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Abstract 

A Superconductor exhibits dc zero-resistance below a critical temperature (Tc). The possible uses 

of superconductors in a high temperature range of 50-77 K are greatly expanded by the discovery 

of high temperature superconductors (HTS) in 1986. One of the most important parameters for the 

industrial applications of high temperature superconductors (HTS) is a high value of critical 

current density Jc, in applied magnetic fields (H) up to tens of Teslas. In HTS, magnetic flux would 

be expected to penetrate the superconductor in the form of filaments containing one flux quantum 

(Φo) in each filament. These flux lines are surrounded by circulating current that acts as screening 

current and give rise to the mixed state known as vortex state. Application challenges involve 

preventing vortex motion in HTS and determining the high value of Jc at the high magnetic field 

(H). The vortex motion increases with increasing applied field and hence decreases the Jc due to 

dissipation induced by the vortex motion. Obtaining a high Jc(H) requires stoppage of vortex 

motion in HTS. This can be done using pinning centers which capture the vortices and prevent 

their motion. Therefore, reaching high Jc(H) in HTS requires the insertion of strong pinning 

centers of dimension comparable to the superconducting coherence length on the order of few 

nanometers. Such pinning centers improve the critical current density and strengthen the pinning 

force density. Various innovative approaches have been developed in the last decade to generate 

optimally efficient artificial pinning centers (APCs) in YBa2Cu3O7-x (YBCO) nanocomposite 

films. However, controllable generation of self-assembled nanostructures during sample growth 

stage remains a challenge. Therefore, in this study, we generate a landscape of one-dimensional 

(1D) plus three-dimensional (3D) APCs of flexible elastic materials to improve strong and 
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isotropic pinning which is beneficial for many industrial applications such as motors and 

generators. Specifically, a study of 3 vol.% Y2O3+2-6 vol.% BaHfO3 (BHO) double doped 

YBa2Cu3O7-x epitaxial thin films is carried out and compared to the same concentration of BaZrO3 

(BZO) doping materials to explore the morphologic adaptation of the c-axis aligned 1D APCs to 

the 3D APCs. A significant reduction of Jc anisotropy is found for low doping BaHfO3 and 3 vol.% 

Y2O3 doped YBCO nanocomposite films (BHO double doped films). The self-assembly of 1D 

APCs in YBCO film matrix driven by the strain field is influenced by the lattice mismatch at the 

APC/YBCO interface. To answer the fundamental question on how the pinning efficiency of 1D 

APCs is affected by the APC/YBCO interface, electrical transport properties Jc (H, T) of the 

comparable diameter of BaZrO3 and BaHfO3 1D APCs on single doped YBCO nanocomposite 

films have been studied. The pinning force density is found to be significantly larger for a coherent, 

a less defective, BHO 1D APC/YBCO interface compared to a semicoherent, defective and oxygen 

deficient, BZO 1D APC/YBCO interface of epitaxial YBCO nanocomposite thin films. 

Transmission Electron Microscopy (TEM) images are utilized to study the difference 

of the nanostructures’ morphology, and 1D APC/YBCO interface of single and double doped 

nanocomposite thin films. It is found that less rigid BHO material forms a mixed APCs 

morphology reducing Jc anisotropy to about 20 % for 2 vol.% BHO double doped YBCO thin film 

at temperature of 65 K and at magnetic field of 9.0 T. A coherent APC/YBCO interface enhances 

the pinning efficiency of 1D APCs in BHO doped YBCO thin films. Significantly reduced pinning 

efficiency of BZO 1D APCs is observed for a defective BZO/YBCO interface. A method of 

repairing defective APC/YBCO interface through calcium doping is explored and recommended 

to enhance the pinning efficiency of one-dimensional APCs.  
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Chapter 1 Introduction 

1.1 Superconductivity: an overview 

Superconductivity is a phenomenon of zero dc electrical resistance of the materials when 

cooled below characteristic critical temperature (Tc). Superconductors were first noted by 

Kammerlingh Onnes during resistivity measurements of mercury at 4.2 K in 1911 [1]. The 

phenomenon of superconductivity exhibits a transition of metal from a normal state to a 

superconducting state at Tc involves the second order phase transition (i.e. there is no latent heat 

involves in the phase transition) [1]. For the thermodynamic phase transition to happen, the overall 

free energy must be lower in the superconducting state than in the normal state. When a 

superconductor is cooled to below Tc, it expels magnetic field from its interior, an effect that was 

observed by Meissner and Ochsenfeld in 1933 [2, 3]. Aside from having zero resistance below Tc, 

Meissner also observed that when a superconductor is placed in a magnetic field, the field is 

abruptly expelled from the bulk of the material, that is, magnetic induction B = 0 and the material 

becomes perfectly diamagnetic [1]. In addition, superconducting properties of the materials are 

destroyed with the application of an external magnetic field above a critical field (Hc). This 

phenomenon was first observed by K. Onnes in 1914 [1]. On the other hand, a pure “zero 

resistance” conductor would not be expected to follow the Meissner effect, but would be expected 

to set up a current that prevents the internal flux from changing with the variation of the externally 

applied magnetic field. For a superconductor, the critical field (Hc) can be defined in terms of the 

difference between the free energy densities in the normal state and the superconducting state. For 

example, for a long thin superconductor in a parallel field, the critical field can be estimated as 

𝐻𝑐
2(𝑇)

2
 ~fn (T) - fs (T) where fn and fs are the free energy densities of the normal and superconducting 
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states and are functions of temperature [1]. These observations imply that a superconducting 

material has a limitation to its current carrying capability in the superconducting state.  

In the superconducting state at T<Tc, Cooper pairs, paired electrons, are formed through 

phonon-mediated interaction and steer through the crystal lattice without any collision, leading to 

no resistance [2]. This phenomenon was first explained by Bardeen, Cooper, and Schrieffer (BCS) 

in 1957. The BCS theory is a complete quantum mechanical microscopic description of 

superconductivity and it applies to any phonon-mediated pairing mechanism, irrespective of Tc.  

An electron moving through the crystal lattice with momentum k distorts the lattice and gets 

scattered by creating a virtual phonon. This phonon of momentum q is absorbed by a second 

electron with momentum k’, which gets scattered with a momentum k’+ q (Figure 1) [1]. This 

leads to an effective attractive interaction between electrons and forms a Copper pair. The 

formation of Copper pairs can be depicted in the Feynman diagram shown in Figure 1.  

 

 Figure 1: Left: Feynman diagram of a Cooper pair. Right: a schematic of flux penetration in superconductor over 

the distance λ, the penetration depth. 

The electrons forming the Cooper pairs have equal and opposite momentum. In addition, the 

electron pairs have total zero spin because they are composed of two electrons with opposite spins. 
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This suggests that the Cooper pairs may have the same quantum state at the same time. The Cooper 

pairs occupy a condensed momentum state. The net interaction of the paired electrons mediated 

by the phonon occurs within  a very small energy range ћωD where ωD is the Debye frequency [1]. 

Thus, in a superconducting state, all Cooper pairs can move together and are correlated. 

Furthermore, each Cooper pair occupies a volume characterized by the dimensions equivalent to 

the coherence length (ξ). However, the exact nature of the pairing in high temperature 

superconductor has not been determined. 

To explain the Meissner effect, Fritz and Heinz London (1935) proposed a model 

describing electrodynamics in superconductors [2, 3]. This model was not derived from the first 

principle but justified from the observations of the behaviors related to the electromagnetic fields 

in and around the superconductors [2, 3]. Therefore, it is a phenomenological theory. According 

to the London theory, superconductivity arises from superelectrons different from normal 

electrons. The following two equations are added to the Maxwell’s equations:  

                    𝑬 =
𝑚

𝑛𝑒2  
𝑱 = 𝜇𝑜𝜆𝐿

2𝑱                                                                                          (1)  

where 𝜆𝐿 = √
𝑚

𝜇0 𝑛𝑠𝑒2 is the London penetration depth and μo is the permeability of free space.  

                  𝜇𝑜𝜆2𝛻 × 𝑱 +  𝑩 = 0                                                                                          (2) 

 𝑱 = 𝑛𝑒𝒗 is the current density. The m, e, and n are the mass, charge, and number density of charge 

carriers. Applying Maxwell’s equation 𝛻 × 𝑩 =  𝜇𝑜𝑱 and further simplifications of Equation (2), 

Equation (3) can be obtained. 
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                 𝛻2𝑩 =
1

𝜆𝐿
2 

𝑩                                                                                                       (3)                     

 For a semi-infinite thin slab of superconductor (Figure 1) and the applied field perpendicular to 

the surface of the superconductor, a solution of this equation can be written as  

 

B(x) = B(0) exp(-x/λL). For x >> λL, B(x)=0, in accordance with the Meissner effect [1]. The 

London equation describes for a finite penetration of the applied magnetic field over a 

characteristic length λL and is known as the London penetration depth.  

Ginzburg-Landau (G-L) theory (1950) described the simultaneous presence of both normal 

and superconducting electrons at a temperature below critical temperature (T < Tc). The 

superconducting electrons were described by an order parameter in the form of wave function ψ. 

The normalized wave function |ψ|2 =ns provides the number density of superconducting electrons. 

G-L theory also introduced the concept that the free energy might also depend on the derivative of 

ψ in space. The G-L theory and equations can be found in several references [2, 3]. The general 

form of the Ginzburg-Landau free energy expression in the presence of an external magnetic field 

is represented by Equation (4). 

𝑓𝑠 = 𝑓𝑛 + 𝑎(𝑇)|𝜓|2 +
1

2
𝑏(𝑇)|𝜓|4 +

1

4𝑚
|(

ћ

𝑖
𝛻 −

2𝑒

𝑐
 𝑨) 𝜓|

2

+  
1

2
𝜇𝑜𝐻2           (4) 

where fs and fn are the free energy densities of superconducting and normal states, a and b are 

temperature dependent coefficients, m and e are the mass and charge of the electron respectively, 
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and A is the vector potential. Minimizing this free energy with respect to 𝜓 and A respectively, the 

following two G-L equations can be obtained 

                𝑎(𝑇)𝜓 + 𝑏(𝑇)|𝜓|2𝜓 +
1

4𝑚
(

ћ

𝑖
𝛻 −

2𝑒

𝑐
 𝑨)

2

𝜓 = 0                                      (5) 

                          𝑱 =  
𝑖𝑒ћ

𝑚
(𝜓∗𝛻𝜓 − 𝜓𝛻𝜓∗) −

4𝑒2

𝑚𝑐
 𝑨|𝜓|2.                                            (6) 

Equation (5) describes the equilibrium spatial variation of ψ. As expected, order parameter ψ is 

zero in the center and recovers its maximum value at the distance of ξ. Equation (6) gives the 

current density and describes the supercurrent distribution in the superconductor. From the G-L 

Equations (5) and (6) two parameters can be obtained. The coherence length 𝜉(𝑇) =
ћ

[2𝑚𝑎(𝑇)]
1
2 

 is 

the characteristic length for the decay of small perturbation in the superconducting order 

parameter, where a(T) is a constant [1]. The G-L penetration depth can be obtained as 

 𝜆(𝑇) = [
𝑚𝑐2𝑏(𝑇)

4𝜋𝑒2𝑎(𝑇)
]

1

2
, where c is the velocity of light. Ginzburg-Landau penetration depth is, like 

the London penetration depth as discussed in the previous paragraph, a characteristic length for 

the decay of the magnetic field in a superconductor.  

Type I superconductors have only one critical field Hc. These superconductors return to a 

normal state when the applied field exceeds the critical field Hc. Type II superconductors have a 

lower critical field (Hc1) and an upper critical field (Hc2) as shown in Figure 2. Abrikosov (1957) 

noted that the ratio of  
𝜆

𝜉
 is less than 

1

  √2
  for type I superconductors. For  

𝜆

𝜉
<

1

  √2 
 , the surface 

energy between the normal and superconducting phases is positive. The Meissner effect is 

observed below Hc in type I superconductors while in type II superconductors, this effect is 
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observed when Hc<Hc1. In type II superconductors, 
𝝀

𝝃
>

𝟏

  √𝟐
. For  

𝝀

𝝃
>

𝟏

  √𝟐
  however, the surface 

energy of the interface between the normal and superconducting phases is negative and it will, 

therefore, be energetically favorable for flux to exist within the superconducting material [3, 4]. 

Abrikosov predicted that the magnetic flux would penetrate the superconductor in the form of 

filaments (flux lines) surrounded by the circulating current and form the vortices. 

In type II superconductors, superconductivity exists through the mixed phase, known as 

vortex state, when the field is increased above Hc1 (see Figure 2). When the magnetic field is 

increased from zero to Hc1, the magnetic flux is completely excluded as in a type I superconductor 

and superconductivity exists until the field reaches the upper critical point Hc2. The normal state 

again is restored above the upper critical field Hc2.   

 

 

 

 

 

Figure 2: Schematic of a phase diagram of type I (a) and type II (b) superconductors showing normal state, Meissner 

state, and mixed state. This Figure is adapted from Norton et.al, MSE Report, 2004 [5]. 

Vortices are introduced when the field reaches the Hc1. As the applied magnetic field is 

increased beyond the Hc1, more and more vortices enter the superconductor. Each vortex generates 

a microscopic field at the same orientation and hence they experience a repulsive force from 
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neighboring vortices. The co-existence of the superconducting phase with the normal phase 

penetration by a magnetic field in Hc1 < H < Hc2 is shown in Figure 2(b). The magnetic field is at 

maximum at the center of the vortex and decays exponentially away from the center with the 

characteristic length 𝜆 [2]. 

Vortices are the quantization of flux formed in superconductors. Each vortex carries a flux 

quantum, a constant quantity, Φo=h/2e=2.07×10-15 Tm2 that runs parallel to the applied field (H), 

and h is the Planck’s constant. Increasing H increases the number density of vortices that is number 

of vortices per unit area (n) with relation H =nΦo. At the field H=Hc2, the vortex lattice becomes 

so dense that the spacing of the vortices is at the order of ξ. The coherence length (ξ) measures the 

distance between the paired electrons that form the Cooper pairs and is equivalent to the radius of 

the normal core of the vortices as shown in Figure 3 [2]. This means that at H=Hc2, the normal 

cores of the vortices come in contact with each other. The superconducting order parameter 

becomes zero (ψ=0) in the normal core of the vortex and reaches its maximum (ψ=1) in the 

superconducting region. Beyond Hc2, the cores of the neighboring vortices overlap and 

superconductivity is lost.   

In YBa2Cu3O7-x (YBCO), a type II superconductor, the approximate values of these 

parameters are ξc ~ 0.14 – 0.8 nm, ξab ~ 1.2 – 4 nm, λc ~ 800 – 1121 nm, and λab ~ 150 – 210 nm, 

where the subscripts denote the length along the c-axis and ab-plane, respectively. The lower 

values listed are for T = 0 K and larger for T = 77 K [3, 4].   
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Figure 3: Spatial variation of the superconducting order parameter and field for isolated vortex. This Figure is adapted 

from Kittel C., Wiley, 2004 [2].  

The depairing current density (Jdp) is a maximum theoretical limit of the current carrying 

capability of a superconductor before losing its superconductivity. The Jdp becomes zero at critical 

temperature (Tc) and field (Hc for type I superconductor and Hc2 for type II superconductor). Type 

II superconductors have high critical current densities in large magnetic field. The depairing 

current density in the superconducting state of a type II superconductor can be estimated using 

Equation (7).  

                                    𝐽𝑑𝑝 =
y𝛷o

𝜆2𝜉⁄ ,      y  is a constant

For a type II superconductor such as YBa2Cu3O7-x, the magnitude of the Jdp is about 108 A/cm2 at 

77 K [3]. However, in practice Jc is approximately two orders of magnitude smaller than the 

theoretical limit due to vortex motion. Typically, the experimental Jc is about 2-4×106 A/cm2 for 

YBa2Cu3O7-x (YBCO) thin film at 77 K. To increase the Jc, the vortices need to be pinned. The 

ideal pinning entities should have a dimension as small as the vortices with radius ~ξ and number 
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density equivalent to the number of vortices at upper critical field Hc2. The upper critical field, the 

point at which the nucleation of superconducting regions occurs, can be calculated utilizing  

                                 𝐻c2~
Φ0

𝜋𝜉2  
                                                                                     (8)       

The general form of the depairing current density can be derived as follows. 

 𝑱𝑑𝑝 = 𝑛𝑠𝑒𝒗                                                                                    (9) 

Where ns is number density of electrons, e is the charge, and 𝒗 is the velocity of electrons. At T=Tc, 

thermal energy (kBTc) is equal to depairing energy (the energy that breaks a Cooper pair into two 

normal electrons) of a Cooper pair in terms of energy gap (∆) as given by Equation (10). 

𝛾𝑘𝐵𝑇𝑐 = 2∆,                                                                                  (10) 

where 𝛾 = 3.52 is a universal constant value regardless of material’s nature according to BCS 

theory [1]. Equation (11) represents the relation of maximum energy of a Cooper pair in terms of 

velocity and gap energy where m* is the mass of a Cooper pair (=2 m, m is the mass of a single 

electron) 

1

2
𝑚∗𝑣2 = 2∆                                                                               (11) 

Using Equations (10) and (11), Equation (9) can be written as the depairing current density    

𝑱𝑑𝑝 = 𝑛𝑠𝑒√
2∆

𝑚
                                                                            (12) 

Considering 𝑛𝑠 =  1028 /m3, e =1.6×10-19 C, m =9.11×10-31 kg, Tc = 91 K for YBCO and 

kB=0.86×10-4 eV/K, the depairing current density is estimated to be about 108 A/cm2.  



 

10 

  

Unfortunately, the theoretical limit of the depairing current density Jdp, has not been 

achieved so far in YBCO superconductor experimentally. Thus, the fundamental questions arise: 

what really limits the Jc in this type of superconductor and how high of Jc values can be achieved. 

One of the motivations to work in this field is to explore the answers of these questions through 

electrical transport measurements of YBCO at the high magnetic field. 

1.2 High temperature superconductors 

The 1986 discovery of high temperature superconductors (HTSs), such as YBa2Cu3O7-x 

(YBCO), which has a superconducting critical temperature Tc ~ 91 K [6, 7], well above the boiling 

point of liquid nitrogen (77 K), triggered a worldwide effort to push  industrial applications. High 

temperature superconductors are type II superconductors. The last few decades have witnessed 

exciting progress [8-12]. The compound YBCO is one of the most promising for industrial 

applications. It is the least anisotropic (~5-7) and has a high Hc2 (>80 T). One of the most important 

parameters for applications is the electrical current carrying capability, measured by critical current 

density Jc, in applied magnetic fields (H) in the range of few to tens of Teslas. For example: motors 

and generators require uniform Jc at the varying magnetic field orientations and at the range of 3-

5 T, while high temperature superconductor (HTS) coated conductors (CCs) need to carry larger 

Jc, on the order of thousands of amperes per squared centimeters at 77 K. The world’s first high 

temperature superconductor power transmission cables on a commercial power grid can transmit 

a 575 MW of electric power. HTS transformers cooled by liquid nitrogen generate significantly 

less heat waste than conventional oil cooled voltage transformers. Significant progress has been 

made by the research community to improve critical current density (Jc) in YBCO thin films and 

in coated conductors for power applications. Key to the high Jc (H) in HTS are strong effective 
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artificial pinning centers (APCs) of dimensions comparable to the superconducting coherence 

length, a few nanometers, that can pin the flux lines at higher fields and higher temperatures.  

Despite the exciting progress of vortex pinning in HTS, there are several factors that 

obstruct the enhancement of Jc and the practical application of HTS materials. One of the major 

hurdles is to minimize the fast drop of Jc with the application of a magnetic field. In addition, 

flexibility to meet the demand of the practical applications of HTS materials through strong and 

isotropic vortex pinning is a challenging task and is still lacking. A big challenge to realize strong 

and isotropic pinning is to generate a landscape of APCs that is optimal for that purpose. A 

controllable generation of APCs through low-cost strain-mediated self-assembly of APCs during 

YBa2Cu3O7-x (YBCO) nanocomposite thin film growth stage is even more challenging. The 

strained YBCO lattice due to insertion of the APCs introduces a large amount of strained and defective 

interfaces through epitaxy of APCs in the epitaxial YBCO lattice. This results in a reduction of both Jc 

and the pinning efficiency of APCs. Achieving a quantitative evaluation of the interplay between 

the pinning efficiency and the interface quality is critical to engineering (or repairing) such an 

interface for optimal pinning efficiency. The first part of the dissertation focuses on how to create 

self-assembled APCs with optimal dimensions, morphology, and concentrations to enhance and 

strengthen isotropic pinning. Additionally, we aim to explain the effect of the APC/YBCO 

interface on pinning efficiency of 1D APCs both qualitatively and quantitatively.  

Experimentally it has been found that the materials with a higher rigidity tend to form c-

axis (axis along the thickness of the YBCO film) aligned 1D APCs (for examples, BaZrO3  and 

BaSnO3) while the materials with lesser rigidity (for example, BaHfO3) may tend to form 

misaligned 1D APCs away from c-axis and mixed (1D+2D+3D) APCs [13]. The BaHfO3 may 
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create a coherent interface, a less defective and oxygen deficient interface, with YBCO matrix. On 

the other hand, the BaZrO3 with higher rigidity in forming the c-axis aligned 1D APCs create a 

semicoherent interface. The former shows significantly higher pinning force density (Fp=Jc × H) 

compared to the latter. In addition, microstructure analysis has revealed that a nanocolumn of 

width 1-2 nm close to the BZO 1D APC/YBCO interface forms a defective interface leading to an 

oxygen deficient column, which is semicoherent in nature. This reduces the pinning force density 

significantly due to lowering the pinning potential energy of the YBCO column. Such oxygen 

deficient columns can be repaired using calcium rich materials.   

A record high maximum pinning force density (Fp,max) of the BHO material that forms a 

coherent interface with YBCO matrix is reported. The last part of the of this dissertation explains 

the calcium (Ca) induced repair mechanism for the defective YBCO column in 6 vol.% 

BZO/YBCO and Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) multilayers (ML) films. The thickness of the 

CaY-123 spacer layers would be approximately 5-15 nm in between the thickness of 50 nm of 6 

vol.% BZO/YBCO layers. A record high pinning force density of 6 vol.% BZO doped multilayer 

(ML) nanocomposite films would be reported. Similarly, a ratio of the Hmax, a maximum field at 

which Fp,max is obtained, and matching field (H*) will also be reported. The optimized growth 

parameters of ML films will be discussed, and the results of ML films will be compared to the 

same doping of a single layer film. 

It is critical for the practical applications of HTS materials that the Jc should be independent 

of the magnetic field orientation and have strong isotropic vortex pinning, but that would require 

further study. Additionally, self-assembled c-axis aligned one-dimensional (1D) APCs are 

desirable to achieve strong correlated pinning [14] of the vortices when the applied magnetic field 

is parallel to the 1D APCs. The benefit of such 1D APCs is the constant Fp through HTS 



 

13 

  

nanocomposite film thickness. Such nanocomposite films can carry critical current density (Jc) 

values on the order of hundreds to thousands of Amperes per centimeter squared for power 

applications. However, the desirable high Fp value for 1D APCs is still not at its optimal value due 

to the insufficient information of the factors that influence pinning efficiency of pinning centers. 

This certainly requires further study.  

1.3 Basic Physics of vortex pinning        

In an HTS, vortices must be pinned since vortex motion induces dissipation and hence 

destroys superconductivity. The driving force of the vortex motion is called the Lorentz force 

density (force per unit volume) FL represented by Equation (13) [4].  

        FL = J x H                              (13) 

Since FL is proportional to J and H, strongly pinned vortices are necessary to achieve high critical 

current in a high magnetic field. Pinning of vortices occurs when vortices move out of the 

equilibrium position to interact or accommodate the pinning centers. The pinning force density Fp, 

which could be compared to “friction force” in classical mechanics, describes quantitatively the 

pinning strength of individual pinning centers and the concentration of the pinning center per unit 

volume [15]. Jc is determined by the force balance equation (critical state).                      

       FL  =  Fp                                                                     (14)   

For an individual pinning center, the strength of the pinning force is proportional to the gradient 

of the order parameter across the interface between the normal and the superconducting regions 

[4]. The sharpness of the interface between the normal and the superconductor is therefore critical 

to achieve a high Fp on each individual pinning center. This is particularly important in 
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APC/YBCO nanocomposite because a strained APC/YBCO interface due to lattice mismatch and 

chemical inter-diffusion between APC and YBCO results in a poor interface with suboptimal 

pinning strength. In addition, if such an interface extends to finite thickness, it will waste a 

substantial portion of the superconducting phase, reducing the cross-sectional area of the 

superconductor for transport current. This latter issue becomes more significant at high 

concentrations (n = number of pinning centers per volume) of pinning centers. Considering one 

vortex pinned at one pinning center, the matching field Hm = nΦo illustrates a peak of pinning force 

density Fp, max that corresponds to the field Hmax (these curves are shown in the latter sections of 

this dissertation). The peak value of the Fp at the Hmax is an illustration of the pinning strength of 

the individual pinning center while the peak location Hmax is proportional to the concentration of 

the pinning center.    

1.3.1   Intrinsic pinning of YBCO and angular dependence of Jc 

As shown in Figure 4, the insulating layer between copper oxide planes of the anisotropic layered 

structure of YBCO intrinsically provides strong vortex pinning. This kind of pinning is achieved 

when an external magnetic field is applied parallel to the ab-plane, which prevents the motion of 

the vortices driven by Lorentz force either toward the film thickness or toward the film-substrate 

interface depending on the direction of the flow of current. Considering orthorhombic crystal 

structure (a ≠ b ≠ c, axes are perpendicular to each other) in the ab-plane (a<b), the superconducting 

CuO2 planes separated by an insulating block of a distance 0.828 nm thickness along c-axis greater 

than ξc, makes it weakly superconducting compared to the ab-plane.  

Intrinsic pinning is more effective at lower temperatures T< 77 K, because ξc becomes 

much smaller than insulating block a distance of 0.828 nm [16, 17]. For H//ab-plane (FL along c-
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axis), strong intrinsic vortex pinning produces the peak in Jc. Figure 4 right shows a measurement 

at the angular dependence of Jc for an undoped YBCO film. The decreasing Jc peak for increasing 

magnetic field (H) indicates the decrement of Jc due to increasing vortex motion. 

 

Figure 4: Left: The Structure of YBCO unit cells showing an insulating layer separated from conducting pathways 

and c-axis lattice. Right: Angular dependence of Jc of YBCO film as a function of magnetic field 1, 3, 5, and 7 T as 

labeled. θ=0 indicates field applied parallel to the ab-plane These Figures are adapted from Baca F., KU, 2009 [17]. 

In Figure 4 right (Jc vs. θ), there is no or a very small Jc peak observed when H//c-axis 

(defined as θ=90o). This means that naturally present growth defects like voids, vacancies, stacking 

faults, and dislocations are not effective against high applied magnetic field when field is parallel 

to c-axis. These growth defects are low in number density (109-1010 cm-2) and can provide strong 

vortex pinning for a small value of the applied magnetic field up to 1-2 T. Therefore these kinds 

of defects are considered weak pinning centers [18]. The Jc at zero magnetic field (Jc, self) of YBCO 

is typically a few MA/cm2. It drops by a factor of 10 when H ~1 T, and further drops as H increases. 

This limits the high-field applications of YBCO. Researchers are motivated to generate strong 

APCs to provide strong vortex pinning against the high applied magnetic field (H). The Jc, self 

decreases due to the addition of APCs by reducing the cross-sectional area of the superconductors. 

YBCO crystal structure 

Insulating 

layer 

Conducting 

layer 
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At the same time, the vortex pinning by APCs increases the current density at the high applied 

field H [19].   

1.4 Review of progress on vortex pinning in YBCO nanocomposite 

films via generation of Artificial Pinning Centers (APCs)           

1.4.1 Design parameters of APCs 

For the maximum efficiency, the dimensions of APCs should be as small as possible, 

typically comparable to the size of the vortices with a radius equivalent to ξ~0.2 nm at T=0 K for 

YBCO (𝜉 ∝  (1 −
𝑇

𝑇𝑐
)

−1

) [20]. Thus, the size of APCs should be approximately 1-2 nm at 4.2 K 

and 2-4 nm at 77 K [21]. In addition, the morphology and the orientation of APCs are crucial for 

strong pinning efficiency. Figure 5 shows a schematic of the needs of the industrial application of 

YBCO coated conductor device in terms of operating temperature (K) and magnetic field range 

(T) [21]. This encourages exploring the proper design of APCs that fit for different operating 

conditions. In low and moderate H ~ 2-3 T, the performance of HTS devices and systems has 

illustrated clear benefits over their conventional counterparts. For example, the mass of copper-

based electronic design wind turbine can be reduced by 35%, increasing power from 5 MW to 8 

MW. On the other hand, YBCO coated conductor transmission cables operating at 77 K reduce 

the energy loss by electric resistance of conventional conductors by one third and increase power 

density by 2 to 8 times in existing conditions.  
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Figure 5: Schematic of the operating magnetic field and temperature of the YBCO coated conductor, FCL (fault 

current limiter), SMES (superconducting magnetic energy storage). This Figure is adapted from Obradors et.al, SuST, 

2014 [21]. 

A 850 MVA superconductor transformer has benefits of both reduced physical size and weight by 

a factor of 7 and 5, respectively [5]. Other applications like generators and motors typically require 

H~3-5 T at different orientations. Superconducting magnetic energy storage (SMES) device 

requires even higher H~10-12 T at a high T >50 K. Research and development of HTS, especially 

in the form of wires and cables that can have high Jc at elevated temperatures, moderate to high H 

fields and orientations, has been a world-wide effort in applied superconductivity in the last few 

decades.   

1.4.2 Morphology of APCs 

 Figure 6 shows the different types of APCs with possible pinning of vortices. As of now 

Jc (H) for 1D APCs (diameter (5-7 nm) separated at 10-15 nm) are seen to be effective at 77 K for 

H ~ 2 T when H//c-axis, with Fp,max ~28.3 GN/m3 & Jc =1.4 MA/cm2 BaSnO3 (BSO) and Fp,max~16 

GN/m3 & Jc ~ 1 MA/cm2  BaZrO3 (BZO) nanorods (NRs) [22]. Nanorods are cylindrically shaped, 
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one-dimensional nanostructure in the YBCO film matrix. Despite the high Jc (H), isotropic pinning 

is not effective due to the small pinning portion of vortices by NRs and the small splaying angle 

(tilting angle of NRs from the c-axis of YBCO) ~10 degrees in the APC/YBCO nanocomposite. 

BaHfO3 (BHO) 1D APCs (~4.5 nm) are seen to be effective for a slightly wide angular range (16o), 

with Fp,max=24 GN/m3 and Jc=2 MA/cm2 (77 K, H//c-axis at 1.4 T) as reported in ref. [22]. 

 

 

Figure 6: Left: Schematic of the different types of Artificial Pinning Centers (APCs), right: comparison of the vortex 

pinning by 1D and 3D APCs when magnetic field is tilted form the axial direction. This Figure is adapted from 

Obradors et.al, SuST, 2014 [21] 

In terms of number density, in recent publications [8-10, 23], low temperature growth methods 

(<7600 C) have been utilized to increase the number density of 1D APCs (claimed as 2.3×103 μm2) 

for BHO doped (Sm, Gd) Ba2Cu3O7 to enhance the Jc.  

Figure 7 depicts the enhancement of Jc peak about 3.5 times when BZO or BHO APCs are 

added parallel to the c-axis of YBCO film measured at 77 K and 40 K respectively. However, drop 

of Jc (θ) in an angular range of 20-70 degrees (0.7 MA/cm2 at H//c axis to ~0.4 MA/cm2 when H is 

at 70 degrees) shows the limitations of BZO 1D APCs. A similar effect is observed in BHO doped 
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film as well. The Jc peak at H//ab-plane is due to intrinsic pinning as explained earlier. Increasing 

the angular range of Jc (θ), requires different dimensions of APCs other than NRs that provide 

isotropic pinning. Three dimensional (3D) APCs of 3-10 nm of Y2O3 (areal density ~2x1011 cm-2 

depending on doping concentration and growth conditions) at a distance 15-20 nm is shown to be 

effective for enhancing Jc (θ) with Fp ~14 GN/m3 at 77 K for ~1 T. But Jc drops by a factor of 2 of 

the BZO/YBCO nanocomposite film for the same H at 77 K, when θ is changed [24, 25]. This 

indicates nanoparticles (NPs) alone don’t seem to be effective for increasing Jc (H, T, θ). However, 

pinning 

 

 

 

 

 

 

 

Figure 7 : Left: angular dependence of Jc at 77 K, 1 T for an undoped YBCO film compared to 2 vol.% BZO and 

right: 6 mol% BHO doped YBCO film. These Figures are adapted from Goyal et.al, SuST, 2005 and Pahlke et.al, 

IEEE TAS, 2016 [24, 25].   

performance of 3D APCs increases with decreasing T, as do 1D APCs, but they overcome the 

pinning efficiency of 1D APCs at T < 40 K [15, 18, 26-28]  due to the small size of 3D APCs. For 

higher T, they are not as effective as 1D APCs because of thermal fluctuations.   

A mixed morphology of artificial pinning centers (1D+2D+3D APCs) enhances Jc (H, θ) for a wide 

range of H via isotropic pinning that is not present for 1D APCs alone. The effective number 
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density of APCs corresponds to the Hmax = nΦo if each vortex is pinned by an individual APC. As 

explained earlier, increasing the BZO volume concentration increases the number density of 

effective APCs. It ultimately increases Jc (H) at a higher applied magnetic field. Baca et al., shows 

that increasing the BZO content from 2 to 6 vol.% increases the number density of particles  by a 

factor of approximately 1.8 on a flat STO substrate while the average size of individual particles 

is decreased by a factor of 1.4 [29]. 3D APCs with short segmented 1D APCs increases the number 

density and hence increases Hmax. Therefore, for strong isotropic pinning, many mixed 

morphologies of APCs need to be created as reported in several publications [30-32]. In recent 

reports, the combination of BZO/BSO with Y2O3 (DD) has been shown to be effective, improving 

Jc (H, θ) (Jc ~1 MA/cm2 at 77 K for 2 T) [33-35] in APC/YBCO nanocomposite film. On the other 

hand, mixed APCs morphologies have been created in varying BZO/YBCO nanocomposite 

growth conditions (5.2-5.9 nm NRs aligned along the c-axis and irregular shaped nanopatches 6-

28 nm along ab-plane) on 5o vicinal substrate. It shows a high Jc ~4 MA/cm2 at 1.0 T for H//c-axis 

at 77 K [30]. The increased pinning efficiency of APCs in the films is due to the controlled lattice 

strain from the step structure of vicinal substrates in which the degradation of Tc of YBCO is 

minimal. However, the volume density (ρfilm~24%) of nanostructures is still low in those films 

compared to the nanocomposite films fabricated on flat substrates (~ 45 vol.% of nanostructures 

in total film surface for a perfect epitaxial film as in Ref. [36].     

1.5   Remaining issues and challenges 

Despite the exciting progress that has been made in enhancing Jc (H, T) in APC/ (RE=Y, 

Gd, Sm) Ba2Cu3O7 (RE-123) nanocomposite thin films, challenges remain in controllable self-

assembly of APCs with optimally designed dimension, morphology, areal density, and APC/RE-
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123 interface. Little is known about the controlling parameters that determine the pinning 

efficiency of the 1D APCs quantitatively. The lack of sufficient study on parameters that control 

the optimum conditions of the APCs is another key challenge whose completion is necessary to 

further study of vortex pinning design parameters. The objective of this dissertation is, therefore, 

to elucidate the critical current density [Jc (H)], pinning forces density [Fp (H)], and matching field 

[(Hmax)], which is proportional to the effective number density of APCs. In addition, qualitative 

and quantitative evaluation of the interface effect on pinning efficiency of 1D APCs will be 

explored by comparing the matching field (the applied magnetic field at which maximum pinning 

force density is observed) and accommodation field (optimum limit of the field if each vortex is 

pinned by an individual APC and is calculated from the interspace between 1D APCs). This is 

achieved through the measurements of the transport critical current density at various 

temperatures, magnetic field strengths, and orientations. Furthermore, this dissertation covers the 

significance of the transport properties and nanostructures morphology. 

The selection of APC materials is primarily empirical on designing APC morphology, and 

few researchers have reported c-axis aligned 1D APCs experimentally [37]. A question arises: 

what are the relevant parameters that determine the APC morphology, dimension, orientation, and 

density? Can we ever predict the APC morphology in advance without performing a tedious trial 

and error experimental method? The challenge is to generate optimally designed mixed (1D+ 2D 

+ 3D) APCs morphologies required for the H-orientation independent Jc. It is one of the criteria 

for the application of HTS materials in different devices such as motors and generators at a 

moderate magnetic field of 3-5 T. This may be achieved by controlling the strain at microscopic 

scales using multiple APC doping materials to Jc anisotropy. 
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Little is known regarding the control of the APC/YBCO interface and its effect on pinning 

efficiency of 1D APCs in nanocomposite thin films. Thus, studying the effect of 1D APC/YBCO 

interface is important to understand optimal pinning efficiency. Fundamentally, a sharp APC/rare 

earth (RE=Y, Gd, Sm)Ba2Cu3O7 (RE-123) interface at an atomic scale is desired for optimal 

pinning efficiency, which is in contrast to the often defective 1D APC/RE-123 interfaces reported 

in nanocomposites using high-resolution transmission electron microscopy (HRTEM) [25, 38, 39]. 

A qualitative interpretation of the correlation between the pinning efficiency and APC/YBCO 

interface, and quantitative evaluation of pinning efficiency is critical to engineering (or repairing) 

an interface for optimal pinning efficiency.   

An intriguing difference between the BZO (and BHO) APC/YBCO interface has been 

revealed in the different doping materials due to a subtle difference of the lattice mismatch of these 

materials to the YBCO matrix. A defective interface with oxygen deficiencies at the APC/YBCO 

matrix (semicoherent interface) results in a substantial decrement of pinning efficiency compared 

to less defective APC/YBCO interface (coherent interface). The immediate question is how can a 

defective interface be repaired? A diffusion of Calcium (Ca) at the BZO/YBCO interface in the 

nanocomposite multilayer films may reduce the condition of oxygen deficiency. This may enhance 

the pinning efficiency of the BZO 1D APCs in a similar way to Calcium doping assisted repairing 

of the large-angle grain boundaries (GBs) in YBCO film.
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Chapter 2 Experiments 

2.1 Sample preparation and measurement 

As discussed in the introduction, nanodefects which are inherent in nanocomposite films 

help to improve the vortex pinning properties compared to single crystals. This implies that an 

effective deposition technique is necessary to grow externally induced nanostructures in HTS thin 

films with strong pinning centers. The Pulsed Laser Deposition (PLD) technique is an effective 

means to fabricate the oxide nanocomposite films such as YBCO at moderate oxygen background 

pressure delivering the controlled stoichiometry. Thus, all the YBCO nanocomposite films in this 

study were deposited using PLD technique.  

 

 

 

 

Figure 8: Illustration of Pulsed Laser Deposition of thin film on temperature-controlled substrate. This Figure is 

adapted from Baca F., KU, 2009 [17], (b) Photograph of a plume produced from a YBCO target, (c) A high vacuum 

DC sputtering chamber for Ag deposition. 

The schematic of the PLD technique is shown in Figure 8a. A plasma plume and a high vacuum 

DC sputtering system is shown in Figures 8b and 8c respectively. A Lambda Physik LPX 300 KrF 

excimer laser of wavelength λ =248 nm with an energy density of approximately 2.6 J/cm2, was 

c 
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utilized for the deposition of nanocomposite thin films. Laser deposition parameters were laser 

energy of 400 mJ and a repetition rate of 4-8 Hz.  

All the single doped nanocomposite thin films were fabricated using targets with nominal 

BaZrO3 or BaHfO3 varying concentrations of 2 vol.%, 4 vol.% and 6 vol.%, each plus 98, 96, and 

94 vol.% of YBCO respectively. For double doped targets, additional 3 vol.% of Y2O3 was added 

on each respective volume of BZO or BHO to make mixed targets and volume of YBCO was then 

varied accordingly. Commercial powders of YBCO (Nexans), Y2O3, BaZrO3, and BaHfO3 (SCI 

Eng. Mtls.) were dried in a heating furnace for about 10 hours at 450 ˚C. The dried powders were 

measured and mixed with an agate mortar and pestle to comprise a specific composition as stated 

earlier. The mixture was pressed utilizing a 25 mm and 6 mm die at a pressure of 1000 psi. All the 

targets were then sintered at 850 ˚C for 60 hours and 950 ˚C for 156 hours. 

Nanocomposite thin films were deposited on (100) SrTiO3 (STO) single crystal substrates, 

having dimensions of 5.0 mm x 5.0 mm x 5.0 mm. These substrates were cleaned via an ultrasonic 

cleaner for approximately five minutes with acetone, followed by five minutes with isopropyl 

alcohol. The substrates were mounted to a coated heater block with colloidal silver paint. The 

targets were rotated to ensure uniform ablation over the target surface. All depositions of films 

were done in a high vacuum system. The substrate to target distance was about 4.5 cm. These 

depositions were conducted at heater block temperatures of 810-825 ˚C for 8-10 minutes. After 

deposition, the films were annealed for about 30 minutes dwell time at 500 ˚C and one atmosphere 

oxygen environment. Film thicknesses were determined by etching corners of the films with the 
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substrate and the thickness of the step-edge was measured using a KL-16 Tincor profilometer. All 

the films had an average thickness of 140 nm.  

 Depositions of 130 nm silver contact electrodes were conducted utilizing a high vacuum 

DC sputtering system. It is carried out at the argon gas background pressure of 30 mTorr for about 

30 minutes at the deposition rate of approximately 0.07 nm/second. Figure 8c shows the high 

vacuum DC sputtering system for silver electrodes deposition. For an electrical transport 

measurement, samples were patterned using standard photolithography to obtain microbridges of 

width ~20 μm and length ~500 μm. The films were first spin-coated with the photoresist on the 

surface with a thickness of approximately 1.3 μm for 4000 revolutions per minute for 60 seconds. 

Nanocomposite thin films were exposed at 500 W UV for 70 s with Karl-Suss Mask Aligner. Then 

films were developed in 1:3 solution of Microposit 351 developer and deionized water for the 

optimized time of approximately 60 seconds and etched for approximately 90 seconds with 

 

 

 

 

 

Figure 9: Left: Ultra Violet light source equipment. Right: Illustration of the standard photolithography in HTS thin 

films.  

0.05% HNO3. The remaining photoresist was removed with acetone followed by a rinse off using 

isopropyl alcohol (IPA) solution. The electrical connection to the microbridges was completed via 
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indium attachment of platinum wires of 25 µm in diameter before taking Tc and resistivity 

measurements of these films. Ultra Violet (UV) light source equipment and the general procedure 

of the standard photolithography process in a clean room environment is shown in Figure 9. 

Current-voltage (I-V) characteristics were measured using a Keithley 2430 1 KW pulsed 

current source meter and HP 34420A nanovoltmeter. Critical current Ic was measured using 

standard 1 μV/cm criteria. Critical current density Jc was then calculated dividing Ic by the cross-

sectional area of microbridges. LabView was used to send the input current pulse of increasing 

amplitude and synchronizing the detection of the voltage across the nanocomposite films. The 

short pulse width of 50 ms and the long-time interval between pulses in the range of 3-4 seconds 

were selected to minimize the sample heating issues.  

 

 

 

 

 

 

 

 

 

Figure 10: Schematic diagram of the Jc (H, θ) measurement of the thin film ab-plane. This Figure is adapted from 

Baca F., KU, 2009 [17]. 

 

A Quantum Design Evercool II Physical Property Measurement System (PPMS) was used 

to measure the electrical transport Jc (T, H, ) as function of temperature T, magnetic field H (up 

to 9 T) and the orientation angle  between H and the c-axis while H was maintained in the plane 
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perpendicular to the current. Figure 10 illustrates the angular dependence measurement of the 

electrical transport properties of the nanocomposite thin film. 

2.2 APC nanostructures characterisation 

APCs nanostructures of the nanocomposite thin films in this work were studied using high 

resolution images of crystal structure utilizing transmission electron microscopy (TEM) tool. This 

work is done with the collaboration of the Air Force Research laboratory (AFRL) and the School 

of Material Engineering at Purdue University. Cross-sections of the films were prepared using a 

FEI Nova 600 NanoLab, DB235 focused ion beam systems, and FEI TALOS 200X in respective 

laboratories. The samples were thinned down to ~60 μm and dimpled to ~30 μm and then ion 

milled before taking images.  

 

 

 

 

 

 

 

 

Figure 11: Ray diagrams for the imaging and diffraction mode in a transmission electron microscope. This Figure is 

adapted from McLaren A., CUP, 1991 [40].  
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The nanostructures of the films were studied using a Philips CM200 and FEI Titan TEM operating 

at 200 kV and 300 kV, respectively [Baca F., dissertation, 2009 and Sebastian M.A., dissertation, 

2017].  

In TEM, the electrons from the electron gun are accelerated by a high voltage and focused 

onto a thin specimen by magnetic lenses. The transmitted electrons are then focused. The high-

resolution TEM (HR-TEM) images are obtained using the phase contrast arising from the phase 

differences after the electrons get scattered from the sample. The objective aperture is placed in 

the back focal plane to increase the scattered from the sample and to increase the diffraction 

contrast. Along with TEM, other techniques such as high-angle annular dark field (HAADF) 

scanning transmission electron microscope (STEM) and energy dispersive X-ray spectroscopy 

(EDS) is also used for microstructural characterization. The STEM imaging under HAADF 

condition is also called Z-contrast where the image contrast is roughly proportional to Z2 where Z 

is the atomic number of the element. Such composition-based imaging in STEM is ideal for 

microstructural analysis of different phases.  

2.3 Crystallinity of the films 

A Bruker D8 X-ray diffraction (XRD) system was used to study the c-axis growth of epitaxial 

films and crystalline structure of the nanocomposite films. Epitaxy is the growth of the film that follows 

the same crystalline structure of the substrate. Even though the lattice mismatch between the SrTiO3 

(STO) substrate and the YBCO film is about 1.5%, it still forms the crystal structure of the thin films. 

All the nanocomposite films in this study were grown c-axis along the thickness of the films which 
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was confirmed by XRD analysis. Diffraction occurs when the incident X-rays upon a sample are 

scattered by the crystal plane of the sample and undergo constructive interference in accordance to 

Bragg's law (2dsinθ = nλ). 

 

 

 

 

Figure 12: Illustration of the schematic of XRD system. 

The Copper Kα line of wavelength (λ) of 1.54 Å is utilized in this study where d represents 

the lattice spacing of the crystal plane. A diffraction pattern is observed through the intensity of 

scattered waves as a function of scattering angle (θ). Figure 12 illustrates the schematic of the 

XRD system. The XRD system is composed of the X-rays source, detector, and a rotating sample 

stage. The crystallinity orientation of the films is determined by a ω -2θ scan. All the intensity 

peaks of the films are normalized to YBCO (005) which excludes the overlap of STO (200) peak. 

Through qualitative analysis of the phase identification via the peaks, evidence of the epitaxial 

growth of the nanocomposite films is confirmed. Quantitatively, c-axis lattice constants of the 

nanocomposite films are calculated. The full-width-at-half-maximum (FWHM) of the YBCO 

(005) peak is measured through an omega (ω)- theta (θ) scan. This is achieved by setting the x-ray 

source to ω, which corresponds to a d-spacing of the YBCO (005) peak and allowing the detector 

to move at different θ angles.   
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Chapter 3 Microscopic Dynamics and Adaptation of 

APCs Nanostructures for Isotropic Pinning 

Many HTS applications require that the critical current density be independent of a 

magnetic field of few Teslas through strong artificial pinning centers (APCs) [34, 41, 42]. Exciting 

progress has been made via strain-mediated self-assembled APCs nanostructure phases in 

YBa2Cu3O7−x (YBCO) thin films and conductors [32, 33, 43-45]. Among others, c-axis aligned 

one-dimensional APCs (1D APCs) have exhibited strong correlated pinning to magnetic vortices 

at magnetic field H//c-axis, resolving the issue of weak pinning along the c-axis originated from 

the layered structure of the YBCO. Several materials have been reported to form c-axis aligned 

1D APCs in APC/YBCO nanocomposite films including BaZrO3 (BZO), BaSnO3 (BSO), and 

BaHfO3 (BHO) [46-48]. However, the perfectly aligned or small-angle splayed (~10o for BZO and 

~13o for BHO at their optimal growth temperature of 810 oC - 825 oC) 1D APCs may not benefit 

vortex pinning when H is oriented considerably away from the c-axis [18, 24]. To achieve a more 

isotropic Jc, several APC structural control approaches have been explored including double-

doping. A combination of 1D APCs (BZO or BSO or BHO,  Ba2 (Y/Gd) (Nb/Ta) O6) and 0 D 

APCs (Y2O3, or (Y/Gd)2O3) [31, 35, 41, 49, 50], and length and splay control of 1D APCs through 

alternate/segmented layer deposition [51]. Earlier studies have reported that these approaches have 

reduced the Jc anisotropy compared to single doped YBCO thin films either due to the presence of 

shorter and segmented 1D APCs or additional 3D APCs [34, 41, 52]. This study utilizes an elastic 

strain model proposed by Shi et.al [53] to evaluate the rigidity of the c-axis aligned 1D APCs in a 
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YBa2Cu3O7-x matrix of nanocomposite films. This model illustrates the alignment of the BZO and 

BHO 1D APCs, based on their rigidity. Although having comparable diameters of ~5-7 nm [53], 

the elastic properties (rigidity and flexibility) of these materials can be tuned differently by the 

addition of secondary APCs of Y2O3 (3D APCs), leading to a different pinning landscape and Jc 

(H, θ) behaviors especially reduced Jc anisotropy. The concentration effect of less rigid materials 

in strong and isotropic pinning will be discussed later in this chapter. Specifically, we will report 

the threshold volume of the doping materials for mixed APCs morphology. In addition, above the 

threshold limit of BHO doping, the switching effect of c-axis alignment to ab-plane alignment of 

BHO 1D APCs has been explained due to the presence of the secondary doping Y2O3.  

3.1 Strain mediated self-assembled APCs in APC/RE-123 

nanocomposite thin films 

Epitaxial growth of the nanocomposite films using Pulsed Laser Deposition (PLD) follows 

the layer by layer growth mode. At the initial growth stage of the self-assembled APC materials, 

the phase segregation of these materials with rare earth (RE=Y, Gd, Sm) Ba2Cu3O7 (RE-123) 

matrix initiates the coherent or semicoherent APC/RE-123 interface, film/substrate interface, and 

APC/substrate interface. Figure 13 represents a schematic of such interfaces. The lattice mismatch 

between each interface create strain at the lattice and is complex due to elastic properties of APC 

materials, RE-123 films and substrate. The contribution of the substrate elastic property can be 

neglected due to the large thickness of the substrate. It is assumed that only RE-123 and APCs 

accommodate to the strain field generation. The resultant strain field serves as the driving force in 
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the strain-mediated self-assembly of the APCs in the APC/RE-123 nanocomposites. The strain 

extends away from an interface into the epitaxial APC/RE-123 nanocomposite films due to the 

ceramic nature of the doping materials and the film itself. This suggests that the strain field may 

be considerably non-uniform in the APC/RE-123 nanocomposite films. 

 

 

 

 

 

 

Figure 13: Self-organization of 1D APCs driven by the combined strains originated from the strained interfaces. Three 

strained interfaces of 1D-APC/RE-123 matrix, APC/substrate and RE-123/substrate are illustrated schematically. The 

index represents the c-axis and ab-plane direction. This Figure is adapted from Wu et.al, SuST, 2017 [54]. 

It is thus important to understand and illustrate the effect of the strain and elastic properties 

of the materials on nanostructure alignment, morphology, and dimensions to form the mixed 

morphology of APCs. An elastic strain model proposed and published by Shi et. al [53] explains 

the effect of the lattice mismatch along ab-plane and c-axis at the APC/RE-123 interface and 

elastic properties of APC and RE-123 nanocomposite (cij) on the APC landscape. Figure 14 shows 

the lattice mismatch |f1/f3| vs. elastic constant phase diagram for several APC materials in a YBCO 

matrix. The results presented in Figure 14 is done by Shi et. al [53] and is reproduced from Gautam 
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et. al [13]. The f1 and f3 represent pub lattice mismatch between the YBCO and APC dopant along 

[100] and [001] directions respectively. C11 and C12 are the elastic constants of the dopants. It 

should be noted that BZO and BHO have subtle differences both in their lattice mismatches with 

the YBCO matrix and in their elastic properties. The lattice mismatch of the former is 7.1% 

compared to 6.7 % on the latter.  This section shows the alignment of the BZO and BHO 1D APCs, 

although having comparable diameters of ~5-7 nm [53], can be tuned differently by the addition 

of Y2O3 3D APCs, leading to a different pinning landscape of APCs and hence different Jc (H, θ) 

behaviors.  

 

 

 

 

 

 

 

Figure 14: Shi et. al [53] calculated (f1/f3) vs. (C11-C12
2/C11)dopant phase boundary (solid line) above which the dopant 

materials energetically prefer to form c-axis aligned 1D-APCs in YBCO thin films. f1 and f3 are the lattice mismatch 

of film and dopants along a and c-axes respectively. C11 and C12 are the elastic constants of the dopant. The points for 

Y2O3 and CeO2 are below the limit of the y-axis. This Figure is adapted from Gautam et.al, AIP Advances, 20117 

[13]. 

The lattice mismatch between APC and YBCO along with the elastic properties of both are found 

to affect the morphology of the APCs formed in the APC/YBCO nanocomposite films. By 
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minimizing the elastic energy of the APC/YBCO nanocomposite film, a lattice mismatch versus 

elastic constant phase boundary has been obtained between materials that can form c-axis aligned 

1D APCs and those that cannot [53]. Quantitatively, the rigidity of the c-axis aligned 1D APCs 

should be proportional to their distance from the phase boundary. 

As illustrated in Figure 14, doping materials such as BZO and BHO (above the solid line) 

energetically prefer to form the c-axis aligned 1D APCs in YBCO. While other materials such as 

Y2O3 and CeO2 (below the phase boundary) prefer to form other than c-axis aligned 1D APCs. 

The solid line represents the coexistence of the different APC morphology across the phase 

boundary. Materials closer to the phase boundary are more flexible to the formation of the mixed 

APCs. BHO is closer to the phase boundary than of BZO (or BSO) and so the BHO 1D APCs are 

less rigid than that of the BZO (and BSO) counterparts. This means that the formation of the c-

axis aligned BHO 1D APCs could be more interrupted by the presence of the secondary doping 

material of Y2O3 that forms 3D APCs [13]. Hypothetically, shorter and misaligned BHO 1D APCs 

in the BHO DD films could lead to a more mixed pinning landscape as compared to the BZO DD 

case. A study of 3 vol.% Y2O3 + 2-6 vol.% BaHfO3 double doped YBa2Cu3O7-x (BHO DD) 

epitaxial thin films is further carried out to explore the morphology adaption of the c-axis aligned 

BHO 1D APCs to the secondary Y2O3 nanoparticles (3D APCs). With the support of the elastic 

energy model [53] and experiments, the microscopic adaptation mechanism of the APCs may 

illustrate the effect of the strain on dimension, morphology, and orientation of APCs in the RE-

123 nanocomposite films. These results are certainly the key to the controllable generation of 

mixed APC morphology for strong and isotropic pinning of vortices. This may result in reduced 
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Jc anisotropy for the entire angular range from H//c-axis (θ=0o) to H//ab-plane (θ=90o) of the 

applied magnetic field H to obtain the desired APC landscape. 

3.2 Crystallinity of the double doped nanocomposite thin films 

After completion of nanocomposite thin film deposition, it is essential to ensure that the 

films are well c-axis aligned and epitaxial. C-axis alignment and qualitative interpretation of 

epitaxial growth of the nanocomposite thin films are confirmed utilizing θ-2θ scan from X-ray 

diffraction technique. All the nanocomposite films of 2-6 vol.% BHO DD and 2-6 vol.% BZO DD 

in this study are well c-axis aligned with growth parallel to the thickness of the film. Figure 15 

compares the X-ray diffraction (XRD) -2 spectra for the 2 vol.%-6 vol.% BHO DD and 2 vol.%-

6 vol.% BZO DD nanocomposite thin films.  

Figure 15: XRD -2 spectra for the 2%-6 vol.% BHO DD nanocomposite films (left) and 2- 6 vol.% % BZO DD 

nanocomposite films (right) on STO substrates. 
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All samples show high quality crystallinity with c-axis orientation as illustrated in the appearance 

of the YBCO (00l) peaks. The minor peaks at around 2θ ~30o and ~43o are indexed as the BHO or 

BZO, and the minor peak at around 2θ ~34o is indexed to the Y2O3 phases. The c-axis lattice 

constants of YBCO films are calculated from these spectra and the results are listed in Table I. 

Highly strained and coherent APC/YBCO interface is maintained at low BHO doping of 2 vol.% 

in these samples as expected, which is confirmed by an elongated c-axis of 11.77 Å. With a further 

increase of BHO doping, the c-axis lattice is reduced systematically towards 11.68 Å for an 

undoped YBCO thin film. The BHO single doped YBCO thin film [55], in which c-axis lattice 

constant increases from ~11.69 Å to ~11.72 Å when BHO concentration increases from 2 mol% 

to 6 mol% (corresponding to ~1 to 3 vol.%), in contrast to BHO DD nanocomposite films.  

 

 

 

 

 

 

 

Table 1: C-axis lattice constant, critical temperature (T
c
), FWHM of the YBCO (005) rocking curve, and J

c 

anisotropy of 2, 4, and 6% BHO DD and BZO DD nanocomposite thin films. 

Samples 

c-axis lattice 

constant (Å) T
c,onset 

(K) 

FWHM 
of the YBCO 

(005) rocking 

curve 

J
c 
anisotropy 

77 K 65 K 

 1T 5 T 9 T 

2% BHO DD 11.77 87.08 0.35 0.41 0.47 0.18 

4% BHO DD 11.75 86.60 0.76 1.04 0.42 0.56 

6% BHO DD 11.73 85.80 0.57 4.21 1.11 1.73 

2% BZO DD 11.75 85.71 0.73 1.60 1.33 0.99 

4% BZO DD 11.72 87.69 0.49 0.79 0.43 0.56 

6% BZO DD 11.74 87.80 0.54 2.41 0.60 0.92 
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On the other hand, for BZO DD nanocomposite films, the c-lattice constant is first decreased and 

then increased as the doping concentration is increased from 2 vol.% to 4 vol.% and then 6 vol.%. 

This indicates that the compressive strain might be decreased as the BZO doping concentration is 

increased from 4 vol.% to 6 vol.%. However, increasing trend of Tc in BZO DD films contrasts 

with BHO DD film in which Tc is decreased with increasing doping concentration indicates that 

the effect of strain field overlap is decreased in the former compared to the latter. Moreover, the 

comparably higher Tc in 6 vol.% BZO DD compared to 4 vol.% BZO DD film further indicates 

that with increasing BZO concentration doesn’t add strain to the YBCO lattice. However, these Tc 

values are considerably higher than that of single BZO doped YBCO nanocomposite film (~86 K 

for 4 vol.% and 84 K for 6 vol%) [30]. 

. 

 

 

 

 

Figure 16: Left: rocking curve of YBCO (005) peak of the 2-6 vol.% BHO DD nanocomposite films. Color codes 2 

vol.% (red), 4 vol.% (black) and 6 vol.% (blue). Right: resistance vs. temperature curves for 2 vol.% BZO DD (black) 

and BHO DD (red) thin films measures at 0 T (circle), 5 T (triangle), and 9 T (diamond).  

Figure 16 left depicts the X-ray diffraction YBCO (005) rocking curves of 2 vol.%-6 vol.% 

BHO DD nanocomposite thin films. The rocking curves are the ω-θ scan of the XRD spectra that 

2 vol.% 
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provide qualitative and quantitative information of the crystalline size and strain in the crystal 

plane through peak shift and/or peak broadening. A shift of the peak position towards the right 

(larger ) is an indication of the decrease of the c-axis lattice constant with BHO concentration, 

and an indication of uniform strain in the film lattice. Within the crystalline structure, uniform 

strain causes the unit cells to contract or expand isotropically [Sebastian M.A., dissertation, 2017]. 

An initial increase of the YBCO (005) full width at half maximum (FWHM) with increasing BHO 

concentration in the lower BHO doping range of 2-4 vol.% (0.35 at 2 vol.% and 0.76 at 4 vol.%) 

is an indication of an ab-plane disturbance and increase of lattice strain. It further indicates that a 

coherent or a semi-coherent BHO/YBCO interface is maintained in this doping range. At the 

higher BHO concentration of 6 vol.%, the reversed trend of a reduced YBCO (005) FWHM of 

0.57 could be due to the interfacial defects and dislocations at the BHO/YBCO matrix. This is 

consistent with the reduced c-axis elongation in 6 vol% BZO DD thin film as compared to that of 

the 4 vol.% BHO DD film (Table 1). These results are consistent with the less elongated c-axis 

and increased FWHW of the (005) YBCO peak for similar doping of films as reported in earlier 

studies [36, 38, 55]. The published results are based on the argument of the formation of defects 

such as dislocations, especially at the APC/YBCO interfaces, leads to relaxation of the interfacial 

strain results in reduced c-axis lattice. Qualitatively, a peak broadening implies that the non-

uniform strain at which a systematic shift of atoms from their ideal positions occurs resulting in 

point defects, plastic deformation or poor crystallinity. Additionally, Tc decreases monotonically 

(Table I) with the BHO doping from ~90 K for the undoped YBCO films to 87.1 K, 86.6 K, and 

85.8 K for 2, 4, and 6% BHO DD nanocomposite thin films respectively. In comparison with the 
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BHO SD samples [55, 56] in which the Tc values also decrease monotonically with the BHO 

doping, from 88.1 K to 87.7 K when BHO concentration increases from 2 mol% to 6 mol% 

(corresponding to ~1 to 3 vol.%), a comparable but slightly higher Tc degradation occurs in the 

BHO DD nanocomposite films. Interestingly, increasing trend FWHM of YBCO (005) is not 

followed in BZO DD thin film (Table 1). The highly strained lattice at 2 vol.% BZO DD film is 

relaxed with increased BZO concentration. Substantially decreased FWHM of YBCO (005) peak 

at 4 vol.% and 6 vol.% BZO DD film indicates strain is released through the significantly defective 

BZO/YBCO interface with increasing BZO concentration. The smaller Tc and c-axis lattice 

constant variations with increasing BZO doping in the 4 vol.% and 6 vol.% BZO DD thin films 

are not consistent with the decrement of Tc and c-axis lattice constant at BZO single doped YBCO 

nanocomposite thin films [36, 57].  

Considering a similar concentration of different doping materials, a higher FWHM of 6 

vol.% BHO DD film indicates a higher disturbance of YBCO lattice along ab-plane (such as ab-

plane buckling) in contrast to BZO DD film. While at moderate doping of 4 vol.% the reversed 

effect is observed in which latter has a less disturbance of YBCO lattice at ab-plane. Most 

interestingly, a considerably larger full-width-at a half maximum (FWHM) of the 2 vol.% BZO 

DD (~0.73), than that of the 2 vol.% BHO DD film (0.35) indicates the YBCO lattice is 

considerably more disturbed in the BZO DD nanocomposite film. This may explain its more severe 

Tc degradation to 85.71 K as compared to 87.08 K of the BHO DD film. Figure 16 right shows the 

resistance vs. temperature (R-T) curves of 2 vol.% BZO and BHO DD films at different H fields 
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of 0, 5.0 T, and 9.0 T. It shows the transition temperature (Tc) with increasing field is different for 

both films. With the increasing field of 5.0 and 9.0 T, the higher slope of R-T curves for BHO DD 

film is an indication of higher Tc values and may hold better superconducting properties than that 

of BZO DD nanocomposite thin films. Further, the slow drop of Tc with the fields is an indication 

of strong pinning potential (Up) in the former against the high magnetic field. As Jc ~Up/kBT, kB is 

the Boltzmann constant and T is the temperature, with strong pinning potential, it is expected to 

have a higher Jc (H) value for BHO DD film at low temperature.  

3.3 Nanostructures morphology 

Figure 17 illustrates the cross-sectional transmission electron microscopy (TEM) images 

of the 2 and 6 vol.% BZO DD and 2 and 6 vol.% BHO DD nanocomposite thin films. In 2 vol.% 

BZO and BHO thin films (Figures 17a-b), massive large nanoparticles of several nanometers (5-

15 nm) in diameter can be clearly visible. However, these images are not so clear to see the many 

extended BZO and BHO 1D APCs aligned in the c-axis of YBCO films. Some of them appear as 

1D APCs that indicates the mixed APCs landscape in 2 vol.% BHO DD films, which is in contrast 

to the typically only c-axis aligned BHO 1D APCs in the BHO  SD films [27]. Low resolution 

TEM images can also be found for mixed APCs [58] in BHO DD nanocomposite film. This 

confirms the mixed APC morphologies in the BZO DD samples reported earlier by Maiorov et al 

and a similar APC landscape in the BHO DD samples [34, 41]. In the 6 vol.% BZO DD films 

(Figure 17c) the c-axis aligned BZO 1D APCs (dashed lines), plus many shorter 1D APCs not 
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going through the film thickness are clearly visible. Some of the BZO APCs are splayed with 

respect to the c-axis, which may evolve to large splay angles at a larger film thickness.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17: TEM images of the (a)-(c) 2 and 6 vol.% BZO+3 vol.% Y2O3 (BZO DD), and (b)-(d) 2 and 6 vol.% BHO+3 

vol.% Y2O3 (BHO DD) doped YBCO nanocomposite thin film deposited on 100 STO substrate.  

This is quite different from the single doped (SD) case in which the BZO 1D APCs 

diameter remains almost a constant and the areal density of the c-axis aligned BZO 1D APCs 

(mostly through the film thickness) increases linearly with the BZO doping concentration from 2 

vol.% to 6.0 vol.%. conditions [34]. In the BZO DD case, the length of the BZO 1D APCs varies 

over a wide range from ~20 nm to 140 nm and the proportion of the BZO 1D APCs of different 

lengths depends on the BZO doping levels. In addition, ab-plane aligned 2D APCs and some 3D 
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APCs (marked with circles) are seen in 6 vol.% BZO DD films. The 2D APCs are of 5-10 nm in 

thickness and about 20 nm in lateral diameters. Similarly, at 6 vol.% BHO DD nanocomposite film 

higher concentration and more continuous 2D APCs in the ab-plane are clearly seen (Figure 17d) 

including the shorter BHO 1D APCs along c-axis together with 3D APCs. The orientation of the 

many c-axis aligned 1D APCs are switched to ab-plane alignment at 6 vol.% BHO DD films 

compared to splayed c-axis aligned 1D APCs in 2 vol.% BHO DD film. Based on the TEM 

observation, it can be concluded that in BZO and BHO DD films, mixed morphologies of 1D, 2D, 

and 3D APCs are formed. 

3.4 Electrical transport characteristics of BZO or BHO double 

doped YBCO nanocomposite thin films 

3.4.1 Critical current density Jc (H, T, θ) 

Figure 18 compares the Jc (H) curves of the 2 vol.% BZO or BHO + 3 vol.% Y2O3 (BZO DD 

and BHO DD nanocomposite thin films at 77 K and 65 K, respectively, at different orientations of 

the applied magnetic field. At H//c-axis (Figure 18a), the c-axis aligned 1D APCs are anticipated 

to provide strong correlated pinning at up to the so-called matching fields Hmax. The Hmax is 

determined by the areal density of the 1D APCs. The enhanced correlated pinning is typically is 

expressed quantitatively in the low  values calculated from the relation Jc (H) ~H- [14, 35] as 

compared to an alpha value () ~0.5 for the undoped YBCO [26]. At 77 K, the  value is ~0.49 

for BZO DD and ~0.27 for the BHO DD film, indicating more enhanced pinning in the latter.  
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The α value of the BHO DD nanocomposite film is ~0.27, which is considerably lower than 

that (~0.32) of the BHO SD film [24]. It indicates the improved pinning in the former compared 

to the latter ones. One possible explanation of the negligible lower pinning efficiency of the BZO 

1D APCs may be the lower Tc too close to 77 K at which Jc (H) is measured. 

Figure 18: Jc vs. H curves measured on 2 vol.% BZO DD (black) and BHO DD (red) samples  at (a)  =0o (H//c-axis);  

(b)  = 45o; and (c)  = 90o  (H//ab-plane) at 77 K (solid) and 65 K (open), respectively. 

This same Tc effect may explain the lower Jc (H) observed on the BZO DD film at   =45o (Figure 

18b) and =90o (Figure 18c) at 77 K. At 77 K and 1.0 T, Jc (H//c-axis) for the BHO DD (~0.24 

MA/cm2) is lower than ~ 7.0 mol % BZO + 7.0 mol%Y2O3 DD sample (0.45 MA/cm2) [59] and 3 

wt.% BZO+2 wt.% Y2O3 DD sample (0.4 MA/cm2) [52]. Although the Jc value in BHO DD sample 

is not superior to BZO DD, the lower α value for BHO DD (0.27) compared to BZO DD (0.31) 

[52] indicates the slightly stronger vortex pinning in the former. In addition, the higher Hmax of 

~3.5 T for BHO DD film as compared to BZO DD film’s 3.0 T [52] indicates a higher 

concentration of strong APCs in the former.  

2 vol.% 
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At 65 K, the Tc effect becomes insignificant at which comparison between Jc (H) curves are 

more significant. When H is parallel to c-axis, although the Jc (H) for the BZO DD film is higher 

than that of BHO DD film (Figure 18a), comparable α values of 0.17 and 0.16 respectively for 

these films are calculated. This suggests the most probable explanation for the lower Jc (H) in the 

BHO DD sample is the greater disturbance of the BHO 1D APC alignment in the c-axis. The 

overall higher Jc (H) in BZO DD films could be due to effectively longer length of 1D APCs that 

provide more effective pinning at H//c-axis at 65 K. The poorer c-axis alignment of BHO 1D APCs 

indeed shows a higher pinning efficiency at H ≥2.0 T at 65 K at both =45o (Figure 18b) and =90o 

(Figure 18c) which is observed as a crossover of the Jc (H) curves for these samples at ~2.0 T. The 

trends in the =45o and =90o cases indicate the BHO APCs enhance the pinning at wider angles 

in between the c-axis and ab-plane which is probably not associated to the small angle splay of the 

BHO 1DAPCs around the c-axis. Rather, it is argued that the presence of the secondary Y2O3 3D 

APCs affects the kinetic diffusion process during the BHO 1D APCs formation along the c-axis, 

resulting in many shorter, misaligned segments of the BHO 1D APCs. In one of the earlier studies 

on BZO single and doubled doped YBCO films, it was found that the BZO 1D APC length can be 

reduced by a factor of 2-3 from the former to the latter case at the same growth conditions [34]. In 

addition, the shorter 1D APCs tend to misalign away from the c-axis. A similar effect of 

misalignment of BHO 1D APCs is expected to happen in the BHO DD thin films. Considering the 

lower rigidity of the BHO 1D APCs than that of the BZO 1D APCs as shown in Figure 14, the 

level of the misalignment could be more significant in this case. 
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The benefits from the short and misaligned 1D APCs away from c-axis can be explained 

by a few indicators. First, it may result in reduced strain on the YBCO lattice, which seems 

consistent with the 1.3 K higher Tc observed on BHO DD nanocomposite film compared to that of 

BZO DD film. This leads to significantly higher Jc (H) in the former at higher temperatures, such 

as 77 K as shown in Figure 18. Second, it provides isotropic pinning at other H orientations away 

from H//c-axis. Indeed, at 65 K, significantly lower α values of 0.25 ( = 45o) and 0.19 ( = 90o) 

are calculated for the BHO DD film compared to that of 0.36 and 0.39 for the BZO DD counterpart. 

This results in smaller anisotropy of the α value at different H orientations. 

Figure 19: Jc vs. H curves measured on 3 vol.% Y2O3+6 vol.% BZO or BHO doped YBCO (BZO or BHO DD) 

nanocomposite films at (a) H//c-axis, (b)  = 45o; and (c) H//ab-plane nanocomposite films at 77 K (solid) and 65 K 

(open) respectively.  

In parallel, the Jc (H) curves of the 6 vol.% BZO DD (black) and BHO DD (blue) measured 

at the same temperature of 77 K (solid) and 65 K (open) are compared in Figure 19. With the 

increasing BZO and BHO concentration to 6 vol.%, the overall Jc (H) at H//c-axis is higher for 

BZO DD nanocomposite film for the entire field up to 9.0 T, and at both temperatures 77 K and 

65 K. Interestingly, the Tc values for 6 vol.% BHO DD film reduces to 85.8 K in contrast to Tc ~ 
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87.8 K for 6 vol.% BZO DD films (Table 1) probably influence the Jc (H) values at 77 K instead 

at 65 K. Despite the similar PLD thin film deposition process is used to these films, 3 vol.% Y2O3  

3 D APCs may influence differently to the pinning landscape of different doping materials. The 

similar trend of increasing Tc for 6 vol.% BZO DD film is also observed in 6 vol.% BZO single 

doped YBCO film on the vicinal substrate [17]. This could be due to the reduction of strain field 

overlap due to the presence of 3D APCs. Since Jc (H) is proportional to the effective length of 

APCs, the higher Jc (H) at H//c-axis at 65 K for 6 vol.% BZO DD possibly due to longer effective 

c-axis aligned BZO 1D APCs. The similar trend with comparable Jc (H) for the magnetic field (H) 

at θ=45o for both 6 vol.% BZO and BHO DD nanocomposite films observed at 65 K, where Tc 

effect is negligible, implies comparable pinning strength of 1D APCs (Figure 19b).  

At 65 K, Jc (H) at H//ab-plane overcomes for 6 vol.% BHO DD film at the higher field 

(>2.0 T) same as the 2 vol.% BHO DD film. The slow decrease of Jc at a high field when H//ab-

plane or about 1.7 times higher Jc (H) at H//ab-plane in average for the entire field up to 9.0 T 

compared to Jc (H) at H//c-axis at 65 K for 6 vol.% BHO DD indicates the strong pinning possibly 

due to ab-aligned BHO 1D APCs. However, the reverse results are observed in 6 vol.% BZO DD 

film in which higher Jc (H) along c-axis compared to ab-plane. The higher Jc (H) at H//ab-plane 

may be due to strong intrinsic pinning of layered structure or intrinsic pinning plus 1D APCs 

aligned along ab-plane. Intrinsic pinning may cause sharp Jc (θ) at θ=90o while pinning including 

1D APCs may cause wider peak at around θ=90o. The latter is more convincing in this case as the 

wider Jc (θ=90o) has been witnessed. This result is consistent with the APCs morphology shown 

in the TEM image Figure 17d.   
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3.4.2 Pinning force density Fp (H) 

Figures 20a-c compare the pinning force density (Fp) calculated from Fp=Jc x H at 77 K 

and 65 K as a function of H at different magnetic field (H) orientations of =0o, 45o, and 90o for 2 

vol.% BZO and BHO DD films respectively. All Fp (H) curves exhibit a typical inverted bell shape. 

The Hmax at the peak of the Fp (Fp,max) corresponds to the matching field associated to the areal 

density of the APCs. At =0o (Figure 20a), the comparable Hmax values for both films suggest that 

the concentrations of c-axis aligned 1D APCs are reasonably close to each other. However, the 

Fp,max  ~52.48 GN/m3 for BZO DD nanocomposite film is about 1.5 times higher than that of the 

BHO DD counterpart at 65 K, at which point the Tc effect is negligible. The comparable Hmax and 

higher Fp,max values in the former is consistent with our earlier argument of the effectively longer 

c-axis aligned BZO 1D APCs.   

This trend is certainly altered at =45o and 90o as shown in Figures 20b and 20c in which, 

higher Hmax and Fp,max  values were observed on BHO DD films at both 77 K and 65 K. At 65 K 

and at θ=45o, the Hmax ~8.5 T in the BHO DD film is more than twice of the ~4.0 T for the BZO 

DD film (Figure 20b). In addition, the Fp,max ~26.71 GN/m3 for the former is 1.14 times higher 

than that of 22.43 GN/m3 for the latter. A similar trend is also seen at H//ab-plane (Figure 20c), 
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Figure 20: Fp vs. H curves for 2 vol.% BZO DD (black) and BHO DD (red) films at (a) H//c-axis ( =0o) (b) H at = 

45o, and (c) H//ab-plane ( = 90o) at 77 K (solid) and 65 K (open), respectively.  

which indicates that the strong pinning in the BHO DD film case may be attributed the most 

probably to the shorter and misaligned BHO 1D APCs.  

Figure 21 shows the temperature dependence of Fp,max and Hmax as a function of 

temperature. The Fp,max and Hmax both decrease monotonically with the increasing temperatures 

for BHO DD sample at θ=0o and θ=45o. The comparable Fp,max  values (black) at these two angles 

in the temperature range of 50-77K, suggests BHO 1D APCs, instead of the Y2O3 3D APCs, are 
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probably the dominant at different H orientations. Much larger Hmax values at lower temperatures 

and at θ=45o as compared to the θ=0o, indicates a larger number of smaller BHO APCs are also 

effectively involved in the BHO DD nanocomposite film. Remarkably, the Hmax saturates at 8.5 T 

at 50 K in both orientations of θ=0o (H//c) and θ =45o. It suggests the same number density of BZO 

and BHO 1D APCs by the presence of the Y2O3 3D APCs are effective in vortex pinning. 

 

 

 

 

 

 

Figure 21: Temperature dependence of Fp,max (circle) and Hmax (triangle) measured at H//c-axis (solid), and H at θ =45o 

(open). The connecting lines are for eye catching purpose. Y-axis: left for Fp,max and right for Hmax. 

Figures 22a-c compare the Fp (H) curves measured at the same conditions for 6 vol.% BZO 

or BHO DD nanocomposite thin films respectively. The higher Fp, max for BHO DD film at H//ab-

plane is observed compared to Fp, max for BZO DD film at the same orientation of the field (H). At 

65 K, when H//c-axis, about 1.5 times higher Fp, max ~ 68.0 GN/m3 for BZO DD film compared to 

Fp, max ~45.78 GN/m3 for BHO DD film. The lower Hmax~7.0 T for BZO DD film compared to 

Hmax~8.5 T for BHO DD film implies that the weaker pinning strength (measured through Hmax) 
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of BZO APCs compared to BHO APCs along c-axis. While, Fp,max gap decreases when H is at 

θ=45o (Figure 22b) with Fp,max ~40.65 GN/m3 for BZO DD film. It is only about 1.3 times higher 

than BHO DD film due to the less effective BZO APCs at this angle.  

Figure 22: Fp vs. H curves measured on 3 vol.% Y2O3+6 vol.% BZO or BHO doped YBCO (BZO (black) or  BHO 

(blue) DD) nanocomposite films at (d)  =0o (H//c-axis), (e)  = 45o, and (f)  = 90o at 77 K (solid) and 65 K (open) 

respectively. 

 The higher Hmax ~6.0 T for BHO DD film compared to Hmax ~4.5 T for its counterpart 

suggests the higher pinning strength in BHO DD film. It further indicates the high effective areal 

density of segmented and misaligned BHO APCs. However, the same trend is not followed for the 

field H//ab-plane (Figure 22c) at which Fp,max >78.63 GN/m3for BHO DD is due to the strong 

pinning by BHO APCs in contrast to BZO APCs (Fp,max ~68.72 GN/m3). More interestingly, the 

constant gap of Fp,max beyond 6.0 T, at H//ab-plane explores the fact that the almost an equal 

number of effective 1D APCs are involved in vortex pinning in both cases. The constantly 

increasing Fp,max at H >6.0 T for 6 vol.% BHO DD also suggests that BHO APCs has more 

tunability in the presence of Y2O3 in contrast to BZO APCs. It further suggests that the orientation 

of 1D APCs more likely changes from c-axis alignment to ab-plane alignment with increasing 
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BHO concentration to 6 vol.% compared to similarly doped BZO film (Figures 22b and c). This 

result is different from BZO DD case in which 6 vol.% BZO DD film shows more isotropic at low 

temperature (≤ 65 K) in compared to lower BZO concentration [60]. The weaker rigidity in the 

BHO DD film enables a greater disturbance of the 1D APCs alignment to allow the BHO APCs to 

form in a more isotropic pinning landscape at low doping concentration, while at high doping of 6 

vol.% BZO DD, the reversed results are obtained.  

3.4.3 Angular dependent critical current density Jc (θ) 

To further explore the isotropic pinning, the Jc (θ) curves were measured at different 

magnetic fields for the entire angular range from H//c-axis to H//ab-plane, and at 77 K and 65 K 

as shown in Figure 23. The argument of the isotropic pinning is supported by the less variation i.e. 

more isotropic Jc () curves observed on 2 vol.% BHO DD nanocomposite film as compared to 

the 2 vol.% BZO DD ones at both 77 K (Figure 23a) and 65 K (Figure 23b). One of the major 

differences in Jc () curves of these thin films is that the absence of the Jc valley as  is in between 

H//c-axis (=0º) and H//ab-plane (=90º) for the BHO DD nanocomposite film. The appearance 

of the Jc valley is the consequence of weaker pinning at this angular range as compared to the 

stronger pinning at H//c-axis (=0) due to very well aligned with the c-axis 1D APCs, and at H//ab-

plane (=90º) due to the intrinsic pinning by the crystalline structure of YBCO nanocomposite 

film.  

The appearance of such a Jc valley leads to the Jc anisotropy with respect to magnetic field 

(H) orientations. This Jc anisotropy with respect to the H orientations is quantitatively expressed 
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using the normalized Jc variation between the highest Jc (Jc, max) at the larger of the Jc peaks and 

the lowest at the Jc valley by (Jc, max - Jc, min) /Jc, min. The larger the difference between the Jc peaks 

and Jc trough (Jc, min) for the entire angular range as in the most 1D APC/YBCO nanocomposite 

thin film, the larger the Jc anisotropy is observed [24, 25]. For example, the Jc anisotropy is about  

 

 

 

 

 

 

 

 

 

 

Figure 23: Angular dependence of Jc measured on 2 vol.% BZDD (black) and BHO DD (red) nanocomposite thin 

films (a) at 1 T (circle) and 3 T (diamond) at 77 K (b) 1 T (circle), 5 T (triangle), and 9 T (diamond) at 65 K 

respectively.  
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100% for 2.0 vol.% BZO SD films at 77 K and 1.0 T [34], which is similar to the 3.0 vol.% BSO 

SD films [33]. However, higher Jc anisotropy of 160.0% for BZO DD nanocomposite film (Table 

1) with Jc, min =0.59×105 A/cm2 in this study suggests that most BZO 1D APCs are remained 

aligned to c-axis improving correlated pinning. At 77 K, and at H=1.0 T, the overall Jc () values 

for the entire angular range from H//c-axis (=0o) to H//ab-plane (=90o) are higher in the BHO 

DD film in this study than in the BHO SD films reported previously [24]. In addition, the Jc 

anisotropy is about 41% for the BHO DD film, which is about a half of ~80% for the BHO SD 

film reported in ref. [57]. This result seems consistent with the higher orientation tunability of the 

BHO 1D APCs in the double doped (DD) nanocomposite thin films as predicted in Figure 14.  

The Jc anisotropy is calculated as about 40% for the 2 vol.% BHO DD film measured at 77 

K at 1.0 T. Interestingly, Jc anisotropy is almost the same ~42-43% on both 2 vol.% BZO and BHO 

DD nanocomposite films at the moderate field of 5.0 T and at 65 K. This value is further reduced 

to about 18% for the 2 vol.% BHO DD films at 65 K and 9.0 T (red diamonds), in contrast to about 

100% for the BZO DD counterpart (black diamonds) as shown in Figure 23b. This result illustrates 

the importance of engineering the APC morphology and orientation.  

Figure 24 compares the Jc (θ) curve of 6 vol.% BZO and BHO DD nanocomposite thin 

films at the magnetic field of 5.0 T and 9.0 T for the entire angular range from H//c-axis to H//ab-

plane, and at 65 K. Interestingly, these curves do not follow the same trend as 2 vol.% DD films 

and at 65 K (Figure 23b). The overall higher and increased value of Jc (θ) for a wide angular range 

of 6 vol.% BZO DD film is indication of strong and effective pinning by mixed APCs morphology 
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compared to 6 vol.% BHO DD film. There is an absence of Jc peaks at H//c-axis in 2 vol.% BHO 

DD film (Figure 23b) appears at 6 vol.% BHO DD films (Figure 24). These Jc peaks are more 

clearly observed at H//c-axis and H//ab-plane for both 6 vol.% DD films.   

The Jc anisotropy of 6 vol.% BZO DD at 5.0 T is about 60% compared to 111% for BHO 

DD film. In addition, at 9.0 T, Jc anisotropy is about 92% for the BZO DD film which is almost 

half of the BHO DD film (173%). The increasing Jc anisotropy in BHO DD film may be due to 

increasing Jc peak towards the ab-plane instead Jc peak at c-axis. This is different from 6 vol.% 

BZO DD film at which Jc peaks appear at around c-axis (Figure 24).  

 

 

 

 

 

 

 

 

Figure 24: Angular dependence of Jc measured on 3% Y2O3+6 vol% BZO or BHO doped YBCO (BZO or BHO 

DD) nanocomposite films measured at 5.0 T (circle), and 9.0 T (diamond) at 65 K respectively. 
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It means at 6 vol.% BZO DD film, the overall more isotropic pinning is observed in contrast 

to 6 vol.% BHO DD film which is not the same as in low 2 vol.% BHO doping case (Figure 23). 

This illustrates that the influence of Y2O3 in BZO and BHO 1D APCs is different, more in the 

latter compared to the former. In one of our separate studies, 6 vol.% BZO DD film shows the 

reduced Jc anisotropy of ~44% at 77 K and at 1.0 T which is considerably less than the Jc 

anisotropy~57% of 6 vol.% BZO SD film, both fabricated at 5o STO vicinal substrate [61]. This 

further illustrates that the combination of double doping and vicinal substrate would be a promising 

technique to enhance strong and isotropic pinning. However, the study of the BHO double doped 

YBCO nanocomposite film on the vicinal substrate has not been done till date. This would pose 

valuable to understand the strained mediated self-assembly of the APCs morphology for strong 

and isotropic pinning.  

3.5 Microscopic adaptation of APCs in BHO double doped 

nanocomposite thin films  

Previously explored in this paper, the low doping (2.0 vol.%) of BHO in double doped 

YBCO nanocomposite films provides strong and isotopic pinning reducing Jc anisotropy to about 

20% at high field of 9.0 T and at 65 K. While increasing BHO doping to 6 vol.% Jc anisotropy is 

increased due to strong pinning along ab-plane instead along c-axis. Moreover, the theoretical 

model [20, 53] and experimental results verify that the BHO 1D APCs are more flexible to “tuned” 

away from the c-axis alignment in APC/YBCO nanocomposite films. Such results encourage to 

explore the APCs morphological adaption of BHO 1D APCs to Y2O3 3D APCs at a moderate 
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doping concentration of BHO in double doped YBCO nanocomposite film. This will provide an 

opportunity to explore and generate strong and isotropic pinning landscape through mixed 

morphology of APCs. 

Thus, in this section, it is explained that the systematic study of the electrical transport 

properties Jc (H, T, θ) of 2.0-6.0 vol.% BHO plus 3 vol.% Y2O3 doped YBCO (BHO DD) 

nanocomposite thin films and APC nanostructures of these films in TEM images. With a moderate 

BHO concentration in the DD films, we aim to understand the reasonable doping concentration on 

the mixed 1D+2D+3D APCs morphology to generate strong and isotropic pinning landscape. 

Figure 25 shows the low and high magnification cross-sectional TEM images of the 4 

vol.% BHO DD films, respectively. As this BHO concentration of BHO doping, the APC 

morphology becomes more mixed with many 1D, 2D, and 3D APCs visible clearly which is 

different from the 2 vol.% and 6 vol.% BHO DD films as given in Figure 17. At 2 vol.% only few 

3D APCs with more c-axis aligned APCs are observed while at 6 vol.% many 2D APCs along 

with ab-plane aligned 1D APCs are also visible. However, at 4 vol.% BHO DD film many through-

thicknesses 1D APCs are truncated by 2D APCs in the ab-plane into shorter segments along the 

c-axis. Some of these 1D and 2D APCs are not connected, with 3D APCs located in between the 

nearest neighbors. 
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Figure 25: TEM images of 4 vol. % BHO DD nanocomposite films left: at Low magnification and right: at high 

magnification. Scale bar 50 nm and 5 nm for low and high magnification respectively. 

A zoom-in view of the microstructure of the 4 vol.% BHO DD film reveals the APCs 

typically have their smaller dimension on the order of 5-10 nm. Since the Y2O3 doping is the same 

in all BHO DD samples, the increased 2D and 3D APC concentrations in the 4 vol.% BHO DD 

nanocomposite film as compared to the 2 vol.% BHO DD film indicates the increased BHO doping 

increases the concentrations of 1D, 2D and 3D APCs proportionally. This trend of switching of 

1D BHO APCs to other morphologies continues with increasing BHO concentrations. At 6 vol.% 

BHO higher concentration and more continuous 2D APCs in the ab-plane are clearly seen (Figure 

17), in addition to shorter BHO 1D APCs along c-axis together with 3D APCs. Based on the TEM    

observation, it can be confirmed that in BHO DD films, mixed (1D+2D+ 3D) APCs morphology 

is formed as illustrated schematically in Figure 26.  
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Figure 26: Schematic of the microstructure distribution in the c-oriented BHO double doped YBCO film matrix. Color 

codes: BHO 1D, 2D and 3D APCs (black), Y2O3 3D APCs (red). 

Figures 27a-b and 27c-d compare the Jc (H) and Fp (H) curves measured on 2, 4, and 6 

vol.% BHO DD films at the field orientations H//c-axis (θ=0o) and H at θ=45o at 77 K (solid) and 

at 65 K (open) respectively. At θ=0o, the 4 vol.% BHO DD film (black) has the highest Jc (H) at 

both 77 K and 65 K despite having a slightly lower Tc than that of the 2% BHO DD sample. The 

Jc (H) curves for the 2 and 4 vol.% BHO DD films have qualitatively similar trends at both 

temperatures. The different trend of the Jc (H) curve for the 6 vol.% BHO DD sample at 77 K may 

be attributed to the lower Tc (Table 1) because, at 65 K, Jc (H) curves show the similar trend. 

However, the lower Jc (H) values of the 6 vol.% BHO DD film may be partly due to the reduced 

areal density of the c-axis aligned BHO 1D APCs and reduced pinning efficiency of segmented 

short BHO 1D APC as observed in TEM image at Figure 17. The alpha (α) values for the 2 and 4 

vol.% BHO DD films are 0.26 and 0.35 at 77 K, and 0.16 and 0.13 at 65 K respectively indicate 

an enhanced correlated pinning by the c-axis aligned BHO 1D APCs and is increased at lower 
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temperatures. In contrast, a significantly higher α ~0.64 value at 77 K and much lower α ~0.2 at 

65 K for the 6 vol.% BHO DD film supports our earlier argument of the combined effect of the 

lower Tc and lower pinning efficiency of the short c-axis aligned BHO 1D APCs at 77 K. This 

suggests a portion of c-axis aligned 1D APCs switches to the ab-plane aligned in this film which 

reflects on the high Jc (H) at H//ab-plane (Figure 27a).  

The highest Jc (H) of the 4 vol.% BHO DD film at both 77 K and 65 K lead to the highest 

overall Fp (H) values as well. All Fp (H) curves in Figures 27c-d have inverted bell shape with the 

peak value defined as Fp, max at Hmax. At H//c-axis and neglecting Tc effect at 65 K, the Fp, max ~68.0 

GN/m3 at Hmax ~7.0 T can be observed for the 4% BHO DD film, which is higher than the 60.4 G 

N/m3 and 4.0 T of the BHO SD films with the comparable doping [27], illustrating the benefit of 

the DD in terms of both enhanced APC concentration. In addition, increasing BHO concentration 

beyond ~4 vol.% adds on additional APCs as reflected in the further enhanced Hmax~8.5 T for 6% 

BHO DD at 65 K (Figure 27c). Although the additional BHO doping adds more APCs the Fp, max 

~46.0 GN/m3 for the 6 vol.% BHO DD film indicates the additional 2 vol.% BHO doping may not 

form 1D APCs through thickness as expected in 6 vol.% BHO DD film and confirmed in TEM. 

The mixed APC morphologies shown in the TEM analysis (Figures 17 and 25) of the BHO DD 

samples are expected to change the anisotropy of Jc considerably. 
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Figure 27: J
c
 vs. H and F

p
 vs. H curves measured on 2,4 and 6% BHO DD nanocomposite films at (a) and (c) H//c-

axis (θ=0o), (b) and (d) H at  = 45
o
 at 77 K (solid) and 65 K (open), respectively. Color codes follow the same for all 

figures. These Figures are adapted from Gautam et.al, SuST, 2018 [58]. 

In contrast to the BHO SD samples in which BHO 1D APCs are long and well aligned at the c-

axis only, the BHO APCs in the DD films have mixed APCs morphologies. A combination of 1D 

short segments of BHO along the c-axis for strong correlated pinning and irregular shaped APCs 

of BHO and Y2O3 that can provide pinning in other directions. The concentration of the c-axis 

aligned 1D BHO APCs increases with BHO doping in the range of 2-6 vol%. 
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The similar increase of the concentration of the irregular shaped 3D APCs can be explained as a 

strong pinning at θ=45o in 4 vol.% BHO DD nanocomposite thin film, while leads to their merge 

into planar APCs along the ab-plane in the 6% BHO DD thin film. This results in decrease 

(increase) of the 3D (2D) APCs as the BHO doping is increased from 4 vol.% to 6 vol.% (Figures 

17 and 25). 

 

        

 

 

  

  Table 2: Alpha (α) values of 2, 4, and 6 vol.% BHO DD films at different field orientations and temperatures. 

At H at θ=45o (Figure 27b), the Jc (H) curves for the 2, 4, and 6 vol.% BHO DD 

nanocomposite films have similar trends at 77 K and 65 K to the case of H//c-axis, except less H 

susceptibility of Jc (H) for the 6 vol.% BHO DD film. In addition, the three Jc (H) curves almost 

overlap at the lower temperature of 65 K, indicative of similar pinning mechanism at these BHO 

concentrations. This argument is consistent to the comparable α values of 0.25, 0.23, and 0.24 

(Table 2) for the 2, 4, and 6% BHO DD films respectively at 65 K. However, the Fp (H) at θ= 45o 

(Figure 27d) reveals different Hmax values for these three samples. The highest Fp,max of 45.0 

GN/m3 is still for 4 vol.% BHO DD film indicates the effective pinning by mixed APCs 

morphology. A comparable Fp,max of ~ 28 GN/m3 and 31 GN/m3 respectively for 2 vol.% and 6 

Samples 

alpha (α) values 

77 K 65 K 

H // c H at θ=45
o H // ab H // c H at θ=45

o H // ab 

2.0 % BHO DD 0.26 0.29 0.23 0.16 0.25  0.20 

4.0 % BHO DD 0.35 0.40 0.40 0.13 0.23  0.24 

6.0 % BHO DD 0.64 0.59 0.27 0.20 0.24 NA 
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vol.% BHO DD films, the comparable Hmax ~8.0 and 8.05 T at 65 K suggests a comparable pinning 

efficiency of 3D APCs (Figure 27b). However, the drop to the lowest Hmax ~6.0 T for the 6 vol.% 

BHO DD film indicates the reduced areal density of effective APCs, which could be either Y2O3 

3D APCs or short/misaligned segment of 1D APCs. Assuming the Y2O3 3D APCs concentration 

is not changed in entire films, the decrease in the concentration of 3D APCs may be attributed to 

the complete switch of c-axis aligned BHO 1D APCs to ab-aligned 2D APCs in the 6 vol.% BHO 

via connection of those segmented ab-aligned APCs in 4% BHO DD nanocomposite film. This 

argument is consistent with the TEM observation discussions in Figures 17 and 25. 

 

Figure 28: J
c
 vs. H (a) and F

p
 vs. H (b) curves measured on 2,4 and 6% BHO DD nanocomposite films at H//ab-plane 

(θ=90o) at 77 K (solid) and 65 K (open), respectively. Color codes follow the same for all figures. 
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This argument of switching of c-axis aligned 1D APCs to ab-plane aligned APCs is also 

supported by the much improved Jc (H) and Fp (H) curves of the 6 vol.% BHO DD nanocomposite 

film at H//ab-plane (Figures 28a and 28b). The increasing trends of the ab-aligned APCs pinning 

efficiency are expressed in Hmax and Fp,max with increasing BHO doping can also be found in 

Figures 29a-b. At 65 K, the Hmax >9.0 T (instrument limit) for the 4.0 vol.% and 6 vol.% BHO DD 

thin films is higher than Hmax ~6.5 T for 2 vol.% BHO DD film at H//ab-plane (θ= 90).  

Figure 29: BHO doping concentration dependence of (a) H
max

 and (b) F
p ,max

 measured at 77 K (solid) and at 65 K 

(open), on  H//c-axis (circle), H at θ =45 degrees (triangle) and H//ab-plane (diamond) of 2, 4 and 6 vol.% BHO DD 

nanocomposite films.  indicates the value from the instrument limit. Connecting lines are for eye catching purpose. 

In addition, the Fp,max  at H//ab-plane is increased by 1.5 times for each additional 2.0 vol.% BHO 

doping concentration (Fp,max ~31.0 GN/m3, 54.0 GN/m3, and 79.0 GN/m3 for 2, 4, and 6 vol.% 

BHO DD films respectively) as shown in Figure 29. The significantly higher Fp,max ~79.0 GN/m3
 

at H//ab-plane compared to Fp,max ~45.78 GN/m3 at H//c-axis for the 6 vol.% BHO DD film (Figure 

29) is consistent with the TEM images, and support the argument of switching of 1D APCs from 
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c-axis to ab-plane alignment. This could be possible by decreasing compressive strain along c-axis 

added by Y2O3 and increasing tangential strain along ab-plane with BHO concentration correlates 

with the APCs morphology observed in Figure 17 for 6 vol.% BHO DD film. This trend is 

contrasting to the similar doping of BZO in 6 vol.% BZO DD film at which Jc (H//c-axis) is 

enhanced [60].     

Figures 30a-b illustrate the Jc (θ) curves at the 1.0 and 3.0 T at 77 K, and 1.0, 5.0, and 9.0 

T at 65 K, respectively. With increasing doping concentration of BHO, the appearance of Jc valley 

in these Jc (θ) curves for the entire angular range from H//c-axis to H//ab-plane is an indication of 

decreasing isotropic pinning with increasing BHO doping at given field and temperature. The 

much reduced Jc anisotropy~40% for 2% BHO DD than Jc anisotropy~104% for 4 vol.% BHO 

DD at 77 K, 1.0 T, and Jc anisotropy ~18% which is 3.0 and 9.0 times less compared to Jc 

anisotropy~56% and 173% for 4 and 6% BHO DD film respectively at 65 K and 9.0 T (Table 1) 

indicates the strong isotropic pinning in the former compared to the latter two films. The overall 

uplifted Jc (θ) curve with two comparable distinct peaks at H//c-axis and H//ab-plane at H~ 5.0 and 

9.0 T for 4 vol.% BHO DD film show enhanced strong pinning and can be attributed to the mixed 

APCs morphology observed in TEM images of 4 vol.% BHO DD film (Figure 25). At 65 K, the 

highest Jc anisotropy ~111% and 173% at 5.0 and 9.0 T respectively for 6% BHO DD film could 

be due to lack of 3D APCs or the higher Jc peaks at H//ab-plane due to strong pinning by ab-

aligned 2D APCs. However, equivalent Jc,min with comparable Jc (θ=30-60o) for 2 vol.% and 6 

vol.% BHO at 65 K and 9.0 T explores; the increased BHO doping concentration beyond the 
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threshold value (4 vol.% in this study) doesn’t improve the isotropic pinning. This is in contrast to 

6 vol.% BZO concentration in BZO DD films [60] at their optimal growth temperature. It further 

suggests that possibly Y2O3 3D APCs or BHO 3D APCs are more effective than misaligned BHO  

Figure 30: Angular dependence of J
c
 measured on 2, 4 and 6 vol.% BHO DD nanocomposite films at (a) 77 K, and 

1.0 T (solid) and 3.0 T (open), (b) 65 K, and 1.0 T (solid), 5.0 T (open), and 9.0 T (half filled) circles. Color codes 

follow the same for both figures. These Figures are adapted from Gautam et.al, SuST, 2018 [58]. 

1D APCs at the given angular range. The wider Jc peak at H//ab-plane observed in 4 vol.% and 6 

vol.% BHO films attribute to the possible switch of 1D APCs from c-axis alignment to ab-plane 

alignment. A sharp peak is expected in case of intrinsic pinning by YBCO structure [62, 63]. It is 

consistent and comparable to the switching of BZO 1D APCs from c-axis to ab-plane in the vicinal 

substrate as the vicinal angle increased to 15o [62, 63]  Comparing the Jc (θ) at 77 K and at 1.0 T 

[62, 63], the similar trend of  increasing Jc (θ) curve towards the θ=90o (H//ab-plane) especially 

away from θ=30o attributes the distribution of BZO 1D APCs and their morphology should be 

similar to 1D APCs in 6 vol.% BHO DD with additional Y2O3 3D APCs in the film. 



 

66 

  

3.6 Conclusions  

In this study, we probe the tunability of the 1D APCs alignment along the c-axis by a 

secondary Y2O3 3D APCs and explore the strong and isotropic pinning in BZO (or BHO)/YBCO 

nanocomposite films. The tunability agrees with the nanostructures of the APCs, which in turn 

affects the Jc anisotropy with respect to the magnetic field (H) orientations. Electrical transport Jc 

(H, T, θ) is measured for varying doping concentration 2 vol.%-6 vol.% in the temperature range 

of 50-77 K at the magnetic field up to 9.0 T, and H at different orientations. The conclusions are 

summarised as follows:  

The higher tunability of the BHO 1D APCs by the Y2O3 3D APCs are found experimentally 

and agree well the theoretical prediction compared to the higher rigidity the BZO 1D APC 

counterparts. Hence, a significantly reduced Jc anisotropy is calculated in 2-4 vol.% BHO DD 

films due to the formation of short, misaligned and mixed APCs morphology enhancing isotropic 

pinning. Specifically, at the 2.0 vol.% BHO doping concentration Jc anisotropy is reduced to ~18% 

which is about 3.0 to 5.0 times lower than that of higher 4 vol.% and 6 vol.% BHO doping 

concentration respectively. 

At 6.0 vol.%, doping concentration the overall higher Jc (θ) values are observed in BZO 

DD samples for wide angular range from H//c-axis at 65 K except around H//ab-plane. The higher 

Jc peak at H//ab-plane (θ=90o) is attributed to the effective BHO APCs to ab-plane alignment at 

the higher strain field overlap as compared to the BZO counterparts.  
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A systematic change in the proportion of each kind of APCs has been observed with an 

increasing BHO doping concentration from 2 to 6 vol.%. This is primarily due to the switch of the 

longer (mostly through film thickness) BHO 1D APCs (in c-axis) at lower BHO concentrations to 

the shorter and more misaligned segments at higher BHO concentrations. Such a switch is a 

consequence of the higher adaptability of the BHO APCs to the presence of the Y2O3 3D APCs.  

It is expected to impede the diffusion of BHO during the nucleation and growth of the films 

introducing local strains on the APC/YBCO nanocomposites to prevent the formation of perfectly 

c-axis aligned BHO 1D APCs. The overall best Jc (H, θ) has been observed for 4 vol.% BHO DD 

nanocomposite films at 65-77 K. This suggests double doping as an effective approach for the 

generation of mixed APCs morphology and engineering the strong and isotropic pinning 

landscape.  
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Chapter 4 Pinning Efficiency of BZO and BHO 1D 

APCs and the Interface Effect 

A key to the high Jc (H) for practical application of HTS materials is due to the strong correlated 

pinning by c-axis aligned 1D APCs in rare earth RE (=Y, Sm, Gd) Ba2Cu3O7 (REBCO) 

nanocomposite thin films. Several materials such as BaZrO3 (BZO) [15, 27, 28, 59, 64],  BaSnO3 

(BSO) [27, 65, 66], BaHfO3 (BHO) [8, 67, 68], and YBa2(Nb/Ta)O6 [69] have been studied for the 

self-assembled 1D APCs along the c-axis of the films during nucleation and growth process. They 

provide strong pinning of the vortices when the applied magnetic field H is along the axial direction 

of the 1D APCs. Chapter three discussed qualitatively how elastic properties of the material such 

as rigidity, elastic constant, lattice mismatch, and doping concentration play a deterministic role 

on APCs morphology. In particular, the comparable diameter of about 5-6 nm for the BHO and 

BZO 1D APCs in REBCO matrices, the BHO APCs [30] shows the more adaptive behaviors to 

the local strain generated by a secondary Y2O3 3D APCs doping and hence form mixed APCs 

morphology for isotropic pinning landscape [13]. However, the pinning efficiency of the 1D APCs 

has not been studied systematically that could be affected by the interface of 1D APCs with the 

REBCO matrix. The higher adaptivity, smaller lattice mismatch of BHO with YBCO together as 

compared to that of the BZO/YBCO smaller interface energy is anticipated. This raises a 

fundamental question on what determines the pinning efficiency of different 1D APCs and to what 

extent the interfaces would affect the pinning efficiency of the individual BHO and BZO 1D APCs. 
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Controlling the interface effect on pinning efficiency of 1D APCs is challenging for optimal 

pinning efficiency. 

This chapter explores the answers to these questions and investigates the relation between 

1D APC/YBCO interface and the pinning efficiency of 1D APCs of BHO and BZO doping 

materials. The work in this chapter presents a study of the transport Jc measurement at 65-77 K 

and magnetic field (H) up to 9.0 T for 2-6 vol.% BHO/YBCO and BZO/YBCO nanocomposite 

films. For nanostructure APCs morphology and interface with YBCO, high-resolution 

transmission electron microscopy (HRTEM) images will be discussed. The pinning efficiency is 

evaluated from the maximum value (Fp, max) of the force density Fp=Jc×H and its location at Hmax. 

Intriguingly, a highly coherent BHO 1D APC/YBCO interface is revealed even at high BHO 

doping concentration of 6 vol.%, in contrast to a semi-coherent BZO 1D APC/YBCO interface 

with many interfacial dislocations. This leads to a significant effect on the pinning efficiency of 

the 1D APCs in YBCO matrix. 

4.1 The effect of APC/REBCO interface on pinning efficiency of 1D 

APCs: a qualitative interpretation  

 Theoretically, the pinning potential energy is proportional to the sharpness of the APC, 

(insulator)/REBCO (superconductor) interface and hence the interface is a key to determining the 

high pinning efficiency. For an atomically sharp interface, an optimal pinning efficiency is 

anticipated. The interface between the 1D APC and REBCO matrix is generally strained and 

defective. Figure 31 illustrates a schematic of the magnitude of the superconducting order 
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parameter |ϕ| as a function of the distance from the 1D APC added to the HRTEM image of a 

strained interface at BZO 1D APC/REBCO reported by Cantoni et al [38]. In addition, 

theoretically calculated strain distribution based on a coherent APC/REBCO interface (blue curve 

in Figure 31b), and the experimentally measured one (red curve in Figure 31b) is compared to 

illustrate the two Tc regions in the column surrounding a 1D APC. The larger column of Tc1< 

Tc,YBCO (the Tc of the original YBCO) is primarily due to the strain originated from the BZO/YBCO 

lattice mismatch along the c-axis. The even lower Tc2 in the smaller column immediately outside 

the BZO 1D APC is attributed to the defects especially oxygen deficiencies nearby the interface 

as marked by white arrows in Figure 31a. This is the main cause of the deviation of the strain 

distribution in this column from the theoretical curve for a coherent BZO/REBCO interface.This 

means the pinning potential well height (red) and hence the pinning efficiency of the BZO 1D 

APCs would be much reduced since Tc2 < Tc1 as suggested in [38]. The oxygen deficient column 

of few nm in thickness leads to a lower Tc2 ~60-70 K [38]  than the Tc1 (5-6 K lower than Tc,YBCO) 

in the larger strained column [25, 38, 39]. The detrimental impact of the semi-coherent BZO 1D 

APC/YBCO interface may be attributed quantitatively to the large lattice mismatch along the c-

axis of YBCO and BZO and higher rigidity of the BZO APCs. On the other hand, the coherent 

interface with strained YBCO/APC lattice attributed to the smaller lattice mismatch along c-axis 

as well as less rigidity of APCs which may enhance pinning potential well height, hence pinning 

efficiency [39].  
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Figure 31: (a) HRTEM of BZO/YBCO interface (b) calculated strain (blue) and HRTEM measured strain distributions 

in YBCO around the 1D BZO/YBCO (red). This Figure is adapted from Cantoni et.al, NM, 2013 [38], (c) schematic 

of the cross-sectional view of the superconducting parameter |ϕ| as function of the distance from the BZO 1D APC. 

Two concentric YBCO columns are depicted in the figure surrounding the 1D APC with the larger one representing 

the strained YBCO of T
c1

 and the smaller one of lower T
c2

 due to defective semi-coherent BZO 1D APC/YBCO 

interface. The blue arrow illustrates the effect of BZO/YBCO interface may repair inducing cations to reduce the 

oxygen disorder and hence raise the T
c2

.  

4.2 Nanostructure analysis and accommodation field (H*) 

Figures 32a-f illustrate the cross-sectional HRTEM images of the 2-6 vol.% BZO and BHO 

APC/YBCO nanocomposite films with the 1D APCs extended through the film thickness. The 

average diameter and spacing between 1D APCs are quantified analyzing 80-100 cross-sectional 
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TEM images at different areas of each sample [34]. The details are summarized in Table 3. 

Although the diameter of BZO 1D APCs increases from 5.2 nm to 5.9 nm [36], the decreasing 

average spacing (measured from center to center of the nearest-neighbors 1D APCs) 

monotonically from about 20 nm to 12 nm [62, 63] indicates a monotonic increase of BZO 1D 

APC areal concentration n*BZO with the BZO doping concentration from 2.0 vol.% to 6.0 vol.%. 

Assuming square lattice, the H* is estimated to be 5.2 T, 9.2 T, and 14.3 T at 2.0 to 4.0, and to 6.0 

vol.% BZO doping levels, respectively (Table 3).  

 

 

 

 

 

 

Figure 32: Cross sectional TEM images of YBCO nanocomposite films doped with: (a) and (d) 2 vol.%, (b) and (e) 

4 vol.%, and (c) and (f) 6 vol.% BZO and BHO respectively. Scale bars are 20 nm.   

The linearly increasing n*BZO with the BZO doping is a manifestation of defective BZO 1D 

APC/YBCO interface column of 1-2 nm in thickness surrounding the BZO 1D APC. This effect 

not only releases the strain to almost zero at the interface but also reduces the strain on YBCO 

significantly [38]. As discussed in previous sections, severe oxygen deficiency 1-2 nm next to 
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BZO/YBCO is the main reason of poor pinning efficiency of 1D APCs than that further away due 

to the defect formation at the highly strain BZO 1D APC/YBCO interface [38, 58, 70]. Tc is 

expected to decrease sharply to around 60-65 K [71] due to the oxygen deficiency condition that 

reduces the pinning potential height, hence pinning efficiency of the BZO 1D APC (a schematic 

diagram is shown in Figure 31). 

` The spacing between BHO 1D APCs is found to first decrease from ~30 nm to ~13 nm and 

then increase to ~16 nm when BHO concertation increases from 2.0 to 4.0, and to 6.0 vol.%. The 

accommodation field (H*) that relates inversely to the spacing between the 1D APCs is estimated 

to be 2.3 T, 12.2 T, and 8.0 T, respectively (Table 3). H* is correlated with an areal density of 

APCs, and high H* is desired for high field application. It is assumed to be an optimal vortex 

pinning when Hmax would be closed to the H*. The H* has been found to be proportional linearly 

to the impurity doping concentration [17, 63, 72], the H* indeed increases linearly with the BZO 

doping in the range 2.0-6.0 vol.% as shown in Table 3.   

Table 3: A summary of the Tc, YBCO c-axis lattice constant, 1D APC diameters (D), 1D APC average spacing d 

(center-to-center) with uncertainty of 1 nm, accommodation field H*=Φo/d2 for the 2.0-6.0 vol.% BZO 1D 

APC/YBCO and BHO 1D APC/YBCO nanocomposite films measured in this work. The reference YBCO c-axis 

lattice is 11.68 Å and its Tc is 90 K (not included in the table). 

Sample ID T
c
 (K) 

C-axis 

lattice 

constant 

(Å) 

FWHM of 

YBCO 

(005) 

peak 

  D 

(nm) 
d 

(nm)±1 

(nm) 
H* 

(T) 

Lattice 

mismatch 

with c-axis 

of YBCO 
2 vol.% BZO/YBCO 89.27 11.82 0.35 5.2±0.5 20 5.0 

7.1% 4 vol.% BZO/YBCO 87.48 11.71 0.34 5.8±0.6  15 9.2 
6 vol.% BZO/YBCO 86.90 11.67 0.27 5.9±0.9  12 14.3 
2 vol.% BHO/YBCO 88.85 11.77 0.42 4.6±0.5 30 2.3  

6.7% 4 vol.% BHO/YBCO 85.84 11.77 0.51 4.8±0.4 13 12.2 
6 vol.% BHO/YBCO 78.50 11.78 0.49 5.1±0.7 16 8.0 
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A peak of BHO 1D APC areal concentration n*BHO (and hence H*) at 4.0 vol.% BHO doping 

indicates the threshold of the BHO doping concentration (4.0 vol.% in this study). The H* of 12.2 

T of the 4.0% BHO/YBCO in this study is much higher than the H*~5.0 T reported for a 4.7 vol.% 

BHO/YBCO film [27]. Considering a higher doping range up to ~10 vol.% in the BZO/YBCO 

case [72], as compared to the 4.0 vol.% BHO/YBCO counterpart, the threshold value depends on 

the type of APCs materials and is the most probably due to the strain field distribution around the 

different types of APCs. It is explained in the elastic strain energy calculations [20] in which lattice 

mismatch, elastic constant, and interface strain are taken as the input parameters. The smaller linear 

n* vs. APC doping concentration range in the BHO/YBCO case implies a larger scale of strain 

field around an individual 1D APC, which prevents the formation of additional 1D APCs at above 

4-5 vol.% based on this work and previous reports [24, 27, 58, 67]. Figure 33 depicts the HRTEM 

and fast Fourier filtered images (FFT) on 4.0 vol.% BZO/YBCO (Figures 33a, d), 4.0 vol.% 

BHO/YBCO (Figures 33b, e) and 6.0 vol.% BHO/YBCO (Figures 33c, f) nanocomposites 

respectively. To generate the FFT images, the area of interests is first selected in the TEM image 

and a fast Fourier transform (FFT) process of the area is conducted. By selecting and masking the 

specific diffraction dots in the FFT, the masked FFT is inverted to the fast Fourier filtered images 

as shown in Figures 33d-f. A major difference between the two cases is in the higher concentration 

of dislocations (white marks) at the BZO 1D APC/YBCO interface [17], which may be explained 

by the larger lattice mismatch (Table 3) and higher rigidity of BZO [13, 53]. A direct consequence 

of the high interfacial defect concentration is the strain  
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Figure 33: Cross sectional HRTEM images of YBCO nanocomposite thin films doped with (a) 4 vol.% BZO (b) 4 

vol.% BHO (c) 6 vol.% BHO (top row), and (d), (e) and (f) are fast Fourier filtered images of marked area (rectangles) 

in (a), (b) and (c) respectively. Figures are adapted from Gautam et.al, APL, 2018 [39]. 

release in a short range of 1-2 nm from the interface [38]. The comparable c-axis lattice constant 

to that of undoped YBCO indicates much smaller ab-plane buckling in the YBCO matrix away 

from the interface (Figure 33 and Table 3). In contrast, the BHO/YBCO interface has a few 

randomly distributed dislocations otherwise coherent, and significant ab-plane buckling can be 

observed. This suggests that the strained BHO and YBCO lattices are adapting to each other and 

is maintained c-axis lattice constant ~11.77 Å-11.78 Å comparable for all BHO/YBCO films 

shown in Figure 33 and Table 3. Such high-density plane-buckling is confirmed by the stripped 

diffraction dots in the BHO/YBCO nanocomposite film. Interestingly, the similar microstructure 

in 6 vol.% BHO/YBCO nanocomposite film (Figure 33f) supports the argument of higher elastic 

adaptability and smaller lattice mismatch of BHO 1D APCs with YBCO. The coherent BHO 1D 
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APC/YBCO interface is due to the compromise of the strained lattices. Therefore, the difference 

in the BZO 1D APC/YBCO and BHO 1D APC/YBCO interface has a profound effect on the strain 

field distribution in the nanocomposite films, resulting in the different n* versus APC doping 

trends. Further investigation is required to understand the microscopic mechanism underlying the 

difficulties in doping higher concentration of BHO. It can be argued that Hf incorporation to 

YBCO lattice, especially when YBCO is under a higher lattice strain at a higher BHO doping that 

may prevent the formation of the BHO 1D APCs to the higher BHO doping concentration. This 

argument seems consistent with the significantly reduced Tc of the 6.0 vol.% BHO/YBCO 

nanocomposite films as compared to their counterparts of lower BHO doping and therefore Jc 

measured at temperatures close to Tc [27]. 

4.3 Crystallinity characterisation of nanocomposite films  

Figures 34a-f show the XRD θ-2θ scan of 2.0-6.0 vol.% BZO (or BHO)/YBCO 

nanocomposite films. This illustrates the high-quality crystallinity with c-axis orientation along 

the normal direction of the film by the presence of the YBCO (00l) peaks. The presence of the 

BZO (00l) peaks are indexed as an asterisk (*). The background hump around 20-25 degrees and 

40-45 degrees could be from the amorphous glass slide used as the sample holder. Some other 

peaks ~20 and 40 degrees is indexed as Y2O3 and YBa2ZrO6 (YBZO) because Zr can be induced to 

YBCO lattice [73]. The lattice mismatch of 6.7% between BHO and YBCO is considerably smaller 

than 7.1% between BZO and YBCO, and more adaptive behavior of BHO with YBCO [13, 53], 

lead to the different trends of the c-axis lattice constants at different APC doping. The decreasing 
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lattice constant of BZO from 11.82 Å at 2 vol.% BZO to 11.67 Å at 6 vol.% BZO (Table 3) is due 

to the defective BZO/YBCO interface. This results in the strain relief and the c-axis lattice constant  

Figure 34: Left: (a)-(c) XRD -2 spectra for the 2 vol.%, 4 vol.% and 6 vol.% BZO/YBCO nanocomposite thin films, 

and right: (d)-(f) 2 vol.%, 4 vol.% and 6 vol.% BHO/YBCO nanocomposite thin films on STO substrates.  

approaches to the undoped YBCO at ~11.68 Å [15, 38, 70]. This argument is consistent with the 

decreasing trend of full width at half maximum (FWHM) of the YBCO (005) peak with the 

increasing BZO concentration. The FWHM values are summarized in Table 3. This means at BZO 

1D APC/YBCO interface strain doesn’t extend to the long range as the strain is released through 

the interfacial dislocations.  

The c-axis lattice constant of the YBCO in the BHO/YBCO nanocomposite films remains 

almost a constant of 11.77 Å to11.78 Å as the BHO doping is varied from 2 vol.% to 6 vol.%. It 

suggests that a coherent BHO 1D APC/YBCO interface is maintained in the entire BHO doping 

range through a mutual accommodation of the BHO/ YBCO lattices [39]. The smaller elongation 

of the YBCO c-axis lattice constant to 11.77-11.78 Å as compared to the 11.82 Å in the 2 vol.% 
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BZO/YBCO nanocomposite could be the difference of lattice mismatch of two doping materials. 

The unchanged expanded c-axis, together with comparatively similar YBCO (005) FWHM of 

0.42, 0.51, and 0.49 for the 2%, 4% and 6 vol.% BHO/YBCO nanocomposite films, respectively, 

is an indication of maintained APC/YBCO interface coherency at different BHO doping levels. 

This observation is important and reveals a fundamental difference between the BHO 1D 

APC/YBCO and BZO 1D APC/YBCO interfaces, which affects the pinning efficiency of 1D 

APCs.  

4.4 Critical current density Jc (H) and pinning force density Fp (H) 

and angular dependence Jc (θ)  

One could set the hypothesis that with comparable morphology and dimension of BZO (or 

BHO)1D APCs are expected to have a comparable pinning efficiency, the transport Jc(H) 

measurement confirms this is certainly not the case. The difference in pinning efficiency could be 

because of the difference in 1D APC/YBCO interface. Figure 35 compares the Jc (H) and Fp (H) 

curves measured on 2.0-6.0 vol.% BZO/YBCO (black) and 2.0- 4.0 vol.% BHO/YBCO (red) films 

at H//c-axis (θ=0o) at 77 K (Figures 35a and 35c) and 65 K (Figures 35b and 35d) respectively. 

The Jc (H) curve for undoped YBCO film (blue) is also included as a reference. The smaller 

susceptibility of Jc (H) of BZO (BHO)/YBCO nanocomposite films to the applied magnetic field 

(H) especially in the higher field range compared to reference YBCO film is anticipated from the 

improved pinning by the 1D APCs in doped YBCO nanocomposite films. At 77 K, considerably 
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the lower α-values in the range of 0.23-0.30 for almost all nanocomposite films than that of typical 

α~0.5 for undoped YBCO film (Figure 35a), confirms the strong correlated pinning by BZO and  

Figure 35: J
c 
(H) and F

p 
(H) curves measured on reference YBCO (blue), and BZO 1D APC/YBCO (black) and BHO 

1D-APC/YBCO (red) nanocomposite films at θ ~0
o
 (H//c-axis) at 77 K (a) and (c); and (b) and (d) at 65 K respectively. 

Symbols are 2 vol. % (solid), 4 vol.% (open), 6 vol.% (half-filled) in all figures. These Figures are adapted from 

Gautam et.al, APL, 2018 [39]. 

 BHO 1D APCs. At 65 K, (neglecting Tc effect), α values are significantly lower ~0.10-0.11 for 2-

4% BHO/YBCO films as compared to α values of 0.17-0.21 for 2.0-6.0% BZO/YBCO films and 

~ 0.25 for reference YBCO film (Table 4) suggest a higher pinning efficiency of the BHO 1D 

APCs than their BZO counterparts and undoped YBCO films.   



 

80 

  

The Jc (H) curve decreases monotonically with the BZO doping in the most field range is 

opposite to the Jc (H) curves of BHO doping at which the Jc (H) curves peaks at 4 vol.% BHO 

doping at both 77 K and 65 K (Figures 35a and 35b). The Jc (H) curves for 6 vol.% BHO/YBCO 

nanocomposite film are not included because of the significantly low Jc values including two 

orders of magnitude lower Jc value ~6×104 MA/cm2 at self-field and at 65 K in this study. Overall 

higher performance is observed in the lower BZO doped films except for a crossover of Jc (H) 

curves for the 2.0 and 4.0 vol.% BZO/YBCO films occur at 4.5 T at 77 K. This reflects on the 

highest Fp (H) curve for the 2.0 vol.% BZO/YBCO film at both 77 K and 65 K (Figures 35c and 

35d). A similar decreasing trend of the Fp (H) curves with increasing the BZO doping, which is 

consistent with the previous report [72]. A significantly higher Fp (H) for 2.0 and 4.0 vol.% 

BZO/YBCO films with the maximum Fp (Fp,max) in 2.0 vol.% BZO/YBCO film is 18.4 and 73.1 

GN/m3 at 77 K and 65 K respectively, higher than Fp,max ~8.0 GN/m3 and 55.0 GN/m3 of undoped 

YBCO at the same temperature is a consequence of the presence of the 1D APCs in the former. 

While the Fp,max for the 6.0 vol.% BZO/YBCO film is comparable or lower than that of the 

reference YBCO (Table 4). The Fp,max ~13.3 GN/m3 and 72.4 GN/m3, for 4 % BZO/YBCO is also 

consistent with the reported result for the comparable BZO doping [27]. As shown in Figure 31, 

lower Tc2 the smaller column is primarily attributed to the defects/disorders, especially oxygen 

deficiencies, result in the smaller pinning well height (red) and hence the pinning efficiency of the 

BZO 1D APC would be much reduced. On the other hand, this inner column will not be present 
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around the BHO 1D APC with a coherent interface with YBCO, resulting in higher pinning well 

height (black) and therefore higher pinning efficiency by BHO 1D APCs. 

Table 4: A summary of pinning properties extracted from the transport measurement including Fp,max, Hmax, Hmax /H*, 

and alpha (α) values at 77 K and 65 K, for the 2-6 vol.% BZO/YBCO and 2-4 vol.% BHO/YBCO nanocomposite 

films, in comparison with the reference YBCO film. Symbol (ꜛ) intdicates the value could go up but the instrument 

limitation applies to this value.   

Interestingly increasing Jc (H) and Fp (H) for BHO/YBCO nanocomposite to moderate 

BHO doping of 4 vol.%, followed with a dramatic decrease in both at 6 vol.% (Figure 35) is also 

reported in [10, 27] except a significantly lower Jc (H) for 6 vol.% BHO/YBCO nanocomposite in 

this study. It is possibly due to the severe deformation of the YBCO lattice as evidenced in the 

significant Tc decreases to 78.5 K by maintaining the coherent BHO 1DAPC/YBCO interface to 6 

vol.% BHO/YBCO, or simply in 6 vol.% BHO/REBCO thin films [28]. The Fp,max of ~22.8 and > 

182 GN/m3 for the 4 vol.% BHO/YBCO film at 77 K and 65 K respectively are considerably 

higher than the best reported on BZO/YBCO nanocomposite films and the reference YBCO film 

as well. At 65 K, the Fp,max of  >182 GN/m3 for the 4 vol.% BHO/YBCO film is about 2.5 times 

higher than the best Fp,max  of 73-74 GN/m3 for the BZO/YBCO nanocomposite films reported in 
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this work and by others [72]. This is the best  Fp,max reported so far at 65 K, and is about 1.5 times, 

1.8 times and 1.5 times higher, respectively, than the highest claimed Fp,max ~120 GN/m3 for 

BHO/REBCO, Fp,max~103 GN/m3 for BSO/YBCO [65, 74], and Fp,max ~122 GN/m3 for double 

perovskites (5.0 mol.% BaNbOy plus 5.0 mol% Y2O3 )/YBCO nanocomposite films [75].  

To gain further insights on the difference in the Fp (H) behaviors of the two sets of the 

films, Hmax (at which the Fp,max is observed) values are compared with H* (Table 3). The Hmax 

values of 3.0-3.5 T, 4.0-5.0 T and 4.5-5.0 T at 2.0, 4.0, and 6.0 vol.% BZO doping, are considerably 

lower than the H* values of 5.0, 9.2, and 14.3 T. This suggests that a significant portion of the 

BZO 1D APCs are not efficient pins. The trend in the BHO/YBCO case seems opposite and these 

Hmax values are considerably higher than their BZO/YBCO counterparts (Table 3). For the 2 vol.% 

BHO/YBCO film, the Hmax of 5.0-7.0 T at 77-65 K is more than twice of the H* ~2.3 T. At 4 vol.% 

BHO doping, the Hmax >9.0 T (instrument limit) seems consistent to the projected H* of 12.2 T. 

Quantitatively, the Hmax/H* value closer to one indicates the anticipated pinning efficiency 

assuming each APC pin a vortex. Specifically, the Hmax/H* value of BZO 1D APCs is about 0.6-

0.7, 0.43-0.54 and 0.31-0.35, respectively, for 2 vol.%-6 vol.% BZO/YBCO films at T~ 65-77 K 

indicates Hmax doesn’t increase at the same rate as H* which with increasing BZO APC doping. In 

contrast, the Hmax/H* values are significantly higher in the BHO/YBCO films. For example, at 2 

vol.% BHO, it is 2.5-3.5 and at 4 vol.% BHO, it reduces to 0.61 - >0.74. The high Hmax/H* in 

exceeding 1 suggests a BHO 1D APC could pin multiple vortices on the vortex lattice on which 
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an elastic interaction is present between vortices [76]. These results support the higher pinning 

efficiency of BHO 1D APCs than their BZO counterparts. 

Figures 36a-d compare the Jc (θ) curves measured on the undoped YBCO (blue), a 

reference film, 4.0 vol.% BZO/YBCO (black) and 4.0 vol.% BHO/YBCO (red) nanocomposite 

films at the 1.0 T (Figure 36a) and 3.0 T (Figure 36b) at 77 K, and 5.0 T (Figure 36c) 9.0 T (Figure 

36d) at 65 K, respectively. 

 

 

 

 

 

 

 

 

Figure 36: Angular dependence of Jc measured on 4.0 vol. % BZO (black open) and 4.0 vol.% BHO (red open) doped 

YBCO (BZO/YBCO, and BHO/YBCO) and undoped YBCO film (blue star) nanocomposite films (a)-(b) 1.0 T and 

3.0 T at 77 K, (c)-(d) 5.0 T , and 9.0 T at 65 K respectively. Symbols follow the same for all figures. These Figures 

are adapted from Gautam et.el, APL, 2018 [39]. 

The large Jc peak at H//ab-plane (90o) for YBCO film is attributed to the strong intrinsic pinning 

by layered structure. Interestingly, almost the same Jc peak at H//ab-plane for BHO/YBCO is an 

indication of nearly unaffected intrinsic pinning, in contrast to the significantly suppressed of such 
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pinning in the BZO/YBCO one. This indicates the long-range buckling of the ab-planes in the 

BHO/YBCO nanocomposite due to the coherent BHO/YBCO interface maintains the effective 

pinning of vortices as in the undoped YBCO [39]. The Jc peaks at H//c-axis (θ=0o) for the 

nanocomposite films are attributed to correlated pinning by the c-axis aligned 1D APCs in 

nanocomposite film which is absent in undoped YBCO film. While these peaks are comparable at 

77 K for the two films, they differ considerably at 65 K. A significantly higher Jc peaks values at 

H//c-axis are observed on the BHO/YBCO film at 65 K both at 5.0 T and 9.0 T. The higher Jc-

peak at H//c-axis, in combination with the higher Jc-peak at H//ab-plane also lead to an overall 

higher Jc () for the BHO/YBCO nanocomposite film as compared to the reference undoped 

YBCO and BZO/YBCO nanocomposite film at field of 5-9 T.   

4.5 Conclusions  

The work in this chapter investigates the nanostructure morphology and transport Jc in 2.0-

6.0 vol.% BZO/YBCO and 2.0-4.0 vol.% BHO/YBCO nanocomposite thin films. It probes the 

correlation between the 1D APC/YBCO interface and the pinning efficiency of the 1D APCs. 

Several interesting insights have been listed as follows:  

A highly coherent BHO 1DAPC/YBCO interface is a significance of the low rigidity of the 

BHO 1D APCs and their smaller lattice mismatch with YBCO. A semicoherent BZO 1D 

APC/YBCO is due to the less adaptive BZO lattice to YBCO and comparatively higher lattice 

mismatch with YBCO. This results in the interfacial defects and hence release the strain.  
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The 1D APC/YBCO interface directly affects the strain field distribution around the 1D 

APC in the nanocomposite films, which in turn affects the linear range of the areal density of n*BHO 

and n*BZO (and hence H*) with APC concentration. A highly strained lattice prevents a linear 

increase of BHO 1D APCs with BHO concentration beyond the threshold concentration in contrast 

to short-range strained lattice due to the defective semicoherent interface that allows a linear 

increase of BZO 1D APCs with the BZO concentration greater than 6.0 vol.%.  

The 1D APC/YBCO interface has a critical effect on their pinning efficiency as illustrated 

in the higher Fp,max  and  Hmax /H* ratio. Even with the comparable diameter of 1D APCs, a coherent 

BHO 1D APC/YBCO interface have significantly higher pinning efficiency than that of semi-

coherent BZO 1D APC/YBCO interface. A record high value of Fp,max ~182 GN/m3 is calculated 

in the BHO/YBCO interface compared to Fp,max ~72 GN/m3 in the BZO/YBCO interface. In 

addition, the low Hmax /H* ratio <1, for BZO/YBCO nanocomposite films indicate that a significant 

number of 1D APCs provides inefficient pinning. The significant degradation of the 

superconductivity in the defective BZO 1D APC/YBCO interface reveals the critical importance 

of a high quality 1D APC/REBCO interface maintaining coherent 1D APC/YBCO interface in 

achieving high pinning efficiency.     
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Chapter 5 Probing the Pinning Efficiency of 1D 

APCs in BZO+YBCO/Ca0.3Y0.7Ba2Cu3O7-x Multilayer 

Films 

Chapter 4 discussed the pinning efficiency of the comparable diameter of BZO and BHO 

doping material that can generate c-axis aligned 1D APCs. The former has the semicoherent 1D 

APC/YBCO interface compared to the latter, which form the highly coherent 1D APC/YBCO 

interface. A microstructure analysis also revealed an oxygen-deficient center and hence highly 

defective YBCO cylindrical shell of 1-2 nm in thickness around the BZO 1D APCs. A significant 

reduction of pinning efficiency in BZO/YBCO film could be a defective interface due to the 

reduction Tc and thus the pinning potential height in the YBCO column [39]. Quantitatively, the 

pinning potential height is optimal if the Tc of the YBCO column around a 1D APC is not degraded. 

Schmehl, A. et al., reported that Tc could go as low as ~ 60 K [38, 77], at the defective interface of 

the thickness~1-2 nm cylindrical shell from 1D APC/YBCO matrix. An immediate solution to 

reinstate the pinning efficiency of the BZO 1D APC is to repair the oxygen deficiency disorders 

at the APC/YBCO interface.  

This chapter explores the calcium (Ca) doping of the YBCO column around the BZO 1D 

APCs using insertion of Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacer layers of 5-15 nm in thickness into 

BZO 1D APC/YBCO nanocomposite films in the multilayer form. The CaY-123 spacer layer 

facilitates the Ca-diffusion into the BZO 1D APC/YBCO interface to reduce the oxygen 

deficiency. Therefore, it enhances the pinning efficiency of the BZO 1D APCs in a similar way to 
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Ca-doping assisted repairing of the large-angle grain boundaries (GBs) in YBCO films [77-80]. 

Ca cation has valance of +2, and the Ca-replacement of Y cations of valance “+3” has shown to 

lead the hole over-doping of YBCO with a lower Tc [81]. While oxygen deficiency disorders at the 

BZO 1D APC/YBCO interface may differ from that at large-angle GBs, we hypothesize that 

atomic scale Ca-induced interface may effectively correct the detrimental effect of the disorders 

in a similar manner to the GB case and therefore enhance the pinning efficiency of BZO 1D APCs 

through correction of the built-in electric potential across the interfaces [77, 79, 81, 82].  

To confirm this hypothesis, this work investigates 6 vol.% BZO/YBCO nanocomposite 

films of the total thickness of 160-170 nm with two CaY-123 spacer layers of thicknesses of 10 

nm. In comparison with the reference 6 vol.% BZO/YBCO nanocomposite film without the spacer 

layers, remarkably enhanced Jc (H) at high magnetic fields in exceeding 1-3 T is obtained in 

samples with the CaY-123 spacer layers. At 9.0 T, a five-fold enhancement of the Jc is obtained, 

which can be attributed to the enhanced pinning efficiency of the BZO 1D APCs as illustrated in 

both enhanced Fp and Hmax. In the following section, we present the experimental transport results 

together with nanostructure morphology.  

5.1 Calcium diffusion and superconducting properties 

Figure 37 illustrates the cross-sectional view of the 6 vol.% BZO/YBCO multilayer (ML) 

nanocomposite with two CaY-123 spacer layers. Calcium (Ca) can diffuse through the interface 

between BZO 1D APCs (vertical black lines) and YBCO matrix shown by the arrows as well as 

directly into YBCO. While the former is desired, the latter is not since it may reduce the Tc of the 
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YBCO matrix and hence the BZO/YBCO nanocomposite. Considering the Tc of the CaY-123 is 

82 K [79, 83], extensive Ca-diffusion into YBCO matrix could limit the applications to 

temperatures much below 77 K. It is, therefore, important to identify the sample fabrication 

window for optimal interface modification with minimal degradation of the Tc of the YBCO 

matrix. In addition to exploring PLD repetition rates (RR) of 1, 2, and 4 Hz for the control of the 

effective Ca-diffusion time, the thickness of the Ca0.3Y0.7Ba2Cu3O7-x spacer layer (purple) was also 

varied in the range of 5-15 nm. When changing one parameter, the other is kept constant. 

Controlling the local gradient of the Ca content, Ca content maintains the amount of the Ca 

diffusion into BZO 1D APC/YBCO interface. 

Figure 37: Schematic of the BZO + YBCO and Ca0.3Y0.7Ba2Cu3O7-x multilayers showing Ca diffusion zone (purple 

arrows) of the APC/YBCO interface at left, zoom in view from the rectangular part of the left figure of the BZO 1D-

APC and YBCO interface showing Ca diffusion atomic layer (purple line) at right. Color codes from dark green at the 

interface of BZO 1D APCs to yellow toward the boundary of YBCO indicates the decreasing strain as it moves away 

from the BZO toward the YBCO interface.  

To understand the intrinsic properties of the Ca-induced ML nanocomposite films, we have 

calculated the resistivity of the films and have determined the critical temperature Tc from 

measured resistance versus temperature (R-T) curves. Figure 38 illustrates the resistivity vs. 
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temperature curves of ML films at which Tc is increased from 83.5 K to 85 K with increasing laser 

repetition rate (RR). The Tc~85 K is found to be constant for the nanocomposite thin films varying 

CaY-123 spacer layer thickness of 5-15 nm but fixed RR of 4 Hz (Figure is not shown here). In 

those films, increasing RR maintains the high crystallinity of the film and hence Tc is increased. 

 

 

 

 

 

 

 

Figure 38: Resistivity vs. temperature graph of multilayer films of the fixed thickness approximately 10 nm of the 

CaY-123 spacer layer but varying laser repetition rate of 1, 2 and 4 Hz at parenthesis. 

The resistivity of the undoped YBCO is about 150 μΩ-cm at 300 K and increases with 

increasing doping concentration, typically approximately 50 μΩ-cm per 2.0 vol.% of BZO 

concentration. The calculated resistivity of all ML films with fixed CaY-123 spacer layer varying 

laser RR ranges from 280-360 μΩ-cm, which suggests ML nanocomposites maintain the 

superconducting properties. Similarly, resistivity of other set of ML nanocomposite thin films with 

variable thickness of CaY-123 of 5-15 nm ranges from 260-340 μΩ-cm at 300 K. A slightly lower 

resistivity in 2 Hz RR nanocomposite thin film could be the well-maintained high crystallinity of 
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the films with a threshold of calcium diffusion at the interface with the given thickness of CaY-

123 spacer layer.  

Typically, the ratio of ρ300 K/ρ100 K for a good nanocomposite film is expected to be 3, 

considering the proportionality relation of resistance vs. temperature. The ratio of the resistivity at 

300 K and 100 K (ρ300 K/ρ100 K) of the ML nanocomposite of fixed CaY-123 thickness of 10 nm 

with variable RR samples ranges from 2.61-2.82. The best ratio is 2.82 for ML with CaY-123 layer 

of thickness of 10 nm and of RR~2 Hz, which is about 6.4% less than the typical value of 3. 

Similarly, the ratio (ρ300 K/ρ100 K) of the ML nanocomposite of fixed RR of 4 Hz and variable CaY-

123 thickness of 5-15 nm ranges from 2.65-2.86, with a higher value for ML film with CaY-123 

thickness of 5 nm. This value is just 4.9% less than the typical value. This information indicates 

that ML samples are of good quality and maintain desired intrinsic properties such as Tc and 

resistivity of superconductors.  

5.2 Nanostructure morphology 

Figures 39a-b compare the cross-sectional view of Transmission Electron Microscopy 

(TEM) images of the single layer (SL) and multilayer (ML) nanocomposite film with BZO/YBCO 

thickness of 50 nm and CaY-123 spacers layer thickness of 10 nm deposited at 2.0 Hz of repetition 

rate, while Figures 39c-d compare the elemental mapping of corresponding films. C-axis aligned 

1D APCs along the thickness of the film can be observed in both films. The only difference is the 

appearance of the two small horizontal stripes in Figure 39b, which illustrates the presence of the 

CaY-123 spacer layer in ML film. It is further verified by the two purple horizontal lines, rich in 
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Ca, in Figure 39d, which are absent in SL film (Figure 39c). Interestingly, spreading of the Ca 

element near the 1D APCs in Figure 39d supports the hypothesis of diffusion of Ca at the 

APC/YBCO interface. However, the distribution of calcium is limited to the very narrow column, 

which is an indication of less Ca diffusion in the YBCO matrix. With the elemental mapping, it is 

clear that a significant amount of Ca remains in the spacer layer without diffusion at the interface.  

 

 

 

 

 

 

 

 

 

 

Figure 39: (a)-(b) TEM confirmation of the same or comparable BZO APC morphology, diameter, and concentration 

of 6% BZO/YBCO nanocomposite SL and ML 50 nm/10 nm-2 Hz films; (c)-(d) elemental mapping of Calcium and 

Oxygen across the BZO/YBCO interface in those films. 

This indicates possibly smaller thickness (<10 nm) of the Ca-spacer layer would be good enough 

for a diffusion process. This is also reflected in the Jc and Fp value of the smaller Ca-spacer layer 

thickness nanocomposite film (details appear in the following discussion).  
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It is also important to note that due to CaY-123 layer, 1D APC appeared to be segmented 

in ML films. The segmented 1D APCs as reported in multilayer film deposited with BZO/YBCO 

and YBCO alternating layers pin the vortices through the kinking of vortices [51, 84]. The lateral 

dimension of 1D APCs is approximately ~5-6 nm in both films, while average inter 1D APCs 

distance measures about ~12 nm with the uncertainty of 1 nm. Typically, 60-80 images are taken 

in cross-sectional TEM in different areas of a nanocomposite film to determine the average spacing 

using professional software on TEM systems. The accommodation field H*(=Φo/d
2) is thus 

calculated as 14.3 T. The Φo is the flux quantum (~2.07×10-15 Wb) and d is the inter 1D APC 

distance. The estimation of the n* assumes a square lattice (for convenience) for 1D APCs since 

the distribution of the 1D APCs is random. 

5.3 Electrical transport properties Jc (H) and Fp (H) for ML 

nanocomposite films  

Figures 40a and b compare the Jc (H) curves of five thin films at 77 K and 65 K respectively. 

Three of them are ML nanocomposite films with fixed BZO/YBCO layer thickness of 50 nm and 

Ca-Y123 spacer layer thickness of 10 nm but varying laser repetition rate. They are named ML_10 

nm (1 Hz) (purple), ML_10 nm (2 Hz) (red), and ML_10 nm (4 Hz) (light green), respectively. 

Two reference samples are also included, YBCO (blue) and 6 vol.% BZO 1D-APC/YBCO without 

any Ca0.3Y0.7Ba2Cu3O7-x spacer layers (black); they are considered SL in rest of the part of this 

chapter when fabricated at their optimal deposition parameters [49, 54, 85]. At 77 K, the four 

nanocomposites except the SL have their self-field Jc in exceeding 1.0 MA/cm2, which is 
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consistent to the reported results for the high quality YBCO samples in literature [21, 86]. The 

slightly lower self-field Jc in SL (black) is also common due to the strain field at 6 vol.% BZO 

doping that typically reduces Tc of the BZO/YBCO nanocomposite film monotonically with 

increasing BZO concentration. For this specific sample, the Tc is 86.9 K (Table 5). Interestingly, 

this Tc value is at least 1.9 K higher than the Tc values of its counterparts with Ca0.3Y0.7Ba2Cu3O7-

x spacer layers as shown in Table 5. This means the differences in the Jc (H) curves of BZO/YBCO 

nanocomposites shown in Figure 40 is unlikely a Tc effect.  

All ML nanocomposites, despite lower Tc as expected from slight Ca-doping, have higher Jc 

(H) than their SL counterpart at both at 77 K and 65 K for the entire range of the field up to 9.0 T 

(Figures 40a and b). This means an enhanced pinning efficiency of BZO 1D APCs in the ML 

nanocomposite films compared to SL film. Such enhanced pinning efficiency could be due to the 

coherent interface of 1D APC/YBCO by lowering the oxygen deficient defective region through 

Ca diffusion as reported in BHO/YBCO nanocomposite films [39]. In addition, the Jc (H) 

enhancement with the applied magnetic field (H) in ML nanocomposite indicates the high areal 

density of efficient 1D APCs. It could be due to Ca mediated interface contribution to the pinning 

at higher magnetic fields. Remarkably, five times higher Jc at 9.0 T can be observed when 

comparing the ML_10 nm (2 Hz) (red, optimal among the three ML nanocomposites) and SL 

(black) nanocomposites at both 77 K and 65 K. Quantitatively, the lower α-values of SL and ML 

nanocomposites (Table 5) compared to undoped YBCO indicates the strong pinning in the SL and 
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ML films due to the presence of APCs. In addition, a comparatively lower alpha value for ML 

nanocomposites compared to SL film is indicative of strong pinning by BZO APCs in ML films. 

Figure 40: Jc vs. H and Fp vs. H curves measured on undoped YBCO (dark blue), 6 vol.% BZO/YBCO named as SL 

(black) and multilayer samples: ML_10 nm-1 Hz (purple), ML_10 nm-2 Hz (red) and ML_10 nm-4 Hz (light green) 

at H//c-axis ( =0o) and at 77 K  and 65 K. Color codes follow the same for all figures.       

The lower alpha value of ML films could be due to the improved 1D APC/YBCO interface by 

calcium diffusion; otherwise, the dimension and density are comparable.   

The enhanced pinning efficiency of individual BZO 1D APCs and the concentration of the 

activated strong BZO 1D APCs are further illustrated in the Fp (H) curves (Figures 40c and d) 
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Table 5: Summary of the some of the important parameters such as critical temperature (Tc), Fp,max, Hmax, and alpha 

values of 6 vol.% BZO/YBCO, and multilayer films of 10 nm the CaY-123 thicknesses and 1, 2, and 4 Hz the laser 

repetition rate (RR) of Pulse Laser Deposition (PLD) system. At 65 K, alpha values of ML films are calculated in the 

different field range of 0.4 T to few Teslas depending on the linear region. 

through higher Fp,max and Hmax values in ML_10 nm (2 Hz) (red, optimal among the three ML 

nanocomposites) and SL (black) nanocomposites. At 77 K, the Fp,max of the ML_10 nm (2 Hz) 

nanocomposite is twice of that of SL nanocomposite, while at 65 K, it is about 4.3 times higher. It 

should be noted that the Fp, max of ~157 GN/m3 represents the best reported so far on BZO 1D 

APC/YBCO nanocomposite, which is more than twice of the highest Fp, max in the BZO doping 

range of 2-6 vol.% [72]. Furthermore, the Hmax value of the ML_10 nm (2 Hz) nanocomposite is 

44% higher than its SL counterpart at 77 K, and it increases to 60% at 65 K. This result illustrates 

the critical importance of the 1D-APC/YBCO interface on the pinning efficiency of the 1D APCs.  

Figures 41a-d depict the Jc (H) and Fp (H) curves of three ML nanocomposites of 6 vol.% 

BZO/YBCO varying Ca spacer layer of 5 nm (green), 10 nm (red) and 15 nm (blue) thick 

Ca0.3Y0.7Ba2Cu3O7-x spacer layers, in comparison with SL nanocomposite (black) at 77 K and 65 

K respectively. Again, the ML nanocomposites have overall higher Jc (H) in the entire magnetic 

field range up to 9.0 T than their SL counterparts, with the enhancement more pronounced at higher 

fields. This reflects on the Fp (H) curves as well, in which Fp,max for all ML nanocomposites are 
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much higher than the undoped and SL counterparts. Again, the ML nanocomposites have overall 

higher Jc (H) in the entire magnetic field range up to 9.0 T than their SL counterparts with the 

enhancement more pronounced at higher fields. 

Figure 41: Jc vs. H and Fp vs. H curves measured on 6 vol.% BZO/YBCO named as SL (black) and multilayer films : 

ML_5 nm (4 Hz) (green), ML_10 nm (4 Hz) (red) and ML_15 nm (4 Hz) (blue) fabricated at same laser repetition 

rate (RR) of 4 Hz at  =0o (H//c-axis) (a) and (c) at 77 K, and (b) and (d) at 65 K, respectively. Color codes follow the 

same for all figures. 

Specifically, the Fp, max  ~157.70 GN/m3 ML_10 nm (2 Hz) is about four times higher than 

SL film. This observation illustrates that the defective BZO 1D APC/YBCO interface has a more 

detrimental impact on high-field pinning efficiency. This result is therefore important to the 

applications that require high performance HTSs in strong fields. At the same time, it further 
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explores that for the thickness of ~10 nm of CaY-123 spacer layer, the laser RR of ~2 Hz provides 

the best result of pinning efficiency. Interestingly, in the separate measurements (figures are not 

included) for the ML_5 nm (4 Hz), the ML_10 nm (4 Hz), and the ML_15 nm (4 Hz) 

nanocomposite thin films, an identical Tc of 85.0 K is measured. All these films are deposited with 

the same PLD repetition frequency of 4 Hz. Intuitively, the result indicates that Tc is independent 

of the thickness of the CaY-123 spacer layer. In addition, it suggests that the diffusion of Ca into 

the YBCO matrix is less likely to happen by varying the Ca concentration through the thickness 

of CaY-123 spacer layer. This suggests the precision in controlling the amount of Ca into the 

interface is important to reach high pinning efficiency and deserves further study. 

To add further insight to the pinning efficiency of the ML nanocomposite with respect to 

SL film, the ratio of Fp,max (ML)/Fp,max (SL) (black symbols) and Hmax (ML)/Hmax (SL) (red 

symbols) for the ML nanocomposite deposited at different PLD repetition rate at 77 K (solid) and 

65 K (open) are compared in Figure 42. Overall, the values of both ratios are in exceeding one (1), 

suggesting enhanced pinning efficiency by Ca-doping in ML nanocomposites. The Fp,max ratio 

from 1.03, 2.0, and 1.64 for ML_10 nm (1 Hz), ML_10nm (2 Hz), and ML_10 (4 Hz) 

nanocomposite films at 77 K is increased to 2.27, 4.36, and 2.64 respectively, compared to SL 

film. This suggests the Ca diffusion is optimized at growth parameter of 2 Hz RR by maximizing 

the interface repair and minimizing the Tc drop, and enhances the Fp,max. The Fp.max ~157.7 GN/m3 

for ML_10 nm (2 Hz) is the highest reported so far at 65 K, and is about 1.30 and 1.53 times higher 

than the highest claimed Fp,max~120.0 GN/m3, ~103.0 GN/m3, and 122.0 GN/m3 for BHO/REBCO, 

BSO/YBCO, and (BaNbOy + Y2O3)/YBCO films, respectively [65, 74, 75].  
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Figure 42: Laser repetition rate (Hz) dependence of ratio of the Fp,max (ML)/Fp,max (SL) (black) on left Y-axis and 

Hmax (red) on right Y-axis measured at 77 K (solid) and at 65 K (open), on H//c-axis of multilayer films. 

Calcium diffusion leads to a reduction in the oxygen deficient condition between APC and YBCO 

matrix of the ML nanocomposite film compared to SL nanocomposite film. The SL film contains 

high interfacial defects that release the strain field at the 1D APC/YBCO interface. In addition, 

such reduction of oxygen deficiency in ML film leading to coherent APC/YBCO interface 

enhances the pinning efficiency.         

The higher ratio of Hmax (ML)/Hmax (SL) indicates the effective areal density of APCs in the 

ML film compared to the SL film (Figure 42). The similar trend of the ratio of the Hmax (ML)/Hmax 

(SL) to that of the ratio of the Fp,max (ML)/ Fp,max (SL) indicates that below or above the specific 

RR (2 Hz in this study), the pinning strength of APCs is decreased. It further suggests that the Ca 

diffusion at APC/YBCO interface is particularly dependent on diffusion time through the laser 

repetition rate that might possibly alter the effectiveness of the 1D APCs. For example, at 77 K, 

the ratio of Hmax (ML)/Hmax (SL) ~1.33 and 1.44 for ML_10 nm (1 Hz), and ML_10 nm (4 Hz) 
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nanocomposite is lower than that of the ratio of Hmax (ML)/Hmax (SL) ~1.78 for ML_10 nm (2 Hz) 

nanocomposite, which supports the earlier statement. At 65 K, although the ratio of Hmax 

(ML)/Hmax (SL) follows the similar trend, the values are decreased to 1.2, 1.6, and 1.3 for those 

nanocomposite films, respectively (Figure 42), which suggests the decreasing trend of the 

effectiveness of APCs in ML nanocomposite films to that of SL film with temperature. In other 

words, SL film leads to increases in the pinning strength over ML films regarding temperature 

effect. However, this could indicate that the Ca facilitated APC/YBCO interface in ML films could 

modify the effectiveness of the microstructure to enhance the pinning strength. 

5.4 Conclusions  

In this work, we have investigated the correlation of the calcium diffusion at the BZO 1D 

APC/YBCO interface and pinning efficiency of the BZO 1D APCs through a systematic study of 

the transport Jc(H) measurements and microstructure analysis of the 6 vol.% 

BZO+YBCO/Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) multilayer (ML) nanocomposite films. Those results 

are compared to 6 vol.% BZO+YBCO single layer (SL) nanocomposite film as well. The key 

findings of these results are as follows.  

The pinning efficiency of ML film is almost independent of the thickness of the CaY-123 

spacer layer while it is dependent on the laser RR. It is observed that the higher Fp,max  for RR of 2 
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Hz and lower Fp,max  on either low or high RR for fixed CaY-123 thickness of 10 nm indicate that 

higher diffusion time may not be favorable for Ca diffusion.   

Compared to the pinning force density Fp,max  ~36 GN/m3 at Hmax ~5.0 T of SL film at 65 

K, a much higher pinning force density, Fp,max  ~157 GN/m3 at Hmax ~8.0 T for the best results ML 

film is found.  

The significantly lower pinning efficiency in terms of Fp,max and Hmax in high doping of 

BZO is mainly due to defective 1D APC/YBCO interface leading to severe oxygen deficiency.  In 

ML films, the enhanced pinning efficiency must be due to reducing the oxygen deficiency 

condition and maintaining coherent 1D APC/YBCO interface via calcium diffusion. 
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Chapter 6 Conclusions and Future Directions 

6.1 Conclusions  

The high critical current density of superconductors has led to many applications in the 

field of telecommunications, electric power generation, and medical application in magnetic 

resonance imaging (MRI). A type II superconductor, such as Yttrium barium copper oxide, 

YBa2Cu3O7-x (YBCO), with Tc~92 K, has the potential to have a high critical current density ~108 

A/cm2. However, reduction of critical current density (Jc) due to the vortex motion is an issue when 

the high magnetic field application is required. Jc anisotropy due to the structure of YBCO itself 

and magnetic field orientation Jc is another issue for devices such as motors and generators. For 

the applications, these devices require Jc independent of the orientation of the magnetic field. The 

addition of secondary phase nanoinclusions enhances flux pinning and subsequently increases the 

critical current density by incorporating additional artificial pinning centers (APCs). Many 

previous studies have been focused to generate APCs with specific dimensions and morphology 

to improve the vortex pinning and current density by combining different pinning mechanisms. 

However, the challenge remains to generate an optimal pinning landscape of APCs to enhance the 

isotopic pinning with mixed APC morphology and pinning efficiency of the specific APCs. The 

first objective of this thesis was to generate the controllable APC pinning landscape to enhance 

strong and isotropic pinning. The second objective was to explore the effect of the 1D APC/YBCO 

interface on pinning efficiency of different doping materials. The third objective was to study the 

diffusion of calcium at the APC/YBCO interface to improve the pinning efficiency of 1D APC in 
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repairing a defective APC/YBCO interface, especially to reduce the oxygen deficient condition by 

addition of calcium-rich materials as a spacer layer.  

To fulfill the first objective, electrical transport properties were carried out on 2-6 vol.% 

BZO (and BHO) plus 3 vol.% Y2O3 at their optimal growth temperature and those results correlate 

with the nanostructure morphology through TEM images. Doping materials were added to YBCO 

targets to generate mixed phase nanoinclusions in nanocomposite films during pulsed laser 

deposition (PLD) on single crystal (100) SrTiO₃ substrates. As illustrated in Figure 14, the material 

of less lattice mismatch with YBCO and less rigid to form c-axis aligned 1D APCs can form mixed 

(1D+2D+3D) APCs morphology. A landscape of mixed APCs morphology is essential to provide 

strong isotropic pinning. A low volume (2 vol.%) of less rigid materials such as BHO (form 1D 

APCs) was mixed with 3 vol.% of Y2O3 (form 3D APCs) to deposit BHO/YBCO double doped 

nanocomposite films. Jc(H, T, θ) values were measured for those nanocomposite films at different 

temperatures and at different magnetic field varying orientations from H//c-axis to H//ab-plane. 

The results were compared to the same volume of BZO dopant mixed 3 vol.% Y2O3. From the 

results of the electrical transport measurement, significantly low Jc anisotropy ~18% was 

calculated for 2 vol.% BHO+ 3 vol.% Y2O3 at 65 K and at 9.0 T due to the mixed APCs 

morphologies. The result was consistent with the mixed nanostructures observed from TEM 

images.  

Keeping 3.0 vol.% Y2O3 constant, the BHO (and BZO) concentration was increased to 6 

vol.% and the electrical transport measurement was conducted. As usual, the results correlated 
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with the nanostructure morphology obtained from TEM images. At lower doping (2 vol.%) 

nanocomposite films, the overall higher Jc(H, T, θ) was observed for BHO doped film compared 

to BZO doped film. Surprisingly, at higher doping (6 vol.%) of nanocomposite film, Jc(H, T, θ) 

doesn’t show the similar trend of results as observed in lower doping (2 vol.%). The 6 vol.% BZO 

doped films showed overall strong isotropic pinning; and hence higher Jc (H//c-axis), and J (θ) for 

the entire angular range of θ=0o (H//c-axis), to 90o(H//ab-plane), except Jc peak at H//ab-plane for 

6 vol.% BHO DD film. This could be possible if the direction of alignment for a significant number 

of 1D APCs were switched from c-axis to ab-plane. The results of the transport measurements 

agreed to TEM images. Many BHO 1D APCs were observed s being aligned along ab-plane by 

connecting short and segmented APCs. This allowed a room to study concentration dependence of 

BHO DD film. A significantly reduced Jc anisotropy is found in 2-4 vol.% BHO DD films due to 

the formation of short, misaligned and mixed APCs morphologies enhancing isotropic pinning. 

When BHO doping is increased to 6 vol.%, a significant number of c-axis aligned 1D APCs are 

switched to ab-plane aligned 1D APCs and hence Jc anisotropy is increased. The overall best Jc 

(H, θ) was observed for 4 vol.% BHO DD nanocomposite films at 65-77 K. This suggested that 

double doping is an effective approach for the generation of mixed APCs morphology and 

engineering the strong and isotropic pinning landscape only up to moderate doping of BHO (4 

vol.%) and BZO (6 vol.%) in this study. 

To explore the effect of interface on pinning efficiency of 1D APCs, Jc in 2.0-6.0 vol.% 

BZO/YBCO and 2.0-4.0 vol.% BHO/YBCO nanocomposite thin films were measured. A 
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significantly high Fp,max ~182 GN/m3 at 65 K for 4 vol.% BHO/YBCO was found. Such a high 

value of Fp,max could only be possible for a sharp APC/YBCO interface (a coherent interface). 

Thus, a highly coherent BHO 1DAPC/YBCO interface was concluded qualitatively, which could 

be due to low rigidity of the BHO 1D APCs and their smaller lattice mismatch with the YBCO 

matrix. A semicoherent BZO 1D APC/YBCO was due to less adaptive BZO lattice and a 

comparatively higher lattice mismatch with the YBCO matrix. This resulted in the interfacial 

defect which was one of the prime causes of lowering pinning efficiency. 

Calcium-rich spacer layer was added to a high volume of 6 vol.% BZO/YBCO 

nanocomposite to repair the defective APC/YBCO interfaces expecting to increase pinning 

efficiency of 1D APCs. The results were compared with the same doping concentration of 

BZO/YBCO single layer film. The experimental results suggest that calcium was induced at the 

APC/YBCO interface. The induced calcium at the interface might repair the defective interface 

between 1D APC/YBCO matrix and hence enhanced the pinning efficiency of the BZO 1D APCs. 

Compared to Fp, max  ~36 GN/m3 at Hmax ~5.0 T of single layer film at 65 K, a significantly higher 

pinning force density, Fp, max ~157 GN/m3 at Hmax ~8.0 T for the best results multilayer film was 

found. The best result multilayer film was deposited with CaY-123 spacer layers of thickness of 

10 nm at 2 Hz of laser repetition rate of PLD. Pinning efficiency of 1D APCs was dependent on 

Ca diffusion time which could be controlled through the repetition rate of PLD while the ML were 

deposited.  
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6.2 Future directions   

Even though we have addressed several important current issues of the control landscape of 

APCs for isotropic pinning, many questions remain unanswered about pinning efficiency of the APCs 

and interface effect. Theoretical and experimental researches may begin to address them in the future. 

Quantitative evaluation of pinning efficiency and accommodation field H* need to be addressed for 

controlling the pinning landscape of APCs morphology. Strain distributions at the vicinity of 

APC/YBCO remain a challenge because they are unclear in the present experiments.  

Future work could progress towards several directions: whether it may require further 

analyzing the vortex pinning mechanism or new doping materials need to be investigated which 

may reduce the interfacial strain between APC/YBCO matrix. One of the immediate works could 

progress on the continuation of the current work of pinning efficiency of BHO/YBCO 

nanocomposite thin films. These films could be evaluated at the low temperature of 20-50 K and 

at the high field of 20 T. In this work, a high-resolution TEM analysis is lacking for the complete 

evaluation of defective interface or oxygen deficiency mapping which could be done for future 

work. Experimental results presented henceforth confirm the strong pinning of vortices and higher 

pinning efficiency of 1D APCs with the coherent APC/YBCO interface. Theoretical studies would 

be useful for further explanation of strong pinning of 1D APCs.  

Analysis of accommodation field (H*) and pinning force density (Fp) indicate that all APCs 

are not involved in the effective pinning of the vortices. Only a fraction of APCs is efficient pins. 

An immediate question is; what determines the pinning efficiency, and to what extent? The 
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sharpness of the APC/YBCO interface at an atomic level is related to the pinning potential, and an 

optimal pinning efficiency, future work may focus on this direction. For this; it may need to 

introduce new doping materials with much less lattice mismatch to YBCO matrix and can form 

comparatively smaller diameter of 1D APCs. In addition, calcium-rich compounds would be useful 

to repair the defective interface because we have shown that Ca diffusion at the APC/YBCO 

interface increases the pinning efficiency of 1D APCs in the multilayer film. 

 Out of many materials, CaHfO3 with lattice mismatch ~1.5% to YBCO (less than lattice 

mismatch ~6.7% of BHO to YBCO) could be one of the options of doping material [87]. This 

material could form 1D APC of the diameter close to the diameter of BHO 1D APCs or even 

smaller than BHO 1D APCs. Calcium itself may repair the defective APC/YBCO interface.  
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