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Abstract 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is accountable for 

multiple types of infections, including pneumonia, wound, burn, and urinary tract infections. P. aeruginosa 

is an emerging threat in the hospital environments and preferentially found in comorbid illnesses. Current 

treatments for the P. aeruginosa infections recommend the use of combination therapy, a β-lactam with an 

aminoglycoside or a fluoroquinolone. Also, resistance to such procedures is rapidly emerging. Moreover, 

P. aeruginosa has been given critical priority for anti-infective development in the 2017 World Health 

Organization (WHO) report on prioritizing pathogens to guide the discovery of new antibiotics. 

Iron metabolism in bacteria has gained much more attention as a potential target for antibiotic 

development. Regulation of iron homeostasis is crucial for cells to have enough iron for growth while 

avoiding iron-induced toxicity. Iron homeostasis involves iron uptake, storage, and mobilization. Two iron 

storage molecules co-exist in P. aeruginosa, FtnA, and BfrB. Previous in-vitro studies established the 

importance of the bacterioferritin associated ferredoxin (Bfd) in iron mobilization from BfrB. The X-ray 

crystallographic structure and biochemical characterization of the BfrB:Bfd complex identified the hot spot 

residues of the interaction. The residues E81, E85, and L68 in BfrB, and M1, Y2, and L5 in Bfd majorly 

contribute to the binding energy. Mutating E81 and L68 to alanine completely inhibited iron mobilization 

from BfrB. The insights gathered from these in-vitro studies were used in this work to interrogate the 

importance of the BfrB:Bfd interaction in P. aeruginosa cells.  

In this work, P. aeruginosa, wild type (PAO1), Δbfd, bfrB(E81A/L68A), and ΔbfrB cells were used 

to study the significances of the BfrB:Bfd interaction in P. aeruginosa cells. A Native-PAGE method was 

optimized to image iron in BfrB in P. aeruginosa lysates. This advanced technique allowed us to identify 

BfrB as the main iron storage protein of P. aeruginosa. The same method was used to image iron storage 

in BfrB and its subsequent mobilization in P. aeruginosa cells (wild type, Δbfd, and bfrB(E81A/L68A)). 

The intact BfrB:Bfd interaction capable wild type cells showed maximum accumulation of iron during the 

early stationary phase, and iron mobilization from BfrB during the late stationary phase. In contrast, the 



iv 
 

Δbfd and bfrB(E81A/L68A) mutants demonstrated irreversible accumulation of iron in BfrB. Due to the 

irreversible flux of iron into BfrB, the Δbfd and bfrB(E81A/L68A) mutants developed low cytosolic free 

iron levels and a high total iron to free iron ratio. The consequences of the genetic blockade of the BfrB:Bfd 

interaction was further investigated by comparing the expression proteomes of the wild type and  Δbfd 

mutant cells.  The iron homeostasis dysregulation affected the iron-dependent and independent metabolic 

processes in the Δbfd mutant cells. Proteins involved in the TCA cycle, amino acid biosynthesis, oxidative 

stress regulation, and respiratory chain were under-represented in the Δbfd mutant cells. On the other hand, 

proteins involved in the iron acquisition systems (pyoverdine, pyochelin, Heme iron acquisition), sulfur 

assimilation, quorum sensing were over-represented in the Δbfd mutant cells. These findings show that iron 

homeostasis dysregulation can affect the broader metabolism of P. aeruginosa cells. 

The chemical intervention of the BfrB:Bfd interaction in P.aeruginosa cells was carried out with 

small molecule inhibitors, analogs of 4-aminoisoindoline-1,3-dione. These analogs acted on their target, 

BfrB in P. aeruginosa cells. Moreover, the analogs elicited a concentration-dependent growth retardation, 

and a pyoverdine hyper-production as a result of cytosolic iron deprivation. Analog-treated cells 

experienced an irreversible accumulation of iron in BfrB and high total iron content in the treated cells. 

Hence, the developed 4-aminoisoindoline-1,3-dione derivatives were potent to dysregulate iron 

homeostasis in P. aeruginosa cells. 

The BfrB:Bfd inhibitors also potentiated the activity of fluoroquinolones in P. aeruginosa (PA01), 

and in two cystic fibrosis isolates, MR3B and MR60. The growth impairment of the cystic fibrosis and 

urinary tract clinical isolates of P. aeruginosa, and Acinetobacter baumannii (AB5075) demonstrate the 

potential widespread application of the developed 4-aminoisoindoline-1,3-dione derivatives in blocking the 

BfrB:Bfd interaction. These findings strongly support the suitability of inhibiting the BfrB:Bfd interaction 

as a novel target in anti-infective development. 
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Chapter 1 : Introduction 

1.1 Urgent need for novel antibiotic development 

Antibiotics help people all around the world to prevent and treat infections. Antibiotics have played 

an important part in achieving major advances in medicine and surgery. In developing countries, antibiotics 

have lowered the morbidity and mortality caused by poverty related and food borne infections. Penicillin 

was the first modern era antibiotic discovery by Alexander Fleming in 1928. It was used against bacterial 

infections as a prescribed drug in 1940. From 1940-1960 was the golden era for antibiotic discovery, which 

involved two streams of origin, natural products and synthetic antimicrobials. Penicillins, aminoglycosides, 

cephalosporins and tetracyclines are some of the main classes of antibiotic natural products discovered 

during this time period. The activity of these model natural products was further enhanced by semi-synthetic 

approaches, forming subsequent generations that are currently in use. The historical synthetic antimicrobial 

compounds that have been in use since the 1930s are the sulfa drugs. The next group of synthetic antibiotics 

are the fluoroquinolones. Fluoroquinolones were developed after the accidental discovery of nalixidic acid 

in 1962 which was a by-product of chloroquine [1].  This was the starting point for the synthesis of a library 

of quinolones, including the ones currently in use. Norfloxacin was the first “fluoroquinolone”, where the 

C-6 position contains a fluorine [1]. Novel antibiotics, linezolid (2000), daptomycin (2003) and retapamulin 

(2007) were discovered nearly 40 years after the discovery of quinolones but these chemical classes of 

antibiotics, oxazolidinones, acid lipopeptides, and pleuromutilins were first reported in 1978, 1987 and 

1952, respectively [2].  The evolution of the above discussed antibiotics were just improvements, variations 

or just repurposing the use of the existing main classes of antibiotics [1, 3]. Unfortunately, in last two 

decades fewer new classes of antibiotics have been developed and prescribed [3]. In addition to the 

dwindling discovery rate of novel antibiotics, an antibiotic resistant crisis has exerted a large impact on 

bacterial infections, making them a serious threat to public health.  

The antibiotic resistance for penicillin started around 1950s, arising a clinical problem. As a 

solution, β-lactam antibiotics were discovered and deployed. In the same decade methicillin resistant 
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Staphylococcus aureus was identified [4]. To treat the methicillin resistant S. aureus, vancomycin was 

developed in 1972. For a while no antibiotic resistance was seen for vancomycin until resistant coagulase-

negative staphylococci was found in 1978 and in 1983. To treat vancomycin-resistant enterococci and 

methicillin-resistant Staphylococcus aureus, synercid and daptomycin antibiotics were introduced. The β-

lactam class of antibiotics is a good example to illustrate the challenges presented by resistance 

development: About 1000 β-lactamases that would inactivate the β-lactam antibiotics had been identified 

by 2010, a 10 fold increase since 1990 [5].  Carbapenem resistance in Enterobacteriacea has increased from 

0 % in 2000 to 1.4 % 2010, with the most rapid increase recorded in Klebsiella spp [6].  

Antibiotic resistance can occur due to biochemical and physiological mechanisms. The resistance 

due to genomic mutations in microbes has been extensively studied. The mutated strains get a competitive 

advantage from the selection pressure of the antibiotics. Sublethal concentrations of antibiotic allow 

stepwise selection of resistance. When mutations leading to resistance occur in the bacterial chromosomes 

some of these mutations could have occurred in transmissible elements within the bacterial genome. Hence, 

these mutations can be transmitted between species, spreading the resistance traits. Antibiotic resistance 

can be enhanced due to various factors such as, overuse, excessive prescribing and excessive use in 

agriculture. Thus, antibiotic misuse adds selective pressure for the survivability of pathogens [7], and the 

resulting antibiotic resistant bacterial infections require the use of highly effective broad-spectrum 

antibiotics for treatment.   

Gram-negative pathogens in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter species) have 

emphasized the challenges associated with treating antibiotic resistant infections [8]. To exacerbate these 

challenges, there hasn’t been an improvement in developing an antibiotic to treat Gram-negative bacteria 

for decades. Even though the use of polymixins (e.g. colistin) was avoided due to toxicity 40 years after 

they were discovered, in past years polymixins have been used mainly to treat gram-negative resistant 

infections [8]. Recently, resistant genes for “last resort” antibiotics (carbapenems and colistin) have been 
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discovered. These resistant strain infections are predicted to be untreatable with currently available 

antibiotics [9].  

Clearly, there is a need for continuous cycling of new antibiotics discovery and development as the 

genes in the global resistome can be transferred at different frequencies, driving resistance to each 

generation of newly introduced antibiotics. 

1.2 Targets engaged by existing commercial antibiotics 

In the current antibiotic arena, there are five clinically validated antibiotic targets: 

(1) Peptidoglycan (an essential structural component of the bacterial cell wall) biosynthesis inhibitors 

are represented by both β-lactams and vancomycin type glycopeptides.  β-lactams (penicillins, 

carabapenems and cephalosporins) bind to the penicillin binding proteins (transpeptidases) and inhibit the 

cross linking of peptidoglycan. Glycopeptide antibiotics (e.g vancomycin) can bind to the peptidoglycan 

(PG) units, inhibiting transglycosylase and transpeptidase activity, and preventing the PG maturation, 

Figure 1-1: The timeline of antibiotic discovery. The Golden age of discovery (1940-1960), golden age 

of medicinal chemistry (1960-present), innovation gap (1962-2000) are indicated together with the 

timeline for innovating different classes of antibiotics (Figure reprinted by permission from Springer 

Nature, The Journal of Antibiotics, Ref. 8, 2014). 



4 
 

lowering the cellular mechanical strength. β-lactams are used to treat both Gram-negative and Gram-

positive infections, whereas the glycopeptides are only used to treat Gram-positive bacteria [10]. 

(2) Protein synthesis inhibitors target 50S or 30S subunits of ribosomes. The 50S ribosomal subunit 

inhibitors, such as macrolide, lincosamide, amphenicol (e.g., chloramphenicol) and oxazolidinone (e.g., 

linezolid) classes of antibiotics block initiation of translation or inhibit the peptidyl transferase reaction by 

translocating peptidyl tRNAs. Tetracycline and aminocyclitol classes of antibiotics target the 30S subunit 

of the ribosome. Aminoglycosides encourage protein mistranslation by adding unsuitable amino acids into 

the elongating peptides [11].   

(3) DNA replication inhibitors target DNA replication and transcription in bacterial cells by 

inhibiting DNA gyrase and RNA polymerase. Fluoroquinolones target DNA topoisomerase II (gyrase) and 

IV. The gyrase subunit A nicks double stranded DNA and subunit B introduces negative supercoils, in order 

to lower the positive supercoiling of DNA prior to DNA replication and transcription. Once the negative 

supercoils are introduced, DNA is re-annealed by gyrase subunit A. Fluoroquinolones bind to the subunit 

A of gyrase and the fluoroquinolone bound DNA strands are unable reanneal, resulting in cell death [12]. 

Rifamycins bind to the DNA bound-RNA polymerase subunit at the actively transcribing state. Rifamycins 

are bactericidal for Gram-positive and bacteriostatic to Gram-negative bacteria.  

(4) Folate biosynthesis inhibitors have been identified and validated by the clinical use of several 

drugs. The sulfonamides act as analogs of p-aminobenzoic acid and become a competitive inhibitor of 

dihydropteroate synthase. Dihydro-folate reductase is the final enzyme of the folate biosynthetic pathway 

which is inhibited by diaminopyrimidine antibiotics (e.g. trimethoprim). Affecting the folate pool in the 

cell inhibits growth, as the reduced folate is an important co-factor for the biosynthesis of cellular 

components [13]. 

(5) Membrane cell disruptors, which affect cell membrane integrity (e.g., daptomycin) will cause 

membrane depolarization and disturb membrane associated processes such as cell division and cell wall 

biosynthesis, causing cell death. Daptomycin is delivered in micelles and once it has approached closer to 

the bacterial membrane it can be inserted into the bilayer. It has been predicted that daptomycin can 
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oligomerize in the membrane resulting in large pores, which leads to membrane depolarization, potassium 

efflux and cell death [14]. This is a more recent target and has been common in the clinical setting [8]. 

1.3 Novel targets in the pipeline for antibiotic development 

The expansion in bacterial genomics, transcriptomics, bioinformatics and proteomics have 

facilitated novel target identification for the advancement of antibiotic development.  

Antibiotics are designed based on the essentiality of the target involved in a key bacterial process 

that is required for the viability of the pathogen during an infection. If a homolog of the projected target is 

present in human, it’s important to identify whether there are adequate differences to suggest the selectivity 

of the antibiotic on the bacterial target. It is also important that the novel antibiotic target, to be conserved 

within and between bacterial species, so that the developed drug’s effect can be applied to a wide range of 

bacteria [9].  

Multiple possible bacterial targets have been identified recently and one such is the amino acid 

biosynthesis. Bacterial cells are capable of biosynthesizing the essential amino acids (leucine, lysine, 

tryptophan, histidine etc.) even though these cannot be synthesized by the human body. In addition, lysine 

is an important amino acid in bacterial peptidoglycan (cell wall) biosynthesis. Lysine (L,L-diaminopimelate 

aminotransferase (DapL)), aromatic amino acids and tryptophan biosynthesis pathways afford potential 

antibiotic targets [15, 16]. 

Teixobactin, a novel antibiotic that inhibits the cell wall biosynthesis by interacting with the lipid-

pyrophosphate-sugar motif of Lipid II (a precursor of peptidoglycan) and Lipid III of wall teichoic acid 

(Gram-positive bacteria). Possibility of predicted mutations in the structure of Lipid II is very low, 

therefore, it’s prophesied to be free from resistance for Teixobactin [17]. 

Quorum sensing (QS) is involved in bacterial communication and signaling. Signal molecules are 

produced to coordinate their behavior in a cell density dependent manner. In Gram-negative bacteria 

acylhomoserine lactone (AHL) QS system and in Gram-positive bacteria autoinducing peptide (AIP) QS 

system, and in both autoinducer-2 (AI-2) QS systems are used. The QS system is important for bacterial 
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biofilm formation, maturation and dispersal. Bacterial biofilms show an altered lifestyle than planktonic 

cells, and therefore, harder to be treated by antibiotics. Inhibitors of the QS system is a promising to target 

biofilm formation and making biofilm-entrenched cells susceptible to antibiotics [18]. 

Two component signal transduction system is involved in monitoring the bacterial external 

environment and allowing bacteria to adapt for survival. This system has shown to play an important role 

during infection. Bacterial cell division inhibition is another possible target, as the process involves many 

protein-protein interactions, such as FtsZ and FtsA. Additionally, isopreniod and fatty acid biosynthesis 

pathways are also considered to be suitable for antibacterial agent development. 

1.4 Pseudomonas aeruginosa, an opportunistic pathogen that has developed Multidrug 
Resistance 

In the 2017 World Health Organization report on prioritizing pathogens to guide discovery of new 

antibiotics, carbapenem resistant Pseudomonas aeruginosa, Acinetobacter baumannii and, carbapenm and 

3rd generation cephalosporin resistant Enterobacteriaceae have been categorized as critical priority 

pathogens [19]. According to the Center for Disease Control and Prevention (CDC 2019) multidrug 

resistant Pseudomonas aeruginosa is categorized as a serious threat. During 2017, in the USA, about 32,600 

estimated cases among hospitalized patients were caused by multidrug resistant P. aeruginosa, resulting in 

about 2700 deaths [20, 21]. 

Pseudomonas aeruginosa infections have gained much more attention in hospital acquired 

infections, mainly among immunocompromised and critically ill patients. P. aeruginosa colonization in the 

intensive care and burn units, especially in medical devices such as in urinary catheters and endotracheal 

tubes, have been a serious issue. P. aeruginosa form antibiotic and disinfectant tolerance biofilms on biotic 

and abiotic surfaces. They use swimming, swarming and twitching motilities, and their capability to migrate 

against a flow, enhance their colonization of surfaces relative to other bacterial species. The biofilm 

environment helps the development of small colony variants and persister cells, which can tolerate high 

antibiotic concentrations. Also, the penetration of the antibiotic deeper into the biofilm can be limited. P. 

aeruginosa can adjust metabolism and virulence factor expression accordingly, causing acute and chronic 
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infections. The outer membrane of P. aeruginosa has limited permeability, and the organism is equipped 

with a variety of efflux pumps limiting the access of the antibiotics into the bacterial cell [22]. In some 

cases, they are intrinsically resistant to antibiotics which they have never even being exposed to. P. 

aeruginosa can constantly express efflux pumps even in the presence of efflux pump inhibitors by readily 

generating mutations [23]. These resistant mechanisms are encoded intrinsically in the chromosome and or 

genetically imported.  P. aeruginosa expresses antibiotic inactivating enzymes such as AmpC β-lactamases 

that can degrade multiple β-lactam antibiotics.  In addition, target modifications like accumulation of porin 

mutations and expression of carbapenemases can block the carbapenem import. The resistance mechanisms 

of some strains of P. aeruginosa are affective on major classes of antibiotics such as aminoglycosides, 

carbapenems, cephalosporins and fluoroquinolones [22]. P. aeruginosa cells produce antibacterial effectors 

and has the capability of growing in competitive environments such as in polymicrobial infections. These 

features of P. aeruginosa require second- or third-line drugs to treat infections, which makes this pathogen 

prone to further potential resistant development.  

1.5 Novel therapeutics in the pipeline for the treatment of P. aeruginosa infections 

Currently, P. aeruginosa infections are treated by broad spectrum antibiotics, such as 

aminoglycosides or fluoroquinolones, meropenem or imipenem (carbapenems), third generation 

cephalosporins or Gram-negative selective monobactam, aztreonam and piperacillin, alone or in 

combination with tazobactam. Polymyxin B and E are given under a life-threatening Gram-negative 

infection, as these drugs are neurotoxic and nephrotoxic [24]. 

In addition to the existing antibiotics, novel therapeutic agents are also emerging. KB001 is a high 

affinity antibody fragment that binds to the PcrV protein, inhibiting the type three secretion system (T3SS). 

KB001 is in the phase II clinical trials. Inhibiting the type three secretion system, reduces the pathogenicity 

and toxicity to patients’ immune and epithelial cells, and enhance the clearance by antibiotics [25]. A 

bispecific therapeutic antibody (MEDI-3902), which is also in phase II clinical trials, can recognize PcrV 
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and the biofilm matrix polysaccharide Psl. The anti-Psl navigate the antibody towards the cell surface where 

anti-PcrV will inhibit the T3SS [26].  

NXL104 is a class of diazabicyclo [3.2.1] octanone capable of inhibiting many serine β-lactamases. 

The combination of NXL104/ceftazidime is an inhibitor-cephalosporin combination that is in phase II 

clinical trials. In addition, several novel β-lactamase inhibitor/antibiotic (lactams, piperacillin) 

combinations are currently being tested [24].  

Inhibiting lipopolysaccharide (LPS) biosynthetic or transport enzymes can be lethal or can 

potentiate penetration of antibiotics into Gram-negative bacterial cells. Currently, protein inhibitors of 

LpxC (lipid A biosynthesis) and LptD (involved in the LPS transport system from inner to outer membrane) 

are being studied; the latter is in phase III clinical trials [23].  

Bacterial efflux pump inhibitors are another potential lead for therapeutic development. These 

inhibitors could increase the antibiotic concentrations in the cells and the treatment could be in combination 

with currently used antibiotics. An example for an efflux inhibitor and an outer membrane permeabilizer is 

phenylalanine−arginine β-naphthylamide, which hasn’t been tested clinically due to its toxicity. This 

approach has not yet been tested beyond preclinical tests [24, 27, 28].  

Iron uptake and disruption of iron homeostasis is another approach for the development of 

antibacterial compounds. Approaches so far include: (i) reducing host bioavailability of iron by natural or 

synthetic iron chelators, (ii) inhibition of iron uptake by inhibiting siderophore biosynthesis or 

internalization, (iii) siderophore-drug conjugates to deliver antibiotics, (iv) iron metabolism inhibitors, and 

(v) use of iron mimics such as Ga(III). 

The FDA approved Ganite®’s [active ingredient Ga(NO3)3] is used for the treatment of 

hypercalcemia. In the context of potential antibiotic applications, biological systems are unable to 

discriminate Fe(III) and Ga(III) because of the similarities in their ionic radii. Therefore, Ga3+ can substitute 

Fe3+ in the cell, but lacks redox properties of iron. Therefore, Ga3+ can inhibit or retard iron required cellular 

processes competitively. The gallium-based compounds have shown promising effects against cystic 

fibrosis and multidrug resistant P. aeruginosa in planktonic and biofilm bacterial communities [29-31]. 
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1.6 Bacterial iron homeostasis as a target for antibiotic development 

1.6.1 Iron is an essential nutrient 

Iron is an essential nutrient for both humans and bacteria. Iron is involved my many biological 

processes in nature, such as photosynthesis, N2 fixation, tricarboxylic acid cycle, oxygen transport, DNA 

biosynthesis etc. Iron utilizing biological functions depend on incorporating iron into proteins as mono- or 

bi-nuclear iron centers or as heme. Iron exists in two main oxidation states, ferric (Fe3+) and ferrous (Fe2+). 

In oxygenated environments soluble Fe2+ (0.1 M at pH 7.0) converts to insoluble Fe3+ (10−18 M at pH 7.0) 

resulting in lower bioavailability than the nutritional requirement of bacterial cells, which is about 10−7 to 

10−5 M [32].  The ability of iron to undergo oxidation and reduction reactions is an important factor for its 

biological functions. However, the redox cycling of iron can generate free radicals and other strongly 

oxidizing species, causing damage to the cells. In the cell, hydrogen peroxide is produced in processes 

related to respiration. Free ferrous ions react with H2O2, producing hydroxyl radicals and ferric ions. Ferric 

iron reacts with O2
._ producing oxygen and regenerating the ferrous catalyst [33]. As shown in figure 1-2, 

involvement of Fenton chemistry in the Haber-Weiss cycle is a major mechanism for generating hydroxyl 

radicals in cells [34].  

For effective iron homeostasis, bacteria should uptake enough iron to fulfil their nutritional 

requirements while managing cellular iron levels to avoid iron induced toxicity that could be generated by 

Figure 1-2: The involvement of the Fenton chemistry in Haber-Weiss reaction is the major mechanism 

of generating hydroxyl radicals in the cells. (Figure reprinted from Ref. 34., copyright (2000), with 

permission from Elsevier)  
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Fenton reaction [32]. Iron acquisition and storage in bacteria are controlled by the ferric uptake regulator 

(fur), which controls the bacterial iron metabolism depending on iron availability. Under iron replete 

conditions, Fe2+ bound Fur forms homodimers and interact with Fur box sequence within the target 

promoters, repressing the expression of iron acquisition genes. This could be direct repression or indirect 

repression by extra cytoplasmic sigma factors (ECF ) [35].  

Under high intracellular iron levels Fur positively regulates the expression of nonessential iron 

using proteins, iron storage proteins, carbon metabolizing, respiration and reactive oxygen species 

detoxifying enzymes by repressing small RNAs (e.g.,PrrF1 and PrrF2) [36]. In Pseudomonas aeruginosa 

and in Mycobacterium tuberculosis fur has been identified as an essential gene, as the fur knockout mutants 

were not viable [37]. 

1.6.2 Iron uptake 

The concentration of iron under physiological conditions is orders of magnitude below the required 

level for bacterial growth. In the host, there are multiple ways to restrict iron availability for pathogens. 

Lactoferrin in the host can reversibly coordinate Fe3+ with a higher binding affinity. It scavenges free iron 

in the blood restricting the iron availability for pathogens. Transferrin is mainly found in secretions and 

granules of neutrophils; it sequesters iron from mucosal surfaces and release iron from neutrophils at an 

infection. Even though, the host nutritional immunity exists, bacterial have evolved diverse strategies for 

iron acquisition.    

a) Siderophores 

In order to acquire iron from the natural environments or from an infection setting, pathogenic and 

nonpathogenic bacteria synthesize, secrete and retrieve siderophores, which are high affinity iron chelators 

(Kd = 10−20 to 10−52 M). Siderophores could dissolve iron from insoluble salts and extract iron from the host 

Fe sequestering proteins. Siderophore syntheses is a ribosomal independent process, which utilizes citrate, 

chorismate, proteogenic and nonproteogenic amino acids. Depending on the nature of the Fe3+ coordinating 
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moieties, siderophores can be categorized into four groups, catecholates, hydroxamates, (α-hydroxy-) 

carboxylates, phenolates and mixed type [38]. 

P. aeruginosa produces two major siderophores for Fe3+ acquisition, pyoverdine and pyochelin. 

Pyoverdine is the high affinity siderophore (Ka=1032 M−1) and it consists of a peptide chain (amino acids 

may vary from 6-12), and a chromophore. Iron is coordinated by two hydroxamate and one catecholate 

moieties. The peptide chain of pyoverdine varies between different Pseudomonas species [39]. The 

synthesized pyoverdine is secreted from the cell. Once the ferri-pyoverdine complex (PVDI) is formed, it 

is transported from the outer membrane to the periplasm via FpvA (FpvB receptor also has a minor 

contribution). In the periplasm iron is reduced and Fe2+ is released from the siderophore. It has been found 

that FpvG acts as a reductase and FpvH, FpvJ, and FpvK are involved as partners. Reduced iron is chelated 

by FpvC and delivered to the pyoverdine ABC transporter FpvDE for the translocation into the cytoplasm 

[40]. 

Pyochelin is the low affinity siderophore secreted by P. aeruginosa; its synthesis involves a 

lower number of genes than that of pyoverdine [39]. Under low iron conditions, pyochelin is first 

synthesized and secreted, when the iron become extremely low cells start to switch to pyoverdine 

biosynthesis [41]. 

b) Heme iron acquisition 

P. aeruginosa also utilizes heme-iron. Heme-iron uptake from hemoproteins, such as hemoglobin 

and hemopoxin, is carried out via two systems, Has and Phu. In the Phu system, heme is directly extracted 

by an outer membrane, TonB-dependent receptor (TBDR). In the Has system, heme is extracted via a 

hemophore and this complex is recognized by HasR, which is another TBDR. Heme is bound by a 

periplasmic binding protein and transported into the cytoplasm via an ABC transporter. Next, heme is bound 

by a heme chaperon PhuS and delivered to heme oxygenase (HemO) for the degradation of heme into 

biliverdin, CO, and Fe2+ [39]. 
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c)  Ferrous iron transporters 

Ferrous (Fe2+) ion is the favorable form for bacterial utilization. Unlike Fe3+, Fe2+ is comparatively 

soluble and this form can be predominating under anaerobic and low pH environments. Some bacteria have 

the capability to reduce Fe3+ to Fe2+ making it more soluble to uptake. Ferrous ions uptake can occur via 

passive diffusion through outer membrane porins. Iron in the periplasm is transported to the cytoplasm 

through the FeO system, which in gammaproteobacteria is composed of a permease FeoB and proteins 

FeoA, and FeoC. In the majority of bacteria (89 %), the Feo system contains FeoA and FeoB [42]. FeoA is 

a 8.3 kDa cytosolic protein which has a SH3-domain that could activate FeoB. FeoB is a 83 kDa 

transmembrane protein, where the C-terminal is an integral membrane domain and the N-terminal is a 

soluble domain. FeoC is a 8.7 kDa cytosolic protein which regulates the transcription of FeoB. A proposed 

model for FeoB shows that the GTPase activity of FeoB is stimulated by Fe2+. Once the Fe2+ is bound to 

the G-domain, it sends out a signal for GTP binding. GTP binding or GTP hydrolysis will result a 

conformational  change in the protein, opening the pore allowing Fe2+ to flow into the cytosol [43-45].  

Figure 1-3: A summary of iron uptake systems in P. aeruginosa. Heme iron is acquired via Phu and 

Has systems. Siderophore, pyoverdine captured iron is transported to the periplasm via FpvA, reduced 

in the periplasm and transported into the cytosol. Feo system transports Fe2+ to the cytosol. (Figure 

reprinted from Ref. 31, with permission from European Respiratory Society) 
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1.6.3 Iron storage molecules 

Iron storage proteins act as an iron reservoir, supporting growth when iron supplies are limited. 

Additionally, they manage cellular iron levels to protect cells from iron induced toxicity. Bacteria can have 

three types of iron storing proteins, ferritins (Ftn), bacterioferritins (Bfr) and Dps (DNA-binding protein 

from starved cells). These are composed of 24 (ferritins and bacterioferritins) or 12 (Dps) subunits which 

are arranged as a sphere, creating a central cavity for iron storage. Ferritins and bacterioferritin are large 

proteins (about 500 kDa) that can store 2000-3000 iron atoms in their central cavity, whereas Dps can store 

about 500 iron atoms. All the above types are thought to co-exist in the same bacterium cell [32]. 

a) Ferritin and Bacterioferritin 

Bacteria has two ferritin like molecules, the bacterioferritins (Bfr) and bacterial ferritins (Ftn). Ftns 

and Bfrs are assembled as nearly spherical hollow structures, which have an outer diameter of ∼ 120 Å and 

an inner diameter of ∼ 80 Å [46]. The Bfrs and Ftns are made of 24 subunits, where each subunit exhibits 

Figure 1-4: A) The classical four- helix fold of ferritins, helix A (red), a long loop connects helix B 

(green) to C (blue), helix D (magenta) is followed by helix E (Cyan). (B) Subunit dimer of Bfr, heme 

molecule (Red) between two subunits is coordinated via methionine residues from each subunit. 

Ferroxidase centers (FCs) are located at the center of each subunit, iron in FCs are shown as orange 

spheres. (C) A typical symmetrical ferroxidase center of bacterioferritin, Glu51 and Glu127 are bridging 

ligands, and His54/Glu18 and His130/Glu94 are capping pairs. (Figures are reprinted with permission 

from: Ref. 47 copyright (2011) American Chemical Society, Ref. 48 

(https://doi.org/10.1021/acs.biochem.5b00937, further permissions related to the material excerpted 

should be directed to the ACS) and Ref. 49 copyright (2010) American Chemical Society) 

https://doi.org/10.1021/acs.biochem.5b00937
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a four-helix bundle fold as illustrated in Figure 1-4-A: two homologous pairs of antiparallel helixes [helices 

A (red) and D (magenta)]; a long loop connects helix B (green) to helix C (blue) and the helix D is followed 

by a small α-helix (E helix-cyan) perpendicular to the four-helix bundle [47].  

Each four-helix bundle harbors a ferroxidase center (FC). Iron is taken to the proteins as Fe2+ and 

oxidized to Fe3+ via a ferroxidation step occurred at the ferroxidase centers. Ferroxidase center residues are 

highly conserved and have the capability to coordinate two Fe2+ ions. In ferritins and bacterioferritins, 

ferroxidase centers are in the central area of individual subunits as illustrated in Figure 1-4-B [48]. Many 

ferroxidase residues are widely conserved with only few differences. The iron in the FC is shown as orange 

spheres and the two subunits of Bfr is are colored in grey and green. Figure 1-4-C illustrates a symmetrical 

ferroxidase center of a typical bacterioferritin, which contains two Glu bridging ligands and, Glu and His 

as capping ligands [46, 49]. Once the Fe2+ is bound, it is oxidized to Fe3+ by O2. Next, the oxidized iron is 

stored as ferrihydrite or ferric phosphate in the core of the protein [32].  

Figure 1-5: Two ferritin like molecules coexist in P. aeruginosa. (A) Structure of mineralized BfrB 

from Pseudomonas aeruginosa (PDB ID: 3IS7) and (B) As-Isolated FtnA from Pseudomonas 

aeruginosa (PDB ID: 3R2K). Both assemble into a 24-mer. (C) BfrB can coordinate a heme via M52, 

in between two subunits where the M48 from FtnA is not. (Figures are reprinted with permission 

from: Ref. 55 copyright (2013) World Scientific and Ref. 47 copyright (2011) American Chemical 

Society) 
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Ftn and Bfr proteins in many ways are similar in bacterial and archaeal domains of life. They share 

the same quaternary structure and have a similar E helix in the C-terminus of their subunits. The most 

important difference between Ftn and Bfr is the binding of heme in Bfr. A 24-meric protein can bind 12 

hemes. The heme iron is located at a two-fold center of symmetry between two subunits, which places the 

heme molecule toward the inner surface of the protein. As demonstrated in Figure 1-4-B and 1-5-C, the 

heme iron is coordinated by two methionine residues, one from each of the two-fold related subunits [50]. 

The formed spherical Bfr and Ftn shells have channels at the symmetry sites (where subunits meet), which 

allows iron and other small molecules to enter and exit the protein, which are further discussed in section 

1.7 [51].  

In P. aeruginosa, bfrA and bfrB are the two distinct genes coding for ferritn-like molecules.  In 

global genetic response experiments, bfrB was observed to be upregulated in response to high iron 

conditions, whereas bfrA did not respond to different iron conditions [52]. The bfrA gene is currently added 

as ftnA in the P. aeruginosa genomic database and the gene codes for FtnA, a bacterial ferritin. The 

conserved heme ligand, M52, is only present in BfrB and not in FtnA [47]. The M48 present in FtnA is too 

far for the coordination of a heme molecule (Figure 1-4). These observations demonstrated that the product 

of ftnA (FtnA) did not evolve a heme binding site. The ferroxidase centers of BfrB coordinate Fe1 and Fe2 

using two bridging glutamate ligands and by glutamate and histidine capping ligands, which is an 

arrangement characteristic of ferroxidase centers in Bfrs. In FtnA, Fe1 and Fe2 is bridged via only one 

glutamate ligand, which is an arrangement commonly observed in Ftns. The products from bfrB and ftnA 

genes encodes for bacterialferritin (Ftn) and a bacterioferritin (Bfr) respectively [46]. 

1.7 Structure-function relationships in Pseudomonas aeruginosa -Bacterioferritin B (Pa-
BfrB)  

Pa-BfrB share similar structural features with other bacterioferritins. BfrB consists of 24 subunits 

and 12 hemes. Two subunits form a dimer harboring a heme, which is coordinated by Met52 from each 

subunit (Figure 1-6-A) .  Heme molecules are buried inside the protein shell, with the heme propionates 
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extending into the interior cavity where the Fe3+ mineral is stored (Figure 1-6-B). Ferroxidase centers (FC) 

are present in the middle of each four-helix bundle [53].  

At the FC, Fe1 and Fe2 are coordinated by the residues Glu51 and Glu127 as bridging ligands. The 

residues Glu18 and His54, Glu94 and His130 act as capping ligands for Fe1 and Fe2, respectively (Figure 

1-6-C) [49]. X-ray crystal structures from crystals of Pa-BfrB soaked in Fe2+solution, suggested possible 

routes for iron entrance and translocation in the ferroxidase centers [49]. The His 130 of BfrB is flexible 

and can adopt the “gate open” conformation when the FC is empty, or the “gate closed” conformation when 

Fe is bound at the di-Fe2+-centers. Once Fe2+ is bound to the FCs forming a di-iron center, the bound iron 

is oxidized by O2 or H2O2 forming a μ-oxo/hydroxo di-Fe (III) moiety, which triggers the rearrangement of 

His130 to the “gate open” position, allowing the Fe3+ to move into the protein interior cavity and be stored 

as a ferric mineral [49]. The flexibility of the His130 side chain allows internalization of iron and subsequent 

Figure 1-6: (A) Subunit dimer and the coordination of heme (red) by a conserved methionine in each 

of the subunits. (B) BfrB interior cavity, heme buried inside the protein shell propionates extending into 

the interior cavity.   (C) Overlay of the FCs of Pa- BfrB structures, the “gate open” (green) and “gate 

closed” (magenta). The rotation of His 130 facilitates Fe2+ binding to the FC for oxidation to Fe3+ and 

subsequent entry of Fe3+ to the interior cavity for storage. (Figures are reprinted with permission from: 

Ref. 48 (https://doi.org/10.1021/acs.biochem.5b00937, further permissions related to the material 

excerpted should be directed to the ACS) and Ref. 49 copyright (2010) American Chemical Society) 

 

 

https://doi.org/10.1021/acs.biochem.5b00937
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entry of the ferroxidase iron into BfrB cavity. Once the iron is internalized the FC is ready to start another 

cycle. 

 

The protein shell of ferritins separate iron mineral stored in the protein core from the cytosol, which 

helps to avoid unwanted reactions occurred by iron. In order to traffic iron and small molecules in and out, 

ferritin shells consist pores (Figure 1-7-A and 1-7-B) [54]. There are eight 3-fold pores and six 4-fold pores 

in 24-mer ferritins [46]. These channels connect the protein core to the exterior. The 3-fold channels of the 

bacterioferritins are lined alternatively by positively and negatively charged residues. The Figure 1-7-C 

shows one of the 3-fold pored of Pa BfrB viewed from the exterior surface [46, 49, 55].  

Figure 1-7: A) The view of one of the 3- fold pores and (B) 4- fold pores of BfrB. The B-pores 

surrounding the 4-fold pore is marked with black circles. (C) The 3- fold pores are lined with alternative 

positively and negatively charged residues. (D) In the 4-fold pore, a potassium ion is coordinated by the 

N148 and Q151 residues. (E) View of a B-pore, a sodium ion coordinated by D34, D132 and T136. 

(Figures are reprinted with permission from Ref. 54 copyright (2015) American Chemical Society)  
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In Pa BfrB three Glu 109 residues form salt bridges with three Arg 117, capping the pore entrance. 

Residues Asp 118 and Asp 122 are lining the interior of the pore [46, 49]. X-ray crystallographic analysis 

of Fe-soaked Pa-BfrB crystals revealed the presence of sulphate ions (from the crystallization solution) in 

the middle and the bottom of the 3-fold pores; at the exit into the interior cavity interacting with three iron 

irons [46, 49]. When iron is storied as Fe3+ mineral in BfrB, iron is deposited nearly at a 1:1 ratio with 

phosphate. Phosphate is an important component for the formation of the BfrB core mineral. The 

exploration of the 3- fold pores suggest the possibility of trafficking phosphate ions through 3- fold pores 

to get access to the BfrB interior cavity, where they interact with Fe3+ before mineralization [49, 54, 55].  

The 4- fold pores in the Pa BfrB consist of two layers: Asn 148 outer layer and Gln 151 inner layer. 

As shown in Figure 1-7-D, the 4-fold pore shows binding of a potassium ion (purple sphere) coordinated 

by four Asn 148 and Gln 151 residues [49]. The presence of the potassium ion is reasonable because the 

protein storage buffer is 100 mM potassium phosphate. The presence of cations in the 4-fold pore was also 

observed in two Azotobacter vinelandii Bfr structures, where one contains iron and the other contains Ba2+ 

[49]. Even though, iron ions were not observed in 4- fold pores of BfrB, iron ions have been bound at the 

external perimeter of the 4- fold pore. Therefore, it can be speculated that these sites can work as iron 

binding sites prior to oxidation at FCs or storing as ferric mineral [49].  

In addition to the 3-fold and 4- fold pores bacterial Ftns and Bfrs have B-pores. As shown in Figure 

1-7-E, the B-pores are located between three subunits at an asymmetric site [46]. The Fe-soaked crystals 

of C89S/K96C and D34F Pa BfrB revealed iron in the B-pores.  The B-pores of C89S/K96C BfrB is 

indistinguishable from wild type BfrB [54]. The Fe-soaked structures show two iron ions: the innermost is 

coordinated by D132 and the outermost is coordinated by D34 and E66 [54]. The D132F mutant BfrB 

affected the reactivity of the FCs by lowering the conformational flexibility. Which indicates that the 

disturbing B-pores reduce the access of iron into the interior of BfrB [46, 54].   
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1.8 Iron mobilization from bacterioferritinB; insights from in-vitro studies 

Under high iron conditions the bfrB gene is upregulated. Under low iron conditions the genes 

coding for bacterioferritin-associated ferredoxin (bfd) and ferredoxin reductase (fpr) are upregulated [56]. 

It is also noteworthy that the Pa-bfrB gene is contiguous to [2Fe-2S] cluster binding bacterioferritin-

associated ferredoxin (Bfd). These observations led to the proposal of an electron transfer model for the 

mobilization of iron from BfrB (Figure 1-8-A), which proposed electron transfer from NADPH to the 

NADPH dependent flavoprotein Pa-Fpr and from Pa-Fpr to the [2Fe-2S] cluster of Pa-Bfd [55]. The 

validity of this model has been tested in-vitro by mobilizing iron from BfrB in the presence of NADPH, 

recombinant Fpr, and recombinant Bfd, in the presence of the Fe2+ chelator 2’2-bipyridine, which allowed 

monitoring of Fe2+ mobilization from BfrB by following the absorbance (523 nm) of the [Fe(bipy)3]2+ 

complex (Figure 1-8-B) [57]. The addition of NADPH to a mixture of BfrB and Fpr showed negligible 

iron release (the bottom trace in Figure 1-8-B). In contrast, the addition of Bfd promoted fast and complete 

iron release from BfrB (the top trace in Figure 1-8-B) [57]. The participation of the [2Fe-2S] cluster of Bfd 

in electron transfer has been shown by the spectroscopic observations following the reduced form of the 

Figure 1-8: A) Electron flow path from NADPH is mediated by FPR, Bfd and heme in BfrB. Electrons 

delivered from heme reduce the Fe3+ mineral, and allow mobilization of Fe2+. B) Iron release in-vitro is 

monitored by the formation of the [Fe(bipy)3]2+complex, (Δ) Pa-BfrB and Pa-FPR, and (○) Pa-BfrB, 

Pa-FPR and Pa-Bfd. The absorbance at 523 nm is normalized to the absorbance reading once all the 

iron in BfrB is mobilized. (Figures are reprinted with permission from: Ref. 55, copyright (2013) World 

Scientific and Ref. 57 (https://doi.org/10.1021/ja305180n, further permissions related to the material 

excerpted should be directed to the ACS)) 

A B  

https://doi.org/10.1021/ja305180n
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[2Fe-2S] cluster attaining spectral characteristics of oxidized [2Fe-2S] clusters during [57]. These 

investigations also showed that electrons from Bfd are transferred to the iron core of BfrB via the heme. 

1.9 Structure of the BfrB:Bfd complex   

The co-crystal structure of the BfrB:Bfd complex revealed that 12 Bfd molecules can bind to a 24 

mer BfrB (Figure 1-9-A) [57].Bfd is bound at the interface of the BfrB subunit dimer right above the heme. 

The [2Fe-2S] cluster of Bfd is placed approximately 22 Å from the heme iron of BfrB (Figure 1-9-B) [57]. 

The in vitro iron release experiments (see above) demonstrated that the electron transfer from the [2Fe-2S] 

cluster in Bfd to the Fe3+ mineral in the interior cavity of BfrB is mediated by heme [53]. The BfrB:Bfd 

A B 

D C 

Figure 1-9: The structure of BfrB:Bfd complex. A) In the biological assembly 12 Bfd molecules are 

bound to a 24 mer BfrB. B) Bfd is bound between two subunits of BfrB (subunit A- wheat, subunit B- 

grey) above the heme. C) The BfrB-Bfd interface, Bfd is in cyan and the two subunits of BfrB are in 

wheat and grey. D) A representation of rearrangement in BfrB upon Bfd binding, Bfd-cyan, side chains 

of unbound BfrB- green and changes in BfrB, subunit A- wheat and subunit B – grey. (Figures are 

reprinted with permission from Ref. 57 (https://doi.org/10.1021/ja305180n, further permissions related 

to the material excerpted should be directed to the ACS)) 

A B
 

C
D
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structure revealed that the edge to edge distance of the [2Fe-2S] in Bfd and heme in BfrB is 15.1 Å. The 

electron transfer is likely to happen from the S2 of the iron sulfur cluster to vinyl β carbon of heme with 

the help of Q72 and L71 residues [57]. The stability of the Bfd fold maintained by a phosphate ion, which 

helps to maintain the integrity of the [2Fe-2S] cluster [57, 58]. 

The protein-protein interaction interface of the BfrB:Bfd complex is shown in Figure 1-9-C [57]. 

The Bfd protein is shown in cyan and the two subunits of BfrB are shown in grey and wheat.  The minor 

rearrangements in the L68, E81 and E85 of BfrB are crucial to the stability of the complex. The binding of 

Bfd Y2 and L5 are accommodated by narrowing the cleft formed by E81 and L68 of BfrB. The changes in 

BfrB residues before binding with Bfd are shown green and, after binding in wheat (subunit A) and grey 

(subunit B). The average rmsd of main and side chains of Pa-BfrB subunits, and the Pa-BfrB:Bfd complex 

is 0.14 and 0.67 Å respectively [57]. The buried surface area at the BfrB:Bfd interface is 607 Å2. The amino 

acid residues at the interface and their total buried surface are shown in Figure 1-10 [57]. The residues Y2, 

Figure 1-10: Buried surface area per residue at the BfrB:Bfd complex interphase. A) Contributions of 

Bfd residues- cyan B) Contributions of BfrB residues in subunit A- grey and subunit B- yellow. * 

Conserved residues, : Conservative replacements. (Figures are reprinted with permission from Ref. 57 

(https://doi.org/10.1021/ja305180n, further permissions related to the material excerpted should be 

directed to the ACS)) 
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L5 and K40 in Bfd are the largest contributors to the buried surface of Bfd (Figure 1-10-A). The side chains 

of these residues are wedged in a cleft formed on the surface of BfrB. M1, the fourth residue in Bfd with 

largest contribution to the buried interface, interacts with BfrB subunit A via hydrophobic interactions and 

H-bonding [57]. The symbols on top of the bars (*) represent conserved residues and the symbols (:) 

indicate conservative replacements in a number of Gram-negative pathogens. It is important to note that the 

majority of the amino acid residues at the buried surface of BfrB:Bfd interface are conserved, indicating 

the biological significance of this interaction in regulating the cytosolic iron in a variety of Gram-negative 

bacteria.    

1.10 Hot-spot residues in the BfrB:Bfd complex 

The hot spot residues of a protein-protein interaction contribute the most to the binding energy of 

the interaction. In order to identify the most important residues for the stability of the BfrB:Bfd complex 

and to identify the inhibition of iron mobilization from BfrB, the residues L68, E81, E85 and L68/E81 of 

BfrB, residues Y2, L5 and K40 of Bfd were mutated to alanine [48]. Iron release assays were carried out 

with the mutated BfrB- L68A, E81A, E85A and L68A/E81A in the presence of wild type Bfd. As shown 

in Figure1-11-A (green, orange and cyan traces), the mutations L68A, E81A and E85A lowered the iron 

release rates significantly, whereas in the double mutant L68A/E81A iron release is completely abolished 

[48].  

The dissociation constant (Kd) of the wild type BfrB:Bfd complex has been determined to be 3 µM 

by Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) techniques [48]. The Kd 

values for the binding of Bfd to BfrB mutants L68A or E81A were 100-fold and 170-fold weaker than the 

value corresponding to the interaction of wt BfrB and Bfd, respectively. The dissociation constant for the 

association between L68A/E81A BfrB and Bfd could not be measured due to the abrogation of the BfrB:Bfd 

interaction [48]. The Bfd Y2F, K40A and L5A mutations have increased the Kd 3, 2 and 30-fold 

respectively. Consequently, residues L68, E81 and E85 in BfrB, and residues Y2 and L5 in Bfd were 
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identified as hot spot residues. The hot spot residues of the BfrB:Bfd interface are conserved in variety of 

Gram negative bacteria [57]. 

      

1.11 Research problem and rationale 

Iron is an essential nutrient for bacterial growth. Regulation of iron homeostasis is vital because it 

allows cells to have enough iron for growth while avoiding iron induced toxicity. The iron homeostasis 

machinery involves iron uptake, storage and mobilization. The essentiality of iron as a nutrient and the tight 

regulation of iron in the cells suggests iron homeostasis dysregulation as a good candidate for the 

development of novel antibiotics. To progress toward this goal, it is important to attain detailed 

understanding of iron homeostasis in the bacterial cells. 

 

Figure 1-11: Iron mobilization from wild type and mutant BfrB. A) Iron mobilization is retarded in 

E81A, E85A and L68A. The double mutant L68A/E81A shows negligible amount of iron release, 

similar to that observed in the absence of Bfd. B) The dissociation constants of mutant BfrB and Bfd. 

The dissociation constant of the BfrB:Bfd complex in BfrB L68A/E81A mutant is about 170 fold 

larger. In Bfd L5A mutant the dissociation constant is about 30-fold larger than the wildtype. 

(Figures are reprinted with permission from: Ref. 48 (https://doi.org/10.1021/acs.biochem.5b00937, 

further permissions related to the material excerpted should be directed to the ACS)) 
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P. aeruginosa has two ferritin-like molecules, a bacterioferritin (BfrB) and a bacterial ferritin 

(FtnA). As will be shown in Chapter 2, BfrB has been identified as the main iron storage protein with the 

aid of native poly-acrylamide gel electrophoresis. As discussed above, previous in-vitro studies have 

demonstrated the importance of bacterioferritin associated ferredoxin (Bfd) in BfrB iron mobilization. In 

the absence of Bfd very little or no iron is mobilized from BfrB. Structural insights of the amino acid 

residues involved in the BfrB:Bfd interaction were gathered from the co-crystal structure of BfrB:Bfd 

complex, and residues E81, E85 and L68 in BfrB, and M1, Y2 and L5 in Bfd were identified as key amino 

acids that contribute to most of the binding energy of the complex. The bfrB and bfd genes are adjacent in 

the genome of P. aeruginosa, and the BfrB:Bfd hot spot residues are conserved in a number of Gram-

negative bacteria. This is a very good indication of the biological significance of the BfrB:Bfd interaction 

in the regulation of bacterial iron in the cytosol.  Consequently, disrupting BfrB:Bfd interaction is an 

appropriate target for novel antibiotic development and it is expected to have a broad impact. 

Progressing toward identifying BfrB:Bfd as a new target, the work presented here explores the 

significance of disrupting the BfrB:Bfd interaction in P.aeruginosa cells using genetic and chemical 

intervention approaches. P. aeruginosa, wild type (PAO1) and Δbfd, bfrB(E81A/L68A) and ΔbfrB mutant 

cells are used to study the consequences of disrupting BfrB:Bfd interaction in-cells. This is carried out by 

studying iron storage and iron mobilization by imaging iron in BfrB using optimized iron-stained native-

PAGE gels and lysates of P. aeruginosa cells. In addition, the advantages of having an intact iron 

homeostasis machinery for the cells will be researched using wild type and Δbfd mutant cells. The 

differences in the proteome and metabolome under the iron homeostasis dysregulation is explored using 

quantitative proteomics and bioinformatics. These results are discussed in chapter 2 and 4.   

Capitalizing on the knowledge of the hot spot residues in the BfrB:Bfd interaction, our laboratory 

is developing inhibitors of the BfrB:Bfd  interaction using a fragment-based drug discovery approach 

(FBDD), followed by iterative structure-based design. Initial screening of BfrB against a fragment library 

identified 6 fragments that are bound to BfrB at the Bfd binding interface. The co-crystal structure of 
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fragment 1 was used for the structure-based designing of small molecule BfrB:Bfd inhibitor library. The 

developed analogues are tested in-vitro and in-cell. In this work, the activity of the developed analogues 

against P. aeruginosa cells is tested, in order to identify the analogues that permeate the cell membrane. 

This is done by monitoring cell growth in the presence of different analogs at different concentrations. the 

relative efficacy of each analog was determined by calculating IC50 values.  Furthermore, the consequences 

of inhibiting the BfrB:Bfd interaction in the bacterial cell using analogues is also evaluated. The results 

from these studies indicate that the analogues permeate the Gram-negative cell membrane, retard P. 

aeruginosa cell growth, address their target (BfrB) and inhibit iron mobilization from BfrB. In addition, the 

possibility of combination therapy is tested for the developed analogues with existing antibiotics. 

Interestingly, the analogues show an adjuvant effect on the floroquinolone family of commercially available 

antibiotics. The developed analogues are also tested against P. aeruginosa clinical isolates and 

Acinetobactor baumannii stains to rule out any strain specific effects.  

The dysregulation of iron homeostasis by inhibiting the BfrB:Bfd interaction offer numerous 

advantages. First, bacterioferritins are unique to bacteria and the sequence similarity with eukaryotic 

ferritins are <20 %. Second, the BfrB:Bfd interaction in iron mobilization exists only in bacteria and the 

hot spot residues in this interaction are conserved in a variety of Gram-negative pathogens. Therefore, 

analogues designed to inhibit the BfrB:Bfd interaction in P. aeruginosa are likely to also inhibit the Bfr:Bfd 

interaction in other pathogens. In fact, the work presented here begins to explore this idea by demonstrating 

that analogues designed to inhibit the BfrB:Bfd interaction in P. aeruginosa also affect Acinetobacter 

baumannii cells.  
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Chapter 2 : A technique developed to follow iron storage/ mobilization from 
bacterioferrin in bacterial cells enabled understanding of the crucial role played by 
the BfrB:Bfd interaction in iron homeostasis 

This chapter is based on the publication: 

Eshelman, K.*; Yao, H.*; Punchi Hewage, A. N. D.; Deay, J. J.; Chandler, J. R.; Rivera, M., “Inhibiting 

the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in 

bacterioferritin and iron deficiency in the bacterial cytosol”. Metallomics 2017, 9 (6), 646-659. 

*These authors contributed equally 

2.1 Introduction 

2.1.1 Iron is an essential nutrient for bacteria 

Iron is essential for metabolic processes and key enzymatic reactions in bacteria. Heme and Fe-S 

clusters are an important feature of cytochromes, aconitase, and fumarase, which are necessary proteins for 

respiration and tricarboxylic acid cycle (TCA) functionality. In addition, gene regulation and DNA 

biosynthesis also involve iron-containing proteins. Being an important metal for biological processes, the 

chemical properties of iron are not in the favor of most of aerobic organisms on the planet [1].  

In the beginning of life the atmosphere was anerobic and iron was a friendly element. With the 

success of photosynthetic organisms, however, presented new challenges to life on the planet; the 

atmosphere became oxygenic and the major form of iron shifted from the soluble Fe2+ (0.1 M at pH 7.0) to 

the extremely insoluble Fe3+ (10-18 M at pH 7.0) [1]. In addition, the  dioxygen (O2) and and its one-electron 

and two-electron reduced species (superoxide and peroxide) cause toxic effects to biological systems in the 

presence of iron. Due to the poor solubility and potential toxicity of iron, bacteria and other organisms use 

complex machineries to maintain iron homeostasis. Iron homeostasis involves efficient scavenging of iron 

from the surrounding and regulating intracellular free iron levels to avoid iron induced toxicity caused by 

the Fenton reaction, where the ferrous ion and hydrogen peroxide react to produce hydroxyl radicals, which 

cause significant injuries to living cells [3]. As a way to defend from the threat of iron and oxygen living 

cells evolved ferritin protein cages for the oxidation of Fe2+ and compartmentalization of Fe3+ in their 
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interior cavities where the the insoluble ferric mineral is preventing from rusting in cytosol. When needed 

iron stored in ferritin-like molecules is mobilized and safely incorporated into metabolism while avoiding 

the damaging effects of unchecked Fenton reactions. 

2.1.2 Two iron storage molecules coexist in the pathogen Pseudomonas aeruginosa 

Ferritins can be divided in to three subfamilies: heme containing bacterioferritins (Bfrs), canonical 

ferritins (Ftns) and DNA-binding proteins from starved cells (DPS) [4]. The Bfrs and Ftns are made of 24 

subunits and the DPS consists of 12 subunits. Ftns are found in both eukaryotes and prokaryotes, and Bfrs 

and DPS are restricted to prokaryotes. The ferritin subunits consist of 4-helical bundles. All ferritins contain 

ferroxidase centers except the FtnL chains are found in eukaryotic ferritins [5]. 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that has been included in the 

critical priority group for novel anti-microbial development by  the World Health Organization because of 

its intrinsic and acquired antibiotic resistance [6]. Two types of ferritin like molecules coexist in P. 

aeruginosa, a bacterialferritin (FtnA) and a bacterioferritins (BfrB). Both BfrB and FtnA assemble into 

Figure 2-1: Nearly spherical 24-meric structures of (A) BfrB from Pseudomonas aeruginosa (PDB ID: 

3IS7); the heme molecules are shown in green and (B) FtnA from Pseudomonas aeruginosa (PDB ID: 

3R2K). (C) Conserved M52 in BfrB coordinates heme, whereas the M48 in the FtnA sequenced cannot. 

(Figures are reprinted with permission from: Ref. 4 copyright (2013) World Scientific and Ref. 7 

copyright (2011) American Chemical Society) 
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nearly spherical 24 meric units (Figure 2-1-A and 2-1-B)  [4, 7]. Bacterioferritins bind a heme in between 

two subunit dimers. As shown in Figure 2-1-C, in BfrB heme is coordinated via two M52 residues from 

each subunit. In contrast, the M48 in FtnA is not in proximity to a heme to allow coordination [7]. The ftnA 

gene is adjacent to the heme catalase gene katA. In the ftnA knockout mutant, the catalase activity was 

reduced by 50 % than the wild type cells. This observation let to the speculation that FtnA transfers iron to 

the catalase KatA for assembly of the heme cofactor in the enzyme [8].  

2.1.3 Iron mobilization from BfrB requires interaction with its cognate partner protein, Bfd 

In P. aeruginosa the bfrB gene is adjacent to the bfd gene, which codes for a [2Fe-2S] 

bacterioferritin-associated ferredoxin. Studies with E. coli Bfd have suggested that the function of Bfd can 

either be as an electron acceptor in the iron uptake process of Bfr or as an electron donor in the iron 

mobilization from Bfr [9].  Global genetic response studies of P. aeruginosa to low Fe conditions showed 

an increase of the bfd expression by 200-fold and the ferredoxin reductase (fpr) by 3-fold [10]. These 

observations led Rivera and coworkers to propose an electron transfer model where electrons from the 

ferredoxin reductase (Fpr) are passed to the [2Fe-2S] cluster of Bfd which in turn reduces the heme 

molecules in BfrB. Reduced heme transfers electrons to the Fe3+ mineral in the BfrB cavity and thereby 

enables mobilization of Fe2+ (see Figure 2-2) [4, 11]. In-vitro investigations carried out with recombinant 

Bfd, Fpr and BfrB from P. aeruginosa provided strong support for the proposed electron transfer model 

and highlighted the importance of the BfrB:Bfd interaction in mobilization of iron from BfrB [12]. 

The co-crystal structure of the BfrB:Bfd complex revealed structural details in depth about the 

interaction. In the X-ray crystal structure, 12 Bfd molecules are bound to a 24- mer BfrB at identical sites. 

A Bfd molecule is bound right on top of the heme of BfrB at the interface of two subunits. This binding 

place the Fe-S cluster of Bfd at the right position for electron transfer to the heme in BfrB. Figure 2-2B 

shows the electron transfer path that was predicted by the program Harlem [12]. Electrons are transferred 

from the S2 of Bfd iron-sulfur cluster to the heme vinyl β carbon (CBB) in BfrB via two nonbonding jumps 

and, Q72 and L71 of BfrB subunit B [12]. 
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The BfrB:Bfd interface hot spot residues have been identified by alanine mutagenesis. The residues 

L68, E81 and E85 of BfrB and Y2, L5 and K40 of Bfd contribute to most of the binding energy (Figure 2-

3) [13]. The Kd of the BfrB:Bfd interaction is 3 µM. Mutating E81 and L68 to alanine increased the Kd by 

about 100-fold. The Kd for the double mutant L68A/E81A of BfrB was undetectable as the interaction is 

disturbed [13]. In addition, the in-vitro iron release assays showed that the iron mobilization from BfrB was 

retarded in the L68A and E81A BfrB mutants, and most importantly the iron mobilization was completely 

inhibited in the L68A/E81A double mutant of BfrB and it was similar to not having Bfd in the reaction 

[13]. This is a clear indication that the BfrB:Bfd interaction can be inhibited by mutating L68A/E81A of 

BfrB. 

 

Figure 2-2: A) A heme molecule is bound between two subunits of BfrB, heme is coordinated by 

conserved Met residues from each subunit. Bfd binds at the interface of the two BfrB subunits. The 

electron transfer path from the [2Fe-2S] cluster of Bfd to the Fe3+ mineral in the protein core is shown 

by arrows. (B) The electron transfer path from Bfd S2 of [2Fe-2S] cluster to heme vinyl β carbon (CBB) 

of heme in BfrB. (Figures are reprinted with permission from: Ref. 11 

(https://doi.org/10.1021/acs.accounts.6b00514 ) and Ref. 12 (https://doi.org/10.1021/ja305180n). 

Further permissions related to the material excerpted should be directed to the ACS )  
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In this study, insights gathered from in-vitro experiments on the BfrB:Bfd interaction were used as 

a guide to explore the contributions of BfrB and the BfrB:Bfd interaction to iron hemostasis in 

Pseudomonas aeruginosa cells. In order to study the importance of BfrB for the P. aeruginosa cells, a bfrB 

gene knockout mutant was prepared. To study the significances of the BfrB:Bfd interaction in P. aeruginosa 

cells, (i) a bfd gene knockout mutant (Δbfd), and (ii) a mutant made by replacing the bfrB gene with a 

L68A/E81A double mutant bfrB allele at the native site [bfrB(L68A/E81A)] were prepared [2]. 

2.1.4 Significance of following iron storage and mobilization in P. aeruginosa cells 

The main goals of the study were to understand: (i) how iron is stored/mobilized during different 

phases of P. aeruginosa cell growth, (ii) how iron storage/ mobilization is handled by the cells under iron 

replete and deplete conditions, and (iii) how iron storage/mobilization is affect upon genetic intervention 

directed at blocking the BfrB:Bfd interaction (Δbfd and bfrB(L68A/E81A). To accomplish these goals 

requires a clear view of the fate of iron in BfrB within P. aeruginosa cells. In order to analyze the state of 

iron storage and mobilization, an optimized Native PAGE (Polyacrylamide Gel Electrophoresis) method is 

Figure 2-3: The BfrB:Bfd interface. Key residues in Bfd are shown in cyan; BfrB subunit A is in green 

and BfrB subunit B in grey. The residues L68, E81 and E85 in BfrB and Y2, L5 and K40 in Bfd are the 

hot spot residues of the BfrB:Bfd interaction. (Figure is reprinted with permission from Ref. 12 

(https://doi.org/10.1021/ja305180n). Further permissions related to the material excerpted should be 

directed to the ACS) 
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developed. Imaging iron on Native-PAGE gels had been used previous to this study in order to detect iron 

in recombinant proteins, such as transferrin, lactoferrin and ferredoxin [14]. To this end, the proteins were 

electrophoretically separated under native conditions and stained with iron specific stains such as FereneS, 

potassium ferricyanide and 3,5-diaminobenzoic acid and imaged [14-16]. Using Native-PAGE to image 

iron in the proteins of a bacterial cell lysate is a novel approach. The successful application of this method 

requires additional optimizations relative to what had been reported previously because of the complexity 

of the sample and the low signal levels intrinsic to the cell lysate samples. When Native-PAGE is used for 

the recombinant proteins, the proteins are pure and can be concentrated to improve signal, but this is not 

practical for the cell lysate samples. The signal of the cell lysate proteins is hard to improve by 

concentrating. Cell lysates contain a complex mixture of proteins and require additional time and effort to 

concentrate. In addition, there is always a possibility of sample loss or precipitation while concentrating. 

Therefore, alternative optimization approaches are used to improve the signal while preventing sample loss. 

The cell lysis protocols and gel running conditions were optimized by (i) finding cell lysis 

conditions to maximize sample yield, (ii) increasing the sample loading volume by increasing the thickness 

of the gels, and (iii) fine-tuning the voltage and the electrophoresis run times to get sharp bands.  Getting 

sharp and non-distorted Native-PAGE iron stains is one of the central experimental details that is required 

to determine the importance of BfrB and the BfrB:Bfd interaction in P. aeruginosa cells because the relative 

intensity of the iron stain in the Native-PAGE is to be correlated with the amount of iron present in BfrB 

within P. aeruginosa cells.  

The optimized native-PAGE method reported herein allowed us to demonstrate that BfrB and not 

FtnA acts as the main iron storage protein in P. aeruginosa. When the P. aeruginosa cells are grown in the 

presence of 10 µM iron, the wild type cells show maximum iron accumulation in BfrB at about 12-14 h. 

Stored iron start to mobilize from BfrB during late exponential and early stationary growth phases. As the 

BfrB:Bfd interaction is functional, wild type cells take advantage of the stored iron in BfrB to gain a growth 

advantage in the iron limiting media [2]. The optimized native-PAGE method also allowed us to determine 
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that Tthe Δbfd and bfrB(L68A/E81A) mutants irreversibly accumulate iron in BfrB, irrespective of the iron 

levels in the media, and also show retarded growth in low iron media due to the absence of a functional 

BfrB:Bfd interaction. Irreversible accumulation of iron in BfrB in the Δbfd and bfrB(L68A/E81A) mutants 

resulted in low intracellular free iron levels and a low total iron to free iron ratio, which is an indication of 

iron homeostasis dysregulation upon blockade of the BfrB:Bfd interaction [2].  

2.2 Experimental 

2.2.1 Media and growth conditions 

All chemicals were purchased from Fisher Scientific unless otherwise stated. Pseudomonas 

aeruginosa isolation (PI) media (20 g L-1 peptone, 2.99 g L-1 MgCl2.6H2O, 10 g L-1 K2SO4, 25 mg L-1 

irgasan (Sigma-Aldrich), and 20 mL L-1 glycerol, pH 7.0) was used for the normal bacterial growth 

experiments. PI media was supplemented with 10 µM iron using a 10 mM stock of (NH4)2Fe(SO4)2 (pH 

 ̴2.0) unless otherwise stated. Pre-cultures were grown in 5 mL of PI media at 37 ᵒC at 220 rpm. Cultures 

were inoculated to an optical density at 600 nm (OD600) of 0.001 for the experiments using the pre-culture. 

The following media (1 L) was prepared for the experiments under low iron conditions, 24 g 

HEPES, 0.93 g (NH4)2SO4, 3.245 g succinic acid, 615 mL of 2 mM K2HPO4 (Sigma-Aldrich) and 385 mL 

of 2 mM KH2PO4 (Sigma-Aldrich) at pH 7.0. The trace metals were added in the following volumes: 2 mL 

of 1 M MgSO4, 100 µL of 4 M CaCl2, 10 µL 15 mM ammonium molybdate, 1 mL of 17 mM EDTA, 300 

µL of 10 mM CuSO4, 100 µL of 20 mM Co(NO3)2, 100 µL of 94 mM Na2B4O7, and 100 µL of 76 mM 

ZnSO4 [2]. 

Experiments under low iron conditions were carried out by growing the P. aeruginosa pre-cultures 

in PI media supplemented with 10, 20, and 30 µM iron and growing for 24 h at 37 0C.Media recipes have 

been adapted from [2]. 
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2.2.2 Strains used in the study 

Pseudomonas aeruginosa PA01 was purchased from the University of Washington.  The PA01 

derived stains used in the study are listed in the Table 2-1 [2]. 

Table 2-1: P. aeruginosa strains used in this study (Reprinted from Ref.2 with permission from the Royal 
Society of Chemistry) 

Strain Description Reference 

PA01  Wild type strain  [17] 

PA01 ΔbfrB An unmarked, in-frame bfrB deletion in PA01 [2] 

PA01 Δbfd  An unmarked, in-frame bfd deletion in PA01 [2] 

PA01 bfrB(L68A/E81A) A variant bfrB allele at the native bfrB locus in 

PA01 encoding the BfrB L68A/E81A  

[2] 

PA01ΔbfrB 

attn7::PlacbfrB  

Introduced pUC18-miniTn7T-LAC bfrB to PA01 

ΔbfrB and removed the GentR marker  

[2] 

PA01 Δbfd attn7::Placbfd Introduced pUC18-miniTn7T-LAC bfd to PA01 

Δbfd and removed the GentR marker  

[2] 

 

2.2.3 Optimized method for imaging iron stored in BfrB using Native-PAGE 

Pre-cultures of P. aeruginosa were grown in 5 mL of PI media supplemented with 10 µM iron as 

presented in media and growth conditions. PI media (5 mL cultures) supplemented with 10 µM iron (or the 

required concentration) was inoculated to OD600 = 0.001 using the pre-culture. Cells were grown at 37 0C 

and shaking at 230 rpm. Samples were collected at 6, 8, 10, 12, 24, 36 and 48 h post inoculation. An 

independent 5 mL culture was used for each time point. Cells were centrifuged for 15 min at 4000 rpm and 

4 0C. Cells were re-suspended in 1 mL of PI media and centrifuged for 10 min at 13300 rpm and 4 0C and 

the cell pellets were frozen at -80 0C. 

Cell pellets were thawed and lysed using 300 µL of the lysis buffer (50 mM Tris-base buffer pH 

8.0, 10% glycerol, 20 mg/mL lysozyme, 0.2 mg/mL DNAse (Gold Bio), 0.1 M NaCl, 1 mM MgSO4 and 
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1% Triton-X100 (Sigma)) and incubated at 25 0C for 90 min and at 37 0C for 30 min with shaking. Samples 

were then centrifuged for 10 min at 13,300 rpm and the supernatant was filtered through a 0.45 µm 

membrane by centrifugation. Supernatant (100 µL) was mixed with 10 µL of the native gel loading dye 

(0.5 mL 1M Tris-HCl pH 6.8, 5.9 mL water, 0.5 mL glycerol, 0.4 mL β-mercaptoethanol, 0.4 mL 1 % 

bromophenol blue). The mixed solution (100 µL) was loaded into a 2 mm thick Native gel (4 % stacking 

gel and 8 % resolving gel). Electrophoresis was carried out at 60 V for 9 h at 4 0C. Once running is complete, 

the gel was stained for iron by immersing it for 10 min in the dark in a  FereneS solution (0.049 FereneS, 

250 µL thioglycolic acid, 2.4 mL glacial acetic acid in 100 mL of water) and photographed [14]. 

2.3 Results and discussion 

2.3.1 Optimization of the gel thickness, gel running conditions and cell lysis to image iron in P. 
aeruginosa cell lysates using Native Page Electrophoresis 

P. aeruginosa codes for two ferritin like molecules, BfrB and FtnA. It is therefore important to 

investigate how the two ferritin-like molecules are involved in iron storage and distribution of iron in the 

cells. Imaging iron stored in these proteins in the cell lysate could help answer several questions that arise 

while investigating iron storage / mobilization from ferritin-like molecules in bacterial cells. Since iron 

storage proteins accumulate a reasonable amount of iron when cells are grown under iron replete conditions, 

once the proteins are separated on a Native-PAGE it is possible to use colorimetric detection to image the 

iron. To get a better understanding of the fate of iron in the iron storage proteins, the detection method 

needs to be sensitive enough to qualitatively indicate the levels of iron present in the protein during different 

growth phases of the cell. Therefore, the ability to image iron accumulated in iron storage proteins is a 

crucial step toward understanding iron homeostasis in P. aeruginosa cells. As imaging iron accumulated in 

iron storage proteins in cell lysates is a novel approach, the Native-PAGE method needs optimization to 

obtain sharp bands with sufficient sensitivity to make accurate conclusions on iron storage and mobilization. 
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During the initial stages of my efforts to image iron in cell lysates, 10-20 mL cultures were used, 

and after harvesting the cells a volume of lysis buffer equal to the cell pellet (  ̴100-200 µL) was used for 

cell lysis. Once the cells were lysed, lysates were mixed with an equal volume of native gel loading dye 

(causes a 2-fold dilution of the lysate) and 80 µL of the resultant mixture was loaded on each well. Lysates 

were electrophoretically separated on a Native-PAGE gel with dimensions of 20×20 cm x 1 mm (thickness) 

in a PROTEAN II XL electrophoresis system (Bio-Rad). Electrophoresis was carried out for 2 h at 25 mA 

and then for 6 h at 35 mA. These experiments did no produce the sharp bands required to draw confident 

conclusions on iron storage/mobilization. This may have been because the cell lysis process was not 

optimum and the protein in the lysates was diluted excessively prior to loading the gel. Also, the large size 

of the gels made gel preparation tedious and electrophoresis inefficient due to the large size of the buffer 

chamber that is needed to run these large gels, which consumed lot of material and running buffer (40 mL 

Figure 2-4: Optimization of the Native-PAGE protocol for imaging iron accumulated in bacterioferritin 

within  P. aeruginosa cells. (a) Iron stained Native-PAGE, 1 mm thick, 7 % separating and 5% stacking 

gel ran at 60 V for 4 h. 1.5 mm thick: (b) 8 % separating and 4% stacking gel, 60 V for 4 h (c) 8 % 

separating and 4% stacking gel, 140 V for 2 h (d) 8 % separating and 4% stacking gel, 100 V for 2.15 

h, (e) 7 % separating and 4% stacking gel, 100 V 2.15 h. 2 mm thick: (f) 8 % separating and 4% stacking 

gel, 60 V for 1 h and 90 V for 8 h, 200 µL lysis buffer, (g) 8 % separating and 4% stacking gel, 60 V 

for 1 h and 90 V for 8 h,300 µL lysis buffer, loading dye supplemented with 5 % β-mercaptoethanol, 

(h) 8 % separating and 4% stacking gel, 60 V 9 h, 300 µL lysis buffer, loading dye supplemented with 

5 % β-mercaptoethanol . 
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of 8 % poly-acrylamide solution and 3-4 L of native gel running buffer). In order to overcome these issues, 

it was decided to scale down the size of the Native-PAGE system, such that amini-gel system (10-15 mL 8 

% poly-acrylamide solution and 900 mL of native gel running buffer) could be used instead of the large 

PROTEAN II XL system. Scaling down, however, required improving the sensitivity of detection. 

Additionally, when scaling down to a mini-gel setup, the cell lysis protocol and the gel running conditions 

also had to be opitimized in order to improve detection.   

In the second wave of experiments P. aeruginosa cells were grown in 5 mL cultures of PI media 

supplemented with 10 µM iron. Cells collected at 8 and 14 h post inoculation were lysed in 140 µL of the 

lysis buffer indicated in the experimental section. The lysis buffer used with the PROTEAN II XL system 

was modified to include 10 % glycerol. This allowed lowering the volume of loading dye that is used to 

mix with the sample while maintaining the required density, thus eliminating the issue of sample dilution 

prior to loading. In this context, it is important to note that the purpose of the loading dye in Native-PAGE 

is to increase the density of the sample allowing the sample to sink into the wells while the bromophenol 

blue dye works as an indicator of electrophoretic mobility at the gel front. Therefore, the modification of 

increasing glycerol to 10% in the lysis buffer caused significant less sample dilution while loading (  ̴1.1-

fold dilution rather than 2-fold). The resultant lysates were separated under using the conditions described 

below. 

An important limitation of using a mini-gel, is the volume of sample that can be loaded per well, 

which is about 20-25 µL for a typical 1 mm thick gel. As shown in Figure 2-4a, when 1 mm thick gels are 

used (7 % separating and 5% stacking gel, ran at 60 V for 4 h) the iron stain is weak because the small 

sample volume results in relatively low protein concentrations in the gel. Increasing the gel thickness to 1.5 

mm allowed loading of   ̴40 µL of sample per well and resulted somewhat sharper bands, as illustrated in 

Figure 2-4b (8 % separating and 4% stacking gel, ran at 60 V for 4 h). Next, the gel running voltage and 

the percentage of separating gel was explored. When the voltage was increased from 60 V to 100 V (Figure 

2-4d, 8 % separating and 4% stacking gel, 100 V for 2.15 h) and 140 V (Figure 2-4c, 8 % separating and 



40 
 

4% stacking gel, 140 V for 2 h) the sharpness of the iron stain deteriorated, resulting in diffuse bands. A 

similar observation was made when the separating gel percentage was lowered to 7 % from 8 % (Figure 2-

4e, 7 % separating and 4% stacking gel, 100 V for 2.15 h). Therefore, a low voltage such as 60 V and 8 % 

separating gel seemed the ideal conditions to get sharp bands.    

As there was an improvement in increasing the gel thickness and running the gel at 60 V, next the 

thickness of the gel was increased to 2 and 3 mm by using custom-made spacers. This allowed to increase 

the loading volume, which is about 90-100 µL for a 2mm thick gel and about 120 µL for a 3 mm thick gel. 

Note that this sample volume is more than can be loaded into the PROTEAN II XL gels. Being able to load 

a larger sample volume is important to get improved signals specially when the amount of iron accumulated 

in BfrB is low or when cell densities are low. An application of this gained sensitivity will be further 

discussed in Chapter 3.  P. aeruginosa Δbfd mutant cells were used to optimize the cell lysis process. Using 

Δbfd mutant allowed to optimize the lysis of highly mucoidal, high cell density samples (36 h-48 h cultures). 

Also, the improvement of lysis can be visualized from the iron stains of the gels because Δbfd mutant cells 

are unable to mobilize iron from BfrB so the time-dependent iron stains clearly revealed the irreversible 

accumulation of iron in BfrB. For the initial trials with the 2 mm thick gels, 200 µL of the lysis buffer was 

used. As shown in Figure 2-4f (8 % separating and 4% stacking gel, 60 V 1 h and 90 V 8 h), the iron stain 

showed a significant improvement compared to stains observed with the 1.5 mm thick gels, but the 24 and 

36 h samples suggest less than optimum lysis of the cells. Therefore, the lysis volume was increased to 300 

µL and also the sample loading dye was supplemented with 5 % β-mercaptoethanol to eliminate disulfide 

bonds between BfrB proteins, thus avoiding streakiness in the gels. The resultant gel is shown in Figure 2-

4g (8 % separating and 4% stacking gel, 60 V 1 h and 90 V 8 h). Clearly, cell lysis has improved, but there 

is a decrease in the sharpness of the bands, especially in the 24 and 36 h samples. When revising the 1.5 

mm thick gel results, it was obvious that the voltage impacts the sharpness of the iron stain (Figure 2-4c 

and Figure 2-4d). Therefore, the same samples were ran at a lower voltage (60 V 9 h) and the resultant gel, 

shown in Figure 2-4h (8 % separating and 4% stacking gel, 60 V for 9 h) shows sharp bands. Hence, the 
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optimum conditions include: 300 µL lysis volume, 2 mm thick gels (12 mL gel volume), 8 % separating 

and 4% stacking gel, 60 V, 9 h run time at 4 0C clearly resulted sharp, intense, non-streaky iron stain bands 

in the Native-PAGE, which allowed to make strong arguments that are further discussed in the subsequent 

sections. 

2.3.2 BfrB is the main iron storage protein in P. aeruginosa  

Most bacterial genomes code for at least two types of ferritins, bacterial ferritins (Ftn) and 

bacterioferritins (Bfr). Both assemble into the same quaternary structure and share the identical fold.  Ftns 

and Bfrs function as iron storage proteins as they can oxidize Fe2+ at the ferroxidase centers and store it as 

Fe3+ in the interior protein cavity [4]. The reasons for the co-existance of two ferritin-like molecules in 

bacterial is still not understood and it has led to the suggestion that in different bacteria, the physiological 

role played by Ftn and Bfr are different [18]. The main iron storage protein in E. coli is FtnA whereas in 

Salmonella entrica it is Bfr [19, 20].  

In order to identify the main iron storage protein of P. aeruginosa, the optimized iron stained native-

PAGE protocol described above was used. Cells were grown as explained in the experimental section by 

supplementing PI media with different iron concentrations (10, 20 and 30 µM) and sampling at 6, 8,12 and 

14 h post inoculation. Cells were lysed and loaded into the gel. To identify the corresponding electrophoretic 

Figure 2-5: Wild type and ΔbfrB cells were grown in PI media supplemented with (A) 10 µM and (B) 

30 µM iron. Cell lysates were separated on a Native-PAGE and stained with FereneS. Comparing the 

electrophoretic mobilities it is obvious that BfrB acts as the main iron storage protein in P. aeruginosa. 

In the ΔbfrB mutant cells no iron accumulation was detected even when the media was supplemented 

with 30 µM iron. (Reprinted from Ref.2 with permission from the Royal Society of Chemistry) 
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migration of the protein, recombinant FtnA and BfrB containing about 400 iron atoms in their interior 

cavities were used. The migration difference of BfrB and FtnA proteins is clearly noticeable in the native-

PAGE shown in Figure 2-5A, where the recombinant proteins are termed as Rec FtnA and Rec BfrB.  The 

lanes loaded with lysates from wild type P. aeruginosa cells showed an iron stained band that migrated 

similarly to BfrB, whereas a band corresponding to the migration of FtnA was not detectable in the lysates, 

even at high iron concentrations (30 µM, Figure 2-5B). 

In the lysates of ΔbfrB, there was no detectable iron accumulation even under iron rich conditions 

(Figure 2-5B). It was assumed that in ΔbfrB mutant cells FtnA would compensate for the absence of BfrB. 

The results from the native-PAGE experiments, however, revealed no iron accumulation in the ΔbfrB 

mutant cells, indicating that FtnA doesn’t accumulate iron in P. aeruginosa (not detectable by the FreneS 

stain), even in the absence of BfrB, under the laboratory conditions used in these experiments. These 

findings agree with the observations  that the bfrB gene is upregulated in the presence of high iron levels in 

the environment, whereas expression of the ftnA gene does not respond to external high iron levels [21].  

2.3.3 Bfd is required to mobilize iron from BfrB in P. aeruginosa cells 

During the biochemical and structural in-vitro studies, BfrB iron was mobilized in the presence of 

Bfd, Fpr and NADPH. Electrons are transferred from NADPH to FPR and then to the [2Fe-2S] cluster of 

Bfd. Next, the electrons are transferred to the Fe3+ mineral in the central cavity via the heme in BfrB. In the 

absence of Bfd the iron mobilization from BfrB was inhibited in-vitro [12].  

The co-crystal structure of the BfrB:Bfd protein-protein complex revealed many structural insights 

on the interaction. The residues L68, E81 and E85 of BfrB and Y2, L5 and K40 of Bfd were identified as 

the hot spot residues of the interaction [13]. The Kd for the BfrB:Bfd complex was determined to be 3 µM 

and the mutation of L68A and E81A in BfrB lowered the affinity for Bfd in about 100-fold. The Kd of the 

double mutant L68A/E81A was not measurable due to the disruption of the BfrB:Bfd interaction. The iron 

release in vitro from the L68A/E81A mutant BfrB showed similar results to those observed in the absence 

of Bfd, indicating that the L68A/E81A BfrB mutant is incapable of interacting with Bfd [13]. In agreement 
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with these observations in vitro, in P. aeruginosa cellsthe BfrB:Bfd interaction was inhibited by, (i) deleting 

bfd gene (Δbfd), and (ii) by introducing a L68A/E81A bfrB variant allele at the native bfrB locus 

[bfrB(L68A/E81A)].  

Under iron sufficient conditions (PI media supplemented with 10 µM iron), the wild type and the 

mutant cells grow similarly (Figure 2-6) [2]. Hence, wild type and mutant P. aeruginosa cells were grown 

in the presence of 10 µM iron, and cells were collected at 6, 8, 12, 14, 18, 24, and 36 h post inoculation. 

The cells were lysed and the lysates were ran on a Native-PAGE, and stained for iron. As shown on Figure 

2-7a the wild type cells start to accumulate iron in BfrB during the logarithmic growth phase (6 h) and show 

maximum iron accumulation during the early stationary phase (12 h). Once the iron in the media is depleted 

(~18 h) the iron accumulated in BfrB is mobilized (18 h and beyond). In the Δbfd and bfrB (L68A/E81A) 

mutant cells iron also accumulates in BfrB. However, the accumulated iron is not mobilized from BfrB 

even under iron deprived conditions (24- 36 h, Figure 2-7 b and Figure 2-7 c). These observations 

Figure 2-6: The P. aeruginosa wild type, Δbfd, bfrB (L68A/E81A) and ΔbfrB mutants grow similarly 

in the iron sufficient conditions. (Reprinted from Ref.2 with permission from the Royal Society of 

Chemistry) 
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demonstrate that in P. aeruginosa cells the BfrB:Bfd interaction is the only mechanism used to mobilize 

iron accumulate in BfrB. In addition, as discussed in the previous section ΔbfrB mutant cells, don’t show 

any iron accumulation (Figure 2-5 A, B).  

The Δbfd and ΔbfrB mutants were complemented with, a bfd or a bfrB gene expressed from an 

IPTG inducible lac promoter gene installed in the in P. aeruginosa chromosome at a neutral att site (ΔbfrB 

attn7::Plac bfrB and Δbfd attn7::Plac bfd). As shown in Figure 2-7d, there was no iron accumulation in the 

ΔbfrB attn7::Plac bfrB in the absence of IPTG. However, adding 1 mM IPTG at the beginning of the growth 

restored the BfrB. Consequently, the ΔbfrB attn7::Plac bfrB strain accumulated iron during the exponential 

Figure 2-7: P. aeruginosa wild type and mutant cells were grown in PI media supplemented with 10 

µM iron. Cell lysates at different time points were separated on a Native-PAGE and stained with FreneS. 

(a) wild type cells accumulate iron in BfrB and then mobilize it when iron in the media is low. (b) Δbfd, 

(c) bfrB (L68A/E81A) mutants show irreversible accumulation of iron. (d) ΔbfrB attn7::Plac bfrB 

complemented cells don’t show iron accumulation in BfrB in the absence of IPTG but (e) accumulate 

iron in BfrB upon induction of the bfrB gene by IPTG (f) The Δbfd attn7::Plac bfd complemented cells 

show irreversible accumulation of iron in the absence of IPTG and (g) induction of the bfd gene with 

IPTG starts the expression of Bfd and mobilization of iron from BfrB. (Reprinted from Ref.2 with 

permission from the Royal Society of Chemistry) 
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and early stationary growth phases, and mobilized BfrB-iron during late stationary phase, which is very 

similar to observations made with the wild type cells (Figure 2-7e). Small deviations in the iron 

accumulation pattern may have been caused by the presence of 1 mM IPTG from the beginning of the 

growth, which might have altered the expression levels of BfrB. The Δbfd mutant cells were also 

complemented with an IPTG-inducible bfd gene inserted at an neutral att site of the P. aeruginosa genome 

(Δbfd attn7::Plac bfd). In the absence of IPTG, the cells cannot mobilize iron store in BfrB(Figure 2-7f). 

Addition of 1 mM IPTG (shown by the red arrow) 12 h post inoculation, however, results in the production 

Figure 2-8: P. aeruginosa (a) wild type (c) Δbfd and (e)  bfrB (L68A/E81A) cells were grown in the 

presence of 10, 20 and 30 µM iron, respectively. Lysates were separated on Native-PAGE and stained 

with FereneS.  (b) Wild type cells can take the advantage of the iron stored in BfrB while growing in 

iron depleted media. The growth rate and the cell density of the cultures is proportional to the amount 

the concentration of iron supplemented in the first culture. (d) Δbfd and (f) bfrB (L68A/E81A) cells 

show impaired growth and the growth rate and cell density is independent of the concentration of 

supplemented iron. (Figures are reprinted from Ref.2 with permission from the Royal Society of 

Chemistry) 
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of Bfd and in the mobilization of iron from BfrB (Figure 2-g). The above discussed results clearly 

demonstrate that the BfrB:Bfd interaction is the only mechanism to mobilize iron from BfrB in P. 

aeruginosa cells.  

2.3.4 Iron stored in BfrB promote growth under low iron conditions 

Figure 2-7a shows that wild type P. aeruginosa cells grown in PI media supplemented with 10 µM 

iron show maximum iron accumulation at ~12 h, but when the iron in the media starts to deplete iron is 

mobilized from BfrB (beyond ~18 h). The iron mobilized from BfrB is used fulfill the iron requirement of 

the cells. Under these conditions, there is no detectable iron in BfrB beyond 24 h, as shown by FereneS 

stained Native-PAGE (Figure 2-7a and 2-8a). As shown in Figure 2-8a, when the cells are grown in the 

presence of 20 or 30 µM iron, there is iron accumulation beyond 24 h and the iron stains are more intense 

compared to the 10 µM iron supplemented growth. The 20 and 30 µM iron supplemented growths also 

show iron mobilization from BfrB beyond 24 h of culture, but iron is still detectable in BfrB at 48 h. The 

insights gathered from the above data were used to test whether P. aeruginosa cells can take the advantage 

of the iron reservoirs in BfrB to grow when transferred into an iron-limiting media. Wildtype P. aeruginosa 

cells were grown in PI media supplemented with 10, 20 and 30 µM iron and cells were collected 24 h post 

inoculation, centrifuged, washed and transferred to an iron deficient media (< 0.1 µM Fe). The cells 

suspended in iron deficient media were aliquoted into a 96 well plate and the growth was monitored by 

measuring O.D600. The cell growth in the low iron media was proportional to the concentration of 

supplemented iron in the first growth, where the wildtype cells that had been grown in 30 µM iron showed 

the highest cell density when cultured in iron deficient media. The cells grown with a 10 µM iron 

supplementation had the lowest cell density (Figure 2-8-b) [2]. These results show that the wild type cells 

can use their BfrB iron reserves when facing challenges in growing iron limiting conditions. 

Similar experiments were done with Δbfd and bfrB (L68A/E81A) mutant cells, where they were 

grown in PI media supplemented with 10, 20 and 30 µM iron. Iron stained Native-PAGE experiments 

clearly show irreversible accumulation of iron in the mutant cells, with the intensities of the iron stain being 
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proportional to the concentration of supplemented iron (Figure 2-8-c and 2-8-e). However, since the iron 

stored in BfrB cannot be mobilized in the Δbfd and bfrB (L68A/E81A) mutant cells, when these are 

passaged to iron limiting conditions, they show impaired growth. Note that the growth rates of the Δbfd and 

bfrB (L68A/E81A) mutant cells are independent from the supplemental iron concentrations and, are 

significantly lower than the wildtype cells (Figure 2-8-d, 2-8-f). In this context, it is important to note that 

in absence of the BfrB:Bfd interaction the iron stored in BfrB is not usable to the Δbfd and bfrB 

(L68A/E81A) mutant cells. The above results demonstrate the classical concept of iron storage proteins, 

where the protein accumulates iron for the utilization under iron limiting conditions.  

2.3.5 Blocking the BfrB:Bfd interaction elicits iron deficiency in P. aeruginosa cells 

An important characteristic of P. aeruginosa cells under iron limiting conditions is the secretion of 

Fe3+-chelating siderophores such as pyoverdine (Pvd) and pyocheline (Pch). Pyoverdine is the siderophore 

with the highest affinity for Fe3+ and is a green-yellow fluorescent molecule. When excited at 400 nm 

pyoverdine exhibit fluorescence with emission maximum at 460 nm. An important phenotype that was 

observed with the Δbfd and bfrB (L68A/E81A) mutant cells is the hyper production of pyoverdine, 

compared to the wild type cells. These observations were made when cells were grown in PI media 

supplemented with 10 µM and the secretion of pyoverdine from the wild type and the Δbfd, bfrB 

(L68A/E81A) and ΔbfrB mutants was monitored by fluorescence spectroscopy at different time points post 

inoculation. Under the above conditions, wild type and the mutants grow similarity reaching stationary 

phase in ~12 h (Figure 2-6) [2]. The fluorescence intensity was normalized to the viable cell count for each 

time point. As shown in Figure 2-9a there wasn’t detectable levels of pyoverdine until 24 h post 

inoculation. During longer culture times such as 36 and 48 h, the Δbfd and bfrB (L68A/E81A) cells secrete 

3-4-fold more pyoverdine than the wildtype cells [2], suggesting acute iron starvation in the Δbfd, bfrB 

(L68A/E81A) cells due to the unidirectional flux of iron into BfrB. 
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The analysis of iron in the spent media shows that when PI media is supplemented with 10 µM 

iron, at the end of 20-24 h of growth the media is left with <1 µM iron. Wild type, Δbfd and bfrB 

(L68A/E81A) cells utilize iron similarly, whereas the ΔbfrB cells utilize iron at a lower rate (Figure 2-9b) 

[2]. The time when iron in the spent media is   ̴1 µM corresponds with time that the secretion of pyoverdine 

becomes detectable. The ΔbfrB cells take approximately about 30 h to reduce iron levels <1 µM and by this 

time pyoverdine secretion becomes detectable in ΔbfrB cell cultures. Clearly, P. aeruginosa cells sense iron 

starvation and start secreting Fe3+ chelating siderophores when the iron levels are about 1 µM [2]. 

Figure 2-9: The cells were growth in PI media supplemented with 10 µM iron. (a)The amount of 

pyoverdine secreted by wild type, Δbfd, bfrB (L68A/E81A) and ΔbfrB cells, normalized to the log 

CFU/mL (b) The iron concentration of the spent media at different time points post inoculation. (c) Total 

iron levels per cell (d) Free iron atoms per cell and (e) the ratio of total iron to free iron of the wild type, 

Δbfd, bfrB (L68A/E81A) and ΔbfrB mutant cells at 12 and 18 h post inoculation. (Reprinted from Ref. 

2 with permission from the Royal Society of Chemistry) 
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The correlation between the cellular iron levels and the observed phenotypes were investigated by 

measuring total iron and free intracellular iron in the wild type and mutant cells. Cells were grown in PI 

media supplemented with 10 µM iron and harvested 12 (early stationary phase) and, 18 h (late stationary 

phase) post inoculation. The total intracellular iron levels were measured spectroscopically using an iron 

detection reagent (Ferrozine) after digesting the cells [2, 22]. The levels of free intracellular iron were 

measured using whole-cell electron paramagnetic resonance (EPR) spectroscopy method after chelating the 

iron in the cells using a cell membrane permeable iron chelator deferoxamine mesylate (DFO) [2, 23, 24]. 

The total iron levels in the wild type, Δbfd and bfrB (L68A/E81A) mutant cells were very similar 

at 12 and 18 h; these total iron levels don’t suggest iron homeostasis dysregulation (Figure 2-9c) [2]. 

However, free iron levels of the Δbfd and bfrB (L68A/E81A) mutant cells were 60 % and 25 % those in the 

wild type cells at 12 and 18 h respectively (Figure 2-9d) [2]. By 12 h, about 5 µM iron is left in the media 

and the free iron levels in the Δbfd and bfrB (L68A/E81A) mutant cells are not severely compromised, but 

once the media becomes iron depleted (18 h,   ̴1 µM iron) the unidirectional flow of iron into BfrB 

exacerbates the depletion of free iron in the cytosol of the mutants. Therefore, the ratios between the total 

iron and free iron levels for the Δbfd, bfrB (L68A/E81A) mutant cells were   ̴40 at 12 h and   ̴75 at 18 h. 

Despite the iron concentration in the media, wildtype cells maintain the total iron to free iron levels ratio 

around 20 (Figure 2-9e) at both 12 and 18 h [2]. This is a clear indication of iron homeostasis dysregulation 

caused by blocking the BfrB:Bfd interaction which causes the irreversible accumulation of iron in BfrB, 

which severely depletes the levels of free iron in the cytosol compared to the wild type cells.  
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As shown schematically in Figure 2-10b, the unidirectional flux of iron into BfrB lowers the free 

iron levels in the cytosol [2]. Once the BfrB:Bfd interaction is disrupted, the equilibrium between Fe3+ 

stored in BfrB and free Fe2+ in the cytosol is compromised. Hence, it can be concluded that this equilibrium 

functions as a buffer to control the free Fe2+ levels in the cytosol, which also contribute to the dynamic 

equilibrium between the apo- form of the master iron uptake regulator (Fur) and the Fe2+-Fur complex. 

When the cytosolic free iron levels are lower than the Kd of the Fe2+-Fur complex, dissociation of Fe2+-Fur 

complex derepresses the iron acquisition genes, such as those coding for the biosynthesis of pyoverdin. 

This was evident in the pyoverdine hyper production phenotype observed with the Δbfdand bfrB 

(L68A/E81A) mutant cells where the equilibrium between free cytosolic Fe2+ and Fe3+ stored in BfrB is 

severely compromised, which results in significantly depressed cytosolic free Fe2+ levels and dysregulated 

expression of pyoverdine biosynthesis genes [2].    

Figure 2-10: There is a dynamic equilibrium between the Fe3+ stored in BfrB and the free Fe2+ in the 

cytosol. When the free Fe2+ concentration is above or equal to the Kd of the Fe-Fur complex the iron 

acquisition genes are repressed. As the BfrB:Bfd interaction is disrupted, cytosolic free Fe2+ levels 

drop below the value of the Kd of Fe-Fur complex because of the unidirectional flux of iron into BfrB; 

when Fur is no longer bound with Fe2+ it derepresses iron acquisition genes. (Reprinted from Ref. 2 

with permission from the Royal Society of Chemistry) 
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2.4 Conclusions 

The optimized Native-PAGE method developed to image iron in bacterioferritin enabled our team 

to identify the function of BfrB as the main iron storage protein in P. aeruginosa. Imaging iron in BfrB also 

allowed us to follow iron storage and mobilization during different growth phases of the P. aeruginosa cells 

under different iron concentrations. It also permitted to discover the importance of the BfrB:Bfd interaction 

in maintaining iron homeostasis in P. aeruginosa cells. The Δbfd and bfrB (L68A/E81A) mutant cells are 

unable to mobilize iron from BfrB. As a consequence, the mutant cells showed irreversible accumulation 

of iron in BfrB and impaired growth in the low iron media. Additionally, blocking the BfrB:Bfd interaction 

caused unidirectional flow of iron into BfrB resulting in low  cytosolic free iron levels. The Δbfd and bfrB 

(L68A/E81A) mutants had a higher total iron to free iron ratio (  ̴75) 18 h post inoculation, whereas the wild 

type cells were able to maintain this ratio at   ̴20 [2]. Once the BfrB:Bfd interaction is blocked, iron stored 

in BfrB is no longer usable to the cells and the dynamic equilibrium between Fe3+ stored in BfrB and free 

cytosolic Fe2+ is disrupted, dysregulating the iron homeostasis of the cell. Also, the bfr and bfd genes are 

adjacent in a variety of Gram-negative bacteria, which suggests that the BfrB:Bfd shows extensive 

importance in iron homeostasis. 
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Chapter 3 : Small molecule inhibitors of the BfrB:Bfd interaction affect the fitness of 
P. aeruginosa, dysregulate iron homeostasis and potentiate fluoroquinolone activity 

This chapter is based on the publication: 

Punchi Hewage, A. N. D.*; Yao, H.*; Nammalwar, B.; Gnanasekaran, K. K.; Lovell, S.; Bunce, R. A.; 

Eshelman, K.; Phaniraj, S. M.; Lee, M. M.; Peterson, B. R.; Battaile, K. P.; Reitz, A. B.; Rivera, M., “Small 

Molecule Inhibitors of the BfrB–Bfd Interaction Decrease Pseudomonas aeruginosa Fitness and Potentiate 

Fluoroquinolone Activity”. Journal of the American Chemical Society 2019, 141, 8171-8184. 

*These authors contributed equally 

3.1 Introduction 

Iron is an essential nutrient for prokaryotic and eukaryotic cells. It is the fourth most abundant 

element on earth. Iron mainly exists in two oxidation states, Fe2+ and Fe3+. The soluble Fe2+ is abundant in 

anaerobic or microaerobic aqueous environments. In oxygenated environments, Fe3+ is the most abundant 

oxidation state of iron; the low solubility of Fe3+ brings challenges in fulfilling the nutritional requirements 

of microorganisms with an aerobic lifestyle [1]. In the presence of free iron, dioxygen, and its one-electron 

and two-electron reduced species (superoxide and peroxide) exert toxic effects on biological systems. Cells 

regulate iron rigorously to maintain low intracellular free iron levels to protect against the damages caused 

by oxyradicals [2]. Bacteria have evolved diverse mechanisms to acquire sufficient iron for growth while 

avoiding iron-induced toxicity. 

P. aeruginosa is a Gram-negative opportunistic pathogen and one of the leading causes of hospital-

acquired infections. In P. aeruginosa, 6 % of the transcribed genes are iron-responsive [3]; this exemplifies 

the importance of iron for the vital cellular functions, such as respiration, gene regulation, DNA 

biosynthesis, and the tricarboxylic acid cycle (TCA). In the priority list published by the World Health 

Organization (WHO) for the development of anti-infectives, carbapenem-resistant Pseudomonas 

aeruginosa and Acinetobactoer baumannii have been assigned critical priority [4]. Therefore, numerous 

efforts with diverse strategies have been put into the development of anti-infectives to kill or disarm P. 
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aeruginosa [5].  In this context, approaches that interfere with the iron homeostasis are considered to have 

potential for developing anti-infective inventions [3, 6]. 

3.1.1 Significance of the BfrB:Bfd interaction in iron homeostasis of P. aeruginosa 

BfrB is the main iron storage protein in P. aeruginosa [7]. Iron mobilization from BfrB requires 

interactions with its cognate partner protein, Bfd. In the  BfrB:Bfd complex, 12 Bfd molecules are bound 

to BfrB; each Bfd molecule binds between two subunits, above each heme molecule [8, 9]. The 12 Bfd 

binding sites on BfrB are equivalent and independent. The residues M1, Y2, and L5 of Bfd, and L68 and 

E81 of BfrB contribute the most to the stabilization of the BfrB:Bfd complex [10]. The Kd value of the 

BfrB:Bfd complex is 3 µM. Mutating L68 or E81 to alanine in BfrB resulted in a 100-fold higher Kd relative 

to the wild type BfrB:Bfd complex. When both, L68 and E81 are mutated to alanine, the association of the 

Bfd with BfrB was undetectable [10].  

Figure 3-1: (A) P. aeruginosa BfrB is assembled from 24 identical subunits with 12 hemes (red), each 

heme resides between two subunits. The Fe3+ mineral is stored in the hollow cavity (80 Å diameter). (B) 

Heme (red) is bound between two subunits of BfrB (green and grey). Bfd (cyan) binds above the heme 

of BfrB. Black arrows indicate the electron flow path from the [2Fe-2S] cluster (yellow and orange 

spheres) of Bfd to the Fe3+ mineral in BfrB, thus allowing the mobilization of Fe2+. (C) A view of the 

BfrB:Bfd interface. Key Bfd residues Y2 and L5 reside on the surface pockets formed by L68 and E81 

of BfrB. The [2Fe-2S] is shown in yellow and orange. (Figures are reprinted from Ref. 7 with permission 

from Royal Society of Chemistry and Ref. 9 (https://pubs.acs.org/doi/10.1021/acs.accounts.6b00514) 

with permission. Further permissions related to the material excerpted should be directed to the ACS)) 

 

https://pubs.acs.org/doi/10.1021/acs.accounts.6b00514
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The repercussions of blocking the BfrB:Bfd interaction in P. aeruginosa was investigated by 

deleting the bfd gene (Δbfd) or by replacing the bfrB gene with a L68A/E81A double mutant bfrB allele at 

the bfrB native site (bfrB(L68A/E81A)) [7]. As discussed in Chapter 2, these two mutants disclosed the 

importance of the BfrB:Bfd interaction in P. aeruginosa cells. In absence of the BfrB:Bfd interaction iron 

accumulates irreversibly in BfrB. The unidirectional flux of iron into BfrB caused a more significant 

fraction of iron to be trapped in BfrB, and this trapped iron is not a usable resource to the bacterial cell. 

Consequently, the Δbfd and the bfrB(L68A/E81A) mutant cells showed acute iron starvation responses 

(overproduction of pyoverdine) as a consequence of low free iron levels in the cytosol, despite seemingly 

normal intracellular ion levels caused by irreversible accumulation of iron in BfrB. The BfrB:Bfd 

interaction is the only available mechanism to mobilize iron from BfrB [7]. Disruption of the BfrB:Bfd 

interaction dysregulates iron homeostasis and affects the broader metabolism of P. aeruginosa. As 

discussed in Chapter 4, iron homeostasis dysregulation has significant effects on TCA cycle, amino acid 

biosynthesis, respiratory cycle, and oxidative stress management in P. aeruginosa.  

Blocking the BfrB:Bfd interaction appears to be a suitable and novel approach to induce iron 

homeostasis dysregulation in P. aeruginosa. Small-molecule chemical probes that have the potential to 

inhibit the BfrB:Bfd interaction have been developed in our lab. These chemical probes can be useful in 

studying bacterial iron homeostasis and recognizing additional weaknesses caused by iron homeostasis 

dysregulation. Testing the effects of these novel chemical probes on the fitness of P. aeruginosa cells is at 

the center of work presented in this Chapter. 

3.1.2 Challenges in developing antimicrobials for Gram-negative bacteria 

Discovering anti-infective agents against Gram-negative bacteria is challenging, especially for P. 

aeruginosa, where the hit rates of screening campaigns are 1000-fold lower than hit rates of campaigns 

against Gram-positive bacteria [11]. One of the primary reasons for a lower hit rate is the limited membrane 

permeability. Gram-negative bacteria have two membrane cell envelopes. The outer membrane (OM) is 

comprised of an asymmetric bilayer of lipopolysaccharides (LPS) and phospholipids, which are known to 
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slow down the uptake of anti-infectives significantly. The presence of LPS in the OM makes Gram-negative 

bacteria resistant to antibiotics. [12]. 

The outer membrane permeability of P. aeruginosa is about  8 % that of E. coli because P. 

aeruginosa outer membrane lacks general diffusion porins such as OmpC and OmpF of E.coli. The most 

abundant porin in P. aeruginosa is the outer membrane protein F (OprF) which is highly selective and 

shows very slow solute diffusion. The diffusion of L-arabinose into P. aeruginosa by the OprF porin was 

50-fold slower than the OmpF porin in E. coli. The other porins, such as OprC, OprD, OprE are relatively 

expressed in low levels in P. aeruginosa [12-14]. 

Permeating two protective lipid bilayers in Gram-negative bacteria by a drug is quite challenging. 

Importantly, Lipinski’s rule of five is not valid for the antibiotics that require penetration of bacterial 

membranes because passage through the OM requires different physiochemical rules than the IM and vice 

versa. Therefore, an acceptable set of rules for antibacterial agents appear to be nonexistent. Richter and 

co-workers have explored the small molecule accumulation in the Gram-negative cells. According to the 

results, to be successfully taken by the cells, a molecule must contain an amine, have low globularity, be 

amphiphilic, and rigid [15]. 

It is essential to evaluate the effectiveness of inhibitors vs. P. aeruginosa cells in-cell, in order to 

select compounds not only exhibiting good affinity for BfrB in vitro, but also activity against P. aeruginosa 

cells. Hence, the work presented in this Chapter is directed at evaluating compound activity against P. 

aeruginosa, as well as demonstrating that the inhibitors engage their intended target (BfrB) in the P. 

aeruginosa cytosol.  

It is essential to evaluate the effectiveness of inhibitors vs. P. aeruginosa cells in-cell, in order to 

select compounds not only exhibiting good affinity for BfrB in vitro, but also activity against P. aeruginosa 

cells. Hence, the work presented in this Chapter is directed at evaluating compound activity against P. 
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aeruginosa, as well as demonstrating that the inhibitors engage their intended target (BfrB) in the P. 

aeruginosa cytosol.  

3.1.3 Challenges faced in developing protein-protein interaction inhibitors   

Protein-protein interactions (PPIs) play a crucial role in cellular processes. PPIs are an attractive 

target for molecular probe development [16]. Initially, PPIs had been considered inflexible for developing 

inhibitors because of the highly dynamic and broad interfacial areas. PPIs are stabilized using a large burial 

of atomic interfaces, which can extend up to thousands of Å2. These interface areas are very large compared 

to the interaction sites in an enzyme or in a receptor. Also, the PPI interfaces represent diverse and 

multifaceted binding sites which present significant challenges in finding efficient inhibitors, and the PPI 

surfaces, which are mostly flat, do not exhibit deep pockets for small molecule binding. In addition, 

inhibition of PPIs does not offer simple assays to identify activity and potency [17, 18]. 

More recently, mutating amino acid contacts within the PPI site into alanine revealed that mutation 

of only certain residues causes significant destabilizing effects on the protein-protein complexes. These 

residues, which have been found to contribute to most of the binding energy, have been termed “hot-spot” 

residues in a PPI. Consequently, an inhibitor which makes reasonably strong interactions with the hot-spot 

residues in a protein will be able to effectively compete with binding partner protein, without having to 

bind to the entire PPI binding surface [16, 18]. 

3.1.4 Fragment-Based Drug Discovery Strategy in inhibitor development  

Discovering novel molecules for the modulation of biological functions is one of the primaries on 

drug development. Over the past decade, pharmaceutical industries mainly relied on high-throughput 

screening (HTS) to identify possible inhibitors for a target. During HTS, a large library of compounds (106) 

is screened against the target. Maintenance of the diversity and the quality of the HTS library is tedious. 

Some of the molecules in the library may not be druglike, lack thermodynamic solubility, and show 

relatively lipophilic properties. The molecules in the HTS library may not cover many possible chemical 

spaces. Even after identifying a hit in HTS, the relative contribution by the different sites of a molecule to 
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the binding energy of a complex is not clear. This raises difficulties in increasing potency by structure-

based development [19]. 

In the Fragment-Based Drug Discovery (FBDD) strategy, chemical starting points are identified 

and improved to develop drug-like molecules. Fragment-based methods use a library of about 1000 

fragments, which contains weakly binding small molecules with the following properties, (i) < 300 Da 

molecular weight, (ii) up to three hydrogen bond donors and acceptors, (iii) calculated logP (clogP) of ≤3. 

When a small molecule (100 µM affinity) binds to a part of the potential drug site (3 nM affinity), even if 

the affinity for the site is 33,000 times weaker, the small molecule contributes over half of the favorable 

energy. Even though fragments bind with relatively low affinity, fragments can form high quality-

interactions [20]. Hence, fragments are very “atom efficient,” as demonstrated by their high ligand 

efficiency (LE), which is defined as -ΔG in kcal mol-1 divided by the number of heavy atoms (non-

hydrogen). The fragment libraries used in the FBDD strategy contain a relatively small number of fragments 

compared to HTS libraries, because fragments can cover significantly larger chemical space [19]. In 

addition, since the fragments in a fragment library are less complex than compounds in a traditional HTS 

library, higher hit rates are achieved screening a fragment library than screening an HTS library comprised 

of drug-sized molecules (complex molecules result in mismatches with the target due to suboptimal 

interactions or clashes) [17, 19]. 

Figure 3-2: HTS screen hits bind to the target with numerous suboptimal interactions. Fragments 

are more ligand efficient and have fewer but optimal interactions. (Figures are reprinted with 

permission from Ref. 19 copyright (2012) American Chemical Society) 
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Three stages are involved in a Fragment-Based Drug discovery campaign, (i) library design, (ii) 

fragment screening (NMR, X-ray crystallography, Mass spectrometry, Surface Plasmon Resonance, etc.), 

and (iii) elaboration of the fragment hits into lead compounds. 

3.1.5 Developing small molecule inhibitors of the BfrB:Bfd interaction in P. aeruginosa 

Chemical probes are a powerful tool to complement the use of genetic techniques. They can be 

used alone or in combination with synergistic or antagonistic probes. Using the structural information 

gathered from the BfrB:Bfd co-crystal structure, a small fragment library was designed by focusing on the 

stabilizing interactions between Y2 and L5 of Bfd, and L68 and E81 in BfrB, the hot region of the BfrB:Bfd 

complex. Hence, the fragment library was constructed from fragments with chemical properties resembling 

the aromatic and aliphatic side chains of Tyr and Leu, also having other standard fragment properties 

(MW<300 Da, total hydrogen bond donors/acceptors <3, and clogP <3). Fragments containing electron-

rich and deficient aromatic rings were also added to the library [21].  

To identify the fragments that are bound to BfrB at the Bfd site, a Saturation Transfer Difference 

(STD) NMR assay was developed [21]. The STD NMR assay is suited to screen fragments that bind to 

large proteins ( ̴440 kDa BfrB). Since the STD NMR strategy detects fragment resonances, the protein 

resonance assignments are not required. Spin diffusion and saturation transfer from the protein to the ligand 

are enhanced due to the large rotational correlation time (τc) of BfrB. Figure 3-3 illustrates the STD NMR 

screening process using fragment 1 (5-hydroxyisoindoline-1,3-dione) as example. The 1H NMR spectrum 

was acquired for the fragment alone (Figure 3-3-A) and for the fragment with BfrB (Figure 3-3-B) [21]. 

The STD spectrum of the fragment with BfrB is used to identify fragments that bind to BfrB. The STD 

NMR spectrum in Figure 3-3-C illustrates the binding of fragment 1 to BfrB [21]. This strategy allowed 
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us to identify 18 fragments that are bound to BfrB. Next, a displacement strategy was employed using Bfd 

as the competitor to find the fragments that are bound to BfrB at the Bfd binding site. To this end, a STD 

spectrum of the fragment in the presence of BfrB and Bfd was acquired. The almost disappearance of the 

STD signal indicates the fragment binding at the Bfd-binding site on BfrB (Figure 3-3-D) [21]. 

Figure 3-3: The fragment 1 screening process with Saturation Transfer Difference (STD) NMR. (A) 1H 

NMR spectrum of fragment 1 alone. (B) 1H NMR spectrum of fragment 1 with BfrB. (C) The STD 

NMR spectrum of a solution that contains fragment 1 and BfrB (fragment 1 binds to BfrB). (D) The 

STD NMR of a solution with fragment 1, BfrB and Bfd. Decreased intensity compared to C indicates 

the displacement of BfrB bound fragment 1 by Bfd. The right panel shows six fragments that are 

identified to bind BfrB at Bfd binding site. (Figures are reprinted with permission from Ref. 21 

(https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the material 

excerpted should be directed to the ACS) 

 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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Using the developed STD strategy, six fragments (Figure 3-3 right panel) that bind BfrB at the Bfd 

binding site were identified [21]. All the six fragments were tested in ligand soaking experiments using 

BfrB protein crystals. The structure of fragment 1 (5-hydroxyaminoisoindoline-1,3-dione) bound to crystals 

of C98S/ K96C BfrB helped to uncover structural information on fragment-BfrB binding (Figure 3-4-B) 

[21]. The residues, E81 and L68 of BfrB, and L5 and Y2 of Bfd have a significant contribution to the 

BfrB:Bfd complex stability (Figure 3-4-A) [8, 10]. As illustrated in Figure 3-4-B, fragment 1 binds in the 

same pocket in BfrB, where L5 of Bfd binds [21]. One of the carbonyl oxygens in fragment 1 forms an H-

bond with the backbone NH of LA
71 and the N-H group of fragment 1 forms another H-bond with the 

backbone carbonyl oxygen of PA
69. Additional stabilization for binding stems from the H-bonding network 

linking carbonyl oxygen of fragment 1 and GA
67in BfrB. This structural information permitted branching the 

fragment from the isoindoline ring carbons C4 or C5 positions to grow the fragment into the cleft formed 

by the side chains of L68 and E81 of BfrB, where Y2 of Bfd binds. 

Figure 3-4: (A) The BfrB:Bfd binding interface. BfrB subunit A and B are colored grey and green, 

respectively. Bfd residues Y2 and L5 (cyan) bind in the pockets of the BfrB surface. (B) Fragment 1 is 

bound in a pocket near L68, where L5 from Bfd binds (PDB ID: 6NLG). The hydrogen bond interactions 

between the fragment and BfrB are indicated by a dashed line and the water-mediated contacts are shown 

in solid lines. (Figures are reprinted with permission from Ref. 21 

(https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the material 

excerpted should be directed to the ACS) 

A B

https://pubs.acs.org/doi/10.1021/jacs.9b00394


63 
 

Figure 3-5-A shows a general synthetic approach used in the synthesis of analogs of fragments 1, 

5 and 8 [21]. Ether analogs (4) are derived from 5-hydroxyisoindoline-1,3-dione (1), amine analogs such 

as 6, or amide analogs such as 7 are derived from 5-aminoisoindoline-1,3-dione (5); amine analogs such as 

9, or amide analogs such as 10 are derived from 4-aminoisoindoline-1,3-dione (8). The active analogs 

prepared by the reductive amination of fragment 8 are shown in the bottom panel of Figure 3-5 [21]. 

The synthesized 4-aminoisoindoline-1,3-dione derivatives were tested in-vitro for binding by 

measuring Kd for binding to BfrB and by soaking BfrB crystals in solutions containing each of the analogs. 

The analogs were also tested for activity vs. P. aeruginosa and for target (BfrB) engagement in the P. 

aeruginosa cytosol. As will be shown below, the 4-aminoisoindoline-1,3-dione derivatives acted on its 

target, BfrB, blocked iron mobilization from BfrB, elicited bacterial cell growth retardation, and 

Figure 3-5: (A) Summary of synthetic procedures used in the preparation of analogs from fragments 1, 

5 and 8. 

(Figures are reprinted with permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and 

further permissions related to the material excerpted should be directed to the ACS) 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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overproduced pyoverdine [21]. Additionally, the 4-aminoisoindoline-1,3-dione derivatives provoked 

growth retardation in more than one strain of P. aeruginosa and in other Gram-negative bacteria, such as 

Acinetonbactor baumannii (AB5075).  

3.2 Experimental 

3.2.1 Strains, growth media and conditions 

Pseudomonas aeruginosa (PA01) and Acinetobactor baumannii (AB5075) were purchased from 

the University of Washington Genome Center. The P. aeruginosa cystic fibrosis lung clinical isolates, 

MR3B and MR60 were received from the Seattle Children’s Research Institute via the Antimicrobial Tools 

and Resources services offered by the Cystic Fibrosis Foundation. The P. aeruginosa urinary tract clinical 

isolates, JMI U1 (1044308), JMI U2 (1046460), JMI U4 (1050182), and JMI U6 (1044635) were purchased 

from the JMI Laboratories, North Liberty, IA. All chemicals were purchased from Fisher Scientific 

(Hampton, NH) unless otherwise stated. 

The P. aeruginosa (PA01) derived strain ΔbfrB with an unmarked deletion of the bfrB gene had 

been prepared previously [7]. P. aeruginosa strains were kept on Pseudomonas isolation agar (PIA) (BD 

Biosciences, CA), and A. baumannii (AB5075) was kept on LB agar. 

M63 media per liter contained: 13.6 g of KH2PO4 (Sigma-Aldrich), 2 g of (NH4)2SO4, 2 g of 

glucose, 4 g of citric acid, 0.25 g of tryptophan (Acros organics), 5 g of nontechnical grade casamino acids 

(BD scientific), and 0.24 g of MgSO4 (Alfa Aesar), and the pH was adjusted to 7.0 with KOH [22]. M63 

media was supplemented with 0.1 % (w/v) hypromellose (HPMC, Sigma-Aldrich) to prevent the analog 

aggregation and precipitation [23]. Colorimetric analysis of iron in the M63 media revealed   ̴2 µM iron. A 

10 mM iron stock solution was prepared by dissolving 39.2 mg of (NH4)2Fe(SO4)2 in 10 mL of acidic water 

(pH ≈ 2.0). The media was supplemented with iron using the 10 mM stock solution to reach appropriate 

concentrations.  
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Modified M63 media was prepared with small modifications of the above protocol. Modified M63 

media contained per liter: 2 g of (NH4)2SO4, 13.6 g of KH2PO4(Sigma-Aldrich), 2.5 g of glucose, 10% 

MEM non-essential amino acid solution (Gibco®), 4 % MEM amino acid solution (Gibco®) and 0.12 g of 

MgSO4(Alfa Aesar), and the pH was adjusted to 7.0 with KOH. The modified M63 media contained 0.025% 

(w/v) of hypermellose (HPMC, Sigma-Aldrich). The media was supplemented with 4 µM iron using the 10 

mM (NH4)2Fe(SO4)2 stock. 

P. aeruginosa pre-cultures were grown in LB media for 12 h at 37 0C and with shaking at 220 rpm. 

Cells were collected by centrifugation and washed twice in M63 media before diluting the cells to the 

desired OD600. 

3.2.2 Growth Curves and IC50 Determination  

P. aeruginosa pre-cultures were grown as described above. Cells were diluted to give an OD600 = 

0.01. Analog stocks (100 mM) were kept in DMSO. Analog stocks were diluted to 10 or 1mM in DMSO 

and used in the subsequent steps. The appropriate volumes from the analog stocks (to result in different 

analog concentrations) were transferred to a glass vial and adjusted to a final volume of 30 µL with DMSO. 

For the untreated control, 30 µL of DMSO was used. A volume of 1470 µL from the cell suspension was 

added to each vial containing the 30 µL of analog in DMSO. For the cultures treated with ciprofloxacin, a 

volume of 11.2 µL from the ciprofloxacin stock (100 µg/mL in sterile water) was mixed with 30 µL of 

DMSO, and the final volume was adjusted to 1.5 mL using the cell suspension. The resulting concentration 

of ciprofloxacin in the solution was 0.75 µg/mL, which is the 3x the Minimum Inhibitory Concentration 

(MIC) for P. aeruginosa (PA01) [24]. From the resultant mixtures, a volume of 200 µL was aliquoted to 

wells of a 96 well plate; the 96 well plate was incubated at 35 0C, 205 cpm for 13 h in an Epoch 2 microplate 

spectrophotometer (Biotek Instruments, Inc., Vermont). Each condition was comprised of 5 technical 

replicates. The OD600 was recorded every 15 minutes. The % growth was calculated at 13 h post-inoculation 

using equation 1. The terms used in equation 1 are as follows: ODT is the OD600 of the analog treated 

culture, ODU is the OD600 of the untreated culture, and ODCip is the OD600 of the ciprofloxacin treated 
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culture. The % growth was plotted against log [analog (µM)], and the resultant plot was fitted to equation 

2 to calculate IC50. In equation 2 the term b is defined as the slope factor. 

growth %= ODT-OD Cip

ODU-ODCip
×100   (1) 

growth %= ODCip+ ODU-ODCip

1+�log[analog(µM)]
IC50

�
-b  (2) 

 

3.2.3 Secreted pyoverdine analysis 

Experiments were carried out as presented in the growth curves and IC50 determination section. At 

13 h post-inoculation, the content of each well was serially diluted in phosphate-buffered saline (PBS, pH 

7.4) and plated for enumerating viable cells. The 500-fold diluted samples from the previous step were 

centrifuged, and the supernatants were collected for the pyoverdine measurements. Collected supernatants 

were analyzed by fluorescence spectrophotometry with excitation at 400 nm and fluorescence emission 

measured at 455 nm using a Synergy H1 microplate reader. Emission spectra (430-550) nm were collected 

using a PerkinElmer LS50B spectrophotometer. The pyoverdine fluorescence intensity from the samples 

was normalized to the Colony Forming Units/mL (CFU/mL) for each sample. 

3.2.4 Imaging iron stored in BfrB  

P. aeruginosa pre-cultures were prepared as described in the growth conditions. Cells were 

centrifuged, washed twice, and diluted to OD600 = 0.1 in M63 media supplemented with 4 µM iron. A 

volume of 5 mL from the cell suspension was mixed with 37.5 µL of DMSO and 62.5 µL of 10 mM analog 

16 (in DMSO) working solution to result in a 125 µM analog concentration and 2 % DMSO. For the 

untreated control, 5 mL of cell suspension was mixed with 100 µL of DMSO (resulting 2% DMSO in 5.1 

mL). Sample tubes were covered with an air-permeable membrane and incubated at 35 0C and 120 rpm. 

Sample tubes were collected at 6, 9, 12, 15, 18, 21, and 24 h post-inoculation. A volume of 100 µL was 
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withdrawn from each sample and serially diluted for plating and enumerating viable cells. The remaining 

culture was centrifuged (4000 rpm, 15 min), washed with PBS, and frozen at -20 0C until analysis. 

Cell pellets were lysed by using the optimized protocol (see Chapter 2) with minor modifications 

[7]. Cell pellets were re-suspended in 300 µL lysis buffer (50 mM Tris pH 8.0, 20% glycerol, 20 mg/mL 

lysozyme, 0.2 mg/mL DNase, 100 mM NaCl, 10 mM MgCl2, and 1% Triton X). Cell suspensions were 

exposed to two freeze-thaw cycles in liquid N2. Samples were incubated with shaking at 25 0C for 90 min 

in a rocker, and the lysates were centrifuged at 12500 rpm for 15 min at 4 0C. A volume of 100 µL from 

the lysate was mixed with 10 µL of loading dye, and 100 µL from the resultant solution was loaded into a 

3 mm thick Native-PAGE (8 % separating gel and 4 % stacking gel). Electroporation was done at 60 V for 

7 h at 4 0C. Gels were stained with FereneS (0.049 g of FereneS, 250 μL of thioglycolic acid, 2.5 mL of 

acetic acid, and 100 mL of water) for 10 min [25], imaged and then analyzed using ImageJ software. 

3.2.5 Analysis of total intracellular iron in analog-treated P. aeruginosa cells 

P. aeruginosa pre-cultures were grown as described in the media and growth conditions. Cells 

collected from the pre-cultures were centrifuged, washed twice in M63, and diluted to OD600 = 0.1 in M63. 

For the analysis of total intracellular iron, 5 mL cultures were prepared in M63 media supplemented with 

4 µM iron, with analog 16 at 125 µM or with DMSO, as described in section 3.2.4. Samples were collected 

at 12, 15, 21, 24, and 28 h post-inoculation. A volume of 100 µL was withdrawn from the samples for 

viable cell enumeration. Cells were collected by centrifugation (4000 rpm, 15 min) and washed twice with 

PBS. The analysis of total intracellular iron was done by following a published protocol, but using FreneS 

as the colorimetric reagent instead of Ferrozine [26].Cell pellets were mixed with 500 µL of 1:1 (v/v) 1.2 

N HCl and 4.5% w/v KMnO4 in water. Suspensions were incubated at 65 0C for 4 h, and after letting 

samples come to the room temperature, 500 µL of the iron chelation reagent (6.5 mM Ferene S, 13.1 mM 

neocuproine, 2 M ascorbic acid, and 5 M ammonium acetate) was added. Samples were incubated at 25 0C 

for 30 min, and the absorbance of the Fe2+-FereneS complex was measured at 593 nm (ε =34,500M−1 cm−1) 

using Cary 60 UV-vis spectrophotometer. The total iron levels were reported as Fe atoms per CFU. 
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3.2.6 Antibiotic and analog combination treatment of P. aeruginosa 

P. aeruginosa pre-cultures were prepared as described in the media and growth conditions. Cells 

were diluted to OD600 = 0.1 in M63 media supplemented with 4 µM iron. 5 mL from the cell suspension  

was treated with (i) analog 16 alone, (ii) fluoroquinolones ciprofloxacin (0.25 µg/mL), levofloxacin (0.5 

µg/mL), or norfloxacin (0.9 µg/mL) only, (iii) analog 16 and fluoroquinolone in combination. Varying 

analog 16 concentrations were used (75, 100, and 125 µM) for the treatment. The final DMSO concentration 

in the samples was 2%. Samples were incubated at 35 0C and 120 rpm and collected 18 h post-inoculation; 

viable cells were enumerated by withdrawing 100 µL. A similar set of experiments were carried out with 

analog 11 and ciprofloxacin. The combination treatment of analog 16 (125 µM) with other antibiotics, 

tobramycin (5 µg/mL), gentamycin (5 µg/mL), ceftazidime (1 µg/mL), and imipenem (1.5 µg/mL) was 

done following the same experimental protocol. 

3.2.7 Growth of clinical isolates of P. aeruginosa and A. baumannii 

Pre-cultures were grown as indicated above. Cells were collected by centrifugation and washed 

twice in modified M63. The cell suspension was adjusted to 5 × 105 CFU/mL in the modified M63 media 

supplemented with 4 µM iron. The 5 × 105 CFU/mL initial cell density is recommended for the 

susceptibility assays by the Clinical and Laboratory Standards Institute [27]. A 10 mM analog stock was 

used to deliver the appropriate volumes to make 1 mL of 32, 64, and 128 µM analog concentrations. The 

total volume of DMSO in the tubes was adjusted to 20 µL. A volume of 980 µL from the cell suspension 

was added to the analog DMSO mixture. For P. aeruginosa growth curves, a volume of 200 µL from the 

resultant solution was aliquoted into a 96 well plate. For A. baumannii growth curves, a volume of 1 mL 

from the resultant solution was aliquoted into a 48 well plate. Plates were incubated at 35 0C and 205 cpm. 

At 22 h (P. aeruginosa) or 24 h (A. baumannii) post-inoculation viable cells were enumerated by plating. 

The % growth of the treated samples was calculated relative to the untreated control. 
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3.2.8 Chrome Azurol S (CAS) assay for siderophore detection in A. baumannii cultures 

Acinetobactor baumannii cell cultures were treated as in section 3.2.6. Cell-free supernatants were 

collected at 24 h post-inoculation. A volume of 25 µL from the supernatant was mixed with 175 µL from 

the CAS assay reagent (10 mM hexadecyltrimethyl ammonium bromide- HDTMA, 1 mM FeCl3.6H2O, 2 

mM chrome azurol S–CAS in 145 mM PIPES buffer pH 5.9) [28]. Solutions were incubated at room 

temperature for 2 h, and absorbance at 630 nm was measured using an Epoch 2microplate 

spectrophotometer (Biotek Instruments, Inc., Vermont). Percent Siderophore Units (PSU) was calculated 

using equation 3 [29]. 

Percent Siderophore Units (psu) = (Ar-As) × 100
Ar

  (3) 

Where Ar is the absorbance of the reference (CAS solution and un-inoculated broth) and As is the 

absorbance of the sample (CAS solution and cell-free supernatant of the sample). The PSU was normalized 

to the CFU/mL of the respective sample. 



70 
 

3.3 Results and Discussion 

3.3.1 Structure-based development of fragment binders 

Saturation Transfer Difference NMR was able to identify 18 fragments bound to BfrB, and six 

fragments bound to BfrB at the Bfd-binding site. These six fragments were used in ligand soaking 

experiments with BfrB protein crystals. The X-ray crystallographic structure of fragment 1 (5-

hydroxyaminoisoindoline-1,3-dione) bound to C98S/ K96C BfrB was used to gather structural insights of 

binding [21].  

Fragment 1 is bound to BfrB, where L5 of Bfd binds. A structure-guided approach was used to 

elaborate fragment 1 into the small cleft formed by the side chains of L68 and E81 of BfrB (where the Y2 

of Bfd binds). Analogs that were developed by branching from the isoindoline ring at C4 and C5 positions 

Figure 3-6: X-ray crystallographic structures of analog 11 (PDB ID: 6NLI) and 16 (PDB ID: 6NLN)  

bound to P. aeruginosa BfrB. (A) Fo-Fc omit map contoured at 3σ from analog 11 bound to BfrB, (B) 

modeled two orientations for the o-hydroxyphenyl ring of analog 11, (C) contacts of analog 11; dashed 

lines  illustrate hydrogen bonding and the solid lines illustrate water mediated contacts. (D) Fo-Fc omit 

map contoured at 3σ from analog 16 bound to BfrB. (E) Same as D, but rotated to illustrate the m-

hydroxyphenyl ring in the cleft formed by L68 and E81. (F) Hydrogen bond interactions are indicated 

by dashed lines and the water mediated contacts are indicated in solid lines. (Figures are reprinted with 

permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions 

related to the material excerpted should be directed to the ACS) 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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of fragment 1 or its analogs 8 and 5 are shown in Figure 3-5-A [21]. The X-ray crystallographic structures 

of BfrB bound analogs were only attained for analogs 11 -16 (Figures 3-6 and 3-7). These are the 

derivatives of 4-aminoisoindoline-1,3-dione (Fragment 8) with different length carbon linkers, −(CH2)− 

and −(CH2)3−. Analogs 11 and 12 contain a –(CH2)- linker, and 13-16 contain a –(CH2)3- linker (Figure 3-

5-B)[21]. Fragment branching from the isoindoline ring carbon C4 allowed to engage the cleft formed by 

L68 and E81 of BfrB. 

The isoindoline-1,3-dione moiety is bound identically in all the analog:BfrB structures (Figure 3-

4-B, 3-6, and 3-7) [21]. The benzyl portion of the analogs engage the cleft formed by LA68 and EB81 of BfrB. 

As illustrated in Figure 3-6-B, the X-ray crystallography structures of analog 11 bound to BfrB indicate 

two possible orientations for the o-hydroxyphenyl ring [21]. One orientation points the hydroxyl group 

toward the base of the cleft and allows to form a hydrogen bond with GB80. The other orientation points the 

hydroxyl group toward the solvent which enables packing of the hydroxyphenyl ring and the −(CH2)− 

moiety  against the side chains of the MB
31 and IB79. Additional stability for the complex is gathered by the 

H-bonded water network between the carbonyl oxygen of analog 11 and GA67 of BfrB. Analog 12 shows 

two orientations for the o-hydroxyphenyl ring as well, and a similar set of interactions with BfrB (Figure 

3-7-A and 3-7-B) [21]. 

The crystal structure of analog 16 with BfrB illustrates the same pose for isoindoline-1,3-dione. 

The m-hydroxyphenyl ring and the −(CH2)3− linker pack against the EB
81 and LA

68 of BfrB. There is an 

additional network of H-bonding from water between the carbonyl oxygen of analog and the carbonyl 

oxygen of LA68 (Figure 3-6-F) [21]. The crystal structures of other −(CH2)3− linker analogs with BfrB are 

shown in Figure 3-7-C to 3-7-H [21]. These analogs show similar interactions with BfrB as of analog 16. 
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A fluorescence polarization binding assay was carried out to explore the binding affinities of the 

analogs with BfrB. Analogs 11-16 bind to BfrB with significantly higher affinity than fragment 8 (Table 

3-1) [21]. This enhancement in the binding affinity is achieved by branching the fragment from the C4 

position and growing towards the cleft formed by E81 and L68. Besides, the −(CH2)− linker containing 

analogs 11 and 12 show 2-5 fold lower binding affinity than the −(CH2)3− linker analogs 13-16 [21]. 

Insights from the in-vitro studies revealed that analogs 11-16 bind to BfrB with a similar association as of 

the BfrB:Bfd interaction (Kd= 3 µM) and these analogs may be good candidates inhibit the BfrB:Bfd 

interaction in P. aeruginosa cells [10].  

Figure 3-7: X-ray crysllography structures of analogs 12-16. Orange mesh respresnts the Fo-Fc omit 

map contoured at 3σ from analog bound at Bfd binding site BfrB. Contacts made by analogs; hydrogen 

bond interactions are indicared by dashed lines and the water mediated contacts are indicated by the 

solid lines. Analog 12 (A-B); PDB ID 6NLJ, analog 13 (C-D) ); PDB ID 6NLK, analog 14 (E-F) ); PDB 

ID 6NLL and analog 15 (G-H) ); PDB ID 6NLM. (Figures are reprinted with permission from Ref. 21 

(https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the material 

excerpted should be directed to the ACS) 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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3.3.2 4-aminoisoindoline-1,3-dione derivatives elicit a growth retardation phenotype in P. aeruginosa 
cells 

The activity of 4-aminoisoindoline-1,3-dione derivatives was tested using P. aeruginosa cells in 

M63 media. The growth of the cells was monitored by measuring the OD600. At the end of growth, the 

OD600 of each analog concentration (three replicates) was averaged and plotted against time. The resultant 

growth curves for analog 16 (Figure 3-9-A) and 11 (Figure 3-9-B) show clear dose-dependent growth 

retardation when challenged with different analog concentrations. Similarly, the growth curves for analogs 

13, 14, and 15 were constructed (Figure 3-10 A, B, and C, respectively). Analog 12 was not active in the 

cells even at concentrations as high as 250 µM (Figure 3-11). 

Figure 3-8: Iterative structure-based design workflow. Fragments identified to bind BfrB at the Bfd 

binding site were eleborated in the structure based design. Selected fragments were grown into analogs 

by synthetic approaches. Deleoped analogs were screened in-vitro by X-ray crystallography and 

fluoresence polarization. Additionally, in-cell activity and target engagement was studied. 
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The potency of compounds against P. aeruginosa cells was compared by calculating an IC50 value 

for each compound using the OD600 after 13 h of growth. The % growth vs. log [concentration (µM)] curves 

were constructed by taking the untreated growth as 100 %, and the growth in the presence of ciprofloxacin 

at 3x Minimum Inhibitory Concentration (MIC) (0.75 µg/mL) as 0 % (equation1). The resultant curves 

were fitted to equation 2 to calculate the IC50 values. The IC50 curves are shown below the corresponding 

Figure 3-9: Growth curves of  P. aeruginosa cells, treated with analog 11 and 16 (A) Cells were treated 

with different concentrations of analog 16: Untreated control (black), 25 µM (red), 50 µM (green), 75 

µM (yellow), 100 µM (blue), 125 µM (magenta) and 0.75 µg/mL of ciprofloxacin (white).  (B) P. 

aeruginosa cells were treated with different concentrations of analog 11: Untreated control (black), 25 

µM (red),  75 µM (yellow), 125 µM (magenta), 175 µM  (purple), 250 µM (brown) and 0.75 µg/mL of 

ciprofloxacin (white). The % growth Vs log [concentration (µM)] were fitted to equation 2, to calculate 

the coresponding IC50 values for (C) analog  16 and (D) analog 11. (Figures are reprinted with permission 

from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the 

material excerpted should be directed to the ACS) 

 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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growth curve for each analog. The IC50 values shown in the sub-panel are calculated from three independent 

experiments. Data for IC50 and binding affinity for the analogs 11-16 are summarized in Table 3-1. 

 

Figure 3-10: Growth curves of P. aeruginosa cells treated with analog 13 (A), 14 (B) and 15 (C). The 

growth curves present: untreated control (black), 15 µM (pink), 50 µM (green), 75 µM (yellow), 100 

µM (blue), 125 µM (magenta), 150 µM (cyan) and 0.75 µh/mL ciprofloxacin (white). The bottom panels 

D, E, F show IC50 curves for analogs 13, 14 and 15 respectively. (Figures are reprinted with permission 

from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the 

material excerpted should be directed to the ACS) 

Figure 3-11: Analog 12 unable to elicit P. aeruginosa growth impairments. The growth in the presence 

of analog 12 at 250 µM is presented as brown circles. The black circles correspond to the untreated 

control and the grey circles correspond to the 0.75 µg/mL ciprofloxacin. (Figure is reprinted with 

permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions 

related to the material excerpted should be directed to the ACS) 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
https://pubs.acs.org/doi/10.1021/jacs.9b00394
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Measured Kd values are very similar for analog 11 (Kd   1̴1 µM) and 12 (Kd   ̴ 15 µM), but analog 12 

failed to elicit a growth retardation phenotype. When comparing the efficacies of analogs with a −(CH2)− 

linkers, however, only analog 11 was able to penetrate the cell and elicit a growth retardation phenotype in 

P. aeruginosa cells. 

Table 3-1: Binding affinity and IC50 of 4-aminoisoindoline-1,3-dione derivatives. (Table is adapted from 

Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) with permission and further permissions related 

to the material excerpted should be directed to the ACS)   

*Kd measurements were done by Dr. Huili Yao - Unpublished data 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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Analog 16 (Kd     ̴6 µM) elicited the most effective growth retardation against P. aeruginosa cells 

(IC50= 121 µM) among the −(CH2)3− linker analogs 13-16. In comparison, the Kd values for analogs with a 

−(CH2)3− linker were 2-5-fold lower, and the corresponding in-cell activity was higher than that of analogs 

with a −(CH2) − linker (11and 12). These alterations may be due to the efficiency of analog uptake by the 

cells or their varying stabilities in the cell culture. Further studies are necessary to understand the analog 

structural characteristics in uptake efficiency by the P. aeruginosa cells. 

For the subsequent experiments, analog 11 from the −(CH2)− linker category and analog 16 from 

the −(CH2)3− linker group were selected to treat P. aeruginosa cells. 

3.3.3  4-aminoisoindoline-1,3-dione derivatives act on their target (BfrB) in P. aeruginosa cells 

Analogs 11 and 13-16 elicited a growth retardation phenotype in P. aeruginosa cells. The more 

potent analogs from each category were chosen to test the selectivity on the target, BfrB, in P. aeruginosa 

cells. P. aeruginosa wild type and ΔbfrB cells (bfrB gene knockout mutant) were tested against different 

concentrations of analog 11 and 16. Cells were grown as 5 mL cultures in M63 media supplemented with 

4 µM iron, in the presence of different analog concentrations. At 15 h post-inoculation, viable cells were 

enumerated by plating. The untreated viable cell number was taken as 100 %, and the viable cell counts for 

the treated samples were normalized relative to the untreated control. The resultant plots in Figure 3-12 

illustrate wild type growth in closed circles and ΔbfrB cell growth in open circles. The left and right plots 

correspond to analog 16 (3-12-A), and 11 (3-12B), respectively. Wild type cells treated with analog 11 or 

16, experienced a monophasic concentration-dependent growth decrease. However, the ΔbfrB mutant cells 

with analog 11 and 16, underwent a biphasic growth decrease. The ΔbfrB mutant cells, show a nearly 

independent growth decrease to analog concentrations of ~100 µM, resulting in a shallow first phase. At 

high analog concentrations (> 100 µM), analogs became toxic to the ΔbfrB mutant cells, as indicated by the 

steep second phase. The rapid onset of toxicity at the high concentrations of analogs was only observed in 
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the ΔbfrB mutant cells. This toxic effect may be due to the off-target consequences at high analog 

concentrations, which also emphasizes the low fitness of the ΔbfrB mutant cells caused by the absence of 

BfrB. Hence, the concentration-independent growth defect of the ΔbfrB cells and the concentration-

dependent growth decrease of wild type cells is a clear indication of the target selectivity of analogs 11, and 

16 in P. aeruginosa cells.  

3.3.4 Analogs elicit a pyoverdine hyper production phenotype in P. aeruginosa cells 

As discussed in Chapter 2, disruption of the BfrB:Bfd interaction by genetic methods caused over-

production of pyoverdine in the P. aeruginosa Δbfd and the bfrB(L68A/E81A) mutant cells. The 

unidirectional flux of iron into BfrB upon the blockade of the BfrB:Bfd interaction resulted in low free iron 

levels in the cytosol triggering the iron starvation responses. Consequently, during the chemical blockade 

Figure 3-12: P. aeruginosa wild type and ΔbfrB cells were treated with different concentrations of (A) 

analog 16, and (B) analog 11. Open circles represent the ΔbfrB cells and closed circles represent the 

wild type cells. (Figures are reprinted from with permission Ref. 21              

(https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the material 

excerpted should be directed to the ACS) 

 

https://pubs.acs.org/doi/10.1021/jacs.9b00394
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of the BfrB:Bfd interaction with the 4-aminoisoindoline-1,3-dione analogs, a similar phenotype may be 

observed in P. aeruginosa. 

P. aeruginosa cells were treated with analog 16 and 11 in M63 media, as explained in the 

experimental section. Contents of the wells were collected at 13 h post-inoculation, and the viable cells 

were enumerated. Samples were centrifuged, and the supernatants were used to measure secreted 

pyoverdine levels by fluorescence spectroscopy. To reach this end, samples were diluted 500-fold in PBS. 

At this level of dilution, the residual compound fluorescence in the supernatants will not interfere with the 

strong fluorescence signal from pyoverdine. Samples were excited at 400 nm, and the emission at 455 nm 

Figure 3-13: Analog 16 and 11 treated cultures over-produce pyoverdine. Top panels: P. aeruginosa 

cells treated with analog 16 (125 µM). Bottom panels: P. aeruginosa cells treated with analog 11 (125 

µM).  (A) Viable cell counts (CFU/mL) at 13-h post-inoculation. (B) Fluorescence emission spectra 

from the untreated (black trace), treated (red trace), and the diluted analog (green trace) acquired under 

same conditions. Diluted analog doesn’t interfere with the pyoverdine fluorescence reading. (C) 

Fluorescence intensity normalized to the CFU/mL of the corresponding sample. (Figures are reprinted 

with permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions 

related to the material excerpted should be directed to the ACS) 
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was recorded. The number of viable cells in the analog 16 (125 µM) treated sample was   ̴3 fold less related 

to the untreated control (Top panel: Figure 3-13-A). Fluorescence reading was normalized to the colony 

forming units/mL (CFU/mL). Analog 16 treated cells secrete about 3-4-fold excess pyoverdine compared 

to the untreated cells (Top panel: Figure 3-13-C). 

A similar result was observed with the treatment of analog 11 (125 µM). As shown in the bottom 

panels in Figure 3-13-A, analog 11 treated cells had approximately two-fold less viable cells, and the level 

of secreted pyoverdine normalized to viable cells was two-fold higher than the untreated control. This 

observation agrees with the low binding affinity and high IC50 of analog 11 compared to analog 16. The 4-

aminoisoindoline-1,3-dione analogs elicited a pyoverdine hyper-production phenotype in P. aeruginosa 

cells, which is an indication of the low free iron levels in the cytosol due to the blockade of BfrB:Bfd 

interaction in P. aeruginosa by the analogs. 

3.3.5 Analog treatment causes an irreversible accumulation of iron in BfrB and high total iron in P. 
aeruginosa cells 

Disrupting the BfrB:Bfd interaction genetically caused irreversible accumulation of iron in BfrB 

and pyoverdine hyper-production in the Δbfd and bfrB(L68A/E81A) mutants. The small molecule inhibitors 

of the BfrB:Bfd interaction showed a similar pyoverdine hyper-production phenotype in P. aeruginosa 

cells. Consequently, it was important to explore the possibility of trapping iron irreversibly in BfrB in the 

presence of 4-aminoisoindoline-1,3-dione analogs. To reach this end, iron in BfrB was imaged using the 
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Native-Poly-acrylamide Gel Electrophoresis (PAGE). The development and optimization of this technique 

for imaging iron in BfrB is discussed in Chapter 2.  

P. aeruginosa cells were grown in M63 media supplemented with 4 µM in the presence of analog 

16. Cells were collected at 6, 9, 12, 15, 18, 21, and 24 h post-inoculation. Viable cells were enumerated, 

Figure 3-14: Analog 16 inhibits iron mobilization from BfrB in P. aeruginosa cells. P.aeruginosa 

untreated controls are presented in closed circles/bars and the analog 16 (125 µM) treatment is presented 

in open circles/bars. (A) P. aeruginosa growth curves constrcuted by enumerating viable cells.  Cultures 

treated with analog 16 have ⁓ 2.5 fold fewer cells relative to untreated controls. (B) Lysates of 

P.aeruginosa were separated in a Native-PAGE and stained for iron in BfrB. Untreatd lysates were 

diluted 2-fold to account for the 2-fold excess of viable cells (0.5X DMSO). (C) Iron stained gels were 

analyzed using densitometry (using imageJ) and the peak areas in the plot corresponds to the iron stain 

intensity of each band in the gel.Untreated cells show the maximum accumulation of iron in BfrB ⁓ 15 

h and mobilization during the stationary phase. The treated cells continued to accumulate iron and 

showed extremely slow mobilization during the stationary phase.  (D) Analysis of total iron in the 

untreated and analog 16 treated cells revealed approximately 2-fold higher iron levels in the treated cells. 

The total iton measurments were normalized to the viable cell count. (Figures are reprinted with 

permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions 

related to the material excerpted should be directed to the ACS) 
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and the cells were collected by centrifugation. The growth curve constructed by enumerating the viable 

cells is presented in Figure 3-14-A. The closed circles correspond to the untreated control, and the open 

circles correspond to the analog 16 treated cells. The number of the viable cells of the analog 16 treated 

sample is about 30 % relative to the untreated (DMSO only) control (except at 6 h). The cells were lysed 

and loaded into a Native-PAGE and stained with FereneS. Recombinant BfrB containing   ̴400 iron atoms 

was used as a control for the electrophoretic mobility. To normalize the 2-fold difference in the viable cells 

(CFU/mL) of the DMSO control, an additional Native-PAGE gel was run by diluting the DMSO control 2-

fold (0.5X DMSO). As shown in Figure 3-14-B, DMSO control shows maximum iron accumulation in 

BfrB approximately at 15 h and is mobilized during the stationary phase. A similar trend was observed in 

the 0.5X DMSO control. Analog 16 treated cells show a gradual increment in the iron stain intensity, 

indicating continuous iron accumulation in BfrB. Iron stain intensities in the gels were further analyzed 

using ImageJ, gel intensity analysis tool. The color depth of each band was converted into a peak, and the 

peak areas between each group were compared. As presented in the densitometry analysis Figure 3-14-C, 

the 0.5X DMSO control shows the maximum accumulation of iron in BfrB during the log phase and 

mobilizes iron during the stationary phase (closed circles). Analog 16 treated samples show mostly iron 

accumulation with time and much slow mobilization of iron from BfrB. In this context, analog 16 blocks 

the BfrB:Bfd interaction causing irreversible accumulation of iron in the P. aeruginosa cells. 

Two additional analog 16 concentrations (75 and 100 µM) were also tested in P. aeruginosa cells 

and imaged for iron in BfrB. As shown in Figure 3-15, the iron mobilization response was dose dependent. 

Analog 16 at 75 µM failed to inhibit the iron mobilization from BfrB (Figure 3-15-B), and the result was 

very similar to the DMSO control. Analog 16 at 100 µM was able to inhibit iron mobilization partially, an 

intense iron stain was visualized at 21 h, which was faded by 24 h (Figure 3-15-C). When the analog 16 

concentration was further increased to 125 µM, iron mobilization from BfrB was entirely inhibited (Figure 

3-15-D and Figure 3-14-B).  
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Total intracellular iron levels were analyzed in the untreated control and in analog 16 (125 µM) 

treated cells (Figure 3-14-D). The resultant iron concentrations were normalized to the Colony Forming 

Units. Analog 16 treated cells (open bars) had approximately 2-fold intracellular cellular iron levels than 

the untreated control. The majority of the total iron in the cell corresponds to the iron stored in BfrB. Despite 

the high levels of iron in BfrB, the treated cells elicited growth retardation and pyoverdine hyper-

production; mainly because the iron reserves are not usable by the cells in the presence of BfrB:Bfd 

inhibitors. In this regard, it is clear that analog 16 acts on BfrB and inhibits iron mobilization by blocking 

the BfrB:Bfd interaction in P. aeruginosa cells. 

3.3.6  4-aminoisoindoline-1,3-dione derivatives enhance the killing activity of fluoroquinolones 

The 4-aminoisoindoline-1,3-dione derived analogs inhibit BfrB:Bfd interaction in P. aeruginosa 

cells, causing iron homeostasis dysregulation. In the presence of antibiotics, iron homeostasis dysregulation 

has been shown to boost oxidative stress the cells, causing cell death [30]. Therefore, iron homeostasis 

dysregulating probes may have the capability to potentiate the antibiotic activity. The efficacy of the 

existing antibiotics was studied in the presence of 4-aminoisoindoline-1,3-dione derivatives in P. 

aeruginosa cells. 

Figure 3-15: P. aeruginosa cells were treated with different concentrations of analog 16. Mobilization 

of iron from BfrB was dose dependent.  
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Fluoroquinolones target DNA gyrase (topoisomerase II) and topoisomerase IV and interfere with 

the DNA strand rejoining after supercoil removal, leading to the accumulation of nicked DNA resulting in 

cell death [31]. The enhanced killing activity of fluoroquinolones was tested in the presence of 4-

aminoisoindoline-1,3-dione derivatives. P. aeruginosa (PA01) cells were treated with (i) analog alone, 

(ii)antibiotic alone, (iii) analog and antibiotic combination, and (iv) DMSO control. At the end of an 18 h 

treatment, viable cells were enumerated, and the % survival was calculated compared to the untreated 

control (DMSO only).  

All the fluoroquinolones in the study were tested at their MICs: ciprofloxacin (0.25 µg/mL), 

norfloxacin (0.9 µg/mL) and levofloxacin (0.5 µg/mL) [24]. Analog 16 was used at 75 and 125 µM 

concentrations for the analog alone treatments. For the antibiotic combination treatments, analog 16 was 

used at 75, 100, and 125 µM concentrations. As illustrated in Figure 3-16-A, analog 16 alone (125 µM) 

experienced about 30% survival, and ciprofloxacin alone experienced about 10 % survival relative to the 

untreated control. Interestingly, the cultures treated with the antibiotic and analog 16 (125 µM) combination 

experienced  ̴35-fold lower % survival than the ciprofloxacin alone. Similar results were observed when P. 
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Figure 3-16: Analog 16 potentiates the activity of fluoroquinolones in P. aeruginosa cells. The plots 

present: untreated control (black), analog 16 alone (grey) fluoroquinolone alone (white) and analog 16 

and fluoroquinolone combinations (shaded). The analog 16 concentrations are indicated at the bottom 

of each plot. The fluoroquinolones used are, (A) ciprofloxacin at 0.25 µg/mL (B) levofloxacin at 0.5 

µg/mL, and (C) norfloxacin at 0.9 µg/mL. (Figures are reprinted with permission from Ref. 21 

(https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions related to the material 

excerpted should be directed to the ACS) 
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aeruginosa cells were treated with levofloxacin (Figure 3-16-B) and norfloxacin (Figure 3-16-C) in 

combination with analog 16 (125 µM).  

A similar experiment was carried out with analog 11 and ciprofloxacin (Figure 3-17). P. 

aeruginosa cells treated with analog 11 alone (200 µM) resulted in approximately 30 % survival. Analog 

11 (200 µM) and ciprofloxacin combination lowered the % survival by ⁓20-fold compared to the 

ciprofloxacin alone (Figure 3-17). 

Analog and fluoroquinolone combination studies were further investigated with two clinical 

isolates of P. aeruginosa. The P. aeruginosa strains, MR3B, and MR60 are multidrug-resistant and are 

isolated from the cystic fibrosis lungs (these isolates were received from the Seattle Children’s Research 

Foundation (NIH Grant P30DK089507)).  

Both MR3B, and MR60 strains were treated with analog 16 at 125 µM concentration. In the analog 

16 treatments, MR3B performed very similarly to the P. aeruginosa (PA01) strain. MR3B, treated with 

analog 16 alone experienced   ̴50 % survival, and ciprofloxacin (0.2 µg/mL) alone resulted in   ̴10 % 

survival, and analog, ciprofloxacin combination resulted in ⁓ 0.5 % survival. This % survival is 

approximately 20-fold lower than the ciprofloxacin alone (Figure 3-18-A).  

Figure 3-17: Analog 11 potentiates the activity of ciprofloxacin in P. aeruginosa cells. The plots present: 

untreated control (black), analog 11 alone (grey) ciprofloxacin alone (white) and analog 11 and 

ciprofloxacin combinations (shaded).  
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P. aeruginosa strain MR60 is more resistant to ciprofloxacin, and when used at 1 µg/mL, the dose 

is 4-5 times higher than what used for P. aeruginosa PA01 or MR3B. In MR60, ciprofloxacin alone resulted 

in ⁓90 % survival (Figure 3-18-B) compared to the untreated control. Interestingly, when MR60 was 

treated with analog 16 alone, the % survival dropped to ⁓40%, and the combination treatment lowered the 

% survival to   ̴10%. The treatment of analog 16 in a combination of fluoroquinolones reduced the % 

survival significantly. 

The antibiotic, analog 16 (125 µM) combination effect was also explored with some other classes 

of antibiotics. Analog 16, in combination with tobramycin, gentamycin, ceftazidime, and imipenem are 

discussed in section 3.3.7. Interestingly, the antibiotic potentiation effect was not as significant as the 

fluoroquinolones. 

Peng and co-workers have analyzed the proteome of the low and high ciprofloxacin-resistant P. 

aeruginosa [32]. The low-level ciprofloxacin-resistant strains demonstrated the upregulation of heme iron 

uptake and TonB dependent siderophore uptake (12-fold). In the high-level ciprofloxacin-resistant strains, 

Figure 3-18: P. aeruginosa clinical isolates (A) MR3B and (B) MR60 were treated with analog 16 (125 

µM) and/or ciprofloxacin.  Ciprofloxacin concentration used for MR3B was 0.2 µg/mL and for MR60 

was 1.0 µg/mL. The above plots present, untreated control (black), analog 16 alone (grey) ciprofloxacin 

alone (white) and analog 16 and ciprofloxacin combinations (shaded). (Figures are reprinted with 

permission from Ref. 21 (https://pubs.acs.org/doi/10.1021/jacs.9b00394) and further permissions 

related to the material excerpted should be directed to the ACS) 
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only heme uptake was upregulated. Additionally, there was an upregulation in iron utilizing proteins, such 

as catalases and peroxidases [32]. The upregulation of iron acquisition proteins is evidence for the 

importance of iron when coping with the damages caused by ciprofloxacin.  

As discussed in Chapter 4, analysis of the expression proteome of P. aeruginosa wild type and Δbfd 

mutant cells at 30 h post-inoculation revealed an under-representation of the MexE and MexF efflux pumps 

in the Δbfd mutant cells. MexE and MexF are the main fluoroquinolone efflux pumps expressed by P. 

aeruginosa [33]. Expression of efflux pumps helps to eliminate antibiotics from the cell cytosol, which 

reduces antibiotic accumulation and minimizes the damage caused by antibiotics. Under-representation of 

the MexE and MexF in Δbfd mutant cells suggests, more susceptibility to fluoroquinolones under iron 

homeostasis dysregulation.  

In the presence of fluoroquinolones, there may be an additional nutritional requirement for iron by 

the P. aeruginosa cells [32]. The 4-aminoisoindoline-1,3-dione analogs (11 and 16) inhibit iron 

mobilization from BfrB, resulting in low free iron levels. At low cytosolic iron levels, cells fail to recover 

from damages caused by the fluoroquinolones (mainly repairing essential iron-containing proteins and 

enzymes). Additionally, low iron levels may result in fluoroquinolone accumulation in the cells due to the 

lower expression levels of MexE and MexF efflux pumps. In the absence of a functional BfrB:Bfd 

interaction, the P. aeruginosa cells become more susceptible to fluoroquinolones. 

3.3.7 The activity of tobramycin, gentamycin, ceftazidime, and imipenem is not potentiated with the 
combination treatment  

The 4-aminoisoindoline-1,3-dione derivatives, analog 16 and 11 were able to potentiate the action 

of fluoroquinolones. The adjuvant activity of analog 16 with other classes of antibiotics, such as 

aminoglycosides (tobramycin and gentamycin), cephalosporins (ceftazidime), and carbapenems 

(imipenem) was tested. Aminoglycosides, tobramycin, and gentamycin cause premature termination of 

translation of mRNA. They affect the 16S r-RNA of the 30S subunit by forming hydrogen bonds near the 

acceptor site [34]. Ceftazidime and imipenem are β-lactam antibiotics. The β-lactam ring mimics the D-
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alanyl D-alanine portion of the peptide chain that binds to the penicillin-binding proteins (PBPs). Binding 

of the β-lactam ring to the PBPs inhibits the synthesis of new peptidoglycans, which is a central component 

of the cell wall  [34]. 

P. aeruginosa cells were treated with (i) DMSO alone, (ii) analog 16 (125 µM), (iii) antibiotic 

alone, and (iv) analog 16 and antibiotic in combination. Viable cells were enumerated at 18 h post-

inoculation. The % survival of each condition was calculated relative to the untreated control. Cultures 

treated with tobramycin (5 µg/mL) alone experienced  ̴ 6% survival, and the analog-tobramycin 

combination experienced ⁓0.8 % survival, which is about 7.5-fold lower survival relative to the tobramycin 

alone (Figure 3-19-A). As shown in Figure 3-19-B, gentamycin (5 µg/mL) alone resulted in ⁓15 % 

survival, and in the combination treatment, the % survival dropped to 3 %. The cultures treated with 

ceftazidime (1 µg/mL) alone experienced 15 % survival, and the combination treatment resulted in a 3-fold 

lower % survival relative to the ceftazidime alone (Figure 3-19-C). The imipenem treated (1.5 µg/mL) 

Figure 3-19: P. aeruginosa (PA01) cells were treated with (A) tobramycin (5 µg/mL), (B) gentamycin 

(5 µg/mL), (C) ceftazidime (1 µg/mL), and (D) imipenem (1.5 µg/mL) in combination with analog 16. 

The plots present % survivals of: untreated control (black), analog 16 (grey), antibiotic (white) and 

antibiotic- analog combinations (shaded). 
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cultures resulted in about 9 % survival, and the combination treatment corresponded to about a 2- fold lower 

% survival (Figure 3-19-D).  

 

The analog 16 and antibiotic combinations for tobramycin, gentamycin, ceftazidime, and imipenem 

did not result in significant changes in the experienced % survival relative to the antibiotic alone. Whereas 

in the analog 16 and fluoroquinolone combination treatment, the experienced % survival was 30-35-fold 

lower relative to the fluoroquinolone alone. The above-discussed results are summarized in Table 3-2. 

3.3.8 Substituents on the hydroxyphenyl rings of 4-aminoisoindoline-1,3-dione analogs improve P. 
aeruginosa IC50 

Analog 16 is the most potent against P. aeruginosa (IC50 = 121 µM) among compounds listed in 

Table 3-1. Moreover, analog 16 acts on its target, BfrB, inhibiting the BfrB:Bfd interaction in the bacterial 

cell. To enhance the activity against P. aeruginosa, a group of halogenated hydroxyphenyl ring containing 

4-aminoisoindoline-1,3-dione analogs was synthesized. The crystal structure of analog 11 with BfrB, 

illustrated two orientations for the o-hydroxyphenyl ring. One o-hydroxyphenyl is rotated by 1800 from the 

other (Figure 3-6-A and 3-6-B) [21]. Therefore, adding an additional substituent to the hydroxyphenyl ring 

Compound Concentration 
(µg/mL) 

% Survival Fold change 
Antibiotic/Combination Analog Antibiotic Combination 

      

Analog 16 125 µM 31.50    

Ciprofloxacin 0.25  10.39 0.34 30.4 

Levofloxacin 0.5  18.46 0.50 36.7 

Norfloxacin 0.5  2.32 0.07 31.1 

Tobramycin 5  5.90 0.80 7.4 

Gentamycin 5  15.05 3.29 4.6 

Ceftazidime 1  3.01 1.56 1.9 

Imipenem 1.5  9.48 5.53 1.7 

      
 

Table 3-2: P. aeruginosa % survival fold changes between the antibiotic alone and antibiotic 

-analog 16 combination  
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is expected to slow down or stop ring rotation when bound to BfrB and allow the analogs to bind more 

strongly. The hydroxyphenyl rings of the novel −(CH2)− linker and −(CH2)3− linker analogs were 

substituted (Unpublished data from Dr. Richard A. Bunce, Department of Chemistry, Oklahoma State 

University). A bulkier substituent is also expected to weaken the π-π stacking interactions of the phenyl 

rings with its counterparts in other molecules. The advantages of lowering the π-π stacking interactions 

between analog molecules is expected to induce less analog aggregation and precipitation, and increased 

availability for the cells. 

P. aeruginosa cells were grown in modified M63 media supplemented with 4 µM iron. Cells were 

diluted to 5×105 CFU/mL (OD600 = 5×10-3) and grown in the presence analogs at 32, and 64 µM 

concentrations at 35 0C and 205 cpm in an Epoch 2 microplate reader. Viable cells were enumerated at 22 

h post-inoculation. The % growth was calculated relative to the CFU/mL of the untreated cells. The analog 
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Figure 3-20: P. aeruginosa (PA01) cells were treated with the −(CH2)− linker analogs (KM-5-25, KM-

5-35 and JAG-005-030), and−(CH2)3− linker analogs (KM-5-66 and JAG-005-006) at 32 (blue), and 

64 µM (red)  concentrations. The % growth was calculated relative to the untreated control (black) 
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concertation resulting in 50 % growth inhibition was considered as the IC50. Figure 3-20 illustrates the % 

growth of P. aeruginosa (PA01) for each of the new analogs at 32 and 64 µM concentrations. All three 

−(CH2)− linker analogs (KM-5-25, KM-5-35, and JAG-005-030) exhibit an IC50 of   ̴48 µM (>32 - <64 

µM), which is approximately 5-fold lower than the IC50 corresponding to the parent analog 11 (258 µM). 

The lower IC50 values (higher activity) of the new analogs correlate with the corresponding lower Kd values, 

as can be seen in Table 3-1. 

The −(CH2)3− linker analogs, KM-5-66 and JAG-005-006 resulted in an IC50 of   ̴32 µM. 

Comparing these values to that of the parent analog 16 (IC50 = 121 µM), indicates a 4-fold increase in 

activity, which is also in agreement with the lower Kd values exhibited by these new analogs (Table 3-1).  

3.3.9 Analogs retard the growth of P. aeruginosa clinical isolates  

The developed small molecule inhibitors of BfrB:Bfd acted on its target, BfrB, in P. aeruginosa 

(PA01) cells. Inhibition of the BfrB:Bfd interaction with 4-aminoisoindoline-1,3-dione analogs in P. 

aeruginosa cells resulted in impaired cell growth, pyoverdine hyper-production, and irreversible 

accumulation of iron in BfrB. In addition, two P. aeruginosa cystic fibrosis lung isolates, MR3B, and 

MR60, were affected by the analog 16 treatments. Testing 4-aminoisoindoline-1,3-dione analogs in 

different P. aeruginosa strains is useful to demonstrate the analogs are active against a number of P. 

aeruginosa strains, and to prove the suitability of the analogs to affect strains isolated from P. aeruginosa 

infections.  
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P. aeruginosa isolates from urinary tract infections were treated with analog KM-5-35 from 

the−(CH2)− linker category and analog KM-5-66 from the −(CH2)3− linker category (Figure 3-21). Cells 

were grown in modified M63 media, starting with 5 × 105 CFU/mL. For the treatment, analog KM-5-35 

and KM-5-66 were used at 64 µM concentration. At 24 h post-inoculation, viable cells were enumerated, 

and the % growth was calculated relative to the untreated control. All four JMI urinary tract clinical isolates 

experienced a growth defect in the presence of analog KM-5-35 and KM-5-66. When treated with analog 

KM-5-66 at 64 µM, the % growth of all the strains reached below 50% relative to the untreated control. 

The isolates U1, U2, U4, and U6 have an IC50  < 64 µM for KM-5-66. When treated with KM-5-35 at 64 

µM, a <50 % growth was only observed in U1, U2, and U4 strains. The U6 strain may require a higher to 

experience the ⁓50 % growth. The isolates U1, U2, and U4 have an IC50 <64 µM, and isolate U6 have an 

IC50 >64 µM for analog KM-5-35.  

Figure 3-21: P. aeruginosa urinary tract JMI isolates U1, U2,U4, and U6 were treated with analogs,  

KM-5-66 and KM-5-35 at 64 µM concentration. Viable cells were enumerated at 24 h post- innoculation 

and the % growth was calculated relative to the untreated control. 
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The tested P. aeruginosa urinary tract isolates were able to uptake analogs and elicit a growth 

retardation phenotype. Undoubtedly, the developed 4-aminoisoindoline-1,3-dione analogs show potency in 

multiple strains of P. aeruginosa.  

3.3.10 Small molecule inhibitors of the BfrB:Bfd interaction affect the fitness of Acinetobacter 
baumannii and elicit a hyper siderophore production phenotype 

The World Health organization prioritization list recognizes Acinetobacter baumannii as a high 

healthcare burden and a critical priority pathogen for the development of new antibiotics [4]. A. baumanii 

strains are one of the leading causes of ventilator-associated pneumonia, bloodstream and wound infections. 

A. baumannii strains can acquire resistance readily, and they are intrinsically resistant to several classes of 

antibiotics. Especially, Carbapenem-resistant strains of A. baumannii show high mortality in invasive 

infections [35]. 

The A. baumannii (AB5075) strain was isolated in 2008 from a patient with osteomyelitis of the 

tibia. The genomic analysis revealed 133 genes that may cause resistance to aminoglycosides, quinolones, 

β-lactams, sulfonamides, and macrolides [36]. A. baumannii (AB5075) is a current clinical isolate model 

bacterium, which has shown to be virulent in animal models, multidrug-resistant, and genetically tractable. 

Therefore, this strain is commonly used in pathogenesis and antimicrobial studies [35].  To identify the 

suitability of this strain for testing inhibitors of the BfrB:Bfd interaction, sequences of P. aeruginosa (PA01) 

BfrB, and Bfd were aligned with the corresponding sequences of A. baumannii (AB5075).  

Figure 3-22: The Bacterioferritin of Acinetobacter baumannii (AB5075); gene ID: A591_A0279, 

aligned with the BfrB of P. aeruginosa (PA01); gene ID: PA3531. The methionine required for the heme 

coordination is highlighted in cyan. The residues at the P. aeruginosa, BfrB:Bfd buried surface is 

highlighted in yellow and the mismatches in A. baumannii sequence are shown in red. 
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Figure 3-22 shows the alignment of P. aeruginosa (PA01) BfrB with A. baumannii AB5075 

Bacterioferritin (Gene ID: A591_A0279), and Figure 3-23 shows the alignment of P. aeruginosa (PA01) 

Bfd with putative bacterioferritin-associated ferredoxin (Gene ID: A591_A0280). Residues of the P. 

aeruginosa (PA01) BfrB:Bfd buried surface are highlighted in yellow, and the hot spot residues of the 

interaction are presented in underlined bold text. The M52 residue for heme coordination is conserved 

(highlighted in cyan). The mismatched residues in A. baumanniii are highlighted in red. 

In A. baumannii (AB5075), bfr and bacterioferritin-associated ferredoxin genes are adjacent as is 

the case in P. aeruginosa (PA01). Having adjacent genes raises the occurrence of a similar functionality of 

Ab Bfr and the bacterioferritin-associated ferredoxin.  Additionally, the hot spot residue E81 of Pa BfrB is 

conservatively replaced by a glutamine residue in Ab Bfr. In Pa BfrB, the side-chain carbons of E81 make 

hydrophobic contacts with the carbons in the Y2 phenyl ring of Bfd, hence, the conservative replacement 

of E81 to Q81 is not expected to interfere with this hydrophobic interaction. Consequently, the developed 

small molecule inhibitors of the Pa BfrB:Bfd interaction are expected to be active against A. baumannii 

(AB5075) cells. 

In order to test the effects of developed of 4-aminoisoindoline-1,3-dione analogs, A. baumannii, 

cells were treated with analogs KM-5-25, JAG-005-030, KM-5-35, KM-5-66 and JAG-005-006 in the 

Figure 3-23: The putative bacterioferritin-associated ferredoxin of Acinetobacter baumannii (AB5075); 

gene ID: A591_A0280 aligned with the Bfd of P. aeruginosa (PA01); PA3530. The residues at the 

buried surface of the P. aeruginosa BfrB:Bfd interface are highlighted in yellow. The mismatched 

residues of A. baumannii are highlighted in red. 
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modified M63 media. Analogs were tested at 32 and 64 µM concentrations. The starting CFU/mL of the 

cultures was kept at 5 × 105 CFU/mL. Cells were grown in 48 well plates at 35 0C, and 205 cpm. The % 

growth was calculated relative to the untreated control by enumerating viable cells at 24 h of post-

inoculation. The resultant plots, presented in Figure 3-24, indicate that all of the 4-aminoisoindoline-1,3-

dione analogs treated exhibit activity against A. baumannii comparable to activity against the P. aeruginosa 

PAO1. These findings strongly suggest that the 4-aminoisoindoline-1,3-dione analogs penetrate the A. 

baumannii cells, affect iron homeostasis and impair cell growth. Additional experiments were carried out 

to show that the analogs elicit an enhanced siderophore secretion phenotype as a result of low cytosolic iron 

levels upon blockade of the BfrB:Bfd interaction.  

Figure 3-24: A. baumanni (AB5075) cultures were treated with analog KM-5-25, JAG-005-030, KM-

5-35, KM-5-66, and JAG-005-006 at 32, 64, and 128 µM. The % growth for each conditions was 

calculated relative to the untreated control. 
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A. baumannii cell supernatants at 24 h post-inoculation were analyzed for siderophore production. 

Siderophores are produced as a repercussion of blocking the Bfr:Bfd interaction. In the siderophore 

determination assay, iron is complexed with the chrome azurol S (CAS) and the counter ion hexadecyl 

trimethyl ammonium bromide. In the presence of high-affinity siderophores iron from the Fe-CAS complex 

is scavenged. The release of iron from CAS will change the color from blue to yellow. This is measured by 

a decrease in absorbance at 630 nm. The decline in absorbance in the cell-free supernatants was used to 

calculate the % siderophore production units (PSU) using equation 3 in the experimental section [29]. The 

calculated PSU was normalized to the viable cell counts of each sample. The resultant % 

siderophore/CFU/mL plot for analog KM-5-25 and KM-5-66 at 64 µM is presented in Figure 3-25.  The 

A. baumanni cultures treated with 4-aminoisoindoline-1,3-dione analogs overproduced 2-3-fold 

siderophores relative to the untreated control. This is an indication of low free iron levels in the cytosol of 

A. baumannii cells when in the presence of 4-aminoisoindoline-1,3-dione analogs, suggesting that the 

analogs bind Bfr and inhibit the Bfr:Bfd interaction in A. baumannii cells. Consequently, the unidirectional 

flow of iron into Bfr results in low cytosolic free iron levels and stimulating siderophore synthesis and 
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Figure 3-25: Siderophores produced by A. baumannii cells were quantified using CAS assay. The 

siderophore levels were normalized to the CFU/mL of each condition. 
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secretion. Additional investigations on A. baumannii Bfr and bacterioferritin-associated ferredoxin are 

necessary to make definite conclusions on the effects of 4-aminoisoindoline-1,3-dione analogs in cells. 

3.4 Conclusions 

Iron is an essential nutrient for pathogens in the colonization of mammalian hosts, but the innate 

immune defenses restrict the iron availability in-vivo. The iron restriction presents challenges in 

establishing host colonization. Challenging iron metabolism in bacteria is being explored as a viable 

alternative target for anti-infective development. 

BfrB is the main iron storage protein in P. aeruginosa. BfrB serves an iron reservoir and plays an 

essential role in sustaining the dynamic equilibrium between the free iron levels and iron stored in BfrB. 

As discussed in Chapter 2, the genetic intervention of the BfrB:Bfd interaction (Δbfd and bfrB(L68A/E81A) 

mutants) caused irreversible accumulation of iron in BfrB, which resulted in unusable intracellular iron in 

BfrB and a depletion of the free intracellular iron levels [7]. Despite normal intracellular total iron levels, 

the Δbfd and bfrB(L68A/E81A) mutants showed an acute iron starvation response by secreting pyoverdine. 

The genetic inhibition of the BfrB:Bfd interaction perturbed the dynamic equilibrium between Fe2+ in the 

cytosol and Fe3+ stored in BfrB, resulting in iron homeostasis dysregulation [7].   

Inspired by these findings, a fragment screening and an iterative structure-based design approach 

were used to investigate potential inhibitors of the BfdB:Bfd interaction. The initial BfrB fragment hits 

were synthetically elaborated into 4-aminoisoindoline-1,3-dione analogs to enhance their binding affinity 

for BfrB.  The X-ray crystallographic structures revealed analog binding to BfrB, engaging the pockets on 

BfrB where Y2 and L5 of Bfd bind [21]. The developed analogs were tested in P. aeruginosa cells to 

identify the potential of the analogs to perturb the BfrB:Bfd interaction in-cell. To reach this end, P. 

aeruginosa cells were treated with the 4-aminoisoindoline-1,3-dione derived analogs. Analog 16 was able 

to act on its target (BfrB) in the bacterial cytosol, causing a nearly irreversible accumulation of iron in BfrB. 

The analog-treated cells demonstrated concentration-dependent growth impairment and iron starvation 

response, despite the high intracellular iron levels in cells. Inhibiting the BfrB:Bfd interaction by chemical 
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probes establishes a unidirectional flow of iron into BfrB, limiting its use to the cells. The irreversible 

accumulation of iron is accompanied by the low cytosolic free iron levels, which is manifested in the hyper-

production of pyoverdine, similar to observations made with the Δbfd mutant.  The growth impairment 

observed in the treated cells may be due to the intracellular iron limitation as a repercussion of blocking the 

BfrB:Bfd interaction, which would exert an effect on crucial iron-dependent biosynthesis and repair 

mechanisms in the cell. Consequently, blocking the BfrB:Bfd interaction by 4-aminoisoindoline-1,3-dione 

derived analogs resulted in iron homeostasis dysregulation in P. aeruginosa.  

The developed BfrB:Bfd inhibitors can also be used as synergistic or antagonistic probes. In the 

presence of antibiotics, iron homeostasis dysregulation has shown to exert an effect on bacterial survival 

[30]. The 4-aminoisoindoline-1,3-dione analogs act as probes to dysregulate iron homeostasis and have the 

possibility of potentiating the activity of existing antibiotics. P. aeruginosa cells were treated with the 

BfrB:Bfd Inhibitors in combination with different classes of antibiotics. Interestingly, when analogs were 

used in combination with fluoroquinolones, the activity of fluoroquinolones was enhanced by 30- fold. In 

the absence of intact iron homeostasis, the cells are incapable of restoring the damages caused by the 

antibiotics, primarily upon the treatment with fluoroquinolones [32]. Therefore, it is plausible to consider 

potential therapeutic strategies where the BfrB:Bfd inhibitors are used in combination with existing 

fluoroquinolones.  

The 4-aminoisoindoline-1,3-dione analogs were experimented in different P. aeruginosa strains 

and in A. baumannii (AB5075) to rule out any stain specific effects. Importantly, the analogs exerted growth 

impairments in multiple P. aeruginosa strains (cystic fibrosis lung and urinary tract isolates) and 

Acinetobactor baumannii (AB5075). In an extended set of Gram-negative bacteria, the bfrB and bfd genes 

are adjacent, and the Pa-BfrB Pa-Bfd interface residues are highly conserved. Consequently, the developed 

small molecule BfrB:Bfd inhibitors could be of widespread application with a high significance. 
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Chapter 4 : Proteomics Profiling and Metabolic Pathway Mapping upon blockade of 
the BfrB:Bfd interaction in P. aeruginosa cells 

4.1 Introduction 

4.1.1 Significance of the BfrB:Bfd interaction in the iron metabolism of P. aeruginosa.  

BfrB is the main iron storage protein in P. aeruginosa [1]. Mobilization of iron from BfrB requires 

interactions with its cognate partner protein, the Bacterioferritin Associated Ferredoxin (Bfd). In the 

absence of Bfd, very little, or no iron is mobilized from BfrB [2]. P. aeruginosa wild type and a bfd gene 

knockout mutant (Δbfd) were used to study the importance of the BfrB:Bfd interaction to the bacterial cells 

[1]. Under iron supplemented conditions, the growth of  the wildtype and the Δbfd mutant are 

indistinguishable [1]. Wild type and the Δbfd mutant consume supplemented iron in the media at a similar 

rate (Figure 4-1-B) [1]. Iron-stained Native-PAGE was used to illustrate iron accumulation and 

mobilization in BfrB (Chapter 2). The wild type cells show maximum iron accumulation in BfrB during 

the log and the early stationary phases. Stored iron starts to mobilize from BfrB during the late stationary 

phase (when the iron concertation of media is   ̴ 1 µM). The Δbfd mutant cells show irreversible 

accumulation of iron in BfrB, as they failed to mobilize iron from BfrB in the absence of Bfd. These 

observations showed that in P. aeruginosa cells the BfrB:Bfd complex is the only mechanism available to 

mobilize iron from BfrB (Figure 4-1-C).  

The genetic intervention of the BfrB:Bfd interaction resulted in an irreversible flux of iron into 

BfrB, low free iron levels in the cytosol, and high total iron to free iron ratio (Figure 4-1-D-E-F) [1]. Wild 

type cells carry a functional BfrB:Bfd interaction and maintain a total iron to free iron ratio of  ̴20 even 

under depleted extracellular iron levels. The low free iron levels in the Δbfd mutant cells caused dissociation 

of the Fe2+- master iron regulator (Fur) complex activating iron acquisition genes. As a consequence, hyper-
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production of pyoverdine was observed in the Δbfd mutant cells (Figure 4-1-A) [1]. Pyoverdine is the main 

Fe3+ chelating siderophore produced by P. aeruginosa.  

Regulation of iron acquisition in response to iron availability is mediated through the actions of 

Fur. Under iron-replete conditions, Fur becomes ferrated and binds to the Fur box sequence in the promoters 

and prevents transcription of genes that are necessary for iron uptake. Fur directly or indirectly regulates 

the expression of a large number of genes and operons, which are involved in iron uptake and virulence. 

CA B

D E F

Figure 4-1: P. aeruginsa cells were grown in PI media supplemeted with 10 µM iron. (A) Secreted 

pyoverdine was analyzed and normalized to the viable cell count at each time point. (B) Iron 

concentration in the spent media was analyzed at different time points of post-innoculation. (C) Iron 

stained Native-PAGE illustrates irreversible accumulated in BfrB in the absence of bfd. (D) Total 

intracellular iron levels were analysed at 12 and 18 h post-innoculation using colorimetry. (E) Free iron 

in the cytosol was measured by EPR using a cell permeable iron chelator, deferoxamine. (F) The 

calculated total iron to free iron ratios of the wild type and the mutants at 12 and 18 h post-innoculation. 

(Figures are reprinted from Ref. 1 with permission from Royal Society of Chemistry) 
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The PrrF small regulatory RNAs (sRNAs) degrades mRNAs encoding iron-containing proteins to spare 

iron under limiting conditions. Moreover, Fur is involved in increased expression of genes by the repression 

of PrrF sRNAs [3, 4].  

As has been shown in Chapter 2, disrupting the BfrB:Bfd interaction causes dysregulation of iron 

homeostasis in P. aeruginosa cells [1]. Work described in this Chapter was carried out to test a hypothesis 

that iron homeostasis dysregulation may create severe impact on other cellular functions, such that in 

addition to the phenotypic differences observed in the P. aeruginosa Δbfd mutant cells described in chapter 

2, there may be an impact on the broader bacterial metabolism upon blockade of the BfrB:Bfd interaction. 

To test these ideas, the proteomes of wild type and Δbfd P.aeruginosa cells were compared, in order to 

study the intracellular biochemical repercussions of blocking the BfrB:Bfd interaction. The proteomics 

study revealed an over-representation of proteins functioning in iron acquisition, sulfur assimilation, and 

quorum sensing, and under-representation of several proteins in the TCA cycle, respiratory chain, amino 

acid biosynthesis, and oxidative stress response. The affected proteins fall into iron-dependent and iron-

independent categories. Expression levels of the iron-containing proteins may directly or indirectly affect 

the expression of iron-independent proteins resulting in significant consequences to cell metabolism.  

4.1.2 Protein expression proteomics 

Proteomics involves the analysis of the entire protein complement of a tissue, cell, or an organism 

under a defined set of conditions. Proteomics is broadly used in protein expression profiling (medical 

microbiology, disease mechanisms, signal transduction), proteome mining (drug discovery, target 

identification/ validation), functional proteomics (affinity-purified protein complexes), and protein-protein 

interaction identifications.  

Over the past years, transcriptomics has played an essential role in the identification of levels of 

biological processes and disease states. The mRNA analysis uses different methods such as serial analysis 

of gene expression (SAGE) and DNA microarray. However, the mRNA expression analysis doesn’t directly 

correlate with the protein expression levels in the cells. In protein expression, mRNA synthesis is the first 
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step of a long sequence of steps. Cells regulate the protein expression levels by degradation or modification 

of the mRNA. Also, many different protein isoforms can be generated from a gene.  Most importantly, 

proteins and not genes determine the phenotype of the cells [5]. 

Quantitatively studying protein expression among samples is known as expression proteomics. In 

this proteomics approach, the protein expression of the entire proteome or sub proteomes can be compared. 

Expression proteomics can give valuable insights into complex biological systems, mainly by analyzing 

expression, functions, modifications, and interactions. In the past 30-40 years, expression proteomics 

utilized methods such as 2-D Polyacrylamide Gel Electrophoresis (2-D PAGE), western blotting, and 

radioimmunoassay (RIA) [6]. One of the noteworthy developments in protein identification is the 

advancement of the Mass Spectroscopy (MS) based techniques. Over the past decade, the sensitivity and 

accuracy of protein identification by MS have increased. MS-based methods can accept protein mixtures 

and is amiable to high-throughput of proteomics approaches.   

4.1.3 Proteomics study with Tandem Mass Tagged (TMT) peptides 

Quantitative proteomics relies on the capability to detect changes in the proteins and peptide 

abundances. Protein quantitation can be absolute or relative. In absolute protein quantification approaches, 

the exact protein concentration is determined, whereas, in relative quantification methods, the abundance 

of particular proteins is determined relative to the corresponding control. 
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Quantitative proteomics approaches utilize labeled or non-labeled peptides. For labeled-

proteomics, Tandem Mass Tags (TMT), or iTRAQ tags are commonly used, they allow parallel 

Figure 4-2: (A) Structures of the TMT-6plex tags. TMT tags are composed of a NH2 reactive group, 

(separated by blue dotted line) a normalizer and a mass reporter (separated by red dotted line). The 

symbol * present isotopic labeling by 13C or 15N. (B) labeled identical peptides will show as a single 

peak in MS1. The labels are cleaved during peptide fragmentation (red dotted line), generating reporter 

irons with different masses. The reporter ion masses generated from the TMT-6plex are, m/z =126, m/z= 

127, m/z =128, m/z =129, m/z= 130, and m/z =131. (Figures are adapted with permission  from Springer 

Nature: Humana Press, Ref.7, 2012) 
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multiplexing of quantitative experiments. The isobaric tags are isotopic tags that consist of an NH2 reactive 

group, a normalizer, and a mass reporter (Figure 4-2) [7]. Stable isotopes 13C or 15N are incorporated into 

the reporter group and/or to the normalizer (isotopes are shown as * in Figure 4-2-A) [7]. Adding stable 

isotopes to the above groups allows designing a set of tags with identical chemical structures and identical 

mass but distinguishable in MS2 of an MS/MS (Figure 4-2-B).  

All the peptides generated from a sample are labeled with a specific TMT tag (sample 1 is labeled 

with TMT 1, sample 2 is labeled with TMT 2 and sample 3 is labeled with TMT 3, etc.). The TMT tagged 

identical peptides (e.g., peptide A in all 6 samples) appear as a single peak in the mass spectrum (MS1) 

because of the identical mass of the tags (Figure 4-2-B left). Each tag has an MS2 variant known as the 

“mass reporter.” The MS/MS fragmentation sites by higher energy collision dissociation (HCD) are shown 

in a red dashed line. Each reporter group is differentially labeled by 13C or 15N isotopes (shown by the * 

symbol in Figure 4-2-A), TMT 1 is not labeled (m/z=126), TMT 2 is labeled with one 13C (m/z=127), TMT 

3 is labeled with two 13C (m/z=128), etc., When a peptide is selected for fragmentation, the linker connected 

to the reporter ion is cleaved, generating 6 different reporter ions peaks in the low m/z region of MS2 

(Figure 4-2-B right). As shown in the Figure 4-2-B (right) the intensities of the reporter ions correspond 

to the abundances of parent peptides (e.g., peptide A) in each sample (e.g., the intensities of reporter ions 

from TMT 1, 2, and 3 represent the abundance of peptide A in samples 1, 2 and 3, etc.) [8]. The peptide 

abundances are used for the relative quantification. Commercial TMT tags have up to 10 different tags, 

which allow running 10 samples simultaneously [9].  

The goal of this study was to identify variations in the protein expression profiles upon blockade 

of the BfrB:Bfd interaction of P. aeruginosa by studying the expression proteome of the wild type and Δbfd 

cells, with the aim of identifying the implications of inducing cytosolic iron deprivation on protein 

expression and metabolic pathways. 



107 
 

4.2 Experimental 

4.2.1 Strains, media and growth conditions 

P. aeruginosa (PA01) and the bfd gene knock out mutant (Δbfd) were used for the experiments [1]. 

All strains were maintained on Pseudomonas Isolation Agar (PIA, BD Biosciences).  

Pseudomonas aeruginosa isolation (PI) media was used to culture cells. PI media per 1L contains 

20 g L-1 peptone, 1.4 g L-1 MgCl2.6H2O, 10 g L-1 K2SO4, 25 mg L-1 irgasan (Sigma-Aldrich), and 20 mL L-

1 glycerol, pH 7.0.  PI media was supplemented with 10 µM iron using a 10 mM stock of (NH4)2Fe(SO4)2 

(pH  ̴ 2.0). 

4.2.2 Cell growth and lysate preparation 

P. aeruginosa pre-cultures were grown in 5 mL of PI media supplemented with 10 µM iron for 12 

h at 37 0C and 220 rpm. Optical density at 600 nm (OD600) was adjusted to 0.001 in PI media supplemented 

with 10 µM iron.  P. aeruginosa wild type and Δbfd mutant cells were grown in 50 mL cultures (250 mL 

Erlenmeyer flasks), covered with an air-permeable membrane. Cells were incubated at 37 0C and 230 rpm. 

At 30 h post-inoculation, viable cells were enumerated. Cultures were divided into fractions and centrifuged 

at 4000 rpm for 15 min at 4 0C. Cell pellets were washed twice with 10 mL of Phosphate Buffered Saline 

(PBS) and stored at -20 0C. Cell-free supernatants were analyzed for pyoverdine using fluorescence 

spectroscopy [1]. 

A cell pellet from a 5 mL culture was re-suspended in 5 mL of 1 % SDS and sonicated for 90 s at 

a 20 % pulse amplitude with a 10 s ON and 10 s OFF pulses. The lysate was centrifuged, and the collected 

cell debris was lysed again by sonication using an additional 5 mL of 1% SDS. Lysates were kept frozen 

until proteomics sample preparation.  

For the proteomics study, three technical replicates were prepared from a single biological replicate. 

Two additional biological replicates were collected but have not been analyzed at the time of writing (all 

biological replicates resulted in similar cell densities and pyoverdine secretion levels). 
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4.2.3 Sample preparation  

Sample preparation and proteomics workflow were carried out by Dr. Jessie Guidry (Proteomics 

Core Facility, Louisiana State University Health Science Center, New Orleans) by following published 

protocols [10, 11].  

A 100 µg of protein per sample was used for trypsin digestion. Proteins were reduced using tris(2-

carboxyethyl)phosphine (TCEP) and alkylated with iodoacetamide. Proteins were subjected to chloroform-

methanol precipitation, and the resultant pellet was digested with trypsin at 37 0C overnight. The digested 

proteins were labeled with TMT 6plex reagents set (Thermo Scientific) according to the manufacturer’s 

recommended protocol. The tagged samples were stored at -80 0C. 

An equal volume from each TMT tagged sample was pooled into a single tube and purified using 

acidic reverse phase conditions (SepPak -Waters, Ireland). Once the samples were dried, a fractionation 

step was carried out to lower the complexity of the sample. The sample volume was adjusted to 115 µL by 

20 mM ammonium hydroxide (pH 10), and basic-pH reverse phase chromatography (Dionex U3000, 

Thermo Fisher) was carried out according to the parameters below. The injection volume was 100 µL, and 

the flow rate was 0.1 mL/min. A 90 min gradient was developed from 10 mM ammonium hydroxide 

(pH=10) to 100% acetonitrile (AH pH=10). A set of 48, 200 µL fractions were collected, and the fractions 

were combined in a checkerboard fashion (fraction 1, 12, 25, and 27 -super fraction 1; fractions 2, 14, 26, 

38-super fraction 2, etc.) resulting in 12 super fractions. These fractions were run on a Dionex U3000 

nanoflow coupled to Thermo Scientific™ Orbitrap Fusion™ Tribrid™ Mass Spectrometer. at a flow rate 

of 0.3 µL/min (Trap column: C18 PepMap 100, 5um, 100A, separation column: PicoChip REPROSIL-Pur 

C18-AQ, 3um, 120A, 105mm). A 90 min chromatographic method was employed. The gradient was as 

follows, 2-25 % ACN in 0.1 % Formic acid (FA) -65 min, 50 % ACN/FA-10 min, 90 % ACN/FA 5 min, 

and re-equilibration 2 % ACN/FA -10 min. 

Electrospray ionization was performed at 2.6 kV. Data acquisition used an MS3 approach; survey 

scans were done in the Orbitrap, using a resolution of 120,000. MS2 scans were done in the linear ion trap, 
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using a collision-induced dissociation of 25 %. For the fragmentation of the reported ions, High energy 

Collision Dissociation (HCD) of 65 % was used and detected in the Orbitrap using a 30,000 resolution. 

Runs were done in triplicate for each super fraction. 

TMT data was analyzed using Proteome Discoverer 2.2. The triplicate runs for the 12 super 

fractions were merged and searched against SEQUEST. The used parameters were as follows, TMT 

reagents on lysine and N-terminus (+229.163), carbamidomethyl on cysteines (=57.021), dynamic 

modification of methionine (=15.9949), two maximum trypsin mis-cleavages, parent ion tolerance - 10 

ppm, and the fragment mass tolerance – 0.6 Da. High scoring peptides were considered using a false 

discovery rate of 1%. Data files were searched against the Pseudomonas genome database 

(www.Pseudomonas.com) [12]. 

4.2.4 Data analysis  

A volcano plot was generated using the log2(fold change), and the -log10(abundance ratio p-values). 

Data were filtered based on the fold change, and the abundance ratio p-values.  Proteins with (Δbfd) / (wild 

type) fold change of ≥ 1.4 and ≤ 0.7, and the abundance ratio p-value <0.05 were considered to be significant 

[13]. The filtered datasets were uploaded onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Pathway Mapper and searched against P. aeruginosa (PA01) organism-specific pathways [14]. Identified 

proteins in the KEGG mapper were also searched against the Pseudomonas genome database to get the 

functional predictions and classifications [12]. 

4.3 Results and Discussion 

4.3.1 Overview of the consequences of inducing cytosolic iron deprivation by blocking the BfrB:Bfd 
complex 

Mobilizing iron from BfrB requires specific interactions with its cognate partner protein, Bfd. The 

bfd gene knockout mutant cells (Δbfd) are unable to mobilize iron from BfrB. The irreversible flux of iron 

into BfrB lowered the free iron levels in the Δbfd mutant cells [1]. When the cytosolic free iron levels drop 

below the Kd of the Fe2+- Master iron regulator complex (Fur), the iron acquisition genes get derepressed, 
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resulting in siderophore synthesis and secretion. Siderophore secretion (pyoverdine) is a reasonable 

indicator of cytosolic iron deprivation [1]. At 18-24 h of growth, iron in the media becomes scarce (  ̴1 µM 

iron), and by 24 h pyoverdine becomes detectable in the Δbfd cells [1].  For the proteomics study, the wild 

type and the Δbfd mutant cells were grown for 30 h in PI media supplemented with 10 µM iron. At 30 h of 

growth, the Δbfd mutant showed cytosolic iron deprivation by secreting nearly 5-fold excess pyoverdine 

relative to the wild type cells.  

The protein expression levels at 30 h post-inoculation were relatively quantified using Liquid 

Chromatography coupled Mass Spectroscopy. This method was able to quantify 3034 proteins, which is 

approximately 54 % of the total open reading frames in P. aeruginosa (PA01) [5570 open reading frames 

(ORFs)] [15]. All the quantified proteins were plotted against the -log10 p-values and the log2fold change 

in a volcano plot (Figure 4-3). Proteins with (Δbfd) / (wildtype) fold change of ≥ 1.4 (log2fold change ≥0.5) 

are considered over-represented. Proteins with (Δbfd) / (wild type) fold change of ≤ 0.7 (log2fold change ≤-

0.5) are considered under-represented. The abundance ratio p-values < 0.05 (-log10 p-value >1.3) are 

considered statistically significant. The blue lines in the plot represent log2fold changes of 0.5 and -0.5, and 

-log10 p-value =1.3 (p value = 0.05). As can be seen in the plot, the majority of the quantified proteins fall 

in the region between 0.5 and -0.5 region (no significant change). Among the 3034 identified proteins, 122 
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proteins are under-represented, and 126 proteins are over-represented in the Δbfd cells compared to the wild 

type cells.  

The differentially expressed proteins were functionally categorized using the KEGG Orthology 

classification (Figure 4-4). This classification uses functional and sequence characteristics of 

experimentally characterized protein details to assign a functional category for a protein. Significant 

Figure 4-3: Identified P. aeruginosa proteins are placed in a volcano plot according to their relative 

abundance (log2 fold change) and statistical significance (-log p value). Among the identified proteins, 

122 were under-represented and 126 were over-represented in the Δbfd cells compared to the wild type 

cells. 
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changes were observed in the proteins involved in siderophore biosynthesis, carbohydrate metabolism, 

amino acid metabolism, and cellular transport.  

Among the under-represented proteins, 20 proteins were related to carbohydrate metabolism, which 

included several proteins from the citrate cycle (TCA cycle) [PATH:pae00020], glyoxylate and 

dicarboxylate metabolism [PATH:pae00630], butanoate metabolism [PATH:pae00650] and C5-Branched 

dibasic acid metabolism [PATH:pae00660]. In the amino acid metabolism, 18 proteins were under-

represented, whereas 11 proteins were over-represented. The under-represented category included some 

proteins involving glycine, serine and threonine metabolism [PATH:pae00260], valine, leucine and 

isoleucine biosynthesis [PATH:pae00290], and tryptophan metabolism [PATH:pae00380]. Several over-

represented amino acid metabolism proteins are involved in cysteine and methionine metabolism 

[PATH:pae00270], and tyrosine metabolism [PATH:pae00350] [14].  

Figure 4-4: Functional classification of the proteins with significant fold changes and meaningful p 

values. The over-represented and under-represented proteins were categorized according to their 

function in P.  aeruginosa cells using KEGG Orthology classification [14]. 
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Nine proteins involved in energy metabolism are under-represented, and several of these proteins 

are involved in oxidative phosphorylation [PATH:pae00190], methane metabolism [PATH:pae00680], 

nitrogen metabolism [PATH:pae00910], and sulfur metabolism [PATH:pae00920]. The other under-

represented proteins are involved in functions related to lipid, nucleotides, and cofactors, and vitamin 

metabolism [14]. 

Importantly, among the over-represented proteins, 30 proteins were related to iron metabolism, 

which includes siderophore biosynthesis, and siderophore and iron transport. The proteins involved in sulfur 

metabolism, quorum sensing, and phenazine biosynthesis are over-represented. 

Differentially expressed proteins were matched with the existing pathways of P. aeruginosa using 

the KEGG mapper tool [14]. Identified proteins were searched against Pseudomonas genome database to 

identify functional and biochemical characteristics [12]. Among the 122 under-represented proteins, KEGG 

pathway tool identified proteins involved in the amino acid metabolism, carbohydrate metabolism, and 

butanoate metabolism. Among the identified 126 over-represented proteins, pathway tool identified 

proteins involved in the biosynthesis of siderophore group non-ribosomal peptides, sulfur metabolism, 

Quorum sensing, and biofilm formation. 

4.3.2 Iron acquisition  

(A) Pyoverdine biosynthesis 

 The bfd gene knockout mutant (Δbfd) cells of P. aeruginosa show low free iron levels in the cytosol 

and a high total iron to free iron ratio than the wild type cells [1]. When the cytosolic free iron levels drop 

below the Kd of the Fe2+- Fur, Fur is no longer bound to Fe2+. The apo-Fur derepresses the iron acquisition 

genes (e.g. pyoverdine, pyochelin, etc.). As shown in Table 4-1, proteins necessary for pyoverdine and 

pyochelin biosynthesis, and proteins involved in heme iron acquisition are over-represented in the Δbfd 

mutant cells. 
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Pyoverdine is a yellow-green fluorescent molecule. Pyoverdine I (PVD I) is the main siderophore 

secreted by P. aeruginosa for iron assimilation. PVD I biosynthesis is a complex biological process and 

involves at least 11 enzymes. The PVD I biosynthesis pathway is well characterized in P. aeruginosa PA01. 

Table 4-1:Proteins involved in iron and heme-iron acquisition are over-represented in the Δbfd 

mutant cells. 
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Pyoverdine molecule consists of three portions, (i) dihydroquinoline type chromophore (fluorescent), (ii) 

strain-specific peptide with 6-12 amino acid, (iii) a side chain bound to the N at C-3.  The PVD I synthesis 

begins in the cytoplasm, and the assembly is completed in the periplasm. Pyoverdine biosynthesis involves 

non-ribosomal peptide synthetases (NRPSs) and several other classes of enzymes. The NRPSs have a multi-

module architecture, where each muddle contains about 1000 amino acids and corresponds to incorporating 

one specific amino acid substrate into the peptide chain [16, 17].  

PVD I contains unusual amino acids, such as diamino butyric acid and ornithine. A variety of 

cytoplasmic enzymes (PvdH, PvdA, and PvdF) are involved in the synthesis of these unusual amino acids 

Figure 4-5: The pyoverdine I biosyntehsis pathway of P.aeruginosa. The color scale of protein 

abundance log2fold change (Δbfd/ wt) is included, where green indicates no change. Proteins involved 

in pyoverdine synthesis are colored according to their fold change in color scale (Figure is adapted with 

permission from Ref. 17, 2012, John Wiley and Sons and re-formatted minorly) 
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that are necessary for NRPSs (PvdL, PvdI, PvdJ and PvdD) [17]. A schematic representation of the 

proverdine (PVD I) biosynthesis process with names of the involved proteins is shown in Figure 4-5. The 

expression levels of each protein are shown by color code. All the proteins necessary for the pyoverdine 

biosynthesis were over-represented by at least 2-fold. The most significant fold changes were observed in 

PvdN, PvdH, and PvdE (log2 FC>3.5). The proteins PvdQ, PvdA, PvdO, and PvdL experienced a log2 

FC>3.0, while the PvdD, PvdF, PvdJ, and PvdP resulted in a log2 FC>2.3 in the Δbfd mutants cells relative 

to the wild type cells.  

The cytoplasmic protein, PvdH is one of the proteins with a high overrepresentation (log2FC= 3.59). 

PvdH catalyzes the aminotransferase reaction by interconverting L-aspartate β-semialdehyde (L-ASA) and 

L-2,4-diaminobutyrate (L-Dab). The pvdH knockout mutant failed to synthesis pyoverdine under iron-

depleted conditions. The pyoverdine production was restored when the media was supplemented with L-

Dab [18]. PvdH is involved in the production of L-Dab, which is a crucial step in the PVD biosynthesis, 

and L-Dab is a substrate for PvdL (log2 FC= 3.01) [18].  PvdL has a myristate binding site and contains a 

domain that is very similar to the acyl-coenzymeA ligases. The cytoplasmic precursor of PVD I contains a 

myristic or myristoleic acid. It has been proposed that the PvdL can join coenzyme A to a myristate in an 

ATP-dependent reaction and incorporate the complex to L-Glu followed by the addition of L-Tyr and L-

Dab. The c-terminal domain of PvdL attaches the synthesized dihydroquinoline type chromophore to L-

Ser, which is the first amino acid of the peptide moiety [16, 17].  

The conversion of L-ornithine (L-Orn) to L-N5-hydroxyornithine (L-OHOrn) is carried out by 

PvdA (log2 FC= 3.22). The formylation of L-OH-Orn to produce L-N5hydroxyornithine (L-fOHOrn) is 

catalyzed by PvdF (log2 FC= 2.48). The biosynthesized amino acids are added into the peptide moiety by 

NRPSs, PvdI (log2 FC= 2.17), PvdJ (log2 FC= 2.49), and PvdD (log2 FC= 2.45). Once all the peptides are 

assembled, the non-fluorescent precursor is transported across the inner membrane into the periplasm via 

ABC transporter PvdE, which is one of the significantly represented proteins in the Δbfd cells (log2 

FC=3.73) [17]. The pvdE knock out mutant (ΔpvdE) failed to secrete pyoverdine. Suzuki and the co-
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workers used wild type P. aeruginosa (PA01) cells and the ΔpvdE mutant cells to determine the role of 

pyoverdine in bacterial survival in the cornea. The mice infected with the wild type cells resulted in severe 

disease (high corneal opacity), whereas the ΔpvdE unable to colonize because of their inability to secrete 

pyoverdine. Thus PvdE plays an important role in the pyoverdine biosynthesis and secretion machinery 

[19].  

In the periplasm, PvdQ (log2 FC= 3.3) cleaves the myristic or myristoleic chain that links the 

precursor with the cytoplasmic membrane. Removing the fatty acid chain allows the chromophore to diffuse 

freely into the periplasm. The product of PvdQ is the PVD I precursor, ferribactin, which is non- fluorescent. 

Removal of the fatty acid precedes chromophore cyclization. The PVD I precursor, ferribaction undergoes 

cyclization in the periplasm by a multistep oxidative process. A subsequent tautomerization step leads to 

the formation of dihydroxyquinoline ring. PVD I is identical to dihydopyoverdine except that there is one 

less unsaturation in PVD I [17, 20]. The periplasmic proteins PvdN (log2 FC= 4.11), PvdM (log2 FC= 2.67), 

PvdO (log2 FC= 3.14), and PvdP (log2 FC= 2.54), are predicted to be involved in either chromophore 

formation or in a step proceeding it [17].  

PvdN is significantly over-represented in the Δbfd cells. The importance of PvdN was studied using 

a pvdN gene knockout mutant. PvdN is involved in adding a specific side-chain modification in the 3- amino 

group of the chromophore. The pvdN knockout mutation did not affect the overall pyoverdine production 

[21].  

Gene pvdRT-ompQ codes for an efflux pump that is involved in the PVD I secretion. PvdT is an 

inner membrane protein, PvdR (log2 FC= 1.92) is the periplasmic adaptor protein and OpmQ (log2 FC= 

1.68) is an outer membrane protein with a large periplasmic extension and a β-barrel domain inserted in the 

outer membrane [20].  

The extracellular PVD I-Fe complex is transported back into the cell by FpvA (log2 FC=1.17), and 

FpvB (No change). FpvA is the primary transporter of the PVD I-Fe complex. The PVD I-Fe complex 

uptake depends on the proton motive force, and the Fpva and FpvB are activated via TonB machinery [22]. 
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Iron in the PVD I-Fe complex is released at the periplasm by a reduction mechanism. The apo-PVD I is 

recycled back to the extracellular environment by the PvdRT-OpmQ. 

(B) Pyocheline biosynthesis 

Under iron limitation conditions, pyochelin is synthesized first, and if the iron starvation is acute 

cells switch to the pyoverdine synthesis [23]. Pyochelin is a small, relatively low-affinity siderophore 

secreted by P. aeruginosa. At neutral pH pyochelin chelates Fe3+ with a 2:1 stoichiometry. The biosynthesis 

of pyochelin involves three NRPS. Pyochelin biosynthesis includes fewer number of proteins compared to 

the biosynthesis of pyoverdine. Pyochelin synthesis transcriptional activator, PchR, positively regulates the 

synthesis of pyochelin and pyochelin receptor, FptA [24]. The pyochelin biosynthesis pathway is illustrated 

in Figure 4-6, the proteins are color-coded according to the fold change color coded scale. All the proteins 

involved in pyochelin synthesis were at least 2-fold over-represented. 

Pyochelin is made from three precursors, a salicylate, a hydroxyl acid, and two cysteine molecules. 

In the first step of pyochelin biosynthesis, chorismate is isomerized to isochorismate by PchA 

(isochorismate synthase, log2 FC= 1.64). The produced isochorismate is converted into salicylate by 

Figure 4-6: The pyochelin biosynthesis pathway of P. aeruginosa. The color scale of protein abundance 

log2fold change (Δbfd/ wt), is included. (Modified from the KEGG pathway: pae01053, Ref. 14)  
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isochorismate pyruvate lyase, PchB (log2 FC= 2.46). Salicylate is activated by the A-domain of PchD (log2 

FC= 2.24) and transferred to the P-domain of NRPs, PchE (initiation module, log2 FC= 2.52). Next, the 

PchE elongation module incorporated a cysteine, and cyclize it, forming a thiazoline ring. The PchE 

termination module adds another cyclized L-cysteine generating a second thiazoline. PchG (log2 FC= 2.10) 

acts as the tailoring domain, and reduces the thiazoline to thiazolidine. PchF (log2 FC= 2.15) carries out a 

N-methylation of the thiazolidine, and the mature pyochelin is secreted by the T-domain of PchF [25].  

(C) Heme iron acquisition 

P. aeruginosa is equipped with strategies to extract heme iron from hemoproteins. The heme iron 

acquisition system, Phu (Pseudomonas heme utilization) consists of of PhuR, PhuS, PhuT, PhuV, and 

HemO [26]. Proteins in the Phu system are over-represented in the Δbfd mutant cells. The Phu system 

directly extracts heme using a TonB dependent receptor, PhuR (log2 FC= 2.15), and transports it into the 

periplasm. The heme-binding transporter protein, PhuT (log2 FC= 1.24) interacts with the ABC transporter, 

PhuUV (log2 FC=0.55, PhuU=not detected), and transfers heme into the cytoplasmic heme-binding protein 

PhuS (log2 FC=1.16). Heme in PhuS is transferred to HemO (heme oxygenase, log2 FC=1.33). In P. 

Figure 4-7: The phu operon of P. aeruginsa. The color scale of protein abundance log2fold change 

(Δbfd/ wt), is included. (Figure is adopted with permission from Ref. 26, copyright 2008 Elsevier and 

modified minorly) 
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aeruginosa cells, the PhuS, along with HemO controls the heme flux into the cell [27]. In the cell, heme 

oxygenase degrades heme tetrrapyrrole ring into biliverdin, CO, and Fe2+ [28].  

From the above, it is evident that the Δbfd mutant cells have over-representation of proteins 

involved in the primary iron acquisition mechanisms with significant fold changes compared to the rest of 

the protein pool. Fulfilling iron requirements is one of the foremost challenges faced by Δbfd mutant cells. 

Biosynthesis processes, such as pyoverdine synthesis, consume an enormous amount of the cell’s resources, 

and forces the the Δbfd mutant cells to invest enormous resources to overcome the iron deficiency caused 

by the irreversible accumulation of iron in BfrB.  

4.3.3 Carbon metabolism and energy production  

(A) Tricarboxylic acid (TCA) cycle  

 Energy production in P. aeruginosa mainly relies on aerobic respiration. Therefore, the 

tricarboxylic acid cycle (TCA) is essential for the production of reducing equivalents for the respiratory 

chain. TCA cycle plays a dual role in the cell, (i) catabolism of acetyl-CoA into CO2, producing reducing 

power to generate ATP via oxidative phosphorylation, (ii) synthesis of metabolite precursors for amino acid 

and fatty acid synthesis.  A microarray study done under iron-limiting conditions demonstrated reduced 

expression levels in iron-containing enzymes in the TCA cycle [4].  The Δbfd mutant cells’ proteome, 

experiences an under-representation of TCA cycle enzymes, aconitase, succinate dehydrogenase, and 

fumarase.  

The key source of acetyl-CoA in the TCA cycle is pyruvate. Pyruvate dehydrogenase (AceE- no 

change) converts pyruvate into acetyl-CoA. Additionally, AcoA (probable dehydrogenase E1 component, 

log2 FC=-2.16), AcoB (Acetoin catabolism protein, log2 FC=-1.86), and AcoC (probable hydrolase, log2 

FC=-1.30) can covert pyruvate into Acetyl-CoA via the formation of acetoin. The AcoA, AcoB, and AcoC 

are enzymes of the acetoin cleaving system in the butanoate metabolism pathway (Figure 4-8).  

Acetyl-CoA, transfers the acetyl group to oxaloacetate generating citrate. Citrate is isomerized to 

isocitrate through cis-aconitate, aconitases catalyze this reaction. Aconitases, AcnA (log2 FC= -1.10), and 
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AcnB (log2 FC= -0.53) are 4Fe-4S cluster containing proteins. The activity of the AcnB is considered 

essential for the TCA cycle, and the under-representation of aconitases in the Δbfd mutant cells produce 

breaks in the TCA cycle [29]. 

Succinyl-CoA is converted into succinate by Probable Co-A transferase (PA5445, log2 FC= -0.55), 

and succinyl-CoA synthetases, SucC (succinyl-CoA synthetase beta chain, no change), and SucD (succinyl-

CoA synthetase alpha chain, no change).  The produced succinate is converted into fumarate by succinate 

dehydrogenases (Sdhs). Sdhs are a part of the TCA cycle and the electron transport chain. The Sdhs catalyze 

the oxidation of succinate to fumarate while reducing ubiquinone to ubiquinol in the cytosolic membrane. 

SdhC is a cytosolic membrane protein, which participates in the TCA cycle and electron transport chain 

reactions. The SdhC inhibitor, promysalin prevented the SdhCs coupled reactions in P. aeruginosa. In the 

presence of promysalin, the utilization of glucose or succinate as the carbon source brought challenges to 

the P. aeruginsa growth [30]. The RNA-sequencing data corroborated this fact. In the attendance of 

Table 4-2: Proteins involved in carbon metabolism are under-represented the  Δbfd mutant cells 
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promysalin, some Entner–Doudoroff pathway genes were downregulated, indicating alterations in the 

carbon flux [30, 31]. SdhC (log2 FC= -0.57, p>0.05) is under-represented in the Δbfd mutant cells, and this 

may create implications in the carbon flux and the electron transport chain.  

Transposon sequencing data (Tn-seq) identified FumA (fumarase, PA4333, log2FC= -2.08) as an 

essential enzyme for P. aeruginosa [29]. FumA is an iron-binding protein and is under the PrrF regulon, 

and one of the significantly under-represented proteins in the TCA cycle enzymes in the Δbfd mutant cells 

[32]. FumC1 (fumarase hydratase, PA4470, log2FC= 3.23) is over-represented and may compensate for the 

low levels of FumA. FumC1 is known to over-express under iron-deprived conditions [33]. Fumarase 

convert fumarate to malate, and additional fumarate is produced in the cells by aromatic amino acid 

Figure 4-8: A schematic representation of the Tricarboxylic Acid cycle (TCA). The color scale of 

protein abundance log2fold change (Δbfd/ wt), is included. (Figure is modified from the KEGG pathway: 

pae00020, Ref.14) 
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degradation. Under low iron levels, iron independent, FumC1 allows the entry of the produced fumarate 

into the TCA cycle [32].  

The glyoxylate shunt allows bypassing the oxidative decarboxylation when the lower part of the 

TCA cycle is affected.   In the current study, no change in the expression levels of glyoxylate shunt enzymes, 

isocitrate lyase (AceA), and malate synthase G (GlcB) were observed in the Δbfd mutant cells.  

(B) Butanone metabolism 

P. aeruginosa cells can utilize the synthesized pyruvate from the EDP or PPP to produce 2,3-

butanediol (Figure 4-9). 2,3-Butanediol (2,3-BD) is a commonly found primary metabolite in the 

microenvironments of the human lung during P. aeruginosa infections [34]. In the 2,3-butanediol synthesis, 

pyruvate is converted to α-acetolactate by two probable decarboxylases, PA2035 (log2FC= -0.54) and 

PA3506 (log2FC= -0.56). The produced α-acetolactate is converted to (R)-2- acetoin or (S)-2-acetoin via 

diacetyl by PA4148 (probable short-chain dehydrogenase, log2FC=-2.25) and PA4151 (2,3-butanediol 

dehydrogenase, log2FC=-1.58). The (R)-2- acetoin and (S)-2-acetoin are reduced to form three 

stereoisomeric forms of 2,3-BD (Figure 4-9). The produced 2,3-BD is secreted or converted back to (R)-

2- acetoin or (S)-2-acetoin to produce acetyl-CoA or aldehyde, which are subsequently converted into 

acetyl-CoA and introduced into the TCA cycle [34]. The conversion of acetoin to acetyl-CoA is catalyzed 

by, AcoA (probable dehydrogenase E1 component, log2 FC=-2.16), AcoB (Acetoin catabolism protein, log2 

FC=-1.86), and AcoC (probable hydrolase, log2 FC=-1.30) [34].  

The isogenic mutants of P. aeruginosa (PA01), PA4150, PA4151 or PA4153 resulted in decreased 

biofilm formation and low competitiveness in the rhizosphere [34].  The 2,3-BD catabolism related genes 

are essential in P. aeruginosa fitness, virulence, and infection. Additionally, being able to utilize 2,3-BD is 

an advantage when growing in restrictive nutrient environments such as airways of cystic fibrosis patients 

[34]. 
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In the Δbfd mutant cells, the butanone metabolism pathway is compromised relative to the wild 

type cells. The enzymes involved in the 2,3-BD metabolism are not iron-harboring proteins. Therefore, the 

under-representation of the related enzymes may be a measure taken by the Δbfd mutant cells to preserve 

produced pyruvate for energy and amino acid production. Thus, the Δbfd mutant cells repress the other 

mechanism that uses pyruvate as a substrate. Consequently, the failure to secrete or use 2,3-BD may reduce 

the fitness and the virulence of the Δbfd mutant cells. 

4.3.4 Amino acid biosynthesis  

Amino acids are the primary building block of proteins as well as vital metabolic intermediates. In 

the Δbfd mutant cells, about 20 enzymes required in amino acid biosynthesis are under-represented; 8 of 

these are identified as iron-binding proteins. A reasonable fraction of the cells’ energy is devoted to the 

biosynthesis of amino acids. The central carbon metabolism provides necessary precursors for the synthesis 

of 20 primary amino acids. Thereby cells lose some energy-producing intermediates due to this diversion. 

Figure 4-9: Butanone metabolism pathway of P.aeruginsa. The color scale of protein abundance 

log2fold change (Δbfd/ wt), is included. (Top: Figure is modified from the KEGG pathway: pae00650, 

Ref.14. Bottom: adapted with permission from Ref. 34, copyright 2018 Society for Applied 

Microbiology and John Wiley & Sons Ltd.) 
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Moreover, additional energy from the cells is required to convert the carbon metabolism precursors into 

amino acids [35]. Therefore, the Δbfd mutant cells appear to down-regulate or have a lower basal expression 

level in the amino acid biosynthesis-related genes to preserve resources for the essential cellular functions.  

 

(A) Glycine and serine biosynthesis 

P. aeruginosa can use glycine betaine (GB) as carbon, nitrogen, and energy source. GB can also 

act as an important osmoprotectant. GB can be uptaken as a free molecule or can be derived from choline 

or carnitine. As illustrated in Figure 4-10, GB binds to CbcX (log2 FC=-0.5) in the periplasm. GB in the 

periplasm is taken into the cell cytosol by the ABC family transporters, CbcV (log2 FC= -1.09), and CbcW 

(log2 FC= -1.17) [36].  

Table 4-3: Amino acid biosynthesis paths affected in the Δbfd mutant cells 
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The proteins, GbcA (glycine betaine catabolism A, log2FC= -2.27) and GbcB (glycine betaine 

catabolism B, log2FC= -2.01) are necessary to convert GB to dimethylglycine (DMG) in the cytosol. Both 

GbcA and GbcB are iron-containing proteins and are under-represented   ̴5-fold in the Δbfd mutant cells 

compared to the wild type cells. The knockout mutants of gbcA and gbcB failed to utilize GB or choline as 

a carbon source but were able to use dimethylglycine (DMG) [37]. The enzymes GbcA and GbcB are 

essential to convert GB to DMG in order to synthesize glycine. 

Proteins involved in dimethylglycine catabolism, DgcA (log2FC= -2.07) and DgcB (log2FC= -3.41) 

are predicted to be a flavin mononucleotide oxidoreductase and a membrane associated  ferredoxin Fe-S 

oxidoreductase respectively [37]. DMG is demethylated to sarcosine by DgcA and DgcB enzymes. The 

Figure 4-10:The glycine-betaine metabolism pathway in P.aeruginosa may be compromised in the Δbfd 

mutant Glycine-betaine is converted into pyruvate by a series of biological reactions. Glycine and serine 

are produced as intermediates. The color scale of protein abundance log2fold change (Δbfd/ wt), is 

included. (Figures are adapted from Ref. 36 and Ref. 38) 
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production of sarcosine stimulates the sarcosine oxidation and utilization regulator and thereby inducing 

the soxBDAG operon [38]. SoxB (log2FC= -1.70), SoxD (log2FC= -1.28) and SoxA ([2Fe-2S] enzyme, 

log2FC= -1.90) enzymes are involved in the sarcosine catabolism to glycine. The SoxBDA enzymes are 

under-represented, while the SoxG presented no change in the Δbfd mutant cells relative to the wild type. 

The produced glycine is catabolized to serine via GlyA1 (serine hydroxymethyltransferase, log2FC= -1.16). 

Serine is converted into pyruvate by SdaB (L-serine dehydratase, log2FC= -2.81). The under-representation 

of the enzymes in the of the glycine betaine pathway proves the strain in the Δbfd cells in the catabolism of 

GB as a carbon source. Consequently, the synthesis of the amino acids, glycine, serine, and pyruvate appear 

to be compromised. Moreover, pyruvate acts as a precursor for the synthesis of 11 other amino acids 

(Figure 4-11), which are also be affected.  

(B) Biosynthesis of other amino acids 

The biosynthetic pathway of 11 other amino acids is illustrated in Figure 4-11. Pyruvate is 

converted to valine via 2-oxoisovalerate using the probable decarboxylase enzymes PA2035 (log2FC= -

0.54) and PA3506 (log2FC= -0.56). The 2-oxoisovalerate can be converted into 2-oxoisocaproate by LeuC 

(3-isopropylmatate dehydrogenase large subunit, log2FC= -1.09) and LeuD (3- isopropylmatate 

dehydrogenase small subunit, log2FC= -0.85), with the subsequent production of leucine. The enzymes 

LeuCD are also involved in the conversion of pyruvate to 2-oxobutanoate for the successive production of 

isoleucine. LeuC is a [4Fe-4S] cluster harboring enzyme; both LeuCD are under-represented in the Δbfd 

cells, which may affect the biosynthesis of valine, leucine, and Isoleucine.  

Pyruvate derived oxaloacetate is converted into 2-oxoglutarate using aconitases, AcnA (log2FC= -

1.10) and AcnB (log2FC= -0.53). Both aconitases are iron-dependent and are under-represented in the Δbfd 

mutant cells. The 2-oxoglutarate or the derived product 2-oxoadipate is used for the synthesis of lysine, 

aspartate, asparagine, glutamate, glutamine, proline and arginine.  

Additionally, aspartate is converted to asparagine using, PA3459 (probable glutamine 

amidotransferase, log2FC= -0.51), PA2084 (probable asparagine synthetase, log2FC= 0.87) and PhzH 
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(potential phenazine modifying enzyme, log2FC= 0.61). There is an over-representation in PA2084 and 

PhzH; the over-representation of PhzH may not be related to the asparagine synthesis because it is also 

involved in quorum sensing. 

The enzyme PA0399 (cystathione betasynthase, log2FC= 0.50) is involved in the production of 

cystathionin from serine is over-represented. There may be an additional need for cysteine in the Δbfd cells, 

to repair damaged Fe-S cluster proteins and to synthesize pyochelin.  

The under-representation of aconitase, LeuCD in the Δbfd mutant cells, may affect the biosynthesis 

of 9 amino acids. Besides, the levels of glycine, serine are also affected due to the under-representation 

glycine-betaine metabolism-related enzymes.  The in-cell amino acid content analysis by NMR identified 

Figure 4-11: The biosynthesis of several amino acids in P.aeruginosa may be compromised in the Δbfd 

mutant. Pyruvate acts as the precursor for the synthesis of several types of amino acids. The color scale 

of protein abundance log2fold change (Δbfd/ wt), is included. (Figure modified from the KEGG pathway: 

pae01230, Ref.14) 
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low levels of glycine, leucine, valine, alanine, glutamate, and aspartate in the Δbfd mutant cells relative to 

the wild type cells (unpublished data).  

4.3.5 Sulfur metabolism  

 

Sulfur is an essential nutrient and is mainly found in cysteine, methionine, cofactors, and prosthetic 

groups such as Fe-S centers. Sulfate uptake and metabolism-related enzymes are over-represented in the 

Δbfd cells, suggesting a nutritional requirement for sulfur higher than the wild type cells. P. aeruginosa can 

utilize a broad range of sulfur sources, including cysteine, methionine, sulfate, thiocyanate, 

alkanesulfonates and organosulfate esters. The pathways for sulfate assimilation and cysteine biosynthesis 

proceeds by activating inorganic sulfate and reducing the intermediate 3'-phosphoadenosine-5'-

phosphosulfate (PAPS) to sulfite (Figure 4-12). The produced sulfite is transferred into an organic 

backbone.  

The extracellular sulfate transporter contains, a periplasmic sulfate binding protein (Sbp, (log2FC= 

1.75), permeases CysT (log2FC= 0.57) and CysW (not detected), and a ATP binding domain CysA 

(log2FC= 0.87). ATP sulfurylase activates sulfate via and ATP-dependent reaction resulting in the 

formation of adenylyl sulfate (APS) and pyrophosphate. This involves the catalytic subunit CysD (log2FC= 

0.57) and the GTP regulatory subunit CysN (log2FC= 0.65).  APS is converted into PAPS by ATP-

Table 4-4: The sulfur assimilation pathway related proteins are over-represented in the Δbfd cells. 
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dependent phosphorylation.  APS kinase, CysN consists a GTP-binding subunit and an adenosine 5’-

phosphosulfate kinase subunit. e P. aeruginosa CysN shows the fusion activity of E. coli CysC and CysN 

proteins [39]. PAPS is converted to phosphoadenosine phosphate (PAP) and sulfite by PAPS 

sulfotransferase, CysH (No change).  

P. aeruginosa can uptake extracellular alkane sulfonates using the SsuA family ABC transporter, 

aliphatic sulfonates-binding proteins, PA3445 (log2FC= 2.51) and PA2594 (log2FC= 1.37). Taurine, 

aminoethylsufonic acid is transported into the cell via TauABC. Only TauA (probable periplasmic taurine 

binding protein, log2FC= 2.69) was identified in the proteomics data set. In the preceding steps, taurine and 

the alkanesulfonates are converted into sulfite by TauD (not detected) and MsuDE (not detected), 

respectively.  

Figure 4-12: Sulfur assimilation pathway of P. aeruginosa. The color scale of protein abundance 

log2fold change (Δbfd/ wt), is included. (Figure modified from the KEGG pathway: pae00920, Ref.14) 
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Produced sulfite is reduced to sulfide by NADPH sulfite reductase, CysI (log2FC= 0.54). CysI is a 

hemoprotein harboring a 4Fe-4S cluster and a siroheme binding motif typical of the sulfite and nitrite 

reductases family [39, 40]. Sulfite can be converted into polysulfide by PA2566 (log2FC= -1.12), which is 

predicted to have a FAD/NAD(P) binding domain. In the sulfur assimilation pathway, this is the only under-

represented enzyme. The produced sulfide can be used for the synthesis of cysteine, which is necessary for 

the Fe-S cluster proteins and pyochelin biosynthesis.  

4.3.6 Selective Resistance-Nodulation-Cell Division (RND) efflux pumps  

Quinolones, ciprofloxacin, and levofloxacin are widely used to treat P. aeruginosa infections. The 

mutations in the targets, GyrA, ParC, GyrB, and ParE can lower the effectiveness of the quinolones. 

Additionally, the over-expression of efflux pumps helps to avoid antibiotic accumulation in the cytosol and 

thereby to prevent damage caused by the antibiotics. Efflux pumps belong to the resistance nodulation cell 

division (RND) family of transporters includes, MexAB-OprM, MexXY-OprM, MexCD-OprJ, and 

MexEF-OprN. The mexEF-oprN operon confers resistance of P. aeruginosa to quinolones, 

chloramphenicol and trimethoprim [41].  

The activity of MexS (log2FC= -1.10) is postulated to be a putative upper regulator of the mexEF-

oprN [42]. The mexS gene is located upstream of the mexT gene. The expression of MexEF-OprN is 

positively regulated by the transcriptional activator, MexT (No change), coded by mexT adjacent to the 

mexEF-oprN.  

Figure 4-13: The mexEF-oprN operon of P. aeruginosa. Proteins MexS, MexE and MexF were under-

represented in the Δbfd mutant cells. The color scale of protein abundance log2fold change (Δbfd/ wt), 

is included. 
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MexEF-OprN consists of an inner-membrane drug proton antiporter (RND component) MexF 

(log2FC= -1.24), an outer membrane channel OprN (No change), and a periplasmic membrane fusion 

protein MexE (log2FC= -1.15)  [43]. 

Over-expression of MexEF-OprN in P. aeruginosa allows developing resistance to 

fluoroquinolones, where the Minimum Inhibitory Concentrations (MIC) are increased up to 8 µg/mL. 

Moreover, persisting in the presence of ciprofloxacin results in an additional requirement for iron. [44].  

In the Δbfd mutant cells, the MexEF-OprN is under-represented, probably as an implication of iron 

homeostasis dysregulation. Iron homeostasis dysregulation by the small molecule inhibitors of the 

BfrB:Bfd interaction made P. aeruginosa cells more susceptible to fluoroquinolones [45]. Consequently, 

under iron homeostasis dysregulation the cells' inability to express the mexEF-OprN pumps at their 

optimum levels resulted in additional susceptibility to fluoroquinolones.  

4.3.7 Other essential cellular functions affected  

In P. aeruginosa Δbfd mutant cells, several other cellular functions were affected as a result of the 

iron homeostasis dysregulation. Most importantly, reactive oxygen species management, nitrogen 

metabolism, phenazine biosynthesis, biofilm formation and pyrimidine metabolism were affected.  

(A) Oxidative stress 

In aerobic bacteria, the majority of the metabolic energy is supplied via oxidative phosphorylation, 

which involves reducing molecular oxygen to water. Electrons from the electron transport chain or redox 

enzymes can reduce O2 directly, which can progress into the production of reactive oxygen species (ROS), 

such as superoxide radical (O2
- ), hydrogen peroxide (H2O2), and hydroxyl radical. In addition to the ROS 

generated in the cells, bacteria could get exposed to exogenous ROS as well. ROS could damage the 

enzymes, DNA, and lipids. Antioxidant enzymes such as catalases, superoxide dismutase, and peroxidases 
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protect against the generated ROS in the cells. Superoxide dismutase (SOD) converts produced O2
-  radicals 

into H2O2 and O2. Catalases and peroxidases, disproportionate H2O2 to water and O2.  

 

P. aeruginosa possesses two superoxide dismutases. SodB has iron as the cofactor and SodM has 

manganese as the co-factor. In the Δbfd cells, SodB (log2FC= -0.90) is under-represented relative to the 

wild type. Interestingly, the Mn-binding SodM (log2FC= 3.20) is significantly over-represented. The SodM-

Mn containing enzyme’s activity is elevated only under an iron starvation condition. A study done by 

Ghorbal and co-workers revealed the importance of Fe-SOD compared to the Mn-SOD. P. aeruginosa cells 

were exposed to UV-C radiation, and the activities of SodB vs SodM were compared. The overall results 

Table 4-5: Functional importance of other proteins differently affected in the Δbfd mutant cells 
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suggest an important protective role played by SodB against the radiation generated ROS [46]. It is evident 

in the proteomics data that the cells express high levels of SodM to compensate for the loss in SodB. 

P. aeruginosa contains three monofunctional heme-containing catalases, KatA, KatB, and KatE. 

Additionally, another non-heme pseudo catalase (KatN PA218) has also been discovered [47]. KatA is 

necessary to defend against H2O2, and important for virulence and osmoprotection. The activity of KatB 

cannot fully compensate for the absence of KatA [47]. In the Δbfd cells, heme-containing KatA (log2FC= -

1.15) and KatE (log2FC= -0.91) were under-represented, but the levels of KatN, non-heme catalase (Mn 

catalase) were not changed. The low abundance of heme catalases generates difficulties in the cells in 

defending against H2O2. High levels of H2O2 cause damages to the proteins, lipids, and DNA in the cells. 

(B) Quorum sensing and biofilm formation 

P. aeruginosa cells contain regulatory networks for the production of secondary metabolites and 

virulence factors. The intracellular communication network is known as quorum sensing (QS). QS network 

regulates the gene expression relative to the growth phase, culture density, iron availability etc. The QS 

system consists of three main QS signaling pathways, las, rhl, and pqs. The las and rhl system uses N-

acylhomoserine lactones, and the pqs system employs 2-alkyl-4-quinolones (AQs) as QS signal molecules. 

The QS system mainly depends on the synthesis, secretion, and recognition of the signal molecules, which 

allows bacteria to operate at the population level.  

P. aeruginosa synthesizes more than 50 AQs. Among them, 2-heptyl-3-hydroxy-4-quinolone 

(Pseudomonas Quinolone Signal (PQS)) and its precursor 2-heptyl-4-hydroxyquinoline (HHQ), stand high 

significance [48]. Most AQs synthesis genes are in the pqsABCDE operon, and the operon is under the 

regulation of PqsR (a transcription factor). PqsR is also induced, in the presence of the sigma factor PvdS 

(under iron starvation conditions), and Fur-regulated sRNAs, PrrF1, and Prrf2 [49].  

Chorismate is the precursor for aromatic amino acid and PQS biosynthesis. In the first step of PQS 

biosynthesis, chorismate is converted into anthranilate by anthranilate synthase (Figure 4-14). Anthranilate 
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is converted into anthaniloyl-CoA by PqsA (not detected). Next, anthaniloyl-CoA condenses with malonyl-

CoA forming 2-aminobenzoylacetyl-CoA (2-ABA-CoA). This reaction is catalyzed by the condensing 

enzyme PqsD (log2FC= 0.68). 

The thioesterase activity of PqsEs (log2FC= 1.06) converts 2-ABA-CoA to 2-aminobenzoylacetate 

(2-ABA). PqsE represses the 2-aminobenzoylacetate (DHQ) formation and supports 2-ABA formation. 

PqsE also enhances the production of 2,4-dihydroxyquinoline (2-AA). This enzyme plays an important role 

in balancing the levels of secondary metabolites derived from the AQ biosynthetic pathway [50]. PqsE is 

known as the “PQS response protein” and is also important in PQS –mediated synthesis of pyocyanin and 

rhamnolipids. PqsBC (no change) heterodimer condenses 2-ABA and octanoyl-coenzymeA forming HHQ. 

The produced HHQ is oxidized to PQS by the monooxygenase, PqsH (log2FC= 1.22).  

The enzymes PqsD, PqsE, and PqsH are over-represented in the Δbfd mutant cells. In a previous 

study done by Soldano and co-workers, the Δbfd, and the bfrB(L68A/E81A) mutant cells overproduced 

HHQ, PQS, and HQNO [49]. Low cytosolic free iron levels caused by the blockade of the BfrB:Bfd 

interaction elicited PQS and HHQ biosynthesis approximately  ̴ 10-fold more than the wild type cells. 

Figure 4-14: The PQS biosynthesis pathway of P. aeruginosa. The color scale of protein abundance 

log2fold change (Δbfd/ wt), is included. (Figure modified from the KEGG pathway: pae02024, Ref.14 

and Ref.48) 
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Which agrees with the over-representation of the PQS and HHQ biosynthesis enzymes in the Δbfd mutant 

cells.  

Additionally, iron availability affects the swarming motility and biofilm formation. Rhamnolipid 

and lectin synthesis is regulated by the rhl QS system. Galactophilic lectins, LecA, and LecB are important 

in biofilm development and cell adhesion [51]. LecA (log2FC= 1.12) is over-represented in the Δbfd mutant 

cells.  In P. aeruginosa, rhamnolipids are considered important in defining the structure of biofilms and are 

normally produced during the late stages of biofilm formation. Under iron limiting conditions rhamnolipids 

synthesis operon rhlAB is induced, and the synthesis could shift to the early stages of biofilms formation, 

which results in high swarming motility and biofilm dispersal [49, 51]. The Δbfd mutant cells secrete about 

5- fold more rphamnolipids relative to the wild type cells at 48 h (static growth in PI media supplemented 

with 20 μM iron) [49]. The Δbfd mutant cells exhibit over-represented RhlB (log2FC= 0.49), which is one 

of the proteins coded by rhlAB operon (RhlA-no change). The proteomics analysis was done by collecting 

the cells at 30 h, and presumably, in the longer cultures, rhamnolipid synthesis enzymes in the Δbfd mutant 

cells may over-express significantly. 

(C) Alkaline proteases 

The ability of P. aeruginosa to secrete extracellular proteins is one of the major factors related to 

the virulence. Under iron-rich conditions, the expression of exotoxins and proteases are repressed. Several 

protein secretion pathways are present in P. aeruginosa, and each pathway is dedicated to a protein or a 

group of proteins. Type III pathway is used for the secretion of exoenzymeS and other regulated proteins. 

Secretion of degradative enzymes and toxins such as elastases, lipases and exotoxin A are carried out by 

the type II secretion system [52].  

Alkaline proteases (AP) are secreted by a type I system. Membrane proteins AprD, AprE, and AprF 

are the members of this ABC exporter. AprD (log2FC= 1.32) is the ATD binding cassette, and AprE 

(log2FC= 1.57) and AprF (not detected) are the components in the membrane fusion protein and the outer 
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membrane protein respectively. The alkaline proteases AprA and AprX (log2FC= 0.75) are secreted via the 

AprDEF exporter [52].  

The alkaline protease AprA can degrade components in the host immune system, such as cytokines 

(IFN-ɣ and TNF-α) and complement C1q andC3 [53]. AP secretion is iron-responsive and is regulated by 

the master iron regulator (Fur). Also, the AP production is promoted in the presence of the iron starvation 

sigma factor PvdS. AP can proteolytically cleave proteins such as transferrin and released iron for the use 

of cells [54]. The over-representation of AP related proteins in the Δbfd mutant cells is an attempt to 

overcome the cell's nutritional requirement for iron, amino acids, C and N. 

(D) Aerobic respiration 

The primary energy production mechanism in P. aeruginosa is respiration. Respiration uses the 

proton motive force for ATP synthesis. About 17 respiration related dehydrogenases are responsible for 

feeding electrons from the respiratory substrates into the quinone pool. The dehydrogenases include three 

different types of NADH dehydrogenases and a succinate dehydrogenase (SdhC, log2FC= -0.57, p value 

=0.15). Sdh is a part of the TCA cycle and the electron transport chain. Sdh catalyzes the oxidation of 

succinate to fumarate with concomitant reduction of cofactor ubiquinone (CoQ10) to ubiquinol [30]. The 

heme binding enzyme, SdhC, is under-represented in the Δbfd mutant, which disrupts the TCA cycle 

affecting electron flow into the oxidative phosphorylation. 

P. aeruginosa possess a highly branched respiratory chain, terminated via multiple terminal 

oxidases and denitrification enzymes. Five terminal oxidases catalyze the reduction of O2 to water. Two of 

them are quinol oxidases that receive electrons from ubiquinol (cytochrome bo3 oxidase (Cyo) and the 

cyanide-insensitive oxidase (CIO)). The other three, cbb3-1 oxidase (Cbb3-1), cbb3 -2 oxidase (Cbb3-2), 

and aa3 oxidase (Aa3), are cytochrome c oxidases that receive electrons from cytochrome bc1 and c-type 

cytochromes [55]. In the Δbfd mutant, heme-containing cbb3 type cytochrome c oxidase enzymes CcoN2 

(log2FC= -0.50) and CcoN (log2FC= -0.97) were under-represented.  
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The CcoN is coded by the ccoNOQP tetracistronuic operon. CcoNs catalytic subunit comprises of 

a binuclear center, that contains a high spin heme b3 and a CuB. Enzyme CcoN2 is a product of cbb3 

cytochrome oxidase (Cbb3-2) gene ccoN2O2Q2P2 [55]. The cco2 genes are over-expressed under low 

oxygen conditions or during the stationary phase when the oxygen levels are low. The expression of cbb3 

oxidases are critical for respiration under microaerobic conditions [55]. The under-representation of heme-

containing respiratory enzymes brings in a disadvantage in energy production to the Δbfd mutant cell. 

(E) Anaerobic respiration 

Nitrate acts as a terminal electron acceptor under anaerobic respiratory conditions. Reducing nitrate 

to nitrite generates a transmembrane proton motive force that allows ATP synthesis during anaerobic 

growth. Nitrate reduction in respiration can be mediated by nitrate reductase complexes, NarGHI, and 

NapAB. 

NarGHI (inner membrane-bound) is encoded by the narK1K2GHJI operon, and NapAB 

(periplasmic nitrate reductase) is encoded by the napEFDABC operon [56]. NapA (log2FC= -1.34) is the 

large subunit in the complex which contains a molybdenum cofactor and a [4Fe-4S cluster]. NapB (log2FC= 

-1.05) is a nitrate reductase cytochrome c-type subunit and NapC (log2FC= -1.26) is a nitrate reductase c-

type cytochrome with a heme [57]. The NapAB and NapC are under- resented in the Δbfd mutant cells. The 

low availability of iron reduced the expression levels of iron containing NapA and NapC. The low 

abundance of these proteins in the Δbfd mutant cells may result in difficulties to respire nitrate and nitrite 

under anaerobic conditions. 

(E) Pyrimidine/purine metabolism 

P. aeruginosa encodes for three Ribonucleotide Reductase (RNRs) classes (Ia, II and III).  These 

enzymes catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides. 

Deoxyribonucleotides are important for DNA synthesis and repair. Class I RNRs use oxygen to generate a 

tyrosyl radical with the help of a di-ferric iron or a di-manganese ion center [58]. Class Ia RNRs, NrdA 
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(log2FC= -0.95) harbors the active site for substrate binding and iron-binding protein NrdB (log2FC= -0.53, 

p value=0.052) contains a stable tyrosyl radical to initiate the catalysis [58]. Class Ib RNRs can substitute 

manganese for iron under iron-deplete conditions [59]. RNRs activity is highly regulated in the cells. An 

unbalanced level of dNTPs could increase the mutation rate and loose DNA replication reliability [60]. 

Under-representation of the NrdA and NrdB enzymes in the Δbfd mutant cells may affect the DNA synthesis 

and repair. Also, Δbfd mutant cells may face difficulties during cell proliferation, as there is a high 

requirement for dNTPs for daughter DNA synthesis.  

4.4 Conclusions 

BfrB is the main iron storage protein in P. aeruginosa [1]. Iron mobilization from BfrB requires 

specific interactions with a ferredoxin, Bfd [2]. In-cell studies with P. aeruginosa bfd gene knockout mutant 

(Δbfd) discovered the BfrB:Bfd interaction as the sole mechanism to release iron from BfrB. Blocking the 

BfrB:Bfd interaction resulted in irreversible accumulation of iron in BfrB and cytosolic iron deprivation.  

Consequently, the Δbfd mutant shows iron starvation responses regardless of the high iron content in the 

cells [1].  

Alterations in iron homeostasis by disrupting the BfrB:Bfd interaction resulted in significant 

changes in the protein expression and metabolism. When the free iron levels in the cytosol are low, the apo-

Fur depresses the iron acquisition systems. Moreover, low iron conditions induce the expression of PrrF 

small regulatory RNAs that repress the expression of multiple iron-containing proteins. Analysis of the P. 

aeruginosa wild type cells and Δbfd mutant cells proteome allowed us to identify 3034 P. aeruginosa 

proteins. Among them, 250 proteins were differentially expressed in the Δbfd mutant cells. Metabolic 

pathway assignments for the differentially regulated proteins permitted to identify some critical changes in 

the Δbfd mutant metabolism. 

Iron acquisition-related proteins were significantly over-represented in the Δbfd mutant cells. All 

the enzymes involved in the pyoverdine and pyochelin biosynthesis, and Phu heme iron acquisition were 

over-represented. Additionally, the Δbfd mutant cells secrete alkaline protease in search for extracellular 
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iron. Pyoverdine synthesis machinery involves about 14 proteins, and it’s only triggered under severe iron 

limiting conditions. The majority of the cell resources are fluxed toward the pyoverdine synthesis. Despite 

the production cost, the Δbfd mutant cells continued to produce siderophores, as iron is a crucial cofactor 

to drive metabolic functions. 

Essential cellular mechanisms, such as the Tricarboxylic acid cycle (TCA), respiratory cycle, amino 

acid synthesis, and oxidative stress tolerance, rely on iron availability. Iron-containing TCA cycle enzymes, 

aconitases (AcnA, AcnB, and a probable aconitase - PA0794) succinate dehydrogenase (SdhC), fumarase 

(FumA), were under-represented in the Δbfd mutant cells. The low levels of these essential enzymes disrupt 

the TCA cycle and affect the energy production. Interestingly, the activity of iron-dependent fumarase 

FumA is restored by an iron-independent FumC1. 

Pyruvate is essential for the TCA cycle and amino acid biosynthesis and is generated by glycolysis 

and glycine-betaine metabolism. Pyruvate synthesis from the glycine-betaine metabolism was 

compromised as most of the enzymes in the metabolism path were under-represented.  Therefore, Δbfd 

mutant cells block pyruvate consuming pathways such as 2,3-butanone synthesis by down-regulating the 

butanone metabolism-related proteins. 

Glycine is synthesized through the glycine-betaine metabolism path, and 12 enzymes in this 

pathway were under-represented. Iron-independent CbcX, CbcV, CbcW, DgcA, SoxB, and SoxD enzymes 

and iron-dependent GbcA, GbcB, SoxA, and SdaB are among the under-represented proteins. The 

synthesized glycine can be converted into pyruvate, and subsequently used in the TCA cycle and amino 

acid biosynthesis. Consequently, the disruption of the glycine-betaine metabolism may affect the TCA cycle 

and amino acid biosynthesis. 

Amino acid biosynthesis-related enzymes, LeuD, AcnA, AcnB, SdaB are affected by low iron 

levels. This results in reduced levels of amino acids, Val, Ile, Leu, Lys, Asp, Gln, Glu, Pro, and Arg in the 

cell, which affect the protein synthesis and amino acid-related functions. Iron-containing oxidative stress-
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managing enzymes KatA, KatE, and SodB are under-represented. The inability to manage reactive oxygen 

species in the cells could result in damages to DNA, protein, and lipids. Interestingly, the low levels of iron-

dependent superoxide dismutase, SodB is compensated by the Mn-dependent SodM. 

In the Δbfd mutant, Pseudomonas Quorum Sensing (PQS) network-related enzymes are over-

represented as a result of low cytosolic iron levels [49]. The over-representation of the sulfur assimilation 

pathway-related proteins indicate an additional need for sulfur in the Δbfd mutant. Sulfur is necessary for 

Fe-S cluster biogenesis and cysteine biosynthesis. The synthesized cysteines are used to produce pyochelin 

as well, which results in an additional requirement for sulfur in the cell.  Moreover, in the Δbfd mutant, the 

fluoroquinolone efflux pump MexEF is under-represented. Reduced expression levels of the MexEF efflux 

pump under low iron conditions results in enhanced fluoroquinolone susceptibility. This agrees with the 

potentiation of fluoroquinolones in the presence of the BfrB:Bfd inhibitors [45].     

Disrupting the BfrB:Bfd interaction in P. aeruginosa uncovered weaknesses in its broader 

metabolism. Low cytosolic iron levels repressed or maintained a basal expression level for iron harboring 

enzymes, which affected the iron-independent enzyme regulation as well. Under low iron conditions, cells 

adapt their metabolism to be driven under sub-optimal levels. These additional weaknesses generated by 

blocking the BfrB:Bfd interaction in P. aeruginosa, make BfrB:Bfd an ideal anti-infective target. Moreover, 

the sup-optimal metabolism under low cytosolic iron levels generates an additional susceptibility for 

antibiotics. Also, inhibiting BfrB:Bfd interaction by small molecules may cause similar weaknesses in P. 

aeruginosa cells. Further investigations are necessary to reach this end.  
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Chapter 5 : Purification of recombinant topoisomerase IA from P. aeruginosa 

5.1 Introduction 

5.1.1 Topoisomerase IA enzymes 

DNA topoisomerases are classical enzymes that help cells to solve DNA topological problems 

occurred during replication, transcription, and recombination. The importance of topoisomerase arises 

because of the double-helical structure of DNA. The double helices need to be unwound during 

transcription and replication, and topoisomerases introduce single or double strandard breaks into the DNA. 

Upon breaking a strand, a part of the broken strand forms a temporary covalent phosphodiester bond with 

the enzyme, and topology changes are introduced when the intact DNA strand passes through the break. 

This mechanism relieves intertwined parental DNA during replication, unlink catenated (interlocked) 

double strandard DNA, and introduce or remove knots to DNA [1].  

DNA topoisomerases are divided into two categories, type I and type II. These two types can be 

further grouped into four subfamilies: IA, IB, IIA, and IIB. Type I enzymes break a single DNA strand at 

a time. On the other hand, in type II enzymes, a pair of DNA strands in the double helix is transiently broken 

[2]. The difference between type IA and IB is the binding position of protein to DNA; the type IA binds to 

the 5’ phosphate, whereas type IB binds to the 3’ phosphate. In E. coli, all four DNA topoisomerases are 

identified, type IA enzymes: DNA topoisomerase I and III, and the type IIA enzymes: DNA gyrase and 

topoisomerase IV. Each of these proteins carries out a function related to DNA topology [3]. 

DNA topoisomerase IA catalyzes the relaxation of negatively supercoiled DNA. The energy of 

enzyme binding is sufficient to melt the DNA duplex locally and to introduce a single strandard break. The 

majority of type IA proteins bind to a pre-existing single strandard DNA. The type IA enzymes can also 

facilitate catenation (linking) and decatenation (unlinking) reactions of double strandard DNA [3]. As 

explained above, the enzyme introduces a nick into one of the DNA strands, then adds a temporary break 

in the opposite strand to unknot the DNA. 
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5.1.2 Structure and function relationships in topoisomerase IA 

When DNA topoisomerase IA nicks a single strand DNA, the 5’ phosphate interacts covalently 

with the tyrosine residue at the active site, whereas the 3’ end interacts with the protein non covalently. The 

activity of the topoisomerase IA requires the presence of Mg2+ ions for the positioning of the 3’ end of the 

cleaved DNA in the catalytic site. Once the DNA is nicked and the complementary strand passed through 

the cleft, supercoils get relaxed, and the enzyme cavity moves to the closed position. The nicked  DNA 

strand is ligated and released by opening the cavity again [3].  

The X-ray crystal structure of E. coli topoisomerase IA catalytic domain (residues 2-695) with a 

covalent DNA intermediate Figure 5-1 [4]. The catalytic residue, Tyr319, makes a covalent bond with the 

DNA fragment. The oligonucleotide 5’ to the catalytic site is buried in a deep groove formed by domains 

Figure 5-1: A) The structure of  E. coli Top I 67 kDa N-transesterification domain (residues 1-695, 

mutant D111N, PDB ID: 3PX7). The four domains are represented in different colors. (B) A 

representation of the DNA binding groove in surface rendering mode. The cleavage site is on the border 

between domain III and IV. (C) The side chain of Y177 wedges between the -4 and -5 bases forming π 

interactions. (Figures are reprinted with permission from Ref. 4) 
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I, III, and IV. The phosphate groups bind toward the deep end of the groove via hydrogen bonds and salt 

bridges. The phosphate that interacts with the catalytic Tyr is defined as the +1 base, and the phosphate 

groups toward the 5’ are defined as -1, -2, -3, etc. The phosphate groups toward the 3’ from the catalytic 

(+1) site are defined as +2, +3, +4, etc. The phosphate groups, +1, -1, -2, and -4 are held in position by 

R321, R493, R195, and R507 [4]. The R195 and R321 have identified to be essential for DNA cleavage in 

E. coli by mutagenesis. The ionic and hydrogen bonds of E115, R168, and D172 with the deoxyribose 

oxygens hold the DNA strand in place [4]. 

Bacterial topoisomerase I and II have a specific DNA cleavage selectivity. Top I has been shown 

to cleave DNA when there is a cytosine 4 bases 5’ the Tyr cleavage site. The X-ray crystal structure of E. 

coli catalytic domain with DNA shows a distinguishable twist between the -4 and -5 position in the DNA 

chain. The Y177 forms a wedge between the cytosine (-4) and guanine (-5). The specific twist and Y177 

form a sterically restrictive cavity in the protein, where only a cytosine can be accommodated at the -4 

position [4]. A similar observation was made in the X-ray crystal structure of Mycobacterium tuberculosis 

Figure 5-2: The Mg2+ binding site of the of M. tuberculosis Top I, TopMtTOP1-704t/MTS2-13/Mg 

(PDB code: 6CQ2). The Mg2+ is coordinated by two phosphate oxygens, E24, D111 and water (W1) 

forming a distorted octahedron with one ligand missing. (Figure is reprinted with permission from Ref.5) 
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topoisomerase I with single strand DNA. In this structure, the unique twist between the -4 and -5 positions 

and the side chain of Y176 generated the specificity for cytosine at the -4 position [5]. 

The acidic residues (acidic triad) DxDxE in the catalytic domain of the E. coli Top I is known to 

participate in the coordination of divalent metal ions to help hold the scissile bond in position for cleavage. 

The X-ray crystal structure of the M. tuberculosis, MTS2-13 (PDB ID:6CQ2) revealed Mg2+ binding at the 

active site of Top I. A Mg2+ ion is coordinated by E24, D111, a water molecule (W1), and two oxygens 

from phosphate. The Mg2+ coordination formed a distorted octahedral geometry with one ligand missing 

[5]. 

In addition to the N-terminal transesterification domain (residues 1-695), the C-terminal domain of 

the Top I is essential for the removal of the negative supercoils. Topoisomerases of E. coli and eukaryotes 

have three or more tetracysteine Zn-binding motifs in the C-terminal and is predicted to be a part of the 4-

Cys zinc ribbon domains. Mutations in the Zn coordination cysteine residues or the removal of Zn(II) from 

the protein resulted in a loss of enzyme activity [6]. Also, the C-terminal domain is essential for interacting 

with RNA polymerase β-subunit during transcription elongation. The full-length E. coli Top I structure 

bound to single-stranded DNA (ssDNA) provides significant structural insights about the C-terminal 

domain [7]. Among the 4-Cys zinc ribbon domains, none of the three Zn(II) binding sites directly interact 

with ssDNA. The metal binding site at the top of each Zn ribbon domain supports the stabilization of the 

fold and help to maintain a suitable conformation for the association and dissociation of ssDNA [7].  

P. aeruginosa is a Gram-negative pathogen and one of the significant causes of hospital-acquired 

infections. In World Health Organizations’ (WHO) report on the prioritization of pathogens to guide new 

antibiotics development, P. aeruginosa is identified as a critical priority pathogen [8]. P. aeruginosa is 

intrinsically resistant to many antibiotics and expresses an array of efflux pumps limiting the access of 

antibiotics to their targets. Currently, a wide range of novel antibiotic targets is being studied. These 

potential targets are associated with vital functions for the survival of cells, such as essential amino acid 

biosynthesis, siderophore biosynthesis, quorum sensing metabolism, and cell wall lipid synthesis [9].  
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Topoisomerase II (Gyrase) is an essential enzyme to maintain DNA topology during DNA 

replication, transcription, and recombination, and is the main target of fluoroquinolones. Topoisomerase IA 

is also involved in crucial DNA topology related functions. Several approaches are being taken so far to 

develop inhibitors for this protein, and Top I has been recently validated as a potential antitubercular target 

[10, 11]. Therefore, Top IA of P. aeruginosa may have potential therapeutic value for anti-infective 

development. The first step in inhibitor development is the structural and functional characterization of the 

target. In this chapter, the development of purification protocols, and biochemical characterization of Top 

IA of P. aeruginosa is discussed. 

Figure 5-3: (A) The domain arrangement of Top I is represented in different colors. (B)E. coli 

topoisomerase I, full length structure complexed with single stranded DNA (ssDNA), PDB ID: 4RUL. 

(Figure is reprinted with permission from Ref.7) 
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5.2 Experimental 

5.2.1 Cloning and purification of His-tagged P. aeruginosa Top IA  

The gene encoding P. aeruginosa Top IA (PA3011) was engineered, introducing codons favored 

by E. coli, and with Nde I and BamH I restriction sites at the 5’ and 3’ ends respectively (GeneScript Corp., 

Piscataway, NJ). Cloning the construct in Nde I and BamH I site of the pET-28a(+)-TEV vector adds a 

hexa-His tag coupled to the Tobacco Etch Virus (TEV) protease identification site to the N-terminus of the 

expressed protein. The subcloned pET-28a(+)-TEV vector was transformed into E. coli BL21-Gold (DE3) 

competent cells (Agilent).  

A single colony from the BL21- Gold (DE3) cells harboring the recombinant pET11a/ top IA was 

cultured overnight at 37 0C in 50 mL LB medium supplemented with 100 µg/mL ampicillin. The pre-

cultures were transferred to 1 L of LB media without antibiotic supplementation and grown at 37 0C. When 

the optical density, OD600 is 0.7, the protein expression was induced by the addition of 1 mM isopropyl 1-

thiol-D-galactopyranose (IPTG). Cells were allowed to grow for 3 h at 37 0C, harvested by centrifugation 

(4500 rpm for 10 min at 10 0C), and stored at -80 0C. 

The cell pellet was resuspended in 50 mL of buffer A. Buffer A contained 20 mM potassium 

phosphate pH 7.4, 300 mM NaCl, 10 % Glycerol, 5 mM tris(2-carboxyethyl)phosphine TCEP. Buffer A 

was supplemented with 1 mg/mL lysozyme and 1 protease inhibitor tablet (Pierce). The cell suspension 

was exposed to two freeze- thaw cycles, and the cells were lysed at room temperature for 60 min. Cell 

debris was removed by centrifugation (19,000 rpm, 1 h at 4 0C). Lysate was loaded into a Ni Sepharose 6 

Fast Flow column (5 mL, GE Healthcare Life Sciences) equilibrated with buffer A. The column was washed 

with 10 column volumes of buffer A, 10 column volumes of buffer A supplemented with 20 mM imidazole 

and 4 column volumes of buffer A supplemented with 40 mM imidazole to remove non-specifically binding 

proteins. The affinity bound protein was eluted by 6 column volumes of buffer A supplemented with 350 

mM imidazole. The eluant was concentrated and exchanged to buffer B (buffer A with 150 mM NaCl 
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instead of 300 mM NaCl) by Amicon Ultra centrifugal filter units (50 k cut-off). Pooled protein was mixed 

with TEV protease at a 1:10 protease to protein ratio and incubated at 4 0C for 16 h. 

The protein TEV mixture was loaded again into the Ni Sepharose 6 Fast Flow column equilibrated 

with buffer B. The column was washed with 5 column volumes of buffer B. The eluted proteins were loaded 

into a Bio-Scale Mini CHT ceramic hydroxyapatite cartridges (5 mL, Bio-Rad). The column was washed 

with 10 column volumes of buffer B. Bound protein was eluted using a 20-400 mM potassium phosphate 

(pH 7.4) gradient in buffer B. Pure fractions were concentrated and buffer exchanged (buffer B) by Amicon 

Ultra centrifugal filter units (50 k cut-off). Proteins were aliquoted and frozen at -80 0C. 

5.2.2 Cloning and purification of non-tagged P. aeruginosa Top IA  

The gene encoding P. aeruginosa Top IA (PA3011) was engineered, introducing codons favored 

by E. coli and with the Nde I and BamH I restriction sites at the 5’ and 3’ ends respectively (GeneScript 

Corp., Piscataway, NJ). The engineered gene was subcloned into pET 11a vector and transformed into E. 

coli ArcticExpress (DE3) Competent Cells (Agilent). 

A single colony from the ArcticExpress (DE3) competent cells harboring the recombinant pET11a/ 

top IA was cultured overnight at 37 0C in 50 mL LB medium supplemented with 100 µg/mL ampicillin and 

20 µg/mL gentamycin. The pre-cultures were transferred into 1 L of LB media without antibiotic 

supplementation and grown at 37 0C until the optical density, OD600 is 0.7. The temperature was lowered 

to 10 0C, and the cultures were allowed to equilibrate for 1 h at low temperature before induction. Protein 

expression was induced by the addition of 1 mM IPTG. Cells were allowed to grow for 24 h at 10 0C, 

harvested by centrifugation (4500 rpm for 10 min at 10 0C), and stored at -80 0C. 

The cell pellet was resuspended in 100 mL of buffer C. Buffer C contained 50 mM Tris-Base pH 

7.5, 150 mM KCl, 10 % Glycerol, 20 mM β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride 

(PMSF) and 1 mM Ethylenediaminetetraacetic acid (EDTA). Buffer C was supplemented with 1 mg/mL 

lysozyme for cell lysis. Cells were allowed to lyse at room temperature for 60 min. The cell suspension was 
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exposed to two freeze- thaw cycles to improve cell lysis. Cell debris was removed by centrifugation (19,000 

rpm, 1 h at 4 0C). The lysate was subjected to the (NH4)2SO4 precipitation. Lysate (100 mL) was mixed 

with (NH4)2SO4 until 40 % (1 M) saturation is reached. The resultant supernatant was loaded into a phenyl 

sepharose column (20 mL, GE Healthcare Life Sciences) equilibrated with 50 mM Tris-Base pH 7.5, 1 M 

(NH4)2SO4, 10 % Glycerol, 20 mM β-mercaptoethanol and 0.5 mM EDTA. The column was washed with 

50 mL of the same buffer, and protein was eluted by a gradient made by lowering the (NH4)2SO4 

concentration to 500 mM (a 300 mL gradient). 

Top IA containing fractions were pooled, and the buffer was exchanged to 50 mM Tris-Base pH 

7.5, 175 mM KCl, 10 % Glycerol, 20 mM β-mercaptoethanol and 0.5 mM EDTA by Amicon centrifugal 

filters (50 k cut-off). Pooled protein samples were loaded to an SP-sepharose column (20 mL, Sigma-

Aldrich) equilibrated with the same buffer. The column was washed with 50 mL of buffer, and proteins 

were eluted by a 300 mL of 175-500 mM KCl gradient. Selected fractions from the eluate were loaded into 

a Hydroxyapatite column (20 mL, Bio-Rad) equilibrated with 50 mM potassium phosphate pH 7.4, 150 

mM KCl, and 10 % Glycerol. The column was washed with 50 mL of buffer, and the proteins were eluted 

by a 300 mL 50- 250 mM phosphate gradient. Pure protein-containing fractions were pooled, and the buffer 

was exchanged to 50 mM Tris-Base pH 7.5, 200 mM KCl, 10 % Glycerol, 5 mM TCEP. Concentrated 

protein was aliquoted and frozen at -80 0C. 

5.2.3 DNA relaxation assay 

The relaxation activity of the purified protein was measured as follows. The total volume of the 

reaction mixture was maintained at 15 µL. Reaction was carried out in the relaxation buffer, 10 mM Tris-

HCl (pH 8.0), 50 mM NaCl, and 6 mM MgCl2. Supercoiled, pUC 18 DNA  ̴600 ng was mixed with different 

concentrations of Top IA (5, 10, 20, 40, 80 nM). Samples were incubated at 37 0C for 30 min. The reaction 

was quenched by adding 1 µL of 2% SDS. Samples were mixed with 4 µL of DNA loading dye (30% (v/v) 

glycerol, 0.25% (w/v) bromophenol blue) and loaded into a 1 % agarose gel in 1X TAE buffer (1L of 50X 

TAE buffer contains: Tris base 242 g, disodium EDTA 18.61 g, glacial acetic acid 57.1 ml). Samples were 
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electrophoretically separated at 100 V. Once the run was complete, the gel was stained with 0.02 % ethidium 

bromide for 15 min and imaged under UV light. 

5.2.4 Analysis of zinc in Top IA 

The Zn content in Top IA was analyzed colorimetrically by using the metallochromic indicator 4-

(2-pyridylazo) resorcinol (PAR). PAR solution (0.23 mM) was prepared by dissolving 2.5 mg of reagent in 

20 mM Tris-Base pH 7.4 and 0.2 M NaCl. A 1 mM Zn2+ stock in Tris buffer was prepared using ZnCl2. An 

appropriate volume (see table 5-1) from the Zn2+ stock was pipetted to make 1 mL of 6 different Zn2+ 

standards, 1, 2, 4, 6, and 8 µM. A volume of 0.5 mL of the PAR reagent was added to all the solutions. 

Finally, a volume of 0.25 mL H2O2 (30 % stock) was added, and the samples were incubated for 10 min at 

room temperature. The absorbance at 500 nm was measured.  A similar procedure was used to determine 

Zn concentration in Top IA. Top IA and reagents were mixed following the volumes indicated in table 5-

1. Four different protein concentrations were used. Upon the addition of H2O2, absorbance at 500 nm was 

read every 30 s. The stoichiometric ratio of the Top IA: Zn was calculated. 

Zn2+

concentration 
(µM)

Volume of the 
100 µM ZnCl2 

stock (µL)

Volume of the 
0.23 mM PAR 
solution (µL)

Volume of the 
30 % H2O2 
stock (µL)

Volume of 
the buffer 

(µL)

1 10 500 250 240

2 20 500 250 230

4 40 500 250 210

5 50 500 250 200

6 60 500 250 190

8 80 500 250 170

Protein 
concentration 

(µM)

Volume of the 
protein (µL)

Volume of the 
0.23 mM PAR 
solution (µL)

Volume of the 
30 % H2O2 
stock (µL)

Volume of 
the buffer 

(µL)

0.54 100 500 250 150

0.68 125 500 250 125

0.81 150 500 250 100

1.0 200 500 250 50

Table 5-1: The volumes required for the PAR assay for Zn analysis 
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5.2.5 Gel-shift assays 

DNA sequence preference by Top IA was tested using a Native-polyacrylamide gel (Native-PAGE) 

shift assay. Single strandard DNA with varying lengths and sequences were mixed with protein in a DNA 

to protein mole ratio of 1:1, 1:2 and 2:1 in 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, and 6 mM MgCl2 

buffer (Single strandard DNA (54 pmol) and protein (27 pmol or 54 pmol)). DNA- protein mixtures were 

incubated at room temperature for 1 h. The complexes were loaded into a 7% Native-PAGE and separated 

electrophoretically at 200 V. Gels were first stained with 0.02 % ethidium bromide to detect unbound DNA 

and DNA-protein complex. Gels were secondly stained with coomassie-brilliant blue to detect proteins. 

5.3 Results and Discussion 

5.3.1 Topoisomerase IA from P. aeruginosa 

Topoisomerase IA (Top IA) of P. aeruginosa is coded by gene topA (locus tag: PA3011), and the 

protein contains 868 amino acids resulting in a molecular weight of 97.28 kDa. The calculated isoelectric 

point is 8.7, and the computed molar absorption coefficient (Ɛ) at 280 nm is 91680 M-1 cm-1 (Assuming all 

the cysteines are reduced). The measured molar absorption coefficient (Ɛ) of Top IA is 126.6 ± 1.8 M-1 cm-

1. 

Structure of the P. aeruginosa Top IA was predicted using I-TASSER (Iterative Threading 

ASSEmbly Refinement). I-TASSER is a bioinformatic tool for predicting 3D models from the amino acid 

sequence. It identifies the templates from the Protein Data Bank (PDB) using a technique called threading, 

and the complete structures are modeled by re-assembling structural fragments from threading templates 

[12]. 

The predicted Top IA model with the highest C-score (1.21) is shown in Figure 5-4. C-score is 

given by I-TASSER as an estimate for the quality of the predicted model. The C-scores are in the range of 

-5 to 2.  
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5.3.2 Top IA expression and purification 

Methods were developed to purify Top IA with a His-tag and without a tag. Purification of the Top 

IA without a tag involves a series of steps. Once the cell debris was removed, a (NH4)2SO4 precipitation 

was carried out. The lysate was exposed to 40% (NH4)2SO4 saturation; Top IA does not precipitate at this 

saturation level. Top IA containing supernatant was separated via an aromatic hydrophobic interaction 

chromatographic step (phenyl sepharose resin). The high salt concentration results in a “salting out” effect 

in the proteins, and the proteins are bound hydrophobically to the ligands on the resin. Proteins were eluted 

from the phenyl sepharose column by lowering the (NH4)2SO4 concentration. Top IA collected from the 

eluate of phenyl sepharose still contained a significant amount of E.coli protein impurities. Selected Top 

IA containing fractions were loaded into a cation exchange column (SP-sepharose). The cation exchange 

step allowed us to collect proteins with 80% purity. Next, Top IA was further purified by a hydroxyapatite 

column. Hydroxyapatite (HA) contains two types of binding sites, positively charged calcium ions, and 

negatively charged phosphate groups. These sites are distributed homogenously on the HA matrix. Cation 

exchange occurs when the amino groups of the protein interact with the phosphate groups of the resign, and 

Figure 5-4: The predicted model of P. aeruginosa Topoisomerase IA by I-TASSER (C-score 1.21). The 

N-terminal catalytic domain is presented in green, and the C-terminal domain is presented in orange. 
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at the same time, the amine groups are repelled by the calcium ions disturbing the ionic interaction. 

Therefore, binding into HA is a combined effect, and the binding can be weakened by adding neutral salts 

(NaCl) or buffering species (phosphate). The HA abound Top IA was eluted via a phosphate gradient. The 

eluant from the HA column contained 95 % pure Top IA. 

Adding a Hexa-His tag to the N-terminus of the protein has not affected the function of the protein 

[7]. His-tagged purification was efficient and was able to purify Top IA with only two chromatographic 

steps, where a Ni-NTA column and an HA column was used. The proteins in the cell lysate were directly 

loaded onto a Ni-NTA column. The column was washed with two different concentrations of imidazole (20 

and 40 mM) to remove all non-specifically bound proteins. Specifically- bound proteins were eluted using 

a high imidazole concentration (350 mM). Top IA collected from Ni-NTA column was 85% pure, and the 

Figure 5-5: The purification processes of His-tagged and Non-tagged Top IA. (A) Protein molecular 

weight marker, (B) Proteins present in the lysate of E. coli BL21 Gold (DE3). Top IA ( ̴ 100 kDa) is 

over expressed. (C) A representative Top IA fraction after Ni-NTA column. Top IA is further purified 

in a (D) hydroxyapatite column. In the non-tagged purification process proteins eluted from the, (E) 

phenyl sepharose column, (F) SP-sepharose column, and (G) hydroxyapatite column are increasingly 

pure. 
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hexa-His tag of Top IA was cleaved by TEV protease. Top IA was mixed with TEV protease at a 1:10 

enzyme to protein ratio, and the mixture was incubated for 16 h at 4 0C. TEV protease contains a Hexa-His 

tag; therefore, the TEV and Top IA protein mixture were separated by passing through the Ni-NTA column. 

The eluate, Top IA was further purified (95 %) using an HA column.  

5.3.3 Relaxation activity of Top IA 

The relaxation assay evaluates the enzymatic activity of the purified Top IA. This assay tests the 

operation of Top IA on supercoiled plasmid DNA. The active Top IA protein relaxes the supercoiled 

plasmids in a concentration-dependent manner. The relaxed and supercoiled DNA migrate differently in 

agarose gels. The supercoiled DNA is more compact and creates less frictional forces. Therefore, they 

migrate faster than the relaxed DNA. The relaxation assay buffer contains Mg2+, which is necessary for the 

optimum activity of the enzyme. In the absence of Mg2+, the relaxation activity of Top IA is compromised 

[13]. The relaxation reaction can be terminated by adding sodium dodecyl sulfate (SDS) or a metal chelator 

such as EDTA. The resultant mixture is separated electrophoretically and stained with ethidium bromide. 

Figure 5-6: The activity of Top IA was tested in a relaxation assay. The plasmid DNA alone (2nd lane) 

exhibits a supercoiled DNA band at 1.8 kb. When the concentration of Top IA increases, the supercoiled 

DNA gradually gets to the relaxed state.  
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It is not recommended to add ethidium bromide into the gel, as intercalation of the dye would alter the 

results.  

The pUC18 supercoiled plasmid DNA (2.6 kb) was selected for the assay. About 600 ng of DNA 

was mixed with different concentrations of Top IA (Figure 5-5) in the relaxation buffer (see experimental). 

The mixture was incubated at 37 0C for 30 h, and the reaction was terminated by adding 2 % SDS. The 

plasmid DNA was electrophoretically separated in a 1 % agarose gel.  

Supercoiled plasmids run faster (approximately at 1.8 kb) in the agarose gel. Relaxed DNA runs 

around 2.6 kb (pUC18). The DNA bands in between the relaxed and supercoiled DNA are partially relaxed 

DNA. A concentration of 80 nM Top IA was required to completely relax 600 ng of pUC18 DNA. The 

relaxation assay revealed the quality and activity of the purified protein.  

5.3.4 Analysis of zinc in Top IA 

One of the important structural characterizations of topoisomerase is the presence of Zn fingers, 

coordinated by four cysteines. The X-ray crystal structure of the E.coli full-length Top I (PDB ID: 4RUL) 

illustrated the importance of the Zn fingers in positioning the DNA binding. P. aeruginosa Top IA contains 

15 cysteines, and 14 of the cysteines are located in the C-terminal domain of the protein. The structural 

alignment of the I-TASSER predicted model with the E. coli full-length Top IA revealed Zn binding sites 

in  P. aeruginosa Top IA (Figure 5-7). 

Figure 5-7: Structural alignment of the C-terminal Zn fingers of E. coli Top IA (PDB ID: 4RUL) with 

P. aeruginosa Top IA model (orange). Zn atoms are presented as grey spheres. 
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The stoichiometry between Zn and Top IA was analyzed by the metallochromic indicator 4-(2-

pyridylazo) resorcinol (PAR). Different protein concentrations were treated with the denaturant, H2O2 in 

the presence of PAR. The change in the absorbance at 500 nm was monitored. When the absorbance reading 

was constant, zinc concentration in each condition was calculated using the standard curve. The calculated 

ratio between Zn and protein was 2.8 ± 0.38. This value agrees with the structural characteristics of Top 

IA, where one Top IA contains three possible Zn fingers.  

5.3.5 DNA-Top IA gel shift assays 

Determining the protein X-ray crystallographic structure is essential to uncover the structural and 

functional characteristics of a novel protein. Therefore, the crystallization of P. aeruginosa topoisomerase 

IA full-length protein is necessary to discover insights of the enzyme function and activity. The C-terminal 

domain of the Topoisomerases are known to contain flexible regions, and many create difficulties in 

Figure 5-8: (A) The standard calibration curve for the Zn concentration determination. (B) The change 

in absorbance (500 nm) as a function of time. Four different Top IA concentrations were used for the 

analysis. 
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growing protein crystals [7]. These flexible regions may get stabilized in the presence of DNA [5, 7]. 

Therefore, attempts are made to co-crystalize P. aeruginosa Top IA with its binding partner, DNA. 

Different sequences and lengths of DNA were tested against Top IA to identify a suitable DNA 

fragment for crystallization studies. DNA sequences 1-6 (Figure 5-9) were mixed in two different DNA to 

protein mole ratios, 1:1 and 2:1, and incubated for 1 h. Mixtures were separated on a 7 % Native-PAGE.  

At the end of the run, gels were stained with ethidium bromide and Coomassie-brilliant blue, 

respectively. The resultant gels are presented in Figure 5-9. Top IA is positively charged at pH 6.8 (pH of 

the stacking gel) and doesn’t enter into the gel and was visualized at the top of the stacking gel. DNA only 

and unbound DNA containing samples show a fluorescence stain toward the bottom of the gel. Interestingly, 

the DNA: Top IA complexes show alternations in the electrophoretic mobility and get stained with both 

ethidium bromide and Coomassie.  

When DNA and Top IA were mixed at a 1:1 mole ratio, the sequences 1, 2, 4, 5, 6 resulted in low 

levels unbound DNA, and DNA sequence 2 resulted in the least unbound DNA at this ratio. When DNA 

and Top IA were mixed at a 2:1 mole ratio, an additional increment in the DNA-Top IA intensity was not 

observed, and adding extra DNA resulted in high levels of unbound DNA. Therefore, the preferred mole 

ratio of single strandard DNA to Top IA may be 1:1. 

One of the interesting observations from the gel shift assays was the differences in the ethidium 

bromide stains of DNA sequences 2 and 3. These two sequences have the same number of bases, but when 

mixed with protein at a 1:1 mole ratio, DNA sequence 2 resulted in almost complete binding by Top IA, 

and is evident in the low intensity ethidium bromide stain of unbound DNA. Whereas, DNA sequence 3-

Top IA had a small change in the migration and a low concentration of DNA was bound to Top IA, 

presented by the faint ethidium bromide stain, but the resulting Coomassie-protein stain was as deep as 
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DNA seq 2-Top IA complex. Top IA has a very high affinity toward DNA, and a small DNA concentration 

may be sufficient to generate a migration shit.  

Figure 5-9: (A) Six different single strandard DNA sequences with different lengths were tested 

(sequences are presented 5’ to 3’). DNA and Top IA were mixed at 1:1 and 2:1 mole ratio and the 

resultant complex was separated in a Native-PAGE and stained with (B) ethidium bromide to detect 

DNA, and (C) Coomassie brilliant blue to detect proteins. 
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The shortest DNA sequence, 6 (20 nucleotides) resulted in two possible migration shifts for the 

DNA-Top IA complex as visualized in the ethidium bromide stain, but the Coomassie stain suggested the 

presence of protein in the least shifted band. A short DNA fragment may not bind optimally to Top IA, and 

a shorter DNA sequence carries fewer negatively charged phosphates that may result smaller shifts in 

migration. On the other hand, DNA-Top IA complex with 29 and 40 bases had almost indistinguishable 

electrophoretic migration despite the difference in the negative charges. Therefore, the migration difference 

of the DNA sequence 6-Top IA complex may not be due to the negative charge difference but due to the 

preference of DNA length by Top IA.  

The aforementioned results suggested DNA sequence 2 as a promising start point for the DNA: 

Top IA crystallization experiments. For crystallization trials, Top IA was concentrated up to 10 mg/mL, 

and mixed with DNA sequence 2 at a 1.2:1, DNA to Top IA mole ratio, and incubated for 1 h at 4 0C. A 

volume of 48 µL from the resultant DNA: Top IA solution was used per 96 well plate sitting drop screens.  

It is essential to explore other DNA forms such as double stranded and partial duplex DNA 

combinations with Top IA. The E. coli Top IA was initially identified as protein ω and was first purified in 

1971. E. coli Top IA was extensively studied over the past decades, but there was no X-ray crystallographic 

structure available for the full-length protein. Growing crystals to resolve E. coli Top IA full-length crystal 

structure was challenging because of the high flexibility in the C-terminal domain. Fortunately, in 2015 

Kemin and co-workers resolved the X-ray crystallographic structure for the full-length E. coli Top IA  in 

complex with a partial duplex [7]. Additional research may be necessary to identify correct screening 

conditions to reach this end, with P. aeruginosa Top IA. 

5.4 Conclusions 

Topoisomerases are essential to maintain the topological states of DNA in the cells. Topoisomerase 

IA (Top IA) relaxes negatively supercoiled DNA and resolves DNA twisting-related problems associated 

with replication, transcription, and recombination. This enzyme introduces a nick in one strand allowing 



163 
 

the other strand to pass through by relaxing DNA. Top IA is an essential enzyme for the cells. Top IA has 

also been shown to be of clinical importance in developing antitubercular targets [10, 11]. 

P. aeruginosa is an opportunistic pathogen with a critical priority for new anti-infective 

development. Given the potential clinical significance of Top IA in developing antitubercular targets, the 

Top IA of P. aeruginosa may carry potential therapeutic values. The initial stage in developing a possible 

therapeutic strategy is the structural and biochemical characterization of the target.  

A series of purification methods were developed to purify P. aeruginosa Top IA in 95 % purity. 

The developed methods can be used to purify non-tagged and his-tagged Top IA. The purified protein was 

active and successfully relaxed negatively supercoiled DNA. One of the essential structural characteristics 

of topoisomerases is the presence of Zn-fingers. P. aeruginosa Top IA can bind 3 Zn ions, which is 

characterized by the sequence alignment of the E. coli Top IA (PDB ID: 4RUL), and by the PAR 

colorimetric assay. Other than the discussed biochemical characterization, structural characterization helps 

enormously in understanding the functional insights of the protein. Therefore, attempts were made to grow 

Top IA protein crystals in the presence of DNA. DNA sequence and length preferences of Top IA were 

studied to identify a reasonably stable binding DNA fragment for crystallization. The single stranded DNA 

sequence 2 had a sufficiently good binding compared to the rest of the sequences. This DNA sequence was 

selected for the P. aeruginosa Top IA-DNA crystallization studies. Additional exploration is necessary to 

identify the correct crystallization screening condition and the right DNA sequence to stabilize the C-

terminal domain for Top IA- DNA co-crystallization. 
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