
Evaluating Person-Centered Factors Associated with Brain-Computer Interface 
Access to a Commercial Augmentative and Alternative Communication Device 

 
By 

© 2019  
Kevin Pitt 

DPhil, Speech-Language-Hearing: Sciences and Disorders, 2019 
M.S., Missouri State University, 2013 

B.S., University of Missouri-Columbia, 2009 
  
Submitted to the graduate degree program in Speech-Language-Hearing: Sciences and Disorders 
and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy. 
 

 
 

Dr. Jonathan Brumberg 

 
 

Dr. Holly Storkel 

 

Dr. Nancy Brady 

 

Dr. Robert Fiorentino 

 

Dr. Lindsey Heidrick 

Date Defended: July 15th, 2019 



 ii 

 The dissertation committee for Kevin Pitt certifies that this is the 
approved version of the following dissertation: 

 
 
 
 
 
 
 
 

Evaluating Person-Centered Factors Associated with Brain-Computer Interface Access to a 
Commercial Augmentative and Alternative Communication Device. 

 
 

 

 

 

 

 

 

Dr. Jonathan Brumberg, Chairperson 

 

 

 

Date Approved: July 15th, 2019 

 



 iii 

Abstract 

Purpose: Brain-computer interface (BCI) techniques may provide a link between an 

individual’s neurological activity and communication device control, which circumvents the 

requirement for individuals to possess a reliable form of physical movement for augmentative 

and alternative communication (AAC) device access. However, while BCI technology is rapidly 

progressing in the laboratory setting, BCI developments are advancing largely without 

consideration of established AAC best practices, which are crucial for effective clinical 

implementation of BCI technology. For instance, BCI research largely utilize custom made 

software and display paradigms and view BCI as a ‘one size fits all’ solution. That BCI is a one 

size fits all solution contrasts with AAC best practice, which seek to pair an individual to an 

AAC device that matches their current and future profile, communication needs, and preferences. 

Therefore, to bring BCI research further in line with existing AAC best practices this dissertation 

work aims to evaluate initial and recurring person-centered factors associated with learning of 

motor execution-based BCI switch for accessing a commercial AAC row-column scanning 

paradigm. 

Method: Four individuals with a diagnosis of amyotrophic lateral sclerosis (ALS) 

completed 12 BCI training sessions in which they made letter selections during an automatic 

row-column scanning pattern from a 7x5 grid. Neural signals utilized for BCI selection control 

were generated by motor execution during target letter highlighting. For comparison, three 

individuals without neurological impairment completed three BCI training sessions. During each 

session, participants completed approximately 20 minutes of online BCI. To assess person-

centered factors associated with BCI performance and longitudinal device learning, participants 

completed both initial and recurring assessment measures. Initial assessment measures of an 
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individual’s unique profile prior to BCI training included evaluation of neural signals utilized for 

BCI control (i.e., maximum event related synchronization amplitude (ERS), maximum event 

related synchronization amplitude minus predicted noise floor, and event related synchronization 

minus desynchronization difference; ERS-ERD), along with screening of cognitive factors, 

physical motor abilities, and motor imagery skills via the ALS-Cognitive Behavioral Screen, BCI 

screener (Pitt & Brumberg, 2018b), ALS-Functional Rating Scale, Bimanual Fine Motor 

Function, and Manual Ability Classification System. Recurring measures were taken during each 

BCI training session to evaluate changes associated with longitudinal BCI performance, and 

included measures of fatigue, motivation, time since last meal, device satisfaction, level of 

frustration with device control, mental and physical effort, and overall ease of device control. 

Results: Three out of four participants demonstrated either BCI performance in the range 

of neurotypical peers, or an improving BCI learning trajectory across sessions. However, while 

BCI learning trajectories for row-column scanning BCI device were variable both between and 

within participants for those with ALS, findings indicate that approximately five sessions were 

needed to generally characterize an individual’s learning trajectory during motor execution-based 

BCI trials. Regarding participant profiles, cognitive screening revealed that the two participants 

presenting with a suspicion for cognitive impairment achieved the highest levels of BCI 

accuracy, with their increased levels of performance being possibly supported by largely 

unimpaired motor skills. In addition, while scores for the cognitive section of the BCI screener 

were high, the two participants who did not demonstrate a consistent learning trajectory each 

missed one point in the area of attention and working memory, and one point in the area of 

cognitive motor learning and abstract problem solving. As expected, prior to BCI use, the 

greatest amplitude for each neurophysiological measure was generally associated with the 
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highest levels of BCI accuracy. However, this finding was not consistent across sessions as the 

participant demonstrating the lowest amplitudes prior to BCI performance presented with the 

highest amplitudes during BCI control. Furthermore, when evaluating neurophysiological 

measures across sessions, a significant correlation between left hand peak ERS and BCI 

performance was identified for one participant. Finally, ERS-ERD measure remained highest for 

the participant achieving the highest level of BCI accuracy and was significantly correlated to 

BCI performance for the participant achieving the second highest BCI performance levels. For 

recurring number scale-based recurring measures: 1) ratings of motivation were high for all 

participants with ALS. However, motivation ratings significantly decreased across sessions for 

two participants, 2) while satisfaction ratings were positively correlated to BCI performance for 

two participants, satisfaction ratings for the other two participants were primarily driven by 

perceived levels of frustration, and 3) mental effort ratings significantly decreased across 

sessions for one participant along with improved BCI performance, and overall mental effort 

ratings showed a moderate negative trend with BCI performance for two participants.  

Conclusion: Overall findings support that (motor) imagery-based BCI switch access to a 

commercial AAC row-column scanning paradigm may be feasible for individuals with ALS, and 

that clinical decisions regarding BCI suitability may be informed through approximately 5 BCI 

training sessions, when using motor execution as a BCI control strategy. Furthermore, while 

generalization of findings is limited due to the small sample size, results provide multiple 

directions to help facilitate BCI’s clinical transition by informing BCI assessment and 

intervention procedures. Regarding BCI assessment, findings provide early guidelines governing 

the length of device trials for BCI paradigms based on motor execution, and support 1) ideally 

beginning BCI intervention before severe deterioration of physical motor abilities to facilitate 
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BCI access across the disease course, facilitate BCI success, and support those with cognitive 

impairments, 2) further research into the development of BCI specific assessment tools, 

including neurophysiological measures of ERS and ERS-ERD difference to help standardize 

procedures for identifying factors related to BCI control. Findings relevant to BCI intervention 

include 1) incorporation of communication tasks beyond copy spelling to support sustained 

levels of BCI motivation, 2) incorporating a range of recurring person-centered measures in 

evaluating BCI trial outcomes including performance accuracy, levels of satisfaction, multiple 

measures of fatigue, and levels of frustration due to potentially differing definitions of fatigue, 

and differences in factors driving levels of BCI satisfaction 3) supporting more natural levels of 

mental effort during the establishment of BCI control. 
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Chapter I: Introduction 

Every year, thousands of people in the United States and world-wide are diagnosed with 

neurologically debilitating diseases, such as amyotrophic lateral sclerosis (ALS), locked in 

syndrome (LIS), and cerebral palsy. These disorders can leave individuals with severe physical 

impairments and difficulties with expressive language and motor speech, which necessitate the 

use of augmentative and alternative communication (AAC) for access to communication, 

language, and literacy. Unfortunately, while AAC methods such as eye-gaze have been 

successful for enabling communication access for some individuals with severe physical 

impairments, some individuals remain dissatisfied with current AAC options (Kageyama et al., 

2014), and all traditional AAC access require some form of physical movement for device (e.g., 

eye control, limb control), preventing individuals with severe physical impairment from 

successfully accessing conventional AAC techniques.  

Brain-computer interfaces (BCIs) use electroencephalography (EEG) to provide a link 

between an individual’s neurological activity and AAC device control (BCI-AAC; e.g., 

Brumberg, Pitt, Mantie-Kozlowski & Burnison, 2018; Pitt, Brumberg, Burnison, Mehta & 

Kidwai, in review). This EEG connection circumvents the requirement for individuals to possess 

a reliable form of physical movement for communication access. While the idea of controlling a 

computer device via brain signals alone may seem like science fiction, BCIs have recently 

become commercially available, (i.e., the intendiX ® P300 Speller; g.tec medical engineering). 

However, while BCI technology is rapidly progressing in the laboratory setting, BCI 

performance is highly variable (Ahn & Jun, 2015; Kasahara, DaSalla, Honda, & Hanakawa, 

2015; Zhang et al., 2016), and there have been few attempts for their translation into clinical 

practice, and limited interest from AAC professionals and commercial partners (Pitt, Brumberg, 
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& Pitt, in press). Barriers to BCIs clinical adoption are in part due to continued problems 

associated with BCI reliability (e.g., Marchetti & Priftis, 2015; Vansteensel et al., 2017) and set 

up requirements (e.g., Blain-Moraes, Schaff, Gruis, Huggins, & Wren, 2012; Zickler et al., 

2011). However, the translation of BCI technology into the clinical setting is further impeded by 

a general lack of consistency between AAC best practices and BCI procedures. Currently, BCI 

paradigms largely utilize custom made software and display paradigms for signal elicitation. 

Furthermore, current research paradigms view BCI as a ‘one size fits all’ solution, focusing only 

on the assessment of one or two devices, instead of across a full range of BCI systems such as 

P300, evoked potentials, and motor (imagery), in addition to commercial AAC options such as 

eye-gaze. This approach contrasts with clinical best practices, which seek to pair an individual to 

an AAC device that matches their current and future profile, communication needs, and trial-

based preferences (e.g., Pitt & Brumberg 2018a). These described differences between BCI-

AAC display paradigms and evaluation procedures may ultimately hinder the clinical translation 

of BCI technology (Pitt et al., in press). Therefore, as switch input methods are a commonly 

utilized for traditional AAC access, this dissertation study aims to bring BCI research further in 

line with existing AAC practices by utilizing a motor-execution-based BCI switch to access a 

commercial AAC display, along with exploring guidelines governing BCI device trials, and 

evaluating initial and recurring person-centered factors associated with BCI learning and 

satisfaction. 

In the following sections a background is provided on the five most common BCI 

methods including auditory and visual P300, auditory and visual evoked responses, and motor 

(imagery), along with a discussion of differing person-centered factors influencing BCI-AAC 

device use (e.g., attention, working memory, motor imagery skills), and the heterogenous 
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profiles of individuals who may use BCI for AAC access. These sections aim to provide 

foundational knowledge in BCI implementation necessary for understanding how BCI fits into 

existing clinical AAC frameworks. 

1.1 BCI-AAC Devices and Predictors for Use 
 
 There are a variety of BCI-AAC methods which may be used for communication access, 

with successful outcomes for each BCI modality being supported by a range of different person-

centered factors. The following section provides an overview of primary visual and auditory-

based non-invasive BCI-AAC techniques. Each section will highlight a different BCI device, 

outlining how devices outcomes are correlated to varying person-centered factors. Identifying 

how person-centered factors correlate and influence BCI performance is a growing area of 

research and is critical for understanding variations in BCI performances (e.g., Ahn & Jun, 

2015). For an in-depth review of both visual and auditory BCI methodologies and person-

centered factors associated with BCI use, see Akcakaya et al., (2014), Brumberg, Pitt, & 

Burnison, (2018),  Pitt & Brumberg (2018a) and Rezeika et al., (2018). 

1.1.1 P300-based BCI Systems 
 
 The visually-based P300 BCI system (e.g., Donchin, Spencer, & Wijesinghe, 2000; 

Farwell & Donchin, 1988) is the most mature BCI technique and will likely be the first to enter 

clinical practice with a P300-BCI device already commercially available (i.e., Intendix Speller; 

g.tec medical engineering). P300-based BCIs utilize a brain signal known as the P300 event-

related potential, which is a brain response to the presentation of an oddball (rare) stimulus 

among frequent distractors. The user interface for P300-based BCI spellers commonly 

incorporates a grid display (e.g., 6 x 6) including letters, numbers and symbols. To elicit the 
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P300 response, the individual using the BCI device focuses their attention on a target item they 

wish to select, while all items within the display are highlighted in a random order, commonly by 

changing the items from grey to white or a color. The P300 signal occurs approximately 300 ms 

after the target (rare/oddball) stimulus is highlighted, in comparison to non-target items. The BCI 

then identifies which grid item is associated with the P300 event and identifies that item for 

selection (Brumberg, Pitt, Mantie-Kozlowski, & Burnison, 2018). The P300 grid display may 

further be adapted to support an individual’s oculomotor abilities by presenting P300 gird items 

sequentially in a location matching the individual’s oculomotor abilities. For instance, for those 

with limited horizontal and vertical eye movement, items originally presented in the grid 

formation can be sequentially presented, in a random order, from the central screen location  

(e.g., rapid serial visual presentation paradigms; Oken et al., 2014; Pitt & Brumberg, 2018a).  

Alternatively, during auditory-based P300 paradigms the individual is listening for an oddball 

target among frequent distractors. This methodology can be used for binary (yes/no) selection via 

attending to one of two auditory streams (e.g. attending to a “yep” target among “yes” 

presentations in the right ear versus “nope” and “no” in the left; Hill et al., 2014). However, 

these devices are a less mature technology than their visual counterparts. 

 Positive outcomes for visual P300 BCIs performance are linked to a range of factors such 

as: 1) attention and vigilance (Oken, Memmott, Eddy, Wiedrick, & Fried-Oken, 2019), including 

an individual’s ability to rapidly update their selective attention to focus on a new target stimulus 

(Geronimo, Simmons, & Schiff, 2016; Riccio et al., 2013), 2) cognitive alertness and memory as 

indicated by a negative correlation between theta band power and BCI performance (Mak et al., 

2012), 3) an individual’s oculomotor control to employ an overt attention strategy (i.e., fixating 

eye gaze upon desired target for selection in contrast to using peripheral attention; Arico et al., 
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2014; Brunner et al., 2010; Halder, Takano, & Kansaku, 2018), 4) working memory (Sprague, 

McBee, & Sellers, 2016), 5) visual perception (Fried-Oken, Mooney, Peters, & Oken, 2013; 

McCane et al., 2014), 6) motivation (Nijboer, Birbaumer, & Kubler, 2010; Nijboer et al., 2008), 

7) mood (Nijboer et al., 2008), 8) executive function skills (e.g., as assessed by measure of 

resting heart rate variability; Kaufmann, Vogele, Sutterlin, Lukito, & Kubler, 2011), 9) cognitive 

ability (Geronimo et al., 2016) and general intelligence (Sprague et al., 2016; c.f., Hammer, 

Halder, Kleih, & Kübler, 2018), 10) levels of concentration (da Silva-Sauer, 2016), 11) 

amplitude of the negative (N2) peak prior to the P300 (Halder et al., 2013; Mak et al., 2012), 12) 

P300 amplitude (Mak et al., 2012; Oken et al., 2018) and signal to noise ratio (Artzi & Shriki, 

2018), and 13) ability to learn (Hammer et al., 2018). 

Limiting factors for P300-BCI performance include 1) device workload and fatigue 

(Kathner, Wriessnegger, Muller-Putz, Kubler, & Halder, 2014; Oken et al., 2018), 2) boredom 

(Oken et al., 2018), 3) a history of seizures due to the flickering nature of the stimuli, though this 

risk is reduced compared to steady state visually evoked potential methods due to the flashing 

stimuli changing location (Pitt & Brumberg, 2018a), 4) pharmaceutical effects (Meador, 1998), 

5) decreased food consumption (Geisler, 1990), which may negatively impact individuals’ 

cognitive performance, and 6) positioning factors impeding posterior EEG electrode recordings 

(e.g., Fried-Oken et al., 2013), as parietal and occipital regions of the brain are crucial areas 

involved in generating P300 responses (Ikegami, Takano, Wada, Saeki, & Kansaku, 2012). More 

specifically, peak P300 amplitudes recorded over posterior areas of the scalp positively correlate 

with visual P300 BCI performance when compared with amplitudes recorded from fronto-central 

electrodes for individuals with ALS (Sugata et al., 2016). In addition, it is also important to note 

the requirements for P300-BCI use may differ between auditory and visual P300 devices, though 
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the foundational concepts remain the same. For instance, while motivational factors do positively 

correlate to auditory P300 amplitudes (Baykara et al., 2016), auditory P300-BCIs may be 

associated with increased training times (Nijboer et al., 2008), and an increased cognitive load 

(Klobassa et al., 2009; Kubler et al., 2009) as, similar to existing auditory AAC strategies, 

auditory P300 systems require mapping of the visual grid-based system into an auditory format 

(e.g., listening for an item location). 

1.1.2 Evoked Potential-based BCI Systems 
 
Evoked potential-based BCI paradigms use steady state EEG rhythms, which are 

physiological responses to a driving input stimulus (Lopez, Pomares, Pelayo, Urquiza, & Perez, 

2009; Regan, 1989) such as a strobe, for selecting items from an AAC device. A user interface 

for a steady state visually evoked potential (SSVEP)-based BCI (e.g., Sutter, 1992) incorporates 

items flickering at a different rate (e.g., 12 thru 15 Hz). For instance, the Shuffle Speller SSVEP-

based BCI interface (Higger et al., 2017) incorporates six strobing stimuli all flickering at 

different rates. Each flickering stimuli is associated with a specific box on the graphical display, 

which each contain different letters. During BCI control, if the individual focuses their attention 

on one item (e.g., 12 Hz flickering stimulus), ideally with an overt attention strategy (e.g., 

Brumberg, Nguyen, Pitt, & Lorenz, 2018), the EEG signal over posterior electrodes will contain 

a heightened amplitude (Muller-Putz, Scherer, Brauneis, & Pfurtscheller, 2005) and greater 

temporal correlation (Lin, 2007) to the 12 Hz stimulus in comparison to other stimuli. This target 

item will therefore be identified by the BCI for selection. In this Shuffle Speller paradigm, boxes 

are selected sequentially until one final letter remains for word spelling. The consistent flicker of 

the SSVEP paradigm is in contrast to the P300 interface, which highlights each item in the grid 

on multiple occasions and requires the individual to identify each time the target item becomes 
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highlighted. In a similar manner to SSVEP, auditory steady state response (ASSR)-based BCIs 

(e.g., Lopez et al., 2009) requires the user to attend to a sound stream containing amplitude 

modulated, or frequency modulated stimuli (e.g. a right monoaural 38 Hz modulation, 1000 Hz 

carrier tone  presentation in conjunction with a left monoaural 42 Hz modulation, 2500 Hz 

carrier tone). The frequency of the sound stream to which the individual attends will be amplified 

in the EEG signal, allowing for a binary choice selection. However, to date, there is currently 

limited research about the application of ASSR to individuals with severe physical impairments.  

 Varied person-centered factors are associated with SSVEP-BCI outcomes, with 

performances being positively supported by factors such as 1) oculomotor control for 

implementation of an overt attention strategy (e.g., Brumberg, Nguyen, Pitt, & Lorenz, 2018; 

Kelly, Lalor, Finucane, McDarby, & Reilly, 2005; Peters et al., 2018; Zhang et al., 2010), though 

SSVEP devices may be adapted by placing icons in areas which suit an individual’s oculomotor 

strengths (e.g., Allison et al., 2008; Brumberg, Nguyen, Pitt, & Lorenz, 2018), 2) for 

visualization of the graphical display (Pitt & Brumberg, 2018a). However mental workload (e.g., 

attention and working memory) demands may be decreased for SSVEP-based BCIs in 

comparison to P300 BCI systems (Combaz et al., 2013), possibly as active decisions about 

whether a novel stimulus are presented are not required (Brumberg, Pitt, Mantie-Kozlowski, & 

Burnison, 2018). This decrease in cognitive load further limits the negative impacts of fatigue on 

BCI control for neurotypical adults (Volosyak, Valbuena, Luth, Malechka, & Graser, 2011). 

Similar to P300 methods, positioning factors impeding posterior electrode recordings (Daly et 

al., 2013), uncontrolled head and neck movements (Daly et al., 2013; Sutter, 1992), and 

medications effecting cognitive performance may impede successful BCI use. Additionally, it is 

possible that the flickering visual stimuli may trigger a seizure event (Volosyak et al., 2011), and 
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seizure history should be considered prior to device selection. However, seizures are not reported 

for auditory-based BCI devices utilizing evoked potentials (Higashi, Rutkowski, Washizawa, 

Cichocki, & Tanaka, 2011). 

1.1.3 Motor (imagery)-based BCI Systems 
 
The focus of this dissertation will be motor-based BCI techniques, which use the neural 

activity resulting from imagined or executed movements to control communication devices (e.g., 

Blankertz et al., 2006). While this style of BCI technique is associated with increased training 

times in comparison to sensory-style devices such as the P300, and SSVEP (Geronimo et al., 

2016; Mak & Wolpaw, 2009; Nijboer et al., 2010), motor imagery-based BCIs have multiple 

potential benefits over their sensory counterparts by providing access to a versatile range of user 

interfaces. Further with BCI training, motor (imagery) BCI methods may potentially provide 

increased selection and communication rates due to a decreased number of trial repetitions being 

required to elevate the brain signal above the environmental noise, and that sensorimotor activity 

is generated independently of the BCI graphical interface (e.g., the individual does not have to 

wait for the novel item to be highlighted). More precisely, motor (imagery)-based BCIs decode 

modulations of the sensorimotor rhythm which is either time locked to a given event (i.e., event 

related desynchronization (ERD) and event related synchronization (ERS)), or continuously. 

When time locked to an event, motor (imagery) BCI techniques may allow access to display and 

paradigms utilized by commercial AAC devices, such as single switch or multiple switch 

methods for communication access of a Tobii-Dynavox page set (e.g., Brumberg, Burnison & 

Pitt, 2016). More specifically, commercial AAC displays are commonly accessed through a 

switch, either in a single switch row-column type paradigm, or a multi switch system (e.g., 

pressing one switch advances the selection cursor, and a second switch makes a selection). While 
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BCI switch access is outlined in more detail below in see section 1.3.3, in a BCI context, left 

hand, right hand, and feet movements may be used to provide multiple switch inputs for an AAC 

system. In addition, the changes in the sensorimotor rhythm can be decoded by the BCI 

continuously. When sensorimotor signals are decoded in a continuous manner a real time 

‘mouse’ cursor type interface may be controlled (e.g., right hand imagery moves the cursor to the 

right, left hand imagery to the left; Brumberg, Pitt & Burnison, 2018). Generally, ERD and ERS 

can be viewed as a decrease or increase in power in a given frequency band, following a specific 

event such as motor imagery or execution. ERD and ERS are due to either increased 

synchronization (i.e., ERS) or de-synchronizations (i.e., ERD) of the oscillation rate of neuronal 

populations (Pfurtscheller & Da Silva, 1999). When the brain is at rest and not actively 

performing cognitive-motor tasks it idles at a rate of approximately 8-13Hz and the neuronal 

oscillations are synchronized (ERS). Therefore, the ERS is characterized by increase in power in 

this 8-13 Hz frequency band which can be recorded via EEG. The 8-13 Hz frequency band is 

known as alpha when measured over central and posterior cortex, or ‘mu’ when measured over 

the sensorimotor cortex, and while the exact origin of alpha rhythms are currently unknown, it is 

thought to play a role in inhibitory cortical processes (Pfurtscheller & Da Silva, 1999). In 

contrast to ERS, when the thalamocortical systems become excited during cognitive-motor 

performance, alpha band power decreases in the EEG signal. This decrease in power, when time 

locked to a given event, is known as ERD, and is marker that cortical areas are activated in 

processing cognitive, sensory and/or motor based information (Pfurtscheller & Da Silva, 1999). 

Therefore, imagined and actual motor movements result in desynchronization of the mu band, 

and lower beta bands over sensorimotor areas. In the context of BCI control, ERD can be 

detected by the BCI after an individual has performed an imagined or an attempted movement 
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(e.g., Kübler et al., 2005; Neuper, Müller, Kübler, Birbaumer, & Pfurtscheller, 2003; Obermaier, 

2003). The presence of the ERD signal can then be translated into a binary computer command. 

For instance, during this investigation the presence of ERD will trigger a BCI to select an icon 

currently highlighted on the AAC display during automatic scanning.   

While ERD describes changes in sensorimotor activity that is related to a given event, 

such as an imagined movement following icon highlighting, sensorimotor modulations may also 

be decoded continuously. This continuous method of BCI decoding allows for access to a range 

of versatile interfaces such as real-time ‘mouse’ cursor control (e.g., Brumberg, Pitt, & Burnison, 

2018; Wolpaw & McFarland, 2004), or spelling-based interfaces such as the Berlin BCI 

(Blankertz et al., 2006). During a continuous BCI cursor control paradigms, different imagined 

movements may move a cursor in different directions (e.g., left hand imagery moves the cursor 

to toward the left). In a communication context, this type of access method may be highly 

versatile, allowing for section of letters or words placed in different onscreen locations (Miner, 

McFarland, & Wolpaw, 1998; Vaughan et al., 2006). 

Motor (imagery)-based devices are not reliant upon visual presentation paradigms that 

incorporate “flashing” stimuli such as the P300 and SSVEP. Therefore, while attention to task 

performance and online feedback remains important for motor BCI control (Geronimo et al., 

2016; Halder et al., 2011; Hammer, Kaufmann, Kleih, Blankertz, & Kubler, 2014; Zhang et al., 

2016), motor imagery BCIs may support individuals with impairments in selective attention (Pitt 

& Brumberg, 2018a). However, in contrast to P300 and SSVEP, motor (imagery) BCI control 

requires sensorimotor modulations, which may not be present for 15-30% of individuals within 

the general population (Vidaurre, 2010; Blankertz et al., 2010). While the exact reason for why 

these individuals do not produce a recordable sensorimotor rhythm is unknown, it is thought to 
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be related to anatomical differences, such as angles of the brain’s gyri and sulci (e.g., Thompson, 

2018). When a recordable EEG sensorimotor rhythm is present, multiple electrophysiological 

measures are correlated with motor (imagery) BCI success including the amplitude of the 

sensorimotor rhythm over electrode locations C3 and C4 during rest with eyes open for both 

neurotypical individuals and those with ALS (Ahn, Cho, Ahn, & Jun, 2013; Blankertz et al., 

2010; Geronimo et al., 2016; Sannelli, Vidaurre, Müller, & Blankertz, 2019). In addition, gamma 

(>40 Hz), and theta (4-8 Hz) band powers are correlated to BCI success because they are 

associated with attentional control and cognitive processes (Ahn, Cho, Ahn, & Jun, 2013; 

Grosse-Wentrup & Schölkopf, 2012), and alertness (Mak et al., 2012). Specifically, for 

neurotypical adults, frontal and occipital gamma band powers are positively correlated, and 

centro-parietal regions negatively correlated to an individual’s ability to modulate the 

sensorimotor rhythm during motor imagery (Grosse-Wentrup & Schölkopf, 2012; Grosse-

Wentrup & Schölkopf, 2013). In addition, during rest, a positive correlation for frontal and 

frontal midline gamma is indicative of motor imagery BCI success (Ahn, Ahn, et al., 2013). 

Similarly, prior to motor imagery performance, frontal and posterior-parietal theta band powers 

are correlated to BCI outcomes for neurotypical participants. However, while Ahn, Cho, Ahn, & 

Jun (2013), found a negative correlation between theta band power and BCI performance, this 

was not replicated by Bamdadian, Guan, Ang, & Xu (2014), who found a positive correlation 

between theta levels and BCI success (see Shu et al., 2018 for review). Finally, Shu et al., (2018) 

found that a cortical activation strength, defined as the sum of band powers over the right and left 

hemisphere during motor imagery performance, predicted BCI performance for a single switch 

BCI system for individuals following stroke.  
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Outside of neurophysiological EEG measures, motor imagery BCI performance is 

positively correlated to an individual’s ability to perform first-person motor imagery (mentally 

recreating the action, like you were physically performing it) versus third person imagery skill 

(visualizing yourself performing the action from across the room; Neuper, Scherer, Reiner, & 

Pfurtscheller, 2005), as while both first person and third person imagery modalities may activate 

motor areas (Hétu et al., 2013; Neuper et al., 2005), third person imagery is associated with less 

clear EEG topographies (Neuper et al., 2005).  

Studies identified a positive relationship between self ratings of first person motor 

imagery performance and BCI accuracy for neurptypical adults (i.e., Vuckovic, & Osuagwu, 

2013; Marchesotti, Bassolino, Serino, Bleuler, & Blanke, 2016), however these studies used self-

ratings to measure motor imagery abilities. The utility of self ratings in motor imagery 

assessment (e.g., a rating of 1 = very hard to feel, thru 7, very easy to feel; Gregg, Hall, & Butler, 

2010), is currently unclear (Rimbert, Gayraud, Bougrain, Clerc, & Fleck, 2019), possibly due to 

task differences between studies (i.e., left vs right hand imagery; Vuckovic, & Osuagwu, 2013; 

Marchesotti et al., 2016, right hand imagery versus rest; Rimbert et al., 2019), and difficulties in 

self evaluation of motor imagery performance (Rimbert et al., 2019). Beyond first person 

imagery ratings, other factors that are positvely correlated to motor imagery BCI perforamnce 

include: performance on mental chronometry tasks (e.g., whether the time to physically perform 

five hand clasps matches the time it took the individual to mentally recreate five hand clasps; 

Marchesotti et al., 2016) and frequency of hand and arm movement, if not paralyzed (Randolph, 

Karmakar, & Jackson, 2006; Randolph, Jackson, & Karmakar, 2010; Rimbert et al., 2019), 

emotional stability (Bobrova, Reshetnikova, Volkova, & Frolov, 2018), in addition to confidence 

mastery for both neurotypical individuals and those with ALS (Ahn, Cho, Ahn, & Jun, 2018; 
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Nijboer et al., 2010) and other motivational factors such as challenge (Kleih et al., 2010; Nijboer 

et al., 2010), and comfort with technology (Burde & Blankertz, 2006). In contrast, reaction time 

(Darvishi, Abbott, & Baumert, 2015), fear of incompetence (Friedrich, Scherer, & Neuper., 

2013; Kleih et al., 2010; Nijboer et al., 2010) and an individual’s level of tension/frustration 

(Jeunet, N'Kaoua, Subramanian, Hachet, & Lotte, 2015) are negatively correlated to 

performance. Further though, high levels of confidence may be beneficial in BCI control, it may 

also impair performance (Witte, Kober, Ninaus, Neuper, & Wood, 2013) by increasing levels of 

cognitive effort, which impede ‘effortless’ BCI mastery (Witte et al., 2013). Furthermore, while 

motor areas such as the supplementary motor area (Halder et al., 2011) are linked to motor 

imagery BCI control, an individual’s functional limb motor skills are not currently thought to 

correlate to motor imagery BCI performance (Geronimo et al., 2016; Kasahara et al., 2012), as 

neurological activity for individuals with ALS during imagery may still parallel that of 

neurotypical peers (Lule et al., 2007; see section 1.2.3 for a review). 

It is important to note, that learning motor imagery learning is similar to learning physical 

actions (Wander, 2013; Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002),  

with the early stages of motor learning are linked to a range of cortical networks associated with 

cognitive processes including attention and abstract learning (Sigrist, Rauter, Riener, & Wolf, 

2013; Wander, 2013). This, in addition to working memory and visuospatial skills (Marinelli, 

Quartarone, Hallett, Frazzitta, & Ghilardi, 2017), may play an important role in visuomotor 

adaption during motor learning (Seidler, 2012). The later stages of motor learning are associated 

with refining and automatizing the learned action through error detection and correction 

processes (Sigrist et al., 2013). Similarly, motor imagery BCI performance may be affected by a 

range of factors including: one’s ability to learn independently (Jeunet, Jahanpour, & Lotte, 
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2016), concentration (Hammer et al., 2012), an individual’s ability to self-regulate the 

appropriate allocation of cognitive resources (Kleih & Kubler, 2015), such as attention 

(Geronimo et al., 2016; Halder et al., 2011; Jeunet, N’Kaoua, & Lotte, 2016; Zhang et al., 2016), 

and working memory (Halder et al., 2011; Zhang et al., 2016), visuomotor coordination 

(Hammer et al., 2012; Hammer et al., 2014), visuospatial skills (Jeunet et al., 2016; Jeunet et al., 

2015; Jeunet, N’Kaoua, & Lotte, 2016; Zhang et al., 2016), abstract reasoning to reflect upon 

performance (Jeunet et al., 2015), fatigue (Myrden, 2015), which may be increased for 

individuals with severe physical impairment due to factors such as swallowing difficulties 

(Kasahara et al., 2012), ability to complete abstract reasoning tasks to reflect on imagery 

performance (Jeunet et al., 2015) and executive function for switching between different 

imagined movements (Geronimo et al., 2016), and monitoring performance (Zhang et al., 2016). 

The role of these cognitive and sensory-motor interactions in motor imagery BCI success 

are additionally supported by a range of imaging studies, with brain activations, networks, and 

grey matter volumes that discriminate high versus low aptitude neurotypical users of motor 

imagery BCIs. Utilizing functional magnetic resonance imaging (fMRI) techniques, Halder et al., 

(2011) found increased activations in supplementary motor areas for individuals who had high 

aptitude in BCI control. Furthermore, fronto-parietal attention networks, such as the inferior 

parietal lobe (Zhang et al., 2016), and right middle frontal gyrus (including the dorsolateral 

prefrontal cortex; Halder et al., 2011), are implicated in successful BCI control due to their role 

in allocating high-level cognitive resources (Zhang et al., 2016). Additional MRI techniques also 

identified grey matter volumes of the supplementary motor area, supplementary somatosensory 

area, and dorsal premotor cortex (Kasahara et al., 2015), and white matter structures such as the 

corpus collosum, cingulum (right hippocampus), left cerebral peduncle, right posterior corona 
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radiata, and superior fronto-occipital fascicle in BCI control (Halder et al., 2013). This may be 

due to the dorsal premotor cortex acting as a hub for the interaction of cognitive-motor behaviors 

(Kasahara et al., 2015) and the role of the identified white matter structures in cognitive 

processes, in addition to connecting motor and somatosensory regions (Halder et al., 2013). 

However, many of these cortical areas may become impaired during neurodegeneration. 

Therefore, how long-term training programs not only influence BCI performance, but also the 

underlying neural mechanisms of BCI control is an important area of future research (Halder et 

al., 2013).  

1.1.4. Extrinsic Factors 
 

Along with intrinsic factors influencing BCI performance multiple extrinsic factors must 

also be considered for BCI-AAC use to ensure BCI approaches are focused on achieving 

individuals’ communication goals (e.g., O'Keefe et al., 2007; Moghimi, Kushki, Guerguerian, & 

Chau, 2013), along with improving quality of life, and increasing social participation in their 

preferred activities and environments (Beukelman & Mirenda, 2013; Sexton, 2015). Sources of 

electrical noise (e.g., from air conditioners, muscle movements) are a common hurdle in accurate 

EEG implementation as they obscure or destroy the brain signals that are decoded by the BCI 

(Chavarriaga et al., 2017; Pitt & Brumberg, 2018a). Artifacts can be caused by varying 

environmental sources such as electrical interferences of power lines, lights, computers, TV and 

radio stations, cardiac pacemakers, ventilators and air conditioning. Methods such as filtering, 

sampling, and averaging may be used to limit artifacts (Abdulkader, Atia, & Mostafa, 2015). 

However, electrical sources may degrade EEG signals lowering BCI performance (Sellers, 

Kubler, & Donchin, 2006). In addition, motor artifacts from muscle activity can degrade EEG 

signal quality (Chavarriaga et al., 2017; Muthukumaraswamy, 2013), and while this source of 
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noise may be produced by spasticity and uncontrolled movements (Daly et al., 2013), motor 

artifacts may also be elicited by emotional expression such as laughter (Liberati et al., 2015), and 

environmental distractions (Brandl et al., 2015). Extending beyond the physical recording of 

EEG signals for BCI use, similar to commercial eye gaze systems, lighting glare or reflections 

may obscure a BCI visual display reducing the effectiveness of visual stimulation-based BCIs, 

such as the P300, and SSVEP (He, Huang, & Li, 2016). 

 An individual’s level of support and overall goals are crucial considerations in AAC 

implementation, and especially for BCI to assist with factors such as troubleshooting basic 

environmental and technical difficulties, device set up (such as correct EEG cap placement, 

application of electrolyte gel), mounting, basic device operation, training, monitoring and 

supporting BCI use (Hill, Kovacs, & Shin, 2015; Sellers, Vaughan, & Wolpaw, 2010), and 

providing social reinforcement supporting BCI learning via the provision of emotionally 

rewarding feedback, and collaborative engagement (see Bobrova, Frolov, and Reshetnikova, 

(2018) and Sexton, (2015) for review). Therefore, training caregivers in BCI-AAC 

implementation is an important area of future research (Miralles et al., 2015; Pitt et al., in press, 

Wolpaw et al., 2018).  

1.2 Heterogenous Profiles of Individuals with ALS 
 
Taken together, it is clear from the previous sections that BCI-AAC techniques are not a 

‘one size fits all’ solution, with variable cognitive-sensory-motor(imagery) factors either 

supporting or hindering success with a given BCI technique. In addition, identifying which BCI 

technique may best suit an individual is further confounded by the heterogenous cognitive-

sensory-motor(imagery) profiles of individuals who may use BCI (Pitt & Brumberg, 2018b). A 

range of individuals may benefit from BCI technology such as those with a cerebrovascular 
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accident, Parkinson’s disease, Parkinson-Plus syndromes, brain tumors, and traumatic brain 

injury (Fried-Oken et al., 2013). However, current BCI research largely focuses on individuals 

with ALS (Moghimi et al., 2013). The reason for this focus on those with ALS is due to factors 

including 1) the severity of physical impairments may prevent access to conventional AAC 

techniques, 2) a previously unimpaired sensory-cognitive-motor system, and 3) difficulties in 

studying pediatric neurophysiology (Huggins et al., 2017; Pitt et al., in press). Therefore, while 

research on BCI performance for different populations such as is cerebral palsy (Scherer et al., 

2015; Daly et al., 2013), traumatic brain injury (Daly, Armstrong, Thomson, Andreas, & Martin, 

2015), and Parkinson’s disease (Kasahara, et al., 2018) is in the early stages, this dissertation 

research will focus on participants with an ALS diagnosis. Building upon section 1.1, in the 

following sections I provide an overview of ALS, describing associated cognitive-sensory-

motor(imagery) profiles, which may influence clinical assessment procedures and BCI 

performance.  

1.2.1 ALS overview and motor impairments 
 

ALS onset is likely initiated and influenced via complex environmental-genetic 

(epigenetic) interactions (Paez-Colasante et al., 2015), and afflicts three to five individuals per 

100,000 (Salameh, Brown, & Berry, 2015), and is described as a progressive degeneration of 

upper and lower motor neurons and the frontal cortex, resulting in limb and/or bulbar muscular 

weakness and wasting (Chiò et al., 2014). The rate of disease progression is difficult to predict 

due to large variability between individual presentations, and while the average life expectancy is 

19 months from the time of diagnosis and 30 months from symptom onset, individuals may 

survive a decade or more beyond this time course (Poujois et al., 2013; Salameh et al., 2015). 
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The risk of this debilitating disease is 1:350 for men, and 1:500 for women (Salameh et al., 

2015).  

ALS has two primary subtypes based on the time of onset and degree of limb, versus 

bulbar (cranial nerve) involvement. When limbs are affected first it is referred to as spinal ALS, 

and when speech and swallowing is impaired first, bulbar ALS. Spinal ALS accounts for two 

thirds of onset symptoms and is commonly accompanied initially by decreased coordination of 

hands and feet (Salameh et al., 2015). Bulbar ALS more commonly afflicts older women 

(Salameh et al., 2015), and is associated with a poorer prognosis & faster disease progression 

than those with spinal onset (Goldstein & Abrahams, 2013). While both bulbar and spinal onset 

ALS subtypes typically involve both upper motor neurons (i.e. central nervous system), and 

lower motor neurons (i.e. nerves and peripheral nervous system), different phenotypes of ALS 

can occur. These phenotypes range from pure upper motor neuron disease (primary lateral 

sclerosis) to pure lower motor neuron disease (progressive muscular atrophy; Chiò et al., 2014). 

Common clinical signs of lower motor neuron involvement include; fasciculations and muscle 

atrophy. Upper motor neurons involvement is associated with spasticity, hyperreflexia, and 

emotional lability. It is important to note however, that while overt motor performance is 

impaired for individuals with ALS sensory modalities remain largely in tact (Salameh et al., 

2015). Onset of bulbar, and/or spinal ALS motor symptoms typically occurs in the sixth decade 

of life (average 55 to 65 years) however, onset age is greatly variable, with clinical presentations 

possibly occurring during teen years or during the 8th decade of life. However, early onset (~43 

years), in contrast to late onset (~57 years; Turner et al., 2003), is typically associated with 

improved prognosis (Poujois et al., 2013; Salameh et al., 2015).  
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ALS progression may leave the individual with a condition known as locked in syndrome 

(LIS; Plum, 1972), a state of near total paralysis accompanied by relatively intact cognition. 

Three categories of locked in syndrome include; incomplete LIS, classical LIS and total LIS 

(e.g., Fried-Oken et al., 2013; Plum, 1972). An individual with incomplete LIS retains their 

voluntary control of blinking, vertical eye, and other voluntary movements. In contrast, classical 

LIS is characterized by only retention of blinking and vertical eye control. Individuals without 

any form of voluntary motor movement are diagnosed with total LIS. Classical and total LIS are 

associated with the loss of all oral motor function, resulting in akinetic mutism, and the total 

inability to maintain oral nutrition and hydration. However, individuals in the early stages of 

bulbar involvement, or with incomplete ALS and LIS, may retain some oral motor movements.  

1.2.2 Cognitive performance by individuals with ALS 
 

Cognitive and behavioral deficits are present for approximately 30% of individuals with 

ALS (Beeldman et al., 2016), and a direct relationship between frontotemporal and parietal 

cortical thinning (loss of grey matter) has been associated with increased cognitive dysfunction 

(Chiò et al., 2014). Cognitive changes may manifest in variable clinical presentations, including 

relatively mild deficits in areas such as executive function (e.g. reasoning, flexibility, self-

monitoring, and problem solving), working memory, visuospatial, impulsivity, theory of mind, 

eating habits, increased apathy, emotional lability (Goldstein & Abrahams, 2013; Woolley & 

Strong, 2015), and auditory selective attention (Volpato et al., 2016). These changes may be 

inpart due to changes in the dorsolateral prefrontal cortex, prefrontal cortex, orbitofrontal and 

medial prefrontal areas, with extensive fronto-temporal pathology being associated with the 

familial C90rf72 gene (Chiò et al., 2014), a gene associated with decreased P300 BCI 

performance (Geronimo, Sheldon, Broach, Simmons, & Schiff, 2017). Cognitive behavioral 
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dysfunctions may advance to fronto-temporal dementia, in approximately 10 to 15% of 

individuals with ALS (Beeldman et al., 2016; Chiò et al., 2014). The prognosis is worse for 

individuals with fronto-temporal dementia in comparison to individuals with ALS and cognitive 

impairment. Currently, the trajectory of cognitive decline across the disease course is under 

debate, and while some studies have demonstrated clear evidence of cognitive decline over time 

(Crockford et al., 2018), there are conflicting findings (e.g., Woolley & Strong, 2015), possibly 

due to difficulties in assessment of cognition for individuals with severe motor impairments. 

1.2.3 Motor imagery performance by individuals with ALS  
 

Completing motor imagery tasks parallels physical movements, with motor imagery 

performance recruiting similar cognitive-sensory-motor neural networks to physical task 

performance such as the pre-motor cortex, supplementary motor area, parietal cortex, and 

regions of the basal ganglia which are linked to the selection of motor programs (Hétu et al., 

2013). However, some functional connectivity differences may exist between actual and 

imagined actions. For instance, the role of primary motor cortex in motor imagery is still unclear. 

Specifically, while transcranial magnetic stimulation methods indicate increased excitability of 

motor cortex during imagery (Loporto et al., 2011), and primary motor cortex activity is reported 

during fMRI studies of individuals with ALS during imagery performance (Lule et al., 2007), in 

contrast to physical movements, involvement of primary motor cortex in imagery tasks may be 

less consistent (Hétu et al., 2013; Poujois, 2013). However, individuals with ALS may 

demonstrate increased recruitment of cortical areas associated with motor and motor imagery 

performance (Kollewe et al., 2011; Lule et al., 2007), as reflected by an increased fMRI 

hemodynamic response. The increase in hemodynamic response is likely a compensatory process 

due to neurodegeneration, and loss of inhibitory interneurons possibly leading to hyperactivation 
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of residual neurons (Lule et al., 2007), especially to support function of the most impaired limb 

(Poujois et al., 2013). However, as the disease progresses, this increased response may give way 

to a reduction in motor related cortical activity (e.g., Stanton et al., 2007; Stoppel et al., 2014). 

This change in cortical activities across the ALS disease course supports a continuously 

changing sensory-motor system, with early compensatory changes, followed by the breakdown 

of these functional compensatory processes (Stoppel et al., 2014). However, further research is 

needed to characterize neurological activations across the ALS disease course (Lule et al., 2007), 

controlling for factors such as age and cognitive status.  

That compensatory motor cortex activity is present for individuals in the early stages of 

ALS within motor imagery related networks similar to neurotypical individuals (Lule et al., 

2007) supports findings that individuals with ALS can generate the sensorimotor modulations 

needed for motor (imagery)-based BCI control (e.g., Kubler et al., 2005).  However, Kasahara et 

al., (2012) found that in comparison to neurotypical controls, the presence of the ERD was 

dampened for individuals with ALS, especially for those with increased bulbar involvement. 

Therefore, the magnitude of the ERD during motor imagery and BCI use may not be solely 

governed by the number or activation of surviving neural cells, but is also effected by person 

centered factors such as an individual’s ability to recall a motor action from memory, level of 

fatigue, ability to concentrate on the imagery task (Kasahara et al., 2012), and type of imagery 

task (e.g., imagining a novel action; Halder et al., 2011). Finally, decreased performance on 

implicit motor imagery tasks (e.g., hand rotation tasks) is noted for individuals with ALS 

compared to neurotypical controls (Fiori et al., 2013). Further, Osuagwu & Vuckovic (2014) 

found that both implicit and explicit (i.e., tasks whether the individual is consciously/explicitly 

performing motor imagery) tasks produce similar time and spatial EEG characteristics for 
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neurotypical participants, but the tasks may utilize some slightly different neural structures for 

task completion (Hétu et al., 2013) with implicit tasks being possibly completed via third person 

motor imagery for some individuals with neuromotor impairments (Craje et al., 2010; Pitt, & 

Brumberg, 2018b), which may less successful than first person imagery strategies for BCI 

control. 

1.3  Transitioning BCI into clinical practice 
 
Non-invasive BCI access methods can provide hope and freedom to the most severely 

impaired individuals by overcoming the motor restrictions of conventional approaches to AAC 

access (Blain-Moraes et al., 2012). However, even with promising results from long-term BCI 

trials (e.g., 18 months; Wolpaw et al. 2018; Holz, Botrel, Kaufmann, & Kubler, 2015; Miralles et 

al., 2015; Sellers et al., 2010; Birbaumer et al., 1999) BCI technology is experiencing limited 

translation into clinical practice (e.g., Chavarriaga et al., 2017; Pitt et al., in press). Thus far, the 

slow transition of BCI into clinical practice is in partly due to continued problems associated 

with BCI reliability (e.g., Chavarriaga et al., 2017; Marchetti & Priftis, 2015; Vansteensel et al., 

2016), and that the majority of BCI research is aimed at developing signal processing algorithms 

(Powers, Bieliaieva, Wu, & Nam, 2015). However, though development of effective BCI 

algorithms is crucial for improved BCI outcomes, a general lack of guidelines governing clinical 

BCI implementation, and a general lack of consistency between current clinical best practices for 

AAC and BCI research procedures further impedes the translation of BCI into the clinical setting 

(Pitt, et al., in press). Extending the work of Pitt et al., (in press), Brumberg, Nguyen, Pitt, & 

Lorenz, (2018), Brumberg, Pitt, Mantie-Kozlowski & Burnison (2018), Pitt, & Brumberg, 

(2018a), and Pitt & Brumberg, (2018b) the following sections review 1) feature matching 

assessment, 2) utilization of existing AAC devices and paradigms, and 3) incorporation of 
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stakeholder feedback to provide specific examples of how this project aims to facilitate the 

transition of BCI technology into clinical practice by building upon AAC research and best 

practices. For a full review of how BCI can integrate with current clinical procedures for AAC 

implementation see Pitt et al., (in press). 

1.3.1 BCI-AAC Feature Matching 
 

Feature matching is a widely established clinical method for AAC practice (Gosnell, 

Costello, & Shane, 2011) and is used to pair an individual to an AAC device, page-set, and 

access method that best matches the individuals current and future, cognitive, sensory, motor, 

and linguistic profile, needs and trial-based preferences, in addition to their environment, 

communication needs and levels of support (Gosnell et al., 2011; Pitt & Brumberg, 2018a). 

These person-centered feature matching procedures allow an individual to trial multiple AAC 

devices with a variety of access methods, feedback types, and graphical interfaces. This 

systematic evaluation ultimately leads to the selection of an AAC device that best matches each 

individual’s unique strengths and preferences, facilitating AAC success while limiting the 

potential for device abandonment (Beukelman & Mirenda, 2013). A strengths-based approach is 

an important concept in helping ensure an effective user-device match, helping increase 

outcomes with the chosen AAC device (Thistle & Wilkinson, 2015). However, as described in 

section 1.2, individuals who may use BCI vary in their levels of sensory, motor, and cognitive 

ability. Taken in conjunction with the broad range of BCI techniques available (see section 1.1), 

a lack of feature matching-based BCI assessment guidelines means it is currently unclear what 

type of BCI device may best support successful communication for individuals with severe 

physical impairments. Effective procedures for BCI-based feature matching need to be 

established to facilitate individual success (Hill et al., 2015; Light & McNaughton, 2013; Pitt & 
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Brumberg, 2018a), and promote consistency in terminology between BCI procedures and AAC 

practice (Pitt et al., in press). Furthermore, during a 1995 National Institute of Deafness and 

Other Communication Disorders (NIDCD) sponsored forum, the study of how an individual’s 

unique profile influences AAC success was identified as a research priority by individuals with 

severe physical impairments  (Beukelman, & Ansel, 1995; O'Keefe et al., 2007). For BCI, the 

implementation of feature matching procedures will help a multidisciplinary AAC team to focus 

on the provision of comprehensive and person-centered services that accounts for the 

individuals’ unique profile, in relation to the capabilities, and requirements, of current BCI 

technology. While existing BCI research has laid a critical foundation for the development of 

feature matching frameworks for BCI (e.g., Pitt, & Brumberg, 2018a; Pitt & Brumberg, 2018b), 

current BCI research largely focuses on predicting outcomes for one or two BCI techniques, 

instead of the full range of possible devices. A lack of guidelines governing BCI assessment 

across a full range of devices  means that an individual may not be paired to their most 

appropriate BCI technique. Therefore, to lay the initial foundations for an AAC-style feature 

matching framework for BCI, Pitt & Brumberg (2018a) developed a multidisciplinary 

framework to guide feature matching procedures across a total of nine types of BCI devices, 

including considerations for sensory, motor, motor imagery, medical, cognition, and literacy 

assessment along with extrinsic considerations.  

Currently, the development feature matching assessment procedures for BCI, especially 

motor imagery-based BCIs, are still in the early stages. Screening protocols can help ensure that 

an individual is provided with an appropriate BCI device (Ahn & Jun, 2015), and the utilization 

of screening protocols is an important goal for standardizing clinical and research practices for 

BCI (Fried-Oken et al., 2013). To fill this void in assessment, general purpose cognitive 
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screening protocols are intermittently utilized for participant assessment prior to BCI use (e.g. 

ALS-Cognitive Behavioral Screen (ALS-CBS; Woolley et al., 2010). However, while attention, 

tracking and word initiation portions of the ALS-CBS are linked to initial BCI performance 

(Geronimo et al., 2016), these protocols cannot be fully completed via binary response, making 

them unsuitable for some individuals who may use BCIs for communication. In addition, the 

tasks included in these protocols are not designed to predict BCI performance. Therefore, the 

developments of assessment measures with a BCI focus are necessary to illuminate the 

contrasting cognitive-sensory-motor(imagery) factors associated with BCI performance and 

learning. To date, there are only two published BCI screening protocols available. The first 

protocol, by Fried-Oken et al., (2013), aims to screen an individual’s skill set prior to the use of 

an attention modulated P300-RSVP BCI speller. While an important first step in BCI 

assessment, this protocol does not incorporate tasks that may be valuable for matching an 

individual to other types of BCI technique, such as motor imagery. Thus, to support feature 

matching-based BCI assessment in research and clinical practice, Pitt & Brumberg (2018b) 

developed a screening protocol assessing a range of factors related to BCI use, such as sensory 

(hearing and visual skills), cognition (comprehension and orientation, following directions, 

attention and working memory, and cognitive motor learning/abstract problem solving), motor 

imagery (explicit and implicit), along with other BCI considerations including positioning, motor 

abilities (including oculomotor abilities), comfort with computers, motivation, fatigue, 

handedness, history of seizures, and level of pain. The feature matching screening protocol was 

found to be feasible for completion by individuals with severe physical impairment being 

completed in less than 60 minutes, via binary response. However, it is still unclear how levels of 

cognitive impairment (e.g. mild versus moderate cognitive impairments) impact BCI 
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performance across devices (Pitt, & Brumberg, 2018; c.f., Geronimo et al., 2016). Since this 

foundational assessment protocols only assess if the individual possesses certain BCI related 

skills, and not the skill level. In addition, current screeners do not include neurophysiological 

(e.g., ERD, and ERD) measures of BCI performance (e.g., Blankertz et al., 2010; Shu et al., 

2018) to allow for ease of clinical implementation despite their important consideration in BCI 

assessment, which may limit the utility of current screening methods.  

It is plausible that a screening protocol incorporating tasks tailored to evaluate key areas for 

BCI feature matching will improve the effectiveness of BCI assessment methods and illuminate 

specific areas that are crucial for feature matching evaluation across BCI types, helping increase 

device success, and social participation, while decreasing training times and the rate of device 

abandonment. However, the feature matching screening protocol by Pitt & Brumberg (2018b) is 

untested in relationship to BCI performance. Therefore, further testing of the screener is needed 

in relation to BCI control by individuals with neuromotor disorders, including the application of 

neurophysiological measures, to begin to assess the utility of the BCI screener in assessing 

person-centered strengths associated with longitudinal BCI performance, and advance research 

in BCI assessment. The process is made more difficult because cognitive-motor factors change 

rapidly in individuals with ALS. For instance, as with commercial AAC devices, BCI 

performance may fluctuate throughout the day, or on a day to day basis, depending upon 

transient factors (e.g., levels of fatigue) that may impact BCI performance (Thompson, 2018). 

Therefore, when considering BCI selection, BCI proficiency and transient factors impacting 

levels of fatigue and motivation should be considered on a longitudinal trial basis, rather than 

just a single point in time (Thompson, 2018). 
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1.3.2 Including stakeholder input in BCI development and intervention 
 

Not involving input from stakeholders, such as individuals using AAC, family, 

caregivers, and AAC professionals in the development, selection, and integration of assistive 

technology into their daily lives, leads to a greater likelihood of device abandonment (Blain-

Moraes et al., 2012). Therefore, including stakeholders in the implementation of both traditional 

AAC methods (e.g., Beukelman, & Ansel, 1995; O'Keefe et al., 2007; Phillips & Zhao,1993; 

Romski & Sevcik, 2018; Powers et al., 2015), and BCI (e.g., Blain-Moraes et al., 2012; 

Brumberg, Pitt, Mantie-Kozlowski, et al., 2018; Chavarriaga et al., 2017; Huggins, Wren, & 

Gruis, 2011; Liberati et al., 2015) is of critical importance to support successful communication 

outcomes, clinical service delivery (O'Keefe et al., 2007), and to ensure that AAC products meet 

ethical, legal, technical, and social requirements, which enhance an individual’s autonomy 

(Nijboer, 2015). However, while recent BCI studies are beginning to explore the opinions of 

stakeholder feedback (e.g., Blain-Moraes et al., 2012; Holz et al., 2015; Huggins et al., 2011; 

Liberati et al., 2015; Pasqualotto et al., 2015; Peters, Mooney, Oken, & Fried-Oken, 2016; 

Kageyama et al., 2014), research in this area is limited. To date, research regarding stakeholder 

perspectives is generally positive (e.g., Blain-Moraes et al., 2012; Liberati et al., 2015; Miralles 

et al., 2015; Wolpaw et al., 2018), with 84% of individuals indicating they would be willing to 

wear the EEG cap to access BCI systems (Huggins et al., 2011), and that BCI technology can 

offer freedom, hope and connection, which fulfils an unmet need in their daily lives (Blain-

Moraes et al., 2012). Furthermore, one individual with ALS indicated that BCI restored his 

independence, using a P300-based BCI to run his NIH-funded research laboratory and to 

communicate via e-mail with family, friends, and colleagues. (Sellers et al., 2010). However, 

stakeholders also note barriers to BCIs successful application into their everyday life such as 
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fatigue, effort, anxiety (e.g., due to flickering stimuli; Blain-Moraes et al., 2012), frustration 

(Miralles et al., 2015), discomfort and physical issues caused by wearing the EEG cap (Blain-

Moraes et al., 2012), problems with set up (Blain-Moraes et al., 2012), reliance on system 

assistants (Wolpaw et al., 2018), and issues related to performance reliability (e.g., Holz et al., 

2015; Miralles et al., 2015). 

For current AAC practice, individuals with ALS report the need for AAC professionals to 

provide opportunities to trial a variety of AAC systems, since there is no “one best fit” for 

everyone (McNaughton et al., 2018). The same is true for BCI, and individuals with severe 

speech and physical impairments have varying perceptions of workload, comfort, ease of use, 

and satisfaction with a given BCI system (Peters et al., 2016). Furthermore, individuals with 

ALS report that visual P300 BCIs required more cognitive workload compared with eye gaze 

access (Pasqualotto et al., 2015), a conventional AAC access method, due to the decreased BCI 

selection rates, and difficulties in maintaining focus on BCI tasks during unexpected events 

(Blain-Moraes et al., 2012). However, in contrast, some individuals report P300-BCIs are easy to 

use as no precise eye movements are required (Holz et al., 2015; Kathner, Kubler, & Halder, 

2015). A case study report found one individual with locked in syndrome reported global ratings 

of workload, fatigue, and frustration were lower for BCI use versus eye-gaze (García et al., 

2017). An individual’s level of comfort may additionally effect preferences for BCI use, with 

those who are comfortable with technology demonstrating an increased willingness to trial BCI 

devices (Geronimo, Stephens, Schiff, & Simmons, 2015). However, current studies evaluating 

stakeholder perspectives regarding factors such as device satisfaction, frustration, and levels of 

effort are limited, with the vast majority focusing on stakeholder opinions regarding the 

implementation of P300-based BCI technology and not across a range of BCI methods. 
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 Longitudinal BCI learning influences motivational factors for neurotypical individuals 

(Friedrich et al., 2013) and those with ALS (Nijboer et al., 2010). Furthermore, individuals may 

report high levels of exhaustion during early BCI training (Friedrich et al., 2013), and some 

reports by individual with ALS indicate frustration and dissatisfaction with motor imagery BCI 

control during the early stages of motor learning (Nijboer et al., 2010). Therefore, it is important 

to ascertain how stakeholder attitudes on perceived levels of motivation, fatigue, frustration, 

effort, workload and overall device satisfaction change during motor-(imagery) BCI learning. As 

longitudinal changes in overall satisfaction and psychological factors (e.g., workload) are 

currently unclear, elucidating how associated stakeholder ratings change during the motor 

(imagery) BCI learning processes is necessary to ensure individuals are provided with sufficient 

time to learn the BCI system and make an informed decision about their BCI preference. 

Furthermore, evaluating how factors, such as performance accuracy, correlate to person centered 

factors and satisfaction over time will help identify crucial considerations for BCI assessment, 

informing clinical and research guidelines governing BCI trials.   

1.3.3 Utilizing existing AAC paradigms and evaluating trail lengths.	

Findings by Liberati et al., (2015) reveal that individuals with ALS highly value AAC 

devices that can adapt to their changing sensory-cognitive-motor profile, exploiting the strongest 

current communication channel both in the short and long term. This concept of ‘ability-based’ 

AAC design seeks to develop AAC devices that support access across the life span/disease 

course, and emphasizes the role of creating AAC systems that can adapt to the individuals 

changing needs, instead of requiring the individual to adapt to the AAC technology (Light et al., 

2019). However, motor imagery BCI research focuses on imagined task performance, regardless 

of the individuals physical motor abilities. This narrow focus on imagined task performance does 
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not utilize the individuals existing motor skills, possibly decreasing motor cortex activities 

during task performance (e.g., Hétu et al., 2013), which may negatively impact BCI 

performance. Furthermore, motor execution may increase BCI performance in comparison to 

imagery for some BCI users (Neuper et al., 2005), especially those with decreased initial BCI 

performance (Sanneli et al., 2019), and while the effects on non-invasive BCI performance are 

unknown, invasive electrode recordings show there may be differences in cortical activities 

between real, attempted and imagined movements (Vargas-Irwin et al., 2018). Therefore, 

utilizing an individual’s residual motor function for BCI control may help support improved BCI 

accuracies, lowering cognitive difficulties associated with performing abstract motor imagery 

tasks. Furthermore, physical practice may facilitate improved first-person motor imagery 

performance (a strategy associated with improved motor imagery-based BCI success; Neuper et 

al., 2005), by supporting recall of the physical action from memory (Vuckovic, & Osuagwu, 

2013; Halder et al., 2011). Thus, providing timely BCI-AAC access via motor execution early in 

the disease course for those with progressive neuromotor disorders, before motor movements 

become severely impaired, may help provide a strong foundations for an individual’s transition 

to a motor imagery strategy later in the disease course when progressive paralysis prevents 

physical motor movements. For instance, an individual may access a BCI-AAC system via motor 

execution, or multimodal AAC methods (e.g., Fager, 2018) early in the disease course, with the 

individual choosing their method of AAC access depending upon factors such as fatigue, motor 

ability, and environmental factors (e.g., the individual may choose to use BCI access when sun 

glare on the AAC display hinders eye-gaze access). Similar to existing AAC methods, providing 

BCI access early in the disease course may allow an individual to utilize the same AAC device, 

and access method(s) across the life span, decreasing the emotional burdens and anxieties 
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associated with learning a new AAC system late in the disease course (Blain-Moraes et al., 

2012), and ultimately supporting BCI success (Marchetti & Priftis, 2015; Pitt et al., in press). 

In addition to a focus on motor imagery BCI control, BCIs are most commonly designed 

with displays, presentation paradigms, and software that are lab-specific, with BCIs being largely 

seen as a ‘last resort’ instead of alongside existing AAC methods such as eye-gaze (Pitt, et al., in 

press). However, implementing BCI as a last resort AAC option ultimately impedes the 

continuity of AAC intervention across the disease course, increasing an individual’s emotional 

struggle, and learning demands by requiring them to learn multiple forms of AAC access across 

the disease course (Liberati et al., 2015). Introducing BCI earlier, in conjunction with other 

forms of AAC practices (e.g., multimodal AAC access; Brumberg, Pitt, Mantie-Kozlowski, et 

al., 2018; Fager, 2018) may help promote collaborations with commercial partners and 

manufacturers (Ray, 2015). Efforts are under way to utilize BCI techniques to access commercial 

AAC paradigms and software (Brumberg et al., 2016; Scherer et al., 2015; Thompson, Gruis, & 

Huggins, 2014; Zickler et al., 2011).  

 Scanning-based AAC paradigms have a long history in traditional AAC implementation 

to provide AAC access to adults (e.g., Beukelman, Fager, Ball, & Dietz, 2007; Doyle & Phillips, 

2009; Fager, Bardach, Russell, & Higginbotham, 2012; Fried-Oken, Mooney, & Peters, 2015), 

and children (e.g., Campbell, 2006; McCarthy et al., 2006) who cannot make direct item 

selections via methods such as touch, or eye-gaze (Beukleman & Mirenda, 2013). Broadly, 

during item scanning, communication items are presented by the communication device, or 

trained communication partner in a set pattern (e.g., sequentially in a linear order). To select an 

item, the individual must wait until the communication partner or device scans to the desired 

communication item, then perform a pre-determined action for item selection such as switch 
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activation (Beukleman & Mirenda, 2013). Items within the scanning display may be presented 

via auditory (e.g., the device or communication partner announces each item aloud) or visual 

(e.g., communication partner points to each item, or each item is highlighted by a red box) 

paradigms (e.g., McCarthy et al., 2006). A common scanning pattern is row-column scanning, 

during which each row of the grid is sequentially presented. Then, following row selection, each 

column of the selected row is presented until a final selection is made(Beukelman & Mirenda, 

2013). 

 In parallel to commercial AAC access methods utilizing switch-based access to scanning 

paradigms, there is an established history of BCI research regarding the utility of BCI techniques 

as a form of switch (e.g., Müller-Putz, 2010; Muller-Putz, Pokorny, Klobassa, & Horki, 2013; 

Scherer et al., 2015; Shu et al., 2018; Solis-Escalante, 2010). Regarding the specific use of BCI 

to access commercial AAC scanning displays, research is limited. However, Friedrich et al., 

(2009), investigated motor imagery-based BCI access during an automatic scanning paradigm. 

Their investigation incorporated four squares arranged horizontally, highlighting each square 

with a yellow box for 2.5 seconds. Over a five-week period, eight neurotypical participants, one 

individual with ALS, and one individual with thoracic-outlet-syndrome completed ten BCI 

training sessions. Friedrich et al., (2009) found that BCI performance was variable both within 

and across participants, with the participants mean accuracy increasing from 35% (S.D. = 14) in 

session one, to its peak in session eight (57%, S.D. = 20, chance accuracy 25%). The highest 

single session accuracy was 91% in session four. The number of ‘false’ selections decreased 

across sessions but was significantly higher than the number of selection ‘misses’. While 

performance for the individual with ALS was not discussed in detail, their performance was 

variable. The reasons for the performance variations noted in this study are unclear, but may be 
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due to participant heterogeneity, and person-centered factor such as motivation, emotional state, 

and use of imagery strategy. For instance, one participant with ‘very good’ neurophysiological 

sensorimotor signals only achieved moderate BCI success, possibly due to work-related stress. 

Taken together, this study shows BCI has promise for scanning-based computer access but 

requires further testing on larger matrices. 

 The use of switch-based BCI for scanning-based access to larger AAC-Style matrices 

was subsequently assessed by both Scherer et al., (2015) and Brumberg et al., (2016). 

Scherer et al., (2015) evaluated single session BCI performance by fourteen adults with cerebral 

palsy during a row-column scanning paradigm incorporating a 3 by 3 display of graphical 

symbols (e.g., fruit). Each matrix item was highlighted by a red square for 4 seconds, with a 2 

second break in-between intensifications. For BCI control participants performed either 

kinesthetic motor imagery or mental arithmetic (e.g., counting backwards) to make an item 

selection. Following item selection, an auditory beep was provided along with an animation of 

the item dissolving to increase feedback and participant engagement in BCI control. Results 

indicate that while three participants were unable to successfully control the BCI, eleven 

participants achieved control levels above chance levels. However, the authors discuss that 

limitations of the study include a lack of assessment prior to BCI training such as the participants 

cognitive abilities. Finally, Brumberg et al., (2016) evaluated motor imagery access to a 

commercial Tobii-Dynavox page set during a single training session. The scanning paradigm 

incorporated a 4 x 3 matrix with each graphical item highlighted by a red square for 2.5 seconds 

along with auditory feedback announcing the name of the highlighted element (e.g., pizza). No 

live interface feedback was provided during this study, and predicted online accuracy was 

evaluated using MATLAB software (i.e., a twofold cross validation). Six neurotypical 
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individuals and one individual with ALS completed the BCI training session with neurotypical 

participants achieving a mean of accuracy of 60% (range 55.7 to 63.55), and the individual with 

ALS 62.6% accuracy. However, further trials utilizing online BCI control were not performed 

during this study, and assessments of cognitive motor factors were not included.  

 The provision of BCI-based access to commercial AAC scanning paradigms provides a 

strong avenue for the clinical translation of BCI technology, due to clinician familiarity with 

switch access, and the established history of utilizing switches for scanning-based AAC access in 

clinical practice, in conjunction with the foundation’s demonstrating BCIs utility in providing 

switch functions. Therefore, continued work on the feasibility of BCI switches to existing AAC 

devices and paradigms may encourage commercial partners to make minor modifications 

necessary to allow to BCI-base switch input, and place BCI in existing AAC frameworks to 

bolster clinician familiarity with BCI techniques. The aforementioned studies evaluating BCI 

access to scanning paradigms highlight the need for cognitive-sensory-motor assessment to 

elucidate person centered factors correlating to performance variability. Furthermore, the largely 

limited durations of these studies, and discussed performance variability across sessions 

(Friedrich et al., 2009) mean the learning trajectories of individuals using BCI switches is largely 

unknown, clouding guidelines governing the length of motor (imagery) BCI trials for scanning-

based access. In addition, individual learning trajectories remaining largely unassessed (c.f. 

neurotypical performances for non-scanning-based BCI paradigms; Friedrich et al., 2013; 

Neuper, Schlögl, & Pfurtscheller, 1999). Therefore, the optimal length of BCI trials for research 

and clinical practice to select a device are currently unknown, obstructing researchers and 

clinicians from understanding the trajectory of BCI learning and how individuals establish 
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personal preference, ultimately impeding the reliable identification of factors and training 

strategies influencing BCI success and performance variability.  

1.4 Aims 
 

The previous sections highlighted different BCI techniques (i.e., P300, motor imagery and 

evoked potential methods), sensory-cognitive-motor(imagery) factors associated with BCI 

performance, and the unique profiles of individuals with ALS, who are commonly targeted for 

BCI investigations. In addition, different factors that facilitate the clinical translation of BCI 

technology were discussed including the importance of feature matching procedures, including 

stake holder input, and incorporating existing AAC paradigms into BCI research. However, 

research in these areas of clinical translation is still emerging, and there are still multiple gaps to 

address for BCIs successful integration with clinical practices. To effectively match an 

individual to a BCI device, factors influencing BCI success need to be identified, and assessment 

tools suitable for completion by individuals with severe physical impairments need to be 

established.  

This dissertation work included a BCI switch, extending existing scanning-based BCI 

studies. In addition, we included a range of cognitive-sensory-motor assessments , including the 

BCI screener for Pitt and Brumberg (2018b) prior to BCI instruction to facilitate the clinical 

implementation of BCI technology and bring BCI research further in line with existing clinical 

procedures. The specific aims of the study are: 

1) Evaluate the individual learning trajectories of four participants with a diagnosis of 

ALS in mastering BCI-AAC device control via a (motor)-imagery BCI switch during 

row-column scanning over 12 BCI training sessions. 
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2) Evaluate how person-centered factors measured by both initial BCI assessments (e.g., 

BCI feature matching screener (Pitt, & Brumberg, 2018), ALS-CBS (Woolley et al., 

2010), and recurring measures (e.g., neurophysiological, effort, frustration, motivation) 

relate to each individual’s BCI performance trajectory and satisfaction. 

Chapter II: Methods 
 

All study procedures were approved by the Institutional Review Board of the University of 

Kansas. Depending on the participants motor abilities, participants provided self-consent or 

consent via a legally authorized representative prior to engaging in all study activities. 

2.1 Participants 
 

Four Caucasian individuals with a diagnosis of ALS (participants A1-A4, ages 38.3-

64.11, mean 52.3 years, 2 females, all right handed; see table 1), and three Caucasian 

neurotypical individuals (T1-T3, ages 23.2-60.5, mean 41 years, 2 females, all right handed) 

completed the study. With patient consent, names of participants were provided by  faculty in the 

Speech-Language-Hearing departments located at the University of Kansas-Lawrence and the 

University of Kansas Hearing and Speech Medical Center, in addition to the ALS clinic in the 

Landon Center for Aging. Further, participants were recruited by the research team directly from 

the ALS clinic in the Landon Center for Aging, during the weekly ALS clinic. 

Table 1. Participant information for those with a diagnosis of ALS 

Participant 
Number 

Diagnosis Time since 
diagnosis 
(years.months) 

Sex  Age 
(years. 
months) 

Primary 
communication 
method 

Medications 

A1 Bulbar ALS 0.7 F 64.11 Verbal Diabetes  
A2 Spinal ALS 1.11 M 38.3 Verbal Radicava 

infusions, 
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Riluzole from 
12/16-12/18, 
muscle 
relaxants, as 
needed 

A3 Spinal ALS 10.4 F 48.9 Verbal and eye-gaze 
(as needed) 

Muscle 
relaxants as 
needed 

A4 Spinal ALS 3.5 M 57.8 Verbal Riluzole 
2x/day, muscle 
relaxants, as 
needed 

2.2 EEG and BCI recording and data processing 
 

EEG recordings for this investigation were collected at a sampling rate of 256Hz via a 62 

active electrodes (g.HIAmp, g.tec) arranged according to the 10-10 standard (Oostenveld, 2001).. 

A notch filter at 58-62 Hz was utilized for removal of power line artifacts. The reference 

electrodes were located on the left and right ear lobes (averaged earlobe reference). During EEG 

set up, the participant sat comfortably in front of the computer screen.  

2.2.1 Training data for BCI calibration 
 

Prior to online BCI control, similar to calibration trials for eye gaze AAC access, BCI 

calibration data was collected from 90 trials, which included 60 trials of motor execution during 

which the individual was instructed to move either their upper or lower limbs (e.g., 30 trials of 

left hand and 30 trials of right-hand execution), and 30 trials of rest. Following calibration data 

collection, training data was processed offline using MATLAB (The MathWorks, Natick, MA) 

software and used for setting online BCI control parameters. Similar to current AAC 

assessments, the BCI calibration and online BCI control task were chosen based on participant 

preference, physical motor skills, and calibration results (e.g., predicted BCI accuracy), with 
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options for BCI selection including motor execution of either right hand, left hand, both hands, 

or both legs/feet motor execution. 

2.2.2 BCI-AAC control 
 

During trials of online BCI-AAC control participants completed copy spelling tasks by 

making letter selections from a 7x5 keyboard display including letters A-Z, space and back space 

similar to those available on commercial AAC devices (see figure 1). Paralleling commercial 

switch-based access to AAC displays, letter selections were made during an automatic row-

column scanning pattern, during which the AAC device automatically advanced the selection 

box in a linear fashion through all possible rows in the graphical display, while the individuals 

remained at rest, with row selection occurring when the BCI detects an executed movement. 

Following row selection, the AAC device automatically advanced the selection box in a linear 

fashion through all possible columns, with final letter selection occurring when the BCI detects 

an executed movement. 

Based upon previous lab procedures utilizing this scanning paradigm (see Brumberg et 

al., 2016 for further details), a scanning rate of 2 seconds per item with an inter-stimulus duration 

of approximately one second was employed. During scanning, each row was first highlighted by 

a blue rectangle. Upon selection each item within that row was sequentially highlighted. To 

indicate a selection was made the blue box briefly turned black. Neural signals used for BCI 

control (ERS and ERD) were modulated by motor execution of the upper (for A1, A2, and A3), 

or lower limbs (for A4). Paralleling AAC assessment, selection of which limb would be used for 

BCI control was based upon initial performance and participant preference. For instance, while 

unused at this time, A4 owned two knee switches for use with his recently purchased AAC 

device. Therefore, in addition to having less motor impairment in his lower versus upper limbs, 
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he wished to be consistent between use of the BCI and his physical switches to potentially 

increase functionality should the BCI system become a viable option for AAC access in the 

future. 

In this BCI paradigm, to accurately select a target letter the BCI must accurately decode 

both “select” trial decisions during which the individual performs motor execution, in addition to 

“do not select/continue scanning” trial decisions, where the individual remains relaxed.   

To help support motor leaning, during online BCI control, feedback was provided to the 

participant regarding how close the BCI was to making a selection. Similar to commercial eye-

gaze AAC paradigms, this feedback was provided in the form of a circle that got smaller as the 

BCI algorithm detected presence of the ERD and moved toward selecting the currently 

highlighted item. 

 

Figure 1. The motor (imagery) BCI interface, depicting the third row highlighted, and the 

feedback circle, in white. 

2.3. BCI-AAC training sessions 
 

Following initial feature matching-based BCI assessments (see section 2.4), participants 

with a diagnosis of ALS completed a total of twelve BCI training sessions. For comparison of 
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initial BCI performance, individuals without neurological impairment completed three BCI 

trainings. During each session, all the participants completed approximately 20 minutes of online 

BCI control consisting of total of approximately 300 trials per session. For participants A1 and 

A2, training sessions were completed in the laboratory setting (i.e., an electrically shielded 

booth, with the door open to allow for communication with the participation throughout BCI 

trials). However, due to travel restrictions, BCI sessions for A3 and A4 were in a quiet room, 

free from disturbance, in their home setting. 

2.4 Assessment of person-centered factors 

2.4.1 Initial BCI assessment measures (non-EEG based) 

Prior to the first BCI training session the following assessment measures were completed 

to ensure participant suitability to undertake study procedures and evaluate neurophysiological 

and psychological factors related to BCI control. 

1) ALS-Cognitive Behavioral Screen: The ALS-CBS (Woolley et al., 2010) is a general-

purpose cognitive screening tool used in assessing the areas of attention, concentration, 

tracking and monitoring, and initiation and retrieval. An ALS-CBS score of less than 

17/20 indicates a concern for cognitive impairment, with a significantly increased 

concern for scores less than 12. 

2) Feature matching-based BCI screener: As a first step in the development of feature 

matching based BCI screeners, the BCI assessment protocol by Pitt & Brumberg (2018b) 

aims to assess if participants possess core-BCI related skills. The maximum score for the 

cognitive portion of the screening protocol is 24, and for the motor imagery section 15. In 

addition, assessment of oculomotor function along with descriptive assessment of the 

upper and lower limbs is collected. Further, a subtest assessing visuospatial skills via  
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mental shape rotation test was also completed with a maximum score of 5. 

3) ALS-Functional Rating Scale: The ALS-FRS (Cedarbaum & Stambler, 1997) is a 

commonly utilized clinical assessment of an individual’s function physical motor 

abilities. To complete the assessment protocol, individuals rate their functional motor 

abilities on a scale of 0 (severely impaired) to 4 (normal) in the 10 areas of speech, 

salivation, swallowing, handwriting, cutting food and handling utensils, dressing and 

hygiene, walking, climbing stairs, and breathing. The maximum score for the protocol is 

40, with higher scores demonstrating greater levels of motor functionality.  

4) Bimanual fine motor function (BFMF) and Manual ability classification system 

(MACS): The BFMF (Beckung & Hagberg, 2002) and MACs (Eliasson et al., 2006) aim 

to assess level of activity limitation due to motor impairment of the upper limbs with 

level 1 indicating minimal restriction, through 5, highly limited function, and may 

provide complementary information regarding assessment of motor function (Elvrum et 

al., 2016). As the scales were developed for children with cerebral palsy, wording was 

adapted to ensure appropriateness for adults  

2.4.2 Neurophysiological assessment measures (EEG-based) 

Amplitude of EEG sensorimotor rhythm at rest and during motor execution:  

 As described in section 1.1.3, motor (imagery)-based BCIs decode neural activity related 

to the performance of physical or imagined movements. Specifically, in the context of this row-

column scanning based BCI, increasing neural synchrony in the alpha band at rest (known as the 

ERS) will support the BCI to continue scanning, with presence of the ERD during motor 

execution, prompting the BCI to make a selection. However, approximately 15-30% of 

individuals do not present with the sensorimotor rhythm (ERS and ERD) signal necessary for 
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motor (imagery) BCI control (Vidaurre & Blankertz, 2010; Blankertz et al., 2010), possibly due 

to anatomical differences (e.g. Thompson, 2018). Therefore, presence of the sensorimotor 

rhythm (ERS and ERD) was screened prior to BCI performance using procedures based upon 

Blankertz et al., (2010), and Shu et al., (2018). Specifically, presence of the sensorimotor rhythm 

was calculated from the 30 ‘rest’ trials obtained during EEG calibration sessions. ERS, 

sensorimotor rhythm amplitudes were ascertained by fitting an exponential Gaussian mixture to 

identify the average sensorimotor frequency distribution across trials, in comparison to the 

predicted EEG noise floor (see Blankertz et al., 2010 and Sannelli et al., 2019 for more 

information). Sensorimotor rhythm amplitudes over motor cortex during rest with eyes open are 

positively correlated to motor imagery BCI performance for both neurotypical individuals 

(Blankertz et al., 2010; Sannelli et al., 2019), and those with ALS (Geronimo, et al., 2016). 

Therefore, when the sensorimotor rhythm is present, increased amplitudes over left and right 

motor areas are expected to positively correlate to BCI performance. Additionally, Shu et al., 

(2018) found that individuals with neuromotor disorders who had smaller (more negative or 

closer to zero relative to baseline) sensorimotor rhythm values over both left and right 

hemisphere sensorimotor electrodes during motor imagery performance were more efficient at 

BCI switch control. Therefore, while here are no established reference values for ERS and ERD 

amplitudes, sensorimotor amplitudes during rest and motor imagery were evaluated both prior to 

the session to 1) ensure presence of the rhythms necessary for BCI control, and 2) evaluate an 

individual’s unique neurophysiological profile prior to motor imagery BCI training. However, as 

BCI feedback may lead to enlargement of motor areas and sensorimotor modulations due to 

processes associated with neuroplasticity (Sannelli et al., 2019) these neurophysiological 

measures were additionally be evaluated during each training session.  
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2.4.3 Recurring number scale measures of participant perspectives and satisfaction 

Along with neurophysiological assessment measures described above, number scale-

based evaluations of participant characteristics were taken prior to and following each BCI 

training session to track changes associated with BCI learning.  

2.4.3.1 Pre-session number scale measures (see appendix A). 

1) Fatigue, Motivation and Food Intake: As motivation and fatigue may influence 

cognitive status and BCI performance (e.g., Nijboer et al., 2010; Kasahara et al., 2012), 

prior to each training session participant fatigue and motivation for BCI use were 

recorded via number scale with rating of 1 indicating ‘normal fatigue’ and ‘unmotivated’ 

to 9, ‘extremely fatigued’ and ‘extremely motivated’. Furthermore, time since an 

individual’s last meal was tracked as individuals with ALS may present with swallowing 

difficulties, which may decrease food intake and lower energy levels. 

2.4.3.2 Post-session number scale measures (see appendix B). 

1) Fatigue:  To ascertain the level of fatigue associated with BCI control, a number scale 

rating was taken pre-and post to BCI control using the scale of 1 indicating ‘normal 

fatigue’, through 9 ‘extremely fatigued’. Overall fatigue associated with BCI use was 

calculated by subtracting their post session fatigue rating from pre-session fatigue rating.  

2) Device Satisfaction: Levels of satisfaction with the BCI device were evaluated via a 

number scale of 1 indicating very unsatisfied, through 9 very satisfied. 

3) Frustration: Levels of frustration with the BCI control were evaluated via a number 

scale of 1 indicating very low, through 9 very high. 
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4) Physical and mental effort: Levels of physical and mental effort associated with the 

BCI control were evaluated via a number scale of 1 indicating very low, through 9 very 

high. 

5) Overall levels of effort: Overall level of effort (i.e., ‘how hard’ they had to work), were 

evaluated via a number scale of 1 indicating BCI control was very easy, through 9 very 

hard. 

Chapter IV: Results 

To facilitate understanding of findings, significant and relevant findings are bolded and 

underlined throughout all reults sections. 

4.1 Initial BCI assessment measures for individuals with ALS 

4.1.1 Cognition  

Scores for each participant are provided in table 2 for the ALS-CBS and table 3 for the 

cognitive portion of the BCI screener. For the ALS-CBS, a total score of <17 indicates a concern 

for cognitive impairment. Differences in scores between participants were noted for sections 

including attention, with scores of 3, 3, 5 and 5 for participants A1, A4, A2 and A3 respectively, 

concentration with scores of 4, 5, 5 and 5 for participants A1, A2, A3 and A4 respectively, 

tracking and monitoring with scores of 4, 5, 5 and 5 for participants A2, A1, A3 and A4 

respectively, initiation and retrieval with scores of 1, 3, 4 and 5 for participants A4, A1, A3 and 

A2 respectively, and total ALS-CBS score with scores of 14, 15, 19 and 19 for participants A4, 

A1, A2, A3. These total ALS-CBS scores indicate a concern of cognitive impairment for both 

participants A1 and A4. 



 

 45 

For the cognitive portion of the BCI screener, differences in scores between participants 

were noted for sections including attention/working memory, with scores of 5, 5, 6 and 6 for 

participants A1, A2, A3 and A4 respectively, concentration with scores of 4, 5, 5 and 5 for 

participants A1, A2, A3 and A4 respectively, cognitive motor learning/abstract problem solving 

with sores of 4, 5, 5 and 5 for participants A1, A2, A3 and A4 respectively, and total cognitive 

score with scores of 22, 22, 24 and 24 for participants A1, A2, A3 and A4 respectively.  

Table 2. Total and subsection scores for the ALS-CBS with a total score of <17 (bolded) 

indicating a concern for cognitive impairment. Maximum scores for each area are provided in 

parenthesis. Highest and lowest scores for each section are marked by a + and – respectively. 

Participant Attention 

(/5) 

Concentration 

(/5) 

Tracking/monitoring 

(/5) 

Initiation/retrieval 

(/5) 

Total 

(/20) 

A1 3- 4- 5+ 3 15 

A2 5+ 5+ 4- 5+ 19+ 

A3 5+ 5+ 5+ 4 19+ 

A4 3- 5+ 5+ 1- 14- 

 

Table 3. Total and subsection scores for the cognitive portion of the BCI screener, with 

decreasing scores indicting an increased concern for the presence of BCI related skills. 

Maximum scores for each area are provided in parenthesis. Highest and lowest scores for each 

section are marked by a + and – respectively.  

Participant Comprehension/ 

Orientation (/6) 

Following 

directions 

Attention/working 

memory (/6) 

Cognitive motor 

learning/ abstract 

Total 

Score 
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(/6) problem solving 

(/6) 

(/24) 

A1 6 6 5- 5- 22- 

A2 6 6 5- 5- 22- 

A3 6 6 6+ 6+ 24+ 

A4 6 6 6+ 6+ 24+ 

 

4.1.2 (Motor) imagery 

Scores for each participant are provided in table 4 for the motor imagery portion of the 

BCI screener. Differences in scores between participants were noted for sections including self-

ratings of first-person motor imagery with scores of 2, 3.2, 3.4 and 3.6 for participants A4, A1, 

A3 and A2 respectively. First person imagery ratings were averaged across imagined upper and 

lower limb actions per the procedures of Pitt & Brumberg (2018b) due to limited score 

variability between individual tasks, hand rotation scores were 3, 4, 5 and shape rotation scores 

were 2, 4, 4 and 5 for participants A3, A1, A2 and A4 respectively.  

Table 4. Participant scores for the motor imagery and visuospatial portions of the BCI screener. 

with decreasing scores indicting an increased concern for the presence of BCI related skills. 

Maximum scores for each area are provided in parenthesis. Highest and lowest scores for each 

section are marked by a + and – respectively. 

Participant Average self-rating of 

first-person limb imagery 

(/5) 

Hand rotation 

(/5) 

Object rotation 

(/5) 

Shape rotation 

(/5) 
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A1 3.2 3- 5 4 

A2 3.6+ 5+ 5 4 

A3 3.4 4 5 2- 

A4 2- 5+ 5 5+ 

 

 

4.1.3 Functional motor control and manual ability 
 

Motor assessment guided by the BCI screener revealed participant A1 was ambulatory 

with no impairments noted in the upper or lower limbs. For the upper limb, participant A2 had 

limited range of motion, weakness, and decreased ability to grasp/grip, with increased 

impairment on increased on his right side. For the lower limb, participant A2 was ambulatory 

with a walker, with decreased range of motion and increased leg spasticity when standing. 

Participant A3 had a severe upper limb impairment with physical abilities limited to movement 

of her right index finger on left hand, and limited ability to grip with the right hand. For the 

lower limb participant 3 was not ambulatory, retaining the ability to lift her thighs and move her 

toes. For the upper limb, participant A4 had limited range of motion, weakness, and decreased 

ability to grasp/grip bilaterally. Fine motor impairments were decreased for his left side. For the 

lower limb, participant 4 reported minimal impairments and was ambulatory without assistance. 

He reported being told his legs were ‘still strong’ during recent assessment from physical 

therapy. No participants had difficulties with oculomotor control.  

Scores for each participant are provided in table 5 for the ALS-FRS, MACS, and BFMF. 

Differences between participants were noted for the ALS-FRS, for which lower scores indicate 

greater motor impairment, with scores of 15, 26, 33, and 34 for participants A3, A4, A1 and A2 

respectively. In contrast to the ALS-FRS, higher scores for the MACS and BFMF indicate 
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greater motor impairment. Scores for the MACs included 1, 2, 2, and 5 for participants A1, A2, 

A4, and A3 respectively. For the BFMF scores included 1, 2, 3, and 5 for participants A1, A2, 

A4, and A3 respectively. 

Table 5. Participant results for motor control and manual ability. Scores/descriptions noting 

increased motor impairments are marked by a -, and lowest motor impairment by a +. Maximum 

scores are noted in parenthesis, as applicable. Note: For the ALS- Functional Rating Scale (ALS-

FRS), higher scores mean decreased motor impairment. However, for the Manual ability 

classification systems (MACS) and Bimanual fine motor function classification system (BFMF) 

lower scores indicate decreased motor impairment. Abbreviations ROM = range of motion 

Participant ALS-FRS 

(/40) 

MACS 

(/5) 

BFMF 

(/5) 

BCI screener: upper limb BCI screener: lower limb 

A1 33 1+ 1+ No impairment + No impairment + 

A2 34+ 2 2 Limited ROM. Decreased fine 

motor control and ability to 

grasp/grip 

Limited ROM and weakness 

Ambulatory with assistance  

Limb spasticity 

A3 15- 5- 5- Highly limited finger 

movement and ability to grasp 

- 

Non-ambulatory 

Minimal movement of legs and thighs - 

A4 26 2 3 Limited ROM. Decreased fine 

motor control and ability to 

grasp/grip 

Ambulatory without assistance. 

Participant reported legs as ‘still 

strong’ + 
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4.1.4 Initial Neurophysiological measures 
 

Full neurophysiological measures for each participant prior to BCI use are provided in 

table 6 including event related synchronization (ERS) peak amplitude, ERS peak amplitude 

minus the estimated noise level, and the ERS peak amplitude minus peak event related 

desynchronization amplitude (ERS-ERD difference) for the frequency band of 6-13 Hz. For all 

participants measures were calculated from electrode locations C3 for right hand movement, and 

C4 for left hand movement. Furthermore, as beginning in session 2, participant A4 utilized lower 

limb movement for BCI control. Therefore, his initial neurophysiological measures are also 

provided for electrode locations C1 and C2, which better represent lower limb motor control 

locations. Participant A1 presented with the highest peak ERS amplitude of 0.726 microvolts2, 

peak ERS amplitude minus noise levels of 0.531 microvolts2, and ERS-ERD difference of 0.254 

microvolts2. The lowest measure of peak ERS amplitude was .048 microvolts2, for A3, peak ERS 

amplitude minus noise levels was 0.003 microvolts2 for A4 at electrode C1, and ERS-ERD 

difference of -0.076 microvolts2 for P3.  

 

Table 6. Neurophysiological assessment measures for each participant. The largest 

measurements of event related synchronization (ERS) amplitude, and the largest difference 

between ERS event related desynchronization (ERD) amplitudes are marked by a +. Lowest 

measures are marked my a -. Units are in microvolts2 

Participant Task Peak amplitude 

ERS (rest) 

Noise amplitude 

at peak ERS 

ERS – 

noise 

Peak amplitude 

ERD  

Peak ERS – Peak 

ERD 

A1 Right 

hand 

0.726+ 0.195 0.531+ 0.472 .254+ 
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A1 Left hand 0.596 0.123 0.473 0.606 -0.01 

A2 Right 

hand 

0.095 0.034 0.061 0.084 0.011 

A2 Left hand 0.105 0.036 0.069 0.113 -0.008 

A3 Right 

hand 

0.048- 0.009 0.039 0.052 -0.004 

A3 Left hand 0.144 0.017 0.127 0.22 -0.076- 

A4 Right 

hand 

0.056 0.015 0.041 0.063 -0.007 

A4 Left hand 0.053 0.021 0.033 0.057 -0.004 

A4 Right 

knee 

0.103 0.1 0.003- 0.166 -0.063 

A4 Left knee 0.17 0.139 0.031 0.128 0.042 

 

4.2 BCI Learning Trajectories  

BCI accuracy was calculated via Cohen’s Kappa, which represents the overall agreement 

between the BCI decoded output, and what the user intended for both select, and ‘keep scanning’ 

trials. Cohen’s Kappa values have been previously used to assess BCI outcomes (e.g., Daly et al., 

2013; Zhang, Jadavji, Zewdie & Kirton, 2019), with a Cohen’s Kappa value of 0 to 0.20 

indicates no to slight agreement between the BCI output and user intention, 0.21 to 0.4 as fair 

agreement, 0.41 to 0.6 as moderate agreement, 0.61 to 0.8 as substantial agreement and .81 to 1 

as almost perfect agreement (e.g., McHugh, 2012). Negative kappa values indicate performance 

below chance levels. For the row-column scanning paradigm, Cohen’s Kappa is suitable for 
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outcome assessment as it adjusts for bias in trial/condition numbers, representing relative 

increases and decreases in true negative (correct non-selects) and positive rates (correct selects), 

and false negative (the BCI incorrectly does not select an item) and false positive (the BCI 

incorrectly selects an item) rates. This is important as during row-column scanning multiple no-

selection/continue scanning trials are required to scan through the non-target letters and complete 

a target selection task. Therefore, traditional measures of percent accuracy (number of correct 

selects and non-selects/total trials) are weighted toward performance of non-selection tasks in 

this BCI paradigm, skewing this performance metric. Furthermore, other measures such as 

number of letters selected only show improved skill learning in the area of making item 

selections (true positive rates). However, learning BCI control in regard to true negative rates, 

which allows the interface to keep scanning until the target letter is highlighted, is an important 

factor in gaining row-column scanning BCI control. Similar to true positive rates, improving true 

negative rates requires skill learning to produce the targeted brain rhythm (i.e., the ERS; e.g., 

Friedrich et al., 2009). Therefore, performance metrics such a Cohen s Kappa that account for 

changes in both true positive and negative performance, are ideal for reflecting skill learning in 

this BCI paradigm.  

4.2.1 Neurotypical Learning Trajectories  

 For neurotypical participant T1, their average BCI accuracy across three sessions was 

0.412 (range: 0.3825–0.4465; SD = .032), reaching levels of moderate agreement. Her overall 

increase in BCI accuracy (highest performance minus lowest performance) was 0.064. Cohens 

Kappa values and 95% confidence intervals for each session are provided in table 7, and figure 2.  
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Table 7. Cohens Kappa values and 95% confidence intervals (CI) for each of the three BCI 

training sessions for neurotypical participant T1. 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0.3825 0.4994 0.2757 

2 0.4465 0.5661 0.3268 

3 0.406 0.5079 0.304 

 

 

Figure 2. The BCI learning trajectory across 3 sessions for T1 

For neurotypical participant T2, their average BCI accuracy across three sessions was 

0.689 (range: 0.6574–0.7339; SD = .04), reaching substantial agreement levels, though the 95% 

confidence interval ranges extend into the range of substantial to almost perfect agreement for 

session 3. His overall increase in BCI accuracy (highest performance minus lowest performance) 

was 0.099. Cohens Kappa values and 95% confidence intervals for each session are provided in 

table 8, and figure 3.  
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Table 8. Cohens Kappa values and 95% confidence intervals (CI) for each of the three BCI 

training sessions for neurotypical participant T2. 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0.6751 0.7932 0.5571 

2 0.6574 0.7637 0.5511 

3 0.7339 0.8141 0.6537 

 

 

Figure 3 The BCI learning trajectory across 3 sessions for T2 

For neurotypical participant T3, their average BCI accuracy across three sessions was 

0.387 (range: 0.0615–0.568; SD = .283), reaching the upper levels of moderate agreement, 

though the 95% confidence interval range extends into the range of substantial agreement for 

sessions 2 and 3. Her overall increase in BCI accuracy (highest performance minus lowest 

performance) was 0.506, showing a large increase in BCI learning between sessions 1 and 2. 



 

 54 

Cohens Kappa values and 95% confidence intervals for each session are provided in table 9, and 

figure 4.  

Table 9. Cohens Kappa values and 95% confidence intervals (CI) for each of the three BCI 

training sessions for neurotypical participant T3. 

 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0.0615 0.2008 -0.0778 

2 0.5679 0.688 0.4478 

3 0.532 0.6485 0.4155 

 

 

Figure 4. The BCI learning trajectory across 3 sessions for T3 
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4.3 Learning Trajectories of those with ALS 

4.3.1 Participant A1: BCI Learning Trajectory  

For participant A1, their average BCI accuracy across all twelve sessions was 0.333 

(range: 0.020–0.544; SD = .151) reaching moderate levels of agreement, though the 95% 

confidence interval range extends into the range of substantial agreement for sessions 6 and 

7. Their overall increase in BCI accuracy (highest performance minus lowest performance) was 

0.524. Cohens Kappa values and 95% confidence intervals for each session are provided in table 

10. The learning trajectory of participant A1 is provided in figure 5, with their learning trajectory 

associated with a slope of 0.0023 but showing a large increase in BCI learning between sessions 

1 and 2. 

Table 10. Cohens Kappa values and 95% confidence intervals (CI) for each BCI training session 

for participant A1.  

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0.020 0.122 -0.082 

2 0.445 0.582 0.308 

3 0.423 0.552 0.293 

4 0.377 0.520 0.235 

5 0.289 0.407 0.171 

6 0.522 0.641 0.403 

7 0.544 0.654 0.431 

8 0.223 0.325 0.122 

9 0.195 0.286 0.104 
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10 0.243 0.354 0.132 

11 0.285 0.397 0.174 

12 0.425 0.560 0.290 

 

 

Figure 5. The BCI learning trajectory across 12 sessions for participant A1. The linear trend line 

is shown in green along with the corresponding equation. 

4.3.2 Participant A1: Recurring Measures in relation to BCI performance   

 Within subject correlations between recurring number scale and neurophysiological 

recurring measures and BCI accuracy (Cohens Kappa) were assessed using a within subject 

Spearman’s rank order correlation using the 12 data points collected from each BCI training 

session. For clarity, data points for each recurrent measure across the twelve sessions for each 

participant are provided in appendix C. 
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 Results indicate that 1) motivation ratings, taken at the start of each training session, did 

not vary for participant 1 with a score of  9 (extremely motivated) prior to beginning each 

session,  2) fatigue ratings, taken prior to the start of each training session, had an average rating 

of 3.75 (SD = 1.66), ranging from 1 (normal) to 6 (moderate-high), and a non-significant 

correlation (rs(10) = -.389 p = .212) with BCI accuracy (range: 0.020–0.544; M = 0.333; SD = 

.151), 3) time since last meal, taken at the start of each training session, averaged 0.958 hours 

(range 0–3; SD = 1.25), and a non-significant correlation (rs(10) = .0, p = 1) with BCI accuracy, 

4) BCI satisfaction ratings, taken at the end of each training session, had an average rating 

of 7.33 (SD = .985), ranging from 5 (neutral) to 9 (very satisfied), and a significant positive 

correlation (rs(10) = .651, p <.05) with BCI accuracy, 5) frustration with device control 

ratings taken at the end of each training session, had an average rating of 3.25 (SD = 1.36), 

ranging from 1 (very low) to 5 (neutral), and demonstrated a non-significant correlation (rs(10) = 

.05, p = .877 with BCI accuracy, 6) mental effort ratings taken at the end of each training 

session, had an average rating of 6.17 (SD = 1.34), ranging from 3 (fairly low) to 8 (fairly-very 

high), and a non-significant correlation (rs(10) = -.479, p = .115) with BCI accuracy, 7) physical 

effort ratings taken at the end of each training session, had an average rating of 1.42 (SD = 

0.669), ranging from 1 (very low) to 3 (fairly low), and a non-significant correlation (rs(10) = -

.08, p = .795) with BCI accuracy, 8) overall ‘hardness’ ratings taken at the end of each training 

session, had an average rating of 4.58 (SD = 1.73), ranging from 2 (very-fairly easy) to 8 (fairly-

very hard), and a non-significant correlation (rs(10) = -.011, p = .974) with BCI accuracy. 

 For the neurophysiological measures: 1) peak amplitude of the sensorimotor rhythm 

at rest (ERS) for C3 had an average value of 0.355 microvolts2 (range: 0.16–0.8; SD = 0.211), 

and a non-significant correlation (rs(10) = -.266, p = .404) with BCI accuracy. C4 had an average 
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value of 0.476 microvolts2 (range: 0.18–1.08; SD = 0.299), and a non-significant correlation 

(rs(10) = -.210, p = .513) with BCI accuracy, 2) amplitude of the sensorimotor rhythm minus 

the predicted noise level at rest (ERS)  for C3 had an average value of 0.182 microvolts2 

(range: 0–0.53; SD = 0.164), and a non-significant correlation (rs(10) = -.245,  p = .443) with 

BCI accuracy. C4 had an average value of 0.288 microvolts2 (range: 0.4–0.84; SD = 0.238), and 

a non-significant correlation (rs(10) = .007, p = .983) with BCI accuracy, 3) the ERS-ERD 

difference for C3 had an average value of 0.076 microvolts2 (range: -0.09–0.25; SD = 0.086), 

and a non-significant correlation (rs(10) = -.241,  p = .505) with BCI accuracy. C4 had an 

average value of 0.135 microvolts2 (range: -0.01–0.54; SD = 0.165), and a non-significant 

correlation (rs(10) = .490, p = .106) with BCI accuracy. 

4.3.3 Participant A1: Recurring Measures in relation to session number  

Within subject correlations between number scale and neurophysiological measures and 

session number were evaluated via a Spearman’s rank order correlation using the 12 data points 

collected during each BCI training session. 

1) within-session fatigue (ratings taken at the start of each training session minus ratings 

taken at the end of the session), had a an average rating of -1.08 (SD = 1.31), ranging from -4 

(rating moderate-high levels of fatigue prior to BCI use and normal-mild following BCI training) 

to 1 (normal prior to BCI use and normal-mild following BCI training) and a non-significant 

correlation (rs(10) = .124, p = .423) with session number, 2) frustration with device control 

ratings taken at the end of each training session demonstrated a non-significant correlation (rs(10) 

= -.1, p = .757) with session number, 3) metal effort ratings taken at the end of each training 

session demonstrated a non-significant correlation (rs(10) = -.434, p = .157) with session 

number, 4) physical effort ratings taken at the end of each training session demonstrated a non-
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significant correlation (rs(10) = .050, p = .876) with session number, 5) Overall ‘hardness’ 

ratings taken at the end of each training session demonstrated a non-significant correlation (rs(10) 

= -.043, p = .895) with session number.  

For neurophysiological measures: 1) peak amplitude of the sensorimotor rhythm at 

rest (ERS) for C3 demonstrated a non-significant correlation (rs(10) = -.273, p = .391 with 

session number. C4 demonstrated a non-significant correlation (rs(10) = -.364, p = .245) with 

session number, 2) amplitude of the sensorimotor rhythm minus the predicted noise level at 

rest (ERS) for C3 demonstrated a non-significant correlation (rs(10) = -.517,  p = .085) with 

session number. C4 demonstrated a non-significant correlation (rs(10) = -.294, p = .354) with 

session number, 3) the ERS-ERD difference for C3, demonstrated a non-significant correlation 

(rs(10) = -.378,  p = .225) with session number. C4 demonstrated a non-significant correlation 

(rs(10) = .007, p = .983) with session number. 

4.3.4 Participant A1: Recurring measures in relation to satisfaction ratings 

Within subject correlations between number scale measures and satisfaction were 

evaluated via a Spearman’s rank order correlation using the 12 data points collected during each 

BCI training session. Regarding ratings correlations to an individual’s perception of BCI 

satisfaction: 1) within-session fatigue demonstrated a non-significant correlation (rs(10) = .382, 

p = .221) with BCI satisfaction ratings, 2) frustration with device control ratings taken at the 

end of each training session demonstrated a non-significant correlation (rs(10) = -.109, p = .736) 

with BCI satisfaction ratings, 3) metal effort ratings taken at the end of each training session 

demonstrated a non-significant correlation (rs(10) = -.359, p = .252) with BCI satisfaction 

ratings, 4) physical effort ratings taken at the end of each training demonstrated a non-

significant correlation (rs(10) = -.429, p = .153) with BCI satisfaction ratings, 5) Overall 
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‘hardness’ ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = .124, p = .703) with BCI satisfaction ratings. 

4.4.1 Participant A2: BCI Learning Trajectory  

For participant A2, their average BCI accuracy across all twelve sessions was 0.139 

(range: -.051 –0.340; SD = .117) indicating slight agreement, and while overall his BCI 

performance was highly variable, the 95% confidence interval range extends into the range of 

moderate agreement for sessions 1 and 4. Their overall increase in BCI accuracy (highest 

performance minus lowest performance) was 0.340. Cohens Kappa values and 95% confidence 

intervals for each session are provided in table 11. The learning trajectory for participant A2 is 

provided in figure 6, with their learning trajectory associated with a slope of 0.0033. 

Table 11. Cohens Kappa values and 95% confidence intervals (CI) for each BCI training session 

for participant A2. 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0 0.438 -0.438 

2 0.17 0.283 0.059 

3 -0.051 0.069 -0.171 

4 0.340 0.551 0.249 

5 0.221 0.346 0.096 

6 0.087 0.197 -0.024 

7 0.134 0.241 0.026 

8 0.222 0.355 0.089 

9 0.046 0.173 -0.080 
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10 0.179 0.331 0.027 

11 0.126 0.249 0.003 

12 0.131 0.241 0.021 

 

 

Figure 6. The BCI learning trajectory across 12 sessions for A2. The linear trend line is shown in 

green along with the corresponding equation. 

4.4.2 Participant A2: Recurring Measures in relation to BCI performance  

 Results indicate that for 1) motivation ratings, had an average rating of 7.33 (SD = .888), 

ranging from 6 (moderate-high) to 9 (extremely motivated) and a non-significant correlation 

(rs(10) = -.000 p = 1) with BCI accuracy (range: -0.051–0.340; M = 0.139; SD = 0.117),  2) 

fatigue ratings, taken prior to the start of each training session, had an average rating of 2.67 (SD 

= 1.56), ranging from 1 (normal) to 5 (moderate), and a non-significant correlation (rs(10) = -

.495 p = .102) with BCI accuracy, 3) time since last meal, taken at the start of each training 

session, averaged 9.72 hours (range 0.41–16; SD = 6.77), and a non-significant correlation 
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(rs(10) = -.331, p = .293) with BCI accuracy, 4) BCI satisfaction ratings, taken at the end of 

each training session, had an average rating of 6.75 (SD = 1.82), ranging from 4 (mildly 

unsatisfied-neutral) to 9 (very satisfied), and a non-significant correlation (rs(10) = .364, p = 

.245) with BCI accuracy, 5) frustration with device control ratings taken at the end of each 

training session, had an average rating of 5.25 (SD = 1.76), ranging from 2 (low-fairly low) to 8 

(fairly-very high), and a non-significant correlation (rs(10) = -.240, p = .452 with BCI accuracy, 

6) mental effort ratings taken at the end of each training session, had an average rating of 6.92 

(SD = 1.16), ranging from 4 (fairly low-neutral) to 8 (fairly-very high), and a non-significant 

correlation (rs(10) = -.478, p = .116) with BCI accuracy, 7) physical effort ratings taken at the 

end of each training session, had an average rating of 4.25 (SD = 1.42), ranging from 2 (very-

fairly low) to 6 (neutral-fairly high), and a non-significant correlation (rs(10) = -.3, p = .344) 

with BCI accuracy, 8) overall ‘hardness’ ratings taken at the end of each training session, had 

an average rating of 6.17 (SD = 1.34), ranging from 4 (fairly easy-neutral) to 7 (fairly hard), and 

a non-significant correlation (rs(10) = -.202, p = .530) with BCI accuracy. 

 For the neurophysiological measures: 1) peak amplitude of the sensorimotor rhythm 

at rest (ERS) for C3 had an average value of 0.187 microvolts2 (range: 0.03–0.5; SD = 0.156), 

and a non-significant correlation (rs(10) = .413,  p = .183) with BCI accuracy. C4 had an 

average value of 0.276 microvolts2 (range: 0.03–0.61; SD = 0.213), and a significant positive 

correlation (rs(10) = .622, p = .031) with BCI accuracy, 2) amplitude of the sensorimotor 

rhythm minus the predicted noise level at rest (ERS)  for C3 had an average value of 0.114 

microvolts2 (range: 0.02–0.4; SD = 0.119), and a non-significant correlation (rs(10) = .228,  p = 

.447) with BCI accuracy. C4 had an average value of 0.184 microvolts2 (range: 0.02–0.52; SD = 

0.183), and a non-significant correlation (rs(10) = .371, p = .236) with BCI accuracy, 3) the 
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ERS-ERD difference for C3 had an average value of 0.003 microvolts2 (range: -0.23–0.13; SD 

= 0.088), and a non-significant correlation (rs(10) = .490,  p = .106) with BCI accuracy. C4 had 

an average value of 0.006 microvolts2 (range: -.023–0.14; SD = 0.098), and a non-significant 

correlation (rs(10) = -0.049 p = .880) with BCI accuracy. 

4.4.3 Participant A2: Recurring Measures in relation to session number  

 1) Motivation ratings, taken prior to the start of each training session demonstrated 

a significant negative correlation (rs(10) = -.763, p <.05) with session number, 2) within-

session fatigue (range: -2–2; M = 0.417 , SD = 1.31) demonstrated a non-significant correlation 

(rs(10) = .131, p = -.462) with session number, 3) frustration with device control ratings taken 

at the end of each training session demonstrated a non-significant correlation (rs(10) = -.1, p = 

.757) with session number, 4) metal effort ratings taken at the end of each training session 

demonstrated a non-significant correlation (rs(10) = -.359, p = .252) with session number, 5) 

physical effort ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = .662, p = .141) with session number, 6) Overall ‘hardness’ ratings taken at 

the end of each training session demonstrated a non-significant correlation (rs(10) = -.168, p = 

.602) with session number. For neurophysiological measures: 1) peak amplitude of the 

sensorimotor rhythm at rest (ERS) for C3, demonstrated a non-significant correlation (rs(10) = 

-.259, p = 471 with session number. C4 demonstrated a non-significant correlation (rs(10) = -

.049, p = .880) with session number, 2) amplitude of the sensorimotor rhythm minus the 

predicted noise level at rest (ERS) for C3 demonstrated a non-significant correlation (rs(10) = -

.060,  p = .854) with session number. C4 demonstrated a non-significant correlation (rs(10) = 

.301, p = .342) with session number, 3) the ERS-ERD difference for C3 demonstrated a non-
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significant correlation (rs(10) = -.077,  p = .812) with session number. C4 demonstrated a non-

significant correlation (rs(10) = .399, p = .199) with session number. 

4.4.4 Participant A2: Recurring measures in relation to satisfaction ratings 

 1) within-session fatigue demonstrated a non-significant correlation (rs(10) = -.175, p = 

.586) with BCI satisfaction ratings, 2) frustration with device control ratings taken at the end 

of each training session demonstrated a significant negative correlation (rs(10) = -.841, p <.05) 

with BCI satisfaction ratings, 3) metal effort ratings taken at the end of each training session 

demonstrated a non-significant correlation (rs(10) = -.125, p = .7) with BCI satisfaction ratings, 

4) physical effort ratings taken at the end of each training session demonstrated a non-

significant correlation (rs(10) = -.337, p = .284) with BCI satisfaction ratings, 5) Overall 

‘hardness’ ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = .231, p = .469) with BCI satisfaction ratings. 

4.5.1 Participant A3: BCI Learning Trajectory  

 For participant A3, her average BCI accuracy across all twelve sessions was -0.01 (range: 

-.017 –0.13; SD = .096) indicating below chance levels to no-slight agreement. Her overall 

increase in BCI accuracy (highest performance minus lowest performance) was 0.147. Cohens 

Kappa values and 95% confidence intervals for each session are provided in table 12. The 

learning trajectory for participant A3 is provided in figure 7. While variable, her learning 

trajectory began at session approximately session 3 and is associated with a slope of 0.0155. 

However, the correlation between session number and BCI performance approached but 

did not reach significance (rs(10) = .517, p =.085).   
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Figure 7. The BCI learning trajectory across 12 sessions for A3. The linear trend line is shown in 

green along with the corresponding equation. 

 
Table 12. Cohens Kappa values and 95% confidence intervals (CI) for each BCI training session 

for participant A3. 

 
Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 -0.016 0.306 -0.339 

2 -0.172 0.203 -0.546 

3 -0.036 0.051 -0.125 

4 -0.146 0.005 -0.297 

5 0.085 0.237 -0.068 

6 -0.092 0.194 -0.378 

7 0.059 0.167 -0.049 
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8 -0.018 0.173 -0.21 

9 0.0289 0.1767 -0.1188 

10 0.1079 0.2843 -0.0685 

11 -0.0446 0.2508 -0.34 

12 0.1256 0.2643 -0.013 

 

4.5.2 Participant A3: Recurring Measures in relation to BCI performance  

 Results indicate that for 1) motivation ratings, had an average rating of 8.58 (SD = .515), 

ranging from 8 (fairly-extremely motivated) to 9 (extremely motivated) and a non-significant 

correlation (rs(10) = -.416, p = .178) with BCI accuracy (range: -0.17–0.13; M = -.01; SD = 

0.096),  2) fatigue ratings, taken prior to the start of each training session, had an average rating 

of 3.88 (SD = 1.63), ranging from 1 (normal) to 7.5 (high), and a non-significant correlation 

(rs(10) = .288 p = .365) with BCI accuracy, 3) time since last meal, taken at the start of each 

training session, averaged 2.16 hours (range 0.33–3; SD = 1.06), and a non-significant 

correlation (rs(10) = .287, p = .365) with BCI accuracy, 4) BCI satisfaction ratings, taken at 

the end of each training session, had an average rating of 5.08 (SD = 1.73), ranging from 2 

(very-mildly unsatisfied) to 7 (mildly satisfied), and a significant positive correlation (rs(10) 

= .715, p <.05) with BCI accuracy, 5) frustration with device control ratings taken at the end 

of each training session, had an average rating of 6.08 (SD = 1.16), ranging from 4 (fairly low-

neutral) to 8 (fairly-very high), and a non-significant correlation (rs(10) = -.235, p = .463 with 

BCI accuracy, 6) mental effort ratings taken at the end of each training session, had an average 

rating of 7 (SD = 1.35), ranging from 5 (neutral) to 9 (very high), and a non-significant 

correlation (rs(10) = -.271, p = .394) with BCI accuracy, 7) physical effort ratings taken at the 
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end of each training session, had an average rating of 5.08 (SD = 1.68), ranging from 1 (very 

low) to 7 (fairly high), and a non-significant correlation (rs(10) = .101, p = .734) with BCI 

accuracy, 8) overall ‘hardness’ ratings taken at the end of each training session, had an average 

rating of 6.5 (SD = 1.24), ranging from 4 (fairly easy-neutral) to 9 (very hard), and a non-

significant correlation (rs(10) = -.143, p = .658) with BCI accuracy. 

 For the neurophysiological measures: 1) peak amplitude of the sensorimotor rhythm 

at rest (ERS) for C3 had an average value of 0.520 microvolts2 (range: 0.05–1.89; SD = 

0.583), and demonstrated a non-significant correlation (rs(10) = -.140,  p = .665) with BCI 

accuracy. C4 had an average value of 0.55 microvolts2 (range: 0.07–1.54; SD = 0.558), and 

demonstrated a non-significant correlation (rs(10) = -.133, p = .681) with BCI accuracy, 2) 

amplitude of the sensorimotor rhythm minus the predicted noise level at rest (ERS)  for C3 

had an average value of 0.357 microvolts2 (range: 0.03–0.96; SD = 0.379), and demonstrated a 

non-significant correlation (rs(10) = -.161,  p = .618) with BCI accuracy. C4 had an average 

value of 0.371 microvolts2 (range: 0.4–1.01; SD = 0.372), and demonstrated a non-significant 

correlation (rs(10) = -.070, p = .829) with BCI accuracy, 3) the ERS-ERD difference for C3 had 

an average value of -0.023 microvolts2 (range: -0.18–0.50; SD = 0.170), and demonstrated a non-

significant correlation (rs(10) = -.127,  p = .695) with BCI accuracy. C4 had an average value of 

0.001 microvolts2 (range: -.08–0.12; SD = 0.055), and demonstrated a non-significant correlation 

(rs(10) = 0.406, p = .191) with BCI accuracy. 

4.5.3 Participant A3: Recurring Measures in relation to session number  

 1) Motivation ratings, taken prior to the start of each training session demonstrated 

a significant negative correlation (rs(10) = -.857, p = <.001) with session number, 2) within-

session fatigue (range: -1–6; M = 1.29 , SD = 2.11) demonstrated a non-significant correlation 
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(rs(10) = .-.359, p = .252) with session number, 3) frustration with device control ratings taken 

at the end of each training session demonstrated a non-significant correlation (rs(10) = -.087, p = 

.789) with session number, 4) metal effort ratings taken at the end of each training session 

demonstrated a significant negative correlation (rs(10) = -.699, p <.05) with session number, 

5) physical effort ratings taken at the end of each training session demonstrated a non-

significant correlation (rs(10) = .242, p = .449) with session number, 6) Overall ‘hardness’ 

ratings taken at the end of each training session demonstrated a non-significant correlation (rs(10) 

= -.384, p = .218) with session number. For neurophysiological measures: 1) peak amplitude of 

the sensorimotor rhythm at rest (ERS) for C3, demonstrated a non-significant correlation 

(rs(10) = -.182, p = 572) with session number. C4 demonstrated a non-significant correlation 

(rs(10) = -.399, p = .199) with session number, 2) amplitude of the sensorimotor rhythm 

minus the predicted noise level at rest (ERS) for C3 demonstrated a non-significant correlation 

(rs(10) = -.287,  p = .366) with session number. C4 demonstrated a non-significant correlation 

(rs(10) = -.472, p = .167) with session number, 3) the ERS-ERD difference for C3 demonstrated 

a non-significant correlation (rs(10) = .331,  p = .293) with session number. C4 demonstrated a 

non-significant correlation (rs(10) = .490, p = .106) with session number. 

4.5.4 Participant A3: Recurring measures in relation to satisfaction ratings 

 1) within-session fatigue demonstrated a non-significant correlation (rs(10) = -.392, p = 

.207) with BCI satisfaction ratings, 2) frustration with device control ratings taken at the end 

of each training session demonstrated a non-significant correlation (rs(10) = -.450, p = .142) with 

BCI satisfaction ratings, 3) metal effort ratings taken at the end of each training session 

demonstrated a non-significant correlation (rs(10) = .237, p = .459) with BCI satisfaction ratings, 

4) physical effort ratings taken at the end of each training session demonstrated a non-
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significant correlation (rs(10) = .050, p = .877) with BCI satisfaction ratings, 5) Overall 

‘hardness’ ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = .124, p = .7) with BCI satisfaction ratings. 

4.6.1 Participant A4: BCI Learning Trajectory  

For participant A4, their average BCI accuracy across all twelve sessions was .199 

(range: -0.05–0.47; SD = .177) indicating slight agreement. However, kappa values and 

confidence intervals increased into the upper levels of moderate agreement for sessions 10 

and 11. His overall increase in BCI accuracy (highest performance minus lowest performance) 

was 0.52. Cohens Kappa values and 95% confidence intervals for each session are provided in 

table 13. The learning trajectory for participant A4 is provided in figure 8, with session number 

being significantly, positively, correlated to BCI performance (rs(10) = .699, p <.05). Their 

learning trajectory began at sessions 3 to 4 and is associated with a slope of 0.0347, which was 

the largest slope for all participants with ALS.  

Table 13. Cohens Kappa values and 95% confidence intervals (CI) for each BCI training session 

for participant A4. 

Session Number Cohens Kappa 95% CI upper bound 95% CI lower bound 

1 0 0.021 -0.021 

2 -0.051 0.051 -0.152 

3 -0.044 0.091 -0.179 

4 0.158 0.333 -0.017 

5 0.156 0.315 -0.002 

6 0.253 0.356 0.151 
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7 0.373 0.488 0.258 

8 0.278 0.409 0.146 

9 0.312 0.409 0.215 

10 0.407 0.511 0.302 

11 0.468 0.591 0.345 

12 0.078 0.213 -0.057 

 

 

Figure 8. The BCI learning trajectory across 12 sessions for A4. The linear trend line is shown in 

green along with the corresponding equation. 

4.6.2 Participant A4: Recurring Measures in relation to BCI performance  

 Results indicate that for 1) motivation ratings, had an average rating of 7.42 (SD = .792), 

ranging from 6 (moderate-high) to 8 (fairly-extremely motivated) and a non-significant 

correlation (rs(10) = -.158, p = .625) with BCI accuracy (range: -0.05–0.47; M = .199; SD = 

0.177),  2) fatigue ratings, taken prior to the start of each training session, had an average rating 
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of 5.49 (SD = 1.38), ranging from 2 (normal-mild) to 7 (high), and a non-significant correlation 

(rs(10) = .392 p = .208) with BCI accuracy, 3) time since last meal, taken at the start of each 

training session, averaged 1.8 hours (range 1–3.5; SD = .634), and a non-significant correlation 

(rs(10) = .044, p = .892) with BCI accuracy, 4) BCI satisfaction ratings, taken at the end of each 

training session, had an average rating of 7.25 (SD = .866), ranging from 6 (neutral-mildly 

unsatisfied) to 9 (very satisfied), and a non-significant correlation (rs(10) = .136, p =.674) with 

BCI accuracy, 5) frustration with device control ratings taken at the end of each training 

session, had an average rating of 4.17 (SD = 1.85), ranging from 2 (low-fairly low) to 7 (fairly 

high), and a non-significant correlation (rs(10) = -.501, p = .097 with BCI accuracy, 6) mental 

effort ratings taken at the end of each training session, had an average rating of 5.17 (SD = 

1.85), ranging from 1 (very low) to 7 (fairly high), and a non-significant correlation (rs(10) = 

.414, p = .181) with BCI accuracy, 7) physical effort ratings taken at the end of each training 

session, had an average rating of 2.25 (SD = .622), ranging from 1 (very low) to 3 (fairly low), 

and a non-significant correlation (rs(10) = .159, p = .621) with BCI accuracy, 8) overall 

‘hardness’ ratings taken at the end of each training session, had an average rating of 3.42 (SD = 

1.31), ranging from 2 (very-fairly easy) to 6 (neutral-fairly hard), and a non-significant 

correlation (rs(10) = .102, p = .751) with BCI accuracy. 

 For the neurophysiological measures: 1) peak amplitude of the sensorimotor rhythm 

at rest (ERS) for C1 had an average value of 0.175 microvolts2 (range: 0.04–1.36; SD = 0.373), 

and a non-significant correlation (rs(10) = .252,  p = .430) with BCI accuracy. C2 had an average 

value of 0.184 microvolts2 (range: 0.04–1.29; SD = 0.380), and a non-significant correlation 

(rs(10) = .193, p = .549) with BCI accuracy, 2) amplitude of the sensorimotor rhythm minus 

the predicted noise level at rest (ERS) for C1 had an average value of 0.068 microvolts2 
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(range: 0–0.45; SD = 0.121), and a non-significant correlation (rs(10) = .301,  p = .341) with BCI 

accuracy. C2 had an average value of 0.086 microvolts2 (range: 0.3–0.63; SD = 0.171), and a 

non-significant correlation (rs(10) = .324, p = .304) with BCI accuracy, 3) the ERS-ERD 

difference for C1 had an average value of -0.006 microvolts2 (range: -0.13–0.21; SD = 

0.078), and a significant positive correlation (rs(10) = .595,  p <.05) with BCI accuracy. C2 

had an average value of -0.003 microvolts2 (range: -.11–0.04; SD = 0.037), and a non-significant 

correlation (rs(10) = 0, p = 1) with BCI accuracy. 

4.6.3 Participant A4: Recurring Measures in relation to session number  

 1) Motivation ratings, taken prior to the start of each training session demonstrated a 

non-significant correlation (rs(10) = .118, p = .714) with session number, 2) within-session 

fatigue (range: -1–2; M = 0.75 , SD = 1.22) demonstrated a non-significant correlation (rs(10) = 

.-.029, p = .928) with session number, 3) frustration with device control ratings taken at the 

end of each training session demonstrated a non-significant correlation (rs(10) = -.440, p = .152) 

with session number, 4) metal effort ratings taken at the end of each training session 

demonstrated a non-significant correlation (rs(10) = .323, p = .305) with session number, 5) 

physical effort ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = .191, p = .551) with session number, 6) Overall ‘hardness’ ratings taken at 

the end of each training session demonstrated a non-significant correlation (rs(10) = .140, p = 

.642) with session number. For neurophysiological measures: 1) peak amplitude of the 

sensorimotor rhythm at rest (ERS) for C1, demonstrated a non-significant correlation (rs(10) = 

.182, p = 572) with session number. C2 demonstrated a non-significant correlation (rs(10) = 

.088, p = .787) with session number, 2) amplitude of the sensorimotor rhythm minus the 

predicted noise level at rest (ERS) for C1 demonstrated a non-significant correlation (rs(10) = 
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.315,  p = .318) with session number. C2 demonstrated a non-significant correlation (rs(10) = 

.141, p = .662) with session number, 3) the ERS-ERD difference for C1 demonstrated a non-

significant correlation (rs(10) = .462,  p = .130) with session number. C2 demonstrated a non-

significant correlation (rs(10) = -.322, p = .308) with session number. 

4.6.4 Participant A4: Recurring measures in relation to satisfaction ratings 

 1) within-session fatigue demonstrated a non-significant correlation (rs(10) = -.412, p = 

.184) with BCI satisfaction ratings, 2) frustration with device control ratings taken at the end 

of each training session demonstrated a significant negative correlation (rs(10) = -.702, p 

<.05) with BCI satisfaction ratings, 3) metal effort ratings taken at the end of each training 

session demonstrated a non-significant correlation (rs(10) = .284, p = .371) with BCI satisfaction 

ratings, 4) physical effort ratings taken at the end of each training session demonstrated a 

non-significant correlation (rs(10) = -.544, p = .068) with BCI satisfaction ratings, 5) Overall 

‘hardness’ ratings taken at the end of each training session demonstrated a non-significant 

correlation (rs(10) = -.272, p = .392) with BCI satisfaction ratings. 

Chapter V: Discussion and Conclusion 

The aim of this study was to assess the learning trajectories of individuals with ALS during 

(motor)-imagery-based BCI learning of a row-column AAC scanning paradigm, along with 

identifying how both initial and recurring person-centered factors relate to an individual’s 

learning trajectory and overall satisfaction with BCI-AAC control. Due to the heterogenous 

nature of individuals with ALS, different profiles were identified that likely influenced how each 

individual progressed with BCI training. Along with establishing feasibility for BCI access to 

commercial row-column scanning AAC paradigms, this study identified multiple findings which 
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may inform the clinical implementation of BCI technology. Therefore, to support the clinical 

translation of BCI technology, study findings are interpreted in regard the feasibility of BCI 

access to commercial row-column AAC displays, along with how results may inform BCI trials, 

and other feature matching considerations for BCI assessment and intervention. 

5.1 Feasibility for BCI access to commercial row-column scanning paradigms 

 Overall findings from this project support that (motor) imagery-based BCI switch access 

to a commercial AAC row-column scanning paradigm is feasible for individuals with ALS. This 

finding builds upon the work of Brumberg et al., (2016), Scherer et al., (2015), and Friedrich et 

al., (2009), expanding online BCI access to larger matrices commonly utilized for AAC access. 

In further detail, BCI learning trajectories for this BCI device were variable both between and 

within participants for those with ALS. However, only A2 was unable to demonstrate either a 

BCI performance in the range of neurotypical peers, or an improving BCI learning trajectory. In 

contrast, for more than one session A1 and A4 were able to establish levels of BCI control within 

the range of neurotypical controls (range: .3825–.7339) after the initial session for T3 was 

removed as an outlier due to initial BCI learning. Specifically, A1 achieved accuracies of .445, 

.423, .522 and .544 and .425 for sessions 2, 3, 6, 7 and 12 respectively, and A4 achieved 

accuracies of .407 and .468 for sessions 10 and 11 respectively. Furthermore, A3 and A4 were 

able to demonstrate an improving BCI learning trajectory, and while the average BCI 

performance was low for A3 across sessions (M= -.01, SD = .096), these findings highlight that 

an individual with severe physical impairments may demonstrate BCI learning, though extensive 

training may be needed for proficiency. It is important to note however, that while BCI 

performance for A3 may be sub-threshold for functional BCI use (i.e., they could not spell a 4 to 

5 letter word without multiple spelling errors which rendered the word largely unreadable), 
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individualized adaptions to the BCI system were not performed during BCI training to allow for 

comparison across participants. For instance, due to disease severity, A3 had multiple muscle 

spasms throughout BCI calibration and training, which likely decreased BCI performance 

accuracy. Therefore, adaptions to improve signal processing such as online removal of muscle 

artifacts, combining other signals such as the contingent negative variation in BCI decoding 

(Brumberg et al., 2016), may increase overall BCI performance values to a more functional level. 

Therefore, further research regarding signal processing for this BCI system is warranted. 

Nevertheless, interpreting these findings in a feature matching framework, an attention 

modulated BCI system such as the visual P300-speller may provide A3 with a more familiar 

AAC interface, and lessen the burden associated with BCI learning, as she already uses an eye-

gaze AAC system to support communication, environmental control, and internet browsing. 

While in comparison to eye gaze, P300 grid systems require less precise eye movements, grid 

based P300-based BCIs parallel eye-gaze access as P300 BCI performance is improved by use of 

an overt attention strategy, where the individual focuses their eyes, and attention on the item they 

wish to select in comparison to a covert strategy, which utilizes a peripheral focus (e.g., Brunner 

et al., 2010). 

5.2 Implications of findings for BCI assessment 

In the following section a brief review of clinical takeaways is provided, with further 

explanation supporting these conclusions provided in section 5.2.2. 

 
5.2.1 Participant Profiles and Clinical takeaways for BCI feature matching  

This investigation assessed a range of factors related to an individual’s unique profile 

including cognitive, and motor skills, along with neurophysiological measures of BCI related 
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EEG activity. While the generalization of findings is restricted due to the limited sample size, 

successful BCI access through motor execution was positively supported by an individual’s 

physical motor abilities, as both participants A1 and A2 achieved the highest levels of BCI 

success. That physical motor abilities may support BCI success, even for those with cognitive 

impairment, supports the notion that similar to existing AAC methods, timely assessment and 

intervention may help support BCI success, Specifically, improved BCI success may be 

supported by beginning training before functional motor abilities are severely impaired, by 

possibly lowering cognitive burdens associated with motor imagery performance and learning of 

a new communication method and allowing BCI devices to adapt to the individuals changing 

needs and abilities across the life span. Therefore, while motor imagery control tasks are the 

main focus of sensorimotor BCI research and development, further research is warranted into 

BCI control via motor execution to support BCI success and ability-based BCI and AAC designs 

that utilize an individual’s current motor skills. 

Regarding BCI assessment measures, while results from the BCI screener remain unclear, 

promising findings from motor sections of the BCI screener along with cognitive score 

differences separating those demonstrating a positive BCI learning trajectory from those who did 

not, support the need for continued investigation of BCI specific screening tools to help 

standardize BCI assessment procedures for identifying person centered factors related to BCI 

control. In addition, further investigation on the effects of medications and food intake on BCI 

performance may help elucidate the why participant A2 was unable to establish stable BCI 

performance, or a positive learning trajectory. Finally, due to correlations between 

neurophysiological measures of event related synchronization (ERS), and the difference between 

event related synchronization and desynchronization (ERS-ERD) with BCI performance, this 
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dissertation study continues to support the use of neurophysiological measures in BCI 

assessment. However, as neurophysiological measures may change across sessions, more than a 

single time point may be needed to fully characterize an individual’s profile and account for 

performance variability (e.g., Thompson, 2018).  

5.2.2 Assessment findings 

Previously, functional motor abilities were not shown to be related to the ability of 

individuals with ALS to perform imagined movements utilized for BCI control (Geronimo et al., 

2016; Kasahara et al., 2012). However, as our BCI was controlled by motor execution, the 

highest levels of BCI performance were achieved by participants A1 and A4 who both 

demonstrated the least level of motor impairment in the limb utilized for BCI control (i.e., A1 

upper limb, and A4 lower limb). Relevant differences in motor ability between participants are 

especially apparent in the qualitative descriptions obtained by the BCI screener indicating no 

impairment of the upper limb for A1, and A4 reporting his legs were ‘still strong’, being 

ambulatory without assistance. In comparison to the BCI screener, other measures utilized for 

assessment of motor function were limited in elucidating differences in motor function between 

participants that were relevant to BCI control. Specifically, while the MACS, and BFMF were 

able to quantify differences in upper limb ability, they do not assess function of the lower limb, 

which may be utilized for BCI control. Furthermore, the ALS-FRS assesses a range of functional 

motor abilities, including those related to upper, lower and bulbar function. Therefore, while 

total ALS-FRS score highlights that A3 had the highest level of limb motor impairments, 

specific differences in motor abilities between participants is less clear (e.g., A1 had difficulties 

with bulbar motor functions, and A2 limb motor functions, though they achieved similar scores 

of 33 and 34 respectively). In addition, it is possible that self-ratings of motor function may be 
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affected by environmental support. For instance, while descriptively A4 had decreased levels of 

motor impairment in comparison to A2, he rated increased motor impairments on the ALS-FRS, 

based on the support provided by his wife (e.g., she would cut up his food). In contrast, A2 still 

lived independently, and therefore, rated his impairments as less severe as he was still managing 

to independently complete functional tasks, even if with large amounts of difficulty. Taken 

together these findings highlight the importance of individualized assessment of motor function 

as guided by the tools such as the BCI screener. 

As the cognitive section of the BCI screener is not designed to assess an individual’s 

level of impairment, scores for the cognitive section of the BCI screener were high (range: 22–

24), indicating the participants possessed BCI related skills. However, it is interesting to note 

that both A1 and A2 did not demonstrate a consistent learning trajectory and each missed two 

points on the BCI screener, losing one point in the area of attention and working memory, and 

one point in the area of cognitive motor learning and abstract problem solving. Therefore, while 

the relationship between BCI screener scores and BCI performance remains unclear, taken 

together with the findings for the motor portion of the BCI screener, further research into the 

development of BCI specific assessment tools is warranted. In addition, ALS-CBS scores reveal 

that both A1 and A4 presented with a suspicion for cognitive impairment, as characterized by 

ALS-CBS scores below 17 (Wooley, 2014). However, participants A1 and A4 achieved the 

highest levels of BCI performance. The finding of greater BCI performance for participants with 

ALS who have suspicion for cognitive deficits is in contrast to previous findings for BCI devices 

controlled by imagined movements, which found diminished BCI performance for those with 

lower ALS-CBS scores (Geronimo et al., 2016). However, participants with suspected cognitive 

impairment in our study also presented with the least physical impairment in the limb used for 
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BCI control. It is plausible providing an individual with a motor (imagery)-based BCI device 

before loss of physical movement may lower the cognitive demands associated with the abstract 

nature of imagery performance. Therefore, starting BCI intervention early, before loss of motor 

function, may allow time for an individual to begin establishing BCI mastery in the hope that 

learned skills support BCI control through imagery strategies later in the disease course. 

However, while for the present BCI system, physical motor movements supported BCI success, 

even in the presence of cognitive impairment, further research is needed to assess the effects of 

timely intervention and motor abilities in a larger population of individuals who may use BCI, 

along with the associated impacts on BCI performance and quality of life across the life span. 

Neurophysiological measures including peak ERS, peak ERS minus the predicted noise 

level, and ERS-ERD difference were variable both within and between participants. Prior to BCI 

use, A1 demonstrated the highest amplitudes for each measure and achieved, on average, the 

highest level of BCI accuracy, in contrast to A3, who presented with the lowest amplitudes for 

peak ERS and ERS-ERD difference and demonstrated the lowest average BCI performance. 

However, the lowest amplitude for the ERS-noise measure was noted for A4 who achieved the 

second highest level of BCI performance. Therefore, these findings generally fit the expected 

pattern, and continue to support the role of the ERS and ERS-ERD measures in predicting BCI 

performance. When looking across sessions, a significant correlation between left hand peak 

ERS and BCI performance was identified for A2. Surprisingly however, across sessions, A3 

presented with the highest average amplitudes for both ERS measures. Exactly why these 

amplitude changes occurred between initial assessment and BCI training are currently unclear 

but may be due to factors such as increased artifact in the signal due to spasms, or variations in 

neurological activity associated with disease progression. However, this variability in 
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performance supports recent discussion that multiple data points may be needed to fully 

characterize an individual’s EEG profile due to day-to-day fluctuations (Thompson et al., 2018). 

Finally, for the ERS-ERD measure, A1 demonstrated the largest difference across sessions. In 

addition, ERD-ERS values were significantly correlated to BCI performance for A4 at location 

C1. Therefore, though there appear to be individual differences in neurophysiological measures, 

findings support the use of both ERS measures at rest and ERS-ERD difference measures for 

BCI assessment of individuals with ALS. 

A3 demonstrated an improving learning trajectory that may be increased in magnitude by 

BCI adaptions such as online filtering of muscle artifacts related to spasms. However, based 

upon overall assessment findings, it is unclear why A2 was unable to demonstrate a BCI learning 

trajectory or achieve consistent performance similar to that of neurotypical peers. Of clinical 

consideration, during BCI training A2 was also participating in a Radicava ® drug trial requiring 

cycles where he received daily infusions for a two-week period following by two weeks of rest. 

Currently, there is limited research on the effects of medications on BCI performance (e.g., Pitt 

& Brumberg, 2018a), and the influence of Radicava ® on BCI related signals is unknown. 

Furthermore, A2 did not eat for an average of 9.72 hours prior to BCI training sessions, possibly 

decreasing his energy levels and mental focus (Geisler, 1990). Low energy levels may have been 

further compounded by efforts taken to receive Radicava ® infusions. Taken together, these 

medication and cognitive factors may impair abilities to gain BCI control, and future research 

should seek to identify the effects of ALS medications such as Radicava ®, along with energy 

levels associated with decreased intake and dysphagia on BCI performance. 
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5.2.3 Length of BCI trials 

 Each participant with ALS demonstrated their own unique BCI performance trajectory 

across the twelve training sessions. However, while more than one session is needed to make an 

informed clinical decision regarding suitability for a BCI device controlled by motor execution, 

the BCI performance needed to demonstrate whether growth is expected for each participant can 

be approximated in around 5, 20-minute sessions each including approximately 300 trials. Along 

with consideration of the individuals own unique preference, requiring approximetly 5 sessions 

to make informed clinical decision about (motor)-imagery-based BCI suitability helps bring the 

duration of BCI trials to a feasible range for clinical decision making and implementation. 

Regarding approximation of an individual’s learning trajectory, satisfactory/encouraging BCI 

performances were associated with the following characteristics within the first 5 BCI training 

sessions:  

1) stable BCI performance, similar to that of neurotypical peers, for at least 2 consecutive 

sessions (as with A1). 

2) beginning and maintaining an improving BCI performance trajectory within the first 5 

sessions (as with A3 and A4). However, extended trials may be necessary for individuals 

showing variable/low BCI performance (such as A3), allowing time for further 

individualization of BCI parameters to improve BCI performance stability and overall 

performance magnitude. Random BCI performance during sessions 1-5 without a 

positive learning trajectory, or only one or two non-consecutive sessions of BCI 

performance comparative to neurotypical peers was not indicative of success (as with 

A2). 
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  While this study provides preliminary guidelines regarding trials length for event-

related desynchronization-based BCIs controlled by motor execution, motor imagery-based 

BCI access may require extended training times possibly increasing frustrations associated 

with motor learning (e.g., Nijboer et al., 2010). Further work is needed to create training 

protocols that minimize frustration, along with establishing these findings and investigating 

assessment guidelines for BCIs controlled through motor imagery, or attention modulation 

(e.g., P300 or SSVEP). Extending the methods and findings of this dissertation to include 

clinical guidelines governing the full range of BCI modalities is necessary to support feature 

matching-based BCI assessment and BCI access for individuals who are unable to begin BCI 

trials before the absence of physical motor movement. 

5.3 Implications of findings for BCI intervention 

In the following section a brief review of clinical takeaways is provided, with further 

explanation supporting these conclusions provided in section 5.3.2. 

 
5.3.1 Clinical takeaways for BCI intervention 

Traditionally BCI intervention studies focus on copy spelling tasks and accuracy-based 

performance outcomes (Pitt et al., in press). While these BCI paradigms have created a 

foundation for the transition of BCI into clinical practice, these dissertation findings support the 

use of tasks such as free spelling in BCI trials, along with incorporating a range of person-

centered factors in understanding performance outcomes, and user satisfaction, such as multiple 

measures of fatigue (e.g., general level of fatigue, and mental and physical effort), and levels of 

frustration. Finally, associations between decreased mental effort and improving levels of BCI 



 

 83 

performance possibly support the use of utilizing natural/relaxed levels effort when mastering 

(motor)-imagery-based BCI control (Witte et al., 2013). 

5.3.2 Intervention findings 

On average, ratings of motivation were high for all participants with ALS. Participants 

reported a range of factors influencing their high levels of motivation including, the hope of 

using BCI as a communication method, interest in BCI technology, and a desire to ‘help 

science’. However, motivation ratings significantly decreased across sessions for A2 and A3, 

possibly due to a lack of stable BCI control of functional levels. While pre session ratings of 

motivation were not correlated to BCI performance in this study, possibly due to participants 

high levels of baseline motivation, previous findings have identified motivation as an important 

aspect in achieving BCI control (e.g., Kleih & Kubler, 2015). Therefore, consideration of how to 

increase motivation during the early stages of motor learning may be important for helping 

support BCI success (e.g., error free learning). While traditionally BCI studies have focused on 

copy spelling tasks, A4 reported his high levels of motivation were generally driven by his desire 

to attempt free spelling tasks and move to the next level of functional independence in BCI 

control. Free spelling tasks were planned for completion during this investigation once a stable 

level of substantial BCI accuracy was achieved through copy spelling training. However, no 

participants with ALS achieved stable BCI performance of this level. Therefore, the 

incorporation of functional communication tasks beyond copy spelling may support sustained 

levels of BCI motivation helping improve outcomes for multi-session BCI trials (e.g., Pitt, et al., 

in press).  

 The focus on copy spellings in BCI paradigms is traditionally accompanied by outcome 

measures focused on BCI accuracy and performance (e.g., Pitt, et al., in press). This research 
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focus, while narrow, has provided a foundation for the clinical translation of BCI research, with 

studies beginning to expand to evaluate a range of person-centered factors associated with BCI 

performance (e.g., Peters et al., 2016). Building upon this foundation, study findings support that 

factors influencing satisfaction may differ between participants, with satisfaction ratings 

positively correlated to performance for A1 and A3, but primarily driven by levels of frustration 

for participants A2 and A4, though for A4 lower levels of physical effort also approached 

significance (p=.068).Therefore, future BCI research and intervention paradigms may seek to 

include outcome measures, such as frustration and physical effort ratings, to help elucidate 

primary factors influencing an individual’s satisfaction with BCI technology to optimize training 

strategies and inform future research directions in BCI development. Of further consideration, 

this study revealed that the incorporation of fatigue ratings for BCI intervention paradigms 

require further consideration. Due to previous reports that BCI control requires high levels of 

effort (e.g., Chavarriaga et al., 2017), it was expected that within session fatigue ratings would 

also be increased. However, surprisingly, while average ratings of mental effort ratings across 

participants ranged from neutral (5) to fairly high (7), average with-in session fatigue ratings 

were very low, ranging from -1 to 1. Negative within session fatigue ratings, along with 

participant report from A3, also indicate some participants felt less fatigued following BCI use, 

possibly due to participation in an engaging activity. Furthermore, differences between mental 

effort and within session fatigue may be due to differences in participants definition of the term 

fatigue, with one participant (A3) indicating it was generally synonymous with mental effort, and 

three participants indicating the term fatigue better reflects physical effort which was generally 

low for this BCI system. Therefore, along with ratings of frustration, future BCI trials should 

provide different options of fatigue and effort (e.g., mental effort, physical effort; e.g., Peters et 
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al., 2016) to allow for individualized and precise ratings of person-centered factors associated 

with BCI use. In addition, future research may seek to explore what underlying factors are 

captured by ratings of fatigue for various BCI systems, to help ensure individuals are matched to 

devices which minimize workload burdens upon the individual. Finally, mental effort ratings 

significantly decreased across sessions for A3 along with improved BCI performance and 

showed a moderate (rs =-.478 to -.479) negative trend with BCI performance for A1, and A2. In 

addition, participants A1, and A2 indicated improved BCI success when ‘effortless’ or more 

natural effort levels were used versus extreme effort levels. Therefore, while further research is 

needed, helping participants not to overthink BCI motor learning may help decrease overall 

levels of fatigue, effort, and frustration, improving BCI acceptance.  

5.4 Limitations 

  Though the findings of this study outlined multiple factors for consideration in BCI 

assessment and intervention, along with demonstrating the feasibility of BCI access to 

commercial AAC paradigms, the limited sample size of this study means further work is needed 

to confirm these findings, develop clinical guidelines for BCI devices based on motor execution 

and imagery, and expand results to inform BCI assessment of other BCI devices. While this  

limited sample size of individuals with ALS was sufficient to lay the clinical groundwork, 

further work is needed to generalize findings to other populations of individuals who may use 

BCI as an access method (e.g., brain stem stroke, upper spinal cord injury, locked in syndrome, 

cerebral palsy). Finally, it is important to note that to facilitate comparison across participants, 

apart from allowing A4 to use his lower limb for BCI control due to increased strength, the BCI 

system was not individualized or adapted to meet individual needs across the study. Therefore, 

future research evaluating signal processing techniques, feedback methods, and training 
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paradigms (e.g., feedback, intensity) may help support overall increase in BCI performance, and 

ratings of person-centered factor associated with BCI performance and satisfaction.   
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Appendices 
Appendix A: Pre session BCI questionnaire  
 

Date ____ Participant ID:  __________ Session Number ____ 
 
 
Please, indicate: 

1) Please rate your current level of fatigue and motivation, using the scales below 

Fatigue: 
 
 
 
 
 
Motivation: 
 
 
 
 
 
 

 
 

 
  

Training Session Number Date Fatigue Rating  Motivation 
Rating 

Time since last 
meal (hours) 

1     
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     

Extremely fatigued Normal 
1           2           3           4            5           6           7           8           9               

Mild Moderate High 

Extremely motivated Extremely unmotivated 

1           2           3           4            5           6           7           8           9               
Mildly unmotivated Neutral Fairly motivated 
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Appendix B: Post session questionnaire  
 

• Fatigue  

1. Following today’s copy spelling tasks, indicate your level of fatigue on a scale of 1 – 9, 9 
being extremely fatigued, to 1 being NORMAL 

 
 
 
 
 

1a. Post minus pre ratings of fatigue: ______ 
 

2.  Following today’s copy spelling tasks, how satisfied are you with this BCI system?  

 
 
  
 
 

3. During today’s copy spelling tasks, what level of frustration did you experience with 
using the BCI? 

 

 

 
 

4. During today’s copy spelling tasks, how much physical effort was required to operate the  
BCI? 
 
 
 
 
 
5. During today’s copy spelling tasks, how much mental effort or concentration was 

required to operate the BCI? 
 
 

 
 
 

6.  Overall how hard did you have to work to complete todays copy spelling tasks? 
 

 

Extremely fatigued Normal 
1           2           3           4            5           6           7           8           9               

Mild Moderate High 

Very satisfied Very unsatisfied   Neutral 

1           2            3             4               5              6            7            8            9               
Mildly unsatisfied Mildly satisfied 

Very high 
 

            Very low   Neutral 

1           2            3             4               5              6            7            8            9               
Fairly low  Fairly high 

Very high 
 

            Very low   Neutral 

1           2            3             4               5              6            7            8            9               
Fairly low  Fairly high 

Very high 
 

            Very low   Neutral 

1            2            3             4               5              6            7            8            9               
Fairly low  Fairly high 

Very hard 
 

            Very easy   Neutral 

1            2            3             4               5             6            7            8            9               
Fairly easy  Fairly hard 
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Appendix C: Supplemental Data Tables 

Data for pre and post BCI training number scales, time since last meal, and neurophysiological 

measures (ERS, and ERS-ERD) are provided in the following appendicles for each participant 

with ALS for each of the 12 BCI sessions.  

Pre-Training Measures 

Table 1. Pre fatigue  

Session A1 A2 A3 A4 

1 6 1 4 4 

2 3 1 3 3 

3 6 1 5 5 

4 5 3 4 4 

5 5 4 2 2 

6 4 1 1 5 

7 1 2 4 7 

8 4 5 7.5 5 

9 3 3 4 4 

10 4 2 5 4 
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11 3 4 3 6 

12 1 5 4 6 

Table 2. Pre motivation 

Session A1 A2 A3 A4 

1 9 9 9 8 

2 9 9 9 8 

3 9 7 9 6 

4 9 7 9 7 

5 9 8 9 8 

6 9 7 9 7 

7 9 7 9 6 

8 9 7 8 8 

9 9 7 8 8 

10 9 7 8 8 

11 9 7 8 7 

12 9 6 8 8 
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 Table 3. Time since last meal (hours) 

Session A1 A2 A3 A4 

1 3 13 2 1 

2 0.33 13 2.5 2 

3 0.33 0.75 1.75 1.5 

4 0 13 3 2 

5 0.5 0.75 3 2 

6 0.33 0.41 3 3.5 

7 0.5 14 3 1.25 

8 0 14 0.83 1.45 

9 0 0.75 0.5 2 

10 3 16 3 1.5 

11 0.5 15 0.33 2 

12 3 16 
3 

1.5 
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Post Training Measures 

Table 4. Post session fatigue  

Session A1 A2 A3 A4 

1 2 3 6 3 

2 2 2 4 3 

3 5 1 4 7 

4 3 3 5 5 

5 5 6 7 4 

6 3 3 7 6 

7 1 3 4 8 

8 3 3 8 7 

9 1 4 4 6 

10 3 1 5 3 

11 2 5 4 5 

12 2 5 4 7 
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Table 5. Fatigue difference  

Session A1 A2 A3 A4 

1 -4 2 2 -1 

2 -1 1 1 0 

3 -1 0 -1 2 

4 -2 0 1 1 

5 0 2 5 2 

6 -1 2 6 1 

7 0 1 0 1 

8 -1 -2 5 2 

9 -2 -1 0 2 

10 -1 -1 0 -1 

11 -1 1 1 -1 

12 1 0 0 1 
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Table 4. Device Satisfaction  

Session A1 A2 A3 A4 

1 5 8 7 7 

2 9 7 3 7 

3 7 7 6 6 

4 7 9 5 8 

5 7 7 6 7 

6 8 8 2 9 

7 8 8 7 7 

8 7 9 3 7 

9 8 4 5 6 

10 7 5 6 8 

11 7 5 4 7 

12 8 4 7 8 
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Table 5. Frustration with BCI control  

Session A1 A2 A3 A4 

1 2 6 6 7 

2 2 6 6 5 

3 4 5 7 6 

4 5 5 4 3 

5 4 6 7 5 

6 5 3 8 2 

7 2 3 5 2 

8 5 2 6 6 

9 3 7 7 6 

10 3 6 5 2 

11 1 6 7 3 

12 3 8 5 3 
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Table 6. Physical effort  

Session A1 A2 A3 A4 

1 1 5 1 2 

2 1 5 3 2 

3 2 2 6 3 

4 3 3 7 2 

5 1 5 6 2 

6 1 6 6 1 

7 1 3 5 2 

8 1 3 5 3 

9 1 6 5 3 

10 2 3 5 3 

11 2 6 5 2 

12 1 4 7 2 
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Table 7. Mental effort  

Session A1 A2 A3 A4 

1 7 8 8 6 

2 7 8 9 4 

3 8 7 9 4 

4 6 7 8 7 

5 7 7 8 4 

6 3 8 6 6 

7 5 6 6 1 

8 6 4 5 4 

9 7 7 6 7 

10 7 6 6 7 

11 6 8 6 7 

12 5 7 7 5 
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Table 9. Overall hardness  

Session A1 A2 A3 A4 

1 8 7 6 3 

2 4 7 9 2 

3 3 6 7 5 

4 5 7 7 4 

5 2 7 8 2 

6 6 7 6 3 

7 5 4 6 2 

8 5 4 4 5 

9 5 7 6 6 

10 2 4 6 3 

11 4 7 6 3 

12 6 7 7 3 

 

 

 



 

 125 

Neurophysiological Measures 

Table 10. Peak ERS (microvolts2) for left sided electrode locations; C3 for A1, A2, and A3, and 

C3 (session 1), and C1 (sessions 2-12) for A4 as they utilized the lower limb for BCI control 

during sessions 2-12.  

Session A1 A2 A3 A4 

1 0.726 0.095 0.048 0.056 

2 0.184 0.5 1.076 0.103 

3 0.802 0.052 0.402 0.049 

4 0.449 0.231 0.251 0.044 

5 0.274 0.23 1.14 0.077 

6 0.186 0.419 1.892 0.067 

7 0.25 0.107 0.16 0.076 

8 0.156 0.111 0.049 1.359 

9 0.378 0.033 0.321 0.06 

10 0.254 0.068 0.762 0.087 

11 0.219 0.342 0.063 0.066 

12 0.377 0.058 0.078 0.059 
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Table 11. Peak ERS (microvolts2) for right sided electrode locations; C4 for A1, A2, and A3, and 

C4 (session 1), and C2 (sessions 2-12) for A4 as they utilized the lower limb for BCI control 

during sessions 2-12. 

Session A1 A2 A3 A4 

1 0.596 0.105 0.144 0.053 

2 0.18 0.54 1.274 0.17 

3 0.813 0.09 0.44 0.072 

4 1.079 0.612 0.277 0.041 

5 0.871 0.381 1.375 0.06 

6 0.302 0.383 1.539 0.055 

7 0.368 0.132 0.159 0.095 

8 0.183 0.18 0.075 1.385 

9 0.452 0.033 0.292 0.065 

10 0.386 0.146 0.868 0.101 

11 0.218 0.593 0.074 0.063 

12 0.262 0.119 0.082 0.053 
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Table 12. Peak ERS – noise (microvolts2) for left sided electrode locations; C3 for A1, A2, and 

A3, and C3 (session 1), and C1 (sessions 2-12) for A4 as they utilized the lower limb for BCI 

control during sessions 2-12. 

Session A1 A2 A3 A4 

1 0.532 0.061 0.039 0.041 

2 0.017 0.036 0.955 0.003 

3 0.4 0.033 0.26 0.023 

4 0.226 0.166 0.136 0.03 

5 0.07 0.157 0.942 0.041 

6 0.154 0.395 0.89 0.036 

7 0.22 0.083 0.089 0.035 

8 0.131 0.061 0.034 0.449 

9 0.298 0.017 0.236 0.034 

10 0.004 0.032 0.601 0.053 

11 0.135 0.29 0.048 0.031 

12 0 0.04 0.059 0.04 
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Table 13. Peak ERS – noise (microvolts2) for right sided electrode locations; C4 for A1, A2, and 

A3, and C4 (session 1), and C2 (sessions 2-12) for A4 as they utilized the lower limb for BCI 

control during sessions 2-12. 

Session A1 A2 A3 A4 

1 0.473 0.069 0.128 0.033 

2 0.051 0.028 1.004 0.031 

3 0.578 0.057 0.337 0.043 

4 0.839 0.51 0.145 0.028 

5 0.036 0.296 1.014 0.032 

6 0.2 0.34 0.554 0.031 

7 0.344 0.1 0.082 0.058 

8 0.152 0.088 0.042 0.627 

9 0.316 0.019 0.248 0.03 

10 0.13 0.085 0.782 0.057 

11 0.172 0.515 0.059 0.034 

12 0.168 0.101 0.061 0.031 
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Table 14. Peak ERS – ERD (microvolts2) for left sided electrode locations; C3 for A1, A2, and 

A3, and C3 (session 1), and C1 (sessions 2-12) for A4 as they utilized the lower limb for BCI 

control during sessions 2-12. 

Session A1 A2 A3 A4 

1 0.254 0.011 -0.004 -0.007 

2 0.028 -0.01 -0.179 -0.063 

3 0.143 -0.006 0.054 -0.13 

4 0.171 0.063 -0.001 0.002 

5 0.109 0.127 -0.183 0.001 

6 0.045 0.046 0.496 0.027 

7 0.044 -0.088 -0.001 0.025 

8 0.041 0.018 -0.001 0.207 

9 0.054 0.007 0.094 0.018 

10 -0.094 0.019 -0.028 -0.035 

11 0.054 -0.234 0.013 0.023 

12 0.068 0.015 0.021 0.002 
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Table 15. Peak ERS – ERD (microvolts2) for right sided electrode locations; C4 for A1, A2, and 

A3, and C4 (session 1), and C2 (sessions 2-12) for A4 as they utilized the lower limb for BCI 

control during sessions 2-12. 

Session A1 A2 A3 A4 

1 -0.01 -0.008 -0.076 -0.004 

2 -0.003 0.002 0.024 0.042 

3 0.109 0.031 -0.043 0.011 

4 0.394 -0.071 -0.051 -0.001 

5 0.535 0.136 0.042 -0.011 

6 0.128 -0.231 -0.041 0.013 

7 0.173 0.035 -0.03 0.04 

8 0.073 -0.047 0.014 -0.105 

9 0.047 0.009 0.123 -0.012 

10 0.056 0.061 0.051 -0.002 

11 0.03 0.142 -0.002 0.015 

12 0.08 0.011 0.004 -0.019 
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Appendix D: The BCI Screener by Pitt & Brumberg (2018b)  
 

A Screening Protocol Incorporating Brain-Computer Interface Feature Matching 
Considerations for Augmentative and Alternative Communication 

Kevin Pitt., CCC-SLP & Jonathan Brumberg., PhD. 
Instructions on this form may be abbreviated. See manual for full guidelines. 
Please record use of medications on a separate sheet. 
 
Today’s date 
Given by (clinician):                      Start time: ________      End time: ________  
 
Introductory Information: 
 
*Participant currently using mechanical ventilation? Y / N     *Likely remaining with 
ventilation?   Y /  N  
Primary Communication method:  
 
Current AAC method, if applicable: 
 
Communicational method used for screening protocol responses: 
 
Diagnosis, and date of diagnosis:       Date and region of symptom onset: 
 
Date of last hearing test (pass/fail):       Date of last vision test (pass/fail): 
 
1) Handedness:  
Do/did you primarily use your right / left hand to?  
If applicable, prior to paralysis. If they have never been able to perform the selected actions due 
to congenital motor impairments, please individualize actions (see manual for examples) and 
record below. Select ‘uncertain’ if handedness cannot be ascertained. 
 
1A) Throw a ball  _Right hand  _Left hand  _Both hands equally well 
1B) Draw   _Right hand  _Left hand  _Both hands equally well 
1C) Clarification: The subject is:    _Right handed     _ Left handed      _Uses both hands      
_Uncertain  
 
Modified task 1A:    Modified task 1B: 
______________________________________________________________________________ 
 
2) History of Seizures:        
2A) Have you ever had a seizure?      _ Yes    _No     
                                        If yes, please provide history in the general considerations section. 
 
3) Vision: 
3A) Four Corners.    Communicate whenever you seen an item appear. 
 __Center   __Right upper quadrant   __Left lower quadrant   __Right lower quadrant   __ Blank    
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__Left upper quadrant   __Unable to complete due to severe visual impairment   
     Score 1 point per correct response       Enter score    
/6         
3B) Do you use contact lenses or glasses?  _ Yes    _No     
3C) Do you have trouble seeing far away?    _ Yes    _No    
3D) Do you have any other difficulties with your vision? _ Yes    _No   (if yes, provide details as 
possible) 
 
4) Hearing: 
4A) Do you use hearing amplification? _ Yes    _No     
4B) Do you have difficulty hearing in background noise (e.g., in a restaurant)?  _ Yes    _No    
4C) Do you have any other difficulties with your hearing? _ Yes    _No       (if yes, provide 
details as  
possible) 
______________________________________________________________________________ 
 
5) Literacy: 
5A) Are you able to read?  _ Yes    _No.  If no, were you able to read in the past?  _ Yes    
_No 
5B) Participant is to read/perform “Look Up” (see manual for stimuli and adapt to meet 
individual’s voluntary motor, and visual capabilities as necessary)       

_Accurate       _Inaccurate       _Unable to complete due to severe visual impairment 
 
5C) I will present a familiar object and ask you some questions about how to spell the word. 
Is the first letter c?  _ Yes    _No     
Is the second letter o?  _ Yes    _No     
Is the third letter r?  _ Yes    _No     
Is the fourth letter m?  _ Yes    _No     
______________________________________________________________________________
_______ 
6) Fatigue:      Use visual scale in provided in the manual  
6A) I want you to indicate your current level of fatigue on a scale of 1 to 4, with 1 being not 
fatigued, to 4 being severely fatigued: ____ 
 
6B) I want you to indicate your average level of fatigue (e.g., over the past 2 weeks) on a scale of 
1 to 4, with 1 being not fatigued, to 4 being severely fatigued: ____ 
______________________________________________________________________________
_____ 
7) Pain: 
7A) Have you been in consistent pain over the past two weeks?  _ Yes    _No     If no, skip to 
section 7D 
 
If yes, I am going to ask you questions about your average level of pain (e.g., over the past two 
weeks). Communicate your answer using a scale of 1 (never or rarely interferes) to 4 (always 
interferes).  
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7B) At what level does your average level of pain interfere with your ability to learn new tasks? 
_______ 
7C) At what level does your average level of pain interfere with your ability to think (e.g., 
remember things, concentrate)? _________ 
 
7D) Are you currently in pain? _ Yes    _No     If no, skip to section 8 
 
If yes, I am going to ask you questions about your current level of pain. Communicate your 
answer using a scale of 1 (never or rarely interferes) to 4 (always interferes). 
7E) At what level does your current level of pain interfere with your ability to think (e.g., 
remember things, concentrate)? _________ 
______________________________________________________________________________ 
 
8) Comprehension & Orientation 
I am going to ask you some more yes and no questions 
 
8A) Is your last name Smith?  (should be incorrect)   _ Yes    _No     
8B) Are you ______ years old?  (should be correct)   _ Yes    _No     
8C) Is your name ______? (should be correct)   _ Yes    _No     
8D) Is this a hotel______? (should be incorrect)   _ Yes    _No     
8E) Is this  _______? (should be correct)    _ Yes    _No     
8F) Do you live in Toronto? (should be incorrect)   _ Yes    _No     
8G) Do you live in _______? (should be correct)   _ Yes    _No     
8H) Is this month _________ ?(should be correct)   _ Yes    _No     
8I) Is this month _________ ?(should be incorrect, 1 month prior) _ Yes    _No     
8J) Is this a restaurant? (should be incorrect)   _ Yes    _No     
8K) Does March come before June? (correct)   _ Yes    _No     
8L) Do you eat a banana before you peel it? (incorrect)  _ Yes    _No               
 Score 6 points (12 corr), 5 (11 corr), 4 (10 corr), 3 (9 corr), 2 (8 corr), 1 (7 corr), else score 0                          
      Enter score    /6 
______________________________________________________________________________ 
 
9) Following Directions (Adapt to meet individual’s voluntary motor capabilities as required). 
 
9A) 1 step direction: Look up     _ Accurate    _Inaccurate                                                              
/2       
9B) 2 step direction: Blink, look up     _ Accurate    _Inaccurate                     
/2 
9C) 3 step direction: Look down, move your finger, look up    _ Accurate    _Inaccurate           
/2 
Note any adaptions or task difficulties: 
       Score 2 points for each set of directions performed correctly, else score 0 
                    Total Score    /6 
______________________________________________________________________________ 
 
10) Motor Imagery (MI) 
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10A) Default Preference for First-Person/Kinesthetic versus Third-Person/Visual Motor 
Imagery. After participant has performed tasks via motor imagery, ask in the order presented 
which modality was used. 
 
 1A Tapping foot:             __ First person (kinesthetic) __Third person (visual) 
 1B Making a fist:             __ Third person (visual) __ First person (kinesthetic) 
   

2A        Curling Toes:             __Third person (visual) __ First person (kinesthetic) 
             2B       Tapping your finger:  __ First person (kinesthetic) __Third person (visual) 
   
3) Generally, is it more natural for you to use first person imagery during all these tasks? 
                          __Yes    __No          
 
10B) Hand Rotation (See manual for a scoring modification if the participant cannot complete 
this task due to a sensory impairment). Right/left (below) denotes the laterality of the presented 
hand. Yes/No denotes the correct binary answer. 
 
I will ask you if the picture is of a right or left hand 
 - Practice: Right (yes) 
Are you ready to continue? I will ask you if the picture is of a right or left hand. 
 
- Experimental: Left (no), Left (yes), Right (yes), Left (yes), Right (yes), Right (no), Left (no), 
Right (no)       
Score 5 points (8 corr), 4 (7 corr), 3 (6 corr), 2 (5 corr), else score 0                      Enter score    /5  
 
10C) Self-Rating of First-Person Imagery 
After demonstrating a movement overtly (sitting position), the participant is to perform all tasks 
via first-person (kinesthetic) motor imagery. As possible, a physical practice should precede 
imagery performance. Use the corresponding 5-point number scale (1 = no sensation, to 5 = as 
intense as executing the action) for scoring. If the participant has never been able to perform a 
task physically due to congenital paralysis, interpret results with caution. 
 
                    Imagery rating: 
1) Making a fist:                Overt  Time since physical task performance: 
2) Foot tapping:            Overt:      Time since physical task performance: 
3) Thumb to index finger tapping:      Overt:   Time since physical task performance: 
4) Wiggling toes:                  Overt:  Time since physical task performance: 
5) ________________________     Overt:  Time since physical task performance: 
(Note individualized task used for item 5) 

                                     Mean imagery rating     /5 
 

10D) Object Rotation (See manual for a scoring modification if the participant cannot complete 
this task due to a sensory impairment). 
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Red/black below denotes the correct tip of thumb location. Yes/No denotes the correct binary 
answer. 
I will ask you if the TIP of your thumb is resting on the red or black part of the handle.   
 - Practice: Red (yes)                      Are you ready to continue? 
 
 - Experimental:  Black (no), Black (yes), Red (yes), Red (no), Red (yes), Black (yes) 
            Score 5 points (6 corr), 4 (5 corr), else score 0                 Enter score    /5    
 
NOTE: If the participant could not complete rotation tasks due to a visual impairment then 
multiply the mean imagery rating by 3, and do not score any other tasks in the motor imagery 
section.  

        Enter score    /15  
______________________________________________________________________________ 
 
11) Attention / Working Memory  
11A) Experiential: Pay attention, I will ask you how many times the “ice cream” was presented. 

 
A) Was the ice cream presented four times?     _ Yes    _No     
B) Was the ice cream presented five times?     _ Yes    _No     
  Score 2 if the response to only question B was YES, else score 0                         Enter score    /2 
 
11B) You will see and/or hear numbers and objects. Pay attention, at the end of the sequence I 
will ask you if the number one and/or the cookie was presented. 
 
A) Was the number one presented?      _ Yes    _No     
B) Was the cookie presented?       _ Yes    _No     

Score 1 point per correct response, A= yes, B= no             Enter score    /2 
 

11C) If the participant has a severe visual or hearing impairment please see the manual for task 
modifications. 
 
You will see different objects on the screen and at the same time hear different numbers. Pay 
attention, at the end of the sequence I will ask you about whether you saw the cheese and/or 
heard the number 5. 
- Experimental:  Fires (1), Hotdog (3), Fries (5) *A, Hotdog (2), Popcorn (3), Hotdog (2), Popcorn 
(1), Cheese (2)*v, Popcorn (3), Fires (2). 
 
A) Did you hear the number 5 (or feel left side tap for hearing modification)? _ Yes    _No     
B) Was the cheese presented (or feel left side tap for visual modification)?  _ Yes    _No     
Score 1 point per correct response, A & B both = yes                        Enter score    /2 
______________________________________________________________________________ 
 
12) Cognitive Motor Learning / Abstract Problem Solving 
12A) Circle/square below denotes the shape presented. Yes/No denotes the correct binary 
answer. X denotes no answer required. 
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Is the shape the same as the one shown two turns back? 
- Practice:  Triangle (X), Circle (X), Triangle (yes)      Continue? 
- Experimental: Circle (X), Triangle (X), Circle (yes), Triangle (yes), Triangle (no), Circle (no) 
                  Score 3 points (4 corr), 2 (3 corr), else score 0                                      Enter score    /3 
 
12B) Which of the following three options best describes how GLOVES & SCARVES are alike? 
1. Made of leather (incorrect)   2. Winter clothing (correct)   3. Both worn near the head 
(incorrect) 
      Score 0 if incorrect, 3 if correct.                  Enter score    /3 
______________________________________________________________________________ 
 
13) Motivation for BCI use:  
13A) I want you to indicate your level of motivation to use a brain-computer interface for 
communication using a scale of 1 – 4, with 1 being unmotivated to, 4 highly motivated.:  
 
13B) I want you to indicate how helpful you think brain-computer interfaces will be for 
communication in your daily life, on a scale of 1 – 4 with 1 unhelpful to 4, very helpful: 
_________ 
 
                    Enter score    /8 
14) Comfort with Computers: 
14A) I want you to indicate on a scale of 1 – 4, your comfort level with using computers, with 1 
being computers are very difficult to use to 4, very easy to use: _________ 
______________________________________________________________________________ 
 
15) Motor functionality: In relation to brain-computer interface use, a screening of voluntary 
motor control including the: upper and lower limbs, face, tongue, horizontal/vertical eye 
movement, presence of uncontrolled, or impulsive movements, and posture should be completed. 
Describe findings below, continuing on a separate page if needed. See manual for further 
guidance of motor assessment. 
 
 
15A) Oculomotor movement, describe findings including; vertical and lateral range of motion, 
pursuit (following an object/finger), speed, effort, stability), and reliability (reproducibility of 
task). Score 1 point for each direction which they demonstrate a full range of stable oculomotor 
movement (up, down, left and right). 
 
 
 
      Enter score    /4 
15B) Facial, and tongue movements, describe findings including; range of motion, speed, 
effort, stability (e.g., tremor), and reliability (reproducibility of task). 
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15C) Upper, lower limb, and trunk motor function, describe findings including; range of 
motion, speed, effort, stability (e.g. tremor), and reliability (reproducibility of task). 
 
 
 
 
15D) Posture/ positioning for device access, describe findings including; areas where the 
headrest may compress the electroencephalography (EEG) cap (as applicable), and how the 
participant may be most comfortable, and be afforded best access to the device.   
 
 
 
 
Is there a concern for the participants’ reliability to provide an accurate self-report? 
 
Yes (provide details below) ____ No____     Unable to ascertain (provide details below) ____ 
 
Concern may be based on, but is not limited to; clinical observations, unclear responses to self-
report-based tasks (e.g., an unclear self-report for explicit imagery ratings), and caregiver input.  
 
 

Total Screening Scores 
Practice items are not included in scoring.  
   Level of Current Fatigue     /4        Oculomotor:           /4 
   Level of Average Fatigue    /4        Visual Acuity                      /6 
                    Mean KI score (generic tasks #1-4)    /5          Comfort with Tech.         /4 

        KI score for individualized task #5     /5          Motivation for BCI                /8   
Cognitive                           /24 

Check if participant was NOT able to complete rotation imagery tasks: 
Motor Imagery:                  /15 
 
Was the individual currently in pain (Yes / No) and/or have habitual pain (Yes / No)? 
 
Does the individual have a history of seizures?  _ Yes    _No     
 
Is the self-rating for the individualized explicit imagery task higher than the mean of the four 
other generic tasks?      _ Yes    _No      
 
Self-Report Details, General Considerations & Medications. 
If the information has not been provided by the caregiver (see caregiver questionnaire), a list of 
primary medications (especially: sedative, anti-depressant, anti-epileptic, psychiatric or pain 
medications) should be noted. Please discuss any difficulties in completing tasks, strengths and 
weaknesses noted during performance of protocol tasks, etc. Continue on a separate page if 
needed. 


