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ABSTRACT 

Silencing of homologous genes by exogenously introduced dsRNA was first observed 

in C. elegans. Endogenous small RNAs (siRNAs, piRNAs, miRNAs) mediate regulation of 

expression of genes post-transcriptionally or at the level of transcription, when argonaute 

proteins complex with small RNAs to target genomic loci for chromatin modifications in a 

sequence-specific manner, in the nucleus. There have been previous reports of regulation of 

expression by targeting mRNA for silencing in the cytoplasm. We identified a region in the 

genome, flp-17 locus that is amenable to nuclear silencing mechanisms in a wildtype animal. 

C. elegans exhibits strong anti-foreign genome silencing in their germline as defense 

against invading viral or transposon DNA. This activity is extended to transgene DNA, 

resulting in its silencing in the germline. Mos1 is a foreign element, a transposon from 

Drosophila that is heterologously inserted in C. elegans genome. Trangenes are integrated in 

the chromosomal DNA by Mos1 based Single Copy insertion technology where homologous 

regions flanking the gene of interest promotes recombination and thus its integration at a 

specific mos site on the worm genome. In our experiments we observed robust silencing in 

the somatic cells of transgenes that were intended to be integrated in ttTi5605 mos site on 

C. elegans genome by homologous recombination. The silencing phenomenon involves 

epigenetic mechanisms. We hypothesize that over several generations, the worm has 

“learned” that mos is a foreign element and when transgene is integrated at that site, it is 

amenable to silencing by the epigenetic machinery. Furthermore, we identified a previously 

undescribed mutation (yy14) in eri-6 gene and show evidences pointing to a role in silencing 

of transgenes in somatic tissues. We observed an increase in trans-spliced mRNA from eri- 

6/7 genes in yy14 mutants. Our model reasons out that increase in trans-spliced mRNA 
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results will lead to upregulation of small RNAs (26G RNAs) that efficiently function in the 

silencing of our transgene, which needs further verification. 

In addition, ABC transporters in C. elegans have been previously shown to be required 

for efficient RNAi. haf-2, haf-6 and haf-9 mutants also exhibit defects in transposon 

mobilization. Chromatin modification by epigenetic machinery prevents mobilization of 

transposable elements. This includes RNAi effectors like siRNAs, Dicer and argonaute 

proteins. Thus, a previous study in the lab, highlights a link between ABC transporters and 

RNAi mechanisms in C. elegans. It is important to characterize the dimerization pattern of 

half ABC transporter proteins to gain insights on their functions and precise roles in RNAi. 
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CHAPTER 1 

Determining the functional dimerization partners of half molecule ABC 
transporters 

 
 

ABSTRACT 

The existence of a link between a conserved phenomenon, RNA interference and a 

ubiquitous protein superfamily of ABC transporters, was discerned when it was shown that 

some ABC transporters have endogenous roles in gene silencing mechanism (Sundaram, 

Echalier et al. 2006). Such ABC transporters are named ABCRNAi transporters. ABCRNAi 

transporter genes, when mutated, lead to RNAi defects that normally respond in the 

cytoplasm to environmentally delivered dsRNAs as well as defects in the nucleus that 

normally facilitate silencing of transposable elements. We hypothesized that these ABCRNAi 

proteins may participate in RNAi mechanisms through the transport of specific substrates 

essential for RNAi; alternatively, trafficking of substrates may produce a subcellular 

environment that is conducive to RNAi. Some ABCRNAi transporter genes are configured as 

half molecules that dimerize to constitute a functional transporter protein. Our goal was to 

determine the homodimer or heterodimer configurations of half ABC transporters in C. 

elegans. We approached this question with Bimolecular Fluorescence Complementation 

(BiFC) where we utilize parallel orientation of the interacting proteins, to bring our 

fluorescent reporter fragments in close proximity. The regaining of fluorescence of the two 

fragments will indicate protein:protein interaction. The knowledge of organized 

arrangement of domains of half ABC transporters acquired from this study will be integral 

for 1) designing substrate trafficking assays in order to verify potential substrates and 2) for 

a better understanding of their RNAi functions in C. elegans. 
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INTRODUCTION 
 
 

ABC TRANSPORTERS 
 

Biochemistry of ABC transporters 
 

ATP Binding Cassette (ABC) transporters are a superfamily of integral membrane 

proteins that are involved in the translocation of many substrates across membranes. The 

transport of small molecules against a chemical gradient from one side of the membrane to 

the other is powered by the binding and hydrolysis of ATP. ABC transporters minimally 

contain four functional domains. Two transmembrane-spanning domains (TMD) form the 

pore through which molecules cross the membranes. The other two domains are nucleotide- 

binding domains (NBD) to which ATP molecules bind. ABC transporters move substrate 

molecules by a two-step cycle. An ATP molecule first binds to each NBD (Sharom 2008). 

Binding of a substrate then enables NBD dimerization, ATP hydrolysis and movement of 

substrate through the pore. ATP is hydrolyzed using an unusual hydrolysis mechanism in 

which the ATPase activity of one NBD hydrolyzes the ATP bound to the second NBD domain, 

releasing inorganic phosphate (Rees, 2009). The ATP binding domain of ABC transporters is 

unique from other ATP binding domains in that it harbors a phosphate-binding P-loop with a 

LSGGQ (ABC motif) sequence that is involved in nucleotide binding (Wilkens 2015, Ford and 

Beis 2019). 
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Full and half ABC transporter proteins 
 

Full transporters consist of two TMDs and two NBDs, while half transporters contain 

one of each domain (Figure 1). In mammalian cells, full transporters such as P-glycoprotein, 

Multi-Drug Resistance Protein (MRP) and the Cystic Fibrosis Transmembrane Conductance 

Regulator (CFTR) can be found in plasma membranes. By contrast, all human half 

transporters are found in membranes of various subcellular organelles (Zhang, Zhang et al. 

2000). Half transporters are required to form homodimers or heterodimers to functionally 

transport substrates. For example, in humans, TAP1 (ABCB2) and TAP2 (ABCB3) form a 

heterodimer in the endoplasmic reticulum where they perform essential immune functions 

by binding peptides derived from the cytoplasmic proteasome and traffick those into the 

endoplasmic reticulum where they are loaded on to the Major Histocompatibility Complex I 

(MHCI). 
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Figure 1. Full and half ABC transporters. Top panel: A full ABC transporter consists of two 

transmembrane domains (TMD, blue cylinders) and two nucleotide binding domains (NBD, 

green ovals). Bottom panel: Genes encoding half ABC transporters encode only one TMD and 

one NBD; half transporter molecules function as homodimers or heterodimers. In both cases, 

the TMD is shown to be towards the N-terminus; although, some transporter genes harbor 

different structures with the NBD domain appearing at the N-terminus, for example. ABCG 

subfamily half transporters are unique that they have their NBD at their N-terminus. 

 
 
 

ABC transporters are conserved across prokaryotic and eukaryotic cells. ABC 

transporters are classified as importers and exporters, depending on the directionality of 

transport across the membrane. While bacteria have both types, eukaryotic ABC 

transporters are predominantly exporters. In prokaryotic organisms, transport by importers 
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is facilitated by the association of substrates to specific binding proteins (Heppel 1969). 

 
Human ABC transporters 

 
 

4% of human genes encode transporter proteins of which ABC transporters constitute 

the largest family (Dermauw and Van Leeuwen 2014). There are 49 ABC transporters in the 

human genome (Vasiliou, Vasiliou et al. 2009) comprising seven subfamilies, A-G. (Stefkova, 

Poledne et al. 2004). Mutations in 14 of these genes can cause 13 genetic disorders. ABC 

transporters are instrumental for human health and development and the study of human 

transporters is a relatively highly developed field in comparison to the study of ABC 

transporters from other organisms. One can acquire an appreciation of the breadth of 

functions that ABC transporters provide to multicellular organisms from the nature of human 

genetic disorders cause by mutations in ABC transporter genes as well as the identity of 

substrates trafficked, where known. 

 
Twelve of the 49 human ABC transporter genes belong to the ABCA subfamily. 

Mutations in ABCA subfamily genes are associated with various human disorders. Tangier 

disease (caused by defects in the cholesterol efflux of ABCA1) is characterized by reduced 

high-density lipoprotein HDL in the blood leading to premature cardiovascular disease. 

Stargardt disease is a type of hereditary macular degeneration caused by buildup of retinoids 

in the eye due to lack of ABCA4 which is found in the disc cell membranes of the eye where 

it flips N-retinylidene-phosphatidylethanolamine from the lumen-facing leaflet to the 

cytoplasmic leaflet (Garces, Jiang et al. 2018). (Stefkova, Poledne et al. 2004). 
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The ABCC subfamily includes the ABCC7 gene which encodes CFTR protein, a chloride ion 

channel. Cystic fibrosis is a disorder affecting lungs and other tissue d ue to defects in 

transmembrane conductance caused by mutations in ABCC7. 
 

The D subfamily consists of half transporters which are all expressed in the 

peroxisomal membranes where they traffick mostly hydrophobic lipid substrates. Mutations 

in two of these half transporters are linked to adrenoleukodystrophies. 

 
ABC E and F subfamilies have proteins that do not have transmembrane domains. The 

F subfamily ABC proteins are predicted to be involved in regulation of mRNA translation 

(Tyzack, 2000 ). 

  The ABCG subfamily consists of full and half transporters. The five half ABC G transporter 

genes are also referred to as the “white” transporters due to their similarity to Drosophila 

white genes. Unlike white, which transports nucleotide substrates that are used in the 

biochemical manufacture of eye pigments, the human ABC G transporters are involved in 

cholesterol and sterol transport (although the list of substrates for this gene family in 

humans are incomplete). ABCG5 and ABCG8 cause Sitosterolemia – a lipid disorder 

characterized by the inability to efflux dietary sterols. (Stefkova, Poledne et al. 2004). ABCG5 

and ABCG8 proteins form heterodimers at the plasma membrane to export dietary, including 

plant derived sterols. Lipid driven three-dimensional crystallization has shown that the 

dimer assumes inward facing conformation (Lee, Kinch et al. 2016). 

 
The ABCB subfamily (MDR) includes 11 genes that are configured as full- or half- 

transporter proteins. ABCB1 is a full transporter protein that localizes in liver and 
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constitutes the blood brain barrier and is implicated in multidrug resistance in cancer and 

virus infected cells. ABCB half transporters are found in the inner membrane of the 

mitochondria where they facilitate iron transport for the purpose of producing functional 

heme (Vasiliou, Vasiliou et al. 2009). 

 
ABC transporters in C. elegans 

 
There are 60 ABC transporter genes in C. elegans which are categorized into 8 

subfamilies (A-H) (Figure 2) based on amino acid sequence and domain organization from 

phylogenetic analyses with transporters from Homo sapiens and Saccharomyces cerevisiae 

(Sheps, Ralph, Zhao, Baillie, & Ling, 2004). Most ABC transporters have the domains (two 

TMDs and two NBDs) in tandem while some transporters have only one of each domain. Half 

transporter genes in C. elegans are distributed among B, D, G and H subfamilies. 
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Figure 2 : Categorization of C. elegans ABC proteins based on homology and domain 

arrangements. TM - transmembrane domain and ABC - ATP-binding cassette domain. The 

right column is a list of C. elegans genes in from each category. Figure modified from (Sheps, 

Ralph et al. 2004). 

 
 

The Pgp family is a set of genes that is configured as full ABC transporters from the B 

subfamily. P-glycoproteins in C. elegans are found in intestine and excretory cells. Pgp-1, 3 

and MRP-1 (from C subfamily) in C. elegans respond to heavy metals such as cadmium and 

arsenite (Broeks, Gerrard et al. 1996). C. elegans P-gp transporter has been solved for its 

structure at a 3.4 Å resolution in the absence of any bound substrates. The crystal structure 

reveals an inward-open conformation. Substrates can bind and exit the cells from the 

cytoplasm as well as the membrane because the transport pathway is shown to be 

continuous with the inner leaflet of the membrane (Jin, Oldham et al. 2012). 
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Figure 3 : C. elegans ABC transporter subfamilies. C. elegans ABC transporters full and half 

ABC transporters are categorized into eight subfamilies A-H. 
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Half ABC Transporters 
 

ABCB subfamily in Homo sapiens 
 
 

The ABCB subfamily in humans consists of seven half transporters – ABCB2, BACB3, 

ABCB6, ABCB7, ABCB8, ABCB9 and ABCB10. 

 
The half transporter ABCB2 (TAP1 – Transporter associated with antigen processing) 

and ABCB3 (TAP2) form heterodimers, localize at the endoplasmic reticulum (ER) 

membrane and function in delivering antigenic peptides to the lumen of ER. The peptides are 

then presented at the cell surface as antigens by class I MHC molecules (Abele, 1999). X ray 

crystallography was used to solve the structure of TAP homolog TmrAB (Thermus 

thermophilus multidrug resistance proteins A and B). The TMD sequences between human 

TAP1/TAP2 and TmrAB share 22% identity. The 2.7 Å structure shows that the substrate 

cavity of the TmrAB transport is towards the cytoplasmic side transporting lipids. This 

protein has also been shown to rescue antigen processing defects in human immuno- 

compromised cells, showing that these proteins from two organisms share functional 

homology (Noll, Thomas et al. 2017). 

 
ABCB6, B7, B8 and B10 localize to the mitochondria (Paterson, Shukla et al. 2007), 

but recent studies have shown that ABCB6 localizes to additional organelles including the 

endolysosomal compartment (Koszarska, Kucsma et al. 2014). This underscores the fact that 

knowledge of subcellular localization and thus, of functions of any ABC transporter is 

currently incomplete. ABCB7 is associated with X-linked sideroblastic anemia and ataxia 
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(XLSA/A), suggesting it has functions related to iron homeostasis (Allikmets, Raskind et al. 

1999). ABCB10 is a homodimer half transporter which functions in erythropoiesis which 

suggests that it could export heme molecule (Shintre, Pike et al. 2013). ABCB9 localization to 

the lysosome has been demonstrated using subcellular fractionation and 

immunofluorescence and is expressed in brain, spinal cord and testis (Zhang, Zhang et al. 

2000). 

 
ABCB subfamily in Caenorhabditis elegans 

 
There are nine half transporter proteins in C. elegans (haf-1 to 9) and the knowledge 

of their functions and substrates are far from complete. The half transporters that belong to 

the B subfamily have an N-terminal TMDs and a C-terminal ABC domain (Figure 2). 

HAF-1 in C. elegans harbors an N-terminal mitochondrial targeting sequence 

conferring localization to the mitochondria where it is believed to function in exporting 

peptides that come from the matrix proteins, although evidence for this function is indirect, 

having come from isolation of intact mitochondria from wild type and mutant C. elegans and 

not from in vitro assessment of biochemical activity. Also, there is no direct evidence for 

dimerization partners for this protein (Haynes, Yang et al. 2010). Peptide transport by HAF- 

1 transporters may be involved in unfolded protein responses, a function that is particularly 

important during stress (Nargund, Pellegrino et al. 2012). As Mdl1p, the yeast homologue of 

HAF-1 has broad substrate specificity, it may be the case that HAF-1 might also transport 

substrates other than peptides. 
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C. elegans HAF-4 and HAF-9 transporter proteins are shown to be homologous to 

human TAPL (TAP-like) based on amino acid identity (38%). TAPL is shown to be localized 

to lysosomes based on immunofluorescence  and subcellular fractionation methods.  TAPL 

possesses two localization signals – YXXΨ and dileucine motifs – in its C terminal tail. The 

presence of these motifs in non-lysosomal transporters also suggests TAPL might localize in 

locations other than lysosomes. (Zhang, Zhang et al. 2000). The C. elegans HAF-4 and HAF-9 

proteins colocalize specifically in non-acidic gut granules, which may represent a lysosomal 

like organelle. Because of the rather limited homology between human and C. elegans 

proteins (homology between HAF-4 and HAF-9 with TAPL is based on the alignment of their 

ABC domains), the lack of conserved localization signals and the question of the precise 

function of the subcellular compartment, it is difficult to make definitive statements 

regarding functional conservation in the absence of biochemical data. Clearly, this kind of 

data does not indicate the possibility of shared substrates between (HAF-4,HAF-9) and TAPL. 

Co-immunoprecipitation studies have shown that HAF-4 and HAF-9 form heterodimers 

(Tanji, Nishikori et al. 2013), yet the few studies that have been performed on these proteins, 

coupled with the high probability for antibody cross reactivity between related family 

members requires independent assessments of dimerization data. 

HMT-1(HAF-5) is required for Cd2+ tolerance in C. elegans based on phenotypic 

analysis of RNAi knockdown of hmt-1. HMT-1 has most homology to HAF-7 and HAF-9 within 

C. elegans half transporters. But, as stated earlier, HAF-9 localizes to lysosomes, whereas, 

heterologously expressed C. elegans HMT-1 is localized in vacuolar membranes 

(Vatamaniuk, Bucher et al. 2005). These distinct subcellular localizations hint that these half 
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transporters have divergent roles, likely through the transport of distinct substrates. HMT- 

1 was demonstrated to form homodimers by mating based on data obtained using the Split- 

Ubiquitin Yeast 2 Hybrid method (Kim, Selote et al. 2010). However, this method did not 

eliminate the possibility of HMT-1 heterodimerization with other half transporters in C. 

elegans. Based on phylogenetic analyses, C. elegans HAF-5 is orthologous to ABCB6 (human) 

(Sheps, Ralph et al. 2004). Nevertheless, their organellar localization and transport 

substrates are not similar between the two organisms, as human ABCB6 localizes to 

mitochondria where it functions in the trafficking of porphyrins. 

In an effort to help elucidate dimerization partners as well as the identification of 

potential substrates, we compared the homology between C. elegans half transporters and 

the better-studied human transporters. We focused on HAF-6 because mutants defective for 

haf-6 display the strongest RNAi defects amongthe three half transporters. Reasoning that 

important functional differences might lie the in transmembrane region, which forms the 

pore through which the substrate trafficks, we compared the homology between HAF-6 

protein and the human half transporters. We obtained the TM domain sequence from 

hydropathy analysis and aligned the domains in pair-wise fashion using MUSCLE 

(Supplementary information 1). By this criterion HAF-6 is more similar to human ABCB8 

(isoform d), with 36.5% identity and 49% similarity to HAF-6A and 45.9% identity and 

61.5% similarity to HAF-6B. The human ABCB8 is a half ABC transporter localized in the 

inner membrane of mitochondria. ABCB8 is thought to transport heme (Elliott and Al-Hajj 

2009). This leaves us to speculate that ABCB8 might have roles in oxidative stress. By 

overexpressing ABCB8 in HEK293 cells, it was shown that the first 55 amino acids are 

required for their localization in the mitochondria (Hogue et al, 1999). Like many 
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mitochondrial proteins, ABCB8 is coded in the nuclear genome and is transported by the 

TOM (Translocase of the Outer Membrane) complex (Schaedler, Faust et al. 2015). 

Overexpression of ABCB8 also showed increased export of iron from mitochondria 

(Ichikawa, Bayeva et al. 2012). Along with these functions, ABCB8 has been shown to confer 

resistance against doxorubicin (Elliott and Al-Hajj 2009). Mouse studies that deleted ABCB8 

showed decreased levels of mitochondrial succinate dehydrogenase (Ardehali, Xue et al. 

2005). All these observations point out to mitochondrial localization of ABCB8. However, in 

contrast to the human mitochondrial ABCB8, HAF-6 localization is confined to ER membrane 

as revealed from immunofluorescence staining and studies using GFP fusion proteins 

(Sundaram, Echalier et al. 2006). These examples highlight why it is not meaningful to make 

predictions on subcellular localization or substrates transported based on homology between 

two proteins. 

 
 



26  

RNA INTERFERENCE (RNAi) 

 
RNA interference (RNAi) describes a gene silencing phenomenon that was discovered 

in C. elegans by Andrew Fire and Craig Mello in 1998 (Fire, Xu et al. 1998). RNAi is the ability 

of exogenous dsRNA to interfere with the expression of mRNAs, homologous in sequence to 

the dsRNA trigger. RNAi is conserved in eukaryotes and is thought to have evolved as a 

molecular immune function against viruses and transposons (Plasterk 2002). RNAi has 

natural functions that also include regulation of gene expression during development 

(Agrawal, Dasaradhi et al. 2003). 

In C. elegans, dsRNA that is introduced experimentally, is cleaved by a double- 

stranded RNA-specific endonuclease protein called Dicer, resulting in short interfering RNAs 

(siRNAs). siRNAs are discrete, double-stranded RNAs 21-28 nucleotides long that are 

important in silencing complementary nucleic acids. Argonaute proteins are important 

effector molecules for RNA-based silencing mechanisms. Argonaute proteins are highly 

conserved, being found in prokaryotes, eukaryotes and archaea. They can be found in 

association with cytoplasmic or nuclear Dicer proteins where they are loaded with the Dicer 

RNA product and are instrumental in converting the product to single-stranded RNA form. 

In general, Argonaute proteins bind different classes of small, noncoding RNAs, recognizing 

features such as length, 5’ end modifications (the nature of the phosphate) and 3’ end 

modifications (such as 2’-O-methylation). Acting in concert with other proteins and using 

RNA as a guide to direct protein activities, Argonaute proteins are instrumental in mediating 

RNA-directed silencing mechanisms. Some Argonaute proteins have Slicer activity (cleaving 

mRNAs with homology to the siRNA sequence), some Argonautes shuttle siRNAs into the 
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nucleus; other Argonautes are found in the nucleus in association with chromatin modifying 

enzymes and facilitate transcription-level silencing (Huang, 2014). 

RNAi mechanisms can affect gene expression at the transcriptional and post- 

transcriptional levels. In the nucleus, RNAi mechanisms regulate endogenous gene 

expression and are critically important for chromatin processes such as transposon 

silencing, maintenance of heterochromatin, and establishment and maintenance of 

centromeres. In worms and plants, silencing of genes by experimental delivery of dsRNA can 

result in histone modifications—methylation patterns that can be inherited through multiple 

generations, even in the absence of the trigger dsRNA. This provides further evidence of RNAi 

mechanisms in the nucleus. 

A clear understanding of different RNAi mechanisms, their pathways and the 

numerous conserved proteins involved have been elucidated by using C. elegans as the 

genetics tool. RNAi mutants are viable and fertile. Unlike mammalian cells, C. elegans does 

not harbor interferon genes, which makes it an easier system to study RNAi. C. elegans has a 

transparent body making the visualization of reporters direct and simple. In C. elegans, RNAi 

can be induced by more than one method – feeding or injecting dsRNA or soaking worms in 

dsRNA. 

In our studies of RNAi mechanisms, we have observed that some ABC transporters 

are required for RNAi-related mechanisms in the nucleus. In these ABC transporter mutants, 

transposon mobilization is activated. Half transporter genes that display this interesting 

RNAi-related defect include haf-6 and haf-9. The precise molecular role of these transporters 

in transposon silencing mechanisms will require a thorough analysis of their biochemical  
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function. Here, we set to exploit Split-GFP approach towards determining dimerization 

partners of half ABC transporters. Knowing how the protein is put together is a critical first 

step in order for us to design biochemical assays for protein function. 

Significance 

 
ABC transporters are conserved proteins and are critical for various physiological 

functions such as maintaining homeostasis of biological compounds or preventing 

intracellular buildup of toxic compounds. Mutations in ABC transporters are the cause of 

several genetic disorders in humans (Figure 4) and those in the multidrug transport class, 

are especially important in drug design and therapy—in particular, in chemoresistance in 

cancer and virus-infected cells. 

SID-1 (Systemic RNAi Deficient) channel protein is a good example to highlight the 

role of transporter proteins in RNAi. SID-1 is an integral membrane protein with 11 

transmembrane helices, and an extracellular N-terminal glycosylated domain. sid-1 mutants 

are deficient for systemic RNAi, presumably due to impairment of this protein to act as a pore 

for the trafficking of dsRNA molecules to the cytoplasm in different cells and tissues 

(Whangbo, Weisman et al. 2017). 

Our lab has previously described roles for the half ABC transporters haf-2, haf-6 and 

haf-9 in RNA interference in C. elegans (Sundaram, Echalier et al. 2006), although their 

precise biochemical roles are unknown. In order to determine the roles of half transporters 

in RNAi mechanism, it is important to elucidate their specific substrates. This is contingent 

upon knowing the functional partners of these half ABC transporters. 
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Figure 4: ABC superfamily of transporters in humans. This table lists 

human ABC transporters with their substrates, functions and their 

associated diseases. 
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BIMOLECULAR FLUORESCENCE COMPLEMENTATION (BiFC) 

 
BiFC analysis employs a fragmented reporter protein. In our case, we utilized green 

fluorescent protein that is split into two non-fluorescent fragments. The split GFP 

reconstitution method is based on reobtaining the fluorescence when the two fragments of 

GFP reassociate. This reassociation can be promoted by fusing the fragments to two proteins 

that normally interact with each other, bringing the attached GFP fragments into close 

proximity where they can associate and gain fluorescence (Figure 5). 

 

 
Figure 5 : Schematics of BiFC. A- Classical BiFC vectors require a protein coding gene (P1 

&or P2) connected by a short peptide (Linker) to a fragment (Fragment 1 or 2) of a reporter 

(a fluorescent molecule, in this figure). B- Expression of fusion proteins P1:: Fragment1 and 

P2::Fragment2 where the reporter fragments are attached to the C-termini of P1 and P2 

through a linker. C- Protein interactions between P1 and P2 bring the reporter fragments 

together, which results in re association of the GFP molecule and formation of fluorescence. 
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Protein-protein interactions have been studied using several methods. BiFC is our 

method of choice because it has several advantages over other methods. For example, the 

classical yeast two hybrid (Y2H) method often faces a major issue of improper protein 

folding, preventing interaction of the proteins being tested. Split ubiquitin is another BiFC 

type assay that has been in use to detect membrane protein interactions. Split Ubiquitin has 

been shown to successfully determine the protein partner of a C. elegans transporter (Kim, 

Selote et al. 2010). Although Y2H and mating based split-ubiquitin assay in yeast have been 

used in studying C. elegans protein interactions, endogenous expression pattern and 

localization information is missing when C. elegans proteins are expressed in a yeast system 

(Boxem, Maliga et al. 2008). In contrast, our study expresses proteins in the native organism. 

Also, the obligatory expression of the protein of interest in the nucleus in Y2H disfavors it 

from being the method of our study since our proteins are membrane transporters. Co- 

immunoprecipitation could also be used to investigate dimerization partners; however, 

there is a drawback of non-specific binding or cross reactivity, especially when working with 

membrane proteins that have a high degree of amino acid similarity. False negatives are 

common with co-immunoprecipitation (co-IP) as low affinity interactions are not detected 

in this method. Methods such as co-IP are more suited toward verifying suspected 

dimerization partners, and not for a study that is exploratory in nature like ours. More 

practically, the antibodies we generated against the HAF proteins are anti-peptide antibodies 

(due to the high degree of amino acid similarity between proteins in this family), and most 

are not suitable for co-IP. 

Split-GFP based detection of protein interactions averts many of these challenges by 

the in-vivo nature of the technique. In addition to traditional protein interaction methods, in 
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recent years, there has been a rise in BiFC methods--strategies that generally employ 

reassociation of various protein fragments including ubiquitin, variants of GFP and β- 

galactosidase, β-lactamase and others (Luker and Piwnica-Worms 2004). Such BiFC of split 

protein-based methods side steps the disadvantages associated with the purification of 

membrane proteins. In our study, the split-GFP system was favored due to its potential for 

rapid detection of interaction by simple instruments such as inverted fluorescence 

microscopes. Bimolecular fluorescent complex formation suffers from disadvantages that 

the fluorescence from interaction is irreversible and that transient interactions may not be 

detectable ((Shyu, Hiatt et al. 2008), (Luker and Piwnica-Worms 2004)). Nevertheless, in our 

experiments, these properties should work to our advantage, as we do not anticipate 

transient interactions between functional dimers. Furthermore, HAF-6::GFP fusion proteins 

are proven to successfully express in C. elegans in our previous studies (Sundaram, Echalier 

et al. 2006) (Figure 6), an indication that C-terminal tagging of our proteins is functionally 

tolerated. 
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A  

B  
 

Figure 6: HAF-6::GFP is functional in C. elegans tissues. A GFP Fused to haf-6 at the C- 

terminus driven by a ubiquitous promoter was membrane localized and overlapped with 

patterns obtained using anti-HAF-6 antibodies. The transgene rescued the RNAi defects in 

haf-6 mutants (Sundaram, 2006). 

 
 

Previous Results 

 
It was previously reported by our lab that haf-6 transporter in C. elegans, is required 

for efficient RNAi (Sundaram, Echalier et al. 2006). In addition to haf-6, eight other C. 

elegans ABC transporter genes were shown to be implicated in RNAi. (A list of all the nine 

ABC transporters shown to be required for efficient RNAi is given in Table 1.) HAF-6 is a 

half ABC protein that belongs to the B subfamily of ABC transporters; the haf-2 and haf-9 

genes, also B subfamily half transporter genes, were also implicated in RNAi. 
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Gene name ABC subfamily 

abt-1 A 

pgp-4 B 

pgp-11 B 

haf-2 B 

haf-6 B 

mrp-1 C 

pmp-1 D 

wht-3 G 

wht-1 G 
 
 
 

Table 1 : ABC transporter strains required for RNAi. The corresponding mutants 

displayed RNAi defects in the germ line (Sundaram, Echalier et al. 2006). 

 
 

The RNAi defects observed in haf-6 mutants were reminiscent of RNAi defects 

observed in mut-7 and rde-2 mutants. Like these mutants, haf-6 mutants also exhibit defects 

in transposon silencing (Tops, Tabara et al. 2005). Similarly, mutants of haf-9 also exhibit 

increased transposon mobilization in a temperature-dependent manner. Additionally, haf-9, 

haf-2 and haf-6 interact genetically with mut-7 and with rde-2, displaying second-site non- 

complementation interactions (Sundaram, Han et al. 2008). These findings, along with RNAi 

defects in haf-2 and haf-6 mutants, suggest that half ABCRNAi transporters might form homo/ 

heterodimers to traffic substrates required for RNAi in a MUT-7/RDE-2 dependent manner. 

It is, therefore, essential to elucidate the dimerization configuration and the specific 

substrates transported by half ABCRNAi transporters to understand their role in RNAi 

processes. 
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MATERIALS 
 

STRATEGY 1 – PREDICTED C. elegans ZIPPER SEQUENCES – PLASMIDS pLT642/ 
pLT643 

 
 

Primers 

LT1237 -TATATCCGGAGCGCGCTTGTTTGTCTGCCATGATGT   

LT1240 - TATATCCGGAGCGCGCTTTGTATAGTTCATCCATGCC 

 LT1369 - 

ACCGCGGTCAACGCCTTGACGCTGAACTCCTCGAGCTCAACAGAGCTCTTGAACATTTCAGAGCC

G GCGCTGCTGCTAAC 

LT1370 -  

CCACCAAATGCCGTCAAAAGAAAATGGATCGCATCAAGGAGCTGGAAGAACAGGTTCTCCACGA 
GAAGCACCGCGGTCAACGC 

LT1372 - 

AGCAACGACAAAAAAATGGCGGAATGCAACAACATCCGAAATAAGCTCAACAGTCTCGCCGGCG
CT GCTGCTAAC 

LT1373 - 

ATTGATTTGATGAAGGAATTGCAAGATCAAGTAAATGACTTCAAAAATAGCAACGACAAAAAAA 
TGGCG 

LT1375 -  

TATAGCTAGCATGCAAGAAAAGAAGAAGCTTGAGAGAAAGAGAGCTCGCAATAGGCAAGCCGC
CAC CAAATGCCGTCAAA 

LT1376 - 

TATAGCTAGCATGCAAAGGAATAAAGAAGCTGCTGCAAGATGTCGGCAAAGGAGAATTGATTTG
AT GAAGGAATT 
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Plasmids 

pLT 642  let858 :: Jun zipper-CMV linker-N-GFP – fog-2 3’ UTR with unc-119 rescue 

sequence flanked by ttTi 5605 mos left and right homologous regions. 

pLT 643 let858 :: Fos zipper-CMV linker-C-GFP – fog-2 3’ UTR with unc-119 rescue 

sequence flanked by ttTi 5605 mos left and right homologous regions. 

Fos & Jun zipper sequence – Predicted C. elegans zipper sequences 
 
 

Linker sequence – pCMV-FLAG from Sigma – AAANSSIDLISVPVDSR 
 
 

Transgenic Strains 

XX2090 – XX2098- Single Copy Integrants Plasmid LT642. yyIs322 [unc-119+ transgene in 

unc-119 mutant] [let-858 promoter::Jun LeuZip::CMV linker (Sigma)::N-GFP::fog-2 3' UTR in 

ttTi5605 mosSci insertion vector injected into XX1327] 

XX2208, XX2211 – XX2213 - Single Copy Integrants Plasmid LT643. yyIs322 [unc-119+ 

transgene in unc-119 mutant] [let-858 promoter::Fos LeuZip::CMV linker (Sigma)::C- 

GFP::fog-2 3' UTR in ttTi5605 mosSci insertion vector injected into XX1327] 

 
 

STARTEGY 2 – C. elegans OPTIMIZED HUMAN ZIPPRER SEQUENCES – PLASMIDS 
pLT694/ pLT695 

Primers 

LT1442 –

TATATAGCTAGCATGTCCATCGCTCGTCTCGAGGAGAAGGTCAAGACCCTCAAGG

CTCAG 
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LT1443 - TATATAGCCGGCGTTCATGACCTTCTGCTTGAGCTGAGCGACCTGCTCACGGAGCATGTT  

LT1444 - CAAGACCCTCAAGGCTCAGAACTCCGAGCTCGCTTCCACCGCTAACATGCTCCGTGAGCA 

LT1445 –

TATATAGCTAGCATGATGCTCACCGACACCCTCCAGGCTGAGACCGACCAGCTCG

AGGAC 

LT1446 –

TATATAGCCGGCGTGAGCAGCGAGGATGAACTCGAGCTTCTCCTTCTCCTTGAGGA

GGTT 

LT1447 - 

GACCAGCTCGAGGACGAGAAGTCCGCTCTCCAGACCGAGATCGCTAACCTCCTCAAGGAG 

 
Plasmids 

pLT694  let858 :: C. eleganised human jun zipper-CMV linker-N-GFP – fog-2 3’ UTR with 

C. briggsae unc-119 rescue sequence flanked by ttTi 5605 mos left and right homologous 

regions. 

pLT695  let858 :: C. eleganised human fos zipper-CMV linker-C-GFP – fog-2 3’ UTR with 

C. briggsae unc-119 rescue sequence flanked by ttTi 5605 mos left and right homologous 

regions. 

Fos & Jun zipper sequences – C. elegans optimized human zipper sequences 
 
 

Linker sequence – pCMV-FLAG from Sigma - AAANSSIDLISVPVDSR 
 
 

Transgenic Strains 

XX2217 - Single copy integrant for pLT 694 injected in XX1327 (mutant in unc-119) with 

ttTi5605 MosSCI insertion vector. 
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XX2218 - Single copy integrant for pLT 695 injected in XX1327 (mutant in unc-119) with 

ttTi5605 MosSCI insertion vector. 

 
 

STRATEGY 3 – C. elegans OPTIMIZED HUMAN ZIPPERS DRIVEN BY eft-3 PROMOTER – 
PLASMIDS pLT729/ pLT730 

Primers 

LT1563 - TATAGCTAGCTACGGAGTGAGCAAAGTGTTTCCCAACTGAAAA  

LT1562 - TATACTTAAGGCACCTTTGGTCTTTTATTGTCAACTTCCA 

Plasmids 

pLT729  eft-3 :: C. eleganised human jun zipper-CMV linker-N-GFP – fog-2 3’ UTR with C. 

briggsae unc-119 rescue sequence flanked by ttTi 5605 mos left and right homologous 

regions. 

pLT730  eft-3 :: C. eleganised human fos zipper-CMV linker-C-GFP – fog-2 3’ UTR with C. 

briggsae unc-119 rescue sequence flanked by ttTi 5605 mos left and right homologous 

regions. 

Fos & Jun zipper sequences – C. elegans optimized human zipper sequences 
 
 

Linker sequence – pCMV-FLAG from Sigma - AAANSSIDLISVPVDSR 

Transgenic Strains 

XX2219 – pLT 729/pLT730 co-injection array line 
 
 

STRATEGY 4 – C. elegans OPTIMIZED HUMAN ZIPPERS DRIVEN BY eft-3 PROMOTER 
in DIFFERENT Mos VECTOR BACKGROUNDS – pLT729/ pLT753 

Primers 

1534 –TATA CCTAGG GCACCTTTGGTCTTTTATTGTCAA  

1546 – TATATAAGATCTAATGCCGAGTACGCAGTTGTGT 
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Plasmids 

pLT729  eft-3 :: C. eleganised human jun zipper-CMV linker-N-GFP – fog-2 3’ UTR with C. 

briggsae unc-119 rescue sequence flanked by ttTi 5605 mos left and right homologous 

regions. 

pLT 753  eft-3 :: C. eleganised human fos zipper-CMV linker-C-GFP – fog-2 3’ UTR with 
 

C. briggsae unc-119 rescue sequence flanked by cxTi 10816 mos left and right homologous 

regions. 

Fos & Jun zipper sequences – C. elegans optimized human zipper sequences 
 
 

Linker sequence – pCMV-FLAG from Sigma - AAANSSIDLISVPVDSR 
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METHODS 
 
 

PLASMID CLONING 

 
1. Amplification of haf genes 

 
haf 1-9 genes were amplified by PCR based methods. Optimization was carried out for 

each haf gene with different polymerase enzymes, annealing temperatures and 

primer sequences (For conditions, see Table 2). 

 

 
Table 2 : Optimized PCR conditions for generating ABC transporters coding regions. 

The DNA sequence for several of the haf genes is surrounded by difficult-to-PCR repetitive 

DNA (and some introns also harbored repetitive sequences). PCR optimization was required 

for most genes. Genomic DNA was used as introns are apparently required in C. elegans for 

efficient nuclear export of mRNAs. 
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2. Final plasmid cloning 
 

Due to the size of the inserts and plasmid vectors, cloning of haf transgenes was carried out 

using classical restriction enzyme – based strategies as indicated in the chart below. Top10 

or SURE E. coli cells were used in CaCl2 -mediated transformations or electroporation. 

Ampicillin resistance selected for transformants. Colonies were screened based on size 

changes, and/or PCR-based screening for the presence of inserts. Candidates were 

extensively analyzed for correct restriction-enzyme fragment length. All plasmids were 

subjected to DNA sequencing of the entire region of interest. 

 
 
 
 

Plasmid Vector with N-GFP Fragments Restriction Enzymes Final Size (bp) 
 
 
 
 

pLT 729 (Nhe1/NgoM4) 

haf-1 NheI NgoM4 pLT 741 12147 
haf-2 NheI NgoM4 pLT 742 11953 
haf-3 NheI BspE1 pLT 743 14846 

haf-4A NheI Xma1 pLT 744 15354 
haf-4B NheI Xma1 pLT 764 14162 
haf-5 NheI NgoM4 pLT 745 17577 

haf-6A NheI Age1 pLT 746 17884 
haf-6B NheI Age1 pLT 766 17431 
haf-7 NheI NgoM4 pLT 747 13278 
haf-8 NheI NgoM4 pLT 748 15246 

haf-9A NheI Xma1 pLT 749 13354 
haf-9B NheI Age1 pLT 769 12545 

 
 

TABLE 3A : Cloning of BiFC vectors by classical restriction enzyme based strategy. This 

table includes transgenic plasmids pLT741-pLT749 (and pLT764, pLT769) that are 

constructed from proof-of-principle vector pLT729. 
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Plasmid Vector with C-GFP Fragments Restriction Enzymes Final Size (bp) 
 
 
 
 

pLT 753 (Nhe1/NgoM4) 

haf-1 NheI NgoM4 pLT 731 12272 
haf-2 NheI NgoM4 pLT 732 12078 
haf-3 NheI BspE1 pLT 733 14971 

haf-4A NheI Xma1 pLT 734 15479 
haf-4B NheI Xma1 pLT 754 14287 
haf-5 NheI NgoM4 pLT 735 17702 

haf-6A NheI Age1 pLT 736 18009 
haf-6B NheI Age1 pLT 756 17556 
haf-7 NheI NgoM4 pLT 737 13403 
haf-8 NheI NgoM4 pLT 738 15371 

haf-9A NheI Xma1 pLT 739 13479 
haf-9B NheI Age1 pLT 759 12670 

 
 

TABLE 3B : Cloning of second set of BiFC vectors by classical restriction enzyme based 

strategy. This table includes transgenic plasmids pLT731-pLT739 (and pLT754, pLT759) 

that are constructed from proof-of-principle vector pLT753. 

3. Worm strains and maintenance 
 

All C. elegans strains were maintained on NGM plates that contained OP-50, an 

auxotrophic strain of E. coli (Brenner 1974). N2 wildtype and unc-119 C. elegans were 

maintained at room temperature (22°C). We used pha-1(e2123), a temperature-sensitive 

mutant which grows normally in 15°C. pha-1 embryonic lethal mutants do not grow in 25°C 

(Granato, Schnabel et al. 1994). Microinjecting transgenic DNA with pha-1 wildtype copy 

rescues the mutant from embryonic lethality phenotype. Thus, it is easy to select for 

transformants by growing F1 larvae from injected hermaphrodites at 25°C. 

4. Microinjection 
 

Three different strategies that will produce transgenic lines are possible, using the 

plasmids we generated: a simple injection strategy that will produce extrachromosomal 

arrays with multiple copies of our plasmid and two strategies that can produce single-copy 
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integration for each plasmid (MosSCI- and CRISPR-mediated integration). The plasmid 

vectors in each construct we generated harbor a rescuing segment of the unc-119 gene 

derived from C. briggsae; therefore, our injections utilize C. elegans unc-119 mutants. 

Successful uptake of DNA and generation of stably inherited lines is indicated by wild-type 

movement (unc-119 mutants are paralyzed). For MosSCI, co-injection of a plasmid capable 

of expressing Mos transposase into unc-119 mutants that also harbor a single copy of a 

defective Mos transposon will allow for single copy integration into a particular locus (the 

plasmid vectors harbor recombinogenic sequences that flank the Mos integration site.) Co- 

injection of GFP- or RFP-expressing plasmids allow extrachromosomal arrays to be 

distinguished from integrants. For CRISPR, injection mixes are similarly made, but instead of 

using Mos transposase to make dsDNA breaks, Cas9-expressing plasmid is used, along with 

guide RNA sequences that match the location of the Mos insertion. A co-CRISPR injection 

strategy was used to generate CRISPR integrants (Arribere, Bell et al. 2014). By including 

pha-1 guide RNA and recombination template DNA in the injection mix and injecting into 

temperature sensitive pha-1 mutants, animals that have both taken up DNA and have 

obtained a pha-1 reversion can be screened for half transporter plasmid integration, All 

candidate integrants will be extensively analyzed genetically, for appropriate Mendelian 

segregation patterns, and molecularly, by PCR analysis of integration sites for validation. 

GENETIC CROSSES TO REVEAL HALF TRANSPORTER DIMERIZATION PARTNERS 

 
Genetic crosses require males but the frequency of C. elegans males naturally arising 

from self-fertilizing hermaphrodites is low in wildtype.  Therefore, RNAi reagents that 
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produce increased frequency of males were developed (discussed in Chapter 2). Male stocks 

will be generated for all strains that express each of haf::N-GFP transgenes (shown along y axis 

in black letters in the table). 

 
 

 
Figure 7 : Genetic crosses between transgenic worms carrying BiFC vectors. This figure 

shows how genetic crosses will be set-up between worms. 

 
 

These males will be allowed to mate with hermaphrodites each of which harbors one 

of haf::C-GFP transgenes (shown along x axis in red letters in the Figure 7). The presence of 

of male progeny in the F1 generation indicates successful mating between two parents, and 

GFP fluorescence in the progeny will indicate that the two half transporters being 
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investigated can act as dimers . In addition, the F1 animals will be verified for inheritance of 

transgenes from both parents by PCR amplification of regions unique to each transgene. For 

crosses that fail to produce GFP fluorescence, PCR analysis will help confirm the presence of 

both halves of the GFP and help validate that the lack of GFP fluorescence is due to a non- 

interaction. In this nine-by-nine set of crosses will be reciprocal crosses—each interaction 

will be effectively tested twice, helping to confirm our interactions. Crosses between parents 

having haf-5::N-GFP and haf-5::C-GFP will serve as positive control as HAF-5 protein has 

previously been shown to homodimerize (Kim, Selote et al. 2010). 

In our experiments, we will have the opportunity to investigate if half transporters 

can form distinct patterns in different cells. An ability of half transporters to dimerize with 

different partners in different cells has not been fully investigated in any organism, and C. 

elegans, being a simple multicellular system with transparent cells, is an ideal system to 

investigate such a possibility. We also predict that we will observe different subcellular 

localization patterns in different tissues, as this has been observed for human transporters. 

Interestingly, this will highlight the potential for underlying differences in specificities 

towards different substrates in these membranes. 
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RESULTS AND DISCUSSION 
 

DESIGN AND CONSTRUCTION OF PROOF-OF-PRINCIPLE VECTORS 

 
Choice of reporter protein and the split site 

 
Bimolecular Fluorescence Complementation is a technology that allows for the 

determination or validation of protein:protein interactions in vivo. It is based on the ability 

of a “split” fluorescent protein to regain fluorescence when the two parts of the protein come 

into close proximity. When two proteins that normally interact are fused to each half of a 

split fluorescent molecule, the associating proteins bring the non-fluorescent fragments 

together, allowing them to associate and regain fluorescence. 

GFP is the first fluorescent reporter used in bimolecular fluorescent complementation 

studies by Regan and colleagues. Green fluorescent protein is made of 238 amino acids 

constituting 11 β strands forming a cylindrical protein. An alpha helix runs through the center 

of the barrel. Each strand is connected by loops in between. Three of the four conserved 

residues, part of chromophore of the fluorescent molecule, Y66, G67, R96 are in the first 10 

strands whereas the 11th strand contains E222 residue. All the four residues are required for 

complete maturation of the chromophore which then results in fluorescence of GFP (Craggs 

2009). A number of ways of severing the fluorescent molecule has been adapted in BiFC type 

studies. The most prevalent one that has been shown to function in different systems is the 

splitting of GFP into 157 residue long N-GFP (1-157 amino acids) fragment and an 81 residue 

long C-GFP (158-238 amino acids) fragment (Wilson, Magliery et al. 2004). Remy et al, 2004 

in their research, aiming at identifying interacting partners of the protein kinase PKB/Akt, 

employ GFP based BiFC. Here, they split the GFP such that the N-terminal comprises the first 
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158 amino acids with the rest of residues in a C-terminal fragment. We chose to split the GFP 

between residues 157 and 158 because this split has previously been shown to be optimal 

for reconstitution through leucine zippers in C. elegans by Chalfie et al (Zhang, Ma et al. 2004). 

In addition to GFP, many research groups, in their BiFC assays, adopted the use of 

other fluorescent reporters such as YFP, CFP, RFP and other variants of GFP attached to 

interacting proteins at their N and C termini (Hu and Kerppola 2003) ((Nagai, Sawano et al. 

2001) (Hu, Chinenov et al. 2002)) (Jach, Pesch et al. 2006) (Hiatt, Shyu et al. 2008). For our 

experiments, we chose green fluorescent protein as the reporter for detecting interactions 

due to its photostability and its ability to fluoresce in all intracellular organelles. Also, a 

number of experiments using C. elegans have demonstrated that the GFP reporter, when 

fragmented, does not spontaneously re-associate in the absence of putative interactor 

proteins/peptides (Lindman, Johansson et al. 2009) . Furthermore, since we are analyzing 

protein:protein interactions between membrane proteins, the fluorescence will be 

concentrated into a two-dimensional lipid bilayer; thus, we anticipate that we will obtain a 

sufficiently bright signal for detection. From our preliminary data of ABC transporter :: GFP 

fusion proteins, we observed that GFP tagged HAF-6 ABC transporter protein colocalized 

with anti-HAF-6 antibodies and did not disrupt the ability of the transgene to rescue 

phenotypes, suggesting that C-terminal tagging of ABC transporters is functionally tolerated 

(Sundaram, Echalier et al. 2006). 
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Choice of linkers 

Peptide linkers are short sequences of amino acids that separate consecutive domains 

of a protein. Linkers can facilitate proper folding of fusion proteins, the mobility of their 

domains and in improving their expression (Chen, Zaro et al. 2013). Especially, in our 

experiments which involve two non-functional reporter fragments that associate and 

fluoresce only when the protein partners interact, it is important for the linker to prevent 

steric constraints imposed by the interacting proteins and provide flexibility to C- and N-GFP 

(Kerppola 2006). Ghosh et al (2004) constructed their fusion protein using 6 and 4 amino 

acids long peptides as linkers. A similar short peptide linker was used to connect the helical 

zippers with GFP fragments in research by another group (Regan, 2000). (Glyn-Serx) glycine 

spacer linkers are also commonly used to impart flexibility in such BiFC fusion vectors 

((Hiatt, Shyu et al. 2008) and (Remy and Michnick 2004)), although these sequences can 

confer protein instability. A linker peptide derived from cytomegalovirus (CMV linker) with 

amino-acid sequence AAANSSIDLISVPVDSR has been successfully used in a number of BiFC 

experiments expressing interacting proteins in a variety of different subcellular organelles 

(Hu and Kerppola 2003). This is the linker peptide that we used in most of our experiments. 

 
 

Choice of interacting proteins – Zipper sequences 
 

Zippers, made of leucine rich hydrophobic core sequences, have been extensively 

used in protein ::protein interaction studies. Leucine zipper helices are capable of interacting 

in parallel or anti-parallel orientations. Such zippers, fused to truncated reporter 

polypeptides, have been regularly used in BiFC experiments (Kerppola 2008). The first 
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demonstration of the BiFC technique performed in C. elegans, involved the use of leucine 

zippers heterodimerizing in antiparallel orientation (Zhang, Ma et al. 2004). As our 

experimental design depends upon re-association of the GFP fragments as fused in a parallel 

fashion to ABC transporter proteins, we sought out to determine if this parallel configuration 

for fusion proteins was compatible with the BiFC method. One hint that parallel fusions 

might be the case compatible was a study that made use of the C. elegans FOS-1 and JUN-1 

proteins to demonstrate BiFC in live worms (Hiatt, Shyu et al. 2008). While this group 

reported success with these, putative parallel, zippers, their study used whole C. elegans 

protein and not isolated zipper motifs. Furthermore, they did not observe reconstituted 

FOS/JUN-dependent fluorescence in a wild type background—they utilized a sensitized smg- 

1(cc546ts) background to observe fluorescence. Isolated leucine zippers from mammalian 

FOS and JUN form parallel heterodimers, yet the nature of the dimerization in C. elegans FOS 

and JUN proteins has not been analyzed biochemically. It may be the case that C. elegans FOS 

and JUN proteins utilize different dimerization motifs, or the entire proteins might be 

prevented from forming dimers as fusion proteins. Therefore, during the course of building 

our plasmid vectors, we decided to incorporate the putative leucine zipper motifs from C. 

elegans FOS and JUN proteins as a test of how the BiFC method might work when GFP 

fragments are brought together as parallel fusion proteins. 

The first pair of BiFC vectors in strategy 1 (Figure 8A), pLT642/pLT643 utilized such 
 

C. elegans fos-1 and jun-1 putative zippers (leucine zipper transcription factor genes in C. 

elegans orthologous to mammalian fos and jun genes respectively). We did not observe GFP 

fluorescence in worms that harbored both these control plasmids. We considered that our 

plasmid design may have failed to include important FOS and JUN dimerization residues; 
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Alternatively, the C. elegans FOS and JUN proteins may dimerize in a manner different from 

the mammalian FOS/JUN (the biochemistry of FOS and JUN dimerization in C. elegans is not 

well-studied.) We therefore replaced these C. elegans with human fos and jun zipper motifs, 

codon optimizing the sequences for expression in C. elegans. We refer to these dimerization 

motifs as ‘C. eleganised human zipper sequences’. These zippers were efficient in interacting 

with each other as predicted, which was evident from fluorescence obtained from GFP 

reassociation in array worms that expressed transgenes from vectors pLT694 and pLT695 

(Figure 8B). 

 

Choice of promoters 

 
While it is relatively straightforward to generate transgenic strains of C. elegans, 

expression of proteins from the introduced DNA has been demonstrated to be problematic 

(Kelly, Xu et al. 1997). In somatic cells, the transgenic DNA is often well-expressed; however, 

the DNA is frequently silenced in germline tissue. This is likely due to anti-foreign genome 

responses that are particularly robust in germline tissue (Kelly, Xu et al. 1997). The let-858 

promoter is expressed well in somatic cells and has also been demonstrated to drive 

expression in germline tissue (Kelly, Xu et al. 1997). let-858 promoter has been used largely 

to drive the expression of transgenes in C. elegans due to its ubiquitous nature. 

We first tested our C. elegans fos-1 and jun-1 are cloned in plasmids pLT643/pLT695 

and pLT642/pLT694 respectively under the transcriptional control of let-858 promoter. A 

report by Jorgensen et al, 2012 demonstrated that eft-3(known as eef-1A.1) is the most 

effective promoter in transgene insertion by MosSCI method. Here, the author shows that 
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transposase driven by eft-3 has an improved Mos1 transposition (Frokjaer-Jensen, Davis et 

al. 2012). This led us to hypothesize that transgenes driven from eft-3 p

 

will result in a ubiquitous expression. Moreover, evidences showing high levels of transgene 

expression from eft-3 encouraged us to choose this ubiquitous promoter to regulate 

expression of our BiFC vectors pLT729, pLT730 and pLT753 in cloning strategies 3 and 4 

(Mitrovich and Anderson 2000). 

Choice of Mos1 insertion sites 

Many insertion sites are available for recombination of transgenes by Mos1 mediated 

SCI(Single Copy Insertion) in C. elegans (Frokjaer-Jensen, Davis et al. 2012). Generally, 

transgenes are expressed in two copies from a single Mos1 site after homologous 

recombination in C. elegans genome. But in our BiFC assay experiments, on crossing single 

copy integrant worms, the progeny harbored one copy of each BiFC vector. In our 

experiments from strategies 1 & 2, that used vectors pLT 642(or pLT 694) and pLT643 (or 

pLT 695), Mos based Single Copy Insertion was carried out at the TTti5605 locus on 

chromosome II. In an effort to strengthen the reporter signals from our BiFC expression 

vectors, we proposed the insertion of each of a pair of BiFC vector in one of the two Mos1 

sites. This will result in two copies of each transgene construct being recombined in C. 

elegans genome. To achieve this, in pLT753, one of the constructs in the set of BiFC vectors 

from strategy 3, we cloned our transgene Peft-3::C.eleganised human fos zipper:CMV linker:C-

GFP::fog-2 3’ UTR such that recombination occurs at cxTi10816 Mos1 locus on chromosome 

IV (Figure 8D). Thus, F1 progeny obtained from mating single copy integrants of pLT729 and 

pLT753 vectors will possess two copies of each expression plasmid. 
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Figure 8: BiFC vectors and GFP complementation in C. elegans. A) Transgenic worms did 

not express GFP when C. elegans jun and fos zippers were used. B) Human FOS and JUN zipper 

optimized for C. elegans successfully resulted in GFP reassociation resulting in fluorescence. 

Shown in B) is an array worm having the two vectors shown in left. C) An array worm 

expressing GFP after co-injection of the two vectors shown on its left. D) GFP fluorescence in 

worms after co-injection of the two vectors shown on its left. It is expected that when these 

transgenes in D) are microinjected into separate worms, it will result in two copies of each 

transgene being expressed. 

 
 

These experiments demonstrate the utility of our expression plasmids in determining 

protein-protein interactions. This study provides guidance in designing and constructing 

optimal GFP based BiFC vectors interacting in parallel orientation (Figure 9). Additionally, 
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this study also provides vector tools that can be of further use in protein interaction studies 

in C. elegans. 

 

Figure 9 : BiFC model using GFP fluorescence to report protein-protein interaction. 

Blue arrows indicate the interacting proteins – C. elegans jun zipper and fos zipper in case of 

pLT642 and pLT643 respectively, C. eleganised human jun zipper in pLT729 and C. eleganised 

human fos zipper in pLT730 and pLT753 vectors. A CMV linker is seen attached to the C 

terminal ends of zipper peptides. It is to be noted that the zipper sequences are oriented in 

the same direction to enable parallel dimerization. GFP reporter fragments (N-GFP1-157 and 

C-GFP158-238) are attached through the linker to the zipper peptides at their C termini. 

Fragmented GFP is non-fluorescent while interaction between the zippers cause the GFP 

molecule to regain fluorescence. 
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Table 4 : Our expression plasmids are capable of demonstrating protein interactions. 
 
 
 

CONSTRUCTION OF HALF ABC VECTORS WITH SPLIT-GFP TAGS 

 
Two plasmids from above, pLT729 and pLT753 were further used as backbone 

vectors for constructing haf-(1-9) expression plasmids. In our design, C. eleganised human 

zippers in the vectors were replaced with each of haf-1 to haf-9 including isoforms haf-4b, 

haf-6B and haf-9b. Thus, a total of 24 plasmids were designed to be expressed in C. elegans 

in somatic and germline tissues. 
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CONCLUSION 
 

Twenty two, out of the above mentioned twenty four transgenes are constructed and 

verified for accuracy by sequencing of haf::GFP inserts. Cloning of haf-3 insert in the pLT729 

backbone and haf-7 insert in the pLT753 backbone requires further optimization. Vectors 

pLT729 and pLT753, when injected will recombine in two different Mos1 sites, ttTi5605 and 

CxTi10816 respectively, in C. elegans genome. Therefore, two copies of each transgene, 

coming from each allele in one Mos1 locus will be expressed in an animal from reassociation 

of GFP fragments in prospective partners. This is expected to aid in increased intensity of 

fluorescence in germline cells. Transformation of C. elegans worms with split-GFP transgenes 

will be carried out by micro-injection, followed by genetic crosses of transformants, to 

determine the dimerization pattern between half transporters (elaborated in Methods 

section). 

This project will help in gaining insights about how homo/ heterodimerization of half 

transporters will influence their function. More specifically, knowledge of binding of these 

transporters to their functional partners will lead to developing assays aimed at determining 

substrates that are required for RNAi processes. Although many of their functions are 

identified, a link between ABC transporters and RNAi opens the possibility of unprecedented 

roles. RNAi related silencing is known to have evolved as a basic protective mechanism 

against viral genomes, foreign genomes and transposon mobilization. Characterizing the 

nature of substrates related to RNAi will lead to the emergence of new therapies to disorders 

linked to ABC transporter functions. 
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CHAPTER 2 

RNAi-induced non-disjunction of X chromosomes 
 
 

ABSTRACT 

In C. elegans, there are two genders – males and hermaphrodites. Gender in 

Caenorhabditis elegans is established by the number of X chromosomes in the developing 

embryo, with hermaphrodites having genotype XX and males, XO. Males typically arise by 

non-disjunction during meiosis, and the frequency of an X-chromosome non-disjunction 

event is relatively low. About 1 in 500 to 1 in 2000 progeny from a self-fertilizing wildtype 

hermaphrodite are males, depending on the incubation temperature and strain. Males are 

required for genetic crosses and phenotypic analysis, yet current methods to generate large 

numbers of males can be cumbersome. In our lab, we identify RNAi reagents (dsRNA- 

expressing bacteria) with improved effectiveness for eliciting males. Specifically, we used 

RNAi to systematically reduce the expression of over two hundred genes with meiotic 

chromosome segregation functions, and we identified a set of RNAi reagents that robustly 

and reproducibly elicited male progeny. 
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INTRODUCTION 

Gender in Caenorhabditis elegans is established by non-disjunction of X 

chromosomes. C. elegans has six chromosomes, including the sex chromosomes. Gender 

classification is based on the number of X chromosomes. Hermaphrodites have 5 diploid 

autosomes and one diploid set of X chromosomes whereas males are diploid for the 5 

autosomes and have a haploid X chromosome. The haplo-X males arise by non-disjunction of 

X chromosome during meiosis in a hermaphrodite worm (Hodgkin, Horvitz et al. 1979). 

Thus, the transparent, simple nematode is a fitting organism for meiotic chromosome 

segregation studies, as the presence of males is an indicator of an X-chromosome non- 

disjunction event during gametogenesis. 

 

 
Figure 10: C. elegans male from self-fertilized hermaphrodites. The red star mark shows 

a male. Adult males, in a population of hermaphrodites are identified by their distinguishable 

morphology that bears a distinctive tail with a copulatory apparatus (pointed tip at the tail), 

* 
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slimmer body and a clear ventral gonad. Males are also smaller and move faster than 

hermaphrodites. 

This rare event in the hermaphrodite germline makes for infrequent male progeny as 

low as 1 in 500 worms. During its lifetime, a single wildtype hermaphrodite worm produces 

about 300 progeny. As a result, it is typically the case that a single hermaphrodite will 

produce no male offspring. Nevertheless, the need for males is realized in genetic studies 

that require mating between two genders. 

Several strategies have been devised in order to obtain male animals, though each has 

its limitations. A simple method to increase the number of males in the progeny is to perform 

mating crosses between hermaphrodite worms and male worms. A successful cross results 

in half of the progeny being males (Ward and Carrel 1979). But when the parents of the cross 

have different genotypes, for example with one parent harboring a transgene and other 

multiple mutations, the strategy usually requires genotypic or phenotypic selection amongst 

the progeny, and again, using crosses to maintain the population of males with the desired 

genotype. Depending on the genotype of the strain, obtaining males with the desired set of 

mutations and transgenes can be quite laborious. Other methods shown to increase the 

occurrence of male progeny involve exposure to ethanol or heat shock of L4 hermaphrodites 

(Lyons and Hecht, 1997 and Sulston and Hodgkin, 1988). Unfortunately, these methods yield 

few males; A third method involves introducing him mutations into the strain. “him” refers 

to “high incidence of males” phenotype, and mutations in him-5 and him-8 are commonly 

introduced into the background of strains to increase the frequency of males to about 20- 

40% males (David S Fay, Wormbook and (Hodgkin, Horvitz et al. 1979). However, the 

http://www.wormatlas.org/male/introduction/mainframe.htm#Lyons1997
http://www.wormatlas.org/male/introduction/mainframe.htm#Sulston1988b
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strategy of introducing him mutations into strains can be problematic, as discussed above. 

Furthermore, introduction of the him mutations using CRISPR requires a screening step, and 

many strains may not perform CRISPR efficiently. Finally, RNAi can be used to increase the 

number of males in a population by targeting the him-14 gene. dsRNA corresponding in 

sequence to him-14 gene can induce non-disjunction of X chromosomes (RNAi feeding to 

produce males, Worm Breeder’s Gazette p. 32). The population of males with the desired 

genotype can be maintained by simply encouraging mating. This approach has the advantage 

of producing males in homozygotes with the required genotype, and as RNAi effects are 

reversible, there should be no long-lasting deleterious effects on the offspring. Of all the 

male-producing strategies mentioned above, RNAi using him-14 is the least effective. 

We hypothesized that it might be possible to produce improved RNAi tools for the 

purposes of producing males. We anticipated a need to generate males from a large number 

of different transgenic strains produced in the half transporter dimerization study. These 

strains have an unc-119 mutation in the background, which renders the animals paralyzed, 

unless rescued by the unc-119+ gene in our injected DNA. Performing crosses to generate 

males would require selection and examination of the unc-119 background in the progeny of 

the cross, which would be challenging due to the presence of a wild type unc-119 allele from 

the male (unc-119 homozygous males are paralyzed and do not mate). Given the number of 

strains for which we require males, producing them by genetic crosses would be quite 

laborious. Instead, we anticipate using an RNAi strategy that will elicit males with the correct 

genotype in one generation. Our goal was to develop a better RNAi tool for the efficient 

production of males. 
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MATERIALS 
 
 

Worm and Bacterial Strains 

 
NL3531   [rde-2(pk1657)],   PD8186   [rde-2(ne221)],   NL1820   [mut-7(pk720)], and 

 
NL917 [mut-7(pk204)]. EG4322 [ttTi5605 II; unc-119(ed3) III]. Wild type strains used: XX935 

[N2 received from C. elegans Genetics Center Feb. 2006. DR sub clone of CB original, Tc1 

pattern I]. HT115(DE3): W3110, rnc14::DTn10(Dasgupta et al., 1998; Takiff et al., 1989). 

 
 

Feeding plasmids 

 
Feeding plasmids were obtained from Source Biosciences LifeSciences (Fraser, 

Kamath et al. 2000); the genomic sequences residing in these plasmids can be found in 

(Timmons, Luna et al. 2014), Supplementary Table S2. Additional plasmids constructed 

include: pLT651 (BA) klp-16 (BW) + him-8 (FW) in double T7 RNAi feeding vector L4440 

(L4440 was a gift from Andrew Fire); pLT651 (BB) klp-16 (BW) + him-8 (BW) in double T7 

RNAi feeding vector L4440 ; pLT652 (BA) dhc-3 (FW) + him-8 (BW) in double T7 RNAi 

feeding vector L4440 ; pLT652 (BB) dhc-3 (BW) + him-8 (BW) in double T7 RNAi feeding 

vector L4440 ; pLT653 (BA) klp-16 (BW) + dhc-3 (FW) in double T7 RNAi feeding vector 

L4440—as described in Methods, below. 
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METHODS 
 

Identifying candidate genes to be targeted 

 
We compiled a list of genes that are likely to induce chromosomal non-disjunction as 

targets for RNAi in our assays for male production by mining through publications and 

through data sets deposited on Wormbase using WormMart and WormMine data mining 

tools. Plasmid templates that produce dsRNA against these genes were obtained from Source 

BioScience LifeSciences (Fraser, Kamath et al. 2000). The clones were verified using PCR and 

also by using CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/) (Qu, Ren et al. 2011). 

 
 

RNAi by feeding 

 
C. elegans is maintained in the laboratory on Nematode Growth medium (NGM) plates 

with E. coli bacterial cells. Normally, worms feed on these bacteria. In RNAi by feeding, 

HT115 (DE3) cells are engineered to express dsRNA. HT115 bacterial cells have RNAse III 

deletion and an IPTG inducible T7 polymerase that comes from DE3 lysogen. HT115 cells are 

Tetracycline resistant. Feeding plasmids are designed to harbor the specific gene fragments 

between two opposable T7 promoters. HT115 (DE3) bacterial cells used in feeding 

experiments were transformed using standard CaCl2 transformation protocol with the 

feeding plasmid of interest using LB-Ampicillin plates. A fresh colony from these plates 

containing the plasmid was grown in LB-Amp (100 ug/ml) +Tet (12.5 ug/ml) liquid culture 

overnight at 37℃. The overnight culture, on the next day was diluted more than 100 times 

http://biocompute.bmi.ac.cn/CelRNAi/
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and was allowed to grow until it reached an OD600 of 0.4 - 0.8 before inducing with 

Isopropyl-b-d-thiogalactopyranoside (IPTG) at a final concentration of 0.4mM at 37℃ for 2- 

4 hrs. The cells were then directly added to NGM (Nematode Growth Medium) plates. These 

NGM plates were made by following standard procedure (Brenner 1974) but supplemented 

with 100 mg/ml ampicillin, 12.5 mg/ml tetracycline (TAI), and 0.4 mM IPTG. Thus in a 

feeding protocol, large numbers of worms on a plate are fed with HT115 (DE3) cells 

expressing dsRNA against target regions of the worm genome. Wildtype worms (4 

worms/plate) at L1/L2 stage were added onto each NGM-TAI plate and F1 progeny were 

assayed for RNAi phenotype (Him phenotype, in our case) from the next 1-5 days depending 

on the gene targeted. Plates that were freshly seeded were used for all experiments and it 

was ensured that no plates were depleted of the bacterial food during the course of the 

experiment (Timmons, Court et al. 2001). 

 
 

Him phenotype 

 
RNAi feeding assays were performed at 22℃ or 25℃. In some experiments 

performed at 25℃, a higher percentage of males was observed, due to a general increase in 

lethality of progeny by increased non-disjunction of autosomes at this higher temperature. 

Serial transfer of treated animals to RNAi plates also led to sterility of treated animals for 

some targeted genes which indirectly increased the percentage of males in the F1 progeny. 

We utilized two procedures previously demonstrated to improve the consistency of the 

feeding method: i) we used recently transformed HT115 (DE3) cells + dsRNA-expressing 

plasmid—transformation. Transformation plates older than one week were not used in 
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inoculations; ii) we used freshly seeded RNAi feeding plates – plates were seeded with 

induced cells the day before adding worms. 

The presence of males may not indicate the efficiency of the knock-down experiment 

because the phenotype we are scoring (Him) is a readout for reduction in expression of genes 

involved in chromosome disjunction, and non-disjunction events are rare and unpredictable. 

The percentage of viable progeny could be skewed as non-disjunction of autosomes leads to 

sterility of treated animals. This is evident because we observed reduced brood sizes (0-100 

progeny from three parental worms) in at least one experiment for most genes. Therefore, 

we do not report our observations as ‘percentage of males in total progeny’ as this may 

reflect a bias in attainment of autosomal aneuploidy and not X-chromosome non-disjunction 

or male production. For example, although the percentage of males from animals with 

reduced brood sizes was higher than that in animals with higher brood sizes, the total 

number of males was not proportionally increased in animals with higher brood sizes. We 

were looking for feeding strains that consistently produced greatest number of males. To 

circumvent the problem of experimental inconsistencies within and between experiments, 

we compared median and average results to help identify consistent and reliable male- 

producing bacterial food. 
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Table 5. C. elegans genes associated with a Him phenotype. The selection of genes to 

target was made as described in Materials and Methods. Some dsRNA-expressing plasmids 

harbor sequences from adjacent genes and will produce hybrid dsRNAs that could 

simultaneously knock down multiple genes (the adjacent genes are marked as "plasmid 

overlap”). Other dsRNA-expressing plasmids harbor sequences that are members of 

conserved gene families (the similar sequences, with at least 80% identity over a 200bp 

region, are marked as "BLAST hit"). 
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RESULTS AND DISCUSSION 
 
 

RNAi assays to identify the most effective male foods 

 
We first identified approximately 150 genes with roles in disjunction mechanisms in 

 
C. elegans (Table 5). This information is derived from data obtained from other labs that 

observed Him phenotypes in C. elegans mutants and also in worms undergoing RNAi. The 

Him phenotype observed in these experiments was an indicator of improper disjunction of 

chromosomes, specifically the X chromosome. We obtained plasmids capable of expressing 

dsRNA corresponding to each of the genes in bacteria for our RNAi experiments from Source 

Bioscience Lifesciences (Fraser, Kamath et al. 2000). Multiplex RNAi was possible because 

some plasmid clones had sequences that could target more than one gene simultaneously 

(for eg., genes within a homologous family). (Table 5). This led to an increase in the number 

of predicted gene targets to more than two hundred. 

RNAi experiments were carried out as described in Methods. The relative 

effectiveness of each knockdown in eliciting a Him phenotype was measured by counting the 

number of male progeny from worms that ingested bacteria harboring dsRNA. The 

percentage of male progeny is not an ideal score for measuring non-disjunction because 

most of the gene knockdowns affect chromosomal segregation for autosomes, which is a 

lethal condition. For experiments that resulted in fewer progeny, we did not obtain larger 

numbers of males, though the proportion was larger in comparison to experiments that 

resulted in larger brood sizes. Therefore, we took the absolute number of males as well as 

the median as a score for non-disjunction, as this better reflects our goal, to obtain large 

numbers of males. To illustrate with an example, upon treating animals with dsRNA against 
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ula-1, fewer than ten progeny (including one male) was observed on each of the two 

experimental plates. Table S3 from (Timmons, Luna et al. 2014)). From our analysis, we 

found that the plasmids targeting klp-16, and klp-15 ranked the highest in producing males. 
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Table 6: The most effective “male foods”. The effectiveness of each dsRNA-expressing 

bacterial strain is expressed by means of the median and average number of males per 

experiment. As the bacterial feeding method is inherently inconsistent. Each experiment 

includes three to four replica plates. Assessments were made for individual plates as well. 

Strains that are bolded and with grey background are the RNAi reagents with best 

production of males (as indicated by the experimental median, the average per experiment, 

and average per plate). Strains that are shown with grey background indicate those with high 

rankings based on the experimental median and average per plate. Strains in bold ranked 

highly in average male production per experiment and per plate. (Original data sets can be 

found as Supplementary Table S3 in (Timmons, Luna et al. 2014). 
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Simultaneous knock-down of two genes - Supermale plasmids 

 
We next hypothesized that the methodology might be further improved by knocking 

down two genes simultaneously. We engineered three plasmids (in the L4440 background 

(Timmons and Fire 1998)) with double T7 promoters flanking a pair-wise combination of 

two genes. We constructed the two-gene hybrid plasmid by selecting genes that were likely 

involved in different chromosome disjunction. The gene sequences for the plasmids were 

obtained from the Source BioScience LifeSciences C. elegans RNAi library (Fraser, Kamath et 

al. 2000). These plasmid constructs were named “Supermale foods” (Figure 11). Plasmids 

harbored fragments of exons 2-4 (1169bp) from klp-16, exons 24-28 (1180bp) of dhc-3 and 

that of exons 3-6 (1019bp) of him-8. klp-16 is important for chromosome segregation by 

forming proper meiotic spindles (Robin, DeBonis et al. 2005). HIM-8 binds to the pairing 

center of X chromosome and is shown to be required for meiotic segregation of X 

chromosome (Phillips, Wong et al. 2005). RNAi assays using supermale foods were 

performed by the protocol described in “RNAi by feeding” in the METHODS section. The 

assay recorded the number of male progeny as described previously. 
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Figure 11: Production of a hybrid dsRNA molecule in order to simultaneously target 

two genes. RNAi feeding plasmids (constructed from plasmid L4440) containing two-hybrid 

gene sequence flanked by opposable bacteriophage T7 promoters (see Methods). 

 
 

We found that all the three Supermale foods were consistently effective in eliciting 

male progeny at 25 °C (8-20%) (Figure 12). All males obtained from ‘super male food’ 

experiments were fertile. 
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Figure 12: Effectiveness of Super Male food in generating male progeny. Y axis 

represents the average number of males per experiment. Total experiments in each case = 3. 

X axis represents three experiments using Supermale food, with L4440 as negative control 

(plasmid only). Experiments were conducted at three different temperatures in each case. 

(Original data sets can be found as Supplementary Table S3 in (Timmons, Luna et al. 2014)) 

 
 

An application of RNAi induced non-disjunction 

 
One successful application of RNAi-induced non-disjunction is the production of 

males in mut-7 and rde-2 mutant strains (Sundaram, Han et al. 2008). rde-2 and mut-7 

animals are Him, but the mutant males are not fertile. On the other hand, rde-2 and mut-7 

males obtained from male food can procreate. Having the same genotype with different male 

fertility phenotypes suggests a role for epigenetic mechanisms. The mut-7 and rde-2 mutants 

not only possess germline non-disjunction defects but also defects that contribute to 

infertility in adults. We investigated the nature of the fertility defects in mut-7 and rde-2 
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mutant males. These males were able to produce cross progeny when mated with unc 

(paralyzed worms exhibiting Uncoordinated phenotype) hermaphrodites. This suggests the 

mutant males are incapable of mating with non unc hermaphrodite due to movement or 

coupling defects (Table 3). In such a case, non-disjunction induced by male foods offers with 

mut-7 and rde-2 males that are fertile and are capable of mating with hermaphrodites to give 

mutant progeny. 
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Table 7. Infertility in mut‐7 and rde‐2 Him males is not observed in males obtained 

using "male food". mut-7 and rde-2 males were readily obtained due to the inherent Him 

phenotype of the mutants. mut-7 and rde-2 males were also obtained using klp-16"male 

food". (As mut-7 and rde-2 mutants are not completely RNAi defective, males can be isolated 

using bacterial feeding.) Each cross plate contained one hermaphrodite and seven males; 

male progeny, as well as non-Uncs (where appropriate), were indicative of a successful 

mating. These results, which reflect more extensive observations, implicate a link between 

mutant-induced defects that promote non-disjunction in early germline development and 

movement defects that affect mating ability later in adult males. 
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CONCLUSION 
 

We identified genes that are important for proper chromosome disjunction in 

Caenorhabditis elegans. We constructed RNAi-based tools that were able to knock down 

these genes and showed that these RNAi reagents (Supermale foods) can be employed to 

produce large numbers of fertile males from different strains easily. We also demonstrated 

that these male foods can be used to produce fertile males from strains that had mutations 

which interfered with their ability to mate. Thus, having a number of effective “male foods” 

identified improves flexibility in experimental design. 
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CHAPTER 3 

dsRNA-induced nuclear gene silencing and epigenetic transgene 
silencing in C. elegans 

ABSTRACT 

We previously performed an RNAi-based screen for Him phenotype in order to 

identify RNAi reagents (bacterial strains expressing dsRNA against gene targets) that are 

most effective in the efficient and reproducible production of males. Surprisingly, in the 

screening for genes associated with Him phenotype, was a sequence encoding a secreted 

neuropeptide. Since the role of such a protein in chromosome disjunction mechanisms is 

difficult to resolve, we further examined this locus and noticed the presence of non-coding 

RNAs included in the intron of the secreted neuropeptide gene. Our RNAi experiments led to 

the realization that nuclear RNAi silencing mechanisms are active at this locus, in a NRDE-3- 

dependent manner. In contrast to previous reports describing phenotypes that depend on 

nuclear RNAi mechanisms in an eri-1 mutant background, our results were obtained in a 

wild-type background. Thus, we have serendipitously identified a region in the genome that 

is naturally amenable to nuclear silencing mechanisms. 

During the course of our investigation of the above locus, and its ability to be targeted 

by nuclear RNAi mechanisms, we observed a second, unusually robust silencing 

phenomenon associated with a transgene that was introduced into a wild type strain. It has 

long been observed that transgenes can express well in somatic tissues of C. elegans, yet often 

fail to express in the germ line. This provides evidence for a more robust set of anti-foreign 

genome responses in the germ line, in comparison to those in the somatic cells. In our 

experiments, we repeatedly observe silencing of single-copy sequences in somatic tissue, a 

phenomenon that is not typically observed. As we and others have successfully utilized the 
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same mos strain in the past for transgene expression, we hypothesize that the worm has 

“learned” that the mos element is foreign, and any DNA introduced in place of the mos 

element is now engulfed by epigenetic silencing machinery. We describe our efforts to 

understand the nature of these genomic loci that are unusually amenable to silencing in the 

nucleus. 

Further investigation led to identifying a previously undescribed mutation in eri-6/7 

locus. We show here that the mutation yy14 is associated with increase in trans-splicing of 

eri-6/7, which might play a role in silencing of transgenes in somatic cells. 
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INTRODUCTION 
 
 

This project is an extension of the previous chapter that identified RNAi reagents 

(dsRNA-expressing bacterial clones) that increased the frequency of C. elegans males. As 

previously shown, the RNAi reagents effectively and reproducibly produced a Him (High 

Incidence of Males) phenotype. The function of most of these genes can be reconciled with 

an involvement in chromosome disjunction mechanisms, but surprisingly in the list was a 

gene, flp-17 that encodes a FMRF amide-related protein. We further investigated this locus, 

because it was intriguing how a secreted neuropeptide might be required for meiotic 

chromosome segregation. 

 
 

TRANS-SPLICING OF mRNAs IN C. elegans 

 
One unique feature of C. elegans RNAs is that the pre mRNAs are trans-spliced with 

either of the two Splice Leader (SL1 or SL2) sequences. The 22 nt SL sequence, which is part 

of a longer (~100 nt) SL snRNP (small nuclear ribonuclear protein) forms the new 5’ end of 

mRNA. About 70% of all genes in C. elegans are trans-spliced with SL sequences (Allen, 

Hillier, Waterston, & Blumenthal, 2011). A majority of these are trans-spliced with SL1 

sequence. mRNAs that receive an SL2 trans-splicing leader sequence are mRNAs that 

typically reside downstream in a co-transcriptionally expressed gene operon. The 

polyadenylation signal AAUAAA of the upstream gene is critical for trans splicing by SL2 

(Kuersten, Lea, MacMorris, Spieth, & Blumenthal, 1997). This form of trans-splicing was first 

observed in trypanosomes (Sutton & Boothroyd, 1986) and has been described for some 

chordates (Vandenberghe, Meedel, & Hastings, 2001). 
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Another form of trans-splicing, not unique to nematodes, involves intergenic splicing of 

exons. This type of splicing has been observed in various organisms, including Drosophila, 

mouse, and humans, and is relatively rare and typically observed in “complex” gene loci that 

include alternative cis-splicing and that harbor repetitive DNA sequences (Flouriot, Brand, 

Seraphin, & Gannon, 2002; McManus, Duff, Eipper-Mains, & Graveley, 2010; Zaphiropoulos, 

2011). One example of such exon-exon trans-splicing is seen in eri6/ eri-7 locus of C. elegans. 

The eri-6 and eri-7 genes are oppositely oriented, flank a bidirectional promoter, and are 

independently transcribed using different DNA strands as template. The individual pre 

mRNAs are joined together by a trans-splicing event. Direct repeats flanking the eri-6 gene 

are thought to facilitate the trans-splicing process by forming complementary sequences 

between the mRNAs. 

 
 

TRANSGENICS IN C. elegans AND RESPONSES TO FOREIGN DNA 

 
Transgenic C. elegans are generated by microinjection of DNA of interest (plasmids or 

PCR products) along with a transformational marker into the distal arm of the gonad. Some 

commonly used co-transformational markers are pharyngeal GFP (myo-2::GFP), mcherry 

fluorescence (myo-2::mcherry, myo-3::mcherry), dominant roller allele (rol-6), unc-119 

rescue, pha-1 rescue (Mello, Kramer, Stinchcomb, & Ambros, 1991) (Frokjaer-Jensen et al., 

2008). Extrachromosomal arrays contain multiple copies (upto 300 copies) of different 

genes included in the injection. These arrays are mitotically unstable but are heritable 

through several generations. When animals inherit arrays, the genes present in them are 

usually overexpressed. Animals having the arrays can be mosaic. The arrays are silenced in 
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the germline as a part of anti-foreign genome response (Kelly, Xu, Montgomery, & Fire, 

1997). To avoid this problem and have expression of transgene in the germline, formation of 

complex arrays is employed, where the number of repeats is reduced by adding fragmented 

genomic DNA along with the DNA of interest. But in this method, transgenes get silenced in 

these tissues after a few generations. To overcome this issue, extrachromosomal arrays can 

be integrated using gamma or UV irradiation or using single strand oligos along with 

transgenic DNA (Mello et al., 1991). But, in all these cases, the repetitive nature of array DNA 

is still retained to some extent. Therefore, this does not always allow germline expression. 

Also, the irradiation method introduces other mutations. Moreover, when integration of 

arrays happens, it becomes difficult to distinguish animals with extrachromosomal arrays 

from those that have the arrays integrated in the genome. Therefore, due to the 

disadvantages associated with these older methods of introducing transgenes, a next- 

generation technology of Mos1-mediated Single Copy Insertion (MosSCI) was developed. 

Mos1 is a transposon from Drosophila. A transgenic plasmid is constructed such that the gene 

of interest is flanked by homologous regions that will aid in recombination, following the 

excision of Mos1 (Frokjaer-Jensen et al., 2008). Many of our transgenes are inserted at the 

ttTi5605 Mos1 site. In this method, transgenes are injected along with a plasmid that codes 

for transposase under a germline promoter (Pglh-2::transposase) and an array marker, 

(usually Pmyo-3::mCherry) . The ttTi5605 locus allows germline expression from single copy 

transgenes. 

There are several gene silencing phenomena associated with transgenes injected by the 

above methods and these are discussed below. 
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SILENCING IN C. elegans 
 

C. elegans, like all other organisms, has evolved multiple strategies to protect against the 

invasion of foreign genomes in the germ line, such as viruses or transposons, and transgenes 

which are commonly used in genetic engineering experiments. Foreign genetic elements are 

introduced into C. elegans as transgenes that integrate in the genome or exist as 

independently heritable extra chromosomes. Transgenes can integrate as single copy 

elements or be tandemly repeated arrays. The repetitive arrays, but no single copy integrants 

are silenced in the germline. The transgenic arrays are silenced in somatic cells in mutants 

that have enhanced RNAi phenotype (eri mutants)(Simmer et al., 2002) and can be 

desilenced in RNAi defective mutants. While that is the case, other RNAi factors involved in 

exogenous RNAi pathway like RDE-4, DCR-1, DRH-1, DCR-1 are required for silencing of 

transgenes in eri-6/7 mutants (Fischer, Butler, Pan, & Ruvkun, 2008). This shows transgene 

silencing and RNAi mechanisms have common effectors. The silencing of transgenes can 

utilize nuclear RNAi factors like NRDE-3 argonaute. In this case, the silencing occurs by the 

deposition of H3K9 methylation marks in the chromatin of somatic cells by SET-25 and LIN- 

61 proteins in an RNAi-compromised strain that lacks ERI-6/7 (Fischer et al., 2013). On the 

other hand, CSR-1 is an anti-silencing argonaute in C. elegans. CSR-1 directs the deposition 

of H3K4 trimethylation marks along with SET-2 protein. ERI-1 nuclease and ERI-6/7 are 

required for endogenous RNAi (thus, for expression of multicopy transgenes in somatic cells) 

but negatively regulate exogenous RNAi. 
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Cosuppression 

 
Introduction of plasmids by injection into the C. elegans gonad leads to the formation of 

high copy number extrachromosomal Arrays. Genes that are normally expressed in the 

germline are frequently silenced when they reside in transgene arrays—a phenomenon that 

is immediately obvious when a ubiquitously-expressing promoter is used to drive GFP 

expression. In such a case, GFP expression will be observed in somatic cells, but not in 

germline tissue. Infrequently, the silencing phenomena will involve not only the transgene 

sequence, but also the endogenous, chromosomal genes that are homologous to the 

transgene DNA. This form of silencing, called co-suppression, has also been observed in 

plants (Jin & Guo, 2015), fungi and animals. In C. elegans, silencing from co-suppression has 

been described only for germline-expressed genes. However, one example of a co- 

suppression-like phenomenon, affecting the somatically expressed unc-22 gene, was 

described (Fire, Albertson, Harrison, & Moerman, 1991). But, the unc-22 co-suppression- like 

phenomenon was induced by the purposeful expression of anti-sense unc-22 RNA strands, 

and the resulting reduction in UNC-22 protein was likely due to a late step in gene 

expression, as mRNA levels were not reduced. The more commonly observed co-suppression 

phenotypes associated with germline-expressed genes are distinct from classical RNAi 

mechanisms that are induced by experimental delivery of dsRNA, in that co-suppression 

does not require rde-1 (encoding an Argonaute protein strictly required in RNAi 

experiments), yet co-suppression is dependent on rde-2 and mut-7. rde-2 and mut-7 were 

shown to be essential for co-suppression of transgenes expressing spo-11 and a truncated 

him-14 (Dernburg, Zalevsky, Colaiacovo, & Villeneuve, 2000). rde-2 and mut-7 are part of a 

Mutator Complex of proteins, including MUT-2, MUT-8, MUT-9 and MUT-16, which are 
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required for RNAi and silencing of transposons as well as for co-suppression (Ketting & 

Plasterk, 2000). This indicates that RNA acts as the effector and target for silencing in this 

process. 

 
 

RNAe or paramutation 

 
Heritable epigenetic silencing refers to the stable silencing over several generations. 

Typically, heritable silencing involves small RNA silencing pathways elements. RNA-induced 

epigenetic silencing pathways have also been observed to permanently silence single-copy 

transgenes (Shirayama et al., 2012). This pathway has been termed RNAe, which resembles 

the paramutation phenomenon observed in plants. RNAe is associated with transcriptional 

silencing and chromatin modifications linked to gene repression. RNAe is shown to act both 

transcriptionally and post transcriptionally (Luteijn et al., 2012). In an experimental system that 

utilized a GFP reporter engineered with a target for piRNA binding, piRNAs, in association with the 

Argonaute protein PRG-1, is the initiator of RNAe (Ashe et al., 2012), but it is dispensable for 

maintenance of the silenced state (Shirayama et al., 2012). Maintenance of RNAe requires 

MUT-7 and the argonaute, WAGO-9. In an experiment to screen for factors essential for RNAe, 

it was shown that GFP transgene which was silenced by RNAe resurrected on the loss of nrde-

1 & 2 suggesting RNAe could act at the nuclear level (Luteijn et al., 2012). Strengthening this 

observation, the presence of H3K9 trimethylation marks in the transgenes was 

demonstrated, using ChIP-qPCR experiments (Mao et al., 2015). Silencing of transgenes by 

RNAe is gender-independently heritable. RNAe silencing can act in-trans where an 

epigenetically silenced allele causes the trans inactivation of a previously expressed allele, in 

which case, it is called paramutation (Hollick, 2017). 
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Transcriptional Gene Silencing 

 
Silencing of repetitive elements and transposons in C. elegans occurs typically in its 

germline by RNAi dependent processes. Silencing of transgenic arrays also occurs in the 

germline and this silenced state is inherited by means of epigenetic marks, while the somatic 

cells retain the expression of transgenic arrays (Kelly et al., 1997). mes-2, mes-6 and hp1-2 

(HP1 homolog in C. elegans) have been implicated in transgene silencing in the germline 

(Kelly & Fire, 1998) (Couteau, Guerry, Muller, & Palladino, 2002). Also, the presence of H3K9 

methylation signs the occurrence of this silencing at the level of transcription. Apart from 

silencing by cosuppression, RNAi-induced Transcriptional Gene Silencing (TGS) also has 

been described in which a somatic transgene was silenced by dsRNA homologous to regions 

of the transgene and its repetitive arrays (Grishok, Sinskey, & Sharp, 2005). Since the 

silencing is associated with a decrease in RNA Pol II and acetylation marks, it is apt to refer 

to this as TGS. rde-1, rde-4, rrf-1, hp1-3 but not rrf-3 are required for this silencing (Grishok 

et al., 2005). This study also shows that inhibiting the activity of histone deacetylases 

prevents the silencing of somatic transgenes. Transgene silencing is enhanced in mutants 

that are hypersensitive to exogenous dsRNA dependent silencing (Simmer et al., 2002). 
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EXOGENOUS RNAi 

 
On ingesting dsRNA containing HT115 (DE3) strain of E. coli cells, dsRNA is 

disseminated from intestinal cells to other tissues through dsRNA gated SID-1(Systemic 

RNAi Defective) channel protein. In the classical RNAi pathway, which is also called the post- 

transcriptional gene silencing (PTGS) pathway, the dsRNA is diced into primary siRNAs by 

the activity of Dicer complex. Dicer complex consists of proteins 1) Dicer – dsRNA specific 

RNAse III endoribonuclease - cleaves dsRNA into siRNAs, 2) RDE-4 – dsRNA binding protein, 

3) RDE-1 – endoribonuclease activity, RNA helicase binding activity, PAZ+PIWI argonaute 

protein that interacts with primary siRNAs, converts ds siRNAs into ss siRNAs, part of RISC 

complex, 4) DRH-1 – DEAD/H box helicase – ATP binding activity (Grishok, 2005). In the 

second step of RNAi, roles of RNA dependent RNA polymerases (RdRP) are important. rrf-1 

is required for the production of secondary siRNAs in somatic cells while ego-1 acts in siRNA 

amplification in the germline (Smardon et al., 2000). These RdRPs work in a primer- 

independent manner with the target mRNA as the template. 

 
 

ENDOGENOUS RNAi 

 
lin-4 miRNA is the first endogenous small RNA identified in C. elegans. Endogenous RNAi 

pathways function in silencing of transposons, anti-viral mechanisms, silencing of repetitive 

elements and maintaining heterochromatic regions (Sijen & Plasterk, 2003) (Grishok et al., 

2005). Endogenous small RNAs include 5’ guanosine 26nt RNAs (26G RNAs) and the 

downstream 22G RNAs. Enhanced RNAi is observed for exogenous dsRNA targets in eri-1 

and rrf-3 mutants. But loss of endogenous siRNAs is seen in these two mutant animals 
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suggesting, there are common RNAi factors that act in competing exogenous and endogenous 

silencing pathways. ERI-1, RRF-3, RRF-1 and RDE-3 are factors involved in endogenous 

silencing as described by decreased abundance of siRNAs in mutants that are defective for 

these proteins. Additionally, an increase in the level of target transcripts was also observed 

in these mutants (Lee, Hammell, & Ambros, 2006). These target transcripts not only included 

mobile genetic elements and repetitive arrays, but also endogenous genes that have normal 

physiological functions. This strongly suggests that the endogenous silencing pathways play 

major roles in regulation of gene expression. Endogenous pathways could be involved in 

transcriptional gene silencing via chromatin modifications (Ambros, Lee, Lavanway, 

Williams, & Jewell, 2003; Grishok et al., 2005; Robert, Sijen, van Wolfswinkel, & Plasterk, 

2005) or post transcriptional gene silencing. 

It is possible that endogenous silencing happens through multiple pathways, as evident 

from non-coinciding targets in mutants of the above-mentioned factors. There is a 

convergence between diverse pathways, and this is consistent, for example, with the 

observation that eri-1 mutants are hypersensitive to exogenous RNAi (RNAi from dsRNA by 

feeding or injecting) compared to wildtype animals. Besides, there is an increase in the level 

of transcription of endogenous genes in eri-1 mutants. This contradictory function can be 

explained by the involvement of silencing factors in multiple pathways. In this case, eri-1 

mutants lack ERI-1 protein which 1) leads to loss of endogenous silencing of some genes, 2) 

releases limiting factors (for eg., DCR-1) that could participate in complementary silencing 

pathways viz exogenous RNAi, leading to Eri phenotype. 
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ARGONAUTES 

 
Small RNA dependent silencing in animals require guiding proteins that form complex 

with other proteins in the silencing machinery. Argonaute proteins have gene silencing 

functions in plants, nematodes, flies and humans. There are 27 argonaute proteins in C. 

elegans. These proteins accommodate one of the three types of small RNAs, short 

interspersed RNAs (siRNAs), microRNAs (miRNAs) and PIWI-associated RNAs (piRNAs). 

Perfect homology between small RNAs and the complementary target sequence promotes 

siRNA mediated endonucleolytic cleavage, whereas imperfect homology with 3’ UTR of 

target genes leads to miRNA dependent translational repression (Carthew & Sontheimer, 

2009; Filipowicz, Bhattacharyya, & Sonenberg, 2008; Pillai, Bhattacharyya, & Filipowicz, 

2007) and affect mRNA stability ((Bagga et al., 2005) by several mechanisms. 

Argonaute proteins have two conserved domains – PAZ (Piwi/Argonaute/Zwille) 

domain required for siRNA interaction has a binding pocket that can hold 2 nt 3’ overhang 

which is a product of Dicer activity. The second domain called the PIWI domain is important 

for endonucleolytic cleavage of mRNA referred to as the slicer activity. 

 
 

MUT-7/RDE-2 

 
C. elegans relies on endogenous RNAi pathways to silence transposons and foreign 

nucleic acids (Zhang et al., 2011). Activation of transposons is prevented by MUT (mutator 

class) proteins. Six mutator genes – mut-2/rde-3, mut-7, mut-8/rde-2, mut-14, mut-15, mut- 

16 are identified (Ketting, Haverkamp, van Luenen, & Plasterk, 1999). Like the eri class 

mutants, mutations in mut genes also exhibit temperature sensitive sterility and increased X 
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chromosome nondisjunction. MUT-7(a 3’-5’ exonuclease) is required for 22G RNA 

dependent silencing in the germline (Gu et al., 2009). mut-14 encodes a helicase protein. 

MUT-7 is found in both the cytoplasm as well as the nucleus. MUT-7 interacts with RDE-2 

and act as a complex in RNAi downstream of RDE-1 and RDE-4 (RDE-1 and RDE-4 are 

required for RNAi initiation), particularly in the siRNA amplification step. MUT-7 and RDE-2 

are required for inheritance of RNAi while MUT-7 does not interact with RDE-2 in the 

nucleus. mut-7 and rde-2 animals are Him (Tops et al., 2005). 
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MATERIALS 
 

Primers 

1418 TATATATATAAATTAATACGACTCACTATAGGGTTCACTGTTTCAAATGTTTTG 
 

1419       TATATATATAAATTAATACGACTCACTATAGGGCTGAACCTTTTTTCATTTTCTAT 
 

1420 TATATATATAAATTAATACGACTCACTATAGGGCATGGTTGTTTTCACGGACT 
 

1421       TATATATATAAATTAATACGACTCACTATAGGGTTTACCGTTTCAAGCCTTTCATA 
 

1422       TATATATATAAATTAATACGACTCACTATAGGGTTTTCCGTTTTACGAAAACGAGA 
 

1423 TATATATATAAATTAATACGACTCACTATAGGGTAAAATTGTAAATCATGAGTGATAG 
 
 

Plasmids 

pLT 663  pCR2.1 (TA vector) + PCR fragment of flp-17 cDNA – primers 1424/1425 

pLT 664  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1422/1423 

pLT 665  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1420/1421 

pLT 666  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1418/1419 

pLT 667  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1420/1423 

pLT 668  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1421/1418 

pLT 669  pCR2.1 (TA vector) + PCR fragment of flp-17 genomic DNA template using 
primers 1418/1423 

pLT 704  pCFJ151 + pLT703 – Bgl2/Afl2  myo3 :: GFP with flp-17 introns (all 3 piRNAs) 
:: let-858 3’UTR with unc-119 rescue sequence flanked by ttTi5605 Mos left and right 
homologous regions. 

pLT 706  pCFJ151 + pLT296 – Bgl2/Afl2  myo3 :: GFP with introns, No NLS :: let-858 
3’UTR with unc-119 rescue sequence flanked by ttTi5605 Mos left and right homologous 
regions. (Control for RNAi) 
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Transgenic Strains 

XX1869 - Single Copy Integrants of pLT704 [unc-119+ transgene in unc-119 mutant] [myo3 
:: GFP with flp-17 introns (all 3 piRNAs) :: let-858 3’UTR in ttTi5605 MosSCI insertion 
vector injected into XX1327] 

XX1870 - Single Copy Integrants of pLT706 [unc-119+ transgene in unc-119 mutant] [myo3 
:: GFP with introns :: let-858 3’UTR in ttTi5605 MosSCI insertion vector injected into 
XX1327] 
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Construction of RNAi vectors 

METHODS 

 
To construct RNAi vectors, cloning of PCR products into the kanamycin-resistant 

vector pCR 2.1 was adopted. Feeding plasmid IV-8M07 (plasmid # 87) was used as the 

template in PCR amplification of regions that correspond to RNAi targets with primers 1418- 

1425. The PCR reactions were carried out using Standard Taq Polymerase enzyme from NEB 

following its cycle recommendations. The PCR fragments were stored at -20 deg C and were 

cloned with pCR 2.1 vector using NEB Ligase enzyme at 15 deg C overnight. Calcium 

competent Top10 E. coli cells were transformed with the ligated plasmids and transformants 

were screened based on Kanamycin resistance. 

 

Table 8 : Construction of feeding plasmids. pLT666 to pLT669 are feeding plasmids made 

from cloning PCR fragments (from flp-17 locus) to TA vector pCR2.1. Rows show the primer 

pairs used to amplify the region in between, product size and annealing temperature for PCR 

reactions. 

 
 

Culturing of C. elegans 

 
All C. elegans strains were maintained on 6 cm NGM plates with E. coli(OP50). 
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RNAi by feeding 

 
RNAi feeding plates were prepared with NGM and TAI (Tetracycline Ampicillin IPTG) 

as described (Hull & Timmons, 2004; Timmons, Court, & Fire, 2001). These plates were 

seeded with HT115 (DE3) bacteria harboring each of plasmids pLT663 – pLT669 engineered 

to express dsRNA against specific regions of flp-17 locus. Feeding plasmids were derived 

from L4440 vector (Timmons & Fire, 1998). Four L1 stage hermaphrodite worms were 

placed onto NGM plates and were incubated at 22.5 deg C and 25 deg C for 72 – 96 hours. 

These worms were allowed to lay eggs and progeny were scored for Him phenotype. 

 
 

Construction of transgenic plasmids 

 
Plasmids pLT704 and pLT706 were cloned by standard restriction digestion/ligation 

protocol. Transgenic vectors were verified by PCR and sequencing. 

Microinjection 

 
Transgene lines were established as single copy integrants by MosSCI method of 

injection as described (Frokjaer-Jensen et al., 2008). unc-119 mutant C. elegans were injected 

with a mix of transgenic plasmid, plasmid containing mos transposase coding sequence and 

a selectable marker of transformation. Selection of single copy transformants was based on 

the absence of array markers – mCherry and myo-2 :: GFP (RFP and pharyngeal GFP signals) 

and the presence of muscular GFP in animals rescued of Unc phenotype. Transformants were 

verified for a single copy of insertion of the transgene by PCR amplification using a primer 
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complementary to the site of integration in the genome and a primer that is specific to the 

transgene. 

qRT-PCR 

 
Comparative quantitative RT-PCR was used to estimate the relative abundance of eri- 

6/7 trans-spliced mRNA and eIF3.c mRNA in wildtype and yy14 strain. Total cDNA was 

prepared by oligo(dT)-primed reverse transcription of total RNA from strains XX1683 and 

32.1 (wildtype for eri-6/7), XX1999 , XX1327(has yy14). PCR was then carried out with gene- 

specific primer pairs. The PCR products were resolved in a 1% agarose gel stained with 

ethidium bromide and imaged under UV. 
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RESULTS AND DISCUSSION 
 
 

flp‐17 (RNAi) affects X chromosome segregation in C. elegans 
 

From our efforts to build better tools for the production of C. elegans males, we 

observed Him phenotype when the flp-17 gene was knocked down using RNAi. We are not 

the first lab to observe this phenotype for flp-17, as our “male food” optimizations made use 

of existing information and data related to genes required for chromosome disjunction 

(Chapter2) (Fraser et al., 2000). RNAi against flp-17 reproducibly resulted in increased 

number of male progeny (Figure 13). 

 

Figure 13: Him phenotypes in response to introduction of by feeding. (y-axis : Average 

number of males per experiment). flp-17 is seen to exhibit Him phenotype. L4440 (empty 

RNAi vector) is negative control. 

 
 

Based the fact that the flp-17 gene encodes a FMRFamide-related neuropeptide, it is 

difficult to reconcile a role for flp-17 in chromosome disjunction. Neuropeptides are short 

peptides that function in signaling synaptic activity. These short sequences of amino acids 

are found in most organisms. C. elegans harbors over one hundred neuropeptide genes 
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which are categorized based on their composition into two families: insulin-related 

neuropeptides and FMRFamide – related peptides. FMRFamide (Phe-Met-Arg-Phe-NH2)– 

related peptides are a family of secreted proteins that contain FMRF sequences at their C 

termini (Li, Kim, & Nelson, 1999). Twenty-two flp genes endoce FMRFamide like proteins in 

C. elegans, with clusters of flp sequences found on Chromosomes IV and V. flp-17 is located 

on chromosome IV. These flp genes function in motor and sensory pathways, in egg laying 

functions, in modulating pharyngeal muscle activity and in fat deposition (Cohen et al., 2009; 

Nelson, Rosoff, & Li, 1998; Ringstad & Horvitz, 2008; Stawicki, Takayanagi-Kiya, Zhou, & Jin, 

2013). Chromosome disjunction is not an activity that has been associated with FLP protein 

function. 

 
 

Presence of piRNAs in flp‐17 locus 

 
On taking a closer look at the flp-17 gene locus, we discovered that three piRNAs are 

found in the intronic region: 21ur 7573 (piRNA 1), 21ur 2713& 21ur 12283 (these two 

piRNAs have overlapping sequences that differ only by 3 bases and is considered as piRNA 

2) and 21ur 3217 (piRNA3) lie between exons 1 and 2 of flp-17 (Figure 14). 
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Figure 14: flp‐17 gene locus adapted from ‘Wormbase’. piRNAs are in the intron region 

between exons 1 & 2 of the gene. 

 
 

piRNAs are a group of small, non-coding RNAs transcribed from approximately 15,000 

genes in C. elegans that are typically located in intronic regions or intergenic regions (Weick 

& Miska, 2014). piRNAs are also referred to as 21U-RNAs due to their unique 21 nt length 

and a U (uridine) at the 5’ end. 21U-RNAs are expressed in the germ line where they are 

found in association with PRG-1 and PRG-2--piwi-related argonaute proteins. The 

Argonaute-piRNA complex recognizes the target by incomplete base pairing and functions in 

transposon silencing and regulation of mRNA. piRNAs in C. elegans, also act as mediators for 

initiation of H3K9 methylation and their functions can lead to stalling of RNA Polymerase II 

for genes transcribed in the germ line (Weick & Miska, 2014) (Guang et al., 2010) . 

piRNA/Argonaute functions cause the resulting gametes to stably inherit signals leading to 

transgenerational silencing in response to experimentally delivered dsRNAs—a phenomena 

that is also dependent on the Argonaute proteins NRDE or HRDE that shuttle silencing RNAs 
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into the nucleus (Weick & Miska, 2014). Research by J. J. Wang et al has shown that 3% of 

protein coding genes are upregulated in PRG-1 mutants, highlighting roles for this pathway 

in endogenous gene regulation (J. J. Wang et al., 2014). piRNAs in C. elegans play a protective 

function of safeguarding the genome against mobile sequences such as transposons. piRNAs 

are expressed in the germline tissues to protect and transmit genome to successive 

generations without defects caused by non-self-components. 

piRNAs do not have perfect homology with their target RNAs, lending to the difficulty in 

deciphering specific targets, and thus functions, for any single piRNA. In C. elegans, the 

majority of piRNA genes are found in clusters on chromosome IV (Ruby et al., 2006). 

Forkhead transcription factors are believed to transcribe piRNA genes, acting on a conserved 

motif of 8 nucleotides -CTGTTTCA-. This recognition sequence, termed a Ruby motif, is 40 bp 

upstream of the piRNA genes (Ruby et al., 2006). Thus, the biogenesis of piRNAs in C. elegans 

is quite different from that in Drosophila. In Drosophila, piRNAs are generated using a ping-

pong mechanism that relies on expression of long pre-piRNA precursors from specific sites in 

the genome that are configured as clusters of transposon insertions. The pre-piRNAs are 

processed in an mRNA target-dependent fashion by the slicing action of Argonaute proteins. 

By contrast, the thousands of piRNAs in C. elegans are believed to rise as independently 

transcribed genes; although the precise nature of their processing is yet to be elucidated. 

In keeping with the more well established role in protection of the germ line from 

transposon mobilization defined in other organisms, at least one Piwi/piRNA in C. elegans is 

required to suppress the mobility or excision of Tc3 transposon (Das et al., 2008). Loss of 

PRG-1 is shown to be associated with decrease in the accumulation of piRNAs (Batista et al., 
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2008), and is associated with germline defects and sterility (G. Wang & Reinke, 2008). The 

role of piRNAs in regulation of endogenous genes is still unknown. 

The piRNA genes located in the flp-17 intron have an intact forkhead promoter 

sequence ~40bp upstream. Forkhead proteins regulate the transcription of piRNA genes. flp- 

17 gene is located on Chr IV and the majority of piRNA genes in C. elegans are found in 

clusters on the same chromosome. 

 
 

Feeding induced Him phenotype in non-overlapping regions in flp‐17 locus 

 
The flp-17 plasmid used as dsRNA template in the previous RNAi experiments was 

obtained from Source Biosciences (Fraser et al., 2000). The sequence in the plasmid included 

genomic DNA corresponding to exons 1 and 2, including the piRNAs-containing intron, of flp- 

17. To distinguish whether the flp-17 gene or the piRNA sequences contributed to the RNAi 

phenocopy, we divided the dsRNA template into smaller regions for the purposes of more 

specific gene targeting in our RNAi experiments. We achieved this by constructing plasmids, 

as indicated in Figure 15, and introducing them into the appropriate bacterial host for the 

purpose of expressing dsRNA. 
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Figure 15 : Regions of flp‐17 targeted by RNAi. Top panel – blue rectangles represent 

exons and blue thin lines represent introns. Shown between first two exons are piRNAs with 

piRNA1 (21ur-7573) and piRNA3 (21ur-3217) transcribed opposite in direction to piRNA2 

(2iur-2713 & 21ur-12283). The bottom panel shows regions that were targeted for RNAi by 

dsRNA expressed from feeding plasmids pLT663-pLT669. Bottom panel - regions that were 

amplified from genomic DNA and subsequently cloned to result in a set of feeding plasmids 

that targeted smaller regions in the locus. 

 
 

Surprisingly, a similar phenotype was observed when two non-overlapping regions 

were targeted for silencing by RNAi. RNAi against cDNA region (includes only exon regions) 

as well as that against intronic region that included only the piRNAs, showed evidences of 

non-disjunction phenotype (scored as Him) (Table 9). It is known that feeding C. elegans with 
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bacteria that produce dsRNA triggers a homology dependent degradation of mRNA in the 

cytoplasm with the help of siRNAs and RISC. In our case, the silencing was scored by 

chromosomal non-disjunction phenotype (seen as presence of males in progeny). 

 

Feeding plasmid Region targeted for 
non-disjunction by 

RNAi 

Strength of phenotype(# of 
males / expt) Wildtype 

  25 deg C 22.5 deg C 

pLT663 cDNA 6/11 3/8 

pLT669 All 3 piRNAs 6/11 3/8 

pLT667 piRNAs 1 & 2 4/11 10/8 

pLT668 piRNAs 2 & 3 0/11 0/8 

pLT664 piRNA1 0/11 0/8 

pLT665 piRNA2 0/11 0/8 

pLT666 piRNA3 0/11 0/8 

 
 

Table 9 : RNAi knockdown of specific regions in flp‐17 locus in wildtype C. elegans. 

RNAi was performed with plasmids pLT663 through pLT669 at two different temperatures. 

The numerator in the fraction denotes the number of males while the denominator 

represents the total number of experiments. Each experiment had 4 L1s added at the 

beginning of the experiment. piRNAs 2 and 3 did not show Him phenotype when targeted 

individually or in combination and this is attributed to the relatively small size of the target 

region. 
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Table 10 : Summary of results from RNAi assay for non-disjunction. Two non- 

overlapping regions in flp-17 – (shown in bold) exhibit the same phenotype. 

 
 

The fact that non-overlapping dsRNA triggers can elicit the same phenotype led us to 

hypothesize that 1) Both, flp-17 gene and one or more piRNAs independently are involved in 

chromosomal disjunction during meiosis, or 2) Perhaps dsRNA directed towards this locus 

silences multiple genes simultaneously. Since the two regions do not share sequence 

identity, the best model for the latter hypothesis, would involve a mechanism in which the 

dsRNA acts in the nucleus to trigger heterochromatin formation. The tendency of 

heterochromatin to spread would lead to silencing of adjacent regions simultaneously. In 

order to test whether feeding-induced silencing occurs in the nucleus, we performed the 

same RNAi experiments in a nrde-3 background at two different temperatures. 

NRDE-3 is an argonaute protein identified from screening of genes required for 

transcriptional gene silencing (TGS). Unlike PTGS, this form of silencing happens in the 

nucleus and requires factors that are collectively called nuclear RNAi deficient (NRDE) 
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proteins (Guang et al., 2010). NRDE-3 localizes to the nucleus in an siRNA-dependent fashion 

(Zhuang, Banse, & Hunter, 2013). The prevailing model for NRDE-3 function in RNAi is that 

NRDE-3 shuttles silencing RNAs into the nucleus where the RNAs direct sequence-specific 

activities that affect gene expression. siRNA/NRDE-3 complexes with NRDE-1, 2 and 4 in the 

nucleus and facilitates silencing by identifying homologous nascent mRNA targets. NRDE-3 

protein lacks the domain associated with slicer activity (DDH amino acids), suggesting 

NRDE-3 dependent nuclear silencing circumvents the slicing of pre mRNAs. Pausing of RNA 

polymerase II and histone modifications are some activities associated with NRDE-3- 

dependent silencing (Mao et al., 2015) (Shiu & Hunter, 2017). Animals that are mutant for 

nrde-3 are defective for nuclear RNAi (Guang et al., 2008). When we targeted the flp-17 locus 

for silencing in a nrde-3 background, we did not see any males in the progeny (Figures 16 & 

17). The fact that our RNAi experiments elicit silencing when exon or intron sequences are 

used as trigger, and that the silencing is nrde-3 dependent helps confirm our hypothesis that 

the flp-17 region is particularly amenable to silencing in the nucleus. 
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Figure 16: Feeding-induced Him phenotype at flp‐17 requires NRDE-3. RNAi assay 

includes feeding plasmids pLT663-pLT669 to target specific regions of flp-17 locus to elicit 

Him phenotype. Each assay was performed in wildtype and nrde-3 mutant animals. In every 

case, no males were seen in the progeny of nrde-3 mutants. The data is collected from 11 

experiments. Each experiment had 4 L1s added at the beginning of the experiment. Each L1 

produces ~300 progeny. Refer to Table 9 for data. 
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Figure 17: Feeding-induced Him phenotype at flp‐17 requires NRDE-3. RNAi assay as 

done in Figure 16 was repeated at 22 deg C. The results reiterate that NRDE-3 is required for 

RNAi induced non-disjunction phenotype at flp-17 locus. Data is collected from 8 replicate 

plates. Each L1 produces ~300 progeny. Refer to Table 9 for data. 

 
 

Deletion mutants did not display chromosomal disjunction defects 

 
In order to determine if the piRNAs in the flp-17 region contribute to the 

chromosomal non-disjunction phenotype, flp-17 deletion mutants were procured from 

Caenorhabditis Genetics Center (CGC). Mutant strains, ok3587 (about 700bp deletion) and 

ok3614 (about 300bp deletion) had partial deletions of flp-17 intronic region, as shown in 

Figure 18. The deletion breakpoints were verified by Sanger sequencing. In both strains, 

exon regions are deleted, producing frameshifts in the flp-17 coding region. While neither 

deletion strain is predicted to produce a functional FLP-17 protein, the strains did not 
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eliminate all of the intronic piRNAs. piRNA 1 is intact, including its upstream promoter 

region, in both strains. 

The flp-17 deletion strains did not display a Him phenotype, which helps to rule out a 

function for this protein in chromosome disjunction mechanisms. However, when RNAi 

targeted the remaining intronic region (piRNA 1) in the mutant background of strain ok3587, 

it elicited a Him phenotype. Interestingly, the flp-17 deletion background was more 

sensitized for this assay, as this small dsRNA trigger was not potent for RNAi in a wild type 

background. These results may indicate a role for piRNA 1 in meiotic chromosomal 

disjunction; although a more complex response to dsRNA in this region might also be elicited. 

 
 

 

Figure 18 : Deletion mutants lacking piRNAs. The red bars indicate the span of deletion 

within the flp-17 locus in the two strains ok3587 and ok3614. 
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A novel nuclear silencing mechanism is active on the flp‐17 locus in wild-type C. 

elegans 

eri-1 mutants are commonly used in RNAi experiments, as these mutants display 

hyperactive RNAi responses. eri-1 mutants show an increased abundance of secondary 

siRNAs in the cytoplasm. The genetic screen that was used to identify NRDE-3 was performed 

in an eri-1 mutant background, and all the functions of nrde-3 with regard to silencing in the 

nucleus have been elicited in this context. In our case, the silencing we observe for the flp-17 

locus occurred in a wild-type background. While evidence of RNAi in the nucleus in response 

to experimental delivery of dsRNA has been observed (in the form of histone methylation in 

the targeted region, for example), experimental delivery of dsRNA mostly elicits a RISC-

based mRNA degradation response in the cytoplasm. Evidence for this comes from 

observations that RNAi by feeding requires the cytoplasmic Argonaute rde-1, but not the 

nuclear/shuttling Argonaute nrde-3. rde-1 mutants are RNAi defective, but nrde-3 mutants 

are not—nrde-3-related RNAi defects are only observed in an eri-1 background. The nuclear 

silencing, we observe when targeting the flp-17 locus is an example of an unusual form of 

nuclear silencing in a wild-type background. 

ERI-1 is an RNA exonuclease with a nucleic acid binding domain, ERI-1 negatively 

regulates RNAi by degrading siRNAs. ERI-1 is found in the cytoplasm of wildtype C. elegans 

and its mutation causes the accumulation of siRNAs derived from exogenous dsRNA triggers. 

The enhanced RNAi phenotype observed in eri-1 mutants can be explained, in part, by the 

accumulation of larger amounts of siRNAs. Accumulation of siRNAs in the cytoplasm acts as 

a trigger for NRDE-3 to transport the siRNAs to the nucleus resulting in knockdown of target 
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in the nucleus (Kennedy, Wang, & Ruvkun, 2004; Simmer et al., 2002). However, in flp-17 
 

region, we were presented with an unusual nuclear RNAi response in wildtype animals. 

 
To test the possibility that this is a general phenomenon when piRNAs are present in 

the introns of any protein-coding gene, we identified genes with an architecture similar to 

that of flp-17 locus--having piRNAs in introns. We further selected genes with an easy-to- 

score loss-of-function phenotype. We performed a control RNAi experiment using bacterial 

feeding methodology targeting the unc-22 gene. The dsRNA produced includes genomic 

regions that include piRNAs located within unc-22 introns. In our experiments, we scored 

Unc phenotypes and looked for Him phenotypes in wild type and in nrde-3 mutants. We did 

not observe nrde-3 dependent silencing in this region (Table 11). Not only did we fail to 

observe Him phenotpyes, but the Unc phenotype was independent of nrde-3 function. Thus, 

the presence of a piRNA in a locus being targeted by RNAi is not sufficient to elicit a Him 

phenotype. (This is expected; if this were not the case, Him phenotypes would be much more 

commonly observed in RNAi screens using the Source Biosciences RNAi library reagents as 

these were build using genomic DNA—many genes on chromosome IV contain intronic 

piRNA sequences.). These results also highlight the fact that nrde-3 is not essential for 

RNAi—the Unc phenotype we observed in these RNAi experiments may be completely 

accounted for by RDE-1/RISC-mediated mRNA degradation in the cytoplasm. These results 

also highlight the novel, nrde-3 dependent silencing that we observe in wildtype C. elegans 

when the flp-17 locus is the target of RNAi. 
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Bacterial clone (6K06) 
– RNAi food 

% Unc worms in F1 progeny 

 Wildtype nrde‐3 

Experiment 1 100 % 100% 

Experiment 2 100 % 75 % 

Experiment 3 60 % 75 % 

Table 11 : nrde‐3 dependent silencing is unique to flp‐17 locus. RNAi experiments 

against piRNAs in unc-22 locus in wildtype and nrde-3 mutants exhibited similar phenotypes 

showing there is no nuclear dependent silencing for this locus. 

 
 

Generating a Nuclear Silencing - sensitive target 

 
The flp-17 genomic locus, with its intronic piRNA genes, is particularly amenable to 

nuclear silencing. We hypothesize that this behavior may be due to a) a specific function of 

one or more piRNAs in the targeted region, or b) specific chromatin-related features of the 

locus, or a three-dimensional architecture. To address these hypotheses, we designed 

transgenes, intending to move the piRNAs to a new genic and genomic context – that is, the 

intronic region of a reporter gene. The reporter gene used was GFP that was designed to 

express in muscle cells. The transgenic vector pLT704 was constructed to include flp-17 

region encoding all the 3 piRNAs (approx. 375 bp), inserted within the introns of GFP 

reporter under the transcriptional control of myo-3 promoter. As a control, in pLT706, GFP 

lacked this intron that consists of piRNAs from flp-17 gene region (Figure 19). This allows 
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for an artificial target in our RNAi experiments and will explain if the susceptibility to nuclear 

silencing is attributed to the genomic interval containing the piRNAs. 

 
 
 
 

Figure 19 : Artificial ‘nuclear silencing – sensitive target’. The top panel shows the 

schematic of flp-17 gene with thick black bars representing homologous sequences for Mos 

mediated recombination, blue rectangles representing exons, and introns are seen as thin 

black bars between exons. piRNAs are found between exons 1 & 2. The middle panel shows 

the structure of a transgene construct with piRNAs included in the intronic region of a 

reporter gene, GFP under the control of myo-3 promoter (pLT704). The bottom panel 

represents a control transgene which lacks the piRNAs (pLT706). 

 
 

Transgenic single copy integrants for both constructs were obtained by the MosSCI 

method of transformation of unc-119 mutant animals. The presence of transgene integrants 

was confirmed by PCR amplification. Once transgenic worms were obtained, the goal was to 
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perform RNAi experiments with dsRNA corresponding to the intron/ piRNAs insertion and 

the reporter sequence(GFP). In these cases, it was decided to assess for a Him phenocopy, 

and for loss of GFP expression. Similar to previous RNAi assays, these RNAi experiments 

were designed to include nrde-3 controls to test for nrde-3 dependence that confirms nuclear 

silencing. The speculation was that, an easier readout with a reporter like GFP will help us 

gauge the extent to which this form of nuclear silencing is prevalent. Furthermore, 

recapitulating the flp-17 architecture in a different gene set-up will allow us to determine if 

the amenability to nuclear silencing is context-specific (the genomic region including flp-17) 

or if it is a feature of including small non-coding RNAs in the intronic region of any gene. 

Once pLT704 and pLT706 transgenes were injected in unc-119 C. elegans (XX1327) 

by MosSCI method of transformation, we obtained 22 independent lines from pLT704 and 3 

lines from pLT706. In addition to these, we obtained a number of array lines for each 

transgene. We hypothesize that RNAi against the piRNAs will silence GFP expression, lining 

with our previous observation of nuclear silencing. 

 
 

Unexpected silencing of transgenes 

 
When the above two previously discussed transgene constructs were injected, we 

were faced with a unique phenomenon. In transgenic experiments it is not surprising to 

observe silencing in germline tissue in C. elegans (Kelly et al., 1997). We know that the 

germline of C. elegans has potent anti-foreign genome responses. But in our case, silencing of 

transgene is repeatedly seen in somatic tissues such as muscle cells, in our independent 

single copy integrants, in the absence of dsRNA triggers. This implies the silencing is novel 
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and unprecedented in C. elegans. In a previous research in the field, silencing of a transgene 

elt2 :: gfp/LacZ was observed in the soma of C. elegans (Grishok et al., 2005). But it was shown 

to involve RNAi pathway genes and hence referred to it as RNAi-induced TGS. Transgene 

silencing in soma is observed in pals-22 mutants. In this case, highly repetitive array 

transgene, but not single copy reporters, is silenced at the loss of PALS-22 (Leyva-Diaz et al., 

2017). Contrary to all these observations, transgenic silencing in our experiments occurred 

spontaneously and in wildtype background. 

 
 

GFP transgene is capable of expression in muscle cells of transformed C. elegans 

 
Transgenic plasmids pLT704 and pLT706 were injected into unc-119 C. elegans 

mutants. Transgenes that are designed for single copy integration into the worm genome 

initially formed extrachromosomal arrays of the injected DNA. These worms which carried 

the arrays, expressed myo-3 driven GFP. Secondly, in an attempt to desilence the transgene, 

we conducted gene knockdown experiments using RNAi by feeding against potential 

effectors of transgene silencing. We selected genes that were shown to be implicated in 

desilencing of let858::GFP transgenic array as shown by Towbin et al (Towbin et al., 2012). 

It is to be noted that the L4440 RNAi vector also resulted in minimal expression of GFP from 

in single copy integrants of transgenes that were earlier silenced. Among the targets that 

were knocked down, ubl-5 RNAi consistently resulted in re-expression (or desilencing) of 

myo-3::GFP. Thirdly, spontaneous reversal of transgene silencing occurred with all 

independent lines that were previously lacking GFP expression. Maintenance of population 

of single copy integrants of pLT704 and pLT706 lines over several generations resulted in 
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desilencing of the GFP-expressing transgene (Figure 20). These lines were now seen to 

express myo-3 :: GFP in a heritable manner. Collectively, these results indicate that our 

transgenes pLT704 and pLT706 are capable of expressing GFP in muscle cells (myo-3::GFP). 

 
 
 
 

 
Figure 20: Spontaneous reversal of transgene silencing. Three representative single 

copy integrant lines transformed with plasmid pLT704 (transgenic plasmid with myo-3::GFP 

with piRNAs included in the intron of GFP) shows somatic expression of transgene. 

 
 

Investigating mechanisms of silencing 

 
To explore the nature of desilencing of transgene expression, whole genome 

sequencing was performed on previously silenced integrant animals. Surveying for 

mutations associated with RNAi functions revealed a previously uncharacterized 88 bp 

deletion in a RNA helicase gene. The deletion is mapped to a regulatory region (Untranslated 

region) of eri-6 gene on chromosome 1 (Figure 21). The 88bp deletion mutation is designated 

as yy14. 
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Figure 21 : IGV window showing the deletion of 88 bases in eri‐6. 
 
 

eri-6 and eri-7 genes are encoded on opposite strands on chromosome 1 of C. elegans. 

Independent transcription of the two genes is achieved by the presence of a bidirectional 

promoter (Figure 22). The pre mRNAs of the two genes are found to trans-splice to form a 

single mRNA where the 3’ end of mRNA corresponds to eri-7 sequence. This is the first case 

of trans-splicing in C. elegans between exons of two genes. In a closely related species, C. 

briggsae, these are encoded by a single gene that lies on the same chromosome as eri-7 lies 

in C. elegans. In C. elegans wildtype strain N2, the eri-6 sequence lies between 930 bp direct 

repeats on either side (Fischer et al., 2008). A 25-bp inverted repeat lies within each of the 

direct repeat sequences. The trans-splicing was shown by Reverse Transcription-PCR 

indicating the presence of one single mRNA (Fischer et al., 2008) . 
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Figure 22 : Trans-splicing of eri‐6 and 7 occurs via the homologous complementary 

region. Exons of eri-6 and eri-7 are denoted by blue and green rectangles respectively. The 

genes are transcribed by a common promoter that acts bidirectionally. yy14 is present in a 

regulatory region of eri-6. 

 
 

The chimeric protein ERI-6/7 belongs to superfamily I helicases. Superfamily I 

helicases can act on DNA or RNA. But the presence of ERI-6/7 in cytoplasm indicates it to act 

on RNAs. ERI-6/7 is required in endogenous small RNA pathways. ERGO-1 is an argonaute 

protein that associates with a subset of ERI class of small RNAs. 26G small RNAs 

(monophosphorylated at 5’ end) and their downstream 22G siRNAs are the ERI class small 

RNAs. In eri-6/7 mutants, the ERGO-1 dependent 26G RNAs corresponding to about one 

hundred gene loci (which includes, pseudogenes and transposons) are absent as shown by 

qRT-PCR experiment. As a consequence, it was shown that the mRNAs of these genes were 
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up regulated (Fischer et al., 2011). These target genes are non-conserved between C. elegans 

and C. briggsae which suggests that ERI-6/7 is required for antiviral like functions protecting 

genome from the expression of transposons, pseudogenes and repetitive sequences. 

 
 

Eri phenotypes from other eri genes are associated with temperature dependent 

sterility and nondisjunction of X chromosomes which are absent in eri-6/7 mutants (Fischer 

et al., 2008). ERI-6/7 is a negative regulator of exogenous RNAi and promotes endogenous 

silencing of pseudogenes, repetitive arrays by an ERGO-1/26G RNA dependent small RNA 

silencing pathway. The opposite roles of ERI-6/7 in exogenous and endogenous RNAi implies 

competition between the two, in terms of common ERI-6/7 associated factors. From the 

nature of targets of ERI-6/7, it is speculated that ERI-6/7 has implications in antiviral like 

defense mechanisms. 

 
 

yy14 regulates trans-splicing of eri‐6 and eri‐7 

 
As trans-splicing is a feature unique to this region, we hypothesized that the deletion 

will affect trans-splicing. To determine if the deletion mutation regulates the inter-genic 

trans-splicing, we performed qRT-PCR to quantify trans-splicing in yy14 mutants relative to 

wildtype animals. In these experiments, cDNA from various regions viz. eri-6/7 junction exon 

in eri-6, trans-splice region and exon from eri-7 were amplified to investigate the effect of 

yy14 mutation on trans-splicing. Reproducibly, the levels of trans-spliced mRNA increased 

two-folds in the presence of yy14 mutation (Figure 23). This is consistent with a role for ERI- 

6/7 in silencing of our transgene. 
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Figure 23: yy14 affects trans-splicing. Along the x-axis are the regions amplified in the 

PCR. Y-axis denotes expression levels. Wildtype expression level is taken as 1. The middle 

bar represents expression level when trans-splice exon in eri-6/7 is amplified and showed a 

2-fold change in yy14 with respect to wildtype levels. Number of experiments = 2; Number 

of plates in each experiment = 3; Total number of worms = >2000. 

 
 

The hypothesis is that ERI-6/7 protein promotes the biogenesis of secondary siRNAs, 

the 26G RNAs corresponding to our transgene sequence. These secondary small RNAs 

mediate silencing of our transgene in an ERGO-1 dependent manner. 
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eri mutations affect inheritance of extrachromosomal arrays 

 
Introduction of DNA by microinjection results in the formation of transgenic arrays in 

 
C. elegans. The DNA becomes concatenated into extrachromosomal arrays by non- 

homologous recombination, resulting in repetitive, presumably tandemly arranged plasmid 

sequences, each present in the megabase array in multi-copy. These arrays are mitotically 

and meiotically unstable in that they are not always distributed to daughter cells. The 

transmission frequency with which an array is meiotically inherited ranges from 1-99%, 

depending on the array. Therefore, there is a possibility of extrachromosomal arrays being 

lost after several generations (Stinchcomb, Shaw, Carr, & Hirsh, 1985). Array formation is 

likely a response to the invasion of foreign DNA. Arrays are targeted for silencing using RNAi 

and chromatin machineries that lead to heterochromatin formation. These silencing 

mechanisms are particularly robust in the germ line; indeed, even though the Arrays harbor 

multiple copies of introduced genes, they are often transcriptionally silenced in the germ line. 

This provides a further line of protection against foreign DNA, as invading viruses or 

transposons would not transcribe the necessary genes that would allow them to establish a 

foothold in the organism. The fact that Arrays are non-uniformly inherited likely provides 

some evolutionary advantages. As influx of genes leads to evolution, mechanisms that 

completely disallow such influx would lead to an evolutionary dead end, which might prove 

detrimental to the species in adverse environments. The non-uniform nature of inheritance 

of Arrays would allow for the possibility of some individuals to potentially acquire new traits, 

providing an evolutionary advantage to the species. 

We observed that the frequency of transmission of GFP hairpin arrays (TFA 

phenotype) decreases in eri-1 mutants compared to wild type. In eri-1 mutants, the 
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frequency at which Arrays are inherited is sufficiently low that it can be difficult to maintain 

the stock. To test if this phenotype extends to other eri genes, we performed RNAi 

experiments that knocked down eri genes, including eri-6 and eri-7. Interestingly, we 

observed that RNAi of all eri genes tested exhibited a decrease in frequency of transmission 

of an Array expressing a GFP hairpin in comparison to wild type (Figure 24). 

Arrays are high molecular weight repeat sequences that acquire centromeres de novo 

and are segregated autonomously of the genomic DNA at different frequencies (Yuen, 

Nabeshima, Oegema, & Desai, 2011). These extrachromosomal arrays are not monocentric. 

Monocentromeres refer to single centromeric region on the chromosome with a localized 

kinetochore. Such centromeres are found in vertebrates including humans, and fungi. There 

are some organisms that have delocalized or dispersed centromeres in which the 

kinetochore complex is known to diffuse along the length of the chromosome. C. elegans is a 

well-known example of an organism with holocentric chromosomes. In this case, the 

microtubule spindles attach at positions along the entire length of the chromosomes 

(Maddox, Oegema, Desai, & Cheeseman, 2004). Thus, for the purposes of segregation, array 

chromosomes are a model of endogenous chromosomes in C. elegans. With this 

understanding, we predict a role for eri genes in chromosomal segregation functions of 

centromere. 
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Figure 24: eri affects centromere function. Along the x-axis are genes that are knocked 

down by RNAi. Wild type worms harboring an extrachromosomal Array marked with Roller 

phenotype (caused by a dominant mutation in a collagen gene) were placed on gene -specific 

dsRNA-expressing bacteria, or control bacteria (L4440). The meiotic transmission of the y 

frequency (TFA) was assessed by scoring all the F1 progeny produced from a single Roller 

adult (Roller frequency). The Y-axis denotes the percentage difference in TFA normalized to 

animals reared on normal food. eri mutants show decrease in TFA compared to wildtype 

seen as greater % difference in TFA. eri-7 RNAi resulted in the highest decrease in TFA among 

eri genes. 

 
 

The centromeres are occupied by histone variant of H3 , cenH3 in C. elegans, referred 

to as CENP-A in many organisms. Research led by Steven Henikoff has shown that the 

holocentromeres in C. elegans are polycentromeric in nature, localized to discrete positions 

along the entire length. There are about 100 centromeric sites in each chromosome but only 

100 microtubule attachments are found, in total, for all six C. elegans chromosomes (Steiner 
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& Henikoff, 2014). During the cell divisions in the developing organism, the cenH3 is lost 

from somatic cells as they cease cell divisions, and the cenH3 is not replaced. In the germline, 

sites of active transcription anti-correlates with cenH3 deposition (Gassmann et al., 2012). 

Moreover, non-transcribed regions at the embryonic stage were correlated with cenH3 

incorporation. (The presence of cenH3 correlated with the presence of the inner kinetochore 

protein CENP-C/HCP-4, indicating that these are kinetochore attachment sites.) The cenH3 

binding sites correlated with a motif that, through ChIP analysis, correlates with binding of 

22 transcriptional factors. Thus, HOT sites and centromeric sites share common chromatin 

features and are targeted by both cenH3 nucleosomes and transcription factors, depending 

on the stage of development. It is postulated that the replacement of centromeric sites by 

transcription factors occurs upon exit from the cell cycle, and that cenH3, deposited in non- 

transcribed regions, essentially marks these regions for transcription factor incorporation 

during later stages of development in differentiated cells that now transcribe RNAs from the 

region (Steiner & Henikoff, 2014). 

The mechanisms that lead to establishment and maintenance of heterochromatin as 

well as placement of cenH3 is better understood for yeast centromeres, which can be 

partially defined based on DNA sequence (Lejeune, Bayne, & Allshire, 2010). In yeast, 

transcription of the centromere outer repeats generates dsRNA, which can be processed into 

siRNAs by Dicer1. The siRNAs are loaded onto Ago1, targeting the effector complex RITS 

(RNA-induced Transcriptional Silencing) to the outer repeat region by a base-pairing 

mechanism. RITS interacts with the RDRC (RNA-dependent RNA Polymerase Complex), 

increasing the pool of siRNAs via Rdp1 activity. A subset of splicing factors also contributes 

to this amplification process, in an unknown fashion. The activity of the RNAi machinery 
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results in recruitment of the CLRC histone-modifier complex to chromatin, allowing the CLRC 

subunit Clr4 to methylate histone H3 on lysine 9. This creates a mark that is recognized by 

the chromodomain protein Swi6 that, in turn, recruits cohesin, which is required for proper 

biorientation of centromeres during mitosis. All these silencing complexes and silencing 

marks might function as boundary elements, allowing for the correct placement and 

incorporation of CENP-A (CenH3) (Nakagawa & Okita, 2019). Indeed, for the more 

permanent yeast centromeres, transcription from centromeric regions is detrimental, 

leading not only to chromosome non-disjunction, but also to chromosomal rearrangements. 

It is interesting to speculate that RNAi mechanisms might contribute to 

heterochromatin formation around C. elegans cenH3 sites, allowing for proper placement of 

cenH3 in early development akin to the yeast mechanism, and also preventing gene 

expression and transcription factor occupancy in the region that time in development. Early 

evidence that this might be the case came from analysis of eri-1 mutants. Not only are eri-1 

mutants hyperactive for RNAi, but these mutants also display a Him phenotype and spindle 

defects in early embryos (Pavelec, Lachowiec, Duchaine, Smith, & Kennedy, 2009). ERI-1 is a 

potent modulator of exogenous and exogenous RNAi pathways, and is found in a complex 

with the RNA-dependent RNA polymerase RRF-3, the novel protein ERI-3 and the Tudor 

domain-containing protein ERI-5 (Lee et al., 2006). eri-1 and rrf-3 mutants fail to accumulate 

26G endo-siRNAs that regulate spermatogenesis(Han et al., 2009) and zygotic development 

and give rise to 22G RNAs(Gu et al., 2009) . Although rrf-3 and eri-1 mutants are similar in 

many ways (both are hyperactive for exogenous RNAi, both display Him phenotypes, both 

reside in similar complexes, both are involved in 26G- and 22G-endo- siRNA production), yet  

biochemically  the  proteins  are quite  different.   eri-1 encodes an 
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RNaseT-like nuclease while RRF-3 encodes an RNA-dependent RNA polymerase. There are 

few examples of non-overlapping functions for these genes. 

When we performed the TFA analysis on rrf-3 mutants, we observed a phenotype 

opposite from that observed in eri-1 mutants: the same extrachromosomal Array crossed 

into an rrf-3 mutant background was transmitted to a greater number of progeny than the 

same Array in a wild-type background. As silencing RNAs can spread in C. elegans from 

somatic cells to germ line, it is interesting to speculate that trafficking of RNAs requiring ERI- 

1/RRF-3 for function can influence epigenetic modifications such as histone replacements in 

a multi-generational fashion. For example, active transcription at HOT sites in nondividing 

somatic cells may lead to the production of non-coding RNAs that traffick to the germline 

and influence the placement of cenH3 in an RNAi/heterochromatin- and sequence- 

dependent fashion. Disruptions in the amount of silencing RNAs may influence how many 

germline cells receive the epigenetic mark. Opposite effects observed in eri-1 versus rrf-3 

mutations might reflect differential influences on the status of chromatin in Array 

centromeres at cenH3 binding sites versus surrounding heterochromatin. 
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CONCLUSION 
 

We have shown here that eri-6/7(yy14) results in increase in the trans-spliced mRNA, 

along with nearly a 1.5-fold increase in expression of eri-6 and eri-7 mRNA. ERI-6/7 protein 

promotes the biogenesis of secondary siRNAs, the 26G RNAs. In our case, we postulate that 

ERI-6/7 is important for the biogenesis of 26G RNAs corresponding to our transgene 

sequence. These secondary small RNAs may mediate the silencing of our transgene in an 

ERGO-1 dependent manner. 

Our model reasons out that increase in trans-spliced mRNA results in upregulation of 

small RNAs (26G RNAs) that efficiently function in the silencing of our transgene (Figure 25). 

 

Figure 25: eri‐6/7(yy14) results in silencing of the transgene. A hypothetical model 

explains ERI-6/7 dependent 26G-RNAs are required for targeting the transgenic DNA for 

silencing in germ line and somatic tissues. 

 
 

This needs to be validated by performing deep sequencing of cDNA amplicons 

corresponding to 26G small RNAs from yy14 mutant animals compared to that of wildtype. 

In addition, a quantitative RT-PCR is required to determine the effect of yy14 on the levels of 

these 26G-RNAs. To determine if the transgene sequences are targets of silencing by small 
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RNA pathways, the deep sequencing datasets will be assessed. Additionally, to test this 

hypothesis, single copy integrants of our transgene will be obtained in ergo-1 mutants. 

On the other hand, to explain how yy14 might regulate trans-splicing levels, we 

hypothesize 88 bases in the regulatory region is essential for the binding of a repressor 

protein. This can be tested by bioinformatics analysis of the 88bp region and looking for 

homologous regulatory regions and proteins associated with them. The protein can be found 

using Enzyme mobility shift assays or other DNA binding and pulldown assays and the 

function of the regulatory protein can be confirmed by β-galactosidase assay, qPCR or other 

transcriptomic analysis tools like RNAseq. Alternatively, loss of 88 bases may increase the 

homology of reverse complementary site between eri-6 and eri-7, thus upregulating trans- 

splicing of mRNAs. This can be investigated by using fluorescent resonance energy transfer 

(FRET) based approach where the intensity of fluorescent emission corresponds to the 

complementarity of the region. 
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TMhelix 7 29     
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TMhelix 7 29       
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TMhelix 106 128       

inside 129 189 # Identity: 44/275 (16.0%) # Identity: 42/212 (19.8%) 
TMhelix 190 212 # Similarity: 99/275 (36.0%) # Similarity: 100/212 (47.2%) 
outside 213 485 # Gaps: 84/275 (30.5%) # Gaps: 20/212 ( 9.4%) 

   # Score: 159.5   # Score: 163.0   
ABCB9 isoform X4 XP_024304677.1 HAF-6A HAF-6B 
outside 1 105 ABCB9 isoform X4   ABCB9 isoform X4   

TMhelix 106 128       

inside 129 189 # Identity: 44/275 (16.0%) # Identity: 42/212 (19.8%) 
TMhelix 190 212 # Similarity: 99/275 (36.0%) # Similarity: 100/212 (47.2%) 
outside 213 426 # Gaps: 84/275 (30.5%) # Gaps: 20/212 ( 9.4%) 
   # Score: 159.5   # Score: 163.0   

 
ABCB10 
outside 

 

1 

 

170 
NP_036221.2 

 
HAF-6A 
ABCB10 

   
HAF-6B 
ABCB10 

  

TMhelix 171 193        

inside 194 213  # Identity: 68/293 (23.2%) # Identity: 55/282 (19.5%) 
TMhelix 214 236  # Similarity: 125/293 (42.7%) # Similarity: 101/282 (35.8%) 
outside 237 313  # Gaps: 50/293 (17.1%) # Gaps: 90/282 (31.9%) 
TMhelix 314 336  # Score: 272.   # Score: 243.0   

inside 337 392        

TMhelix 393 415        

outside 416 429        

TMhelix 430 452        

inside 453 738        

 

ABCB10  isoform X1 XP_011542437.1 HAF-6A HAF-6B 
inside 
TMhelix 

1    34 
35    57 

 ABCB10 isoform X1  ABCB10 isoform X1  

outside 58 134  # Identity: 65/293 (22.2%) # Identity: 55/273 (20.1%) 
TMhelix 135 157  # Similarity: 122/293 (41.6%) # Similarity: 101/273 (37.0%) 
inside 158 213  # Gaps: 59/293 (20.1%) # Gaps: 81/273 (29.7%) 
TMhelix 214 236  # Score: 269.5   # Score: 243.0   

outside 237 250        

TMhelix 251 273        

inside 274 559        

 
ABCB10 isoform X2 XP_011542438.1 HAF-6A  HAF-6B   
outside 1 14 ABCB10 isoform X2 ABCB10 isoform X2 
TMhelix 15 37     

inside 38 96 # Identity: 33/293 (11.3%) # Identity: 33/231 (14.3%) 
TMhelix 97 119 # Similarity: 59/293 (20.1%) # Similarity: 59/231 (25.5%) 
outside 120 133 # Gaps: 176/293 (60.1%) # Gaps: 114/231 (49.4%) 
TMhelix 134 156 # Score: 125.0  # Score: 125.0   

inside 157 442 
  



Supplementary information 1 : Amino acid similarity between human transporters 

and C. elegans HAF-6 protein. (Top two panels) Prediction of transmembrane helices in 

Caenorhabditis elegans HAF-6 protein isoforms using TMHMM, based 

on a hidden Markov model (http://www.cbs.dtu.dk/services/

TMHMM-2.0/). (Krogh, Larsson et al. 2001). (Remainder of panels) Regions highlighted 

in yellow were used to calculate % amino acid identity with human half transporters from 

the B-subfamily using MUSCLE (multiple sequence comparison by log-expectation) 

(Edgar 2004) and (Edgar 2004). Hydrophobicity plots of human half transporter 

members of the B subfamily are depicted at left, with predicted transmembrane 

regions used in alignments highlighted in yellow. Alignments were made to C. elegans 

HAF-6A isoform (middle section) and to the HAF-6B isoform (right section). An overall 

alignment score, which includes a maximized SP score (sum of all pairs) that is NP-

complete is produced by MUSCLE, with larger values representing greater similarity. For 

reference, a self-alignment of HAF-6A transmembrane regions produces a score of 

1269; a self-alignment of HAF-6B transmembrane regions produces a score of 946. The 

best alignment was observed for human ABCB8 isoform d with a score of 466 for HAF- 6A 

alignment; 457 for HAF-6B. (Gap penalty: 10.0; Extend penalty 0.5) 

http://www.cbs.dtu.dk/services/TMHMM-2.0/
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