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Abstract: 

 The passive permeation of small peptides across lipid bilayers was studied by 

using molecular dynamics simulations and umbrella sampling.  The knowledge gained in this 

work furthers our understanding of permeation across cell membranes and provides insight 

into the intelligent design of future pharmaceutical compounds. 

The passive permeation of the three resonant amino acids – phenylalanine, tyrosine, 

and tryptophan – in blocked form was studied in a bilayer consisting of 50 DOPC lipid 

molecules.  The potential of mean force displays a free energy minimum at the interface, 

followed by an energy barrier at the center of the bilayer.  Translational diffusion constants are 

surprisingly flat; however, the reorientation of the entire molecule and the amino acid 

sidechains indicates a significant rotational barrier.  A conformational and clustering analysis of 

phi, psi, chi-1, and chi-2 angles demonstrates that each amino acid adopts different 

conformations based upon its bilayer depth.  Radial distribution functions, coordination 

numbers, and the number of solvating water molecules were also examined.  

The phenylalanine dipeptide was then studied as it permeates lipid bilayers consisting of 

either 50 DOPC, 50 POPC, or 40 POPC lipid molecules.  DOPC lipid molecules are more 

disordered than POPC lipids.  In DOPC, the potential of mean force is therefore broader and 

more rotational conformations were sampled.  All other analyses confirmed our prior, general 

observations and were surprisingly insensitive to either lipid type or system size. 

Position dependent diffusion constants were then calculated for the permeation of the 

phenylalanine dipeptide using the Fluctuation-Dissipation theorem, Green-Kubo expressions, 
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Einstein relations, the Hummer Displacement method, and a numerical approximation to the 

Smoluchowski equation.  We found the numerical approximation method to be the most 

reliable, although the Fluctuation-Dissipation theorem also yields acceptable results when 

unconstrained simulations were conducted.   

Finally, the prior analyses were applied to the permeation of wh5, one of the smallest 

peptides capable of forming an alpha helix.  For most of the permeation process, the alpha helix 

remains intact and only begins to unravel at select distances in the aqueous region and at the 

center of the lipid bilayer.  The presence of the lipid bilayer influences the tertiary structure of 

wh5. 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgements: 

 

 I would like to thank my parents and my sister to whom words cannot express my 

appreciation for their support over the years: Lawrence A. Lee, Constance M. Fink, and Holly E. 

Youmans.   I would also like to thank Dr. Kuczera for his insight, skill, understanding, and, of 

course, humor.  Finally, anyone who has had a positive impact on this document, my time here 

at KU, and my life, in general, deserves a special word of thanks.  I contemplated including a 

detailed list here; but, unfortunately, the size of this document would easily double!  Thank 

you! 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Table of Contents 
 

Abstract ................................................................................................................. iii 

Acknowledgements ................................................................................................ v 

Table of Contents ................................................................................................... vi 

List of Figures .......................................................................................................... x 

List of Tables ........................................................................................................ xiii 

 

Chapter 1: Introduction and Background ............................................................ 1 

 

1.1. Introduction .................................................................................................. 2 

1.2. Classical Molecular Dynamics Algorithms ..................................................... 7 

1.3. Free Energy Simulations .............................................................................. 13 

1.3.1. Widom Particle Insertion ...................................................................... 14 

1.3.2. Thermodynamic Integration ................................................................. 15 

1.3.3. Umbrella Sampling ................................................................................ 17 

1.3.4. Metadynamics ...................................................................................... 17 

1.3.5. Adaptive Biasing Force .......................................................................... 18 

1.3.6. Milestoning ........................................................................................... 18 

1.3.7. Method Comparison ............................................................................. 19 

1.3.8. Applications .......................................................................................... 21 

1.3.9. Recent Developments ........................................................................... 27 

1.4. Umbrella Sampling Theory .......................................................................... 28 

1.5. References .................................................................................................. 41 

 

Chapter 2: Permeation of the Three Aromatic Dipeptides through Lipid Bilayers:     
 ......................................................................................................................... 50 

 



vii 
 

2.1. Overview ..................................................................................................... 51 

2.2. Introduction ................................................................................................ 52 

2.3. Methods...................................................................................................... 55 

2.4. Results and Discussion ................................................................................ 61 

2.4.1. Potentials of Mean Force .................................................................. 61 

2.4.2. Translational Diffusion ...................................................................... 63 

2.4.3. Permeability Measures ..................................................................... 65 

2.4.4. Rotational Diffusion .......................................................................... 68 

2.4.5. Insertion Angle .................................................................................. 71 

2.4.6. Backbone Conformations .................................................................. 72 

2.4.7. Sidechain Conformations .................................................................. 75 

2.4.8. Peptide Structures – Clustering. ........................................................ 77 

2.4.9. Molecular Shape and Size ................................................................. 79 

2.4.10. Specific Interactions ........................................................................ 79 

2.5. Conclusions ................................................................................................. 82 

2.6. Supplementary Information ........................................................................ 85 

2.6.1. Initial Membrane Electron Density........................................................ 86 

2.6.2. PMF Quartiles ....................................................................................... 86 

2.6.3. Alternative Diffusion Constant Methods ............................................... 88 

2.6.4. Radius of Gyration ................................................................................ 90 

2.6.5. Solvent Accessible Surface Area ............................................................ 91 

2.7. References .................................................................................................. 94 

 

Chapter 3: Effect of System Size and Lipid Type on the Passive Permeation of the 

placeholdethe Phenylalanine Dipeptide .......................................................... 101 

 

3.1. Overview ................................................................................................... 102 

3.2. Introduction .............................................................................................. 103 



viii 
 

3.3. Methods.................................................................................................... 107 

3.4. Results and Discussion .............................................................................. 112 

3.4.1. Potential of Mean Force ...................................................................... 112 

3.4.2. Translational Diffusion ........................................................................ 115 

3.4.3. Permeability Measures ....................................................................... 117 

3.4.4. Rotational Sidechain Diffusion ............................................................ 119 

3.4.5. Insertion Angle .................................................................................... 122 

3.4.6. Backbone Conformations .................................................................... 125 

3.4.7. Sidechain Conformations .................................................................... 127 

3.4.8. Peptide Structures and Clustering. ...................................................... 129 

3.4.9. Molecular Shapes and Sizes ................................................................ 131 

3.4.10. Specific Interactions .......................................................................... 132 

3.5. Conclusions ............................................................................................... 136 

3.6. Supplementary Information ...................................................................... 138 

3.6.1. Electron Density Profile....................................................................... 138 

3.6.2. PMF Quartiles ..................................................................................... 139 

3.6.3. Radius of Gyration .............................................................................. 142 

3.6.5. Solvent Accessible Surface Area .......................................................... 143 

   3.7. References ................................................................................................ 147 

  

Chapter 4: On the Calculation of Diffusion Constants in Passive Membrane 
placeholdePermeation Studies ....................................................................... 155 

 

4.1. Overview ................................................................................................... 156 

4.2. Introduction .............................................................................................. 157 

4.3. Methods.................................................................................................... 167 

4.4. Results and Discussion .............................................................................. 173 

4.4.1. The Fluctuation Dissipation Theorem .................................................. 173 



ix 
 

       4.4.2. Green-Kubo Relations ......................................................................... 181 

4.4.3. Einstein Relations ................................................................................ 191 

       4.4.4. The Hummer Displacement Method ................................................... 196 

4.4.5. Numerical Approximation to the Smoluchowski Equation .................. 197 

4.5. Conclusions .................................................................................................. 199 

4.6. References ................................................................................................... 203 

 

Chapter 5: Permeation of a Small, Helical Peptide: wh5. ................................. 208 

5.1. Overview ................................................................................................... 209 

5.2. Introduction .............................................................................................. 209 

5.3. Methods.................................................................................................... 211 

5.4. Results and Discussion .............................................................................. 213 

5.5. Conclusions ............................................................................................... 221 

5.6. References  ............................................................................................... 223 

 

Chapter 6: Conclusions and Future Directions ................................................. 225 

 

6.1. Conclusions ............................................................................................... 226 

6.2. Future Directions ...................................................................................... 230 

6.2.1. Near Future ......................................................................................... 229 

       6.2.2. Far Future ........................................................................................... 232 

6.3. References ................................................................................................ 233 

 

 



x 
 

List of Figures 
 

Chapter 1: 

Figure 1.1. The anatomy of a phosphatidylcholine. ....................................................................... 3 

 

Chapter 2: 

Figure 2.1. Chemical structures of studied systems. .................................................................... 55 

Figure 2.2. The potential of mean force. ...................................................................................... 62 

Figure 2.3. Translational diffusion constants. ............................................................................... 65 

Figure 2.4. Sidechain rotational correlation times. ...................................................................... 70 

Figure 2.5. Insertion angles. .......................................................................................................... 72 

Figure 2.6. Ramachandran plots. .................................................................................................. 74 

Figure 2.7. Peptide sidechain conformations. .............................................................................. 76 

Figure 2.8. Representative structures from trajectory clustering. ............................................... 78 

Figure 2.9. Distributions of O to N distances between blocking groups. ..................................... 79 

Figure 2.10. Average number of water molecules within 0.3 nm of the peptides. ..................... 80 

Figure 2.11. Average coordination numbers of the three peptides. ............................................ 82 

Figure 2.12. Comparison of the total electron density. ................................................................ 86 

Figure 2.13. NAFA potential of mean force quartiles. .................................................................. 87 

Figure 2.14. NAYA potential of mean force quartiles. .................................................................. 87 

Figure 2.15. NATA potential of mean force quartiles. .................................................................. 88 

Figure 2.16. Diffusion constants from unconstrained force fluctuations..................................... 89 

Figure 2.17. Diffusion constants from the fluctuation of the umbrella pulling forces. ................ 90 

Figure 2.18. Radius of gyration. .................................................................................................... 91 

Figure 2.19. Hydrophilic accessible surface area... ....................................................................... 92 

Figure 2.20. Hydrophobic accessible surface area. ...................................................................... 92 

Figure 2.21. Total accessible surface area. ................................................................................... 93 

 

Chapter 3: 



xi 
 

Figure 3.1. Molecules involved with this study. ......................................................................... 107 

Figure 3.2. The free energy required to pull the phenylalanine dipeptide. ............................... 113 

Figure 3.3. Translational diffusion constants. ............................................................................. 117 

Figure 3.4. The autocorrelation time for the rotation of the phenylalanine sidechain. ............ 121 

Figure 3.5. The insertion angle of the dipeptide. ....................................................................... 123 

Figure 3.6. The correlation times for the reorientation of the insertion angle. ......................... 124 

Figure 3.7. Ramachandran plots and representative structures from a clustering analysis. ..... 126 

Figure 3.8. Χ1 and Χ2 sidechain angles for the phenylalanine dipeptide. ................................... 128 

Figure 3.9. The distance between the oxygen and nitrogen atoms. .......................................... 131 

Figure 3.10. The number of water molecules within 0.3 nm. .................................................... 133 

Figure 3.11. Radial distribution functions. .................................................................................. 134 

Figure 3.12. Coordination numbers. ........................................................................................... 136 

Figure 3.13. Electron density profiles. ........................................................................................ 139 

Figure 3.14. Potential of mean force quartiles in the DOPC 50 system. .................................... 140 

Figure 3.15. Potential of mean force quartiles in the POPC 40 system. ..................................... 141 

Figure 3.16. Potential of mean force quartiles in the POPC 50 system. ..................................... 142 

Figure 3.17. The radius of gyration. ............................................................................................ 143 

Figure 3.18. The hydrophilic accessible surface area. ................................................................ 144 

Figure 3.19. The hydrophobic accessible surface area. .............................................................. 145 

Figure 3.20. The total solvent accessible surface area. .............................................................. 146 

 

Chapter 4: 

Figure 4.1. Dz(z) calculated from the Fluctuation-Dissipation theorem using umbrella sampling 

placeholdepulling forces from GROMACS simulations............................................................... 174 

Figure 4.2. Dz(z) calculated from the Fluctuation-Dissipation theorem using force data from a 

placeholdez-constrained CHARMM simulation. ......................................................................... 177 

Figure 4.3. Dz(z) calculated from the Fluctuation-Dissipation theorem using forces from a free, 

placehold  unconstrained CHARMM simulation. ........................................................................ 179 

Figure 4.4. Dz(z) calculated from a Green-Kubo expression using velocity data from 

placeholdeunconstrained GROMACS simulations. ..................................................................... 182 



xii 
 

Figure 4.5. Autocorrelation functions for z-velocities for all ten trajectories from a 20 ps free, 
placeholdeunconstrained GROMACS simulation starting at z = 1.0 nm. ................................... 184 

Figure 4.6. Integrated z-velocity autocorrelation functions. ...................................................... 185 

Figure 4.7. Dxy(z) calculated from a 2D Green-Kubo expression using velocity data from 

placeholdeunconstrained GROMACS simulations.  .................................................................... 186 

Figure 4.8. D3d(z) calculated from a three dimensional Green-Kubo expression using velocity 

placeholdedata from unconstrained GROMACS simulations.  ................................................... 187 

Figure 4.9. D3d(z) calculated from a three dimensional Green-Kubo expression using velocity 

placeholdedata from unconstrained GROMACS simulations.   .................................................. 189 

Figure 4.10. Dz(z) calculated from a 2D Green-Kubo expression using velocity data from z-

placeholder constrained CHARMM simulations. ........................................................................ 190 

Figure 4.11. The mean square displacement for the phenylalanine dipeptide is depicted 
placeholder from a free GROMACS simulation at z = 0 for the POPC 50 system. ...................... 193 

Figure 4.12. Mean square displacement, expanded view. ......................................................... 194 

Figure 4.13. Dz(z) calculated from an Einstein relation using position data from an 

placeholderrunconstrained, free GROMACS simulation. ........................................................... 195 

Figure 4.14. Dz(z) calculated from the Hummer Displacement method using position data 

placeholder from umbrella sampling GROMACS simulations. ................................................... 197 

Figure 4.15. Dz(z) calculated from a numerical solution to the Smoluchowski equation from 

placeholderrposition data from umbrella sampling GROMACS simulations. ............................ 199 

 

Chapter 5: 

Figure 5.1. A schematic diagram of the peptide wh5. ................................................................ 210 

Figure 5.2. The locations of hydrogen bonds 1, 2, and 3 are displayed on wh5. ....................... 211 

Figure 5.3. The potential of mean force for wh5. ....................................................................... 214 

Figure 5.4. The root mean square deviation of the alpha carbons of wh5. ............................... 215 

Figure 5.5. The distance between the two ends of the wh5 molecule. ..................................... 216 

Figure 5.6. The distance between the center of mass of the tryptophan and histidine 

placeholdesidechains in wh5. ..................................................................................................... 217 

Figure 5.7. The radius of gyration for wh5. ................................................................................ 218 

Figure 5.8. The number of hydrogen bond pairs within 0.35 nm of wh5................................... 219 

Figure 5.9. The oxygen to nitrogen distance for each of the three hydrogen bonds that hold 

placeholdetogether the wh5 alpha helix. ................................................................................... 221 



xiii 
 

List of Tables 
 

Table 1.1. Comparison of the advantages and disadvantages of common molecular dynamics      

placehold algorithms. ................................................................................................................... 12 

Table 2.1. The permeation coefficients and mean passage time for NAFA, NAYA and NATA. .... 66 

 

 

 

 



1 
 

 

 

Chapter 1 

 

 

 

Introduction and Background 

 

 

 

 

 

 

 

 

 



2 
 

1.1. Introduction 

The diffusion of molecules through membranes plays an extremely important role in 

biology and the intelligent design of pharmaceutical compounds.  According to Deamer et. al., 

the first unicellular life began from the self-assembly of vesicles formed by phospholipid 

bilayers.1  Over time, other molecules and even other vesicles merged with each other to form 

multi-cellular life.  Specifically, Adamala and Szostak have theorized that short, hydrophobic 

peptide strands, such as N-acetyl-L-phenylalanine leucinamide (AcPheLeuNH2), are naturally 

capable of bridging the gap between lipid bilayers.2  These peptide strands permeate a lipid 

bilayer and, due to their hydrophobic amino acid residues, stick to the interior where they 

can then catalyze the growth of larger phospholipid bilayers.  This demonstrates the 

important intertwining of phospholipid bilayers and peptide structure.  However, none of this 

would have been possible without the unique properties of lipid bilayers.   

 The most common lipid bilayers found in plant and animal tissues are 

phosphatidylcholines (PC).  One such phosphatidylcholine is 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), as depicted in Figure 1.1.  Each phospholipid contains a headgroup, in 

this case choline, followed by a phosphate group, then followed by a glycerol linking group, and 

concluding with an acyl chain, also known as a fatty acid.  The first three groups are polar and 

possess a lower interfacial free energy by being closer to polar solvents such as water; whereas, 

the acyl chain consists of a wide variety of hydrocarbons in terms of length, saturation, and 

branching.  In aqueous environments, such as the cytoplasm within cells or blood plasma in 
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exterior regions, the acyl hydrocarbon tails minimize their interfacial free energy by being close 

to each other and will naturally self-assemble into a lipid bilayer.  

 

Figure 1.1. The anatomy of a phosphatidylcholine, specifically 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC). 

 

 Of course, cell membranes are far more complicated than a simple lipid bilayer.  They 

contain a wide variety of other chemical compounds such as carbohydrates, cholesterol, and a 

wide variety of proteins.  Carbohydrates are often attached to the surface of lipid molecules for 

the purposes of cell identification and signaling.  Cholesterol and other phospholipids are 

present in cell membranes and create interesting phase equilibria, such as lipid rafts and 

regions of enhanced transport properties.3  A wide variety of large, functional proteins are also 

embedded within cell membranes.  For example, cellular respiration within mitochondria relies 
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upon a rather complicated interplay between cell membranes; respiratory complexes I, II, III, 

and IV; and, cytochrome C – all of which are present at the surface of a phospholipid 

membrane.4 

 Instead of taking a complicated, macroscopic approach towards studying membrane 

permeation, we focus on a more direct atomistic approach from the bottom up by focusing on 

pure lipid bilayers and simple peptides.  Specifically, why study the passive permeation of small 

peptides across lipid bilayers?  As mentioned earlier, from an evolutionary perspective, 

unicellular life began as a simple lipid bilayer that, over time, trapped other molecules within 

itself to gradually form the complex cellular structures that we know today.1-2  However, until 

within the past couple decades, relatively little was known about precisely how molecules 

traverse a lipid bilayer.  Several theories were then developed that characterized cellular 

permeation as a function of the natural diffusive properties of a molecule and of the energy 

required to pass through a lipid bilayer.5-7  This general knowledge was then used to calculate a 

wide variety of useful of information such as partitioning coefficients, diffusion rates, 

permeability coefficients, and other kinetic rate parameters that are important for 

understanding drug absorption.8-10  As a result, the simulation of membrane permeation is 

currently an important aid in the systematic design of novel pharmaceutical compounds. 

Nature clearly demonstrates the importance of this process because over 30% of all proteins 

encoded by DNA are designed to manipulate cellular permeation,11 and drug companies are 

following suit with over 70% of modern drug targets also aimed at influencing cellular 

permeation.12  The molecular simulation of passive membrane permeation allows us to draw 
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important conclusions and mechanistic insights into the nature of cellular processes and 

improves our ability to manipulate these processes towards a practical end. 

 Numerous experimental studies on membrane systems have produced a wealth of 

information that lays out the foundation of our knowledge of these complex environments, and 

may also be used to validate simulation data.  For example, the lipid membrane undergoes a 

wide variety of structural and dynamic processes that have been explored through x-ray and 

neutron scattering.13-14  These methods can also be used to determine the surface area per 

headgroup and electron density.15-16  Lipid dynamics and alkane tail order parameters have 

been determined by NMR spectroscopy.17  Infrared spectroscopy has been used to study the 

dynamics of water inside of a lipid bilayer,18-20 and fluorescence spectroscopy is commonly used 

to probe a wide variety of non-lipid molecules inside of membranes.21-22  The rate of membrane 

permeation by ligands has been analyzed using the Parallel Artificial Membrane Permeation 

Assay (PAMPA) method,23-26 which follows the Caco-2 model of drug absorption through either 

the intestines or the blood-brain barrier.27  

 Molecular simulations of membranes provide both conceptual and practical information 

concerning cellular permeation that, in many ways, is complementary to experimental findings.   

The starting point is reproduction of observed properties in order to confirm the realistic nature 

of models.  Going beyond that, simulations provide a powerful tool for probing the atomistic 

and molecular properties of membrane structure, dynamics and permeation.  Atomistic insights 

yield valuable mechanistic information on structure, dynamics and interactions of the 

components.  The density of the membrane can be broken up into its constituent pieces, such 
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as the headgroups, tails, glycerol groups, hydrogen atoms, and carbon atoms.5  Translational 

and rotational diffusion of molecules at different depths within the membrane can be 

calculated.28-30  For flexible molecules, conformational changes during permeation may be 

followed, as in the case of Ramachandran plots for peptide systems.28  The overall orientation 

of a molecule as it approaches, enters, and permeates a cell membrane may be followed.28  

However, one of the most commonly calculated and discussed properties in membrane 

permeation studies is the free energy, G(z), as a function of insertion depth of the permeant in 

the membrane, z.  This is otherwise known as the potential of mean force (PMF). 

 Throughout this dissertation, we consider many atomistic insights and additional 

avenues of inquiry.  Chapter 1 concludes in the following sections with some basic background 

information concerning molecular dynamics algorithms, umbrella sampling, free energy 

calculations, and experimental methods for studying passive permeation.  Chapter 2 then 

explores the passive permeation of the aromatic dipeptides – phenylalanine, tyrosine, and 

tryptophan – across a DOPC lipid bilayer consisting of 50 lipid molecules.  Chapter 3 explores 

the influence of different lipid bilayers (monounsaturated vs. saturated) and sizes (50 lipids vs. 

40 lipids) on many of the phenomena observed in Chapter 2 within the context of 

phenylalanine permeation.  Chapter 4 then attempts to unravel the complicated nature of 

calculating diffusion constants within passive permeation processes.  Chapter 5 broadens the 

discussion towards the permeation of a larger peptide, wh5, which is capable of forming an 

alpha helix within itself.  Finally, Chapter 6 presents conclusions and offers avenues for future 

research. 
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1.2. Classical Molecular Dynamics Algorithms 

 The primary investigatory tools used throughout this dissertation are molecular 

dynamics simulations.  An incredibly rich and detailed body of literature exists concerning this 

subject, and we simply present a brief, general introduction to some of the common methods 

and algorithms that one can use. 

 Molecular dynamics (MD) simulations are used to determine the properties of a system 

based upon the trajectories of a collection of molecules.  Towards that end, there are a variety 

of algorithms for determining the motion of molecules.  These algorithms attempt to solve, 

numerically, the equations of motion for the system.   

 The most common algorithms are finite difference algorithms where a continuous 

differential equation is replaced by finite time lengths.  Most of these methods start out with a 

Taylor series approximation of position, x, as a function of some very small changes in time, Δt: 

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑥′(𝑡)(∆𝑡) +
1

2
𝑥′′(𝑡)(∆𝑡)2 +

1

3!
𝑥′′′(𝑡)(∆𝑡)3 + ⋯. (1.1) 

where t represents time and where the apostrophes represent derivatives with respect to time. 

When this Taylor series expansion is truncated at the first order with respect to Δt, then the 

simplest MD algorithm, Euler’s method, is created.  Euler’s method uses the following 

algorithm:31-32 

1.) Assume a known starting position, 𝑥(𝑡𝑜). 

2.) Define a time step, ∆𝑡, in order to advance the simulation. 

3.) Assume a constant rate of change in position, 𝑥′(𝑡), over the time step. 

4.) Calculate the initial speed through a Boltzmann distribution of velocities at the desired  



8 
 

 temperature. 

5.) Find the new position by using the truncated Taylor series expansion: 

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑥′(𝑡)∆𝑡 (1.2) 

6.) Re-evaluate the speed at the new position, 𝑥(𝑡 + ∆𝑡), by using a potential of interaction  

 between atoms and molecules. 

7.) Repeat steps 5 - 6 until finished. 

 In addition, the same method can be described in terms of velocity since the speed of 

atoms and molecules is directly related to the interaction potential that it experiences: 

1.) Assume a known starting velocity, 𝑣(𝑡𝑜). 

2.) Define a time step, ∆𝑡, in order to advance the simulation. 

3.) Assume a constant rate of change in velocity, 𝑣′(𝑡), over the time step. 

4.) Calculate the initial acceleration through some means, such as a potential of interaction  

 between atoms and molecules. 

 𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= −

𝑑𝑉

𝑑𝑥
 (1.3) 

5.) Find the new velocity by using the truncated Taylor series expansion: 

 𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) + 𝑣′(𝑡)∆𝑡 (1.4) 

6.) Re-evaluate the position based on the new velocity, 𝑣(𝑡 + ∆𝑡). 

7.) Repeat steps 5 - 6 until finished. 

Unfortunately, Euler’s method involves a rather large amount of truncation error because 

higher order terms within the Taylor series expansion are neglected.  Also, velocity is not 

constant over the interval, ∆𝑡. 
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 Runge-Kutta (RK) methods are based upon Euler’s basic algorithm.  However, these 

methods evaluate the velocity at several different points along the time interval.  For example, 

a 4th order RK method calculates the velocity at four different points along the time interval and 

then uses those points to determine the next position of the atom or molecule.  The algorithm 

proceeds, as follows: 

1.) Assume an initial position, 𝑥(𝑡𝑜). 

2.) Define a time step, ∆𝑡. 

3.) Represent the velocity as a function of both time and the position:  𝑥′(𝑡) = 𝑓(𝑡, 𝑥). 

4.) The new position is then defined as: 

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (1.5) 

where 

 𝑘1 = 𝑓(𝑡, 𝑥) (1.6) 

 

 𝑘2 = 𝑓 (𝑡 +
1

2
∆𝑡, 𝑥 +

∆𝑡

2
𝑘1) (1.7) 

 

 𝑘3 = 𝑓 (𝑡 +
1

2
∆𝑡, 𝑥 +

∆𝑡

2
𝑘2) (1.8) 

 

 𝑘4 = 𝑓(𝑡 + ∆𝑡, 𝑥 + ∆𝑡 𝑘3) (1.9) 

 

In this manner, the position is related to the velocity at several different points. 

5.) Advance time by another increment of ∆𝑡 and repeat step 4.) 
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 The previous example is rather special because the weighted coefficients make it 

analogous to Simpson’s rule; in other words, the velocity is represented not as a constant over 

the time interval, but as a 2nd order polynomial.  More complicated forms of Runge-Kutta 

algorithms exist that change the weighting, include variable weighting parameters, add 

additional parameters, or change the functional form of step 4.)  Although RK methods possess 

less truncation and local error, they require additional force and velocity calculations at each 

time step.  The calculation of force is the most computationally intensive part of an MD 

simulation, and RK algorithms are, therefore, very slow and are only used when a high degree 

of accuracy and precision is required. 

 Another drawback of all Euler based methods is that they are not time reversible.  In the 

Euler method, if time is advanced: 

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑥′(𝑡)∆𝑡 (1.10) 

When time is reversed: 

 𝑥(𝑡) = 𝑥(𝑡 + ∆𝑡) − 𝑥′(𝑡 + ∆𝑡)∆𝑡 (1.11) 

 

The velocities in both the forward and reverse time steps are different because they are 

evaluated at different times.  As a result, Euler based methods are not time reversible.  The 

volume of phase space is constantly increasing with each increasing time step and iteration of 

the simulation.  As a result, the system being studied may not be accurately described, 

particularly after a large number of time intervals, and system properties, such as energy, are 

not conserved. 
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 The most common symplectic algorithm that corrects these issues is the Verlet method.  

The Verlet method uses the current and previous positions to predict the future position by 

combining the Taylor series expansions for both the forward and reverse time steps: 

1.) The forward Taylor series time step is: 

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑥′(𝑡)∆𝑡 +
1

2
𝑥′′(𝑡)∆𝑡2 +

1

3!
𝑥′′′(𝑡)∆𝑡3 + ⋯. (1.12) 

2.) The reversed Taylor series time step is: 

 𝑥(𝑡 − ∆𝑡) = 𝑥(𝑡) − 𝑥′(𝑡)∆𝑡 +
1

2
𝑥′′(𝑡)∆𝑡2 −

1

3!
𝑥′′′(𝑡)∆𝑡3 + ⋯. (1.13) 

Add the previous two equations together and move the reversed time step term over to the 

right side. The odd order derivatives also cancel each other out and: 

 𝑥(𝑡 + ∆𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡) +
1

2
𝑥′′(𝑡)∆𝑡2 + ⋯. (1.14) 

Due to the cancellation of the odd powered terms, this formulation of the Verlet method is 3rd 

order with respect to truncation error in the time step.  

 Furthermore, the velocity can be approximated directly from the position, as Verlet 

originally proposed: 

 𝑣(𝑡 + ∆𝑡) =
𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡 − ∆𝑡)

2∆𝑡
 (1.15) 

Because the velocities are not calculated directly from the simulation, additional error is 

generated to the second order when calculating energies.  This can be corrected by using 

modified Verlet Algorithms such as the ‘Leap Frog’ variant.  In this algorithm, the position and 

velocity data is updated in alternating sequences:  the position is calculated on every whole 

time interval, ∆𝑡, and the velocity is calculated on every half time interval, 1/2∆𝑡.  For example, 
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if the position is calculated at t = 0, the velocity is then calculated at t = 1/2∆𝑡, and the position 

is next calculated at t = ∆𝑡.  In this manner, the position and velocity data jump or ‘leap frog’ 

over each other in terms of which one is most recent in time.31  For these reasons, where 

possible, the Leap Frog algorithm has been used for most of the simulations in this Dissertation. 

 Another common type of symplectic algorithms are various Predictor Corrector (PC) 

methods.  In PC methods, the following process is used: 

1.) Predict the position, velocity, and acceleration at time 𝑡 + ∆𝑡 using current values. 

2.) Evaluate the forces present in the system from Newton’s equations of motion, 𝐹 = 𝑚𝑎,  

 from the new position at time 𝑡 + ∆𝑡. 

3.) Correct the predicted positions, velocities, and accelerations from both the predicted and 

 prior values. 

More complicated PC methods can be created by adding in additional prediction, correction, 

and evaluation steps that are similar to the above process. 

Table 1.1.  Comparison of the advantages and disadvantages of common molecular dynamics 
algorithms. 

 
Algorithm 

 

 
Advantages 

 
Disadvantages 

Euler Simple, fast 
1st Order method 

2nd Order truncation error 
Stability issues 

Runge-Kutta 

Higher order 
More accurate than Euler 

Stable 
Small local fluctuations 

Slow 
Global energy drift 

Verlet 

Simple 
Symplectic 

Conserves energy well 
3rd Order 

Large local fluctuations 
Does not naturally calculate 

velocities 

Predictor Corrector Best conservation of energy Complex 
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1.3.  Free Energy Simulations 

 This section has been adapted from a review article, with permission from the publisher, 

Taylor and Francis.33 

 As mentioned in Section 1.1, one of the most frequently calculated and discussed 

properties from passive membrane permeation studies is the potential of mean force, G(z).  

The coordinate most often used in permeation simulations is the insertion depth, z, describing 

the distance of the permeant center-of-mass (COM) from the membrane center.  z = 0 refers to 

the center of the lipid system, typically a bilayer.  G(z) gives the reversible work for moving the 

permeant to position z and is defined within an arbitrary constant.34-35  The relative free 

energies associated with the permeant presence in each part of the membrane vary 

significantly, based upon the chemical environment.  The exterior of the membrane is typically 

aqueous — a highly polar environment.  The interior of the membrane, however, is composed 

of hydrocarbon chains from the tails of the lipid molecule — a highly nonpolar, hydrophobic 

environment.  The interface between the model membrane and surrounding water molecules 

represents a balance between the two.  For example, amino acids and most biological 

molecules contain both hydrophilic and hydrophobic components.  In many cases, the short 

peptides studied so far behave similarly to polar organic molecules, exhibiting a lower free 

energy at the interface and a higher free energy within both the center of the membrane and 

the aqueous region.7, 28  Quantitatively, this information can then be used to calculation 

permeation and partition coefficients for use in other analyses.5, 8 
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 Throughout this work, umbrella sampling has been used to calculate the potential of 

mean force; however, as seen in Chapter 2 and Chapter 3, this approach has a variety of 

limitations.  As such, throughout the remainder of this section, a review of some of the current 

and competing free energy methods, such as particle insertion, thermodynamic integration, 

metadynamics, adaptive biasing force, and milestoning are briefly reviewed and described, as 

well as a bit more detail concerning modern applications of umbrella sampling.  For a more 

detailed description of theory behind umbrella sampling, please see section 1.4 of this chapter. 

 

1.3.1. - Widom Particle Insertion. 

 The Widom particle insertion method is based on the relation between the excess 

chemical potential of a solute in solution, Δμex , and the solute-solvent interaction energy ΔE: 

 ∆𝜇𝑒𝑥 = 𝜇 − 𝜇𝑖𝑑 = ⟨𝑒𝑥𝑝 (−∆𝐸
𝑅𝑇⁄ )⟩

0
 (1.16) 

where μ is the solute chemical potential, μid is the reference ideal gas contribution, and <…>0 is 

the average over unperturbed solvent configurations and random solute insertion attempts, R 

is the gas constant, and T is the absolute temperature.36-38  For larger solutes, the original 

Widom approach is inefficient, because a majority of random insertions lead to large values of 

ΔE, due to atomic overlap between solute and solvent.  To overcome this problem, the cavity 

insertion Widom method was developed, in which the solute is inserted into existing solvent 

cavities of appropriate size, and the formula for Δμex is corrected by the probability of observing 

such cavities in the pure solvent.37, 39-40  To calculate the potential of mean force, the chemical 
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potential of the solute is calculated as a function of z by insertion into different regions of a 

solvated lipid bilayer.   

 

1.3.2. - Thermodynamic Integration. 

 This method is based on the equation for the derivative of the free energy with respect 

to an external parameter.41-42  The initial derivation applied to “alchemical-type” processes, 

where the system was smoothly changed from a wild-type state (with potential energy U0) to a 

mutant state (with potential energy U1) by varying a coupling parameter λ.  As the parameter is 

varied from λ = 0 to λ = 1, the potential energy changes from U0 to U1.  In the simplest, linear 

coupling scheme:  

 U(λ) = (1-λ)U0 + λU1 (1.17) 

The primary thermodynamic integration (TI) equation is then:41-43 

 (
𝜕𝐺

𝜕𝜆
)

 𝜆0

= ⟨
𝜕𝑈(𝜆)

𝜕𝜆
⟩

𝜆0

 (1.18) 

where the slope of G with respect to the coupling parameter at λ = λ0 is evaluated as the 

average of the derivative of U(λ) over a sample of structures generated with potential U(λ0).  In 

the case of linear coupling: 

 
𝜕𝑈

𝜕𝜆
= 𝑈1 − 𝑈0. (1.19) 
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When thermodynamic integration was extended to calculations of the derivative of G with 

respect to an internal coordinate ξ (such as a distance, dihedral angle, or a more general 

collective variable), Equation 1.18 was modified to:

  

 

 (
𝜕𝐺

𝜕𝜉
)
𝜉0

= ⟨
𝜕𝑈

𝜕𝜉
⟩
𝜉0

+ 𝑅𝑇 ⟨
𝜕𝑙𝑛|𝐽|

𝜕𝜉
⟩

𝜉0

 (1.20) 

where the additional term contains the Jacobian, J, for the transformation of coordinates 

between Cartesian coordinates and the full set of generalized coordinates including ξ. 44-45  In 

the case of simulating transmembrane permeation, the structural coordinate is typically chosen 

to be ‘z’, as defined earlier.  Therefore, the J term vanishes, and the thermodynamic integration 

formula may be written as:46  

 (
𝜕𝐺

𝜕𝑧
)
𝑧0

= ⟨
𝜕𝑈

𝜕𝑧
⟩
𝑧0

= −⟨𝐹𝑧⟩𝑧0
 (1.21) 

Here, the derivative of the free energy with respect to ‘z’ is expressed as the negative of the 

average z-component force acting on the permeant center of mass over a sample of structures 

corresponding to a fixed value of z = z0.  The sample is obtained by performing molecular 

dynamics simulations with a holonomic constraint on the permeant position. The PMF, G(z), is 

obtained by integrating the derivative. The advantage of the TI approach is that the fluctuations 

of the instantaneous values of the force, ΔFz(z,t)= Fz(z,t) - <Fz(z,t)>, may be used to calculate the 

position-dependent diffusion coefficient, D(z), according to:47 

 𝐷(𝑧) =
(𝑘𝐵𝑇)2

∫ 〈∆𝐹𝑧(𝑧, 0) ∗ ∆𝐹𝑧(𝑧, 𝑡)〉𝑑𝑡
∞

0

 (1.22) 
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1.3.3. - Umbrella Sampling. 

 In umbrella sampling, a harmonic restraint potential is introduced, Ur(z) = ½ f(z-z0)2, 

where f is a force constant and z0 defines the location of the window where conformational 

sampling will take place.  The system is simulated in the biased potential U* = U + Ur, where U is 

the normal molecular potential described by the molecular mechanics force field.48-49  A typical 

application involves a molecular dynamics simulation with the biased potential U*, which 

samples a biased distribution of z values, P*(z), and a corresponding biased free energy, G*(z) = 

-RT ln P*(z). The corresponding unbiased PMF G(z) is recovered by subtracting the known 

function Ur:
 
 

 𝐺(𝑧) = −𝑅𝑇 ln 𝑃∗(𝑧) −
1

2
𝑓(𝑧 − 𝑧0)

2 + 𝐶 (1.23) 

where C is an arbitrary constant.  Due to the presence of the restraint potential, only a limited 

range of z is sampled in such a simulation, so a series of simulations is performed, sampling 

different regions, or windows, of the reaction coordinate z.  To generate the overall PMF G(z), 

the unbiased contributions from the different windows have to be matched by adjusting the 

constants.  An elegant way of doing this is the Weighted Histogram Analysis Method (WHAM) 

approach, which is designed to minimize the statistical error in the sampled distribution P(z) 

and PMF G(z).34-35, 49 

 

1.3.4. - Metadynamics. 

 Metadynamics is an adaptive approach in which the system is pushed to explore the full 

range of a reaction coordinate, or more generally, a collective variable.50 This is done by adding 

to the molecular potential ‘hills’ or Gaussian penalty functions, localized at already explored 
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regions of conformational space.  At the end of the process, the biasing potential is the negative 

of the PMF, and the system motion along the collective variable is on a flat effective potential 

landscape, allowing for the complete sampling of the selected coordinate.  Several 

improvements, such as parallel tempering metadynamics51 and transition-tempered 

metadynamics,52 have been introduced and applied. 

 

1.3.5. - Adaptive Biasing Force. 

 In the Adaptive Biasing Force (ABF) method, the running average of the force acting 

along a selected coordinate, ξ, is evaluated in bins (according to Equation 1.20), and subtracted 

from the instantaneous force due to the molecular potential energy.53-54  The average effective 

force acting in the chosen coordinate is then close to zero, allowing for efficient conformational 

sampling in the selected direction. This method yields the derivative of the free energy with 

respect to the chosen coordinate, without need for constraints or restraints, combining the 

Thermodynamic Integration approach with enhanced sampling along the reaction coordinate.54-

55 

1.3.6. - Milestoning. 

 Milestoning is mainly used in kinetic modeling.56  In this case, a set of fixed 

conformational states, or anchors, is defined, which span the conformational space of interest. 

The milestones themselves are hypersurfaces separating the conformational regions assigned 

to each anchor.  Multiple trajectories are initiated at each milestone and transition probabilities 

Kαβ(t) are calculated, which describe the probability that a trajectory initiated at milestone α at 

time zero will pass milestone β for the first time at time t. If there are nα trajectories initiated at 
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α and nαβ(t) trajectories hit β at time t, then Kαβ(t) ≈ nαβ(t)/nα.57  These transition probabilities 

are then used to calculate mean first passage times between all pairs of milestones, providing 

the full kinetic description for transitions in the coarse-grained space of anchor states.  From 

the transition matrix, Kαβ, the stationary milestone populations qα are calculated and can then 

be converted to a PMF through standard methods.57-58 

 

1.3.7. - Method Comparison. 

 In general, the different methods described above have been shown to enable the 

efficient simulation of the complex process of transmembrane permeation of small molecules. 

As simulations switch to larger and more complex permeants, the Widom method is becoming 

less popular.  While metadynamics calculates the whole probability distribution and PMF, the 

TI, US, and ABF approaches focus on describing the local properties of the PMF and join the 

pieces together.  This makes the latter methods somewhat more flexible.  A recent comparison 

of US and ABF simulations for the bilayer permeation of model compounds found that they 

gave mostly comparable results.59  In theoretical terms, ABF exhibits highly appealing features, 

combining both enhanced sampling and PMF generation without the need for using restraints 

or constraints. The TI algorithm necessitates the use of holonomic constraints, which are not 

widely implemented. However, it has the advantage of generating the instantaneous forces 

acting along the constrained coordinate, which may be used to obtain position-dependent 

diffusion rates. 

 The US approach, based on harmonic restraints, is simpler to implement. Some authors 

use the US instantaneous restraint force Fr,z(z,t) = f(z-z0) in an analog of Equation 1.22 to 
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estimate D(z).  We believe this is not correct, because while Fz(z,t) describes the force acting on 

the permeant due to interactions with its environment, Fr,z(z,t) only reflects the permeant 

displacement relative to the window center, z0.  While it may be expected that the average 

total force in an umbrella sampling simulation should be close to zero.  Therefore, < Fz(z,t)> ≈ -< 

Fr,z(z,t)>, and there is no evident reason for the instantaneous values to be related.  Some more 

practical and theoretical aspects of different PMF calculation methods are discussed in more 

detail in the following reference.54  Milestoning is quite complex to implement, but has the 

advantage of reproducing essentially exact system dynamics across the defined conformational 

space with minimal assumptions.  

 For all the methods discussed, simulations must be long enough to sample fluctuations 

in the degrees of freedom orthogonal to the special coordinate z.  This is generally difficult to 

verify.  In most cases, it is assumed that the depth of permeant insertion z is the only “slow” 

coordinate which requires special treatment.  However, several additional slow variables that 

may require special sampling approaches have been suggested recently.  One of these is the 

reorientation of the permeant, which may become difficult to sample as more complex 

molecules are simulated.7, 30, 60-63  For example, rotational relaxation times for aromatic 

sidechains were found to be 10-100 times slower inside of the membrane as compared to the 

solution.28  Another slow variable may involve solvent structural fluctuations.  The dragging of 

water into the membrane by charged amino acids 64-65 and slow water density dynamics 66 have 

been studied and found to occur on a timescale of tens of microseconds. 
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1.3.8. - Applications. 

 Throughout this section, we examine some of the many different ways that the 

previously mentioned methods can be applied towards both calculating and interpreting the 

free energy and potential of mean force for membrane permeation.  For those interested in a 

broader and more comprehensive survey of recent literature, we direct you towards two of the 

more recent review articles on membrane simulations written by Awoonor-Williams et al.67 and 

Xiang et al.68  The former contains an excellent survey of recent literature; whereas, the latter 

contains a great biological perspective.  For those interested in learning how to design and 

setup their own membrane simulations, including the selection of computer programs, force 

fields, ensembles, and lipid types, the following review articles and book chapters by Dickey,69 

Tieleman,70 and Orsi and Essex71 are excellent starting points.  For those interested in the basic 

theory behind molecular dynamics simulations, the following reference books build a good 

theoretical foundation.31-32    

 The particle insertion method is one of the earliest and most computationally efficient 

methods for calculating the relative free energies of small molecules inside and outside of a 

membrane.36, 40  It was first used in membrane transport simulations by Marrink and 

Berendsen5 in 1994 to simulate the permeation of water through a lipid bilayer consisting of 64 

dipalmitoylphosphatidylcholine (DPPC) molecules, with the GROMOS force field and single 

point charge (SPC) water model.72  They proposed a 4 region membrane model for interpreting 

their results:  region 1 consists of a largely aqueous phase with small lipid headgroup density; 

region 2 consists of the largest lipid headgroup density; region 3 contains the largest density of 
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lipid tail groups; whereas, region 4 represents the center of the membrane where the greatest 

amount of free volume is present. Their results indicated a roughly trapezoidal free energy 

curve where the potential of mean force increases steadily through regions 1, 2, and 3 until it 

decreases slightly inside the middle, region 4, due to a greater excess volume where opposing 

lipid tails meet.  These results were later confirmed by additional follow up simulations in 1996 

on both water and ammonia.6  The particle insertion method has since been improved upon 

and used to investigate the free energy of a wide variety of small molecules such as oxygen,6 

ethanol,73 methane derivatives,37 and small gasses,39 as well as the effect of carbon lipid length 

and water, revisited.40, 74-75  Unfortunately, due to difficulties in sampling large volume cavities, 

it is of little use for larger permeants. 

 Thermodynamic integration is also referred to as the z-constraint method.  The same 

constrained force data from umbrella sampling simulations can be used to calculate diffusion 

constants.  The first commonly referenced instance of its use was by Marrink and Berendsen in 

their second article on the permeation of water and small molecules through a lipid bilayer.6  

Since then, thermodynamic integration has been used to determine the free energy of a wide 

variety of small molecules and pharmaceutical compounds.29, 76-79  For example, in 2009, Orsi, 

Sanderson, and Essex conducted a thermodynamic integration study on several small 

molecules.  Their simulation consisted of 128  dimyristoylphosphatidylcholine (DMPC) lipid 

molecules using a coarse grain model80 and 3400 water molecules using a soft sticky dipole 

model81 and was run using their own custom software, BRAHMS80, for up to 80 ns.  Their free 

energy results follow the same trend described at the start of this section. Hydrophilic 

molecules show an increase in free energy towards the center of the membrane; whereas, 
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hydrophobic molecules like ethane demonstrate a decrease in free energy at the central 

location.  More interestingly, molecules with both hydrophilic and hydrophobic components 

demonstrate a sinusoidal pattern where the free energy decreases near the interface (Regions 

II and III) but increases at the center of the membrane. This is a pattern that is commonly 

witnessed with biological molecules. 

 Umbrella sampling has been the most popular method for determining the potential of 

mean force over the past couple decades and has been used in a wide variety of simulations of 

amino acids7, 9, 61, 64, ions65, 82-83, pharmaceutical compounds84-86, and various membrane 

models87-89.  In our work, we have studied the permeation of three aromatic dipeptides with 

phenylalanine, tyrosine, and tryptophan sidechains, as well as a small helical peptide, wh5.  Our 

simulations comprised either 40 or 50 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid 

molecules using the CHARMM 36 force field 90 and TIP3P water molecules.72, 91  All simulations 

were setup with CHARMM92-93 and were then run with GROMACS 4.5.6 software94 for 50 to 100 

ns for each umbrella sampling window.  Our results can be found in Chapter 2 (Figure 2.2).  All 

of the amino acids, relative to water, possess a smaller free energy near the interface of the 

membrane where their hydrophobic moiety can interact with the lipid membrane and where 

their hydrophilic moiety can interact with the polar lipid headgroups and aqueous region.  The 

larger systems, blocked tryptophan and wh5, exhibited relatively large free energy cost to enter 

the center of the membrane, likely due to the destruction of the solvation shell.28  It should, 

however, be noted that many ionic amino acids do not exhibit this pattern and their 

permeation of a membrane is due to the creation of a water filament with a greatly reduced 

free energy penalty through the center of the membrane.64-65, 83  We observed little difference 
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in the potential of mean force as a result of changes in system size or lipid type. This is in accord 

with work of Naomi et. al., who demonstrated moderate free energy differences due to even 

larger changes in system size.95  The small system size likely minimized the effects of membrane 

deformations that occur on long timescales87, and we recommend  that future studies ensure 

that the free energy has converged through a wide variety of parameters such as length and 

starting conformation.96  The Ramachandran plots in Chapter 2 (Figure 2.6) demonstrate that 

molecules also adopt different conformations based upon their location within the membrane; 

this is a topic that has been explored in depth by other methods, as discussed later on in this 

section. 

 Recently, Carpenter et al.10 conducted an umbrella sampling study to predict the 

permeation of twelve pharmaceutical compounds through the blood brain barrier.  Their 

systems were comprised of 72 DOPC molecules using the Berger coarse grained force field  97 

and single point charge water.72  Each umbrella sampling window was run for 45 ns by using 

GROMACS 4.5.5.94  All of the drugs exhibited a free energy minimum at the interface of the 

membrane, albeit to varying degrees.  Perhaps unsurprisingly, the molecules most capable of 

passing through the blood-brain barrier were those with a free energy lower in the membrane 

than in water.  For example, nordazepam, imipramine, chlorpromazine, and promazine are all 

experimentally known to pass through the blood brain barrier; whereas, atenolol, salbutamol, 

salicylate, and cimetidine do not.  Those with higher free energy barriers are all capable of 

extensive hydrogen bonding; whereas, those with lower free energies are largely aliphatic with 

a small number of hydrogen bond donors and acceptors.   
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 Unfortunately, umbrella sampling, although popular, has issues with convergence, and 

its derivation assumes only one free energy barrier towards permeation, such as translational 

movement through the bilayer, when permeant reorientation and membrane deformations 

may be more important.62, 87, 96  As a result, a large amount of research over the past decades 

has gone towards devising new methods that may more accurately or more efficiently describe 

lipid membrane permeation.  One such example is metadynamics, as devised by Laio in 200250 

and recently revised by Voth in 2016.52  In 2013, Bochicchio et al.98 compared umbrella 

sampling with metadynamics and found both approaches to yield similar results for simple 

polymer systems, while metadynamics proved to be more computationally efficient.  Earlier, 

Jämbeck and Lyubartsev99 conducted another comparison between umbrella sampling and 

metadynamics by using ibuprofen, aspirin, and diclofenac.  Although their work was 

inconclusive in terms of which method better describes the potential of mean force, they did 

demonstrate the importance of sampling internal degrees of freedom by comparing results 

with both cis and trans ibuprofen — the trans conformation better reproduced experimental 

results. 

Adaptive biasing force is another relatively modern method and is in continued 

development by Pohorille.53-55  In 2014, Comer et al.63 used this method to examine a wide 

variety of questions concerning lipid bilayer simulations, such as the van der Waals cutoff, the 

choice of water model, and bilayer size on the permeation of water through a POPC lipid 

bilayer.  Their simulations used 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid 

molecules, the CHARMM 36 force field,90 and were run with NAMD.100  They found that varying 

van der Waals cutoffs between 0.7 and 1.2 nm had little impact on free energy values.  
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Simulations with TIP4P-Ew water yielded similar free energy profile to TIP3P, with the PMF only 

about a kJmol-1 higher within the membrane center.101  Finally, increasing the system size from 

40 to 100 POPC molecules only slightly changed the free energy of permeation.  However, it 

should be noted that these changes did influence other properties, such as the overall 

permeability.  Although not directly related to membrane permeation, Chipot’s earlier work 

using this method may also be useful to those replicating this approach.102 

Milestoning represents one of the newest and most novel means for determining the 

free energy.  Specifically, one-dimensional Milestoning (along the permeation coordinate, z) 

was applied to study the transport of blocked tryptophan (NATA) through a model DOPC bilayer 

by Elber et al.,7 using the Berger parameter set97 and the MOIL simulation package.103  The 

results yielded a permeation time of about 4 hours, in good agreement with experimental 

estimates of 8 hours from the parallel artificial mebrane permeation assay.  Their results 

obtained with the solubility-diffusion model for NATA also yielded a very long permeation time 

of around 15 min.  The slow permeation time for NATA was traced to a very high free energy 

barrier, about 75 kJmol-1, which is significantly higher than a simple sidechain model with 1-

methylindol (around 16 kJmol-1) or our recent umbrella sampling results for the same system of 

44 kJmol-1.28  Partial solvation of NATA was found throughout the permeation process and 

indicates the formation of membrane defects.7  A further study performed milestoning on 

NATA membrane permeation in the two-dimensional space of insertion depth z and insertion 

angle θ.30  Here, θ was defined as the angle between the z axis and the vector between centers 

of the NATA backbone and sidechain.  Interestingly, the computed free energy barrier was 

essentially the same as in the case of using z only, indicating that NATA reorientation was not a 
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‘hidden slow variable’, but was adequately sampled in previous studies.  Another Milestoning 

study of a membrane environment involved simulations of transitions between states 

corresponding to different number densities.66  This was used to study the dynamics and 

distribution of cavities inside the membrane, which may facilitate the permeation of nonpolar 

molecules.  Additionally, water permeation was characterized in the same work.  While 

calculated permeabilities were somewhat larger than previously calculated, an improved 

estimate of the water transition time across a lipid bilayer (around 10 μs) was obtained. 

Milestone lifetimes along the permeation coordinate were calculated, with most values being 

short (single ps and below), except for locations in the leaflet centers, which reached hundreds 

of ps.   

 

1.3.9. - Recent Developments. 

 New developments in free energy simulations of membrane permeation are occurring in 

several directions.  One direction involves development and application of new, improved 

algorithms, such as transition tempered metadynamics,52 which improve convergence of the 

free energy, or the modified WHAM method,104 which enhances data analysis.  Another 

direction is the use of multiple copies of the permeant, which come in several types.  At the 

simplest level, multiple independent copies of the permeating molecule are propagated in a 

single simulation, with sufficient spacing between copies to avoid interactions.95  A related 

approach in this category is to use multiple-walker versions of metadynamics and ABF.105-106  A 

slightly different approach applies replica-exchange ideas, propagating multiple trajectories to 

enhance sampling – including replica-exchange molecular dynamics, bias-exchange 
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metadynamics, and replica-exchange umbrella sampling.59, 107  Transition-tempered 

metadynamics takes a novel approach to the objective of rare event sampling, where Gaussian 

biasing functions are exponentially tempered based on known barriers in the system such as 

the center of membranes in permeation simulations or protein folding events.52, 108  A separate 

direction is the development of molecular  mechanics force fields for lipids; besides the Berger 

set,97 improved versions of CHARMM 90 and GROMOS 109-110 parameters have recently been 

published. 

 The idea of moving beyond the simple inhomogenous solubility-diffusion model of 

permeation is undergoing increased scrutiny.  On one hand, the possibility of several slow 

degrees of freedom that require enhanced sampling is being considered. Besides the 

membrane insertion z, these include both permeant orientations and coupled slow solvent-

membrane fluctuations.  As more complex permeants are being modeled, internal 

conformational sampling of molecules will have to be considered as well.28  Finally, memory 

effects in permeant dynamics are being investigated by the analysis of non-Markovian behavior 

111 and the consideration of subdiffusive motion.112 

 

1.4. Umbrella Sampling Theory 

Umbrella sampling is a very important method that is used throughout this dissertation; 

and, therefore, a discussion concerning the underlying theory and derivation of the general 

umbrella sampling equations that were mentioned earlier may prove useful. 
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Umbrella sampling is a method for determining the energy differences within a system 

that contains thermodynamically inaccessible regions of phase space that are of interest.  A 

typical molecular dynamics simulation has difficulty sampling regions of phase space that are 

separated by a high energy barrier.  For example, when a protein diffuses across a lipid bilayer, 

the protein encounters a large energy barrier as it travels from one side of the membrane to 

the other.  Experimental evidence suggests that this process takes around eight hours to occur 

naturally and unassisted.7  A reasonably sized molecular dynamics simulation of such a system 

with 64 modern processors would take around 4 billion years to model this process – roughly 

the age of the Earth!  Thankfully, this problem has been considered in detail by others, and one 

of the oldest and most common solutions is to use umbrella sampling.   

Umbrella Sampling works by adding a bias potential to the system Hamiltonian that 

lowers the free energy of particular configurations of interest or, more commonly, raises the 

free energy of regions that are not of interest.  Simulations are then repeated for other regions 

of interest and are allowed to access the aforementioned thermodynamically inaccessible 

regions of phase space for the unbiased system.  Finally, at the end, all of the separate 

simulations are combined together to represent a continuous function of the free energy for 

the unbiased and unweighted system that is truly of academic interest. 

Unfortunately, the mathematics behind this process are nontrivial and are historically 

split into two separate pathways.  The first description of Umbrella sampling began with Torrie 

and Valleau and built upon the Acceptance Ratio Method of Bennet et. al. before them.48, 113-114    

The derivation begins with basic thermodynamic definitions of the unbiased system of interest 
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and the biased system over which the simulation will actually be run.  The subscript ‘u’ denotes 

the unbiased system and the subscript ‘b’ denotes the biased system. In a canonical ensemble 

where N, V, and T are constant, the Helmholtz free energy, A, is given by: 

 𝐴𝑢 = −𝑘𝐵𝑇𝑢 ln(𝑄𝑢) (1.24) 

where Qu is the partition function for the unbiased system.  Assume a second system of interest 

exists where: 

 𝐴𝑏 = −𝑘𝐵𝑇𝑏 ln(𝑄𝑏) (1.25) 

where Ab and Qb are the associated variables for this new, biased system.  Simplify and take the 

difference of the two, previous equations and: 

 𝛥𝐴 = −𝑘𝐵𝑇 ln
𝑄𝑏

𝑄𝑢
 (1.26) 

assuming that the temperature of the biased and unbiased systems is the same. 

For conformational processes, the contributions of kinetic energy to ΔA cancel each other out, 

and we can express the free energy change in terms of the configuration integral, Z. 

 𝑍 = ∫𝑒−𝛽𝑈(𝑟𝑁)𝑑𝑟𝑁 (1.27) 

where β = (kBT)-1. 

ΔA then becomes: 

 𝛥𝐴 = −𝑘𝐵𝑇 ln
𝑍𝑏

𝑍𝑢
 (1.28) 
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 𝛥𝐴 = −𝑘𝐵𝑇 ln(
∫ 𝑒−𝛽𝑈𝑏(𝑟𝑁)𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
) (1.29) 

Now, assume that both integrals are over the same configuration space, as written up above.  

Notice that the partition function usually contains an integral over all of phase space, over both 

the positions and momenta.  However, the internal energy is not a function of the momentum 

of the system and the associated integral over all possible momenta cancels out in the above 

ratio.  Next, the biased system differs from the unbiased system by an offset potential, ΔU:  

 𝑈𝑏(𝑟
𝑁)  = 𝑈𝑢(𝑟𝑁) + 𝛥𝑈(𝑟𝑁) (1.30) 

 ∆𝑈(𝑟𝑁) = 𝑈𝑏(𝑟
𝑁) − 𝑈𝑢(𝑟𝑁) (1.31) 

ΔA now becomes: 

 𝛥𝐴 = −𝑘𝐵𝑇 ln (
∫ 𝑒−𝛽[∆𝑈(𝑟𝑁)+ 𝑈𝑢(𝑟𝑁)]𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
) (1.32) 

Distribute the -β in the numerator and substitute in the given equation for ΔU and this 

becomes: 

 𝛥𝐴 = −𝑘𝐵𝑇 ln (
∫ 𝑒−𝛽[𝑈𝑏(𝑟𝑁)−𝑈𝑢(𝑟𝑁)+ 𝑈𝑢(𝑟𝑁)]𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
) (1.33) 

 𝛥𝐴 = −𝑘𝐵𝑇 ln(
∫ 𝑒−𝛽𝑈𝑏(𝑟𝑁)+𝛽𝑈𝑢(𝑟𝑁)− 𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
) (1.34) 

Split the exponent in the numerator into two parts and: 

 𝛥𝐴 = −𝑘𝐵𝑇 ln (
∫[𝑒−𝛽𝑈𝑏(𝑟𝑁)+𝛽𝑈𝑢(𝑟𝑁) ](𝒆− 𝜷𝑼𝒖(𝒓𝑵))𝑑𝑟𝑁

∫𝒆−𝜷𝑼𝒖(𝒓𝑵)𝒅𝒓𝑵
) (1.35) 
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The bolded parts in the numerator and denominator and their associated integrals represent a 

thermodynamic average of the probability of finding a certain energy difference between the 

biased and unbiased states.  In other words, what is the probability of finding a particular 

energy difference between states for a given unbiased state?  This can be denoted as the 

following equation: 

 ∆𝐴 = −𝑘𝐵𝑇 ln〈𝑒−𝛽𝑈𝑏(𝑟𝑁)+𝛽𝑈𝑢(𝑟𝑁)〉𝑢 (1.36) 

 ∆𝐴 = −𝑘𝐵𝑇 ln〈𝑒−𝛽∆𝑈(𝑟𝑁)〉𝑢 (1.37) 

Note: the previous three equations are simply different ways of expressing the same thing.  

Now, the thermodynamic average is over all possible configurations of the unbiased system.  

Instead of integrating over all possible configurations, the integral can be expressed over all 

possible energy differences, ΔU, by weighting each energy difference by its probability density, 

pu(ΔU). 

 𝛥𝐴 = −𝑘𝐵𝑇 ln∫ 𝑝𝑢(∆𝑈)𝑒−𝛽∆𝑈𝑑(∆𝑈)
∞

−∞

 (1.38) 

pu(ΔU) can then be found by running a simulation, binning configurations, and creating a 

probability histogram.  Although the above equation forms the theoretical foundation for 

umbrella sampling, its practical uses are rather limited.  This equation is only valid when the 

two distributions overlap each other, as discussed by Bennet in his Acceptance Ratio 

Method.114  Unfortunately, a definition of what constitutes ‘good overlap’ largely depends on 

the error associated in the final results.  Even then, it is rarely possible to achieve decent 

overlap between the two systems with one and only one simulation run because large negative 
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values of ΔU will cause the above integral to approach an unreasonable large value and 

overemphasize configurations that have low probabilities.31   

To correct these problems, the probability distribution can be represented as a Markov 

chain of many different states that are averaged over the course of an entire simulation.  A 

Markov chain only depends on the current, initial state and not on the past historical events of 

the simulation.  In order to do this, a new probability distribution, π(rN), is created based upon a 

weighting function, w(rN): 

 𝜋(𝑟𝑁) =
𝑤(𝑟′𝑁)𝑒−𝛽𝑈𝑢(𝑟′𝑁)

∫𝑤(𝑟𝑁)𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
 (1.39) 

The above equation represents the degree of weighted overlap between a simulation run at 

coordinates r’ as compared to the entire weighted simulation; this forms the foundation for 

stitching together various pieces of the simulation.  w(rN) is then chosen to emphasize the 

coordinates where both the biased and unbiased systems can be sampled between both pieces 

of the simulation.  In other words, inaccessible states are either discarded or de-emphasized 

between the different simulation windows.  Therefore, the probability of sampling a 

configuration, rN, in phase space is now π.  Switching to a new probability distribution is a 

consequence of both systems having different energies, which results in different probability 

distributions.  In order to infer something about the unbiased system from the biased system, 

this difference needs to be known and taken into account within the relevant thermodynamic 

averages.  The thermodynamic average can now be written as: 

 〈𝑒−𝛽∆𝑈(𝑟𝑁)〉𝑢 =
∫𝑒−𝛽𝑈𝑏(𝑟𝑁)𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
 (1.40) 
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∫ 𝑒−𝛽𝑈𝑏(𝑟𝑁)𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
=

∫
𝜋(𝑟𝑁)
𝜋(𝑟𝑁)

𝑒−𝛽𝑈𝑏(𝑟𝑁)𝑑𝑟𝑁

∫
𝜋(𝑟𝑁)
𝜋(𝑟𝑁)

𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁

=
∫

𝑒−𝛽𝑈𝑏(𝑟𝑁)

𝜋(𝑟𝑁)
𝜋(𝑟𝑁)𝑑𝑟𝑁

∫
𝑒−𝛽𝑈𝑢(𝑟𝑁)

𝜋(𝑟𝑁)
𝜋(𝑟𝑁)𝑑𝑟𝑁

=
〈
𝑒−𝛽𝑈𝑏(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

〈
𝑒−𝛽𝑈𝑢(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

 (1.41) 

 〈𝑒−𝛽∆𝑈(𝑟𝑁)〉𝑢 =
〈
𝑒−𝛽𝑈𝑏(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

〈
𝑒−𝛽𝑈𝑢(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

=
〈
𝑒−𝛽∆𝑈(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

〈
1

𝜋(𝑟𝑁)
〉𝜋

 (1.42) 

The free energy difference can now be found: 

 ∆𝐴 = −𝑘𝐵𝑇 ln〈𝑒−𝛽∆𝑈(𝑟𝑁)〉𝑢 = −𝑘𝐵𝑇 ln

[
 
 
 
 〈

𝑒−𝛽∆𝑈(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

〈
1

𝜋(𝑟𝑁)
〉𝜋

]
 
 
 
 

 (1.43) 

Split up the natural logarithm using the division property of logarithms: 

 ∆𝐴 = −𝑘𝐵𝑇 ln

[
 
 
 
 〈

𝑒−𝛽∆𝑈(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋

〈
1

𝜋(𝑟𝑁)
〉𝜋

]
 
 
 
 

= −𝑘𝐵𝑇 ln [〈
𝑒−𝛽∆𝑈(𝑟𝑁)

𝜋(𝑟𝑁)
〉𝜋] + 𝑘𝐵𝑇 ln [〈

1

𝜋(𝑟𝑁)
〉𝜋] (1.44) 

Again, for practical purposes, the above equation is not particularly useful since rarely is the 

overall free energy difference between two systems of interest.  Also, the determination of π is 

typically done through trial and error and requires some foreknowledge about the system that 

is being studied.31 However, the above does clearly demonstrate that sufficient overlap is 

required between the separate simulation windows that make up the Markov chain.  If there is 

not sufficient overlap, then π(rN), as defined by Equation 1.39, will be negligible, and the above 

calculation will deviate towards infinity. 

The second historical derivation concerning the mathematics of umbrella sampling is 

more recent and involves a similar process over a particular coordinate of interest, as 
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demonstrated by a recent review article by Kaestner.115  Begin with the canonical partition 

function: 

 𝑄 = ∫𝑒−𝛽𝑈(𝑟𝑁)𝑑𝑟𝑁 (1.45) 

However, instead of integrating over all of phase space, rN, a coordinate of interest is removed 

from the integration by using the process described below.  Such a coordinate could be a 

reaction pathway; torsional degree of freedom; or, of interest to this work, the path an amino 

acid takes as it diffuses through a lipid bilayer.  After removing this coordinate from the 

integration in Equation 1.45, the partition function is now a function of the coordinate of 

interest, and a delta function must be introduced into the integral to account for this newfound 

dependence.  Below, let ‘a(rN)’ represent the coordinate of interest as a function of rN, the 

system coordinates, and let ‘a’ represent the currently desired value of the coordinate of 

interest: 

 𝑝(𝑎) = ∫{𝛿[𝑎(𝑟𝑁) − 𝑎]𝑒−𝛽𝑈(𝑟𝑁)}𝑑𝑟𝑁 (1.46) 

where p(a) represents the partitioning of energy states orthogonal to the coordinate a.  The 

above integral now integrates the probability distribution over all degrees of freedom other 

than the one of interest.  For example, if the coordinate of interest is the z axis of a simulation, 

and the desired value of z is 2.0, then the above function counts all possible configurations of 

the system in the xy plane at z = 2.0.  The probability of finding the system at a particular 

coordinate of interest is then: 

 𝑃(𝑎) =
𝑝(𝑎)

𝑄
=

∫{𝛿[𝑎(𝑟𝑁) − 𝑎]𝑒−𝛽𝑈(𝑟𝑁)}𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈(𝑟𝑁)𝑑𝑟𝑁
 (1.47) 
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Now, introduce the energy of the biased system, as follows: 

 𝑈𝑏(𝑟
𝑁)  = 𝑈𝑢(𝑟𝑁) + 𝛥𝑈(𝑎) (1.48) 

Note that the biased potential is only a function of the coordinate of interest, a. 

 𝑃𝑏(𝑎) =
∫ {𝛿[𝑎(𝑟) − 𝑎]𝑒−𝛽(𝑈𝑢(𝑟𝑁)+𝛥𝑈(𝑎))𝑑𝑟𝑁} 𝑑𝑟

∫ 𝑒−𝛽(𝑈𝑢(𝑟𝑁)+𝛥𝑈(𝑎))𝑑𝑟𝑁
 (1.49) 

 = 
∫{𝛿[𝑎(𝑟) − 𝑎]𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑒−𝛽𝛥𝑈(𝑎)𝑑𝑟𝑁}𝑑𝑟

∫ 𝑒−𝛽(𝑈𝑢(𝑟𝑁)+𝛥𝑈(𝑎))𝑑𝑟𝑁
 (1.50) 

 

The Boltzmann factor for the biased potential, in purple above, is not a function of rN; 

therefore, it can be pulled out of the integral: 

 𝑃𝑏(𝑎) =  𝑒−𝛽𝛥𝑈(𝑎) ∫{𝛿[𝑎(𝑟) − 𝑎]𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁}𝑑𝑟

∫ 𝑒−𝛽(𝑈𝑢(𝑟𝑁)+𝛥𝑈(𝑎))𝑑𝑟𝑁
 (1.51) 

The above equation can be rearranged and solved for the integral in the numerator: 

 ∫{𝜹[𝒂(𝒓) − 𝒂]𝒆−𝜷𝑼𝒖(𝒓𝑵)𝒅𝒓𝑵}𝒅𝒓 = 𝑃𝑏(𝑎) ∗ 𝑒𝛽𝛥𝑈(𝑎) ∗ ∫𝑒−𝛽(𝑈𝑢(𝑟𝑁)+𝛥𝑈(𝑎))𝑑𝑟𝑁 (1.52) 

Recall that the probability distribution for the unbiased system is of interest and not of the 

biased system, as discussed up above. 

 𝑃𝑢(𝑎) =
∫{𝜹[𝒂(𝒓) − 𝒂]𝒆−𝜷𝑼𝒖(𝒓𝑵)𝒅𝒓𝑵}𝒅𝒓

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
 (1.53) 

From the previous two equations, the two parts in bold are the same, and the unbiased 

probability distribution can be written as: 
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 𝑃𝑢(𝑎) = 𝑃𝑏(𝑎) ∗ 𝑒𝛽𝛥𝑈(𝑎) ∫ 𝑒−𝛽𝛥𝑈(𝑎)𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁

∫ 𝑒−𝛽𝑈𝑢(𝑟𝑁)𝑑𝑟𝑁
 (1.54) 

The fraction is simply the thermodynamic average of the weighted, biased Boltzmann factor 

over the unbiased partition function: 

 𝑃𝑢(𝑎) = 𝑃𝑏(𝑎) ∗ 𝑒𝛽𝛥𝑈(𝑎)〈𝑒−𝛽𝛥𝑈(𝑎)〉𝑢 (1.55) 

The above function represents the unbiased partition function for a given coordinate of interest 

with respect to the potential bias and the biased partition function.  The free energy is then 

given by: 

 𝐴𝑢(𝑎) = −𝑘𝐵𝑇 ln[𝑃𝑢(𝑎)] (1.56) 

 = −𝑘𝐵𝑇 ln[𝑃𝑏(𝑎) ∗ 𝑒𝛽𝛥𝑈(𝑎)〈𝑒−𝛽𝛥𝑈(𝑎)〉𝑢] (1.57) 

 = −𝑘𝐵𝑇 ln[𝑃𝑏(𝑎)] − 𝑘𝐵𝑇 ln[𝑒𝛽𝛥𝑈(𝑎)] − 𝑘𝐵𝑇 ln[〈𝑒−𝛽𝛥𝑈(𝑎)〉𝑢] (1.58) 

 = −𝑘𝐵𝑇 ln[𝑃𝑏(𝑎)] − 𝛥𝑈(𝑎) − 𝑘𝐵𝑇 ln[〈𝑒−𝛽𝛥𝑈(𝑎)〉𝑢] (1.59) 

If ΔU(a) is given by a known function, then its average value over a given simulation is simply a 

constant value. 

 𝐴𝑢(𝑎) = −𝑘𝐵𝑇 ln[𝑃𝑏(𝑎)] − 𝛥𝑈(𝑎) + 𝐶 (1.60) 

 𝐶 = −𝑘𝐵𝑇 ln[〈𝑒−𝛽𝛥𝑈(𝑎)〉𝑢] (1.61) 

Au(a) is usually given the name “Potential of Mean Force.”  It represents the energy required to 

move a subset of a simulation along a coordinate of interest.  This derivation uses the 

Helmholtz free energy; and, in condensed phases, the Helmholtz and Gibb’s free energies are 



38 
 

approximately the same.  Therefore, Equation 1.60 is equivalent to Equation 1.23 in the prior 

review of free energy methods, Section 1.3.3. 

 As mentioned before, the probability distribution can be obtained from a histogram of 

coordinates from a classical molecular dynamics simulation, and ΔU is specified as the biased 

potential.  The potential bias is typically a harmonic potential of the form: 

 ∆𝑈 =
1

2
𝑘(𝑎 − 𝑎𝑒𝑞)

2
 (1.62) 

where k is the force constant of the harmonic potential, a is the coordinate of interest for the 

current position of the system, and aeq is the equilibrium coordinate about which the potential 

is centered.  When choosing the appropriate biasing potential, a few things need to be 

considered:  first, the force constant should not be too large or too small.  If the force constant 

is too small then the umbrella potential is far too ‘wide’ and ‘shallow’, resulting in either the 

poor sampling of high energy states or unnecessarily long simulation runs to sample an 

expanded phase space.  However, if the force constant is too large, only a small region of 

interest will be sampled and a large number of simulation runs will be required to guarantee 

sufficient overlap.  All of these concerns result in either a greater amount of error or require a 

prohibitive amount of computational resources.116   

 A second concern with umbrella sampling is ensuring sufficient sampling of all 

coordinates orthogonal to the coordinate of interest.  As seen up above, umbrella sampling 

works by determining a probability distribution of coordinates at a given coordinate of interest.  

However, this requires sufficient sampling of all other coordinates besides the one of interest.  

For example, at a given protein lipid bilayer separation distance, the center of the protein is 
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allowed to slide in the xy plane (assume the protein lipid distance is along the z-axis); in 

addition to sliding, the protein can also rotate end-over-end.  The length of each separate 

umbrella simulation must be sufficient to not only allow for decent overlap along the 

coordinate of interest (the z-axis in the previous example) but also to allow for slipping and 

rotating along all orthogonal coordinates (the xy-plane in the previous example.)  

Unfortunately, the timescale of processes such as slipping and rotating must be determined by 

trial-and-error, previous studies, theory, and/or physical measurements.116 

 The last piece to the umbrella sampling puzzle is the nature of the last term in the 

potential of mean force, Au, up above.  This term represents a thermodynamic average of the 

Boltzmann distribution for energy differences in the unbiased probability distribution.  More 

simply put: it is a constant energy offset that is particular to each umbrella sampling run.  In 

order to reconstruct a continuous potential of mean force over all of the separate umbrella 

sampling windows, the pieces must be ‘stitched’ together through some method.  The most 

common method for doing this is the Weighted Histogram Analysis Method (WHAM) first 

developed by Kumar and later modified by Roux and Souaille.34, 49, 116 

 The following summary of the WHAM method closely follows the aforementioned, 

excellent review article by Kaestner.115  The primary goal of the WHAM method is to minimize 

the statistical error between the various probability distributions of different windows.  Begin 

by considering the sum of the probability distributions that are stitched together by an 

appropriate weighting factor, w(a): 
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 𝑃𝑢(𝑎) = ∑ 𝑤𝑖(𝑎)𝑃𝑖
𝑢(𝑎)

𝑊𝑖𝑛𝑑𝑜𝑤𝑠

𝑖

 (1.63) 

The minimization criteria are such that the derivative of the variance of the probability with 

respect to each window should equal zero: 

 
𝜕𝜎2(𝑃𝑢)

𝜕𝑃𝑖
= 0 (1.64) 

By normalizing the probability distribution, the two previous equations yield: 

 𝑤𝑖 =
𝑏𝑖

∑ 𝑏𝑗𝑗
 (1.65) 

 𝑏𝑖(𝑎) = 𝑁𝑖𝑒
−𝛽∆𝑈𝑖(𝑎)+𝛽𝐶𝑖  (1.66) 

where Ni is the number of bins for each window i. 

Recall that: 

 𝑒[−𝛽𝐶𝑖] = ∫{𝑃𝑢(𝑎)𝑒[−𝛽∆𝑈𝑖(𝑎)]}𝑑𝑎 (1.67) 

Unfortunately, Pu(a) is not known beforehand, so an iterative method is required between the 

summation and the integral in order to determine its value.  Once Pu(a) has converged, the 

potential of mean force can be easily calculated from its definition: 

 𝐴𝑢(𝑎) = −𝑘𝐵𝑇 ln[𝑃𝑢(𝑎)] (1.68) 

 For information concerning the practical applications of Umbrella Sampling, please see 

the following section in his Chapter or Chapters 2, 3, and 5. 
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Permeation of the Three Aromatic Dipeptides through Lipid Bilayers 

 

 

 

 

 

 

 

Note:  parts of this work have been reproduced and adapted from the following article with 

permission from AIP publishing.1 
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2.1. Overview: 

This chapter explores the passive permeation of the three aromatic dipeptides through 

a lipid bilayer by both computational and experimental methods.  The time-resolved parallel 

artificial membrane permeability assay with fluorescence detection and comprehensive 

computer simulations were used to study the passive permeation of three aromatic dipeptides: 

N-acetyl-phenylalanineamide (NAFA), N-acetyltyrosineamide (NAYA), and N-acetyl-

tryptophanamide (NATA), through a 1,2-dioleoyl-sn-glycero-3-phospocholine (DOPC) lipid 

bilayer.  Computationally, umbrella sampling simulations were performed to model the 

structure, dynamics, and interactions of the peptides as a function of the distance from the 

center of the lipid bilayer, denoted by the variable ‘z’.  The calculated profiles of the potential of 

mean force show two primary effects: preferential binding of each of the three peptides to the 

lipid interface and large free energy barriers in the center of the membrane.  We then used 

several approaches to calculate the position-dependent translational diffusion coefficients, 

D(z), including one based on a numerical solution the Smoluchowski equation. Surprisingly, 

computed D(z) values change very little with reaction coordinate and are also quite similar for 

the three peptides studied.  In contrast, calculated values of sidechain rotational correlation 

times, τrot(z), show extremely large changes with the insertion of the peptide into the 

membrane.  Values become 100 times larger in the headgroup region and 10 times larger at the 

interface and in the membrane center, relative to the solution. The peptides’ conformational 

freedom becomes systematically more restricted as they enter the membrane, sampling α and 

β and C7eq conformations in the solution, α and C7eq at the interface, and only C7eq in the center.  

Residual waters of solvation remain around the peptides even in the center of the membrane.  
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Overall, this study provides an improved microscopic understanding of passive peptide 

permeation through membranes, especially with respect to rotational diffusion and the 

distance of the dipeptides from the center of the model membrane. 

 

2.2. Introduction: 

 Biological membranes form the basis of all multicellular life.  They regulate the 

intracellular and extracellular environment by serving as the gatekeepers for the passage of 

molecules through passive diffusion, facilitated diffusion, and active transport.  Modern 

evolutionary theory predicts that the first cellular transport machinery developed from the 

passive diffusion of proteins across a simple lipid bilayer.2-3  Roughly 30% of all proteins 

encoded by the human genome are membrane proteins,4 and 70% of all modern 

pharmaceutical targets aim to influence and regulate membrane proteins.5  Even drugs that do 

not interact with cell membranes must pass through this barrier in order to reach their 

intracellular targets.6-7  As a result, a fundamental knowledge of the passive diffusion of small 

peptides is essential towards understanding all of these processes on both a theoretical and 

practical level. Rather than taking a macromolecular approach, we focus on the basic building 

blocks of these larger constructs – amino acids. 

 Unfortunately, little is known about the passive diffusion of many amino acids, which 

serve as the building blocks for proteins.  Experimental methods that require researchers to use 

planar bilayer and liposome systems with detection through a wide range of approaches have 

been used extensively to study the interfacial regions of membranes8-10 but tend to lack 
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atomistic detail of the processes involved within the membrane. The parallel artificial 

membrane permeation assay method uses polycarbonate microporous supports with a single 

lipid bilayer per pore and is one of the most commonly used experimental methods.11-14 The 

permeation rates of samples also correspond to the Caco-2 model in intestinal absorption and 

clinical studies of the blood-brain barrier. The components of the lipid bilayer can also be 

separated and examined. This allows for the measurement of the translocation of an analyte 

through the constructed lipid bilayer.   

 As computational power and empirical force field parameterization have improved, 

atomistic level molecular dynamics (MD) simulations have gained greater prominence towards 

studying the diffusion of small molecules through a membrane.15 Recent molecular dynamics 

studies have focused on a wide variety of molecules passively diffusing through membranes, 

such as:  water,16-18 small molecules,19-24 model drug compounds,7, 23, 25-26 analgesics,27-29 drug 

delivery systems,30-31 dyes,32-33 other lipids,34-35 nanoparticles,36-38 toxins,39  small peptides,40-41 

and even transmembrane proteins.42-43 However, only a handful of MD studies have examined 

amino acid-related systems and are confined to tryptophan,44-46 arginine,47-48 lysine,48 and 

amino acid analogues.49 In terms of the potential of mean force (PMF), findings have 

consistently shown that small nonpolar molecules tend to be preferentially bound in the 

membrane center, while polar molecules tend to interact favorably with the lipid headgroups 

and experience a free energy barrier in the center.  The PMFs for the sidechains of tryptophan, 

tyrosine, and phenylalanine determined by MacCallum et al. mostly fit this general picture, with 

tryptophan and tyrosine exhibiting PMF minima at the water-lipid interface. Both phenylalanine 

and tyrosine have lower free energies inside the lipid than in water, while tryptophan has to 



54 
 

overcome a significant free energy barrier in the membrane center.  In studies of blocked 

tryptophan (N-acetyltryptophanamide, or NATA),44 a similar behavior was found as for the 

tryptophan sidechain, with NATA exhibiting a significantly higher barrier in the central region.  

  The primary objective of this study is to expand the understanding of the permeation of 

small amino acids through lipid membranes.  The results of computer simulations for blocked 

forms of the three aromatic dipeptides: NATA, N-acetyltyrosineamide (NAYA), and N-

acetylphenylalanineamide (NAFA) in 1,2-dioleoyl-sn-glycero-3-phospocholine (DOPC) lipid 

bilayers (Figure 2.1) are presented.  Computationally, molecular dynamics simulations with 

umbrella sampling were used to explore the structures, motions, and interactions of the 

systems as a function of the distance from the membrane center, including new approaches to 

calculating the position-dependent diffusion coefficients D(z) and an analysis of rotational 

diffusion.  Overall, this computational study provides a new level of understanding of the 

mechanism of the passive permeation of aromatic peptides through lipid bilayers.     
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Figure 2.1. Chemical structures of studied systems. (A) 1,2-dioleoyl-sn-glycero-3-phospocholine 
(DOPC) (B) N-acetylphenylalanineamide (Ac-Phe-NH2 or NAFA) (C) N-acetyltyrosineamide (Ac-
Tyr-NH2 or NAYA) (D) N-acetyltryptophanamide (Ac-Trp-NH2 or NATA). 
 

2.3. Methods: 

The simulated peptides were N-acetyltryptophanamide (Ac-Trp-NH2 or NATA), N-

acetyltyrosineamide (Ac-Tyr-NH2 or NAYA), and N-acetylphenylalanineamide (Ac-Phe-NH2 or 

NAFA) (Fig. 1).  Initial peptide structures were built with CHARMM50-51 in extended 

conformations.  The phospholipid bilayers with a single copy of peptide in aqueous phase were 

created by using CHARMM-GUI52-54 and all molecular dynamics simulations were conducted 

with GROMACS 4.5.4 or 4.5.6.55  The bilayer systems contained the following molecules: 50 

(2×25) 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, one peptide, eight chloride, 

and eight sodium ions and TIP3P water.  Sodium and chloride ions were added to maintain a 
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physiologically relevant ionic strength.  Due to small variations in system size, the 

phenylalanine, tyrosine and tryptophan simulations contained 2939, 2949, and 2599 TIP3P 

water molecules, respectively, in tetragonal boxes with dimensions of 4.29 nm × 2.39 nm × 8.30 

nm, 4.22 nm × 4.22 nm × 8.56 nm, and 4.19 nm × 4.19nm x 8.09 nm, respectively.  These boxes 

produce DOPC headgroup areas of 0.7355 nm2, 0.7122 nm2, and 0.7017 nm2, respectively, in 

good agreement with experimental averages of 0.723 nm2.56-57  The electron density profile of 

these membranes are also in agreement with experimental profiles (see Supplementary 

Information).57  In our coordinate system, the x and y axes are in the plane of the membrane, 

and z is perpendicular to the plane of the membrane.  DOPC and peptide molecular interactions 

were represented by the CHARMM v.36 force field58-59 and water was described by the TIP3P 

model.60  

 Phenylalanine and tyrosine simulations were performed using GROMACS 4.5.4, and all 

tryptophan simulations were performed with GROMACS 4.5.6.55  Periodic boundary conditions 

were used along all three coordinate axes.  Direct electrostatic interactions were cut off at 0.13 

nm, with long range effects calculated by using the particle mesh Ewald method with a mesh 

spacing of 0.12 nm.  Van der Waals interactions were truncated at 1.2 nm and smoothed with a 

switching function between 1.0 and 1.2 nm.  Newton’s equations of motion were integrated by 

using the leap-frog algorithm55, 61 with a time step of 2 fs and constraints on all bonds using the 

LINCS algorithm.62  Temperature control was achieved by using velocity rescaling with an added 

stochastic term.63  GROMACS implements a recent velocity rescaling algorithm by Bussi et. al. 

that improves upon the ergodicity of a traditional Nosé-Hoover thermostat while sampling a 

canonical ensemble.  The position of the permeant was recorded every 0.1 ps, the permeant 
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pulling force every 0.1 ps, and complete structural information for the entire system every 1.0 

ps.  Initial velocities were determined from a Maxwell distribution at 300K.  Simulations were 

first run with an NPT ensemble until pressure was equilibrated at one atmosphere of pressure.  

Stress profiles and pressure values were not monitored.  All subsequent simulations were then 

run with an NVT ensemble.  The initial simulation image was equilibrated over 500 ps intervals 

with increasingly more stringent restraints.  An unrestrained molecular dynamics simulation 

was then run for 120 ns.  A system image was then extracted where the peptide permeant was 

located 1.6 nm from the lipid bilayer center and was then used as the starting point for 

successive umbrella sampling windows. 

 Successive umbrella sampling windows were conducted at distances from 0 to 3.0 nm 

away from center of the lipid bilayer and along the z-axis.  The phenylalanine and tryptophan 

windows were spaced in even 0.1 nm increments for a total of 31 different positions.  Windows 

for tyrosine were run at 0.0 nm; from 0.09 to 0.9 nm in 0.09 nm increments; and then from 1.0 

to 3.0 nm in 0.1 nm increments.  The tighter increment spacing was used to improve statistical 

sampling and overlap between simulation windows.  For phenylalanine and tryptophan, this 

was accomplished by gradually increasing the simulation length from 50 ns to 100 ns as the 

peptide neared the center of the lipid bilayer.  All simulation windows were run for at least 50 

ns. A restraining umbrella sampling potential of 3000 kJmol-1nm-1 was applied to peptide center 

of mass, with minimum at the center of each window.64-65  The weighted histogram analysis 

method (WHAM) was then applied to the resulting data to obtain the potential of mean force 

(PMF).66-68 
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 Position dependent translation diffusion coefficients D(z) were determined using three 

approaches – one based on the Smoluchowski equation and two on the Fluctuation-Dissipation 

theorem.  The first approach uses a numerical solution to the Smoluchowski equation as 

described by Bicout and Szabo69 and as discussed by Hummer.70  Histograms were created from 

the center-of-mass distance between the peptide and the membrane z(t) within each umbrella 

sampling window and were used to determine the biased probability distribution, p*(z)= p*(n), 

where n is the bin number.  The transition rates between neighboring bins, wn+1,n  were 

calculated from the number of transitions in z(t) and the bin residence times.  Diffusion 

coefficients were then calculated as: 

 𝐷𝑛+1/2 = 𝑤𝑛+1,𝑛 [
𝑝∗(𝑛)

𝑝∗(𝑛 + 1)
]
1/2

𝑑2 (2.1) 

 with d being the bin width (d = 0.02 nm was used).  These coefficients correspond to motion 

within the biased potential, including the harmonic umbrella sampling restraint.  However, 

from each simulation, we only took the value of D(z) at the center of the window, where the 

constraint potential is approximately 0.  Standard errors were estimated by performing 

separate calculations over four quarters of the data and by multiplying the standard error of 

the mean by the appropriate Student’s t-value at a 95% confidence level (3.182).    

 The two other methods of calculating D(z) were based on the Fluctuation-Dissipation 

Theorem:71   

 𝐷(𝑧) =
(𝑘𝐵𝑇)

2

∫ 〈∆𝐹𝑧(𝑧, 0) ∗ ∆𝐹𝑧(𝑧, 𝑡)〉𝑑𝑡
∞

0

 (2.2) 

where kB is the Boltzmann constant, T is the temperature, and ΔFz(z, t) is the deviation of the z-

component of the force experienced on the center of mass of the permeant from its average 
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value, as a function of the permeant depth, z, and time, t. These two approaches differed in 

terms of the forces used.  In the first, forces corresponding to fixed values of z were calculated, 

using a custom modified version of CHARMM v.38, designed to enable fixing the difference in 

the center-of-mass z-coordinates between two sub-systems.  For each umbrella sampling 

window, ten independent molecular dynamics trajectories were generated with the same 

CHARMM v. 36 protein and lipid parameters as were used in the GROMACS simulations.51  The 

starting images were extracted from the umbrella sampling trajectories, and the CHARMM 

simulations were then run for 100 ps with a time step of 2 fs.  Force data was recorded every 

0.1 ps. Temperature was kept constant at 300K by using a Nosé-Hoover thermostat which is the 

constant temperature method available in CHARMM.72-73  Force autocorrelation functions were 

then numerically integrated until temporal convergence was achieved, typically after 15 ps.  

This approach to D(z) estimation is analogous to that employed in the original constrained-z 

simulations of Marrink and Berendsen.16  The final method for obtaining D(z) used 

autocorrelations of the umbrella restraining force, recorded for each US window.  In this case, 

numerical integration typically converged after 1000 ps.  The D(z) values from the 

Smoluchowski equation and the fixed-z forces method agreed throughout the simulation range, 

within the calculated confidence intervals.  Values obtained in the aqueous phase with these 

methods also agreed with a separate molecular dynamics simulation of NATA in a TIP3P box 

(see Results and Discussion).  The translational diffusion coefficients obtained from fluctuations 

of the restraint force were typically 5-6 times lower than those of the first two methods and did 

not agree with the free NATA MD in water (see Supplementary Information).  Therefore, the 

last method of D(z) calculation was not used in further analysis. 
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 The inhomogeneous solubility diffusion model was then used to calculate the 

permeability coefficient, P, and the mean first passage time, <τ>:16, 20, 44, 74 

 𝑃 = [∫
𝑒𝛽𝑤(𝑧)

𝐷(𝑧)
𝑑𝑧

𝑏

𝑎

]

−1

 (2.3) 

where w(z) is the potential of mean force at location z, a is the z location of the free energy 

minimum along the membrane interface, b is the opposite side of the membrane, and β = (kBT)-

1.  The mean free passage time, <τ>, can then be determined as:75-76  

 〈𝜏〉 = ∫ {
𝑒𝛽∆𝐺(𝑧)

𝐷(𝑧)
∫ 𝑒−𝛽∆𝐺(𝑧

′)𝑑𝑧′
𝑧

𝑎

} 𝑑𝑧
𝑏

𝑎

 (2.4) 

 Rotational motion was studied by following reorientations of two molecular axes for 

each peptide. For sidechains, the axes were related to the electronic transition dipoles: the in-

plane axes perpendicular to the CG-CZ vector for NAFA and NAYA and the 1Lb transition dipole 

axis for NATA.77  For the overall reorientation, the axis was the vector connecting the center of 

mass of the backbone to the center of mass of the sidechain.  For each case, the 

autocorrelation function C2(t) = ½ <(3cos2(θ) – 1)> was calculated, with θ being the angle of axis 

reorientation during time t.  The rotational correlation time τrot was calculated as the integral of 

C2(t) over a time range where the function decays to zero, and the integral reaches a stable 

value.  In the headgroup region, in several cases, the autocorrelation functions did not converge 

to zero, indicating that the sidechain reorientations were not completely sampled during the 

simulation period. As a result, the longest calculated correlation times are highly approximate, 

and this can be seen from the greater, calculated confidence intervals. 
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2.4. Results and Discussion 

2.4.1. - Potentials of mean force.  

The potential of mean force represents the relative free energies of a given permeant 

molecule at different z-distances from membrane center.  As seen in Figure 2.2, all three 

peptides have qualitatively similar PMFs, exhibiting free energy minima at the lipid-water 

interface and maxima at the membrane center.  The interfacial free energy minima are, 

respectively, for NAFA, NAYA, and NATA: -18, -14, and -12 kJmol-1.  The central free energy 

barriers are, respectively, for NAFA, NAYA, and NATA: +28, +41, and +44 kJmol-1, relative to the 

respective minima (and +10, +27, and +32 kJmol-1 relative to the solution, respectively).  The 

peptide with the most hydrophobic sidechain, NAFA, exhibits the strongest preference for the 

interface and the lowest central free energy barrier.  NAYA and NATA, with partly hydrophilic 

sidechains, exhibit both weaker binding to the interface and higher barriers in the membrane 

center.  The permeant with the largest sidechain, NATA, has the weakest preference for the 

interface and the highest for barrier.  As discussed further in the structural analysis section, the 

interfacial minima result from a tug of war between hydrophobic and hydrophilic interactions.  

The most hydrophobic system, NAFA, has the deepest minimum of -18 kJmol-1 and is located 

farthest from the membrane center at 1.15 nm.  This minimum is also quite broad.  For the 

more polar NAYA and NATA, the minima are shallower (14 and -11 kJmol-1, respectively) and 

are located closer to the membrane (at 1.54 and 1.45 nm, respectively). 
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Figure 2.2.  The potential of mean force is plotted for all three blocked amino acids.  The free 
energy value was set to zero in the solvent region for each data set.  The center of the lipid 
bilayer is located at a z = 0 nm.  Error bars represent the standard error as calculated by the 
Bootstrap method.78  The standard error was much larger when the calculations were 
conducted on four contiguous bins of the data: between 3 and 10 kJmol-1 for the central 
membrane barrier and between 1 and 4 kJmol-1 for the interfacial region (see Supplementary 
Information). 

 

Previous simulations of amino acid sidechains in DOPC by MacCallum et al. predicted 

interfacial free energies of -13 kJmol-1 for phenylalanine and tyrosine, and -22 kJmol-1 for 

tryptophan; in the center of the membrane, negative free energies of -5 and -13 kJmol-1 were 

respectively predicted for phenylalanine and tryptophan, with a smaller barrier of 7 kJmol-1 for 

tyrosine.  Except for tyrosine, these are qualitatively different from our results, due to the 
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presence of backbone residues in our systems.49  Interestingly, our dipeptide PMFs are 

qualitatively similar to the MacCallum et al.  results for polar sidechains – especially asparagine 

and glutamine.49   Cardenas et al. have studied the permeation of NATA through a DOPC bilayer 

and found an interfacial minimum of about -24 kJmol-1 relative to the solution and a barrier of 

about 75 kJmol-1 relative to the minimum.  The quantitative differences from our results are 

most likely due to their use of the Berger lipid and OPLS/AA protein force fields, as well as a 

slightly smaller number of DOPC lipids.44, 49  

 

2.4.2. - Translational Diffusion.  

Diffusion constants were calculated using three different approaches – using the 

numerical solution of the Smoluchowski equation69-70 and autocorreration functions of force 

fluctuations from separate short trajectories with constrained z and from force fluctuations of 

the umrella restraint force.  These methods are described in more detail within Section 2.3.  

The first two methods gave consistent results.  For a 100 ns test simulation of NATA in a TIP3P 

water box with CHARMM36 parameters, the calculated one-dimensional NATA center-of-mass 

diffusion constant was 0.35 ± 0.04 × 10-9 m2s-1, which is in good agreement with the umbrella 

sampling results at 3.0 nm of 0.39 ± 0.01 × 10-9 m2s-1  from the Smoluchowski equation and 0.26 

± 0.11 × 10-9 m2s-1 from constrained MD at 2.0 nm.  The translational diffusion estimates based 

on the umbrella constraint force fluctuations were roughly six times lower than from the first 

two approaches, and were not used in further analyses.  The D(z) values based on the 

Smoluchowski equation are presented in Figure 2.3.  Values obtained from constrained (fixed z) 
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simulations are given in the Supplementary Information.  The diffusion coefficients 

demonstrate generally little variation with distance from membrane. For NAFA, D(z) changes 

from 0.44 × 10-9 m2s-1 in the solvent region, to 0.40 × 10-9 m2s-1 at the interface, and to 0.45 × 

10-9 m2s-1 at the membrane center (except for one outlier of 0.35 × 10-9 m2s-1 at z = 1.8 nm). 

Similar effects are seen for NAYA: D(z) = 0.41 × 10-9 m2s-1 in the solvent,  0.37 × 10-9 m2s-1 at the 

interface, and 0.44 × 10-9 m2s-1 in the center; and, for NATA: 0.39 × 10-9 m2s-1 in the solvent, 

0.35 × 10-9 m2s-1 at the interface, and 0.43 × 10-9 m2s-1 in the center.  There is a trend for slower 

translational diffusion at the interface and for faster diffusion in the center of the lipid bilayer; 

however, it is weak and barely rises above the statistical uncertainties.  There is also a weak 

systematic trend for diffusion rates between the three peptides, with NAFA > NAYA > NATA, 

consistent with increasing size.  In general, the translational diffusion of the three dipeptides is 

quite similar, even though their sidechains differ significantly in terms of properties.  Why does 

D(z) vary so little with respect to membrane insertion, in view of the strong preferential binding 

of the permeants at the interface and the well-documented lower molecular density in the 

center of the membrane?  Few membrane translocation studies report their diffusion constant 

data.  Several studies for small molecules do report increased diffusion rates at the center of 

the lipid bilayer.16, 19-22  In contrast, most studies of larger molecules that are at least the size of 

the amino acids studied in this work show relatively flat diffusion profiles in homogenous lipid 

bilayers.26, 28, 31  Therefore, our translational diffusion results are consistent with other reported 

values for larger molecules. 
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Figure 2.3.  Translational diffusion constants are plotted as a function of the permeant distance 
from the center of the lipid bilayer, calculated by numerical solution of the Smoluchowski 
equation.  Error bars were obtained from separate calculations by dividing the data into four 
contiguous bins.  

 

 2.4.3. - Permeability Measures.  

By combining the diffusion coefficients with the PMF profile, quantitative measures of 

the permeation time scale and rate may be obtained – the mean first passage time (MFPT) and 

the permeation coefficient, P (see Methods in section 2.3).  Results are reported in Table 2.1.  

Our simulations predict that NAFA passes through the membrane on a microsecond time scale, 

whereas NAYA and NATA pass through on a millisecond time scale.  The corresponding 

permeation coefficients are 1 × 10-4, 2 × 10-6, and 3 × 10-7 cms-1 for NAFA, NAYA, and NATA, 
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respectively.  The results for tryptophan are quite similar to those for tyrosine, which is to be 

expected considering their similar diffusion and potential of mean force profiles.  Due to the 

relatively flat diffusion coefficient profiles and the similarity of the D(z) values for the three 

peptides, the differences in passive diffusion rates are mostly determined by the free energy 

profiles.40   

Table 2.1.  The permeation coefficients and mean passage time for NAFA, NAYA and NATA.  The 
averages correspond to integration over PMF and D(z) over the second halves of the umbrella 
sampling trajectories, while the ranges correspond to results from dividing the data into 
contiguous quarters.  Experimental data was obtained courtesy of Dr. Gouri Jas.1 

 

 

The calculated passage times are systematically smaller, and the permeability 

coefficients are systematically higher than our experimentally measured values for all three 

peptides. The calculated permeation times differ by many orders of magnitude. Qualitatively, 

the simulations correctly predict that the permeation of NAFA should be the fastest of the 

three systems.  Quantitatively, the calculated P values for NAYA and NATA of 3 × 10-6 and           

2 × 10-6 cms-1, respectively, are comparable to the corresponding experimentally determined 

results of 6 × 10-7 and 26 × 10-7 cms-1, respectively.  However, this order is reversed in the 

simulations.  Although a direct comparison does not exist for phenylalanine and tyrosine, our 
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results are roughly the same order of magnitude as those obtained using the same model for 

small molecules.26  Previous studies of tryptophan, using the more advanced method of 

milestoning, report permeation times on the time scale of hours, which are also in agreement 

with experimental results.44-45, 79-80   Most other researchers have also reported much larger and 

faster permeability coefficients using the inhomogeneous solubility-diffusion model, which has 

been discussed in great detail in other works.19, 26, 44-45, 81-83  Several assumptions underpin the 

solubility-diffusion model, including memoryless, diffusive-type motion along the reaction 

coordinate and the presence of only one slow variable describing the motion of the permeant 

— namely, the translocation along the membrane normal.83-84  Many recent studies suggest 

that an additional rotational barrier exists that slows down the movement of the permeant.19, 

44-45, 81, 83, 85  Others hypothesize that membrane and solvent structural fluctuations play an 

important role as well.40, 79  Use of the CHARMM lipid force field also overestimates the electric 

field strength within the membrane by a factor of 3, which may be lowering the value of the 

PMF within the membrane interior and subsequently accelerating the mean passage time.58    

The discrepancy between our experimental and theoretical results can be attributed to 

some of the above concerns.  Additional slow variables such as rotational barriers or membrane 

fluctuations can couple with the longitudinal translocation of the permeant and slow down the 

process.  For example, Figure 2.5B demonstrates that NAYA adopts preferential rotational 

orientations based upon its depth within the membrane.  The correlation of these motions 

could not be calculated within the time frame of each umbrella window.  These motions may be 

essential for the longitudinal diffusion of the permeant, but they are not included within our 

permeability model.  This phenomenon has been well documented in assisted diffusion and 
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passive diffusion through channels formed by porins.86  For NATA, rotational barriers have also 

been found to reduce the permeability coefficient through more advanced models such as 

milestoning.79, 83  Similarly, membrane fluctuations within the lipid bilayer also play a role in the 

permeation process.  For small molecules, these fluctuations are very fast, with timescales less 

than a nanosecond.87  For larger molecules, membrane effects become increasingly more 

important.  As Neale et al. discovered, there are rare sampling barriers at the lipid interface 

with timescales on the order of 10 μs — far too long for our simulations to detect.88  Whether 

our amino acids fall into the small or large category remains unknown and would require much 

longer simulation times.  Finally, the artificially high electric field strength within the simulation 

may be assisting our amino acids to adopt favorable orientations on a much faster timescale 

due to the increased forces on the molecular dipole.  All of these concerns could cause our 

theoretical permeability coefficients to be far larger than those determined experimentally. 

 

2.4.4. - Rotational Diffusion.  

Rotational correlation times τrot for the peptide sidechains are presented in Figure 2.4. 

Unlike the translational diffusion rates, rotational diffusion speeds change very strongly upon 

membrane insertion.  Rotations are fastest in the aqueous region, with average sidechain τrot 

values of 17, 33, and 27 ps for NAFA, NAYA and NATA, respectively.  Reorientational motions 

slow down dramatically as the peptide approaches the lipid-water inteface, with average τrot 

values of over 0.3 to 1.5 ns for all three peptides at z = 2 nm.  The reorientation rates are even 

slower in the headgroup region,  with τrot in the 1 to 4 ns range for z = 0.5 - 1.3 nm.  Motions in 



69 
 

the bilayer center occur at rates intermediate between water and headgrups, with τrot = 300 ps, 

800 and 200 ps for NAFA, NAYA and NATA, respectively.  If local viscosity changes were the 

dominant effect,  we would expect a similar variation of translation diffusion, D(z), and 

rotational correlation, τrot(z), with membrane insertion.  However, because the translational 

diffusion profile is quite flat, the variations of τrot by factors 10 to 100 must result from very 

strong specific interactions with the lipid environment.  Clear evidence for strong preferential 

binding of the peptides with the interface is seen in Figure 2.2, which depicts the potential of 

mean force.  What is unexpected is the slowing down of reorientations by as much as a factor 

of 100 in the headgroup region and by 10 in the membrance center, compared to solution.  

Previous studies, which focused on translational dynamics, typically found faster motions in the 

central region of lower relative density. 16, 19-22  The presence of slow reorientations in the 

course of membrane transport has been previously explored.26, 28, 31  

Our simulations suggest that translational diffusion in the z direction, along the 

elongated lipid molecules, is relatively easy; while rotational diffusion of the peptide sidechains, 

which are tethered to their backbones and must move in directions perpendicular to the tightly 

packed lipids, is unexpectedly slow.  Our results present a new look at peptide dynamics in 

membranes, indicating that computational modeling and experimental measurement of 

reorientational motions should be a sensitive probe of peptide-membrane interactions.  A more 

detailed analysis of peptide-lipid interactions is given below (see Specific interactions). 

Computer simulations of NAFA, NAYA and NATA reorientations using the CHARMM 

force field and TIP3P water have reported values of of τrot  = 20, 27, and 30 ps, respectively, at 
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298 K.77  Experimental values previously reported were 40 ± 5 ps for NAYA, 48 ± 5 ps for NATA 

at 298 K, and 98 ± 30 ps for NAFA at 278 K.77  Values for  τrot within the aqueous region are in 

very good agreement with the previous calculations and are also in good agreement with the 

experimental estimates at 298 K, given that the TIP3P water model systematically 

underestimates the viscosity of water.60  

 

Figure 2.4.  Sidechain rotational correlation times as a  function of the membrane insertion 
distance, z.  (A) Comparison of τrot values at z = 0.0 nm, z = 1.5 nm, and z = 3.0 nm for the three 
peptides and  values  of τrot(z) for NAFA (B), NAYA (C) and NATA (D).  Values obtained by 
integrating the autocorrelation function for the transition axis of each of the sidechains (see 
Methods).  In the headgroup region, from 0.5 to 1.5 nm, the estimated correlation times are 
approximate because in many cases the autocorrelation functions do not decay to zero, 
denoting incomplete sampling in the trajectories.  
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2.4.5. - Insertion Angle.   

The peptide insertion angle, θ, is defined as the angle between the z axis and the vector 

pointing from the center-of-mass (COM) of the backbone to the center of mass of the 

sidechain.  The distribution of these angles is plotted in Figure 2.5.  All three simulated peptides 

exhibit a wide range of allowed angles in the aqueous phase, corresponding to free 

reorientations. 49  At z = 2.2 nm for tryptophan and 2.0 nm for phenylalanine and tyrosine, 

reorientations become resticted.  Nearing the headgroup region in the z = 1.5 to 2.0 nm range, 

all three peptides insert at an angle of around 150o, corresponding to the backbone pointing 

into the solvent and to the sidechain pointing into the lipid headgroups.  For NAFA, this 

insertion angle remains stable at the preferred value until z = 0.5 nm,  after which a broad 

distribution of insertion angles reappears in the membrane center in the z = 0.0-0.5 nm range.  

NAYA undergoes a systematic change in the preferred insertion angle while permeating the 

membrane.  The angle changes to 90o at z = 1.5 nm, 60o at z =0.8 nm, 30o for z in the 0.1-0.6 nm 

range, and finally rotates freely at the center.  For NATA, the insertion angle changes in a 

manner somewhere between the NAFA and NAYA cases.  In NATA, the preferred insertion angle 

changes to 120o for z between 1.0 and 2.0 nm and to about 90o for z between 0.5 and 0.8 nm, 

with mostly unrestricted orientations within the z = 0.0 to 0.5 nm range.  NATA’s ability to 

reorient in the central membrane region, as found in our simulations, agrees with the results 

obtained previously by umbrella sampling and milestoning from other groups.44, 83 

 In general, all three aromatic dipeptides tend to initiate interactions with the mebrane 

by orienting their sidechains toward the lipid headgroups and  backbones towards the solution. 
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The most hydrophobic peptide, NAFA, retains this orientation throughout the headgroup 

region, while NAYA and NATA assume an orientation parallel to the membrane surface at the 

interface.  Finally, at the center of the membrane, the most hydrophilic peptide, NAYA, 

reorients to a direction that is almost opposite of its value in solution, before again assuming 

free rotation at z = 0.0 nm.  In contrast, the orientation of the more hydrophobic peptides, 

NAFA and NATA, is unrestricted over a wider range of positions, 0.0 to 0.5 nm.  This difference 

in behavior may be the result of water molecules being pulled into the membrane interior by 

the permeating peptides (see Special Interactions below in Section 2.4.10). 

 

Figure 2.5. Insertion angles, θ, for NAFA (A), NAYA (B), and NATA (C).  A vector is defined from 
the center of mass of the backbone to the center of mass of the sidechain.  The angle θ is 
between this vector and the positive z-axis of the simulation box.  The normalized probability 
density, P(θ,z), is plotted with blue representing little or no probability and with red 
representing the highest probability.  The insertion vector is plotted with respect to the 
distance from the center of the membrane. 

 

 2.4.6. - Backbone Conformations.  

Backbone conformations are represented by two dihedral angles, φ and ψ.  φ is the 

dihedral angle formed by the carbon atom of the acetyl blocking group, the terminal nitrogen 

atom, the  peptide Cα carbon, and the terminal carbon atom.  ψ is the dihedral angle formed by 
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the nitrogen of the amidated C-terminus, the terminal carbon atom, the peptide Cα carbon, and 

the terminal nitrogen atom.  A plot of φ and ψ angles is called a Ramachandran89 plot, as 

depicted in Figure 2.6.  In the aqueous region of the simulation box, the φ and ψ angles of 

NAFA, NAYA and NATA are grouped into three areas:  the large region with negative ψ angles 

represents α-helical type conformations,  the region in the top left corner represents β-sheet 

and extended structures, and the small region in between to the C7eq conformer characteristic 

of dipeptides.90  As the dipeptides move from solution to interface, the probabilities in the α 

and β regions decrease, while that of C7eq  increases.  For all three dipeptides, C7eq becomes the 

dominant structure at  the center of the membrane.  The three peptides exhibit a clear 

structural response to the different chemical environments in solution, at the memberane 

interface, and in the center.  The role of such conformational change in more complicated 

structures is worthy of further investigation.  
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Figure 2.6.  Ramachandran plots, in terms of the natural log of the probability density, are 
presented above for (A) NAFA, (B) NAYA, and (C) NATA at the center of the lipid bilayer, z = 0 
(bottom), the interfacial region at z = 1.5 nm (middle), and the aqueous region at z = 3.0 nm.  
Phi and psi angles are plotted from -180° to +180°. 
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2.4.7. - Sidechain Conformations.  

Distributions of the sidechain angles (χ1 , χ2) for each peptide were also examined 

(Figure 2.7).  The nonpolar phenyl ring of NAFA sampled the same four main conformers along 

the whole permetaion path (tg-, tg+, g-g-, g-g+).  The phenol ring of NAYA sampled two main 

sidechain conformers along the whole path (tt, tg-).  The indole ring of NATA explored two main 

conformers in solution (tt, tg-), one at the interface (tt), and two in the bilayer center (tg-, tg+). 

Therefore, the more polar phenol and indole groups exhibited different conformational 

preferences than the nonpolar phenyl. 
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Figure 2.7.  Peptide sidechain conformations as a function of membrane insertion z. Natural log 
of population for probability of (χ1 , χ2) distributions for (A) NAFA, (B) NAYA and (C) NATA. 
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2.4.8. - Peptide Structures - Clustering.  

Clustering of the trajectories in dihedral angle space confirmed that the studied 

peptides undergo definite structural changes during mebrane permeation.  Examples of main 

sampled conformations are shown in Figure 2.8.  For NAFA, seven clusters were found in the 

solution region, with 4 corresponding to α, 1 to β, and 3 to C7eq structures; at the interface, four 

clusters  were identified, 2 α and 2 C7eq and in the membrane center four clusters of C7eq type 

were sampled, with different sidechain combinations.  For NAYA, 37 total clusters were found 

in solution, of which 8 had populations above 0.5% - 4 α, 1 β and 3 C7eq .  At the interface, NAYA 

sampled only two clusters: one in the α region and one in the C7eq region.  At the center of the 

membrane, NAYA sampled three clusters, all of C7eq type.  For NATA, the situation was the 

simplest – there were only two clusters in each environment – 1 α and 1 C7eq in solution and at 

interface, and two C7eq at the center of the membrane.  The growing population of the C7eq 

conformation upon membrane insertion may be illustrated by the changes in the O to N 

distance between the carbonyl oxygen of the N-terminal blocking group and the nitrogen of the 

C-terminal blocking group shown in Figure 2.9.  In solution, this distance fluctuates over a 

relatively wide range of values, 3 to 5 nm, while a narrow range of 2.8 to 3.1 nm is sampled 

inside of the membrane.  Therefore, in the hydrophobic environment of the acyl lipid chains, 

the peptide interacts with itself, partially shielding the polar backbone atoms from the external 

environment. 



78 
 

 

Figure 2.8.  Representative structures from trajectory clustering are shown. Lipid bilayer with 
water molecules, hyrophilic head groups, and hydrophobic tail groups are shown in (A). Central 
structures of structural clusters corresponding to the alpha and C7eq free energy minima are 
shown in NAYA (B), in NAFA (C), and in NATA (D).  Representative structures are indicated on 
the same Ramachandran plots depicted in Figure 2.6. 
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Figure 2.9.  Distributions of O to N distances between blocking groups in (A) NAFA, (B) NAYA 
and (C) NATA peptides as function of distance from membrane center.  Figures display 
probability distributions P(rO…N, z).  

 

2.4.9 - Molecule Shape and Size.  

Changes of the radius of gyration (Rg) which is the mass weighted root mean square 

atomic distance from the center of mass of the molecule, and solvent accessible surface area 

(SASA) with membrane insertion are shown in the Supplementary Information. The peptide 

size, measured by Rg, and the solvent exposure, measured by SASA, do not exhibit significant 

variation as a function of membrane insertion.  Only in the case of NATA, a small effect of slight 

lowering of Rg and SASA is found in the tail region, z = 0.0 to 0.5 nm.  Interestingly, the 

conformational changes observed for the peptides as they translocate across the mebrane have 

little effect on SASA and Rg for these relatively small systems. 

 

2.4.10. - Specific Interactions.  

Interactions between the peptides and their environment are analyzed below.  Figure 

2.10 shows the average number of water molecules within 0.3 nm the peptide as a function of 
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z, representing roughly the first solvation shell.  Peptides were solvated by 45 - 50 waters in the 

aqueous region.  The number of waters decreased systematically with insertion depth, reaching 

around 20 at the interface (z = 1.5 nm), around 15 at z = 1.0 nm, and around 5 at z = 0.5 nm.  All 

three peptides are surrounded by a large number of water molecules as they approach the 

membrane.  Even at the center, z = 0.0 nm, residual solvation remains:  0.7, 0.1, and 3.4, on 

average, for NAFA, NAYA and NATA, respectively.  Previous simulations of NATA in DOPC found 

4 waters solvating the peptide in membrane center, very close to our result.44  

 

Figure 2.10.  Average number of water molecules within 0.3 nm of the peptides.  Error bars 
represent a 95% confidence interval for each trajectory.  Note: the 95% confidence interval for 
the sample mean for each trajectory is too small to be seen when plotted. 
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Figure 2.11 displays the details on specific interactions of the peptides and the lipids. 

The average coordination numbers show the expected trends – upon insertion into the 

membrane, the number of solvating waters systematically decreases, the number of acyl 

carbons increases, and the number of headgroup atoms first increases to a maximum in the 

interfacial region and then drops off.  For the backbone (Figures 2.12A-C), there are some 

interesting differences between the three peptides.  The highest backbone coordination by 

headgroups occurs at z = 1.2 nm for NAFA, 2.0 nm for NAYA, and 1.6 nm for NATA.  For NAYA, 

the coordination between the backbone atoms and the lipid tails is generally greater than for 

the other peptides.  Similarly, coordination between the backbone of NAYA and water is 

generally lower than for the other peptides.  The switchover distance, at which the 

coordination by water and the acyl tails becomes equal, is at 1.2, 1.6 and 1.4 nm for the NAFA, 

NAYA, and NATA backbone, respectively.  The behavior of the peptide sidechains (Figures 

3.12D-F) is similar to the backbone.  The highest sidechain coordination by headgroups occurs 

at z = 2.0 nm for NAFA, 2.2 nm for NAYA, and 2.0 nm for NATA.  This is consistent with the 

membrane insertion angles discussed above: with NAFA inserting mostly sidechain-first; NAYA 

mostly at a 90o “sideways” angle, with both the sidechain and backbone parallel to the 

membrane surface; and, NATA intermediate between the other two peptides.  All three 

peptides appear to be able to interact well with the lipid tails, reaching tail coordination 

numbers at z = 0 of similar value to those by water at z = 3.0 nm. 
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Figure 2.11. Average coordination numbers of the three peptides as function of insertion depth 
z. Coordination of backbone atoms of peptides by (A) water, (B) headgroups and (C) lipid tails. 
Coordination of sidechain atoms of peptides by (D) water, (E) headgroups and (F) lipid tails. The 
presented X – Y values are the average number of atoms of species Y within 0.5 nm of an atom 
of species X.  Species are: backbone – non-hydrogen atoms of peptide backbone and blocking 
groups; sidechains – non-hydrogen atoms of peptide sidechains; water - water oxygens; tails – 
lipid acyl tail carbon atoms; heads – headgroups, non-hydrogen atoms of lipids, excluding tails.   

 

2.5. Conclusions 

 The results of a computational study of the passive permeation of three aromatic 

dipeptides – NAFA, NAYA and NATA - through DOPC lipid bilayers were presented.  Umbrella 

sampling simulations were performed for the three systems, using at least 30 windows of 50-

100 ns length for each peptide to model the thermodynamics, dynamics, and microscopic 

interactions along the chosen one-dimensional reaction path, z, the center-of-mass distance 

between the peptide and the lipid bilayer.  The calculated profiles of the potential of mean 

force show two strong effects: preferential binding of each of the three peptides to the lipid 

interface, with free energies of -18 kJmol-1 of NAFA, -14 kJmol-1 for NAYA , and -12 kJmol-1 for 

NATA and large free energy barriers in the membrane center of +28 kJmol-1 for NAFA, +41 

kJmol-1 for NAYA, and +44 kJmol-1 for NATA, relative to the respective minima.  We used three 
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approaches to calculate the position-dependent translational diffusion coefficients D(z).  Two 

methods agree with each other and agree with independent estimates from the pure solution 

phase: one based on the numerical solution of the Smoluchowski equation and the other based 

on force autocorrelations from short trajectories with constrained values of z.  Unfortunately, 

use of autocorrelations from the restraining force significantly overestimates values for the 

diffusion constants. Surprisingly, computed D(z) values change very little with the reaction 

coordinate and are also quite similar for the three peptides studied.  In contrast, calculated 

values of the sidechain rotational correlation times, τrot(z), show extremely large changes with 

peptide membrane insertion: values become 100 times larger in headgroup region and 10 times 

larger in membrane center, relative to solution.  Therefore, it appears that these small peptides 

can relatively easily undergo translational diffusion along the z axis, parallel to the lipid 

molecules, while reorientations, involving motion perpendicular to the lipids, is strongly 

hindered, especially in the tightly packed headgroup region.  

  Analysis of the insertion angle shows the peptides inserting initially with the sidechain, 

pointing into the membrane and backbone into solution.  While NAFA retains this preferred 

orientation through the interfacial and headgroup regions, NAYA systematically switches to a 

backbone-first orientation as its insertion progresses, while NATA behaves in an intermediate 

fashion, changing to a perpendicular orientation.  In the central region of the membrane, all 

three peptides sample the full range of insertion angles.  Peptide conformational freedom 

becomes systematically restricted as they enter the membrane: α, β and C7eq regions are 

explored in solution, α and C7eq at the interface, and only C7eq in the center.  The C7eq structures 

are characterized by a short contact between the polar atoms of the blocking groups.  In the 
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permeation process, the peptide interactions with water are replaced first by the lipid 

headgroups and then by the lipid sidechains.  The passage of the sidechain and backbone 

through the different regions is consistent with the insertion angle analysis.  Some residual 

water molecules of solvation remain even in the membrane center, deforming the membrane 

structure, as previously noted.44  

The experiments described in this work provide useful baseline information for aromatic 

peptide membrane permeation processes, namely passage times and permeation coefficients. 

Our calculated values of passage times are several orders of magnitude smaller than 

experimental data, while permeation coefficients for NATA and NAYA are in reasonable 

agreement.  This effect has been found in previous studies and has been attributed primarily to 

the presence of more than one slow variable characterizing membrane permeation, among 

which peptide orientation and large-scale membrane structural fluctuations have been 

proposed.26, 28, 31, 91  The accommodation of additional slow variables is an ongoing topic of 

current inquiry.   

Excluding the passage times and permeation coefficients, our simulation results are in 

reasonable agreement with most studies on similar systems, including computer simulations 

with different force fields and experimental measurements.  Our PMF profile for NATA 

qualitatively agrees with results of Cardenas et al.,44 and the calculated translational and 

rotational diffusion rates in the solution region agree with both computational results and 

experimental data.16, 19-22, 26, 28, 31  As a result, this computational study provides an improved 

understanding of the process of transmembrane permeation of small aromatic peptides.  The 
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microscopic insights from our simulations are particularly valuable, including the large 

difference between translational and rotational diffusion rates and changes in peptide structure 

as a function of membrane insertion depth.  Membrane permeation by flexible amphiphilic 

molecules remains a fruitful area for further studies.   

 

2.6. Supplementary Information  

2.6.1. - Initial Membrane Electron Density.   

The initial simulation box is very similar to the experimentally determined electron 

densities by Liu and Nagle for a series of stacked lipid bilayers, as seen in Figure 2.12.57  Electron 

densities are often compared and used in the validation and verification of various force fields.  

The experimental results are “squashed” together a bit due to the use of several stacked layers, 

as opposed to the computation results which represent only a single lipid bilayer. 
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Figure 2.12. Comparison of the total electron density for each aromatic dipeptide simulation 

and experimental results. 

 

2.6.2. - PMF Quartiles. 

 In the following figures (Figures 2.13, 2.14, and 2.15), the simulation data were split into 

quartiles, and the resulting potentials of mean force were plotted.  These variations were much 

larger than those found by using the latter half of the simulation data with the bootstrap 

method. 
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Figure 2.13. NAFA potential of mean force quartiles. 

 

Figure 2.14. NAYA potential of mean force quartiles. 
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Figure 2.15. NATA potential of mean force quartiles. 

 

2.6.3. - Alternative Diffusion Constant Methods. 

 Figure 2.16 depicts the diffusion constants, as calculated from fixed-z simulations with a 

custom-made version of CHARMM 36. 
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Figure 2.16.  Diffusion constants for the aromatic dipeptides from unconstrained force 

fluctuations. 

 

 Figure 2.17 depicts the diffusion constants, as calculated from the pulling forces of the 

constrained umbrella sampling window.  The smallest diffusion constants are on the order of 

10-11 m2s-1. 
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Figure 2.17. Diffusion constants from the fluctuation of the umbrella pulling forces. 

 

2.6.4. - Radius of Gyration. 

The radius of gyration for each dipeptide varies little in Figure 2.18; however, NATA 

shows a small decrease near the center of the membrane.  Few of the observed differences 

between the aromatic dipeptides are statistically significant, however; and, the displayed error 

bars represent the standard error for the sample means of each trajectory at a given distances.  

Surprisingly, these fluctuations are rather large. 
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Figure 2.18. Radius of gyration for the three aromatic dipeptides. 

 

2.6.5 - Solvent Accessible Surface Area. 

 The solvent accessible surface area changes little; however, the hydrophilic accessible 

surface area for NATA decreases slightly as the hydrophobic surface area increase similarly. In 

general, the accessible surface area in Figures 2.19 and Figures 2.20 generally follows the trend 

in dipeptide size: NAFA is smaller than NAYA which is smaller than NATA. It is interesting to 

note that the total accessible surface area in Figure 2.21 contains similar trends to those found 

in the radius of gyration in Figure 2.18; unfortunately, neither trend is statistically significant.   
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Figure 2.19. Hydrophilic accessible surface area for the three aromatic dipeptides. 

 

Figure 2.20. Hydrophobic accessible surface area for the three aromatic dipeptides. 
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Figure 2.21. Total accessible surface area for the three aromatic dipeptides. 
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3.1. Overview: 

In this chapter, the effect of lipid type and system size are examined on the passive 

permeation of the phenylalanine dipeptide through a lipid bilayer.  Specifically, umbrella 

sampling was used to calculate the potential of mean force for the passive permeation of the 

phenyalalanine dipeptide – also known as N-acetyl-phenylalanineamide and NAFA – through a 

lipid bilayer consisting of either 50 1,2-dioleoyl-sn-glycero-3-phospocholine (DOPC) lipids, 50 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids, or 40 POPC lipid molecules.  

Diffusion constants were then calculated by numerically solving the Smoluchowski equation.  

Permeability coefficients and mean first passage times where then calculated.  All of this and 

other structural properties – such as Ramachandran plots, backbone angles, clustering, peptide 

insertion angles, radial distribution functions, and proximal peptide water molecules – were 

also examined in order to determine the effect of system size and lipid type.  In terms of system 

size, we observed a small decrease in the highest barrier of the potential of mean force and  

fewer sampled sidechain dihedral angle conformations with 40 versus 50 POPC lipids due to 

weaker membrane deformations within a smaller lipid bilayer.  In terms of lipid type, DOPC 

contains two monounsaturated acyl chains compared to only one such acyl chain in POPC; 

therefore, DOPC bilayers are less ordered and more easily deformed, as seen by a much 

broader potential of mean force profile.  The DOPC lipid also transitioned to a C7eq backbone 

conformation at lower membrane depths than POPC.  Finally, we also confirmed many of the 

general conclusions that were made in Chapter 2, such as the insertion angle analysis indicating 

that the phenylalanine dipeptide enters the membrane side-chain first, then followed by the 

backbone, for all three lipid systems. 
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3.2. Introduction: 

 Phenylalanine is a resonant amino acid with a benzene ring as an R-group.  It was first 

discovered by Schulze and Barbieri in 1879 from germinated and etiolated lupine seedlings and 

can be readily extracted by the hydrolysis of any protein rich compound, such as cheeses.1  In 

1882, phenylalanine was first synthesized by Erlenymeyer and Lipp from acetaldehyde, 

hydrogen cyanide, and ammonia.1  From these humble beginnings, phenylalanine has proven to 

be an important molecule for many biological processes.  Phenylalanine is an essential amino 

acid and cannot be synthesized by the human body, where it serves as either a direct precursor 

or an indirect substrate for the creation of many amino acids, neurotransmitters, and 

catecholamines, such as:  tyrosine, dopamine, adrenaline, and epinephrine.2-3 These hormones 

and neurotransmitters then regulate mood, alertness, and motor control.  Phenylalanine has 

even been used as a treatment for Parkinson’s disease, depression, and other psychological 

disorders.4-6  On a biochemical level, phenylalanine can easily be converted into an amidated 

and acetylated form by common posttranslational modifications or other chemical reactions.  

This neutral form more easily traverses cell membranes, unlike polar and charged amino acids.7  

Physically, the electronic properties of the aromatic sidechain allow the behavior of 

phenylalanine to be examined through fluorescence anisotropy and other experimental 

methods.8-9 These traits make phenylalanine an excellent molecule to study in a passive 

membrane permeation process. 

 The computational modeling of passive membrane processes can first be traced back to 

Marrink and Berendsen in 1994 and 1996 when they examined the permeation of water and 

other small molecules through a model 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
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  (DPPC) membrane by using molecular mechanics.10-12  These articles form the foundation for 

many later studies and data analyses.  Since then, a wide variety of models and methods have 

been used to study membrane permeation.13-15  Water and other small molecules are naturally 

an ideal system to study due to their ability to passively permeate a lipid bilayer.10-11, 16-21 

Quantifying and classifying permeability is also very important in pharmacological studies and 

drug development.21-29   Recently, larger and more novel systems such as molecular dyes,30-31 

nanoparticles,32-34 small proteins,35-36 and transmembrane proteins have been studied.37-38 

However, only several of these journal articles pertain to amino acids7, 39-43 – and only one 

contains references to phenylalanine.44  Similarly, many research journal articles chronicle the 

properties of various lipid membrane systems, typically with the addition of cholesterol, 45-47 

but only three contain discussions of the effects of these properties on the permeation of 

molecules27, 42, 48 and only two contain discussions of the effect of system size.43, 49  None of 

these journal articles contain discussions of the aromatic amino acids or contain discussions 

concerning the effect of system size and lipid type on rotational motion.  Therefore, the effect 

of system size and lipid type is examined in greater detail for our phenylalanine system in the 

following pages.  For further information and background reading, we direct the reader to a 

wide array of excellent review articles and guides that have been published in recent years.14, 22, 

47, 50-55 

 As previously mentioned, we have discovered five different computational studies that 

examine the effects of either lipid type or system size on simple lipid bilayers.  The earliest 

computational lipid variety study that we found was conducted by Sugii et. al. in 2005 and 

examined the permeation of H20, O2, CO, and NO through lipid bilayers with unsaturated, linear 
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acyl chains of carbon length 12, 14, and 16.48 Longer lipids undergo slower rotational motion 

and demonstrate larger and broader free energy profiles, but do not statistically influence local 

diffusion constants.  Permeability coefficients, however, decrease slightly with increasing acyl 

chain length.  In 2014, Nademi et. al. studied the permeation of paracetamol, a small analgesic 

that shares many similarities with phenylalanine, across lipid bilayers with unsaturated, linear 

acyl chains with 14 and 16 carbon atoms.27  They found no effect on the free energy profile and 

a similar trend in hydrogen bonding between paracetamol and water in the presence of both 

lipids.  Finally, Bonhenry et. al. studied the permeation of neutral and cationic lysine through a 

branched lipid with either ether or ester linking groups and compared these results to a linear 

lipid with a single double bond.42  They found that the free energy profile is shifted between the 

ether and ester lipids due to a greater distance between the ether linked headgroups.  Neutral 

lysine traverses both lipids easily well; however, cationic lysine more easily traverses the ester, 

rather than the ether linked lipids.  The free energy minimum in the linear lipid is shifted to the 

center of the bilayer with a smaller central maximum, as compared to the branched lipid, likely 

caused by the reduced stability of the unsaturated lipid bilayer.42  In terms of system size, Hu et. 

al. examined the effect of 64 versus 288 lipid molecules with linear, unsaturated tails on the 

permeation of charged arginine.  The free energy barrier of the larger system was reduced by 

several kcalmol-1 due to broader and deeper membrane deformations, which also influenced 

the orientation of the arginine sidechain.  Finally, Nietschke et. al. examined the effect of 18, 

32, 50, 72, 98, or 128 lipid molecules with linear, monounsaturated acyl chains on a wide 

variety of parameters in 2016.  For example, maximum differences of 5 kJmol-1 at the free 
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energy maximum for methanol and maximum differences of 10 kJmol-1 at the free energy 

minimum for ibuprofen were observed. 

 Our primary objective is to further our understanding of the permeation of the 

phenylalanine dipeptide -- and, by corollary, the other resonant and relatively nonpolar amino 

acids -- through model cell membranes.  Molecular dynamics simulations were run on the 

passive permeation of the phenylalanine dipeptide by using umbrella sampling with lipid 

bilayers consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers.  As seen in Figure 3.1, DOPC contains 

acyl chains with 18 carbon atoms and one double bond near the center.  POPC contains one 

acyl chain that is identical to DOPC; however, the second acyl chain is only 16 carbons long and 

does not contain a double bond.  Simulations were run with 50 DOPC, 50 POPC, or 40 POPC 

lipid molecules in order to examine the effect of both lipid type and system size on various 

permeability measures, the potential of mean force, position dependent diffusion constants, 

and a wide variety of structural information.   
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Figure 3.1.  Molecules involved with this study are plotted above.  3.1A depicts DOPC with its 
associated line structure immediately beneath the artistic rendering.  3.1B depicts POPC, and 
3.1C depicts the phenylalanine dipeptide, which is the same molecule used in the analyses in 
Chapter 2. 
 

3.3. Methods: 

The physical setup of our simulation window followed a procedure similar to our 

previous work, as seen in Chapter 2.56  Our simulation windows consisted of one phenylalanine 

dipeptide, also known as N-acetylphenylalanineamide, Ac-Phe-NH2, or NAFA; water; and a 

phospholipid bilayer consisting of either 1,3-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).  Specifically, three systems were 

studied and were classified based upon the number and type of lipid molecules comprising the 

bilayer.  The DOPC 50 system contained the following molecules:  1 phenylalanine dipeptide, 50 
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DOPC lipids, 2991 TIP3P waters, 8 sodium atoms, and 8 chlorine atoms, for a grand total of 

15,764 atoms.  This is the same system that was studied in Chapter 2 as ‘NAFA.’  The POPC 50 

system contained 1 phenylalanine dipeptide, 50 POPC lipids, 2996 TIP3P waters, 6 sodium 

atoms, and 6 chlorine atoms, for a grand total of 15,578 atoms.  Finally, the POPC 40 system 

contained 1 phenylalanine dipeptide, 40 POPC lipids, 2483 TIP3P waters, 7 sodium atoms, and 7 

chlorine atoms, for a grand total of 15,578 atoms.  Sodium and chlorine atoms were added to 

maintain a physiologically relevant ionic strength.  All systems were confined to tetragonal 

boxes of dimensions:  4.29 × 4.29 × 8.30 nm for DOPC 50, 4.15 × 4.15 × 8.74 nm for POPC 50, 

3.70 × 3.70 × 8.92 nm for POPC 40, corresponding to respective lipid headgroup areas of 0.736 

nm2, 0.689 nm2, and 0.685 nm2.  For the DOPC 50 system, 0.736 nm2 is in close agreement with 

an experimental average of 0.723 nm2,57-58 and the electron density profile is similar to one 

obtained from X-ray scattering experiments.56, 58  Experimentally, POPC headgroup areas are 

70.5 nm2, which are close to our simulated values.59  Unfortunately, experimental data for a 

POPC electron density profile does not exist; however, our data favorably compares to an 

experimentally determined DOPC electron density profile,58 and a plot of this information 

(Figure 3.13) can be found in the Supplementary Information.  The x and y axes of the 

simulation box are parallel to the plane of the lipid bilayer, and the z axis is defined as being 

perpendicular to the plane of the lipid bilayer. The initial coordinates for all systems, including 

the phospholipid bilayer, were determined by using CHARMM-GUI.60-62     

Molecular dynamics simulations for the DOPC 50 system were carried out with 

GROMACS 4.5.4; simulations for the POPC 50 and POPC 40 systems were carried out with 

GROMACS 4.5.6.63  The following options were chosen within GROMACS for all simulations.  



109 
 

Forces for DOPC, POPC, and the phenylalanine dipeptide were all represented by the version 36 

CHARMM force field.64-65  Water was represented by using the TIP3P model.66  Direct 

electrostatic interactions were truncated at 0.13 nm and a long range-correction using the 

Particle Mesh Ewald method was used.67  Van der Waals interactions were similarly truncated 

at 1.2 nm; however, a force switching function was used to smooth the transition between 1.0 

and 1.2 nm.  A canonical ensemble was used; and, therefore, the number of system particles, 

the system volume, and temperature were constant.  Temperature was held constant at 300K 

by using velocity rescaling.68  Initial velocities were sampled from a Maxwell distribution at 

300K. The default leap-frog algorithm was used to integrate the relevant equations of motion 

with a time step of 2 fs.  Periodic boundary conditions in the x, y, and z simulation box 

directions were used.  Constraints on all bonds involving hydrogen atoms were enforced by 

using the LINCS algorithm.69  Position, energy, and other simulation data were saved every 500 

time steps and once every picosecond. 

Simulations began by equilibrating each system, as setup by CHARMM-GUI, over 500 ps 

intervals with the parameters described in the previous paragraph.  Once equilibrated, an 

unrestrained simulation was run for at least 50 ns, and a system image was obtained at z = 1.6 

nm.  This image was then used as the starting point for further umbrella sampling windows in 

both positive and negative z directions.  Umbrella sampling windows for all systems were run 

from z = 0.0 nm to z = 3.0 nm in 0.1 nm increments.  A harmonic restraining potential of 3000 kJ 

mol-1nm-1, located at the center of each umbrella sampling window, was applied to the center 

of mass of the phenylalanine dipeptide.70-71  Each window ran from 50 to 100 ns; as needed, 

simulation windows near the center of the membrane were extended up to 100 ns in order to 
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improve statistical overlap for potential of mean force calculations.  The potential of mean 

force (PMF) was then calculated by using the weighted histogram analysis method (WHAM).72-74  

 Diffusion constant data were obtained by numerically integrating the Smoluchowski 

equation.  Our approach uses the method described by Hummer75 that is, in turn, based on 

ideas developed by Zusman76 and Bicout and Szabo.77  Specifically,  

 𝐷𝑛+1/2 = 𝑤𝑛+1,𝑛 [
𝑝∗(𝑛)

𝑝∗(𝑛 + 1)
]

1/2

𝑑2 (3.1) 

where n is the bin number, wn+1,n is the transition rate between neighboring bins, p* is the 

biased probability distribution, and d is the width of each bin.  This approach begins by binning 

z(t), the distance between the center of mass of the phenylalanine dipeptide and the center of 

mass of the lipid bilayer, over the course of the entire umbrella sampling simulation window.  

The biased probability distribution, p*(z), is then approximated by the resulting, normalized 

histogram as p*(n).  The average number of transitions between neighboring bins is then 

calculated from the position time series z(t).  Next, wn+1,n is calculated from the average number 

of transitions between neighboring bins divided by the bin residence time.  We chose a bin 

width of 0.025 nm so that a bin transition is located at the center of any given umbrella window 

and to minimize error.  Under these parameters, the position dependent translational diffusion 

coefficient, D(z), for each of our umbrella windows is then found when n = 1.  Please note: 

although we are using our harmonically restrained umbrella sampling windows, the diffusion 

coefficient is calculated at the center of each window where the restraining potential is equal to 

zero, thereby minimizing the impact of the harmonic umbrella sampling restraint. 
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Permeation kinetics were then assessed by calculating the permeability coefficient, P, 

and the mean first passage time (MFPT), <τ>, by using the inhomogeneous solubility diffusion 

model.10-11, 39, 78 The permeability coefficient is calculated by: 

 𝑃 = 1/∫ 𝑒𝛽𝑤(𝑧)𝐷(𝑧)−1𝑑𝑧
𝑏

𝑎

 (3.2) 

where a is a location in the aqueous region on one side of the membrane along the z axis, b is a 

location in the aqueous region on the opposite side of the membrane, β = (kBT)-1, w(z) is the 

potential of mean force at a given location along the z-axis, and D(z) is the diffusion constant at 

a given value of z.  The mean first passage time is calculated by:79-80    

 〈𝜏〉 = ∫ [𝑒𝛽𝑤(𝑧)𝐷(𝑧)−1∫ 𝑒−𝛽𝑤(𝑧′)𝑑𝑧′
𝑧

𝑎

] 𝑑𝑧
𝑏

𝑎

 (3.3) 

where all variables are defined in the same manner as for the calculation of P. 

A wide variety of additional and smaller data analyses were also conducted.  The 

timescale of molecular motion was investigated at select distances of z = 0.0, 0.5, 1.0, 1.5, 2.0 

nm by extending the corresponding umbrella windows to 250 ns.  Sidechain anisotropy was 

investigated by defining a vector in the plane of the phenyl group in the phenylalanine 

dipeptide that is perpendicular to a vector formed by the CG and CZ carbon atoms.  A C2 

autocorrelation function for this vector was then calculated.  C2 is a second order associated 

Legendre polynomial, defined below, and is related to simple rotational diffusion in 3D space.   

 𝐶2(𝑡) =
1

2
〈(3𝑐𝑜𝑠2𝜃(𝑡) − 1)〉 (3.4) 
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where θ(t) is the angle formed between the investigated vector at two different points in time.  

The rotational correlation time, τrot, was then determined by fitting the C2 autocorrelation 

function to a double exponential decay function.  In a similar manner, the autocorrelation time 

for the projection of the insertion vector along the z-axis was determined, as well.  Backbone 

and sidechain conformational angles, radial distribution functions, solvent accessible surface 

areas, and the radius of gyration were calculated by using the relevant GROMACS 4.5.6 tools.63  

The dihedral angle clustering analysis was done with CHARMM.81   

 

3.4. Results and Discussion 

3.4.1. - Potential of Mean Force. 

The potential of mean force represents the free energy required to reversibly pull the 

dipeptide along the z-axis and is relative to the free energy in the aqueous region.  The 

potential of mean force in the aqueous region at 3.0 nm for each system was defined as 0.0 

kJmol-1 and all other values are relative to this reference.  The phenylalanine dipeptide exhibits 

very similar behavior in all three systems, as seen in Figure 3.1:  a free energy minimum around 

the lipid-water interface and a free energy barrier at the center of the membrane.  The minima 

are -16, -13, and -18 kJmol-1, respectively, for the POPC 40, POPC 50, and DOPC 50 systems at 

1.3, 1.2, and 1.2 nm.  The free energy barriers are 14, 12, and 10 kJmol-1, in the same order as 

before.  Qualitatively, these results are very similar to findings for other amino acids, and agree 

with our previous studies concerning aromatic dipeptides.39, 44, 56  Blocked phenylalanine 

contains a hydrophilic backbone and a hydrophobic side chain which results in a smaller free 
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energy near the membrane interface where the backbone can interact with the aqueous region 

at larger z-values and where the sidechain can interact with the lipid environment at smaller z-

values.  

 

Figure 3.2.  The free energy required to pull the phenylalanine dipeptide along the z-axis of the 

simulation box is plotted below as the potential of mean force.  The center of the lipid bilayer is 

represented by z = 0.  A 95% confidence interval representing the standard error is also plotted 

for select points as determined by the Bootstrap method.82  Alternate error estimates are 

described in the Supplementary Information (Figures 3.14 to 3.16.) 

 

The PMFs for POPC 40 and POPC 50 demonstrated little difference at the center of the 

membrane; however, POPC 40 demonstrates a small, but statistically significant difference at 

the interface.  Although the effect of lipid bilayer size on aromatic dipeptide PMFs has not been 
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examined before, Nitschke et. al. have conducted membrane size studies on methanol and 

ibuprofen with POPC bilayers.49  Even though ibuprofen is less polar and is, therefore, more 

likely to pass through a lipid bilayer83, it still contains a similar combination of polar and 

nonpolar moieties and produces the same qualitative PMF shape as the phenylalanine 

dipeptide.  In Nitschke’s analysis, lipid size may influence the PMF by three key mechanisms:  

1.) averaging out the effects of membrane fluctuations, 2.) finite size effects altering the lipid 

structure, and 3.) solute stabilization through the interaction of periodic images.  They 

determined that only membrane fluctuations influence the PMF for lipid bilayers as small as 32 

molecules.  For example, the central barrier for ibuprofen is lowered by 3 kJmol-1 when the 

system size is increased from 32 to 50 lipids.  In our case, the PMF is lowered 2 kJmol-1 when 

the system size is increased from 40 to 50 lipid molecules, in good agreement with Nitschke’s 

results. In the interfacial region, the PMF is lowered by 5 kJmol-1 for ibuprofen and by 3 kJmol-1 

for the phenylalanine dipeptide.  Interestingly, these system size effects can be removed by 

utilizing a cylinder based center of mass coordinate, rather than the all lipid center of mass 

coordinate that we use.83-84  Alternatively, the small variation of the PMF due to system size 

may be due to the relatively short simulation length: 20 ns per window for Nitschke and 50 ns 

per window for our results.  The passive transport of a peptide through a lipid bilayer heavily 

depends on membrane fluctuations at the interface, which may not be adequately sampled in 

short simulations of small numbers of lipids, producing a systematic bias towards smaller, less 

negative, interfacial energies.84-86 For example, lipid molecules can flip from one side to another 

on the scale of hundreds of nanoseconds87; lipid defects and void spaces form in the center of 
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the membrane on the order of tens of microseconds85; and, rotational energy barriers can 

further complicate matters by occurring on the order of tens of nanoseconds.86, 88 

The DOPC 50 PMF exhibits a significantly smaller central barrier and a broader 

interfacial minimum than the POPC 50 curve, with particularly large deviations within the 

region between 0.6 and 1.0 nm, as shown in Figure 3.1.  Traditionally, the width of the PMF 

near the interfacial minimum has been associated with the ability of the lipid membrane to 

either exclude polar solutes or to enfold apolar solutes due to membrane fluctuations.49, 89-90  

Because our simulations use the same solute for each lipid bilayer system, the calculated PMF 

differences must be due to differences in bilayer properties.  DOPC contains an additional 

double bond in its aliphatic tail as compared to POPC.  This greater lack of saturation causes the 

DOPC bilayer to be less ordered than POPC and other saturated phospholipids.91 Our results 

suggest that the less ordered DOPC bilayer is more easily capable of undergoing distortions that 

better accommodate the amphiphilic nature of the phenylalanine dipeptide, thereby producing 

a broader PMF curve near the interfacial free energy minimum.  These membrane distortions 

either allow the hydrophilic moiety to remain in contact with the bulk aqueous region85-87, 92 or 

allow the partial retention of the solvation shell at a greater insertion depth, thereby lowering 

the free energy. These effects are discussed in greater detail in some of the following sections.  

 

3.4.2. - Translational Diffusion. 

 The translational diffusion in all three systems closely follows our previous results for 

aromatic amino acids in DOPC 50, as seen in Figure 3.2.56 In the aqueous region, the 
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phenylalanine dipeptide exhibits diffusion constants of 5.20 ± 0.10 × 10-10 m2s-1 in DOPC 50, 

5.40 ± 0.15 × 10-10 m2s-1 in POPC 50, and 5.23 ± 0.15 × 10-10 m2s-1 in POPC 40.  All of these values 

possess overlapping confidence intervals, and any differences are statistically insignificant. At 

the membrane interface at z = 1.5 nm, diffusion constants of 4.82 ± 0.17 × 10-10 m2s-1 in DOPC 

50, 4.86 ± 0.089 × 10-10 m2s-1 in POPC 50, and 4.83 ± 0.15 × 10-10 m2s-1 in POPC 40 were 

determined.  Again, these values are not statistically different from each other.  However, they 

are slightly smaller than the values determined within the aqueous region.  Finally, at the 

center of the membrane, the phenylalanine dipeptide diffusion constants are 5.63 ± 0.26 × 10-10 

m2s-1 for DOPC 50, 5.46 ± 0.17 × 10-10 m2s-1 for POPC 50, and 5.48 ± 0.15 × 10-10 m2s-1 for POPC 

40.  Here, as well, the results for the three systems are not statistically different from each 

other, and they are similar to the values within the aqueous region.  This pattern of slightly 

smaller diffusion constants near the membrane interface as compared to either the membrane 

interior or aqueous regions has also been witnessed in many different molecules from water to 

organic solvents to small pharmaceutical compounds.11, 19-20, 26, 29, 89  The observed differences 

are most pronounced for polar and amphiphilic molecules and negligible for larger, more 

nonpolar molecules.21, 23-24, 54 While a majority of the D(z) values follow relatively smooth 

variation with insertion depth z, there are two data points with significant deviations, for POPC 

40 at 1.6 nm and DOPC 50 at 1.7 nm.  These outliers may represent the sampling of a rare 

event, such as one of the rotational motions explored in Chapter 2.  In summary, switching from 

DOPC to POPC or from 50 to 40 lipid molecules does not have a measurable impact on the 

position-dependent translational diffusion constants. 
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Figure 3.3.  Translational diffusion constants of the dipeptide with respect to the center of mass 

of the lipid bilayer are depicted.  These constants were determined by a numerical solution of 

the Smoluchowski equation. The error bars represent the standard error at a 95% confidence 

level, as calculated by separating the data for each simulation window up into four consecutive 

bins. 

 

3.4.3. - Permeability Measures. 

 The permeation coefficient -- an important quantity used in pharmacokinetic analyses -- 

and the mean first passage time (MFPT) are discussed in this section.  Both quantities represent 

a more physically relevant interpretation of our diffusion constant and potential of mean force 

data.  The MFPT for the phenylalanine dipeptide through a POPC 50, POPC 40, and DOPC 50 
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membrane system are, respectively: 9.1 × 10-6 ± 5.0 × 10-7 s, 1.2 × 10-6 ± 8.4 × 10-7 s, and 4.1 × 

10-6 ± 2.7 × 10-7s by using Eq. 3.3.  The given 95% confidence intervals were calculated by 

propagating error from the diffusion and potential of mean force data displayed in Figures 3.2 

and 3.3.  All of the passage times were on the order of microseconds, which is in agreement 

with similar computational studies on molecules around the same size as the phenylalanine 

dipeptide.39, 80  Of the three systems studied, POPC 40 has the largest passage time, POPC 50 

the smallest, and DOPC 50 in between the two.  These calculations are most sensitive to the 

permeant environment near the center of the membrane and therefore reflect the potential of 

mean force and diffusion constant around z = 0 nm.  The diffusion constants near the center of 

the membrane are largely the same for all three systems; however, the PMF is greatest for 

POPC 40, followed by POPC 50, and then DOPC 50, which matches the qualitative order of the 

MFPT.  The MFPT is a function of the PMF and the diffusion coefficients; however, the diffusion 

coefficients are nearly identical, indicating that the MFPT should follow trends in the PMF, as 

seen above.  It is interesting to note that the width and depth of the PMF did not have a 

substantial impact on this ordering because the PMF for DOPC 50 is much deeper and broader 

than for POPC 50.   

 Our calculated permeation coefficients for the POPC 50, POPC 40, and DOPC 50 systems 

are, respectively: 0.82 ± 0.03 cms-1, 0.24 ± 0.003 cms-1, and 0.66 ± 0.03 cms-1 by using Eq. 3.2. 

Again, the reported uncertainties are 95% confidence intervals determined through the 

propagation of error in the PMF and diffusion constant data.  It should also be noted that these 

calculations are highly sensitive to the choice of the free energy in the aqueous region; for 

example, differences of only a few kJmol-1 resulted in order of magnitude differences in the 
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permeation constant.  Therefore, actual uncertainties are likely far larger and care should be 

taken in terms of converging the aqueous PMF.  The MFPT calculations are not sensitive to this 

variation and may be a more accurate reflection of the permeation kinetics.  As a result, the 

relatively small differences in the permeation coefficients for each system are not significant.  

In general, these permeation coefficients are in agreement with other simulations with small 

molecules.19  We previously reported experimental coefficients for the phenylalanine dipeptide 

in DOPC 50 of 5.6 × 10-8 cms-1,56 as compared to our computational value in this work of 0.66 

cms-1.  As expected, the computational value is far larger than the experimental result due to 

any of the following factors which have been well documented in the literature:  the use of the 

inhomogenous solubility-diffusion model,7, 24, 39, 56, 88, 93-95 hidden rotational barriers,7, 39, 88-89, 93-

96 membrane and solvent fluctuations,35, 96-98 and the choice of force field.56, 64  We have 

discussed each of these effects in greater detail within our earlier work and within Chapter 2.56 

 

3.4.4. - Rotational Sidechain Diffusion. 

 The rotation of the phenylalanine dipeptide sidechain demonstrates a dependence on 

insertion depth, as seen in Figure 3.4.  Please note that many autocorrelation functions did not 

decay to zero within our extended trajectories of 250 ns.  Therefore, reported numerical time 

constants depicted in Figure 3.4 that are beyond this length should be treated in a purely 

qualitative manner.  However, there is clearly a position dependence unlike the largely flat 

translational diffusion profile in Figure 3.3.  Specifically, rotational correlation times for the 

POPC 40 system vary from 24 ns at z = 0.0 nm, 160 ns at 1.5 nm, to 190 ns at 2.0 nm.  Values at 
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z = 0.5 nm and z = 1.0 nm are either undefined or unreliable.  Rotational correlation times for 

the POPC 50 system vary from 75 ns at z = 0.0 nm, 150 ns at 1.5 nm, to 1.8 ns at 2.0 nm.  Again, 

values at z = 0.5 nm and z = 1.0 nm are either undefined or unreliable.  Correlation times in the 

center of the membrane (z = 0.0 nm) and at the interface (z = 1.5 and 2.0 nm) were determined 

and are likely smaller than in the interfacial region.  All of these values are substantially larger 

than previously reported computational and experimental values for the phenylalanine 

dipeptide in water, respectively:  20 ps with the CHARMM force field and TIP3P water8 and 98 ± 

30 ps at 278 K.8  However, the correlation time when the phenylalanine dipeptide is located at z 

= 3.0 is 70 ps for POPC 50 and 64 ps for POPC 40, both of which are close to the previous 

experimental and computational values.  This indicates that the rotational motion of the 

sidechain plays an important role in the permeation process. 
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Figure 3.4. The autocorrelation time for the rotation of the phenylalanine sidechain is plotted 

for both the POPC 40 and POPC 50 systems.  Note:  * indicates that an autocorrelation time 

could not be determined through the following fitting process.  Autocorrelation functions were 

fitted to an exponential decay function over a 250 ns trajectory at insertion distances of 0.0, 

0.5, 1.0, 1.5, and 2.0 nm.  The C2 correlation function is defined as: 𝐶2(𝑡) =
1

2
〈(3𝑐𝑜𝑠2𝜃 − 1)〉, 

with the reorientation angle, θ, defined as the angle between a vector perpendicular to the CG 

and CZ carbon atoms of the sidechain phenyl group and the simulation z-axis.  Note that many 

autocorrelation functions did not decay within the length of the simulation, and the reported, 

numerical results beyond 250 ns should not be quantitatively compared.  
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3.4.5. - Insertion Angle. 

 The insertion vector of each peptide is defined by an angle, θ, between two vectors:  

one vector points along the positive z-axis with respect to the lipid membrane, and the other 

vector starts from the center of mass of the backbone and ends at the center of mass of the 

sidechain.  In other words, an angle of 0° indicates that the sidechain is pointing in the positive 

z-direction and the backbone in the negative z-direction.  Alternatively, an angle of 180° 

represents the reverse:  the peptide backbone is pointing in the positive z-direction, and the 

sidechain is pointing in the negative z-direction.  From Figure 3.5, peptide orientations are 

largely homogenous in the aqueous region beyond 2.0 nm.  However, as the peptide nears the 

membrane interface, the insertion angle prefers large values between 120° and 180°, indicating 

a tendency for the sidechain to enter the membrane first.  The sidechain, particularly for 

phenylalanine, is largely nonpolar and interacts with the non-polar aliphatic groups within the 

lipid membrane, while the polar amide and acetate groups within the peptide backbone prefer 

interactions with the solvent.  This preference continues until around 0.3 to 0.4 nm from the 

center of the membrane, where the insertion angle can, once again, adopt a wide range of 

different values.  At the center of the membrane, the local environment is similar in both the 

positive or negative z-direction, and a preference for one angle or direction is unlikely to be 

seen in this homogenous region. The ability of the phenylalanine dipeptide to change its 

orientation in either the positive or negative z-direction is very similar to the results found in 

previous studies of aromatic dipeptides.39, 56, 88 Both lipid types, POPC and DOPC, and system 

sizes, POPC 40 and POPC 50, exhibit very similar results.  
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Figure 3.5.  The insertion angle of the dipeptide relative to the distance from the center of the 
lipid membrane can be seen below.  The backbone center of mass to the sidechain center of 
mass defines the insertion vector.  The insertion angle, θ, is then the angle inbetween the 
insertion vector and the positive z-axis.  Blue regions represent areas of low, normalized 
probability, and red regions represent areas of high, normalized probability as a function of θ 
and the distance from membrane center, z. 
 
 

The timescale of the reorientation of the insertion vector was also examined by 

calculating the autocorrelation function for the projection of this vector along the z-axis, also 

known as the cosine of the insertion angle.   Unfortunately, this analysis suffers from many of 

the same problems as the rotational sidechain analysis.  Most of the autocorrelation functions 

did not decay to zero, and the fitted time constants were much larger than the 250 ns 

trajectories.  These time constants are plotted in Figure 3.6 below in a purely qualitative 

manner to indicate that there is some relationship between the reorientation of the insertion 

vector and the position of the permeant.  However, in order to determine what that 

relationship is, longer simulation trajectories need to be run and analyzed. 

We believe that this relationship might increase in the interfacial region before then 

decreasing in the center of the membrane and within the aqueous regions.  Longer potential 

timescales are likely due to the large scale fluctuations of the lipid molecules within the 

membrane, which are absent at the center of the membrane.85  Conversely, the smaller 
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autocorrelation times at the center are due to the creation of transient void spaces as a result 

of the greater disorder of the lipid tails.23, 54, 92  These void spaces then allow the phenylalanine 

dipeptide to rotate with greater freedom.   

 

Figure 3.6.  The correlation times for the reorientation of the insertion angle vector are plotted 
here.  Note:  * indicates that an autocorrelation time could not be determined through the 
following fitting process.  Longer times indicate a slower rotational motion; whereas, shorter 
times indicate a faster rotational motion.  The correlation times were determined by fitting the 
autocorrelation function for the projection of the insertion vector along the z-axis to an 

exponential decay function of the form: 𝐶(𝑡) = 𝑎𝑒𝑏𝑡 + (1 − 𝑎)𝑒𝑐𝑡, where C(t) is the 
autocorrelation function, and a, b, and c are parameters determined by the fitting routine.  The 
correlation times reported in this figure are equal to the inverse of parameter ‘c’.  Note that 
these times exceed the length of the simulation, 250 ns, and numerical values beyond this point 
should not be treated in a quantitative manner. 
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3.4.6. - Backbone Conformations. 

 Figure 3.7 contains Ramachandran plots for each of the systems studied.99-100  

Simulations were split up into three regions:  the water region at the far edge of the simulation 

box, the interface where the lipid headgroups interact with the aqueous region, and the center 

of the membrane where the lipid tails interact, as seen in 3.7A. 3.7B-D contain plots of all three 

slices for the POPC 40, POPC 50, and DOPC 50 systems.  The sample structures around the 

Ramachandran plot are depictions of the two most prevalent conformations, representing 

around 80% or greater of all observed clusters.  In the aqueous region, all three systems sample 

three conformational areas:  the α-helical region with negative Φ and Ψ angles, the β-sheet 

area with negative Φ and positive Ψ angles in the top corner, and the small region sandwiched 

in-between the α-helices and β-sheets, representing a C7eq conformation, a free energy 

minimum that is commonly found in dipeptides.101  These findings are similar to what we found 

for the other aromatic dipeptides of tyrosine and tryptophan in the aqueous region.56  At the 

interface, the α-helix and β-sheet regions lose probability density to the C7eq conformation until, 

eventually, at the center of the membrane, only the C7eq conformation remains to a significant 

degree.  This demonstrates that the phenylalanine dipeptide adopts different conformations as 

it travels through the membrane.  This behavior is consistent regardless of system size or lipid 

type, as explored in greater detail throughout the clustering analysis in the next section. 
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Figure 3.7.  Ramachandran plots and representative structures from a clustering analysis of the 

phenylalanine dipeptide in lipid bilayers are depicted.  The Ramachandran plots are slices taken 

at the center, middle, and edge of the simulation box, as shown in 3.7A.  3.7B-D show the 

actual Ramachandran plots with red representing areas with a high probability density: (B) 

DOPC 50, (C) POPC40, (D) POPC50.  Blue regions exhibit either zero or little likelihood of the 

dipeptide adopting such a conformation.  The surrounding structures display the two most 

prevalent conformations in each region, as determined by the clustering analysis.  In the 

Ramachandran plots, the bottom left regions of high (red) probability represent α-helical 

conformations, the top left red regions represent β-sheets and the regions in between the two, 

as seen in the center of the membrane, indicate C7eq conformations.  Phi and psi angles are 

plotted from -180° to 180°. 
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3.4.7. - Sidechain Conformations. 

 The two sidechain dihedral angles, Χ1 and Χ2, were plotted in Figure 3.8 in the same 

manner as the Ramachandran plots in Figure 3.7.   The following nomenclature conforms to the 

standard convention for the naming of amino acid sidechain conformations.  For example, tg+ 

refers to a trans X1 dihedral angle around 180° and a gauche(+) X2 dihedral angle around +60°. 

By looking at the top Χ1- Χ2 plot in 3.8A for the aqueous region, the phenyl ring of the 

phenylalanine dipeptide in DOPC 50 samples six different conformers: tg+, g-g+, and g+g+ in the 

top row; and tg-, g-g-, and g+g- in the bottom row.  However, only tg+, g-g+, tg-, and g-g- are 

heavily sampled, as indicated by the large, red regions.  g+g+ and g+g- are only weakly sampled 

due to the much smaller, less intense, and whiter regions on the right-hand side of the panel.  

In the interfacial region of 3.8A, the four heavily sampled conformations are still present; 

however, g+g+ and g+g- vanish completely before reappearing within the center of the 

membrane.  This phenomenon was also witnessed in POPC 40 and POPC 50, as seen in 3.8B and 

3.8C.  Although the dihedral sidechain angles do not play as important a role in membrane 

permeation as seen in the Ramachandran plots of Figure 3.7, there is a slight conformational 

preference in the interfacial region against g+g+ and g+g-.  In terms of membrane size, the g+g+ 

conformer is largely absent in the aqueous region of the POPC 40 system and slightly more 

prevalent in POPC 50.  Finally, there is little difference between the DOPC 50 and POPC 40 

systems.    
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Figure 3.8.  Χ1 and Χ2 sidechain angles for the phenylalanine dipeptide are displayed in the same 

manner as the previously examined Ramachandran plots.  Specifically, 3.8A represents three 

such plots at the center, interfacial, and aqueous regions, in ascending order, for the 

simulations of the phenylalanine dipeptide with 50 DOPC lipids.  Blue represents regions where 

the binned probability distribution is very small or zero; whereas, red indicates a large 

likelihood that the sidechain conformations will adopt that particular conformation.  3.8B is the 

same as 3.8A, except a membrane consisting of 40 POPC lipids was used; and, finally, 3.8C 

represents the same type of plot where 50 POPC lipids were used within the membrane. 

 

3.4.8. - Peptide Structures and Clustering. 

A clustering analysis of the Φ, Ψ, Χ1, and Χ2 dihedral angles was conducted for structures 

at the center of the membrane, interface, and water regions.  As we previously reported,56 the 

phenylalanine dipeptide in a 50 DOPC membrane system adopts seven clusters in the water 

region: 4 α and 3 β; four at the interface: 2 α and 2 C7eq-β hybrids; and four at the center of the 

membrane:  2 C7eq and 2 β.  Please note that clusters were classified based on those identified 

by Tobias and Brooks to within a tolerance of around 10° in the Φ dihedral angle and around 

20° in the Ψ angle.101  Also, the two most prevalent structures within each clustering region are 

depicted in the margins of panels B,C, and D within Figure 3.7.  In the 50 POPC lipid membrane 

system, seven clusters were identified in the water region:  3 α and 4 β; four at the interface: 2 

α and 2 β; and five at the center: 2 C7eq, 2 β, and 1 C7eq-β hybrid.  In the 40 POPC lipid 

membrane system, ten clusters were identified in the water region:  5 α and 5 β; four at the 

interface: 2 α and 2 β; and five at the center: 2 C7eq, 2 β, and 1 distorted C7eq cluster.  The larger 

number of clusters in the water region for this system was surprising; however, all of the 

additional clusters beyond the original seven identified for the DOPC 50 and POPC 50 systems 



130 
 

represented fewer than 0.5% of the total cluster representation.  More interestingly, the 

interfacial region of the POPC systems clearly had only α and β clusters; however, the DOPC 

interfacial region contains two β clusters whose Ψ angles are halfway between a typical β or 

C7eq cluster, hence their designation as C7eq-β hybrids.  These hybrid clusters may indicate that 

the phenylalanine dipeptide is being forced into lower energy conformations sooner.   

Indeed, the oxygen to nitrogen atom distances on the terminal blocking groups, as 

plotted in Figure 3.9, indicate that these two atoms are coming closer together to form a lower 

energy C7eq cluster at a z-distance of 0.7 nm, whereas the POPC systems do not begin this 

process until around 0.5 or 0.6 nm.  In the water region, all systems adopt an oxygen to 

nitrogen distance between 3 to 5 nm and do not exhibit a strong preference.  However, at the 

center of the membrane, all lipids and sizes clearly indicate a strong preference for a very small 

oxygen and nitrogen distance around 2.8 to 3.1 nm as the polar dipeptide backbone attempts 

to either minimize its interfacial free-energy with respect to the non-polar environment at the 

membrane center or to potentially maximize their dipole or hydrogen bonding interactions. 
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Figure 3.9.  The distance between the oxygen and nitrogen atoms of the respective blocking 

groups – the oxygen atom of the acetylated N-terminus and the nitrogen atom of the amidated 

C-terminus – are plotted for each simulation window in terms of their associated probability 

distributions.  Blue represents a small or zero likelihood of the phenylalanine dipeptide 

adopting a conformation with that particular oxygen/nitrogen distance, whereas red indicates a 

high likelihood.   3.9A depicts the oxygen/nitrogen distance for DOPC 50; 3.9B depicts the 

distance for POPC 50; 3.9C depicts the distance for POPC 40. 

 

3.4.9. - Molecule Shapes and Sizes. 

All three systems indicate little variation in both the radius of gyration (Rg) and the 

solvent accessible surface area (SASA) of the phenylalanine dipeptide.  This is not surprising due 

to the small size of the peptide.  The relevant figures (Figures 3.17 to 3.20) can be seen in the 

Supplementary Information.  There is a small decrease in both the hydrophilic and total SASA as 

the dipeptide nears the center of all three membrane systems.  Such a change is expected as 

the phenylalanine dipeptide attempts to lower its interfacial free energy within the 

hydrophobic membrane interior.  However, this difference is not statistically significant.  

Conversely, there are small differences in the radius of gyration to within a couple picometers; 

however, they do not follow a consistent pattern, other than to indicate a slightly greater 

variation near the membrane transition as opposed to the center of the membrane or in the 
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aqueous region.  Again, these differences are very small and may not be chemically significant; 

they are simply mentioned here for comparison with larger peptides that may possess greater 

changes. 

 

3.4.10 - Specific Interactions. 

The phenylalanine dipeptide interacts with a different environment at varying distances 

from the center of the model DOPC or POPC membrane.  The number of water molecules 

within 0.3 nm of any part of the dipeptide is plotted in Figure 3.10.   In the aqueous region 3.0 

nm from the center of the model membranes, all three peptides were surrounded by around 45 

water molecules, with the POPC and DOPC 50 systems at nearly the same value; whereas, the 

POPC 40 system has a slightly larger number.  As the dipeptide moves closer to the membrane 

interface, the number of closely coordinated water molecules gradually decreases to around 20 

at z = 1.5 nm.  As expected for relatively small and non-ionic permeants, there are few, if any, 

water molecules surrounding the dipeptide at the center of membrane.  However, it is 

interesting to note that at z = 0.0 nm from the membrane center, the DOPC 50, POPC 50, and 

POPC 40 systems possess the following number of nearby water molecules:  0.690 ± 0.007, 

0.006 ± 0.001, 0.006 ± 0.001.  The numbers for the POPC systems are essentially zero; however, 

the DOPC 50 system is statistically above zero.  This may indicate a slightly greater permeability 

for the DOPC system due to its less ordered lipid tails.  
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Figure 3.10. The number of water molecules within 0.3 nm of the phenylalanine dipeptide in all 
three membrane systems is displayed.  At each membrane position, the standard error of the 
sample mean was calculated at a 95% confidence level and was less than 0.06 water molecules 
-- too small to appear on this figure. 
 
 

Radial distribution functions (RDF) between either the backbone or sidechain moiety of 

the phenylalanine dipeptide interacting with the non-hydrogen atom components of water, the 

lipid tails, or the remaining lipid headgroup atoms are plotted in Figure 3.11 for the POPC 50 

system.  The corresponding figures for the DOPC 50 and POPC 40 systems are not included 

because they are indistinguishable to any but the most discerning eye.  At the top of panel A 

and panel B, both moieties of the peptide are surrounded by a relatively uniform distribution of 

water molecules.  However, this uniformity comes to gradual stop at 2.0 nm from the 
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membrane center for the sidechain; whereas, the backbone continues to display a relationship 

with the aqueous region until a distance of 1.0 nm.  This trend is corroborated by the insertion 

angle data in Figure 3.5 where the peptide backbone remains oriented towards the aqueous 

region at greater membrane insertion depths.  Similarly, both peptide moieties strongly 

associate with the lipid headgroups in the interfacial regions between 0.8 and 2.0 nm; however, 

the sidechain possess a more abrupt transition away from the lipid headgroups at 1.0 nm, as 

opposed to 0.4 nm for the backbone.  Finally, the opposite trend is noticed with the lipid tails:  

the sidechain remains closer to them over a greater membrane distance (0.0 to 1.9 nm); 

whereas, the backbone strongly associates with the tail groups near the membrane center (0.0 

to 1.0 nm.) 

 

Figure 3.11.  Radial distribution functions for either the peptide backbone (A) or the peptide 

sidechain (B) with water (top), lipid headgroups (middle), and lipid tails (bottom) are plotted as 

a function of the distance from either the dipeptide sidechain or backbone and the distance 

from the center of the membrane.  Data shown is for POPC 50 systems; results for DOPC 50 and 

POPC 40 are highly similar and are not shown.  Red indicates a large, relative value for the radial 

distribution function; white is an intermediate value; and blue is a small or zero value. 
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Coordination numbers representing the average number of atoms belonging to each of 

the previously mentioned groups within 0.5 nm of the backbone or sidechain are plotted in 

Figure 3.12.  In Figure 3.12A, the coordination number between water and the backbone 

gradually decreases with distance from the center of the membrane; however, in Figure 3.12D, 

the sidechain undergoes a more distinct transition as distance increases and rapidly loses 

coordinating water atoms at 2.1 nm.  In Figure 3.12B, the backbone is coordinated by a 

significant number of headgroup atoms over a large distance (0.6 to 2.5 nm) as compared to 

the sidechain (1.7 to 2.2 nm) in panel 3.12E.  Finally, the sidechain coordinates with the lipid 

tails at around 2.0 m, in Figure 3.12F, before completing said transition at 1.0 nm; whereas, the 

backbone undergoes a more gradual process.  Again, this matches both the RDF and z-insertion 

angle data that demonstrate that the phenylalanine sidechain enters the membrane first, and 

the backbone follows.  Interestingly, there is not an observable difference in coordination 

number between the choice of lipid type (DOPC 50 in blue as compared to POPC 50 in green) or 

system size (POPC 50 in green and POPC 40 in red). 
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Figure 3.12.  Coordination numbers are displayed and represent the average number of the 
specified sub-groups within 0.5 nm of either the dipeptide backbone or sidechain.  The peptide 
sidechain was defined as all of the non-hydrogen atoms of the phenylalanine R-group, and the 
backbone consists of the remaining non-hydrogen atoms in the dipeptide, including those of 
the terminal blocking groups.  Sub-groups were defined, as follows:  water, only the oxygen 
atom; lipid tail, all of the carbon atoms in the acyl group of the lipid; lipid headgroup, all of the 
non-hydrogen and non-tail atoms remaining in the lipid.  Panel 3.12A displays the coordinating 
number of water groups around the backbone; Panel 3.12B, the backbone and lipid 
headgroups; Panel 3.12C, the backbone and lipid tails; Panel 3.12D, the sidechain and water; 
Panel 3.12E, the sidechain and lipid headgroups; Panel 3.12F, the sidechain and lipid tails. 
 
 

3.5. Conclusions 

In this study, we conducted a wide variety of computational analyses to determine the 

effect of system size and lipid type on the passive permeation of the phenylalanine dipeptide.  

This was undertaken in the broader context of exploring and explaining the passive permeation 

of aromatic amino acids through model cell membranes.  In terms of the effect of system size, 

the potential of mean force was lowered slightly by about 3 kJmol-1, in a large bilayer, 

potentially indicating that membrane fluctuations are not being well sampled with only 40 
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POPC lipids or indicating that a simulation length of 50 ns per window is insufficient to sample 

these fluctuations.  A similar trend was also noticed for the mean first passage time, which is 

highly coupled with the results for the potential of mean force.  Along these lines, it was more 

difficult to achieve convergence in the rotational sidechain anisotropy studies, even with 

simulations 250 ns in length.  A greater number of X1 and X2 sidechain conformations were 

witnessed in the interfacial region for POPC 50, indicating that the larger membrane system 

may accommodate more rarely sampled configurations.  No difference was witnessed in terms 

of permeation coefficients, translational diffusion, insertion angles, Ramachandran plots, 

clustering, backbone oxygen/nitrogen distance, radius of gyration, solvent accessible surface 

area, radial distribution functions, and coordination numbers.  

In terms of lipid type, recall that DOPC contains two, singly unsaturated acyl chains, 

whereas POPC contains only a single unsaturated acyl chain.  The addition of a double bond 

creates greater disorder within the lipid structure.  This effect is most easily seen within the 

potential of mean force for DOPC where the PMF is broader than that for either of the POPC 

systems.  This then affects the mean first passage time which is highly sensitive to changes in 

the PMF.  The clustering and backbone oxygen to nitrogen distance analyses also indicate that 

the DOPC system transitions to a C7eq conformation sooner within the membrane.  This also 

indicates a greater degree of disorder which allows the phenylalanine dipeptide to adopt this 

low energy conformation in more shallow regions of the lipid bilayer.  No difference was 

witnessed in terms of permeation coefficients, translational diffusion, insertion angles, 

Ramachandran plots, radius of gyration, solvent accessible surface area, radial distribution 

functions, and coordination numbers.  



138 
 

Although only a few differences were witnessed in terms of system size and lipid type, a 

wide variety of observations were made in terms of the general permeation process.  The 

potential of mean force exhibited the typical pattern for amphiphilic molecules:  an energy 

minimum near the interface and an energy maximum near the interior.  Translational diffusion 

coefficients were largely unchanged with insertion depth, with a small decrease near the 

interfacial region.  Accordingly, the mean first passage time closely followed the trend in terms 

of the potential of mean force at the center of the membrane.  Unfortunately, calculation of 

permeability coefficients was challenging due to the choice of starting location within the 

aqueous simulation region.  Sidechain rotation was more inhibited near the interfacial region 

and freer in either the aqueous or central membrane regions.  In the permeation process, the 

sidechain enters the membrane first, then followed by the backbone, adduced by the insertion 

angle, radial distribution function, and coordination number analyses.  Finally, conformational 

analyses indicate more freedom of motion within the aqueous region and more restricted 

conformational freedom within the center of the membrane. 

 

3.6. Supplementary Information  

3.6.1. - Electron Density Profile. 

 The electron density profiles for the DOPC 50 and POPC 50 systems studied throughout 

this article are plotted below in Figure 3.13.  Experimental data was obtained from the article 

by Liu and Nagle.58 
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Figure 3.13.  Electron density profiles for the DOPC and POPC 50 simulation systems. 

 

3.6.2. - PMF Quartiles. 

 The Potential of Mean Force (PMF) data reported within the primary article was 

calculated from the last half of the simulation trajectory, and the standard error was calculated 

using the Bootstrap method.  However, these errors were substantially smaller than the 

variation witnessed when the PMF was calculated over each quarter of the simulation, and 

varied between 1 and 20 kJmol-1 for the membrane interface and between 2 and 10 kJmol-1 for 

the central barrier. These PMFs are plotted below.  The lightest line represents the 1st quarter, 

and the darkest line represents the PMF for the 4th and last quarter. 
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Figure 3.14.  Potential of mean force quartiles for the phenylalanine dipeptide in the DOPC 50 

system. 
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Figure 3.15.  Potential of mean force quartiles for the phenylalanine dipeptide in the POPC 40 

system. 
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Figure 3.16.  Potential of mean force quartiles for the phenylalanine dipeptide in the POPC 50 

system. 

 

 

3.6.3. - Radius of Gyration. 

 The radius of gyration with respect to the center of mass of the phenylalanine dipeptide 

is plotted below with respect to the simulation z-axis.  The standard error of each sample mean 

was calculated and was not plotted because it was around 0.02% of the radius of gyration for all 

simulation depths.  In contrast, the standard error of each sample was plotted in our previous 

article56 and is around 3-5% of the radius of gyration, which is similar to these results.  Either 

way, a discernible pattern is not present, as seen below in Figure 3.17. 
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Figure 3.17. The radius of gyration for the phenylalanine dipeptide in DOPC and POPC lipid 

bilayers of varying sizes.  95% confidence intervals for the sample mean for each trajectory 

windows are plotted but are too small to be seen. 

 

3.6.5. - Solvent Accessible Surface Area. 

 The solvent accessible surface area -- hydrophilic, hydrophobic, and total -- can be found 

below, respectively, in Figures 3.18, 3.19, and 3.20.  The standard error for each sample mean 

at a 95% confidence is also plotted.  There is little, if any, variation in all of these surface area 

measurements. 
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Figure 3.18.  The hydrophilic accessible surface area for the phenylalanine dipeptide in DOPC 

and POPC lipid bilayers of varying sizes.  The standard error (95% confidence) for the sample 

mean for each umbrella sampling window is plotted. 
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Figure 3.19.  The hydrophobic accessible surface area for the phenylalanine dipeptide in DOPC 

and POPC lipid bilayers of varying sizes.  The standard error (95% confidence) for the sample 

mean for each umbrella sampling window is plotted. 
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Figure 3.20.  The total solvent accessible surface area for the phenylalanine dipeptide in DOPC 

and POPC lipid bilayers of varying sizes.  The standard error (95% confidence) for the sample 

mean for each umbrella sampling window is plotted. 
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4.1 Overview: 

Most simulations of membranes and permeation processes focus on calculating the 

potential of mean force.  However, estimating diffusion within lipid bilayers is important in 

biology and pharmacology.  Many different methods and alternative approaches have been 

discussed in scientific literature.  In this Chapter, we explore several different methods, as 

applied to our previous simulation of the permeation of the phenylalanine dipeptide from 

Chapter 3.  Specifically, diffusion constants were calculated with a wide variety of methods and 

sub-cases.  Each method and case was then evaluated within the context recent literature 

reports in order to determine optimal approaches and in order to clarify a wide variety of 

anomalous behavior.  Position dependent diffusion constants in the z-direction were calculated 

with the following methods:  1.) The Fluctuation Dissipation Theorem, 2.) Green-Kubo 

Relations, 3.) Einstein Relations, 4.) The Hummer Displacement Method, and 5.) a Numerical 

Approximation to the Smoluchowski Equation.  We found that the Fluctuation Dissipation 

theorem produces reasonable data; however, the common practice of using umbrella pulling 

forces may be producing anomalous results.  Green-Kubo relations converge rapidly but the 

generation of reliable estimates is hindered due to backscattering and negative 

autocorrelations.  Einstein relations suffer many of the same problems as Green-Kubo relations 

and often depend on linear fits in subjective stability regions.  The Hummer Displacement 

method, although promising, did not work for us.  Finally, we prefer an approach that uses a 

numerical approximation to the Smoluchowski equation that likely avoids most of the previous 

problems due to averaging and binning time series data.  Ultimately, though, one has to 
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wonder if any of these approaches are appropriate because each possess serious shortcomings 

from the complex, anisotropic interactions between the peptide and its environment, including 

the effects of permeant rotational motion and lipid bilayer fluctuations. 

 

4.2 Introduction: 

 In the research literature, at large, two of the most often discussed quantities are 

diffusion constants and position dependent diffusion coefficients.  These quantities are 

essential towards evaluating various kinetic properties of a passive membrane permeation 

process.  The most common of these quantities are permeability coefficients and mean first 

passage times, which are calculated by using the inhomogeneous solubility diffusion model.1-4  

Recall from previous Chapters that these equations are, as follows: 

 𝑃 = 1/ ∫ 𝑒𝛽𝑤(𝑧)𝐷𝑧(𝑧)−1𝑑𝑧
𝑏

𝑎

 (4.1) 

where P is the permeability coefficient; z is a position along the z-axis of the simulation which is 

perpendicular to the plane of the lipid bilayer; a is a location in the aqueous region on one side 

of the membrane along the z axis; b is a location in the aqueous region on the opposite side of 

the membrane; β = (kBT)-1; w(z) is the potential of mean force at a given location along the z-

axis; and Dz(z) is the position dependent diffusion coefficient in the z-direction as a function of 

z.  The mean first passage time, <τ>, is calculated by:5-6    

 〈𝜏〉 = ∫ [𝑒𝛽𝑤(𝑧)𝐷𝑧(𝑧)−1 ∫ 𝑒−𝛽𝑤(𝑧′)𝑑𝑧′
𝑧

𝑎

] 𝑑𝑧
𝑏

𝑎

 (4.2) 
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where all variables are defined in the same manner as for the calculation of P.  Notice that Dz(z) 

plays a prominent role in both calculations and is also an interesting quantity to examine by 

itself. 

 However, given the importance of Dz(z), most articles within the literature offer few 

details concerning its actual calculation.  Most simply state a general method and provide a 

figure a two; many fail to provide a figure or table of Dz(z) and simply report P, <τ>, or bulk 

water diffusion constants.  Of those that do report Dz(z) values, the precise timescale and 

calculation details are often glossed over with statements similar to “fit within the stability 

region”, “integrated until convergence has been achieved,” or “averaged over 5 – 10 

trajectories.”  Note:  formal citations were intentionally omitted to protect the ‘innocent.’  Such 

statements tend to pose more questions than they answer.  What is a “stability region” and 

what prevents stability?  How is ‘convergence’ defined?  Why were 5 – 10 trajectories 

averaged?  Was one value averaged over 6 trajectories and another averaged over 10?  If so, 

why were 6 trajectories used in one case, but 10 in another?  In addition to this ambiguity, were 

diffusion coefficients calculated with restrained parameters from umbrella simulations or from 

free, unconstrained simulations?  If so, was the same force field, temperature, simulation 

package, and so forth kept constant for multiple trials and comparisons.  With these questions 

in mind, we summarize various methods for calculating diffusion constants within the context 

of recent literature. 

 One of the most common methods for calculating diffusion constants are Einstein 

relations which use the mean square displacement (MSD).  They are often used to calculate 
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translational diffusion constants along the z-axis, Dz(z), and lateral diffusion constants in the xy 

plane parallel to the lipid bilayer, Dxy(z): 

 𝐷𝑧(𝑧) =
1

2
 lim
𝑡→∞

 { 
1

𝑡
 〈 [𝑟𝑧(𝑡0 + 𝑡) − 𝑟𝑧(𝑡0)]2 〉 } (4.3) 

 𝐷𝑥𝑦(𝑧) =
1

4
 lim
𝑡→∞

 { 
1

𝑡
 〈 |𝒓𝑥𝑦(𝑡0 + 𝑡) − 𝒓𝑥𝑦(𝑡0)|

2
 〉 } (4.4) 

where t is the current time of the simulation, t0 is the starting time of the calculation, rz is the 

position of the permeant along the z-axis, rxy is the position of the permeant in the xy plane of 

the simulation as a vector, where the vertical bars in Equation 4.4 represent the magnitude of 

the displacement vector, and where the angled brackets, <…>, indicate an ensemble average.  

In either case, the diffusion constant is the slope of a line of best fit from a plot of the MSD with 

respect to time.  Such analyses invariably start at a time other than t = 0 in order to avoid the 

initial ballistic regime and are averaged over different time origins, and the squared 

displacement is averaged over multiple permeant molecules when more than one permeant is 

present in the simulation.  However, most research journal articles, except those that look at 

water or translational lipid diffusion, typically contain analyses concerning a single permeant 

molecule.  Finally, note that the dimensional factor in the prefix changes from 2, to 4, to 6, in 1, 

2, and 3 dimensional Einstein relations, respectively.  Oddly enough, none of the studies in the 

literature use a three dimensional Einstein relation. 

 The Einstein MSD method has been used to calculated diffusion constants for many 

different systems.  For example, Yousefpour et. al. studied the permeation of the anti-

inflammatory drugs naproxen and Relafen, which have relatively similar properties to a 

phenylalanine dipeptide, through a lipid bilayer consisting of 128 1,2-dimyristoyl-sn-glycero-3-
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phosphocholine (DMPC) molecules.7  They found that the MSD from 0 to 4 ns fluctuated greatly 

and conducted their linear fit from 4 to 40 ns to arrive at diffusion constants of 1.463 × 10-10 

m2s-1 for Relafen and 0.863 × 10-10 m2s-1 for naproxen in water.  The published plot of their MSD 

data displays substantial positive and negative deviations from a simple linear relationship.  As 

examined in more detail in Chapter 3, Nademi et. al. calculated lateral diffusion coefficients of 

paracetamol in the center of a lipid bilayer, and their MSD curves followed a similar pattern.8  In 

contrast, Hansen et. al. conducted a rather comprehensive study of water diffusion within a 

lipid bilayer, and their MSD data at various depths – even with a large collection of water 

molecules and superior statistical sampling of 100 trajectories – displayed deviations from 

linearity until roughly 20 to 80 ps after the start of their simulation.9  For comparison, their 

water diffusion constant inside of a DMPC bilayer was 1.80 × 10-10 m2s-1
.
9

  On the other end of 

the molecular spectrum, Cascales et. al. studied a large molecular dye, 1,6-diphenyl-1,3,5-

hexatriene (DPH), which is also a popular molecule used in undergraduate chemistry 

laboratories involving the particle in a box quantum mechanical model.  Surprisingly, their data, 

albeit with a low temporal resolution of 5 ps, did follow a linear trend, and their bulk water 

diffusion constant for DPH was 1.4 × 10-9 m2s-1.10  Others used Einstein’s MSD method to 

determine diffusion constants in model membrane systems for oleic acid,11 benzene,12-13 

ubiquinone,14 nifedipine,15 psoralen,16 β-cyclodextrin,17 5-flurouracil,18 other fluorescent 

molecules,19 a small helical peptide (wl5),20 and lipid A.21   

 On average, these studies indicate a few general patterns.  Sometimes the MSD data is 

generally linear.  Most of the time, however, substantial negative deviations from a linear 

relationship appears.  Sometimes, a positive deviation is observed.  All but one study fit the 
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data to a region where the researchers felt the data best represented a linear relationship.  In 

the single outlying study, the MSD was fit over a very long, 100 ns trajectory.  Most of the time, 

a fine, sub-picosecond temporal resolution is used.  Finally, of the articles that compared both 

lateral, Dxy(z), and transverse, Dz(z), diffusion (the MSD method is the overwhelming favorite for 

calculating lateral, Dxy(z), diffusion constants), all but one observed an isotropic relationship 

between Dz(z) and Dxy(z).  

 In our opinion, the difficulties with this method arise from the positive (super-diffusion) 

and negative (sub-diffusion) deviations from linearity.  Sub-diffusion has long been 

experimentally witnessed within living organisms and arises from crowding inside complicated 

biological environments.  For example, the diffusion of a molecule within the cytoplasm 

typically follows a linear relationship for small timescales, then the mean squared displacement 

begins to level off as the molecule of interest encounters much larger chemical structures that 

do not move quickly, behaving in a manner markedly different from typical solvents.22-23  Within 

the context of a lipid bilayer, a small molecule can undergo Brownian diffusion over short 

distances; however, as it moves greater distances (after longer times) it begins to push against 

lipid molecules, thereby either slowing down its motion or completely reversing its trajectory.24  

This scenario generally occurs on a nanosecond timescale; however, according to Balbo et. al.,  

normal diffusive motion returns on microsecond timescales, and these effects are averaged 

out.25  In contrast, permeant diffusion is often characterized by a combination of both Brownian 

motion and a series of jumps between transient void spaces within the lipid bilayer.26  

Conversely, super-diffusion can occur when a permeant encounters a transient void space and 

undergoes near ballistic motion into a vacant pocket.   
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 The second most common method for determining diffusion constants is a variation of 

the Fluctuation-Dissipation theorem that has been modified to make use of the constraint 

forces within umbrella sampling simulations:1, 27 

 𝐷𝑧(𝑧) =
(𝑘𝐵𝑇)2

∫ 〈∆𝐹𝑧(𝑧, 0) ∗ ∆𝐹𝑧(𝑧, 𝑡)〉𝑑𝑡
∞

0

 (4.5) 

where kB is the Boltzmann constant; T is the temperature; and ΔFz(z, t) is the deviation of the z-

component of the force experienced on the center of mass of the permeant from its average 

value, as a function of the permeant depth, z, and time, t.  Note that the angled brackets 

represent an autocorrelation function that is an average over initial starting times.  It’s unclear 

as to why this method is applicable to pulling forces from constrained umbrella sampling 

simulations, and we have also used this method with forces from free, unconstrained 

simulations.  The only explanation provided in the literature is a vague argument concerning 

these effects either being small or canceling each other out.  Regardless, the main advantage of 

this method is that force data is already available, as it is also required to calculate the potential 

of mean force, greatly simplifying data analysis and storage.  Therefore, it is most commonly 

used in simulations that also calculate position dependent diffusion constants for use with the 

inhomogeneous solubility diffusion model.  For example, Equation 4.5 has been used to 

determine diffusion constants for tryptophan,3, 28 oleic acid,29 water,1-2, 30-31 other small 

molecules,2, 32 model pharmaceutical compounds,33 and nanoparticles.34  Only Fiedler et. al., 

who studied nanoparticle permeation, discussed their calculation procedure for this method: 

they first averaged 7 – 10 force autocorrelation functions, then fit the averaged autocorrelation 
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function to a two-parameter exponential decay function, and finally integrated the fitted 

function to evaluate the integral in Equation 4.5.   

 The third most popular method involves taking the Laplace transform of Equation 4.5 

and manipulating it in order to convert the force fluctuation autocorrelation function into a 

position fluctuation autocorrelation function.  It was first devised by Woolf and Roux35 and was 

then modified by Hummer to arrive at the following equation:36 

 𝐷𝑧(𝑧) =
〈𝛿𝑄(𝑡)2〉2

∫ 〈𝛿𝑄(𝑡)𝛿𝑄(0)〉𝑑𝑡
∞

0

 (4.6) 

where 

 𝛿𝑄(𝑡) = 𝑄(𝑡) − 〈𝑄(𝑡)〉 

 
(4.7) 

and where Q(t) is the position of the permeant along the reaction coordinate, which is in the z 

direction for membrane permeation studies, as a function of time; and, where δQ(t) is the 

deviation of the current value of Q(t) from the average value of Q(t).  Hummer certifies that this 

equation is exact for an overdamped harmonic oscillator; however, it is unclear as to precisely 

why a membrane permeation process can be modeled in this manner.  This method has been 

used to study the passive permeation of H2S,37 small ions,38 water,39 and a wide variety of 

model drug compounds.40  None of these articles provides a description concerning how they 

calculated their position autocorrelation functions; however, Vorobyov et. al., who studied 

small ions and who provided a large amount of supplementary material, did mention that this 

method is prone to unusual, oscillatory behavior. 
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 Green-Kubo expressions round up the last of the autocorrelation methods and 

represent the fourth method for calculating diffusion constants in passive membrane 

permeation processes.  Oddly enough, given its ubiquity in other fields, this method is rarely 

used.  Green-Kubo relations are a modification of the Einstein MSD method and utilize velocity 

autocorrelation functions:27 

 
𝐷𝑧(𝑧) = ∫ 〈 𝑣𝑧(𝑡0) 𝑣𝑧(𝑡0 + 𝑡) 〉𝑡𝑜

∞

0

𝑑𝑡 
(4.8) 

where t0 is the starting time of the simulation, t is the current time, vz is the velocity in the z 

direction, and the angled brackets indicate an autocorrelation function.  For lateral diffusion 

coefficients, Dxy(z), this becomes: 

 
𝐷𝑥𝑦(𝑧) =

1

2
∫ 〈 𝒗𝒙𝒚(𝑡0) ∙  𝒗𝒙𝒚(𝑡0 + 𝑡) 〉𝑡0

∞

0

𝑑𝑡 
(4.9) 

where vxy is the velocity vector of the permeant within the xy plane of the simulation box. 

Please note that this is a vector and that the dot in the middle of this equation represents the 

vector dot product.  Finally, for diffusion in three dimensions, this equation is: 

 
𝐷3𝐷(𝑧) =

1

3
∫ 〈 𝒗(𝑡0) ∙  𝒗(𝑡0 + 𝑡) 〉𝑡𝑜

∞

0

𝑑𝑡 
(4.10) 

where v is the velocity vector for the permeant in Cartesian coordinates. 

  Only two articles have used this method to determine diffusion constants.  Joshi et. al. 

studied the diffusion of water across membrane pores created by oscillating electric fields.  

They chose this method due to the rapid decay of the velocity autocorrelation function and 

noted a strong backscattering effect that produced a pronounced negative autocorrelation.  
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Their autocorrelation functions did not exhibit exponential decay, as predicted for Brownian 

motion, due to the effect of strong intermolecular interactions and memory effects.  Sugii et. al. 

studied the permeation of small gas molecules – O2, CO, NO, and H2O – and chose this method 

due to its lower computational cost and faster convergence.  In addition, all of the velocity 

autocorrelation data could be used, as opposed to MSD data that has to be fit within an 

‘optimal’ range that is subjectively chosen by the researcher. 

 Finally, the remaining methods employed in recent literature involve numerical 

solutions to various mathematical models.  For example, Comer et. al. utilized a Bayesian 

inference scheme to reverse engineer diffusion constants from an adaptive force biasing 

simulation.41  Holland et. al. also devised an improved, oscillating forward/reverse method to 

determine diffusion constants from steered molecular dynamics simulations.42  Unfortunately, 

both of these methods do not apply to either free or constrained molecular dynamics 

simulations.   Therefore, we’ll focus on the next and final method considered in this section: 

numerically integrating the Smoluchowski equation.  The Smoluchowski equation describes the 

time evolution of the probability density, p(Q, t), along a diffusion coordinate, Q, and is:36 

 
𝜕𝑝(𝑄, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑄
{𝐷(𝑄)𝑒−𝛽𝐺(𝑄)

𝜕

𝜕𝑄
[𝑒𝛽𝐺(𝑄)𝑝(𝑄, 𝑡)]} (4.11) 

where G(Q) is the potential of mean force, and D(Q) are the position dependent diffusion 

constants.  Our numerical approach uses the method described by Hummer36 that is, in turn, 

based on ideas developed by Zusman43 and Bicout and Szabo.44 Here, the locations of the 

permeant center-of-mass, z(t), are histogrammed within each umbrella sampling window.  
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From these histograms, we can calculate the local, biased probability distributions across each 

bin, as well as the transition rates between neighboring bins.  The diffusion rates, D, can then 

be obtained from:  

 𝐷𝑛+1/2 = 𝑤𝑛+1,𝑛 [
𝑝∗(𝑛)

𝑝∗(𝑛 + 1)
]

1/2

𝑑2 (4.12) 

where n is the bin number, wn+1,n is the transition rate between neighboring bins, p* is the 

biased probability distribution, and d is the width of each bin.  The primary advantage of this 

method is that the actual umbrella sampling simulation data is used and absolutely zero 

autocorrelation functions are calculated. 

 The primary objective of this chapter is to utilize as many of the above methods, as is 

practical, to calculate diffusion constants – mainly Dz(z), but also Dxy(z) and D3d(z), depending on 

the method.  Calculated diffusion coefficients will then be compared, as much as is practical, 

and commentary will be provided concerning the ease of calculation and convergence.  In 

addition, we attempt to provide as many answers as possible to the lingering questions from 

the beginning of this Introduction.  We chose the same chemical systems that were used in 

Chapter 3 as diffusion test subjects; namely, the phenylalanine dipeptide (N-

acetylphenylalanineamide) passively permeating through lipid bilayers consisting of 40 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid molecules, 50 POPC lipid 

molecules, or 50 1,3-dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules.   

Specifically, diffusion constants were calculated with the following methods and sets of 

data:  1.) the Fluctuation Dissipation theorem, Equation 4.5;  2.) Green-Kubo expressions,  
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Equations 4.8, 4.9, and 4.10;  3.)  Einstein Relations, Equations 4.3;  4.)  the Hummer 

Displacement method, Equation 4.6; and 5.)  Numerical Approximation of the Smoluchowski 

Equation, Equation 4.12.  For Method 1, diffusion constants were calculated using pulling forces 

from our umbrella sampling simulations, from forces in the z-direction from separate z-position 

restrained simulations in CHARMM, and from forces in the z-direction from free, completely 

unrestrained CHARMM simulations.  These different methods provide insight into the validity 

and effect of constraining the position of the permeant.  For Method 2, diffusion constants 

were calculated from free GROMACS simulations in the z-direction, the xy-plane, and in 3D 

space; these sets of data provide insight into the isotropic nature of passive membrane 

permeation processes.  For Method 3, diffusion constants were only calculated from data from 

free simulations in GROMACS in the z-direction and highlight the challenges of this method.  For 

Method 4, only position data from our umbrella sampling simulations were used.  The same is 

true for Method 5, as both of these methods are based on umbrella sampling simulations.  

Finally, all methods are compared and contrasted. 

 

4.3 Methods: 

GROMACS umbrella sampling simulations were used for three methods:  the 

Fluctuation-Dissipation theorem, the Hummer Displacement method, and the Numerical 

Solution to the Smoluchowski Equation method.  The methodology for obtaining the relevant 

umbrella pulling forces and displacement data is the same as those used in Chapters 2 and 3.   
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Our simulation windows consisted of one phenylalanine dipeptide, also known as N-

acetylphenylalanineamide, Ac-Phe-NH2, or NAFA; water; and a phospholipid bilayer consisting 

of either 1,3-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC).  Specifically, three systems were studied and were classified based 

upon the number and type of lipid molecules comprising the bilayer.  The DOPC 50 system 

contained the following molecules:  1 phenylalanine dipeptide, 50 DOPC lipids, 2991 TIP3P 

waters, 8 sodium atoms, and 8 chlorine atoms, for a grand total of 15,764 atoms.  The POPC 50 

system contained 1 phenylalanine dipeptide, 50 POPC lipids, 2996 TIP3P waters, 6 sodium 

atoms, and 6 chlorine atoms, for a grand total of 15,578 atoms.  Finally, the POPC 40 system 

contained 1 phenylalanine dipeptide, 40 POPC lipids, 2483 TIP3P waters, 7 sodium atoms, and 7 

chlorine atoms, for a grand total of 15,578 atoms.  Sodium and chlorine ions were added to 

maintain a physiologically relevant ionic strength.  All systems were confined to tetragonal 

boxes of dimensions:  4.29 × 4.29 × 8.30 nm for DOPC 50, 4.15 × 4.15 × 8.74 nm for POPC 50, 

3.70 × 3.70 × 8.92 nm for POPC 40, corresponding to respective lipid headgroup areas of 0.736 

nm2, 0.689 nm2, and 0.685nm2.  For the DOPC 50 system, 0.736 nm2 is in close agreement with 

an experimental average of 0.723 nm2,45-46 and the electron density profile is similar to one 

obtained from X-ray scattering experiments.46-47  Experimentally, POPC headgroup areas are 

70.5 nm2, which are close to our simulated values.48  Unfortunately, experimental data for a 

POPC electron density profile does not exist; however, our data favorably compares to an 

experimentally determined DOPC electron density profile,46 and a plot of this information 

(Figure 3.13) can be found in Chapter 3.  The x and y axes of the simulation box are parallel to 

the plane of the lipid bilayer, and the z axis is defined as being perpendicular to the plane of the 
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lipid bilayer. The initial coordinates for all systems, including the phospholipid bilayer, were 

determined by using CHARMM-GUI.49-51     

Molecular dynamics simulations for the DOPC 50 system were carried out with 

GROMACS 4.5.4; simulations for the POPC 50 and POPC 40 systems were carried out with 

GROMACS 4.5.6.52  The following options were chosen within GROMACS for all simulations.  

Forces for DOPC, POPC, and the phenylalanine dipeptide were all represented by the version 36 

CHARMM force field.53-54  Water was represented by using the TIP3P model.55  Electrostatic 

interactions were truncated at 0.13 nm, and a long-range correction was added with the 

Particle-Mesh Ewald method.56  Van der Waals interactions were truncated at 1.2 nm; however, 

a switching function was used to smooth the transition between 1.0 and 1.2 nm.  A canonical 

ensemble was used; and, therefore, the number of system particles, the system volume, and 

temperature were constant.  Temperature was held constant at 300K by using velocity 

rescaling.57  Initial velocities were sampled from a Maxwell distribution at 300K. The default 

leap-frog algorithm was used to integrate the relevant equations of motion with a time step of 

2 fs.  Periodic boundary conditions in the x, y, and z simulation box directions were used.  All 

bond constraints were enforced by using the LINCS algorithm.58  Position, energy, and other 

simulation data were saved every 500 time steps and once every picosecond. 

Simulations began by equilibrating each system, as setup by CHARMM-GUI, over 500 ps 

intervals with the parameters described in the previous paragraph.  Once equilibrated, an 

unrestrained simulation was run for at least 50 ns, and a system image was obtained at z = 1.6 

nm.  This image was then used as the starting point for further umbrella sampling windows in 

both positive and negative z directions.  Umbrella sampling windows for all systems were run 
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from z = 0.0 nm to z = 3.0 nm in 0.1 nm increments.  A harmonic restraining potential of 3000 kJ 

mol-1 nm-1, located at the center of each umbrella sampling window, was applied to the center 

of mass of the phenylalanine dipeptide.59-60  Each window ran from 50 to 100 ns; as needed, 

simulation windows near the center of the membrane were extended up to 100 ns in order to 

improve statistical overlap for potential of mean force calculations.   

Equation 4.5 was then used to calculate position dependent diffusion constants from 

the constrained, umbrella pulling forces that were run with GROMACS.  Force fluctuations over 

the first 50 ns of each window, with a temporal resolution of 20 fs, were calculated and were 

then split into 5, 10 ns time series for each window in order to calculate statistical error for 

each position.  Autocorrelation functions for each 10 ns piece, per window, were calculated 

using a Fortran program.  Autocorrelation functions were then numerically integrated using the 

trapezoid rule until reaching a maximum, stable value, as chosen by our custom made 

integration picking routine, also written in Fortran, and confirmed manually by a random 

sampling of autocorrelation functions.  The same procedure was then repeated using Equation 

4.6; where, instead of using pulling forces, the position of the permeant over the first 50 ns of 

the trajectory was used to calculate actual forces acting on the center of mass in the absence of 

restraints, instead, to create the desired autocorrelation functions.  Again, position data for 

each 50 ns trajectory was split into 5, 10 ns pieces and autocorrelation, integration, and 

convergence were determined in the same manner as before 

Finally, our GROMACS, umbrella sampling simulations were used with Equation 4.12 to 

calculate diffusion constants one, final time.  Specifically, this approach begins by binning z(t), 

the distance between the center of mass of the phenylalanine dipeptide and the center of mass 
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of the lipid bilayer, over the course of the entire time series.  Similar to before, z(t) was split 

into 4 separate pieces of equal length in order to assess statistical error.  The biased probability 

distribution, p*(z), is then approximated by the resulting, normalized histogram as p*(n).  The 

average number of transitions between neighboring bins is then calculated from the position 

time series z(t).  Next, wn+1,n is calculated from the average number of transitions between 

neighboring bins divided by the bin residence time.  We chose a bin width of 0.025 nm so that a 

bin transition is located at the center of any given umbrella window and in order to minimize 

error.  Using these parameters, the position dependent translational diffusion coefficient, Dz(z), 

for each of our umbrella windows is then found when n = 1.  Please note: although we are using 

our harmonically restrained umbrella sampling windows, the diffusion coefficient is calculated 

at the center of each window where the restraining potential is equal to zero, thereby 

minimizing the impact of the harmonic umbrella sampling constraint. 

Next, a custom made version of CHARMM v. 38 was used to calculate diffusion 

constants at fixed z-values by using both Equations 4.5 and 4.9.  CHARMM simulations 

constrained in the z-direction were run with the following parameters, which are the same as 

those used in Chapter 2.  For each umbrella sampling window, ten independent molecular 

dynamics trajectories were run with the same CHARMM v. 36 protein and lipid parameters as 

were used in the GROMACS simulations.61  The starting images were extracted from the entire 

course of the umbrella sampling trajectories in order to sample a greater variety of initial, 

starting systems.  In other words, if ten images were extracted from a 50 ns umbrella trajectory, 

then a single image was selected from each 5 ns subdivision of the overall, 50 ns trajectory.  The 

constrained CHARMM simulations were then run for 20 ps with a time step of 2 fs.  Velocity and 
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coordinate data were recorded every 2 fs.  Force data was then calculated using the coordinate 

data in a separate calculation once molecular dynamics simulations were completed.  

Temperature was kept constant at 300K by using a Nosé-Hoover thermostat.62-63  Where 

possible, remaining molecular dynamics parameters were set to match those within the 

GROMACS umbrella simulations.  Force autocorrelation functions were then calculated in the 

same manner as before, before arriving at the desired diffusion constants.  Velocity 

autocorrelation functions, on the hand, were integrated until they crossed the x-axis twice.   

Unconstrained, free simulations were used to calculate diffusion constants with both 

GROMACS and CHARMM.  Free, unconstrained CHARMM simulations were used to calculate 

diffusion constants using Equation 4.5.  The same parameters and settings were used as those 

listed in the previous paragraph, except that an unmodified, normal version of CHARMM v.38 

was used.  Force data, autocorrelation functions, and integration were then conducted in the 

same manner, too.  Finally, free GROMACS simulations were run in the same manner as the 

GROMACS umbrella sampling runs, except with a few changes.  Namely, the umbrella sampling 

potential was removed and 10 separate simulations of 20 ps in length were run with velocity 

and position data being saved after every 2 fs time step.  This data was then used to calculate 

diffusion constants using Equations 4.3, 4.8, 4.9, and 4.10.  Autocorrelation functions were 

calculated and integrated as before.  However, for one set of data, the GROMACS g_velacc 

program was used to calculate autocorrelation functions.  Position data was then used with 

Equation 4.3 to calculate diffusion constants by plotting the mean square displacement as a 

function of time and by fitting data from approximately 1 to 5 ps to the equation of a line.  The 
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slope of said line is then proportional to the diffusion constant.  Occasionally, the fit was only 

conducted from 1 to 3 or 4 ns due to oscillatory behavior that was manually observed. 

 

4.4 Results and Discussion: 

4.4.1. – The Fluctuation Dissipation Theorem. 

The most common method for calculating diffusion constants is with the Fluctuation 

Dissipation theorem applied to umbrella sampling pulling forces.  Figure 4.1, shown below, 

depicts these results. 
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Figure 4.1.  Dz(z) calculated from the Fluctuation-Dissipation theorem using umbrella sampling 
pulling forces from GROMACS simulations.  Diffusion constants are for the passive permeation 
of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) 
lipid bilayer systems.  Error bars represent a 95% confidence interval around the mean value 
from 5 contiguous pieces of the overall, 50 ns trajectory. 

 

Diffusion constants in the aqueous region are around 6 × 10-10 m2s-1, which is a common result 

for medium sized permeants like the phenylalanine dipeptide.  As the permeant nears the 

interfacial region of the membrane, the diffusion constants decrease dramatically to around 2 × 

10-11 m2s-1.  These diffusion constants, on the order of 10-11, are rarely reported in the literature 

for any but the largest of permeants, such as the work that dos Santos and Eriksson conducted 

on a tricyclic pharmaceutical compound, psoralen.16  In general, one would expect transverse 
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diffusion to dramatically decrease near the lipid-water interface; however, such a result has not 

been witnessed in any other studies of this type.  If a decrease is witnessed relative to the 

center of the membrane and the aqueous region, it is generally within a factor of 2 or 3, not an 

entire order of magnitude or greater.  Diffusion constants then increase to around 7.5 × 10-10 

m2s-1
, which is around the same value as in the aqueous region.  This result is very typical from 

the aqueous region to membrane center:  a slight decrease in diffusion constants before then 

increasing and has been attributed to the formation of transient void spaces where the tails of 

opposing lipid molecules interdigitate. 

 The anomalous diffusion constants in the center may be caused by a variety of factors.  

This method uses the umbrella sampling pulling forces to create the force autocorrelation 

functions in Equation 4.5 that are then integrated.  In the aqueous region, the permeant is not 

confined and is free to wander about in either direction; therefore, forces should fluctuate in a 

random manner and result in a poor autocorrelation and larger diffusion constants.  However, 

at the interface and within the lipid bilayer, the permeant is trapped in a small region of space.  

Furthermore, the forces that it experiences are directional in nature.  For example, if the 

permeant is inside the lipid bilayer at z = 0.8 nm, it would experience a force pulling it towards 

the interfacial region at x = 1.3 nm where the potential of mean force is at a minimum (see 

Figure 3.2 in Chapter 3) and where the hydrophilic and hydrophobic moieties of the dipeptide 

can associate with either water or the lipid molecules.  As a result, the umbrella pulling forces 

are also unidirectional in the opposite direction, and any random fluctuations would be 

minimized, thereby resulting in a stronger force fluctuation autocorrelation:  fluctuations are 

not based on the random motions of nearby atoms and molecules, but are coupled to the much 
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slower motions of the lipid bilayer.  This would result in smaller than anticipated diffusion 

constants.  However, it remains unclear as to how, precisely, the umbrella potential is 

attenuating this affect, otherwise, other researchers using this method would observe the same 

precipitous drop as seen in Figure 4.1. 

 In order to determine if the umbrella potential is responsible for the aforementioned 

anomaly, a custom made version of CHARMM v. 38 was used to fix the z-position of the 

permeant by gently nudging the velocity of the permeant in the appropriate direction; forces 

were not directly influenced.  Using this force data and Equation 4.5, diffusion constants were 

calculated and plotted in Figure 4.2, as seen below. 
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Figure 4.2.  Dz(z) calculated from the Fluctuation-Dissipation theorem using force data from a z-
constrained CHARMM simulation.  Diffusion constants are for the passive permeation of the 
phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) lipid 
bilayer systems.  Error bars represent a 95% confidence interval around the mean value from 10 
separate trajectories of 20 ps. 

 

In the aqueous region, diffusion constants are around 10 × 10-10 m2s-1, which is very similar to 

those from the umbrella pulling forces.  In contrast, these values remain constant throughout 

the entire distance from the center of the membrane, with a slight and statistically insignificant 

increase in the center of the bilayer, as reported by most studies of small permeants. The 

precipitous drop in the central region has vanished!  This provides some evidence that the 

umbrella potential may be accentuating the central diffusion constants.  Alternatively, the 

difference may be due to changes in time scale.  The force data for these results were obtained 
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as an average over several 20 ps simulations; whereas, the data in Figure 4.1 is from umbrella 

pulling forces over a 10 ns piece of a 50 ns umbrella window.  For example, a typical 

phosphatidylcholine lipid molecule exchanges positions with its nearest neighbor lipid, roughly, 

once every 50 ns.64  A calculation spanning 10 ns may sample parts of this motion; however, it is 

unlikely that a 20 ps simulation would sample this motion.  Therefore, assuming that the 

umbrella pulling force fluctuations are related to the unconstrained force fluctuations, the 

difference between these two methods can be explained.  In Figure 4.1, force fluctuations can 

be associated with the macroscopic lipid motions; whereas, in Figure 4.2, they are likely not, 

thereby weakening the autocorrelation and increasing the value of the diffusion constants. 

 However, in the previous case, the position of the permeant is still fixed in an artificial 

manner.  For the next case, the same CHARMM simulations were run, except that the position 

of the permeant was not fixed, and multiple short trajectories of the free phenylalanine 

dipeptide were generated, starting at the center of each umbrella window, with the peptide 

free to wander about wherever it so pleases.  These data are plotted in Figure 4.3, as seen 

below. 



179 
 

 

Figure 4.3.  Dz(z) calculated from the Fluctuation-Dissipation theorem using forces from a free, 
unconstrained CHARMM simulation.  Diffusion constants are for the passive permeation of the 
phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) lipid 
bilayer systems.  Error bars represent a 95% confidence interval around the mean value from 10 
separate trajectories of 20 ps. 

 

Diffusion constants start out at around 20 × 10-10 m2s-1 and remain constant before increasing 

to around 25 × 10-10 m2s-1 within the interior of the membrane, which, for POPC 40 and DOPC 

50 is a statistically significant difference.  It is worth noting that, in this case only, the starting z-

location of the peptide is well determined.  In the course of the 20 ps trajectories, the peptide 

explores a small range of z-values around this starting position (roughly 0.1 nm.) Compared to 

the z-constrained CHARMM simulations, these values are roughly twice as large, indicating that 
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the presence of the z-constraint reduces the diffusion constants because nearly all other 

potential variables, such as the timescale, were kept constant.  As with the umbrella pulling 

forces, it is not entirely clear why a constraint would increase the autocorrelation of the force 

fluctuations and therefore lower the diffusion constants.  Alternatively, the permeant was 

allowed to roam freely and follow the gradient of the forces to lower energy states.  This could 

expose the permeant to a larger number of random force fluctuations and increase the 

calculated diffusion constant by weakening the autocorrelation.  In contrast, the constraining 

velocity and force adjustments of the previous two cases, may keep the permeant in 

energetically unfavorable regions that would then strengthen the correlation of the force 

fluctuations. 

 Let’s reconsider the hypothetical situation from the first case of this section:  the 

permeant is located at z = 0.8 nm, with a free energy minimum located at z = 1.3 nm.  The 

permeant is then constrained at z = 0.8 nm by a harmonic constraining force.  Over time, the 

permeant will most likely travel towards the interfacial region, thus straining the boundary of 

its constraint.  Every time it does that, it experiences a push or force in the opposite direction in 

order to maintain its constraint.  In between constraining events, forces would fluctuate in a 

typical manner.  However, if it strays too far, it then experiences an increasingly aggressive 

constraining response.  This constraining response would then cause a large increase in the 

deviation of the forces from average.  Eventually, the permeant will return to its constrained z-

position before drifting, once again.  It will then experience an increasing response from the 

constraining method, which will cause a large fluctuation in forces, and the cycle repeats.  Force 

fluctuations are then not correlated with only the system but are also correlated with respect 
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to the timing and mechanics of the constraining method.  The greater correlation of the force 

fluctuations would then decrease the calculated diffusion constants.  At this point, this is 

somewhat speculative, but it appears that it is important to consider these potential effects 

when evaluating diffusion constant data in constrained simulations. 

 

4.4.2. – Green-Kubo Relations. 

 At first glance, Green-Kubo relations appeared to be a promising way to calculate 

diffusion constants due to the rapid convergence of velocity autocorrelation functions and 

short simulations times.  However, Figure 4.4 depicts data using Equation 4.8, as seen below.  
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Figure 4.4.  Dz(z) calculated from a Green-Kubo expression using velocity data from 
unconstrained GROMACS simulations.  Diffusion constants are for the passive permeation of 
the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) lipid 
bilayer systems.  Error bars represent a 95% confidence interval around the mean value from 10 
separate trajectories of 20 ps. 

 

Average diffusion constants vary from around 1 to 15 × 10-10 m2s-1 which is similar to our 

previous results and other reported values for similar molecules.  However, the confidence 

intervals and the uncertainty in the data vary greatly.  Individual autocorrelation functions 

would often decay to zero within a single ps; however, the resulting integrals varied greatly 

over a couple orders of magnitude.  Alarmingly, some autocorrelation functions were even 

negative, resulting in nonsensical and negative diffusion constants.  Joshi et. al. did mention in 
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their study of water that they observed backscattering in their data and that these short 

timescales represented molecules rattling around in a cage.  Anti-correlated velocities were 

primarily witnessed within the lipid bilayer and may represent the permeant moving forward, 

only to encounter a lipid molecule and being forced backward, hence resulting in a negative 

velocity correlation. 

 Data for DOPC 50 at z = 1.0 nm was particularly problematic with an average in negative 

territory.  This data warrants a closer examination.  Below, all ten of the velocity 

autocorrelation functions are plotted in Figure 4.5.  9 of the 10 autocorrelation functions are 

relatively well behaved; however, the tenth one, in light blue, decays extremely rapidly and 

oscillates around zero, as if the permeant is trapped in place and cannot move in either 

direction.  Figure 4.6 indicates how these oscillations are compounded when the velocity 

autocorrelation function is integrated from 0 ps until the indicated time on the figure.  How is 

such an autocorrelation function to be integrated?  Or should it be discarded, resulting in an 

average over 9 trajectories?  For all results within this Chapter, no trajectories were left behind 

and discarded.  For velocity autocorrelations, the integration was carried out to the second zero 

of the autocorrelation functions so that both the first positive and negative regions are 

included.  Obviously, this choice impacts the results and represents the best of many poor 

choices, such as integrating for a longer time or using maximum integrated values. 
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Figure 4.5.  Autocorrelation functions for z-velocities for all ten trajectories from a 20 ps free, 
unconstrained GROMACS simulation starting at z = 1.0 nm. 
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Figure 4.6.  Integrated z-velocity autocorrelation functions for all ten trajectories from a 20 ps 
free, unconstrained GROMACS  simulation starting at z = 1.0 nm. Velocity autocorrelation 
functions are integrated from 0 ps until the indicated integration stop time. 

 

 Lateral diffusion constants for either the permeant or lipid molecules within the bilayer 

are often reported, and the 2D Green-Kubo expression in Equation 4.9 seemed to be a natural 

fit.  Unfortunately, these results for the phenylalanine dipeptide suffer from many of the same 

issues as the previous ones in the z-direction.  Results from Equation 4.9 are plotted below in 

Figure 4.7.  As before, average diffusion constants vary from around 1 to 15 × 10-10 m2s-1.  It is 

typically reported in the literature that diffusion constants in lipid membrane systems are 
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independent of the direction.  Again, as before, the variation in the data is very large and 

demonstrates a pronounced, negative autocorrelation, particularly at smaller values of z. 

 

Figure 4.7.  Dxy(z) calculated from a 2D Green-Kubo expression using velocity data from 
unconstrained GROMACS simulations.  Diffusion constants are for the passive permeation of 
the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) lipid 
bilayer systems.  Error bars represent a 95% confidence interval around the mean value from 10 
separate trajectories of 20 ps. 

 

Why limit ourselves to only one or two dimensions?  The data displayed in Figure 4.8 is 

from Equation 4.10 and represent 3D diffusion constants as a function of z.  The same range of 

values and general trends were observed for D3d(z) as was observed for Dxy(z) and Dz(z) in the 

preceding paragraphs.  This isotropic nature of translational diffusion in lipid bilayers makes 
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sense because, in the membrane interior, the permeant is confined by the surrounding lipid 

molecules in all directions.  If it travels in either the x, y, or z direction, it will interact and collide 

with a lipid molecule. 

 

Figure 4.8.  D3d(z) calculated from a three dimensional Green-Kubo expression using velocity 
data from unconstrained GROMACS simulations.  Diffusion constants are for the passive 
permeation of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 
40 (green) lipid bilayer systems.  Error bars represent a 95% confidence interval around the 
mean value from 10 separate trajectories of 20 ps. 

 

 

 At the time, the presence of negative, integrated autocorrelation functions was 

surprising.  The results in Figure 4.8 were then redone by using the built in GROMACS g_velacc 
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command to calculate autocorrelation functions.  These results are displayed in Figure 4.9.  On 

average, diffusion constants were slightly higher than when using our Fortran autocorrelation 

program; however, the results for POPC 50 in the aqueous region were markedly smaller using 

g_velacc.  After studying the source C code for g_velacc, it is not clear as to why there should be 

a difference between these two figures.  It is, however, reassuring that both programs yield 

diffusion constants around the same values of 1 to 15 × 10-10 m2s-1 and both yield results with 

significant anti-correlations.  
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Figure 4.9.  D3d(z) calculated from a three dimensional Green-Kubo expression using velocity 
data from unconstrained GROMACS simulations.  Velocity autocorrelation functions were 
calculated with the GROMACS g_velacc tool.  Diffusion constants are for the passive 
permeation of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 
40 (green) lipid bilayer systems.  Error bars represent a 95% confidence interval around the 
mean value from 10 separate trajectories of 20 ps. 

  

Finally, Dxy(z) diffusion constants were calculated with Equation 4.9 with data from our 

custom build of CHARMM v. 38 that constrains the z position of the permeant.  These results 

are portrayed in Figure 4.10, as shown below.  The difference in terms of the quality of the data 

is like night and day, as compared to the free GROMACS results depicted in Figure 4.7.  

Diffusion constants start around 20 × 10-10 m2s-1 before gradually decreasing to around 10×10-10 
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m2s-1 in the interfacial region before gradually increasing to around 17 × 10-10 m2s-1 at the 

center of the bilayer.  Unlike the previous applications of this method, these diffusion constants 

are well behaved and possess reasonable uncertainty ranges.  The primary difference between 

this data and that in Figure 4.7 is that these simulations were conducted with a z-constrained 

CHARMM simulation.  This suggests that the free movement of the permeant in the z-direction 

may be causing many of the issues witnessed with the previous data.   

 

Figure 4.10.  Dz(z) calculated from a 2D Green-Kubo expression using velocity data from z-
constrained CHARMM simulations.  Diffusion constants are for the passive permeation of the 
phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) lipid 
bilayer systems.  Error bars represent a 95% confidence interval around the mean value from 10 
separate trajectories of 20 ps. 
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Prior to these calculations, a simulation length of 20 ps was chosen due to how far the 

phenylalanine dipeptide traveled in the z-direction.  Several free simulations were run at z = 0, 

0.5, 1.0, 1.5, and 2.0 nm, and the mean displacement of the phenylalanine dipeptide was 

tracked as a function of time.  To reduce the overlap of z-position data between successive 

runs, a time of 20 ps was selected because the phenylalanine dipeptide rarely traveled, on 

average, beyond 0.1 nm during this time frame.  Bassolino-Klimas et. al. conducted a more 

rigorous investigation into this drift and found that permeant distances in the z-direction did 

not exceed 0.16 nm over the course of an entire 1 ns unconstrained simulation run.65  We 

assumed that this position drift would not have a substantial effect on diffusion constant data; 

however, it may explain the differences between Figure 4.7 and Figure 4.10.  Alternatively, drift 

in the z-direction may reduce lateral diffusion through the coupling of transverse and lateral 

motions, such as the molecule attempting a ‘corkscrew’ motion only to be blocked by a 

transverse (z) movement which causes an anti-correlation within the lateral velocity data. 

 

4.4.3. – Einstein Relations. 

 Einstein relations are the most popular method in passive permeation studies for 

determining diffusion constants.  They are typically used, however, only in the center of the 

bilayer, at the interface, or in the aqueous region, likely due to the drift of the permeant in free 

molecular dynamics simulations, as discussed in more detail at the end of section 4.4.2.  One of 

the greatest difficulties is determining the region of best fit because mean square displacement 

(MSD) plots contain a substantial amount of information concerning the motion of the 

permeant.  In Figure 4.11, shown below, the MSDs for 10 trajectories at z = 0 for POPC 50 are 
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plotted.  From 0 to 0.25 ps, the ballistic regime can be seen.  Until 1 ps, a roughly linear 

relationship between the MSD and time develops before one of two things happen:  1.) a 

somewhat linear relationship exists until around 5 ps, as seen with the purple and blue 

trajectories, or 2.) the MSD begins to oscillate wildly with respect to time, as seen by the red 

trajectories.  In general, a diffusive regime exists for a small period of time before sub-diffusion 

or super-diffusion occurs indicating the complicated motion of the permeant within the z-

direction.  Obviously, this complicates the calculation of diffusion constants.  We chose to 

conduct our linear fit between 1 and 5 ps where most trajectories possess a somewhat linear 

relationship.  However, as seen in Figure 4.12, some linear fits were better than others.  Linear 

fits were also conducted between 0.25 and 0.5 ps and between 0.5 and 1.0 ps but were no 

more reliable than the 1 to 5 ps range.  
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Figure 4.11.  The mean square displacement for the phenylalanine dipeptide is depicted from a 
free GROMACS simulation at z = 0 for the POPC 50 system.  Data has been averaged over a 20 
ps trajectory at different time origins for a single dipeptide. 
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Figure 4.12.  The mean square displacement for the phenylalanine dipeptide is depicted for a 
shorter time period from a free GROMACS simulation at z = 0 for the POPC 50 system. This is 
the same data as shown in Figure 4.11. 

 

 Diffusion constants using Equation 4.3 are plotted in Figure 4.13, as seen below.  Similar 

trends are seen in this figure as were seen in Figure 4.4 which depicted the same Dz(z) as 

calculated from a Green-Kubo expression.  Specifically, diffusion constants start out at 15×10-10 

m2s-1, a little higher than in Figure 4.4, before decreasing to around 1 to 5 × 10-10 m2s-1 as the 

permeant approaches the middle of the lipid bilayer.  Thankfully, the variability in the data is 

slightly less than with Green-Kubo, likely due to the averaging effects of the linear fitting 

process.  However, occasionally, negative diffusion constants appear due to negative slopes 
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within the fitted region, as seen from Figures 4.9 and 4.10.  These negative slopes are likely due 

to the same backscattering effect that was witnessed within the previous section:  the 

permeant moves forward, collides with another molecule such as a lipid, and proceeds in the 

opposite direction. 

 

Figure 4.13.  Dz(z) calculated from an Einstein relation using position data from an 
unconstrained, free GROMACS simulation.  Diffusion constants are for the passive permeation 
of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) 
lipid bilayer systems.  Error bars represent a 95% confidence interval around the mean value 
from 10 separate trajectories. 
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4.4.4. – The Hummer Displacement Method.  

 The Hummer displacement method is an intriguing approach that utilized position 

autocorrelation data from constrained umbrella sampling simulations.  In recent years, it has 

gained popularity as an alternative to the Fluctuation-Dissipation theorem.  Results utilizing 

Equation 4.6 are plotted below, on a logarithmic scale, in Figure 4.14.  Diffusion constants from 

this method spanned approximately five orders of magnitude and are clearly nonsensical.  In 

order to display them, a logarithmic scale had to be used; and, as a result, error bars that 

extended below zero cannot be displayed.  Perhaps, this is the unusual oscillatory behavior that 

Vorobyov et. al. observed in their application of the method.  Due to the numerous and 

complex assumptions on which this method is based, it is doubtful that the approach is 

applicable to membrane permeation simulations.  Therefore, it is difficult to either 

troubleshoot or explain the following results. 
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Figure 4.14.  Dz(z) calculated from the Hummer Displacement method using position data from 
umbrella sampling GROMACS simulations.  Diffusion constants are for the passive permeation 
of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and POPC 40 (green) 
lipid bilayer systems.  Error bars represent a 95% confidence interval around the mean value 
from 5 contiguous trajectories of 5 ns.  Error bars resulting in negative diffusion constants are 
not shown on this logarithmic plot. 

 

4.4.5. – Numerical Approximation to the Smoluchowski Equation.  

 Diffusion constants using Equation 4.12 are plotted in Figure 4.15, as seen below.  

Diffusion constants start around 5.4 × 10-10 m2s-1, decrease slightly to around 4.8 × 10-10 m2s-1, 

before then increasing slightly to around 5.5 × 10-10 m2s-1; however, only a few of these changes 

are statistically significant.  With the exceptions of a large uncertainty for POPC 40 at z = 1.6 nm 
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and a slight decrease in DOPC 50 data at z = 1.7 nm, this method is remarkably stable, as 

compared to the autocorrelation and MSD methods.  This is likely due to the large timescale of 

12.5 ns per data analysis and the averaging effect of the binning process.  As z(t) is binned into a 

relatively simple histogram of only four bins, all of the intricate permeant motions and 

interactions, as discussed throughout the rest of this Chapter, are averaged into a single, bulk 

property:  does the permeant cross over into another position bin or not?  If so, how long does 

it reside in a single bin?  This loss of molecular granularity likely increases the precision of the 

data and provides a more accurate, long-term estimation of the diffusion constant.  For these 

reasons, we prefer this method. 
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Figure 4.15.  Dz(z) calculated from a numerical solution to the Smoluchowski equation from 
position data from umbrella sampling GROMACS simulations.  Diffusion constants are for the 
passive permeation of the phenylalanine dipeptide through DOPC 50 (blue), POPC 50 (red), and 
POPC 40 (green) lipid bilayer systems.  Error bars represent a 95% confidence interval around 
the mean value from 4 contiguous trajectories of 12.5 ns each. 

 

4.5 Conclusions. 

Diffusion constants were calculated from a variety of different methods for many 

different cases.  Specifically, five different methods were used:  1.) the Fluctuation Dissipation 

theorem, 2.) Green-Kubo expressions, 3.)  Einstein relations, 4.) the Hummer Displacement 

method, and 5.)  a numerical approximation of the Smoluchowski equation.   
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For Method 1, Dz(z) was calculated with:  umbrella sampling pulling forces from 

GROMACS;  z-constrained forces with CHARMM;  and unconstrained forces from CHARMM.  

The umbrella sampling pulling forces, although commonly used, presented unusual results that 

have not been shown in other studies.  Although the pulling forces are related to the 

displacement of the permeant from the center of the umbrella window, which are, in turn, 

related in some manner to the actual forces experienced by the phenylalanine dipeptide, it is 

unclear as to what effect they may have on the force fluctuation autocorrelation functions.  

CHARMM forces from the z-constrained simulations, however, did not present such an artifact 

and produced results similar to previous studies.  However, the presence of a constraint likely 

increases the correlation of data and lowers calculated diffusion constants, as seen in similar 

calculations from unconstrained CHARMM simulations. 

For Method 2:  Dz(z) was calculated with free GROMACS velocities;  Dxy(z) was calculated 

with free GROMACS velocities and z-constrained CHARMM velocities;  D3d(z) was calculated 

with free GROMACS velocities that were entered into either our autocorrelation program or the 

GROMACS tool g_velacc.  Although the calculation of data was relatively easy from the rapid 

convergence and decay of the associated autocorrelation functions, this method was extremely 

sensitive to the motions of the permeant and often resulted in wildly fluctuating, and, at times, 

negative, diffusion constants.  However, once the permeant was constrained in terms of the z-

coordinate, stable and reasonable results for Dxy(z) were obtained, implying that the free 

diffusion of the permeant along the z-axis is likely an issue in all of these calculations. 
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For Method 3: Dz(z) was calculated from free GROMACS MSD data.  Unfortunately, the 

use of this method was problematic due to the non-diffusive nature of the MSD versus time 

data.  Plots of the mean square displacement clearly indicated a wide variety of unusual 

molecular motions, such as oscillatory behavior and negative slopes in addition to sub-diffusion 

and super-diffusion.  In general, this method was a little more reliable than the Green-Kubo 

data, but still exhibited many of the same problems. 

Methods 4 and 5 were only used to calculate Dz(z) values.  The Hummer Displacement 

method presents an intriguing theoretical relationship between diffusion constants and 

position autocorrelation functions.  However, in practice, it simply does not work.  Conversely, 

Method 5, a numerical approximation to the Smolochowski equation presented the most 

reliable method for calculating diffusion constants, in large part due to its ability to average out 

the complicated permeant motions that present difficultly for the autocorrelation based 

methods. 

Unfortunately, however, a great many questions still remain.  For example, how do 

other researchers use these methods to arrive at reasonable results?  They likely use very short 

time scales to avoid many of the issues that we witnessed and only pick trajectories that are 

well behaved.  Conversely, some articles use timescales that are extremely long (> 100 ns).  

Over which, many of the transient molecular motions witnessed earlier are averaged out and 

do not impact final results.  This then begs the question: what is the optimal time scale for each 

of these methods?  Ultimately, the above may simply be a result of poor statistical sampling 

because we are only averaging over a single permeant molecule.  Many articles overcome this 
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by replicating multiple permeants within a single simulation cell; but, this has been shown to 

change the average result.7  Finally, we think it is important to consider if diffusive motion is 

simply not relevant.  After all, which parts of a passive membrane permeation process are best 

described by random fluctuations and simple walks in Cartesian dimensions?66-69 

However, this was not a comprehensive analysis of all of these methods.  In general, we 

believe that most journal articles are able to make many of the more problematic methods 

work by either increasing statistical sampling or by adjusting the time scale of their simulations.  

For example, all of the analyses in this work can be repeated with hundreds of separate 

trajectories over smaller time scales.  These trajectories can then be averaged either at the end, 

as was done in this work, or at the beginning of data analysis, as is often done in the literature.  

Additionally, a variety of different time scales can be explored, too.  For example, Einstein 

relations appear to work best when the MSD is fit on a nanosecond time scale; whereas, Green-

Kubo relations are best used over very short, sub-picosecond time scales.  A thorough 

parametric analysis of the effect of the simulation time scale may provide more optimal 

parameters for the data analysis.  Many of the other methods, such as the application of the 

Fluctuation-Dissipation theorem to pulling forces and the Hummer-Displacement method, are 

hindered by the core assumptions behind their theoretical derivations.  These assumptions 

should be tested and verified in order to adjust parameters used for data analysis accordingly, 

such as the length of the simulation.  Finally, an exploration of many of the new methods 

mentioned in the previous paragraph, such as rotational coupling and modeling diffusion 

constants in terms of rate expressions and memory functions, provides many exciting avenues 

for re-examining, if not re-defining, this complicated subject. 
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5.1. Overview: 

The passive permeation of wh5 through a lipid bilayer is explored in this chapter by 

conducting a variety of different analyses, whose results are cataloged below.  The potential of 

mean force indicates large membrane deformations as the peptide permeates the membrane; 

however, it still exhibits the same pattern of an interfacial free energy minimum and a 

maximum at the center of the lipid bilayer.  The extent of the membrane deformation is also 

indicated by the hydrogen bonding pairs within 0.35 nm analysis, where a large number of 

hydrogen bonding pairs are present around wh5 even at the center of the bilayer, where few 

would be expected due to the presence of the acyl lipid tails.  This indicates that a large 

solvation shell is being carried along by wh5.  All of the remaining structural analyses – alpha 

carbon root mean square distance, end-to-end distance, tryptophan and histidine sidechain 

separation distance, the radius of gyration, and the O to N distance in hydrogen bonds 1, 2, and 

3 – all indicate that the helix is unravelling around z = 2.5 nm with some fluctuations in the 

center of the membrane and farther out in the aqueous region.  However, this is not seen at z = 

3.5 nm, where experimental results predict that the wh5 helix forms every 2 – 7 ns.  The radius 

of gyration and sidechain separation distance analyses also indicate an interesting pattern from 

z = 1.0 nm to z = 0.5 nm that warrants further investigation. 

 

5.2 Introduction: 

wh5 is a small peptide comprised of 5 amino acids:  tryptophan, whose single letter 

abbreviation is a ‘w’; three alanine residues; and histidine, whose single letter abbreviation is 

an ‘h’.  Figure 5.1, shown at the end of this section, contains a drawing of wh5.  wh5 is one of 
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the smallest peptides that is capable of forming an alpha helix within itself.1-2  This interesting 

property is due to the formation of three intramolecular hydrogen bonds, as shown in Figure 

5.2.  The first hydrogen bond is formed between the oxygen atom on the acetylated N-terminus 

and the N-terminus of the second alanine residue.  The second hydrogen bond is formed 

between the oxygen atom on the C-terminus of the tryptophan residue and the N-terminus of 

the histidine residue.  The third hydrogen bond is formed between the oxygen atom on the C-

terminus of the first alanine residue and the N-terminus of the amidated histidine residue.  

Given these important structural features, we plan on examining the distances between these 

atoms, along with many of our analyses from Chapters 2 and 3, on the passive permeation of 

wh5 through a lipid bilayer. 

 

Figure 5.1.  A schematic diagram of the peptide wh5.  wh5 consists of tryptophan, three 
alanines, and a histidine.  Note that the N-terminus (left) has been acetylated and the C-
terminus (right) has been amidated. 
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Figure 5.2.  The locations of hydrogen bonds 1, 2, and 3 are displayed on wh5.  These hydrogen 
bonding sites are responsible for the ability of wh5 to form an alpha helix within itself. 
 

5.3. Methods: 

The physical setup of our simulation window followed a procedure similar to our 

previous work, as seen in Chapters 2 and 3.3  Our simulation windows consisted of one wh5 

molecule, also known as Ac-WAAAH-NH2; water; and a phospholipid bilayer consisting 1,3-

dioleoyl-sn-glycero-3-phosphocholine (DOPC).  Specifically, the system contained the following 

molecules:  1 wh5, 50 DOPC lipids, 2991 TIP3P waters, 7 sodium atoms, and 8 chlorine atoms, 

for a grand total of 15,822 atoms.  Sodium and chlorine atoms were added to maintain a 

physiologically relevant ionic strength.  The system was confined to a tetragonal box of 

dimensions:  4.12 × 4.12 × 9.03 nm along the x, y, and z axes, respectively.  The x and y axes of 

the simulation box are parallel to the plane of the lipid bilayer, and the z axis is defined as being 
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perpendicular to the plane of the lipid bilayer.  The initial coordinates for all systems, including 

the phospholipid bilayer, were determined by using CHARMM-GUI.4-6     

Molecular dynamics simulations were carried out with GROMACS 4.5.4.  Forces for 

DOPC and wh5 were both represented by the version 36 CHARMM force field.7-8  Water was 

represented by using the TIP3P model.9  Direct electrostatic interactions were truncated at 0.13 

nm, and a long range-correction using the Particle Mesh Ewald method was used.10  Van der 

Waals interactions were similarly truncated at 1.2 nm; however, a force switching function was 

used to smooth the transition between 1.0 and 1.2 nm.  A canonical ensemble was used; and, 

therefore, the number of system particles, the system volume, and temperature were constant.  

Temperature was held constant at 300K by using velocity rescaling.11  Initial velocities were 

sampled from a Maxwell distribution at 300K.  The default leap-frog algorithm was used to 

integrate the relevant equations of motion with a time step of 2 fs.  Periodic boundary 

conditions in the x, y, and z simulation box directions were used.  Constraints on all bonds 

involving hydrogen atoms were enforced by using the LINCS algorithm.12  Position, energy, and 

other simulation data were saved every 500 time steps and once every picosecond. 

Simulations began by equilibrating each system, as setup by CHARMM-GUI, over 500 ps 

intervals with the parameters described in the previous paragraph.  Once equilibrated, an 

unrestrained simulation was run for at least 50 ns, and a system image was obtained at z = 1.6 

nm.  This image was then used as the starting point for further umbrella sampling windows in 

both positive and negative z directions.  Umbrella sampling windows were run at z = 0.0 nm, 

0.07 nm, 0.15 nm, 0.23 nm, 0.31 nm, 0.39 nm, 0.48 nm, 0.56 nm, 0.65 nm, 0.74 nm, 0.83 nm, 
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0.92 nm, and 1.01 nm.  From z = 1.1 nm to z = 3.5 nm, windows were run in 0.1 nm increments.  

More windows were run near the center of the lipid bilayer in order to increase statistical 

overlap for the potential of mean force calculations.  A harmonic restraining potential of 3000 

kJmol-1nm-1, located at the center of each umbrella sampling window, was applied to the center 

of mass of the wh5.13-14  Each window ran for 100 ns.  The potential of mean force (PMF) was 

then calculated by using the weighted histogram analysis method (WHAM).15-17  

 Additional structural information was extracted from each umbrella sampling window 

by using the appropriate GROMACS tool.  Additional data analysis, such as the calculation of 

averages, statistical uncertainties, and histogram binning was carried out by using manually 

written FORTRAN programs or shell scripts, as needed. 

 

5.4. Results and Discussion 

The potential of mean force represents the energy required to pull the permeant along 

the z-axis of the simulation box.  The PMF for wh5 is plotted below in Figure 5.3.  wh5 possesses 

a minimum of -18.9 kJmol-1 at z = 1.66 nm and a maximum at z = 0.0 nm of 73.5 kJmol-1.  Both 

values are relative to the value of the PMF in the aqueous region which was set to 0.  wh5 also 

possesses a remarkably broad and flat PMF with a relatively linear increase towards the center 

of the membrane which is indicative of large membrane deformations.18 
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Figure 5.3.  The potential of mean force for wh5.  Error bars represent the standard error at a 

95% level of confidence, as calculated by the Bootstrap method. 

 

 The root mean square deviation (RMSD) is a measure of how different the desired 

molecule’s structure is over the course of the simulation to a reference structure.  Below, the 

RMSD for all of the alpha carbon atoms in wh5 is plotted in Figure 5.4.  The greater the RMSD, 

the more the structure of wh5 varies from its reference structure.  In this case, the reference 

structure is the initial starting structure for each umbrella sampling window.  For most of the 

umbrella sampling windows, the RMSD is relatively small at around 0.05 nm.  However, at a few 

positions near the center of the membrane (z = 0.23 and z = 0.39 nm) and within the aqueous 
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region (z = 2.4, 2.5, 2.6, and 3.1 nm) the RMSD was several times larger, around 0.10 to 0.23 

nm, indicating regions of high backbone mobility.  

 

Figure 5.4.  The root mean square deviation of the alpha carbons of wh5.  The greater the 

value, the more the alpha carbons deviate from their starting structure over the course of an 

umbrella sampling window.  Note: the standard error of the mean value at a 95% confidence 

level is too small to be seen on this plot and was typically around 100 times smaller than the 

plotted average. 

 

 The end to end distance provides additional information concerning the peptide 

conformation.  Below, in Figure 5.5, the end-to-end distance between the first carbon of the 

peptide, within the acetylated N-terminus, and the alpha carbon of the distal histidine residue 

are plotted.  As before, with the alpha carbon RMSD analysis, there are two regions of interest:   
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near the interface, the distance increases slightly from around 0.9 nm to 0.98 and 1.09 nm, 

respectively, at z = 0.0 and 0.23 nm;  in the aqueous region, the distance substantially 

fluctuations between z = 2.4 and 3.1 nm between 0.9 and 1.33 nm.  Both of these regions 

indicate that the peptide is in an elongated form. 

 

Figure 5.5.  The distance between the two ends of the wh5 molecule.  Specifically, the distance 

from the first carbon atom of the peptide until the alpha carbon of the histidine residue on the 

other end.  Note:  the standard uncertainty range of each average was roughly one thousand 

times smaller than the plotted data points and cannot be seen. 

 

 Similarly, Figure 5.6 depicts the distance between the center of mass of the tryptophan 

and histidine side-chains.  Again, there are roughly two regions of interest:  between z = 2.4 nm 
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and z = 3.1 nm, the distance between sidechains fluctuates and reaches a relative maximum 

around z = 2.4 and 2.5 nm of around 1.15 nm.  Similar fluctuations can also be seen between z = 

0.0 and 1.0 nm.  Equally interesting, the sidechain distance within the interfacial region from z = 

1.1 nm and z = 2.3 nm is remarkably stable. 

 

Figure 5.6.  The distance between the center of mass of the tryptophan and histidine sidechains 

in wh5.  Note:  the standard uncertainty range of each average was roughly five hundred times 

smaller than the plotted data points and cannot be seen. 

 

 Below, in Figure 5.7, the radius of gyration for wh5 is depicted.  The radius of gyration is 

a measure of how linear and compact the peptide is.  The longer and more linear the molecule 

is, the greater the radius of gyration.  The more compact and spherical the molecule is, the 
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smaller the radius of gyration.  The same trends and patterns as the previous structural 

properties are also observed here.  However, the pattern between z = 0.5 nm and z = 1.0 nm 

that was seen in the previous paragraph is more pronounced with the radius of gyration and 

indicates that wh5 is elongating at z = 1.0 nm before becoming more compact at z = 0.5 nm, 

after which the radius of gyration fluctuates at the center of the membrane.  Due to the greater 

mobility of the interdigitating lipid tails at the center of the membrane, the fluctuations there 

make sense.  However, the elongation of wh5 around z = 2.5 nm, before it reaches the 

interfacial region, is interesting and warrants additional investigation. 

 

Figure 5.7.  The radius of gyration for wh5.  Note:  the standard error for each average was 

roughly three thousand times smaller than the plotted data points and cannot be seen. 
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 Figure 5.8, shown below, begins our exploration into hydrogen bonding by plotting all of 

the hydrogen bond pairs within 0.35 nm of wh5.  Again, a similar pattern emerges where there 

are approximately 5 to 6 fewer hydrogen bonding pairs at z = 2.4 nm and z = 2.5 nm, as 

compared to other regions.  There is also a slight decrease near the center of the membrane.  

This indicates, that as wh5 elongates in this region, it breaks hydrogen bonds either within itself 

or with its surrounding solvation shell.  Remarkably, a large number of hydrogen bonding pairs 

are present as wh5 permeates the membrane, indicating that it is likely dragging along a large 

number of water molecules throughout this process. 

 

Figure 5.8.  The number of hydrogen bond pairs within 0.35 nm of wh5.  Note:  the standard 

error for each average was roughly three hundred times smaller than the plotted data points 

and cannot be seen. 
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 However, the previous figure plots all hydrogen bonding pairs.  In the next figure, the 

distance between the oxygen and nitrogen atoms involved in the three hydrogen bonds that 

form the wh5 alpha helix are plotted.  Hydrogen bonds 1, 2, and 3, are the same as those 

presented in Figure 5.2 in the Introduction.  For the most part, these three hydrogen bonds 

follow the same patterns as before.  At z = 2.5 nm, the hydrogen bonds that hold the alpha helix 

together are broken apart and then reformed as wh5 approaches the interface.  At the center 

of the membrane and out in the aqueous region, these distances fluctuate and increase.  

Interestingly, however, experimental results indicate that the wh5 helix forms and unravels in 

water every 2 to 7 ns, yet this is not seen at 3.5 nm in our simulation.1, 19 
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Figure 5.9.  The oxygen to nitrogen distance for each of the three hydrogen bonds that hold 

together the wh5 alpha helix. The small grey circles depict hydrogen bond 1; the larger orange 

circles depict hydrogen bond 2; the large blue circles depict hydrogen bond 3.  Note: the 

standard error for each average was roughly fifteen hundred times smaller than the plotted 

data points and cannot be seen. 

 

5.5. Conclusions 

Compared to the dipeptides in Chapters 2 and 3, wh5 is much larger and is capable of 

forming an alpha helix through three, strategic hydrogen bonds.  The potential of mean force 

indicates large membrane deformations as the peptide permeates the membrane; however, it 

still exhibits the same pattern of an interfacial free energy minimum and a maximum at the 
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center of the lipid bilayer.  The extent of the membrane deformation is also indicated by the 

hydrogen bonding pairs within 0.35 nm analysis, where a large number of hydrogen bonding 

pairs are present around wh5 even at the center of the bilayer, where few would be expected.  

This indicates that a large solvation shell is being carried along by wh5.  All of the remaining 

structural analyses – alpha carbon root mean square distance, end-to-end distance, tryptophan 

and histidine sidechain separation distance, the radius of gyration, and the O to N distance in 

hydrogen bonds 1, 2, and 3 – all indicate that the helix is unravelling around z = 2.5 nm with 

some fluctuations in the center of the membrane and farther out in the aqueous region.  

However, this is not seen at 3.5 nm where experimental results indicate the wh5 helix forms 

every 2 – 7 ns in water.  The radius of gyration and sidechain separation distance analyses also 

indicate an interesting pattern from z = 1.0 nm to z = 0.5 nm that warrants further investigation. 

One objective of this Chapter was to demonstrate how similar techniques to the 

previous chapters can be used to explore larger and, perhaps, more interesting molecules.  

Towards that end, there remains a wide variety of avenues for further investigation.  For 

example, a clustering analysis on all of the phi, psi, chi-1, and chi-2 angles can yield additional 

information concerning specific conformations that are responsible for the previous data.  

Autocorrelation functions concerning the tryptophan sidechain orientation can be calculated to 

provide insight into sidechain reorientation and also provide experimentally verifiable 

information.  Previous studies2 have also indicated that patterns of hydrogen bond breaking 

and formation are responsible for the unraveling and raveling of the wh5 alpha helix; these 

patterns can also be examined.  Finally, autocorrelation functions can also be calculated for 

oxygen to nitrogen distances in order to determine the time scale of alpha helix formation. 
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6.1 Conclusions: 

 

 At the present moment, the field of passive, model membrane permeation by small 

peptides and other small molecules is rather fragmented.  Few studies offer much continuity 

with the previous body of work; and, when they do, they are typically continuations of an 

individual research group’s work.  Alternatively, most studies focus on a very specific goal, such 

as trying to predict blood/brain permeability1 or investigating the effect of cholesterol on 

membrane permeation.2  In this work, we focus on filling out one of the more fundamental 

bodies of membrane permeation knowledge:  what happens to amino acids when they traverse 

a lipid bilayer?  There has already been substantial work done on the charged amino acids 

arginine and lysine,3-6 but only one work looks at aromatic amino acids analogues and presents 

a rather cursory analysis.7  We, therefore, chose to conduct a comprehensive examination of 

the resonant amino acids – phenylalanine, tyrosine, and tryptophan – due to their relative ease 

of lipid bilayer permeation in their amidated and acetylated forms and prior experimental 

studies.  This analysis was then furthered by exploring the effect of system size and lipid type 

on phenylalanine permeation and by conducting a review of diffusion constant methods – one 

of the more difficult and most ambiguous analyses.  Our work was then broadened towards the 

analysis of a larger peptide, wh5, which is capable of forming tertiary structure.  In this section, 

we summarize our key findings from each chapter within the broader context of general 

membrane permeation.  

 In Chapter 2, we conducted a permeation analysis on the acetylated and amidated 

forms of phenylalanine, tyrosine, and tryptophan.  The potential of mean force for all three 
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peptides followed the same pattern that has been observed for other amphiphilic compounds:  

an interfacial free energy minimum followed by a free energy maximum at the center of the 

lipid bilayer.  Diffusion constants, as determined by a numerical approximation to the 

Smoluchowksi equation, were slightly smaller than experimental values in the aqueous region 

and, surprisingly, do not demonstrate a dependence on membrane insertion depth.  The 

permeation time was much smaller and the permeability coefficients were much larger than 

experimental values, likely due to underestimating the free energy barriers in non-translational 

motion.  This was further explored by examining the rotation of the sidechain and the entire 

molecule, which indicated substantial barriers to rotational motion that have been observed in 

many previous studies.  Interestingly, each peptide adopted different rotational conformations 

in the aqueous, interfacial, and center regions of the model membrane.  In the aqueous region, 

all peptides were in either alpha-helix or beta-sheet conformers; however, in the center of the 

membrane, conformations that minimized the free energy by bringing the terminal oxygen and 

nitrogen atoms closer together were adopted.  All of this indicates that the translational 

permeation of the dipeptide involves significant rotational and conformational changes. In all 

cases, particularly with tryptophan, each dipeptide held onto a small solvation shell within the 

center of the membrane, which is a common observation for more polar and charged amino 

acids.  In general, the permeation of the resonant dipeptides is similar to other amphiphilic 

molecules but encounters significant rotational barriers and undergoes conformational changes 

that adapt to the hydrophobic environment of the membrane interior. 

 In Chapter 3, we examined the effect of changes in system size and lipid type as applied 

to the phenylalanine dipeptide.  Specifically, the analyses in Chapter 2 were repeated for the 
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permeation of the phenylalanine dipeptide in a 50 vs. 40 POPC (1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine) lipid system and in a 50 POPC vs. 50 DOPC (1,2-dioleoyl-sn-glycero-3-

phospocholine) lipid system.  Again, the same general trends in terms of the potential of mean 

force, diffusion constants, rotational barriers, and other conformational analyses were 

observed, lending additional credence to all of the previous findings in Chapter 2.  However, a 

few small differences were noticed:  the larger, POPC 50 system possess a deeper interfacial 

potential of mean force due to greater membrane deformations and additional Χ-1 and Χ-2 

conformers were witnessed.  This supports other studies that have found that larger systems 

may be required to accurately capture the potential of mean force.  Similarly, the DOPC 50 

system possessed a broader PMF due to greater disorder in the monounsaturated acyl tails and 

also accelerated the depth at which lower energy conformers were adopted.  In both analyses, 

the relationship between system size and lipid type on rotational dynamics has not been 

investigated before, and the appearance of additional sidechain conformers in larger systems 

and the faster adoption of low energy conformers in DOPC may have important implications as 

other researchers attempt to couple rotational and translational dynamics to more accurately 

determine the kinetic properties of membrane permeation. 

 In terms of kinetic and energetic analyses, the potential of mean force has been 

thoroughly examined; however, only one study attempted a comprehensive analysis on 

diffusion constant data and focused solely on water in previous studies that differed 

dramatically in terms of temperature, force field, lipid type, and other molecular dynamics 

simulation parameters.  We attempted to fill this void by examining five different methods 

towards the diffusion of the phenylalanine dipeptide in POPC 40, POPC 50, and DOPC 50 
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systems.  The Fluctuation-Dissipation theorem is often applied to umbrella sampling pulling 

forces and produced results atypical of all other methods.  However, when applied to non-

constrained force data, this method produces acceptable results.  Green-Kubo expressions for 

calculating diffusion constants provided the fastest calculation method but were hindered by a 

large degree of uncertainty, likely due to backscattering.  Einstein relations are the second most 

common method for calculating diffusion constants but are highly dependent upon subjective 

stability regions to conduct a linear fit.  The Hummer Displacement method uses position 

autocorrelation data but does not yield sensical results due to a wide variety of complicated 

assumptions in its derivation.  A numerical approximation to the Smoluchowski equation is our 

preferred method due to results that are consistently more precise and more easily analyzable 

than the other methods.  To our knowledge, no one has conducted such a survey of diffusion 

constant methods applied to passive membrane permeation, and our results emphasize that 

greater care, thought, and documentation should be taken in this field when calculating 

diffusion data. 

 After the diffusion digression, we then turned our attention towards applying our 

toolset of passive permeation analyses to wh5, a small peptide capable of forming alpha 

helices.  The potential of mean force indicated large membrane deformations and was very 

broad; however, it still exhibits the same pattern of an interfacial free energy minimum and a 

maximum at the center of the lipid bilayer.  A wide variety of structural analyses then indicated 

unusual activity, such as the unraveling of the peptide helix, around 2.5 nm and near the center 

of the lipid bilayer.  These results were rather surprising because experimental results in water 

indicate that the helix folds and unfolds within 2 to 7 ns.8-9  The presence of the lipid bilayer is 
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influencing the tertiary structure of the peptide, and further analysis may yield important 

insights concerning the formation of helices within more complicated biology systems. 

 

6.2 Future Directions: 

6.2.1. – Near Future. 

Chapters 2 and 3 provide a detailed study of the aromatic dipeptides.  These studies can 

be easily expanded to include other amino acids and may provide information that can be used 

to predict the behavior of more complicated peptides, such as wh5.  Many of the individual 

data analyses can also be improved.  For example, the potential of mean force can be more 

easily and accurately calculated using milestoning10 or transition-tempered metadynamics.11  

All of the sidechain and insertion vector analyses could benefit from longer simulation times in 

order to better investigate the role that rotational motion plays in permeation processes.  

Mixtures of lipids and the addition of cholesterol can also be examined in order to better 

simulate real cell membranes, which possess intriguing phase behavior.12-13  Finally, lipid 

bilayers, by themselves, also possess interesting properties that can be investigated.  For 

example, membrane fluctuations, order parameters, acyl chain rotations, and transient void 

spaces can be simultaneously studied.12-14 

Chapter 4 examined existing diffusion constant methods, as applied to passive 

membrane permeation.  Unfortunately, passive membrane permeation is an inherently non-

Markovian process that does not follow a series of random motions.  The permeation of 

molecules involves an intricate interplay of rotational dynamics, void space formations, lipid 
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translations, lipid flips, lipid rotations, and even the temporary breaking of the membrane itself.  

These processes are based upon the history of intermolecular motions and direct the motion of 

a permeate.  There have been attempts to create analytical, memory-based methods for 

modeling diffusion; but these, like the inhomogeneous solubility diffusion model, are relatively 

simplistic.  Short of modeling the entire permeation process, we believe the future in terms of 

more accurately calculating diffusion constants lies with rate based approaches.  For example, 

the Hummer Displacement method is actually an appendix in an article by Hummer that 

outlines such an approach:  many short trajectories are run in order to sample the behavior of 

the permeate.  These short trajectories are then used to create a rate based, Markovian 

approach where the permeate has a certain probability of undergoing a specific motion.15  In 

addition, milestoning represents a similar approach that bypasses the need for diffusion 

constant data and directly calculates the kinetics of a permeation process, such as the mean 

first passage time. 

Finally, Chapter 5 and the analysis of small helical peptides like wh5 represent an 

invaluable opportunity to predict how helices are formed on an atomistic level.  Unfortunately, 

as mentioned in Chapter 5, there remain a substantial number of short-term analyses that can 

be conducted.  However, experimental results indicate that the wh5 helix is formed every 2 to 7 

ns in water,8 but our preliminary results show no evidence of that near the edge of our 

simulation box.  Therefore, the presence of the lipid bilayer may be influencing the 

conformation of wh5 at such a distance.  What then, concerning our atomistic investigations, is 

responsible for this behavior and how can it be used to draw conclusions about helical 

formations and other types of tertiary structures?  The answers to such questions can then be 
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used to design molecules with functional behavior near cell membranes that utilize these types 

of tertiary structure. 

 

6.2.2. – Far Future. 

 There are two primary foci for the studies conducted within this Dissertation: 

1.)  Describe, analyze, and interpret the basic mechanisms of small peptide permeation through     

       lipid bilayers. 

2.)  Aid the intelligent design of pharmaceutical compounds. 

In terms of the primary focus, these studies can be replicated to all amino acids in order to 

determine how they behave in lipid bilayers which model a cell membrane.  These general 

patterns and insights can then be extrapolated to tertiary structures, like alpha helix and beta 

sheet formation, before then being tested on larger peptides like wh5.  Eventually and 

hopefully, these bottom-up analyses will merge with insights obtained from bioinformatics and 

other top-down approaches that focus on the function of much larger biological mechanisms.  

This is where the secondary focus becomes a reality:  over 70% of all modern pharmaceutical 

targets16 interact or regulate the permeation of molecules across cell membranes.  The more 

knowledge we possess concerning the operation and function of permeation process – passive, 

assisted, and active – the faster, more efficient, and less costly, we can devise new 

pharmaceutical treatments for a wide variety of illnesses and disorders.   
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