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Prom 1900 to 1925 Professor Wilczyneki published many
artioles on the projective differential geometry of ourves,
surfacee, and curves on eurfaces,. These paperas appeared
for the most part in the Transactions of the American Math-
ematical Society, and the American Journal of Mathematios.,
His wark on space curves is to be found either in an artiole?®
of 1905 or a text book? of 1208, 1his book incorporated the
work of several articles on curvss and ruled surtaces, The
method of approaoh was based on Lie'e Lheory of oontinuous
groups, However, the forms obtained mere not truly ocanonical,

In 1928 Professor Sbouffer“published sowe canonical forms
for the differential eguuations of curves in a plane or in
ordinary space. The method of approach was simple and did
not employ Lie's theory, However, tie canonical foru for
8pace ocurves wWas not a generslization of that for plane
curves,

At the sudgestion of Professor Stouffer the problem of
deteraining a canonical form or forms for ocurvee in n-dimen-
sional space wa®s undertaken,

The oanonical form here obteined is an exact generalization
of the ocanonical form for ocurves in ordinary space as men-
tioned sbove. The results are valid for any space of three
or more dimensions regardless of whether thenumber of dimen-
sione is odd or even,

The writer wishes to express his gratitude to Professor

Stouffer for the inspiration, helpful sugdestions, and kindly

oriticiam given in the solution and presentation of this
problem,

V' 2 8 gge bibliography at the end.
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§ 1. INTRODUCTIDN

A study of the projective differential properties of a
ocurve in n-dimensional epace may be baaed on the linear
homogeneous differential equation

(1.00)
(m+1)

' -1)
« ("™ Py e e s P, Y =0,

where D; ere functions of the independent varisble x .

If the ourve be represented in homodeneous coordinates
by n+1 funotions ¥;(x) then the coeffiolents D; may be
so determined as to zake the ¥y; a fundamental set of
@olutions of 1.00,provided the ocurve does not lie in a
spaoce of leas than n dimensions,in whioh case the ¥Wronskian
-lny), e vy y; > ym*.l is different from zero.

Conversely, since anv fundamental set 9r solutions of
1.00 consiste of n+1 linearly independent funoctions, these
may be taken aas the homogeneous ocoordinates of a curve in
n-dimensional space., However, any eet of linear combina-
tione

(1.01) v, = 2 Coi¥; s L5 = 1,2, ,n41,

of a first fundamental set of solutions Yy; 1is itself a
fundamental set provided that the determinant lciil is
different from sero. We see then that with each differential
equation there is associsted not one but an infinite number
of ourves all related by projective transformations,

ln deneral the esolutions of 1,00 are power series in (x=x.),
vaslid in the neighborhood of X, , where X, is a regular
poihc for the differential equation, Henoe, we may study by
this method only those differential properties of the ourve
whioh are invariant under the projeotive transformation 1.01.

Woreover, neither the parametrioc representation of the
ocurve nor the assooiated differential eguation is unigque., A
traneformation



(1.,02) E = E(x)
of the indepsndent variable or a transformation
(1.08) n = AY

of the dependent variable, where £ and A are arbitrary
funotions of x, will leave the curve unaltered. These
are the most general transformations converting the dif-
ferential egquation 1,00 into another of the same form and

t 3
order,

*  Bee Wilcaynski, Projeotive Differential Geowetry of Curves

snd Ruled Surfeces, Leipsig, Toubner, Chapter 2.



§ 2, TRANSFORMATIONS OF THE VARIABLES

Let the differential equation 1.00 be transformed by 1,02
into a new eguation
(2.00)

n e () ™ e (") uzn“‘") + o - . oem
where

(2.01) n = d™n /dE"‘.

Below are given the first five terms of the mth derivative

of y ueed in the above tranaformation.

(2.08)

o, e, ' -t -2 "
vy ™ = a™EY ™ (E Y e

m-2), , mm "»1-] e ) - ; .-E
ﬂ( Z)l(J)(F.I) £ + '7(';“)(51) (E’)ZJ

NN EDY 2 e 100 ) R e
+ 150N (ED)
o eE YT B e 15O R e
s 200" (81
+ 106(7)(E" Y (8")°E"
+ 106(CE' Y (E")* )

Nilosyneki published (Ibid., p. 20;21.) & deneral method for obtaining
in order the terms of ?.32. The work is inoressingly difficult after the
firet two terms.



(m)

Subetitution of the expressions y in 1.00 gives for

the first four ocoeffiocients =K;

(2.03)

?’77; = Zn ’+ CM{'V/ ’

(3')7:": = /j_ tm-)¢ f + /”_3'_'[*’_,_ ,’m‘;:__ ,Uz" ’
(%l)iﬁz = /; t ;(Mz—z) g fot (M-l)tv"qu 7_/3‘_;'_3_—,/1} /

m-2 " f _ _ .
+ T{\\f’ +(2M-3)Y/ ‘f/ ¥ (m 1)2{41 2) &f/jj ,

( )‘ﬂ’ f t 2m-)y o+ 2(m- 3)“ +__;__ ‘fz_‘ 4

t (/”'?)[‘f’”f(l/n»f)q,’w + (’”‘122(’“’7) Yﬂ %'

1:_7_ "t M , -
+ = [‘F + 1129//‘// + /”3” vy

+ 15m° = 70m +26 1,2
7 Yy ¥

15 =jus M* 4230 M —152 ‘*J
¥ y)
4 s

where ‘P = %ll/

vy



Bquation 2,00 on being tranaforwed by 1,03 takes the
form

(2.04)
tnée) (“:‘)P.Y(ma M;')@LYLM-”¢ <.+ +P Y =0,
N4+
where : U
AP, = Am, o+ N
(2.05)
AP, 5 A e OO e e (N, e N

The derivatives of n used in the above tranaformation
were obtained from the relation
(2.086)

(m)

m . " -2
T N (0 U S 44 | S A SR S



§ 3. CANONICAL EXPANSIONS

Let it be assumed that there existe among the ocoeffioients
P1 of equation 2,04 and their derivativee some relation in-
variant under further transformations of the form 1,02 and
1.03 only if the funotions E and A° are suoh that E" and A’
are identioally zero, The differential egustion 2.04 is then
said to be in a canonical form.

It will be our purpose to obtain such a canonical form and
to determine the trensformations 1.02 and 1,03 whioh derive
said form from the originel equation 1,00, Further, we shall
seek some geomstriocal relation, between the ocurve and its
related system of reference, oharaocterizing this canonioal
form,

We may without loss of generality oconsider aolu@ions of
2.04' in the neighborhood of £=0, since any value £, of the
paramster oould be transformed into E;O by means of the
eimple relation £ =.E‘*'E;.. It is evident from the formw
of 2,03 that this transformation would not disturdb the canoni-
oal form,:

Because of the above, and the discussion of 1,01, we are
Justified in restrioting our study to the projeotive differ-
ential properties, near E=0 , of any one of the entire family
of ourves associated with the ocanoniocal equation 2,04, In eo
doing we atudy the projeotive differential properties common
to all ocurvee of the family,-

Let us ooneider then a partioulsr fundamental set of eolu-~
tione obtained by means of the well known theory of ordinary
linear differential equations, We assume a solution of the

form

(8.00) Y(E) = Y(0) + Y'(0o): + Y"(o)%-; + <« - g

where the derivativee of order gdreater than n are determined
by the differential equation 2.04 and its derivatives, The
series 38.00 wmay be written in the form



(8.01)  Y(E) = Y, [X,] + Yo(Xud + = - -+ « Y%, .)

where the coeffiocients Xi are themselvee pomer series in
£.. Theee n+1 ccefficients X; form a fundamental set, valid
in the neighbporhood of E=0, with ¥ronskian equal to unity
for E=0,: -

On oomputing these coefficients we notice that they would
be dreatly simplified were @;.. O. Prom the form of 2,08
and 2,06 it followse that P: would be szero if A' + Amn, = O,
Further, thie form would remain invariant under transforma-
tions similar to 1,02 and 1,08 only if the funotions oorre-
mponding to E" and A' were identioslly zerc., Henos the
function A of the transformation 1.03 ia assuned Lo satiefy
the differential eguation AN = - Ry 8o that P = O,

The curve under consideration ia ‘then expressed in the

parametric form by

(8-02) -
- LRy
X -"—E—-— + A -——E + A EMH + - 0
C (1-1) M e Y rveryl
whers 1= 1,2,000,0%1 )
(8.03)
A"”"“ = - PﬁH 4 "'um-z. = 7‘E - P;“_I .
m+| _ o
Ai.mf' .'-. ){M+2‘l AZM"'L = - P’h'." -(’I' )P’/n J
T "1"" m+l
'm—lmnt‘ -(”“.')P‘ = 0/ Ai-”‘Fl = -2 ) "m+3 - L-l)P:n,PZ—;- V]
M+n
AMHMH_B" )P *

The non-homodeneous coordinates Z: = X,,, 7/ X, of a

(3

point on the curve are given by



(300")
. Et Equ E N+t
Z' =' EE—— - S S— T — ’ e }
v 1:! emtu (n"’i):f cheL (n*z)-:'
where i=12,2,- -0 )
(8.08)
R ‘ A
BIM-H A, mer “imer = A, mt2 ~ (ne2) " M
BLM+| = Alp m BLM+1=- ALfcm+z y
/
Bme =P = 0, By ma® Ay s .
Pinally, on eliminating the parameter £ of the expansions
~
8,04 we have the curve represented by the n-1 ocanoniocal
expansions
(8.08)
T me+ M4y 2
. /] ~ Zl ~ zl
Z = z. —_— T . . . )
L 14 LM (ne+1) b LT (ne2) Y
where 1 =2,8, - -.-,n |
(3.07)
. < 2: . Me :l
Ne ~ N - i
Coper = =("$'0P T = (wh)B, (MR )
M ETRY (" )P,
cin-m = =( L )'Pmu - , CLMH- ==lia )Pou-z-'.. -( + )PMH-3- )
~ , ~ INGARDY *_
“mmer 0 y Yam+z = ("l-' )P'L

It should be noted that the ocsnoniocal form and therefore

the ooceffiocients P,

are 8till unknown,

Expansions 8,08

robresent the associated expansions of the csnonical fornm,

The ooeffioients C,;, are funotions of the P -ho-i proper
values are yet to be determined.



§ 4.! OSCULATING OURVE OP DEGREE N

It is ocommon knowledge that five pointe in a plane
determine 3 oonio while six points in ordinary eapace
determine s oubio.: It i; our purpose to show that
n+3: points “in -an n-dimensional space determine a curve
of degree n,-

Let N be the number of points required to determins
the (n+-1.)2 constants a . of the parametrio eguatioms
(4.00)

2
PR, = a,,*a,, ,tlt +a;,t + -+ +a

ia1,2, ....,n+41 ,

It ie assumed that the n+l homogdeneous coordinates are
known for ®ach of the ¥ points,’ The parameter t takes
on N different values ¢+, , t, , « ty for the assign-
ed points, However, in fixing the parametrio eystem we
are at liberty to assign vslues to t at three of the
pointe. For instance we might set t, =0, t, = 1, and
t; = x,o The other N=3 values of t must be fixed by the
howogenecus coordinates of the N points. Again, the
proportionsality feoctor takes on N different values

.0 ., /ﬂv for these pointe. However, the
equations are homogeneocus in /ﬂ and (A, ; henoe only
N~1 of the oonstants /3 are essential,’ For instance we
aight set (= 1., Henoe
(4.01) H(n+1) = (n+1)’ + (N=8) + (N-1) ,
from whioh it follows that N = n+3,

Let us ooneider now the limiting form of & ourve of
degree n determined by n+3 points, on the original ocurve
3.08, ae these points approach coinocidenoe,- Genornlisinﬂ'
the conocepta of contact between two plane curves, or two
skew ourves, we say that these two pgrves have oontaot of
order n+2, Further, we ocall this partioular ourve of
degree n sn osculsting ourve.

* Bes note on’'next pade.’
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We shall also use the oorrospondind‘ analytioal definition,:
If the esxpansions for the ourve of degrese n agree with the
expansions 3,08 up to and ineluding the terwma of order n+2
we say that the two ourves have contact of order n+2, The
former is ®aid to osoulate the latter. We oould have used
this definition entirely. However the ge&metrioal oconcepts
8id in siwmplifying the work.

Prom 8,02 it is evidant that the homogensous coordinates
X. of the point £=0 are 1,0,...,0.° So long as thers is no
danger of ambiguity we shall for the sake of brevity call
thie the point X(0) , or just X, Siwmilarly, the coordinates
of X' are (0,1,0, . ,0), =and so on until finally the co=-
ordinates of X are (0, ...,0,1)e

The tangent to the ourve is determined by X and X', the

osoulating plane by X,X', and X", and the osculating linear
k-space by X,¥X',X", .. .,X (" where k £ n=1,

Acoording to the geometrical oconcept of contaot two curves
with ocontaot of the second order have a common tangent and a
oowmon osoulating! plane. Two curves with contaot of order
equal to or greater than n-1 have ocommon osculating linear
spaces up to and inocluding the osculating linear (n-1)-aspsaoce.

It the ocurve represented by 4.00 is to have osoulsting
linear spaces in ocommon with the original ourve $,02 several
of the ococefficients -‘i must be identically seroc, Thus,

X, x}... .. X \ will be sero at the ocontact point t=0

Mt
only if s, = a, = ...=3 0, The point x' will be on the

Jo

b 3
tangent line xz = x¥ =...= 0 determined by X and X' only

if a,, = a_ = - .= 0, Likewise, the point x ‘"’ will be in
the osculating linear k-spaoce tht - - .. = x“f_ = 0 only
if e, =0, 1> xe2,

# The ocorrespondenco used here is an sxaot genmeralisation of the relation
conneoting, "order of contaot®, “"aumber of coincident points®™, ané "egreement
of expansione® as discussed in I 212, of Gourseat-Redriok, Nathematicsl
Analysis, vol.I.' .

¢ Here xt {s a point on the line tangent to the osculating curve 4,00!at

the point t = O Here X' is the siwilar point on the tangent to the original
ourve, The ocapital letters Xi also ropresent the rynning coordinates of any
point in space referred to the holyhedron determined by X,X',:..,X(* ,:



The eqgquation®s 4,00 are now greatly simplified in that
all terms below the main diagonal have been osused to
vanish,’ This ourve then ocuts the referenoces n-1 spaoce
xn 2 0 in two points one of whioh ie the point t = O
oounted n~1. timea,” Let us set a,,,= 0. In so doing
we merely asmign the ocoordimate ¢t = X ¢to thie other
point in the n-~1 space, Purther, it will be moet con-

venient to0 have. = a, = 1, The first is made poe~

80

sible by a proper ohoice of © and the second by & proper

11

ohoice of the unit point t = 1,7 Equations 4,00 now assume

the form

{4.02)

Px, =1+3,t+a,t <+ v s e + a,mt.M ’
Fx, = t+,%ztz+ . ’ © +a,,t",
Pxy =, 2y, tt . . . T 3 ajmt.m )
pxm =, a,,_m‘“l th + *_ »
P X aM—lth .

In order to determine the coeffiolente of the above

expaneions we first change to non-homogeneous ooordinates

by dividing P X,,, by " X, , Then

4 .

(4.09) PR, b t,i . b t(.fl . .
z- = = L. C. . d . »
'S px' LL [N J]

where b, = 3., L b;LH T Bhin T B3 40 B oo

a,;=0 for j> o .

Next we sliminate t between the expansions for 5, and B
thereby obtaining

(4.04) 2. = C..2

L i Y Gl g + ot
where 1 = 2,3, ---,n ,
(4.08) ¢y = b = B o
(4.08)  Cii = Die =100,
= Lt '._n- Lepe N -1 bLL(azz a" ) ¢
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S8inoe the coeffiocients of 3.068 and 4,04 must coinoide up to

and inoluding terms of order n+2 we get o,;= 1/ i' and

©,,/ i ™ O resulting at onoe in

(4.07) &, L = 1/ i » i=20,1,2,-. ,n.

8ince &, = &, = 0 two simple eguations are obtained
from 4,06 for i = n-1 end i = n reeulting ina, =8, =0,
and ooneegusntly

(¢.08) 8 .. =0 1=0,1,2, - .. ,n=1,

In a eimilar fashion we find the ocoefficients of the third,
fourth, and fifth diegonals of 4,02 to be

(¢.09)
(3n - 21)pP,
S T 1! 2(n+2) r 1T 0L R,
(4.10)
. /
(4n-31-4)P; =~ (3)n=1-2)P,
[ 3
Sivrs it 31 (n+2) ’
1-0.1.~...ﬂ-8 »
(4'01,1) a PR =

(n+2)(6n=-¢1-10)P, - 4(n+2)(n-i-8)P3’ + 12(n-8-i)(n-2-i)P;

1' 4 (n+2)?

130,1.'--,11-4 .

%he results of 4,09, 4.10 and 4.11 were obtained froa

the relations



(4.12) .

(4.13)

(4.14)

(4.16)

(4.18)

(4.17)

where

(4.18)

(4»19)

(4.20)

bLi+l

bLLrJ =

bLL+* =

1]

CLitr

Ciies =

cl‘*# =

2 4 e+

Bt ity

aL+|L+¥

bLsz
BiL+s

bui+¥

a.. =0

L Mé

LM+l

0

for

for

-a,,/ 4,

t

- b, / (1-1)L

- b,5- -/ (i-l)::

2
-b,y /2100 ,

J,) n ,

J ¢ n+1 ,

c'_ mel / (n‘.’i):- )

C‘_ m,l/ (n+2)'., o

by / (i-1)!

13
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§ 6. PRINCIPAL TANGENT PLAKNE

Theorem.” If two ourves in n~dimensional space have
contgot of order mw at a point, there extists a unique. plane
from any point of which one can project the two curves by

neans of two hyper—cones with contact of ordcr_n+i.#

Let the two ocurves be represented by the expansions

(5.01) . .

2, = ZF Yid 27,
and
(8,02) 2, = z 6.4 5.i '
where
(8.03) ;‘Ks, 61« s

i =2,3,:::,n,

J =2,8,.¢,m,,

k = 2,3, -:,8 .
Furthernore
(5.04) Yima ™ 6;_.4:'-“

for at least one value of i, Here again the coordinates z;
are non-homogeneous and related to the homogeneous ococordinates
Xy by 2; 3= X+ /xl s

el
This theorem is & generalisation of one stated for ordinary spacs by

Halphen.: See Journal de 1'Ecole Polytechnigue, 1380:, vol,47,:
POge 25, However, his proof is rather diffioult snd can not be readily
extended to hyper-space.' The present sethod of approach was first employed
by Btouffer, for ourves in ordinary space, in his leotures of 1427-28

at the University of Kansas.-

¢ It 1 assused that &« > 2,. and n D %,
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COns;der now s new system of reference differiné¢ from the
oridinal only in the (n+1)th vertex, With reaspeot to the
new syatam.of referenoce the two curves in ocontaot may be re-
preaented by

(5.06) Z2. = » Tz,

and .

(5.06) 2, = 2 ALY,

where

(6.07) L= Ain
i=298,..,n ,

J = 2,3 -y,
k = 2«.3."'.“ .

It should be noted that the new system of reference is not
yet determined, hence the coeffiocients I,;and A ; are un-
known. However, sinoce the property of contaoct is independent
of the asystem of referencs, we are justified in writing the
eguations 5,07 .

Our proof oconsietes in showing that the (n+i)th vertex of the
new system of reference can be ohosen in a double infinity of
ways 80 a8 to wmake
(5.‘08) rL/mu= Aimul
for 1= 2,8, 0=,

The woet general traneformation relating any two sets of
homogeneous ocoordinates in one to one ocorrespondence is
(5.09)

)

PR = 7 wxp
i, = 1,2, . -,n+1,
However, ®inoce in this instance the two syestems of reference
have their firet o vertices in ocommon, the transformation
5,09 becomes simply
(5.10)

!

P x ". ’, X' +

. X
L uum-l M V]

rf X- a x o

me, me

The two systems of non-homogeneous coordinates are then re-
lated by
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(6.11). P Xin 2, + E-ZM
Z‘. - —— = - JL ?
rX, 1 - o0z,
Z = Zm .
m
1 -0 3,

where for the convenience in writing

(5.12) -0 = [+ ] 2 [ = (Ii“

| M+ L mn +\ .

The first relation of 5.11 may be repreeented in the form
of an expansion by
(6.13)

. ) L.
Z, = (2. + #.2,)(1 + oz, *na!zm N I T

On substituting in the above the expansions 5,01 for the
firet ourve, nnd agdain the expansions 5.02 for the second
ourve, we obtain two Bets of expeneions

(6.14) 7y, = =z, * Z Uiy zui s

(5.15) 7. = Z wugz, - )

and |

(5,16) 2, .= 3, + Z v 2},

(5.17) z, = 7 vz, ,
i=22,3,...,n-1. ,

J = 2,3 .--,0
Beocsuse of 5,03 we have

(5-18) B,k = V.g = 0

i=12...,0-1,
k= 23,3,--:', 8 ,

and
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Bima = Vimer S Yimp "6¢/w+; = EL6M w1 )

B Y
1 = 2.3‘. ‘e .n-iq

On eliminating the parameter 2,between 5.14 and 5,15, end
again between 5,16 and 65,17, we obtain the expansions 5,05
and 5.08 for 1 = 2,3, ,n=-1," N

The demonstraticn of the method employed in eliminating
Z, will be ¢greatly condensed by the use of a funotion a
defined by the following exsmples. Let
(5. 20)

re

Q3 = B, B, *u,u, =3,

bes the sum of the produots of the permutations of the
elements (Ly7 taken 2 at s time, such that the sum of the
weights of the second esubsoripts is 3, where w, = 1.
Similarly,

B.Bi)
n = + + = 2 + ?
’)_l’. = u" ".3 “,Lulz ul? ““ = 4 u'3 u’ll ,
PR TR TR t UL U U B, e = 3u, -
Iy w®ny ¥z n iz n 2 TN "

In order to eliminate the Z,° term: of 6.|5 we sguare both

members of 65,14, multiply by [z = 4.2 , and subtract from
5. 15. Then

(5.22)

t -
2 - L2, = rl3 2,3 * [_u L = FL'L QZ'fjlzl* o s

where : -
FLS = B3 "'PL'LQ?? .
In order to eliminate the 2,3 term of 5.22 we ocube both

members of 5.14, multiply by f13 , snd subtraot from 5,82,
Then

(6.23)
- 3
Z.\ - ri?_ zpt - ri'; Z. =, r'_* Z" t + . . o )
where I, = wiv -l S =D39;,
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In & similar fashion we eliminate terms of higher degree
in 4y . The coeffioient [, ,;,"Will be identiocally
(5. 24)

' - ) n . .
By ma ‘_Pchzmn—-" L3Y3mu™ = erQrmrmH *

No element u,; of @, . will have a second subsoript greater
than m. Again, no element of 63 m4+ ¥ill have a seoond sub=-
soript greater than m-1, Henoce the firet term W, ., is the
only element L ,; of 5,24 with a seoond subscript of m+1l,
From the symmetry of our notation it is evident that A, .,
may be obtained from 5,24 by the substitution of v 4 for m 5.
It follows then from 5.18 that
(5.25)

F;rmn =Bimel = Bomp = Vioamer .

Now it is a simple matter to choose .8.L 8o as to make the
difference 5.19, and oconsequently the difference 5,256, sero
e S SR o 6,”%“ . If however Yy, .. = S et
have merely to repeat our proof after interchanging the

(k+1)th and (n+1)th vertioces of reference where k represents

a value of 1 for whioh Ayl,m“ 208, .
Let us aseume then that vy, ., + &, mp. » 8nd ineist that
é-wH = Yime
/)'L = X ) 1 = 2.3. "-’n-i .
Mo 1 T Mg,

The (n+1)th vertex of the new msystem of reference is of ocourse
represented by X, =X, = ‘. .3 XM 2 0, X, =1 This
same vertex aocoording to the relations 65.10 and 6.12 is repre-
sented in the oridinal system of ocoordinates by

(6.27)

™
b
3
i

N
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where 0 and -<, are arbitrary., Henoe this vertex of

projeotion may be any one of a double infinity of points
lying in @& plene,’ The two hyper-ocones with contaot of

order m+1 are represented by the expansione 65,05 and 5,06
where

(65.28)
Fi*\ = Ak ’
i=2,8,:--.,n=1,
k= 2,8, - ,34+1 ,

Since © and -2, are arbitrary while the conatants
By, By, - -+, L, ®re definite it follows that the
prinocipal tangent plene 5.27 oontains the vertioces (1,0,--,0)
snd (0,1,0, - - ,0).

In this seotion we have made but a brief investigation of
the prinocipal plane. However, it is evident that there are
many extensions,’ One interesting fact might be noted in
paassing, The equations 5.28 represent not only two hyper-
ocones in n-dimensional space but aleo two ourves in the (n-1)-
dimeneional spaoce Zh = 0, These Pwo ocurves may be projeoted
by means of two hyper-cones with ocontaot of order m+2, Further-
more, the vertex of projeotion way be any point of a unigue
pPlane in the (n-1)-dimensional space, Thie reasoning may be
repeated until we obtain finally two ordinary oconee with ocon-
teot of order m+n-2 in three dimensionsl space,
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§ 6+ ASS8OCIATED GEOMETRY OF THE CANONICAL FORM

We have assuxed & osnoniocsl form though its nature is
as yot unknown. It im our purpose now to determine the
deometriocal and snalytioal oharacteristios of said form,

Acoording to 3,01 the point Y is given by the X coordi-
nates (1,0,...,0), Y' by (0,1,0,...,0), Y® by
(0,0,1,0, - ..,0) , « .- and Y™ by (0,...,0,1), These
(n+1) points are the vertices of cur canoniocal polyhedron
of refarence,

Suppose now that the (n+1)th vertex Y'")of the system of
refersnce is transformed into some other point Y™ by a
change E = E(E) in the independent variable,  Corre-
eponding to 2,02 we have
(6.00)

o)

Y - Y(M)(g,)'ﬂ + Y(m-t)(/;‘)(%.l)’”-.l';ll

Mo sy m=3 " " -
YOLONE) TS e s(o ) s) T 5 ) ]
e L

where in this instanoo 3® = J"r/1E", From the form
of the above it is evident thet Y”) will not contain Y (™~
in combination with Y and the other firet n derivatives of
Y, only if
(6.01)

GI(E)" &= 0

Since a transformation with E' = O would be triviasl it
follows that £" must be identically zero. That is, E" =0,

£ = AE + 7 where A and B are arbitrary oconstants of

integdration, and —

£" = 1V /uz = o0 -
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Adain, suppose that Y "/ ie transformed into some other point
fﬂM’by a change Y = AY in the dependent veriable, Cor-
responding to 2,06 we have

(6.02)
- ) 7 ") ”" '1-)
YO AYT e )XY ) AT

where in this instance A = |/ X , and both )\ and  ere
funotions of E.' From the form of the above it is evident that
;(“) will not contain Y(qu in combination with Y and the
other first n derivatives of i. only if (T))V is identioally
gero, That is —X'/ /—\L;O. Sinoe a transformation with
;\—z o would be trivial it follows that X’ must be zero.

Since the transformed point Y will remain in the (n-1)-
space determined by Y,Y',¥™, ..., Y™ ,y®™ on1y ip T= NN'=0
it followms that just this property will oharacterize a canonic-
sl form,

Now the osoulating (n-2)-space 7,6 =7_ _ = =0 is deter-
mined by the n-1 points Y,Y',Y",... ,Y" 7)), Alac the prinocipal
tanjent plane, to the ourve 3.08 and ite osoulating ourve of
degrees n, contains the first two of these points., It is evident
then that the osoculating (n-2)-space and the principal tangent
Plane determine a unique space of (n-1) dimensions, Let us
aesume, for our oanoniocal form, that the point Y e in thise
unique (n-1)-spacs,

In order to determine the analytiocal oharaoteristios of our
ocanonical form we oconsider the general disocussion of § 5 as
applied to our two partioular curves with contaot of order
m = n+2, For the first ourve
(8.03)

- n . » ..
i L) O / RS N
whllc for the second curve

(5.04) 6!.! =, C-‘ " o

Adain we consider a second polyhedron of reference differ-
ingd from our ocanonioal polyhedron only in the (n+1)th vertex,
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Corresponding to 5,10 the two systems of homogdeneous

ooordinntea are related by

(6.05) o
FX| =, X| - xM +1 2
PX‘ =, Xl. + L= x,h.‘.| Iy
£ Xy = Xogr o )
The (n+1)th vertex (0, -- ,0,1) of the new system is repre-
sented in the homogeneous coordinates of the canonical
system by
(6»-06) x. = T )
XL = -3,
XM = - EM—’ )
X = 1 .
M
Let ue assume that
(6.07)
- CMM-O-)
Y " Owmi T Taygyy T Cmam A O
It
(6.08)
cm-v»tu? - ,
Moty YM.. n = cm-lmﬁs- (n+3):- y
then acoording to 5.26 and 6,086, 6;_. is :identiocally sero

and the (n+1)th vertex of the new system of reference re-
maine in the canonical (n-1)-epace X, =0, or 2, , = 0.
It is evident that the converse of the laet statement is
true. Henoe the relations 6,08 and P, =0 oharacterise
analytioally our cenonical forsm.
In order to determine geometriocsally some of the vertioes

of the canonical pélyhedron of reference we next study the
linear (n-1)-spaoce
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(8.09) xr xz ) ‘ xm+|
x! x! x'
! * ’ Mt
" n
xlln X 2 . . XMH = 0 )

-1
x( )
M4+

"- {m -
x (n-) g i)

osculating the osoculating curve 4,02, Here )(.l repreaent
the coordinates of a point in the linear space while X
represent the expansions of 4.02,

The determinant of 6.09 ie dgreatly simplified by the
proper oombination of rows., We eliminate the term with
coeffioient a,, in all elements of the determinant with the
exception of the last row by subtraoting t times the elements
of ronw 3 froe n times the elemente of row 2, subtraocting
t tires the elements of row 4 from n-1 times the elements of
ron 3, etoc. Agdain, we eliminate the term with coeffiocient

a in all elemzents of the determinant with the exception

L M=
of the laat two rows by subtraoctind t times the elements of
row 3 from n-1 times the elements of 2, subtracting t times
the elements of row 4 from n-=2 timee the elements of romw 3,
eto.,' In a similar manner we eliminate as many terms as
possible, Finally, the elements of the i th column becone

(8.10)

n al'.C (§] »

(n-1) a , + 21 a._t
2! (n-2) a , + 3! =

8! (n-8) a , + 4! 8.t

P
¢ - . . e o

(n-1)' a + n! 8 t
L M-t '

Aocoording to 4.02, 4.07 and 4.09 we have a. = o0 for
J(i—l, a3

6,09 then assumes the fore

s 1/ (-1 and & . a 0O, Equation

Cm Le
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{(6.121)

Al

.

b

g—u 1 ;¥

[1a}

4+

g=u

2 ~

L4 >

. L]
4z &2
1 (% + ®(e-u)ie
£2
1 e, 4 =
x + T=u
k] + x

X

he 11
1 e;p + v(g~u)e

tle g +e (z=w)iz

Ad.

v 2 |

E
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nhere other values of a 4 are #£iven by 4.09, 4.10, 4.11.

How the linear (n-1)-space 8.11, osculating the osculat-
ing ocurve of degree n at the point t, ocuts the tandent line

XKz =Xy = <+ =0 1in the point
. v
(8.12) k' Ry
=0 .
n t

We noted that the osculating curve 4.02 outs the (n-1)=space

X* = 0 in one point, other than t=0, to whioh the ocoordi-

nate t= X waB assigned, At t= X the point 6,12 has the

homogeneous ocoordinates

(8.13) X, X, . ¢ ek e g
R .

0 1
or juet (0,1,0,°* **,0) «

The osculating linear (n-1)-spaces 6.11 intersect the

plene X, = Xy=+-=0 1in the one parasmeter family of lines
(6.14)
<, X+ X3
n t 0 = O.
2 8.t n-1 t

The above egquation is a guadratioc in t of the form

8.16
( ) s t? + bt + ¢ = C,

where & = X, - 28 X, b = -nX, , o =n(n-1)X, .,

These straight lines envelope a ourve.éiven by the oguation
6+15 and its first derivative with respeot to t. 1In other
words equation 6.1% has a doudble root and ite disoriminant
is identioally gero. The envelope of 8.14 is then the conic
(6.18)

2. ) z
o X, - 4(r-1) X, X3 + 8(n-1) a, X3 = 0 ,

L
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N 3n P
where a —_—
. 2(n+2)

The polar line of the point (0,1,0,' * ,0) with regard

to this conic 4e the line X1 = 0 in the osculating plane,
The tangent, to the ocurve obtained by taking the first
derivative of the expansions of the original curve 3,02,

intersects the above polar line in the point (0,0,1,0,°* ,0).

Conic

Pol

( 2a,,,0,1,0, -

(0,0,1,0, " * »0)
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CANONICAL FORM OF THE DIPPERENTIAL EQUATION

The coeffiocients of the termes of degres n+3 in the ex-

pansions 3,02,

relations

{7.00) Mgr =
(7.01) &, ..,
(7.02) Am+‘m+f
(7.03) B, mps =
(7.04) B, ms3 =
(7.08) B, .,
(7.08) ¢, , .,
(7.07) ¢; ,,,
(7.08) C, pp5 =
(7.09) C, ,,3

*
Ai,-l Mt

A
" M

S m+3

ALH m+3J

A/;”.l m+3?

Bzmrj

Bty T

By m+y

B

m m+3

3,04 and 3.06 are easily oomputed from the

A|m+1 + AﬂMH A' Mgt ®
/
Aim+1 ‘wnw- Ay mer o
’
A + > ,
MM
(n+2)(n+3)
2 | M+l *
1]
»
(n+3) B, ;2 ’

(n+3) (n+2)

2 1 m+) ’

Since 7,08 is entirely different from 7,08 or 7.07 it ie
evident that the values of the coeffiocient

)

- 3
(7.10) m-t m+
(n+3)!

are divided into the three ocsases of na3, nz=4 sand n) 4,

By means of 7.08, 7,03, 7.01, 3,06, 3.03 we obtain

[ ” T
C,e .10P, = 16P; + 8P, . 36P, .

(7.11) L

8! 6!



By means of 7.07, 7.04, 7.01, 3,05, 3.03 we obtain

Ch» - 100P, + 20P; + 10P, - 100P. -
7! X .

By means of 7.08, 7.04, 7.01, 3,03 we obtain for n~> 4

CM—I M+ 3

(7.13) (n+3) "

n+l M+

- ’ f ” k3 2
(4 e, +2("30ey + (e, - (M),

(n+3)!

The corresponding coeffiocient for the osculating ourve
of degdgree n is readily obtained from 4,17 and 4.14 for

i = n.1, We have

(7.14)
2
(n=2)a,y = (n=1)a:+ a,, a,,b,3
o _ , = + +
mo s (n-1) (n-1) (n-2)
2
2(n-3)! - n 13 " m-t o mey !
where
3np (3n-2)P,
~onr; ,
7.16 a a = ——— by 4.09
( ) e = 2(n+2) ° 23 2(n+2) '
- P,
(7.18) b _ = —— by 7.15 and 4,12 ,
13 n+2
- +1 P
(7.17) o = —_(’n—& by 4,30 and 3,07 °
Mmea N 2(n+1)!
However, a, = a,. =0 for n=3, s,-= 0 for n=4,
(7.18)
: ’ kN
5(n+2)(n-2)P.* - 4(n=8)(n+2)P, + 12(n-8)(n-2)P,
LI

4! (n+2))*

for n>4 ,
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(7.18)
(n+2)(5n-14~)i", - 4(n-4)(n+2.‘)£’3/ + 12(n-4)(n-3)f’12
a B —
=7 41 (n+2) =
for n >4 .

Henoe the values of 7.14 are divided into three ocases

eimilar to those of 7.10, They are
___8B,"
(.20 = TTereT

: o
120P, - 48P,  + 48P

".21 (o] -
( ) 37 416231 '
(7.22) -(n-8)(n+2)P, - 8(n+2)P,’ + 6(n*-8)P "
7. o » = ’
nusy 4! (n+2)% (n=-1)'!
n)4,:

Fortunately the differenoce between 7,14 and 7,10 is in

the same form for all three ocasea, We find that
(7.23) Coa mes
0o -

M-t M43 (n+8)!

(n+2)(5P, - 8P, + 3P ) = 3(5n+12)P,~

3! (n+2)* (n+3) (n=-1)!

lo.shnll denote the numerator of the right hand member of
7.38 by ¥ , It is our purpose now to express ¥ in terms
of £ , the original ‘ooceffiocients P, » snd their derivatives;
and 8o to ohoose the traneformation 1.02 &s to make M = O ,
We have already insisked that the funotion >\ of the
transeforeation 1,03 eatisfy the differential eguation

(7.24) A F AT, = .



30
This eguation 7.24 and its firat k-1 derivatives enable us
to solve for the k th derivative of A in terms of A and
the firet k-1 derivatives of 7/, , We find

(7.25)
X, 1 o o o0 0
", n, 1 0o 0 - - 0©
n~ 2r, n, 1 0 o}
PN BN 3r,” ' =, 1 - - 0
n," an," én 4n,' w, 0
1;,(“") ("I")n,("'” ("2")11.("-’). .. U

Egquation 2,06 with the above valuesfor the derivatives of
)\ then expreescees P in terms of R,, W,, - - ,N__ and the
first m-1 derivatives of X, . The resulting expressions
for P: » Po o, and P* are

(7 2¢)

T.-‘ Tr' ] \ kN )
T, ( ¢
w, |
E=-m m + 37, , SR LI L i LIS
™" 2m' T e
' t '
ﬂ-l ‘ C O ’I' ' o
’ r O .
T R _ oy |
H TT'” zTr.’ .rr' | ., ,
: oo T,
_n,.‘ul 37".” 3.',1'. Tr.
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With these ss a pattern it is a simple n-tter to write down

the ocorresponding expreesions for P;—. P PP .g” .
——ape— f’
The values for T, ,FQ,TT;,N* wore given by the relations

of 2,03, From the first one of these we obtain

(7.27)

VA

€Im'= 1" -v1, + alv-vr]
CIm'= 2" vt~ Ly'-2v 14

+ 2y 'y 2y’

o= —ly¥s - [t -uy] f
- [4/“-'74/y/' ¥ ov’] /j

s 2wy s W'W-H"'].

Now 1let I? be the same funotion of the coeffioients
P, that P is of the coeffiocientes T, ., (See 7.26)

By direot substitution we obtain from 7,28, 7.27 and
2,03 the expressions for P, in terme of >, B, "Ii'
Below are given the renultn for P1 » P , and Pf also
‘certain derivatives of P and P; .

(7.28)

(0% = B - AT ]




(7.81)

(;')4 Ti'

(7.82)

(),

(7.388)

It

2

fm+’-

_ S(m+2)

——

lo

[Y’ —éww+lzsvy —’Ww—Jw*]

, ntdEme2) |

24 ¢

_ (m+2)

32

[zv-+] 2

B -y \E/ - 2Lv-s¢r] B,

+(M+1

L3

MR

e v —w 'y Ty 9"’]

[q/'icw"q/ vz - 3“}//\}/'—39"*]

2

sz'—‘l’l_],
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On substituting 7.82,  7.81, 7.80,: 7,88 into ths expression

for ; we obtain

(7;3‘;) — | - ,

M = 7;,)'4(M+/;wb3)l
where ,
(7'35) 9.. = 3 ?LE — 2 \/‘3? ’

(7.86) M - (44+2){s’ }'jf —?’j%’+32131" -2 (sm+12) ‘f«il

From 7,20 it is evident thet £ is an invariant® of ranke 3
represaented by

(7.97) _ , '
93 = 71, 7z FE = f;T)T v
The diffeérence
(7.88) C,,,,.M7 e
(n.'_s)‘ - I R ]

is resdily computed from the relations 7,07, 7.08 and 4,186,
The values of these coefficients are divided into the two
cases of n=3 and n)8. Howsver, in each oass the above
difference is equal to E; except for a constant factor,:
Henoce the assumption of 8,07 is eguivalent to assuming that
B, 40 .

If &, is different from sero it is slways possible to make
W =0 by ehooeing ¥ suoh that

(7.
39) \’/:-—/V]/Ifbg.

Prom the form of 7.34 it ie evident that the foras N = O
is preserved under further transformations of the indepen-
dent variaedble only if the funotion <+ of the transformation
is sero,-

Buppose that the transformation 1.02 is followed by the
treansformation 1,08. Relations 2,06 express the new coef-
fiolents in terms of 77, , A and the derivatives of A\ ,

®*'See Btouffer, Bulletian of the Ameriocan Wathesatiosl Boolety ,
vol.: 34, pede 292,
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By direct substitution we find that the same funotion i. of
these new coeffiociente that N is of the coeffioients T, ie
suoh that Moo= . Hence the function ¥ is inveriant under
the dependent variable tranaformation and the form ¥ = O is
therefore not disturded.

From the first equation of 2,08 it is evident that the form
P, = 0 is not disturbed by the transformation of the inde-
pendent variable if ¥ = O, From the first equation of 2,06
it is evident that the form P, = O is preserved under further
tranaformations of the dependent variable only if the function

/
A of the transformation is zero.

FPUNDAMENTAL THEOREW I, 4dny linear homogdeneous differential
equation i.OG way be transformed into.a canomnical form 2,00
by means of the transformation 1.02 with E"/E' = — M / 16 8,,
followed by the transformation 1.03 with A'/A = - n, , if
6, #£. 0. This canonical form is characterized by M o= P: = 0
and is preserved under further transformations only if the

functions N and F of the transformations are such that

A' = E" = 0.

PUNDAMENTAL THEOREM II., Geometrically the canonical form
is chargoterised by the fact that the (nt+1)th vertex Y‘M)
of the canonical polyhedron of reference is in the unique
linear (n—1)~space determined by the osculating linear (n=2)-
space and the principal tangent plane to the curve and tts
osculating curve of degree n. Ihe osculating curve of degree
n cuts the gbove mentioned unigue liucar.(u—&)—s’ace in the
contact point t=p counted (mn—1) times, and in another point
designated by t= x, The contact point t=0 i3 the first vertex
point (1,0, .. ,0) of the canonical polyhedron of reference,
The linoar.(u-i)hsﬁaoe osculating the osculating curve of
de¢ree n at the point t= x intersects the tangent line common

to the original curve and its osculating curve of degree n
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in the second point (0,1,0,...,0) of the canonical polyhedron
of reference. The linear (n—f)—sﬁaces osculating the osculat—-
tng tn¢g curve of degree n intersect the osculating plane
common to the original curve and its osculating curve of dedree
n in a one parameter family of lines enveloping a conic. l'he
polar line of the pﬁint (O,i,O,...,O) with respect to this
conic is the line joitning the first and third vertices of the
canonical polyhedron, The third vertex (0,0,1,0, .20) is ai
the intersection of the above mentioned polar line with the

tangent line to the curve ¢enerahed by Y',



§‘ 8., INVARIANTS AND COVARIANTS

For the sake of brevity let us represent the linear
equation 2.04 by L(;i)i = 0, PFurther, let this eguation
be traneforamed into anether equstion b(sL)fT- 0, in the
sape oanonioal form as 2,04, The most general transforma~
$ion relating these two equations is of the form 2-3.515)3
snd Y=AY, where E" =, X' =C, From the forme of 2,08
and 2,06 it is at once evident that eaoh ?L differs from
the ocorresponding ococefficient bL only by a oconstant faotor,
That is, the oceffioclents of the ocsnonioasl form are definite-
ly fized exocept for constant factora, Adain, from the fora
of 2,02 snd 2.068 it 1s at onoe evident thst Y "differs from
Y (“'only by s constant faotor, Since Y, ("represent the
ho-ogonooui ooordinates of the (m+1)th vertex of the oanonio=-
sl polyhedron of reference it follows that the point ¥ (**)
coinocides with Y("'for eaoch value of m. That is, the vertioes
of the canonioal polyhedron are absolutely fixed.

Furthermore, the funotions ﬁl of the original ococefficients
P,a Poo...» P, and their derivaetives ere in the form of
relative invarianta. In order to show this, let us ooneider
two linear homogeneous differential equations L(p )y =0
and L(P )¥ = O related by permissasble trensformations of the
forms of 1,02 and 1,03, Two suoch equations are said to be
egquivalent, Aoccording to the first fundamentsl theoream these
two equations aay be transformed into two ocsnoniosl forms
L(fL)Y = 0 and L(;L)f = 0,° Now eaoh ﬁ: is expresssble in
terme of p,, P.» ¢ P, Qs in 7.238, 7.29 and 7,82, and the
ocorresponding coeffioient P, is the same funotion of if. E;.

o+ P, « Now the p, are related to P snd these in turn

are related to Ft by definite tranesforsations, hence PL nay
be expreseed in terms of P,, P, - - - i;,, + But bL end
P, are coefficients of two ocanonical forms hence, as we have
Just seen, ocan dirfer only by a oonstant fesotor. It follows

then thet eech P, funotion of Po Po-- -0 P, differs from
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the corresponding Ei funotion of P , P, -- -, P, and

oconseguently, from the P, funotion of 3'.'3 .» P by

'L_. (=

st most a constant faotor. Henoe saoch ﬁ je 4in the form of
a relative invarisnt.
In ezsotly the ssme way we show that the functions Y”W)of

the originsl coefficients By Pos - and derivatives

p‘n*‘
of y ere in the form of relative ocovariants.

The invariante P, P,, and F, are at onoce obtained from

;l
7,28, 7.20 and 7.32 on the subatitution of - ¥ / 16¢; for
v «+ The S%%es inveriants P , P3 s -~ -9+ B, ,, form

our oomplete aystem of inveriants, All other invariants are

ocombinations of these or their derivatives,-

One eimple invariant G4y might be noted in passingd. The

derivative of Ez'ia eimply
(8.01) _y

] / .
&, = -:4,:6‘3 -7y (77] .

§)

-/ -

Henoce from the form of 7,34 it is evident that 056, + M i@
an invariant of rank 4. In order to conform to the notation
of Wilozynskil we shall denote this last invariant by 5(n+2)§;.
Then

(8.02)

— ! o ) 2
=P -2T < 7 32( sm 41z P

94 Y 3 + P 2 {_(71+L) 2

The oovariants Y , Y', Y* w@ey be computed from 2,06, 2,02,
7.26, 7.27, snd 7.39.° On reversing the relations obtained
fros 2,08 for » = 0,1,2, we have

(S'L?) )\Y:?l ,
' / A

XY = - ’( ,
AY = ’(”-2-}'1' -[x "l(’?\')l:\ﬁ :

Again, on revereing the relstions obtained fros 2.02 for
B = 0,1,2, we have



From 8,08, 8.04, 7.25, 7.27 snd 7.39 we obtain

(8,06) ANY = oy

A Y = A4 (4, +2 ¢) 7

2

1]
i o
+
~
N
-‘.
~
2
)
(s
<
—
s

(fi)tﬁ YI' ?

where ’7V = _M/lb'b3 .

The other covarisnts Y”,. . -, Y/ of our oomplete systes
of ocovarjante may be computed in a aimilar manner, The
derivativeas of order egual to or greater than n+l are
expressable in terms of these covariants by meane of the
ocanoniocal equation 2.04.
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