, 6.7, 4.2, 2.2 Hz, 1H, Alkene 

CH), 5.49 (dddd, J = 11.6, 4.7, 3.5, 2.4 Hz, 1H, Alkene CH), 4.43 (dd, J = 10.4, 3.3 Hz, 1H, α-

CN CH), 3.67 – 3.59 (m, 1H, Alkane CHaHb), 3.36 (dd, J = 17.5, 7.2 Hz, 1H CHaHb), 2.77 (ddtd, 

J = 18.0, 6.8, 3.4, 1.7 Hz, 1H Alkane CHaHb), 2.57 (ddtd, J = 17.9, 10.7, 3.6, 1.9 Hz, 1H CHaHb). 

13C NMR (126 MHz, CDCl3) δ 142.3, 133.9, 133.0, 129.2, 128.2, 127.3, 126.2, 125.8, 119.9, 

33.7, 33.4, 32.8. HRMS (ESI, m/z) calcd. for C12H10ClN [M+H] 204.0575; found 204.0569. 
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P3.1d 

 

2-fluoro-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 64.6 mg (0.355 mmol) 1-(4-fluorophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 57.7 mg of yellow oil P3.1d (0.317 mmol, 89 %). 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3027, 2922, 2848, 2244, 1667, 1614, 1594, 1501. 1H NMR (500 MHz, 

Chloroform-d) δ 7.44 (dd, J = 8.5, 5.5 Hz, 1H Aromatic CH), 6.95 (td, J = 8.4, 2.7 Hz, 1H 

Aromatic CH), 6.85 (dd, J = 9.1, 2.7 Hz, 1H Aromatic CH), 5.79 (dddt, J = 11.5, 6.7, 4.4, 2.2 

Hz, 1H Alkene CH), 5.49 (dq, J = 11.2, 3.6 Hz, 1H Alkene CH), 4.42 (dd, J = 10.3, 3.3 Hz, 1H 

α-CN CH), 3.62 (dp, J = 17.6, 3.4 Hz, 1H Alkane CHaHb), 3.38 (dd, J = 17.5, 7.1 Hz, 1H Alkane 

CHaHb), 2.82 – 2.71 (m, 1H Alkane CHaHb), 2.57 (dddt, J = 19.5, 11.9, 3.5, 1.6 Hz, 1H Alkane 

CHaHb). 
13C NMR (126 MHz, Chloroform-d) δ 162.2 (d, J = 247.8 Hz), 142.9 (d, J = 7.9 Hz), 

130.3 (d, J = 3.0 Hz), 128.6 (d, J = 8.9 Hz), 126.0 (d, J = 54.4 Hz), 125.8, 116.3 (d, J = 22.3 Hz), 

113.9, 113.7, 33.6, 33.5, 33.0. HRMS (ESI, m/z) calcd. for C12H10NF [M+Na] 210.0689; 

210.0697. 
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P3.1e 

 

2-isopropyl-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 0.086 g (0.41 mmol) 1-(4-isopropylphenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A. The crude product was purified by flash chromatography 

(silica gel, 5 % EtOAc in Hexanes) to yield 0.044 g of brown oil P3.1e (0.21 mmol, 51 %). IR 

(𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3023, 2962, 2241, 1603, 1503, 2921, 2241, 1597, 1505. 1H NMR (500 MHz, 

Chloroform-d) δ 7.40 (d, J = 7.8 Hz, 1H Aromatic CH), 7.13 (dd, J = 7.9, 1.9 Hz, 1H Aromatic 

CH), 6.98 (d, J = 1.8 Hz, 1H Aromatic CH), 5.83 (dddt, J = 11.5, 6.8, 4.4, 2.2 Hz, 1H Alkene 

CH), 5.54 – 5.40 (m, 1H Alkene CH), 4.42 (dd, J = 10.2, 3.3 Hz, 1H α-CN CH), 3.64 (dt, J = 

17.5, 3.5 Hz, 1H, Alkane CHaHb), 3.40 (dd, J = 17.5, 7.0 Hz, 1H Alkane CHaHb), 2.88 (p, J = 6.9 

Hz, 1H, Alkane CH), 2.76 (dtdd, J = 17.9, 5.1, 3.4, 1.8 Hz, 1H, Alkane CHaHb), 2.59 (ddtd, J = 

19.6, 12.2, 3.6, 2.0 Hz, 1H, Alkane CHaHb), 1.24 (d, J = 6.9 Hz, 6H methyl CH3). 
13C NMR (126 

MHz, CDCl3) δ 149.0, 140.4, 131.9, 127.5, 126.9, 126.6, 126.0, 125.2, 120.5, 33.9, 33.9, 33.7, 

33.4, 24.1, 24.0. HRMS (ESI, m/z) calcd. for C15H17N [M+H] 212.1439; found 212.1436. 
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P3.1f 

 

2-phenyl-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 68.4 mg (0.279 mmol) 1-([1,1'-biphenyl]-4-yl)-2-vinylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 62.3 mg of yellow solid P3.1f (0.254 

mmol, 91 %). Melting point 78.0-83.3 °C. IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3028, 2904, 2839, 2242, 1662, 

1600, 1568, 1486. 1H NMR (500 MHz, Chloroform-d) δ 7.62 – 7.31 (m, 8H Aromatic CH), 5.86 

(dddt, J = 11.5, 6.7, 4.3, 2.2 Hz, 1H Alkene CH), 5.60 – 5.45 (m, 1H Alkene CH), 4.51 (dd, J = 

10.4, 3.3 Hz, 1H α-CN CH), 3.73 (dp, J = 17.6, 3.5 Hz, 1H, Alkane CHaHb), 3.48 (dd, J = 17.5, 

7.1 Hz, 1H Alkane CHaHb), 2.82 (dddt, J = 17.9, 5.0, 3.4, 1.7 Hz, 1H, Alkane CHaHb), 2.70 – 

2.58 (m, 1H Alkane CHaHb).
13C NMR (126 MHz, CDCl3) δ 141.3, 141.0, 140.5, 133.5, 129.0, 

128.0, 127.7, 127.4, 127.3, 126.4, 126.1, 126.0, 120.3, 33.9, 33.6, 33.4. HRMS (ESI, m/z) calcd. 

for C18H15N [M-CN] 219.1168; found 219.1163. 
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P3.1g 

 

10,11-dihydro-7H-cyclohepta[a]naphthalene-11-carbonitrile.  

Prepared from 0.0978 g (0.446 mmol) 1-(naphthalen-1-yl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A. The crude product was purified by flash chromatography 

(silica gel, 2.5 % EtOAc in Hexanes)to yield 0.0582 mg yellow oil P3.1g (0.266 mmol, 60 %). 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3054, 3022, 2925, 2851, 2238, 1667, 1624, 1599, 1512, 1430. 1H NMR (500 

MHz, Chloroform-d) δ 7.98 (d, J = 8.7 Hz, 1H Aromatic CH), 7.88 (d, J = 8.2 Hz, 1H Aromatic 

CH), 7.76 (d, J = 8.4 Hz, 1H Aromatic CH), 7.58 (t, J = 7.8 Hz, 1H Aromatic CH), 7.49 (t, J = 

7.6 Hz, 1H Aromatic CH), 7.29 (d, J = 8.4 Hz, 1H Aromatic CH), 5.96 (t, J = 10.0 Hz, 1H 

Alkene CH), 5.63 (ddd, J = 11.7, 5.8, 2.8 Hz, 1H Alkene CH), 5.08 (d, J = 4.3 Hz, 1H α-CN 

CH), 4.58 (dt, J = 18.9, 3.7 Hz, 1H Alkane Alkane CHaHb), 3.42 (dd, J = 18.7, 8.0 Hz, 1H 

Alkane CHaHb), 2.87 (dd, J = 18.1, 5.0 Hz, 1H Alkane CHaHb), 2.63 (d, J = 17.6 Hz, 1H Alkane 

Alkane CHaHb). 
13C NMR (126 MHz, CDCl3) δ 140.0, 133.0, 130.5, 129.3, 129.0, 128.9, 128.8, 

127.2, 126.8, 125.5, 125.2, 121.7, 120.2, 34.7, 30.9, 28.3. HRMS (ESI, m/z) calcd. for C16H13N 

[M+H] 220.1121; found 220.1127. 
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P3.1h 

 

3-fluoro-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

 Prepared from 0.0641 g (0.342 mmol) 1-(3-fluorophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 0.0546 g of yellow oil P3.1h as a mixture of 

regioisomers (0.292 mmol, 85 %, r.r. 61:39). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3027, 2917, 2846, 2244, 1669, 

1616, 1501, 1466. 1H NMR (500 MHz, Chloroform-d) δ 7.29 (d, J = 7.7 Hz, 1H major Aromatic 

CH), 7.25 – 7.18 (m, overlapping 1H major 1H minor Aromatic CH), 7.09 (dd, J = 8.4, 5.6 Hz, 

1H minor Aromatic CH), 7.02 (ddd, J = 9.3, 8.2, 1.2 Hz, 1H major Aromatic CH), 6.92 (td, J = 

8.4, 2.7 Hz, 1H minor Aromatic CH), 5.80 (dddq, J = 11.5, 6.6, 4.3, 2.1 Hz, overlapping 1H 

major 1H minor Alkene CH), 5.56 – 5.41 (m, overlapping 1H major 1H minor Alkene CH). 4.48 

(dd, J = 10.4, 3.3 Hz, 1H major α-CN CH), 4.44 (dd, J = 10.6, 3.3 Hz, 1H minor α-CN CH), 3.71 

– 3.58 (m, 1H overlapping major and minor Alkane CHaHb), 3.48 (dp, J = 17.9, 3.5 Hz, 1H 

major Alkane CHaHb), 3.35 (dd, J = 17.7, 7.3 Hz, 1H minor Alkane CHaHb), 2.78 (ddtd, J = 16.4, 

6.5, 3.3, 1.6 Hz, overlapping 1H major 1H minor Alkane CHaHb), 2.59 (ddtt, J = 18.0, 10.4, 3.8, 

2.0 Hz, overlapping 1H major 1H minor Alkane CHaHb). 
13C NMR (126 MHz, CDCl3) δ 161.8 

(d, J = 246.0 Hz), 159.3 (d, J = 245.2 Hz), 137.0(d, J = 3.4 Hz),, 136.3 (d, J = 7.4 Hz), 136.2 (d, 

J = 2.9 Hz), 130.5 (d, J = 8.1 Hz), 128.1, 128.07, 127.5 (d, J = 16.1 Hz), 126.4, 126.4, 125.8, 

125.6, 122.3, 122.3, 119.9, 119.8, 115.3 (d, J = 23.7 Hz), 114.6 (d, J = 20.8 Hz), 114.1 (d, J = 

23.6 Hz), 34.0 (d, J = 2.8 Hz), 33.9 (d, J = 1.2 Hz), 33.3, 33.3, 32.2, 22.4 (d, J = 6.2 Hz). HRMS 

(ESI, m/z) calcd. for C12H10NF [M-CN] 161.0761; found 161.0773. 



178 
 

P3.1i 

 

3-methoxy-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 49.2 mg (0.247 mmol) 1-(3-methoxyphenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 48.6 mg of brown oil P3.1i as a mixture of 

regioisomers (0.244 mmol, 97 % r.r. 50:50). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3007, 2939, 2839, 2244, 1661, 

1608, 1503, 1265, 1039. 1H NMR (500 MHz, Chloroform-d) δ 7.23 (t, J = 8.0 Hz, 1H Aromatic 

CH), 7.13 (d, J = 7.7 Hz, 1H Aromatic CH), 7.06 (d, J = 2.6 Hz, 1H Aromatic CH), 7.04 (d, J = 

8.3 Hz, 1H Aromatic CH), 6.86 (d, J = 8.4 Hz, 1H Aromatic CH), 6.76 (dd, J = 8.3, 2.7 Hz, 1H 

Aromatic CH), 5.82 (ddtt, J = 9.5, 5.7, 4.1, 2.1 Hz, overlapping 1H 1H  Alkene CH), 5.47 (dp, J 

= 11.2, 3.7 Hz, overlapping 1H 1H Alkene CH), 4.50 (dd, J = 10.7, 3.2 Hz, 1H α-CN CH), 4.42 

(dd, J = 10.4, 3.2 Hz, 1H α-CN CH), 3.82 (d, J = 1.4 Hz, overlapping 3H 3H OCH3), 3.81 – 3.74 

(m, 1H Alkane CHaHb), 3.59 (dp, J = 17.8, 3.5 Hz, 1H Alkane CHaHb), 3.43 (dq, J = 17.7, 3.5 

Hz, 1H Alkane CHaHb), 3.33 (dd, J = 17.7, 7.1 Hz, 1H Alkane CHaHb), 2.77 (ddtd, J = 16.3, 4.9, 

3.2, 1.6 Hz, overlapping 1H 1H Alkane CHaHb), 2.65 – 2.52 (m, overlapping 1H 1H Alkane 

CHaHb). 
13C NMR (126 MHz, CDCl3) δ 158.9, 156.0, 136.2, 135.6, 132.6, 130.2, 129.1, 127.7, 

127.0, 126.8, 126.3, 125.7, 120.5, 120.3, 119.0, 112.9, 110.7, 56.0, 55.6, 34.3, 34.1, 33.6, 32.3, 

22.4. HRMS (ESI, m/z) calcd. for C13H13NO [M+H] 200.1070; found 200.1080. 
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P3.1j 

 

2,3-dimethyl-6,9-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 0.0738 g (0.374 mmol) 1-(3,4-dimethylphenyl)-2-vinylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 0.0729 g of yellow oil P3.1j as a 

mixture of regioisomers (0.369 mmol, 98 %, r.r. 89:11). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3019, 2922, 2734, 

2243, 1661, 1614, 1561, 1505.1H NMR (500 MHz, Chloroform-d) δ 7.24 (s, 1H Aromatic CH), 

6.90 (s, 1H Aromatic CH), 5.81 (dddd, J = 11.7, 6.9, 4.4, 2.1 Hz, 1H Alkene CH), 5.46 (dq, J = 

11.4, 3.6 Hz, 1H Alkene CH), 4.39 (dd, J = 10.3, 3.2 Hz, 1H α-CN CH), 3.65 – 3.49 (m, 1H 

Alkane CHaHb), 3.34 (dd, J = 17.6, 7.0 Hz, 1H Alkane CHaHb), 2.75 (dddd, J = 19.5, 6.1, 3.6, 1.8 

Hz, Alkane CHaHb), 2.64 – 2.48 (m, 1H Alkane CHaHb), 2.26 (s, 3H Methyl CH3), 2.23 (s, 3H 

Methyl CH3). 
13C NMR (126 MHz, CDCl3) δ 137.8, 136.4, 135.6, 132.3, 132.2, 131.7, 130.6, 

128.7, 128.6, 128.2, 126.9, 126.7, 125.9, 120.6, 33.8, 33.7, 32.7, 19.4, 19.4. HRMS (ESI, m/z) 

calcd. for C14H15N [M+Na] 220.1102; found 220.1102. 
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3.A.2.2 – Cyclopentenes P3.4 Generated Using General Procedure 3.A. 

P3.4a 

 

2-(4-methoxyphenyl)-1-phenylcyclopent-3-ene-1-carbonitrile. 

Prepared from 0.116 g (0.421 mmol) (E)-2-(4-methoxystyryl)-1-phenylcyclopropane-1-

carbonitrile (1b) according to General Procedure 3.A. The Product was purified by flash 

chromatography (silica gel, 5 % EtOAc in Hexanes) to yield 0.0716 g of yellow oil P3.4a as 

separable diastereomers (0.260 mmol, 62 %, 60:40 d.r.). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 3033, 3003, 

2935, 2838, 2237, 1610, 1449, 1033. 1H NMR (500 MHz, Chloroform-d) (major diastereomer) δ 

7.52 – 7.48 (m, 2H Aromatic CH), 7.42 – 7.37 (m, 2H Aromatic CH), 7.37 – 7.31 (m, 1H 

Aromatic CH), 7.04 – 6.99 (m, 2H Aromatic CH), 6.88 – 6.82 (m, 2H Aromatic CH), 6.07 (dt, J 

= 6.6, 2.3 Hz, 1H Alkene CH), 5.89 (dq, J = 6.1, 2.1 Hz, 1H Alkene CH), 4.27 (p, J = 2.3 Hz, 1H 

Alkane CH, benzylic), 3.79 (s, 3H Methoxy CH3), 3.37 (dq, J = 17.1, 2.3 Hz, 1H Alkane 

CHaHb), 3.16 (dq, J = 17.1, 2.2 Hz, 1H Alkane CHaHb).
13C NMR (126 MHz, CDCl3) (major 

diastereomer) δ 159.4, 140.6, 132.6, 130.5, 129.6, 129.5, 129.1, 128.0, 125.9, 122.3, 114.0, 64.2, 

55.3, 48.0, 29.9.1H NMR (500 MHz, Chloroform-d) (minor diastereomer) δ 7.12 – 6.99 (m, 5H 

Aromatic CH), 6.75 – 6.65 (m, 2H Aromatic CH), 6.60 – 6.50 (m, 2H Aromatic CH), 6.19 (dq, J 

= 5.7, 2.4 Hz, 1H Alkene CH), 5.88 (dq, J = 6.1, 2.1 Hz, 1H Alkene CH), 4.65 (p, J = 2.3 Hz, 1H 

Alkane CH, benzylic), 3.69 (s, 2H Methoxy CH3), 3.29 (q, J = 2.2 Hz, 2H Alkane CH2).
13C 

NMR (126 MHz, CDCl3) (minor diastereomer) δ 158.9, 136.2, 132.8, 130.4, 129.7, 129.0, 128.1, 
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127.6, 127.4, 125.5, 113.5, 62.7, 55.3, 51.4, 44.4. HRMS (ESI, m/z) calcd. for C19H17NO [M+H] 

276.1383; found 276.1374. 

P3.4b 

 

2-(4-bromophenyl)-1-phenylcyclopent-3-ene-1-carbonitrile. 

Prepared from 100 mg (0.308 mmol) 2-(4-bromostyryl)-1-phenylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 88.8 mg of yellow oil P3.4b as a mixture of 

diastereomers (0.274 mmol, 89 %, d.r. 59:41). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3063, 2924, 2854, 2240, 1698, 

1595, 1489, 1449. 1H NMR (500 MHz, Chloroform-d) δ 7.49 (dt, J = 8.1, 1.0 Hz, 2H, major 

Aromatic CH), 7.46 – 7.38 (m, overlapping 2H major 3H minor Aromatic CH), 7.38 – 7.33 (m, 

1H, major Aromatic CH), 7.15 (d, J = 8.1 Hz, 2H, minor Aromatic CH), 7.10 (d, J = 7.3 Hz, 2H 

minor Aromatic CH), 7.06 – 7.01 (m, 2H, minor Aromatic CH), 6.95 (d, J = 8.2 Hz, 2H, major 

Aromatic CH), 6.67 (d, J = 8.2 Hz, 2H minor Aromatic CH), 6.28 – 6.20 (m, 1H minor Alkene 

CH), 6.16 – 6.08 (m, 1H major Alkene CH), 5.92 – 5.81 (m, overlapping 1H major 1H minor 

Alkene CH), 4.66 (q, J = 2.3 Hz, 1H minor Alkane CH, benzylic), 4.27 (q, J = 2.4 Hz, 1H major 

Alkane CH, benzylic), 3.37 (dq, J = 17.2, 2.2 Hz, 1H major Alkane CHaHb), 3.32 (p, J = 2.6 Hz, 

2H minor Alkane CH2), 3.19 (dq, J = 17.2, 2.3 Hz, 1H major Alkane CHaHb). 
13C NMR (126 

MHz, CDCl3) δ 139.8, 137.3, 135.9, 135.7, 131.8, 131.7, 131.6, 131.2, 131.0, 130.3, 130.2, 

130.0, 129.0, 128.1, 128.1, 127.8, 127.1, 125.8, 124.9, 122.1, 121.8, 121.3, 64.1, 62.7, 55.0, 48.0, 

44.6. HRMS (ESI, m/z) calcd. for C18H14BrN [M+H] 324.0382; found 324.0386. 
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P3.4c 

 

2-(4-chlorophenyl)-1-phenylcyclopent-3-ene-1-carbonitrile. 

 Prepared from 100 mg (0.357 mmol) (E)-2-(4-chlorostyryl)-1-phenylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 100 mg of brown oil P3.4c as a mixture 

of diastereomers (0.357 mmol, 100 % d.r. 55:45). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3062, 2924, 2861, 2239, 

1597, 1490, 1449. 1H NMR (500 MHz, Chloroform-d) δ 7.52 – 7.44 (m, 2H major Aromatic 

CH), 7.44 – 7.37 (m, 2H major Aromatic CH), 7.39 – 7.31 (m, 1H major Aromatic CH), 7.32 – 

7.26 (m, 2H major Aromatic CH), 7.13 – 7.05 (m, 2H major Aromatic CH), 7.02 (ddd, J = 15.2, 

7.9, 4.2 Hz, 7H minor Aromatic CH), 6.77 – 6.70 (m, 2H minor Aromatic CH), 6.24 (dq, J = 5.0, 

2.3 Hz, 1H minor Alkene CH), 6.12 (dq, J = 4.9, 2.3 Hz, 1H major Alkene CH), 5.88 (tq, J = 6.3, 

2.1 Hz, overlapping 1H major 1H minor Alkene CH), 4.68 (p, J = 2.3 Hz, 1H minor Alkane CH, 

benzylic), 4.29 (p, J = 2.3 Hz, 1H major Alkane CH, benzylic), 3.37 (dq, J = 17.2, 2.2 Hz, 1H 

major Alkane CHaHb), 3.32 (p, J = 2.5 Hz, 2H minor Alkane CH2), 3.19 (dq, J = 17.1, 2.3 Hz, 

1H major Alkane CHaHb). 
13C NMR (126 MHz, CDCl3) δ 140.0, 136.9, 135.8, 135.5, 134.0, 

133.3, 132.0, 131.8, 131.3, 130.4, 129.9, 129.8, 129.2, 128.9, 128.2, 128.2, 127.9, 127.3, 125.9, 

125.0, 121.9, 64.1, 62.7, 55.2, 51.3, 48.1, 44.7. HRMS (ESI, m/z) calcd. for C18H14ClN [M+H] 

280.0888; found 280. 0902. 

P3.4d 
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1-phenyl-2-(p-tolyl)cyclopent-3-ene-1-carbonitrile.  

Prepared from 100 mg (0.386 mmol) (E)-2-(4-methylstyryl)-1-phenylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 91.1 mg of yellow oil P3.4d as a 

mixture of diastereomers (0.351 mmol, 91.1 % d.r. 51:39). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3059, 3027, 2921, 

2861, 2238, 1600, 1494, 1449. 1H NMR (500 MHz, Chloroform-d) δ 7.53 – 7.45 (m, 2H major 

Aromatic CH), 7.44 – 7.36 (m, 2H major Aromatic CH), 7.36 – 7.28 (m, 2H minor Aromatic 

CH), 7.25 (d, J = 5.5 Hz, 1H minor Aromatic CH), 7.12 (p, J = 6.8, 6.0 Hz, 2H major Aromatic 

CH), 7.04 (t, J = 5.5 Hz, overlapping 1H major 2H minor Aromatic CH), 7.02 – 6.92 (m, 2H 

major Aromatic CH), 6.83 (dd, J = 7.7, 4.8 Hz, 2H minor Aromatic CH), 6.67 (dt, J = 8.3, 5.3 

Hz, 2H minor Aromatic CH), 6.18 (ddp, J = 7.1, 4.9, 2.4 Hz, 1H minor Alkene CH), 6.07 (tq, J = 

8.4, 4.8, 3.5 Hz, 1H major Alkene CH), 5.89 (td, J = 5.6, 2.8 Hz, overlapping 1H major 1H 

minor Alkene CH), 4.66 (p, J = 4.0, 3.1 Hz, 1H minor Alkane CH, benzylic), 4.27 (h, J = 3.7, 3.0 

Hz, 1H major Alkane CH, benzylic), 3.36 (ddt, J = 16.9, 5.0, 2.4 Hz, 1H major Alkane CHaHb), 

3.29 (dp, J = 4.9, 2.4 Hz, 2H minor Alkane CH2), 3.16 (ddq, J = 17.5, 5.5, 2.5 Hz, 1H major 

Alkane CHaHb), 2.32 (t, J = 5.3 Hz, 3H major CH3), 2.22 – 2.11 (m, 3H minor CH3). 
13C NMR 

(126 MHz, CDCl3) δ 140.7, 137.8, 137.0, 136.2, 135.4, 133.8, 132.8, 132.5, 132.3, 132.2, 132.1, 

130.5, 129.6, 129.4, 129.1, 128.7, 128.6, 128.3, 128.0, 127.6, 127.4, 125.9, 125.5, 122.2, 64.5, 

63.0, 55.0, 51.4, 48.1, 44.6, 21.3, 21.1. HRMS (ESI, m/z) calcd. for C19H17N [M+Na] 282.1253; 

found 282.1265. 
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P3.4e 

 

2-(2-methoxyphenyl)-1-phenylcyclopent-3-ene-1-carbonitrile.  

Prepared from 0.0739 g (0.268 mmol) E)-2-(2-methoxystyryl)-1-phenylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 0.0625 g of yellow oil P3.4e as a 

mixture of diastereomers (0.275 mmol, 85 %, d.r. 68:32). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 2940, 2836, 

2237, 1601, 1491, 1451, 1270, 1158, 1049. 1H NMR (500 MHz, Chloroform-d) δ 7.55 – 7.48 (m, 

2H major Aromatic CH), 7.44 – 7.36 (m, 2H major Aromatic CH), 7.39 – 7.31 (m, 2H minor 

Aromatic CH), 7.24 (d, J = 7.9 Hz, 1H minor Aromatic CH), 7.12 – 7.04 (m, overlapping 2H 

major 2H minor Aromatic CH), 6.97 (t, J = 7.9 Hz, 1H minor Aromatic CH), 6.85 (dd, J = 8.3, 

2.6 Hz, 1H major Aromatic CH), 6.70 (dt, J = 7.6, 1.2 Hz, 1H major Aromatic CH), 6.63 (t, J = 

2.1 Hz, 1H major Aromatic CH), 6.60 (dd, J = 8.3, 2.6 Hz, 1H minor Aromatic CH), 6.47 (dd, J 

= 7.6, 1.4 Hz, 1H minor Aromatic CH), 6.26 (t, J = 2.0 Hz, 1H minor Aromatic CH), 6.22 (dq, J 

= 4.9, 2.3 Hz, 1H minor Alkene CH), 6.10 (dt, J = 6.5, 2.3 Hz, 1H major Alkene CH), 5.91 (tq, J 

= 5.8, 2.1 Hz, overlapping 1H major 1H minor Alkene CH), 4.67 (p, J = 2.2 Hz, 1H Alkane CH, 

benzylic), 4.28 (p, J = 2.3 Hz, 1H Alkane CH, benzylic), 3.75 (s, 3H major OCH3), 3.58 (s, 3H 

major OCH3), 3.38 (dq, J = 17.1, 2.3 Hz, 1H major Alkane CHaHb), 3.31 (q, J = 2.2 Hz, 2H 

minor Alkane CH2), 3.17 (dq, J = 17.1, 2.2 Hz, 1H major Alkane CHaHb). 
13C NMR (126 MHz, 

CDCl3) δ 159.8, 159.4, 140.7, 140.0, 138.5, 136.1, 132.3, 132.2, 130.9, 130.0, 129.7, 129.1, 

129.0, 128.1, 128.0, 127.7, 127.4, 125.9, 125.3, 122.1, 121.3, 120.9, 114.2, 114.0, 113.4, 113.3, 



185 
 

64.8, 63.3, 55.3, 55.2, 54.9, 51.4, 48.2, 44.6. HRMS (ESI, m/z) calcd. for C19H17NO [M+] 

275.1305; found 275.1314. 

P3.4f 

 

2-(3-methoxyphenyl)-1-phenylcyclopent-3-ene-1-carbonitrile.  

Prepared from 50 mg (0.182 mmol) (E)-2-(3-methoxystyryl)-1-phenylcyclopropane-1-

carbonitrile according to General Procedure 3.A to yield 38.9 mg of pale yellow oil P3.4f as a 

mixture of diastereomers (0.141 mmol, 77.6 % d.r. 61:39). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3061, 2939, 2836, 

2238, 1600, 1584, 1491, 1450, 1269, 1157, 1036. 1H NMR (500 MHz, Chloroform-d) δ 7.54 – 

7.49 (m, 2H major Aromatic CH), 7.40 (t, J = 7.7 Hz, 2H major Aromatic CH), 7.37 – 7.31 (m, 

2H minor Aromatic CH), 7.24 (d, J = 7.9 Hz, 1H minor Aromatic CH), 7.12 – 7.03 (m, 

overlapping 2H major 2H minor Aromatic CH), 6.96 (t, J = 7.9 Hz, 1H minor Aromatic CH), 

6.84 (dd, J = 8.3, 2.5 Hz, 1H major Aromatic CH), 6.70 (d, J = 7.6 Hz, 1H major Aromatic CH), 

6.63 (d, J = 2.1 Hz, 1H major Aromatic CH), 6.60 (dd, J = 8.2, 2.6 Hz, 1H minor Aromatic CH), 

6.47 (d, J = 7.5 Hz, 1H minor Aromatic CH), 6.26 (t, J = 2.0 Hz, 1H minor Aromatic CH), 6.22 

(dq, J = 5.0, 2.4 Hz, 1H minor Alkene CH), 6.10 (dq, J = 6.2, 2.3 Hz, 1H major Alkene CH), 

5.91 (tq, J = 5.6, 2.1 Hz, 1H overlapping 1H major 1H minor Alkene CH), 4.71 – 4.62 (m, 1H 

minor Alkane CH, benzylic), 4.28 (q, J = 2.3 Hz, 1H minor Alkane CH, benzylic), 3.75 (s, 3H 

major OCH3), 3.58 (s, 3H minor OCH3), 3.38 (dq, J = 17.1, 2.3 Hz, 1H major Alkane Alkane 

CHaHb), 3.31 (q, J = 2.2 Hz, 2H minor Alkane CH2), 3.17 (dq, J = 17.1, 2.2 Hz, 1H major 
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Alkane CHaHb).
13C NMR (126 MHz, CDCl3) δ 159.8, 159.4, 140.7, 140.0, 138.5, 136.1, 132.4, 

132.2, 130.9, 130.0, 129.7, 129.1, 129.0, 128.1, 128.0, 127.7, 127.4, 125.9, 125.3, 122.1, 121.3, 

120.9, 114.2, 114.0, 113.4, 113.3, 64.8, 63.3, 55.30, 55.25, 54.9, 51.4, 48.2, 44.6. HRMS (ESI, 

m/z) calcd. for C19H17NO [M+Na] 298.1202; found 298.1204. 

P3.4g 

 

2-(3-chlorophenyl)-1-phenylcyclopent-3-ene-1-carbonitrile.  

Prepared from 50 mg (0.179 mmol) (E)-2-(3-chlorostyryl)-1-phenylcyclopropane-1-carbonitrile 

according to General Procedure 3.A to yield 45 mg of yellow oil P3.4g as a mixture of 

diastereomers (0.161 mmol, 90 % d.r. 59:41). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3063, 2926, 2860, 2239, 1597, 

1572, 1494, 1449. 1H NMR (500 MHz, Chloroform-d) δ 7.50 (d, J = 7.6 Hz, 2H major Aromatic 

CH), 7.41 (t, J = 7.5 Hz, 2H major Aromatic CH), 7.38 – 7.27 (m, overlapping 1H major 5H 

minor Aromatic CH), 7.13 – 6.94 (m, overlapping 4H major 2H minor Aromatic CH), 6.74 (s, 

1H minor Aromatic CH), 6.72 (d, J = 7.7 Hz, 1H minor Aromatic CH), 6.25 (dt, J = 5.8, 2.4 Hz, 

1H minor Alkene CH), 6.13 (dd, J = 5.8, 2.7 Hz, 1H minor Alkene CH), 5.88 (td, J = 5.8, 2.6 Hz, 

overlapping 1H major 1H minor Alkene CH), 4.67 (t, J = 2.3 Hz, 1H minor Alkane CH, 

benzylic), 4.27 (t, J = 2.3 Hz, 1H major Alkane CH, benzylic), 3.39 (dd, J = 17.2, 2.5 Hz, 1H 

major Alkane CHaHb), 3.33 (d, J = 2.4 Hz, 2H minor Alkane CH2), 3.18 (dd, J = 17.2, 2.4 Hz, 

1H major Alkane CHaHb).
 13C NMR (126 MHz, CDCl3) δ 140.6, 140.3, 139.1, 135.7, 134.6, 

134.0, 131.7, 131.6, 131.5, 130.6, 129.9, 129.3, 129.2, 129.0, 128.7, 128.5, 128.4, 128.24, 
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128.20, 128.0, 127.52, 127.48, 127.2, 127.0, 126.8, 125.8, 125.0, 121.8, 64.4, 63.0, 54.7, 51.3, 

48.2, 44.7. HRMS (ESI, m/z) calcd. for C18H14ClN [M+H] 280.0888; found 280. 0902 

P3.4h 

 

2-(benzo[d][1,3]dioxol-5-yl)-1-phenylcyclopent-3-ene-1-carbonitrile. 

 Prepared from 0.0699 g (0.242 mmol) (E)-2-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)-1-

phenylcyclopropane-1-carbonitrile according to General Procedure 3.A. Filtered through a silica 

gel plug in EtOAc. Yield 0.695 g brown oil P3.4h (0.240 mmol, 99 % d.r. 58:42). IR (𝜈̅ −

𝜈̅𝐼𝑅 , neat) 3061, 3029, 2897, 2779, 2237, 1601, 1503, 1444, 1251, 1099, 1039.1H NMR (500 

MHz, Chloroform-d) δ 7.53 – 7.47 (m, 2H major Aromatic CH), 7.40 (t, J = 7.5 Hz, 2H major 

Aromatic CH), 7.34 (t, J = 7.3 Hz, 1H major Aromatic CH), 7.15 – 7.04 (m, overlapping 2H 

major 2H minor Aromatic CH), 6.76 (d, J = 7.8 Hz, 1H major Aromatic CH), 6.58 (s, 1H minor 

O-CH2-O), 6.56 (d, J = 1.9 Hz, 1H minor Aromatic CH), 6.49 (d, J = 8.0 Hz, 1H minor Aromatic 

CH), 6.33 (dd, J = 8.0, 1.6 Hz, 1H minor Aromatic CH), 6.24 (d, J = 1.7 Hz, 1H minor Aromatic 

CH), 6.19 (dq, J = 5.0, 2.2 Hz, 1H minor Alkene CH), 6.08 (dq, J = 4.8, 2.2 Hz, 1H major 

Alkene CH), 5.95 (s, 2H major O-CH2-O), 5.86 (dt, J = 6.1, 2.1 Hz, overlapping 1H major 1H 

minor Alkene CH), 5.83 – 5.79 (m, 1H minor Aromatic CH), 4.62 (t, J = 2.3 Hz, 1H minor 

Alkane CH, benzylic), 4.29 – 4.19 (m, 1H major Alkane CH, benzylic), 3.37 (dq, J = 17.1, 2.2 

Hz, 1H major Alkane CHaHb), 3.29 (q, J = 2.2 Hz, 2H minor Alkane CH2), 3.14 (dq, J = 17.1, 

2.2 Hz, 1H major Alkane CHaHb). 
13C NMR (126 MHz, CDCl3) δ 147.9, 147.5, 146.8, 140.7, 
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136.1, 132.6, 132.3, 130.74, 130.71, 129.8, 129.1, 128.7, 128.1, 128.0, 127.7, 127.4, 125.8, 

125.4, 122.2, 122.1, 121.8, 108.9, 108.7, 108.4, 107.9, 101.2, 101.0, 64.7, 63.1, 54.8, 51.4, 48.1, 

44.4. HRMS (ESI, m/z) calcd. for C19H15NO2 [M+H] 290.1176; found 290.1192. 

3.A.2.3 – Conjugated Benzocycloheptenes P3.2 Generated Using General Procedure 3.B: 

P3.2a 

 

6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 0.0718 g (0.424 mmol) 1-phenyl-2-vinylcyclopropane-1-carbonitrile according to 

General Procedure 3.B. The crude product was filtered through a silica gel plug in EtOAc to 

yield 0.0594 g of brown oil P3.2a (0.351 mmol, 83 %). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3060, 3022, 2934, 

2895, 2830, 2239, 1644, 1599, 1495, 1450, 1425. 1H NMR (500 MHz, Chloroform-d) δ 7.42 – 

7.38 (m, 1H Aromatic CH), 7.30 (td, J = 7.5, 1.4 Hz, 1H Aromatic CH), 7.23 (ddd, J = 9.7, 7.8, 

1.7 Hz, 2H Aromatic CH), 6.48 (dt, J = 12.1, 2.0 Hz, 1H Alkene CH), 6.00 (dt, J = 12.1, 4.8 Hz, 

1H Alkene CH), 4.05 (dd, J = 6.4, 4.3 Hz, 1H α-CN CH), 2.55 (ddddd, J = 24.2, 18.7, 13.0, 5.0, 

2.1 Hz, 2H Alkane CH2), 2.36 – 2.29 (m, 2H Alkane CH2).
 13C NMR (126 MHz, CDCl3) δ 135.6, 

134.2, 131.7, 131.6, 129.6, 128.3, 127.9, 127.5, 119.9, 36.1, 31.9, 29.1. LRMS (EI, m/z) parent 

mass 169.2 found 169.0 %TIC 5.80. HRMS (ESI, m/z) calcd. for C12H11N [M+Na] 192.0784; 

found 192.0786. 
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P3.2b 

 

2-bromo-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 77.8 mg mg (0.313 mmol) 1-(4-bromophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.B to yield 62.4 mg of brown oil P3.2b (0.251 mmol, 80 %). IR 

(𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3024, 2934, 2828, 2239, 1645, 1562, 1486, 1448.1H NMR (500 MHz, 

Chloroform-d) δ 7.35 (d, J = 9.2 Hz, 2H Aromatic CH), 7.27 (d, J = 8.0 Hz, 1H Aromatic CH), 

6.39 (dt, J = 12.1, 1.8 Hz, 1H Alkene CH), 6.05 (dt, J = 11.9, 4.8 Hz, 1H Alkene CH), 3.99 (dd, 

J = 6.4, 4.5 Hz, 1H α-CN CH), 2.61 – 2.47 (m, 2H Alkane CH2), 2.35 – 2.24 (m, 2H Alkane 

CH2).
13C NMR (126 MHz, CDCl3) δ 137.6, 134.1, 133.4, 133.1, 130.2, 129.4, 128.3, 122.1, 

119.4, 35.5, 31.7, 29.0. HRMS (ESI, m/z) calcd. for C12H10NBr [M+H] 248.0069; found 

248.0077. 
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P3.2c 

 

2-chloro-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 0.0482 g (0.237 mmol) 1-(4-chlorophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.B. The crude product was purified by flash chromatography 

(silica gel, 2.5% EtOAc in Hexanes) to yield 0.0179 g of pale yellow oil P3.2c (0.088 mmol, 37 

%). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 2924, 2850, 2241, 1592, 1564, 1489, 1448. 1H NMR (500 MHz, 

Chloroform-d) δ 7.37 – 7.30 (m, 1H Aromatic CH), 7.20 (d, J = 7.6 Hz, 2H Aromatic CH), 6.40 

(dd, J = 12.2, 2.0 Hz, 1H Alkene CH), 6.06 (ddd, J = 12.8, 7.3, 3.1 Hz, 1H Alkene CH), 4.01 

(dd, J = 6.7, 4.3 Hz, 1H α-CN CH), 2.63 – 2.46 (m, 2H Alkane CH2), 2.30 (qd, J = 7.0, 1.8 Hz, 

2H Alkane CH2). 
13C NMR (126 MHz, CDCl3) δ 137.3, 134.1, 133.4, 132.6, 131.2, 129.2, 128.5, 

127.3, 119.5, 35.5, 31.8, 29.0. HRMS (ESI, m/z) calcd. for C12H10NCl [M+H] 204.0575; found 

204.0583. 
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P3.2d 

 

2-fluoro-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 54.9 mg (0.293 mmol) 1-(4-fluorophenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.B to yield 48.3 mg of yellow oil P3.2d (0.258 mmol, 88 %). 

(KA7_115). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3025, 2935, 2898, 2240, 1675, 1610, 1584, 1425, 1394. 1H NMR 

(500 MHz, Chloroform-d) δ 7.27 (dd, J = 9.4, 5.4 Hz, 1H Aromatic CH), 6.84 (ddt, J = 8.0, 3.8, 

2.0 Hz, 2H Aromatic CH), 6.33 (dt, J = 12.1, 1.9 Hz, 1H Alkene CH), 5.97 (dt, J = 12.0, 4.8 Hz, 

1H Alkene CH), 3.94 (dd, J = 6.3, 4.5 Hz, 1H α-CN CH), 2.55 – 2.38 (m, 2H Alkane CH2), 2.26 

– 2.18 (m, 2H Alkane CH2). 
13C NMR (126 MHz, CDCl3) δ 162.4 (d, J = 246.3 Hz), 137.8 (d, J 

= 8.1 Hz), 133.2, 130.1 (d, J = 3.5 Hz), 129.6 (d, J = 8.2 Hz), 128.6 (d, J = 1.8 Hz), 125.9 (d, J = 

52.7 Hz), 119.7, 117.9 (d, J = 21.8 Hz), 114.0 (d, J = 21.7 Hz), 35.4, 31.8, 28.9. HRMS (ESI, 

m/z) calcd. for C12H10NF [M-CN] 161.0761; found 161.0795. 

 

 

 

 

 



192 
 

P3.2e 

 

2-phenyl-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 28.8 mg (0.117 mmol) 1-([1,1'-biphenyl]-4-yl)-2-vinylcyclopropane-1-

carbonitrile according to General Procedure 3.B to yield 25.0 mg of yellow oil P3.2e (0.102 

mmol, 87 %). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3029, 2932, 2240, 1667, 1600, 1485, 1449. 1H NMR (500 MHz, 

Chloroform-d) δ 7.63 – 7.56 (m, 2H Aromatic CH), 7.51 – 7.42 (m, 5H Aromatic CH), 7.42 – 

7.33 (m, 1H Aromatic CH), 6.56 (dt, J = 12.2, 1.9 Hz, 1H Alkene CH), 6.05 (dt, J = 11.9, 4.8 Hz, 

1H Alkene CH), 4.14 – 4.05 (m, 1H α-CN CH), 2.69 – 2.47 (m, 2H Alkane CH2), 2.40 – 2.29 

(m, 2H Alkane CH2). 
13C NMR (126 MHz, CDCl3) δ 141.3, 140.3, 135.9, 133.1, 132.1, 130.4, 

129.6, 129.0, 128.5, 127.8, 127.2, 126.0, 119.9, 35.8, 31.8, 29.1. HRMS (ESI, m/z) calcd. for 

C18H15N [M-CN] 219.1168; found 219.1134. 
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P3.2f 

 

2-methoxy-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile.  

Prepared from 96.8 mg (0.486 mmol) 1-(4-methoxyphenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.B to yield 88.6 mg of brown oil P3.2f (0.445 mmol, 92 %). IR 

(𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3009, 2935, 2837, 2237, 1604, 1574, 1505, 1464, 1248, 1037. 1H NMR (500 

MHz, Chloroform-d) δ 7.32 – 7.22 (m, 1H Aromatic CH), 6.74 (dd, J = 6.0, 2.8 Hz, 2H 

Aromatic CH), 6.41 (dt, J = 12.1, 1.9 Hz, 1H Alkene CH), 5.98 (dt, J = 12.0, 4.8 Hz, 1H Alkene 

CH), 4.00 (dd, J = 7.7, 3.0 Hz, 1H α-CN CH), 3.79 (d, J = 1.3 Hz, 3H OCH3), 2.62 – 2.40 (m, 

2H Alkane CH2), 2.36 – 2.17 (m, 2H Alkane CH2). 
13C NMR (126 MHz, CDCl3) δ 159.3, 136.8, 

132.0, 129.4, 129.1, 126.5, 120.0, 116.9, 112.3, 55.3, 35.2, 31.6, 28.8. HRMS (ESI, m/z) calcd. 

for C13H13NO [M+H] 200.1070; found 200.1077. 

P3.2g 

 

3-methyl-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 0.1047 g (0.572 mmol) 1-(3-methoxyphenyl)-2-vinylcyclopropane-1-carbonitrile 

according to General Procedure 3.B to yield 0.0951 g of yellow oil P3.2g as a mixture of 

regioisomers (0.519 mmol, 91 %, r.r. 61:39). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3026, 2945, 2864, 2240, 1672, 
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1610, 1501, 1461. 1H NMR (500 MHz, Chloroform-d) δ 7.41 (dd, J = 6.9, 2.1 Hz, 1H major 

Aromatic CH), 7.20 (d, J = 18.4 Hz, overlapping 2H major 1H minor Aromatic CH), 7.10 (d, J = 

1.7 Hz, 2H minor aromatic CH), 6.64 (dd, J = 11.1, 1.9 Hz, 1H major Alkene CH), 6.45 (dd, J = 

12.1, 2.0 Hz, 1H minor Alkene CH), 6.22 (dt, J = 11.0, 6.2 Hz, 1H major Alkene CH), 5.93 (dt, J 

= 12.1, 4.7 Hz, 1H minor Alkene CH), 4.01 (dd, J = 6.5, 4.2 Hz, 1H minor α-CN CH), 3.93 (dd, 

J = 10.3, 5.1 Hz, 1H major α-CN CH), 2.62 – 2.44 (m, 1H Alkane CHaHb), 2.44 – 2.33 (m, 

overlapping 3H methyl CH3, 1H Alkane CHaHb), 2.33 – 2.18 (m, overlapping 3H methyl CH3, 

1H Alkane CHaHb), 2.17 – 2.06 (m, 1H Alkane CHaHb).
 13C NMR (126 MHz, CDCl3) δ 137.3, 

136.9, 135.0, 134.0, 133.9, 132.6, 132.1, 132.1, 131.6, 131.2, 130.5, 129.8, 129.3, 128.8, 128.5, 

127.3, 124.7, 120.8, 119.9, 38.0, 36.0, 34.2, 31.6, 29.0, 25.5, 21.1, 20.0. HRMS (ESI, m/z) calcd. 

for C13H13N [M+H] 184.1121; found 184.1124. 

P3.2h 

 

2,3-dimethyl-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile. 

Prepared from 37.4 mg (0.190 mmol) 1-(3,4-dimethylphenyl)-2-vinylcyclopropane-1-

carbonitrile according to General Procedure 3.B. Yield 30.2 mg yellow oil P3.2 h (0.153 mmol, 

87 % r.r. 56:44). IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3021, 2941, 2240, 1612, 1508, 1453. 1H NMR (500 MHz, 

Chloroform-d) δ 7.34 (d, J = 7.8 Hz, 1H major Aromatic CH), 7.15 (s, 1H minor Aromatic CH), 

7.11 (d, J = 7.8 Hz, 1H major Aromatic CH), 6.99 (s, 1H minor Aromatic CH), 6.69 (dd, J = 

10.7, 1.8 Hz, 1H major Alkene CH), 6.41 (dt, J = 12.1, 1.9 Hz, 1H minor Alkene CHz), 6.24 
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(ddd, J = 10.8, 7.2, 6.3 Hz, 1H major Alkene CH), 5.91 (dt, J = 12.1, 4.7 Hz, 1H minor Alkene 

CH), 4.00 (t, J = 5.3 Hz, 1H minor α-CN CH), 3.88 (dd, J = 10.7, 5.8 Hz, 1H major α-CN CH), 

2.64 – 2.44 (m, 1H Alkane CHaHb), 2.37 (dddd, J = 13.1, 11.0, 7.7, 3.5 Hz, 1H Alkane CHaHb), 

2.31 (s, 3H methyl CH3), 2.27 (s, 3H methyl CH3), 2.24 (s, 3H methyl CH3), 2.20 (s, 3H methyl 

CH3), 2.14 (ddt, J = 14.2, 7.0, 3.5 Hz, 1H Alkane CHaHb), 2.04 – 1.95 (m, 1H Alkane CHaHb). 

13C NMR (126 MHz, CDCl3) δ 136.6, 136.4, 135.9, 135.3, 135.2, 133.0, 132.9, 131.5, 131.4, 

130.8, 130.5, 129.9, 129.33, 129.30, 128.9, 124.1, 121.2, 120.2, 38.9, 35.7, 33.8, 31.6, 29.1, 24.6, 

20.5, 19.4, 19.3, 15.8. HRMS (ESI, m/z) calcd. for C14H15N [M+H] 198.1277; found 198.1282. 

3.A.2.4 – Other Products 

3.A.2.4.1 – Diene (P3.3) 

P3.3 

 

(2E,4E/Z)-2-phenylhexa-2,4-dienenitrile 96:5 mixture of E/Z isomers 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3062, 3030, 2963, 2932, 2851, 2213, 1634, 1597, 1496, 1450, 1261. 1H NMR 

(500 MHz, Chloroform-d) δ 7.64 – 7.59 (m, 1H, minor Ar), 7.60 – 7.52 (m, 2H), 7.39 (tt, J = 8.8, 

2.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.21 (d, J = 11.1 Hz, 1H), 6.96 (d, J = 11.3 Hz, 1H minor 

alkene), 6.73 (tdd, J = 15.1, 4.4, 2.8 Hz, 1H), 6.46 (ddt, J = 14.7, 11.4, 1.6 Hz, 1H minor alkene), 

6.29 (dq, J = 14.1, 6.9 Hz, 1H), 6.11 (dd, J = 10.8, 7.3 Hz, 1H minor alkene), 1.97 (dt, J = 7.0, 

1.4 Hz, 3H), 1.86 (dd, J = 6.9, 1.4 Hz, 3H minor CH3). 
13C NMR (126 MHz, CDCl3) δ 142.3, 
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140.8, 133.4, 129.3, 129.1, 129.0, 125.7, 117.1, 111.4, 19.1. HRMS (ESI, m/z) calcd. for 

C14H11N [M+Na] 192.0789; found 198.0796. 

3.A.2.4.2 – Styrenyl Benzocycloheptene P3.5 generated using General Procedure 3.B 

P3.5 

 

9-(4-chlorophenyl)-6,7-dihydro-5H-benzo[7]annulene-5-carbonitrile 

Prepared from 0.0663 g (0.237 mmol) (E)-2-(4-chlorostyryl)-1-phenylcyclopropane-1-

carbonitrile according to General Procedure 3.B. The Product was purified by flash 

chromatography (silica gel, 5 % EtOAc in Hexanes) to yield 0.0064 g of yellow oil P3.5 (9.7 %). 

IR (𝜈̅ − 𝜈̅𝐼𝑅 , neat) 3060, 3027, 2946, 2862, 2240, 2592, 1489, 1444, 1401, 1265, 1901. 1H NMR 

(500 MHz, Chloroform-d) δ 7.69 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 7.5 Hz, 

1H), 7.29 (dd, J = 8.3, 1.2 Hz, 2H), 7.22 – 7.15 (m, 2H), 7.03 (dd, J = 7.5, 1.5 Hz, 1H), 6.47 (t, J 

= 7.4 Hz, 1H), 3.97 (dd, J = 10.8, 6.9 Hz, 1H), 2.69 – 2.57 (m, 1H), 2.51 – 2.40 (m, 1H), 2.17 

(dtd, J = 14.1, 7.3, 3.1 Hz, 1H), 1.89 (ddt, J = 14.0, 12.2, 7.2 Hz, 1H). 13C NMR (126 MHz, 

CDCl3) δ 142.3, 139.5, 138.7, 134.5, 133.8, 129.8, 129.3, 128.7, 128.4, 128.3, 127.7, 126.8, 

120.9, 40.2, 33.4, 24.4. HRMS (ESI, m/z) calcd. for C18H14NCl [M+H] 280.893; found 280.894. 
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