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Abstract

Through this dissertation we present the sharp time decay rates for three equations, namely
quasi—geostrophic equation (SQG), Boussinesq system (BSQ) and plane wave of general reaction-
diffusion models. In addition, in each case, we provide the dominant part of the solution which
leads to the long term asymptotic profiles of each model.

The first two equations, arising in fluid dynamics, model some aspect of the shallow waters with
horizontal and vertical structures. Indeed, quasi—geostrophis equation models the horizontal inertia
forces of a flow. As a result of that, atmospheric and oceanographic flows which take place over
horizontal length scales, which are very large compare to their vertical length scales, are studied
by SQG equation. On the other hand BSQ system models some vertical aspect of the flow, namely
the speed, pressure and the temperature of the flow. In coastal engineering, BSQ type equations
have a vast application in computer modeling. Lastly, a plane wave is a constant-frequency wave
whose wavefronts (surfaces of constant phase) are infinite parallel planes of constant peak-to-peak
amplitude normal to the phase velocity vector.

In order to study these equations, we made some developments in the "scaling variable" meth-
ods, so that it fits over models. In particular, we now have a good understanding of this method

when it is applied to the equations with fractional dissipations.
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Chapter 1

Introduction

1.1 Fourier Transform, function spaces and multipliers

In this Section , we introduce some basic Sobolev spaces, weighted L? spaces and some relevant
estimates that will be useful in the sequel. We start with several notations. In mathematics the

space of the rapidly decreasing functions on R” is called the Schwartz space .7 . It is defined to be

SR = {f € Co(RY): [|fllag < oo VoL, B N"},

where o, B are multi—index, C*(R") is the set of smooth functions on R” to C, and

1flap = sup K*DP £(x)].

xeR"

On the Schwartz class, we can define the Fourier transform and its inverse via

F©) = [ f)e ™ dx, fl)=@m)™" | FE)eedg

R”
Consequently, since —/A\f('g') = |E|2f (&), we define the operators |V|* := (—A)%/2,a > 0, via its

action on the Fourier side |€|a\f(§) = |E|*f(p). More generally, the operators f(|V

), for rea-
sonable functions f, are acting as multipliers by f(|&]). We will also make use of the following

notation - we say that m is a symbol of order a,a € R, if it is a smooth function on R"\ {0},



satisfying for all multi-indices o € N",
[9%m(&)| < Cal§|*~1.

It is actually enough to assume this inequality for a finite set of indices, say || < n. The prototype
will be something of the form m(&) = |&|¢, but note that a will be often negative in our applications.

We will schematically denote a symbol of order a by m,,.
1

The L? spaces are defined by the norm || f||zr = ( [1fx)P dx) p, while the weak L? spaces

are

v = {7 Wl = s {1 fxs o > 237 <.

In this context, recall the Hausdorff-~Young inequality which reads as follows: For p,q,r € (1,00)
1_ 1,1
and 1+ =471

r

1F *gller < Cpgrllfllzocllgller

For an integer n and p € (1,0), the Sobolev spaces are the closure of the Schwartz functions

in the norm || ||y, = [|fllLr + X<k |0% f e, while for a non-integer s one takes

fllwse = 11 = A Fllr ~ | fllr + [V £l

The Sobolev embedding theorem states || f||zs(r») < C|||V[*fl|r(rn), Where 1 < p < g < oo and

n(ll7 - ;1]) = s, with the usual modification for g = co, namely || f{|zgn) < Cs| fllwsr(gn), s > 5. In

particular, an estimate that will be useful for us, is

1 1
(V1) Pl <€l 1< p<g<eof=ns =) (D

This follows from the Mikhlin’s criteria for L”,1 < p < o boundedness. Note that these estimates

hold in a more general setting, when (|V|L)*'B is replaced by an arbitrary symbol of order —f3, that



is
lm g (V) fll= < Ce(IlF1] gve A g-e)- (1.2)

We will give a proof of this in the proposition 1.1.3. Another useful ingredient will be the Gagliardo

- Nirenberg interpolation inequality,
6 1-0
IVEAlr < NV AV A

_ _ 1_ 1,41
where s = 651 + (1 —6)s2 and ;= . + 7.
For the arguments related to the optimal decay rates in chapter (2), we will need to argue in the

weighted spaces. For any m > 0 we define the Hilbert space L?(m) as follow

2m) = {re s Il = ([ a+bPrismpe) <=b a4

One can show by means of Holder’s, L?(2) < L”(R?), whenever 1 < p < 2. Indeed, for any

feLl’(R?)

1 2\ 1P 2
1712, = / fldx = / (+p 2,
R? Rz (14 |x?)2

1 5
§C(/ —m,,dx) / (l—l—\x\z)m\f]zdx.
e (1) ) e

First integral is bounded for 1 < p <2 and m > 1. Case p =2 is clear.

1.1.1 The kernel representation of the fractional Laplacian

We recall the following kernel representation formula for negative powers of Laplacian. This is

nothing, but a fractional integral - for a € (0,2),

Vst =eo | L (14



Next, for positive powers, we have similar formula. More specifically, for a € (0,2),

IV|“f(x) = Cap.v. ; %@. (1.5)

see Proposition 2.1, [13]). Next, we have the following result, due to Cordoba-Cordoba. This is a

well known relation, and we ignore the proof.

Lemma 1.1.1. (Lemma 2.4, 2.5, [13]) For p: 1 < p < o0, a € [0,2] and f € W%P(R?),

L2V i = (1.6
If in addition, p =2",n=1,2,..., there is the stronger coercivity estimate
_ a 1 a.,.p
L2V A = IV gy (1.7

1.1.2 Littlewood-Paley operators

We need to quickly introduce some elementary Littlewood-Paley theory. To introduce the Littlewood-

Paley decomposition, we write for each j € Z,

Aj:{é ceR": 271 < €| ng“}.

The Littlewood-Paley decomposition asserts the existence of a sequence of functions {®;};cz € .

such that
supp CTDJ' CAj, &),(5) =®(277&), or D, = 2/"Py(2/x),
and
= 1, & eRMN{0}
), @(6)=
Sl 0, &=o.



Therfore for a general function y € ., we have

Y DHEWE) = W(E), for & eR"{0}.
Jj=—co
In addition, if ¥ € %, then the above equality holds for any £ € R". That is, for ¥ € %,

Z Cixy =y,

J=—00

and hence

For notational purposes, we define

Aif =®;*f.

The following Bernestein’s inequalities are useful tools in dealing with Fourier localized func-
tions and these inequalities trade integrability for derivatives. The following proposition provides

Bernestein type inequalities for fractional derivatives.

Proposition 1.1.2. Leq ¢ > 0, and 1 < p < g < oo,

o [f f satisfies
supp f C{§ eR": [E] < K2/}

for some integer j and a constant K > 0, then
(1
91 zagany < €243 flloan),

where C| is a constant depending on K, &, p and q only.

o [f f satisfies
supp f C {EeR": K12/ < |E| < K22}



for some integer j and a constants 0 < K| < K3, then

11
C1 2% fllzaey < NV fllramny < C22% 570 || f| 1o (e

where C; is a constant depending on K{,K>, o, p and g only.

As an application of Littlewood—Paley theory we prove (1.2) , which is a replacement of (1.1)
Proposition 1.1.3. Let p = o0 and B < n, then

[ < Ce(llfll ge +IAN 5-e)-
Proof. Let Xk?(&)

(1.8)
=Dy(2"

kE)F(E), where @ is as it is defined above, then

IOV Pl < ; 18V P £)| - +§6 1A (V)P £l

Z | A((V

We make use of the above Bernstein inequality several times to control each of these terms. Indeed,

< o —kB+nk( E

HFp- < Y2 kBIIAkaLwSZZ B H Acfll 5+
k=0
5k
< £l %Z PUmm) <clfl
In the same way,

> < kB ”k(ﬂl,)

ZIIA (VPO < Y2 Aifll-< Y2 B Akf] =
k=0 k=0 L
<

1A s 22"‘* =) < Il 5o



1.1.3 Commutator bounds

For future discussions we state some commutator bounds. Some are standard estimates, and some
are proven here. The classical by now product rule estimate, usually attributed to Kato-Ponce can

be stated as follows.

Lemma 1.1.4. Leta € (0,1) and 1 < p,q,r < oo, so that % = Cl]—l— % Then, there exists C = Cp g ra

IIVIIfelller < CpgrallllVI®fllzallgllr + 1IVI“gllzall f1lr)

The following commutator lemma is proved in [26] in details.

Lemma 1.1.5. Let 51,57 be two reals so that 0 < sy and 0 < 5o —s1 < 1. Let p,q,r be related
via the Holder’s 1% = Cl]—l— % where 2 < g < oo, 1 < p,r < oo, Finally, let V-V = 0. Then for any

ac€ [sp—si,1]
VIV, V- Vgl < ClIVIV [l | V]2 ) 1 (1.9)

In addition, we have the following end-point estimate. For s; >0, so >0, s3 >0and s <1, s3 <

1, sp < 851+ 53, there is!

[V V]2, V73V - V]el| 2 < CIV =V 5| 2. (1.10)
Lemma 1.1.6. For any integer m and o € (1,2), there is C = Cg, so that

VI, 1 P llizgeey < CNIEPT2 fllizgee)- (1.11)

'Note that in the statement of (1.10), one does not necessarily need precisely the form |V| =3V . In fact, the estimate
applies for any Fourier multiplier Q, with the property that ||QVi||z= ~ 273 ||V; ||z~




Proof. Recall, that for s € (0,2)

V.l ) = VP (ef) - gth—»ﬁ/f “ yéﬁ”@ﬁw—
f)=7) f)(8(x) —8(¥))
e [ = / |x yl”s i

Introduce a smooth partition of unity, that is a function y € C’(R), supp y C (%, 2), so that

Y v HE) = 1LE€RE 0.

k=—oo

Introduce another C; function W(z) = z2y(z), so that we can decompose

EP= ¥ Py )= Y 2w HE).

k=—c0 k=—o0

We can then write

F@>;=nw%ﬁmf=zfmw%wa*ﬂﬂa

o 2k f ( Y))
- l/ m ﬂ”z ”

)12 E) —w(2 )|
A= [ m;Wﬂ @

Introducing

we need to control

2
2 _ 2 _ 2k —
Hmy—-;éwﬁ@N%—Z/wyZZ&@)d—
o l+1o o 2
= 27°F d 27F d
zzl/leINZ] k>lz+:1o HE) ngZ/INZI k=1-10 HE)| o

2

+ ;/mwzl Z 22ka(§) dé =K +K+K;

k<I1-10




We first consider the cases k >/ 4-10. One can estimate easily F; point-wise. More specifically,

since in the denominator of the expression for F, we have | —y| > %]5\ > k=3,

R (&) <27%2+3) / FOIIE R y)|dy < C27H D £l 1y

whence

K < 2221 Z Z 2h(1- ||fHL2(|y|~2k1)2k2(17%)||f||L2(\y|N2k2)

k1 >14+10ky>1410

< ;;22m1n k1,k2)2k1 1-9) Hf”]}(‘y‘mzkl)zkzu_j)HfHLz(\y\NZkZ)
1 k2

CY 2O fIT o) S ClIEP 21
k

IN

where we have used Zl:l<min(k1,k2)—10221 < C22min(kik2),

For the case k < [ — 10, we perform similar argument, since

[Fe(€)] < C27"EF DK £]] 211t

So,

20 —1(4 3k 3k
K3 < CZZ 271t Z Z 2 leHL2(|y\~zk1)2 2HfHL2(|y|~2k2)
] ki <I—10kr<I—10

¢ k - ko
CkaZ23 1HfHL2(|y‘N2k1)23 2||fHL2(|y|N2’<2)2 (2-+0) max (ky k2)
1 k2

CY 2D o < ClEPE 5P
k

IN

IN

Finally, for the case | — k| < 10, we use

W) —w2 ) <27HE—y[VRRTHE ) < C27HE -y,



so that

- SO k !
Aozt [ g oty i
-2t [~y T
Thus,
| 2
2k
Ky < CZ ot “f‘X|y|~2k*|.|l—+% dg
1
< CZszHm%\y\Nzk |5 ”Lz (|€|~26)
k(4—at) 2
< CRA I e s il g
< c;z“ D1z e 2y < CIEPE 11
where we have used the Hausdorf-Young’s inequality
1
1 Xyt |.|1+%HL% < ||| ‘1+a|| 2w I 2 jmaty S CUF N2 pman)-

]

In the sequel we need to control the commutator [9;|V|~%,|€|?]. In fact, this commutator is
morally like [|V|'~%,|€[2], which was indeed considered in Lemma 1.1.6. However, there does

not appear to be an easy way to transfer the estimate (1.11) to it, so we state the relevant estimate

here.?

Lemma 1.1.7. For any integer a € (0, 1) there exists C = C, so that

1011V~ NEPIf Nl 2 < CUIENT ] 2 (1.12)

Proof. For the proof of (1.12), recall the representation formula (1.4). We will reduce to the same

2In fact, it can be reduced to a similar expression as in the proof of (1.11), so we prove them simultaneously.

10



expressions as above. With the partition of unity displayed above, write

(o)

OV IEPIF(8) = ca Y, 2% [0n|V| w2 )]f =

k=—oc0
_ .Y % v Lk ) _
= 0 X 20y [ e ve 0% [ =
o g [ G (W) v )
R Vil S & —ypa o

Taking absolute values and estimating yields the bound

v(2y) —w@*E)IIfO)] dy

@V < Y 2 [ MR

k=—oo

This is of course exactly the same expression as before for the Fy, witha :=1— %. Therefore, we

can apply the same estimates to obtain

1OHVI= 1EPIf |2 ray < CIIEN £l 2

This establishes (1.12). U

1.2 Gronwall’s inequality

In the following we frequently use an important relation in PDE’s concepts, called Gronwall’s
inequality. We shall use it in two different versions. First version, used in the regularity problem

is stated as follow,

Lemma 1.2.1. Let a, B and u be real-valued functions defined on the interval 1. Assume that 3
and u are continuous and that the negative part of & is integrable on every closed and subinterval

part of I. Then, If B is non-negative and if u satisfies the integral inequality
t
u(t) < afr) -I—/ B(s)u(s)ds, foranytel,
a

11



then,

u(t) < OC(I)—l—/atOC(s)ﬁ(s) -exp (/Stﬁ(r)dr>ds, foranytel.

The elementary proof of this lemma is as it follows.

Proof. define

v(s):exp(— / Sﬁ@)m) / B u(r)dr, sel.

V(s) = (fms) - [ Bontar )pis) exo (- [ pear).
<als) ’

Then

where we used the assumed inequality for the upper estimate. Since 3 and the exponential are

non-negative, this gives an upper estimate for the derivative of v. Since v(a) = 0, integration of

this inequality from a to ¢ gives

= [ ape)( - [ Bar)as

Using the definition of v(¢) for the first step, and then this inequality and the function equation of

the exponential function, we optain

a

/atﬁ(s)u(s)ds = exp (/atﬁ(r)dr> V() < /ta(s)ﬁ(s) exp </at[3(”)dr—/:[3(r)dr)ds.
o

N

Substituting this result into the assumed integral inequality gives the above Gronwall’s inequality.

O

For our argument on the time decay problems, we shall need another version of the Gronwall’s

inequality as follows.

Lemma 1.2.2. Let 6 > 1 >0,k > 0 and a € [0,1). Let A,A;,A3 be three positive constants so

12



that a function I : [0,00) — R satisfies () < Aje” "%, for some real y and

e 0(7=5)

min(1, |t —s|)¢

T
I(t) <A™ ° +A3/ ( e ®I(s)ds.
0
Then, there exists C = Cq,5 i x,y» SO that

I(T) S Ca,G,[J,K,'}’(l + |A1| + |A2| + |A3|)€_”T

The proof of Lemma 1.2.2 is rather elementary, but we provide it for completeness.

(1.13)

Proof. The proof is straightforward, by a bootstrapping argument. We show that every Lyapunov

exponent less than —u can be bootstrapped higher. First, relabeling 1(7) — (1 + |Aj| + |A2| +

|A3)~'1(7), we may assume without loss of generality that A| = A, = A3 = 1. Next, assume that

Y < w1 is a Lyapunov exponent, thatis I(7) < Ce™?*. We know by the a priori assumed boundedness

of I(7) there is such an exponent. Applying this in (1.13), we obtain an improved estimate for /(7).

Indeed,

es(o—x—y)

T
i < o MT L e OF d
(B)<e™+Ce /o (min(1, [r—s])e

If 6 — x—7y+#0, we have for 7 > 1,

t eS(0—K=7) 7—1 . |
/ i ds / HOK=Y) g | F(O—K=Y) o=k
o [(min(1, [z —s])* 0 1 |t—s2

IA

ST-1(0—Kk—7) _ 1

IA

C T(G*K*Y)‘
G _ K _ ,}/ —|— a70-7’<7ye

whence the bound

() < e " 4+ Cygcymin [ e FEHY) =0T
) b 7’y

It follows that min(u,y+ k,0) > ¥ is a new, better Lyapunov exponent than 7.

In general, we can keep 0 — Kk — ¥y away from zero (and so the previous argument valid in all

13



cases), if we readjust the 7y if necessary.

In practice, starting with ¥ = 0, we jump immediately to K by the previous argument, since
o — k > 0, by assumption. Since K < U, we can apply the same argument again with y = K.
At this point, either 2k > u and we finish off (by readjusting slightly y by taking it smaller, like
Y= 23—K, if it happens that, say |0 — 2| < 5). If not, that is if 2k < u, take ¥ = 2k to be our new
Lyapunov exponent and repeat. Eventually, for some ng, nok < u < (ng+ 1)k and we will reach a

Lyapunov exponent L. O]
At this point it also worth to recall the Young’s inequality,

Lemma 1.2.3. Let p,q > 0 be strictly positive real numbers, that satisfy 1—17 + Cl] =1, then,

AP B
AB< — + —. (1.14)
p q

Proof. The proof is quite elementary. Indeed, considering the fact that exponential function is

CONvex,

AB = oM(4B) _ Jn(a)+in(B) _ Ainar)+imsn) - L onar) 1) AP +Bq
D q p q

1.3 Operator Theory

This section is devoted to a simple presentation of the operator theory. In fact, it is restricted to
the materials needed in the sequel. We first state the Banach space version of the implicit function

theorem

Theorem 1.3.1. Let X,Y and Z be Banach spaces. Let the mapping f : X XY — Z be con-
tinuously Fréchet differentiable. If (xo,y0) € X x Y, f(x0,y0) =0, and y+— Df(x0,y0)(0,y) is a

Banach space isomorphism from Yonto Z, then there exist neighborhoods U of xy and V of yy and

14



a Fréchet differentiable function g : U — V such that f(x,g(x)) =0 and f(x,y) = 0 if and only if
y = g(x), forall (x,y) €U x V.

Next we define the closed linear operators. These operators are more general than bounded
operators, and therefore not necessarily continuous, but they still retain nice enough properties that
one can define the spectrum and (with certain assumptions) functional calculus for such opera-
tors. Many important linear operators which fail to be bounded turn out to be closed, such as the

derivative and a large class of differential operators.

Definition 1.3.2. [Closed Linear Operator] Let X, Y be two Banach spaces. A linear operator A -
D(A) — Y is closed if for every sequence {x,} in D(A) converging to x in X such that Ax,, —y € Y

as n — o one has x € D(A) and Ax = y.

Definition 1.3.3. Let L be a linear operator on the Banach space X, then the resolvent set of L is
defined to be
p(L)={A €C:(AI—L) isinvertable} (1.15)

and its spectrum
o(L)=C\p(L) ={A € C: (AI—L) isnot invertable}. (1.16)

Definition 1.3.4. Let X be a Banach space. A one parameter family of operators T(-), 0 <t < oo,

of bounded linear operators from X into X is a semigroup of bounded linear operators on X if
(i) T(0)=1,
(ii) T(t+s)=T(t)T(s) for every t,s > 0 (the semigroup property).

A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim || 7(t) —1I||x = 0.
t—0
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The linear operator A defined by

T(t)x—
D(A) ={xeX: limM exists}
t—0 !
and
T(t)x—x d'T(z
Ax = tim X=X _ATTWx) e D(A)
t—0 t dt =0

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Definition 1.3.5. A semigroup T(t),0 <t < oo, of bounded linear operators on X is a strongly
continuous semigroup of bounded linear operators if

HimT(t)x=x, for xeX.
t—0

A strongly continuous semmigroup of bounded linear operators on X is called a semigroup of class

Co or simply a Cy semigroup.

Lemma 1.3.6. Let T(t) beb a Cy semigroup. There exist constants w > 0 and M > 1 such that

IT|x <Me"™ for 0 <t < .

In the above lemma if w = 0, T'(¢) is called uniformly bounded and if M = 1 it is called a Cy
semigroup of contraction.

The next theorem, which is widely used in operator theory as well as the study of PDE’s, char-
acterizes the infinitesimal generator of Cyy semigroup of contraction. Conditions on the behavior of
the resolvent of an operator A, which are necessary and sufficient for A to be infinitesimal generator

of a Cp semigroup of contraction.

Theorem 1.3.7. (Hille—Yosida Theorem) A linear (unbounded) operator A is the infinitesimal gen-

erator of a Cy semigroup of contractions T (t), t > 0 if and only if

(i) A is closed and D(A) = X.
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(ii) The resolvent set p(A) of A contains R™ and for every A >0

1

RA:A)|x < +.
IR :A)lx < 5
Now let T'(¢) be a Cy semigroup satisfying ||7(z)|x < e® (for some ® > 0). Consider S(¢) =

e “T(t). S(t) is obviously a Cy semigroup of contractions. If A is the infinitesimal generator of
T(t), then A —wl is the infinitesimal generator of S(z). On the other hand if A is the infinitesimal
generator of contractions S(z), then A + @/ is the infinitesimal generator of the Cy semigroup 7'(¢)

satisfying ||T(¢)||x < e®. Indeed, T'(¢t) = e®'S(¢). These remarks lead us to the characterization of

the infinitesimal generators of Cy semigroups satisfying || 7'(¢)||x < e®'.

Lemma 1.3.8. A linear operator A is the infinitesimal generator of a Cy semigroup satisfying

IT(0)llx < e if and only if

(i) A is closed and D(A) = X.

(ii) The resolvent set p(A) of A contains the ray {A : 3A =0,A > w}and for every A >0

1
: < .
IRz Az < 5

An important aspect of the above lemma is range of the resolvent, say the ray {1 : (1) =

0,4 > w}. This is of a great use in chapter (2).

1.3.0.1 Gearheart-Priiss Theorem

Let A be the generator of a strongly continuous semigroup ¢4, t > 0 on a Hilbert space H. The
position of the spectrum G(e’A) of the semigroup is responsible for its stability: if 6(e4) C D :=
{z € C:|z] < 1},1 # 0, then the semigroup is uniformly asymptotically stable. However, in any
actual problem the generator A (and hopefully, its spectrum G (A)) is given, not the semigroup

¢, t > 0. The classical Lyapunov Theorem takes care of this problem: for a wide range of
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semigroups if 6(A) C C_ = {z € C: RZ < 0} then 6(e'!) C D,t # 0. This class of semigroups
includes analytic semigroups, most frequently arising in applications due to their connections to
parabolic problems for PDE’s.

There are examples showing that the aforementioned Lyapunov Theorem, however, does not
generally work, therefore one needs another tool to derive information about the linear stability
of the solution from the spectral information about the generator given by the linearized equation.

This is where the following Gearhart-Priiss Theorem is used.

Theorem 1.3.9. [Gearheart-Priiss Theorem] For a strongly continuous semigroup on a Hilbert

space, ®(A) < 0 if and only if {z: Rz > 0} C p(A) and sup{||(z—A) 71| : Rz > 0} < oo.
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Chapter 2

On the sharp time decay rates for the 2D generalized

quasi-geostrophic equation and the Boussinesq system

2.1 Introduction

The initial value problem for the 2D Navier-Stokes equation

wu+u-Vu—Au=Vp, x€2,t>0
2.1)
u(0,x) :=up(x),V-u=0

where u = (u1,up) is the fluid velocity and p is the pressure, is ubiquitous and much studied model
in the modern PDE theory. Basic issues like global well-posedness remain elusively unresolved in
spatial dimensions n > 3. In the case of two spatial dimensions though, the problem is globally

well-posed. This is mostly due to the vorticity formulation. We subtract two equations to get
8t(81 Uy — azul) +u- V(aluz — azul) + (alul + 82u2)(81 Uy — azul) +A(81 Uy — 82u1) =0.

Now if use the divergence free property dyu; + drup = 0 and define the vorticity @ = dru; —

d1uy then we will get the vorticity equation

o +u-Vo—Aw =0, xeR% >0
2.2)

0(0,x) := wp(x),

19



P
i

Many generalizations of this model have been considered, in particular to respond to modeling sit-

where the vorticity @, a scalar quantity, is given by @ = Vi = djus — dru1, where V- =

uations where the actual physical dissipation is different than the one provided by the Laplacian,
in particular in large scale atmospheric models and large scale ocean modeling, see [1, 8, 31]. In

particular, we consider the following “umbrella” model

dz+u-Vz+|V|% =0, xeR? >0,
(2.3)

u= (V") Bz v.u=o0.

where o > 1and 8 >0, (|V|*) 8 = VLm_ﬁ_1(|V|) =m_g(&), where m, is a symbol of order a,
see section 1.1 for precise definition'. These type of equations frequently arise in fluid dynamics
and as such, they have been widely studied, especially so in the last twenty years. We refer the
reader to the works [1, 3, 7, 8, 13, 21, 31, 44, 60, 72] and references therein.

A few examples, that we would like to emphasize as model cases, are as follows. The 2D

Fractional Navier-Stokes equation arises, if we take z=w and f =1,
o +u-Vo+|V|%o0 =0. (2.4)

If we let z = 0 be the temperature of a flow, & > 1 and 8 = 0 the resulting equation is the so-called
active scalar equation,

0 +u-VO+|V|%6 =0, (2.5)

where u; = —R0,up = R0, and Rj,j = 1,2 are the Riesz transforms, given by the symbols
mi(&) =i

'Note that it is a requirement that m_g_; (|V|) is a radial symbol of order —f8 — 1.
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The Boussinesq system, with general dissipations, reads

(

du+tu-Vu+|V|%%u=—-VP+0é&, xcR? >0,

100+u-VO+|VPo=0, xeR% >0, (2.6)

V-u=0.

\

where u is the velocity of the fluid, 6 is its temperature, P is the pressure and o, 3 > O are the
dissipation rates for the velocity and the temperature respectively.

We consider the equivalent vorticity formulation, with the usual scalar vorticity variable is
given by @ = dyup — dru;. For the purposes of this work, we will only consider the diagonal case

o = f3, that is in vorticity formulation, consists of the following coupled equations

(

o0+u-Vo+|V|%w = 0,0, xe€R?2, >0,

9,0 +u-VO+|V|*0 =0, xeR?2, >0, (2.7)

u= (V) le, V.u=0.

2.1.1 Previous results

A lot of work has been done on the question of well-posedness, regularity of the solutions to
these systems. We do not even attempt to overview the results, as this is only tangentially relevant
for the current work, but the following references contain lots of information about these issues,
[1, 8,9, 10, 26, 28, 29, 30, 31, 32, 35, 36, 40, 42, 55, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 73].
As the purpose of our work is to study the long time behavior of the said models, we discuss some
recent works on the topic. Most of the research has been done in the important (and classical)
Navier-Stokes case in two and three dimensional cases. As the global regularity for this model
2

remains a challenging open problem in 3D, some authors restricted themselves to weak solutions

or they considered eventual® behavior of strong solutions. In this regard, we would like to reference

2which may be non-unique
3that is, past eventual singularity formation
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the following works, [7, 17, 18, 21, 23, 43, 49, 50, 51, 52, 53].

In [50], the author has exhibited lower time-decay bounds for the solutions, which match the
upper bounds and are therefore sharp. The approach in [17, 18], for the same question, uses the
method of the so-called scaling variables. This was pioneered in [21, 7], although the idea really
took of after the work [17]. It showed not only the optimal decay rates for the Navier-Stokes
equation ( this was actually previously established in [6]), but it provided an explicit asymptotic
expansion of the solution, which explains the specific conditions on the initial data in [6], under
which there are better decay rates.

Here, we follow this idea, to provide an explicit asymptotic expansion for the two models under
consideration - the generalized quasi-geostrophic equation (2.3) and the Boussinesq system (in
vorticity formulation), (2.7). Note that we work exclusively in two spatial dimensions. There are
several reasons for this - 2D is the natural playground for (2.3), while the IVP for the Boussinesq
system, the three (and higher) dimensional case, faces the same difficulties as the Navier-Stokes
problem, namely absence of a global regularity theory. Moreover, we explore relatively low levels
of dissipation, which in some sense, brings the global regularity theory to its limits, and we are
still able to analyze the asymptotic behavior. Another interesting feature that we deal with is
the fractional dissipation. These have been studied in the recent literature, but there are certain
technical (and conceptual!) difficulties associated with them, that we deal with advanced Fourier

analysis methods.

2.1.2 The scaled variables

We now introduce the scaling variables, for the models under consideration. Basically, the method
consists of introducing a new exponential time variable 7 : ¢* ~ ¢ and the corresponding variables in
x are rescaled to accommodate this scaling, by keeping the linear part of the equation autonomous.
In this way, an algebraic decay in ¢ will manifest itself as an exponential decay in 7. As is well-
known, algebraic decays in time (especially non-integrable ones) are notoriously hard to propagate

along non-linear evolution equations, while any (however small) exponential decay, due to its
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integrability, is more amenable to this type of analysis.

Although what mentioned abbove is important for us, it is not yet the main purpose. In fact, as
we will see, our scaling creates a gap between the discrete and continuous spectrum of the linear
part of the scaled equation. This makes the analysis of the scalled equations more convenient. Here

are the details.

2.1.2.1 The scaled variables: the SQG equation

Consider the equation (2.3), and use the scaling variables to rewrite the variables in terms of

E=—"_ t=In(1+1) (2.8)
(141)a

We define new functions Z(&, 1) and U (&, T) correspond to z(x,¢) and u(x,t) as follows:

1 X
z(x,t) = (1+z)1+% Z<(1+t)<§c7ln(l+t)>’ (2.9)
u(x,t) = (1+i)1—& U ((I:I)[L,ln(lﬂ)). (2.10)

The choices of the parameters is clearly dictated by the stricture of the corresponding equation -

the goal is to ensure an autonomous PDE in the new variables. Indeed, a simple calculation shows

Z: 1 1 x 1421
“ = #EL o 280 e VeZ - ZJrHZ7

(1+1)*""a (1+1)* @ (1+1)e (1+1)*""a

1
u-Vz = —~U-VeZ
(l—l—l‘)erTl
We also have |V|%z = #W!O‘Z The proof is just simply a use of relation (1.5). Indeed,
(142)""
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— 1) —Z(—
- 1 (14+1)@ (141)a
v, — /Z(X) Z(y)dy: dy
vl R [x—y|*te (1+0)+5 /e e —y[re

Z(—)—7(—2
- (1+0)@ / ((1+t)5) ((1+t)5) dy
R? |
(

2, B-1 X ) 2+a 2
(140)* et 0E g (e
1 2(&)-2(&) 1
- 24 B-L /2 |§ _§/|2+OC dé, - yi B-L |V|aZ
(I+1)*"a« /R (141)"" =

Hence, Z(&, 1) satisfies the equation
Z:=%7-U-V¢Z @.11)

where

1 —1
LT =—|V|%Z+—E-VeZ+ <1+ﬁ—> Z. (2.12)
(04 o
Note that the relation u = (|V|+) "Bz transforms into U = (|V|*)"AZ. In addition, the property

V -u =0 clearly transforms into V-U = 0.

Next, we introduce the scaled variables for the Boussinesq system.

2.1.2.2 The scaled variables: the Boussinesq system

Similar to the SQG case, we use the scaled variables

&= ) T=In(1+1).

We define new functions W (&, 1), U(&, ) and O(&, 7), corresponding to @(x,?), u(x,t) and 6 (x,t)

as follows
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1 X
t) = In(1+¢
1
u(x,r) = U ——,In(1+1)
(1+1) @ (1+1)w
1
0(x,1) = — 0 ——In(1+1)
(1+1)@ (1+1)a
Then, we calculate
Wr 1 1 X 1
O‘)t et _ V W_— ,
(I+02 a (1402 (14pe  © (1+1)?
1 1 1
Vo = AVI*W.u-Vo = —=U -VW, 0,0 = ———0,0
’ | () (1+t)2 | ‘ yu o (1+Z)2 y 01 (1—|—Z)2 |

We also have |V|*® = WWI“W. Indeed by (1.5)

Q—

_ W(—"—)-W(—)
Ve = / o) — o) , 1 / (14+1)& (ENLIPN
R R2

S Y =y

X _ Yy
_ (4@ / Wit VS g
R |

24_% X _ Y |24« 2
(1+1) (1+1)@ (1+z)$| (1+1)
_ 1 (é)_W<§/) délz 1 | |Oc
(1+1)* Jpa |§ =&/ (1+1)?
For the 6 equation similar computation shows that
® 1 1 x 2—1
Gt - T3_l - a 31 1 'V§®_ ;x_l®7
(1+1)" @ (I+1)""a (1+1)a (1+1)°"@
1 1
V|6 = ——|V|*0®,u-V6=——-U-V0O.
(1+1)°"@ (1+1)°"@
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Therefore W (&, 7) and ©(&, 7) satisfy (with the . defined above in (2.12), but with f = 1)

We=SW—U-VeW+3,0
(2.13)

O;=(L+1-1)0—(U-V:0)

1
a

Clearly, the relations V-« = 0 and u = (|V|*) '@ continue to hold for the capital letter variables

as well, that is V-U = 0 and U = (|V|*)~'W. In addition to the above equations we can define

pxt)=—=~L—P < - log(1 -l—t)) and find the following equation for U (&, 1),
(141> @ (I41)a

UT:(Z—é)U—(U-VgU)—VP%—@-eg (2.14)

2.1.3 Main results

The main goal of this work is to establish the sharp time decay rates of (various norms of) the
solutions to (2.3) and (2.7). Our results actually provide explicit asymptotic profiles, of which the
precise asymptotic rates are a mere corollary.

Since it is clear that the equation for 6 in (2.7) is basically4 (2.3), it is essential that we start
with (2.3). This is the content of our first result, but in order to state it, we shall need to introduce a
function G : G( p)= e~ 171 see section 2.1.4 for proper definitions and properties. This is a variant

. kP .
of the function e 2, or the Oseen vortex in the case ¢ = 2.

Theorem 2.1.1. (Global decay estimates for SQG) Let 1 < o < 2, and o« + B < 3. Then, assuming
that the initial data z is in LZ(Z) N L, the Cauchy problem (2.3) has a unique, global solution in

L?>(2) N L. Moreover; for all € > 0, there is a constant C = Cop,e and forall p € [1,2] andt > 0,

C
) |l < T3 2 . (2.15)
(141)a ar

Moreover, if B > 1, we have that (2.15) holds for the full range of indices 1 < p < oo,

B fR2 20(x)dx

ete. ) (1+t)% G<(1+t)

RI—

“albeit the relation of u with 6 is not a direct one, but through the vorticity ®
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For generic initial data, that is [, zo(x)dx # 0, we have

2(p—1)

2z, ) ler ~ (T42) o, 1< p<2.

which extends to all 1 < p < oo, provided B > 1.
Remarks:
e The condition B > 1 is probably a technical one, but it is needed in our arguments.

e In [17, 18], the authors go one step further in deriving explicitly the next order asymptotic
profiles. The analysis required for this step is performed in higher order weighted L? space.
This cannot be done, since the function G does not belong to the next order weighted space,
namely L?(3), see Proposition 2.1.9. This is in sharp contrast with the case & = 2, considered

in [17, 18], where the function is in Schwartz class.

e Related to the previous point, we need to address a problem, where the function G and the
heat kernel of the semigroup e*< have limited decay at infinity. Thus, any attempt to use
the dynamical system approach in [17] to construct stable manifolds faces serious obstacles.
We take a completely different approach to the problem in that we use a priori estimates and

estimates on the evolution operator to establish the asymptotic decomposition.
Our next result concerns (2.7).

Theorem 2.1.2. (Global decay estimates for Boussinesq) Let o € (1, %) Consider the Cauchy
problem for (2.7), with initial data wgy, 8 € Y := L*(2)NL*NH'(R?). Then, the Cauchy problem
(2.7) is globally well-posed in Y - that is for every t > 0, the solution (w(t),0(t)) €Y x Y.

Moreover, for every 6 > 0, there exists C =C(a., 3, ||wol|y, ||6olly), so that for all p € [1,2] and
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forallt >0,

03 ,

20 1G(<1+z ) %(O)G(mr)é) C

[w(t,-) — 11 - 2 lzr < 6 3 2 g7
1 41)a (141)a (141)e @

16(z, % | < T (2.16)
1+1)a (I4¢)a o™

where 71(0) = [p2wo(x)dx,15(0) = [z 60(x)dx. In particular, if 1,(0) # 0, we have

2 He(t")HU’ ~
& (1+1)

Iw(t, )| ~
1+1)

Qluo| =—

.

Qo
S

Remarks:

e As in Theorem 2.1.1, the results can be extended to provide asymptotic expansions for w, 6

in the norms L”, p € (2,00), with the exact same statement.

e Note that the decay rate (1 + t)l_% in the expression for w is dominant over (1+17)” @

e For o € (%, %), the correction term — (0)2 G ~— | is faster decaying than the error term
(I4+1)a@ (141)

and we can state the result as follows

w(t,) — %(0) ——d
Iwi(z, ) (1+)%7 1G<

63 2 5

et

SIE

(1+1)

In this section we provide the essential tools for the proof of the main result. In section (2.1.4)
some useful estimates regarding the function G(-) are given. As it is clear from the main result,
this function plays an important rule through the chapter. In section (2.1.5), we study the operator
Z - we establish the basic structure of its spectrum, as well as an explicit form of the semigroup

< . The semigroup is shown to act boundedly on certain weighted L? spaces. This is helpful for
the study of the non-linear evolutions problem, but it also helps us identify the spectrum, through

the Hille-Yosida theorem, see section 2.1.8
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In section 2.2, we develop the local and global well-posedness theory for the generalized quasi-
geostrophic equation, both in the original variables and then in the scaled variables. This is done via
standard energy estimates methods. Even at this level, the optimal decay estimates start to emerge,
in the scaled variables context>. Our asymptotic results for the quasi-geostrophic model are in
section 2.2.3. In it, we use the a priori information from Section 2.2, together with new estimates
for the Duhamel’s operator to derive the precise asymptotic profiles for the solutions. For the
Boussinesq system, we provide the necessary local and global well-posedness theory in Section
2.3. Some of these results are basic and could have been recovered from earlier publications.
Others provide new a piori estimates for the scaled variables system, which are used in section
2.3.4. In section 2.3.4, we provide the proof of our main result about the precise asymptotic

profiles for the Boussinesq evolution.

2.1.4 The function G

The function G defined by G( p)= eIl p € R? will be used frequently in the sequel. We list and

prove some important properties.

Lemma 2.1.3. Forany p € [2,00] and o € (1,2),
(L+1E1%) G(E), (1+[EP)VG(E) € L (2.17)

In particular, G,VG € L'(R?) N L>(R?).

Note: For a € (1,2), the function G does not belong to L?(3), due to the lack of smoothness

of G at zero (or what is equivalent to the lack of decay of G at oo).

Proof. For the L? estimate, ||G]|;2 = ||G||;2 < co. Since G is a radial function

. e 1 o«
IEPGE 2 = 18,G(p) 12 = | Ape ||L2=H(3pp+53p)(e P2

SBut at this point, we cannot yet conclude the optimality of these estimates, as we are missing an estimate from
below.
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But, (dpp + %ap)(efpa) — _a(a—1)p% 2 P" 1 o2p2@ 1) P" Therefore,

IEPGE)]2 < i+ o, where Iy = [|p® 2 P12y, o = [P e P2, We have

pdp)’
! 1 © 2(a-2)+1,-2p%

Since 2(2 — a) — 1 < 1, the first term is bounded. The second term is also bounded by the expo-
nential decay, whence /; is bounded. The second term, I, = ||p2(@~De—P* leﬁ( pdp) is also bounded
- no singularity at zero and exponential decay at . This proves the L? estimate.

For the L estimate we can use the Hausdorf-Young’s to bound |G|/~ < ||G||;1 < eo. Similarly,

11EPGE) = < 1A,G(p) |l <
< ala-1) / p* e P pdp + o / p2 @ De="pdp
0 0

< a(a—l)/ p“lepadp+oc2/ p2% e Pdp < oo,
0 0

Now the interpolation between L? and L™ yields (1+ |£]?) G(&) € Lg :

Regarding the claims about VG, it is easy to see that |||E|?VG||,;2 = ||Ap[pe"p|a]||Lz < oo,

2< p<oo,

Indeed, the last conclusion follows easily from an identical argument as the one above, as the
central issue was the singularity at zero for [|A,e~PI"|| . Now the situation is better as we multiply
by p, which actually alleviates the singularity at zero. Similar is the argument about ||| >V G|,

we omit the details. O]

The following lemma will be used frequently in the next sections - it is an easy consequence of

the Hausdorff-Young’s inequality.

Lemma 2.1.4. Let oc > 0, then for anyt >0 and 1 < p < oo,

le= M flle < C|lfllee (2.18)

a _1
[V fll < |l 219
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Proof. Clearly,
ewﬁﬁa/@u—wﬂw@

— ~ 1 o
where G;(p) = G(t@p). Then [l V" || < [|Gill1 I fl|r = CI|fllzr. where C = |G 1 g2)-

le™ MV fllpr =1

/VGwﬁc—wvomﬂ < E |,

Ly

where C = || VG| 1 2. O

2.1.5 Spectral theory for .¥
The following result discusses the spectrum of . acting on L?(2).
Proposition 2.1.5. Let .Z be as defined in (2.12), then
1. The discrete spectrum: Let k € NU{0} be fixed and 6 = (01, 03) be such that |c| = o1 +

0, = k. Then the function ¢ (&) defined by

05(€) =010, G, (2.20)

is an eigenfunction of £ related to the eigenvalue A = 1 — 375#. As a consequence, Ay

has multiplicity of at least k+ 1.

2. The essential spectrum: Let u € C be such that Ry < —é and define, Y, € L? such that

Vi (p) = |p| %HeIPI", 2.21)

Then y,, is an eigenfunction of the operator £ with the corresponding eigenvalue® A =

1+u— %. As these eigenvalues are not isolated, they belong to the essential spectrum, so

Goss(L) D {;L €C: %A < 1—%}.

%Note however that all this eigenvalues are not isolated, hence they are in the essential spectrum.
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Remark 2.1.6. We show later (see Lemma 1 below) that in fact, the operator £ has exactly one

3— ﬁ

simple eigenvalue Ay = 1 — corresponding to the eigenfunction G € L? (2), while the rest of

the spectrum has the form of
o(L) = {/1 €C:RA < 1_ﬂ}u{1_—5

Proof. Regarding discrete spectrum, we start with a calculation, which will allow us to identify

some of the eigenvalues. Let ¢(&) be a radial function, i.e. go(p) = g(|p|). Then

Zair) = —Wﬁéé-/@o(m(w‘i) folp) =

= pl“Bo(r) = olp) - Zp]a wip)+ (14520 ) i -

— Ipl”&(lp) - 2dlp) ——Zp]g ) 2 (14220 ) o) =
- (1+E2) 6+ (—|p\“g<|p|>—arp|g'<|p\>) e
Now if g satisfies,
~Ipl"g(lph) ~ 1| € (1p) =0 2.23)

then clearly A = (l — %) is an eigenvalue for .Z. The solution of (2.23), gives the eigenfunction,

do(p) =e P" or go =G

Now, let ¢ be an eigenfunction corresponding to the eigenvalue A, = ( 37§+k> , that is

Lo(E) = (1 - w) " (2.24)

o

Taking a derivative d ;in (2.24), we obtain
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(1- 20 ) g0 —a,.za0) -

3— k
)

- ¥+ 3 Vo (1
= IV 20t g & TG00+ (1 0,00(8)

1
= 3[8,%] + aaj(Pk.

It follows that

L[] = (1 - S_B:‘(IH 1)) 9Pk

It follows that <1 — %) is an eigenvalue, corresponding to an eigenfunction d;¢. Thus, we
have identified a family of eigenvalues and eigenvectors as follows. Fix k € N, and let (01, 0,) be
so that 01 + 0, = k. Then, by induction, for the function ¢ := 9, 5>y, we have (2.24).

This finishes off the characterization of the discrete spectrum. Note that what we have proved
so far does not guarantee that there is not any more discrete spectrum, but merely an inclusion, as
stated.

Regarding essential spectrum, we compute @L From the calculation (2.22), we have

—

Lyu(p) = (u+ 1 +ﬁT_c3> Yu(p),

whence Y, is an eigenfunction. Indeed, vy, € L?(2), when Ru < —é. This is easy to see with a

computation similar to the ones performed in Lemma 2.1.3.

X = 1o qu —p@
H!é\zwu\liz:HApllquiz:/o |<app+58p)p e P P pdp.

The worst term (when o > 1) is exactly fol p_(3+2°‘“)dp, which converges for Ry < —é. [

Figure (??) shows the spectrum of the operator .Z in the spaces of L2(2). As it is clear from
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-0.54

Figure 2.1: Spectrum of .Z in the space L?(2)

the figure there is one isolated eigenvalue Ag = 1 — #, and the rest of A;’s lie in the essential
spectrum.

Before move to the next section, we would like to emphasis that the eigenfunctions of .£*
correspond to the discrete eigenvalues of . are given by the set {1,&,--- &K ...}, Indeed, for

any j, (£L*&7,0/G) = (§7,.29/G) = A;(E/,9/G). In other words L*E/ = A;&/.

2.1.6 The semigroup e¢*<

The following proposition yields an explicit formula for the semigroup <. This is a variant of

the formula displayed in [17], in the case ¢ = 2,8 = 1.

Proposition 2.1.7. The operator £ defines a Cy semigroup on L*(2)(R?), ¢*Z. In fact, we have

the following formula for its action

(Zh)(p) = 7@l feip), (2.25)
(1) _
¥ € o E—n z
= - G o d7 226
@“neE = < L (a(r)})f(e n)dn 2.26)
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where a(t) = 1 — e ". In particular, for 1 < p < eo,

el < cd' =T @) £l 2.27)
e
12V flr < S fll (2.28)

Q
—~~

O]
SN—

I~

Remark: Note that a(7) ~ min(1, 7). This will be used frequently in the sequel.

Proof. The generation of the semigroup would follow, once we prove that the function
ﬁ —

g:8(t,p) 1= 1= )7 aOIPI" (. o~ ) satisfies 9:8(7, p) = Lg(t,-). Clearly, 3(0, p) = f(p),

s0 2(0,&) = f(&). Next, we compute d:8(7, p). We have

arg’\(f p)=

where we have used the relation @'(7) = 1 — a(t). Next, by (2.22), we have

— e _3 o~
Zg(t,-) = —|plp ——Zp] ig(p (HBT)g(p)-
But,
1 2
— ) pdiglp) =
aj:ZI J7] ( )
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Altogether,

—_— ~ - 3 ~,
Zele) = ~lplgw)+ (14527 ) at) +aolpian) -
1 T N T — a
— eV, (- o)t 173 ma@Ipl”,
An immediate inspection reveals that d;:g(, p) = /g(?,) (p) and so the semigroup formula (2.25)

is established. The formula (2.26) is just a Fourier inversion of (2.25). Regarding the estimate

(2.27), we proceed as follows

% _1-B z 1_1=B8_2
[ Al < e 7ETNG, Lyl f (e )l = e TE Gl 1l

For (2.28), note that integration by parts yields

(1-F)e _
Tga — e o G & n a o d —
e = [ (amé @i )(eEn)an
=2 -1 k4
g aG o d )
a(T)% /]RZ J a(‘L’)é)f(e 77) TI
whence o2 |
1-=F -2t
(™ V(&) < — VGl fllze-
a(t)e

O

We need a variant of Proposition A.2 in [17], which discusses the commutation of the semi-

group with differential operators.

Lemma 2.1.8. We have the following commutation relation for ¢**

Ve™ = eae™V (2.29)
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Proof. Let u(x,t) = ™% f(x), then u satisfies the following equation

ur = ZLu,

u(0,x) = f(x).

Clearly, taking a derivative é?j in (2.12) yields, for j =1,2

(aju)f = 8](.,2”14) = gaju—F éaju,

dju(x,0) = 9;f(x),
which has the solution dju(x, 7) = T2 +3] djf(x). In other words

Ve' f(x) = en "XV f(x).

2.1.7 Semigroup estimates

We need to address an important question, namely the behavior of the bounded operators e™%

on L? (2). The next Proposition does that. More precisely, we are interested in the decay of the
operator norms ||¢%Z || 12(2)->12(2)- Importantly, better decay estimates hold, when the functions

have mean value zero. The long proof of this proposition is postponed to Appendix (A).

Proposition 2.1.9. Ler f € L*>(2), f(0) =0and y= (11,12) €N2,|y| =0,1and 0 < € << 1. Then
there exists C = C¢ > 0, such that for any T > 0,

4-p

T
—meHLZ(Z)v (2.30)

IV (€™ f)ll 2 < C
a(t)e
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or

V7 (€™ H)li2@) < Cllf 2y (7 ) (231)

2.1.8 The decay estimates for ¢™< give a description of the spectrum of %

In this section, we show that the spectral inclusions in Proposition 2.1.5 are actually equalities. We

also compute explicitly the Riesz projection & onto the eigenvalue of . with the largest real part.

In Proposition 2.1.5, we have already identified G as being an eigenfunction for .Z corresponding
3-B

to an eigenvalue Ao = 1 — ==. On the other hand, applying Proposition 2.1.9, for functions with

£(0) =0 and y = (0,0), implies
4B
HewaLz(Z) < Cfe< ’ +£>T|’f\|L2(z)~ (2.32)

Denote the co-dimension one subspace Xy = {f € L*(2) : £(0) = 0}. Clearly, the operator .# acts
invariantly on Xj, since for every f € L?(2) : [ f(§)d& =0, we have [, & - Vfd& = 0, whence
[ Z1(E)dE =0,

Introduce %) := .Z|x,, with domain D(%) = D(Z) NXo = H* NXp. By the Hille-Yosida
theorem, this estimate (2.32) implies that the set {4 : RA > <1 - #)} is in the resolvent set of
%, since the integral representing (A —.%)~!, namely f(;o e AT fdt, converges by virtue of
(2.32).

Combining this with the results from Proposition 2.1.5, we conclude that
o(ZL)N{A:RA > (1 - #) } is a singleton - the eigenvalue g = 1 — %, which is simple, with

eigenfunction G. We conclude the following lemma.

Lemma 1. For the operator £ acting on L? (2), there is the following description of its spectrum

G(g) = {1 —%}Ucess(g); Gess(g) = {)' : 9{1 S (1 _%)}’
3-B

Its Riesz projection & corresponding to the largest (real-part) eigenvalue Ay = 1 — =5, is given
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aue)=( [ reae) o

We just need to show the part about the normalization of Z. Indeed, since 73 f = (G,1) Py f =
G(0) Py f = Pyf, since G(0) = 1.
Denote the projection 2y = Id — &y over the complementary part of the spectrum, so that
Sy = 20.L2. Also, 2 : L>(2) — Xo. Now, (2.32) can be reformulated as
1—#4—8 T
VIt <t —— 2.33
IVTe™ 0 fllr2) < Ce 1 lr22)- (2.33)
a(t)e
for any function f, since e f = ™ 9y f and the entry 2o f has mean value zero, so (2.32) is
applicable.
In addition, we can derive estimates for the action of the semigroup < on L?(2), without the

crucial mean value zero property f(0) = 0.

Proposition 2.1.10. Let f € [? (2). Then, there exists a constant C, so that

1-38)¢

e o
IV (e f)ll 22y < CT||f||L2(2)- (2.34)
a(T

R=

Proof. We use the decomposition

Thus,
L f = (£,1)e" 1) G 1 %] 2y

It follows that

39



4-p

IA

_3-B
A DN G2+ Ceel ™ ) fl

le™ fll22)

< Ce D fl ),

where we have used (2.33) and [(f, 1)| < C||f{[;2(2). Similar estimates can be derived, as before,

for V?e®™ | we omit the details. O

2.2 Local and global well-posedness of the SQG and its long term behavior

The local and global theory of the Cauchy problem for SQG has been well-studied in the literature.
Local and global well-posedness holds under very general conditions on initial data. Regardless,
we will present a few results for our problem (2.3). This is necessary, since we assume a non-
standard relation between u and z, but also because we need precise properties, beyond the scope
of the well-posedness. Then, we will turn to properties of the rescaled equation, (2.11). We will
do so, both in L? spaces as well as in L?(2) spaces - the reason is that we will use some of our
preliminary results as a priori estimates in the subsequent lemmas.

Our first results are about the well-posedness of the standard model (2.3) in L? spaces.’

2.2.1 Global well-posedness and a priori estimates in L” spaces

Lemma 2.2.1. Suppose that zo € L' L™ =: X. Then, (2.3) is globally well-posed in the space X.

Moreover, for every p € [1,00], t — ||z(+,1)||Lr is non-increasing in time.

Proof. We first prove the local existence of the strong solution in the space C([0,7);X), that is,

with T to be determined, we are looking for a fixed point of the integral equation

t
2(&) =V - / e IV (u-2) ds. (2.35)
0

"The results can be made more precise, in individual L? spaces, rather than in all L” spaces. We will not do so
here, because our goal is to extend to L?(2), which is yet smaller space.
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—1|V|*

According to Lemma (2.1.4) |le 20/l 1Az < Collzoll 1z~ Forany T >0and 7 € (0,T), con-

sider

t
0(z1,22) ;:/ ef(tfs”v'aV(m -72) ds,
0

where u; is given by u; = (V) "Pz,. Forr € (0,T), using (2.19)

t t
0G0 2y = | /0 e IV r-z) dsly <€ / -1 22) 1 ds

0 (t—s)a

_1
< Ct'"w sup Jui(s,:)||e= sup |Jza(s, )| <
0<s<T 0<s<T

1
< CeT' @ sup (lzi(s, )] 2.+ llzi(s, )| 2,) sup |lz2(s, )|l
0<s<T LB LB " o<s<T

_1
< CT'"@ sup |lz1]lx sup |lza]lx-
0<s<T 0<s<T

where we have used the Sobolev embedding estimate (1.8). Similarly,

_ 1 _ 1
10(z1,22)|[1= <CT'"@ sup [luy||= sup ||z2|z= <CT'" = sup |lz1]lx sup [zl
0<s<T 0<s<T 0<s<T 0<s<T

Finally, following similar path, we also have

_1
10(z1,21) — O(z2,22)|Ix < CT' & (||z|lx + ||z2]|x)]lz1 — 221

Upon introducing Y7 := {z : supo,<7 [|z(,)||lx <2Co|z0]|x } and taking into account the estimates
above, we realize that the mapping (2.35)has a fixed point in the metric space C([0,7],X), for small
enough T = T(||zo||x ). In fact, the argument shows that T ~ ||Z0||;%.

For the global existence, we need to show that the r — ||z(¢,-)||z» does not blow up in finite
time. In fact, we show that the r — ||z(z,-)||z» is non-increasing, which will allow us to conclude

global existence as well. To that end, we dot product the equation (2.3) with |z|P =2z, p € (1,) to

41



get

1 _
~alalt+ [ 91 2z o
p R?

By the positivity estimate (1.6), we have [, |V|*z- |z[P"%2d& > 0. Therefore, d;|z||}, < 0, and
t — ||z(¢,-)||» is non-increasing in time. For p = 1,p = oo the monotonicity follows from an

approximation argument from the cases 1 < p < co.

]

Our next result is about a priori estimates in L” spaces, but this time in the rescaled variable
formulation, (2.11). Note that the global existence of the rescaled equation is not in question
anymore, due to Lemma 2.2.1. However, we show fairly precise decay estimates for the norm of
the solution Z. This fairly elementary lemma already shows the advantage of the rescaled variables

approach and its far reaching consequences.

Lemma 2.2.2. Let Zy € L' NL>(R?), o € (1,2), 0 < B <2 and p € [1,). Then the unique global

strong solution Z of (2.11) satisfies

(2 _q_B-t
1Z(2) |10 < [|Zo||zre " e~ (2.36)

Proof. If we dot product (2.11) with Z|Z|P~2, we have by the positivity estimate (1.6), Jg2IVI%Z-

|Z|P~2Zd& > 0. Furthermore, using the divergent free property of U (&)

1d 1
——1Z|f, < = [(E-VeZ)Z|Z|P72dE — | (U-Ve2)Z|Z|P2d
o A A e AUR A
B—1 B—1 2
1+ ZIl7, = (1+———— ) ||1Z|]¥ 2.37
b (B2 iz = (14520 2 e @37
therefore, we arrive at
1d 2 B—1
~ Nz, 4+ (= —1——)]|Z||%, < 0.
a2+ (o 1= E g <
Now we use the Gronwall’s inequality to finish the proof. O
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The above lemma shows a priori bound for || Z(t,-)||r, for any p € [1, 0], and a decay rate for

2

a1 On the other hand, as we shall see

p< #[H, but it is not giving any decay rate for p >
later, the decay rate predicted by Lemma 2.2.2 is in fact optimal for p = 1, but certainly not so, for
any other value of p. We can bootstrap the results of Lemma 2.2.2 in the next lemma to find, what

it will turn out to be, the optimal decay rate® for any p > 1.

Lemma 2.2.3. Let Zy € L! OL“(RZ),l <p<owand o€ (1,2), a+ f < 3. Then, there exists

constant C = C, o g, so that the unique global strong solution Z of (2.11) satisfies
-
1Z(7,)llzr < CpapllZollping-e™ % (2.38)

Proof. Note that it is enough to prove (2.38) for p =2" n=1,2,.... Indeed, since we have already
shown (2.38) (this is basically the statement of Lemma 2.2.2) for p = 1, the result for general p < o
will follow from the result for p = 2", by applying the Gagliardo-Nirenberg’s inequality between
p=1land p=2"n>>1.

So, assume p = 2", so that the estimate (1.7) is available to us. Taking again dot product
|Z|P~2Z and taking into account (1.7) which implies [, |V|*Z-|Z|[P~2Zd& > p~!(||V|2[27/?]||%,.
We further add C||Z||7,, for some large C, to be determined. We have

1

d 1, B—-1 2
p p > 21112 p
ezl el + et < (e B 2 Y,

By Sobolev embedding, we have %"‘ |Z ||Z 2 < %H V|2 [zr/3) ||1%2 By Gagliardo- Nirenberg’s, with

= it IZlw < ||Z||Z

Y= ra , 1Z Hify, whence by Young’s inequality

2
2—a

8for generic data
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1d c p—1 2 1-
e L (o e it

2—o o 04 (Xp

1

SN GIEL
< &lZ]”,, + e 1ZII7
L2—« 80]—

<

and & > 0 is a fixed number, say we select it &y = %"‘ Then

B—1 2\ 1-7
1 d <C+1+T—a—p)
;EIIZH’ZﬁCHZII{p < 1]l

1

(cH1+B2- 2™
P _ 3—B—a
< 1Zo[|7, &P )

Y

Iy
€

where we have used Lemma (2.2.2) to estimate ||Z(7,-)||,1. Denoting u := (37[;70‘) > 0, select
C=u+1. We have

I'(7)+ p(u+ 1)I(t) < D|Zo|| e,

1
» e (u+2+%—alp) =y L -
where I(7) = ||Z(7)||;,,. D=p "7 7 . Now we use the Gronwall’s inequality to

c&fy

derive the estimate

D
I(7) < e PHHDT1(0) + =1 Zo||P\ e PHT.
P

Taking p'" root and simplifying yields the final estimate

1 1
D\ r ~ D\ » ~
1Z()[|zr < (1 Z0]|r + (;) 1Zo]|)e 7 < (1+ (;) MZollping=e™*

For the case p = oo, we take limits in the previous identity, for fixed T > 0, as p — c. Note that
1

lim,_e (%) P 1, so (2.38)holds true in this case with C = 2. [
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2.2.2 Global solutions and a priori estimates in L?(2)

From the previous section, we know that the SQG equation in its standard form, namely (2.3), has
global solutions in L”. Thus, the rescaled equation (2.11) also has unique global (strong) solutions
in L”. We now would like to understand the Cauchy problem in the smaller space L2(2). In
particular, even if the initial data is well-localized, say Z(0,-) € L?(2), it is not a priori clear why
the solution Z(7) will stay in L*(2) for (any) later time 7 > 0. In other words, one needs to start
with the local well-posedness for (2.11), and then we shall upgrade it to a global one, by means of

a priori estimates on [ Z(7)||12(2)

Theorem 2.2.4. Suppose that Zg € L*(2)(R?*) N L™ (R?) =: X. Then (2.11) has a unique global
strong solution Z € C°([0,0]; L?(2)(R?) N L=(R?)), with Z(0) = Zy. In addition, there is the a

priori estimate
3

1Z(D) |22 < Ce™™ IIZollL2 2L (2.39)
where C is an absolute constant.

Proof. We set up a local well-posedness scheme for the integral equation corresponding to (2.11),

with initial data Z(0) = f, namely
T
Z(t) =" f— / TILV (UZ) ds, (2.40)
0
where U = Uz = (|V|+)~BZ. We have, according to (2.27) and (2.34),
T.¥ .Y (1-LBye | 1-ELyr
e fllzy + 1€ flli= < C(e" @ " et ") fll 122) e
Thus, with T <1 to be determined later, set

Yr:={Z(t,) €X: sup ||Z(s,")||x < 2C(€( ) 4ol )||f||X}
0<s<T

where the bound in Y is selected to be twice the value of the bound above, at T = 1. For the
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non-linear term, we have for each 7 € (0,7),

(1-2L) (z—s)

T T
_ e
||/O TIEN Uz, 2o) ds|| 1 SC/O C Uz, (s)Z2(s) || 1~ds <

a(t—s a

T
1
< Csup Unlle s |Zallee [ ——ds <
0<s< 0< 0 (T—s)

< cT'a sup (|zi] 7+8+HZl|| 2-¢) sup |2z~
0<s<T 0<s<T

1
< CT'"@ sup | Zi]lx sup [|Z]lx,
0<s<T 0<s<T

where we have used (2.28), e(l_¥)(1_s) <3,a(t—s)=1-— e (T75) o (t—s),for0<s< <1,
the Sobolev embedding estimate (1.8) and finally the fact that X = L?(2) NL> < L' N L. For the

other norm in the definition of X, we have by Lemma 2.1.8,

T T
s _
”/O el? MV-(UZI -7) dSHLZ(z) :/0 e

T 1= (1)

L Uz, 2) || 12 ds

Tea el
<c / UL (5) Za(5) 2z ds <
0 a(t—s)e
T
< C sup Uzl sup 126z / ds<
0<s<T 0<s<T 0 (T—S)a

1
< CT'" @ sup ||Zx sup 1Z2] 122
0<s<T 0<s<T

Having these two bilinear estimates allows us to conclude that for sufficiently small 7', of the form
~ I fllx® (whlch should also be taken 7 < 1), we have local well-posedness in the space X.
Regarding global existence in X = L?(2) N L*, we obviously need a priori estimates for the
solution to prevent potential blow up. We already have those in L™ and in L?, by the results of
Lemma 2.2.3. Thus, it remains to control the norm J(7) := [ |€|*|Z(7,&)|?dé&. To this end, take

a dot product of the equation (2.11) with ||*Z. We have

Lo / E1Z2dE + / EV]9Z - 2dE =
- _/g VeZ)|E[*Z dE — /U VeZ)|E[*Z dE + (1 /\€|4sz<§
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We first analyze the terms on the right hand-side. Integration by parts yields

o [ € veleizas = [ gz
- [w venierzag =2 [ |- v)zae.

Note that by Young’s inequality, we have for all € > 0

[ 1gPE - vzag < [ 6P 101218 < e [ 18142 E)aE +Ce U2

By the Sobolev embedding (1.8) and Lemma 2.2.3, we have

3-B—a
U= < CIZI] 2,0+ 1ZI| 2_,) <Ce a7,
LB LB

so for every € > 0, we have the estimate

37[37(1)

!/\élz(@U)szél gs/|§\4zz(§)d§+c83e6f< @

The term [ |&|*|V|%Z - Zd& will give rise to some harder error terms (involving commutators
between the |V|%/2 and the weights), which we need to eventually control. It turns out that the most
advantageous way to reign in the error terms is to split the weight |&|* between the two entries.

More precisely,

[ 1erviez-zag = [ 18PIVI72: |£Pzag = (EPIVI VI 2], 2) -
(VI2(E]VI*2), 1EP2) - (V1% [PII91%2), & P2) =

— (EPUVI2) VI8P 2) - (V12 [PV 12), £2) =

— (EPIVI*PZERIVI2) + (& RIVI2, V]2, & Piz)
(V172 EPIIVI 2], 52

= /|§ HIVIZZPag + (EPIVIPZ, (V%2 1E1Z) — (VI |EPIIVI**Z), 16 2).
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Denote the error terms

E = (|EPV|*PZ,[|V|*2, 1§ P)Z) — (V1% 1 P][1V1*/*2], 1§ *2).

Putting it all together implies

3—B—a)

30+ 2L ee)+ 1611918 2Pag < |+ ce e
< IEPIVI I N1V1%2, P12

~

_3 _gr(3=B=c
HIIVI2, EPIIVI*2Z) 211§ P22 + e
By Gagliardo-Nirenberg’s inequality
2-¢ 2 =T
IE17 > gl < CllIE1"gll > *llgll -

Continuing with our arguments above (see (2.41)), we conclude from Lemma 1.1.6 that

@+ 2P e gz <

< e[| [EPIVI*Z]7. + ell[§1°ZII7> +Ce 1217

All in all, for all € < 1, we have by Lemma 2.2.3,

1 4—o— _og(3ba
5]’(1’) + (Tﬁ —2¢e)J(1) < C8HZ||%2 < CHZOHi]mLme 27 ),
By Gronwall’s, we finally conclude that

—a-p —a-B
J(7) < J(0)e TG 2 4 0| 29|13,y T,

Asa consequence

_g(3=a=B
1EPZ(D)]1.2 < ClZoll2yrume ™5,
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This completes the proof of Theorem 2.2.4. O

2.2.3 Global dynamics of the solutions of the SQG model

Theorem 2.2.4 already provides pretty good estimate about the behavior of the solutions to the
rescaled equation (2.11), in particular the solution Z disperses at oo, with the rate e‘“w). An
important problem in this situations is whether or not this is optimal, that is whether there is a
lower bound with the same exponential function, at least for generic data. It turns out that this is
indeed the case. In fact, we have a more precise result, namely an asymptotic expansion.

Before we continue with the formal statement of the main result, we need a simple algebraic
observation, which is important in the sequel. Recall the generalized Biot-Savart law that we
imposed, u = u; = (|V|*-)Pz. This naturally transformed into the relation U = Uz = (|V|*) Pz

between the “scaled” velocity U and its vorticity Z. We claim that
Us-VG=0. (2.43)

Indeed, since G is a radial function’, say G(&) = £(|€|), we have that VG = (&1,&) |§|é‘| On

the other hand, Ug = (|V|*) PG = \V]Lm,ﬁ,1(|V|)G, so Ug = |V|*h(|E]), where A is a radial
function representing [m_g_(|V|)G]. That is, A(|§|) = [m_g_(|V])G](&). It follows that Ug =
(—&.&1) " 50 Thus,

K(lS])

CED
H =0

19

Ug-VG = (-&,&) -(&1,6)

We are now ready to state the main theorem of this section.

Theorem 2.2.5. Let Zy € L*(2)NL™(R?), € > 0, & € (1,2), 0.+ < 3. Denote y(0) := [2 Zo(&)dE.

Then there exists C¢ > 0 such that for any T > 0,

12(2,) = 7(0)e ™ & )G o) < Coe a9, (2.44)

9as the Fourier transform of a radial one
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Assuming in addition that B > 1, we also have

3-—a-p 4—a—PB

IVZ(2,) = 7(0)e e )G 12y < Cee e ), (2.45)

In particular iffRz Zo(E)dE =0, then

(e
1Z]|22) < Cee Wa e,

Remarks:

e We would like to point out that the existence of solution Z (and subsequently ¥(7) and Z(7))
is not in question anymore, due to the results obtained in Theorem 2.2.4. The purpose of this

theorem is just to obtain better a priori estimates, in the form described in above.

e The requirement 8 > 1, imposed so that (2.45) holds is likely only a technical one, but we

cannot remove it with our methods.

Proof. (Theorem 2.2.5)

According to the results in section 2.1.8, g = — # < 01is anisolated and simple eigenvalue
for the operator .% on L?(2), with eigenfunction G, while the rest of the spectrum is the essential
spectrum, which we have identified before, G, () = {A : RA < —#}. We have also found

the spectral projection 2 f = (f,1)G and 2y = Id — Z,. Thus, we can write

where y(7) = (Z(7,-),1) = [p2 Z(7,£)d&, Z(T) = 2yZ(7,). Projecting the equation (2.11), with
respect to the spectral decomposition provided by ) and 2, we obtain an ODE for y and a PDE

for Z(t). More precisely,
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oy = (¥Z,1)—(U-VZ,1)=

B

- <—|V|°‘Z+é§ VeZ+ <1+%) Z1)— (VU -z)1) = 2P =3

a

(7).

3—o—

Integrating this first order ODE yields the formula y(7) = y(0)e™ "« ® . For the PDE governing
Z(7), and recalling % = .£ 2, we obtain

Ze =472 —2U -VZ] = LHZ—2[U-V(y(0)e " o« G+Z)].

In its equivalent integral formulation,

3—a—f

Z(1) = " Z(0) — / Te“—s)fogo[U-V(y(O) e " a G+Z(s,)] ds. (2.47)
0

Note that the commutation relation 2,V = V, whence one can remove 2 in front of the nonlin-

earity. By (2.33), we can estimate

7
1Z(2) 22y < €™ Z(0) | 22 +

4637a7ﬁ ~
/ |74 < Ug+U;)V-(7(0) e @ G—i—Z(s))HLz(z)ds

8 P e s
SHef‘%Z(O)HLZ(z)+W(0)\/ e T e V-T2 (U - G) |2 ds

T
—l—/e_
0

where we have used (2.43). Clearly by (2.30)

=2y 2)|l2@ds =L+ L+ 1,

4—B-a

n<ce T 20)] 0
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Regarding I, we have

(t=s) _ 3-0—B —(7—s)(3

T it ate (*) U - G||L2(2)
o) | : -
0 a(t—s)e

L <

Now to bound Uy - G| 25y we look at two different cases, namely 0 < < land 1 < <2. If

0 < B < 1, then we can use lemma (2.17) to get

Uz Gl < Uzl 2 [I(1+1EP)GI 2
L1-B LB

Cl|lUz]]

IN

I ClIVIPU 2 < CIZl 2 < 11212 oy-

If 1 < B <2, then for some 0 < € << 1 we have

1Uz-Gllzy < Uzl 211 +[EP)G]

2
LT-¢

< Uzl 2 <CIVPUzl - <ClZ|| 2 <ClZ| 20
LB+e L

B+e

In the last inequality we used the fact that for 1 < p < 2, L” < L*(2) and Lemma (2.17). Therefore

) () it

¢, )
L < C/ - T ||Z(s)||L2(2)ds.
0 (min(1,|7—s|)@

Finally, we make use of (2.34) to get

(1=s)

e (o) () ;
T o o U oo Z
L < / e e | 1(S)||L 1Z(s)|l 2 (2) s
0 a(t—s)a
) ()
< c / _ —1Z(5)ll 22 ds.
0 (min(1,|7 —s|)@

where we have used that a(7) ~ min(1,7), the Sobolev inequality and Theorem 2.2.4 to conclude

37B7(x>

06 < U2 5.+ 126 5. < e .48

I
L
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We are now in a position to use the Gronwall’s inequality, more precisely the version displayed

in Lemma 1.2.2. We apply it with /(t) = | Z(7)] 2, t = =% — 40 g 3oap

and a = é < 1, for € << 1. Recall that by the a priori estimates in Theorem 2.2.4, we have

3—a—p
2 < Ce " a

)SC

)

8 _g(=a=p
1Z(0)ll22) < 1Z(T) 2o + [7(0) e F e

for all T > 0, since 3 > o + B. Thus, all the requirements of Lemma 1.2.2 are met and we obtain

the bound

1Z(7)]|12(2) < Cee™ (5P, (2.49)

Regarding the proof of (2.45), we proceed in a similar fashion. We need to control ||0Z|| 2(2)
for large 7, say 7 > 1. Applying d = d\,d, to the integral equation (2.47) and taking || - [|2(5), we

obtain

—B

~ L (4-a-p
10Z(D) 22 S e ™ & DN1Z(0) |2 +

(t—s) S37ocfﬁ

T e a e I3
/ _ eV (U, - G)ll22yds +
0 min(1l,7—s)@

(z=s)
- . 4-0-p
ﬁ” (T_S)”%V(U'Z)HLZ(z)dsf,e_r( a
min(1,7—s)«
o (1) (L
e (7

T
-
0
T
-,
0
T_
),
0

min(1, —s)é

—8) +

3—a—f

e)efs

min(l,q:_s)é IV[Uz(s) ]HLz ds+

(
_S)(M_g) 3
. IVIU($)Z ()]l 12 (2)ds

(04

We estimate || V[Uz(s)Gl| 12(2) < [[VUz(5)Gll 12(2) + [[Uz(5) VG| 12(2) - Following the strategy above,

for B < 1 and then for 8 > 1, we arrive at
~ ~ _s 4—a-B ~
IVU2()GN 22y SIZ(s)lI122) +10Z() 12y S €~ +10Z(s)llp2a)

where we have used (2.49). For the other term, it is relatively easy to bound
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IVIU()Z(5)]ll 2 (). when B > 1,

1S Z2) < 10U ) =l1Z(5)ll 22) + U () =110Z(5) ] 22

3—a—f 4—a-B

(3B-a)
< e L () 26 s,

where we have used (recalling U ~ |V|~8Z), |0U (s) ||~ < C(|| Z|| ﬁ+€+”ZH %7£)§Ce_s(3_z_ﬁ),
LB~ LB~

(2.49), (2.48). Plugging it together yields

(37&7[3

~ _4—a-B Tef(ffs)(%ﬁf8 e S\ -
10Z(7) |2y Se ™ e O+ / , " 10Z(5) 2(2)- (2.50)
0 min(1,7—ys)@

This puts us in a position to use the Gronwall’s lemma 1.2.2. Note that in order to do that, we need
any a priori exponential bound on ||0Z(7)||;2(), similar to Theorem 2.2.4 for || Z(7)||;2(). This is
actually easy to achieve, one just has to differentiate the equation and perform very coarse energy

estimates'?. As a result, Lemma 1.2.2 applies and we obtain

4—a—p

10Z(7)l| ) Se ™,

as is the statement of (2.45). ]

Note that for f > 1 and 2 < p < oo, we have
3—a—f
1Z|lr < ||0Z]| ;2 < Ce™ ™), (2.51)

It is now easy to conclude the main result, Theorem 2.1.1.

Proof of theorem (2.1.1). Realizing that L?(2) < L”,1 < p < 2, one just needs to translate the L?

which will give very inefficient exponential bounds on ||0Z(7)|| 12(2) but that is all we need to jump start Lemma
1.2.2
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estimates for Z, in the language of the original variable z.

1 _(3-a-B
- 125 = 10 GO
(I4¢) " @ o
Cg e el Cg
3 5 e T( o 8) < 5

— 1777 .
(140t @ (14r)e@®

IN

Moreover, in a similar manner, for § > 1 and 2 < p < oo one has,

- (1+z)éG((1+r)é)H”:
3—a—f

Sl U
+1 o op

C _(3-a-B
< )3& 110 |Z(7.) = 7(0)e TG0 |z
14+0)" "
Ca7ﬁae 71(47ﬁ77057£) _ Ca7ﬁ78
= _ - 32 :
(140 (1+1)a a5

2.3 Local and global existence of the solutions to the Boussinesq system and

its long term behavior

The results of this section closely mirror Section 2.2. Consequently, we omit many of the argu-

ments, when they are virtually the same. There are however a few important distinctions, which

we will highlight herein.

2.3.1 Global regularity for the vorticity (, 8) Boussinesq system in L”(R?)

Our first result is, non-surprisingly, is a local existence and uniqueness result in L” (RZ). Most of

the claims in this lemma are either well-known or follows a classical argument, but we provide a
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sketch of the proof for completeness.

Lemma 2.3.1. Suppose that @y, 0y € LP, 1 < p < oo, Then there exists
T =T(||(w0,60)||;17~), Such that unique strong solutions @,0 € C([0,T);L' NL*) exist.

Moreover, the solutions ®(t),0(t) exist globally. In addition, the function t — ||0(¢,-)||r,1 <

p < oo is non-increasing, ||0(t,-)||Lr < ||60||zr,1 < p < oo, while

(2 M2z < ol 2 + 1160l 2-

Proof. For the local existence, we work in the space X = L! NL* = NLP. The strong solutions of

the system of equations (2.7) are solutions of the integral equations

o(&,t)=e "V ay+ Jo e SIVEY (- @) ds — IN e~ =9IV, 0 ds,
(2.52)

0(&,1)=e V0 + [1e =9IV V(u-0) ds.
By (2.18), we have that
le™ V% e |x + [l 6] x < C(l|@nllx +1|60]lx)

One can now consider the space Y := {(®, 0) : supy,<7[||®@[]x +[|0]x] < 2C(||aplx + ||60]/x)}-

For the bilinear forms

t t
Ql(wl,wz)Z/ e IVEY (u- ) dS,Qz((Ul,@):/ e IVEY (u-0) ds
0 0

where u = (V1) '@, we establish the estimates

101(@1, @) — Q1 (@, @y)|lx < CT'(]|(r, )||x +

+ (@1, ) |[x)([|@r — @ [|x +[|r — dallx)
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and

102(@1,0) — 0a(@1,0)|x < CT'~a(||(e1,0)[|x +

+ [[(@1,0)]1x)(|or — @1lx + 16 — 8]1x),

for j = 1,2. This is done in an identical manner as in the proof of Lemma 2.2.1. It remains to deal

with the integral term f(; e—<f—S>W\“al 0 ds. For it, we have

t t
(- o ~ 1 ~
H/ eIV 9,(0 - 8) dsllpipy- < C/ ——— 0 = Ollp1ry~ds
0 0 (T—s)a

it ~
< CT'"@ sup 10(s) —0(s)|| L1

0<s<T

for 0 <t < T. Allin all, we can guarantee that with an appropriate choice of 7', the non-linear map
given by (2.52)has a fixed point w, 0 in the space X.

Regarding the global well-posedness, we can continue the solution, as long as the norm ¢t —
16(t,-)||z» stay under control. First, for I < p < oo, take dot product of the 8 equation with |8]7~28,

p € (1,%0) and using the fact the positivity estimate (1.6), we obtain
1 p 1 14 p—2 o
—o |0, N <=6l + [ |6]"*6-|V|*6dx=0
p p R2

It follows thatt — ||6(¢,-)||» is non-increasing in any interval (0,¢), whence the solution is global
and ||0(t,-)||r <||60]|rr. For p =1, p = oo, we use approximation arguments to establish the same
result.

Finally, we use this information to establish the global well-posedness of the u equation in

(2.6). Taking dot product with u, we obtain

1 1 a
§9t||u(l,')||iz < Eaf“u(ta')HiZ_"|||V|2u||%2:<M279>S||u2||L2||9(t)||L2

IA

[lu2 () 21160l 2
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It follows that
[lae(2; )22 < [luoll 2 + 1|60l 2,
which provides the necessary bound to conclude global regularity, as stated. 0
The next lemma provides a global existence and uniqueness result for the (@, ) system.
Lemma 2.3.2. Let o > 1. Then, assuming @ € L, 0y € H 2, the Cauchy problem (2.7) has unique
global solutions. In addition, for any T > 0, there exists C = CT,H%H@H%II > 0, so that the

o
H?2

solutions satisfy

sup ||@||2+ sup [||[V|Z6],. < C. (2.53)
0<t<T 0<t<T

Remark: The constant C7 obtained in this argument is exponential in 7', which is very non-

efficient, as we shall see later on.

Proof. The global regularity for (2.7) is of course very similar to the global regularity established
in Lemma 2.3.1. For the energy estimates, needed for (2.53), we can dot product the first equation

in (2.7) with @ and the second one with |V|%6 to get the following energy estimate

1d

55(||w||iz+|||v|29||%z> + [IVIZol7 +[I[V]*6]7. < ‘/w.algd€'+

+ '(HV\%,u-V]Q,W\gO)' =0 +D.
Then for some 0 < vy < 1,

h = ] / w-&f)d&] <[IVIF@ll2191[VI7%0ll,2 < €ll1VI% oll7: + Cellon VI~* 011

4 2 2(1- o
<el||VI |2 +Cel[VI#OIL0]71 7 < &][[VI3 @|f2 +&ll|VI*0]3 + Cel 6o 2
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We also have

L=({IV[>,u-V]6,[V[26)| < [IVI"2[IV]Z,u-V]6||2[[[V|*6]

We can make use of the inequality (1.9) witha =1,51 =52 = %,p =2,q= % and r = % to get

VI {[VIz,u-VIe@lle < Cllef, sVull s <Clléoll slloll s

IN

a « 1 1
Cll6oll, 5 [[[VI* ol 2 < Cl[60]| 5 [[[V]Z 0l [ @]l -
where we have used the Sobolev embedding and the Gagliardo-Nirenberg’s inequality. Then,

a 0 ap|2 3 \4
L <el[V[2 o> +el[[VI*O[]2 + Ce(ll 60l 5 @]l /)"
Therefore, for € < 1, we can hide the terms || ]V\%wHiZ and |HV]“9H%2 and we obtain
d 2 a 2 4 2 A2 2
2 \ellz +1IVIZ6lL | < Clléoll s { llelz +[[[VI=6ll72 ) +Cll6ollz..

We use Gronwall’s to conclude (2.53). ]

2.3.2 Some a priori estimates for the scaled vorticity Boussinesq problem
(W,0) in L?

We now turn our attention to the scaled vorticity system. By the results of Lemma 2.3.2 and
Lemma 2.3.3, such solutions exist globally, by virtue of the change of variables. Now that we have
a global solution, together with the global estimate (2.57), we can actually obtain global a priori

estimates for ® in all L? spaces.

Lemma 2.3.3. Let p > 1, and © € L' N L*(R?*) N H¥(R?), Wy € L% Then for any T >0, © €
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CO([0,7];LP), there exists C = Cqp such that
12
107 )2 < Capl|@lloaye™ " (2.54)

Proof. We take a dot product of the ® equation in (2.13)with |®|"~2@, p > 1. We obtain

1 1 2
—a P v|¢ p=2 =2-—--—")0]|%,.
ool + [ [VI“eler2ed; = 2 2 - el

Recall however that [, [V|*®|®|P~2@d& > 0, by Lemma 1.1.1. Thus, integrating this inequality
yields (2.54). 0

Lemma (2.3.3) provides us with a decay rate for O(t,-) for 1 < p < 2&%1, but clearly an

2

increasing exponential bound for p > 5-=.

However, we can use it in the next step to get a decay

rate for any p > 1.

Lemma 2.3.4. Let p > 1, and ©g € L' NL>(R?*) N H*(R?), Wy € L% Then for any © >0, ® €

CO([0,7]; LP), there exists C = Cqp such that
3
10(7.)l|zr < Carpl|O0llir 2y =" (2.55)

Proof. Similar to the lemma (2.3.3) for any p = 2", n > 1 we have the following energy estimate

1 2
<(2-———)el.

1 c
—d:]1@]|17, + -=||\]”
» 2[1©]1%» pH ”Lf_”a % op

Assuming C be a large number, we add C|||@|[|7, to both sides, we have

1 c 1 2
~o:e12, +cl|e]|||Z, + -&|e|”, <2-——-—+0)|0|?
s (1012, +Cl|| H\Lp+pH HLZ%_( p” ap+ Oz
1 2 1-7)
<@————+0)0|7, |©]'\ "
<( 7 ap+ | HLzzpr [
1
[(2_l_L+Cﬂﬂ
+ =7 11|17,

=
€

<&]0]",
L

P
2—a
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2r=1)_ 1y other words

where y =

2p—2+a
1 —a Ol
—0q|[|®]lI, +CllIel]7, < = el
p =y
&
1
1 2 -
- (-5 - o +O)]' " p-3)e
T—
& '
Finally, we use Gronwall’s inequality to finish the proof. 0

We can use above lemma to find some decay rate for U(7,-). We need this to be able to get

some bounds for W in higher L? spaces.

Lemma 2.3.5. Let Uy € L*(R?). Then for any t© >0, U € C°([0,7];L?), there exists C = Cqp such
that

3
1U(T, )2 < Ca,p||U0||L2(R2)€(2_“)T' (2.56)

Proof. If we dot product the equation (2.14) with U we get the following relation

1 a 1 1
SOVl VIEUIE = o [ vowag+ (- Ul + [6-vat.

Then
a 2
OclU1s + 201V FUl =20 - DU+ [ 6-va
2 2
< 2(1= Uz +18l:11U 2 <201 == +&)|U]7: +Cel©] 72
2 2 2(2-3)7
< 2(1 a+£)HUHL2+Cge @l
Now we Use the Gronwall’s inequality to complete the proof. [

The next lemma provides a priori estimates for W and ® in L? spaces, which allows us to

conclude global regularity.
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Lemma 2.3.6. Let @ € (1, %), Wo € L2. Then the solution W of (2.13), satisfies

W (T, )2 + ©(T, )| 2 < Ce® )7, (2.57)
T

s [ (|||V|2W<s>||i2+|||V|z®<s>||iz)dssc 2.58)

0<1<0J0

for some C = C(||Wol12, ||®0||;2, &), independent on .

Proof. We dot product the first equation in (2.13) with W, and the second equation with ®. We
also use the trick used in lamma (2.2.3), i.e. we add the term A(||W ||%2 + ||G)||i2), where A is a large

constant to be determined. Then

1d

o (IIWHiz + H®H,2;> + A(IWIIE +10]72) + IIVIEW 7 + V]2 ©|1Z

1 2
< | [aowdg|+ @+ 1- DIWlE+ (a+2- 2 )O]R-
But by Gagliardo-Nirenberg (and taking into account that 1 — § < £ ) and Young’s inequalities,

_a a o 2 4 2 2
!/81®Wd€\ <|IVI'=20 VI W]|2 < ell[VIZO7. +£[[VI2 W, +Cel|O]I7

o o 3
< elIVIZOIL +el|VIEW 7 +Cee® w7,
whence, using the estimate for ||®||;> from (2.54)(with p = 2). We also have

1 1
(A+1= W3 <CAa+1-)|VU|7: <

1 2 a (- 1 2 a 21—
< ClA+ 1= UV < ca+1- UIFIvIEWE
1
g2 [CA+1— )
< elVIEW G+ U}
el-vr
1
o CA+1- L)
< elviEwig+ ATl e
e
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Considering the estimate for ||®||;2 from (2.54)(with p = 2)

d

L (IWIB+ 1013 ) + 24(IWIE: +[013:)-+2(1 ~26) V2w

a 2|IC(A
+ 2(1-2¢)|[V]20]7; <

At this point we choose A = 2(% —2). Then the last relation has two consequences. First we can

drop the term 2(1 —2¢)|| ]V|%W||%2 +2(1— 28)||W|%®Hiz’ SO

1

d 3 [C(2—3)™ 3
S (W 1013 ) +4C - 2w + 1) < SE0 @i

<

gl-

<

and then use the Gronwall’s inequality for the following inequality and get the decay rate (2.57).

Second consequence to get

T
a a C
/ (NVIEW @7+ V]2 0(0) |1 12)dr < <HW0H§2+ H®0Hiz> +——
This implies (2.58). [

We need some a priori estimates for |W||.» for some p > 2, as these will be necessary in our
subsequent considerations. This turns out to be non-trivial. To this end, it turns out that it is easier
to control |W||41,]®]|y1 and then use Sobolev embedding to control ||W{|i»,|®]rr,1 < p < eo.

In this way, we get the control needed, but we end up needing to require smoother H'! initial data.
Proposition 2.3.7. Wy, ®y € H'. Then, the global solution satisfies W,0 € C°(]0, 7];
H'(R?)). Moreover,

W (2)[|p + ©(7) || g1 < Ce?>~ )", (2.59)

C =C(|[Wollg1,11®0]| g1, @), independent on t.

Proof. Local well-posedness in the space H!, for the original (unscaled) equations works as in
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Lemma 2.3.2, so we omit it. Thus, we have local solutions for the scaled system as well. We now
need to establish a priori estimates to show that these are global.

We differentiate each of the equations in (2.13) and then we proceed similar to the proof of
Lemma 2.3.6. Namely, we dot product it with!! W and 9@ respectively. We add the two resulting

equations to obtain the following energy inequality

1d
2dt

1 1
< | [ dveawdg |+ (1~ oW+ 201 - )00]: + (U vw.ow)

(uawuiz i H8®Hiz> VI WL £ Vel <

+ [(dUV®,00)]|.
By Gagliardo-Nirenbergs’ and Young’s

10W 72+ 190117 < e([VIFHWE + [VIEHO]F) + Ce(IWZ + O] 72)
Next,

| [ a0eawaz| < clivIEe] Ve fwl,

IN

L 12 L) 2
e(|VIZT WL +1IVI2T0]1) + Ce W],
where in the last estimate we have used that 2 — § < 14- 5. Finally,

(QU-VW,oW)| = [(V-(UW),dW)| < CIIVIFH'W | 2[||V]' % (90U W) 2

< e|VIETW|A + G|V 2 (U W)

HHere 0 means either 9; or o>
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By product estimates, (1.1.4) and Sobolev embedding

[IVI=2 QU W)l <V 20U s W s +IIVI2W] s (l0U]] )

2-¢ 3
_a _a _a a4 e
< CVI5U 2 IVI3 Wl < VIS WIZ < V2wl = W, 2

where we have used dU ~ W (in all Sobolev spaces) and Gagliardo-Nirenberg’s. This allows us to

estimate by Young’s
2 g2 &t
(U - VW,0W)| < 2¢[|[V[2 W |72 +Ce[WI| /5
Clearly, the appropriate estimate, obtained in the same way holds for
(0UVO,00)| < 2¢[|V]*2 10|12, + Ce W5
All in all, we obtain

1d a a

3 5 (1OWIE= +19013: ) + (1 = Ge)(I71% W -+ 171 1013,
3o

<Ce¢ 3

2 2
(W2 +1WIIZ2 +[1Oll72)-

Set € = 75. For every A > 0, there is g, so that H]V]%“WHi2 > AH&WH%2 - CA705HWH%2 and

similar for ®, so we end up with
d _3
o (1wiz +19012 ) + A (10w, + 19013, ) < Caae?i

where we have used the exponential bounds from (2.57). Setting sufficiently large A, namely

A> 2(% —2), and applying Gronwall’s yields the result. [

As an immediate corollary, we have control of the L” norms for W.
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Corollary 2.3.8. Let Wy, ®y € H'. Then, for all p € (2,), there is the bound

3
W (T, )lr < C(IWollgr @0l @, p)e~a)". (2.60)

2.3.3 Global regularity for the scaled vorticity Boussinesq problem (W )
in 12(2) NL=(R?)
The next lemma is a local well-posedness result, which is a companion to Theorem 2.2.4.

Lemma 2.3.9. Suppose that Wy,®q € L>(2) N L™. Then, there exists time
T =T(|[(Wo,©0)|l12(2)r1)» s0 that the system of equation (2.13) has unique local solution W,® €
C%([0,T];L%(2) N L) with W(0) = Wy and ®(0) = Oy,

Proof. We are looking for strong solutions in the space X = L?>(2) N L™, that is a solutions of the

following system of integral equations

T T
W(t) = e“Wy— / TILV (U -W)ds + / 77 (9,0)ds,
0 0
o(r) = er(zﬂ_é)@O_/Te(r—s)(xﬁ_é)v((]_@)ds
0
For the free solutions, according to (2.34) and (2.27),
_1
e Wollp2 )z + €7 @O0 2y < Ce™(IWoll 22z + @0l 2(2yi)-

For 0 < T < 1, to be determined, introduce the space

Yr:={(W,0): oquT[HW(T’ )llx +110(7,)lx] < 2Ce([[Woll 2 2)nr= + 1€0ll 12 (2) =)}
STS
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According to (2.28), (2.29) and (2.34),

T
l /O TILY (U W)ds| 20y <

(t—s) 1

Te a (e(l_%)(f_s)_|_e(1—§)(17—s))
= / 1 U W20 ds
0 a(T—S)a
T 1 l_l
< C sup [[UW|20)nr= A rds <CT " @ sup [[U[|t= sup [[W|20)n-

0<T<T T —s|@ 0<T<T 0<T<T

and similarly

1

T
s\ (L+1-L _
H/ LTIEHDV(U - ©)dsl| 2= <CT' @ sup (U] sup [[©] 20y
0 0<t<T 0<7<T

Recalling that U = (V+)~'W, we further estimate by (1.8),
U= < C([[W][20e + [[W][2-¢) < CIW |2 2)01
since L?(2) < L*>~¢ and L?(2) NL> — L' N L* < L**€, Finally,

T
—$).9 1
”/O e(f s)"f(a]@)dSHLZ(z)meSCTI @ sup H®HL2(2)DL°°‘

0<t<T

Clearly, appropriate estimate hold for the differences, whence the integral equations provide a

contraction mapping in the space Y7, provided,

1

1
T @ << .
2Ce([Woll22)n= + 10l 12 (2) 1)

Our next result provides a global regularity for the W, ® system in the space L?(2).

Lemma 2.3.10. The system of equations (2.7), with Wy, ®y € X = L*(2) N L>, and also Wy,® €
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H'(R?) has an unique global solution, in space X. There exists C = C(|Wo||x, ||®||x) such that

sup [[W(T,)ll22) +10(7, )l 12(2) < C. (2.61)

0<1<00

Remark: The estimate by a constant is very inefficient, as we shall see in section 2.3.4. One
could improve the argument below, at a considerable technical price, to obtain better decay esti-
mates. Since the results in section 2.3.4 will supersede these anyways, we choose to present the

simpler arguments.

Proof. The existence of a local solutions are guaranteed by Lemma 2.3.9. So, it remains to estab-
lish energy estimates, which keep the relevant L?(2) norms under control. Note that the unweighted
portion of the norm has an exponential decay, by (2.54)and (2.57). So, it remains to control the
weighted norms.

We run a preliminary argument only on the ® variable. As usual, this is easier, due to the lack
of problematic term d;®, which appears in the equation for W. We dot product the ® equation in

(2.13) with |£|*®. We have

sz [1ereiae + [1gvire e+ ~2) [ le[era
__ / (U-V¢®)|E[*Odé.

Then

- / (U-V.0)E[0dE = 2 / EP(E - U)OE.

But

'/|5|2(5-U)®2d5‘ SC/I§I3IIUlle|®I2d€ SS/|5|4|®|2d§+C€_3IIUIIZ‘MII®||22-
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Now, according to (1.1), for every 6 > 0

2-28 5]

_3 S5 55
|Ul= < Cs(IW |25 + W2 s) < Cs(e® @™ W) 5° [W]5°)

N

5
Cs+CalWII%3,
We also have

/ EI*0|V|*0ds = (|5]*V|?|V|? @, |E[*e) =
= (IVIZ[ELPIVIZ 0L, 1E10) = ([IVI%, IE]P] IVI? 0], |§[*®) =
= (EPIVI?0, VI 0) + (IE1°VIZ0,[V|%, [ 10) -
— (V%1€ [vIF 0], [¢%e)

— [ 1EFImIEORas + (5P F0. V1%, EPIe) - (V1,15 [VI%e &P e)

Now if we define 7(7) = [ |£|*®%d&, and put all above together we have the following relation

o+ (%—2—108) 1(7)+ / HERALIRE
< [(|E[IVIZ@,[|V|2, [EF1@) |+ [([|VI2, [EPI[ V|2 8], |€ *O)| +c5,g||w<r,->||§52)-

We can use Lemma 1.1.6 to get

(IEPIV20,[|V]2, |E10)] < [[IE1VIZ0] - [[IV]Z, €O,

IN

a _a o 1-< a
HEPIVIZOl2[1EP2 0l < [IEPIVIZell [0l * el

IN

e(llEPVIZ 017 +[[1EPO]7) + Ce.

69



For the other term we have

([IVIZ,IEPIVIZ 1, [E20)] < IEPOIIVIZ. [EPIIV]Z 0],

IN

_a a a 1-% a &
IIEPOMIEP 2 [IVIZ0]] 2 < &P 2 IIERIVIZ O], * V]2 O]},

e(I[EPIVIZOIE + €10 72) +Cell V|2 O] 7.

IN

It follows that

%I’(r)+ (%—2—208) 1(r)+<1—58)/|§y4\|w3‘®|2d§

L a
< CetCoe[W ()| 720) + CelllVIZ O] 72

Choosing € = W%O and applying Gronwall’s and then using of (2.58) implies that for every 6 > 0,

there is Cg, so that

0<s<t

(4o 28
IEPO(z, )2 < Ce+Cse™ @774 Cs sup [W(s, )20y (2.62)
O<s<t
for every 8 > 0. In addition, we obtain the L% bound
’ 21| & 2 P
| NERITIE O e < C+Cs sup [Wisi )55 .63

We are now ready for the bounds for W, which are always harder. If we dot product in (2.13),
the first equation with |E|*W, we have the energy equalities
s7e [ 161w+ g wiew wag+C - ) [ 1w
2drt o
— — [w-vewyglwag+ [ e g wa
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Then — [(U -V W)|E[*WdE =2 [ |E|*(& - U)W2dE. We can bound this term as follows
‘/|5|2(5'U)W2d5‘ < C/|5|3||U||L°°|W|2d§ S8/|§|4|W|2d5+C8—3||U||iw||W||iz-

Again, according to (1.1), for every 8 > 0

2-28
2

) = 5
[0l < Co(IWllg2vs + Wl 2-5) < @ W 5% [WI%).
Taking into account (2.54), (2.60), L>(2) — L' and Young’s inequality, allows us to estimate
2 2 411712 %
‘ JAER da\ <2e [IE1 WP+ CoslW (e )IED

We also have, similar to the ® variable calculation,

[lerwiviewag = J1ERIVIEwIZ+ ERIYIEw VIS, W)

— (V2 EPIIVIE W] [EPW)
Now if we take J(7) = [ |£[*W?2d&, and put all above together we have the following relation

%J'(r)+ (%—1—108) J(r)+/1§|4||V|‘%‘W|2d§

< [([EPIVIZW,[|[V] 2, 1EPIWY] + (V]2 [EPIVIZ W], |E]PW)]

45
H [ler@omwas |+t sz iz,

48
2-6

=h+h+hL+Ce+CeslW(T,)ll 23

We can use Lemma 1.1.6 to get
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L= [EPIVIEW (V= IEPIW) < IERIVIEWI 2 IIVIZ, 1EPIW 2

o
4

a _a a 1 o
HEPIVIEW 2 NEPT2 W2 < NEPIVEW 2 IIEPW L, W],

IN

IN

e([IEPIVIEW L+ 1EPWIIZ2) + Ce,
where we have used the bounds (2.57) for ||W/||;2. Next, regarding I, we have

L = [lIVIZIEANVIEWLLIEPW)] < IIEPWIIIIVIZ. [EPIVIZ W2

IN

2 b a 2 21 & 1-¢ a z
IEIWI 2SI 2 [VIEW 2 < NISFW IS IVIE WL, VI WIS

IN

2 2 2 g 2 g 2
(IS Wz + S IFIVIZ WIE2) +Cell VW[ 72

I3 is normally a problematic term, but now we have the decay estimates for ||| 2(,), which we

have proved in the first part of this Lemma. We have

. \<al®,|é|4w>\ < '<|€|281®,|§|2W>‘ < \<al|vr3‘|é|2|w3‘®,|5|2W>

+ (0714, P 7120 IEPW) i= h +
I 1 is estimated as follows

Ly = ‘@W\2!§|2\V\2®7\5!2W>‘ <C|EPIVIZO| V' 2[|EPW] | 2
219 2071 %2 e 20 21012 a2
< [IEFIVI2Ol 2 lIS1TWIL* IVIZTEITWI, S < CelllSIFIVI2 O]l +

+ e(lEPWIIE+IIVIZ[EPWIIZ)
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We bound the last term, by Lemma 1.1.6,

IVIZHEPWL2 < EPIVIEW Il + 1IVI=,1E P2

< EPIVIEW |2 +CIEPTW |2 < (IERIVIEW |2 +CIW |2+ [1EPW ] 2).
Collecting terms together yields the following estimate for /3 | and using (2.59),
Iy < 2e(||EPWI% + 1EPIVIEW12) + Ce||EPIVI @) 2, +Ce23 )T,
Assuming the validity of (1.12), we proceed to bound I3 >.

Lo = {72 IEPTIVIZOLIEPW)| < [[[EPWIIll[onVI~=, P [[VIZ 0]l
2 1+%1v|% 2 291 al v @l 3

< NEFWlalllsl 2 [VIzOll 2 < [[[SFW I ISV el [[[VI=e],

< ellEPWIZ+ V12017 +Cell |17 VI= OlIZ,

48

< EllEPWIE +C+CslWl5ap, + CelllEPIVI2 Ol

where we have made use of (2.63). Combining all the estimates, we obtain the following energy

inequality

~J'(7) + (%—1—2%) J(r)+(1—58)/m“uvﬁ‘wyzdg

45 a a
< Ce+Cs[Wl 50, +CellllS PIVI2OlIL+I[VI2W(})

Applying Gronwall’s and taking into account the L,ZE integrability results (2.58) and (2.63), and

HWH?;&) < J(t)+C, we conclude for every 6 > 0

d
J(1) < J(0)e AaT1-20007 4 € 0257172097 4 o sup J(1)55 4
O<s<t
26

T
+ Cs/ (NEPIVIZO(s, )72 + [V W (s, -)lI72)ds < Ce +Cs sup J()2=3
0

0<s<7t
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Selecting small € and solving this inequality for sup_,_.J(7) implies the
supgs7J(7) < C, for all times 7. Inputting this last estimate in (2.62) implies the desired bound

for [|®]| 2(2) as well. O

2.3.4 Global dynamics of the solutions of the Boussinesq model

It is the time to compute the optimal decay rate in L>(2) for the solution of the Boussinesq model

(2.13). Recall that the relevant operator .Z has the form
L= V"4 V1
o £

with 29(.Z) =1 — 2 and G5 (L) C{A : RA <1 -2}

Theorem 2.3.11. Suppose o € (1,3) and Wy,® € Y := L*(2)(R*) NL™(R?*) N H'(R?). Then for
every 0 > 0, there exists C = Cs(||Wo||y,||®o|ly) > O, such that for any t© > 0, the solutions W,

for the system of equations (2.13) obey

—(3_ —(2_ —(3_
W —p(0)e” @ 279,G — 11(0)e™ @ VG 23 + (1€ = 12(0)e @G| 2y

< CeUa=2-9)r, (2.64)
where (0) := [Wy(&)dE, and 1(0) := [ @y(&)dE. In particular, if Wy(0) = ©g(0) = 0 then
W2 +1©22) < Coe a0, (2.65)
Proof. Using the spectral decomposition for .Z, described in section 2.1.8, write

W(t) = 7(t)GE)+W(1) (2.66)

O(t) = n(1)G(E)+0(1) (2.67)

where 71 (1) := (W(1),1), (1) := (0(1),1), W = 2,W(7,-) and ® = 2,0(7,-). Then, we derive
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the equations for 71,7, as before - namely

oy = (We,1)= (LW, 1)~ (U-VW,1) +(2,0,1)

= (LW )= W2 ) = (1= )W, 1) = (1- =) }(5)

Similarly, d;» = (2 — %) 7>(7). Solving the ODE’s results in the formulas

3

N(7) = 11(0)e' @7 1 (1) = 13(0)e~a)".

For the projections over the essential spectrum, we have the following PDE’s

We = LW —D[U-VW —3,0] = LW — 20U -V(1(0) 1-37G+ W) +

+ Do[d1(p(0) DTG+ O],

1 ~ 1 ~ ~
O = (L+1- a)@— [U-VO]=(ZL+1- a)@— 2o[U -V(12(0) e(z’%)7G+®)].
We represent them via the Duhamel’s formula

—~— T o~
W(t) = e“Wy— / 9L 90U -V (1(0) &G+ W (s))] ds +
0
T
+ / T2 94[0,0(s)] ds,
0

—_— /L- ~
A1) = L H-w)@, - / TELH1=3) 9 [U - V(1(0) e~ 3G + O(s))] ds.
0

One term deserves a special attention, as it is explicit. Note that 2yd; = dy, since Fyd; = 0. Also

. . . . oy 2
for k > 0, since G is an eigenfunction, with eigenvalue 1 — %, we have ¢4 G = e(!=3)%G. By
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Lemma 2.1.8 that

T T .
/O "7 94[0,0(s)] ds = /0 TIZL 19, [1(0) 2~ @G+ O(s))]] ds =
T 5 T T—s (720
_ ')/2(0)/ e(Z—é)se—Ta_"ale(‘c—s)f[G]ds_i_/ e—Tale(T—s).f@(s)ds _
0 0

T T _
= 72(0)81G/ e(zé)seae(lé)(fs)ds‘%—/ ¢~ @ 91eTILO(s)ds =
0 0

T ~
= p(0)(e® DT —1-0)7)9,G+ / e @ 91T Q(s)ds.
0

Clearly, at this point, it makes more sense to introduce the new variable,

Wi(7,€) = W(1,&) — p(0) (e @7 —el172)1)9,G = W — e>~0)°G) (1, &).

Note that the decay rate (237 along the G direction is slower than the decay rate e(1=3)7 of the
evolution along the G direction. Also, G| is basically d;G multiplied by a bounded function of t

and hence an element of L?(2) N L> etc. For future reference,

3

[Willx = Ce=@)® < [[Wl|x < [|Wil|x +Cel)". (2.68)

for all Banach spaces in consideration herein.

We write the equations for W; and © as follows

. T
Wi(t) = ““Wo— / L 90U -V (11(0) 135G + 233Gy + Wi (s))] ds+
0

T

T ~
+ /e_OtS&e(T_s)f@(s)ds.
0

—~ T ~
O(1) = L 2@, / TIELH=%) 9 [U -V (1(0) > @G + O(s))] ds.
0

Note that U = e~ @1Ug + 2~ @)5Ug, + Uy, and Ug- G = 0.
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We start the estimates for @. We have

~ _i ~
1O]20) < Ce? °‘+5)T||®(0)||L2(2)

T
+ IpO) /O o2 oFINLHE) 9017 VG| 21 ds +

T ~
+ / e EH=2) [T - VO(s)] | 123y ds =: Ce® a7 gy 40
0
We have for all 6 > 0 small enough, there is Cg,

T
I A s E i ENTRTCTI

T 6(2—a+5)(7—s)62(2—%)5
S ||UGIG||L2(2)/ ——ds
0 (a(f—s))a
T p(2-5+8)(t=5) o(2=2)s
/ : T Uw (5,7) VGl s S 237+
0 (min(1,|t—s|)=

T 2-3+8)(t-s) 2~ 2)s

+ i
/0 (min(1,|7—s|)=

(e(Z—%)S)l—SdS < Can(Z—%—S)T.

where we have used Lemma 2.1.3, Gagliardo-Nirenberg’s, (2.57), L2(2) < L1, (2.61), to estimate

2
I+e

10w, VGli20) < HUWIHL%H(l+\€|2)|VG|HL17SCHUWIHL% < cClwl,

< Wl E Wi < C(e®alsyi-e,
Similarly,
i Z+1-1 o
5= / [eT=9LH1=8) o[t VB (s)] 1200 ds
0

T 2= 5+8)(1-9) B
<cf Ui 1805) 20
0 (min(1,|7—s|) =

Thus, we need a good estimate of ||U (s)||z=. We have by (1.8)

1U (s, D= < CAW (s, )| 2+e + (W s, ) [ 2-¢)-
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By the a priori estimate (2.60), we have a good control of ||W (s, -)|| 2+, namely ||W (s, )| j21e <
Ce>=3)s. For |W(s,-)||;2-, we can control it by (2.61), but this is not efficient for our arguments
- we need some, however small, decay in s, which we can then input in the Gronwall’s, (1.13). To
achieve that, we proceed by Gagliardo-Nirenberg’s estimate. Taking account once again L?(2) <

L', and the bounds (2.57),

2-2¢

W (s, )l p2-e < [W(s, )H £ W, )H“<C( —an e

All in all, for all 6 > 0,

U (s,) |1~ < Cse™ (@295, (2.69)

This results in the following estimates for J,

T e(Zf%+5)(‘L'fs)ef(%foS)s _
ne [ —18(6)] 22
0 (min(1,|7—s|)=

Combining all the estimates obtained about'2 [|@(s)|| 12(2)> » We have

3 48)(t—s) ,—(2-2-8)s

e

_ T ,(2—
IO(R) iy < Ce2a 204 [ 1
0 (min(1,|7—s|)a

Applying the Gronwall’s, more precisely Lemma 1.2.2, we conclude

~ 3 o
10(2) | 2(0) < Cse™ @270,

as stated.

120te that with our restrictions on @, (% -2) < % — 2, so this is the slowest rate on the right hand sides of

10(2)]l.22)
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For Wy, we get

Wil 20 < Ce @ =97 [ Wy |20 +

T
+ / e Ve DU - (1,(0)e1 &G+ e 7G) + U W[ gy s
0

T
+ /e_
0
/16(13+5)(H)e(23)S|yU(yG|+|G1|)||L2(2)
0 (a(z )
T6(1—g+6)(f—5)HUHLwIIWl||L2(2)
1
(a(t—s))e
4 =)@
v el =@ T 0(s) || 2

(a(t—s))@

(T=5)%@(s) l2)ds < =gt

_|_
S~

ds = e(l—%+8)r+ll +5L+15

+
S~

For I;, we have
_2
IU(GI+1G1) 2) < [l @ U+ sUcl)(|G|+|G1|)||L2 )+ 10w (1G] +1G 1) 22(2)

The first term is easily estimated, since G,G| = d;G € L?(2) (whence Ug, Ug, € L” by Sobolev

embedding and Lemma 2.1.3)
2 _3
(=@ Ug +e@=21Ug, ) (1G] +[Gi|) 22y < Ce",

whence the contribution of these terms is no more than

T (1=348)(1—s) 2(2—3
C/ e( a )t S)e ( la)sds<cezf(2_%).
0  min(l,|t—s|)=
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For Uy, terms, we can use Lemma 2.1.3, the Sobolev inequality and L?(2) — LT to get

1Ow, (5)(IGI +1G1) | 22) = 1Uw; - (1 +EP) (1G] +[G1 ]| 2
< Ul 2 10+ 1ERGI+IGID 2, <ClUm 3 <CIVUW ], 2,

<CWll =2, =ClIW()l2)-

2
I+

All together, the contribution of /; is estimated by

. Ty (3-1-8)(1-5) )~ (3-2)s
h§&2@2”+/ . W1 ()| 22 ds
0 min(1,|T—s|)@

Regarding I, we first need an appropriate estimate on ||U||z=, which is fortunately already given

by (2.69). This then gives the bound for I,

Ty (3-1-8)(1-5) ,~(3-2-8)s
h< / | W) 2 ds
0 min(1,|7—s|)@

Combining all estimates for [[W;(7)]|2(,) yields

T ,—(2-1-8)(t—s)

. —(32-2-5)s

e

_n(3_
Wi (2, )l 2oy < Ce 227 4 / W1 (5)ll2 2.

0 min(1, |t —s|)

SIE

Applying Lemma 1.2.2, with g =2(2 —2),6 = (2 =1 —8),k = (2 —2—§) yields

o

Wi (T, )20 < Ce2a2T,

This is the statement of (2.64) and Theorem 2.3.11 is proved in full. L]

At this point considering the relation L?(2) < LP,1 < p < 2, the proof of theorem (2.1.2) is

just a matter of translating the L? estimates of W and © into the original functions @ and 6.
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Proof of theorem (2.1.2). We just simply transfer the estimates in (2.3.11) into the original x and ¢,

N nO) - n(0) :
leo.) (1+t)%_1 1G((H—t)éc) (1+t)§G((1+t)olz)”Lp
_ 1 x o nO) N 1) x px%
[/Rz 1+tW((1+t)olc (1+t)%*1 1G((1+t)&> (1+z)§G((1+1)&)) d}
:(1—{—1‘)0‘%’ X 72(0) a X
(1+1) [/R M n® a2 Nk
YI(OEIG( X ; P dx 2}17
(1+1¢)a (141)a (1+1)@
_ 1 rO) 1O oy,
(1+t)1‘a2p”W() (141)a? v (1+t)§—1G()HL
S e s WO a0 a0k
< Ce e—ZT(%—Q—&‘) < Ce
(4@ T (l4ya e
The L? estimate for 6 requires similar computations,
L n(0) : ,
16(z,-) (1+t)éG((1+t)é)HL
X X P 1
:{/ 121®( T) - YZ(O)gG( T) dx}
R (1+1)*a (1+)a  (1+)a  (1+1)a
— (1+1)% x ) x P ax 1»
_<1+t>2‘é[/w ®(<1+t)é) <1+z>3—2+é6(<1+r>é <1+z>é}‘

Therefore,
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16(z,-) -

= LD )~ p(0)e 260 |

(1+1)> @

2
1+1¢)or _r(3_
< U™ 160y — p(0)e 2602

C (141)* @
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Chapter 3

Sharp relaxation rates for plane waves of reaction- diffusion

systems

It is well-known and classical result that spectrally stable traveling waves of a general reaction-
diffusion system in one spatial dimension are asymptotically stable with exponential relaxation
rates. In a series of works in the 1990’s, [24, 33, 37, 63], the authors have considered plane
traveling waves for such systems and they have succeeded in showing asymptotic stability for
such objects. Interestingly, the (estimates for the) relaxation rates that they have exhibited, are all
algebraic and dimension dependent. It was heuristically argued that as the spectral gap closes in
dimensions n > 2, algebraic rates are the best possible.

In this chapter, we revisit this issue. We rigorously calculate the sharp relaxation rates in L™
based spaces, both for the asymptotic phase and the radiation terms. These turn out to be are indeed
algebraic, but about twice better than the best ones obtained in these early works, although this can
be mostly attributed to the inefficiencies of using Sobolev embeddings to control L™ norms by high
order L? based Sobolev space norms. Finally, we explicitly construct the leading order profiles,
both for the phase and the radiation terms. Our approach relies on the method of scaling variables,
as introduced in [17, 18] and also developed in the chapter 2, and in fact provides sharp relaxation

rates in a class of weighted L? spaces as well.
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3.1 Introduction

In this chapter, we study the following general reaction-diffusion models

u=Au+ f(u), xeR” a.1)

u(0) = uo,
where,n>2, u:R"xRT - R™" m>1,and f € C4(R", R™). More precisely, we will be interested
in the dynamics of the solutions with initial data close to plane waves, that is the dynamics near
plane waves. Existence and stability of such waves in the case n =1 is a classical subject, with a
vast literature associated to it.
In order to introduce the problem and some notations, assume that there exist steady states
¢+ € R™, so that f(¢+) = 0. Next, we assume that n = 1 and there exists solutions of (3.1), in the

form u(z,x) = ¢(x —ct). That is, ¢ satisfies the one-dimensional profile equation,

0" (z)+co'(2)+ f(¢(z)) =0,z € R. (3.2)

We also assume that lim, 1. ¢(z) = ¢4, with exponential rates of convergence, although the
exponential rate of convergence can be replaced with a weaker, but nevertheless strong enough

algebraic rate. In any case, our standing assumption is that for some v > 0, there is

|0(z) — 9| <Ce®*,2<0; |9(z) — 4| <Ce *%,2>0

Finally, we assume that the localized function ¢’ : ¢’ € H*>(R). Another relevant object for the

stability theory is the (one-dimensional) linearized operator about the wave, namely

Ly = d;+cd.+Df(¢), D(L1) :HZ(R)-

Saying that ¢ is spectrally stable amounts to 6(L;) C C_ = {1 : RA < 0}. Very often, waves like
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that enjoy the strong spectral stability property, namely that' ¢(L;) C {0} U{A : RA < —§} for
some & > 0. It is a classical result by now that for the n = 1 problem u; = uy, + f(u) such solutions
are asymptotically stable, [27, 48], and in fact they enjoy exponential relaxation rates.

The situation becomes more interesting for the case of plane waves. We now introduce the
notion of plane wave solutions. These are in the form u(¢,x) = ¢ (k- x —ct), where k € S"~!. Tt
is clear that ¢ satisfies the same one-dimensional profile equation, (3.2). In fact, without loss of
generality, we may assume that k = (1,0,...,0) as the problem is rotationally invariant. These
solutions ¢, if they exist, are referred to as plane waves. Since all statements we make for traveling
plane waves in the form ¢ (x; — ct,x3,...,x,) will be easily translatable for general plane waves
of the form ¢ (k - x — ct) for arbitrary k € S"~!, we henceforth concentrate on the case of waves
in the form ¢ (z — ct,x2,...,x,). Passing to the moving frame of reference x| — ct — z renders the
equation (3.1) in the form

u =Au+cou+ f(u),x € R". (3.3)

To reiterate, going forward, we consider stationary solutions of (3.3), instead of traveling waves
for (3.1). This is, as discussed above, an equivalent problem.

The study of the plane waves and their stability has attracted a lot of interest over the last thirty
years. The following, very incomplete, list [4, 5, 19, 20, 33, 34, 37, 38, 39, 48, 56, 63], consists of
mostly recent references as well as various applications to the sciences.

We have already mentioned about asymptotic stability for these waves, so it is time for some
rigorous introductions. More specifically, asymptotic stability in this context means that for any
initial data ug, close to the plane wave ¢ in an appropriate norm, there is an asymptotic phase

o(t,y),x = (z,y), so that the radiation term tends to zero, i.e.

lim [u(t,2,y) ~ $(z— 5(1,9) [x =0, (3.4)

for some appropriate function space X in the variables (z,y) € R x R"*~!. It should be mentioned

Here observe that 0 is automatically in the spectrum as corresponding to a translational invariance or just by virtue
of taking d, in the profile equation (3.2).
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that the introduction of a (¢,y) dependent asymptotic phase ¢ is absolutely necessary in order for
an estimate like (3.4) to hold true. See for example Remark 1.3 in [33].

Regarding specific results about asymptotic stability of plane waves, let us begin by stating
that the general question has been resolved, for the generality that we are interested in, in a very
satisfactory fashion, in the works [24, 33, 37, 63]. Subsequently, and in a more general context
in [19, 20, 38, 39, 56]. For some of these later results, the authors consider degenerate systems
appearing in certain combustion and biological applications, where the spectral gap property fails
even in one spatial dimension. These works necessitates the introduction of exponentially weighted
spaces to effectively create such spectral gap, but this will be outside the scope of this dissertation.
We shall instead concentrate on the easier and yet not very well-understood case, where we start
with a spectral gap in one spatial dimension, i.e. the setup in [33, 37, 63].

In order to summarize the state of the art, the results in these works establish that as soon as
n > 2, there is an algebraic in time estimate for the relaxation rates in various Sobolev norms. This
is indeed in sharp contrast with the case of one spatial dimension, where under the same spectral
assumptions (see the discussion below Assumption 3.1.1), one can show, see [27, 48], that both

the radiation and the phase go to zero at an exponential rate.

3.1.1 Linearized operators

Let us introduce the full linearized operator for the plane wave that arises. Let u = ¢ +w, then

wr = A@+w)+cd(¢+w)+f(P+w)
= (AQ+cd 0+ f(9))+Aw+cd,w+Df(d)w+N(¢,w)

= Aw+cdw+Df(¢)w+N(p,w).
Therefore considering the (3.2), the linearized operator is
L=A+cd, +Df(¢) =L +A,, D(L)=H*R").
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Above we defined L| = d,;+cd, + Df(¢). Clearly, L is a closed operator. Due to our assumptions,
¢ is a bounded function, whence L is a (non self-adjoint) Schrodinger operator with a drift term.
It is a classical fact that for the related one dimensional operator, we have L;[¢’] = 0, which is
obtained by differentiating the profile equation (3.2) in z. This is of course nothing but a manifes-
tation of the fact that the problem is translationally invariant and hence zero is an eigenvalue. As
we have alluded to above, the spectral stability of the wave ¢, as a solution to the one dimensional
model (3.3), consist in the fact that 6(L;) C {z: Rz < 0}. Moreover, we shall need to require that
in fact its spectrum is a fixed distance 6 > 0 away from the marginal axes Rz = 0, except for the
translational eigenvalue at zero, which we assume to be simple. More specifically, we make the

following standing assumption henceforth.

Assumption 3.1.1. We assume that there exists § > 0, so that the spectrum of L1 in H' (R) satisfies

o(L1)\ {0} C {A: KA < 5} (3.5)

Moreover, the eigenvalue at zero is simple, with an eigenfunction ¢'.

Having the spectral gap condition (3.5), and under appropriate conditions on f, ¢, allows one
to show that the wave ¢ is asymptotically stable, with exponential decay of the radiation term, with

an exponential rate of essentially e (6-¢)

'. This goes back to at least the classical works [4, 27].
In the case of plane waves, one has L instead of L; as a linearized operator, which destroys the
spectral gap property. In fact, since L = L; + Ay, a direct computation shows that L[¢'(z)e’?] =

—k2¢'(z)e’*Y + L [¢"]e™*, which since Li[¢'] = 0, leads to,

L[¢ (z)e™] = —k*¢/ (z)e™?,

whence it becomes immediately clear that the continuous spectrum of L contains the whole neg-
ative real axes. In particular, it touches the imaginary axes at zero, so that the corresponding

semigroup e’ has at best polynomial rate of decay. Heuristically, one expects no better from the
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nonlinear problem, so polynomial in time bounds seem indeed the best possible in (3.4).

This is however an open problem, and one of the goals of this dissertation is to establish this
rigorously. In fact, we aim at establishing the optimal decay rates in these asymptotic results. We
achieve that by requiring slightly more localized initial perturbations vy := ug — ¢, namely that v
resides in an appropriate (power) weighted L? space, see Section 3.1.2 below. Before we state our
concrete results, let us discuss the setup of the asymptotic stability result. This part follows the
work of Kapitula, [33], but note that we introduce weighted spaces for the purposes of our analysis

later on.

3.1.2 Setup of the asymptotic profile equations

We start with the Riesz projection for L, associated with the isolated and simple eigenvalue at

zero. Namely, for a small €, introduce

_ ! -1
P()M = E Ml:g(l L]) dA (36)

As zero is a simple eigenvalue, with an eigenfunction ¢’, it follows by the Riesz representation
theorem? that for u € L?>(R), Pou = (y,u)¢’, where v € H*(R) and in fact L*y = 0, with the
normalization, (y,¢’) = 1, see [34]. In addition, we define Qy = Id — Py, and both operators
commute with L. While the operators Py, Q¢ act upon functions of the first variable only, we may
also consider their action on functions, which depend on the remaining variables ¢,y as well.

Recall the definition (1.3) of weighted spaces L*(m)(R"~1), or L?(m) for short, define
H'(m):={f R S R: f,V,f € L*(m)}.

Note that all the spaces in this section are based on functions on R"~! due to the fact that ye R 1L,

In anticipation of our analysis later, we introduce the spaces (H'!(m) NW!*),H] for functions

%In this work, we only use real-valued functions, so the dot product is symmetric {(y,u) = (u, y)
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f(y,2), where the norm is taken as follows

I ey = L [ IVEVEF0n2) P+ D) dzdy + sup ||VEVIf(zy)]7]
a,be{0,1} JR" yeR!

As is clear from the definition above, we shall adopt the notion that all norms in the z variable shall

be always taken first. Introduce the complementary subspaces

N ={uc (H (m)nW"),H 1 u= Pyu}

B ={uc H (m)NW"=),H! : u= Qou}.

Clearly (H'(m)N"W'*),H! = # + 2, in the sense that every function in the base space’ (H' (m) N
W1’°°)szl is uniquely representable as a sum of two functions in .4 and Z respectively. We need

the following lemma*

Lemma 3.1.2. There exists & > 0 and a constant C, so that for all w : HW||(H](m)ﬁW'~°°)yH,1 < €&,

one can find unique and small (v(w),c(w)) € Z x H (m) "W, so that

||V<W)||(H1(m)ﬂW1v°°)szl + ||G(W)||H1(m)ﬂW1=°° <Cg&

and

¢ (z) +w(z,y) = 0(z—0(y)) +v(z,¥). (3.7)

The proof of the lemma involves a standard application of the implicit function theorem 1.3.1.
Note that we can apply Lemma 3.1.2 and in particular decomposition (3.7) for time dependent

perturbations, so long as the smallness condition is satisfied.

3Here, we would like to note that our base space is a bit different than the one used by the previous authors, who
preferred to use high order Sobolev spaces, which control L= (R").
“4see Lemma 2.2 in [33] for a similar statement, in high order Sobolev spaces.
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Proof. Set up a mapping

G(w;v,0)(z,y) = 0(z—0(y)) +v(z,y) — 9 (z) —w(z,y)

We will show first that G : (H!(m) "W1=) H! x % x (H'(m) "nW'=) — (H!(m) nW1=),H]}.

Z

This follows easily from the mean value theorem, since

G(w;v,0)(z,y) = /¢ (z—70(y))dT+v(z,y) —w(z,),

and ¢’ € H'(R). Clearly G(0,0,0) = 0, so by the implicit function theorem, it remains to check
that

dG(0,0,0)(6,7) = —¢'(z)6 +¥
is an isomorphism on (H!(m) N"W1*),H]. To this end, let & € (H'(m) "W 1) H! be an arbitrary
element and we have to resolve the equation

—¢'(2)6 +V=h. (3.8)

Clearly, by the properties of % and ./, (3.8) has an unique solution, namely &(y) = —(h(-,y), ¥(+)),

while V = Qogh € Z. Moreover, these mappings are linear and
161|271 gy < NW 2 10l et gy ) 2
191t gy < ClAN Et gy .=, 1

Thus, the implicit function theorem applies and in a neighborhood of zero, there are unique and
small o(w) € H!(m) "W v(w) € £, so that G(w;v(w), o (w)) = 0. Equivalently, (3.7) holds.
O

Using the ansatz provided by (3.7), and as long as |[w(z, ) || 1 (myaw1.=), 1 << 1, the equation
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(3.3) is transformed into the following system of equations

vi = Lv+ QoH (¢s,v) + QoNi(0,V,-0,v)
o = A0 +MN(0,Vy-0,v), (3.9)
v(0) =vp, ©(0)=0p

where ¢ (z) := ¢(z— o (t,y)) and’
H(9o.v) = F+ 60) ~ [(96) ~ D (9) = 3D°f(90)7* + E()

N2(0.Vy-6.v) = Ki(0)(Vy- 0)* + K> (0) (<W,H(¢G,V)> +(Df(9s) —Df(¢))V>>

NI(G,Vy' G,V) :N2(Gavy'6av)¢c/r+ (Df((PG) _Df(¢))v+(vy 6)2 (,T/

Kilo) =~ ég ¢Zi Klo) = <w,1¢3>‘

The derivation of (3.3) is done in great details in [33], see equations (2.28),(2.29) on p. 261 there.
One of the important points, [33], is that with ||o||;= << 1 guaranteed by Lemma 3.1.2, we have
that (v, 05) = (v, 9') + (v,9, — ¢’) = 1+ O(0), whence the denominators in the coefficients
Kj(o),j=1,2 are away from zero.

The error term is of the form

E() = f(v+90) ~ £(90) ~ Df (90)v — 30 (6a)1 = 00?), (3.10)

under the assumption f € C3(IR) and ¢ is a bounded function. We provide further concrete estimate
on E(v) later on, where we shall need to assume f € C4, since spatial derivatives on E need to be

taken. See the proof of Lemma 3.4.3 below.

SHere D’ f (¢ )v? is a quadratic form and it denotes the action of the Hessian matrix D?f(¢s) on (v,v). We will
use the same convention later on for trilinear forms
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3.1.3 Main results

As we have already discussed, we provide the sharp time decay rate for ¢ and v in (3.9). The

following theorems are our main results.

Theorem 3.1.3. Letn > 2 and m > % + 1. There exists small €y > 0 and a constant C, so that the
stationary solutions of (3.3) are asymptotically stable. More precisely, for all € : 0 < € < & and
Jor all ug = |[uo(z,) = ¢ ()| (g1 (myrwr=), 11 < & the solution to (3.3) with initial data ug is global

and there exists o € L(R, (H' (m) "W1)), so that

u(t,z,y) = 0(z—o(t,y)) +v(t,z,y), v=0Qqv e L (R, (H'(m) ﬂW17°°)sz1)

with
lo(, )| < Ce(1+1)~"7 311
IVy0 (1, )|z < Ce(1+1)72 (3.12)
Vllze, < Ce(1+1)~(+2) (3.13)
Remarks:

e The estimates for v can be stated in a more precise form as follows
|l < C(2(1+1)~ (D) 4 g 37)
Ly,z =~ ’

of which (3.13) is a corollary. In other words, there are two terms in the formula for v -
one linear in &, but decaying exponentially in # (coming from free solutions), while the other
decaying at the right power rate, but quadratic in &€, which comes from the Duhamel’s term

and the nonlinearity respectively.

e The decay estimates in L3 norms (3.11), (3.13) should be compared with the estimates in

[63], [33]. As the arguments in these papers require the use of Sobolev embedding into H*
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spaces, it only provides the bound ||o||z~ < Ce(1 + t)_%, whereas (3.11) is clearly much
better. In fact, (3.11) is sharp, as shown in Theorem 3.1.4 below. The estimate (3.13) for v

above is also clearly superior to the one provided in [33].

e We have more estimates for ¢,v than the one stated in Theorem 3.1.3. In particular, v,
belong to weighted L? spaces and in fact, one can write estimates as follows - for every
0<m<m,

m 1/2 l/n=1_~
(/Rm"’(“y)'z'ﬂzmdy) <cCe(1+1) 2"z ™),

This estimate gives an algebraic decay for m < ”5—1, but they are true even if m is larger,
that is the corresponding weighted L?> norms may be growing in . In the case / = 0, these
become the usual L2 spaces. One can in fact see that the result, in this case exactly matches

the L2 bounds in [33].

e One disadvantage of our method is that one cannot get estimates for V%G nor V%v (and
higher order derivatives), due to a technical issue that arises in the scaled variable analysis,
see the remark after Proposition 3.2.3 below. Such estimates are clearly possible, as was
demonstrated in [33]. On the other hand, we believe that this is really a technical issue,

which we have not explored further.

The rates established in Theorem 3.1.3 are sharp. Specifically, we have the following result, which

we formulate as a separate theorem.

Theorem 3.1.4. Under the assumptions of Theorem 3.1.3, the estimates (3.11), (3.12) and (3.13)
are sharp. More precisely, let ug : ||uo(y,z) — ¢ (2) | (g1 m)rw1), 1 < € and 0o € H'(m)nw!,

vo = Qovo € (H'(m) NW1=),H] be the unique pair guaranteed by Lemma 3.1.2, so that

uo(y,2) = ¢(z—00(y)) +vo(z,y)-
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Then, we have the following

oy U1 00()dy) : Ce?
o) (1+0)"7 G(m) o = (1+1)2’ G19
oy Ureroo0)dy) o - Ce?
oot~ LR 56 1_H)ms(l_m,,y, (315

12

where j=1,....n—1, G(y) = (47[)_%6_7. In particular, assuming that [, 6o(y)dy # 0, we
have the asymptotics

n—1

lo(t, )y =e(1+0)7 7, [[Vo(s, )|y ~e(l+1)"

n
2

Regarding v, we have that for6 n>3,

2
(Jrn-1 O0(y)dy)? e 2t
t
v(t,z,y) + @zt

]
-1
(t+1)”+lL1 Qo

(]

0")(2)llzs, < CE(1+6) " +ee 2. (3.16)

whereas for n =2,

2

o) o Unoo0)d? e

2(r+1) L_] [ //]
by QN
<CE(1+1) 3+ (1+1) 2 +ee o). (3.17)
In particular, if [pa.—1 6o(y)dy # 0, we have the asymptotics
Iv(t, ) o, = € (1 +1)7"2. (3.18)

Remarks:

e The asymptotic expansion for ¢ improves both in the order of € and the decay rate - the

leading order term is order £(1 —H)_%, while the error is €2(14)~2. This is due to the

®note that L; is invertible on Qg[L?] or L; ' Qp is well defined
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fact that the leading order term entirely originates from the free solution.

e In contrast, the expansion for v has a main term, which is £2(1 + t)*"*% and two to three
types of error terms - an exponentially decaying in ¢, but linear in € (originating from ini-
tial data) and faster decaying, but still quadratic in € terms, originating from various other
nonlinear terms. In the case n = 2, we recover yet another term, which decays like the main
term, but it is order of € smaller. Most importantly, the structure of the error terms guarantees

(3.18).

3.2 Preliminary steps

In this section, we transform the evolution equation (3.9) into an equivalent one, through the use

of the so-called scaling variables.

3.2.1 The evolution system in scaling variables

Introduce the scaling variables

Vi

=2,
Vit

T=In(1+17), n;=

1.

In these independent variables, set the new dependent variables V,I" as follows

_ 1 y _ 1 y
venn =Y (Z’ \/I_Jrz’ln(1+l))’ o) = \/1+tr<\/1+t’ln(1+t))'

Straightforward computations show

1 11 y 1
v = — V= VoVt —V,
' (142" 2(14+0)2 T+t 1 (142)2'"
1
Ay = —— AV
¥ (1412717
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L1V

(Vy- O')z‘i)g

N>(o,V,-0,v)

O;

NI(O-,Vy'G,V)

1 I 1
—L1V, H(¢s,v)==

D*f(¢_ 1 )VI+E((1+1)7'V),

1+1 2(1+1)? Viti
1 241

(1_|_t)2(v71'r) ¢\/117H1"

oK) ATV TR

2 Ka((1+0) VDD (9 )y, V)

(1+1)2 Vit
K((1+0) D)y, E(1+1)7'V) +

LKZ((I +1)V20) (y, (DF(9_1_p) —Df($))V)

1+1 Nex
N,

11 11 1
_5(1+r)%r_5(1+;)%le_w'v"'”mrf’

1
(1+t)%AnF
ﬁNz(F,VH T,V)(P%FWLI—H(Df(‘f’(ﬁ)r)—l)f(éb))v*'
(i it)z(Vn -F)Z%TF =: ﬁNl(F,Vn .T,V).

So, we have introduced a new set of nonlinearities, which in the new variables (7, 1) take the form

H(T,V)

NZ(F, Vn M F7 V)

NI(F,VT['Fvv)

1 2 2 2T —T
DS (0,5 )V E(TV),

Kile )%y T2+ Kate i) (D200, 1,002 v)

Kol D)W E(e V)4 265 DI(0, 5~ DFODV) ).

= M(I,Vy T.V)$' s +e"(Df(9, 5) ~Df(9)V

Nla

(Vﬂ .r)2¢//

e T .
e 2T
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Therefore the system (3.9) is transfered into the system

Ve = (L + 3V +e'LiV+QoH(T,V) + QoNi ([, Vy -I,V)

. (3.19)
FT - D%nr‘i_e_iNZ(r, VTI . F,V)
where H,Ni, N, are defined above and the operator .}, is defined as
1 1

We finish this section by stating the variation of constant formula for (3.19). Note that this is
slightly non-standard, due to the T dependence of the linear operator, i.e. the term e°L;, in the
equation for V. It should be noted that L; generates a Cy semigroup on the Sobolev space H'(R)
(see Lemma 3.4.1 below), while the operator Ly generates a semigroup, but on specific weighted
L? based spaces, see Section 3.2.2 below. Thus, since the action in the variable z and the variable

7N are independent, we may in fact write the system for (V,I") as follows

V o= Tt )L1V0+ (3.21)

n / T Ent3) ol ==L [, H (T, V) + QoNy (T, Vi - T, V) (s)]ds
0

I — &%, / (=921 6=3 Ny (T, Vy - T, V) (s)dis, (3.22)
0

where V), Iy are the initial data of the variables V and I'. Note that by the scaling variables assign-
ments, Vo(z,y) = vo(z,y),To(y) = 00(y).

It becomes clear by this last formulas that in order to study the long time properties of the
system (3.21), (3.22), it will be helpful to know about spectral properties of Ly and estimates of

the associated semigroup.
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3.2.2 The operator L - spectral information and the associated semigroup

For this section, note that the spaces that we introduce are based on R"! instead of the usual R".
This is due to the fact that the scaling variables transformation is performed only in the variables
ye R

The following results are due to Gallay-Wayne, see Theorem A.1 in [17]. Note however that
the operator . appearing in [17], satisfies £y = £ — ]% and N = n— 1. Moreover, proposition
2.1.5, proved in chapter 2, presents this proposition in 2 dimension for the operator .Z containing
fractional derivative, instead of a full Laplacian.

Proposition 3.2.1. Let m > 0 and £y be the linear operator (3.20) acting on L?*(m), and

B 2
G(n) = (4%)7%67%. Then, its spectrum consists of 6(%y) = 04(Ly) Uoe(Ly), where

1. The discrete spectrum is

n+k—2

O'd(gn):{lkGCZlk:— ;k:O,l,Z,---}.

2. The essential spectrum is

Gess (L) = {A €C:RA< —”:5 —g}

Moreover, for m > % the largest element of Ro (L), i.e. the eigenvalue Ay = —%, is simple,

with an eigenfunction G, which satisfies

n— n—1

22}C{/I:SK/1§—

LG =G, o(Ly)\{—

}

In our next proposition, we discuss the semigroup generation properties.

Proposition 3.2.2. The operator £ defines a Cy semigroup on L?(m)(R"1). We have the follow-

ing formula for its action

"this is a not necessarily disjoint partition, as some eigenvalues are embedded into the continuous spectrum
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(Faf)(E) = e T aDIEl feig), (3.23)
e f)(m) = Lﬂ G<n_n1)f(e5n/)dn’, (3.24)
(4ma(t)) = /R 2a(1)?

where a(t) =1—e"".

The semigroup formulas (3.23) and (3.24) are also taken from [17] (see statement 4, Theo-
rem A.1), with the readjustments due to the different constant and the fact that Ly acts on n— 1
variables.

Finally, we state some estimates about the action of the semigroup ¢*<7 on
L*(m)(R™ ). A version of these are in fact needed for the determination of the spectrum ¢(-%;),
but they have already been proved in Proposition A.2, [17]. Even though these are well-known,
we state them explicitly and provide some calculations for them, as our normalizations are slightly

different than [17], which may create an element of confusion.

3.2.3 Spectral projections and estimates for ¢*<7 on L2(m)

Fix m > 5 + 1. The spectral projections corresponding to the eigenspaces of .#; can be constructed

explicitly, [17], but we will not do so here. Instead, we just construct the one corresponding to the

first eigenvalue Ag(%y) = —%. Recall that its eigenspace is one dimensional, spanned by G.
Accordingly, we shall need an eigenvector e, for the adjoint operator, so that Z*e, = —%e*.
But since

1 n—2

*
Ly =By =50V = —
So, it is easy to see that e, = 1 is an eigenfunction® for fﬁ‘ and since our normalization for G

In|?

is chosen so that (1,G) = (471)_% f]R{'H e~ 4 dn =1, it holds that e, = 1. Thus, we have the

8belonging to the dual space L?(—m)(R""!)
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convenient formula

2urm = ( [ ro)an’) 6n) = (r.104G(n)

and Qo =1Id— @0.
Proposition 3.2.3. Let m > % Then, for all oo € N"~! there exists Cq > 0 such that

n—1
2t

e
IV (™1 20 f )| 2y 1) < Co—37 |11l 2m) o1 (3.25)
a(t) 2

forall f € L*(m) and all T > 0.

lof . .
Remark: The appearance of the factors a(7) 2 in the denominator makes the control of second

and higher order derivatives, such as V% I, V%V, problematic. The reason is that for 0 < 7 < 1,

a(t) ~ 7 and we need an integrable in 7 functions sitting on the right-hand side of (3.25).

Proof. This proposition is proved in [17], see Proposition A.2, we have just made the adjustments
for the constants and the dimension of the space. Note that the exponent % on the right hand side
of the estimate is consistent with the assertion that 6(.%,2) C {RA < -1}

We just copy estimate (92) from Proposition A.2 in [17], and we take into account that .25 =

L— ”;22, where the operator L is the semigroup generator in [17]. Thus, we obtain (3.25). [

Finally, we need an estimate of the following type.

Proposition 3.2.4. Let m > 5 and a € N. Then,

n—2
e 2 "¢

IV4€™N £ o a1y < C <”f||L°°(]R”1) + ||f||L2(m)((R”1)))' (3.26)

a(t)?
We get the following improvement, when the semigroup is acting on the co-dimension one subspace

Qo[L*(m)] and m > 5 +1,

n—1
e 2"

a(t)?
100
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Proof. We divide the proof into the cases of T < 1 and 7 > 1. For 7 < 1 we use the definition
(3.24) in our calculations. Indeed,
e? n-n'. ., :
IV ™ fllp= < C———rll | V'G(———1)f(e2n")dn’ |-
(a(t)) 2 Jr! (a(1))2
VaG . n— 6%‘ oo (TDH—
| (( ( I)HL‘(R 1)||f( )HL (Rr—1) - CHVaGHLl(R"—')||f||L°°(IR"—1)

< C a(t1))2 : <
- (a(7))"5 (a(7))?
CllA Nl =1y
(a(7))*

. n=2. .
Since for T < 1, e 2 7 is bounded, we have

n—2
Ce 27
V€™ f| 2 < ———— [ fll (o1 (3.28)

(a(1))?
‘We now turn our attention to the case T > 1. We have,
V4™ £l < Ce™"T ¥ @I || [ fle 3|
:@"#/ e~ IEF || Fle3E)|aE
Rnfl

e [ eI g g g
Rr—1

atl - —a(D)|e3qP | a7
S T o B [ v
a(t)le2q2<1 =1 Ji<a(7)|e2q|?<i+1

=J1+ /.

Since |£(q)| < |Ifll;1 < Cl| fllz2(n), because m > 5, we have

a(t)le2q<1

_a+l _ 5420 i
ezm§/ T ewmﬂwmmwswmw/  Jgldg
a(t)|e2q|?<1

e 2 (a+n—1)7
1 ) e 2 _ (atn—1)t
< CHfHLZ(m)/0“(’)2 r T dr < C—T)zﬁ-g—_l [ f 2y < Ce™ 2 (| fll2gmy
a
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since for T > 1, a(7) > % In other words,
B <Ce T iz

For J; in a similar way, we have

_m > 2
0 <l X / eaedaP | gpag
i=1 |6261|2Si+1

z
2

(H—l)

<l Yoo / gy

. e

I

a(t)2

L7 e~ ( +1 a+n—1 a—i—n—l) S C||f||L2(m)e_a+gfl7:.
i=1

< Cllfll2mye

In other words,

(-2
J <Ce™

Therefore for 7 > 1 if we put both estimates for J; and J, together we get
n—2
V€™ f]| = < Ce™ "2 7| 1] c2m)- (3.29)

The proof of (3.26) is now is complete by putting the estimates (3.28) and (3.29) together. For the
estimate (3.27), we use that 2o f = f — (f, 1) G, so that (2o f, 1)y = (f, 1)y — (f, 1) (G, 1) =0.

So, éo\f (0) = 0. Thus, in the estimates above, we have

20/(@)l = |20f(a) ~ 20f(0)| <al|V 20|~ < Clg] /R ~Inll2of(n)ldn
< Clgll|2of | 2(m)> (3.30)

where in the last inequality, we needed m > 5 + 1. In addition,

1Lof N z2my < [ f 122y + 15 DGl 2y < CIF Nl z2m)
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Plugging these estimates in the argument above, we gain a power of |g|, which gains an extra power

of e~ 2 over the estimate (3.26), which is reflected on the right-hand side of (3.27). ]

3.3 Long time asymptotics - setup and further reductions

In this section, we study the precise asympotics of the radiation term V and the phase I'.

3.3.1 Decomposing the evolution along the spectrum of %,

Due to the fairly explicit spectral information available about %, see Proposition 3.2.1, and the
semigroup estimates in Propositions 3.2.3 and 3.2.4, it is beneficial to consider the system (3.21),
(3.22) in L?(m) based spaces. For the estimates to work, we need to take m to be large enough,

say m > &21 In this space, the operator .Z, has at least one isolated eigenvalue Ay = —%

n—1 |77|2

corresponding to the eigenfunction G() = (47)~ 2 e~ 4 ,recall n € R" 1,
For conciseness, we set f: 2, f, that is all functions with a tilde hereafter will denote func-
tions in 2o (L?(m)). With this set up, we decompose the solutions of the system of equations (3.19)

in the following way,

V(Z= n, T) - (X(Z, T)G(Tl) +v<z7nvf)u

- (3.31)
I'(n,t)=7v(r)G(n)+I(n,7),

where o (z,7) = (V, 1) = [ga1V(z,M,7)dn and y(t) = (I, 1)y = [ga1 (1, 7)dn. In order to

find the representations of o and y we make (-, 1) in (3.19),

o = (Vr, 1>Tl = <($77 +%)V> 1>71 +e*(L1V, 1>77 +(QoH (T, V), 1>71
+<Q0N1(Favnrvv)71>n
1o = (Te, 1)y = (LT 1)y +e 2 (Na(T, VoL, V), .
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Some of the terms in this system can be simplified. Clearly (L1V,1)n = L1a(z, T). Moreover,

(L 50V U = AV, Dy 5 (0 VgV, Ty + (V. 1)y

1
- E/n -VV dn + <V7 1>n = _nTa(Za T)‘
Therefore, we obtain the ODE/PDE system

O‘T(Za T) = _% OC(Z, T) +eTL1a(Z7 T) + <Q0H(F7V)v 1>77 + <Q0N1(F7V71 'F7V)7 1>71

Y= _% ’}/(T) +97%<N2(1—‘, Vn -F,V), 1>n
(3.32)

Recall now that by our construction in (3.9), we had v = Qpv or equivalently Ppv = 0. Clearly, such

a property transfers to the scaling variables’, that is QgV = V, P,V = 0. Consequently,

Pooe(-,7) = Po(V(-,m,7), ) = (RV(-,n,7),1)n =0

or equivalently o(z,7) = Qpt(+, 7). Thus, the system (3.32), which consists of an ODE and a PDE,

has the following integral representation,

_n3.

a(z,7) = e 7 el Vh0ia(z,0) + (3.33)

T
+ / e T (Tl =) g (H(T,V), 1) (s) + (N1 (T, Vi - T, V), 1)y (5) | ds,
0

n—2

T
Y1) = e 2 Ty0)+ / e ") e (N (T, Vyy - T, V), 1) (s)ds. (3.34)
0

We also can find the representation of V and I. For that, we project the system of equations (3.19)
away from the eigenvector G. That is, we apply 2y in (3.19). Note that all operations in the z

variable commute with the operations in the 1 variables, such as L; 2y = ZyL;, 2000 = Q02

%the operators Py, Qg are acting in the variable z, which is independent on the action in the scaled variable 7
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and so on. We obtain

- 1.~ -
Ve = (.Z,,+§)V+eTL1V+QO[QOH(F,V)+QON1(1“,V,7.F,V)],

;. = ZT+e 22N (T, Vy -T,V).

Note that once again V (z,1,7) = QoV (z,1, 7). The system has the following integral representa-

tion,

Vient) = et =Dlhigy, 4 (3.35)
T
+ / e(fn-i'%)(f—s)o@oe(ef_eﬂh QO [H(F,V)(S) _|_N1 (1"7 Vn F,V)(S)] ds
0
o~ ~ T s
I(n,7) = o+ / eZ1(7=5) 94eTIN, (I, Vy - T, V) (s)ds. (3.36)
0

Thus, we have reduced matters to the system (3.33), (3.34), (3.35), (3.36). Our next goal is to show

a small data, global regularity result for this system.

3.3.2 The function space

We now introduce a function space X. Of course, the time decay exponents are chosen appropri-

ately so that the argument eventually closes. More specifically,

(0, BV, D)llx :=sup {2 [a(-,7)l| gy +€" 2 I(e)| } +
7>0 N
+ sup { el DYV |2y + DTVl |+
>0 z n-'z

n—1l. =~ n—1. =~ n—1 =~
+ sup{ e’ [Tl gy + €7 U5 +e"2 ¥ VLl |-
7>0

Here, recall the convention HfHL;H} = supy || /(1) |l -
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3.3.3 Asymptotics in the scaling variables system

The following is the main result, describing the asymptotics of the evolution in the scaling vari-
ables. We just note that by the setup in the scaling variables, the initial data in the scaling variables

coincides with the initial data in the original variables.

Theorem 3.3.1. There exists €y > 0 and a constant C, so that for every € : 0 < € < & and initial

data (00,70,‘70,%0) = (a777‘7,f)|r=0 satisfying
(-0 lzzs + 17O+ [Voll g1 oy + VOl oy + ITollg71(my + ITolls + [V Tollz <&, (3.37)

the system (3.33), (3.34), (3.35), (3.36) has an unique solution in the ball Bx(0,Co€), with the

given initial data. That is, it satisfies

loe(-,7) |y < Coge™ 27 |y(7)| < Coge™T" (3.38)
V(%) |2z < Coge™ 72" (3.39)

= _n—1

1T M1y + 1V T (5,) [ < Coge™™ T (3.40)

In particular, taking into account (3.31),

IV (%, )2y nuzen < Coge™ 72" (3.41)

_n2
T, e myneg; + 1V (7)1 < Coge™ 27 (3.42)

The proof of Theorem 3.3.1 occupies Section 3.4 below. We only mention that as a conse-
quence of it and the relations (3.41), (3.42), we derive the asymptotics of the solutions (v, o) of the

system (3.9). More precisely, taking into account the scaling variables definition, we obtain
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l6(, )l = e
) L — 1—|—t

n—1
IT(7, )|z < Ceo(1+1)" 77,

I L
IVyo e, )y = 77— I, )lley < Ceo(1+1)72
) _|_t A
! ~(n+)
Vs < Wl = 5 V() g < Ceol1+1)~+4

These are precisely the claims in (3.11), (3.12) and (3.13).

3.4 Long time asymptotics - Proof of Theorem 3.3.1

We perform a fixed point argument in a sufficiently small ball of X. To that end, we view the

question for solvability as a fixed point problem in the schematic form
(a, }/,‘7,1:) = free solutions + ®(c, }/,\7,%),

where @ is defined as the Duhamel terms in the right-hand sides of (3.33), (3.34), (3.35), (3.36).
The existence and uniqueness of the fixed point will be established, once we can show that there
exists a sufficiently small € > 0 and a C (depending on parameters, but not on €), so that whenever

initial data satisfies (3.37), we have

||free solutions||x < Ce, (3.43)

e Forall (at,7,V.I) € X : ||(et,7,V,T)||x < &, there is

‘|(D(a7y7‘77f)‘|X chz- (3.44)

e For all (aj,)g,vj,fj) : ]\(aj,qg,vj,fj)]\x <e¢g,j=1,2, thereis
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|®(0,11,V1,T1) — @(00, 12, V2, 1a) ||x < Cel[(a1, 71, Vi, T1) — (0,7, Vo, 1) ||x.  (3.45)

Due to the multilinear structure of the functional ®, we can concentrate on (3.44), identical ap-
proach will yield (3.45). We start with the free solutions, as these only involve the mapping prop-

. . G
erties of the semigroups e™n and e*L1.

Lemma 3.4.1. The operator L, generates a semigroup on H'(R). In fact, under the Assumption

3.1.1, for all 6| < &, there is a constant C = Cs,,

€™ Qo f |1 () < C61676”||f|\H1(R)~ (3.46)

In the applications, we will use 01 := g

The proof of Lemma 3.4.1 involves the spectral gap property assumption. It is done by com-

bining appropriate resolvent estimates and the Gearheart-Priiss theorem.

Proof. The proof of the bound (3.46) follows from the Gearheart-Priiss theorem in the following
way. Since, by our assumption (3.5) the spectrum is to the left of any vertical line in the complex

plane {z: Rz = -0}, 0 < § < &, it will suffice to show that for a fixed such §j,

sup (L1 + 81 + i)l )i (m) = Co, < o (3.47)
pe

Indeed, the Gearheart-Priiss theorem guarantees that if (L) C {z: Rz < —8; } and (3.47) holds,
then the operator L; + 8; generates a semigroup with strictly negative growth bound, that is - there

exists € > 0, so that ||es(L1+5‘)||H1(R)HH1(R) < Cs, e~ or, equivalently

—s(e+01) < C5 e—551
— 1

bl

L
€™ | ()= 1 () < Cs,€

which is (3.46).
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Thus, it suffices to establish (3.47). To this end, fix 8; and observe that since the resolvent
(L +z)~! is analytic B(H'(R)) valued function on {z : Rz > —&}, it is continuous in the same

region and in particular, for each N, there is Cy,

sup  [|(L1+ 81+ i) |1 ()i (m) = Coyv < 0
UER:|u|<N

Thus, the real issue is to establish the bounds in (3.47) for all large enough u. So, we setup

g€ H'(R) and f = (L; + & +iu)~'g or equivalently
[ ref + Wi+ i f+iuf =g, (3.48)

where W = Df(¢) is a bounded, real-valued potential.
The existence of such an f € H!(R) is not in any doubt, by the spectral assumptions, we just
need a posteriori uniform in p estimates for it, for all large enough . We take a dot product of

(3.48) with f. Taking imaginary parts of the said dot product leads to the identity

ullFIIF+eS{f f) = S(g, f)

Applying the Cauchy-Schwartz inequality and after some algebraic manipulations, we obtain that

for every € > 0, there is Cg, so that

2 H
ul s <&

Copp
||f\|2+;(|!f I+l

So, we get the a posteriori estimate

C .
I£II* < E(llf 12+ llgll)- (3.49)
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We now take the real-part of the dot produc of (3.48) with f. We similarly obtain for every € > 0,

P17 < ell 1%+ DelllA1> + l1gl1?)-
Plugging in (3.49) into this last inequality yields
P17 < ellfII* + %"(Hf’Her lell*) +Dellgll
Selecting € = 3—1 and then u so large so that % < }1, we arrive at
IF'I> < Dllg|*.

Combining the last estimate with (3.49) yields the desired, uniform in u estimate (3.47). ]
Using the positivity properties of the function G, we have the following

Lemma 3.4.2. Let 1 < p < oo, then there is the pointwise inequality

e Com ey < € Gl w) (3.50)

Proof. Based on the semigroup definition of (3.24), and considering the fact that G(-) is a positive

function of the variable 1,

2 -1’ z
e 76 m = [ 6 e e <

4ra(t)) 2 2(a(1))?
e M e ant —
< e fa OGS izdn' = Ul
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3.4.1 Control of the free solutions

For the free solution term of ¢, we have by (3.46), with
eI Qyar(2,0) | gy < Ce " e3¢ au(z,0) ||y < Cee™ ),

where we gave up an exponential decay in e®. For the free solution term of y, we clearly have
n—2 n—2
em THy(0) <gem 2.

For the free solution of V, we need to control two terms. We have by (3.25) and (3.46)
le(Zn+DTele™ DL Q0§0||L2(m)H,1 < Cefgerefnz;%HVOHB(m)H.l < Cee (27,

where we gave up an exponential decay in e as well. For the other free solution term of V, we

have by (3.50), (3.46) and (3.25)

1 _ = 3 Lo,V
e #2070V ey < Clle T2 Qo Vol gyl <

=2 5 ~ ~ 1
< Ce e 3 ([Vallgp + Vol 2gmyr) < Cee™ 2",

For the free solution of the I, we have by (3.25) and (3.27),

Ly e akdl s
Her nFOHL‘ﬁﬁLz(m) <Ce 2 THFOHL‘,’;ﬂLz(m)'

For the terms || Vpe™nT|| LznL2(m)> W split our considerations in two cases, T < 1,7 > 1. We

consider the case T < 1 first. By a formula equivalent to (3.24)

ST

(n —n/))dn/HL;;mLZ(m)

_ c n’ .
|’VneT$"F0||L‘;;mL2(m) < —MII/ G 7 | Valo(e
(a(r)) T R \2a(1)>

< CIValoll g < Cee™ 2.
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since "2 is bounded for 0 < T < 1. Finally for T > 1, we have that a(7) > %, so we conclude
from (3.27)

||Vnefffnf‘0|]g;; < Ce_%T”fOHLz(m) < Cee 77

This completes the cases of the free solutions.
Below, we shall use the semigroup estimates on the Duhamel terms in the same way we have
used them on the free solutions. This will bring about certain norms on the nonlinear terms, so we

need to prepare these estimates.

3.4.2 Estimates on the nonlinear terms H(I',V), N1 (I', VI, V) and N, (I', V. I, V)

We first note that due to (3.31), we have the following estimates

VIl + V=g < lle(s, ) (Gl + Gl z2m))
+ Vs )2y + 1V (s, )z

1Ty + 1Tl < 1VING a1y + 1G )+ ITC5 )l any + [T C, o

Thus, if (o, 7,V,T) € X : ||(t,,V,I)|[x < €, we conclude that the corresponding (V,T'), given by

(3.31) satisfy

_(n—1L
1V (s, M2y + 1V (55 s < Cee™ "2, (3.51)

_n=2
TG Mt gy - ITC )y = < Cee™ 22, (3.52)

With that in mind, we present the following lemma.

Lemma 3.4.3. Let (V,I') be as in (3.31) and (ot,y,V.T) € X : ||(et,7,V,D)||x < & Then, the
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nonlinearities H(I',V), N1 (I',Vy -I',V) and N> (I, Vyy - I, V') obey the following bounds

IH(T, V) (5)llp2 s < Ce?e —(2n=1)s, (3.53)
IN2 (T, Vi - T, V) | 2y + [IN2(T, Vi - T, V) |1 < CeZe™ (20, (3.54)
3
1QoN: (T, Vi - V) | 2 myras + |Q0N1 (T, Vi - T, V) [ sy < CeZe™ 720 (3.55)

Remark: Note that the spectral projections Qg, 2y appear in front of all nonlinearities dis-
played above. In almost all cases, that is for (3.53) and (3.54), this does not make a difference
in the bounds (i.e. the exponents on the right-hand side). The appearance of Qg in (3.55) though
makes a difference (and even then, for only one term). Nevertheless, the estimate (3.55) without

(n—2)s

Qo holds with the weaker exponent e~ on the right-hand side.

Proof. Note that by Sobolev embedding, we have the a priori bound on ||V||1~ as follows

IV(s)llzz, < CIV(s. ) g < Cee™ =2, (3:56)

We start with the estimate for H(I',V) = 3D*f (d)e,%r)Vz +e?E(e™*V). We have the pointwise
bound
10D f (9 5r)VZ]| <UD F(, 51|V +ID* £ (@ 50V IOV ]-

Due to the Taylor’s remainder formula, we can represent the error term as follows

BE(eV) = / (6, gr+peVIV3(1 = p)dp,

whence by taking into account that f € C* and ¢,¢’,V are bounded functions, we have the point-
wise bound

0:62E(e™V)| < Ce*[|0V[IVE + VP19 +]a:V[[VFe™]. (3.57)
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Altogether, we get the pointwise bounds
[HIT,V]|+[0[H[T V]| < CIV*+ V][0,V ]].
So, by (3.56) and (3.51), we conclude
H V) ()22 gy < CIV Iz, UV li2gmyzz + 10V 2z < CePe 10,
Next, we deal with N>(T", VI, V). Recall

Na(P ¥y TV) = Ki(e 30)(V T+ s Kale SD)D?£(0, 5 ) (V2 )

1

+5Ka(e IT) (X (Y, E(e V) +26' (¥, (DF(6,-5,) — DFO)V))

Before we get on with N, recall that |Ki(c)| = O(1),|Ka2(c)| = O(1). Thus, |Ki(e 2T)(Vy -
I')?| < C|VyI|2. We have by (3.52),

1K (e730) (V- D)2 12y < ClIViy -T2 IV - Tl < Ce2e (=2
Regarding the other terms, we estimate away the term K5 (e~ 2) by a constant and

ID?£(9, 5 IV W)l 20my + 26 | (W (DF (9,5 ) = DOV | 2m) +
+ €2s||<‘l/7E(€_sV)>||L2(m) < C||V||L§L2(m)||V||L;’7°,z‘f‘ce%||V||L<;;’Lg||FHL2(m)+

+ Ce VI IVl 22 gmy < Ce?e 55 < Cele~ (25,
For the estimate of ||[N2(I', VyI', V)| ;. we have

| K1 (e_%F)(Vn ‘F)ZHL‘;; < CHVnFHIZ;;; < Cele (25,
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For the other terms

102765 )V 15+ 268 (w, (DD, 5.) — DIV +
+ I EE V) g < CUV I IV 2 +Ce V] iz 2Tl

+ Ce|VI[Es |IV[lpzz < CePe™ T < Cele 2,

This completes the analysis of N>(I', V;,I', V) and (3.54) is established.
Finally, we discuss the proof of (3.55), that is the control of the N; term in the relevant norms.

Recall

QONI(F7VT1'F7V) = N2<F7VTI'F7V)Q0[¢;—%F]

+ Qole*(Df(9, 31) —DF(9)V+e 2 (Vy -T)%9" ¢ |.
For the first term, note that since Qp[¢'] = 0 and (3.52),
_s _n—l
10095 Jlmr = 1Qol@ 5 .= 9]l < Ce™>||U|= < Cee™ >

We thus easily have by (3.54),

|N2(T, Vi - T, V) Qo [(P;—%r] 22yt ez <

3 _3n=5
< CIN(T, Vi - V) 2y 1[5 Tl < Cee™ 27
For the next term, we use the boundedness of Qg in the function spaces that we use, to conclude

le*(Df (@, 5 ) = DIVl 2mpmr ez <
< Ce3{||T| 2y + Tz )V s + 1V 125

3n—4 3
< Cele 7T S < Cele (s,
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For the last term, we have

_5 2 s 5 3
le™2 (Vi -T20" y Ili2(ms < Ce™ 3|V TV Tl 2y < CeZe 727,

_s 2 _s 2 _(p=3
le™2(Vy -T) ‘P;C%FHL‘;;’HZI < Ce™2||VyT|zz < CeZe (1=2)s,

Putting everything together, we arrive at (3.55). Note that for n > 3, the dominant decay term for

¢~ (1=3) came only from the contribution of the term Qg [e=2(Vy-T)? N*%r] =e"2(VyI)2Q0] ’C%F] ,
e e
3n-5

since'® Qy[¢”] # 0. For n = 2, the decay terms e~ "2 )$ = ¢72, 50 two terms contribute

[\S1[S8]

= ei(ni
at the same rate. Even in this case though, the contribution of No(I', Vy, - I', V) Qo [¢’ *%r] is of order
e

e3e5/2 versus £2e /% for Qole™2 (Vy ~F)2¢’Q%F]. O
e

3.4.3 Estimates on the Duhamel’s terms

The following elementary lemmas will be useful as well.

Lemma 3.4.4. [fc,d > 0:c+#d, then

T 1 .
—d(1—s) 1 S e < C. fmln(c,d)r‘ 3.58
fy e (i) < e e

Letbe R, 6 >0andc >0 then
T o
/ eb(’rfs)efﬁ(g‘ffes)e—csds < Cb’gef(c%»l)’t. (3.59)
0

Proof. The estimate (3.58) is standard. We estimate the integrals forfl T...ds and f 1171 ..ds sepa-

rately. We have that

T—1 1 eld—o)(t=1) _q e~ min(d,c)7
—d(t—s) 1) e Sds < 47 < ‘
/0 ‘ (m* )e do=e d—c )= Jd—d

10Since ¢’ is the eigenvector for the simple eigenvalue at zero for L;, we have that Qy [g] # O for all g # ¢’
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For the other term,

T e—d(r—s) T 1 ]
/ e Sds < ece—cr/ ds < efe T < ece—mln(d,c)r‘
71 71

Ji—s Ji—s

Proof of (3.59)
Since limy_,0+ ehT’I =1, fix hg > 0, so that for all 0 < h < hg, we have eh—1> %h. We can,
without loss of generality take hg < 1.

We split the integration in (3.59) in two intervals s € (T — ho,7) and s € (0,7 — hg). For the

latter, we have that e¥ —e® > ¢ — T /0 = et(1— e‘ho). So,

T—ho T_ 8 —h, T T—ho —h T
/ P8 8(eT—€) s g < g S(1=eT0)e / PE=3) g < o= 8(1=¢ M0)e% Jble o
0 0

< Cb,6€7(6+1)1,

where we obtain a much better, exponential in e, decay rate. For the case s € (T — hy, T), observe

first that by the choice of /g, we have

_ T _ 0,7
CcT e 86

o (t=5)ds, as follows

We need to control e

T 1 =)
eCT/ efgef(ffs)ds S eCT/ efggfsds S 86(6+1)1/ e*(SZdZ — §67(C+1)T.
T—hg 0 0 o

We are now ready to deal with the Duhamel’s term contributions, that is estimates (3.44).
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3.4.3.1 The Duhamel’s portion of a(z,7) in (3.33)

We have by (3.46)

T
< C [ T HTY), 15l + [Ty TV, 5l
i ! !

n—3 )

T
_n=3(._ _ 0 (TS
< ¢ [ e T O ONBEY YO g+ N 7 TV iy s
According to (3.53) and (3.55), the last expression is controlled by
2 4 —13(7—s) —3(—¢*) —(n—3 —(n—1
Ce e 7 (18) g2 (7= = (n=3)s g < Ce2e—(n 2)7,
0
where in the last step, we have used (3.59).

3.4.3.2 The Duhamel’s portion of y(7) in (3.34)

T
e " (TS e 3 (N (I, Vg - T, V), 1) (s)|ds <
0

IN

T ¢
C/ e_HZZ(T_S)e_% ”NZ(F7 V77 ’ F,V), 1>rl (S) HLz(m)dS
0
The last expression is controlled, in view of (3.54), by

T ) 3
C82/ e " (18) =3 o= (1-D)s g < Cele "7,
0
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3.4.3.3 The Duhamel’s portion of V in (3.35)

We first take the norm || - ||L2(m)Hzl. Let / € {0,1}. We obtain from (3.50), (3.25) and (3.46) and

Fubini’s

u / (=E8) eI 0y | H(T,V) () + N (T, Vi - T,V )(5) | s 2y =
= | /O T Fit2) gvlele=e g {H(r,vxs) +N1(T, Vy ~F,V)<s)} 202 (myds
T — T S
< /0 e*TZ(TfS)HVée(e ~Lig, [H(F,V)(s) +Ni (I, Vy -F,V)(s)} HL%L%(m)dS <

F o2y (o)
< C/o e "2 (79 E TV ()12 ) + 1N T Vi TV 112 s

Next, we deal with || - || L1~ We have from (3.27)

u/ (== 0) 9yele =M1 Qg | H (T, V') (s) + Ny (T, Vi - T,V (5) | sl =
= | [ eI 2 [V 5)+ M Ty TV gz
< /06_221 vl LlQO[H(F7V)(S)+N1(FaVn'Fvv)(s)]HL‘;;LgmLZ(m)LgdSS

T n—2 S(,T_ 8
< [ et *e>|\H<r,v><s>uH1Lzw)mwds
0 z=n n-=z

oo 8 (o7
+ /O o7 (1=9) =5 HNI(F Vi -T,V)(s )HHZIL%(m)mL;;LgdS
In view of (3.53) and (3.55), we control both contributions by
N TR R _3 (n—1
Ce e 7 (T8)gm2(e7 =€) = (n=3)s gy < Cg2e~("2)T,
0

where again in the last step, we have used (3.59).
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3.4.3.4 The Duhamel’s portion of I in (3.36)

For [ € {0, 1}, we obtain from (3.25)

T
H/ "% 90" N, (T, Vi L V)(s)ds| g1 my <
0

T

< C / e_nTl(T_s)e_%HNz(F,Vn-F,V)(s)||Lz(m)ds
0

Next, for the norm || - [| 5, we obtain from (3.27)

T
||/ "4 9pemIN, (T, Vyy V) (s)ds|| g <
0

T ¢
< C / e T e Ny (0 Vi - TV ) (5)] 2yl
0
Finally, for [[V[-]||z, we obtain from (3.27)

T
|| / Vel Goe Ny (I, Vyy - T, V) (s)ds | 15 <
0

T ()
< Cf e S N (T, Vi TV () 20 p
<) Ve N2 (T, Vi ) 22(myn

By (3.54), we control the last three integrals by

2 T e_%(r_s) s o) T n—1 s o) n—1
Ce [/ S )sds+/ e T ()2~ s < Ceem T T,
0 T—5 0

where in the last stage, we have used (3.58).

3.5 Sharpness of the decay rates and asymptotic profiles

In this section, we discuss the sharpness of these rates as well as the asymptotic profiles.
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3.5.1 The asymptotic profiles for o

n—2
2

The statements for I" are straightforward as the decay rate for y(7) (see (3.38)), e~ 2 © is strictly

= . . n—l1 .. .. . .
slower than the decay rate for I', which is e~ 2 *. In addition, by examining the evolution equation

for y(7), (3.34) and the subsequent estimates in Section 3.4, we see that

n—2 n—1 n—2 n—1

Y(r) = v(0)e 2 +0(e” 2 °)=([(0,-),l)ge” 2 +0(e 2 °7) (3.60)
B (/Rn_l ao(y)dy)e T+ 0(e 7). (3.61)
It follows that
() = (/Rnl Go(y)dy)e_%TG(-)HL; < Cele "7 7.

By the estimates for an in L;’;, it follows that

_n=2 _n—1
co(y)dy)e” 2 "G(-)]|ly < Ce*e” 7 7.

Vi) - (|

Rr—1

Translating back to the original variables,

ot e Go(y>dy)G( : > __Ce
’ (141)"7 T/~ (403
oy Upi160()dy) : ce?
V)’G(tﬂ ) (l—l—I)% (VyG) ( 1—|—t> . < (]4-[)%,

These are precisely the estimates (3.14), (3.15).

3.5.2 Asymptotic profiles for the radiation term v

The goal in this section is to isolate a leading order term, V for V, which decays at the leading
order rate e~(""2)7. A quick look at the estimates for the free solutions in Section 3.4.1 confirms
that they decay exponentially in e”.

Next, going to the Duhamel terms, assume for the moment n > 3. We have seen that the
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leading order nonlinearity is exactly Qole 2 (Vy -F)Z(péi %F], which decays of the order e=(1=3)s
(and thus produces through the Duhamel’s operator an object with a decay of about e’(”’%)f),
while all the others are of rates of at least e~ (and thus produce, through the Duhamels operator
terms of decay of at least e’yf). Note that in this argument, we certainly need to establish
lower bound for the Duhamel’s operator, which is acting on what we believe is the main term,
Qole™2 (Vy ~F)2¢;£ %F]' So far, we have only established upper bounds and it is not clear a priori
whether some hidden cancellation does not occur within the Duhamel’s operator formalism.

In order to establish the said lower bounds, we start by further reducing the leading order
terms, by peeling off lower order (i.e. faster decaying) terms. Taking into account I = O(e_%s )

and e 21" = O(e’n%ls),

Qole 3 (Vy TP9" 5 ] = e 5(Vy-TPQolo" ]
= ¢ NV (MDG )0 [¢”+< )
= ¢ 3(Vy- (7(5)G))*Qo[¢"] + O(e™ " 1)
= e "I(Vy - G)2Qo[9"] +O(e” 1)
where in the last equality, we used y(s) = ye~ 2 s O(e” ) In view of the equations (3.19),
we see that if the term V satisfies the linear inhomogeneous equation
= (L + )V 4LV +ge "DV, - G)2Q0[0"], 7 (0) = 0. (3.62)
S
where we recall that o = (I', 1)y = [gu—1 00(y)dy. Denote H := (V,-e~ 4 )* = Z-e~ 2. Then,
(3.62) reads
1 _
= (Ly+ )V +e LV +36e” "2 Q0[9" 1) H (M), V(0,2,1) = 0. (3.63)

Due to the estimates that we had for the remaining nonlinearities (and more precisely (3.59), which
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upgrades the Duhamel’s term by e~ over the non-linearity) , we will have the asymptotic estimate
V(%) = V() 11 myrwr oy < CEZ€ " (3.64)

At this point, it is more advantageous to translating back to the original variables. In doing so, via

the assignment ¥(z,y,1) = 11;V (3, \/1yTt’ln(1 +1)), we obtain the following equation for v
(Jo1 G0 ()dy)? ( y ) "
b = Li+ H 00[0"],5(0) =0, (3.65)

where recall L = L; + A,. Similarly, (3.64) translates into the following estimate for v — v,
[v(t,") = 5(t,) |1z < CE*(1+1)~0 D), (3.66)
We will now compute v to a leading order. As a solution to (3.65), we have the formula

el y[H<\/1Ts)]ds e (S Go(y)dy)z_
(145)"+2 7 (47)"~!

710 =co [ 11000

Next, we need to compute elI=9)hy [H ( m)] Before we go any further, we take a moment to

introduce another version of the Fourier transform, its inverse and some explicit formulas that will

be useful.
]?(5) = R,Hf(x)e_zmx'édx, flx)= Rnilf(é)emixﬁdg

- n-l_ a2n?

With this definition, e~ (n) = (2) Z e~ , s0
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for some constant ¢;. Furthermore,

i (2 i) = I S AT -
n—1
_ (272 2 (1_|-S)Tl —27172(2t+1—5)|7'l|2(1+C1(1+S)|n|2).

. n+1 2 2 .
Eventually, in the term (14 5)"2 |n|?e 2% 2+1=5)MI" produces lower order terms, so it can be

dropped. Note that 2t + 1 —s > 0, when s € (0,7). Inverting the Fourier transform above yields

n—1
- : I+s \ 2 \»\2
(r—s)A, H — 202t+1— lot.
e [ ( TLS)](y) <2t+1_s> e = Lo,

This allows us to write

b2
t 202t+1-s)
\7(1‘) = C()/ e(tis)l‘1 [Q0¢)//] e ldS—l—l.O.t.
0 (2t +1—s5)"7 (145)5+

b2
2(2t+l B)

Introduce M(t,s,y) := ; . and note that the operator L, is invertible on Qo [L2].

(2r+1-5)"2 (1+s) 2t
Thus, performing an integration by parts,

Iiys) = / M(t,5.9)e 1 Q00" Ids = —M(t,5,y)e ™ L Qo[ ][f +
+ /0 eIk Q¢”] (tsy)d =—L;'Qo[¢"IM(t,t,y) +

T M(0,y)e (L Qol9") + /O LT Q00" A (1,5,)ds.

We argue that the leading order term is

—coL; ' Qol9"IM(t,1,y) = —Co(i—éLleoW], (3.67)

which clearly has a decay rate in Ly, of order (1+ t)_(”+%) as stated. We now need to show that
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the remaining two terms have faster decay rates. For the term /"1 [LI_IQ()(P’ ', we have by Sobolev

embedding and (3.46)
_ _ _$ _
le L7 Q00" iz < Clle™ (L7 Q09" ly < Cse™ 3L Q00 s, (B:68)

so it has an exponential decay in time. Similarly, splitting the integral

t 1—=Vi !
/ (t— YLl[L Qo ¢;”] (t sy)ds—/ ...ds—l—/ ...ds
0 0 1=t

allows us to estimate the former integral as follows,

||/ e =MILT 0 ¢"] (t $,y)ds||1z <

< [ e 00 2 ) <
0

< Cse PVIILT! Q09" < C(1+1) 04D,

since on the region of integration r — s > /¢, and we can apply (3.68). For the latter integral, one

can see that for s € (f —v/7,1), we have by (3.68), [|e*=H1[L 1 0p9"]||1= < Cs. so that

! oM
—s)Li1y—1
[ 00 G s sl <

! COLire oM
< [ 1L 0o e | G o150 s
t—/t N
oM C
< —_ ods < ——————
<G [ 15 s lisds < (e

where in the last step, we have used that if s ~ ¢, then H%”(t,s,y) = <C(1 +t)_"_%. All in all,

summarizing the results from this section, we have established that

_ L—l " o < 1 —n—1
HV+cO—(tJr e Qo9 |z, <C(141)"",
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which combined with (3.66) leads us to (3.16).

For the case of n = 2, we saw that there are two terms in the nonlinearity (for the equation in
the scaled variables) with dominant decay rate, namely N> (I, Vj, - T, V)Qo[(p; ‘%r] and Qg [e’% (V-
F)z(]);C %F]. We have just analyzed the second one, which produces (on a solution level and in the
standard variables) the term found in (3.67), which is of order 82(1 + t)‘%, for n = 2. On the other
hand, the term N>(I",Vy, - T, V)Qo[q)e’f%r] produces a solution less than Ce3(1 + t)’%, and as such

is lower order in &, but of the same order in terms of power decay in . These exact results are

summarized in (3.16) and (3.17).
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Appendix A

Proof of Proposition (2.1.9)

Proof. For simplicity in calculations we divide both sides of (2.25) by e(l_%ﬁ)f, then

||8Y(er$f)||%2(2) < /Rz|a7’(er$f)|2d§ +/]Rz H5|28y(6’f‘$f)|2d§
262(13“[3”( e O Fpe ) Pap+ /R 2|Ap[pye“(’)”'O’fA(pe3‘)]|2dp>
([ e fpe i Pap
R2
P /]R Pl I Fpe ) Pdp /R PAple I Fpe &P dp).

At this point it is clear that it is better, for simplicity, to divide both sides by 62(1—%’3)1_ Then we

want to control the right hand side of the following relation

107 f)II2 ) e ,
S S e F ey Pap (A
+ P / P11V [ @I f(pe=a)] Pdp + / YA (e @IPF f(pea))Pdp
= J1+h+J.

Estimate for J;

To control J; we divide the argument into two different cases, T < 1 and 7 > 1. In the case of
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7 <1, we have

o= [ e O fipe ) Pap = eE I [ jgMeielnet | g g
R2 R2

< I [ el g Pag
{q:0<2a(7) |q~e% |*<1}
2 oo _ . % o, -~
n ea('ﬂ_‘—l) Z / |q|2|7/|e 2a(7:)|qe | |f(q)|2dq
J=1 T
{g: j<2a(7)|g-ew|*<j+1}
= Ji+Jt

1 2t (|y]+1 20Y1 £(\12
o< [ P ) Pdg < 1 < — ey
0<|gl<—— a(’L’ & a(t) i
(2a(z)) @

—27

= (1-¢)

e a 2

< C a1 1722
a(t)) e
We treat J? in a similar manner. Indeed
2 o A
Tt D e N N R

ea Nz . 2y| A
< L Y e UG / 7Pdq
(a(7) @ j=1
J<2a(7)|ge [*<(j+1)
21:
< iufuLzZe (1)
a(7))
21: 8_2(1 €) )
< I € g gy < C——5 A1
2yl 2y 2l L%(2)
(a(1) = (e (a(7) @

After putting together the estimates for J 11 and J 12 we get

2t (1_
e all e)HfHIZ}(z)

I = 2
a(t) @




Regarding the case 7 > 1, first note that in this range of 7, 0 < C < a(7) < 1. Moreover,
[f(@) = 7O <20 fle=,  |f(@)—FO) < lallIV =,
then by interpolation, we conclude that for every € > 0, we have
/(@) = F(0)] < Celg" (V" Fll= < Celal " ®I1f (2. (A2)

where in the last inequality we have used that by Hausdorf-Young’s

VI8 fllz= < fe [EI'41£(E)IdE < CIIfll ). Therefore,

o~ _T 2t —Za '6& ¢ )
ho= AM@-MM Flpe &)|Pdp = e D) /R a@lee | |12 f(g) Pdg

e —2a ~e% a -
ea(7|+1)||f||%2(2)/Rze 2a(1)|gq-e@| |q|2(m+1 S)dq

IN

IN

2t —2a .e& a —
ea(WIH)HfH%Z(z) / o 2a()lged| |q|2(|1'|+1 8)dq

{g:2a(t)|g-e® %<1}

2t - L -
+ ea(\7|+1)||f||%2(2)z / e 2e@lae || g2+ 1=E) gy — gl 4 j2.

Jj=1 z
{q: j<2a(7)|g-e@|*<j+1}

Now

Jo= e%(IY\H)HfH%z(z) / e—za(r)lqe%\“|q|2(\yl+1—s)dq
{g:2a(7)|g-e | <1}
< e%(l?’\H)HfH%Z(Z) / |q|2(\y|+1—s)dq
{g:2a(x)|g-e®|*<1}
P

IN

ceHEMD| 12, / 2=e1
0

2y 2t _
e all €)||f||1%2(2) <Ce o (1 s)||f||1%2(2)

a(f)%(|7’|+2—€) - a(?:)%
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In a similar way,

% - _ A _
=2, Y / o2t (%) (lri+1-e) g,
j=1
{q: j<2a(1)|g-e®|%<j+1}
rAGRY) Hf||2 @ Ze—l |q|2(|7\+1—8)dq
Jj=1 z
{g: j<2a(7)|gew|*<j+1}
oo j?ﬁil)éefé
L i a(t
ea(lV+1) ||f||2 Ze 1/‘ oo (Ir+1=-e)+1 4,
j:l ﬁ)ﬁe_ﬁ
_u —E(1-e)|| 7|12
(1—¢) e « 1£1l7>
e ¢ L2(2)
- e (j+1)XMH2-8) < ¢
B a(r)éumz €) Hf||L2 ]ZI Ut) N a(f)%(h’\ﬂ*s)
20 ((_
e %09 f2
a(t)’®
Therefore for T > 1 we have
O £112,
1
a(t)’e
Estimate for J,
To control J, first note that
Ve—a(’[”pla = — a(f) p|p|a_26_a(f)‘p|a_ (AS)

Therefore,

B= 17 [ 1pl79 e Fpe ) P
< oyl / 17 pl eI Fpe ) Pap

b opPe / P e O (V) (pe@)Pdp =1y + 1.

A.0.0.1 Estimate for /;
To control the first term /; we proceed as follows
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_ /e_za<r>|p|“|p|z<a+y|—z>|f(p.e—é)|2dp=
RZ
_ Bt / ¢ 2Dl g 20t 1-2)| F g P
RZ

< QZlat / e 2Dl ed 1% 2@ 2) £ g Pag
{g:2a(t)|g-e |*<1}

b e g / e 2Dt g et 7(q) Pdq
Jj=1 T
{g: j<2a(7)|g-ew|*<j+1}
= Il +1.

We can estimate

I < ot ”/ . g f(q) Pdg =
- lgl<—%
(2a(7)) @
. / ¢ P (g) - F(0)Pdg
lgl< "
(2a(r)) @

Using the relation (A.2), we obtain

2 _ _ _
Illgea(aﬂyl 1)||f||i2(2)/< s |q|2(a+y 2)|q|2(1 e)dq:
gl<—o

~ (a(0)@

_T

o —2(1—g) | £||2

2t 1 e « ||f|| 2
:Ceoc(a+|7|_1)||f||1%2(2)/(2(1(1’))“ L2let-e)-1 g, — o - @)
0 a(T)Z(H-—a )

therefore, recalling that a(7) <1,

_2t(1_
e E £,

Il
a(T)Z(H—%)

1<

We treat 112 in a similar manner. Again, using (A.2),
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Ry el [ Pt fg) - f0)Pdg
=1

j<2a(1)|qe® [#<(j+1)

2 e i 2 —2)112(1— 2
< AN [P O dy
J=1 T
j=2a()lge |*<(j+1)
27 _ - —J T
< eulatl I)Hf”iZ(z)Ze J / |q‘2(a+|7/| 1 e)dq
J=1 T
J<2a(1)lge® [*<(j+1)
2T _ - —j T
< oo (047l I)Hfuiz(z)ze J / p2a+2]y|=1-2¢) 4.
J=1 |
_1 il/a _z 1/a
¢ aa(Jt)l/agrSe %
2t
alathi- 1||f||2 i j D 2 (aiiy-e) o i
S e f RECE

After putting together the estimates for 111 and 112 we get

2t
e« f1%,

1 >
a(t) @
Estimate for /,
L < / | 1p| " e @I (V) (pe @) Pdp =
= calr-n / g7 20l |y 7 ) 2dq
RZ
< Gy / <|q|2 "0e <f>4'€“|vf<q>|2dq>:
j=0

{q: j<2a(1)|g-e®|*<j+1}
= L+15.
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For 121, we have by Holder’s

o< Gy / o JgPI0|V () g <
0<|g|<—%
(2a(x) @
2(y1-1) &
§C€“|y1||Vf||2(/ . poie Tl r)
€ O§|r\§ e O I
(2a(1)) @
27 27 27
e BBy B-e)
= Ced MV |2, e — < T V]I,
H 21 _2e 21 LE
2a(1)) @ @ (a(t)) ™

By Sobolev embedding, we have ||Vf||i% < CHVfH}qu,g(Rz) <C||(1 —A)f||%2 =
=C||f|I? 12(2)- Therefore

—2t(1—g)

e «

121 S C 20y| ||f||i2(2)
(a(7)) @

For 122, we estimate

B < CE i / gDV g
= j<2a(7)|qe @ |*<(j+1)

1-¢
2r( 2(n=1)
AV L e[ [l ]

J<2a(1)|ge@ |*<(j+1)

IN

But,
\Y\ 1+2 2
(vI=1 —€ L(v-1) 2z
/ ; gl 1= quC(L e e d,
j<2a(7)|ged [a<(j+1) a()
so using again the bound ||Vf||L% <C[fll22)
21(|| ) o . ] (WIS +2 —%T(Ot-‘rm—l) 27 —€
122 < Cea v-1 Hf”zz e_f{(—) e 1=  a
L (2)].221 a(’(:)
27(1—¢) 72(178) 2
e o 00 e o
B 4 T 1£1220
21‘—28 . 21
a(t)*a =1 a(t) @
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Hence after putting together the estimates for 121 and 122 we have

2t _
€ a(l S)Hinzz

2

(a(1)) @

Estimate for J;

/ |pMA [e @I Fpea)]2dp < / 1P ALl DIP) F(pe)2dp

R2 R2

2/ P Ve @IPI v (F(pe ) Pdp+ / 1P e~ A (F(pe ) Pdp.
R2 R2

By (A.3) we have,

2
A |P|a Z ( p ‘p’azea(f)l’a) =

2 2

_p - — Pj _ _ a

= —aa(r Z( pl* 2+ (a—2) el >+ pilp|* (e a(e)) 2l 1>e (=)l
]:

— (~aa@iple o a<r>2|p|2<“—1>)e—a<f”“-

Hence, by allowing for a slight abuse of notations by using 7y, which is a multi-index instead of |y/,

its length,

J3 < / | |p| @ 1"=2=a@IPI® F(pea) 2 p +
T / P =@l F e &) 2t
- a(f)zeg/ | |p|@t M =Lem @R (VF) (pe~a) | 2dp +
RZ

[l 67 e ) P
R

= LB+L+ L+,
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Estimate for /5 and /4

< —2a(D)|p|% |, 1200+ Y=2) | F . o SN2 —

a(t)? /]Rze | |f(p-e=)|*dp

= el [l g ) g g
RZ

< QZlat / e 2Dl ed 1% 2@ 2) £ g Pag
{g:2a(t)|g-e |*<1}

D Y N Y
£

g j<2a(r)|ged e< 1)
= 0+5.

By comparing I3 with [; it is clear that 13l = 111 and 132 = 112, and we treat them in the same way.

Hence

2t
« A1 £ 72

3= 2
a(‘L’)%

The estimate for /4 proceeds in an identical manner, but we have a slightly different power of

P, so we present it here briefly.

( e —/ | | p|H e DM e=a®@IPI® F(pea ) 2ap =

oL da2y-2) / e 21(Dla e 7| g a1 21| 7 ) g
R2

— pudat2y-2) / (e—Za(T)q-e“ |* |q|4(06—1)+2\7\ |f(q) |2dq)

j=0 P
{g: j<2a(7)|grea|*<j+1}

= I+I13.

Denoting by I} the integral corresponding to 2a(7)|q - e|® < 1 and the rest with I3, we have by
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Nf(@)=17(@) = F0)] < Cla"®[Ifll 22

L{ < e (40+2[71-2) / |q|4(a—1)+2w\ |f(q)|2dq <
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IN

—E0-9) 112,
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ot (a(t))*7e
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For I7, we have
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< ety o | 142 i) — 7(0) g
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Estimate for /5

( < _/ | [p|* =1~ a@IP® (v ) (pea ) Pdp =

e 1/ gl =D 2a(®la et v £ g) Pag
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For 151, we have by Holder’s

L < eg(a+|Y|_l)/ e gDV f(g)Pdg <
lq|<

e O
()@
1—¢
< Cea(WrW\ 1) HVfH2 _ r Aot 1)“dr
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However, by Sobolev embedding, we have \|Vﬂ|i% < CHVfH%l,S(RZ) <CJ|(1 —A)f“iz :CHinz(z)

For 152, we estimate
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so using again the bound ||Vf||L% <C[fll22)s

i : AeHAD) 19 o 1—-¢
2 2t -1 2 _ ] 1-¢ —alatly-1) _ 2¢
15 < Cea (1Y )HfHLZ(z) Z{le I { (m e 1—¢ a
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- 242 e 4 J - 242
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Hence after putting together the estimates for 151 and 152 we have

2T (1_
e 10| 2,

5= 2]
o

(a(1))

Estimate for /g

In the same way we can get the estimate for /. Indeed,

_4t
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For 162, we have

< ealr=l) Z 9" |Af (q)Pdq

Z |y 1>e i -z

/j<za< )lge [#<(j+1)

= 27
< LU [fPag< ey
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Therefore,
_2t _E 1— 8
o< C—" 2 < O 2
a(t))e (a(t)) o

Putting it all together finishes off the proof.
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