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Abstract

Through this dissertation we present the sharp time decay rates for three equations, namely

quasi–geostrophic equation (SQG), Boussinesq system (BSQ) and plane wave of general reaction-

diffusion models. In addition, in each case, we provide the dominant part of the solution which

leads to the long term asymptotic profiles of each model.

The first two equations, arising in fluid dynamics, model some aspect of the shallow waters with

horizontal and vertical structures. Indeed, quasi–geostrophis equation models the horizontal inertia

forces of a flow. As a result of that, atmospheric and oceanographic flows which take place over

horizontal length scales, which are very large compare to their vertical length scales, are studied

by SQG equation. On the other hand BSQ system models some vertical aspect of the flow, namely

the speed, pressure and the temperature of the flow. In coastal engineering, BSQ type equations

have a vast application in computer modeling. Lastly, a plane wave is a constant-frequency wave

whose wavefronts (surfaces of constant phase) are infinite parallel planes of constant peak-to-peak

amplitude normal to the phase velocity vector.

In order to study these equations, we made some developments in the "scaling variable" meth-

ods, so that it fits over models. In particular, we now have a good understanding of this method

when it is applied to the equations with fractional dissipations.
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Chapter 1

Introduction

1.1 Fourier Transform, function spaces and multipliers

In this Section , we introduce some basic Sobolev spaces, weighted L2 spaces and some relevant

estimates that will be useful in the sequel. We start with several notations. In mathematics the

space of the rapidly decreasing functions on Rn is called the Schwartz space S . It is defined to be

S (Rn) =

⇢
f 2C•(Rn) : k fka,b < •,8a,b 2 Nn

�
,

where a,b are multi–index, C•(Rn) is the set of smooth functions on Rn to C, and

k fka,b = sup
x2Rn

|xaDb f (x)|.

On the Schwartz class, we can define the Fourier transform and its inverse via

f̂ (x ) =
ˆ
Rn

f (x)e�ix·x dx, f (x) = (2p)�n
ˆ
Rn

f̂ (x )eix·x dx

Consequently, since d�D f (x ) = |x |2 f̂ (x ), we define the operators |—|a := (�D)a/2,a > 0, via its

action on the Fourier side [|—|a f (x ) = |x |a f̂ (p). More generally, the operators f (|—|), for rea-

sonable functions f , are acting as multipliers by f (|x |). We will also make use of the following

notation - we say that m is a symbol of order a,a 2 R, if it is a smooth function on Rn \ {0},
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satisfying for all multi-indices a 2 N
n,

|∂ a
m(x )|Ca |x |a�|a|.

It is actually enough to assume this inequality for a finite set of indices, say |a| n. The prototype

will be something of the form m(x )= |x |a, but note that a will be often negative in our applications.

We will schematically denote a symbol of order a by ma.

The Lp spaces are defined by the norm k fkLp =

✓´
| f (x)|p dx

◆ 1
p
, while the weak Lp spaces

are

Lp,• =

⇢
f : k fkLp,• = sup

l>0

⇢
l |{x : | f (x)|> l}|

1
p

�
< •

�
.

In this context, recall the Hausdorff–Young inequality which reads as follows: For p,q,r 2 (1,•)

and 1+ 1
p = 1

q +
1
r

k f ⇤gkLp Cp,q,rk fkLq,•kgkLr .

For an integer n and p 2 (1,•), the Sobolev spaces are the closure of the Schwartz functions

in the norm k fkW k,p = k fkLp +Â|a|k k∂ a fkLp , while for a non-integer s one takes

k fkW s,p = k(1�D)s/2 fkLp ⇠ k fkLp +k|—|s fkLp .

The Sobolev embedding theorem states k fkLq(Rn)  Ck|—|s fkLp(Rn), where 1 < p < q < • and

n( 1
p �

1
q) = s, with the usual modification for q = •, namely k fkL•(Rn) Csk fkW s,p(Rn), s > n

p . In

particular, an estimate that will be useful for us, is

k(|—|?)�b fkLq Ck fkLp , 1 < p < q < •,b = n(
1
p
� 1

q
) (1.1)

This follows from the Mikhlin’s criteria for Lp,1 < p < • boundedness. Note that these estimates

hold in a more general setting, when (|—|?)�b is replaced by an arbitrary symbol of order �b , that

2



is

km�b (—) fkL• Ce(k fk
L

n
b +e +k fk

L
n
b �e ). (1.2)

We will give a proof of this in the proposition 1.1.3. Another useful ingredient will be the Gagliardo

- Nirenberg interpolation inequality,

k|—|s fkLp  k|—|s1 fkq
Lqk|—|s2 fk1�q

Lr ,

where s = qs1 +(1�q)s2 and 1
p = 1

q +
1
r .

For the arguments related to the optimal decay rates in chapter (2), we will need to argue in the

weighted spaces. For any m � 0 we define the Hilbert space L2(m) as follow

L2(m) =

⇢
f 2 L2 : k fkL2(m) =

✓ˆ
R2
(1+ |x|2)m| f (x)|2dx

◆ 1
2
< •

�
(1.3)

One can show by means of Hölder’s, L2(2) ,! Lp(R2), whenever 1  p < 2. Indeed, for any

f 2 Lp(R2)

k fkp
Lp =

ˆ
R2

| f |2dx =
ˆ
R2

(1+ |x|2)
mp
2 | f |2

(1+ |x|2)
mp
2

dx

C
✓ˆ

R2

1

(1+ |x|2)
mp

2�p
dx
◆ 2�p

2
ˆ
R2
(1+ |x|2)m| f |2dx.

First integral is bounded for 1  p < 2 and m � 1. Case p = 2 is clear.

1.1.1 The kernel representation of the fractional Laplacian

We recall the following kernel representation formula for negative powers of Laplacian. This is

nothing, but a fractional integral - for a 2 (0,2),

|—|�a f (x) = ca

ˆ
R2

f (y)
|x� y|2�a dy. (1.4)

3



Next, for positive powers, we have similar formula. More specifically, for a 2 (0,2),

|—|a f (x) =Ca p.v.
ˆ
R2

f (x)� f (y)
|x� y|2+a dy. (1.5)

see Proposition 2.1, [13]). Next, we have the following result, due to Cordoba-Cordoba. This is a

well known relation, and we ignore the proof.

Lemma 1.1.1. (Lemma 2.4, 2.5, [13]) For p : 1  p < •, a 2 [0,2] and f 2W a,p(R2),

ˆ
R2

| f (x)|p�2 f (x)[|—|a f ](x)dx � 0. (1.6)

If in addition, p = 2n,n = 1,2, . . ., there is the stronger coercivity estimate

ˆ
R2

| f (x)|p�2 f (x)[|—|a f ](x)dx � 1
p
k|—|

a
2 [ f

p
2 ]k2

L2(R2). (1.7)

1.1.2 Littlewood–Paley operators

We need to quickly introduce some elementary Littlewood-Paley theory. To introduce the Littlewood-

Paley decomposition, we write for each j 2 Z,

A j =

⇢
x 2 Rn : 2 j�1  |x | 2 j+1

�
.

The Littlewood-Paley decomposition asserts the existence of a sequence of functions {F j}i2Z 2S

such that

supp bF j ⇢ A j, bF j(x ) = bF0(2� jx ), or F j = 2 jnF0(2 jx),

and
•

Â
j=�•

bF j(x ) =

8
><

>:

1, x 2 Rn\{0}

0, x = 0.

4



Therfore for a general function y 2 S , we have

•

Â
j=�•

bF j(x )by(x ) = by(x ), f or x 2 Rn\{0}.

In addition, if y 2 S0, then the above equality holds for any x 2 Rn. That is, for y 2 S0,

•

Â
j=�•

F j ⇤y = y,

and hence
•

Â
j=�•

F j ⇤ f = f , f 2 S .

For notational purposes, we define

D̊ j f = F j ⇤ f .

The following Bernestein’s inequalities are useful tools in dealing with Fourier localized func-

tions and these inequalities trade integrability for derivatives. The following proposition provides

Bernestein type inequalities for fractional derivatives.

Proposition 1.1.2. Leq a � 0, and 1  p  q  •.

• If f satisfies

supp bf ⇢ {x 2 Rn : |x | K2 j}

for some integer j and a constant K > 0, then

k|—|a fkLq(Rn) C12a j+ jn( 1
p�

1
q )k fkLp(Rn),

where C1 is a constant depending on K,a, p and q only.

• If f satisfies

supp bf ⇢ {x 2 Rn : K12 j  |x | K22 j}

5



for some integer j and a constants 0 < K1  K2, then

C1 2a jk fkLq(Rn)  k|—|a fkLq(Rn) C22a j+ jn( 1
p�

1
q )k fkLp(Rn),

where C2 is a constant depending on K1,K2,a, p and q only.

As an application of Littlewood–Paley theory we prove (1.2) , which is a replacement of (1.1).

Proposition 1.1.3. Let p = • and b < n, then

k(|—|?)�b fkL• Ce(k fk
L

n
b +e +k fk

L
n
b �e ). (1.8)

Proof. Let dDk f (x ) = bF0(2�kx ) f̂ (x ), where F0 is as it is defined above, then

k(—?)�b fkL• 
•

Â
k=0

kDk((—?)�b f )kL• +
•

Â
k=0

kD�k((—?)�b f )kL• .

We make use of the above Bernstein inequality several times to control each of these terms. Indeed,

•

Â
k=0

kDk((—?)�b f )kL• 
•

Â
k=0

2�kbkDk fkL• 
•

Â
k=0

2
�kb+nk( 1

n
b +d )kDk fk

L
n
b +d

 k fk
L

n
b +d

•

Â
k=0

2�kb (1� n
n+bd ) Ck fk

L
n
b +d .

In the same way,

•

Â
k=0

kD�k((—?)�b f )kL• 
•

Â
k=0

2kbkD�k fkL• 
•

Â
k=0

2
kb�nk( 1

n
b �d )kDk fk

L
n
b �d

 k fk
L

n
b �d

•

Â
k=0

2kb (1� n
n�bd ) Ck fk

L
n
b �d .

6



1.1.3 Commutator bounds

For future discussions we state some commutator bounds. Some are standard estimates, and some

are proven here. The classical by now product rule estimate, usually attributed to Kato-Ponce can

be stated as follows.

Lemma 1.1.4. Let a 2 (0,1) and 1 < p,q,r < •, so that 1
p = 1

q +
1
r . Then, there exists C =Cp,q,r,a

k|—|a[ f g]kLp Cp,q,r,a(k|—|a fkLqkgkLr +k|—|agkLqk fkLr)

The following commutator lemma is proved in [26] in details.

Lemma 1.1.5. Let s1,s2 be two reals so that 0  s1 and 0  s2 � s1  1. Let p,q,r be related

via the Hölder’s 1
p = 1

q +
1
r , where 2 < q < •, 1 < p,r < •. Finally, let — ·V = 0. Then for any

a 2 [s2 � s1,1]

k|—|�s1 [|—|s2 ,V ·—]jkLp Ck|—|aVkLqk|—|s2�s1+1�ajkLr (1.9)

In addition, we have the following end-point estimate. For s1 > 0, s2 > 0, s3 > 0 and s1 < 1, s3 <

1, s2 < s1 + s3, there is1

k|—|�s1 [|—|s2 , |—|�s3V ·—]jkL2 CkVkL•k|—|s2�s1+1�s3jkL2 . (1.10)

Lemma 1.1.6. For any integer m and a 2 (1,2), there is C =Ca , so that

k[|—|a/2, |x |2] fkL2(R2) Ck|x |2�
a
2 fkL2(R2). (1.11)

1Note that in the statement of (1.10), one does not necessarily need precisely the form |—|�s3V . In fact, the estimate
applies for any Fourier multiplier Q, with the property that kQVkkL• ⇠ 2�ks3kVkkL•

7



Proof. Recall, that for s 2 (0,2)

[|—|s,g] f (x) = |—|s(g f )�g |—|s f = cs

ˆ
f (x)g(x)� f (y)g(y)

|x� y|2+s dy�

� g(x)cs

ˆ
f (x)� f (y)
|x� y|2+s dy = cs

ˆ
f (y)(g(x)�g(y))

|x� y|2+s dy.

Introduce a smooth partition of unity, that is a function y 2C•
0 (R), supp y ⇢ (1

2 ,2), so that

•

Â
k=�•

y(2�k|x |) = 1,x 2 R2,x 6= 0.

Introduce another C•
0 function Y(z) = z2y(z), so that we can decompose

|x |2 =
•

Â
k=�•

|x |2y(2�k|x |) =
•

Â
k=�•

22kY(2�k|x |).

We can then write

F(x ) := [|—|
a
2 , |x |2] f = Â

k
22k[|—|

a
2 ,Y(2�k·)] f (x )

= Â
k

22k
ˆ

f (y)(Y(2�kx )�Y(2�ky))
|x � y|2+a

2
dy.

Introducing

Fk :=
ˆ | f (y)||Y(2�kx )�Y(2�ky)|

|x � y|2+a
2

dy,

we need to control

kFk2
L2 = Â

l

ˆ
|x |⇠2l

|F(x )|2dx = Â
l

ˆ
|x |⇠2l

�����Âk
22kFk(x )

�����

2

dx =

= Â
l

ˆ
|x |⇠2l

����� Â
k>l+10

22kFk(x )

�����

2

dx +Â
l

ˆ
|x |⇠2l

�����

l+10

Â
k=l�10

22kFk(x )

�����

2

dx +

+ Â
l

ˆ
|x |⇠2l

����� Â
k<l�10

22kFk(x )

�����

2

dx =: K1 +K2 +K3

8



We first consider the cases k > l+10. One can estimate easily Fk point-wise. More specifically,

since in the denominator of the expression for Fk, we have |x � y|� 1
2 |x |� 2k�3,

|Fk(x )| 2�k(2+a
2 )
ˆ

| f (y)||Y(2�ky)|dy C2�k(1+a
2 )k fkL2(|y|⇠2k),

whence

K1  Â
l

22l Â
k1>l+10

Â
k2>l+10

2k1(1�a
2 )k fkL2(|y|⇠2k1)2

k2(1�a
2 )k fkL2(|y|⇠2k2)

 Â
k1

Â
k2

22min(k1,k2)2k1(1�a
2 )k fkL2(|y|⇠2k1)2

k2(1�a
2 )k fkL2(|y|⇠2k2)

 CÂ
k

2k(4�a)k fk2
L2(|y|⇠2k) Ck|x |2�

a
2 fk2.

where we have used Âl:l<min(k1,k2)�10 22l C22min(k1,k2).

For the case k < l �10, we perform similar argument, since

|Fk(x )|C2�l(2+a
2 )2kk fkL2(|y|⇠2k).

So,

K3 CÂ
l

22l2�l(4+a) Â
k1<l�10

Â
k2<l�10

23k1k fkL2(|y|⇠2k1)2
3k2k fkL2(|y|⇠2k2)

 CÂ
k1

Â
k2

23k1k fkL2(|y|⇠2k1)2
3k2k fkL2(|y|⇠2k2)2

�(2+a)max(k1,k2)

 CÂ
k

2k(4�a)k fk2
L2(|y|⇠2k) Ck|x |2�

a
2 fk2.

Finally, for the case |l � k| 10, we use

|Y(2�kx )�Y(2�ky)| 2�k|x � y||—Y(2�k(x � y))|C2�k|x � y|,

9



so that

|Fk(x )|C2�k
ˆ
|y|⇠2k

| f (y)|
|x � y|1+a

2
dy =C2�k| f |c|y|⇠2k ⇤

1
| · |1+a

2
.

Thus,

K2  CÂ
k

ˆ
|x |⇠2k

22k

�����| f |c|y|⇠2k ⇤
1

| · |1+a
2

�����

2

dx

 CÂ
k

22kk| f |c|y|⇠2k ⇤
1

| · |1+a
2
k2

L2(|x |⇠2k)

 CÂ
k

2k(4�a)k| f |c|y|⇠2k ⇤
1

| · |1+a
2
k2

L
4
a (|x |⇠2k)

 CÂ
k

2k(4�a)k fk2
L2(|x |⇠2k) Ck|x |2�

a
2 fk2.

where we have used the Hausdorf-Young’s inequality

k f c|y|⇠2k ⇤
1

| · |1+a
2
k

L
4
a
Ck 1

| · |1+a
2
k

L
4

2�a ,• k fkL2(|x |⇠2k) Ck fkL2(|x |⇠2k).

In the sequel we need to control the commutator [∂1|—|�a
2 , |x |2]. In fact, this commutator is

morally like [|—|1�a
2 , |x |2], which was indeed considered in Lemma 1.1.6. However, there does

not appear to be an easy way to transfer the estimate (1.11) to it, so we state the relevant estimate

here.2

Lemma 1.1.7. For any integer a 2 (0,1) there exists C =Ca so that

k[∂1|—|�a, |x |2] fkL2 Ck|x |1+a fkL2 . (1.12)

Proof. For the proof of (1.12), recall the representation formula (1.4). We will reduce to the same
2In fact, it can be reduced to a similar expression as in the proof of (1.11), so we prove them simultaneously.

10



expressions as above. With the partition of unity displayed above, write

[∂1|—|�a, |x |2] f (x ) = ca

•

Â
k=�•

22k[∂1|—|�a,y(2�k·)] f =

= ca

•

Â
k=�•

22k[∂x1

ˆ
R2

y(2�ky) f (y)
|x � y|2�a dy�y(2�kx )∂x1

ˆ
R2

f (y)
|x � y|2�a dy] =

= ca(a�2)
•

Â
k=�•

22k
ˆ
R2

x1 � y1

|x � y|
(y(2�ky)�y(2�kx )) f (y)

|x � y|2�a dy

Taking absolute values and estimating yields the bound

|[∂1|—|�a, |x |2] f (x )|Ca

•

Â
k=�•

22k
ˆ
R2

|y(2�ky)�y(2�kx )|| f (y)|
|x � y|3�a dy

This is of course exactly the same expression as before for the Fk, with a := 1� a
2 . Therefore, we

can apply the same estimates to obtain

k[∂1|—|�a, |x |2] fkL2(R2) Ck|x |1+a fkL2 .

This establishes (1.12).

1.2 Gronwall’s inequality

In the following we frequently use an important relation in PDE’s concepts, called Gronwall’s

inequality. We shall use it in two different versions. First version, used in the regularity problem

is stated as follow,

Lemma 1.2.1. Let a,b and u be real–valued functions defined on the interval I. Assume that b

and u are continuous and that the negative part of a is integrable on every closed and subinterval

part of I. Then, If b is non-negative and if u satisfies the integral inequality

u(t) a(t)+
ˆ t

a
b (s)u(s)ds, f or any t 2 I,

11



then,

u(t) a(t)+
ˆ t

a
a(s)b (s) · exp

✓ˆ t

s
b (r)dr

◆
ds, f or any t 2 I.

The elementary proof of this lemma is as it follows.

Proof. define

v(s) = exp
✓
�
ˆ s

a
b (r)dr

◆ˆ s

a
b (r)u(r)dr, s 2 I.

Then

v0(s) =
✓

u(s)�
ˆ s

a
b (r)u(r)dr

| {z }
a(s)

◆
b (s) exp

✓
�
ˆ s

a
b (r)dr

◆
,

where we used the assumed inequality for the upper estimate. Since b and the exponential are

non–negative, this gives an upper estimate for the derivative of v. Since v(a) = 0, integration of

this inequality from a to t gives

v(t)
ˆ t

a
a(s)b (s)

✓
�
ˆ t

s
b (r)dr

◆
ds.

Using the definition of v(t) for the first step, and then this inequality and the function equation of

the exponential function, we optain

ˆ t

a
b (s)u(s)ds = exp

✓ˆ t

a
b (r)dr

◆
v(t)

ˆ t

a
a(s)b (s)exp

✓ˆ t

a
b (r)dr�

ˆ s

a
b (r)dr

| {z }´ t
s b (r)dr

◆
ds.

Substituting this result into the assumed integral inequality gives the above Gronwall’s inequality.

For our argument on the time decay problems, we shall need another version of the Gronwall’s

inequality as follows.

Lemma 1.2.2. Let s > µ > 0,k > 0 and a 2 [0,1). Let A1,A2,A3 be three positive constants so

12



that a function I : [0,•)! R+ satisfies I(t) A1e�gt , for some real g and

I(t) A2e�µt +A3

ˆ t

0

e�s(t�s)

(min(1, |t � s|)a e�ksI(s)ds. (1.13)

Then, there exists C =Ca,s ,µ,k,g , so that

I(t)Ca,s ,µ,k,g(1+ |A1|+ |A2|+ |A3|)e�µt .

The proof of Lemma 1.2.2 is rather elementary, but we provide it for completeness.

Proof. The proof is straightforward, by a bootstrapping argument. We show that every Lyapunov

exponent less than �µ can be bootstrapped higher. First, relabeling I(t) ! (1+ |A1|+ |A2|+

|A3)�1I(t), we may assume without loss of generality that A1 = A2 = A3 = 1. Next, assume that

g < µ is a Lyapunov exponent, that is I(t)Ce�gt . We know by the a priori assumed boundedness

of I(t) there is such an exponent. Applying this in (1.13), we obtain an improved estimate for I(t).

Indeed,

I(t) e�µt +Ce�st
ˆ t

0

es(s�k�g)

(min(1, |t � s|)a ds

If s �k � g 6= 0, we have for t > 1,

ˆ t

0

es(s�k�g)

|(min(1, |t � s|)a ds 
ˆ t�1

0
es(s�k�g)ds+ et(s�k�g)e|s�k�g|

ˆ t

t�1

1
|t � s|a ds

 e(t�1)(s�k�g)�1
s �k � g

+Ca,s ,k,get(s�k�g).

whence the bound

I(t) e�µt +Ca,s ,k,g min
✓

e�t(k+g),e�st
◆
.

It follows that min(µ,g +k,s)> g is a new, better Lyapunov exponent than g .

In general, we can keep s �k � g away from zero (and so the previous argument valid in all

13



cases), if we readjust the g if necessary.

In practice, starting with g = 0, we jump immediately to k by the previous argument, since

s � k > 0, by assumption. Since k < µ , we can apply the same argument again with g = k .

At this point, either 2k > µ and we finish off (by readjusting slightly g by taking it smaller, like

g = 2k
3 , if it happens that, say |s �2k|  k

2 ). If not, that is if 2k < µ , take g = 2k to be our new

Lyapunov exponent and repeat. Eventually, for some n0, n0k < µ  (n0+1)k and we will reach a

Lyapunov exponent µ .

At this point it also worth to recall the Young’s inequality,

Lemma 1.2.3. Let p,q > 0 be strictly positive real numbers, that satisfy 1
p +

1
q = 1, then,

AB  Ap

p
+

Bq

q
. (1.14)

Proof. The proof is quite elementary. Indeed, considering the fact that exponential function is

convex,

AB = eln(AB) = eln(A)+ln(B) = e
1
p ln(Ap)+ 1

q ln(Bq)  1
p

eln(Ap) +
1
q

eln(Bq) =
Ap

p
+

Bq

q
.

1.3 Operator Theory

This section is devoted to a simple presentation of the operator theory. In fact, it is restricted to

the materials needed in the sequel. We first state the Banach space version of the implicit function

theorem

Theorem 1.3.1. Let X,Y and Z be Banach spaces. Let the mapping f : X⇥Y ! Z be con-

tinuously Fréchet differentiable. If (x0,y0) 2 X⇥Y, f (x0,y0) = 0, and y 7! D f (x0,y0)(0,y) is a

Banach space isomorphism from Yonto Z, then there exist neighborhoods U of x0 and V of y0 and

14



a Fréchet differentiable function g : U 7! V such that f (x,g(x)) = 0 and f (x,y) = 0 if and only if

y = g(x), for all (x,y) 2U ⇥V .

Next we define the closed linear operators. These operators are more general than bounded

operators, and therefore not necessarily continuous, but they still retain nice enough properties that

one can define the spectrum and (with certain assumptions) functional calculus for such opera-

tors. Many important linear operators which fail to be bounded turn out to be closed, such as the

derivative and a large class of differential operators.

Definition 1.3.2. [Closed Linear Operator] Let X, Y be two Banach spaces. A linear operator A :

D(A)!Y is closed if for every sequence {xn} in D(A) converging to x in X such that Axn ! y 2Y

as n ! • one has x 2 D(A) and Ax = y.

Definition 1.3.3. Let L be a linear operator on the Banach space X, then the resolvent set of L is

defined to be

r(L) = {l 2 C : (l I �L) is invertable} (1.15)

and its spectrum

s(L) = C\r(L) = {l 2 C : (l I �L) is not invertable}. (1.16)

Definition 1.3.4. Let X be a Banach space. A one parameter family of operators T (·), 0  t < •,

of bounded linear operators from X into X is a semigroup of bounded linear operators on X if

(i) T (0) = I,

(ii) T (t + s) = T (t)T (s) for every t,s � 0 (the semigroup property).

A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim
t!0

kT (t)� IkX = 0.

15



The linear operator A defined by

D(A) = {x 2 X : lim
t!0

T (t)x� x
t

exists}

and

Ax = lim
t!0

T (t)x� x
t

=
d+T (t)x

dt

����
t=0

f or x 2 D(A)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Definition 1.3.5. A semigroup T (t),0  t < •, of bounded linear operators on X is a strongly

continuous semigroup of bounded linear operators if

lim
t!0

T (t)x = x, f or x 2 X.

A strongly continuous semmigroup of bounded linear operators on X is called a semigroup of class

C0 or simply a C0 semigroup.

Lemma 1.3.6. Let T (t) beb a C0 semigroup. There exist constants w � 0 and M � 1 such that

kTkX  Mewt f or 0  t < •.

In the above lemma if w = 0, T (t) is called uniformly bounded and if M = 1 it is called a C0

semigroup of contraction.

The next theorem, which is widely used in operator theory as well as the study of PDE’s, char-

acterizes the infinitesimal generator of C0 semigroup of contraction. Conditions on the behavior of

the resolvent of an operator A, which are necessary and sufficient for A to be infinitesimal generator

of a C0 semigroup of contraction.

Theorem 1.3.7. (Hille–Yosida Theorem) A linear (unbounded) operator A is the infinitesimal gen-

erator of a C0 semigroup of contractions T (t), t � 0 if and only if

(i) A is closed and D(A) = X.
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(ii) The resolvent set r(A) of A contains R+ and for every l > 0

kR(l : A)kX  1
l
.

Now let T (t) be a C0 semigroup satisfying kT (t)kX  ewt (for some w � 0). Consider S(t) =

e�wtT (t). S(t) is obviously a C0 semigroup of contractions. If A is the infinitesimal generator of

T (t), then A�wI is the infinitesimal generator of S(t). On the other hand if A is the infinitesimal

generator of contractions S(t), then A+wI is the infinitesimal generator of the C0 semigroup T (t)

satisfying kT (t)kX  ewt . Indeed, T (t) = ewtS(t). These remarks lead us to the characterization of

the infinitesimal generators of C0 semigroups satisfying kT (t)kX  ewt .

Lemma 1.3.8. A linear operator A is the infinitesimal generator of a C0 semigroup satisfying

kT (t)kX  ewt if and only if

(i) A is closed and D(A) = X.

(ii) The resolvent set r(A) of A contains the ray {l : ¡l = 0,l > w}and for every l > 0

kR(l : A)kX  1
l �w

.

An important aspect of the above lemma is range of the resolvent, say the ray {l : ¡(l ) =

0,l > w}. This is of a great use in chapter (2).

1.3.0.1 Gearheart-Prüss Theorem

Let A be the generator of a strongly continuous semigroup etA, t � 0 on a Hilbert space H. The

position of the spectrum s(etA) of the semigroup is responsible for its stability: if s(etA) ⇢ D :=

{z 2 C : |z| < 1}, t 6= 0, then the semigroup is uniformly asymptotically stable. However, in any

actual problem the generator A (and hopefully, its spectrum s(A)) is given, not the semigroup

etA, t � 0. The classical Lyapunov Theorem takes care of this problem: for a wide range of
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semigroups if s(A) ⇢ C� = {z 2 C : ¬Z < 0} then s(etA) ⇢ D, t 6= 0. This class of semigroups

includes analytic semigroups, most frequently arising in applications due to their connections to

parabolic problems for PDE’s.

There are examples showing that the aforementioned Lyapunov Theorem, however, does not

generally work, therefore one needs another tool to derive information about the linear stability

of the solution from the spectral information about the generator given by the linearized equation.

This is where the following Gearhart-Prüss Theorem is used.

Theorem 1.3.9. [Gearheart-Prüss Theorem] For a strongly continuous semigroup on a Hilbert

space, w(A)< 0 if and only if {z : ¬z � 0}⇢ r(A) and sup{k(z�A)�1k : ¬z > 0}< •.
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Chapter 2

On the sharp time decay rates for the 2D generalized

quasi-geostrophic equation and the Boussinesq system

2.1 Introduction

The initial value problem for the 2D Navier-Stokes equation

8
><

>:

ut +u ·—u�Du = —p, x 2 2, t > 0

u(0,x) := u0(x),— ·u = 0
(2.1)

where u = (u1,u2) is the fluid velocity and p is the pressure, is ubiquitous and much studied model

in the modern PDE theory. Basic issues like global well-posedness remain elusively unresolved in

spatial dimensions n � 3. In the case of two spatial dimensions though, the problem is globally

well-posed. This is mostly due to the vorticity formulation. We subtract two equations to get

∂t(∂1u2 �∂2u1)+u ·—(∂1u2 �∂2u1)+(∂1u1 +∂2u2)(∂1u2 �∂2u1)+D(∂1u2 �∂2u1) = 0.

Now if use the divergence free property ∂1u1 + ∂2u2 = 0 and define the vorticity w = ∂2u1 �

∂1u2 then we will get the vorticity equation

8
><

>:

wt +u ·—w �Dw = 0, x 2 R2, t > 0

w(0,x) := w0(x),
(2.2)
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where the vorticity w , a scalar quantity, is given by w =—?~u= ∂1u2�∂2u1, where —?=

0

B@
�∂2

∂1

1

CA.

Many generalizations of this model have been considered, in particular to respond to modeling sit-

uations where the actual physical dissipation is different than the one provided by the Laplacian,

in particular in large scale atmospheric models and large scale ocean modeling, see [1, 8, 31]. In

particular, we consider the following “umbrella” model

8
>><

>>:

∂t z+u ·—z+ |—|az = 0, x 2 R2, t > 0,

u = (|—|?)�b z,— ·u = 0.
(2.3)

where a > 1 and b � 0, (|—|?)�b = —?m�b�1(|—|) = m�b (x ), where ma is a symbol of order a,

see section 1.1 for precise definition1. These type of equations frequently arise in fluid dynamics

and as such, they have been widely studied, especially so in the last twenty years. We refer the

reader to the works [1, 3, 7, 8, 13, 21, 31, 44, 60, 72] and references therein.

A few examples, that we would like to emphasize as model cases, are as follows. The 2D

Fractional Navier-Stokes equation arises, if we take z = w and b = 1,

wt +u ·—w + |—|aw = 0. (2.4)

If we let z = q be the temperature of a flow, a > 1 and b = 0 the resulting equation is the so-called

active scalar equation,

qt +u ·—q + |—|aq = 0, (2.5)

where u1 = �R2q ,u2 = R1q , and R j, j = 1,2 are the Riesz transforms, given by the symbols

m j(x ) = i x j
|x | .

1Note that it is a requirement that m�b�1(|—|) is a radial symbol of order �b �1.
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The Boussinesq system, with general dissipations, reads

8
>>>>>><

>>>>>>:

∂tu+u ·—u+ |—|au =�—P+q~e2, x 2 R2, t > 0,

∂tq +u ·—q + |—|b q = 0, x 2 R2, t > 0,

— ·u = 0.

(2.6)

where u is the velocity of the fluid, q is its temperature, P is the pressure and a,b > 0 are the

dissipation rates for the velocity and the temperature respectively.

We consider the equivalent vorticity formulation, with the usual scalar vorticity variable is

given by w = ∂1u2 �∂2u1. For the purposes of this work, we will only consider the diagonal case

a = b , that is in vorticity formulation, consists of the following coupled equations

8
>>>>>><

>>>>>>:

∂tw +u ·—w + |—|aw = ∂1q , x 2 R2, t > 0,

∂tq +u ·—q + |—|aq = 0, x 2 R2, t > 0,

u = (—?)�1w, — ·u = 0.

(2.7)

2.1.1 Previous results

A lot of work has been done on the question of well-posedness, regularity of the solutions to

these systems. We do not even attempt to overview the results, as this is only tangentially relevant

for the current work, but the following references contain lots of information about these issues,

[1, 8, 9, 10, 26, 28, 29, 30, 31, 32, 35, 36, 40, 42, 55, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 73].

As the purpose of our work is to study the long time behavior of the said models, we discuss some

recent works on the topic. Most of the research has been done in the important (and classical)

Navier-Stokes case in two and three dimensional cases. As the global regularity for this model

remains a challenging open problem in 3D, some authors restricted themselves to weak solutions2

or they considered eventual3 behavior of strong solutions. In this regard, we would like to reference
2which may be non-unique
3that is, past eventual singularity formation
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the following works, [7, 17, 18, 21, 23, 43, 49, 50, 51, 52, 53].

In [50], the author has exhibited lower time-decay bounds for the solutions, which match the

upper bounds and are therefore sharp. The approach in [17, 18], for the same question, uses the

method of the so-called scaling variables. This was pioneered in [21, 7], although the idea really

took of after the work [17]. It showed not only the optimal decay rates for the Navier-Stokes

equation ( this was actually previously established in [6]), but it provided an explicit asymptotic

expansion of the solution, which explains the specific conditions on the initial data in [6], under

which there are better decay rates.

Here, we follow this idea, to provide an explicit asymptotic expansion for the two models under

consideration - the generalized quasi-geostrophic equation (2.3) and the Boussinesq system (in

vorticity formulation), (2.7). Note that we work exclusively in two spatial dimensions. There are

several reasons for this - 2D is the natural playground for (2.3), while the IVP for the Boussinesq

system, the three (and higher) dimensional case, faces the same difficulties as the Navier-Stokes

problem, namely absence of a global regularity theory. Moreover, we explore relatively low levels

of dissipation, which in some sense, brings the global regularity theory to its limits, and we are

still able to analyze the asymptotic behavior. Another interesting feature that we deal with is

the fractional dissipation. These have been studied in the recent literature, but there are certain

technical (and conceptual!) difficulties associated with them, that we deal with advanced Fourier

analysis methods.

2.1.2 The scaled variables

We now introduce the scaling variables, for the models under consideration. Basically, the method

consists of introducing a new exponential time variable t : et ⇠ t and the corresponding variables in

x are rescaled to accommodate this scaling, by keeping the linear part of the equation autonomous.

In this way, an algebraic decay in t will manifest itself as an exponential decay in t . As is well-

known, algebraic decays in time (especially non-integrable ones) are notoriously hard to propagate

along non-linear evolution equations, while any (however small) exponential decay, due to its
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integrability, is more amenable to this type of analysis.

Although what mentioned abbove is important for us, it is not yet the main purpose. In fact, as

we will see, our scaling creates a gap between the discrete and continuous spectrum of the linear

part of the scaled equation. This makes the analysis of the scalled equations more convenient. Here

are the details.

2.1.2.1 The scaled variables: the SQG equation

Consider the equation (2.3), and use the scaling variables to rewrite the variables in terms of

x =
x

(1+ t)
1
a
, t = ln(1+ t). (2.8)

We define new functions Z(x ,t) and U(x ,t) correspond to z(x, t) and u(x, t) as follows:

z(x, t) =
1

(1+ t)1+ b�1
a

Z

 
x

(1+ t)
1
a
, ln(1+ t)

!
, (2.9)

u(x, t) =
1

(1+ t)1� 1
a

U

 
x

(1+ t)
1
a
, ln(1+ t)

!
. (2.10)

The choices of the parameters is clearly dictated by the stricture of the corresponding equation -

the goal is to ensure an autonomous PDE in the new variables. Indeed, a simple calculation shows

zt =
Zt

(1+ t)2+ b�1
a

� 1
a

1

(1+ t)2+ b�1
a

x

(1+ t)
1
a
·—x Z �

1+ b�1
a

(1+ t)2+ b�1
a

Z,

u ·—z =
1

(1+ t)2+ b�1
a

U ·—x Z.

We also have |—|az = 1

(1+t)2+ b�1
a

|—|aZ. The proof is just simply a use of relation (1.5). Indeed,
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|—|az =

ˆ
R2

z(x)� z(y)
|x� y|2+a dy =

1

(1+ t)1+ b�1
a

ˆ
R2

Z( x
(1+t)

1
a
)�Z( y

(1+t)
1
a
)

|x� y|2+a dy

=
(1+ t)

2
a

(1+ t)2+ 2
a + b�1

a

ˆ
R2

Z( x
(1+t)

1
a
)�Z( y

(1+t)
1
a
)

| x
(1+t)

1
a
� y

(1+t)
1
a
|2+a

dy

(1+ t)
2
a

=
1

(1+ t)2+ b�1
a

ˆ
R2

Z(x )�Z(x 0)

|x �x 0|2+a dx 0 =
1

(1+ t)2+ b�1
a

|—|aZ.

Hence, Z(x ,t) satisfies the equation

Zt = L Z �U ·—x Z (2.11)

where

L Z =�|—|aZ +
1
a

x ·—x Z +

✓
1+

b �1
a

◆
Z. (2.12)

Note that the relation u = (|—|?)�b z transforms into U = (|—|?)�b Z. In addition, the property

— ·u = 0 clearly transforms into — ·U = 0.

Next, we introduce the scaled variables for the Boussinesq system.

2.1.2.2 The scaled variables: the Boussinesq system

Similar to the SQG case, we use the scaled variables

x =
x

(1+ t)
1
a
, t = ln(1+ t).

We define new functions W (x ,t), U(x ,t) and Q(x ,t), corresponding to w(x, t), u(x, t) and q(x, t)

as follows
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w(x, t) =
1

(1+ t)
W

 
x

(1+ t)
1
a
, ln(1+ t)

!

u(x, t) =
1

(1+ t)1� 1
a

U

 
x

(1+ t)
1
a
, ln(1+ t)

!

q(x, t) =
1

(1+ t)2� 1
a

Q

 
x

(1+ t)
1
a
, ln(1+ t)

!

Then, we calculate

wt =
Wt

(1+ t)2 �
1
a

1
(1+ t)2

x

(1+ t)
1
a
·—xW � 1

(1+ t)2W,

|—|aw =
1

(1+ t)2 · |—|aW,u ·—w =
1

(1+ t)2U ·—W, ∂1q =
1

(1+ t)2 ∂1Q.

We also have |—|aw = 1
(1+t)2 |—|aW . Indeed by (1.5)

|—|aw =

ˆ
R2

w(x)�w(y)
|x� y|2+a dy =

1
1+ t

ˆ
R2

W ( x
(1+t)

1
a
)�W ( y

(1+t)
1
a
)

|x� y|2+a dy

=
(1+ t)

2
a

(1+ t)2+ 2
a

ˆ
R2

W ( x
(1+t)

1
a
)�W ( y

(1+t)
1
a
)

| x
(1+t)

1
a
� y

(1+t)
1
a
|2+a

dy

(1+ t)
2
a

=
1

(1+ t)2

ˆ
R2

W (x )�W (x 0)

|x �x 0|2+a dx 0 =
1

(1+ t)2 · |—|aW.

For the q equation similar computation shows that

qt =
Qt

(1+ t)3� 1
a
� 1

a
1

(1+ t)3� 1
a

x

(1+ t)
1
a
·—x Q�

2� 1
a

(1+ t)3� 1
a

Q,

|—|aq =
1

(1+ t)3� 1
a
|—|aQ, u ·—q =

1

(1+ t)3� 1
a

U ·—Q.
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Therefore W (x ,t) and Q(x ,t) satisfy (with the L defined above in (2.12), but with b = 1)

8
>><

>>:

Wt = LW �U ·—xW +∂1Q

Qt = (L +1� 1
a )Q� (U ·—x Q)

(2.13)

Clearly, the relations — ·u = 0 and u = (|—|?)�1w continue to hold for the capital letter variables

as well, that is — ·U = 0 and U = (|—|?)�1W . In addition to the above equations we can define

p(x, t) = 1
(1+t)2� 2

a
P
✓

x
(1+t)

1
a
, log(1+ t)

◆
and find the following equation for U(x ,t),

Ut = (L � 1
a
)U � (U ·—xU)�—P+Q · e2 (2.14)

2.1.3 Main results

The main goal of this work is to establish the sharp time decay rates of (various norms of) the

solutions to (2.3) and (2.7). Our results actually provide explicit asymptotic profiles, of which the

precise asymptotic rates are a mere corollary.

Since it is clear that the equation for q in (2.7) is basically4 (2.3), it is essential that we start

with (2.3). This is the content of our first result, but in order to state it, we shall need to introduce a

function G : Ĝ(p) = e�|p|a , see section 2.1.4 for proper definitions and properties. This is a variant

of the function e�
|x|2

2 , or the Oseen vortex in the case a = 2.

Theorem 2.1.1. (Global decay estimates for SQG) Let 1 < a < 2, and a +b  3. Then, assuming

that the initial data z0 is in L2(2)\L•, the Cauchy problem (2.3) has a unique, global solution in

L2(2)\L•. Moreover, for all e > 0, there is a constant C =Ca,b ,e and for all p 2 [1,2] and t � 0,

kz(t, ·)�
´
R2 z0(x)dx

(1+ t)
2
a

G

 
·

(1+ t)
1
a

!
kLp  C

(1+ t)
3
a � 2

a p�e
. (2.15)

Moreover, if b > 1, we have that (2.15) holds for the full range of indices 1  p < •.
4albeit the relation of u with q is not a direct one, but through the vorticity w

26



For generic initial data, that is
´
R2 z0(x)dx 6= 0, we have

kz(t, ·)kLp ⇠ (1+ t)�
2(p�1)

a p , 1  p  2.

which extends to all 1  p < •, provided b > 1.

Remarks:

• The condition b > 1 is probably a technical one, but it is needed in our arguments.

• In [17, 18], the authors go one step further in deriving explicitly the next order asymptotic

profiles. The analysis required for this step is performed in higher order weighted L2 space.

This cannot be done, since the function G does not belong to the next order weighted space,

namely L2(3), see Proposition 2.1.9. This is in sharp contrast with the case a = 2, considered

in [17, 18], where the function is in Schwartz class.

• Related to the previous point, we need to address a problem, where the function G and the

heat kernel of the semigroup etL have limited decay at infinity. Thus, any attempt to use

the dynamical system approach in [17] to construct stable manifolds faces serious obstacles.

We take a completely different approach to the problem in that we use a priori estimates and

estimates on the evolution operator to establish the asymptotic decomposition.

Our next result concerns (2.7).

Theorem 2.1.2. (Global decay estimates for Boussinesq) Let a 2 (1, 3
2). Consider the Cauchy

problem for (2.7), with initial data w0,q0 2 Y := L2(2)\L• \H1(R2). Then, the Cauchy problem

(2.7) is globally well-posed in Y - that is for every t > 0, the solution (w(t),q(t)) 2 Y ⇥Y .

Moreover, for every d > 0, there exists C =C(a,d ,kw0kY ,kq0kY ), so that for all p 2 [1,2] and
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for all t > 0,

kw(t, ·)�
g2(0)∂1G

✓
·

(1+t)
1
a

◆

(1+ t)
3
a �1

�
g1(0)G

✓
·

(1+t)
1
a

◆

(1+ t)
2
a

kLp  C

(1+ t)
6
a �3� 2

a p�d
,

kq(t, ·)�
g2(0)G

✓
·

(1+t)
1
a

◆

(1+ t)
2
a

kLp  C

(1+ t)
5
a �2� 2

a p�d
, (2.16)

where g1(0) =
´
R2 w0(x)dx,g2(0) =

´
R2 q0(x)dx. In particular, if g2(0) 6= 0, we have

kw(t, ·)kLp ⇠ 1

(1+ t)
3
a �1� 2

a p
,kq(t, ·)kLp ⇠ 1

(1+ t)
2
a � 2

a p
,

Remarks:

• As in Theorem 2.1.1, the results can be extended to provide asymptotic expansions for w,q

in the norms Lp, p 2 (2,•), with the exact same statement.

• Note that the decay rate (1+ t)1� 3
a in the expression for w is dominant over (1+ t)�

2
a .

• For a 2 (4
3 ,

3
2), the correction term g1(0)

(1+t)
2
a

G
✓

·
(1+t)

1
a

◆
is faster decaying than the error term

and we can state the result as follows

kw(t, ·)� g2(0)

(1+ t)
3
a �1

∂1G

 
·

(1+ t)
1
a

!
kLp 

Ca,dk(w0,q0)kY

(1+ t)
6
a �3� 2

a p�d
,

In this section we provide the essential tools for the proof of the main result. In section (2.1.4)

some useful estimates regarding the function G(·) are given. As it is clear from the main result,

this function plays an important rule through the chapter. In section (2.1.5), we study the operator

L - we establish the basic structure of its spectrum, as well as an explicit form of the semigroup

etL . The semigroup is shown to act boundedly on certain weighted L2 spaces. This is helpful for

the study of the non-linear evolutions problem, but it also helps us identify the spectrum, through

the Hille-Yosida theorem, see section 2.1.8
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In section 2.2, we develop the local and global well-posedness theory for the generalized quasi-

geostrophic equation, both in the original variables and then in the scaled variables. This is done via

standard energy estimates methods. Even at this level, the optimal decay estimates start to emerge,

in the scaled variables context5. Our asymptotic results for the quasi-geostrophic model are in

section 2.2.3. In it, we use the a priori information from Section 2.2, together with new estimates

for the Duhamel’s operator to derive the precise asymptotic profiles for the solutions. For the

Boussinesq system, we provide the necessary local and global well-posedness theory in Section

2.3. Some of these results are basic and could have been recovered from earlier publications.

Others provide new a piori estimates for the scaled variables system, which are used in section

2.3.4. In section 2.3.4, we provide the proof of our main result about the precise asymptotic

profiles for the Boussinesq evolution.

2.1.4 The function G

The function G defined by Ĝ(p) = e�|p|a , p 2R2 will be used frequently in the sequel. We list and

prove some important properties.

Lemma 2.1.3. For any p 2 [2,•] and a 2 (1,2),

(1+ |x |2) G(x ),(1+ |x |2)—G(x ) 2 Lp
x (2.17)

In particular, G,—G 2 L1(R2)\L•(R2).

Note: For a 2 (1,2), the function G does not belong to L2(3), due to the lack of smoothness

of Ĝ at zero (or what is equivalent to the lack of decay of G at •).

Proof. For the L2 estimate, kGkL2 = kĜkL2 < •. Since bG is a radial function

k|x |2G(x )kL2 = kDp bG(p)kL2 = kDpe�|p|akL2 = k(∂rr +
1
r

∂r)(e�ra
)kL2 .

5But at this point, we cannot yet conclude the optimality of these estimates, as we are missing an estimate from
below.

29



But, (∂rr +
1
r ∂r)(e�ra

) =�a(a �1)ra�2e�ra
+a2r2(a�1)e�ra

. Therefore,

k|x |2G(x )k2
L2  I1 + I2, where I1 = kra�2e�rak2

L2(rdr), I2 = kr2(a�1)e�rak2
L2(rdr). We have

I1 
ˆ 1

0

1
r2(2�a)�1 dr +

ˆ •

1
r2(a�2)+1e�2ra

r dr.

Since 2(2�a)� 1 < 1, the first term is bounded. The second term is also bounded by the expo-

nential decay, whence I1 is bounded. The second term, I2 = kr2(a�1)e�rak2
L2(rdr) is also bounded

- no singularity at zero and exponential decay at •. This proves the L2 estimate.

For the L• estimate we can use the Hausdorf-Young’s to bound kGkL• kĜkL1 <•. Similarly,

k|x |2G(x )kL•  kDp bG(p)kL1 

 a(a �1)
ˆ •

0
ra�2e�ra

rdr +a2
ˆ •

0
r2(a�1)e�ra

rdr

 a(a �1)
ˆ •

0
ra�1e�ra

dr +a2
ˆ •

0
r2a�1e�ra

dr < •.

Now the interpolation between L2 and L• yields (1+ |x |2) G(x ) 2 Lp
x ,2  p  •.

Regarding the claims about —G, it is easy to see that k|x |2—GkL2 = kDp[pe�|p|a ]kL2 < •.

Indeed, the last conclusion follows easily from an identical argument as the one above, as the

central issue was the singularity at zero for kDpe�|p|akL2 . Now the situation is better as we multiply

by p, which actually alleviates the singularity at zero. Similar is the argument about k|x |2—GkL• ,

we omit the details.

The following lemma will be used frequently in the next sections - it is an easy consequence of

the Hausdorff-Young’s inequality.

Lemma 2.1.4. Let a > 0, then for any t > 0 and 1  p  •,

ke�t|—|a fkLp  Ck fkLp (2.18)

ke�t|—|a — fkLp  Ct�
1
a k fkLp (2.19)
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Proof. Clearly,

e�t|—|a f =
ˆ

Gt(x� y) f (y)dy

wherecGt(p) = bG(t
1
a p). Then ke�t|—|a fkLp  kGtkL1k fkLp =Ck fkLp , where C = kGkL1(R2).

ke�t|—|a — fkLp = t�
1
a

����
ˆ

—G(t�
1
a (·� y)) f (y)dy

����
Lp

Ct�
1
a k fkLp ,

where C = k—GkL1(R2).

2.1.5 Spectral theory for L

The following result discusses the spectrum of L acting on L2(2).

Proposition 2.1.5. Let L be as defined in (2.12), then

1. The discrete spectrum: Let k 2 N[ {0} be fixed and s = (s1,s2) be such that |s | = s1 +

s2 = k . Then the function fs (x ) defined by

fs (x ) = ∂ s1
1 ∂ s2

2 G, (2.20)

is an eigenfunction of L related to the eigenvalue lk = 1� 3�b+k
a . As a consequence, lk

has multiplicity of at least k+1.

2. The essential spectrum: Let µ 2 C be such that ¬µ � 1
a and define, yµ 2 L2 such that

cyµ(p) = |p|�aµe�|p|a . (2.21)

Then yµ is an eigenfunction of the operator L with the corresponding eigenvalue6 l =

1+µ � 3�b
a . As these eigenvalues are not isolated, they belong to the essential spectrum, so

sess(L )◆
⇢

l 2 C : ¬l  1� 4�b
a

�
.

6Note however that all this eigenvalues are not isolated, hence they are in the essential spectrum.
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Remark 2.1.6. We show later (see Lemma 1 below) that in fact, the operator L has exactly one

simple eigenvalue l0 = 1� 3�b
a corresponding to the eigenfunction G 2 L2(2), while the rest of

the spectrum has the form of

s(L ) =

⇢
l 2 C : ¬l  1� 4�b

a

�
[{1� 3�b

a
}

Proof. Regarding discrete spectrum, we start with a calculation, which will allow us to identify

some of the eigenvalues. Let f0(x ) be a radial function, i.e. bf0(p) = g(|p|). Then

[L f0(p) = \�|—|af0 +
1
a

\x ·—x f0(p)+
✓

1+
b �1

a

◆
bf0(p) =

= �|p|a bf0(p)� 2
a
bf0(p)� 1

a

2

Â
j=1

p j∂ j bf0(p)+
✓

1+
b �1

a

◆
bf0(p) =

= �|p|ag(|p|)� 2
a
bf0(p)� 1

a

2

Â
j=1

p j g0(|p|)
p j

|p| +
✓

1+
b �1

a

◆
bf0(p) =

=

✓
1+

b �3
a

◆
bf0(p)+

✓
� |p|ag(|p|)� 1

a
|p| g0(|p|)

◆
(2.22)

Now if g satisfies,

� |p|ag(|p|)� 1
a
|p| g0(|p|) = 0 (2.23)

then clearly l =
⇣

1� 3�b
a

⌘
is an eigenvalue for L . The solution of (2.23), gives the eigenfunction,

bf0(p) = e�|p|a or f0 = G.

Now, let fk be an eigenfunction corresponding to the eigenvalue lk =
⇣

1� 3�b+k
a

⌘
, that is

L fk(x ) =
✓

1� 3�b + k
a

◆
fk (2.24)

Taking a derivative ∂ j in (2.24), we obtain
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✓
1� 3�b + k

a

◆
∂ jfk = ∂ jL fk(x ) =

� |—|a∂ jfk +
1
a

∂ j(x ·—fk)+

✓
1� 3�b + k

a

◆
∂ jfk

= �|—|a∂ jfk +
1
a

∂ jfk +
1
a

x ·—(∂ jfk)+

✓
1� 3�b + k

a

◆
∂ jfk(x )

= L [∂ jfk]+
1
a

∂ jfk.

It follows that

L [∂ jfk] =

✓
1� 3�b +(k+1)

a

◆
∂ jfk

It follows that
⇣

1� 3�b+k+1
a

⌘
is an eigenvalue, corresponding to an eigenfunction ∂ jfk. Thus, we

have identified a family of eigenvalues and eigenvectors as follows. Fix k 2 N, and let (s1,s2) be

so that s1 +s2 = k. Then, by induction, for the function fk := ∂ s1
1 ∂ s2

2 f0, we have (2.24).

This finishes off the characterization of the discrete spectrum. Note that what we have proved

so far does not guarantee that there is not any more discrete spectrum, but merely an inclusion, as

stated.

Regarding essential spectrum, we compute [L yµ . From the calculation (2.22), we have

[L yµ(p) =
✓

µ +1+
b �3

a

◆
byµ(p),

whence yµ is an eigenfunction. Indeed, yµ 2 L2(2), when ¬µ  � 1
a . This is easy to see with a

computation similar to the ones performed in Lemma 2.1.3.

k|x |2yµk2
L2 = kDpŷµk2

L2 =

ˆ •

0
|(∂rr +

1
r

∂r)r�aµe�ra |2rdr.

The worst term (when a > 1) is exactly
´ 1

0 r�(3+2aµ)dr , which converges for ¬µ <� 1
a .

Figure (??) shows the spectrum of the operator L in the spaces of L2(2). As it is clear from
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Figure 2.1: Spectrum of L in the space L2(2)

the figure there is one isolated eigenvalue l0 = 1� 3�b
a , and the rest of li’s lie in the essential

spectrum.

Before move to the next section, we would like to emphasis that the eigenfunctions of L ⇤

correspond to the discrete eigenvalues of L are given by the set {1,x , · · · ,x k, · · ·}. Indeed, for

any j, hL ⇤x j,∂ jGi= hx j,L ∂ jGi= l jhx j,∂ jGi. In other words L ⇤x j = l jx j.

2.1.6 The semigroup etL

The following proposition yields an explicit formula for the semigroup etL . This is a variant of

the formula displayed in [17], in the case a = 2,b = 1.

Proposition 2.1.7. The operator L defines a C0 semigroup on L2(2)(R2), etL . In fact, we have

the following formula for its action

\(etL f )(p) = e(1�
3�b

a )te�a(t)|p|a bf (e�
t
a p), (2.25)

(etL f )(x ) =
e(1�

1�b
a )t

a(t) 2
a

ˆ
R2

G

 
x �h
a(t) 1

a

!
f (e

t
a h)dh , (2.26)
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where a(t) = 1� e�t . In particular, for 1  p  •,

ketL fkLp  Ce(1�
1�b

a � 2
a p )tk fkLp (2.27)

ketL — fkLp  C
e(1�

2�b
a � 2

a p )t

a(t) 1
a

k fkLp . (2.28)

Remark: Note that a(t)⇠ min(1,t). This will be used frequently in the sequel.

Proof. The generation of the semigroup would follow, once we prove that the function

g : ĝ(t, p) := e(1�
3�b

a )te�a(t)|p|a bf (p ·e� t
a ) satisfies ∂t ĝ(t, p) = \L g(t, ·). Clearly, ĝ(0, p) = f̂ (p),

so g(0,x ) = f (x ). Next, we compute ∂t ĝ(t, p). We have

∂tbg(t, p) =

=


(1� 3�b

a
�a0(t)|p|a)bf (p · e�

t
a )� 1

a
e�

t
a p ·—p bf (p · e�

t
a )

�
et(1� 3�b

a )e�a(t)|p|a

=

✓
1+

b �3
a

◆
bg(p)+(a(t)�1)|p|abg(p)� 1

a
e�

t
a p ·—p bf (p · e�

t
a )et(1� 3�b

a )e�a(t)|p|a

where we have used the relation a0(t) = 1�a(t). Next, by (2.22), we have

\L g(t, ·) = �|p|abg(p)� 1
a

2

Â
j=1

p j∂ jbg(p)+
✓

1+
b �3

a

◆
bg(p).

But,

1
a

2

Â
j=1

p j∂ jbg(p) =

=
1
a

2

Â
j=1

p j

✓
�aa(t)p j|p|a�2 bf (p · e�

t
a )+ e�

t
a ∂ j bf (p · e�

t
a )

◆
et(1� 3�b

a )e�a(t)|p|a

=�a(t)|p|a bf (p · e�
t
a )et(1� 3�b

a )e�a(t)|p|a +
1
a

e�
t
a p ·—p bf (p · e�

t
a )et(1� 3�b

a )e�a(t)|p|a .
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Altogether,

\L g(t, ·) = �|p|abg(p)+
✓

1+
b �3

a

◆
bg(p)+a(t)|p|abg(p)�

� 1
a

e�
t
a p ·—p bf (p · e�

t
a )et(1� 3�b

a )e�a(t)|p|a .

An immediate inspection reveals that ∂tbg(t, p) = \L g(t, ·)(p) and so the semigroup formula (2.25)

is established. The formula (2.26) is just a Fourier inversion of (2.25). Regarding the estimate

(2.27), we proceed as follows

ketL fkLp  e(1�
1�b

a )tkG
a(t)

1
a
kL1k f (e

t
a ·)kLp = e(1�

1�b
a � 2

a p )tkGkL1k fkLp .

For (2.28), note that integration by parts yields

(etL ∂ j f )(x ) =
e(1�

1�b
a )t

a(t) 2
a

ˆ
R2

G

 
x �h
a(t) 1

a

!
(∂ j f )(e

t
a h)dh =

=
e(1�

2�b
a )t

a(t) 3
a

ˆ
R2

∂ jG

 
x �h
a(t) 1

a

!
f (e

t
a h)dh ,

whence

k(etL — f )(x )kLp  e(1�
2�b

a � 2
a p )t

a(t) 1
a

k—GkL1k fkLp .

We need a variant of Proposition A.2 in [17], which discusses the commutation of the semi-

group with differential operators.

Lemma 2.1.8. We have the following commutation relation for etL

—etL = e
t
a etL — (2.29)
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Proof. Let u(x,t) = etL f (x), then u satisfies the following equation

8
>><

>>:

ut = L u,

u(0,x) = f (x).

Clearly, taking a derivative ∂ j in (2.12) yields, for j = 1,2

8
>><

>>:

(∂ ju)t = ∂ j(L u) = L ∂ ju+ 1
a ∂ ju,

∂ ju(x,0) = ∂ j f (x),

which has the solution ∂ ju(x,t) = et[L+ 1
a ]∂ j f (x). In other words

—etL f (x) = e
t
a etL — f (x).

2.1.7 Semigroup estimates

We need to address an important question, namely the behavior of the bounded operators etL

on L2(2). The next Proposition does that. More precisely, we are interested in the decay of the

operator norms ketL kL2(2)!L2(2). Importantly, better decay estimates hold, when the functions

have mean value zero. The long proof of this proposition is postponed to Appendix (A).

Proposition 2.1.9. Let f 2 L2(2), f̂ (0) = 0 and g = (g1,g2) 2 N
2, |g|= 0,1 and 0 < e << 1. Then

there exists C =Ce > 0, such that for any t > 0,

k—g(etL f )kL2(2) C
e
⇣

1� 4�b
a +e

⌘
t

a(t)
|g|
a

k fkL2(2), (2.30)
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or

k—g(etL f )kL2(2) Ck fkL2(2) ·

8
><

>:

1

t
|g|
a
, t  1

e
⇣

1� 4�b
a +e

⌘
t
, t > 1

(2.31)

2.1.8 The decay estimates for etL
give a description of the spectrum of L

In this section, we show that the spectral inclusions in Proposition 2.1.5 are actually equalities. We

also compute explicitly the Riesz projection P0 onto the eigenvalue of L with the largest real part.

In Proposition 2.1.5, we have already identified G as being an eigenfunction for L corresponding

to an eigenvalue l0 = 1� 3�b
a . On the other hand, applying Proposition 2.1.9, for functions with

f̂ (0) = 0 and g = (0,0), implies

ketL fkL2(2) Cee
⇣

1� 4�b
a +e

⌘
tk fkL2(2). (2.32)

Denote the co-dimension one subspace X0 = { f 2 L2(2) : f̂ (0) = 0}. Clearly, the operator L acts

invariantly on X0, since for every f 2 L2(2) :
´

f (x )dx = 0, we have
´
R2 x ·— f dx = 0, whence

´
L f (x )dx = 0.

Introduce L0 := L |X0 , with domain D(L0) = D(L )\X0 = Ha \X0. By the Hille-Yosida

theorem, this estimate (2.32) implies that the set {l : ¬l >
⇣

1� 4�b
a

⌘
} is in the resolvent set of

L0, since the integral representing (l �L )�1, namely
´ •

0 e�ltetL f dt, converges by virtue of

(2.32).

Combining this with the results from Proposition 2.1.5, we conclude that

s(L )\{l : ¬l >
⇣

1� 4�b
a

⌘
} is a singleton - the eigenvalue l0 = 1� 3�b

a , which is simple, with

eigenfunction G. We conclude the following lemma.

Lemma 1. For the operator L acting on L2(2), there is the following description of its spectrum

s(L ) = {1� 3�b
a

}[sess(L ); sess(L ) = {l : ¬l 
✓

1� 4�b
a

◆
},

Its Riesz projection P0 corresponding to the largest (real-part) eigenvalue l0 = 1� 3�b
a , is given
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by

P0 f (x ) =
✓ˆ

R2
f (x )dx

◆
G(x )

We just need to show the part about the normalization of P0. Indeed, since P2
0 f = hG,1iP0 f =

Ĝ(0)P0 f = P0 f , since Ĝ(0) = 1.

Denote the projection Q0 = Id �P0 over the complementary part of the spectrum, so that

L0 = Q0L Q0. Also, Q0 : L2(2)! X0. Now, (2.32) can be reformulated as

k—getL0 fkL2(2) Ce
e
⇣

1� 4�b
a +e

⌘
t

a(t)
|g|
a

k fkL2(2). (2.33)

for any function f , since etL0 f = etL Q0 f and the entry Q0 f has mean value zero, so (2.32) is

applicable.

In addition, we can derive estimates for the action of the semigroup etL on L2(2), without the

crucial mean value zero property f̂ (0) = 0.

Proposition 2.1.10. Let f 2 L2(2). Then, there exists a constant C, so that

k—g(etL f )kL2(2) C
e
⇣

1� 3�b
a

⌘
t

a(t)
|g|
a

k fkL2(2). (2.34)

Proof. We use the decomposition

f = P0 f +Q0 f = h f ,1iG+[ f �h f ,1iG].

Thus,

etL f = h f ,1iet(1� 3�b
a )G+ etL0 [Q f ]

It follows that
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ketL fkL2(2)  C|h f ,1i|et(1� 3�b
a )kGkL2(2) +Cee

⇣
1� 4�b

a +e
⌘

tk fkL2(2)

 Cet(1� 3�b
a )k fkL2(2),

where we have used (2.33) and |h f ,1i|  Ck fkL2(2). Similar estimates can be derived, as before,

for —getL , we omit the details.

2.2 Local and global well-posedness of the SQG and its long term behavior

The local and global theory of the Cauchy problem for SQG has been well-studied in the literature.

Local and global well-posedness holds under very general conditions on initial data. Regardless,

we will present a few results for our problem (2.3). This is necessary, since we assume a non-

standard relation between u and z, but also because we need precise properties, beyond the scope

of the well-posedness. Then, we will turn to properties of the rescaled equation, (2.11). We will

do so, both in Lp spaces as well as in L2(2) spaces - the reason is that we will use some of our

preliminary results as a priori estimates in the subsequent lemmas.

Our first results are about the well-posedness of the standard model (2.3) in Lp spaces.7

2.2.1 Global well-posedness and a priori estimates in Lp
spaces

Lemma 2.2.1. Suppose that z0 2 L1 \L• =: X. Then, (2.3) is globally well-posed in the space X.

Moreover, for every p 2 [1,•], t !kz(·, t)kLp is non-increasing in time.

Proof. We first prove the local existence of the strong solution in the space C([0,T );X), that is,

with T to be determined, we are looking for a fixed point of the integral equation

z(x ) = e�t|—|a z0 �
ˆ t

0
e�(t�s)|—|a —(u · z) ds. (2.35)

7The results can be made more precise, in individual Lp spaces, rather than in all Lp spaces. We will not do so
here, because our goal is to extend to L2(2), which is yet smaller space.
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According to Lemma (2.1.4) ke�t|—|a z0kL1\L• C0kz0kL1\L• . For any T > 0 and t 2 (0,T ), con-

sider

Q(z1,z2) :=
ˆ t

0
e�(t�s)|—|a —(u1 · z2) ds,

where u1 is given by u1 = (—?)�b z1. For t 2 (0,T ), using (2.19)

kQ(z1(t),z2(t))kL1 = k
ˆ t

0
e�(t�s)|—|a —(u1 · z2) dskL1 C

ˆ t

0

1

(t � s)
1
a
k(u1 · z2)kL1 ds

 Ct1� 1
a sup

0sT
ku1(s, ·)kL• sup

0sT
kz2(s, ·)kL1 

 CeT 1� 1
a sup

0sT
(kz1(s, ·)k

L
2
b +e +kz1(s, ·)k

L
2
b �e ) sup

0sT
kz2(s, ·)kL1

 CT 1� 1
a sup

0sT
kz1kX sup

0sT
kz2kX .

where we have used the Sobolev embedding estimate (1.8). Similarly,

kQ(z1,z2)kL• CT 1� 1
a sup

0sT
ku1kL• sup

0sT
kz2kL• CT 1� 1

a sup
0sT

kz1kX sup
0sT

kz2kX .

Finally, following similar path, we also have

kQ(z1,z1)�Q(z2,z2)kX CT 1� 1
a (kz1kX +kz2kX)kz1 � z2kX .

Upon introducing YT := {z : sup0tT kz(t, ·)kX  2C0kz0kX} and taking into account the estimates

above, we realize that the mapping (2.35)has a fixed point in the metric space C([0,T ],X), for small

enough T = T (kz0kX). In fact, the argument shows that T ⇠ kz0k
� a

a�1
X .

For the global existence, we need to show that the t ! kz(t, ·)kLp does not blow up in finite

time. In fact, we show that the t ! kz(t, ·)kLp is non-increasing, which will allow us to conclude

global existence as well. To that end, we dot product the equation (2.3) with |z|p�2z, p 2 (1,•) to
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get
1
p

∂tkzkp
Lp +

ˆ
R2

|—|az · |z|p�2zdx = 0.

By the positivity estimate (1.6), we have
´
R2 |—|az · |z|p�2zdx � 0. Therefore, ∂tkzkp

Lp  0, and

t ! kz(t, ·)kLp is non-increasing in time. For p = 1, p = • the monotonicity follows from an

approximation argument from the cases 1 < p < •.

Our next result is about a priori estimates in Lp spaces, but this time in the rescaled variable

formulation, (2.11). Note that the global existence of the rescaled equation is not in question

anymore, due to Lemma 2.2.1. However, we show fairly precise decay estimates for the norm of

the solution Z. This fairly elementary lemma already shows the advantage of the rescaled variables

approach and its far reaching consequences.

Lemma 2.2.2. Let Z0 2 L1\L•(R2), a 2 (1,2), 0  b < 2 and p 2 [1,•). Then the unique global

strong solution Z of (2.11) satisfies

kZ(t)kLp  kZ0kLpe�t( 2
pa �1� b�1

a ). (2.36)

Proof. If we dot product (2.11) with Z|Z|p�2, we have by the positivity estimate (1.6),
´
R2 |—|aZ ·

|Z|p�2Zdx � 0. Furthermore, using the divergent free property of U(x )

1
p

d
dt

kZkp
Lp  1

a

ˆ
(x ·—x Z)Z|Z|p�2 dx �

ˆ
(U ·—x Z)Z|Z|p�2dx +

+

✓
1+

b �1
a

◆
kZkp

Lp =

✓
1+

b �1
a

� 2
a p

◆
kZkp

Lp , (2.37)

therefore, we arrive at

1
p

d
dt

kZkp
Lp +(

2
a p

�1� b �1
a

)kZkp
Lp  0.

Now we use the Gronwall’s inequality to finish the proof.
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The above lemma shows a priori bound for kZ(t, ·)kLp , for any p 2 [1,•], and a decay rate for

p < 2
a+b�1 , but it is not giving any decay rate for p � 2

a+b�1 . On the other hand, as we shall see

later, the decay rate predicted by Lemma 2.2.2 is in fact optimal for p = 1, but certainly not so, for

any other value of p. We can bootstrap the results of Lemma 2.2.2 in the next lemma to find, what

it will turn out to be, the optimal decay rate8 for any p � 1.

Lemma 2.2.3. Let Z0 2 L1 \ L•(R2),1  p  • and a 2 (1,2), a + b  3. Then, there exists

constant C =Cp,a,b , so that the unique global strong solution Z of (2.11) satisfies

kZ(t, ·)kLp Cp,a,bkZ0kL1\L•e�( 3�b�a
a )t . (2.38)

Proof. Note that it is enough to prove (2.38) for p = 2n,n = 1,2, . . .. Indeed, since we have already

shown (2.38) (this is basically the statement of Lemma 2.2.2) for p= 1, the result for general p<•

will follow from the result for p = 2n, by applying the Gagliardo-Nirenberg’s inequality between

p = 1 and p = 2n,n >> 1.

So, assume p = 2n, so that the estimate (1.7) is available to us. Taking again dot product

|Z|p�2Z and taking into account (1.7) which implies
´
R2 |—|aZ · |Z|p�2Zdx � p�1k|—|a

2 [Zp/2]k2
L2 .

We further add CkZkp
Lp , for some large C, to be determined. We have

1
p

d
dt

kZkp
Lp +CkZkp

Lp +
1
p
k|—|

a
2 [Zp/2]k2

L2 
✓

C+1+
b �1

a
� 2

a p

◆
kZkp

Lp

By Sobolev embedding, we have ca
p kZkp

L
2p

2�a
 1

pk|—|a
2 [Zp/2]k2

L2 . By Gagliardo- Nirenberg’s, with

g = 2p�2
2p�2+a , kZkLp  kZkg

L
2p

2�a
kZk1�g

L1 , whence by Young’s inequality

8for generic data
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1
p

d
dt

kZkp
Lp + CkZkp

Lp +
ca
p
kZkp

L
2p

2�a

✓

C+1+
b �1

a
� 2

a p

◆
kZkpg

L
2p

2�a
kZkp(1�g)

L1

 e0kZkp

L
2p

2�a
+

⇣
C+1+ b�1

a � 2
a p

⌘ 1
1�g

e
g

1�g
0

kZkp
L1

and e0 > 0 is a fixed number, say we select it e0 =
ca
p . Then

1
p

d
dt

kZkp
Lp +CkZkp

Lp 

⇣
C+1+ b�1

a � 2
a p

⌘ 1
1�g

e
g

1�g
0

kZkp
L1 



⇣
C+1+ b�1

a � 2
a p

⌘ 1
1�g

e
g

1�g
0

kZ0kp
L1e�pt( 3�b�a

a ),

where we have used Lemma (2.2.2) to estimate kZ(t, ·)kL1 . Denoting µ := (3�b�a
a ) � 0, select

C = µ +1. We have

I0(t)+ p(µ +1)I(t) DkZ0kp
L1e�pµt ,

where I(t) = kZ(t)kp
Lp , D = p1+ g

1�g

⇣
µ+2+ b�1

a � 2
a p

⌘ 1
1�g

c
g

1�g
a

. Now we use the Gronwall’s inequality to

derive the estimate

I(t) e�p(µ+1)t I(0)+
D
p
kZ0kp

L1e�pµt .

Taking pth root and simplifying yields the final estimate

kZ(t)kLp  (kZ0kLp +

✓
D
p

◆ 1
p
kZ0kL1)e�µt  (1+

✓
D
p

◆ 1
p
)kZ0kL1\L•e�µt .

For the case p = •, we take limits in the previous identity, for fixed t > 0, as p ! •. Note that

limp!•
⇣

D
p

⌘ 1
p
= 1, so (2.38)holds true in this case with C = 2.
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2.2.2 Global solutions and a priori estimates in L2(2)

From the previous section, we know that the SQG equation in its standard form, namely (2.3), has

global solutions in Lp. Thus, the rescaled equation (2.11) also has unique global (strong) solutions

in Lp. We now would like to understand the Cauchy problem in the smaller space L2(2). In

particular, even if the initial data is well-localized, say Z(0, ·) 2 L2(2), it is not a priori clear why

the solution Z(t) will stay in L2(2) for (any) later time t > 0. In other words, one needs to start

with the local well-posedness for (2.11), and then we shall upgrade it to a global one, by means of

a priori estimates on kZ(t)kL2(2).

Theorem 2.2.4. Suppose that Z0 2 L2(2)(R2)\ L•(R2) =: X. Then (2.11) has a unique global

strong solution Z 2 C0([0,•];L2(2)(R2)\ L•(R2)), with Z(0) = Z0. In addition, there is the a

priori estimate

kZ(t)kL2(2)\L• Ce�t( 3�a�b
a )kZ0kL2(2)\L• , (2.39)

where C is an absolute constant.

Proof. We set up a local well-posedness scheme for the integral equation corresponding to (2.11),

with initial data Z(0) = f , namely

Z(t) = etL f �
ˆ t

0
e(t�s)L — · (UZ) ds, (2.40)

where U =UZ = (|—|?)�b Z. We have, according to (2.27) and (2.34),

ketL fkL2(2) +ketL fkL• C(e(1�
1�b

a )t + e(1�
3�b

a )t)k fkL2(2)\L•

Thus, with T  1 to be determined later, set

YT := {Z(t, ·) 2 X : sup
0sT

kZ(s, ·)kX  2C(e(1�
1�b

a ) + e(1�
3�b

a ))k fkX},

where the bound in Y is selected to be twice the value of the bound above, at t = 1. For the
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non-linear term, we have for each t 2 (0,T ),

k
ˆ t

0
e(t�s)L — · (UZ1Z2) dskL• C

ˆ t

0
C

e(1�
2�b

a )(t�s)

a(t � s)
1
a

kUZ1(s)Z2(s)kL•ds 

 C sup
0sT

kUZ1kL• sup
0sT

kZ2kL•

ˆ t

0

1

(t � s)
1
a

ds 

 CT 1� 1
a sup

0sT
(kZ1k

L
2
b +e +kZ1k

L
2
b �e ) sup

0sT
kZ2kL•

 CT 1� 1
a sup

0sT
kZ1kX sup

0sT
kZ2kX ,

where we have used (2.28), e(1�
2�b

a )(t�s)  3, a(t � s) = 1� e�(t�s) ⇠ (t � s), for 0 < s < t  1,

the Sobolev embedding estimate (1.8) and finally the fact that X = L2(2)\L• ,! L1 \L•. For the

other norm in the definition of X , we have by Lemma 2.1.8,

k
ˆ t

0
e(t�s)L — · (UZ1 ·Z2) dskL2(2) =

ˆ t

0
e�

(t�s)
a k— · e(t�s)L (UZ1 ·Z2)kL2(2) ds

 C
ˆ t

0

e�
(t�s)

a e(1�
3�b

a )(t�s)

a(t � s)
1
a

kUZ1(s) ·Z2(s)kL2(2) ds 

 C sup
0sT

kUZ1(s)kL• sup
0sT

kZ2(s)kL2(2)

ˆ t

0

1

(t � s)
1
a

ds 

 CT 1� 1
a sup

0sT
kZ1kX sup

0sT
kZ2kL2(2).

Having these two bilinear estimates allows us to conclude that for sufficiently small T , of the form

T ⇠ k fk�
a

a�1
X (which should also be taken T  1), we have local well-posedness in the space X .

Regarding global existence in X = L2(2)\ L•, we obviously need a priori estimates for the

solution to prevent potential blow up. We already have those in L• and in L2, by the results of

Lemma 2.2.3. Thus, it remains to control the norm J(t) :=
´
R2 |x |4|Z(t,x )|2dx . To this end, take

a dot product of the equation (2.11) with |x |4Z. We have

1
2

∂t

ˆ
|x |4Z2dx +

ˆ
|x |4|—|aZ ·Zdx =

=
1
a

ˆ
(x ·—x Z)|x |4Z dx �

ˆ
(U ·—x Z)|x |4Z dx +(1+

b �1
a

)

ˆ
|x |4Z2dx .
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We first analyze the terms on the right hand-side. Integration by parts yields

1
a

ˆ
(x ·—x Z)|x |4Zdx =� 3

a

ˆ
|x |4Z2dx

�
ˆ

(U ·—x Z)|x |4Z dx = 2
ˆ

|x |2(x ·U)Z2dx .

Note that by Young’s inequality, we have for all e > 0

|
ˆ

|x |2(x ·U)Z2dx |C
ˆ

|x |3kUkL•Z2(x )dx  e
ˆ

|x |4Z2(x )dx +Ce�3kUk4
L•kZk2

L2 .

By the Sobolev embedding (1.8) and Lemma 2.2.3, we have

kUkL• C(kZk
L

2
b +e +kZk

L
2
b �e )Ce�( 3�b�a

a )t ,

so for every e > 0, we have the estimate

|
ˆ

|x |2(x ·U)Z2dx | e
ˆ

|x |4Z2(x )dx +Ce�3e�6t( 3�b�a
a ).

The term
´
|x |4|—|aZ ·Zdx will give rise to some harder error terms (involving commutators

between the |—|a/2 and the weights), which we need to eventually control. It turns out that the most

advantageous way to reign in the error terms is to split the weight |x |4 between the two entries.

More precisely,

ˆ
|x |4|—|aZ ·Zdx =

ˆ
|x |2|—|aZ · |x |2Zdx = h|x |2|—|a/2[|—|a/2Z], |x |2Zi=

= h|—|a/2|x |2[|—|a/2Z], |x |2Zi�h[|—|a/2, |x |2][|—|a/2Z], |x |2Zi=

= h|x |2[|—|a/2Z], |—|a/2[|x |2Z]i�h[|—|a/2, |x |2][|—|a/2Z], |x |2Zi=

= h|x |2|—|a/2Z, |x |2|—|a/2Zi+ h|x |2|—|a/2Z, [|—|a/2, |x |2]Zi

� h[|—|a/2, |x |2][|—|a/2Z], |x |2Zi

=

ˆ
|x |4||—|

a
2 Z|2dx + h|x |2|—|a/2Z, [|—|a/2, |x |2]Zi�h[|—|a/2, |x |2][|—|a/2Z], |x |2Zi.
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Denote the error terms

E := h|x |2|—|a/2Z, [|—|a/2, |x |2]Zi�h[|—|a/2, |x |2][|—|a/2Z], |x |2Zi.

Putting it all together implies

1
2

J0(t)+(
4�a �b

a
� e)J(t)+

ˆ
|x |4||—|

a
2 Z|2dx  |E|+Ce�3e�6t( 3�b�a

a ) (2.41)

. k|x |2|—|a/2ZkL2k[|—|a/2, |x |2]ZkL2

+k[|—|a/2, |x |2][|—|a/2Z]kL2k|x |2ZkL2 + e�3e�6t( 3�b�a
a ). (2.42)

By Gagliardo-Nirenberg’s inequality

k|x |2�
a
2 gkL2 Ck|x |2gk1�a

4
L2 kgk

a
4
L2 .

Continuing with our arguments above (see (2.41)), we conclude from Lemma 1.1.6 that

1
2

J0(t)+(
4�a �b

a
� e)J(t)+k|x |2|—|a/2Zk2

L2 

 ek|x |2|—|a/2Zk2
L2 + ek|x |2Zk2

L2 +CekZk2
L2 .

All in all, for all e < 1, we have by Lemma 2.2.3,

1
2

J0(t)+(
4�a �b

a
�2e)J(t)CekZk2

L2 CkZ0k2
L1\L•e�2t( 3�b�a

a ).

By Gronwall’s, we finally conclude that

J(t) J(0)e�2t( 4�a�b
a �2e) +CkZ0k2

L1\L•e�2t( 3�a�b
a ).

As a consequence

k|x |2Z(t)kL2 CkZ0kL2(2)\L•e�t( 3�a�b
a ).
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This completes the proof of Theorem 2.2.4.

2.2.3 Global dynamics of the solutions of the SQG model

Theorem 2.2.4 already provides pretty good estimate about the behavior of the solutions to the

rescaled equation (2.11), in particular the solution Z disperses at •, with the rate e�t( 3�a�b
a ). An

important problem in this situations is whether or not this is optimal, that is whether there is a

lower bound with the same exponential function, at least for generic data. It turns out that this is

indeed the case. In fact, we have a more precise result, namely an asymptotic expansion.

Before we continue with the formal statement of the main result, we need a simple algebraic

observation, which is important in the sequel. Recall the generalized Biot-Savart law that we

imposed, u = uz = (|—|?)�b z. This naturally transformed into the relation U = UZ = (|—|?)�b Z

between the “scaled” velocity U and its vorticity Z. We claim that

UG ·—G = 0. (2.43)

Indeed, since G is a radial function9, say G(x ) = z (|x |), we have that —G = (x1,x2)
z 0(|x |)
|x | . On

the other hand, UG = (|—|?)�b G = |—|?m�b�1(|—|)G, so UG = |—|?h(|x |), where h is a radial

function representing [m�b�1(|—|)G]. That is, h(|x |) = [m�b�1(|—|)G](x ). It follows that UG =

(�x2,x1)
h0(|x |)
|x | . Thus,

UG ·—G = (�x2,x1)
h0(|x |)
|x | · (x1,x2)

z 0(|x |)
|x | = 0.

We are now ready to state the main theorem of this section.

Theorem 2.2.5. Let Z0 2L2(2)\L•(R2), e > 0, a 2 (1,2),a+b  3. Denote g(0) :=
´
R2 Z0(x )dx .

Then there exists Ce > 0 such that for any t > 0,

kZ(t, ·)� g(0)e�t( 3�a�b
a )GkL2(2) Cee�t( 4�a�b

a �e). (2.44)

9as the Fourier transform of a radial one
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Assuming in addition that b > 1, we also have

k—[Z(t, ·)� g(0)e�t( 3�a�b
a )G]kL2(2) Cee�t( 4�a�b

a �e). (2.45)

In particular if
´
R2 Z0(x )dx = 0, then

kZkL2(2) Cee�t( 4�a�b
a �e).

Remarks:

• We would like to point out that the existence of solution Z (and subsequently g(t) and Z̃(t))

is not in question anymore, due to the results obtained in Theorem 2.2.4. The purpose of this

theorem is just to obtain better a priori estimates, in the form described in above.

• The requirement b > 1, imposed so that (2.45) holds is likely only a technical one, but we

cannot remove it with our methods.

Proof. (Theorem 2.2.5)

According to the results in section 2.1.8, l0 =�3�a�b
a  0 is an isolated and simple eigenvalue

for the operator L on L2(2), with eigenfunction G, while the rest of the spectrum is the essential

spectrum, which we have identified before, sess(L ) = {l : ¬l �4�a�b
a }. We have also found

the spectral projection P0 f = h f ,1iG and Q0 = Id �P0. Thus, we can write

Z(t, ·) = g(t)G(x )+ Z̃(t, ·), (2.46)

where g(t) = hZ(t, ·),1i=
´
R2 Z(t,x )dx , Z̃(t) = Q0Z(t, ·). Projecting the equation (2.11), with

respect to the spectral decomposition provided by P0 and Q0, we obtain an ODE for g and a PDE

for Z̃(t). More precisely,
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∂tg = hL Z,1i�hU ·—Z,1i=

= h�|—|aZ +
1
a

x ·—x Z +

✓
1+

b �1
a

◆
Z,1i�h—(U ·Z),1i= a +b �3

a
g(t).

Integrating this first order ODE yields the formula g(t) = g(0)e�t 3�a�b
a . For the PDE governing

Z̃(t), and recalling L0 = L Q0, we obtain

Z̃t = L0Z̃ �Q0[U ·—Z] = L0Z̃ �Q0[U ·—(g(0)e�t 3�a�b
a G+ Z̃)].

In its equivalent integral formulation,

Z̃(t) = etL0Z̃(0)�
ˆ t

0
e(t�s)L0Q0[U ·—(g(0) e�t 3�a�b

a G+ Z̃(s, ·)] ds. (2.47)

Note that the commutation relation Q0— = —, whence one can remove Q0 in front of the nonlin-

earity. By (2.33), we can estimate

kZ̃(t)kL2(2)  ketL0Z̃(0)kL2(2) +

+

ˆ t

0
ke(t�s)L0

✓
(UG +UZ̃)— · (g(0) e�s 3�a�b

a G+ Z̃(s)
◆
kL2(2)ds

 ketL0Z̃(0)kL2(2) + |g(0)|
ˆ t

0
e�

(t�s)
a e�s 3�a�b

a k— · e(t�s)L0(UZ̃ ·G)kL2(2)ds

+

ˆ t

0
e�

(t�s)
a k— · e(t�s)L (U · Z̃)kL2(2)ds =: I1 + I2 + I3,

where we have used (2.43). Clearly by (2.30)

I1 Ce�t
⇣

4�b�a
a �e

⌘

kZ̃(0)kL2(2).
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Regarding I2, we have

I2  |g(0)|
ˆ t

0

e�
(t�s)

a e�s 3�a�b
a e�(t�s)

⇣
3�b�a

a

⌘

kUZ̃ ·GkL2(2)

a(t � s)
1
a

ds

Now to bound kUZ̃ ·GkL2(2) we look at two different cases, namely 0  b < 1 and 1  b < 2. If

0  b  1, then we can use lemma (2.17) to get

kUZ̃ ·GkL2(2)  kUZ̃k
L

2
1�b

k(1+ |x |2)Gk
L

2
b

 CkUZ̃k
L

2
1�b

Ck|—|bUZ̃kL2 CkZ̃kL2  kZ̃kL2(2).

If 1  b < 2, then for some 0 < e << 1 we have

kUZ̃ ·GkL2(2)  kUZ̃kL
2
e
k(1+ |x |2)Gk

L
2

1�e

 CkUZ̃kL
2
e
Ck|—|bUZ̃k

L
2

b+e
CkZ̃k

L
2

b+e
CkZ̃kL2(2).

In the last inequality we used the fact that for 1 < p < 2, Lp ,! L2(2) and Lemma (2.17). Therefore

I2 C
ˆ t

0

e�(t�s)
⇣

4�b�a
a

⌘

e�s 3�a�b
a

(min(1, |t � s|) 1
a

kZ̃(s)kL2(2)ds.

Finally, we make use of (2.34) to get

I3 
ˆ t

0

e�
(t�s)

a e�(t�s)
⇣

3�b�a
a

⌘

kU(s)kL•kZ̃(s)kL2(2)

a(t � s)
1
a

ds

 C
ˆ t

0

e�(t�s)
⇣

4�b�a
a �e

⌘

e�s
⇣

3�b�a
a

⌘

(min(1, |t � s|) 1
a

kZ̃(s)kL2(2) ds,

where we have used that a(t)⇠ min(1,t), the Sobolev inequality and Theorem 2.2.4 to conclude

kU(s)kL• C(kZ(s)k
L

2
b +e +kZ(s)k

L
2
b �e )Ce�s

⇣
3�b�a

a

⌘

. (2.48)
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We are now in a position to use the Gronwall’s inequality, more precisely the version displayed

in Lemma 1.2.2. We apply it with I(t) = kZ̃(t)kL2(2), µ = 4�a�b
a � e,s = 4�a�b

a ,k = 3�a�b
a

and a = 1
a < 1, for e << 1. Recall that by the a priori estimates in Theorem 2.2.4, we have

kZ̃(t)kL2(2)  kZ(t)kL2(2) + |g(0)|e�t( 3�a�b
a )kGkL2(2) Ce�t( 3�a�b

a ) C,

for all t > 0, since 3 � a +b . Thus, all the requirements of Lemma 1.2.2 are met and we obtain

the bound

kZ̃(t)kL2(2) Cee�t( 4�a�b
a �e). (2.49)

Regarding the proof of (2.45), we proceed in a similar fashion. We need to control k∂ Z̃kL2(2),

for large t , say t � 1. Applying ∂ = ∂1,∂2 to the integral equation (2.47) and taking k ·kL2(2), we

obtain

k∂ Z̃(t)kL2(2) . e�t( 4�a�b
a �e)kZ̃(0)kL2(2) +

+

ˆ t

0

e�
(t�s)

a e�s 3�a�b
a

min(1,t � s)
1
a
ke(t�s)L0—(UZ̃ ·G)kL2(2)ds+

+

ˆ t

0

e�
(t�s)

a

min(1,t � s)
1
a
ke(t�s)L0—(U · Z̃)kL2(2)ds . e�t( 4�a�b

a �e) +

+

ˆ t

0

e�(t�s)( 5�a�b
a �e)e�s 3�a�b

a

min(1,t � s)
1
a

k—[UZ̃(s)G]kL2(2)ds+

+

ˆ t

0

e�(t�s)( 5�a�b
a �e)

min(1,t � s)
1
a

k—[U(s)Z̃(s)]kL2(2)ds

We estimate k—[UZ̃(s)G]kL2(2)k—UZ̃(s)GkL2(2)+kUZ̃(s)—GkL2(2). Following the strategy above,

for b  1 and then for b > 1, we arrive at

k—[UZ̃(s)G]kL2(2) . kZ̃(s)kL2(2) +k∂ Z̃(s)kL2(2) . e�s( 4�a�b
a �e) +k∂ Z̃(s)kL2(2),

where we have used (2.49). For the other term, it is relatively easy to bound
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k—[U(s)Z̃(s)]kL2(2), when b > 1,

k∂ [U(s)Z̃(s)]kL2(2) . k∂U(s)kL•kZ̃(s)kL2(2) +kU(s)kL•k∂ Z̃(s)kL2(2)

. e�s( 3�a�b
a )e�s( 4�a�b

a �e) + e�s
⇣

3�b�a
a

⌘

k∂ Z̃(s)kL2(2).

where we have used (recalling U ⇠ |—|�b Z), k∂U(s)kL• C(kZk
L

2
b�1+e +kZk

L
2

b�1�e )Ce�s( 3�a�b
a ),

(2.49), (2.48). Plugging it together yields

k∂ Z̃(t)kL2(2) . e�t( 4�a�b
a �e) +

ˆ t

0

e�(t�s)( 5�a�b
a �e)e�s( 3�a�b

a )

min(1,t � s)
1
a

k∂ Z̃(s)kL2(2). (2.50)

This puts us in a position to use the Gronwall’s lemma 1.2.2. Note that in order to do that, we need

any a priori exponential bound on k∂Z(t)kL2(2), similar to Theorem 2.2.4 for kZ(t)kL2(2). This is

actually easy to achieve, one just has to differentiate the equation and perform very coarse energy

estimates10. As a result, Lemma 1.2.2 applies and we obtain

k∂ Z̃(t)kL2(2) . e�t( 4�a�b
a �e),

as is the statement of (2.45).

Note that for b > 1 and 2 < p < •, we have

kZkLp  k∂ZkL2 Ce�t( 3�a�b
a ). (2.51)

It is now easy to conclude the main result, Theorem 2.1.1.

Proof of theorem (2.1.1). Realizing that L2(2) ,! Lp,1  p  2, one just needs to translate the Lp

10which will give very inefficient exponential bounds on k∂Z(t)kL2(2), but that is all we need to jump start Lemma
1.2.2
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estimates for Z, in the language of the original variable z.

kz(t, ·)� g(0)
(1+ t)

2
a

G(
·

(1+ t)
1
a
)kLp =

=
1

(1+ t)1+ b�1
a � 2

a p

kZ(t, ·)� g(0)e�t( 3�a�b
a )G(·)kLp

 Ce

(1+ t)1+ b�1
a � 2

a p

e�t( 4�b�a
a �e)  Ce

(1+ t)
3
a � 2

a p�e
.

Moreover, in a similar manner, for b > 1 and 2  p < • one has,

kz(t, ·)� g(0)
(1+ t)

2
a

G(
·

(1+ t)
1
a
)kLp =

=
1

(1+ t)1+ b�1
a � 2

a p

kZ(t, ·)� g(0)e�t( 3�a�b
a )G(·)kLp


Ca,b

(1+ t)1+ b�1
a � 2

a p

k∂


Z(t, ·)� g(0)e�t( 3�a�b
a )G(·)

�
kL2


Ca,b ,e

(1+ t)1+ b�1
a � 2

a p

e�t( 4�b�a
a �e) =

Ca,b ,e

(1+ t)
3
a � 2

a p�e
.

2.3 Local and global existence of the solutions to the Boussinesq system and

its long term behavior

The results of this section closely mirror Section 2.2. Consequently, we omit many of the argu-

ments, when they are virtually the same. There are however a few important distinctions, which

we will highlight herein.

2.3.1 Global regularity for the vorticity (w,q) Boussinesq system in Lp(R2)

Our first result is, non-surprisingly, is a local existence and uniqueness result in Lp(R2). Most of

the claims in this lemma are either well-known or follows a classical argument, but we provide a

55



sketch of the proof for completeness.

Lemma 2.3.1. Suppose that w0,q0 2 Lp, 1  p  •. Then there exists

T = T (k(w0,q0)kL1\L•), such that unique strong solutions w,q 2C([0,T );L1 \L•) exist.

Moreover, the solutions w(t),q(t) exist globally. In addition, the function t ! kq(t, ·)kLp ,1 

p  • is non-increasing, kq(t, ·)kLp  kq0kLp ,1 < p < •, while

ku(t, ·)kL2  ku0kL2 + tkq0kL2 .

Proof. For the local existence, we work in the space X = L1 \L• = \Lp. The strong solutions of

the system of equations (2.7) are solutions of the integral equations

8
>><

>>:

w(x , t) = e�t|—|a w0 +
´ t

0 e�(t�s)|—|a —(u ·w) ds�
´ t

0 e�(t�s)|—|a ∂1q ds,

q(x , t) = e�t|—|a q0 +
´ t

0 e�(t�s)|—|a —(u ·q) ds.
(2.52)

By (2.18), we have that

ke�t|—|a w0kX +ke�t|—|a q0kX C(kw0kX +kq0kX)

One can now consider the space Y := {(w,q) : sup0tT [kwkX +kqkX ] 2C(kw0kX +kq0kX)}.

For the bilinear forms

Q1(w1,w2) =

ˆ t

0
e�(t�s)|—|a —(u ·w) ds,Q2(w1,q) =

ˆ t

0
e�(t�s)|—|a —(u ·q) ds

where u = (—?)�1w1, we establish the estimates

kQ1(w1,w2)�Q1(w̃1, w̃2)kX  CT 1� 1
a (k(w1,w2)kX +

+ k(w̃1, w̃2)kX)(kw1 � w̃1kX +kw2 � w̃2kX)
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and

kQ2(w1,q)�Q2(w̃1, q̃)kX  CT 1� 1
a (k(w1,q)kX +

+ k(w̃1, q̃)kX)(kw1 � w̃1kX +kq � q̃kX),

for j = 1,2. This is done in an identical manner as in the proof of Lemma 2.2.1. It remains to deal

with the integral term
´ t

0 e�(t�s)|—|a ∂1q ds. For it, we have

k
ˆ t

0
e�(t�s)|—|a ∂1(q � q̃) dskL1\L•  C

ˆ t

0

1

(t � s)
1
a
kq � q̃kL1\L•ds

 CT 1� 1
a sup

0<s<T
kq(s)� q̃(s)kL1\L• ,

for 0 < t < T . All in all, we can guarantee that with an appropriate choice of T , the non-linear map

given by (2.52)has a fixed point w,q in the space X .

Regarding the global well-posedness, we can continue the solution, as long as the norm t !

kq(t, ·)kLp stay under control. First, for 1< p<•, take dot product of the q equation with |q |p�2q ,

p 2 (1,•) and using the fact the positivity estimate (1.6), we obtain

1
p

∂tkq(t, ·))kp
Lp 

1
p

∂tkqkp
Lp +

ˆ
R2

|q |p�2q · |—|aqdx = 0

It follows that t !kq(t, ·)kLp is non-increasing in any interval (0, t), whence the solution is global

and kq(t, ·)kLp  kq0kLp . For p = 1, p = •, we use approximation arguments to establish the same

result.

Finally, we use this information to establish the global well-posedness of the u equation in

(2.6). Taking dot product with u, we obtain

1
2

∂tku(t, ·)k2
L2  1

2
∂tku(t, ·)k2

L2 +k|—|
a
2 uk2

L2 = hu2,qi  ku2kL2kq(t)kL2

 ku2(t)kL2kq0kL2
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It follows that

ku(t, ·)kL2  ku0kL2 + tkq0kL2 ,

which provides the necessary bound to conclude global regularity, as stated.

The next lemma provides a global existence and uniqueness result for the (w,q) system.

Lemma 2.3.2. Let a > 1. Then, assuming w0 2 L2,q0 2 H
a
2 , the Cauchy problem (2.7) has unique

global solutions. In addition, for any T > 0, there exists C = CT,kw0kL2 ,kq0k
H

a
2
> 0, so that the

solutions satisfy

sup
0tT

kwkL2 + sup
0tT

k|—|
a
2 qkL2  C. (2.53)

Remark: The constant CT obtained in this argument is exponential in T , which is very non-

efficient, as we shall see later on.

Proof. The global regularity for (2.7) is of course very similar to the global regularity established

in Lemma 2.3.1. For the energy estimates, needed for (2.53), we can dot product the first equation

in (2.7) with w and the second one with |—|aq to get the following energy estimate

1
2

d
dt

✓
kwk2

L2 +k|—|
a
2 qk2

L2

◆
+ k|—|

a
2 wk2

L2 +k|—|aqk2
L2 

����
ˆ

w ·∂1qdx
����+

+

����h[|—|
a
2 ,u ·—]q , |—|

a
2 qi
���� := I1 + I2.

Then for some 0 < g < 1,

I1 =

����
ˆ

w ·∂1qdx
���� k|—|

a
2 wkL2k∂1|—|�

a
2 qkL2  ek|—|

a
2 wk2

L2 +Cek∂1|—|�
a
2 qk2

L2

 ek|—|
a
2 wk2

L2 +Cek|—|aqk2g
L2kqk2(1�g)

L2  ek|—|
a
2 wk2

L2 + ek|—|aqk2
L2 +Cekq0k2

L2 .
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We also have

I2 =

����h[|—|
a
2 ,u ·—]q , |—|

a
2 qi
����  k|—|�

a
2 [|—|

a
2 ,u ·—]qkL2k|—|aqkL2

We can make use of the inequality (1.9) with a = 1,s1 = s2 =
a
2 , p = 2,q = 8

4�a and r = 8
a to get

k|—|�
a
2 [|—|

a
2 ,u ·—]q(t)kL2  Ckqk

L
8
a
k—uk

L
8

4�a
Ckq0kL

8
a
kwk

L
8

4�a

 Ckq0kL
8
a
k|—|

a
4 wkL2 Ckq0kL

8
a
k|—|

a
2 wk

1
2
L2kwk

1
2
L2 .

where we have used the Sobolev embedding and the Gagliardo-Nirenberg’s inequality. Then,

I2  ek|—|
a
2 wk2

L2 + ek|—|aqk2
L2 +Ce(kq0kL

8
a
kwk

1
2
L2)

4.

Therefore, for e < 1
2 , we can hide the terms k|—|a

2 wk2
L2 and k|—|aqk2

L2 and we obtain

d
dt

✓
kwk2

L2 +k|—|
a
2 qk2

L2

◆
Ckq0k4

L
8
a

✓
kwk2

L2 +k|—|
a
2 qk2

L2

◆
+Ckq0k2

L2 .

We use Gronwall’s to conclude (2.53).

2.3.2 Some a priori estimates for the scaled vorticity Boussinesq problem

(W,Q) in Lp

We now turn our attention to the scaled vorticity system. By the results of Lemma 2.3.2 and

Lemma 2.3.3, such solutions exist globally, by virtue of the change of variables. Now that we have

a global solution, together with the global estimate (2.57), we can actually obtain global a priori

estimates for Q in all Lp spaces.

Lemma 2.3.3. Let p � 1, and Q0 2 L1 \L•(R2)\Ha(R2), W0 2 L2. Then for any t > 0, Q 2
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C0([0,t];Lp), there exists C =Ca,p such that

kQ(t, ·)kLp Ca,pkQ0kLp(R2)e
(2� 1

a � 2
a p )t . (2.54)

Proof. We take a dot product of the Q equation in (2.13)with |Q|p�2Q, p � 1. We obtain

1
p

∂tkQkp
Lp +

ˆ
R2

|—|aQ|Q|p�2Qdx = (2� 1
a
� 2

a p
)kQkp

Lp .

Recall however that
´
R2 |—|aQ|Q|p�2Qdx � 0, by Lemma 1.1.1. Thus, integrating this inequality

yields (2.54).

Lemma (2.3.3) provides us with a decay rate for Q(t, ·) for 1  p < 2
2a�1 , but clearly an

increasing exponential bound for p � 2
2a�1 . However, we can use it in the next step to get a decay

rate for any p � 1.

Lemma 2.3.4. Let p � 1, and Q0 2 L1 \L•(R2)\Ha(R2), W0 2 L2. Then for any t > 0, Q 2

C0([0,t];Lp), there exists C =Ca,p such that

kQ(t, ·)kLp Ca,pkQ0kLp(R2)e
(2� 3

a )t . (2.55)

Proof. Similar to the lemma (2.3.3) for any p = 2n, n � 1 we have the following energy estimate

1
p

∂tk|Q|kp
Lp +

ca
p
kQkp

L
2p

2�a
 (2� 1

a
� 2

a p
)kQkp

Lp .

Assuming C be a large number, we add Ck|Q|kp
Lp to both sides, we have

1
p

∂tk|Q|kp
Lp +Ck|Q|kp

Lp +
ca
p
kQkp

L
2p

2�a
 (2� 1

a
� 2

a p
+C)kQkp

Lp

 (2� 1
a
� 2

a p
+C)kQkg p

L
2p

2�a
kQk(1�g)p

L1

 e0kQkp

L
2p

2�a
+

⇥
(2� 1

a � 2
a p +C)

⇤ 1
1�g

e
g

1�g
0

k|Q|kp
L1 .
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where g = 2(p�1)
2p�2+a . In other words

1
p

∂tk|Q|kp
Lp +Ck|Q|kp

Lp 
⇥
(2� 1

a � 2
a p +C)

⇤ 1
1�g

e
g

1�g
0

k|Q|kp
L1


⇥
(2� 1

a � 2
a p +C)

⇤ 1
1�g

e
g

1�g
0

ep(2� 3
a )t

Finally, we use Gronwall’s inequality to finish the proof.

We can use above lemma to find some decay rate for U(t, ·). We need this to be able to get

some bounds for W in higher Lp spaces.

Lemma 2.3.5. Let U0 2 L2(R2). Then for any t > 0, U 2C0([0,t];L2), there exists C =Ca,p such

that

kU(t, ·)kL2 Ca,pkU0kL2(R2)e
(2� 3

a )t . (2.56)

Proof. If we dot product the equation (2.14) with U we get the following relation

1
2

∂tkUk2
L2 +k|—|

a
2 Uk2

L2 =
1
a

ˆ
(x ·—U)Udx +(1� 1

a
)kUk2

L2 +

ˆ
q ·Udx .

Then

∂tkUk2
L2 +2k|—|

a
2 Uk2

L2 = 2(1� 2
a
)kUk2

L2 +

ˆ
q ·Udx

 2(1� 2
a
)kUk2

L2 +kQkL2kUkL2  2(1� 2
a
+ e)kUk2

L2 +CekQk2
L2

 2(1� 2
a
+ e)kUk2

L2 +Cee2(2� 3
a )t .

Now we Use the Gronwall’s inequality to complete the proof.

The next lemma provides a priori estimates for W and Q in L2 spaces, which allows us to

conclude global regularity.
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Lemma 2.3.6. Let a 2 (1, 3
2), W0 2 L2. Then the solution W of (2.13), satisfies

kW (t, ·)kL2 +kQ(t, ·)kL2 Ce(2�
3
a )t , (2.57)

sup
0t<•

ˆ t

0

✓
k|—|

a
2 W (s)k2

L2 +k|—|
a
2 Q(s)k2

L2

◆
ds C (2.58)

for some C =C(kW0kL2 ,kQ0kL2 ,a), independent on t .

Proof. We dot product the first equation in (2.13) with W , and the second equation with Q. We

also use the trick used in lamma (2.2.3), i.e. we add the term A(kWk2
L2 +kQk2

L2), where A is a large

constant to be determined. Then

1
2

d
dt

✓
kWk2

L2 +kQk2
L2

◆
+ A(kWk2

L2 +kQk2
L2)+k|—|

a
2 Wk2

L2 +k|—|
a
2 Qk2

L2


��
ˆ

∂1QWdx
��+(A+1� 1

a
)kWk2

L2 +(A+2� 2
a
)kQk2

L2 .

But by Gagliardo-Nirenberg (and taking into account that 1� a
2 < a

2 ) and Young’s inequalities,

��
ˆ

∂1QWdx
�� k|—|1�

a
2 QkL2k|—|

a
2 WkL2  ek|—|

a
2 Qk2

L2 + ek|—|
a
2 Wk2

L2 +CekQk2
L2

 ek|—|
a
2 Qk2

L2 + ek|—|
a
2 Wk2

L2 +Cee2(2� 3
a )t .

whence, using the estimate for kQkL2 from (2.54)(with p = 2). We also have

(A+1� 1
a
)kWk2

L2 C(A+1� 1
a
)k—Uk2

L2 

 C(A+1� 1
a
)kUk2g

L2k|—|1+
a
2 Uk2(1�g)

L2 C(A+1� 1
a
)kUk2g

L2k|—|
a
2 Wk2(1�g)

L2

 ek|—|
a
2 Wk2

L2 +
[C(A+1� 1

a )]
1

1�g

e
g

1�g
kUk2

L2

 ek|—|
a
2 Wk2

L2 +
[C(A+1� 1

a )]
1

1�g

e
g

1�g
e2(2� 3

a )t .
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Considering the estimate for kQkL2 from (2.54)(with p = 2)

d
dt

✓
kWk2

L2 +kQk2
L2

◆
+2A(kWk2

L2 +kQk2
L2)+2(1�2e)k|—|

a
2 Wk2

L2

+ 2(1�2e)k|—|
a
2 Qk2

L2 
2[C(A+1� 1

a )]
1

1�g

e
g

1�g
e2(2� 3

a )t .

At this point we choose A = 2( 3
a �2). Then the last relation has two consequences. First we can

drop the term 2(1�2e)k|—|a
2 Wk2

L2 +2(1�2e)k|—|a
2 Qk2

L2 , so

d
dt

✓
kWk2

L2 +kQk2
L2

◆
+4(

3
a
�2)(kWk2

L2 +kQk2
L2)

[C( 5
a �3)]

1
1�g

e
g

1�g
e2(2� 3

a )t .

and then use the Gronwall’s inequality for the following inequality and get the decay rate (2.57).

Second consequence to get

ˆ t

0
(k|—|

a
2 W (t)k2

L2 +k|—|
a
2 Q(t)k2

L2)dt 
✓
kW0k2

L2 +kQ0k2
L2

◆
+

Ce

2( 3
a �2)

.

This implies (2.58).

We need some a priori estimates for kWkLp for some p > 2, as these will be necessary in our

subsequent considerations. This turns out to be non-trivial. To this end, it turns out that it is easier

to control kWkH1 ,kQkH1 and then use Sobolev embedding to control kWkLp ,kQkLp ,1 < p < •.

In this way, we get the control needed, but we end up needing to require smoother H1 initial data.

Proposition 2.3.7. W0,Q0 2 H1. Then, the global solution satisfies W,Q 2C0([0,t];

H1(R2)). Moreover,

kW (t)kH1 +kQ(t)kH1 Ce(2�
3
a )t . (2.59)

C =C(kW0kH1 ,kQ0kH1 ,a), independent on t .

Proof. Local well-posedness in the space H1, for the original (unscaled) equations works as in
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Lemma 2.3.2, so we omit it. Thus, we have local solutions for the scaled system as well. We now

need to establish a priori estimates to show that these are global.

We differentiate each of the equations in (2.13) and then we proceed similar to the proof of

Lemma 2.3.6. Namely, we dot product it with11 ∂W and ∂Q respectively. We add the two resulting

equations to obtain the following energy inequality

1
2

d
dt

✓
k∂Wk2

L2 +k∂Qk2
L2

◆
+k|—|

a
2 +1Wk2

L2 +k|—|
a
2 +1Qk2

L2 


��
ˆ

∂1∂Q∂Wdx
��+(1� 1

a
)k∂Wk2

L2 +2(1� 1
a
)k∂Qk2

L2 + |h∂U—W,∂W i|

+ |h∂U—Q,∂Qi|.

By Gagliardo-Nirenbergs’ and Young’s

k∂Wk2
L2 +k∂Qk2

L2  e(k—|
a
2 +1Wk2

L2 +k—|
a
2 +1Qk2

L2)+Ce(kWk2
L2 +kQk2

L2)

Next,

��
ˆ

∂1∂Q∂Wdx
��  Ck|—|

a
2 +1QkL2k|—|2�

a
2 WkL2

 e(k—|
a
2 +1Wk2

L2 +k—|
a
2 +1Qk2

L2)+CekWk2
L2 ,

where in the last estimate we have used that 2� a
2 < 1+ a

2 . Finally,

|h∂U ·—W,∂W i| = |h— · (∂UW ),∂W i|Ck—|
a
2 +1WkL2k|—|1�

a
2 (∂U W )kL2

 ek—|
a
2 +1Wk2

L2 +Cek|—|1�
a
2 (∂U W )k2

L2

11Here ∂ means either ∂1 or ∂2
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By product estimates, (1.1.4) and Sobolev embedding

k|—|1�
a
2 (∂U W )kL2 C(k|—|1�

a
2 ∂Uk

L
8

4�a
kWk

L
8
a
+k|—|1�

a
2 Wk

L
8

4�a
k∂Uk

L
8
a
)

 Ck|—|1�
a
4 ∂UkL2k|—|1�

a
4 WkL2 Ck|—|1�

a
4 Wk2

L2  k|—|1+
a
2 Wk

2�a
2

1+a
2

L2 kWk

3a
2

1+a
2

L2 ,

where we have used ∂U ⇠W (in all Sobolev spaces) and Gagliardo-Nirenberg’s. This allows us to

estimate by Young’s

|h∂U ·—W,∂W i| 2ek—|
a
2 +1Wk2

L2 +CekWk
3a

a�1
L2 .

Clearly, the appropriate estimate, obtained in the same way holds for

|h∂U—Q,∂Qi| 2ek—|3
a
2 +1Qk2

L2 +CekWk
a

a�1
L2 .

All in all, we obtain

1
2

d
dt

✓
k∂Wk2

L2 +k∂Qk2
L2

◆
+(1�6e)(k|—|

a
2 +1Wk2

L2 +k|—|
a
2 +1Qk2

L2)

Ce(kWk
3a

a�1
L2 +kWk2

L2 +kQk2
L2).

Set e = 1
10 . For every A > 0, there is ca,A, so that k|—|a

2 +1Wk2
L2 � Ak∂Wk2

L2 � cA,akWk2
L2 and

similar for Q, so we end up with

d
dt

✓
k∂Wk2

L2 +k∂Qk2
L2

◆
+A
✓
k∂Wk2

L2 +k∂Qk2
L2

◆
CA,ae2(2� 3

a )t .

where we have used the exponential bounds from (2.57). Setting sufficiently large A, namely

A > 2( 3
a �2), and applying Gronwall’s yields the result.

As an immediate corollary, we have control of the Lp norms for W .
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Corollary 2.3.8. Let W0,Q0 2 H1. Then, for all p 2 (2,•), there is the bound

kW (t, ·)kLp C(kW0kH1 ,kQ0kH1 ,a, p)e(2�
3
a )t . (2.60)

2.3.3 Global regularity for the scaled vorticity Boussinesq problem (W,Q)

in L2(2)\L•(R2)

The next lemma is a local well-posedness result, which is a companion to Theorem 2.2.4.

Lemma 2.3.9. Suppose that W0,Q0 2 L2(2)\L•. Then, there exists time

T = T (k(W0,Q0)kL2(2)\L•), so that the system of equation (2.13) has unique local solution W,Q 2

C0([0,T ];L2(2)\L•) with W (0) =W0 and Q(0) = Q0.

Proof. We are looking for strong solutions in the space X = L2(2)\L•, that is a solutions of the

following system of integral equations

W (t) = etL W0 �
ˆ t

0
e(t�s)L —(U ·W )ds+

ˆ t

0
e(t�s)L (∂1Q)ds,

Q(t) = et(L+1� 1
a )Q0 �

ˆ t

0
e(t�s)(L+1� 1

a )—(U ·Q)ds

For the free solutions, according to (2.34) and (2.27),

ketL W0kL2(2)\L• +ket(L+1� 1
a )Q0kL2(2)\L•  Cet(kW0kL2(2)\L• +kQ0kL2(2)\L•).

For 0 < T < 1, to be determined, introduce the space

YT := {(W,Q) : sup
0tT

[kW (t, ·)kX +kQ(t, ·)kX ] 2Ce(kW0kL2(2)\L• +kQ0kL2(2)\L•).}.
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According to (2.28), (2.29) and (2.34),

k
ˆ t

0
e(t�s)L —(U ·W )dskL2(2)\L• 


ˆ t

0

e�
(t�s)

a (e(1�
2
a )(t�s) + e(1�

1
a )(t�s))

a(t � s)
1
a

kU ·WkL2(2)\L• ds

 C sup
0tT

kUWkL2(2)\L•

ˆ t

0

1

|t � s| 1
a

ds CT 1� 1
a sup

0tT
kUkL• sup

0tT
kWkL2(2)\L• .

and similarly

k
ˆ t

0
e(t�s)(L+1� 1

a )—(U ·Q)dskL2(2)\L• CT 1� 1
a sup

0tT
kUkL• sup

0tT
kQkL2(2)\L• .

Recalling that U = (—?)�1W , we further estimate by (1.8),

kUkL• C(kWkL2+e +kWkL2�e )CkWkL2(2)\L• ,

since L2(2) ,! L2�e and L2(2)\L• ,! L1 \L• ,! L2+e . Finally,

k
ˆ t

0
e(t�s)L (∂1Q)dskL2(2)\L• CT 1� 1

a sup
0tT

kQkL2(2)\L• .

Clearly, appropriate estimate hold for the differences, whence the integral equations provide a

contraction mapping in the space YT , provided,

T 1� 1
a <<

1
2Ce(kW0kL2(2)\L• +kQ0kL2(2)\L•)

.

Our next result provides a global regularity for the W,Q system in the space L2(2).

Lemma 2.3.10. The system of equations (2.7), with W0,Q0 2 X = L2(2)\L•, and also W0,Q0 2
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H1(R2) has an unique global solution, in space X. There exists C =C(kW0kX ,kQkX) such that

sup
0t<•

kW (t, ·)kL2(2) +kQ(t, ·)kL2(2) C. (2.61)

Remark: The estimate by a constant is very inefficient, as we shall see in section 2.3.4. One

could improve the argument below, at a considerable technical price, to obtain better decay esti-

mates. Since the results in section 2.3.4 will supersede these anyways, we choose to present the

simpler arguments.

Proof. The existence of a local solutions are guaranteed by Lemma 2.3.9. So, it remains to estab-

lish energy estimates, which keep the relevant L2(2) norms under control. Note that the unweighted

portion of the norm has an exponential decay, by (2.54)and (2.57). So, it remains to control the

weighted norms.

We run a preliminary argument only on the Q variable. As usual, this is easier, due to the lack

of problematic term ∂1Q, which appears in the equation for W . We dot product the Q equation in

(2.13) with |x |4Q. We have

1
2

d
dt

ˆ
|x |4Q2dx +

ˆ
|x |4|—|aQ ·Qdx +(

4
a
�2)
ˆ

|x |4Q2dx

=�
ˆ

(U ·—x Q)|x |4Qdx .

Then

�
ˆ

(U ·—x Q)|x |4Qdx = 2
ˆ

|x |2(x ·U)Q2dx .

But

����
ˆ

|x |2(x ·U)Q2dx
����C

ˆ
|x |3kUkL• |Q|2dx  e

ˆ
|x |4|Q|2dx +Ce�3kUk4

L•kQk2
L2 .
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Now, according to (1.1), for every d > 0

kUkL• Cd (kWkL2+d +kWkL2�d )  Cd (e(2�
3
a )t +kWk

2�2d
2�d

L2 kWk
d

2�d
L1 )

 Cd +CdkWk
d

2�d
L2(2).

We also have

ˆ
|x |4Q|—|aQdx = h|x |2|—|

a
2 |—|

a
2 Q, |x |2Qi=

= h|—|
a
2 [|x |2|—|

a
2 Q], |x |2Qi�h[|—|

a
2 , |x |2] [|—|

a
2 Q], |x |2Qi=

= h|x |2|—|
a
2 Q, |x |2|—|

a
2 Qi+ h|x |2|—|

a
2 Q, [|—|

a
2 , |x |2]Qi�

� h[|—|
a
2 , |x |2] [|—|

a
2 Q], |x |2Qi

=

ˆ
|x |4||—|

a
2 Q|2dx + h|x |2|—|

a
2 Q, [|—|

a
2 , |x |2]Qi�h[|—|

a
2 , |x |2] [|—|

a
2 Q], |x |2Qi

Now if we define I(t) =
´
|x |4Q2dx , and put all above together we have the following relation

1
2

I0(t)+
✓

4
a
�2�10e

◆
I(t)+

ˆ
|x |4||—|

a
2 Q|2dx

 |h|x |2|—|
a
2 Q, [|—|

a
2 , |x |2]Qi|+ |h[|—|

a
2 , |x |2][|—|

a
2 Q], |x |2Qi|+Cd ,ekW (t, ·)k

4d
2�d
L2(2).

We can use Lemma 1.1.6 to get

|h|x |2|—|
a
2 Q, [|—|

a
2 , |x |2]Qi| k|x |2|—|

a
2 QkL2k|[|—|

a
2 , |x |2]QkL2

 k|x |2|—|
a
2 QkL2k|x |2�

a
2 QkL2  k|x |2|—|

a
2 QkL2k|x |2Qk1�a

4
L2 kQk

a
4
L2

 e(k|x |2|—|
a
2 Qk2

L2 +k|x |2Qk2
L2)+Ce .
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For the other term we have

|h[|—|
a
2 , |x |2][|—|

a
2 Q], |x |2Qi| k|x |2QkL2k|[|—|

a
2 , |x |2][|—|

a
2 Q]kL2

 k|x |2QkL2k|x |2�
a
2 [|—|

a
2 Q]kL2  k|x |2QkL2k|x |2|—|

a
2 Qk1�a

4
L2 k|—|

a
2 Qk

a
4
L2

 e(k|x |2|—|
a
2 Qk2

L2 +k|x |2Qk2
L2)+Cek|—|

a
2 Qk2

L2 .

It follows that

1
2

I0(t)+
✓

4
a
�2�20e

◆
I(t)+(1�5e)

ˆ
|x |4||—|

a
2 Q|2dx

Ce +Cd ,ekW (t, ·)k
4d

2�d
L2(2) +Cek|—|

a
2 Qk2

L2 .

Choosing e = 1
200 and applying Gronwall’s and then using of (2.58) implies that for every d > 0,

there is Cd , so that

k|x |2Q(t, ·)kL2 Ce +Cd e�( 4
a �2�d )t +Cd sup

0<s<t
kW (s, ·)k

2d
2�d
L2(2). (2.62)

for every d > 0. In addition, we obtain the L2
t bound

ˆ t

0
k|x |2|—|

a
2 Q(t, ·)k2

L2dt C+Cd sup
0<s<t

kW (s, ·)k
4d

2�d
L2(2). (2.63)

We are now ready for the bounds for W , which are always harder. If we dot product in (2.13),

the first equation with |x |4W , we have the energy equalities

1
2

d
dt

ˆ
|x |4W 2dx +

ˆ
|x |4|—|aW ·Wdx +(

3
a
�1)
ˆ

|x |4W 2dx

= �
ˆ

(U ·—xW )|x |4Wdx +

ˆ
∂1Q |x |4Wdx
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Then �
´
(U ·—xW )|x |4Wdx = 2

´
|x |2(x ·U)W 2dx . We can bound this term as follows

����
ˆ

|x |2(x ·U)W 2dx
����  C

ˆ
|x |3kUkL• |W |2dx  e

ˆ
|x |4|W |2dx +Ce�3kUk4

L•kWk2
L2 .

Again, according to (1.1), for every d > 0

kUkL• Cd (kWkL2+d +kWkL2�d )C(e(2�
3
a )t +kWk

2�2d
2�d

L2 kWk
d

2�d
L1 ).

Taking into account (2.54), (2.60), L2(2) ,! L1 and Young’s inequality, allows us to estimate

����
ˆ

|x |2(x ·U)W 2dx
���� 2e

ˆ
|x |4|W |2dx +Ce,dkW (t, ·)k

4d
2�d
L2(2).

We also have, similar to the Q variable calculation,

ˆ
|x |4W |—|aWdx = k|x |2||—|

a
2 Wk2

L2 + h|x |2|—|
a
2 W, [|—|

a
2 , |x |2]W i

� h[|—|
a
2 , |x |2][|—|

a
2 W ], |x |2W i

Now if we take J(t) =
´
|x |4W 2dx , and put all above together we have the following relation

1
2

J0(t)+
✓

3
a
�1�10e

◆
J(t)+

ˆ
|x |4||—|

a
2 W |2dx

 |h|x |2|—|
a
2 W, [|—|

a
2 , |x |2]W i|+ |h[|—|

a
2 , |x |2][|—|

a
2 W ], |x |2W i|

+

����
ˆ

|x |4(∂1Q)Wdx
����+Ce +Ce,dkW (t, ·)k

4d
2�d
L2(2)

= I1 + I2 + I3 +Ce +Ce,dkW (t, ·)k
4d

2�d
L2(2)

We can use Lemma 1.1.6 to get
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I1 = |h|x |2|—|
a
2 W, [|—|

a
2 , |x |2]W i| k|x |2|—|

a
2 WkL2k|[|—|

a
2 , |x |2]WkL2

 k|x |2|—|
a
2 WkL2k|x |2�

a
2 WkL2  k|x |2|—|

a
2 WkL2k|x |2Wk1�a

4
L2 kWk

a
4
L2

 e(k|x |2|—|
a
2 Wk2

L2 +k|x |2Wk2
L2)+Ce ,

where we have used the bounds (2.57) for kWkL2 . Next, regarding I2, we have

I2 = |h[|—|
a
2 , |x |2][|—|

a
2 W ], |x |2W i| k|x |2WkL2k[|—|

a
2 , |x |2][|—|

a
2 W ]kL2

 k|x |2WkL2k|x |2�
a
2 |—|

a
2 WkL2  k|x |2WkL2k|x |2|—|

a
2 Wk1�a

4
L2 k|—|

a
2 Wk

a
4
L2

 e(k|x |2Wk2
L2 +k|x |2|—|

a
2 Wk2

L2)+Cek|—|
a
2 Wk2

L2 .

I3 is normally a problematic term, but now we have the decay estimates for kQkL2(2), which we

have proved in the first part of this Lemma. We have

I3 =

����h∂1Q, |x |4W i
����
����h|x |

2∂1Q, |x |2W i
����
����h∂1|—|�

a
2 |x |2|—|

a
2 Q, |x |2W i

����

+

����h[∂1|—|�
a
2 , |x |2] [|—|

a
2 Q], |x |2W i

���� := I3,1 + I3,2.

I3,1 is estimated as follows

I3,1 =

����h∂1|—|�
a
2 |x |2|—|

a
2 Q, |x |2W i

����Ck|x |2|—|
a
2 QkL2k|—|1�

a
2 [|x |2W ]kL2

 k|x |2|—|
a
2 QkL2k|x |2Wk

2a�2
a

L2 k|—|
a
2 [|x |2W ]k

2�a
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L2 Cek|x |2|—|
a
2 Qk2

L2 +

+ e(k|x |2Wk2
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a
2 [|x |2W ]k2
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We bound the last term, by Lemma 1.1.6,

k|—|
a
2 [|x |2W ]kL2  k|x |2|—|

a
2 WkL2 +k[|—|

a
2 , |x |2]WkL2

 k|x |2|—|
a
2 WkL2 +Ck|x |2�

a
2 WkL2  k|x |2|—|

a
2 WkL2 +C(kWkL2 +k|x |2WkL2).

Collecting terms together yields the following estimate for I3,1 and using (2.59),

I3,1  2e(k|x |2Wk2
L2 +k|x |2|—|

a
2 Wk2

L2)+Cek|x |2|—|
a
2 Qk2

L2 +Ce2(2� 3
a )t .

Assuming the validity of (1.12), we proceed to bound I3,2.

I3,2 =

����h[∂1|—|�
a
2 , |x |2] [|—|

a
2 Q], |x |2W i

���� k|x |2WkL2k[∂1|—|�
a
2 , |x |2] [|—|

a
2 Q]kL2

 k|x |2WkL2k|x |1+
a
2 |—|

a
2 QkL2  k|x |2WkL2k|x |2|—|

a
2 Qk

2+a
4

L2 k|—|
a
2 Qk

2�a
4

L2

 ek|x |2Wk2
L2 +k|—|

a
2 Qk2

L2 +Cek|x |2|—|
a
2 Qk2

L2

 ek|x |2Wk2
L2 +C+CdkWk

4d
2�d
L2(2) +Cek|x |2|—|

a
2 Qk2

L2 ,

where we have made use of (2.63). Combining all the estimates, we obtain the following energy

inequality

1
2

J0(t)+
✓

3
a
�1�20e

◆
J(t)+(1�5e)

ˆ
|x |4||—|

a
2 W |2dx

 Ce +CdkWk
4d

2�d
L2(2) +Ce(k|x |2|—|

a
2 Qk2

L2 +k|—|
a
2 Wk2

L2)

Applying Gronwall’s and taking into account the L2
t integrability results (2.58) and (2.63), and

kWk2
L2(2)  J(t)+C, we conclude for every d > 0

J(t)  J(0)e�2( 3
a �1�20e)t +Cete�2( 3

a �1�20e)t +Cd sup
0<s<t

J(t)
2d

2�d +

+ Ce

ˆ t

0
(k|x |2|—|

a
2 Q(s, ·)k2

L2 +k|—|
a
2 W (s, ·)k2

L2)ds Ce +Cd sup
0<s<t

J(t)
2d

2�d
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Selecting small e and solving this inequality for sup0<s<t J(t) implies the

sup0<s<t J(t)C, for all times t . Inputting this last estimate in (2.62) implies the desired bound

for kQkL2(2) as well.

2.3.4 Global dynamics of the solutions of the Boussinesq model

It is the time to compute the optimal decay rate in L2(2) for the solution of the Boussinesq model

(2.13). Recall that the relevant operator L has the form

L =�|—|a +
1
a

x ·—x +1,

with l0(L ) = 1� 2
a and sess(L )⇢ {l : ¬l  1� 3

a }.

Theorem 2.3.11. Suppose a 2 (1, 3
2) and W0,Q0 2 Y := L2(2)(R2)\L•(R2)\H1(R2). Then for

every d > 0, there exists C = Cd (kW0kY ,kQ0kY ) > 0, such that for any t > 0, the solutions W,Q

for the system of equations (2.13) obey

kW � g2(0)e�( 3
a �2)t∂1G� g1(0)e�( 2

a �1)tGkL2(2) +kQ� g2(0)e�( 3
a �2)tGkL2(2)

Ce�2( 3
a �2�d )t . (2.64)

where g1(0) :=
´

W0(x )dx , and g2(0) :=
´

Q0(x )dx . In particular, if bW0(0) = bQ0(0) = 0 then

kWkL2(2) +kQkL2(2) Cd e�2( 3
a �2�d )t . (2.65)

Proof. Using the spectral decomposition for L , described in section 2.1.8, write

W (t) = g1(t)G(x )+ eW (t) (2.66)

Q(t) = g2(t)G(x )+ eQ(t) (2.67)

where g1(t) := hW (t),1i, g2(t) := hQ(t),1i, eW =Q0W (t, ·) and eQ=Q0Q(t, ·). Then, we derive
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the equations for g1,g2 as before - namely

∂tg1 = hWt ,1i= hLW,1i�hU ·—W,1i+ h∂1Q,1i

= hLW,1i= hW,L ⇤1i= (1� 2
a
)hW,1i= (1� 2

a
) g1(t)

Similarly, ∂tg2 = (2� 3
a ) g2(t). Solving the ODE’s results in the formulas

g1(t) = g1(0)e(1�
2
a )t ,g2(t) = g2(0)e(2�

3
a )t .

For the projections over the essential spectrum, we have the following PDE’s

eWt = L eW �Q0[U ·—W �∂1Q] = L eW �Q0[U ·—(g1(0) e(1�
2
a )tG+ eW )]+

+ Q0[∂1(g2(0) e(1�
2
a )tG+ eQ)],

eQt = (L +1� 1
a
)eQ�Q0[U ·—Q] = (L +1� 1

a
)eQ�Q0[U ·—(g2(0) e(2�

3
a )tG+ eQ)].

We represent them via the Duhamel’s formula

eW (t) = etLfW0 �
ˆ t

0
e(t�s)L Q0[U ·—(g1(0) e(1�

2
a )sG+ eW (s))] ds+

+

ˆ t

0
e(t�s)L Q0[∂1Q(s)] ds,

eQ(t) = et(L+1� 1
a )fQ0 �

ˆ t

0
e(t�s)(L+1� 1

a )Q0[U ·—(g2(0) e(2�
3
a )sG+ eQ(s))] ds.

One term deserves a special attention, as it is explicit. Note that Q0∂1 = ∂1, since P0∂1 = 0. Also

for k > 0, since G is an eigenfunction, with eigenvalue 1� 2
a , we have ekL G = e(1�

2
a )kG. By
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Lemma 2.1.8 that

ˆ t

0
e(t�s)L Q0[∂1Q(s)] ds =

ˆ t

0
e(t�s)L [∂1[g2(0) e(2�

3
a )sG+ eQ(s))]] ds =

= g2(0)
ˆ t

0
e(2�

3
a )se�

t�s
a ∂1e(t�s)L [G]ds+

ˆ t

0
e�

t�s
a ∂1e(t�s)L eQ(s)ds =

= g2(0)∂1G
ˆ t

0
e(2�

3
a )se�

t�s
a e(1�

2
a )(t�s)ds+

ˆ t

0
e�

t�s
a ∂1e(t�s)L eQ(s)ds =

= g2(0)(e(2�
3
a )t � e(1�

3
a )t)∂1G+

ˆ t

0
e�

t�s
a ∂1e(t�s)L eQ(s)ds.

Clearly, at this point, it makes more sense to introduce the new variable,

W1(t,x ) := W̃ (t,x )� g2(0)(e(2�
3
a )t � e(1�

3
a )t)∂1G =: W̃ � e(2�

3
a )tG1(t,x ).

Note that the decay rate e(2�
3
a )t along the G1 direction is slower than the decay rate e(1�

2
a )t of the

evolution along the G direction. Also, G1 is basically ∂1G multiplied by a bounded function of t

and hence an element of L2(2)\L• etc. For future reference,

kW1kX �Ce(2�
3
a )t  kW̃kX  kW1kX +Ce(2�

3
a )t . (2.68)

for all Banach spaces in consideration herein.

We write the equations for W1 and Q̃ as follows

W1(t) = etLfW0 �
ˆ t

0
e(t�s)L Q0[U ·—(g1(0) e(1�

2
a )sG+ e(2�

3
a )sG1 +W1(s))] ds+

+

ˆ t

0
e�

t�s
a ∂1e(t�s)L eQ(s)ds.

eQ(t) = et(L+1� 1
a )fQ0 �

ˆ t

0
e(t�s)(L+1� 1

a )Q0[U ·—(g2(0) e(2�
3
a )sG+ eQ(s))] ds.

Note that U = e(1�
2
a )sUG + e(2�

3
a )sUG1 +UW1 and UG ·G = 0.
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We start the estimates for eQ. We have

keQkL2(2)  Ce(2�
4
a +d )tkeQ(0)kL2(2)

+ |g2(0)|
ˆ t

0
e(2�

3
a )ske(t�s)(L+1� 1

a )Q0[U ·—G]kL2(2) ds+

+

ˆ t

0
ke(t�s)(L+1� 1

a )Q0[U ·—eQ(s)]kL2(2) ds =: Ce(2�
4
a +d )t + J1 + J2

We have for all d > 0 small enough, there is Cd ,

J1 =

ˆ t

0
e(2�

3
a )ske(t�s)(L+1� 1

a )Q0[U ·—G]kL2(2) ds

. kUG1GkL2(2)

ˆ t

0

e(2�
5
a +d )(t�s)e2(2� 3

a )s

(a(t � s))
1
a

ds

+

ˆ t

0

e(2�
5
a +d )(t�s)e(2�

3
a )s

(min(1, |t � s|) 1
a

kUW1(s, ·) ·—GkL2(2)ds . e2(2� 3
a )t +

+

ˆ t

0

e(2�
5
a +d )(t�s)e(2�

3
a )s

(min(1, |t � s|) 1
a

(e(2�
3
a )s)1�eds Cd e2(2� 3

a �d )t .

where we have used Lemma 2.1.3, Gagliardo-Nirenberg’s, (2.57), L2(2) ,! L1, (2.61), to estimate

kUW1—GkL2(2)  kUW1kL
2
e
k(1+ |x |2)|—G|k

L
2

1�e
CkUW1kL

2
e
CkW1k

L
2

1+e

 CkW1k1�e
L2 kW1ke

L1 C(e(2�
3
a )s)1�e .

Similarly,

J2 =

ˆ t

0
ke(t�s)(L+1� 1

a )Q0[U ·—eQ(s)]kL2(2) ds

 C
ˆ t

0

e(2�
5
a +d )(t�s)

(min(1, |t � s|) 1
a
kU(s)kL•keQ(s)kL2(2)ds

Thus, we need a good estimate of kU(s)kL• . We have by (1.8)

kU(s, ·))kL• C(kW (s, ·)kL2+e +kW (s, ·)kL2�e ).
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By the a priori estimate (2.60), we have a good control of kW (s, ·)kL2+e , namely kW (s, ·)kL2+e 

Ce(2�
3
a )s. For kW (s, ·)kL2�e , we can control it by (2.61), but this is not efficient for our arguments

- we need some, however small, decay in s, which we can then input in the Gronwall’s, (1.13). To

achieve that, we proceed by Gagliardo-Nirenberg’s estimate. Taking account once again L2(2) ,!

L1, and the bounds (2.57),

kW (s, ·)kL2�e  kW (s, ·)k
2�2e
2�e

L2 kW (s, ·)k
e

2�e
L1 C(e(2�

3
a )s)

2�2e
2�e .

All in all, for all d > 0,

kU(s, ·)kL• Cd e�( 3
a �2�d )s. (2.69)

This results in the following estimates for J2

J2 
ˆ t

0

e(2�
5
a +d )(t�s)e�( 3

a �2�d )s

(min(1, |t � s|) 1
a

keQ(s)kL2(2)ds

Combining all the estimates obtained about12 keQ(s)kL2(2), , we have

keQ(t)kL2(2) Ce�2( 3
a �2�d )t +

ˆ t

0

e(2�
5
a +d )(t�s)e�( 3

a �2�d )s

(min(1, |t � s|) 1
a

keQ(s)kL2(2)ds

Applying the Gronwall’s, more precisely Lemma 1.2.2, we conclude

keQ(t)kL2(2) Cd e�( 3
a �2�d )t ,

as stated.
12note that with our restrictions on a , ( 3

a � 2) < 4
a � 2, so this is the slowest rate on the right hand sides of

keQ(t)kL2(2).
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For W1, we get

kW1kL2(2) Ce�( 3
a �1�d )tkfW0kL2(2) +

+

ˆ t

0
e�

(t�s)
a k—e(t�s)L0 [U · (g1(0)e(1�

2
a )sG+ e(2�

3
a )sG1)+U ·W1]kL2(2)ds

+

ˆ t

0
e�

(t�s)
a k∂1e(t�s)L0 eQ(s)kL2(2)ds . e(1�

3
a +d )t +

+

ˆ t

0

e(1�
3
a +d )(t�s)e(2�

3
a )skU(|G|+ |G1|)kL2(2)

(a(t � s))
1
a

ds+

+

ˆ t

0

e(1�
3
a +d )(t�s)kUkL•kW1kL2(2)

(a(t � s))
1
a

ds

+

ˆ t

0

e(1�
4
a +d )(t�s)keQ(s)kL2(2)

(a(t � s))
1
a

ds = e(1�
3
a +d )t + I1 + I2 + I3

For I1, we have

kU(|G|+ |G1|)kL2(2)  k(e(1�
2
a )sUG + e(2�

3
a )sUG1)(|G|+ |G1|)kL2(2) +kUW1(|G|+ |G1|)kL2(2).

The first term is easily estimated, since G,G1 = ∂1G 2 L2(2) (whence UG,UG1 2 L• by Sobolev

embedding and Lemma 2.1.3)

k(e(1�
2
a )sUG + e(2�

3
a )sUG1)(|G|+ |G1|)kL2(2) Ce(2�

3
a )s,

whence the contribution of these terms is no more than

C
ˆ t

0

e(1�
3
a +d )(t�s)e2(2� 3

a )s

min(1, |t � s|) 1
a

ds Ce2t(2� 3
a ).
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For UW1 terms, we can use Lemma 2.1.3, the Sobolev inequality and L2(2) ,! L
2

1+e to get

kUW1(s)(|G|+ |G1|)kL2(2) = kUW1 · (1+ |x |2)(|G|+ |G1|)kL2

 kUW1kL
2
e
k(1+ |x |2)(|G|+ |G1|)k

L
2

1�e
CkUW1kL

2
e
Ck—UW1kL

2
1+e

CkW1k
L

2
1+e

CkW1(s)kL2(2).

All together, the contribution of I1 is estimated by

I1 Ce�2( 3
a �2)t +

ˆ t

0

e�( 3
a �1�d )(t�s)e�( 3

a �2)s

min(1, |t � s|) 1
a

kW1(s)kL2(2)ds

Regarding I2, we first need an appropriate estimate on kUkL• , which is fortunately already given

by (2.69). This then gives the bound for I2,

I2 
ˆ t

0

e�( 3
a �1�d )(t�s)e�( 3

a �2�d )s

min(1, |t � s|) 1
a

kW1(s)kL2(2)ds

Combining all estimates for kW1(t)kL2(2) yields

kW1(t, ·)kL2(2) Ce�2( 3
a �2)t +

ˆ t

0

e�( 3
a �1�d )(t�s)e�( 3

a �2�d )s

min(1, |t � s|) 1
a

kW1(s)kL2(2)ds.

Applying Lemma 1.2.2, with µ = 2( 3
a �2),s = ( 3

a �1�d ),k = ( 3
a �2�d ) yields

kW1(t, ·)kL2(2) Ce�2( 3
a �2)t .

This is the statement of (2.64) and Theorem 2.3.11 is proved in full.

At this point considering the relation L2(2) ,! Lp,1  p  2, the proof of theorem (2.1.2) is

just a matter of translating the Lp estimates of W and Q into the original functions w and q .
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Proof of theorem (2.1.2). We just simply transfer the estimates in (2.3.11) into the original x and t,

kw(t, ·)� g2(0)

(1+ t)
3
a �1

∂1G(
·

(1+ t)
1
a
)� g1(0)

(1+ t)
2
a

G(
·

(1+ t)
1
a
)kLp

=

ˆ
R2

����
1

1+ t
W (

x

(1+ t)
1
a
)� g2(0)

(1+ t)
3
a �1

∂1G(
x

(1+ t)
1
a
)� g1(0)

(1+ t)
2
a

G(
x

(1+ t)
1
a
))

����
p
dx
� 1

p

=
(1+ t)

2
a p

(1+ t)

ˆ
R2

����W (
x

(1+ t)
1
a
)� g2(0)

(1+ t)
3
a �2

∂1G(
x

(1+ t)
1
a
)

� g1(0)

(1+ t)
2
a �1

G(
x

(1+ t)
1
a
))

����
p dx

(1+ t)
2
a

� 1
p

=
1

(1+ t)1� 2
a p
kW (·)� g2(0)

(1+ t)
3
a �2

∂1G(·)� g1(0)

(1+ t)
2
a �1

G(·)kLp

 1

(1+ t)1� 2
a p
kW (·)� g2(0)

(1+ t)
3
a �2

∂1G(·)� g1(0)

(1+ t)
2
a �1

G(·)kL2(2)

 Ce

(1+ t)1� 2
a p

e�2t( 3
a �2�e)  Ce

(1+ t)
6
a �3� 2

a p�e
.

The Lp estimate for q requires similar computations,

kq(t, ·)� g2(0)

(1+ t)
2
a

G(
·

(1+ t)
1
a
)kLp

=

ˆ
R2

����
1

(1+ t)2� 1
a

Q(
x

(1+ t)
1
a
)� g2(0)

(1+ t)
2
a

G(
x

(1+ t)
1
a
)

����
p
dx
� 1

p

=
(1+ t)

2
a p

(1+ t)2� 1
a

ˆ
R2

����Q(
x

(1+ t)
1
a
)� g2(0)

(1+ t)
2
a �2+ 1

a
G(

x

(1+ t)
1
a
)

����
p dx

(1+ t)
2
a

� 1
p
.

Therefore,
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kq(t, ·)� g2(0)

(1+ t)
2
a

G(
·

(1+ t)
1
a
)kLp =

=
(1+ t)

2
a p

(1+ t)2� 1
a

ˆ
R2

����Q(x )� g2(0)e�t( 3
a �2)G(x )

����
p
dx
� 1

p

=
(1+ t)

2
a p

(1+ t)2� 1
a
kQ(·)� g2(0)e�t( 3

a �2)G(·)kLp

 (1+ t)
2

a p

(1+ t)2� 1
a
kQ(·)� g2(0)e�t( 3

a �2)G(·)kL2(2)

 Ce

(1+ t)1� 1
a � 2

a p
e�t(2 3

a �2�e)  Ce

(1+ t)
5
a � 2

a p�2�e
.
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Chapter 3

Sharp relaxation rates for plane waves of reaction- diffusion

systems

It is well-known and classical result that spectrally stable traveling waves of a general reaction-

diffusion system in one spatial dimension are asymptotically stable with exponential relaxation

rates. In a series of works in the 1990’s, [24, 33, 37, 63], the authors have considered plane

traveling waves for such systems and they have succeeded in showing asymptotic stability for

such objects. Interestingly, the (estimates for the) relaxation rates that they have exhibited, are all

algebraic and dimension dependent. It was heuristically argued that as the spectral gap closes in

dimensions n � 2, algebraic rates are the best possible.

In this chapter, we revisit this issue. We rigorously calculate the sharp relaxation rates in L•

based spaces, both for the asymptotic phase and the radiation terms. These turn out to be are indeed

algebraic, but about twice better than the best ones obtained in these early works, although this can

be mostly attributed to the inefficiencies of using Sobolev embeddings to control L• norms by high

order L2 based Sobolev space norms. Finally, we explicitly construct the leading order profiles,

both for the phase and the radiation terms. Our approach relies on the method of scaling variables,

as introduced in [17, 18] and also developed in the chapter 2, and in fact provides sharp relaxation

rates in a class of weighted L2 spaces as well.
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3.1 Introduction

In this chapter, we study the following general reaction-diffusion models

8
><

>:

ut = Du+ f (u), x 2 Rn

u(0) = u0,
(3.1)

where, n� 2, u :Rn⇥R+ !R
m, m� 1, and f 2C4(Rn,Rm). More precisely, we will be interested

in the dynamics of the solutions with initial data close to plane waves, that is the dynamics near

plane waves. Existence and stability of such waves in the case n = 1 is a classical subject, with a

vast literature associated to it.

In order to introduce the problem and some notations, assume that there exist steady states

f± 2 R
m, so that f (f±) = 0. Next, we assume that n = 1 and there exists solutions of (3.1), in the

form u(t,x) = f(x� ct). That is, f satisfies the one-dimensional profile equation,

f 00(z)+ cf 0(z)+ f (f(z)) = 0,z 2 R. (3.2)

We also assume that limz!±• f(z) = f±, with exponential rates of convergence, although the

exponential rate of convergence can be replaced with a weaker, but nevertheless strong enough

algebraic rate. In any case, our standing assumption is that for some u > 0, there is

|f(z)�f�|Ceuz,z < 0; |f(z)�f+|Ce�uz,z > 0

Finally, we assume that the localized function f 0 : f 0 2 H2(R). Another relevant object for the

stability theory is the (one-dimensional) linearized operator about the wave, namely

L1 = ∂zz + c∂z +D f (f), D(L1) = H2(R).

Saying that f is spectrally stable amounts to s(L1)⇢ C� = {l : ¬l  0}. Very often, waves like
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that enjoy the strong spectral stability property, namely that1 s(L1) ⇢ {0}[ {l : ¬l  �d} for

some d > 0. It is a classical result by now that for the n = 1 problem ut = uxx+ f (u) such solutions

are asymptotically stable, [27, 48], and in fact they enjoy exponential relaxation rates.

The situation becomes more interesting for the case of plane waves. We now introduce the

notion of plane wave solutions. These are in the form u(t,x) = f(k · x� ct), where k 2 Sn�1. It

is clear that f satisfies the same one-dimensional profile equation, (3.2). In fact, without loss of

generality, we may assume that k = (1,0, . . . ,0) as the problem is rotationally invariant. These

solutions f , if they exist, are referred to as plane waves. Since all statements we make for traveling

plane waves in the form f(x1 � ct,x2, . . . ,xn) will be easily translatable for general plane waves

of the form f(k · x� ct) for arbitrary k 2 Sn�1, we henceforth concentrate on the case of waves

in the form f(z� ct,x2, . . . ,xn). Passing to the moving frame of reference x1 � ct ! z renders the

equation (3.1) in the form

ut = Du+ c∂zu+ f (u),x 2 Rn. (3.3)

To reiterate, going forward, we consider stationary solutions of (3.3), instead of traveling waves

for (3.1). This is, as discussed above, an equivalent problem.

The study of the plane waves and their stability has attracted a lot of interest over the last thirty

years. The following, very incomplete, list [4, 5, 19, 20, 33, 34, 37, 38, 39, 48, 56, 63], consists of

mostly recent references as well as various applications to the sciences.

We have already mentioned about asymptotic stability for these waves, so it is time for some

rigorous introductions. More specifically, asymptotic stability in this context means that for any

initial data u0, close to the plane wave f in an appropriate norm, there is an asymptotic phase

s(t,y),x = (z,y), so that the radiation term tends to zero, i.e.

lim
t!•

ku(t,z,y)�f(z�s(t,y))kX = 0, (3.4)

for some appropriate function space X in the variables (z,y) 2 R⇥Rn�1. It should be mentioned
1Here observe that 0 is automatically in the spectrum as corresponding to a translational invariance or just by virtue

of taking ∂z in the profile equation (3.2).
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that the introduction of a (t,y) dependent asymptotic phase s is absolutely necessary in order for

an estimate like (3.4) to hold true. See for example Remark 1.3 in [33].

Regarding specific results about asymptotic stability of plane waves, let us begin by stating

that the general question has been resolved, for the generality that we are interested in, in a very

satisfactory fashion, in the works [24, 33, 37, 63]. Subsequently, and in a more general context

in [19, 20, 38, 39, 56]. For some of these later results, the authors consider degenerate systems

appearing in certain combustion and biological applications, where the spectral gap property fails

even in one spatial dimension. These works necessitates the introduction of exponentially weighted

spaces to effectively create such spectral gap, but this will be outside the scope of this dissertation.

We shall instead concentrate on the easier and yet not very well-understood case, where we start

with a spectral gap in one spatial dimension, i.e. the setup in [33, 37, 63].

In order to summarize the state of the art, the results in these works establish that as soon as

n � 2, there is an algebraic in time estimate for the relaxation rates in various Sobolev norms. This

is indeed in sharp contrast with the case of one spatial dimension, where under the same spectral

assumptions (see the discussion below Assumption 3.1.1), one can show, see [27, 48], that both

the radiation and the phase go to zero at an exponential rate.

3.1.1 Linearized operators

Let us introduce the full linearized operator for the plane wave that arises. Let u = f +w, then

wt = D(f +w)+ c∂z(f +w)+ f (f +w)

= (Df + c∂zf + f (f))+Dw+ c∂zw+D f (f)w+N(f ,w)

= Dw+ c∂zw+D f (f)w+N(f ,w).

Therefore considering the (3.2), the linearized operator is

L = D+ c∂z +D f (f) = L1 +Dy, D(L) = H2(Rn).

86



Above we defined L1 = ∂zz+c∂z+D f (f). Clearly, L is a closed operator. Due to our assumptions,

f is a bounded function, whence L is a (non self-adjoint) Schrödinger operator with a drift term.

It is a classical fact that for the related one dimensional operator, we have L1[f 0] = 0, which is

obtained by differentiating the profile equation (3.2) in z. This is of course nothing but a manifes-

tation of the fact that the problem is translationally invariant and hence zero is an eigenvalue. As

we have alluded to above, the spectral stability of the wave f , as a solution to the one dimensional

model (3.3), consist in the fact that s(L1)⇢ {z : ¬z  0}. Moreover, we shall need to require that

in fact its spectrum is a fixed distance d > 0 away from the marginal axes ¬z = 0, except for the

translational eigenvalue at zero, which we assume to be simple. More specifically, we make the

following standing assumption henceforth.

Assumption 3.1.1. We assume that there exists d > 0, so that the spectrum of L1 in H1(R) satisfies

s(L1)\{0}⇢ {l : ¬l �d} (3.5)

Moreover, the eigenvalue at zero is simple, with an eigenfunction f 0.

Having the spectral gap condition (3.5), and under appropriate conditions on f ,f , allows one

to show that the wave f is asymptotically stable, with exponential decay of the radiation term, with

an exponential rate of essentially e�(d�e)t . This goes back to at least the classical works [4, 27].

In the case of plane waves, one has L instead of L1 as a linearized operator, which destroys the

spectral gap property. In fact, since L = L1 +Dy, a direct computation shows that L[f 0(z)eik·y] =

�k2f 0(z)eik·y +L1[f 0]eik·y, which since L1[f 0] = 0, leads to,

L[f 0(z)eik·y] =�k2f 0(z)eik·y,

whence it becomes immediately clear that the continuous spectrum of L contains the whole neg-

ative real axes. In particular, it touches the imaginary axes at zero, so that the corresponding

semigroup etL has at best polynomial rate of decay. Heuristically, one expects no better from the
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nonlinear problem, so polynomial in time bounds seem indeed the best possible in (3.4).

This is however an open problem, and one of the goals of this dissertation is to establish this

rigorously. In fact, we aim at establishing the optimal decay rates in these asymptotic results. We

achieve that by requiring slightly more localized initial perturbations v0 := u0 �f , namely that v0

resides in an appropriate (power) weighted L2 space, see Section 3.1.2 below. Before we state our

concrete results, let us discuss the setup of the asymptotic stability result. This part follows the

work of Kapitula, [33], but note that we introduce weighted spaces for the purposes of our analysis

later on.

3.1.2 Setup of the asymptotic profile equations

We start with the Riesz projection for L1, associated with the isolated and simple eigenvalue at

zero. Namely, for a small e , introduce

P0u =
1

2pi

ˆ
|l |=e

(l �L1)
�1d l (3.6)

As zero is a simple eigenvalue, with an eigenfunction f 0, it follows by the Riesz representation

theorem2 that for u 2 L2(R), P0u = hy,uif 0, where y 2 H2(R) and in fact L⇤y = 0, with the

normalization, hy,f 0i = 1, see [34]. In addition, we define Q0 = Id � P0, and both operators

commute with L1. While the operators P0,Q0 act upon functions of the first variable only, we may

also consider their action on functions, which depend on the remaining variables t,y as well.

Recall the definition (1.3) of weighted spaces L2(m)(Rn�1), or L2(m) for short, define

H1(m) := { f : Rn�1 ! R : f ,—y f 2 L2(m)}.

Note that all the spaces in this section are based on functions on Rn�1, due to the fact that y2Rn�1.

In anticipation of our analysis later, we introduce the spaces (H1(m)\W 1,•)yH1
z for functions

2In this work, we only use real-valued functions, so the dot product is symmetric hy,ui= hu,yi
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f (y,z), where the norm is taken as follows

k fk2
(H1(m)\W 1,•)yH1

z
= Â

a,b2{0,1}
[

ˆ
Rn

|—a
z —b

y f (y,z)|2(1+ |y|2)mdzdy+ sup
y2Rn�1

k—a
z —b

y f (z,y)k2
L2

z
]

As is clear from the definition above, we shall adopt the notion that all norms in the z variable shall

be always taken first. Introduce the complementary subspaces

N = {u 2 (H1(m)\W 1,•)yH1
z : u = P0u}

R = {u 2 (H1(m)\W 1,•)yH1
z : u = Q0u}.

Clearly (H1(m)\W 1,•)yH1
z =N +R, in the sense that every function in the base space3 (H1(m)\

W 1,•)yH1
z is uniquely representable as a sum of two functions in N and R respectively. We need

the following lemma4

Lemma 3.1.2. There exists e0 > 0 and a constant C, so that for all w : kwk(H1(m)\W 1,•)yH1
z
< e0,

one can find unique and small (v(w),s(w)) 2 R⇥H1(m)\W 1,•, so that

kv(w)k(H1(m)\W 1,•)yH1
z
+ks(w)kH1(m)\W 1,• <Ce0

and

f(z)+w(z,y) = f(z�s(y))+ v(z,y). (3.7)

The proof of the lemma involves a standard application of the implicit function theorem 1.3.1.

Note that we can apply Lemma 3.1.2 and in particular decomposition (3.7) for time dependent

perturbations, so long as the smallness condition is satisfied.
3Here, we would like to note that our base space is a bit different than the one used by the previous authors, who

preferred to use high order Sobolev spaces, which control L•(Rn).
4see Lemma 2.2 in [33] for a similar statement, in high order Sobolev spaces.
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Proof. Set up a mapping

G(w;v,s)(z,y) = f(z�s(y))+ v(z,y)�f(z)�w(z,y)

We will show first that G : (H1(m)\W 1,•)yH1
z ⇥R ⇥ (H1(m)\W 1,•) ! (H1(m)\W 1,•)yH1

z .

This follows easily from the mean value theorem, since

G(w;v,s)(z,y) =�s(y)
ˆ 1

0
f 0(z� ts(y))dt + v(z,y)�w(z,y),

and f 0 2 H1(R). Clearly G(0,0,0) = 0, so by the implicit function theorem, it remains to check

that

dG(0,0,0)(s̃ , ṽ) =�f 0(z)s̃ + ṽ

is an isomorphism on (H1(m)\W 1,•)yH1
z . To this end, let h 2 (H1(m)\W 1,•)yH1

z be an arbitrary

element and we have to resolve the equation

�f 0(z)s̃ + ṽ = h. (3.8)

Clearly, by the properties of R and N , (3.8) has an unique solution, namely s̃(y)=�hh(·,y),y(·)i,

while ṽ = Q0h 2 R. Moreover, these mappings are linear and

ks̃kH1(m)\W 1,•  kykL2
z
khk(H1(m)\W 1,•)yL2

z
,

kṽkH1(m)\W 1,•H1
z
Ckhk(H1(m)\W 1,•)yH1

z
.

Thus, the implicit function theorem applies and in a neighborhood of zero, there are unique and

small s(w) 2 H1(m)\W 1,•,v(w) 2 R, so that G(w;v(w),s(w)) = 0. Equivalently, (3.7) holds.

Using the ansatz provided by (3.7), and as long as kw(t, ·)k(H1(m)\W 1,•)yH1
z
<< 1, the equation
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(3.3) is transformed into the following system of equations

8
>>>><

>>>>:

vt = Lv+Q0H(fs ,v)+Q0N1(s ,—y ·s ,v)

st = Dys +N2(s ,—y ·s ,v),

v(0) = v0, s(0) = s0

(3.9)

where fs (z) := f(z�s(t,y)) and5

H(fs ,v) = f (v+fs )� f (fs )�D f (fs ) =:
1
2

D2 f (fs )v2 +E(v)

N2(s ,—y ·s ,v) = K1(s)(—y ·s)2 +K2(s)

✓
hy,H(fs ,v)i+(D f (fs )�D f (f))vi

◆

N1(s ,—y ·s ,v) = N2(s ,—y ·s ,v)f 0
s +

�
D f (fs )�D f (f)

�
v+(—y ·s)2f 00

s

K1(s) =�hy,f 00
s i

hy,f 0
s i

, K2(s) =
1

hy,f 0
s i

.

The derivation of (3.3) is done in great details in [33], see equations (2.28),(2.29) on p. 261 there.

One of the important points, [33], is that with kskL• << 1 guaranteed by Lemma 3.1.2, we have

that hy,f 0
s i = hy,f 0i+ hy,f 0

s � f 0i = 1+O(s), whence the denominators in the coefficients

Kj(s), j = 1,2 are away from zero.

The error term is of the form

E(v) = f (v+fs )� f (fs )�D f (fs )v�
1
2

D2 f (fs )v2 = O(v3), (3.10)

under the assumption f 2C3(R) and f is a bounded function. We provide further concrete estimate

on E(v) later on, where we shall need to assume f 2C4, since spatial derivatives on E need to be

taken. See the proof of Lemma 3.4.3 below.
5Here D2 f (fs )v2 is a quadratic form and it denotes the action of the Hessian matrix D2 f (fs ) on (v,v). We will

use the same convention later on for trilinear forms
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3.1.3 Main results

As we have already discussed, we provide the sharp time decay rate for s and v in (3.9). The

following theorems are our main results.

Theorem 3.1.3. Let n � 2 and m > n
2 +1. There exists small e0 > 0 and a constant C, so that the

stationary solutions of (3.3) are asymptotically stable. More precisely, for all e : 0 < e < e0 and

for all u0 : ku0(z,y)�f(z)k(H1(m)\W 1,•)yH1
z
< e , the solution to (3.3) with initial data u0 is global

and there exists s 2 L•(R,(H1(m)\W 1,•)), so that

u(t,z,y) = f(z�s(t,y))+ v(t,z,y), v = Q0v 2 L•(R,(H1(m)\W 1,•)yH1
z )

with

ks(t, ·)kL•
y Ce(1+ t)�

n�1
2 (3.11)

k—ys(t, ·)kL•
y Ce(1+ t)�

n
2 (3.12)

kvkL•
y,z Ce(1+ t)�(n+ 1

2 ) (3.13)

Remarks:

• The estimates for v can be stated in a more precise form as follows

kvkL•
y,z C(e2(1+ t)�(n+ 1

2 ) + ee�
d
2 t),

of which (3.13) is a corollary. In other words, there are two terms in the formula for v -

one linear in e , but decaying exponentially in t (coming from free solutions), while the other

decaying at the right power rate, but quadratic in e , which comes from the Duhamel’s term

and the nonlinearity respectively.

• The decay estimates in L•
yz norms (3.11), (3.13) should be compared with the estimates in

[63], [33]. As the arguments in these papers require the use of Sobolev embedding into Hk
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spaces, it only provides the bound kskL•  Ce(1+ t)�
n�1

4 , whereas (3.11) is clearly much

better. In fact, (3.11) is sharp, as shown in Theorem 3.1.4 below. The estimate (3.13) for v

above is also clearly superior to the one provided in [33].

• We have more estimates for s ,v than the one stated in Theorem 3.1.3. In particular, v,s

belong to weighted L2 spaces and in fact, one can write estimates as follows - for every

0  m̃  m, ✓ˆ
Rn�1

|s(t,y)|2|y|2m̃dy
◆1/2

Ce(1+ t)�
1
2 (

n�1
2 �m̃),

This estimate gives an algebraic decay for m̃ < n�1
2 , but they are true even if m̃ is larger,

that is the corresponding weighted L2 norms may be growing in t. In the case m̃ = 0, these

become the usual L2 spaces. One can in fact see that the result, in this case exactly matches

the L2 bounds in [33].

• One disadvantage of our method is that one cannot get estimates for —2
ys nor —2

yv (and

higher order derivatives), due to a technical issue that arises in the scaled variable analysis,

see the remark after Proposition 3.2.3 below. Such estimates are clearly possible, as was

demonstrated in [33]. On the other hand, we believe that this is really a technical issue,

which we have not explored further.

The rates established in Theorem 3.1.3 are sharp. Specifically, we have the following result, which

we formulate as a separate theorem.

Theorem 3.1.4. Under the assumptions of Theorem 3.1.3, the estimates (3.11), (3.12) and (3.13)

are sharp. More precisely, let u0 : ku0(y,z)� f(z)k(H1(m)\W 1,•)yH1
z
< e and s0 2 H1(m)\W 1,•,

v0 = Q0v0 2 (H1(m)\W 1,•)yH1
z be the unique pair guaranteed by Lemma 3.1.2, so that

u0(y,z) = f(z�s0(y))+ v0(z,y).
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Then, we have the following

�����s(t, ·)�
(
´
Rn�1 s0(y)dy)

(1+ t)
n�1

2
G
✓

·p
1+ t

◆�����
L•

y

 Ce2

(1+ t)
n
2
, (3.14)

����∂ js(t, ·)�
(
´
Rn�1 s0(y)dy)
(1+ t)

n
2

(∂ jG)

✓
·p

1+ t

◆����
L•

y

 Ce2

(1+ t)
n+1

2
, (3.15)

where j = 1, . . . ,n�1, G(y) = (4p)� n�1
2 e�

|y|2
4 . In particular, assuming that

´
Rn�1 s0(y)dy 6= 0, we

have the asymptotics

ks(t, ·)kL•
y ' e(1+ t)�

n�1
2 , k—s(t, ·)kL•

y ' e(1+ t)�
n
2

Regarding v, we have that for6 n � 3,

kv(t,z,y)+
(
´
Rn�1 s0(y)dy)2

(4p)n�1
e�

|y|2
2(t+1)

(t +1)n+ 1
2

L�1
1 Q0[f 00](z)kL•

z,y C(e2(1+ t)�n�1 + ee�
d
2 t). (3.16)

whereas for n = 2,

kv(t,z,y) +
(
´
Rs0(y)dy)2

4p
e�

|y|2
2(t+1)

(t +1)
5
2

L�1
1 Q0[f 00](z)kL•

z,y

C(e3(1+ t)�
5
2 + e2(1+ t)�3 + ee�

d
2 t). (3.17)

In particular, if
´
Rn�1 s0(y)dy 6= 0, we have the asymptotics

kv(t, ·)kL•
y,z ' e2(1+ t)�n� 1

2 . (3.18)

Remarks:

• The asymptotic expansion for s improves both in the order of e and the decay rate - the

leading order term is order e(1+ t)�
n�1

2 , while the error is e2(1+ t)�
n
2 . This is due to the

6note that L1 is invertible on Q0[L2
z ] or L�1

1 Q0 is well defined
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fact that the leading order term entirely originates from the free solution.

• In contrast, the expansion for v has a main term, which is e2(1+ t)�n� 1
2 and two to three

types of error terms - an exponentially decaying in t, but linear in e (originating from ini-

tial data) and faster decaying, but still quadratic in e terms, originating from various other

nonlinear terms. In the case n = 2, we recover yet another term, which decays like the main

term, but it is order of e smaller. Most importantly, the structure of the error terms guarantees

(3.18).

3.2 Preliminary steps

In this section, we transform the evolution equation (3.9) into an equivalent one, through the use

of the so-called scaling variables.

3.2.1 The evolution system in scaling variables

Introduce the scaling variables

t = ln(1+ t), h j =
y jp
1+ t

, j = 2, . . . ,n.

In these independent variables, set the new dependent variables V,G as follows

v(z,y, t) =
1

1+ t
V
✓

z,
yp

1+ t
, ln(1+ t)

◆
, s(y, t) =

1p
1+ t

G
✓

yp
1+ t

, ln(1+ t)
◆
.

Straightforward computations show

vt = � 1
(1+ t)2V � 1

2
1

(1+ t)2
yp

1+ t
·—hV +

1
(1+ t)2Vt ,

Dyv =
1

(1+ t)2 DhV,
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L1v =
1

1+ t
L1V, H(fs ,v) =

1
2

1
(1+ t)2 D2 f (f 1p

1+t
G)V

2 +E((1+ t)�1V ),

(—y ·s)2f 00
s =

1
(1+ t)2 (—h ·G)2f 00

1p
1+t

G

N2(s ,—y ·s ,v) =
1

(1+ t)2 K1((1+ t)�1/2G)(—h ·G)2 +

+
2

(1+ t)2 K2((1+ t)�1/2G)D2 f (f 1p
1+t

G)hy,V 2i

+ K2((1+ t)�1/2G)hy,E((1+ t)�1V )i+

+
1

1+ t
K2((1+ t)�1/2G)hy,(D f (f 1p

1+t
G)�D f (f))V i

=:
1

(1+ t)2 N2(G,—h ·G,V )

st = �1
2

1

(1+ t)
3
2

G� 1
2

1

(1+ t)
3
2

yp
1+ t

·—h ·G+
1

(1+ t)
3
2

Gt ,

Dys =
1

(1+ t)
3
2

DhG

N1(s ,—y ·s ,v) =
1

(1+ t)2 N2(G,—h ·G,V )f 0
1p
1+t

G +
1

1+ t
�
D f (f 1

(
p

1+t)
G)�D f (f)

�
V +

+
1

(1+ t)2 (—h ·G)2f 00
1p
1+t

G =:
1

(1+ t)2 N1(G,—h ·G,V ).

So, we have introduced a new set of nonlinearities, which in the new variables (t,h) take the form

H(G,V ) =
1
2

D2 f (f
e�

t
2 G
)V 2 + e2tE(e�tV ),

N2(G,—h ·G,V ) = K1(e�
t
2 G)(—h ·G)2 +

1
2

K2(e�
t
2 G)
✓

D2 f (f
e�

t
2 G
)hV 2,yi

+ e2tK2(e�
t
2 G)hy,E(e�tV )i+2ethy,(D f (f

e�
t
2 G
)�D f (f))V i

◆
,

N1(G,—h ·G,V ) = N2(G,—h ·G,V )f 0
e�

t
2 G

+ et�D f (f
e�

t
2 G
)�D f (f)

�
V

+ e�
t
2 (—h ·G)2f 00

e�
t
2 G
.
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Therefore the system (3.9) is transfered into the system

8
><

>:

Vt = (Lh + 1
2)V + etL1V +Q0H(G,V )+Q0N1(G,—h ·G,V )

Gt = LhG+ e�
t
2 N2(G,—h ·G,V )

(3.19)

where H,N1,N2 are defined above and the operator Lh is defined as

Lh = Dh +
1
2

h ·—h +
1
2
. (3.20)

We finish this section by stating the variation of constant formula for (3.19). Note that this is

slightly non-standard, due to the t dependence of the linear operator, i.e. the term etL1, in the

equation for V . It should be noted that L1 generates a C0 semigroup on the Sobolev space H1(R)

(see Lemma 3.4.1 below), while the operator Lh generates a semigroup, but on specific weighted

L2 based spaces, see Section 3.2.2 below. Thus, since the action in the variable z and the variable

h are independent, we may in fact write the system for (V,G) as follows

V = et(Lh+
1
2 )e(e

t�1)L1V0 + (3.21)

+

ˆ t

0
e(t�s)(Lh+

1
2 )e(e

t�es�1)L1 [Q0H(G,V )+Q0N1(G,—h ·G,V )(s)]ds

G = etLh G0 +

ˆ t

0
e(t�s)Lh e�

s
2 N2(G,—h ·G,V )(s)ds, (3.22)

where V0,G0 are the initial data of the variables V and G. Note that by the scaling variables assign-

ments, V0(z,y) = v0(z,y),G0(y) = s0(y).

It becomes clear by this last formulas that in order to study the long time properties of the

system (3.21), (3.22), it will be helpful to know about spectral properties of Lh and estimates of

the associated semigroup.
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3.2.2 The operator Lh - spectral information and the associated semigroup

For this section, note that the spaces that we introduce are based on Rn�1, instead of the usual Rn.

This is due to the fact that the scaling variables transformation is performed only in the variables

y 2 Rn�1.

The following results are due to Gallay-Wayne, see Theorem A.1 in [17]. Note however that

the operator L appearing in [17], satisfies Lh = L � N�1
2 and N = n�1. Moreover, proposition

2.1.5, proved in chapter 2, presents this proposition in 2 dimension for the operator L containing

fractional derivative, instead of a full Laplacian.

Proposition 3.2.1. Let m � 0 and Lh be the linear operator (3.20) acting on L2(m), and

G(h) = (4p)� n�1
2 e�

|h |2
4 . Then, its spectrum consists of7 s(Lh) = sd(Lh)[sc(Lh), where

1. The discrete spectrum is

sd(Lh) =

⇢
lk 2 C : lk =�n+ k�2

2
;k = 0,1,2, · · ·

�
.

2. The essential spectrum is

sess(Lh) =

⇢
l 2 C : ¬l �n+5

4
� m

2

�
.

Moreover, for m > n�1
2 , the largest element of ¬s(Lh), i.e. the eigenvalue l0 =�n�2

2 , is simple,

with an eigenfunction G, which satisfies

LhG = l0G, s(Lh)\{�
n�2

2
}⇢ {l : ¬l �n�1

2
}

In our next proposition, we discuss the semigroup generation properties.

Proposition 3.2.2. The operator Lh defines a C0 semigroup on L2(m)(Rn�1). We have the follow-

ing formula for its action
7this is a not necessarily disjoint partition, as some eigenvalues are embedded into the continuous spectrum
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\(etLh f )(x ) = e�
n�2

2 te�a(t)|x |2 bf (e�
t
2 x ), (3.23)

(etLh f )(h) =
e

t
2

�
4pa(t)

� n�1
2

ˆ
Rn�1

G

 
h �h 0

2a(t) 1
2

!
f (e

t
2 h 0)dh 0, (3.24)

where a(t) = 1� e�t .

The semigroup formulas (3.23) and (3.24) are also taken from [17] (see statement 4, Theo-

rem A.1), with the readjustments due to the different constant and the fact that Lh acts on n� 1

variables.

Finally, we state some estimates about the action of the semigroup etLh on

L2(m)(Rn�1). A version of these are in fact needed for the determination of the spectrum s(Lh),

but they have already been proved in Proposition A.2, [17]. Even though these are well-known,

we state them explicitly and provide some calculations for them, as our normalizations are slightly

different than [17], which may create an element of confusion.

3.2.3 Spectral projections and estimates for etLh on L2(m)

Fix m> n
2 +1. The spectral projections corresponding to the eigenspaces of Lh can be constructed

explicitly, [17], but we will not do so here. Instead, we just construct the one corresponding to the

first eigenvalue l0(Lh) = �n�2
2 . Recall that its eigenspace is one dimensional, spanned by G.

Accordingly, we shall need an eigenvector e⇤ for the adjoint operator, so that L ⇤e⇤ = �n�2
2 e⇤.

But since

L ⇤
h = Dh � 1

2
h ·—h � n�2

2
.

So, it is easy to see that e⇤ = 1 is an eigenfunction8 for L ⇤
h and since our normalization for G

is chosen so that h1,Gi = (4p)� n�1
2
´
Rn�1 e�

|h |2
4 dh = 1, it holds that e⇤ = 1. Thus, we have the

8belonging to the dual space L2(�m)(Rn�1)
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convenient formula

P0 f (h) =

✓ˆ
Rn�1

f (h 0)dh 0
◆

G(h) = h f ,1ihG(h)

and Q0 = Id �P0.

Proposition 3.2.3. Let m > n+1
2 . Then, for all a 2 Nn�1, there exists Ca > 0 such that

k—a(etLh Q0 f )kL2(m)(Rn�1) Ca
e�

n�1
2 t

a(t)
|a|
2

k fkL2(m)(Rn�1), (3.25)

for all f 2 L2(m) and all t > 0.

Remark: The appearance of the factors a(t)
|a|
2 in the denominator makes the control of second

and higher order derivatives, such as —2
hG,—2

hV , problematic. The reason is that for 0 < t < 1,

a(t)⇠ t and we need an integrable in t functions sitting on the right-hand side of (3.25).

Proof. This proposition is proved in [17], see Proposition A.2, we have just made the adjustments

for the constants and the dimension of the space. Note that the exponent n�1
2 on the right hand side

of the estimate is consistent with the assertion that s(LhQ0)⇢ {¬l �n�1
2 }.

We just copy estimate (92) from Proposition A.2 in [17], and we take into account that Lh =

L� n�2
2 , where the operator L is the semigroup generator in [17]. Thus, we obtain (3.25).

Finally, we need an estimate of the following type.

Proposition 3.2.4. Let m > n
2 and a 2 N. Then,

k—aetLh fkL•(Rn�1) C
e�

n�2
2 t

a(t) a
2

✓
k fkL•(Rn�1) +k fkL2(m)((Rn�1))

◆
. (3.26)

We get the following improvement, when the semigroup is acting on the co-dimension one subspace

Q0[L2(m)] and m > n
2 +1,

k—aetLh Q0 fkL•(Rn�1) C
e�

n�1
2 t

a(t) a
2

✓
k fkL•(Rn�1) +k fkL2(m)((Rn�1))

◆
. (3.27)
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Proof. We divide the proof into the cases of t < 1 and t � 1. For t < 1 we use the definition

(3.24) in our calculations. Indeed,

k—aetLh fkL• C
e

t
2

(a(t)) n+a�1
2

k
ˆ
Rn�1

—aG(
h �h 0

(a(t)) 1
2
) f (e

t
2 h 0)dh 0kL•

 C
k—aG( ·

(a(t))
1
2
)kL1(Rn�1)k f (e

t
2 ·)kL•(Rn�1)

(a(t)) n+a�1
2


Ck—aGkL1(Rn�1)k fkL•(Rn�1)

(a(t)) a
2


Ck fkL•(Rn�1)

(a(t)) a
2

.

Since for t < 1, e
n�2

2 t is bounded, we have

k—aetLh fkL•  Ce�
n�2

2 t

(a(t)) a
2
k fkL•(Rn�1). (3.28)

We now turn our attention to the case t � 1. We have,

k—aetLh fkL• Ce�
n�2

2 tke�a(t)|·|2 || · |a bf (e�
t
2 ·)kL1

=Ce�
n�2

2 t
ˆ
Rn�1

e�a(t)|x |2 |x |a|bf (e�
t
2 x )|dx

= e�
n�2

2 te
(n+a�1)t

2

ˆ
Rn�1

e�a(t)|e
t
2 q|2 |q|a|bf (q)|dq

Ce
a+1

2 t
ˆ

a(t)|e
t
2 q|21

+
•

Â
i=1

ˆ
ia(t)|e

t
2 q|2i+1

�✓
e�a(t)|e

t
2 q|2 |q|a|bf (q)|

◆
dq

:= J1 + J2.

Since | f̂ (q)| k fkL1 Ck fkL2(m), because m > n
2 , we have

e�
a+1

2 tJ1 
ˆ

a(t)|e
t
2 q|21

e�a(t)|e
t
2 q|2 |q| j|bf (q)|dq  k fkL2(m)

ˆ
a(t)|e

t
2 q|21

|q|adq

Ck fkL2(m)

ˆ e�
t
2

a(t)
1
2

0
ra+n�2dr C

e�
(a+n�1)t

2

a(t) a+n�1
2

k fkL2(m) Ce�
(a+n�1)t

2 k fkL2(m),
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since for t > 1, a(t)> 1
2 . In other words,

J1 Ce�
(n�2)

2 tk fkL2(m).

For J2 in a similar way, we have

e�
a+1

2 tJ2  k fkL2(m)

•

Â
i=1

ˆ
ia(t)|e

t
2 q|2i+1

e�a(t)|e
t
2 q|2 |q|adq

Ck fkL2(m)

•

Â
i=1

e�i
ˆ (i+1) e�

t
2

a(t)
1
2

i e�
t
2

a(t)
1
2

ra+n�2dr

Ck fkL2(m)e
� a+n�1

2 t
•

Â
i=1

e�i
✓
(i+1)a+n�1 � ia+n�1

◆
Ck fkL2(m)e

� a+n�1
2 t .

In other words,

J2 Ce�
(n�2)

2 tk fkL2(m).

Therefore for t > 1 if we put both estimates for J1 and J2 together we get

k—aetLh fkL• Ce�
n�2

2 tk fkL2(m). (3.29)

The proof of (3.26) is now is complete by putting the estimates (3.28) and (3.29) together. For the

estimate (3.27), we use that Q0 f = f �h f ,1ihG, so that hQ0 f ,1ih = h f ,1ih �h f ,1ihhG,1ih = 0.

So, dQ0 f (0) = 0. Thus, in the estimates above, we have

|dQ0 f (q)| = |dQ0 f (q)� dQ0 f (0)| |q|k—dQ0 fkL• C|q|
ˆ
Rn�1

|h ||Q0 f (h)|dh

 C|q|kQ0 fkL2(m), (3.30)

where in the last inequality, we needed m > n
2 +1. In addition,

kQ0 fkL2(m)  k fkL2(m) + |h f ,1ih |kGkL2(m) Ck fkL2(m).
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Plugging these estimates in the argument above, we gain a power of |q|, which gains an extra power

of e�
t
2 over the estimate (3.26), which is reflected on the right-hand side of (3.27).

3.3 Long time asymptotics - setup and further reductions

In this section, we study the precise asympotics of the radiation term V and the phase G.

3.3.1 Decomposing the evolution along the spectrum of Lh

Due to the fairly explicit spectral information available about Lh , see Proposition 3.2.1, and the

semigroup estimates in Propositions 3.2.3 and 3.2.4, it is beneficial to consider the system (3.21),

(3.22) in L2(m) based spaces. For the estimates to work, we need to take m to be large enough,

say m > n+1
2 . In this space, the operator Lh has at least one isolated eigenvalue l0 = �n�2

2

corresponding to the eigenfunction G(h) = (4p)� n�1
2 e�

|h |2
4 , recall h 2 Rn�1.

For conciseness, we set ef = Q0 f , that is all functions with a tilde hereafter will denote func-

tions in Q0(L2(m)). With this set up, we decompose the solutions of the system of equations (3.19)

in the following way,

8
><

>:

V (z,h ,t) = a(z,t)G(h)+ eV (z,h ,t),

G(h ,t) = g(t)G(h)+eG(h ,t),
(3.31)

where a(z,t) = hV,1ih =
´
Rn�1 V (z,h ,t)dh and g(t) = hG,1ih =

´
Rn�1 G(h ,t)dh . In order to

find the representations of a and g we make h·,1i in (3.19),

8
>>>><

>>>>:

at = hVt ,1ih = h(Lh + 1
2)V,1ih + ethL1V,1ih + hQ0H(G,V ),1ih

+hQ0N1(G,—hG,V ),1ih

gt = hGt ,1ih = hLhG,1ih + e�
t
2 hN2(G,—hG,V ),1ih .
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Some of the terms in this system can be simplified. Clearly hL1V,1ih = L1a(z,t). Moreover,

h(Lh +
1
2
)V,1ih = hDV,1ih +

1
2
hh ·—hV,1ih + hV,1ih

=
1
2

ˆ
h ·—V dh + hV,1ih =�n�3

2
a(z,t).

Therefore, we obtain the ODE/PDE system

8
><

>:

at(z,t) =�n�3
2 a(z,t)+ etL1a(z,t)+ hQ0H(G,V ),1ih + hQ0N1(G,—h ·G,V ),1ih

gt =�n�2
2 g(t)+ e�

t
2 hN2(G,—h ·G,V ),1ih .

(3.32)

Recall now that by our construction in (3.9), we had v = Q0v or equivalently P0v = 0. Clearly, such

a property transfers to the scaling variables9, that is Q0V =V,P0V = 0. Consequently,

P0a(·,t) = P0hV (·,h ,t),1ih = hP0V (·,h ,t),1ih = 0

or equivalently a(z,t) =Q0a(·,t). Thus, the system (3.32), which consists of an ODE and a PDE,

has the following integral representation,

a(z,t) = e�
n�3

2 te(e
t�1)L1Q0a(z,0)+ (3.33)

+

ˆ t

0
e�

n�3
2 (t�s)e(e

t�es)L1Q0

"
hH(G,V ),1ih(s)+ hN1(G,—h ·G,V ),1ih(s)

#
ds,

g(t) = e�
n�2

2 tg(0)+
ˆ t

0
e�

n�2
2 (t�s)e�

s
2 hN2(G,—h ·G,V ),1ih(s)ds. (3.34)

We also can find the representation of eV and eG. For that, we project the system of equations (3.19)

away from the eigenvector G. That is, we apply Q0 in (3.19). Note that all operations in the z

variable commute with the operations in the h variables, such as L1Q0 = Q0L1,Q0Q0 = Q0Q0

9the operators P0,Q0 are acting in the variable z, which is independent on the action in the scaled variable h
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and so on. We obtain

eVt = (Lh +
1
2
)eV + etL1Ṽ +Q0[Q0H(G,V )+Q0N1(G,—h ·G,V )],

eGt = LheG+ e�
t
2 Q0N2(G,—h ·G,V ).

Note that once again eV (z,h ,t) = Q0eV (z,h ,t). The system has the following integral representa-

tion,

eV (z,h ,t) = e(Lh+
1
2 )te(e

t�1)L1Q0eV0 + (3.35)

+

ˆ t

0
e(Lh+

1
2 )(t�s)Q0e(e

t�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
ds

eG(h ,t) = etLheG0 +

ˆ t

0
eLh (t�s)Q0e�

s
2 N2(G,—h ·G,V )(s)ds. (3.36)

Thus, we have reduced matters to the system (3.33), (3.34), (3.35), (3.36). Our next goal is to show

a small data, global regularity result for this system.

3.3.2 The function space

We now introduce a function space X . Of course, the time decay exponents are chosen appropri-

ately so that the argument eventually closes. More specifically,

k(a,b , eV ,eG)kX := sup
t>0

n
e(n�

1
2 )tka(·,t)kH1

z
+ e

n�2
2 t |g(t)|

o
+

+ sup
t>0

n
e(n�

1
2 )tkeVkL2(m)H1

z
+ e(n�

1
2 )tkeVkL•

h H1
z

o
+

+ sup
t>0

n
e

n�1
2 tkeGkH1(m) + e

n�1
2 tkeGkL•

h + e
n�1

2 tk—heGkL•
h

o
.

Here, recall the convention k fkL•
h H1

z
= suph k f (·,h)kH1

z
.
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3.3.3 Asymptotics in the scaling variables system

The following is the main result, describing the asymptotics of the evolution in the scaling vari-

ables. We just note that by the setup in the scaling variables, the initial data in the scaling variables

coincides with the initial data in the original variables.

Theorem 3.3.1. There exists e0 > 0 and a constant C0, so that for every e : 0 < e < e0 and initial

data (a0,g0, eV0,eG0) = (a,g, eV ,eG)|t=0 satisfying

ka(·,0)kH1
z
+ |g(0)|+keV0kH1

z H1(m) +keV0kL•
h H1

z
+keG0kH1(m) +keG0kL•

h +k—heG0kL•
h < e, (3.37)

the system (3.33), (3.34), (3.35), (3.36) has an unique solution in the ball BX(0,C0e), with the

given initial data. That is, it satisfies

ka(·,t)kH1
z
C0ee�(n� 1

2 )t , |g(t)|C0ee�
n�2

2 t (3.38)

keV (t, ·)kL2(m)H1
z \L•

h H1
z
C0ee�(n� 1

2 )t (3.39)

keG(t, ·)kH1(m)\L•
h
+k—heG(t, ·)kL•

h C0ee�
n�1

2 t . (3.40)

In particular, taking into account (3.31),

kV (t, ·)kL2(m)H1
z \L•

h H1
z
C0ee�(n� 1

2 )t (3.41)

kG(t, ·)kH1(m)\L•
h
+k—hG(t, ·)kL•

h C0ee�
n�2

2 t . (3.42)

The proof of Theorem 3.3.1 occupies Section 3.4 below. We only mention that as a conse-

quence of it and the relations (3.41), (3.42), we derive the asymptotics of the solutions (v,s) of the

system (3.9). More precisely, taking into account the scaling variables definition, we obtain
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ks(t, ·)kL•
y =

1p
1+ t

kG(t, ·)kL•
y Ce0(1+ t)�

n�1
2 ,

k—ys(t, ·)kL•
y =

1
1+ t

kG(t, ·)kL•
y Ce0(1+ t)�

n
2

kvkL•
h ,z  kvkL•

h H1
z
=

1
1+ t

kV (t, ·)kL•
h H1

z
Ce0(1+ t)�(n+ 1

2 )

These are precisely the claims in (3.11), (3.12) and (3.13).

3.4 Long time asymptotics - Proof of Theorem 3.3.1

We perform a fixed point argument in a sufficiently small ball of X . To that end, we view the

question for solvability as a fixed point problem in the schematic form

(a,g, eV ,eG) = free solutions+F(a,g, eV ,eG),

where F is defined as the Duhamel terms in the right-hand sides of (3.33), (3.34), (3.35), (3.36).

The existence and uniqueness of the fixed point will be established, once we can show that there

exists a sufficiently small e > 0 and a C (depending on parameters, but not on e), so that whenever

initial data satisfies (3.37), we have

•

kfree solutionskX Ce, (3.43)

• For all (a,g, eV ,eG) 2 X : k(a,g, eV ,eG)kX  e , there is

kF(a,g, eV ,eG)kX Ce2. (3.44)

• For all (a j,g j, eVj,eG j) : k(a j,g j, eVj,eG j)kX  e, j = 1,2, there is
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kF(a1,g1, eV1,eG1)�F(a2,g2, eV2,eG2)kX Cek(a1,g1, eV1,eG1)� (a2,g2, eV2,eG2)kX . (3.45)

Due to the multilinear structure of the functional F, we can concentrate on (3.44), identical ap-

proach will yield (3.45). We start with the free solutions, as these only involve the mapping prop-

erties of the semigroups etLh and esL1 .

Lemma 3.4.1. The operator L1 generates a semigroup on H1(R). In fact, under the Assumption

3.1.1, for all d1 < d , there is a constant C =Cd1 ,

kesL1Q0 fkH1(R) Cd1e�d1sk fkH1(R). (3.46)

In the applications, we will use d1 := d
2 .

The proof of Lemma 3.4.1 involves the spectral gap property assumption. It is done by com-

bining appropriate resolvent estimates and the Gearheart-Prüss theorem.

Proof. The proof of the bound (3.46) follows from the Gearheart-Prüss theorem in the following

way. Since, by our assumption (3.5) the spectrum is to the left of any vertical line in the complex

plane {z : ¬z =�d1}, 0 < d1 < d , it will suffice to show that for a fixed such d1,

sup
µ2R

k(L1 +d1 + iµ)�1kH1(R)!H1(R) =Cd1 < •. (3.47)

Indeed, the Gearheart-Prüss theorem guarantees that if s(L1)⇢ {z : ¬z <�d1} and (3.47) holds,

then the operator L1+d1 generates a semigroup with strictly negative growth bound, that is - there

exists e > 0, so that kes(L1+d1)kH1(R)!H1(R) Cd1e�es or, equivalently

kesL1kH1(R)!H1(R) Cd1e�s(e+d1) Cd1e�sd1 ,

which is (3.46).
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Thus, it suffices to establish (3.47). To this end, fix d1 and observe that since the resolvent

(L1 + z)�1 is analytic B(H1(R)) valued function on {z : ¬z > �d}, it is continuous in the same

region and in particular, for each N, there is CN ,

sup
µ2R:|µ|<N

k(L1 +d1 + iµ)�1kH1(R)!H1(R) =Cd1,N < •

Thus, the real issue is to establish the bounds in (3.47) for all large enough µ . So, we setup

g 2 H1(R) and f = (L1 +d1 + iµ)�1g or equivalently

f 00+ c f 0+W f +d1 f + iµ f = g, (3.48)

where W = D f (f) is a bounded, real-valued potential.

The existence of such an f 2 H1(R) is not in any doubt, by the spectral assumptions, we just

need a posteriori uniform in µ estimates for it, for all large enough µ . We take a dot product of

(3.48) with f . Taking imaginary parts of the said dot product leads to the identity

µk fk2 + c¡h f 0, f i= ¡hg, f i.

Applying the Cauchy-Schwartz inequality and after some algebraic manipulations, we obtain that

for every e > 0, there is Ce , so that

µk fk2  µ
2
k fk2 +

C
µ
(k f 0k2 +kgk2).

So, we get the a posteriori estimate

k fk2  C
µ2 (k f 0k2 +kgk2). (3.49)
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We now take the real-part of the dot produc of (3.48) with f . We similarly obtain for every e > 0,

k f 0k2  ek f 0k2 +De [k fk2 +kgk2].

Plugging in (3.49) into this last inequality yields

k f 0k2  ek f 0k2 +
Me
µ2 (k f 0k2 +kgk2)+Dekgk2.

Selecting e = 1
4 and then µ so large so that Me

µ2 < 1
4 , we arrive at

k f 0k2  Dkgk2.

Combining the last estimate with (3.49) yields the desired, uniform in µ estimate (3.47).

Using the positivity properties of the function G, we have the following

Lemma 3.4.2. Let 1  p  •, then there is the pointwise inequality

ketLh f (·,h)kLp
z (R)  etLhk f (·,h)kLp

z (R) (3.50)

Proof. Based on the semigroup definition of (3.24), and considering the fact that G(·) is a positive

function of the variable h ,

ketLh f (·,h)kLp
z (R) =

e
t
2

(4pa(t)) n�1
2
k
ˆ
Rn�1

G(
h �h 0

2(a(t)) 1
2
) f (·,e

t
2 h 0)dh 0kLp

z (R) 

 e
t
2

(4pa(t)) n�1
2

ˆ
Rn�1

G(
h �h 0

2(a(t)) 1
2
)k f (·,e

t
2 h 0)kLp

z (R)dh 0 = etLhk f (·,h)kLp
z (R)
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3.4.1 Control of the free solutions

For the free solution term of a , we have by (3.46), with

e�
n�3

2 tke(e
t�1)L1Q0a(z,0)kH1

z
Ce�

n�3
2 te�

d
2 etka(z,0)kH1

z
Cee�(n� 1

2 )t ,

where we gave up an exponential decay in et . For the free solution term of g , we clearly have

e�
n�2

2 t |g(0)| ee�
n�2

2 t .

For the free solution of Ṽ , we need to control two terms. We have by (3.25) and (3.46)

ke(Lh+
1
2 )te(e

t�1)L1Q0eV0kL2(m)H1
z
Ce�

d
2 et

e�
n�2

2 tkeV0kL2(m)H1
z
Cee�(n� 1

2 )t ,

where we gave up an exponential decay in et as well. For the other free solution term of Ṽ , we

have by (3.50), (3.46) and (3.25)

ke(Lh+
1
2 )te(e

t�1)L1Q0eV0kL•
h H1

z
 Cke(Lh+

1
2 )tkeet L1Q0eV0kH1

z
kL•

h 

 Ce�
(n�2)

2 te�
d
2 et

(keV0kL•
h H1

z
+keV0kL2(m)H1

z
)Cee�(n� 1

2 )t .

For the free solution of the G̃, we have by (3.25) and (3.27),

ketLh G̃0kL•
h\L2(m) Ce�

n�1
2 tkG̃0kL•

h\L2(m).

For the terms k—hetLh G̃0kL•
h\L2(m), we split our considerations in two cases, t < 1,t � 1. We

consider the case t < 1 first. By a formula equivalent to (3.24)

k—hetLh G̃0kL•
h\L2(m)  C

�
a(t)

� n�1
2
k
ˆ
Rn�1

G

 
h 0

2a(t) 1
2

!
—h G̃0(e

t
2 (h �h 0))dh 0kL•

h\L2(m)

 Ck—h G̃0kL•
h\L2(m) Cee�

n�1
2 t .
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since e
n�1

2 t is bounded for 0 < t  1. Finally for t > 1, we have that a(t) � 1
2 , so we conclude

from (3.27)

k—hetLh G̃0kL•
h Ce�

n�1
2 tkG̃0kL2(m) Cee�

n�1
2 t

This completes the cases of the free solutions.

Below, we shall use the semigroup estimates on the Duhamel terms in the same way we have

used them on the free solutions. This will bring about certain norms on the nonlinear terms, so we

need to prepare these estimates.

3.4.2 Estimates on the nonlinear terms H(G,V ), N1(G,—hG,V ) and N2(G,—hG,V )

We first note that due to (3.31), we have the following estimates

kVkL2(m)H1
z
+kVkL•H1

z
 ka(s, ·)kH1

z
(kGkL•

h +kGkL2(m))

+ kṼ (s, ·)kL2(m)H1
z
+kṼ (s, ·)kL•

h H1
z
,

kGkH1(m) +kGkW 1,•
h

 |g(s)|(kGkH1(m) +kGkW 1,•
h

)+kG̃(s, ·)kH1(m) +kG̃(s, ·)kW 1,•
h

.

Thus, if (a,g, eV ,eG) 2 X : k(a,g, eV ,eG)kX < e , we conclude that the corresponding (V,G), given by

(3.31) satisfy

kV (s, ·)kL2(m)H1
z
+kV (s, ·)kL•

h H1
z
Cee�(n� 1

2 )s, (3.51)

kG(s, ·)kH1(m) +kG(s, ·)kW 1,•
h

Cee�
n�2

2 s, (3.52)

With that in mind, we present the following lemma.

Lemma 3.4.3. Let (V,G) be as in (3.31) and (a,g, eV ,eG) 2 X : k(a,g, eV ,eG)kX < e . Then, the
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nonlinearities H(G,V ), N1(G,—h ·G,V ) and N2(G,—h ·G,V ) obey the following bounds

kH(G,V )(s)kL2
h (m)H1

z
Ce2e�(2n�1)s. (3.53)

kN2(G,—h ·G,V )kL2(m) +kN2(G,—h ·G,V )kL•
h Ce2e�(n�2)s, (3.54)

kQ0N1(G,—h ·G,V )kL2(m)H1
z
+kQ0N1(G,—h ·G,V )kL•

h H1
z
Ce2e�(n� 3

2 )s (3.55)

Remark: Note that the spectral projections Q0,Q0 appear in front of all nonlinearities dis-

played above. In almost all cases, that is for (3.53) and (3.54), this does not make a difference

in the bounds (i.e. the exponents on the right-hand side). The appearance of Q0 in (3.55) though

makes a difference (and even then, for only one term). Nevertheless, the estimate (3.55) without

Q0 holds with the weaker exponent e�(n�2)s on the right-hand side.

Proof. Note that by Sobolev embedding, we have the a priori bound on kVkL• as follows

kV (s)kL•
z,h CkV (s, ·)kL•

h H1
z
Cee�(n� 1

2 )s. (3.56)

We start with the estimate for H(G,V ) = 1
2D2 f (f

e�
s
2 G)V

2 + e2sE(e�sV ). We have the pointwise

bound

|∂z[D2 f (f
e�

s
2 G)V 2]|C[|D3 f (f

e�
s
2 G)||f 0||V |2 + |D2 f (f

e�
s
2 G)||V ||∂zV |].

Due to the Taylor’s remainder formula, we can represent the error term as follows

e2sE(e�sV ) =
e�s

6

ˆ 1

0
D3 f (f

e�
s
2 G + pe�sV )V 3(1� p)3d p,

whence by taking into account that f 2C4 and f ,f 0,V are bounded functions, we have the point-

wise bound

|∂ze2sE(e�sV )|Ce�s[|∂zV ||V |2 + |V |3|f 0
e�

s
2 G |+ |∂zV ||V |3e�s]. (3.57)
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Altogether, we get the pointwise bounds

|H[G,V ]|+ |∂z[H[G,V ]|C[|V |2 + |V ||∂zV |].

So, by (3.56) and (3.51), we conclude

kH(G,V )(s)kL2
h (m)H1

z
CkVkL•

z,h [kVkL2(m)L2
z
+k∂zVkL2(m)L2

z
]Ce2e�(2n�1)s.

Next, we deal with N2(G,—hG,V ). Recall

N2(G,—h ·G,V ) = K1(e�
s
2 G)(—h ·G)2 +

1
2

K2(e�
s
2 G)D2 f (f

e�
s
2 G)hV

2,yi

+
1
2

K2(e�
s
2 G)
⇣

e2shy,E(e�sV )i+2eshy,(D f (f
e�

s
2 G)�D f (f))V i

⌘
.

Before we get on with N2, recall that |K1(s)| = O(1), |K2(s)| = O(1). Thus, |K1(e�
s
2 G)(—h ·

G)2|C|—hG|2. We have by (3.52),

kK1(e�
s
2 G)(—h ·G)2kL2(m) Ck—h ·GkL2(m)k—h ·GkL•

h Ce2e�(n�2)s

Regarding the other terms, we estimate away the term K2(e�
s
2 ) by a constant and

kD2 f (f
e�

s
2 G)hV

2,yikL2(m) +2eskhy,(D f (f
e�

s
2 G)�D f (f))V ikL2(m) +

+ e2skhy,E(e�sV )ikL2(m) CkVkL2
z L2(m)kVkL•

h ,z +Ce
s
2kVkL•

h L2
z
kGkL2(m) +

+ Ce�skVk2
L•

h ,z
kVkL2

z L2(m) Ce2e�
3n�4

2 s Ce2e�(n�2)s.

For the estimate of kN2(G,—hG,V )kL•
h , we have

kK1(e�
s
2 G)(—h ·G)2kL•

h Ck—hGk2
L•

h
Ce2e�(n�2)s.
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For the other terms

kD2 f (f
e�

s
2 G)hV

2,yikL•
h +2eskhy,(D f (f

e�
s
2 G)�D f (f))V ikL•

h +

+ e2skhy,E(e�sV )ikL•
h CkVkL•

h ,zkVkL•
h L2

z
+Ce

s
2kVkL•

h L2
z
kGkL•

h

+ Ce�skVk2
L•

h ,z
kVkL•

h L2
z
Ce2e�

3n�4
2 s Ce2e�(n�2)s.

This completes the analysis of N2(G,—hG,V ) and (3.54) is established.

Finally, we discuss the proof of (3.55), that is the control of the N1 term in the relevant norms.

Recall

Q0N1(G,—h ·G,V ) = N2(G,—h ·G,V )Q0[f 0
e�

s
2 G
]

+ Q0[es�D f (f
e�

s
2 G)�D f (f)

�
V + e�

s
2 (—h ·G)2f 00

e�
s
2 G
].

For the first term, note that since Q0[f 0] = 0 and (3.52),

kQ0[f 0
e�

s
2 G
]kH1

z
= kQ0[f 0

e�
s
2 G

�f 0]kH1
z
Ce�

s
2kGkL• Cee�

n�1
2 s.

We thus easily have by (3.54),

kN2(G,—h ·G,V )Q0[f 0
e�

s
2 G
]kL2(m)H1

z \L•
h H1

z


CkN2(G,—h ·G,V )kL2(m)\L•
h
kQ0[f 0

e�
s
2 G
]kH1

z
Ce3e�

3n�5
2 s.

For the next term, we use the boundedness of Q0 in the function spaces that we use, to conclude

kes�D f (f
e�

s
2 G)�D f (f)

�
VkL2(m)H1

z \L•
h H1

z


Ce
s
2 [kGkL2(m) +kGkL•

h ](kVkL•
h H1

z
+kVkL•

h ,z)

Ce2e�
3n�4

2 s Ce2e�(n� 3
2 )s.
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For the last term, we have

ke�
s
2 (—h ·G)2f 00

e�
s
2 G
kL2(m)H1

z
Ce�

s
2k—h ·GkL•

hk—h ·GkL2(m) Ce2e�(n� 3
2 )s,

ke�
s
2 (—h ·G)2f 00

e�
s
2 G
kL•

h H1
z
Ce�

s
2k—hGk2

L•
h
Ce2e�(n� 3

2 )s.

Putting everything together, we arrive at (3.55). Note that for n � 3, the dominant decay term for

e�(n� 3
2 )s came only from the contribution of the term Q0[e�

s
2 (—h ·G)2f 00

e�
s
2 G
] = e�

s
2 (—hG)2Q0[f 00

e�
s
2 G
],

since10 Q0[f 00] 6= 0. For n = 2, the decay terms e�
3n�5

2 = e�(n� 3
2 )s = e�

s
2 , so two terms contribute

at the same rate. Even in this case though, the contribution of N2(G,—h ·G,V )Q0[f 0
e�

s
2 G
] is of order

e3e�s/2 versus e2e�s/2 for Q0[e�
s
2 (—h ·G)2f 00

e�
s
2 G
].

3.4.3 Estimates on the Duhamel’s terms

The following elementary lemmas will be useful as well.

Lemma 3.4.4. If c,d > 0 : c 6= d, then

ˆ t

0
e�d(t�s)

✓
1p

t � s
+1
◆

e�csds Cc,de�min(c,d)t . (3.58)

Let b 2 R, d > 0 and c � 0 then

ˆ t

0
eb(t�s)e�d (et�es)e�csds Cb,d e�(c+1)t . (3.59)

Proof. The estimate (3.58) is standard. We estimate the integrals
´ t�1

0 t...ds and
´ t

t�1 ..ds sepa-

rately. We have that

ˆ t�1

0
e�d(t�s)

✓
1p

t � s
+1
◆

e�csds  e�dt

 
e(d�c)(t�1)�1

d � c

!
 e�min(d,c)t

|d � c| .

10Since f 0 is the eigenvector for the simple eigenvalue at zero for L1, we have that Q0[g] 6= 0 for all g 6= f 0
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For the other term,

ˆ t

t�1

e�d(t�s)
p

t � s
e�csds  ece�ct

ˆ t

t�1

1p
t � s

ds  ece�ct  ece�min(d,c)t .

Proof of (3.59)

Since limh!0+
eh�1

h = 1, fix h0 > 0, so that for all 0 < h < h0, we have eh � 1 � 1
2h. We can,

without loss of generality take h0  1.

We split the integration in (3.59) in two intervals s 2 (t � h0,t) and s 2 (0,t � h0). For the

latter, we have that et � es � et � et�h0 = et(1� e�h0). So,

ˆ t�h0

0
eb(t�s)e�d (et�es)e�csds  e�d (1�e�h0)et

ˆ t�h0

0
eb(t�s)ds  e�d (1�e�h0)et

e|b|tt

 Cb,d e�(c+1)t ,

where we obtain a much better, exponential in et , decay rate. For the case s 2 (t �h0,t), observe

first that by the choice of h0, we have

et � es = es(et�s �1)� 1
2

es(t � s)� 1
8

et(t � s).

We need to control e�ct ´ t
t�h0

e�
d
8 et (t�s)ds, as follows

e�ct
ˆ t

t�h0

e�
d
8 et (t�s)ds  e�ct

ˆ 1

0
e�

d
8 et sds  8e�(c+1)t

ˆ •

0
e�d zdz =

8
d

e�(c+1)t .

We are now ready to deal with the Duhamel’s term contributions, that is estimates (3.44).
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3.4.3.1 The Duhamel’s portion of a(z,t) in (3.33)

We have by (3.46)

k
ˆ t

0
e�

n�3
2 (t�s)e(e

t�es)L1Q0

"
hH(G,V ),1ih(s)+ hN1(G,—h ·G,V ),1ih(s)

#
dskH1

z

 C
ˆ t

0
e�

n�3
2 (t�s)e�

d
2 (e

t�es)[khH(G,V ),1ih(s)kH1
z
+khN1(G,—h ·G,V ),1ih(s)kH1

z
]ds

 C
ˆ t

0
e�

n�3
2 (t�s)e�

d
2 (e

t�es)[kH(G,V )(s)kH1
z L2

h (m) +kN1(G,—h ·G,V )(s)kH1
z L2

h (m)]ds

According to (3.53) and (3.55), the last expression is controlled by

Ce2
ˆ t

0
e�

n�3
2 (t�s)e�

d
2 (e

t�es)e�(n� 3
2 )sds Ce2e�(n� 1

2 )t ,

where in the last step, we have used (3.59).

3.4.3.2 The Duhamel’s portion of g(t) in (3.34)

ˆ t

0
e�

n�2
2 (t�s)e�

s
2 |hN2(G,—h ·G,V ),1ih(s)|ds 

C
ˆ t

0
e�

n�2
2 (t�s)e�

s
2kN2(G,—h ·G,V ),1ih(s)kL2(m)ds

The last expression is controlled, in view of (3.54), by

Ce2
ˆ t

0
e�

n�2
2 (t�s)e�

s
2 e�(n�2)sds Ce2e�

n�2
2 t .
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3.4.3.3 The Duhamel’s portion of Ṽ in (3.35)

We first take the norm k · kL2(m)H1
z
. Let l 2 {0,1}. We obtain from (3.50), (3.25) and (3.46) and

Fubini’s

k
ˆ t

0
e(t�s)(Lh+

1
2 )Q0e(e

t�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
dskL2(m)H1

z
=

= k
ˆ t

0
e(t�s)(Lh+

1
2 )Q0—l

ze
(et�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
kL2

z L2
h (m)ds


ˆ t

0
e�

n�2
2 (t�s)k—l

ze
(et�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
kL2

z L2
h (m)ds 

 C
ˆ t

0
e�

n�2
2 (t�s)e�

d
2 (e

t�es)[kH(G,V )(s)kH1
z L2

h (m) +kN1(G,—h ·G,V )(s)kH1
z L2

h (m)]ds

Next, we deal with k ·kL•
h H1

z
. We have from (3.27)

k
ˆ t

0
e(t�s)(Lh+

1
2 )Q0e(e

t�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
dskL•

h H1
z
=

= k
ˆ t

0
e(t�s)(Lh+

1
2 )Q0—l

ze
(et�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
kL•

h L2
z
ds


ˆ t

0
e�

n�2
2 (t�s)k—l

ze
(et�es)L1Q0

h
H(G,V )(s)+N1(G,—h ·G,V )(s)

i
kL•

h L2
z\L2(m)L2

z
ds 


ˆ t

0
e�

n�2
2 (t�s)e�

d
2 (e

t�es)kH(G,V )(s)kH1
z L2

h (m)\L•
h L2

z
ds

+

ˆ t

0
e�

n�2
2 (t�s)e�

d
2 (e

t�es)kN1(G,—h ·G,V )(s)kH1
z L2

h (m)\L•
h L2

z
ds

In view of (3.53) and (3.55), we control both contributions by

Ce2
ˆ t

0
e�

n�2
2 (t�s)e�

d
2 (e

t�es)e�(n� 3
2 )sds Ce2e�(n� 1

2 )t ,

where again in the last step, we have used (3.59).
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3.4.3.4 The Duhamel’s portion of G̃ in (3.36)

For l 2 {0,1}, we obtain from (3.25)

k
ˆ t

0
e(t�s)Lh Q0e�

s
2 N2(G,—h ·G,V )(s)dskH1(m) 

 C
ˆ t

0
e�

n�1
2 (t�s)e�

s
2kN2(G,—h ·G,V )(s)kL2(m)ds

Next, for the norm k ·kL•
h , we obtain from (3.27)

k
ˆ t

0
e(t�s)Lh Q0e�

s
2 N2(G,—h ·G,V )(s)dskL•

h 

 C
ˆ t

0
e�

n�1
2 (t�s)e�

s
2kN2(G,—h ·G,V )(s)kL2(m)\L•ds

Finally, for k—[·]kL•
h , we obtain from (3.27)

k
ˆ t

0
—he(t�s)Lh Q0e�

s
2 N2(G,—h ·G,V )(s)dskL•

h 

 C
ˆ t

0

e�
n�1

2 (t�s)
p

a(t � s)
e�

s
2kN2(G,—h ·G,V )(s)kL2(m)\L•

By (3.54), we control the last three integrals by

Ce2[

ˆ t

0

e�
n�1

2 (t�s)
p

t � s
e�

s
2 e�(n�2)sds+

ˆ t

0
e�

n�1
2 (t�s)e�

s
2 e�(n�2)sds]Ce2e�

n�1
2 t ,

where in the last stage, we have used (3.58).

3.5 Sharpness of the decay rates and asymptotic profiles

In this section, we discuss the sharpness of these rates as well as the asymptotic profiles.
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3.5.1 The asymptotic profiles for s

The statements for G are straightforward as the decay rate for g(t) (see (3.38)), e�
n�2

2 t is strictly

slower than the decay rate for G̃, which is e�
n�1

2 t . In addition, by examining the evolution equation

for g(t), (3.34) and the subsequent estimates in Section 3.4, we see that

g(t) = g(0)e�
n�2

2 t +O(e�
n�1

2 t) = hG(0, ·),1ihe�
n�2

2 t +O(e�
n�1

2 t) (3.60)

= (

ˆ
Rn�1

s0(y)dy)e�
n�2

2 t +O(e�
n�1

2 t). (3.61)

It follows that

kG(t, ·)� (

ˆ
Rn�1

s0(y)dy)e�
n�2

2 tG(·)kL•
h Ce2e�

n�1
2 t .

By the estimates for —h G̃ in L•
h , it follows that

k—[G(t, ·)� (

ˆ
Rn�1

s0(y)dy)e�
n�2

2 tG(·)]kL•
h Ce2e�

n�1
2 t .

Translating back to the original variables,

�����s(t, ·)�
(
´
Rn�1 s0(y)dy)

(1+ t)
n�1

2
G
✓

·p
1+ t

◆�����
L•

y

 Ce2

(1+ t)
n
2
,

����—ys(t, ·)�
(
´
Rn�1 s0(y)dy)
(1+ t)

n
2

(—yG)

✓
·p

1+ t

◆����
L•

y

 Ce2

(1+ t)
n+1

2
,

These are precisely the estimates (3.14), (3.15).

3.5.2 Asymptotic profiles for the radiation term v

The goal in this section is to isolate a leading order term, V̄ for V , which decays at the leading

order rate e�(n� 1
2 )t . A quick look at the estimates for the free solutions in Section 3.4.1 confirms

that they decay exponentially in et .

Next, going to the Duhamel terms, assume for the moment n � 3. We have seen that the
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leading order nonlinearity is exactly Q0[e�
s
2 (—h ·G)2f 00

e�
s
2 G
], which decays of the order e�(n� 3

2 )s

(and thus produces through the Duhamel’s operator an object with a decay of about e�(n� 1
2 )t ),

while all the others are of rates of at least e�
3n�5

2 s (and thus produce, through the Duhamels operator

terms of decay of at least e�
3n�3

2 t ). Note that in this argument, we certainly need to establish

lower bound for the Duhamel’s operator, which is acting on what we believe is the main term,

Q0[e�
s
2 (—h ·G)2f 00

e�
s
2 G
]. So far, we have only established upper bounds and it is not clear a priori

whether some hidden cancellation does not occur within the Duhamel’s operator formalism.

In order to establish the said lower bounds, we start by further reducing the leading order

terms, by peeling off lower order (i.e. faster decaying) terms. Taking into account G̃ = O(e�
n�1

2 s)

and e�
s
2 G = O(e�

n�1
2 s),

Q0[e�
s
2 (—h ·G)2f 00

e�
s
2 G
] = e�

s
2 (—h ·G)2Q0[f 00

e�
s
2 G
]

= e�
s
2 (—h · (g(t)G+ G̃))2Q0[f 00+(f 00

e�
s
2 G

�f 00)]

= e�
s
2 (—h · (g(s)G))2Q0[f 00]+O(e�(n�1)s)

= g2
0 e�(n� 3

2 )s(—h ·G)2Q0[f 00]+O(e�(n�1)s)

where in the last equality, we used g(s) = g0e�
n�2

2 s +O(e�
n�1

2 s). In view of the equations (3.19),

we see that if the term V̄ satisfies the linear inhomogeneous equation

V̄t = (Lh +
1
2
)V̄ + etL1V̄ + g2

0 e�(n� 3
2 )t(—h ·G)2Q0[f 00],V̄ (0) = 0. (3.62)

where we recall that g0 = hG,1ih =
´
Rn�1 s0(y)dy. Denote H := (—y · e�

|y|2
4 )2 = |y|2

4 e�
|y|2

2 . Then,

(3.62) reads

V̄t = (Lh +
1
2
)V̄ + etL1V̄ + g2

0 e�(n� 3
2 )tQ0[f 00](z)H(h),V̄ (0,z,h) = 0. (3.63)

Due to the estimates that we had for the remaining nonlinearities (and more precisely (3.59), which
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upgrades the Duhamel’s term by e�t over the non-linearity) , we will have the asymptotic estimate

kV (t, ·)�V̄ (t, ·)k(H1(m)\W 1,•)h H1
z
Ce2e�nt . (3.64)

At this point, it is more advantageous to translating back to the original variables. In doing so, via

the assignment v̄(z,y, t) = 1
1+t V̄ (z, yp

1+t , ln(1+ t)), we obtain the following equation for v̄

v̄t = Lv̄+
(
´
Rn�1 s0(y)dy)2

(1+ t)n+ 1
2

H
✓

yp
1+ t

◆
Q0[f 00], v̄(0) = 0, (3.65)

where recall L = L1 +Dy. Similarly, (3.64) translates into the following estimate for v� v̄,

kv(t, ·)� v̄(t, ·)kL•
yz Ce2(1+ t)�(n+1). (3.66)

We will now compute v̄ to a leading order. As a solution to (3.65), we have the formula

v̄(t) = c0

ˆ t

0
e(t�s)L1 [Q0f 00]

e(t�s)Dy [H
⇣

·p
1+s

⌘
]

(1+ s)n+ 1
2

ds,c0 :=
(
´
Rn�1 s0(y)dy)2

(4p)n�1 .

Next, we need to compute e(t�s)Dy [H
⇣

·p
1+s

⌘
]. Before we go any further, we take a moment to

introduce another version of the Fourier transform, its inverse and some explicit formulas that will

be useful.

f̂ (x ) =
ˆ
Rn�1

f (x)e�2pix·x dx, f (x) =
ˆ
Rn�1

f̂ (x )e2pix·x dx

With this definition, \e�a|x|2(h) =
�p

a
� n�1

2 e�
p2|h |2

a , so

Ĥ(h) =� 1
16p2 Dh [

[
e�

|·|2
2 ] =

(2p) n�1
2

4
e�2p2|h |2(1+ c1|h |2).
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for some constant c1. Furthermore,

\
e(t�s)Dy [H

✓
yp

1+ s

◆
](h) = e�4p2(t�s)|h |2(1+ s)

n�1
2 Ĥ(h

p
1+ s) =

=
(2p) n�1

2

4
(1+ s)

n�1
2 e�2p2(2t+1�s)|h |2(1+ c1(1+ s)|h |2).

Eventually, in the term (1+ s)
n+1

2 |h |2e�2p2(2t+1�s)|h |2 produces lower order terms, so it can be

dropped. Note that 2t +1� s > 0, when s 2 (0, t). Inverting the Fourier transform above yields

e(t�s)Dy [H
✓

·p
1+ s

◆
](y) =

✓
1+ s

2t +1� s

◆ n�1
2

e�
|y|2

2(2t+1�s) + l.o.t.

This allows us to write

v̄(t) = c0

ˆ t

0
e(t�s)L1 [Q0f 00]

e�
|y|2

2(2t+1�s)

(2t +1� s)
n�1

2 (1+ s)
n
2+1

ds+ l.o.t.

Introduce M(t,s,y) := e
� |y|2

2(2t+1�s)

(2t+1�s)
n�1

2 (1+s)
n
2+1

and note that the operator L1 is invertible on Q0[L2
z ].

Thus, performing an integration by parts,

I(t,y,z) =

ˆ t

0
M(t,s,y)e(t�s)L1 [Q0f 00]ds =�M(t,s,y)e(t�s)L1L�1

1 Q0[f 00]|t0 +

+

ˆ t

0
e(t�s)L1 [L�1

1 Q0f 00]
∂M
∂ s

(t,s,y)ds =�L�1
1 Q0[f 00]M(t, t,y)+

+ M(t,0,y)etL1 [L�1
1 Q0[f 00]]+

ˆ t

0
e(t�s)L1 [L�1

1 Q0f 00]
∂M
∂ s

(t,s,y)ds.

We argue that the leading order term is

� c0L�1
1 Q0[f 00]M(t, t,y) =�c0

e�
|y|2

2(t+1)

(t +1)n+ 1
2

L�1
1 Q0[f 00], (3.67)

which clearly has a decay rate in L•
y,z of order (1+ t)�(n+ 1

2 ) as stated. We now need to show that
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the remaining two terms have faster decay rates. For the term etL1 [L�1
1 Q0f 00], we have by Sobolev

embedding and (3.46)

ketL1 [L�1
1 Q0f 00]kL•

z CketL1 [L�1
1 Q0f 00]kH1

z
Cd e�

d
2 tkL�1

1 Q0f 00]kH1
z
, (3.68)

so it has an exponential decay in time. Similarly, splitting the integral

ˆ t

0
e(t�s)L1 [L�1

1 Q0f 00]
∂M
∂ s

(t,s,y)ds =
ˆ t�

p
t

0
. . .ds+

ˆ t

t�
p

t
. . .ds

allows us to estimate the former integral as follows,

k
ˆ t�

p
t

0
e(t�s)L1 [L�1

1 Q0f 00]
∂M
∂ s

(t,s,y)dskL•
z 


ˆ t�

p
t

0
ke(t�s)L1 [L�1

1 Q0f 00]kL•
z |

∂M
∂ s

(t,s,y)|ds 

Cd e�
d
2
p

tkL�1
1 Q0f 00]kH1

z
C(1+ t)�(n+1).

since on the region of integration t � s �
p

t, and we can apply (3.68). For the latter integral, one

can see that for s 2 (t �
p

t, t), we have by (3.68), ke(t�s)L1 [L�1
1 Q0f 00]kL•

z Cd , so that

k
ˆ t

t�
p

t
e(t�s)L1 [L�1

1 Q0f 00]
∂M
∂ s

(t,s,y)dskL•
z,y 


ˆ t

t�
p

t
ke(t�s)L1 [L�1

1 Q0f 00]kL•
z k

∂M
∂ s

(t,s,y)kL•
y ds

Cd

ˆ t

t�
p

t
k∂M

∂ s
(t,s,y)kL•

y ds  C
(1+ t)n+1 ,

where in the last step, we have used that if s ⇠ t, then k∂M
∂ s (t,s,y)kL•

y  C(1+ t)�n� 3
2 . All in all,

summarizing the results from this section, we have established that

kv̄+ c0
e�

|y|2
2(t+1)

(t +1)n+ 1
2

L�1
1 Q0[f 00]kL•

z,y C(1+ t)�n�1,
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which combined with (3.66) leads us to (3.16).

For the case of n = 2, we saw that there are two terms in the nonlinearity (for the equation in

the scaled variables) with dominant decay rate, namely N2(G,—h ·G,V )Q0[f 0
e�

s
2 G
] and Q0[e�

s
2 (—h ·

G)2f 00
e�

s
2 G
]. We have just analyzed the second one, which produces (on a solution level and in the

standard variables) the term found in (3.67), which is of order e2(1+ t)�
5
2 , for n = 2. On the other

hand, the term N2(G,—h ·G,V )Q0[f 0
e�

s
2 G
] produces a solution less than Ce3(1+ t)�

5
2 , and as such

is lower order in e , but of the same order in terms of power decay in t. These exact results are

summarized in (3.16) and (3.17).
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Appendix A

Proof of Proposition (2.1.9)

Proof. For simplicity in calculations we divide both sides of (2.25) by e(1�
3�b

a )t , then

k∂ g(etL f )k2
L2(2) 

ˆ
R2

|∂ g(etL f )|2dx +

ˆ
R2

||x |2∂ g(etL f )|2dx

= e2(1� 3�b
a )t

✓ˆ
R2

|pg [e�a(t)|p|a bf (pe�
t
a )]|2d p+

ˆ
R2

|Dp[pge�a(t)|p|a bf (pe�
t
a )]|2d p

◆

= e2(1� 3�b
a )t

✓ˆ
R2

|pg [e�a(t)|p|a bf (pe�
t
a )]|2d p

+g2
ˆ
R2

|p|g|�1—p[e�a(t)|p|a bf (pe�
t
a )]|2d p+

ˆ
R2

|pgDp[e�a(t)|p|a bf (pe�
t
a )]|2d p

◆
.

At this point it is clear that it is better, for simplicity, to divide both sides by e2(1� 3�b
a )t . Then we

want to control the right hand side of the following relation

k∂ g(etL f )k2
L2(2)

e2(1� 3�b
a )t


ˆ
R2

|pg [e�a(t)|p|a bf (pe�
t
a )]|2d p (A.1)

+ g2
ˆ
R2

||p||g|�1—p[e�a(t)|p|a bf (pe�
t
a )]|2d p+

ˆ
R2

|pgDp[e�a(t)|p|a bf (pe�
t
a )]|2d p

:= J1 + J2 + J3.

Estimate for J1

To control J1 we divide the argument into two different cases, t  1 and t > 1. In the case of
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t  1, we have

J1 =

ˆ
R2

|pg [e�a(t)|p|a bf (pe�
t
a )]|2d p = e

2t
a (|g|+1)

ˆ
R2

|q|2|g|e�2a(t)|q·e
t
a |a |bf (q)|2dq

 e
2t
a (|g|+1)

ˆ

{q:02a(t)|q·e
t
a |a1}

|q|2|g|e�2a(t)|q·e
t
a |a |bf (q)|2dq

+ e
2t
a (|g|+1)

•

Â
j=1

ˆ

{q: j2a(t)|q·e
t
a |a j+1}

|q|2|g|e�2a(t)|q·e
t
a |a |bf (q)|2dq

= J1
1 + J2

1 .

We can estimate

J1
1  e

2t
a (|g|+1)

ˆ
0|q| e�

t
a

(2a(t))
1
a

|q|2|g|| f̂ (q)|2dq  e
2t
a

(a(t))
2|g|
a
k fk2

L2 
C

(a(t))
2|g |
a
k fkL2(2)

 C
e
�2t

a (1�e)

(a(t))
2|g|
a
k fk2

L2(2).

We treat J2
1 in a similar manner. Indeed,

J2
1  e

2t
a (|g|+1)

•

Â
j=1

e� j
ˆ

j2a(t)|qe
t
a |a( j+1)

|q|2|g|| f̂ (q)|2dq

 e
2t
a

(a(t))
2|g|
a

•

Â
j=1

e�( j+1)( j+1)
2|g|
a

ˆ

j2a(t)|qe
t
a |a( j+1)

| f̂ |2dq

 e
2t
a

(a(t))
2|g|
a
k fk2

L2

•

Â
j=1

e�( j+1)( j+1)
2|g|
a

 C
e

2t
a

(a(t))
2|g |
a
k fk2

L2(2) 
C

(a(t))
2|g|
a
k fk2

L2(2) C
e�

2t
a (1�e)

(a(t))
2|g|
a
k fk2

L2(2)

After putting together the estimates for J1
1 and J2

1 we get

J1 C
e�

2t
a (1�e)k fk2

L2(2)

a(t)
2|g|
a

.
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Regarding the case t > 1, first note that in this range of t , 0 <C < a(t) 1. Moreover,

| f̂ (q)� f̂ (0)| 2k f̂kL• , | f̂ (q)� f̂ (0)| |q|k— f̂kL• ,

then by interpolation, we conclude that for every e > 0, we have

| f̂ (q)� f̂ (0)|Ce |q|1�ek|—|1�e f̂kL• Ce |q|1�ek fkL2(2), (A.2)

where in the last inequality we have used that by Hausdorf-Young’s

k|—|1�e f̂kL• 
´
R2 |x |1�e | f (x )|dx Ck fkL2(2). Therefore,

J1 =

ˆ
R2

|pg [e�a(t)|p|a bf (pe�
t
a )]|2d p = e

2t
a (|g|+1)

ˆ
R2

e�2a(t)|q·e
t
a |a |q|2|g||bf (q)|2dq

 e
2t
a (|g|+1)k fk2

L2(2)

ˆ
R2

e�2a(t)|q·e
t
a |a |q|2(|g|+1�e)dq

 e
2t
a (|g|+1)k fk2

L2(2)

ˆ

{q:2a(t)|q·e
t
a |a1}

e�2a(t)|q·e
t
a |a |q|2(|g|+1�e)dq

+ e
2t
a (|g|+1)k fk2

L2(2)

•

Â
j=1

ˆ

{q: j2a(t)|q·e
t
a |a j+1}

e�2a(t)|q·e
t
a |a |q|2(|g|+1�e)dq = J1

1 + J2
1 .

Now

J1
1 = e

2t
a (|g|+1)k fk2

L2(2)

ˆ

{q:2a(t)|q·e
t
a |a1}

e�2a(t)|q·e
t
a |a |q|2(|g|+1�e)dq

 e
2t
a (|g|+1)k fk2

L2(2)

ˆ

{q:2a(t)|q·e
t
a |a1}

|q|2(|g|+1�e)dq

 Ce
2t
a (|g|+1)k fk2

L2(2)

e�
t
a

(2a(t))
1
aˆ

0

r2(|g|+1�e)+1dq

 C
e�

2t
a (1�e)k fk2

L2(2)

a(t) 2
a (|g|+2�e)

C
e�

2t
a (1�e)k fk2

L2(2)

a(t)
2|g|
a

.
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In a similar way,

J2
1 = e

2t
a (|g|+1)k fk2

L2(2)

•

Â
j=1

ˆ

{q: j2a(t)|q·e
t
a |a j+1}

e�2a(t)|q·e
t
a |a |q|2(|g|+1�e)dq

 e
2t
a (|g|+1)k fk2

L2(2)

•

Â
j=1

e� j
ˆ

{q: j2a(t)|q·e
t
a |a j+1}

|q|2(|g|+1�e)dq

 e
2t
a (|g|+1)k fk2

L2(2)

•

Â
j=1

e� j
ˆ ( j+1

a(t) )
1
a e�

t
a

( j
a(t) )

1
a e�

t
a

r2(|g|+1�e)+1dr

C
e�

2t
a (1�e)

a(t) 2
a (|g|+2�e)

k fk2
L2(2)

•

Â
j=1

e� j( j+1)2(|g|+2�e) C
e�

2t
a (1�e)k fk2

L2(2)

a(t) 2
a (|g|+2�e)

C
e�

2t
a (1�e)k fk2

L2(2)

a(t)
2|g|
a

.

Therefore for t > 1 we have

J1 C
e�

2t
a (1�e)k fk2

L2(2)

a(t)
2|g|
a

.

Estimate for J2

To control J2 first note that

—e�a(t)|p|a =�a a(t) p|p|a�2e�a(t)|p|a . (A.3)

Therefore,

J2 = |g|2
ˆ
R2

||p||g|�1—p[e�a(t)|p|a bf (pe�
t
a )]|2d p

 a2|g|2a(t)2
ˆ
R2

||p||g|�1|p|a�1 e�a(t)|p|a bf (pe
�t
a )|2d p

+ |g|2e
�2t

a

ˆ
R2

|p|g| e�a(t)|p|a · (—bf )(pe
�t
a )|2d p := I1 + I2.

A.0.0.1 Estimate for I1

To control the first term I1 we proceed as follows

130



I1

a(t)2 
ˆ
R2

e�2a(t)|p|a |p|2(a+|g|�2)|bf (p · e�
t
a )|2d p =

= e
2t
a (a+|g|�1)

ˆ
R2

e�2a(t)|q·e
t
a |a |q|2(a+|g|�2)|bf (q)|2dq

 e
2t
a (a+|g|�1)

ˆ

{q:2a(t)|q·e
t
a |a1}

e�2a(t)|q·e
t
a |a |q|2(a+|g|�2)|bf (q)|2dq

+ e
2t
a (a+|g|�1)

•

Â
j=1

ˆ

{q: j2a(t)|q·e
t
a |a j+1}

e�2a(t)|q·e
t
a |a |q|2(a+|g|�2)|bf (q)|2dq

= I1
1 + I2

1 .

We can estimate

I1
1  e

2t
a (a+|g|�1)

ˆ
|q| e�

t
a

(2a(t))
1
a

|q|2(a+|g|�2)| f̂ (q)|2dq =

= e
2t
a (a+|g|�1)

ˆ
|q| e�

t
a

(2a(t))
1
a

|q|2(a+|g|�2)| f̂ (q)� f̂ (0)|2dq

Using the relation (A.2), we obtain

I1
1  e

2t
a (a+|g|�1)k fk2

L2(2)

ˆ
|q| e�

t
a

(2a(t))
1
a

|q|2(a+g�2)|q|2(1�e)dq =

=Ce
2t
a (a+|g|�1)k fk2

L2(2)

ˆ e�
t
a

(2a(t))
1
a

0
r2(a+|g|�e)�1 dr =C

e�
2t
a (1�e)k fk2

L2(2)

a(t)2(1+ |g|�e
a )

.

therefore, recalling that a(t) 1,

I1
1 

e�
2t
a (1�e)k fk2

L2(2)

a(t)2(1+ |g|
a )

.

We treat I2
1 in a similar manner. Again, using (A.2),
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I2
1  e

2t
a (a+|g|�1)

•

Â
j=1

e� j
ˆ

j2a(t)|qe
t
a |a( j+1)

|q|2(a+|g|�2)| f̂ (q)� f̂ (0)|2dq

 e
2t
a (a+|g|�1)

•

Â
j=1

e� j
ˆ

j2a(t)|qe
t
a |a( j+1)

|q|2(a+|g|�2)|q|2(1�e)k fk2
L2(2)dq

 e
2t
a (a+|g|�1)k fk2

L2(2)

•

Â
j=1

e� j
ˆ

j2a(t)|qe
t
a |a( j+1)

|q|2(a+|g|�1�e)dq

 e
2t
a (a+|g|�1)k fk2

L2(2)

•

Â
j=1

e� j
ˆ

e�
t
a j1/a

a(t)1/a re�
t
a ( j+1)1/a

a(t)1/a

r(2a+2|g|�1�2e)dr

 C
e

2t
a (a+|g|�1)k fk2

L2(2)

a(t)2(1+ |g|
a )

•

Â
j=1

e� j j
2(a+|g|�e)

a e�
2t
a (a+|g|�e) C

e�
2t
a (1�e)k fk2

L2(2)

a(t)2(1+ |g|
a )

After putting together the estimates for I1
1 and I2

1 we get

I1 C
e�

2t
a (1�e)k fk2

L2(2)

a(t)
2|g|
a

.

Estimate for I2

I2  Ce�
2t
a

ˆ
R2

| |p||g|�1e�a(t)|p|a (—bf )(pe
�t
a )|2d p =

= e
2t
a (|g|�1)

ˆ
R2

|q|2(|g|�1)e�2a(t)|q·e
t
a |a |—bf (q)|2dq

 e
2t
a (|g|�1)

•

Â
j=0

ˆ

{q: j2a(t)|q·e
t
a |a j+1}

✓
|q|2(|g|�1)e�2a(t)|q·e

t
a |a |—bf (q)|2dq

◆
=

= I1
2 + I2

2 .
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For I1
2 , we have by Hölder’s

I1
2  e

2t
a (|g|�1)

ˆ
0|q| e

�t
a

(2a(t))
1
a

|q|2(|g|�1)|— f̂ (q)|2dq 

 Ce
2t
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By Sobolev embedding, we have k— f̂k2
L

2
e
Ck— f̂k2

H1�e (R2)
Ck(1�D) f̂k2

L2 =

=Ck fk2
L2(2). Therefore
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For I2
2 , we estimate
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j
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so using again the bound k— f̂k
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Hence after putting together the estimates for I1
2 and I2

2 we have

I2 C
e�

2t
a (1�e)k fk2
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(a(t))
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a

.

Estimate for J3

J3 =
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By (A.3) we have,
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Hence, by allowing for a slight abuse of notations by using g , which is a multi-index instead of |g|,

its length,
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:= I3 + I4 + I5 + I6,
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Estimate for I3 and I4

I3
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By comparing I3 with I1 it is clear that I1
3 = I1

1 and I2
3 = I2

1 , and we treat them in the same way.

Hence
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The estimate for I4 proceeds in an identical manner, but we have a slightly different power of

p, so we present it here briefly.
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Denoting by I1
4 the integral corresponding to 2a(t)|q · e t

a |a  1 and the rest with I2
2 , we have by

135



(A.2), | f̂ (q)|= | f̂ (q)� f̂ (0)|C|q|1�ek fkL2(2),
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Therefore
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Estimate for I5
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so using again the bound k— f̂k
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Hence after putting together the estimates for I1
5 and I2

5 we have
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Estimate for I6
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For I2
6 , we have
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Putting it all together finishes off the proof.
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