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Abstract

In this dissertation we study the long time dynamics of damped Klein-Gordon and

damped fractional Klein-Gordon equations using C0- Semigroup theory and its applica-

tion. The C0-semigroups are used to solve a large class of problems commonly known as

evolution equations. Such models arise from delay differential equations and partial dif-

ferential equations in many disciplines including physics, chemistry, biology, engineering,

and economics. Water waves, sound waves and simple harmonic motion of strings are few

important models of evolution equations. The Klein-Gordon equation is a relativistic ver-

sion of the Schrödinger equation. It was named after Oskar Klein and Walter Gordon who

proposed it to describe quantum particles in the framework of relativity. It describes the

motion of spinless composite particles. Indeed, one of the most fundamental questions that

should be asked when studying these equations is whether the solution (if it exist) goes

to equilibrium (stable) state or behaves erratically as time evolves. Understanding these

properties can help determine how robust a system is, as well as provides insight on the

characteristics of the corresponding phenomena it is modeling.

In the first part we consider a one dimensional damped Klein-Gordon equation on the

real line. It is well known fact that if there is no external force (i.e damping) acting in

the system, the wave will oscillate forever in time since the energy is conserved in the

system. An interesting question to ask is at what rate the energy starts leaving the system

when we introduce damping force? This question was intensely studied in the last ten

years. In this direction, Burq and Joly have proved that the energy decays at exponential

rate if the damping force γ(x) satisfies the geometric control condition (GCC) in a sense

that there exist T , ε > 0, such that
´ T

0 γ(x(t))dt ≥ ε along every straight line unit speed

trajectory. However, GCC does not provide an optimal condition to ensure exponential
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rate of energy decay. We address this problem in chapter 2 and provide optimal conditions

on the damping coefficient γ under which the exponential decay holds in one-dimensional

setting. In addition, we derive simple to verify necessary and sufficient conditions for such

exponential rate of decay.

In the second part we relate the energy decay rate for the fractional damped wave equa-

tion to the order of its fractional derivative. In fact we prove that the energy decays at

a polynomial rate if the order of derivative lies between 0 < s < 2 and at an exponential

rate when s ≥ 2 provided the damping coefficient is non-zero and periodic. An important

ingredient of the proof is the derivation of a new observability estimate for the fractional

Laplacain. Such important estimate has potential applications in control theory.
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Chapter 1

Introduction

In this chapter, we introduce the main concept of the theory of C0-semigroups of bounded

linear operators and its applications to partial differential equations. When we study the

evolution of a system in the context of semigroups we break down the problem into transi-

tional steps, that is the system evolves from one state to another state. When there exist a

semigroup, instead of studying the initial value problem (IVP) directly, we can study it via

the semigroup and its applicable theory. The theory of linear semigroup is very well devel-

oped in [23]. For example, linear semigroup theory provides necessary and sufficient con-

ditions to determine the well-posedness of a problem. Furthermore the asymptotic behavior

of the solution of these problems can be obtained with asymptotic theory of C0-semigroup

[28]. We will present the theory, along with several examples, which will motivate the

development in later chapters. In this section we mainly focus on a special class of linear

semigroups called C0 semigroups or semigroups of strongly continuous bounded linear op-

erators. The theory of these semigroups is presented with some examples which tend to

arise in many areas of applications.

1.1 C0-semigroups

We begin with some basic notions and the properties of the C0-semigroup.

Definition 1. A family T (t), of bounded linear operators from a Banach space X into X is

called a strongly continuous semigroup or in short a C0-semigroup if

1. T (0) = I ( I is the identity operator on X).
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2. T (t)T (s) = T (t + s) ( the semigroup property).

3. limt−→0 T (t)x = x, ∀ x ∈ X ( Strongly continuous semigroup property).

A semigroup of bounded linear operators, (T (t))t>0 is uniformly continuous if

lim
t↓0
‖T (t)− I‖= 0.

Definition 2. The generator A of a C0− semigroup T (t) is defined on the set

D(A) =
{

x ∈ X : lim
t−→0

(T (t)− I)x
t

exist
}

as the strong limit

Ax = lim
t−→0

(T (t)− I)x
t

.

The set D(A) is called the domain of the semigroup.

Next, we list some properties of C0-semigroups and their generators, which will be used

in the rest of the dissertation.

Theorem 3. Let T (t) be a C0− semigroup. Then there exist constants ω ≥ 0 and M ≥ 1,

such that

‖T (t)‖ ≤Meωt f or t ≥ 0. (1.1)

Theorem 4. Let T (t) be a C0- semigroup and A be its generator. Then the following are

true

(a) For all x ∈ X, t :→ T (t)x is a continuous function from R+
0 into X.

(b) For x ∈ X,

lim
h→0

1
h

ˆ t+h

t
T (s)xds = T (t)x.
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(c) For x ∈ X,
´ t

0 T (s)xds ∈ D(A) and

A
(ˆ t

0
T (s)xds

)
= T (t)x− x.

(d) For x ∈ D(A), T (t)x ∈ D(A) and

d
dt

T (t)x = AT (t)x = T (t)Ax.

(e) For x ∈ D(A),

T (t)x−T (s)x =
ˆ t

s
T (τ)Ax dτ =

ˆ t

s
AT (τ)x dτ

(f) D(A), the domain of A, is dense in X and A is closed linear operator.

(g) A C0-semigroup is uniquely determined by its generator.

To motivate linear semigroups result, we consider an abstract Cauchy problem

du(t)
dt

= Au(t), t ≥ 0 (1.2)

u(0) = x

where A is a linear operator with domain D(A) in a Banach space X . A classical solution to

the above initial value problem (IVP) is a continuous differentiable function u : [0,∞)−→X

taking its values in D(A) and satisfying (1.2).

We say that the problem (1.2) is well posed if there exists a unique solution which depends

continuously on initial data. A natural question here is the following: What are the reason-

able conditions we can impose on the Abstract Cauchy problem (1.2) or more specially on

the linear operator A, so that the problem (1.2) is well-posed? The C0-semigroup theory

approach provides an alternative to the existence and uniqueness of the evolution equation.
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Let T (t) be a C0- semigroup and A be its generator, then by theorem 4, we have

d
dt

T (t)x = AT (t)x, x ∈ D(A),

which implies that for each x ∈ D(A), the problem (1.2) has a classical solution given by

u(t) = T (t)x. In other words, we can say that the abstract Cauchy problem associated with

the linear operator A is well-posed if A is the generator of a C0- semigroup.

Theorem 5 (Well-Posedness Theorem). The IVP given by (1.2) is well posed iff A is the

generator of a C0-semigroup T (t). In this case the unique solution of (1.2) is given by

u(t) = T (t)x for x ∈ D(A).

Next, we investigate the relationship between the linear operator A and its C0- semi-

group T (t). For this we will try to answer the following two questions. First, for a given

semigroup T (t), how we can find its corresponding generator A. Second, for a given lin-

ear operator A, how can we ensure the existence of its corresponding C0-semigroup. The

complete answer to the first question is already presented in Theorem 4. Lets return to the

second question. In most of the problems, we are given the operator A and one is interested

to know for a given operator A, how to construct the corresponding C0-semigroup T (t).

First, we consider the case when A is a bounded operator. This leads us to the following

theorem.

Theorem 6. A linear operator A is the generator of a uniformly continuous semigroup if

and only if A is a bounded linear operator. In this case

T (t) = eAt =
∞

∑
n=0

(tA)n

n!
: t ∈ R+.

In case when A is not a bounded linear operator, the convergence of the above such

series is not well-defined. So, we no longer can construct the C0-semigroup of unbounded

linear operators through the above exponential series. The question is now, how can we
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construct the C0-semigroup when the given linear operator A is unbounded? We further

break this question into two parts. In the first part, we find the properties of A, which

make the operator A a generator of a C0-semigroup. Once this is done, we recover the

C0-semigroup T (t) from its generator A. The answer to first of these questions is given

by Hille and Yosida. Before we state the Hille-Yosida‘s theorem, we need the following

definitions.

Definition 7. A C0- semigroup T (t) is called a C0- semigroup of contraction when M = 1

and ω = 0 in (1.1). That is

‖T (t)‖ ≤ 1 ∀ t ≥ 0.

Definition 8. The resolvent set of A is denoted by ρ(A) and is the set of all complex numbers

λ for which λ I−A is invertible. The resolvent of A is a family of bounded linear operators

which is denoted by R(λ ,A) and is given by

R(λ ,A) = (λ −A)−1, where λ ∈ ρ(A).

Theorem 9. [Hille-Yosida Theorem for Contraction Semigroups] A linear (unbounded)

operator A is the generator of a C0-semigroup of contractions T (t), t ≥ 0 if any only if

1. A is closed and D(A) = X.

2. The resolvent set ρ(A) of A contains R+ and for every real λ > 0

‖R(λ : A)‖ ≤ 1
λ
. (1.3)

Proof. (Necessity)

Define

R(λ )x =
ˆ

∞

0
e−λ tT (t)x dt f or λ > 0 and x ∈ X (1.4)
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then R(λ ) is a bounded operator satisfying

‖R(λ )x‖=
ˆ

∞

0
e−λ t‖T (t)x‖ dt ≤ 1

λ
‖x‖. (1.5)

and

R(λ )(λ I−A)x = x. f or x ∈ D(A). (1.6)

Thus, R(λ ) is the inverse of (λ I−A), it exist for all λ > 0 and satisfies (1.3).

(Sufficiency)

We define Yosida approximation of A by

Aλ = λAR(λ : A) = λ
2R(λ : A)−λ I. for every λ > 0. (1.7)

Then Aλ is a bounded linear operator. Therefore Aλ is a generator a uniformly continuous

semigroup etAλ satisfying

‖etAλ − etAµ‖ ≤ t‖Aλ −Aµ‖ ∀ x ∈ X , λ ,µ > 0. (1.8)

and

lim
λ→∞

Aλ x = Ax. (1.9)

For x ∈ D(A), we have

‖etAλ x− etAµ x‖ ≤ t‖Aλ x−Aµx‖ ≤ t‖Aλ x−Ax‖+ t‖Ax−Aµx‖ (1.10)

It follows that etAλ x converges uniformly on bounded intervals. Since D(A) is dense in X
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and ‖etAλ ‖ ≤ 1, it follows that

lim
λ→∞

etAλ x = T (t)x f orevery x ∈ X . (1.11)

Therefore the equation (1.11) implies that T (t) satisfies the semigroup property with con-

traction.

Theorem 10. [Hille-Yosida] A linear operator A is the infinitesimal generator of a C0

group of bounded operators T (t) satisfying ‖T (t)‖ ≤Meω|t| if and only if

1. A is closed and D(A) = X.

2. Every real λ , |λ |> ω is in the resolvent set ρ(A) of A and for such λ we have

‖(λ I−A)−n‖ ≤ M
(|λ |−ω)n . (1.12)

The Hille-Yosida Theorem is a powerful tool which gives us both necessary and suffi-

cient conditions. From the proof, one should notice that the resolvent of A is represented in

the form of Laplace Transformation of the C0-semigroup. We should expect to obtain the

semigroup by inverting the Laplace Transform.

Often the estimate (1.3) is hard to verify in examples, in particular since it involves the

usually unknown resolvent. There are other results along the same lines such as the Lumer-

Phillips Theorem[23, p. 14] and Stone Theorem [23, p. 41], which provide the answer to

the question of the existence of C0-semigroups in different settings.

Theorem 11. [Stone Theorem] A is the generator of a C0-group of unitary operator on a

Hilbert spce H if and only if A is skew-adjoint.
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In the Lumer-Phillips theorem the assumption (1.3) will be replaced by conditions on A

itself, namely its “dissipativity” and a range condition.

Theorem 12 (Lumer-Phillips). Let A be a densely-defined operator. If A generates a

contraction semigroup, then it must be dissipative, and for each λ > 0, we must have

(λ −A)[D(A)] = X. Conversely, if A is dissipative and there is a λ0 > 0 such that (λ0−

A)[D(A)] = X, then A must generate a contraction semigroup.

1.1.1 Applications and Examples of C0-semigroup

It is important that we recognize the problems to which C0-semigroup theory can be ap-

plied. In this section we introduce some examples of C0-semigroups. Many examples fall

into the categories of: translations, fractional integration, harmonic functions, stochastic

processes, diffusion equation and ergodic theory.

1.1.1.1 The Heat Equation

We consider the following heat equation on X =CB(Rn), the space of bounded continuous

functions on Rn.

ut = ∆u, 0 < t < ∞ (1.13)

u(0) = g(x), x ∈ Rn

From [21], we know that for any g ∈ X , (1.13) admits a unique solution given by

u(x, t) =
ˆ
Rn

K(x,y, t)g(y)dy =
1

(4πt)n/2

ˆ
Rn

e−
|x−y|2

4t g(y)dy.
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It can be easily verified that the above solution operator satisfies all the properties of C0-

semigroup. Hence the solution of (1.13) is a semigroup on X written as

(T (t)g)(x) =
1

(4πt)n/2

ˆ
Rn

e−
|x−y|2

4t g(y)dy.

1.1.1.2 Klein-Gordon equations in Rn

We consider the following Klein-Gordon equation in Rn


utt(x, t)−∆u(x, t)+u(x, t) = 0, (x, t) ∈ Rn×R+

u(x,0) = u0(x), ut(x,0) = u1(x),
(1.14)

The equation (1.14) can be written as an Abstract Cauchy system:

ut = v

vt = ∆u−u

Then we have an evolution equation given by

u

v


t

= A

u

v


where

A =

 0 I

∆− I 0


The operator A is defined on a Hilbert space

X = H1(Rn)×L2(Rn),
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which is equipped with the graph norm

‖(u,v)‖2
X =

ˆ
|u|2 + |∇u|2 + |v|2 dx

Let U = (u1,u2) and V = (v1,v2), then we have

〈AU,V 〉 = 〈(u2,∆u1−u1),(v1,v2)〉H1×L2

= 〈u2,v1〉H1 + 〈∆u1−u1,v2〉L2

= 〈∇u2,∇v1,〉L2 + 〈u2,v1〉L2 + 〈∆u1,v2〉L2−〈u1,v2〉L2

= −〈u2,∆v1,〉L2 + 〈u2,v1〉L2 + 〈u1,∆v2〉L2−〈u1,v2〉L2

= 〈U,−AV 〉

Therefore A is a skew adjoint operator. By Stone theorem

S(t) = etA is a C0-group of unitary operator.

1.2 The Spectral Theory of C0-semigroups

The behavior of a dynamical system near some stationary solutions can be determined from

a decomposition into invariant manifolds such as stable, unstable and center manifolds.

These manifolds are invariant under the flow, and carry the solution near the stationary point

characterized by their decay estimates. This approach has a long history of studying the

local behavior of a dynamical system near stationary points. The fundamental idea of this

approach is as follows: If the linearized system around a stationary solution has invariant

manifolds with asymptotic decay rates that are disjoint, then one can acquire some versions

of these manifolds for the nonlinear system. In infinite dimensions, the relation between

linearlization and the non-linear equation is very subtle. Mostly the existence of invariant

manifolds is derived from the group or semi group that arises from the linearlization around

the stationary solution. The main idea is to relate the spectrum of the infinitesimal generator
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to the spectrum of its C0- group. These types of spectral mapping problems are hard to

prove for infinite dimensions.

It is well known that in finite dimensions, the behavior of a dynamical system can be

determined from the spectrum of the operator. This result is known as a spectral mapping

theorem, which states that the spectrum of the operator etA is given from the spectrum of

A by exponentiation. In infinite dimensions, there are some examples where the spectral

mapping theorem fails.

In this section, we will introduce the asymptotic behavior of the orbits t 7→ T (t)x of a

C0-semigroups and the conditions under which these orbits are stable (i.e converge to zero

as t→ ∞), unstable or center manifold through spectral mapping theorems. The following

three types of stability will be use in our study.

Definition 13. Let T (t) be a C0-semigroup on a Banach space X, with generator A. Then

T (t) is said to be

• uniformly exponential stable, if there exist constants M > 0 and ω > 0 such that

‖T (t)‖ ≤Me−ωt ∀ t ≥ 0.

• exponentially stable, if there exist constants M > 0 and ω > 0 such that

‖T (t)x‖ ≤Me−ωt‖x‖D(A) ∀ t ≥ 0 and x ∈ D(A).

• uniformly stable, if lim
t→∞
‖T (t)x‖= 0 for all x ∈ X.

The equation (1.1) implies that every C0- semigroup is exponential bounded. Therefore,

we can define the uniformly growth bound ω0(T ) of T as

ω0(T ) := inf
{

ω ∈ R : ∃M > 0, ‖T (t)‖ ≤Meωt ,∀ t ≥ 0
}
.
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Thus, the abstract Cauchy problem (1.2) is uniformly exponentially stable if and only if the

growth bound ω0(T ) of its C0-semigroup is negative.

The inequality (1.12) implies that the spectrum of the generator of a C0- semigroup is

always contained in some left half-plane. Therefore, we can define the spectral bound s(A)

of A by

s(A) := sup{Re(λ ) : λ ∈ σ(A)}.

If A is a bounded operator on a Banach space X , then

s(A) = ω0(T ). (1.15)

Equation (1.15) does not hold for unbounded operators. In general, it is true that ([28])

s(A)≤ ω0(T ).

Next, we study the relation between the spectrum of the generator of a strongly continuous

semigroup and the spectrum of the semigroup. Formally, one expect that σ(T (t))\{0} =

eσ(A)t . However this is not true in general for unbounded generators. We study the condi-

tions which validate the spectral property and related principles of linear stability.

Definition 14. A C0- semigroup (T (t))t>0 has the spectral mapping property if, for every

t > 0,

σ(T (t))\{0}= eσ(A)t .

It is well know that the spectral identity σ(T (t)) = eσ(A)t holds for bounded operators

. But if A generates a C0-semigroup that can not be continued to a group, in this case the

operator T (t) is not invertible for each t > 0 i.e 0 ∈ σ(T (t)). We have to subtract 0 from

the spectrum of the semigroup operator T (t) to get the spectral identity since zero does not

belong to the range of the exponential function.
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Theorem 15. [Spectral Inclusion Theorem] Let T (t) be a C0- semigroup on a Banach

space X, with generator A. Then we have the spectral inclusion relation

σ(T (t))⊃ eσ(A)t , ∀ t ≥ 0.

The inverse inclusion σ(T (t)) \ {0} ⊂ eσ(A)t generally fails. Since, the spectral map-

ping property always holds for the point and residual spectrum, its failure is completely

determined by the continuous spectrum.

Theorem 16. [Spectral Mapping Theorem for the point Spectrum] Let T be a C0- semi-

group on a Banach space X, with generator A. Then we have the spectral relation

etσp(A) ⊂ σp(T (t)).

More precisely, if λ ∈ σp(A), then eλ t ∈ σp(T (t)); and, if eλ t ∈ σp(T (t)), then there is

some integer k such that λk := λ + 2πik
t ∈ σp(A).

Theorem 17. [Spectral Mapping Theorem for the Residual Spectrum] Let T be a C0- semi-

group on a Banach space X, with generator A. If λ ∈ σr(A) and λn : λ + 2πin
t /∈ σp for all

n ∈ Z, then eλ t ∈ σr(T (t)). If eλ t ∈ σr(T (t)), then λn : λ + 2πin
t /∈ σp for all n ∈ Z; and

moreover, there is an integer k such that λk ∈ σr(A).

There are some important classes of C0- semigroups for which the spectral mapping

property holds. These include compact, eventually differential, positive and analytic semi-

groups.

If the spectral mapping property holds for a C0-semigroup T (t)t≥0 and its generator A, in

such cases spectral bound is equal to the growth bound, s(A) = ω0(T ).

Next, we show that the spectral mapping property holds if we make an additional as-

sumptions on the growth of the resolvent on the vertical lines. More precisely, for a semi-

group on a Hilbert space the resolvent R(A, .) of the generator A must be bounded along
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vertical lines to guarantee the spectral mapping property.

Theorem 18 ( Gearhart-Prüss). Let A generate a strongly continuous semigroup on a

complex Hilbert space. The for each t > 0, we have

σ(etA)\{0}=
{

eλ t | either uk = λ +
2πki

t
∈ σ(A) for some k ∈ Z

or the sequence {‖(uk−A)−1‖k is unbounded
}
.

The following is an equivalent version of above theorem which is very useful in appli-

cations.

Theorem 19. For λ = a+ it, a ∈ Rn \{0} , t ∈ R, the function t 7−→ ‖(λ −A)−1‖ remain

bounded as |t| →∞. Then the spectral mapping theorem holds for the semigroup generated

by the operator A.

Proof of Theorem 19. We know that the spectral inclusion etσ(A) ⊂ σ(etA) always holds.

Therefore, we just need to prove the reverse inclusion. We also know that the essential

spectrum of A is given by σess(A) = {iλ |λ ∈ R, |λ | > m} and the point spectrum consists

of finitely many eigenvalues in (−∞,∞). Consequently,

Z := {z ∈ C : |z|= 1} ⊂ etσ(A).

and for large t, a+ it /∈ σ(A) for each a ∈ R\{0}.

To prove the reverse inclusion, we argue by contradiction. let us suppose if possible

σ(etA) 6⊂ etσ(A).

⇒ ∃ λ ∈ C such that

eλ t ∈ σ(etA) where λ /∈ σ(A).

Notice a := Reλ 6= 0, due to the fact Z ⊂ etσ(A),.
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We define λk := λ + 2πik
t , then

etλk = etλ /∈ etσ(A).

Thus λk /∈ σ(A) for all k ∈ Z. Since etλ ∈ σ(etA), Theorem 18 gives that {‖(λk−A)−1‖}k

is an unbounded sequence. But on the other hand if we take t = Im(λ )+2πk/t, we arrive

at a contradiction to the fact that {‖(λk−A)−1‖}k is unbounded.

1.3 Optimal Energy Decay of Functions and Operator Semigrops

In the theory of Partial differential equations (PDE), one of the main questions to ask is

whether the solution to these partial differential equations converge to their equilibrium. If

the answer is yes, what is the rate of convergence? In the case of evolutionary PDE, one

can address such problems by using operator theoretical methods involving C0-semigroups.

The aim of this section is to give a simple and self-contained presentation on the asymp-

totic theory of C0-semigroup and its applications to partial differential equations in more

general setting. In this section, we introduce the results obtained by Alexander Borichev

and Yuri Tomilov in their paper[9], in which they developed a technique of characterizing

the rate of decay of orbits t 7→ T (t)x of a C0-semigroups in resolvent terms of its generator.

In the following chapters, we also provide some applications to this technique.

Many problems in mathematical physics can be formulated as an abstract Cauchy problem.

We begin with the following abstract Cauchy problem

u′(t) = Au(t), t ≥ 0 (1.16)

u(0) = x

15



where A is a linear operator with domain D(A) on a Banach space X . A classical solu-

tion to the above initial value problem is a continuous differential function u : [0,∞)−→ X

taking its values in D(A) and satisfies (1.16). A continuous function u : [0,∞) −→ X is

a mild solution if there exist a sequence (xn) ⊂ D(A) such that for each n the above ini-

tial value problem with initial condition u(0) = xn has a classical solution u(·,xn) with

limn−→∞ u(t,xn) = u(t).

The study of the asymptotic behavior of the classical and mild solution of the abstract

Cauchy problem is carry out with C0-semigroup and its applicable theory.

Recall,
d
dt

T (t)x = AT (t)x, x ∈ D(A),

which implies that for each x ∈ D(A), the problem(1.16) has a classical solution given by

u(t) = T (t)x. So we can say that the abstract Cauchy problem associated with a linear

operator A is well-posed if A generates a C0- semigroup.

Since our most of initial value problems only provide the operator A, so it is desirable

to deduce asymptotic behavior of the solutions u(t) = T (t)x of the initial value problem

from information about A. It is well know that if A is bounded linear operator, then we

have a very famous result, Spectral Mapping Theorem, which states that resolvent of the

C0-semigroup T (t) can be obtained by exponentiation the resolvent of A i.e

σ(T (t)) = etσ(A).

Which implies that the exponential growth of the solution of the initial value problem as-

sociated to a bounded operated A is determined by the location of the spectrum of A. In

general, The Spectral Mapping Theorem is not true. There are some examples of un-

bounded operators where spectral mapping theorem fails. The failure of spectral mapping

means that the spectrum of A no longer determine the asymptotic behavior of our above

evolutionary system (1.16).
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Many authors have tried to find additional conditions on the semigroup or on its generator

under which the Spectral Mapping Theorem holds. Gearhart-Prüss theorem is one such

result on the asymptotic behavior of linear autonomous evolution equations which state

that a C0 -semigroup T (t) on a Hilbert space X has an exponential dichotomy if and only

if the imaginary axis belongs to the resolvent set of its generator A and the resolvent of A,

R(is) = (is−A)−1 is uniformly bounded along the imaginary axis. Along this line, there

are several results, and many of them can be seen in [23, 2, 7, 28]. In the sequel, we present

the following results in the same direction.

1.3.1 Decay of Banach Space Semigroups

The following result was proved in [6, p. 803] and also see [7, p. 41-42].

Theorem 20. Let T (t) be a bounded C0-semigroup on a Banach space X with generator

A. Suppose the resolvent set ρ(A) of A contains the imaginary axis. Then

‖T (t)A−1‖ −→ 0, t −→ ∞

That is, all the classical solutions of the abstract Cauchy problem (1.16) given by u(t) =

T (t)x, t ≥ 0, x∈D(A), converge uniformly to zero if the operator A satisfies the conditions

of Theorem 20.

A new approach along this line, which is initiated in [20] and later developed in [10, 11],

in which authors associate the rate of decay of sufficiently smooth orbits for the semigroup

(T (t))t≥0 with the size of the resolvent R(λ ) = (λ−A)−1 of A on the imaginary axis. Batty

and Duyckaerts, in the paper[8] gave a unified and simplified approach for estimating the

decay rates for ‖T (t)A−1‖ in term of the growth of R(is), s∈R. In particular the following

theorem is proved there.

Theorem 21. Let (T (t))t≥0 be a bounded C0-semigroup on a Banach space X with gener-

ator A. Suppose the resolvent set ρ(A) of A contains the imaginary axis. Then there exist
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C, B > 0 such that

‖T (t)A−1‖ ≤ C
M−1

log(t/C)
, t ≥ B

Where M−1
log is the inverse of Mlog defined on [Mlog(0),∞], which is through the following

two equations.

M(η) = max
t∈[−η ,η ]

‖R(it,A)‖, η ≥ 0

Mlog(η) := M(η)(log(1+M(η))+ log(1+η)), η ≥ 0.

In a particular case, when α > 0, M(η)≤C(1+ηα), η ≥ 0, above theorem gives

‖T (t)A−1‖ ≤C
(

log t
t

) 1
α

, t ≥ B. (1.17)

It was conjectured in [8] that in the Hilbert space setting above rate of decay can be im-

proved where one can remove the logarithmic factor in (1.17). Borichev and Tomilov

proved the validity of this conjecture in their paper[9].

1.3.2 Decay of Hilbert Space Semigroup

To prove the main theorem of this section, we need the following two lemmas.

Lemma 1 (Gomilko [17]). Let (T (t))t≥0 be a C0-semigroup on a Hilbert space H with

generator A. Then (T (t))t≥0 is bounded if and only if

C+ ⊂ ρ(A),

and

sup
ξ>0

ξ

ˆ
R

(
‖R(ξ + iη ,A)x‖2 +‖R(ξ + iη ,A∗)‖2) dη < ∞ ∀x ∈ H.
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Proof. Assume that

C+ ⊂ ρ(A) & sup
ξ>0

ξ

ˆ
R

(
‖R(ξ + iη ,A)x‖2 +‖R(ξ + iη ,A∗)‖2) dη < ∞ ∀x ∈ H.

We will show that (T (t))t≥0 is bounded.

We have

R(λ ,A)x =
ˆ

∞

0
e−λ tT (t)x dt.

By differentiating both sides with respect to λ , we get

−R(λ ,A)2x =−
ˆ

∞

0
te−λ tT (t)x dt =−L (tT (t)x)

Taking inverse Laplace transformation on both sides, we get

tT (t)x =
1

2πi

ˆ 1
t +i∞

1
t −i∞

eλ tR(λ ,A)2 dλ

So, we have the following representation of T (t).

〈T (t)x,x∗〉= 1
2πit

1
t +i∞ˆ

1
t −i∞

eλ t 〈R2(λ ,A)x,x∗
〉

dλ , t > 0

Using Hölder inequality together with the inequality ab≤ a+b
2 , we get

| 〈T (t)x,x∗〉 | ≤ ξ

2π

∞̂

−∞

| 〈R(ξ + iτ,A)x,R(ξ − iτ,A∗)x∗〉 | dτ

≤ C
ξ

2π

∞̂

−∞

‖R(ξ + iτ,A)x‖‖R(ξ − iτ,A∗)x∗‖ dτ

≤ C
ξ

2π

∞̂

−∞

(
‖R(ξ + iτ,A)x‖2 +‖R(ξ − iτ,A∗)x∗‖2) dτ,

< ∞
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Thus the uniform bounded principal, implies that (T (t))t≥0 is bounded.

For the reverse direction, assume (T (t))t≥0 is bounded.

R(ξ + iτ,A)x =

∞̂

0

e(−ξ−iτ)tT (t)x dt

=

∞̂

−∞

e−iτte−ξ tT (t)χ(0,∞)x dt

= ̂e−ξ tT (t)χ(0,∞)x

By Plancherel Theorem, we get

‖R(ξ + iτ,A)x‖L2
τ
= ‖ ̂e−ξ tT (t)χ(0,∞)x‖L2

τ
= ‖e−ξ · T (.)χ(0,∞)‖L2

τ
≤ C

ξ
.

Similarly

‖R(ξ + iτ,A∗)‖L2
τ
≤ C

ξ
.

Therefore the above two inequalities implies

sup
ξ>0

ξ

ˆ
R
(‖R(ξ + iτ,A)‖2 +‖R(ξ + iτ,A∗)‖2) dτ < ∞.

Lemma 2. Let T (t) be a bounded C0-semigroup on a Hilbert space H with generator A

such that iR⊂ ρ(A). Then for a fixed α > 0, we have

‖R(λ ,A)(−A)−α‖ ≤C, Reλ > 0,
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if and only if

‖R(is,A)‖= O(|s|α), s−→ ∞.

Proof. It has been proved in [19, Lemma 3.2] that

‖R(λ ,A)‖ ≤C(1+ |λ |α), 0 < Re λ < 1,

is equivalent to

‖R(λ ,A)(−A)−α‖ ≤C, 0 < Re λ < 1.

So, we shall show that the condition

‖R(λ ,A)‖ ≤C(1+ |λ |α), 0 < Re λ < 1,

is equivalent to

‖R(is,A)‖= O(|s|α), s−→ ∞.

To prove this, we apply the maximum principle to the function

F(λ ) = R(λ ,A)λ−α

(
1− λ 2

B2

)

on the set D = {λ ∈ C : Re λ ≥ 0, ε ≤ |λ | ≤ B, ε > 0}. The boundary of D consists of

three parts, B1 = {λ ∈ C : λ = εeiθ ,0 ≤ θ ≤ π

2 ,ε > 0}, B2 = {λ ∈ C : λ = is,s ∈ R \ 0}

and B3 = {λ ∈ C : λ = Beiθ ,0≤ θ ≤ π

2 ,ε > 0}

Clearly for every fixed ε > 0, the set B1 is compact. Therefore the continuity of F(λ )

implies that F(λ ) is bounded on B1.
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On B2, we have the following estimate

|F(is)|= ‖R(is,A)‖(|s|)−α

(
1+

s2

B2

)
<C, ∀ B

On B3, we use the estimate

‖R(λ ,R)‖ ≤ 1
Re(λ )

We get

|F(Beiθ )|= ‖R(Beiθ ,A)‖B−α |
(

1− e2iθ
)
|

≤ 1
Bcosθ

1
Bα

2
√

2cosθ sinθ

≤C
1

B1+α

Thus by Maximal principle, F(λ ) is bounded on D. This gives

‖R(λ ,A)‖ ≤C(1+ |λ |α), Re λ > 0.

Theorem 22 (Borichev, Tomilov). Let T (t) be a boubded C0-semigroup on a Hilbert space

H with generator A such that iR⊂ ρ(A). Then for a fixed α > 0,

‖R(is,A)‖= O(|s|α), s−→ ∞.

implies

‖T (t)A−1x‖= O
(

1
t1/α

)
, t −→ ∞, x ∈ H

Proof. Consider the operator A on H = H⊕H given by the matrix operator
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A =

A (−A)−α

O A

 ,

with the domain D(A ) = D(A)⊕D(A).

R(λ ,A ) = (λ I−A )−1 =

λ I−A −(−A)−α

O λ I−A


−1

,

therefore R(λ ,A ) exist if and only if λ ∈ ρ(A) and its given by

R(λ ,A ) =

λ I−A −(−A)−α

O λ I−A


−1

=

(λ I−A)−1 R2(λ ,A)(−A)−α

O (λ I−A)−1

 ,

Define

T (t) =

T (t) tT (t)(−A)−α

O T (t)

 (1.18)

We claim that T (t) is a C0-semigroup on H with generator A .

1. T (0) =

T (0) O

O T (0)

= I

2. T (t + s) =

T (t + s) (t + s)T (t + s)(−A)−α

O T (t + s)


=

T (t) tT (t)(−A)−α

O T (t)


T (s) sT (s)(−A)−α

O T (s)

 for t,s≥ 0

Hence T (t) is a C0-semigroup.
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Let x =

x1

x2

 ∈ D(A ), we have

lim
t→0

T (t)x− x
t

= lim
t→0

T (t) tT (t)(−A)−α

O T (t)


x1

x2

−
x1

x2


t

=

lim
t→0

T (t)x1−x1
t + lim

t→0
T (t)(−A)−αx2

lim
t→0

T (t)x2−x2
t


=

Ax1 +(−A)−αx2

Ax2

=

A (−A)−α

O A


x1

x2


Hence (T (t))t≥0 is a C0-semigroup with generator A on D(A ) = D(A)⊕D(A).

By Lemma 2,

‖R(λ ,A)(−A)−α‖ ≤C, Reλ > 0

For every x = (x1,x2) ∈H and λ ∈C+,

‖R(λ ,A )x‖2 = ‖R(λ ,A)x1 +R2(λ ,A)(−A)−αx2‖2 +‖R(λ ,A)x2‖2

≤ (‖R(λ ,A)x1‖+‖R2(λ ,A)(−A)−αx2‖2)2 +‖R(λ ,A)x2‖2

≤ (‖R(λ ,A)x1‖+C‖R(λ ,A)x2‖)2 +‖R(λ ,A)x2‖2

≤ ‖R(λ ,A)x1‖2 +C2‖R(λ ,A)x2‖2 +2C‖R(λ ,A)x1‖‖R(λ ,A)x2‖+‖R(λ ,A)x2‖2

≤ ‖R(λ ,A)x1‖2 +C2‖R(λ ,A)x2‖2 +C‖R(λ ,A)x1‖2 +C‖R(λ ,A)x2‖2 +‖R(λ ,A)x2‖2

≤ ‖R(λ ,A)x1‖2 +C2‖R(λ ,A)x2‖2 +2C‖R(λ ,A)x1‖‖R(λ ,A)x2‖+‖R(λ ,A)x2‖2

≤ (1+C)‖R(λ ,A)x1‖2 +(1+C2 +C)‖R(λ ,A)x2‖2

≤max(1+C,1+C2 +C))(‖R(λ ,A)x1‖2 +‖R(λ ,A)x2‖2)
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Hence

‖R(λ ,A )x‖2 ≤C(‖R(λ ,A)x1‖2 +‖R(λ ,A)x2‖2). (1.19)

Similarly

‖R(λ ,A ∗)x‖2 ≤C(‖R(λ ,A∗)x1‖2 +‖R(λ ,A∗)x2‖2). (1.20)

Since (T (t))t≥0 is a family of bounded operators. By Lemma 1, we have

sup
ξ>0

ξ

ˆ
R
(‖R(ξ + iη ,A)‖2 +‖R(ξ + iη ,A∗)‖2) dη < ∞ (1.21)

for every x ∈H .

Combining the equations 1.19, 1.20 and 1.18, we get

sup
ξ>0

ξ

ˆ
R
(‖R(ξ + iη ,A )‖2 +‖R(ξ + iη ,A ∗)‖2) dη < ∞

for every x ∈H .

Now the reverse conclusion of Lemma 1 implies that (T (t))t≥0 is bounded on H . By

the definition (1.18) of (T (t))t≥0 and the fact (T (t))t≥0 is bounded, we have

sup
t≥0
‖tT (t)(−A)−α‖< ∞.

Since iR= ρ(A ) and D(A ) = Im(A −1) is dense in H . Then by Theorem 20

T (t)→ 0, t→ ∞ (1.22)

for every x ∈H .
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Furthermore, iR⊂ ρ(A). Again by Theorem 20, we have

T (t)→ 0, t→ ∞ (1.23)

for every x ∈ H. Equation (1.23) and (1.22) implies that

‖tT (t)(−A)−αx‖= o(1), t→ ∞, x ∈ H.

Hence,

‖T (t)(−A)−α‖ ≤ C
t
, t→ ∞, on H.

For t > 0 and n ∈ N, we have

‖T (t)(−A)−nα‖= ‖(T (t/n)(−A)−α)n‖ ≤ Cn

tn . (1.24)

Write 1
α
= n+ τ , for some n ∈ N and τ ∈ [0,1). Using above estimate with moment in-

equality, see [14, ,CH II Theorem 5.34]

‖T (t)A−1‖= ‖T (t)A−
1
α

α‖= ‖T (t)A−(n+τ)α‖

= ‖A(1−τ)αT (t)A−(n+1)α‖

≤C(α)‖AαT (t)A−(n+1)α‖1−τ‖T (t)A−(n+1)α‖τ

≤C(α)‖T (t)A−nα‖1−τ‖T (t)A−(n+1)α‖τ

≤C(α)

(
Cn

tn

)1−τ(Cn+1

tn+1

)τ

=C(α)
Cn+τ

tn+τ

So, we get

‖T (t)A−1‖ ≤ C

t
1
α

.
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The diagram below gives the overview of this chapter

Evolution PDEs

Abstract Cauchy System: ut = A u

Check? A gener-

ates a C0-semigroup

Resolvent: R(is)‖R(is)‖ ≤C ‖R(is)‖ ∼ sα

Exponential rate of decay Rate of decay ∼ 1/t
1
α

Change of variable

Hille-Yosida, Lumber Phillips, Stone etc

Borichev-TomilovGearhart-Prüss
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Chapter 2

On the long time behaviour of one dimensional damped

Klein-Gordon equation

2.1 Introduction

In this chapter, the main object of study is the following damped Klein-Gordon equation

utt + γ(x)ut−uxx +u = 0. (x, t) ∈ R×R (2.1)

Where γ(x)ut represents a damping force proportional to the velocity ut . This is a

standard model in the theory. In the case γ(x) = const., one can easily see that the energy

function

E(u) =
1
2
‖u‖2

H1(R)+
1
2
‖ut‖2

L2(R) =
1
2

ˆ
∞

−∞

|ux|2 + |u|2 + |ut |2dx,

has an exponential decay as t → ∞. Thus a natural question to ask is the following: under

what conditions on γ(x)≥ 0, one can still guarantee such exponential (or slower algebraic)

decay. This question was intensely researched in the last ten years. We present a brief (and

definitely incomplete) overview of the recent results.

In this direction, Burq and Joly have proved in [12] exponential rate of decay of the semi-

group under the geometric control condition (GCC) in a sense that there exist T , ε > 0,

such that
´ T

0 γ(x(t))dt ≥ ε along every straight line unit speed trajectory thus extending

the previous work of Bardos, Lebeau, Rauch, and Taylor [3, 4, 26] of compact manifold

to the whole space RN. The region in fig 3 below is an example where GCC satisfied

whereas the region in fig 2 GCC failed to satisfies. Notice that in [12] the authors also
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require additional uniform continuity requirement on the damping coefficient γ in order to

use pseudo-differential calculus. The authors also provide counter examples [12](see fig 3

below) where exponential decay is expected but regularity hypothesis of GCC failed badly.

However this is not in the case of compact manifold where this assumption is automatically

true.

In the absence of geometric control condition, the same authors of [12] also provide

a weaker hypothesis, namely network control condition (NCC) where the damping coeffi-

cient γ(x) is strictly positive on a family of balls whose dilates cover RN under which the

solution of damped wave equation decays with logarithmic rate (still without loss of reg-

ularity). For a fixed periodic damping, Wunsch proved in [29] that without any geometric

condition (see fig 4 below) there is at least a polynomial (certainly not optimal) decay (with

loss of regularity).

Fig 1 Fig 2

Fig 3

Fig 4

One can observe that in the case of compact manifold ( see [1, 11, 27, 24] and references

therein ) the decay rate of the semigroup of damped wave equation highly depends on

the way the damping coefficient γ vanishes. Several sharp result are obtained in different

settings. One should expect same in the case of non compact setting. However, it is not

clear in this case what is the optimal form of a damping coefficient which will ensure
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that one can expect exponential (or algebraic) energy decay to the solution of (2.1). The

purpose of this paper is to find optimal conditions on the damping coefficient γ under which

the exponential decay holds. In fact, we are able to provide a simple to verify necessary

and sufficient condition for such an exponential decay in one spatial dimension.

2.1.1 Semigroup Representations and Main Result

In order to use C0-semigroups theory, we recast the problem (2.1) as an abstract Cauchy

problem. For this we define new variable U = (u,ut)
>, then equation (2.1) can be written

as a dynamical system in the following form, where

Ut = A U, A =

 0 I

∂ 2
x −1 −γ(x)

 (2.2)

The operator A is defined on a Hilbert space H = H1(R)×L2(R), with domain H2(R)×

H1(R).

We can write A as

A = A+B

where

A =

 0 I

∂ 2
x −1 0


and

B =

 0 0

0 −γ(x)


Clearly A is a self-adjoint operator and therefore generates a C0-semigroup. Moreover, B is

a bounded matrix operator since γ(x) is bounded. Since every bounded perturbation of an

operator also generates a C0-semigroup, so A generates a C0-semigroup, say T (t). In fact,

T (t) is a semigroup of contractions (see Proposition 1 below).
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The following is the main result of this chapter.

Theorem 23. Assume γ : R→ R, with γ ≥ 0 is a continuous and bounded function.

The following statements are equivalent

(i)

liminf
N→∞

inf
y∈R

1
N

ˆ y+N

y
γ(z)dz > 0. (2.3)

(ii) 1 ∈ ρ(A ) and there exists λ0 > 0, so that

‖etA (1−A )−1‖H1×L2→H1×L2 ≤Ce−λ0t .

Equivalently,

‖(u(t),ut(t))‖H1×L2 ≤Ce−λ0t‖(u(0),ut(0))‖H2×H1

whenever (u(0),ut(0)) ∈ H2×H1.

(iii) limt→∞ ‖etA ‖H2×H1→H1×L2 = 0.

(iv) For the semigroup generated by (2.1), σ(A )∩ iR= /0.

The proof of the Theorem (23) is based on the semigroups techniques used in [29,

11, 16, 19], in which rather than estimating the norm of the solution directly, we use a

result obtained by Gearhart-Prüss,[15, 25]. We use Theorem 24 which is a formulation

given by Theorem 3 of [18] . More concretely, this result makes it possible to deduce

exponential rate of decay of the energy of the solution by uniformly estimating the norm of

the resolvent (A −λ I)−1 of the generator of the semigroup on the imaginary axis. Some

additional remarks are in order.

Remarks:
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1. The condition (2.3), in the context of γ bounded is equivalent to

liminf
N→∞

inf
y∈R

1
N

ˆ y+N

y
γ

p(z)dz > 0

for any p > 1. This is a consequence of the Hölder’s inequality

1
N

ˆ y+N

y
γ(z)dz ≤

(
1
N

ˆ y+N

y
γ

p(z)dz
) 1

p

≤ ‖γ‖
p−1

p
L∞

(
1
N

ˆ y+N

y
γ(z)dz

) 1
p

2. The implication (ii)⇒ (iii) above is of course trivial. The equivalence, namely the

fact that (iii)⇒ (ii), means that as long as a solution starting with an initial data in

H2×H1 goes to zero in the energy norm H1× L2, then this convergence must be

exponential. In particular, this implies that algebraic convergence is impossible.

However, exponential convergence is possible. This is of course in sharp contrast

with the higher dimensional case, where algebraic convergence is possible [12, 29].

3. The equivalence (iii)⇔ (iv) is a particular case for the bounded semigroup (See

Proposition 1) of the damped wave equation (2.1), of a more general theorem of

Batty-Borichev-Tomilov([5], Theorem 1.4). See Theorem 25 below as well as the

Corollary 2.

The following steps will be taken to complete the proof of Theorem 2.1. First, we show

that our problem is well posed in the sense of C0-semigroups and we describe the spectrum

of the infinitesimal generator. Then we turn to compute the resolvent bound of the semi-

group. The method we use here to find the resolvent bound is very functional analytical.

However, this is the most technical part. At the end, we apply the Gearhart-Prüss Theorem

24 to deduce from the resolvent bound an estimate for the rate of energy decay of smooth

solutions.
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2.1.2 Preliminaries and Notations

In order to fix notations, the Fourier transform will henceforth take the form

f̂ (ξ ) =
ˆ

R
f (x)e−ixξ dx, f (x) = (2π)−1

ˆ
R

f̂ (ξ )eixξ dξ .

Henceforth, the constant C will change from line to line , but will always be independent

of the spectral parameter. The constants Cδ and Cε are different constant with dependence

on δ and ε respectably. These constants also will change line to line throughout the pre-

sentation.

Proposition 1. Let γ ≥ 0 be a bounded function. Then, we have

‖T (t)‖H→H ≤ 1 ∀ t ≥ 0.

Proof. All we need for the proof is to take a sufficiently smooth and decaying initial data

for (2.1), consider its solution at a later time and take a dot product with ut ∈ L2(R). We

obtain,

∂t(|ut‖2
L2 +‖u‖2

L2 +‖ux‖2
L2)+

ˆ
γ|ut |2dx = 0.

It follows that the energy function E(t) = ‖ut(t)‖2
L2 +‖u(t)‖2

L2 +‖ux(t)‖2
L2 is decaying with

time, hence E(t)≤ E(0), or equivalently ‖(u(t),ut(t))‖H ≤ ‖(u(0),ut(0))‖H .

Next, we have the following interesting corollary.

Corollary 1. Let γ ≥ 0 be a continuous function, so that (2.3) does not hold. That is

liminf
N→∞

inf
y∈R

1
N

ˆ y+N

y
γ(z)dz = 0

Then, ‖etA ‖H1×L2→H1×L2 = 1, for all t ≥ 0.
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Proof. By Proposition 1, for T (t) = etA , we have

‖T (t)‖H1×L2→H1×L2 ≤ 1

and T (0) = Id. Clearly ‖T (0)‖= 1. Assume for a contradiction, that for some t0 > 0,

‖T (t0)‖H1×L2→H1×L2 = q < 1.

From the equivalent condition (iii) of Theorem 23 above, it follows that

limsup
t→∞

‖T (t)(1−A )−1‖H1×L2→H1×L2 ≥ c0 > 0.

Say, tn→ ∞, so that

‖T (tn)(1−A )−1‖H1×L2→H1×L2 ≥
c0

2
.

Now,

c0

2
≤ ‖T (tn)(1−A )−1‖H1×L2→H1×L2

≤ ‖T (tn)‖H1×L2→H1×L2‖(1−A )−1‖H1×L2→H1×L2

≤ q[
tn
t0
]‖(1−A )−1‖H1×L2→H1×L2.

Since clearly, limn q[
tn
t0
]
= 0, this is a contradiction.

The following result will be one of the main technical tools that allows us to deduce

exponential decay from estimates on the resolvent.

Theorem 24 (Gearhart-Prüss). Let etA be a C0-semigroup in a Hilbert space X and assume

that there exists a positive constant M > 0 such that ‖etA ‖≤M for all t ≥ 0. Let µ ∈ ρ(A ),

then the following are equivalent.
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(i) There exists λ0 > 0 and C, so that

‖T (t)(µ−A )−1‖B(X) ≤Ce−λ0t

(ii) iR⊂ ρ(A ) and

sup
s∈R
‖(A − isI)−1‖B(X) <+∞.

Another result, which will be useful for us is the following.

Theorem 25 (Batty-Borichev-Tomilov, [5], Theorem 1.4). Let etA be a bounded C0-semigroup

in a Banach space X. Then for µ ∈ ρ(A ), the following are equivalent

(i) σ(A )∩ iR= /0

(ii) limt→∞ ‖T (t)(µ−A )−1‖B(X) = 0.

Note that in the case of the damped wave equation semigroup (2.2), say with µ = 1,

(1−A )−1 : H1×L2→H2×H1 and this map is onto. Thus, an application of Theorem 25

to this particular case yields the following

Corollary 2. For the semigroup T (t) of damped wave equation (2.2), the following are

equivalent

(i) σ(A )∩ iR= /0

(ii) limt→∞ ‖T (t)‖H2×H1→H1×L2 = 0
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2.1.3 Spectrum of A

We begin by (formally) computing the resolvent of the operator A as follows:

Let u = (u1,u2)
> and f = ( f1, f2)

> then

(isI−A )u = f

This is equivalent to

isu1−u2 = f1

(−∂
2
x +1)u1 +(is+ γ(x))u2 = f2

or

u1 = (−∂
2
x +1+ isγ(x)− s2)−1 ((is+ γ(x)) f1 + f2)

u2 = (−∂
2
x +1+ isγ(x)− s2)−1 (is f2− (−∂

2
x +1) f1

)
Hence, if we introduce the resolvent operator R(is) := (−∂ 2

x + 1+ isγ(x)− s2)−1, then

resolvent operator of A is denoted by R(is,A ) and is given by

R(is,A ) =


R(is)(is+ γ(x)) R(is)

R(is)(is)(γ(x)+ is)− I R(is)(is)

 . (2.4)

From this, we see that in order to study R(is,A ) it suffices to understand R(is). In fact, by

inspecting the form of the resolvent (2.4), we have the following.
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Lemma 3. The following are equivalent

(i) is ∈ ρ(A )

(ii) 0 ∈ ρ(−∂ 2
x +1+ isγ(x)− s2), that is

R(is) = (−∂
2
x +1+ isγ(x)− s2)−1 : L2→ L2

and in addition, R(is) : L2→ H1.

In fact, is is an eigenvalue of A if and only if 0 is an eigenvalue of−∂ 2
x +1+ isγ(x)−

s2.

Henceforth, we denote As := (−∂ 2
x +1+ isγ− s2).

Note: In this lemma, we consider s fixed. In particular, we are not concerned with the

behavior of the various norms as |s| → ∞. This is a much more subtle issue, that we will

deal with later.

According to Lemma 3, the set σ(A )∩ iR can be characterized as those is,s ∈ R, for

which there exists gn ∈ H2(R) with ‖gn‖H2 = 1, so that

lim
n
‖Asgn‖L2 = 0.

The purely imaginary spectrum σ(A )∩ iR (if any!), naturally consists of two subsets -

eigenvalues and the rest, which we call essential spectrum. Here, we depart from the usual

definition, where eigenvalues of infinite multiplicities are considered as part of the essential

spectrum. We will see though, that since eigenvalues do not appear in our setup, at least on

the important set σ(A )∩ iR, this is not consequential. Namely, is is an eigenvalue, if there

exists gs 6= 0, gs ∈ H2(R), so that Asgs = 0.

Proposition 2. Let γ ≥ 0,γ 6= 0 be a continuous function. Then,

(i) A has no purely imaginary eigenvalues.
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(ii) i ∈ σ(A ) if and only if σ(A )⊇ {iλ ,λ ∈ R : |λ | ≥ 1}.

Finally, if there is δ > 0, so that γ(x)≥ δ > 0, then σ(A )∩ iR= /0.

Proof. We show that there are no eigenvalues. First, we rule out the case that s = 0.

For s = 0, by Lemma 3, 0 will be an eigenvalue of (−∂ 2
x + 1). If so, there exist g 6= 0

such that (−∂ 2
x +1)g = 0, which is impossible -just take a dot product with g to conclude

‖g′‖2
L2 +‖g‖2

L2 = 0, so g = 0.

So, take s 6= 0. Assume that there is an eigenvalue is , s 6= 0 of A . Again by Lemma 3, 0

will be an eigenvalue of (−∂ 2
x +1+ isγ− s2). Let f = f1+ i f2, f 6= 0 be the corresponding

eigenfunction of eigenvalue 0. Then, taking real and imaginary part of the equation

(−∂ 2
x +1+ isγ− s2) f = 0, we obtain

∣∣∣∣∣∣∣
(−∂ 2

x +(1− s2)) f1− sγ f2 = 0,

(−∂ 2
x +(1− s2)) f2 + sγ f1 = 0.

Taking dot products with f2 and f1 respectively and subtracting, we obtain

ˆ
R

γ(x)( f 2
1 + f 2

2 )dx = 0. (2.5)

Recall γ ≥ 0. Since γ 6= 0, let (a,b) be an interval on which γ(x) > 0. Then, (2.5)

implies that f1(x) = f2(x) = 0 for x ∈ (a,b). By the uniqueness theorem for second order

ODE’s, f1 = f2 = 0 for the intervals (−∞,a),(b,∞), so f1 = f2 = 0, contradiction.

Clearly, if σ(A ) ⊇ {iλ ,λ ∈ R : |λ | ≥ 1}, it follows that i ∈ σ(A ). Now, assume that

i ∈ σ(A ). It follows that for a sequence gn with ‖gn‖H2 = 1, we have

(−∂
2
x + iγ)gn = fn,
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where ‖ fn‖L2 → 0. Taking dot product with gn and then imaginary part yields

0≤
ˆ

γ|gn|2 = ℑ〈 fn,gn〉 ≤ ‖ fn‖L2‖gn‖L2 → 0.

It follows that ‖√γgn‖2
L2 =

´
γ|gn|2 → 0. Let f̃n := fn− iγgn. Clearly, ‖ f̃n‖L2 → 0 and

−g′′n = f̃n. Note that since ‖g′′n‖L2 = ‖ f̃n‖L2 → 0, we have

1 = ‖gn‖H2 ∼ ‖g′′n‖L2 +‖gn‖L2,

whence liminfn ‖gn‖L2 > 0.

Now, let s ∈ R such that |s| > 1. Consider µ :=
√

s2−1 > 0. Introduce un := eiµxgn,

so liminfn ‖un‖L2 = liminfn ‖gn‖L2 > 0. Compute

Asun = (−∂
2
x + isγ−µ

2)(gneiµx) = eiµx(−g′′n−2iµg′n + isγgn)

We have

‖Asun‖L2 ≤ ‖g′′n‖L2 +2µ‖g′n‖L2 + |s|‖γgn‖L2

Since all of the quantities on the right were shown to converge to zero, it follows that

limn ‖Asun‖L2 = 0, while liminfn ‖un‖L2 > 0. Thus, is ∈ σ(A ) for all s ∈ R such that

|s|> 1.

For the last part, assume that γ(x) ≥ δ and yet is is in σ(A ). We saw s = 0 is not an

option. So, s 6= 0. That is

(−∂
2
x +1− s2 + isγ)gn = fn. (2.6)

Taking dot product with gn and then imaginary parts yields

|s|
ˆ

γ|gn|2dx≤ |〈 fn,gn〉| ≤ ‖ fn‖‖gn‖.
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It follows that

δ |s|
ˆ
|gn|2dx≤ ‖ fn‖‖gn‖→ 0,

so ‖gn‖→ 0. But from the equation (2.6),

‖g′′n‖L2 ≤C(|s2−1|‖gn‖+‖gn‖+‖ fn‖)→ 0.

So, it follows that ‖gn‖H2 → 0, a contradiction.

We now provide a sufficient condition for σ(A )∩ iR 6= /0, which turns out, in a round-

about way, to be necessary as well.

Proposition 3. Let γ ≥ 0 be a bounded and continuous function, not identically zero. As-

sume that (2.3) does not hold, that is

liminf
N→∞

inf
y∈R

1
N

ˆ y+N

y
γ(z)dz = 0. (2.7)

Then, σ(A )⊇ {iλ ,λ ∈ R : |λ | ≥ 1}.

Proof. By Proposition 2, it suffices to check that i ∈ σ(A ). It will be an element of the

essential spectrum, since as we have shown there are no eigenvalues. By (2.7), we can find

a sequences y j ∈ R, N j→ ∞, so that

lim
j

1
N j

ˆ y j+N j

y j

γ(z)dz = 0.

Consider Ψ 6= 0∈C∞
0 (R) with 0≤Ψ(z)≤ 1, so that Ψ(z) = 0 for z< 0 and Ψ(z) = 0,z> 1.

Let ε j := N−1
j → 0 and take u j so that

u j(x) :=
√

ε jΨ(ε j(x− y j)).
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Clearly, ‖u′′j‖L2 → 0, while ‖u j‖L2 = ‖Ψ‖L2 = O(1).

Recall As = (−∂ 2
x +1+ isγ− s2). We compute the norm of As for s = 1 as follows

‖A1(u j)‖L2 = ‖(−∂
2
x + iγ)u j‖L2 ≤C(‖u′′j‖L2 +‖γu j‖L2).

We have already seen ‖u′′j‖L2 → 0. For the other term,

‖γu j‖2
L2 ≤ ‖γ‖L∞ε j

ˆ
γ(x)|Ψ(ε j(x− y j))|2dx≤ ‖γ‖L∞

1
N j

ˆ y j+N j

y j

γ(z)dz.

It follows that lim j ‖γu j‖L2 = 0, whence Proposition 3 is established.

2.1.4 The Analysis of Control Hypothesis

Let us analyze (2.3) in a more quantitative way. It means that there exists κγ and Nγ , so

that for all N > Nγ and for all y ∈ R, we have

1
N

ˆ y+N

y
γ(z)dz≥ κγ . (2.8)

We have the following technical lemma, which will be useful later on.

Lemma 4. Let γ̃ ≥ γ ≥ 0 are continuous functions, so that γ satisfies (2.8). Then, for every

x,y ∈ R

exp

(
−
ˆ max(x,y)

min(x,y)
γ̃(z)dz

)
≤ e2Nγ κγ e−κγ |x−y|. (2.9)

Proof. Consider the case 0 ≤ x < y. Clearly, the case x < y < 0 follows by symmetry

and then the case x < 0 < y follows by applying the previous two cases to x < 0 = y and

0 = x < y.
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We bound
´ y

x γ̃(z)dz≥ 0, if y− x < Nγ . When y− x≥ Nγ , we have by (2.8),

ˆ y

x
γ̃(z)dz≥ κγ(y− x).

Overall,

exp(−
ˆ max(x,y)

min(x,y)
γ̃(z)dz) ≤

 1 y− x < Nγ

exp(−κγ(y− x)) y− x≥ Nγ

≤ eNγ κγ e−κγ (y−x).

2.2 Proof of Theorem 23

We stat with a technical result that gives bounds for the resolvent, under the appropriate

condition (2.3). For all practical purposes, this is essentially the implication (i)⇒ (ii) of

Theorem 23. For technical reasons, however, we will need to assume (as a preliminary

step) that the spectrum does not intersect the imaginary access, that is σ(A )∩ iR = /0, so

that the various quantities are well-defined. We remove this assumption later - in fact, we

show, in a roundabout way, that indeed the property σ(A )∩ iR = /0 follows from (2.3)

alone.

2.2.1 The main technical step

Proposition 4. Let γ(x) ≥ 0 is a positive, continuous function, which satisfies (2.3) or

equivalently (2.9). In addition, assume that σ(A )∩ iR = /0. Accordingly, let s ∈ R, f ∈

L2(R) and u ∈ L2(R) satisfy the resolvent equation
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(−∂
2
x +1+ isγ(x)− s2)u = f . (2.10)

Then for every δ > 0, there is a constant Cδ ,κ,N , so that for all s ∈ R such that |s|2 ∈

[0,1−δ )∪ (1+δ ,∞), we have

‖u‖L2(R) ≤
Cδ ,κ,N

1+ |s|
‖ f‖L2(R), (2.11)

where κ,N are the quantitative bounds of γ from (2.8). The constants N and κ have sub-

script γ , however we will remove this in the rest of the presentation

Proof. We begin by pairing the equation (2.10) with u and taking the real part, we obtain

by using Cauchy-Schwartz, for s2 < 1−δ

‖u′‖2
L2 +(1− s2)‖u‖2

L2 = ℜ〈 f ,u〉 ≤Cs‖ f‖2
L2(R)+

1− s2

2
‖u‖2

L2.

It follows that

‖u‖2
H1(R) ≤Cδ‖ f‖2

L2(R),

Note that from this proof, the constant Cδ may blow up as δ → 0.

We now consider the case |s|2 ≥ 1+ δ . We only consider the case when s is positive,

however the case for negative s can be obtain by changing s to −s.

Let 0 < ε << 1 be a small enough real, to be selected later. Introduce µs :=
√

s2−1≥
√

δ > 0. Clearly, for cδ |s| ≤ µs ≤Cδ |s|. Henceforth, all constants will implicitly depend

on δ , but we will omit this dependence.

We introduce the operators P∼s, P∼−s and P∼(s,−s) through Fourier transformation as
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follows

P̂∼s( f )(ξ ) = f̂ (ξ ) ψ

(
ξ −µs

ε

)
̂P∼(−s)( f )(ξ ) = f̂ (ξ ) ψ

(
ξ +µs

ε

)
,

P6∼(s,−s)( f )(ξ ) = (Id−P∼s−P∼(−s)) f .

where ψ ∈C∞
0 (R) is an even function ψ(z) = 1 for |z|< 1 and ψ(z) = 0, |z|> 2.

Further, we use the simple notation for P∼su(x) := u∼s(x), P6∼su(x) := u 6∼s(x) and

P6∼(s,−s)(u(x)) := u 6∼(s,−s)(x).

Next, taking dot product of (2.10) with u and taking imaginary parts and Cauchy-

Schwartz’s inequality, yields the following estimates

s
ˆ
R

γ(x)|u|2dx≤ ‖ f‖L2(R)‖u‖L2(R).

Thus, we can conclude

‖
√

γu‖L2 ≤ ε‖u‖L2 +Cε

‖ f‖
s

(2.12)

where Cε is a constant which depends on ε .

Next, we apply P6∼(s,−s) on both side of the equation (2.10) to get

(−∂
2
x )u 6∼(s,−s)(x)−µ

2
s u6∼(s,−s)(x) =−is(γu)6∼(s,−s)(x)+ f 6∼(s,−s)(x).

Applying Fourier Transformation on both sides and using that ξ is away from µs and −µs,

we get

û 6∼(s,−s)(ξ ) =
−is

(ξ 2−µ2
s )

(
(̂γu)6∼(s,−s)(ξ )

)
+

1
ξ 2−µ2

s
f̂ 6∼(s,−s)(ξ ).

On the support of û 6∼(s,−s)(ξ ), we clearly have | −is
(ξ 2−µ2

s )
| ≤C, for some constant C. This
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gives the following estimate,

‖u 6∼(s,−s)‖L2 ≤ C
(
‖(γu)6∼(s,−s)‖L2 +

‖ f 6∼(s,−s)‖L2

s

)
≤ C

(
‖γu‖L2 +

‖ f‖L2

s

)

Then by (2.12), together with the fact that γ ≤C
√

γ a.e, we get

‖u6∼(s,−s)‖L2 ≤ ε‖u‖L2 +Cε

‖ f‖L2

s
. (2.13)

Next, we project P∼s on both sides of the equation (2.10). Adding and subtracting iµsγu∼s(x)

we get

−∂
2
x u∼s(x)+ iµsγ(x)u∼s(x)−µ

2
s u∼s(x) = f∼s(x)− is(γu)∼s(x)+ iµsγu∼s(x)

Let f = eiµsxF and u = eiµsxU and observe that P∼s(eiµsxg) = eiµsxP∼1(g). We get

−∂
2
x U∼1(x)−2iµs

d
dx

U∼1(x)+ iµsγU∼1(x) = F∼1(x)− is(γU)∼1 + iµsγU∼1(x).

Hence, dividing by −2iµs,

d
dx

(U∼1(x))−
γ(x)

2
U∼1(x) =

i
2µs

∂
2
x U∼1(x)+

i
2µs

F∼1(x)+
s

2µs
(γU)∼1(x)

−1
2

γ(x)U∼1(x).

Using the integrating factor e−
1
2
´ x

0 γ(y)dy, we solve in the form

U∼1(x) =−
ˆ

∞

x
e

1
2
´ x

y γ(z)dzG(y) dy =−T (G),
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where G = i
2µs

∂ 2
x U∼1 +

i
2µs

F∼1 +
s

2µs
(γU)∼1− 1

2γU∼1 and T is an operator in the form

T ( f )(x) =
ˆ

∞

x
e

1
2
´ x

y γ(z)dz f (y)dy.

Note that by the bound (2.9), we have that

|T ( f )(x)| ≤
ˆ

∞

x
e2Nκe−κ|x−y|| f (y)|dy,

whence

‖T f‖L2 ≤ ‖e2Nκe−κ|·|‖L1‖ f‖L2 =
2e2Nκ

κ
‖ f‖L2.

In particular, the operator norm ‖T‖L2→L2 depends only on N,κ .

Now, since U∼1(x) = e−iµsxu∼s(x), rewrite

γU∼1(x) = e−iµsxγu∼s(x) = e−iµsx((γu)(x)− γ(x)u∼−s(x)− γ(x)u 6∼(s,−s)(x)).

Thus, introduce the effective right hand side

G1 :=
i

2µs
∂

2
x U∼1 +

i
2µs

F∼1 +
s

2µs
(γU)∼1 + e−iµsx(γu− γu6∼(s,−s)),

so that u∼s(x) and u∼−s(x) are now in the relation

u∼s(x)−
1
2

eiµsxT (e−iµsxγ(x)u∼−s(x)) = eiµsxT (G1). (2.14)

Multiplying the last equation by
√

γ and by introducing a new linear operator Ts f :=

1
2eiµsx√γT (e−iµsx√γ f ), we can record the last relation as follows

√
γu∼s−Ts(

√
γu∼−s) = eiµsx√γT (G1). (2.15)

Similar arguments apply to u∼−s. More concretely, projecting P∼(−s) on both sides to the
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equation (2.10), and adding iµsγu∼(−s), we get

−∂
2
x u∼(−s)(x)+ iµsγ(x)u∼(−s)(x)−µ

2
s u∼(−s)(x) =−is(γu)∼(−s)(x) (2.16)

+iµsγu∼(−s)(x)+ f∼(−s)(x).

Letting now f = e−iµsxF̄ and u = e−iµsxŪ and observing that

P∼(−s)(e
−iµsxg) = e−iµsxP∼1(g).

By (2.16), we obtain the equation

d
dx

Ū∼1(x)+
γ(x)

2
Ū∼1(x) =−

i
2µs

∂
2
x Ū∼1(x)−

s
2µs

(γ(x)Ū)∼1(x)

+
1
2

γ(x)Ū∼1(x)−
i

2µs
F̄∼1(x)

With the help of the integrating factor e
1
2
´ x

0 γ(z)dz, we solve the equation (by integrating from

−∞ to x) as follows

Ū∼1(x) =
ˆ x

−∞

e
1
2
´ y

x γ(z)dzD(y)dy = T ∗(D), (2.17)

where the right hand side is D =− i
2µs

∂ 2
x Ū∼1− s

2µs
(γ(x)Ū)∼1 +

1
2γŪ∼1− i

2µs
F̄∼1. Again,

γŪ∼1(x) = eiµsxγu∼−s(x) = eiµsx(γ(x)u(x)− γ(x)u∼s(x)− γ(x)u 6∼(s,−s)(x))

The effective right hand side becomes

D1 :=− i
2µs

∂
2
x Ū∼1−

s
2µs

(γ(x)Ū)∼1−
i

2µs
F̄∼1 +

1
2

eiµsxγu− γu 6∼(s,−s))
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and we obtain the following reformulation of (2.17),

u∼−s +
1
2

e−iµsxT ∗(eiµsxγu∼s) = e−iµsxT ∗(D1). (2.18)

Again, a multiplication with
√

γ resolves (2.18) to

√
γu∼−s +T ∗s (

√
γu∼s) = e−iµsx√γT ∗(D1). (2.19)

Where T ∗s f := 1
2e−iµsx√γT ∗(eiµsx√γ f )

Combining (2.15) and (2.19) allows us to control
√

γu∼±s and ultimately u∼±s. Indeed,

√
γu∼s = Ts(

√
γu∼−s)+ eiµsx√γT (G1)

= Ts(−T ∗s (
√

γu∼s)+ e−iµsx√γT ∗(D1))+ eiµsx√γT (G1)

whence we obtain the following operator equation for
√

γu∼s

(Id +TsT ∗s )(
√

γu∼s) = Ts(e−isx√
γT ∗(D1))+ eisx√

γT (G1).

Since (Id +TsT ∗s ) is a symmetric operator, (Id +TsT ∗s ) ≥ Id, we have that it is invertible

(in fact, ‖(Id +TsT ∗s )
−1‖L2→L2 ≤ 1),

‖
√

γu∼s‖L2 ≤ ‖Ts(e−iµsx√γT ∗(D1))+ eiµsx√γT (G1)‖L2 (2.20)

≤ C(‖G1‖+‖D1‖),

where in the last step, we have used that T,Ts, together with their adjoints are bounded on

L2, with bounds depending upon κ,N only.

So, it remains to find suitable bounds for ‖G1‖L2,‖D1‖L2 . We just provide the bounds
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for ‖G1‖, as the bounds for ‖D1‖ proceed in an identical way. Clearly,

‖ i
2µs

F∼1‖L2 ≤
C
s
‖F‖L2 =

C
s
‖ f‖L2.

By Plancherel’s

‖ i
2µs

∂
2
x U∼1‖L2 ≤

C
s
‖ξ 2Û∼1‖L2 ≤

C
s
‖ξ 2Û(ξ )ψ

(
ξ

ε

)
‖L2 ≤

Cε2

s
‖U∼1‖L2

≤ ε‖u∼s‖L2(R),

provided C
√

2ε ≤ 1. Next, by (2.12),

‖1
2
(γU)∼1 + e−iµsxγu‖L2 ≤ ‖γU‖L2 +‖γu‖= 2‖γu‖L2 ≤ ε‖u‖L2 +Cε

‖ f‖
s

.

Finally, by (2.13),

‖γu 6∼(s,−s)‖L2 ≤C‖u 6∼(s,−s)‖L2 ≤ ε‖u‖L2 +Cε

‖ f‖
s

.

Altogether, we obtain

‖G1‖+‖D1‖ ≤Cε‖u‖L2 +Cε

‖ f‖
s

. (2.21)

Based on (2.20) and (2.21), we obtain the following estimate

‖
√

γu∼s‖L2 ≤Cε‖u‖L2 +Cε

‖ f‖
s

.

Clearly, the same estimate holds for ‖√γu∼−s‖L2 .

In order to get estimates for ‖u∼s‖L2,‖u∼−s‖L2 , one can now use the forms (2.14) and
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(2.18), to deduce

‖u∼s‖+‖u∼−s‖ ≤C(‖
√

γu∼−s‖+‖
√

γu∼s‖+‖G1‖+‖D1‖)

≤Cε‖u‖L2 +Cε

‖ f‖
s

.

Finally, with some absolute constant C (and with some Cε ∼ ε −1), we have

‖u‖L2 ≤ ‖u∼s‖+‖u∼−s‖+‖u 6∼(s,−s)‖ ≤Cε‖u‖L2 +Cε

‖ f‖
s

.

Clearly, a choice of ε such that Cε < 1
2 , we obtain the desired bound (2.11).

Next, we need an estimate for L2 → H1 bounds of the resolvent (−∂ 2
x + 1+ isγ(x)−

s2)−1.

Proposition 5. Let γ ≥ 0,γ 6= 0 be a continuous function, that satisfies (2.9), with constants

κ,N. In addition, assume σ(A )∩ iR= /0.

Let δ > 0 and |s|2 ∈ (0,1−δ )∪(1+δ ,∞). Recalling R(is)= (−∂ 2
x +1+ isγ(x)−s2)−1,

we have the following estimates

‖R(is)‖L2→H1 ≤Cδ ,κ,N (2.22)

‖R(is)‖H−1→L2 ≤Cδ ,κ,N

As a consequence,

‖(is−A )−1‖H1×L2→H1×L2 ≤Cδ ,κ,N . (2.23)

Proof. Let u ∈ H1(R) be the solution of (2.24)

(−∂
2
x +1+ isγ(x)− s2)u = f (2.24)
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for f ∈ L2.

Taking dot product of (2.24) with u yields,

〈−∂
2
x u,u〉+(1− s2)〈u,u〉 ≤ ‖ f‖L2‖u‖L2

Hence,

‖u‖2
H1 ≤ ‖ f‖L2‖u‖L2 +(s2−1)‖u‖2

L2

By Proposition 4, we get

‖u‖2
H1 ≤ Cδ ,κ,N‖ f‖L2

‖ f‖L2(R2)

1+ |s|
+Cδ ,κ,N

(s2−1)
(1+ |s|)2‖ f‖2

L2(R).

This proves

‖R(is)‖L2→H1 ≤Cδ ,κ,N .

Hence by duality

‖R(is)‖H−1→L2 ≤Cδ ,κ,N . (2.25)

We now focus on (2.23), that is we show that the resolvent R(is,A ) of A is bounded

in H1(R)×L2(R). We estimate the norm of R(is,A ) as follows,

∥∥∥∥∥∥∥R(is,A )

 f

g


∥∥∥∥∥∥∥

H1×L2

= ‖R(is)(is+ γ(x)) f‖H1 +‖R(is)g‖H1

+ ‖(R(is)(is)(γ(x)+ is)− I) f‖L2 +‖R(is)(is)g‖L2

This implies that to estimate the norm of the resolvent operator R(is,A ) as an operator on

H1×L2, we need to obtain the following bounds

‖R(is)‖= O(1) : L2→ H1,
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‖R(is)(is+ γ(x))‖= O(1) : H1→ H1,

‖sR(is)‖= O(1) : L2→ L2,

‖R(is)(is)(γ(x)+ is)− I)‖= O(1) : H1→ L2.

The estimates for sR(is) and R(is) are in (2.11) and (2.22) respectively. In order to

estimate

‖R(is)(is)[γ(x)+ is)]− I‖H1→L2,

we use that

R(is)(is)[γ(x)+ is)]− I = R(is)(∂ 2
x −1),

and hence, combining (2.25) together with the fact that ∂ 2
x : H1→ H−1 is continuous. For

f ∈ H1(R), we have

‖(R(is)(is)[γ(x)+ is)]− I) f‖L2 = ‖R(is)(∂ 2
x −1) f‖L2 ≤C‖(1−∂

2
x ) f‖H−1

= C‖ f‖H1

This proves:

R(is)(is)(γ(x)+ is)− I = O(1) : H1→ L2 (2.26)

It remains to estimate the norm of

R(is)(is+ γ(x)) : H1→ H1.
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We rewrite the above operator as

R(is)(is+ γ(x)) =
1
is
[1+R(is)(∂ 2

x −1)] (2.27)

If f ∈ H1 and ũ = R(is)(∂ 2
x −1) f ∈ H1, then

(−∂
2
x +1+ isγ(x)− s2)ũ = (∂ 2

x −1) f ∈ H−1 (2.28)

Pair the equation (2.28) with ũ and take the real part to get,

‖∂xũ‖2
L2− (s2−1)‖ũ‖2

L2 ≤ ‖(−∂
2
x +1) f‖H−1‖ũ‖H1 ≤ ‖ f‖H1‖ũ‖H1.

By Cauchy Schwartz inequality, we get

‖ũ‖2
H1 ≤ 2(s2−1)‖ũ‖2

L2 +‖ f‖2
H1. (2.29)

Next, when we estimate the L2- norm of ũ = R(is)(∂ 2
x −1) f , we used (2.26) to get

‖R(is)(∂ 2
x −1) f‖L2 ≤C‖ f‖H1 (2.30)

Combining the estimates (2.29) and (2.30) proves that

R(is)(∂ 2
x −1) = O(|s|) : H1(R)→ H1(R).

Then by the equation (2.27), we have

‖R(is)(is+ γ(x)) f‖L2 ≤C‖ f‖H1

Hence, (is−A )−1 = O(1) : H1×L2→ H1×L2.
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2.2.2 Proof of Theorem 23: the implication (i)⇒ (ii)

Take any γ ≥ 0, a continuous, bounded and non-negative function, that satisfies (2.3). We

would now like to prove exponential decay of the semigroup, as required in (ii) of Theo-

rem 23. This is basically what Proposition 4 does, except that it in addition also assumes

σ(A )∩ iR= /0. This eventually turns out to be the case, but we have not proved that yet.

Instead, we proceed by an approximating argument. More specifically, fix ε > 0 and

consider γε(x) := γ(x)+ε and the corresponding operator Aε . We immediately observe two

things. First, since γε ≥ ε > 0, we have by Proposition 2, that σ(Aε)∩ iR= /0. Second, γε

satisfies (2.8) with the constants κ,N of γ . Hence, γε satisfies (2.9). Thus, we are ready to

apply Proposition 4 to γε . For a fixed δ > 0 and |s|2 ∈ (1−δ ,1+δ ), we have the estimate

‖(−∂
2
x +1+ is(γ + ε)− s2)−1‖L2→L2 ≤

Cδ ,κ,N

1+ |s|
. (2.31)

In particular, note that the above bound is independent upon the parameter ε > 0. One can

now take ε → 0+ in order to obtain the operator (−∂ 2
x +1+ isγ− s2)−1, together with the

desired bounds on its L2→ L2 operator norm. This could be justifies in at least two ways.

One is to show that for a fixed s, the family {(−∂ 2
x +1+ is(γ +ε)−s2)−1}ε>0 is Cauchy in

B(L2), by using the resolvent identity. More or less equivalently, we can directly construct

(−∂ 2
x +1+ isγ− s2)−1 by the resolvent identity and the Neumann theorem as follows

(−∂
2
x +1+ isγ− s2)−1 :=

(−∂
2
x +1+ is(γ + ε)− s2)−1(Id− isε(−∂

2
x +1+ is(γ + ε)− s2)−1)−1.

Indeed, in the formula above, the first inverse exists by (2.31), while the second inverse

exists by von Neumann for all small enough ε , since

‖isε(−∂
2
x +1+ is(γ + ε)− s2)−1‖L2→L2 ≤C|s|ε

Cδ ,κ,N

1+ |s|
<

1
2
.
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Now that we have constructed (−∂ 2
x +1+ isγ− s2)−1 for all s ∈ R such that |s|2 ∈ (0,1−

δ )∪ (1+δ ,∞), we deduce the bound

‖(−∂
2
x +1+ isγ− s2)−1‖L2→L2 ≤

Cδ ,κ,N

1+ |s|
, (2.32)

by simply letting ε → 0+ in (2.31). In addition, this shows that {iλ : |λ | 6= 1} ⊂ ρ(A ),

that is the whole imaginary line, with the possible exception of ±i are in the resolvent set

of A .

Now, we show that ±i also belong to the resolvent set of A . Indeed, otherwise, we

will have by Proposition 2, that σ(A )⊃ {iλ : |λ |> 1}, which is a contradiction. Thus, we

have established that ±i ∈ ρ(A ) or

‖(−∂
2
x ± iγ)−1‖L2→L2 ≤C.

Next, we show that (2.32) holds in a neighborhood of |s| = 1 as well. We have by the

resolvent identity

(−∂
2
x +1+ isγ− s2)−1− (−∂

2
x + iγ)−1

= (−∂
2
x +1+ isγ− s2)−1[s2−1+ iγ(1− s)](−∂

2
x + iγ)−1,

whence we can represent

(−∂
2
x +1+ isγ− s2)−1 =

(−∂
2
x + iγ)−1(Id− (s−1)(s+1− iγ)(−∂

2
x + iγ)−1)−1.

Clearly, for s ∈R with |s−1|<< 1, say (10+‖γ‖L∞)|s−1|‖(−∂ 2
x + iγ)−1‖L2→L2 ≤ 1

2 , the
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right-hand side is a well-defined operator and in addition

‖(−∂
2
x +1+ isγ− s2)−1‖L2→L2 ≤ 2‖(−∂

2
x + iγ)−1‖L2→L2 .

Thus, s→‖(−∂ 2
x +1+ isγ− s2)−1‖L2→L2 is bounded in a neighborhood of s = 1 and sim-

ilarly, in a neighborhood of s = −1. In the same fashion as in Proposition 5, we conclude

that

sup
s∈R
‖(is−A )−1‖H1×L2→H1×L2 ≤C < ∞.

By the Gearhart-Prüss theorem, ‖T (t)(1−A )−1‖H1×L2→H1×L2 ≤Ce−λ0t, for some λ0 > 0.

Since, (1−A )−1 : H1×L2→ H2×H1 and it is onto, we conclude that

‖T (t)g‖H1×L2 ≤Ce−λ0t‖g‖H2×H1,

as stated.

Next, the implication (ii)⇒ (iii) is of course trivial. The equivalence of (iii) and (iv)

is the essence of Theorem 25, see also Corollary 2. Finally, the implication (iv)⇒ (i) is

contained in Proposition 3. This finishes the proof of Theorem 23.

56



Chapter 3

On the energy decay rates for the 1D damped fractional

Klein-Gordon equation

In this chapter, we consider the fractional Klein-Gordon equation in one spatial dimension,

subjected to a damping coefficient, which is non-trivial and periodic, or more generally

strictly positive on a periodic set. We show that the energy of the solution decays at the

polynomial rate O(t−
s

4−2s ) for 0 < s < 2 and at some exponential rate when s ≥ 2. Our

approach is based on the asymptotic theory of C0 semigroups in which one can relate the

decay rate of the energy in terms of the resolvent growth of the semigroup generator. The

main technical result is a new observability estimate for the fractional Laplacian, which

may be of independent interest.

3.1 Introduction

In this chapter, we consider the energy decay of the following fractional damped Klein-

Gordon equation

utt + γ(x)ut +(−∂xx)
s/2u+mu = 0, (t,x) ∈ R+×R, (3.1)

where m> 0 and γ(x)≥ 0 is bounded below by a positive constant on a 2π-periodic set. The

parameter s refers to the fractional order of the spatial derivative and describes the fractional

nature of the equation. Here and throughout, u(x, t) is generally a complex-valued function,
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and the pseudo-differential operator (−∂xx)
s/2 is defined through its Fourier multiplier

̂(−∂xx)s/2 f (ξ ) = |ξ |s f̂ (ξ ), ξ ∈ R.

The function γ(x) denotes the damping force, which travels with velocity ut and causes the

loss of energy decay in the system. This energy decay is the main object of study in this

article.

For the case s = 2, the operator −∂xx denotes the positive Laplacian. In this case, (3.1)

reduces to the well know classical Damped Klein-Gordon equation. It has been studied

extensively in the last decade by many authors.

We show that for low order fractional power 0 < s < 2, the rate of decay is algebraic.

This is in sharp contrast with the case s≥ 2, where the solution has exponential rate of de-

cay. So, it appears that s= 2 is exactly a threshold value, which separates the algebraic from

exponential rate of decay, but unfortunately our method does not address the optimality of

this exponent. This remains an open question for future investigations.

The main result of this chapter is as follow.

Theorem 26. Let m > 0 and 0≤ γ(x) ∈ L∞ and that there exist ε > 0 and a 2πZ- invariant

open set Ω⊂ R such that γ(x)≥ ε for a.e. x ∈Ω. Then there exists C > 0 so that

• for 0 < s < 2, we have

‖(u(t),ut(t))‖Hs/2×L2 ≤
C

1+ t
s

4−2s
‖(u(0),ut(0))‖Hs×Hs/2. (3.2)

• for s≥ 2, there exists λ0 > 0, so that

‖(u(t),ut(t))‖Hs/2×L2 ≤Ce−λ0t‖(u(0),ut(0))‖Hs/2×L2. (3.3)

The proof of Theorem 26 is based on the semigroup technique used in [29, 11, 16, 19],
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in which rather than estimating norm of the solution directly, we used the following two

classical results. Gearhart-Prüss Theorem [15, 25] and Borichev-Tomilov Theorem in [9]

make it possible to deduce sharp rates of energy decay from appropriate growth bounds on

the norm of the resolvent of the semigroup‘s generator.

3.2 Observability Estimates

We start with a few preliminary notations.

3.2.1 Function spaces, Fourier transforms, symbols

The spaces Lp(R),1 ≤ p ≤ ∞ are defined in a standard way. The Fourier transform for us

will be given by

f̂ (ξ ) =
1√
2π

ˆ
∞

−∞

f (x)e−ixξ dx, f (x) =
1√
2π

ˆ
∞

−∞

f̂ (ξ )eixξ dξ .

The operator −∂xx can be realized as −̂∂xx f (ξ ) = ξ 2 f̂ (ξ ). For any s > 0, one can write

̂(−∂xx)s/2 f (ξ ) = |ξ |s f̂ (ξ ).

The fractional Sobolev spaces Hs(R) can be identified as the set of all functions f , so

that [(−∂xx)
s/2 +1] f ∈ L2(R). Alternatively, the norm is defined as follows

‖ f‖2
Hs(R) =

ˆ
∞

−∞

(1+ξ
2)s| f̂ (ξ )|2dξ < ∞.

For periodic functions defined on [−1,1], which are sufficiently smooth, there is the usual

Fourier series representation

f = ∑
k

fkeikπx, fk =
1√
2

ˆ 1

−1
f (x)e−ikπxdx,

with ‖ f‖2
L2[−1,1] = ∑k | fk|2. The fractional operator (−∂xx)

s/2 using functional calculus is

59



defined through

(−∂xx)
s/2 f =

∞

∑
k=−∞

(π|k|)s fkeikπx,

for sufficiently smooth functions f ∈ L2[−1,1].

3.2.2 Main observability lemma for the fractional Laplacian

The following estimate, which may be of interest in its own right, gives L2 control of the

resolvent of the free Laplacian on its spectra, modulo an error term.

Theorem 27. Let s > 0, λ ≥ 1 and Ω⊂R be a non-empty, 2πZ invariant open set. For all

λ ∈ R, let ((−∂xx)
s/2−λ )u = f . Then, there exists C, so that

‖u‖L2 ≤C(< λ >
1
s−1 ‖ f‖L2 +‖u‖L2(Ω)). (3.4)

The observability estimate for s = 2 has been proved by Burq and Zworski in [13] on

a two-dimensional compact manifold. Recently, Wunsch [29] extended these estimates to

Rn under a periodic setting. In this note we prove similar observability estimate for the

fractional case. In fact, in the case of one-dimension our estimate contains an additional

decay factor, which helps us to improve Wunsch‘s results in the one-dimensional setting.

Let us explain the idea behind such result. Clearly, the difficult case is when λ > 0

and large. Since the spectrum, σ((−∂xx)
s/2) = σa.c.((−∂xx)

s/2) = [0,∞), we cannot expect

[(−∂xx)
s/2−λ ]−1 to be bounded on L2, and it is not. Instead, (3.4) asserts that such an L2

resolvent bound almost holds (with an additional decay rate of λ
1
s−1, which is important

for our purposes), modulo an extra “control” term.

The method of proof is to first establish the above estimate on the bounded interval

[−1,1]. We then use the technique of Wunsch, [29] to extend the result to the real line R.
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3.2.2.1 Observability on intervals

We start with an elementary lemma.

Lemma 5. Let s > 0. Then, there exists ds,Ds, so that for every 0 < x < y

ds max(x,y)s−1|x− y| ≤ |xs− ys| ≤ Ds max(x,y)s−1|x− y|. (3.5)

Proof. Start with the function fs(z) = 1−zs

1−z , defined for z ∈ [0,1]. Clearly this is a continu-

ous function on [0,1] (defined at z = 1 via f (1) = s), so it has a minimum and maximum,

say ds,Ds. That is,

ds(1− z)≤ 1− zs ≤ Ds(1− z).

Without loss of generality x ≤ y and apply the previous inequality to z = x
y . This shows

(3.5).

Lemma 6. Let s > 0. Consider the following damped fractional Laplace equation on

[−1,1]

((−∂xx)
s/2−λ )u = f ,x ∈ [−1,1]. (3.6)

Then for every δ > 0 there is Cδ so that

‖u‖L2[−1,1] ≤Cδ [< λ >
1
s−1 ‖ f‖L2[−1,1]+‖u‖L2[−δ ,δ ]] (3.7)

for solutions u of (3.6), where < λ >:= (1+ |λ |2)1/2.

Proof. We can always assume that u, f are real, otherwise split in real and imaginary parts.

We split the argument in the cases where f is an even function ( in which case u is also

even function ) and then when f is an odd function (u odd respectively).

Case I: u, f are even functions: For u, f even, we can expend u and f in cosine series as
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follows

u =
∞

∑
k=0

uk cos(kπx), f =
∞

∑
k=0

fk cos(kπx)

In this case,

(−∂xx)
s/2u(x) =

∞

∑
k=0

(πk)suk cos(kπx),

Assume first that λ =−πsσ s,σ > 1
2 . Then, taking a dot product with u in (3.6), we have

−λ‖u‖2 < ‖(−∂xx)
s/4u‖2−λ‖u‖2 = 〈 f ,u〉 ≤ −λ

2
‖u‖2 +

C
|λ |
‖ f‖2

Thus, we have better estimate in this case

‖u‖L2 ≤
C
|λ |
‖ f‖L2 (3.8)

Next, let us take λ = πsσ s,σ > 1
2 . Let k0 =]σ [, that is, the closest integer to σ using

the smaller integer when σ is a half number. Then for every k 6= k0, we have

uk =
1

πs(ks−σ s)
fk,k 6= k0. (3.9)

We wish to estimate the function

ũ = ∑
k 6=k0

uk cos(πkx) = u−uk0 cos(πk0x)

first. By Lemma 5, we have that |ks−σ s| ∼ |k−σ |max(k,σ)s−1,k 6= k0.

Case I: s≥ 1 In this case, we can further take |ks−σ s| ≥C|k−σ |σ s−1,k 6= k0. We have

‖ũ‖2
L2 = ∑

k 6=k0,k≥0
|uk|2 ≤

1
π2sσ2s−2 ∑

k 6=k0,k≥0

C
|k−σ |2

f 2
k ≤

C
π2sσ2s−2‖ f‖2 =

C

λ
2− 2

s
‖ f‖2.
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Thus,

‖ũ‖L2 ≤C < λ >
1
s−1 ‖ f‖L2 (3.10)

Case II: 0 < s < 1 In this case, we have

‖ũ‖2
L2 = ∑

k 6=k0,k≥0
|uk|2 ≤

C
π2s ∑

k 6=k0,k≥0

max(k,σ)2(1−s)

|k−σ |2
f 2
k .

We split the sum in two pieces, k ∈ (σ/2,2σ) and the rest. We have

∑
k 6=k0,k≥0:k∈(σ/2,2σ)

max(k,σ)2(1−s)

|k−σ |2
f 2
k

≤Csσ
2(1−s)

∑
k 6=k0,k≥0:k∈(σ/2,2σ)

1
|k−σ |2

f 2
k ≤Csλ

2
s−2‖ f‖2

L2,

since in this case max(k,σ)≤ 2σ and σ ∼ λ
1
s .

In the other case, that is k ≤ σ/2 or k ≥ 2σ , we have that |k−σ | ∼max(k,σ), so

∑
k 6=k0,k≥0:k≤σ/2 or k≥2σ

max(k,σ)2(1−s)

|k−σ |2
f 2
k ≤ sup

k≤σ/2 or k≥2σ

1
max(k,σ)2s‖ f‖2

L2 ≤
1

λ 2‖ f‖2
L2.

The estimate in this case is exceptionally good, but this is just a small piece of the sum. In

all cases, we conclude (3.10).

Next, we estimate

ˆ
δ

−δ

|u(x)|2dx =

ˆ
δ

−δ

|uk0 cos(πk0x)+ ũ(x)|2dx

= 2|uk0 |
2
ˆ

δ

0
cos2(πk0x)dx+2

ˆ
δ

−δ

uk0 cos(πkx)ũ(x)dx+
ˆ

δ

−δ

|ũ(x)|2dx

≥ |uk0|
2
δ (1+

sin(2πk0δ )

2πk0δ
)−C|uk0|‖ũ‖L2.

Note (1+ sin(2πk0δ )
2πk0δ

)> 1− 2
π

, so we can bound from below
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ˆ
δ

−δ

|u(x)|2dx≥
δ (1− 2

π
)

2
u2

k0
−C‖ũ‖2

L2 ≥Cδ u2
k0
− C

λ
2− 2

s
‖ f‖2.

Thus,

u2
k0
≤Cδ

(
< λ >

2
s−2 ‖ f‖2

L2 +‖u‖2
L2[−δ ,δ ]

)
. (3.11)

Hence by combining the estimates (3.10) and (3.11) , we get

‖u‖L2[−1,1] ≤Cδ

(
< λ >

1
s−1 ‖ f‖+‖u(x)‖L2[−δ ,δ ]

)
.

Lastly, let −πs

2s < λ < πs

2s . In this case, we applied the same arguments as above on

u = u0 +
∞

∑
k=1

uk cos(πkx)

to get ‖ũ‖L2 ≤C‖ f‖L2 , while |u0|2≤Cδ

(´
δ

−δ
|u(x)|2dx+‖ f‖2

)
. Finally, we conclude that

in all three cases,

‖u‖L2[0,1] ≤Cδ

(
< λ >

1
s−1 ‖ f‖L2 +‖u‖L2[−δ ,δ ]

)
.

Case II: u, f are odd functions For u, f odd functions, we can expand u and f in sine

series as follows

u =
∞

∑
k=0

ak sin(kπx), f =
∞

∑
k=0

fk sin(kπx)

Again, for λ <−πs

2s , we have the estimate (same as above)

‖u‖ ≤ C
|λ |
‖ f‖.
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For λ = πsσ ss, σ > 1
2 , we have (same as above in (3.10))

‖ũ‖L2 ≤C < λ >
1
s−1 ‖ f‖.

where in this case ũ = ∑k 6=k0 uk sin(πkx) = u−uk0 sin(πk0x). Next, we estimate

ˆ
δ

−δ

|u(x)|2dx =

ˆ
δ

−δ

|uk0 sin(πk0x)+ ũ(x)|2dx

= 2|uk0|
2
ˆ

δ

0
sin2(πk0x)dx+2

ˆ
δ

−δ

uk0 sin(πkx)ũ(x)dx+
ˆ

δ

−δ

|ũ(x)|2dx

≥ |uk0 |
2
δ (1− sin(2πk0δ )

2πk0δ
)−C|uk0|‖ũ‖L2.

Now, observe z→ sin(z)
z can be close to 1, but in any case, we have

(1− sin(2πk0δ )

2πk0δ
)≥ cmin(1,(k0δ )2)≥ cδ

2.

Note that in this last estimate, we used k0 ≥ 1, so c is independent on k0! Consequently,

ˆ
δ

−δ

|u(x)|2dx≥ cδ
3|uk0|

2−C|uk0|‖ũ‖L2 ≥ cδ
3|uk0 |

2−Cδ‖ũ‖2
L2 ≥ cδ

3|uk0|
2− Cδ

λ
2− 2

s
‖ f‖2.

Hence,

‖u‖2
L2[−1,1] ≤ 2(u2

k0
+‖ũ‖2

L2)≤Cδ

(
< λ >

2
s−2 ‖ f‖2 +

ˆ
δ

−δ

|u(x)|2dx

)
.

Case III u, f are arbitrary functions In this case, we split u and f in even and odd parts
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and derive estimates for each of them. Putting it all together, we get

‖u‖2
L2[−1,1] = ‖ueven‖2

L2[−1,1]+‖uodd‖2
L2[−1,1]

≤ Cδ

(
‖ feven‖2 +‖ fodd‖2

|λ |2− 2
s

+

ˆ
δ

−δ

(u2
even(x)+u2

odd(x))dx

)

= Cδ

(
‖ f‖2

λ
2− 2

s
+

ˆ
δ

−δ

u2(x)dx

)
.

Hence,

‖u‖L2[−1,1] ≤Cδ

(
λ

1
s−1‖ f‖L2[−1,1]+‖u‖L2[−δ ,δ ]

)

This finishes the proof of the observability estimate (3.7). Next, we extend Lemma 6 to the

whole line R by using a technique similar to Wunsch, [29].

3.2.2.2 Observability on intervals implies observability for a Hα

Introduce the operators

Hs
α :=[(−i∂x−α)2]s/2 for α ∈ R.

Equivalently, one may define Hα through the Fourier transform

Ĥs
α f (k) = |k−α|s f̂ (k).

Observe the relation

(−i∂x−α)2 = eiα·(−∂xx)e−iα·.

Since multiplication by e±iαx is an unitary operator on L2[−1,1], the relation above is an

unitary equivalence between (−i∂x−α)2 and −∂xx. Consequently, Hs
α is a self-adjoint

operator, so by Stone theorem, iHs
α generates a C0-group of unitary operators on a Hilbert

66



space, which we denote by Uα(t) = eitHs
α . In addition, and since one can define g(−∂xx)

for very general functions g (for example C[0,∞)), we have

g((−i∂x−α)2) = eiα·g(−∂xx)e−iα·. (3.12)

In particular, applying (3.12) to the functions ts/2 and eits/2
,

Hs
α = eiα·(−∂xx)

s/2e−iα·; eitHs
α = eiα·eitHs

0e−iα·. (3.13)

The observability estimate for Hs
α on flat torus T= R/Z is as follows.

Lemma 7. Let Γ⊂ T be open and non-empty. For all α ∈ [0,1), we have

(Hs
α −λ )u = f ⇒ ‖u‖L2(T) ≤C

(
< λ >

1
s−1 ‖ f‖L2(T)+‖u‖L2(Γ)

)
(3.14)

with constants independent of α| and |λ | ≥ 1 ∈ R.

Proof. Note that for α = 0, we have Hs
0 = (−∂xx)

s/2, and in this case the result is proved

in Lemma 6. Next, assume α 6= 0.

By the results in [22] and since Hs
α is a self-adjoint operator, the estimate (3.14) is

equivalent to Schrödinger observability for Hs
α . That is, we need to establish that for every,

non-empty ω ⊂ T and every T > 0, there exist C(T,ω) such that

‖ f‖2
L2 ≤C

ˆ T

0
‖eitHs

α f‖2
L2(ω) dt

Next, fix a non-empty open set ω . By Hs
0-observability, we have for every T > 0

‖ f‖2
L2 = ‖e−iαx f‖2

L2 ≤C
ˆ T

0
‖eitHs

0 [e−iα· f ]‖2
L2(ω)dt =

= C
ˆ T

0
‖eiα·eitHs

0e−iα· f‖2
L2(ω)dt =C

ˆ T

0
‖eitHs

α f‖2
L2(ω)dt.

67



This proves the Schrödinder observability, with the same constants as α = 0. Hence by

Theorem 5.1 of Miller [22] , the estimate (3.14) holds for all s > 0.

3.2.2.3 Observability for Hα implies observability

For g ∈ 〈x〉−sH−∞(R) with s > 1. We define the periodization of g as follows

Πg(x) = ∑
n∈Z

g(x+2πn).

Also, for α ∈ R, we set

Παg = Π(eiαxg)

Lemma 8. For g ∈ 〈x〉−sH−∞(R) with s > 1, we have

‖g‖2
L2(R) =

ˆ
[0,1)
‖Παg‖2

L2(T) dα. (3.15)

Moreover, if Ω⊂ R is 2πZ-invariant and Ω0 denotes its projection to T, we have

‖g‖2
L2(Ω) =

ˆ
[0,1)2
‖Παg‖2

L2(Ω0)
dα. (3.16)

For the proof of the lemma, we refer to Lemma 5, [29].

Note that ((−∂xx)
s/2−λ )u = f implies

eiαx((−∂xx)
s/2−λ )e−iαx[eiαxu] = eiαx f

In terms of the operator Π, we get (Hα −λ )(Παu) = Πα f . By Lemma (7), we conclude

‖Παu‖2
L2(T) ≤C(< λ >

2
s−2 ‖Πα f‖2

L2(T)+‖Παu‖2
L2(Ω0)

)
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By Lemma 8, we may integrate both sides over the set [0,1) to obtain

‖u‖2
L2(R) ≤C(< λ >

2
s−2 ‖ f‖2

L2(R)+‖u‖
2
L2(Ω))

This is of course (3.4) and so the proof of Theorem 27 is complete.

3.2.3 Resolvent estimate

From the observability estimate above, we prove the following resolvent estimate for our

damped problem.

Proposition 6. Assume that m > 0, γ(x)≥ 0 and γ ∈ L∞ and there exist ε > 0 and a 2πZ -

invariant set Ω ∈ R such that γ(x)≥ ε for a.e. x ∈ R. For the equation

((−∂xx)
s/2 +m+ ikγ(x)− k2)u = f (3.17)

we have the following:

• For 0 < s < 2 ,

‖u‖L2(R) ≤C < k >
4
s−3 ‖ f‖L2(R), (3.18)

• For s≥ 2 ,

‖u‖L2(R) ≤C < k >
2
s−2 ‖ f‖L2(R). (3.19)

Proof. We begin by pairing the equation (3.17) with u, taking the real part and using

Cauchy inequality. For |k| ≤ k0 =
√

m/2, we get

‖u‖2
Hs/2(R)

+(m− k2)‖u‖2
L2(R) ≤ ‖ f‖L2(R)‖u‖L2(R) ≤

‖ f‖2
L2(R)

4(m− k2)
+(m− k2)‖u‖2

L2(R)
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This implies that

‖u‖Hs/2(R) ≤C‖ f‖L2(R).

Next we assume that |k| > k0. We apply Theorem 27 to equation (3.17) with the damping

term on the right-hand side and λ = k2−m. Noting that < λ >∼< k2 >, we get

‖u‖L2(R) ≤ C
(
< k >

2
s−2 ‖ f‖L2(R)+< k >

2
s−1 ‖γ(x)u‖L2(R)+‖u‖L2(Ω)

)
. (3.20)

Choose Ω to be contained in the set where γ ≥ ε a.e. for some ε > 0. We obtain

‖u‖L2(Ω) ≤ ε
−1‖γ(x)u‖L2(R),

so (3.20) becomes

‖u‖L2(R) ≤ C
(
< k >

2
s−2 ‖ f‖L2(R)+(< k >

2
s−1 +ε

−1)‖γ(x)u‖L2(R)

)
. (3.21)

Pairing the equation (3.17) with u and taking the imaginary part, we get for k ≥ k0,

‖
√

γ(x)u‖2
L2(R) ≤

C
< k >

‖ f‖‖u‖ (3.22)

Combining these estimates and observing that γ ≤C
√

γ(x) a.e. yields

‖u‖L2(R) ≤C

(
< k >

2
s−2 ‖ f‖L2(R)+

(< k >
2
s−1 +ε−1)

< k >1/2 ‖ f‖1/2
L2(R)
‖u‖1/2

L2(R)

)
(3.23)

Applying Cauchy-Schwarz, we obtain

‖u‖L2(R) ≤ C(< k >
2
s−2 +< k >

4
s−3 +< k >−1)‖ f‖ (3.24)
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By analyzing the cases s ∈ (0,2) and s≥ 2 separately (here k is large), we finally conclude

‖u‖L2(R) ≤ C < k >
4
s−3 ‖ f‖L2(R), s ∈ (0,2)

‖u‖L2(R) ≤ C < k >
2
s−2 ‖ f‖L2(R), s≥ 2

This completes the proof.

3.3 Resolvent estimates and proof of Theorem 26

We begin by recasting (3.1) as an abstract Cauchy problem. Define U = (u,ut)
T , then

equation (3.1) can be written as a dynamical system:

Ut = A U

where

A =

 0 I

−(−∂xx)
s/2−m −γ(x)

 ,

where we take D(A ) = Hs(R)×Hs/2(R). The basic Hilbert space is H = Hs/2(R)×

L2(R). The fact that A generates a semigroup, under this setup, is standard.

Next, we compute the resolvent of the operator A . Let u = (u1,u2)
′ and f = ( f1, f2)

′.

Then

(ikI−A )u = f

is equivalent to

iku1−u2 = f1

((−∂xx)
s/2 +m)u1 +(ik+ γ(x))u2 = f2
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or

u1 = ((−∂xx)
s/2 +m+ ikγ(x)− k2)−1 ((ik+ γ(x)) f1 + f2)

u2 = iku1− f1.

Hence, the resolvent of A is

R(ik,A ) =


R(ik)(ik+ γ(x)) R(ik)

ikR(ik)(γ(x)+ ik)− I ikR(ik)

 ,

where R(ik) = ((−∂xx)
s/2 +m+ ikγ(x)− k2)−1. Note that

R(ik)∗ = R(−ik).

Recall that our basic resolvent estimate, Proposition 6, provides bounds for the resol-

vent R(ik), acting as operators on L2(R) into itself. On the other hand, R(ik) are smoothing

operators. The next result allows us to obtain bounds between different Sobolev spaces.

Proposition 7. Let 0 < s < 2. Then,

‖R(ik)‖L2→Hs/2 +‖R(ik)‖H−s/2→L2 ≤C < k >
4
s−2 . (3.25)

For s≥ 2,

‖R(ik)‖L2→Hs/2 +‖R(ik)‖H−s/2→L2 ≤C < k >
2
s−1 . (3.26)

Proof. Let u be the solution of

((−∂xx)
s/2 +m+ ikγ(x)− k2)u = f (3.27)
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where f ∈ L2. Taking dot product with u in (3.27) and taking the real part yields

〈(−∂xx)
s/2u,u〉+(m− k2)〈u,u〉= Re〈 f ,u〉

‖u‖2
Hs/2 ≤ ‖ f‖L2‖u‖L2 + k2‖u‖2

L2

By Proposition 6 for s ∈ (0,2), ‖u‖L2 ≤C < k >
4
s−3 ‖ f‖L2 , so we obtain

‖u‖2
Hs/2 ≤ ‖ f‖L2

(
< k >

4
s−3 ‖ f‖L2(R)

)
+ k2 < k >

8
s−6 ‖ f‖2

L2(R)

This proves

‖R(ik)‖L2→Hs/2 ≤C < k >
4
s−2,

and by duality ‖R(ik)‖H−s/2→L2 ≤C < k >
4
s−2. For s ≥ 2, we apply Proposition 6 and we

similarly obtain

‖u‖2
Hs/2 ≤ ‖ f‖L2

(
< k >

2
s−2 ‖ f‖L2(R)

)
+ k2 < k >

4
s−4 ‖ f‖2

L2(R)

This proves (3.26).

Next, we put together the results from Proposition 6, together with Proposition 7 to

obtain the following result on the composite resolvent R(ik,A ).

Proposition 8. For 0 < s < 2, there is

‖R(ik,A )‖Hs/2×L2 ≤C < k >
4
s−2, (3.28)

while for s≥ 2 , we have

‖R(ik,A )‖Hs/2×L2 ≤C. (3.29)
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Proof of Proposition (8). First we consider the case 0 < s < 2. Write R(ik,A ) as follows

∥∥∥∥∥∥∥R(ik,A )

 f

g


∥∥∥∥∥∥∥

Hs/2×L2

= ‖R(ik)(ik+ γ(x)) f‖Hs/2 +‖R(ik)g‖Hs/2 +

‖(ikR(ik)(γ(x)+ ik)− I) f‖L2 +‖ikR(ik)g‖L2

The estimates for the terms involving g follow easily from the established estimates. In-

deed, from (3.25), we have

‖R(ik)g‖Hs/2 ≤C < k >
4
s−2 ‖g‖L2,

while from (3.7), we have

‖ikR(ik)g‖L2 ≤C|k|< k >
4
s−3 ‖g‖L2 ≤C < k >

4
s−2 ‖g‖L2.

So, it remains to establish the bounds

‖R(is)(ik)(ik+ γ(x))‖= O(|k|
4
s−2) : Hs/2→ Hs/2 (3.30)

‖R(ik)(ik)(γ(x)+ ik)− I)‖= O(|k|
4
s−2) : Hs/2→ L2. (3.31)

Once, (3.30) and (3.31) are established, we conclude

∥∥∥∥∥∥∥R(ik,A )

 f

g


∥∥∥∥∥∥∥

Hs/2×L2

≤C‖

 f

g

‖Hs/2×L2,

and Proposition 8 will be proved.

Next, we estimate R(ik)(ik)[γ(x) + ik)]− I : Hs/2 → L2. Elementary manipulations

show that

R(ik)(ik)[γ(x)+ ik)]− I =−R(ik)((−∂xx)
s/2 +m) (3.32)
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Combining (3.25), together with the fact that (−∂xx)
s/2 : Hs/2→ H−s/2 is continuous,

we obtain for f ∈ Hs/2(R)

‖(R(ik)(ik)[γ(x)+ ik)]− I) f‖L2 = ‖R(ik)((−∂xx)
s/2 +m) f‖L2 ≤

≤C|k|
4
s−2‖((−∂xx)

s/2 +m) f‖H−s/2 ≤C|k|
4
s−2‖ f‖Hs/2

This proves (3.31).

It remains to estimate ‖R(is)(ik+ γ(x))‖Hs/2→Hs/2 . A variant of (3.32)reads

R(ik)(ik+ γ(x)) =
1
ik
[I−R(ik)((−∂xx)

s/2 +m)],

Let u = R(ik)((−∂xx)
s/2 +m) f , then

((−∂xx)
s/2 +m+ ikγ(x)− k2)u = ((−∂xx)

s/2 +m) f

Pairing this equation with u and taking real parts and applying Cauchy-Schwarz, we get,

‖(−∂xx)
s/4u‖2

L2− (k2−m)‖u‖2
L2 ≤ ‖((−∂xx)

s/2 +m) f‖H−s/2‖u‖Hs/2

≤ ‖ f‖Hs/2‖u‖Hs/2.

Therefore,

‖u‖2
Hs/2 ≤C(k2‖u‖2

L2 +‖ f‖2
Hs/2). (3.33)

Next, when we estimate ‖u‖L2 , we used (3.25) to get

‖u‖L2 = ‖R(ik)((−∂xx)
s/2 +m) f‖L2 ≤C|k|

4
s−2‖(−∂xx)

s/2 +m) f‖H−s/2 ≤

≤ C|k|
4
s−2‖ f‖Hs/2
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Plugging this estimate back in (3.33), we obtain ‖u‖L2 ≤ C|k| 4s−1‖ f‖Hs/2. As a conse-

quence,

R(ik)((−∂xx)
s/2 +m) = O(|k|

4
s−1) : Hs/2(R)→ Hs/2(R),

whence for large |k|,

‖R(ik)(ik+ γ(x))‖Hs/2→Hs/2 = k−1‖I−R(ik)((−∂xx)
s/2 +m)‖Hs/2→Hs/2 ≤

≤ Ck−1(1+ |k|
4
s−1)≤C|k|

4
s−2,

which is (3.30). Hence, for 0 < s < 2, we get

R(ik,A ) = (ik−A )−1 = O(|k|
4
s−2) : Hs/2×L2→ Hs/2×L2.

Similarly, for s≥ 2, we have

R(ik,A ) = (ik−A )−1 = O(|k|
2
s−1) : Hs/2×L2→ Hs/2×L2

So, in fact, we have decay in k of the resolvent for s > 2.

Having proved Proposition 8, we are ready for the proof of our main result, Theorem

26. For the case 0< s< 2, we apply the Borichev-Tomilov Theorem 22 with α = 4
s −2> 0.

Then, the semigroup satisfies the following bound

‖etA (µ−A )−1‖Hs/2×L2→Hs/2×L2 ≤Ct−
s

4−2s ,

for any µ ∈ ρ(A ), say µ = 1. Equivalently,

‖etA f‖Hs/2×L2 ≤Ct−
s

4−2s‖(1−A ) f‖Hs/2×L2 ≤Ct−
s

4−2s‖ f‖Hs×Hs/2,

since A : Hs×Hs/2→ Hs/2×L2.
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For s ≥ 2, by Gearhart-Prüss Theorem 24 the energy of the damped fractional Klein-

Gordon is decaying exponentially and more precisely, we have the bound (3.3).
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