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INTRODUCTION

It is the purpdaa of this paper to preaent the
notion of a certaln generalizad‘derivative,whieh~has
been dafine&,by Professor G. B. Price, and to characterize
the c¢lass of mayﬁing trénsformations whieh possess & non-
zero generalized derivative of this type ét 8ll points of
an open, connected set, E.

In the theory of funetions of & single real
variable, ane(of'the basic concepts 1z that of the
derivative of a function f{x) with respect to the variable
%x. Vhen discussing & functian of several real variables,
Px, o ., x™), the notion of a partial deri#ative of £
with respect tc one of the variablés, x“), is fundemental.

If one thinks of the function f{x) as mapping a
line segmsnt (x values) onto another line segment with
values f(x), a gaOmetric‘inteﬁpratation of the derivative of
the function f£{x) with respect to the varilable x at a point
X, is that of the limit of the ratios of the signed lengths
fi{x)-f(x, ) and x -« x_ as x is allowed to become arbitrarilj
close to x_.

‘With this interpretation of the derivative in
mind, Professor G; B, Price has defined o generalized
derivative of e mapping function

F(x)% f(”(X)p (i’—'l, e s+ » 3 N0 XT-(X“), s e ey x(h))):



11i.
where F is defined in n-dimensional Euclidean space, le.‘
In the n«dimenaional case, the increments considered are
those orientedvn»cells, A(x X oo oX b datermined by the
n + 1 points, x , x', e o+ 3 X+ (Forn=2, the 2~cells

are triangles.) The volume of such an nacell is given by

x(n‘ x(l) s & # X(:) 1

© o

« @ & # o €. & @ e s

Alx,x, e v 0 X )= 5

x“‘ x(z) . s % xm) 1
n n n o

Under the mapping F, the vertices, X,, X s « + « » X,, are
transformed into the points Flx ), Fl(x ), « « + , F(x ),
which also form the verticea of an n~ce11,

A(F X X o .. X ), with valume given by the expression

f('){:}i

(o]

Dt Px) e e 27, 2

AF{ix X, « » o X ) =

|
—"'.hoqnwidbooQ'¢¢w
n n! .

£x,) £Px) ... 2T (x) 2
As in the one~dimensional case, the ratiocs of the signed

volumes of the two increments

f“’(x

o) £ =) . . .2 7(x,) 1
alPsx,x ¢ o o X,) "fU](xﬁ) f“)(xh)'e_‘,* fcwkx;) 1
Coalx X, . . . x,) BRE SN SoRNE SO

* 4 e 8 & o 2 s o & =

O I B ¢\ |
N

are considered and the 1imit is taken as the points X s X,
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s s » 3 X 8re allaweé to become arbitrarily close ta Xy
with certain restrictions on the points Eop X9 o v o5 Ky
If this limit exists and is finite, then‘the derivative of
F: £ =), (1 ='1; « « + 3 n) with respect to
x=(x" o 0. s x“”),is said to exist at the point x_.
This derivative Ls denoted by D F ’>§ .; |

One‘restriction on the points X, « » . , X, 1s
of course that .A{xox,. + « x,) # 0. Another restriction
on the points X , . - &+ , X, 1s that these péinﬁs together
with the point x_ must always form an ineremant of a
designeted class while the 1imit 1s being taken. It happens
that DXFLmD,may Qxiét with‘respect‘td one class of
increments but not with respect tO‘anqthef.‘ Three classes
of increments, denoted by I',.IZ, end I, are defined, but
only one 1s the object of discussion in‘the paper. That is
the class of increments I , which 1s composed of all the
increments alx x . . xh) which have n-dimensional volume
not equal to zero. Thus, if the elass I| is being con-
sidered, then the points X_», X 5 « » « » X, must always
form an n-cell whose n-dimensional volume is not zero as
X 5 X9 ¢ » ¢« 3 X _0OrC allowed to become arbitrarily cloge
to x,» |

A precise definition of the generalized derivative,
D,F, of a mapping function F (defined on a region E of r™) |

at & point x_ with respect to a certain class of increments

I is the following:
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Let F Vbe a mapping funotimn définad on a region E
éf R™, The. derivative of F with respecﬁ to the class of
increments I exists at a point x, of B an& equals d if for
every sufficlently small ¢ >0 there exists & d>0 such
that

APz x o 0 o X,)

alx X, v o o X)) e l -
fér all alx, % o o o xn)‘ih I such that
lx x-H < d s (1 =~1, . ; «s Nn), where the~symbal U= x
denotes the distance batween the painta x and X o
It is the purpose of thig paper to characterize
the elasa of mapping functions, Fi r(’{x), (1=1,...,n)

) which passeas & non-zero

definadlon a region E of B
derivatiVQ,~DxF,,wiih‘reapect to the class of increments I«’
at each pbint of E,

In Ohapter I the sbove definition of the
generalized derivative is given and three classes of
inerements are dafined. A special cage of the generalized
derivative is found by setting
‘f(k’(x) =x k=1, ... s i1, 141, ... » n), and
letting f(”(x) £(x). Then the ratios



Ve

1) ’ { :
22 ex)) 20 0w

« H O N & B & & B € & ® K & & € &

) i e K{:\-n? f(xh)‘ x(:’\h) “_‘.‘w’ x(n) 1

x“ n
0 x® L. oLx) 1

& & % % % % o * & ® =

0 x® 0 x 1
n n : “h

are considered. The 1limit is taken with respect to a
certaln class of increments I. If this limit exists at x,
then it i1s called Ehe derivative‘uf f{x) with respect to |
x) at the point x ﬁi%h respect to the class of 1ncremenﬁs
I an;i' is denoted by D | .

The classes of functions,
£{x), (xjnA(k‘”,‘. . ; s Xx'"}) which have generalized
deriﬁatives BXU)f ,with‘réspect to the classes of |
increments K# and I, are discussed, These classes of
functions have been characterized by G, B, Price. The
¢lass of functions, £F{x"', « . « xk”), which have
derivatives,ynxu,f with respect to the class I, is the
class of Stolg differentiamble functions. A function f(x)
1s Stolz differentisble at a point x, if there exist

constants a, (1= 1, o s v n), such that

mn
f(x(’), sHe g x(n))"f(x(‘;)j Xy x(om) = Z ai (x“) “'x((;) )'@"I’ [G (I‘)] *
S , ‘ ey ‘

where r = \/‘g(x‘“ - x¥)* and ¢{r) 1s a function of r

such that lim e¢(r) = 0.
r—0 -
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‘The class of functions £{x", . . . , x) which
- have darivativea ﬁxuof wibhfresyecttta the claasfef
increments I, is the class of those functions which have
crdinary partial derivativea‘

The impcrtant Moora~3mith Limit, due to E‘ H.
Mcnra and H. L. Smith, ia diaausse& and it 1a shawn that
‘the generalizad derivativa n F of & mapping functian F 1is

Maora-smith Limit.~

To conclude chapter I, 8 useful theorem concern-
| 1ng the derivetive is prova&. This themrem 13 a general-
1zation of & thearem of ﬁtislbjea for a funatian of a

single variablé, which stetes that if &f| "~exists, then,
‘ . AKX,

ar| N Cflx) - £(B)
—_— = 1im : -
x|y LXK, L =fF

where X, 18 alwaya batwean ‘x and B e

Ghapter IT 1g not concerned with geaaralized
derivativea. The main purpose of this chaptar is~to show
that the precise claés af transformations,
Ps f(“(x), (i =1y 06 oy n), which are continuous, one-to-
one and map points of a straight line 4into paints of a

 stra1ght 11ne are the linear fractional transformationaz‘

a, x40+ 8, .xm'

a .
(x) - t)‘ beg] (n' ‘,ni!
a 2" 4.+ 8 x4+ 8

n4, 1 ; N, n nH, Nt

(” _? (1319 I n):

‘

where
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B, e s s 8,
A N R R ?! 0.
,&M.' y &ow 0 a’nu. i

In order to pravs this charaatarization for
n—dimension&l anlidaan apace, the nmtioﬁa of linearly
1ndependenk points and p~f1ata are important. The points

=(xDy 0y x‘“’ y of B™, (?& (3, e ¥ pp<n)
sre seld to ba 1inearly indapendent if at least one of the,

Cl{n,p) éetenminatea of the form

“, s e e & & -
(':') : (l) ’
.Xp ‘ LI . KPP 1
is different from zero, where (i, « . « 5 1,) represents
one of the G(n,p)‘possible selections of p of the n columns

of the matrix

)
(' " & e xhﬂ

o . [o]
# 4 5 * = »

Xm [ x(h)
P P

Geometrically, this means that the p-cell determined by the
points X 5 o« « « 5 x, hes p-dimensional volume different
from zero. |

An equivalent definition is the following: The

P + 1 polnts, Koo o o o » Xy Bre said to be linearly

P
independent if the vectors, {x, - x ), (1 =1, . . . , p),
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are linearly inﬁepéndent in ‘the ordinery sense.

The notion of & p»flat in Euclidean n-dimensional
‘space has been usea.by many authﬁrs. Let xo, o e s X, be
p + 1 linearly 1ndepen&enb painbs of R°m By the p-flaﬁ,
Sp; determimed by thesa_peints‘isimaant tne,saﬁ of points

x ¢ R™). guch that
P ]
&Zo(x’ ‘idialn
(ot L (=0

An.squivalent definition 1s the follawing:
Let x o3 v e sy x be P + 1 linearly indepandant yainta of
B“” By the p-flat, SP, ‘determined by these p + 1 linearly
independent points is maant the set of all peints x of R
such that the vaatars (x = x ) satiafy the relation

5 -x) = Zpx -,

with no restrictions on the P*a.
A p~f1&t is a direat generalizatian of a line and

a plane in,5~dimensianal spaca.‘}The name, 'p~flat’, was

teken from D. M. Y. Sommerville's book, An Introduetlon £o
the Gadmatfx‘g£1ﬁ~nimenaions; (See the Bibliography at the

end of this paper.) Alexendroff and Hopf, and Birkhoff
and MacLane are other euthors Whov&iﬁcuss p-flats, although
ndﬁ ﬁndér the name p-flat.

are any p +1 linearly inde-~

Ir :xo, s » ;.,., xP

pendent polnts of'R””, the set of points x such that

‘~O

g
A
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is the pecell, alx, X + « « X)) = Oxp.

Among the propertiss of p=flats end p-cells which
are presented, the following are perhaps the most important
tovhhié papar:v

| -1, A p-flat is isometriec to the Buclidean space,
‘E((L and hence is p-dimensional.

2, If x is any interiop point of a~p~ca11;lﬁxp
(relative to the p-flat, S,, in which ax, 11es), then a
gtraight iinégﬁhrough Xy lyinglin‘sp, intersects the
boundary of zxk in précisely>twa paints.

&; IrF is aAcantinuoua, one~to~one transformation
defined on a convex reglon E of R which takea atraight
lines into straight 1ines and i alx X,e . . X ) = oX,
is any p-cell of E, then ¥ mapa the k~dimanaiona1 fécea of
AxP,{k‘<p) into distinct k—dimenaional faces of -a p~call,
AF, , where by the ‘k-dimensional face of zxxP, ﬁetermined
by the points xo, v oeos oy X chassn,from tha p + 1 vertices

of Ax,, 1s meant the set of all points x such that

X =

~.
[}
o <

k
Bixis | _Z Bi= 1 fi >0.

4, If F is a continuous, one~to-one transformation
defined on a convex reglon E of R“”, ﬁha necessary and
snffiaiént condition that pvflata‘maﬁ into p~f1ats
(p'fixed;‘l.séssnul) is that aﬁraight lines map into straight
lines. |

After the praperties of p-flats and p-cells are

‘presented, one important lemme is proved before the
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characﬁérizatian can be emmpiatsa. This lemme, suggested
by W. Kaplen of the University of Michigen, is the
following:

Qggmg; Let: X,p ¢+ » 3 X be n + 1 linearly. independent
points inéa,ccnvex ragion E of RO”,‘which fnrm the verticas
of,én n»¢911;,15x~. Let xﬁ be the interseatian af tha
madidna of Ax, «  Let G*: (”(x) = 1, .‘. «p n), be a
transformation aefineé on E which is sontinuaus, ana~to~one
end carries p-flats into pvflats (p Pixed; l<¢p<~a~1); and
which leaves the points xo, voe e s Xy x? fixad. Then G
is the 1denbity transformation.

- Using this lemma, the main theorem of the chapter
ia provad, namely, that the alass af tranaformaticns which
are aontinuaus,yane~to»ane, and mep pwflabs into p~flats
{pr fixéd; lssys;nﬂl) 1s the class of linear fractianai
tranafor#ahimns.

In Chapter III the generalized derivatives, D F,
of = tranaformatimﬁ‘ﬁ with respect to the class of
increments I, 1s once again the topic of discussion. It
1s shown thet 1f F: £0x), (4 =1, . .. ,n), i5 8
tranafarmation defined on & convex ragion E\of R, such
that D F exiats with reapact to the class of incraments I,
and is ﬁifferent from zero at each pcinb of E, then F is
¢ont1nnous, meps points of a atraight line into points cf

a straight line and is one-to-one. It;ia concluded from
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the results of Chapter II that,FAmuéﬁ be 1iné§r3fbaetional.r
The results are extended t¢:tha;gasé’in5whi¢haﬁ»ig.any open
cdhneeta&fsetu 51ﬁ~ia=alsa'shawn5that.iflﬁﬁisf}iﬁéarf,
fbactlon&lg*ﬁhén‘ﬁ F‘éxists with ieépact'td tﬁé~ciaséwnf
1neremenﬁa I “and ia diffarenﬁ from,zara. Hanaa, the
preeiaa class of twansfcrmationa P definad on a ragian E.

of R™ for- which the genaraliaad darivative, D, F;‘exists with
raspect to the class of inerementa I and is &1rferent from
zero at each paint of E, 13 tha ¢1asa of linear fraetional
transfarmaﬁions.

“In carrying through the charscterization, the
reéu}ta aralfirst‘abtaineﬁ'f9r ﬁﬁo ﬁ1ména1ona}and'thEn
extéﬁﬁsd ﬁafthé ﬂn&imensianal éase; while this 1s un-
Lneaessary in most caaes, it 15 felt thak B elaarar under~
standing ig obtain@d by nrganizing the.devalupmants,in this
way.

The similarity betwaen generalized derivatives and
Jacobiens of a"mapping function should be nnted.» Expeaially
prominant in this ﬁimilarity 13 Theoremn I.4.14, which
states thet if F: £ (”(x), (1 c 1y v e w5 n) ds 8 trans-n
formation such that D £%,{1, J =1, v+ 4 4 1) exist at
& point x, with respect %o a class of non-zero increments I,
then DXFJXO exlsts with respect to the elaas of

inerements I and equals’
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RO (nl
n (nf . L « D ()\) f
X o
f - * L L2 - L3 & » . ®
Y (n
" —D (”f LW » - D (mf
X N % o

There have bean other generalizations of the
derivativa,_ The ganaralization given in this paper can be
‘comparea with the ganeralizaﬁ Jacobian;introdueed by
Banach and with Burkillfa modified Jaeohian {=see the
Bihliography), Hnwe&ar, in Banadh's genéraiizat1qh {for
the plaﬁa) équafea dre censidared as”incréméﬁts, while in
Burkill's ganaralization, four points in the plane form
ﬁhe vartices of the increments cansidared. It seems &
'mora natural ganeralization to eonsider triangles 1n the
plane as increments. In the ana—dimensional ease, (the
ordinary cagse of the ﬁarivativa af 21 function cf a singla
variable), the increm@nts cansiderad sre determined by
two points ~- one more than the dimensian of the space.
’It seems natural then' to conaider triangles in the plana,
tatrahedra in 3~d1mansiana1 apace, and in general, n—cells
in n~dimengional space as inerementa. Thearams in the
theary of determinants can also be readily used in such
a genera}lzation.

| For more ccmplete information concerning p-flats,
,pneella and thelr properties, one ahould study the
references to Lefaschetz, Alexandroff»ﬂapf, and Kerekjérté,

which are glven in the bibliography. For more domplete.
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information concerning the theory of determinants, see the

references to Kowalewski, Altken and Price.
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CHAPTER I
GENBRALIZED DERIVATIVES AND THE MOORE-SMITH LIMIT

I.1. DEFINITIONS OF GENERALIZED DERIVATIVES AND CLASSES
OF INCREMENTS

I.1.1. In the theory of functions of & single real variable,
the derivativa of a function, f(x), with respect to the.

veriasble x at & peint x_ is defined to be

£(x,) 1
£(x) - £lx,) £(x) 1

1im - = lim :
T X=X, X, 1
'x 1

pravidad‘thisilimit 9&18@3# »QnQ interpretation of the
derivative of f(&) at the point x, is that of the limiting
position of the secant line through f(x) end f(x;}; the

limit being teken as x approaches x.. (See Fig, 1.)

lj = “E(X)

Fig. 1



A natural gene’ralimatipn“af the derivative, in
the light of this geometric interpretation is the follow-
ing: Consider the function z - f(x), whers X = '(#"",’ x®¥),
the -‘aupex*scripts denating ,cmr&inatvés af the point x, Le’t
this function be défiﬁe’zci on some ge!ﬁ“E in ;‘ﬁ'(:)', for exsmple,
on an opan, convex set. The 10611‘9' ai‘- 2 i‘(x) is & surface
in B, Let : X, = (x 5 x(z’) be & fixed point of E, and
x = (x‘ » x(”} and x (x;" " x"’) be two nesrby points
‘of E. The points (t‘;’, x‘z’r(xoa,) A (xF:‘t = ,f-(xo)) PR
and _(x(z", x(z’,f(x }) ‘1ie on the surface, z = £(x). The

'equaﬁicm of ;the secant plane through these three points is

given by
xm x 27 f(x) 1
| 7 x® px) 1
| I S S 1690 !
1

‘ (l) (2) e
x) 32 f(xl)

Expanding end solving for f£(x) = f(x ), one obtains

(2) g 1 ' g |
£(x ) xI' 1 xV£(x) 1
, () YOW-To :
£(x ) ‘.::f 1 x{ f(x) 1
- @ (1 £ :
iy fcxﬂ‘) * 1 M m x‘-'l, £ ) '1 L)
(3.1,3) £(x)=f(x,)=— ("= x )+ ‘ (x> x
x{) xP 1 z( x® R
M x® 1 = x® 1
' ’ . () (7-7 ’
3 x® 1 x‘g 271

k2
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Allowing x, and %, tcf’approach' X, in some manner, this
secant planse approaches‘theftangent‘plana ati

(xﬁ], x&, f(xo)L under certain conditions at least. The
equation of the tangent plene at '(xg’, x?, £(x.)) 1is

given by the expressién '

(1.1.4) ',f(x) - fv(xo)‘:: \ (x - “’) + a¥1 (x”’ -x?),

o 3%”

Henca, it is logicel to ecnclude that, under certain conditions

“at least,
£{x,) | x® 1
£(x ) | =1
, , r(x,) =¥ 1
(I.1.5) lim )
X, Xz %o P SN 34 1
1 : (‘)
x! =M1
(D) e L Z)
X, x 1
and
/' flx,) 1
x f(x)) 1
| x " f{xi) 1
"(|,X2">xo ) x(o’) X(:‘ 1
xM  x® 1
1 '
( (z)
x\" x> 1
are derivatives of a sort. They will be denoted by D 1|,
and D xmfy respectively.



4.

I»ln?. Another gaomatria interpra%atien of the definitian
‘cf the derivative of a function of 8 single raal variabla
s the following: ?ha function y = f(x) may'ba regarded
_as the mapying of a atraight lins (x,values} anto anethar
fatraight 1ine (y va&uaa), The image of x is yof and the
image of a variabla point x 18 y._ Tha darivative af f(x)
at x‘ ia thé limit of the ratios af the signed 16ngths,
v(yuyo) and {x-x, }, ﬁhe limit being taken as x,approaches X e
As a ganeralizatian af this intarpretaﬁien,

vconsider the mapping functiun F: f(”(x), f“’(x), whera

(x. ; x“”)%p &efined on the orienteé‘ﬁuclidean plane,
AB ineraments 1n thia case, ane considers orientaé trianglas,
denoted by A(x X X, ), or ¢Ax, with varticea X, , x,, and Xo.
These three points map 1nto three paint&, F(x )
= (f“‘(x ) £9(x,)), Flx,) = (r"’cx )y £ £(x,)) , end
F(x } = (f(”{ ¥s f‘”(x }), which alsoe form ‘the vertices of
en oriented triangle, denoted by' zd?‘x X X, 1Jnr by' AF.

The areas of these trianglas,ara;givsn by thevaxpﬁassicns;

% Throughout hhe remaindar of this paper, the n ceordinates
 of a point x in n-dimensionsl Euclidean space, R™, {n any
~ positive integer), will be represented by superacripts,
R o= (X( ‘» * 6 e 9 x"’); oY 88 x.(” . ‘3‘*‘3 13 . ww g n)¢ v
Two distinet points of R™ will be distinguished by sub-
‘scripts, @s x, end x,, If x, only is writtan, it is
underatoad that X, = (z", e e ey XMy
=xV, (J =1, + « ; n). The nmtationa (xﬁ‘, vie ey x0)
or xu’, (J =270 « s n), will be used: only when ib ig
necessary to use the coordinates of @& point in the proof
‘of ‘& theorem or to make the meaning 6f a statement more
lucid. Otherwise, the notation x wgll be used,
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(1 2)

Xo x‘o

(I.1.8)  alxxx,) = ax= 5 |x" z0
() e (2)

xz x’.z

and

(1.1.9)  a(Fix,x x.) =AF =  %;jf‘”(x,)f f“”(x ) :
: ' . (n | @ :

£i{x) 1 | ﬁ(xl) 1

As in the ana—d:menaional cage, the ratias af the signed

areas of the two incremants are examined and the 1limit is

taken as x, and x, 'approach' the fixed paint xefl If

this limit exlsts ahﬁ is finite, it i1s called the

devivative of F = (f(”,'f(”) at %, with respeat to

x = (x" x®), and is denoted by D FI

1.1.10. Remerk. The generalized derivatives D ,f and
D;“”f of {I.1.5) énd (I;1~6J are only special cases of the
generéiized derivative DXF; for if one sets £ x) = x* in
(1‘1.9) and takes the limit of ﬁha ratioaiaf (I,;;Q) and
(T.1.8), ﬁhen {1‘1*5) is ob%ained; and if cné'sets
£ x) = x“’ in (1.1.9) and takes the limit of the ratios
of (I.l. 9) an& (1.1.8), then (I 1,6) is abtained.:

I should be furthar noted that in mapping the
points of the plane onto another‘glana, it is not‘asserted‘
that & trisngle, ax, is mappedfinto a triangie, AF, but

only that the vertices of a triasngle Ax are mapped into
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pointauwhich<ars«§ha VQrtices‘afka triangla,;danaﬁed“by}
OF, @ha valuakaf~szA&§pend3 eqtiralycn_tﬁa:imgges of
the vertices of ax. ﬁwwevar, 1n taking theiiimit, the
rat&n of ﬁba signed areas of the two  triangles ia con~

side:ed;

I«i;ll. The word ’gpproaah? ag uaeéuin tha tﬁc-géneraliu
zations must ﬁow‘ba-clafifiad¢ In ﬁhe single variable
case thare is only one way in which x can appraach X
and that is glong a atraight line, Howaver, in the plane,
wheﬁ}daaliﬂg with g = f(x)‘aﬁd with F:,f‘”(x).'f'”(x),,
there:afé infinitely many ways in which‘x' and’xl an;become
‘closa to x_,. In the aingle¢variébla‘oaéé thé“éreéise
definition of the derivative of f{x) with respect to x at
& point x is the following:

The derivative of f with respecﬁ to x at X,

exists and aquala d if for every e:>0 there exists a §>0

such that
fix)-(x_ )} . | Af
w g = | — - d < €
X « X, Clax I
whenever [x - x_| < .
This means that the differenee quotiant, f% »

gets as close t0 4 as one chcoses far all 1ncremants whose
maximum 1ength is laas than a aertain number, 5 » as long

as the incremant is different from zero,
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It is this idea of 'approach' which will be applied
to'ﬁhe generalizad derivaﬁives. The derivative of F(x) with
respaet o x = (x‘”, x@#) &ﬁ s point x, is said to exist
’and equal d there 2f for every ¢>0 there exists a ‘5;70’
suah,that
AR

Ar- dl L
1A%

for all increments Ax # 0 (with cartain requirements whiah
'will be discussed next) such that ﬂx u‘< 5, (1fw 1, 2),
The symbol Hx %M denates the distanca batwaan the painta
X, and X, Unleaa etharwisa ahated, ::x 15 alwaya undaru
atooﬁ to hava the fixed painh X, a8 8 vertex.V

~ This interpretahion of the word. ‘appiaaah! will
‘be used thraughout the remainder of the paper‘ Howéver, |
one must be careful, fcr, while in the one ﬁimensional case
there is only one passibla,bype,ar inarement~~thaqlength of
the segment X_%--in the plaﬁe'éne'1§ cnnffbnteé with all
types of inorements. In order to maka the above gener§11~
'zatidns'meaningful, clasaes‘af increments Will be*aafined,
Once & alasa of inaraments haa been designated for
particular prablem, the pmints X.s X, , 8nd X, must remain
in the class while the 1imit is being taken. This-
perticular point 13 important, for it turns out that some
functionsyhave a derivative with respect to one class of

increments but not with respect to another.



8.

Obviously, any number of cleiases of increments
could be defined by making apeé}ia'l requireménts of the
relative position of the vertices of the increments.
‘Hc;waver,',@zily ’thma impmrtént éiaéaas of increméntﬁs .will
be dafiued h“e’r(e, and of these three', onl:;r one wiil be used
in ,‘the remainﬁer of ‘the papw; The three classes of

increments are:

I|$ The class of increments Ax, such that

A;x # 0. This is the most gene_ral‘clasa’mf increments.

‘Iﬁit The class of increments Ax such "th:at
Ax 2 ellx x| - XX, >0, pfixed, O<p=<l,

where |x_x;| denotes the distance between the points X,

and x,,
I'Bz': The ¢lasgs of increments ax such that
(N €)) 1
x( x4 1
ax = Lo | 2t - S 1, ax#0, ax?#£0,
RO @ ‘
x5 xR HAx 1

It is easily seen that these classes of increments
have the following inclusion property:
3”3 I, C I.

To verify, for example, that lsc.:I.z’ one notices that ainy
increment of I, satlsfies the conditions of an lncrement in

I, with p= 1, Furthermore, an increment ax in I is
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certainly also an increment afyxi,“since 4 # 0.

1.1.12, Bemark. There is one requiramanh that must be
mads, It is, that 1ncrement$ of the class in question

must appear Iin every suffieiently small neighborhaod of

the fixad'paint,Axd, et Which the @arivative‘ia being taken.
‘This will certainly be the case if the set B @ontéinixg X,
 ia-chosen'§ropér1y; for example,‘if‘E is an Qpen sét,‘than‘
increments of all three types will apnaar in every
suffieiently small neighbarhaod of x

New that ¢lasses of increments haVQ been defined,
precise definition of tha darivativs of F: £ (x), £@(x)

,with regpect to x = (x . x“’) at a point x can be made.

I.1.13. ‘ﬁefinitiag. Let F3 fal{x), {1 =1, 2), be a‘mapping~
function defined on aAregion* E of R®, Whe,ﬁerivative of
F with vespect to x with respect to the class of increments
I exists at a point x, of E and equals d if for every
gsufficiently small ¢>0 there exists a J >0 guch that
4QE'~~d’ < €
AX
for all increments ax in the class I such that

x,x 0 <8 (1 =1, 2).

I.1.14. Remark. The ¢, relationship of Definition I.1.13

_must.hold‘far'all increments Ax in the class I which aeppear

* The term"region’ is uhderstood to meen en open, connected
set of Euclidean space.
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in N, (x,), the Swnaighberheod of xo « . Otherwise the
derivative at x_ is not ds but is eithar something else or

doss not exist,

I.1. 15."Hemark‘ The derivative, 1f it exists, is uni§uaal
Suppose there are twe nnmbers, d and. d‘, such that for
every €>0 thara exists & 53>& such that

‘éfa. &1< €/
Ax T

for all ax in I in ¥ (x.), and also & 4,>0 such that

IM*-' a'

< &/o
AX c

for all ax in I in ng(xo).f Then 1if ,sz‘min(é:,ég),"ona

would have,
aead Jogenr ale | are d o of <o
' X
whenever aAx is in I in NJ,{XO). This implies that 4 = at,

1.1.16. The functions which have a derivative, D F, with
regspect to the three alaasas>of ineremants defined above .

have the following inclusion propérty:
(Class I') < {Class Il)JC:(Glasa I.),

where (Class I ) designates the class of functions having a

derivative with respect to the class of increments I s ete.
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That thig is true 13 verified by‘noticing that if
Definition I. 1. 13 halda for all 1naramanta of I, in

'N (x ), it will eartainly ‘hold for the inarementa in the
subclassaa I, end I.. 8imilarly, ir Dafinition I.1.13
hpl&s for the elasé I, it will clearly nold for the ' sub~

class 13.

I.2. GENERALIZATION FOR n-DIMENSIONAL SPACE

1.251; ‘Dafiniﬁian._ By a p-cell, 6%, , in R™, (p<n)
with the p+1 Verticés X, x]’ s ¢+ g X,y 18 meant the

set of points x of R™ which can be represented as:
(I.2.2) x = ;glxixii 32?«}3 1?} «70, all i,

I.2.3, Remark. Further properties of p-cells will be
déyélopea in Chapter II.

I.2.4.. Definition I.1.13 is readily extended to n~dimensions.
In n~dimensionel Euclidean space, Rﬁ”, the mapping function

(¢)

F: T ( ), (1 = lp A s a3 n),

1s considered, where x = {x "’y « + « x™M)*, he inerements
to be cbnsidered are'thasa n-dimensional oriented ne-cells,
AX_, with vertlces x , X 5 & « « 5 X, The volume of such

an n~cell is given by the expression [Aitken (1), pp. 42e44]*%é

# See the footnote at the bottom of pege 4.
#3 Names and mumbers in brackets refer to the bibliography at
the end of this paper.
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N (2) ™
X, xS . X 1
‘;»2» 5} Axn” —# A e ow . RN tﬁ ¢ wle
(n (Y ] (M)
x, ' x7 v e X 1

The mapping function F maps these n + 1 points into n + 1
points, Flz,), F(x ), . « . , F(x,), where

Flx) = {£“=)) , (122, ., n). e volume of the
gell with these“points as vertices 1s given by the

expression

£ (x DI S 3 I £Mx ) 1
(1.3‘6) AF&'\”J‘] “ e e B B % w B ‘b'b"t.‘t" ‘“« e Okb‘t »
‘ Al ER SRS
. f(,].(x“)\ f’(”{xh) . ﬁVf(f,n(x ) 1

As before classes of increments are dafined, the
definitions being precisely snalogous to those given in
Section I,1.11. The ratio of the signed volumes of the
two cells 1s examined and the limit 1s taken as
Xos Kyp o o . x, ‘'approach! xg, in the sense discussed
in Section 1.1.11; It isjundersteod, of couvsa,’that the
cell ax,, with the fixQd verbax,x¢, remains in the
deaignated class of~1ncraﬁénts vhile the limi§ is héing
taken. If this limit exists, it is dafinea'té be the
derivative of F with respect to x et the paint x, with
respect to the class of incraments in qnestion. It ia
likewise designated by.DxFde. To put this in precise
form for the n-dimensional case, the following definition

is giVenz’
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I.2.7. Definition. Let F: £/(x ), (1 =1, ..., n),
be a mapping function defihéd on & region B Qfﬁ9ﬁ4 The
derivatiﬁe of F‘Witb raspeat-ﬁo xg wiﬁh respaét to“a
C1a§a I of increments, exists st e ybiﬁﬁ‘xovof E and

‘equals d if for every <> 0 there exists a & >0 such that

*él < €

;Arn
Axin

for all Ax in I such that (x x;l <, (L =1, . . . , n),
- Ax, is always‘undarsﬁOOd to possess the fixed‘pnint X,

a8 a‘verteﬁ.
I.2.8. Remark. By choosing
L)y (i) ; . % ‘
f (XJ = X s (i = 1, ¢ & w3 k"’lg; ‘k‘i“ly s s e n),_

a generalization of Definltions I.1.5 and I.1.6 will be
obtained. For these cholces of f(o(x),‘the‘diffarence

gquotient, 25“, becomes

m

H
=
p—

<

e P

o * o o * (=3
.twousno‘a.ai‘cp « 5 ® ¥ & @

x(ni‘ * 9 le : fm(xn) X H)- . s xh’“ 1

ha ) m

' oal 2] !
(1.2‘9) ( n ; *
Xé”- q‘i « & & w9 o‘ LR SR LN T xo) 1 '
- ",‘ a8 o & & s % 8w s » -5 & 4 5 @

‘X(”va’tatat't‘oo.‘i,c_d'xg‘)1

If the limit of this difference quotient exists as

Kopo oo s X ‘aﬁpraach? x5 remaining in the designated
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class of innrementﬂ, it will be 6&119d the derivative of
£® with raspeet to x“q,‘and will be danatad by D(ﬂf“)
vclearly, all the derivabives, D,ﬂ” (1;3 =1, R s N)s
cen be thus defined. -

1.3, THE MOORE-SMITH LIMIT AND GENERALIZED DERIVATIVES

I.3.1. E. H, Moore end H. L. Smith heve defined the limit
which bears their neme as follows [Moere»ﬁmith, (1) ]i

I.3.2, Definition. Conaidar a claaa P of elemanha P and

a binary operation R defined on the clasq ?. subject to the
following conditiens.
(1) R is trensitive. That is, if p R p  and
| ,QIR B,» then prﬁ B, |
(2) R has the{ccmﬁiﬁaﬁibn property. That is,
if p, end p, are any two elements of P,
there 1s an element p3 GfuP such that
| Q;R p, &and paﬁ‘plg‘
{The nptétiéﬁsprﬁ p, mesns that p 1is in the relation R to
P, ) Lét « {p) be & numerically valued function défihed on
P. Then,<x(p)fis said to converge td-a 11mitrd,}with
respecﬁ to the relation R, if for every *é:io?thére exists

an element p_ ‘such thsat

l«(p) = a| <c for all pRp.
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I1.5.3. Exemples of the Moore-Smith Limit.

Examp}.e (1), Let P be ‘the set of 811 positive integers.

Let o({p) =a, (p=1, By v s e )s be an infinite

sequenee 'of real or'cnmpiex mzmbers, ‘ L'e'b"hha'réiéytion

P, R b, mean that P >P,. Then the ordinary I,imit. of a
sequance of real or complex. numbars 3.3 a Mnax'e-Smith 1imit.
For a aequencap;t‘ real or c_omple;: numbers, g,s (p ::1,,2, vaslds
gcnvergas to a ;mif;, a, if‘fariévery €>0 th;aré is a

qusitiva' number p , such that
lap - 8| <e for all P>D «

Thet is, the numericallynvalued funetion, < {p) = a,s has &
limit a ii‘ for every ¢>0 there exists & p.» such ‘that

'o(('r.:) - a] <e . ki‘br all p Rp, .

Example (2). Cona\ider a function g(:&:) defined on a closed
1h£erval It a<xsb., Let 7T be a subdivision of asxs<b by
a certain nwnber of intermec%iate peints. Let P = {TT }
be the class of all subdivisicns nf_fr}'.. |

Let TT, and 1T, be two subdivisions of I. Then
the binary Oisei*ation R is defined as follows: ’ﬂ; R T, N |
ifl‘TTz is a relfinementof Tl', s that is, if },7T,‘; 43 obtained
‘from 11, by adding points of division to 7T, « The
operation R is clearly tx;an‘sitrive‘. "R also has the
combinatién property; for if T, and i T, are ‘two sub-

divisions of ‘1;' 1let them be snpérimposad.« This subdivision,
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1T5,. is a refinement of both M, and. T7,.

Define «{17) as follows:

«() = 2 u[gl$) ] (x, - x.),

L= . .
where M[g( §,_-_)] = sup {vg(fiv)‘f x, 5§ < x‘i}. Clearly, for
T, R T,
it follows that

< (TT3) s = (TT))

since sup £ix) on & finer subdivision of an interval 'is
always less than or é‘qual“ to sup f(x) on a coarser sub-
division, for any funetion f(x). .
 Define inf «(TT) = fbg(x) dx,
, ™ . o
From the px*o;;ertiea‘of the infimum of a function it fdllews

that for every ¢ >0 there is at least one T, such that
- e -
<x{(T.) < fg(x) dax + € .
a .

Since (M) s x(T) if TR T¢, then

—_—

l"((ﬂ) - /a"’.,_g(x) dx

< €

—_——

for 211 TTR T, . That is, f:g(x) dx 1is the Moore-Smith
1imit of «(7T). If g(x) is Riemann Integrable, then
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b
1im < {17) = f gix) dax.
a.

The Riemann integral of g(x) 1s also defined to be

o Y4m o x {1},

n{mT)->0
where n(’r )} is the 1engt1.:1 of the l@ngea'c subintarval ef (e
The well-—knwn lamma c:sf Darbaux states that the two

definitinns are equiva}.ent.

Exémpla 34 it wil}. be. ahmwn that the genaralized derivative
defined in Dafinit:ian 1. 2. 71s a Hcare-»&mith Limit. Let the
elass ? be the class o:{‘ mcrementa I ‘ For a givem
increment Ax of P, dafine o((A x) ta be the m:merwall%
valued funabion | %L:n. Let {A:x.) with vertices.

x, ,‘ SR '. ’. xh ,naﬁd {Ax) with vertit:aa-

xo, x s v e s s x" s be two .incz*aments of P, The. inerement
(«A"‘)n w.ill be said to be in the relation R Wi'ch (ax)"

.(wx*ittenv {a x)h R (ax) ) if
max {”x x'l\ max {“xox:” } k’ i = 1,  » « o g I}y

where X, 3 & common fixed vertex of both {(ax)  and ( Ax)
The ralation R is alearly ‘cransit;ive. Ii; also
‘has the aom‘bination propex’ty. For if (ax)' and (ax)"
are two 1narements of P, ainca :H; is aasumed that incre-
ments of P appear in every neighborhcod of x,, then there
exists an mcremen’c (Ax) with vertices X s X , .‘ ve 3 X

such thab

ne
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max {llxofiui < max {onxflll and max {uxo'iiui < max {“xox{'llf .
where (1 =1, . . . , n), That is, (4%), R (ax), and
(a%), R (ax) .

Now using the terminology of the Moore-Smith Limit,

the function «{4x) = %éb has the limit d at x, if for
every €>0 there exists a {ax), . such that

—éfnmﬁ < €

AXon .

for all (gxx)n R QA:XLue " ‘%his clearly coincides with the
definition of the generalizedkderivatife of F(x} given in
Definition 1.2.7, éhowing that the generalized derivative
is a Moore-Smith Limit.

1.4, FUKQTIQ&S WHICH HAVE GENERALIZED DERIVATIVES

I.4.1. A natural question tovask'ié,the following:
Which classes of functions possess derivatives of the type
given in Definitian‘Iyz‘V, and which classes possess
derivatives of the type described in paragraph,i‘z.s, with
respect to tha various clagses af\indremsnts?

Iﬁ is the purpose of this‘paper thanswer the
“question as to which class of functions possess non-zero
derivativea of the two’hypea described with respect to the

class Ir'
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' G. B. Price has shown thet the precise class of
functions f(x“’,‘. ; . ,‘x?"bkwhieh p@saeaa‘§ éerivativé‘
of the type'D wf;‘(i~z Ly o o oy ﬁ), W1th‘fesﬁect to the
class of increments. I 15 the alass of Stolm dirferentiable
_functions. A funeﬁian f{x ... s x") is said to be
Stolz differenhiable‘aﬁ,a point x, (x‘” e ow s “”) if

~ there éxist,congtaﬁhs a;,:(i =1, . PR n), such hhat

f{x"l e ) - (xl) auy 20D Za (xx) s (e(x)] ,

vhere r \/E?ZTB—T;;;; end where €(r) is a function of r

such that 1im €{r) = 0. For a treatment of Stolz differ-

‘entiable rﬁnctions; see [Radamabher,”(l)-]s

| It is easily ahown ﬁhat the class of functions
lf(x ’ .’. s x) which have a derivative of the type
D (df with respect ta the eclass of increments I is the
class of functiana which are differentiable in the
orainary sense, To show‘this, auppose.thab wa,f‘exists
- ab a painb x, with'reSpeat'ta the class of increments‘l
That 13, the 11m1t of the follawing differenee quotient
exists as hhe polnts x e s 9 X approach b remaining

in theralass Is
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(1 x 2) _‘x(« 1) f x(Km

o . [« . ) -0
X rax”  x®, o=k flax®) x . L 0oz 1
X W X(z“! AX@)»A‘ . ﬁg‘"-’ f(a Xm)‘ x(f“) s e X(J“ » 1

€ & ¥ B & # ¢ % & F.¥ & & W £ & ® & & . & © 8

KL” : X(z)p —_— x("(“) f((lxh<]) x“(“) B e ,X(’n) 1

| ) @) S NP (
, x»g ‘ o * % * °< Llaxm }E((';“) o oo XMt 1
(I.4.2) 0 @ ‘ ¢
: xo Xo ! * B e & e % & = & & ¥ s @ K;ﬂ 1
Y ' ‘
x((;'('ﬂ. m X(z)v « 8 % e . ¥ R e * & e % x(;” 1
o
x(o" XS‘ A @) » B 8 b & & e & & & » & I:ﬂ l

B n) m
xf)" x._.‘..;.*-,»..'.,..x(;rnx"l

where f = £z o o 5 x0) and
£lax) =£(x0, ., x40 x4 a o) sxtin, o, 2,
’(i»(.r-: 1,‘5.‘ " sAn)w o
Subtraéb the first row from each of the remaining
}rdws in both the numerator and denominaté:r" of (1.4;2),‘

obtaining



X\Kﬂ)
o

0 f(lax"'}'--f
£lax®)-1

. « s+ 0

*

0O

L4

*

-

-

-

P{ax -1

o o xM

v AKX

(m
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(I.4.3)

Expend both numerator and

column end obtaln

0 0 ...

ax™ 0 v 4.

0. ,Ax(ﬂ;‘»'f&‘

B ANE T RN R A I

(ST 4

4]

»

flax")-f
- £{ax)-F

-

*

-

®

L]

lox™)-r

*

w

R

.

0 0 ...0 flax)-r

dénominator

.

L]

.« o x

(m

+4.3) by

(1;4;4}

axMax

=

4

» Aj{(”)

o C =)o

the last

Expend the numerator of (I.4.4) by the first row and obtain

(1.4.8)

AxDax®. . cax®Ue(ax®)-g ) axb0,

.'AX(“).



[:Thékminor éf f(af”)éf 15 0 since the kth,row offthis minor
contains all zeros.] Hence, the difference quotient

{I.4.4)reduces. to

(f(AxK)*f)AK(”Axm. . & L\X(K AX(K“’Q P L\Xtﬂ, :

A:K(') . avjp/ . “L\Jch"7

£ (Ax(K)) - f

A ~KU<)

' Since it was sssumed that the 1imit of the difference
quotient (I.4.,2) with respect to the class I ékiats,vthen

£{x%) - ¢
‘1lim

AX(K)——? o Ax(K) .

‘exists. .But‘this_is the ordinary psrtial darivati#e”of f

(K)
.

with respect to x Thia proves the atatement.

The classes of functions, f{x"', e e x™,
having derivatives of the type;D&mf with.raspéct-quthe
classes of inerements I, and I, have thus been detérmined{
When one considers the classes of functions
Fif “Ax), (1 =1, ..., n), which have derivatives of the
type D,F with respect to the 0laase$’11.ana I,, the answer
‘18 not so clear. The following illustration will show what
one is up skainst in dealing with D, F with respect to the

clags of Iincrements XS.
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Consider the mapping functian

| N L (n(x) - x “ g{x (1)) , /
(LQ_‘G): »5‘“‘ f(77(X) = x4 ;,;(2)«;. { m) w7 e 200
; gix
where g(x(”) is dei’ined i‘or all x ) and mherwise is
’campletely ar‘bitrary,ﬁ ﬁlaarly, the orciinary partials of
(”(x) and f(l)(x) cannot exist with respeat to the variable

x () However, D F exists averywhe?e with respect to the

class Iy. ‘.i‘c show this, consider the di:f.‘ferenca quotient

( [€)) )*(St(l) )mg( (n : U) )+(x(z) }+g(xm) 3.
’«»ux)—(xm Joglx! +AX3 (x(” x)4(x( ) )+g(x“’m‘) 1
(x(n )*(K (z)ﬂx?}“g(x(n} - ( ok )+ xm x1)+g(x(v)) 1l

(Inhn?) ‘ ‘:‘ - S |
x! E X |

RESETE A x? 1

lt 2Prax? 3

Glearly, the dencminator reduces to ax"a x‘?’, by the same
prooedura usad 1n tha laszt example. In the n@ex‘amr,' add

the aecond column to the first colmnn and obta:ln

IR m (

Koo + x4 glxl)) 1
(1.4.8) 2 x‘”+ ax" x" ya x "t 29t g(x 4 ax™) 2
. xg) 5o xUy (z’+ax(z‘+8(x($),) L .

Subtract the first column of (I.4,8) from the second eolumn,

obtaining
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x x + g(x) 1

o ) , ‘
(T.4.9) 2 | x0'+vax™  x@g(x0 +ax") 1,

o xP4axh g(x") 1

o

Multiply the last column by x' and x® and subtract from

columns one and two raspecti*&rely end (3I.4.9) ‘becamesv

o glx) 1
(1.4.310) 2 | ax®  glx"+ax") 1.
0 L\xé’ug(xf}’ ) 1

Subtract the firat row from the last row and get

o alx) 1
(I.4.11) 2 | ax"  g(x{"+ax™) 1.
() Q

0 : ) ’ﬂx

Expanding (I.4.11) by the first column, the nﬁm‘erat;or of
(I.4.7) finally becomes

(I.4.12) 2(e Ax Y (e ax®) = 2ax My x®,
Hence, the difference quotient (I,4.7) becomes

(1.4.13) 2axMax®

Ax"”ax(”r ]
Clearly, the derivative bxF with respect to I, exists
everywhere in the plane and‘equala 2.

Since g(x")) was arbitrery one can see thet the

task of finding out more about the kinds of functions F
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having a derivativ&rﬁxF with respect to the_elﬁss of
increments I, isynat‘easy. Similar aﬁatementa;appiy to
the functions having a derivative with respect to the
clasvaii

| One addihional fact can be prov&d eenaeraing
the functions F: £90x), (1 =1, « » « , n); this is

expressed in the follawiﬁg{theorem.

I.4,14. Theorem. Let F: £''(x), (1 =1, ... ,n), bea
mapping function such,that ﬁ(nf“’a (i J: = 1ly, o o o 5 N}y
exist at g point xo with respect to eny alass of non-zero

increments. Then DXF]*, exists and equals

(v] ‘ : i (n
EX“)f L] L Dx(n)f

d-d‘oétﬁ‘&t#&

n f m . 5 s }} f(n)

X o)

Proof; The pronf of this theorem dapendg on the Bazin~-
Piequat~ﬁeiss Thearem on daterminants [:Price, (1)] y wh&ch

states that if A and B are two n x n matrices, then

 G{n-1,k-1)  C{n-1,k)
|4 | - B

18 (1@l (125 =10 o s clng)®

where \B{jA(J;d)/B(JT)ﬂ| stands for the determinant

% The vertical bars here are all determinant signs.
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obtained when one of the G{n,k) possible shqicegvof k |
columns of B has been,replacéd by one of the G(n;k) |
possible cholces of k colums of A, and whers the symbol,
C(n,k) standa for the number of combinations of n things
taken k st & time. For each choice or k cclumns af B,
all G(ngk) cheiceé of k columns of A are substituted
sueeesﬁively, forﬁing a row of the determinant |
\\B[A(J K] )/B(J(K)

columns of B, ﬁhe reaulting determinant,

8ince'there are C{n,k) choices of k
]B [A(J(m)/B‘J“dﬂlii

is a G(n,k) x C(n,k) determinent.
| Consider the following product of determinants:

T TR a9 SRR 30 B B L L L |

(o]

(104‘015) .". . 08 w2 2 & 8 ® Q'pb'» . ® T T .

( @) (ny . x
£ O tx, ) M=) 1] & 2D, L x1

If one applies the Bazin-Plequet-Reiss Theorem with k = 1,
one finds that (I.4,15) is equal to (I.4.,16):



'Sinca all %h@ elements bf tha 1ast

' except tha 1ast element, expanding

becomes aqual‘tc

(l)
_9

x(!\
7"

PO xh)l

f(ﬂ(x‘ )

ivvb%

.A f( W)
» ‘-l’ LA A ,f,

P :m.’f’l
EREEEE AN

'&b#

fhﬂ(x) %(“ e

[ Y

#(x )

(2) . x(:‘;z, :
N 'lr" .
u)i £?1, ‘
N .;;,Q 68w

R IRCEE RN A

2
xh

e (M=1) 40
xob‘{a‘ X(o £ txo) 1 )
.. PR
oo G
E ‘“"f( ) 1
m
“bk;’dtiaoyt!tuqn

(1) @ ) - ) . L) g Ny .
f ( o ) ¢ XD W Klﬁ 1 .‘K(;, f (XO) v ‘ XZ) 1 X(;lv ) f (X )
. w * ;h L S ‘ ., e e :’V, A A S S L LA A U A & a o L
NG R DU L BN PR w ),
’ . v XM ] -\ L ) (1) m .
It }( R SERE SRR UEE T S C 0 P x7 =l . £ {x,)
e @i v ) ey ) . (2)
| f ‘('xo )» ?io at gt x(':) l x(;] f( (:&o ) L LEAS xo - : K(' l’ - ("\) (x )
o e e ’Aw' LI TS c * PR T VRN VRN S S S : # vq e e e e e e e
(2) 7. (2)' (m <N @y Lo . ) o2k
o L] - ." LA L 14 . - + » ‘ - (2 “, L “Qt * ». w » L » * L2 » - L
PR ' M) 4 ( (ﬂ7 " N -
r™Mx ) =BL .2y xg’ (x)e o %71 x V. “x,)
b i ; [¢]
LA SUS ST TR IRL T ¢ o | oo »“' R I e L T NP L N
SRl Y (1) SRGIEY R DO P PO )| " M g )
r (x_h) o -xno: R J;‘n' 1 - ?{7’7 i (xh)q* “ ‘1'“ n 1 ! v}{ﬂ, » (x )
i x(“.('.x S S0 THRNE SCLE R s (T SEO T S
' - e ° 0
LTI LIRS TR AR 1 u :‘m s ¥ E I SR TR ZI SV LR A L I R AR A AR ] .
: @Y ‘ e ' Y L) -
11 voex™l x™ 1 e xMa (20 . 2T 1
n A n - . o .n

row of (1&4316) QI‘Q ZS“I‘.G"

By the‘1ast row, (I.4.16)

a4

N

. i ) .
xgryx?°f(xg 1
. ¥ LR TR S N A IR K I
' y o o)
RESE S G&) 1
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Dividing both (I.4.15) and the determinant product above by

¢
(=00 0=z 3]
® o x ® 8 w % P
X(”. x™ 3
gt ) mn

one gets the equality

(&3

f(‘\(:xi ) . ‘g Y f(“kxo‘) N l

(I.4.17) , -
‘ x0. o e e x 1
A
x" . e e X1
e Mx) .. xma L L ST e (x)) 2
R v e s e e W e ae e
£z ) x®. L2 1 =0 . X (k) 2
b S SALES T s 0V .. ez
. . L] - - - . * ® .‘ » L] L L] L] . * . v
3::1’ S S XL x o

(m\ (2) ) a6 ST ‘
£ =) xo . . x0 1 .. x0T x) 2
. » * L] . * » - - - » ® » * * . » L L] - ® * . -

1] ™ n
n (n) (1 )
X . s X, 1 Xy o 0 o o X 1
- - L . . L ] ® . L ] l‘ . - L 3 ° » . » * *
" [FR} mn
xfrl‘...‘x(:‘“fl x! ....x‘n’ 1
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Taking the 11&1t~with'raspect to the‘elass“or increménts in
-question, since 1t has been assumed tbat all tha derivatﬁves,
,Ekgu ', 1, j =15 <+ ., n), exist, then the right side of
(1.4.17) has the lim1t~

' m , ‘ , I
o D Y(I) f l . . ft, I} (m ,f[" ’X°
(It4418) ‘ - ‘ LANE U JERE T AN R e LR B ¢
B ) . ,
‘.D P T w,ﬁ’)

x)

Ko

Henae the left side of (1.4.17) muat alsa have a 1imit and
thistlimitiig,'by definition,‘mek~‘ with respect to the class

of increments in question. This pfoves the thaarem,

I.5. A USEFUL THEOREN CONGERNING THE GENERALIZED DERIVATIVE

 1.5.1.1 In the remainder of this peper, ‘the anly class of
‘1ncrements which will be eonaidered 15 the class In’ the ‘
most gener&l class. it will be unnacegs&ry to rafer to this
"fact again, for 1t will be understood that When D F appears
in ﬁha dissussion, it is always the derivative of F with
.respaot,to x with respect to the class of 1neraments I.

Ta conolud@ thia chapter a uaeful theoram conw"
icerning ﬁhe mathod of taking tha derivative ah a point will
be statad end provad. Befere deing this, hGWever, a lemma

muet'be pravedg~

1. 5.2‘ Lemma.r Let F: f“)(x), (i = 1,‘- Y n), be an
arbitrary'mapping function defined’ on & set B in Rm). Let
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- 30.

Xos g o s o 3 X 3 X¥ Do any n + 2 points of B. Then
alPix,x o o o x )=alFix¥x x 0 0 o 0 x Jra(Fix x¥x,. o o % )+

v e ‘i‘A(szox‘ v & xnle%}a

PrGbe
f(”(xo) ee e f™M(x,) 1
{1.5*3} A(’ngoxlvg b‘; - xh:):njf ® 1; ¢ « v e . . ’q&k. o". =
£ x) .0 o 2T(x) 1
f‘”(xo)‘.'. e x) L
0 LEE N “ o B 1 : L '
‘ n ' 0 » e » . 0 X
B E S I A € B0 | I I Y
, | RN PUER T i & S TRFIR g ¢ 4 B T
,"!‘,*"‘~’f*";' T)l 2 | 2 °
: e & & ¢ ¥ w .q 2 * & % %
P x ) ... £z 2
" - Iy v 2™ 2

This is verified by expanding the ith desterminaent in the
sum above by the ith row (£ = 1, » » + » n + 1) and adding
the terms together., The result is the same as if the

detarminant 

£ x) o0 2MUx) 2

.L ® 8 & # ¥ % & 5 & & &6 & &
| : )
n. )

f(')(i')‘v) s o # hy (xh) 1

were expanded by elements of thﬁ‘last colum,



Now if u', « . « 5 u" are arbitrary fuhctions,

(<)

one has, after mnltiplying\ﬁhexlaat_ﬁolumn by u‘’ and sub~

 tracting this from the ith column (1 =1, . + + » n):,

f(')( } ) " f(n) (.xo]*ﬁ(n) 1 .
£ x y-u" . L2 x )™ 1

® » B e w® e & & % a e ® 2 #

f (I‘(xh)”u‘(() . ‘ (“)(K ) u 1

Applying the results of (I.5.3) to this expresaion, the
following equelity is obtained:

, (N PROES () o
(1.5.4) £ (x )=u""e , £z )u" 1 .
A(F:xcx' LS xh) = ;)1? TN R T S S Y S SN SR SR .
| f‘”(xh)-m“); (%kx ) -u™ 1

e s Cm R Vo : ) Y

Fa € I0 PE UL o £ Bt | IR P £ WU it P P L
| Q . p‘ 1‘ 0 1 | . ® & @ t wt Ed c v 6 't
i ‘ ot Lo (m) ) :
n PR v @  ¢ s & e.'t s & (’(x ) (”, . f“( (Tl)‘ l

) ] . . : i :
f(l (Xﬂ)“‘u( ‘. o f ( ) h‘) 3.. ) 0 . f ‘ » 0 l

Multiplying the last column of each term Onfthe‘right by o
and addingto ; the ith Oﬁlm (i = 1, K n)y (10504)

beacomes
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- O f("txl } P fm’(x . ) : ‘ 1
(1.5.8) alFixx . . x )= 5 - R
Ok 30 BRI S 30 B |

ki (XO) LR hig (Xoy) 1 ' " , o) o
1ot o £ Ax) oo o2 {x,) 1
o .. u 1 . ;

i f(')(x ) ) f(h)(x ’ 1 + i +" L I ¢ w9 e ‘

(x,)e o X R o o
: ' o ' 2 nt r(’ (xn_") - o e f(“‘(x"_') 1
* & & ¢ ¥ 6. © b ¢ & : i . ) e o
(1 c () o Cao, L. n m 1
fx,) .. 0f (x) 1
Stnce u®, , . . 5 u™ are arbitrary, choose them to be

&), £ W), L .., R, wherefx* is the point in

the hypothesls of the lemme. Then (I.5.5) becomes

(I.5o6) A(F:xob [ xh)= L\(E’:x%x'# . .‘Kn )“"“cn .+A(F’:Xo. . x""‘x%)u

This proves the Lemma.

I.5.7., Remark. A‘particular case of ¥ 1s the identity

mapping. Hence
A(xoxl T xh)= A(x%x‘ s e & -xh)+ . 0""[)(3{01‘ . . xn_,x’:“)a

10‘508./ ThebrEMc Let F:f(‘)‘x )’ (iz ‘1,’ s v o 3 n)y be &
mapping function defined on a region E in R™) Let D, F exist
at a point x, of E and have the value d there. Let

Xy o , X sX,., be n+ 1 variable points of E which ars

always such that X, together with any n of the n + 1 points

Koo+ s o 5 X,y x  form an increment of I' end whers
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AKX o o o X. K X, » o X )l
1 a2 T~ oML 41 ntt -
; ' '<;§E, (i-‘-"»lg .s.,n*i-l)

(I.5.9) IR SRl
A(Xl e . x‘n-n)

for some fixed positive number M. Then

CAlFix o x, ... X)) ‘
; s _nt ¥ (i::l, oS Y. n*l)'

4 = 1lim T
: X; =X, a{xlxz.“‘, xm,)
Proof. It must be shown that for every € >0 there exists
g §>0 such that

A(F:x‘xl **e 'xn+|)

(ItﬁnlO) — - d| < e
Al X, eee X, )

whenever lx x,l<ds (£ =1, « + « 5 n+ 1), and where the
,x; are such that the conditiona df the hypathésis are satis~
fied.

From Lemma I,5.2,
A(xlxl ces x’n“): A‘xo‘x; q;q x>n+')+....-+d(z’.l‘xz‘ H'nn :ano), |
and

AFix %, oo X )= 0(FIX X, wes X, )+ sotalPix X, o0 X %),

Hence
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A(S‘z'x ;xizg t&ﬁﬁnﬁ} —

(xx...'.x ){

N+

A(:: cex }‘ (Fxx x

i xm,} {ACE:;& K e xm,)
e )

ﬂﬂ

A(xx.szz )

d at x,, then for the
‘ ch that’

A(F.x. ,'x x:r.: - .‘_x }

YoM+

A <€/M(n+l)

A(x voo X xomm _";'?‘?ni.)'

whénever llxxﬂ«—&: (J 1, .. ,n+l, j;éi),‘

A(:x:(~. .. X EX . .' x )eI Th:ts holds for |

Ll o™i * I')-H

=1, 404, n+ 1, Hemce, ahoosing
CY min{cf} (ifw‘lp» e ;1’14-1),

A(F:x,xi‘%. %)

JA) ("qu".l' .»_xnﬂ)'

A(XX-'-'X A(Jﬂ..xx }

E/M(napl}f e e out E/M(n*l) <€

A(xXqu Q(KX".ﬁC

WhenaVﬁr ; ”xox‘l” < cg N (3 = 1, " "\ L n + l)o JHance

: RER A(F X X0 o X% )
: X Yo X, X, A(x' xz. N xn H) s

This proves the theorem,
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Mx, s o XXX e e X J

n+t

alx % 0 o s x %)

1s always bounded if X 1s interior to alx x,. ., “xm,);
Proof. If xo is interior to colx x,. + %,,)5 then the
‘coordinates of x, can be expressed as

ntt

) 0 :
x(f &= Za(x. (L=13 4 4+ ¢« s n)
N+ o ’ ‘ .
where Z 0"3’ = 1, and where O(J.;\D“" 2ll j. (This statement is
4 4 | |
‘proved in Chapter II.) Now,
x!" x‘f’. o x™oa
* » - - - - » » » E
x," f‘: s e x1
C ‘ ‘ T | 0 (2) (m ,
LR T x ) =s | x) xle . ox? Y s
L (2 =
xi-ﬂ .xl:f' R xuu 1
¥ 4 ®oow 5w e 4 e @
i(n x(z) , x(’f’) 1 “
i n+)‘ LA nt
(1
x') X('ﬂ ' :x(:") 1
» » » - *® L] » L3 . L »
(n (2) (e
X X7, . . x“ 1
htt kgl Ny
)
Aooax Sax e, Sax™ 1.
I PR A TR ey
‘ (1) () m)
. Xl o0 o0 X0 1
» o % ®» & + o B & & & &
m (z) ()
x xw SRR 1 |

Multiplying the jth row by «j snd subtracting this from the
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ith ToW, (j :’13 .« o e ¥ i ""»l,‘ i +vly s & & p I ‘;'1), this

determinant becomes

x('] x: ] * L3 x(:n, 1
) (-1 ] ]
L ) ). Lt ‘
:"q“' O(tx-t, O(!Axi LR d"xt ’(1
o) ~(7.) - M)
{41 "th ? « Xy 1

which is equai to
‘a(c' a(x‘ le . xhh)'
Hence,

oo x, )

A(x‘ o e xt._' xoxl-* "

— ‘ - =« < 1.
alx %o 00 x )

This proves the statement.

1.5.12. Remark. Theorem I.5.8 is & generalization of &
theorem due tﬁ Stialtjeé>éoncerﬁing the deri#ative of a
function of a single resl variable. See [TMcShane,_(l),
p. 223 |, and [ Stieltjes, (1) J.
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CHAPTER II
THE CHARACTERIZATION OF A CLASS OF TRANSFORMATIONS
IT.1. INTRODUGTION

II.lJL In this ehaptar the generalizad ﬂerivatives whidh
were defined and disausa&é in Qhapter I will play no role.
;Hawever, the raaults of this chapter will be directly
eppiicablé to the problem‘of aharéateriming'the class of
functithIWhich'héve non-zero derivatives of the types
diécusaad in Chapter I with resﬁeﬁt’to the class of“
'inepementa'I,, This cheracterization will be the main
purpose of dhaptgr IITI. Chapter II,will‘ba‘cOncerned with
the charaatarizatian of the claés of functions which are
continuous, one-to-one, and which have the additional '
prdpérty that they map atrai@hﬁ.lihas into straight lines.

v. A word of exglgnation'shoulé befstatéd,cbncerning
the atatement‘thah the mapping fuﬁétibn,maps.straight lihas
into straight lines. What is meant bytthiskétatémentjia
that all the points onia Stréight,liﬁe are mapped by the
function into points which lie on & straight line.
Nbﬁhing is statad gbout the distribution of the image
_points, except that they lie on a stralght line.

Another atatement which is used frequently in the

following pages must be axplainad“alao, Suppose a mapping
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function is such that it carries straight lines into
.stfaight 1inas end which lsavea.twovaiétinat points on a
straight iiné»fixed. ‘Then the statement is made that this
straight 1ine remains fixed. Ih ia nct implied in this
statement that each individual pcint of the 1ina remainsg
fixed, only that each point of the straight line maps into
some point on -the same stralght line.  Clearly if two such
'fixed-linesfinﬁersect, then that point af'intersectiaﬁ
must map into a<point»which‘is'an both lin&s,.and hence 1t
must remain»fixedvin the strict gense.

| Theae notions are extended to higher dimensions.
When the statement is. made that a oartain function carries
faces of an n-cell into faces of an'nneell,'it meang that
every'paint of‘ﬁha ﬁ~e@il maps 1nto*éoma point on the face
of an n-cell, with nothing;further impliedg When the
statement is)méda ﬁnaﬁ é mépying funationfleaVes the faces
of an n-cell fixed, it means bhat every point of that face
maps into some point on tha same face, If every point

remaing fixed, it will be definitaly state& es such,

It will be shown in this chapter that the precise

class of mapping functlons which are anautewone,
continuous, and which map straight lines into straight
lines, is the class of functions of the form

W) a, "% o . .+ 2, x '+ a,

t)’\‘”
F: £ (x) = ! - » {(1=1, . . 4 n),
g8 x4+ . ..+ 8 x™

nHy ht,n , neyntr




where

. a . ¥ ,1"." v“‘ amvnn
IT.2. Eomeﬁaﬁaeus;coaanlﬁamﬁsvﬁﬁn LINEAR TRANSFORMATIONS®

11.2 l; Homogeneous Coordinates.  Although any paint in

‘the Euclidean plane is uniquely determined by two quantities,
it is somatimes aonvanient te uge three quanbitiea ta 1acate
'the point. If this is doneg the preciae values of the thrae
'quantities are nat impertant, but it is th@ir ratioa whinh
are of valus; Let (X‘” X%, X“’)be the thrae quanﬁitias
describing a point and define the ratios

; XU) ( me o
— 3] ‘ —_— e
x0T Txw T T
‘ where (x u’) are ths cartesian,caardinates of the point

'1n the plane» It 1s elear that any threa numbers which are
‘proportional to (X", X, X“”) will repreaent the same
point, (x, x?)), Hence, to any set of three numbers
(x‘”, x®), XB)), will cerresponduone'and.only one point;
(=", (“); but to each point, (x', xﬁ”),.there will
corra5pon& an 1nfinita number of ‘gete of three numbers; all
of which are prbpcrtionala

" The set of numbers, (O, 0, 0) will not describe

a point ab all, since- the, homogeneous ooordinates of,ggx

~* For a more eomplete discuasioa, gee [chcher, (1)” Ohapters
I and VIJ
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poiﬁt may be made as sma,li, ag one p}aases;'hénce {o, 0“,-_0‘)
mey be regarded as i:ha ._‘iimi‘ts of ‘the ‘hcmpgeneoyus
ccordinaté‘s‘ of any péint."_

What has been said ahove is true for n dimensians.

in Euclidean n—dimanaion&l space, R‘“) the n + 3. mnnber-a, '
0N

x", ., A™) will determine t.m point
g "X(” oy | xfw) »
where (x", x‘“’, e ee s x) are the cartesian coardinatea

of the point in R™, »Any set of n + l quantitias pro-
portional to these wxll determine the same point. af R,
The set of numbers, (0, 0, « « « 5, 0) will represent no

point at a2ll.

I1.2.2, Linear Transformetions. The equations

PV = a, X"+ a b 8, , X

(11.2.3) pX® =a X a, X4a, x"v’-

¥ @) () ar(2) (3)
,ax = 8, X4 gz,lx + aglaf&

ol

define & linaar, homogeneous transformation of the

Buclidesn plane into itself. That is, 1f (X', X%, X))

are the homogeneous caordinatea of any paint in th@ plane .

a second point, (fx“’,pxm, pX %), where p 1s any. constant

# 0, will be aetermined by (II.2. :5)‘,,'thé value of ‘the
coordinates, (Pff“’ s Pf"’ ’ ff(g))_ éepending on the coefficients,
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a,. If (X9, oX®, pX®) = (0, 0, 0), fthen the point
(x", x9, X(”) is not transformed into any point at all.
ThlS‘W1ll happen only when the determinant of the 00*
afficiants is equal te gero. To 1nsure that ﬁhia never
‘happens, only the aase where the determinanh af the tranSu
’formation is not equal te zero. will be conaidered. Such
transformatiens are called non-singular. In this éaga,

to avery paint {(x, X, x®) will correspond a ﬁafiﬁiﬁe
pcint (f}{” FX‘” fx@)) and conversely,

A nonuaingular transformation such as (II1.2.3)
is“cantinupus,,one-ta*on@}and tranaforms poinhs on & linse
into points on a line.

What has been sald concerning linear, homogeneous
transformatians‘in’tha piané éan be extended éasily ton
‘dimenéians.r In fhisveas@, ﬁhe‘fﬂil&Wing‘Set of équations

is considered:
(1102.4) PX(” = & x(”"f'w P a xmf') (1 = 1; sssy I+ 1)3

where

& 8 4 &« 9 » # Q.v
o a
nt,) w0 . ndpnt

This transfarmatian 1s one=-to-one, oontinuaus, and maps
points of an n~1 ﬁimensianal hyperplane 1nto points af

nol dimenaional hyperplana.
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In‘tenms~af'aartesian'aoardinates,‘tha trans-

formation (11.2}4} is'of‘tha‘fcrm-

‘ &, x”’+¢ U a x "+ &,
{(I1,2.,8) x© ==
g X\”‘f"t e 8 B x:*"’+ &

Nt nin nH N

,VH'

» i ='l; . % n)-

The following théerams"pﬁcvad in homogensous

¢aordinatQQVWill be useful later on.

II 2.6. "~ Theorem. *Evary set of values of X 5 o o » s Xy,
which aatisifes a syatam of n-1 linearly indﬁpendent homo~-
geneoua 1inear equati@ns in n unknownsis preportional to tha
set of (n-1)-rowed detarminants obkained,by striking out
from the matrixz of thé coeffiaianta first the first column,
then the second, sto.

Froof. Denota by a') the (n-l)~rGWed daterminant obtained
by striking out the ith.calumn from the matrix of the

equations. Sinqe the equations-are‘11near1y'inaapandant,

(1) (2) - (n)

at lsast one of the‘detarminants, B8 ' 875 4 & &« s B
does not vanish, Let it be a®!. Assign to x, eny fixed

value, ¢. Then

& % *o 0 et a,hqgti‘+f&“lﬂw X, ¥e oo ot 8 X =-a.0

»u-g‘tgo-n’v'a»:‘ »qk&'niécu'hw‘&lé“o‘u i;""

B X 4 o o+ 8 X _ ta X 4 s« + + 8B X = ~a C
S ni- o LAY C4y npn N Nt

This is a system of n linear non-homogeneous equations in n
unknowns. Using Cramer's Rule, there is one and only one |

solution for each‘xk .
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Solving for xk,~ueing Cramer's Rule:

(-1) e a® -
' s (k#lif‘w:n)é

o
]

' a“(i)
Hence, x, is proportinnal‘tm'a””, (k z»l,lg‘g PN n)w'

11.2.7. Bemerk. If two or more of the determinants,

8, .+ 5 a"l, 4o not vanish (for example, &'’ and a1,
‘thénlane can assign any va1ua to xéyand gaﬁ‘a set of values
far the’ramaining‘x*s,~as above. If one ﬁses x;iipstead
(aésiéning‘any value to x;)g‘g‘different set of velues for
the x's will in genaral résuli. Buf ancé an x; 1s picked
and a value aasigned, the remaining x's are uniquely
idetermined by Gramer’a Rule. In either case x, will be

praportional to e,

II.2.8. Theorem; Any four cOplénar~péints, nb ﬁhraé'of
‘which are eollinear, may be carried over into any four
Ecoplanar points, no three af which are aollinear,_by one

and only one transformation of the type

a, x“’+ a x4+ 8,

.x(l) =

BRI w2
8, ®+ 8 3"+ a,,

a xP4+ a x*
2,2

+ 8
—(2) T2, .?,3
x? !

) =)
9.3' b A as'lx + 85'3

'

where
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Proof. The theorem will be proved using homogeneous

coordinates. The transformation will then be of the form

‘;}—c-(,) = 8 X(” + a'la X(Z? + a XB)
-(2) o, (2) (3)
(1102&10) ‘.)X - aj,’ X . * a—?,l X + &’?rg‘x '

FX“’ = a,, P . 8, p Qe 8, X%
! I3 ! (4 -

o Bes x, = (X, X7, X%, x, = (1), X2, X2,
x, = (X7, X2, xP), and x, = (X7, X7, X)) be the four
initial points. Det X, = (pX|', p X, p X",

X, = (SD”X"-(U 3{(2’ s F_XH)) 5& (& ;)sf’xm (3)), and

— (1)
i (Pq

X“’, pX, X9} ve t}:xe points into which the initisl
poir;ts are to be transformed.

The transformation (II.2.10) carrles any point,
x = (x", x®, Xx9), into a point, T = {pX'", p AP, pX¥),
" whoge positi’ondepends on the values 6f thé constants,
a,» (1,J =1, 2, 8). If it is possible to find one and
only one (except for a constant factor which may be intro-
duced throughout) set of thirteen "consta;nt‘s (the nine above
and four others -- £ éx" £.0 9, )néne of which is zero)

which satlsfy the twelve eguations
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ﬁ:\-{?)z a X(4|)+ ,a X(-”+ a. X.('3)
(1I.2.11) pX7= 8, X'+ 8, X"+ 8, % (121, 2, 3, 4),

2,3

w3 m 2)
f'xi = .3’ Xt: * afzxt *+ &glgxi

the thﬁorem will be proved‘A

Since the X's and the X's are all kncwn,
‘{11.2,11)4represents & system of twelve homogeneous
1inear equations in thirteen unknawﬁs;‘ Hence, there are
alwaya selaticns other than mara, the number af independent
ones depending on the rank of the matrix of the co-
efficients. It will;beaahawn.that‘the rank.of the matrix
is twelva; and thet the p's are all different from zero.
.31n¢e the~rénk bf the matrix isitwelva, there will be only
oﬁe‘independent saluﬁien snd the thearem“will be:proved.

Trahspmsing and.réar?anging the above twelve

equstions, one abbainsuiizyeglg):



‘x(”a X a}z.*a 0 F 0+ 0 r 00 + 0 yx“’ 0+ 0 orc
x"’a,Xa R10 £ 0 £ 0 4 0+ 'ét'ye’ff 0 - pE%0 + 0 = 0
X)a, 8, K8, 10 + 0 + 0 £ 0+ 0+ 0 + 0+ 0 X0 =0
o+ 0 r 0+ x"’a +xa +Ea 101 0 o+ 0 —f'.’iﬁ"f’ 0 + 0 + O =€),
00+ a + xﬂ‘az, x‘ja,;xla”m r0«0 - 0 _f;’i‘;’fq + a:a
0+0 +0+x% 2%, %a,t0 0 v 0 + 0+ 0 E7r0 = 0
0+0 +0+ 0+ 0+ 0 x,a3‘+x‘,*’a.5'2x"é“ »fx‘”f 0+0 +0 = o
0 + €)"‘ + 0+ t}-.,+ 0+ 0+ X a +x2ah+xf aﬁ +0 FK(B)H) + 0"“':"'0; ;
0+ D £0 40 +0 + 0+ X2, +ila +}{3a +0 + 0 -p X2+ 0 - :0,\‘

m

Xa &2 xa+c+0+0+0+a+o+a+,0+0—yqf“>‘=0‘

4124'3 : Yy :A
a+ o+o+xa+za xqaggawc PO+ 0+ 0 +0 —pXP=0,
0 +0 +0 0+ a+a+xa+ia+xqa”+o t0+0 g0

The matrix of thaea ‘equations is (I1.2.13):

o0 @y (3

¥ ¥z’ 0 o 6 o 0o o0 -z o o 0 )
7 2 20 o o o o o o -X” o o
7 x7 10 o o 0o o 0o o o - o
o o o " x¥x” 0 0o o E® o 0 o
o jﬁ’;_:e-i-;.; o x” x® xf o o o o -%2 o0 o0

| o "a'l‘;Ia_‘ x x x¥ o 0 0 o O -0 0
o o o o o o x" xf,"-f,xf?’-i;” o 0o o
o 0 0 0 0 0 g x% x® o -X¥ o o
0o 0o o o o o x’x”x o o -IV 0
' 5’ xP0 0 o o 0 0o o o o X
o o o x’xx’o0 o 0 0 o 0 -EP
0 0 0 0 o o0 x xxY o o o -x‘;
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Since X, , x . x . and X, are diatinut, eoplanar
and no three lie on a 11ne, there exist nonwzero cenatanta,

‘c , cz, cg, such that

c X + c X”)+ c, KO)+ X“) = 0
X“’# e, X‘)+ c, X”)+ x“’ = 0

3) )y :
x‘ + e Xd)+ c, X” + K‘” =0,

’Adding c s C 22 c times the first, aecond ana third rows
respactively to the tanth row,‘e., al, a times the fourth,
;fifth and sixth rows respeetively ta ‘the. elaventh row, and
e s e;, e, times tha seventh, @1ghth and ninth rcws:;
vraspectively to tha twelfth raw, (Ix 2.13) becomas :
,(1;,2.14):

o2
SR
(5N
)
o
o
e o o o o ©

0

0

o 0 o

o Y 0 o
o X

0

| , 0o 0
xO xaxfx?i;;ig)} -
20 5 6 -1 0 o |
| o 3 o
*.,a'vﬁ‘»o-'ﬂim e,k mo X X
0 0 D = Xm X(” X‘”, .5((’1

B
o
o © o © o © © o

0
0
o ~x“*_x“’-x%’
0
0
0

‘o © © o o © © a o ¥
o o o o o o o .o
o o 6 o © o o © o M

~0, 0 0 «c i(a cXm chG) x(a)
» o ‘(‘ 2 ‘4/
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The reank of the matrix is unchanged by the above operations.
If the thirteenth column is deleted, the
determinant of the resulting matrix is easily calculated

to be
X0 x@ .X(a) 'J_C(‘\)w E‘m gl
{ { | 1 [ !
- o (1) (2) (3) e @ F6)
Dy = =¢ ¢c X XP X7 | X X2 XY #0,
-(1) v () (3) T T wd)
Ks -xa Xa 'xs X‘s xs

‘since x 5, X_, X s and X ,ﬁ X, X, are c;istinct‘rpoints’ and
neither set is collinear. So the renk of the matrix
(1152.14) i1s twelve and there is only one linearly inde-
pendent solution for the thirteen constants. Furthermors,
by Theorem II.2.6, p, # 0, since 1t s '\pmportiongl to
Dsy # 0

In a similer fashion, D ., D

) ¢y » 8nd Doy are all

different from‘zer‘-a. ‘Hence, p » p 3 and p are‘-al}'
different from zero s by Theorem II.2.6. "‘if?hus, precisely
one 'linéarly indapaz_adent' solution for -the thirteen con-
star;ts can be found such t-_’ﬁ'at gy 5,0 90 and £, gre all

different from zero, and the theorem is proved.

II.5. p-FLATS AND THEIR PROPERTIES

I]:'.;S.l. In Chapter I, the definition of g p-cell in R("),
wag given. The volume of & p-cell in R"’, determined by
the p + 1 polnts, X 4 X 4 s » « 5 X, (0=psn), is

proportional to
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() (<;)’ o)
XO v'.xo o » O‘XOP‘ 1

twtuu'a,v-t/‘c,u

CS IO L)
x . s X\ P h
P'~P A S

where the set (i',‘ilg v o o B ia) represents a selection

of p of the possible n columns of ﬁha matrix

& % B 0+ B % ¥

(
X(f;) ‘x(:, « & @ Xm

‘and where the symbol é%;). signifies that the sum extends
over all the C(n,p) poss;blelselectians fur ﬁ(, 1.5 o 6 o ip)
["Birkhoff~MaeLane, (1), pp« 293-296t} and [?rica, {1}, pp.
?V—Vaajf The p~c911 will have p~dimensiona1 volume equal

to zero only ir each of the aeterminanta in tha aun 1s equal
to gzero. If this aceur3, ﬁhen one of the paints,

X 3 X 5w v e s Eos can be representad as a linsar combi-~
nation,of‘ﬁhe othar points, This gives rise to the follow-

ing definition:

11,3. 2. Definition. ‘Let x X p.o s s s Xys (0<ps=n),

('Y\)

be p + 1 points of R - These polints are said to be

linearly indepegdent'if,at least one of the C{n,p)

determinants of the form
(G ((p) " 4
x oc‘v KP 1

(II.5¢3) 5 & & & 9;:O L

R L B |



1s different from zefo, whare,thé set of superseripts.
(1,5, 1,5 » i 1,) represents one of the C{n;p) possible

“selections of p of the n coclumns of the‘matrix

Otherwise, the p + 1 points are said to be linearly dependent.

II.3.4. Definitlon. Let X,s X,, + + + » x,, (0<psn), be
p+1 points of R™, These points are aaid to be 1insarlx
vindegendent if the VBctmrs, (x - X, )y {1 = L1y 0w e s p)
are linearly indapen@ent in the ordinary sense; that ig, if
there are no caﬁstants,‘aig‘(i =1y 4 « s » P)s @Xcept 811

zeres; guch theat
f

Z a, (K(J) - X?)) ""‘*_Q! (jz 1, o »‘.ﬁ,n)r

ES

where © represents the gero vector.

11.3.5. [Theorem, Definition II.3.2, and Definition II.3.4.
are équivaiaﬁt.
Proof., The quantities

s (N () (4) (34 L
(X') -ch); o_.ﬁs(xg "x; )J (j"“'l!"‘ﬂn)’

are linearly dependent if and only if all the p-rowed minors
of the matrix
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P , N
L U RS ) 'O @) @ (n? .
x' - =0 (x, - ) w0 e e (2 = )

‘II:&;S) . ‘-."“-.“of'vvn T T TP PO T

(x - x) =Gl - ) .. o Az~ x@ﬁ

e o1

- . loo
are equal to zero; that is, if and only if all the C{(n,p)
determinants of the “type

(“,)“’b (‘ ‘ ,_(iéi&) ‘ (L':-)) ‘ ‘. &‘p] - (‘F))

(xp» x - X,
(IICEQ‘?) ) .‘ ¢>Cl Z ] n LI o @« *. 5 Q - » 'n » » v
.. P N . (')v‘ .
(£ - ) @A LY -

are equal to zero, where the superscripts have the aame meen -
ing and range as in ﬁefinition II 3.2 fBoahar, (l}, p. Sﬁt]
But the determinant (11.3.?) is equal to zero if end only if

() «

1 Xo # & » R P) y 1 \
| ~ xf” FEFI x?“ 1
o6 8 & « & @ w % ’
@) o (¢ v
x(b') O x;f) 1

. o
ia equal to_marq; aince»(11ﬁ3.7) and (II.3.8) are éqﬁal
except ésssibly for sign.

This is preciseiy the definition of linear depen-
dence of the P+ i‘points‘aéeording to Dafinltion II 3.2,
Oonaequantly, the P4+ 1 points are 11nearly independent
_according to ﬁefinition II 3.2. if and only if they are
linearly independent according‘to Dafinitian 11‘5.4.

I1,3,9, Remagg, In Definition I1.3.4, the point x, has,
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at first glance, been given a preferraﬁ position. Hawever;

the vectors x“)-, “5, (k fixad' 1=0, 1, + » ‘s ps 1;£k),}

‘ere linearly indepandenb 1e and only if (xg’ - xﬁb;
(1'=1, o .4 p), are 11n®ar1y indapendant. , |

Proof. The nacassary ‘and sufficient conditian that the
vectors (xi - 25,.(k fixed;<isaﬁ,‘1; .3. . ,,p,ﬂi’# k),
be linearly &épéndanﬁ 1g thatthe’daﬁerﬁinant of évery p-
rowed minor of the matrix

| /'(x(;’ - ‘x‘,’(’)v R % - nc‘:’)\
“ 8 4 b s 6 e W B B e # &

EIVESE W IS ¢ S W

(I1.3.10) R o
(xkfu-*xe«} LA (x:::: - ‘.‘é«)

e ® B 4 ¥ e & 6 = @ L

COR) I S|

vanish, But these p-rowed determinants are

(<)) ‘ (AN - (C,) - (Co)
(2" = x) o oo 27 - xD)
* ] L ] - » » L 3 'Y R ] ® L ] ] v

(x") - x(l:') . . “P) UP)) k

l] .. (i’ L (LP) - \tp
) = x2) 0o o (x.°) 5

(IT.3.11)

-

> » . v . » * » L » . * Q,

(. (- . ’
" - x") . 2 e (x(‘P)‘* 1&’75

‘XP “x’ p i

where the superscripts have the same meaning and range as
in Definition I1.3.2, But‘after the proper expansian each
of these determinants'is the'3ame as one of those of the

type (II.3.8), eXcept,possibly.far sign. Each of the



,determinants of the ty@e’(ll.&.&) is thé same as one df‘the
pv#cwad}minorsﬁof.determinant (I1.3.6), where xb is given
the preferred pOSitiqn;‘“
Hénca, éli‘the p—rowéd minors of (II.3.10)

vanish if and only if all the p-rowed minors of (II,3.6)
vanish, end the vactmrs, {x”l - (n),
(k, :E'ixed, 1 _._o, 1y o s o 5P} L # k), are umarly dependent
if and only 1f the vectors (x - x b, (4 = 1, s e 2P )y
'are llnearly dependant, proving the statemant“

The raault of this remark is ﬁhaﬁ the point can
always be puﬁ in the preferrad positiwn without any loss of

gsnerality, and with mcre convenience.

I1,3.12. Theorem. Let Xo2 o o v 5 Xp Do & s0% of p+ 1
;linearly 1ndependent points of R(’ - Then any subset of
thmse points is linearly independent.

Praaf. Suppose thera is & subset of X 5 « » « » X, which
furms é.linearly depandent aat of pcints. Assume,_withaut
any 10&3 of generality, that the pointa are~arranged s0
'that the paints, Xis e w e s X (< p), form the linearly
‘dependenﬁ set. Gansider the vectors, (x %)

(L =1, o+ « « 5 j).‘ Whese are linearly dependent; hence, -

there are constants, LY (1L = 1y 0 0 s 3) not all zero,

':g: &;(x:_*ixq) = 8.

¢ =

auah,that
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But then,

iai (x, - x,) +ZO (x, - x,) =8

e iFjh
where not all the a, 's are zero. This contradicts the
agsumption that ’xo, .  s s » xf, are linearly indepandént.
Hence it must be concluded that sny subsebt of X_, o « o » -

is also 1iﬁaarlyx independent.

11.3.13. Definition. Let X, « « +» , %, {(p<n), be any

p + 1 fixed linearly independent points of R™, By the
pdflat, <SP, of g™ g determingd DY X,5 o o s » X, is meant

the set of all points x of R which can be represented as
P _ ‘
x[l) = 2 "(ix(i‘) (j = 1, s & = 3 n)"
B t=o :
P .
vhere Z o; = 1.
t=o .

I1.3.14. Remerk. The numbers, «;, (i = G,z‘l, « e s D)y are
sometimes known as the barycentric coordinates of the point

x. See |Alexandroff-Hopf, (1), p. 595 ].

I1.5.15, Definition. Let x5, « « . 5 X, (psm), bep + 1

linearly independent points of R(M. By the p-flat, S, of
R(m, determined by the ;Saini;s Xos » n « s Xy is meant the

set of all points, x , of R ™ for which the vectors,
( (J')
X

- x(c‘:)), sati‘sry the relation
r ,
( () () i -
(x4 - x9) = Z(l;(x;’ -x), (3=1, . « ., ),
. L=1 .

with no restrictions on the fS ‘g,
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II.S.lﬁ. Theorem. Qefinition I11.3.13 and Definition
I1.3.15 are equivalent.
Proof. Let x, y .., % "bé a set of p + 1 linearly

(m, 'i‘hay determine a p-flat, Sf;, .

independent points of R
accorﬁing to Defimtiun II 3.15 end sccording 'm Definition
11;3 15, Let x be & pain‘h ai‘ S according to Definition
11;5,15, | Then

X = L X F A Rt e o« ol Koy 25/1""
oo B B , R i {ro
P

Since Z «, = 1, then o = 1 ~,Z q/;. ,-Hence

(=0 ‘ ST

x= (1~ Zc\/l )x, + o(,x,{..“.v.’ T
Collecting terms,

~(x, ~x)+,.k.+o<(x - x,)

Zo((x -x)s

C

i

i‘x - x.)

i

with no restrict‘ions on «; 5 {1 = 1, e« » o 3 P)s Hence, x is
a point of S, aecording to Definiticn 11, 3;.15.
}stow auppose X is a paiut ef Se according to

Definition 11.3.15. Then
{(x ‘ Z@(x - x ) s

with no restrictions on 'the [ 's. Rearranging terms, this

becomes
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=X, + zgjﬁi(x - x) =x, »‘;E:ﬁ X, + ‘Efﬁ x;

0

= (1 - ;?j;f)x + 4§%ﬁzc.
SQtting (1 - ;?jﬁ }‘m o s then ;iéﬂ =1, and

;Efvﬁ x, o where ;éi,ﬁ

That is, x 4s a point of S, according to Definition IL.3.13.
Hencé, the two definitionﬁ‘produce the same set of points,

and aﬁe’aquiValent.

I1.3.17. Remark. The‘last.theorem permits one to use either
Definition II.5,13 oribefinition‘ll.ﬁ‘isvin dlseussing a p-
flat, :Sémetimes.itfis mare canvéhient to mse the one.
definition; sometimes it is more convenient to ﬁsg the other.
In the following pages, both,definitidns will be used inter-
changeably.

I1.3.18. Theorem. Let X » x,; ¢ o+ 5 X, bep +1 iinéarly

independent points of R

which determine & p+flat, Spe
Then every point x of S, has a unique representation of
the form
N

ZO(QE, Z‘("’

tso (=0
Proof. Suppose also that : .

. F

Zﬁx: ’Zﬁiz‘l‘
(=0 : (:’30'

Then,



5‘7'»' :

i

(x ==} = «lx; = x,) 4o « s +,(x, =~ %),
end

(x - x,)

S

)3'(2{"){- Kc) +e v & F ﬁ?(xip -1:1:?).
But these are vagtarswg~subtracbinga the result is.
z.b«,-ﬁ)($}fé x;)"+,‘. R B x, SENE

Sincé xl, e s s 3 Xp are 1inear1y independent, then so are
(x‘ - X ), ._; .o (x - X, ). Hence, one eoncludea that
A = B ) = 0, (1 = 1, . s »p)e That is, o= f;

;(1 =1y ee sy p)e Therefore, <¥°c y9a,ua1éQa“and the

repfesentatibn is nnique,_proving the theorem.

11:3.19. @héoram. Let s be a pwfiat of R , aatérminad
by the p e 1 linearly 1ndepﬂndent pointa Koo X s o o ; 3 Xo»
and lot Tos o .;,«, y% be any other set of p + 1 1inaarly
indapenéentvpéint&2§$~ﬁp¢‘vThen 8o can be determined by the
p‘*.iygaints,‘y‘,v; .‘. s Tp .
Proof. Since yp is a po*nt of 3, then

v, = Za(x s g:o(
At least one of the coefficients is not zero. Suppoge.
oA # O

Consider the get Yos Bop a0 s T
X900 e s 8 Koo 5This sét of péinﬁs'ig }ipearly inéependent.
For suppose 1t is linearly dependent. Then there exist
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constants a. , (i=12,.. ;:, py i #4&), not all gzero, and a

bk% such that

ézija (x, - x.) *’bp’(yef”'xo}f” .
[

The nnmber b aannnt be ZeTro, since then x_, o e o 3 X

X .‘. . s X, would be linearly depandent, which is

Ko o P
‘impossible, by Theorem 1I,3.12. Hence
, et |
«bf)(yp - xc’) :"'.. ga (K - xo)&
LFEK
Dividing by ~b,, thiswbeczmas,
(YP_V'* Ko,)bk "2‘:6 (X - ::J,’ | 8= ‘a.‘-/»-'-bf,.
}c’#K
Then
P P
Yo = (1 - %ES 2N + :ES C.X, .
F L*!( i;’ ‘
_ , ;
Place (1 = fzi'c ) = ¢ . Then ;Efc[ = 1, and
«= ¢ =y
¢4’|é cFK .
P o P
v, = ;EE:cixi, ‘2; e, = 1.
Cew PO

But then y, 1s 2 linear combination of X s » + , X, ,

K-t

x y o o 3 X Since the representation is unique, this

K+t P

contradicts the assumption that «, # 0. Hence, the points
Y, s X s o o s X, s X . s s o s X, are linearly independent.

2
Now since ‘wk is different,from zera,‘xk can be

solved for, as follows:
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[
(11-5.20 ' X, = Ak L e
ld'ﬂ p
,Sinca Zc(" 1, then o( = 3.‘ Za/ Hencm, -vZo( A = 1,

Lo ‘ ‘
~ L*K e .-'-‘“\v,iK

Tharefare, the sum af the ceefficienﬁa in (1&.5.2@) 13

B _;_ o, 1+ (O(K.. ‘3_}\
: — ,
CF KK - — " - & "_(K -1
. g ST T
¢ K oA
K ‘ ¥

It fellows from the abmve stabementa that the set
of points y?, X,» » .., E X8 ',' ' x datermina S,

For let X be any point in S Then

-i = ﬂc;xo +‘> . .- +(3|(-. Xl;-; t ﬂK Xt ,K+|l’(|<+.‘1"~ e +/gP XP\:;
whera '.Qgiﬁ;a 1. Teking Ilnto account (IT.3.20), this

i:a
o
_Zq/{“x'.;
X = BoXot - -t X, + By o ire
s . o«

beaames

+ﬂk+lxl<+;+_' o —f_(gP XP

K
:( O’%g—?) 'f‘ ('g K )XK t+ K \.]p'f (ﬁKH ﬁ—K:J(—(KH) k4. (/gP" {’)k"( ) f" .

Gensidéﬁ‘théksum of the coefficlents in thé

above expressiont
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(fo- ﬂ""’°)+ c (B ﬁ":' Pt (fen fulen) L L (pp- Bute)

A K

B e B vy '—‘gzw— eyttt )

' : PV
=ﬂc+ - '+ﬁ€<~‘+/€'1<( - 2 bl ak - P)+16K+‘ -1—[3?

=Bet o s+ By Bk +Bun+ oo o+ Bp = 1,

since 1 ~;§;“7 = 1, Hence x is a linear combination of the

K
oAk , ‘

1inear1y‘in@ep§n@ent'pginﬁs Voo o v o s Xy 0 Kps o 09 Xos
with the sum of the coefficlents equal to 1. Therefors,
this set of points determines Sk;

Now fﬁrther,:;

é.y + <§S Y, X, s
’ l:f‘-'K

where 8 + EE‘Y = 1. &11 the 7, cannot be equal to zero,

3k
for then y,, would be equel to y,, contradicting the

assumption that the y's are linearly independent. .Hence
there must be a ¥ {say Y) ) which is different from zero.
As before, one proves that X, is;a-iinear(cambinatioﬁ,éf‘ths

set of points

(II.&S;?&I) » ",YP_', yP [} Xc,, qu 7 XK-I s XK'H" ae 9 Xﬁ,"", KQ‘{‘" cee g xp;

with the sum of the coefficients equal to one; that the aget
(I1.3.21) 1s linearly independent; and that the set (II.3.21)
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‘detenmihesAS,.‘

Repeating}the ga@e,argument;fcrfeadh of thE'p +1
y's in suacessian; it is finaliy'ahown that e#epyipaint of
S cen be written as a linear combinatian of th@ y’s with
the sum of tha aaefficienta squal to one. ﬂence, since
y;, .‘. . 3 yp was any set of p 1 linearly‘inﬁégendent

pmintS"af,SP, the &heargm is proved.

IT.3.22. [Theorem. ifﬂyég o s« s 3 V0 (rk:p),‘aramr‘+ 1
linesrly independent points in a p-flat, S, , of R™, then
it 1s always possible to find p -r more points,

X9 0 v 0 3 Xy of SP, sm;that.tha.p¢1ntaj

y y e 0 &g y’ » er_],.‘b‘- .’ x‘o"

form a set of p + 1 linearly independeﬁt puinta which
determine sp.

Proof. There are p + l linaarly 1ndependent points,
xo,‘a‘. " xp, which detsrmine s ~Garrying through«the
gsame procedure aa‘in‘?heorem.li.s,lg, itzia‘£aﬂnﬂ§iaftgr

r + 1 steps, that y_, . ; « 5 ¥.» plus p-r of the set of
x's, form a get of p + 1 linearlyiindeyendent points which
determine the‘pﬁflats; S

II'S 28, L@ﬁgﬁ.’ Lat X,s » » » 5 Xpbe a set of p + 1
linearly independent pointsrlying in kS p~f1at, Sp,

, (p <n- 1). ‘Let x be a point of ﬁ“" which is not in 8o
- form a set of p + 2 linearly

'Then~x.°y a s » XP.‘ X'f,_‘_'
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indapendent points.

Proof. Suppase the points, x IR xF X, » 8re

.1inear1y &ependent, Then the veutors, (x, - Ry ), s oeov s

(x

or ™ %, ), are linearlyyéepgndent‘. That 13, there exist

_constents, e;, (1 =1, < . . y p + 1), not all zero, such
that e

a‘,(xi - x‘o‘,) = 9,

=)

'wa'aé ., s different from zero, sinca it has been assumed
that the paints Koo o o 5 X, are linearly 1n&epenﬁent,
Hence, ' -

- x,) = 2> a{x, =-x).

'.&'Pf-t (K Pt o = 1
,Bividing by ~8,,, s One thains
: ; b (x - x }’

‘where b, = 8, / ar,,(| » Hence

x = {1 - ;§j!>)x e ;ES‘b L P

Pt

{XPH

P ,
Setting (1 - ;E;‘h = b_, then <£§:b = 1, and

=N
P

Loy n (_obi X 2 bt’ A:z‘ 1.

This implies that X o is in Spg cOnhradletiﬁgxthe{ﬁ

~assumption that x is not in Spe Hence the poinﬁs

P+vv
Koo » o . s Xps Koy, must be linearly independent.
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"I1f3.24. Theorem. If a p~f1at,vsp,'ana a g-flat, Sg,
{psg<n), havé an r~£1at;ysr, (rsfmin(ngq)L in'commoﬁ;
then the whala configuration lies in a (p + q - r)-flat.
VEZQQQ._ S, is common ta both S, and Sq. S, ia determimed
by r + 1 linearly indepandant pmlnts, o8 o v e ,\xr.~ By
Theoren 11.5.22, since these points lie in 8 é; p ;'r'
other p01nts, yr+',‘. « + s Vs ell lying in‘sé aﬁa‘not in

5,, can be found so that

XO’ s s o"a ‘xr’ 3},“ L _— 3 y?

form a set of p + 1 linearly independent points which
determine SP Alsa, since xo, “ e v x 811 lie in 39;
a - r other points, P e s Tgs all 1ying in Sq

V'+(” ’

and not in S L5 cen be found so that
K 5 4 e w 3 X - B

form & set of‘q‘+‘1 linéarly independeﬁt'pointa which
determine Sq. The points ¥, 5 « « ,'yp are lineerly
'independent with the poxnta determining Sg, by Lemma

I1.3. 25, and the points T, s e ,). s Zq 8re 1inear1y

v+t
indapendent with the points determining Sp s by the same
1emma. Hence, the total number of linearly independent

‘pointé in tbevcanfiguration is
(r +1) + (p -1r) + (q - r) - {p +q=-1+ 1),

This is the numbar'of linearly independent points required
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to determine. ap +q-~ r)~flat. ﬁlearly, this
{p +q = r)wflat containa all the ‘points of bath S anﬁ
Si,;and‘theithaorem.is,Qﬁgvea‘

1I.4. DIMENSION OF A p-PLAT

II.4.1, Some mathematicians feﬁi that one mf"the most
1mportant theoriea in analyaia 1s that of ﬁimension, There
havs been-many dafinitiona of dimanaien, the early aﬁes}
being quiﬁe;vague and:intuitive,,‘such¢mﬂn aS;Gantgr and
Eéénowfirst'made.it algar‘th&t brecisafﬁafinitiangjof
’dimahSion were naadedhﬁhen'tﬁéy préducedfexampiéa“éantrae'
&ieting gome of the beliefa concerning dimension. Theéév
ex&mples shmwed.that the dimension of & 3pace oan be ahanged
by aither a one~to*ana bransformation or by a aonﬁinuons
transformation.

The question as tQVWhéthér 8 one-to-one and
continuous transformation can change the diméﬁéioﬁ‘of.a'
_space waa answared {1n the case af Euelidean space) by
.Brcuwer in 1911 [:Brouwer, (1):], when he ahowed that
m-dimansional Euclidean ‘space: cannot be the continueusv
and cneato—cne image of n«dimensional Euclidean spaca, |
unlass m = n.. In other words, dimenaiou is a. topalogical}
proyarty of Euelidean spaee., Brouwer»further shawed
[Brouwer, (3)?] that n—dimansional Euelidean space is

precisely nvdimansional.
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in 1922 k’ffangar ‘and ‘Ux?}}'sohri indepenééntly gave a -
def&nition of dimensian which is applieab&a to very general
| sets of peints in a metric segarable space, [Menger, (1)
rrand iz)] and [Urysahn, (l) and (2)] This work was

inde;:andent of Brauwer 'as work and, while it claaely
followea the work af ﬁmuwer, there were improvements as
well.

Hurewicz and Wallmen use the definition of Menger
and Urysohn to. ‘pz“ova‘ that n-dimensional Eudiidean Bpéca is
praci'aalyl,,in¢éih1§ﬁsiéna?_ [_ 'IlﬁreW‘iez«eWalliﬁan, {1), Chapters
IT, I1T, and IV]. This definition is as follows:

'1I.4.2. Definition

1, ‘fl*he ampyty"fwt énd only the axﬁpty aset has‘
'vdiz‘mmisian -1,

2., A space X has dimension s n {n>0) et a point
p"if P .ha:s' arbitraril’y amall neighbwrhoods whcéa baum_iariea
have dimensionsn = 1,

3. X has dimensions<n if X has dimension<n at
each point.,

4. X has dimension n at s point p if it is true
tﬁat X has dimension <n at p and :Lt is false that X has
diménsion sn=-1at p.

5. X‘-‘hiﬂsi ﬁlimensian"n ii’ dimX<n is true and
dimX<n-1 is false.

«6.’ X has dimension « if dimX<n is false for

‘each n.
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_The praof‘that H(“Yhasvd;mensian <n is by
induction. fhe proof that dim RME: n requires the use
of the Brouwer fixed point theorem, ‘the notion of |
separation of sats, and tha fact Yhat a subspace of a

space of dimension S n hes ﬁimension S n.

II.4.3, [Theorem. Any p-flat, S,, (O<p<n-1), in R,

is isometric to R(F, and hence is p»éimensien&l.
‘Proof. Leﬁvsp'bé a paflat’in R‘"Z'and let xo, Kis o o o s Xy
be p + 1 linsarly independent points'whiéh determina See

Every point x in‘S cen be uniquély repregented as
, P
(11.4.4) x = Zd Xo 2 =1

Bearranging terms snd remembaring that o« = (1 = 252¥ )
(II.4.4) becomes

(II.4.5) X =x, 4 igis((x. - x,).

c=

Consider & new set of coordinates for L
obtalned by a‘trahslation, with the new origin at the
point x,. Then the vectors (x, - x.), + « « , (x, -x,)
will be g'linearly,indegeﬁdent Vegtors with origin at xo.
Deﬁote these vsectors, for the sake of clarity, by
Voo o v o s Tpo With respect to the new coordinata
system of R(“) ‘these vectors svidently form a basis for
sp, since every point X in SP can be expressad uniquely

as 2 linear combination cf these p linearly independent
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vectors. With respect to the newucaordinate system the
ﬁoint’ifef‘s can be written

(The point %' is bhe seme puint 28 the point x, but .the
'coordin&za system has juﬂt been changeﬁ,) f

- Since & Euclidaag1spacejis being considered, an
'inner proﬁuet, (y',y”) = fgg‘ﬁgv-y%)”; and g,hnrm;

 '“¥’“ = [wéglly“ ,] : are ééfined_for allrpainta y!

and y“ in B‘“7

Now by tha Gr&m»Sehmidt orﬁhogonalizatian procesa,
from ﬁbe set of p 11near1y independent vecturs,
‘y o % 6 s s yP, one aan ccnstruct a set of P orthonormal
vectors as follows ljﬁalmaa, (l), Ps 98-]”

Set

g =¥y 9= g/ ng «
 3y‘indunt1an,‘set'
’(II«%@-@) Byu = Sfm; - é(yx;. RIRR = Fe™ Bun/ 18 5

Kb ;‘y«ﬂ P ) (() (P )
= (ym“, ‘703 ) - (YKﬂ rA‘;Dj )

i
g

K.QW’ : (‘S K ¥ SDJ )

I
o
L J

—
Taze
1
s
-

-

L )

R

=
o
®

® For original papers on this topic, see [Gram, (1)] and
[Sehmidt, (1), p. 442 7.
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Hence, gK“ ia orthegonal‘to'qg é (j R . s k).
Gcn$aquently, Py is orthonprm&; to 9&,
(J=1, ..., %K), |

Gontinuing in this manner until the y‘s are .

exhauated, P urthonormal vectors,

P Qo000 9Py
will be obtained, Each @ is a unique 1inaar'¢omb1~
i’l&ti@ﬁ of Y » . v o 8 'y ;- {1 = 1, R ) P). Th'arefore,}
any linear aambination of P s Q 2 % o s 3 @ ia alse a
linear combination of y s 0 0 e 2 Tps and hence is a noint

of 8 Conversely, if one solves the set of equ&tion

o
(Ii 4,6) Tor ?}, one sees that yk is a unique linear combi-
nation of @5, « « o ? s+ {3 =1, « « « 5 p). 'Therefore,
since every poiﬁt in S, is a unique 11near ¢ombination of
g P v s s ¥ yp, it is 8lso g unique 1inaar cumbination of
P e e Py This means that 9}, _— '”"?F form en
orthonormal basis for SP' Consequently, if x is any point

in S, with respect to. this coordinate system,

P
/@lfﬁ_‘f‘ © & e “f‘lﬂpsops

One can extend this basis to be an orthonormal
basis for R(wl For x ¢ SP, the components,~<ﬂ”‘,'aﬁg . ,/¢",
wlll allfbe-zerg.

Now to each point x in S, with components

(B35 v « o« sfp)s male correspond the point x! in R with
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components (B4 « » - »fp ). This correspondence is
one»ta~on@ and. diatance is preserved, alnce only Euclidaan
fspaces are being conaiderea, and since tha distance betwaen

;peints x end x* of 3 with componsnt& (ﬁ 5w * ,ﬁP) and
( P% . . ,‘Sf) respentively is '(QE B - ﬂ'“))

With the law of corr&spondemce steted above, the distanceu

e s pracisely

bebwaen the image points x’ and x@' in R
the sama, ‘Hence, one eoncludea that S, and R(P)are
iaometrie.

Now & meﬁria‘apaca is & topological space. If
two metric spaces aréﬁisam&%vie”ﬁhsy are certainly
hémenmorﬁhic as topological spaﬁas;; For if'k is a limit
point of one space, since diatancas are preaerved, its
image will eerhainly be a 1imit paint of the other space.

Since‘hucliﬁean apaces, whiuh are separable
'metfia speces, are béing consideraa, it can only be con-
cluded that s p~flat, S P has dimenaion ps since it is
‘homaomorphic with R(F& and since the dimenaicn of a
Eucliﬁean’Space is inveriant under a oqe~t0~one and

continnous transformation, and therefare certainly under

a hameomorphism.

II;&,?. ’Remark. Iin speaking‘df a phrlat, SP; in‘ROO,
{p<n), one would like to be able to speak of open sets
'of'sp and interior pﬁints of a set in Spe  With respect

to RQ”, no set of,sp'ean'be open, s;nge,every n-dimensional
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neighborhood of a point in S, eontains’pdints of R which
are not in SP; That is, no point of a set B in Sp ¢can be
an inxarior point of E relative ta ﬁbﬂ

‘It is convenient %o conaider sets which are open
relative to S,. Let U be anjgedimansicnal‘open set. Then
the set UNS, s called open relative to S,. Similarly,
let E be a set in 8,. If x, is a point of E‘suéh that a
neighborhooé,’Néixo)/)SP; is comgleﬁalybcontginé& in E,

then x_1is called an interior point of E_relativa to Se.

1I.4.8,.° Remark; .Lat;F be a continuous, one-to-one,
transformation.define& 0n=a eonvex‘région E of RY), with
nothing said concerning its values outside the‘ragion‘E.
A question which one would logically ask is: Doeé the
image of E under the transformation F still have
dimensicn‘n? The snswer was glven by Brouwar wha sh@weﬁ
that the continuous, Qne-taaone image of an n-dimension&l
region is also n~dimensiona1 I:Brouwer, (z)f] Let Sp
be a p-flat in R(")which passes through E. Then S, Ng
vis an open set relative tq SP, and hence is p~
dimensicnal. Therefore,; accerding to Brauwer, 8
continuous and Qne;to~one,image of SP/1E3is 2ls0
p-dimensionel. It can never happen, therefore, that the
image of SP/]E will be of'differen? di@ansion,th&n Sp

under & continuocus, one-to~one transformation.
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I1,5, FURTHER PROPERTIES OF p-FLATS

I1.5.1. Thabrem‘.p Two distinet p-i‘la‘as,;s(r',‘ and S(“ D
which both lie in a (p + 1)-flat, S, , must intersect
in a {p - 1)~:€1at, if they intersect at all.

_1,’_;99_@. Without loss of gonerallty, the cocréﬁina‘ce system
of ﬁ(“»)~can be assumed to be such that any point x; in

st+;' | has the cocr&inatas‘

(" (P+l) 0

x‘.,.‘,.,x ,ocogev;

‘1"his is a consemance of Theorem IT,4.3. Then with respect
to S, , the. p—flats, s‘”  and sﬂ” » will be p-dimensional
hyperplanes. Each cen be remresented as e single equation

in 51’18 puvariables, x(”, “ios o4 s (Pﬁ).

il

(1) my, L (PN ;
(I1.5.2) S

Sg’: LSRR 2 X4 b

|

pra = O

If the two hyperplanes intergsect at the pm.nt

(1 '
(x;; e 8 6 9 x(”l O 5 = o o 3 0), the tWOV equati@na

of (II.5.2) will then take the form

. ) {1) , ; (P41 (PH)
| e x - x) PH( o ) ;
(11.5.3) K , :
T . ' , 0
I) (”)"P « & @ b (X(P‘ —X(P“)) = O.

pt o)

This system of equations has exactly p = 1 linearly inde-
pendent, non-zero solutions, [Eocher, (1), pp. 49452])
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(1 ] ! 1 . o p
((xl' - x(o)), . v » (x;lf - X(:*j)g (i = 1’ ® e e ¥ p"l)u

Since x_ was fixed, this means that there are exactly
P - 1 linsarly independent points, X9 (1:=1, ¢« » o 2 P=1),
x. ¥ x,, which satisfy (II.5.3). Hence,

(Pt )

W, x
Pt o T e

= 8 X, *+ i v ¢ + 8

() X(PW
4 ¢ 1 °

[} .
a’xt + » L +ap

) . (P+c)~ ‘
"t" e % @ - \bp'ﬂ xo 'm “"bP*:v

(pt) a)
) x.P = b X

(t
btxi*a'*bPh i ‘ 1 o

(1 =1, « v « 5 p~1). This meens that the points, x,,
(1 =1, .., p-1) satisfy (II.5.2).

$ﬁweﬁx?)~xgwg.‘.. ,{f?”-'f?”%
{1 = 1,'. . p-1), are linearly 1ndepéndeht, then the
points X , X 5 4 . » X,. are 1inear1y independent and
hence determine & (p-1)-flat. The points |
X,» X, s s+ » o 5 Xp, are all common to both ng‘ and S§7
and there are no more linearly independent points common
to both flats. Hence, it must be concluded that the two
p-flats s;” and SSJ intersect in a (p~1)~flat, proving

'tha'theoram.

11.5.4. Theorem; Lét F:‘f“)(x),‘(ila 1o o o o h),'be a
continuous, one-to~one transformation defined on a convex |
fegion E of Rfm,’such that p-flats map into p-flats (p
fixed; 15'ps;n§1). Then distinct p~flats map into distinct
p-flats for points of E.

Proof. Suppose the theorem is false., Let 8;” and Sg’
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be two distinct -pwflaizs, containing points of E, such that
$\E and 89\ E map into the same p-flat, T,. There ere
two cases.

1. sV and 50 intersect in E in a (p-1)-flat,
s‘,'_| « Since d.iﬁna‘ﬁsia’n fi"s preserved by a onwta-ohe, |
continuous transfbrmati‘om‘ the image of S, () E must be a
(p-1)~dimensional region.

Tha point sots SJ'/VE and SC/MNE ere p-
dimensionsal regiana for they are open, connected sets
relative to S;” and S f,” respectively. Hence, the images

of 3 NE and SP/E must both be reglons in TP. Since
S;” and ng’ intersect, then their images must also have
points in common. ,In fact, the image sets must have a
vhole p-dimensiqnal region; G', in common. Since thé
image of S, ,
points of G' which must be the images of two distinet

mast be {p-l)-dimensional, then there are

points, one in S(ﬁ’ 'NE and the other in S“}’ﬂ B, This
contradicts the assumption that the mepping is one-to-one,
Hence, case 1 'cannot oceur,

2. The p-flats, S @

p
gect in a (p~1)~flat in E. 1In this case, choose p

and 3:,” » do not inter-

1inearly independent points, AR s Of S‘,;’ﬂ B,
end choose x,_ to be a point of s‘;’ﬂ E which is not in

S:,". Then X _, X, e e e s x, form a set of >p"+ 1 "linearly
independent points and hence determine a p-flat, Sff ),

which intersects 87 in E in a (p-1)-flet, S, , . By
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anse 1, »S:,')ﬂ E and Sff)ﬂ E must mep into distinct p-flats,
T end '1‘;3). The two p-flats, T and-‘I‘('f), must contain a
(p~1)-dimensional region in common, the image of S(,v_, .
Consider the point x . | By hypothesis, F(x ) ia
a point of T,. But since x, is also & point of S(;), then
F{x_ ) must belong to T(:)‘ 3an¢e;' F(io) belonga f;c the
intersection of prand T(;). This means that }F(xo)' belongs
to the images of both S\ E and Sg’ﬂ E. This means that
F(x ) is the image of two distinet points, one in S/ \E
and the other in 8?’/\ B, }This contradleta the assumption
t;hat the mepping is one~to-one., Eence case 2 cannot oceur.
In either case a contradiction has been reached.
Henea, one must coixclude that for points of }3}, distinet

p-ﬂats map into distinet p-flats.

11,6, p-CELLS AND THEIR PROPERTIES

Recall the definition of a p-cell, ox , as glven
in Definition I1,2,1. Some fundamental properties of p-cells
will now be developed.

I1.6.1. Definition. Let DX, be a p-cell with vertices

X s X, s + o + 3 Xpu If one chooses from this set of points,
a subset of k + 1 points (~l<ksp), then the k-cell
determined by these k + 1 points is called a k-—dizﬁénsional
fTace of the p»cell; Axp. IZ’ wl<kcpy thgn the k-cell is
called a proper face of the p-cells otherv}i_bse it is called
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an improper face.
Clearly, a point
(=0

e .
x#vZ%m, 2i¢=L « 70
. L= 0 . .

of a p-cell, 4 xp,: is‘axz 8 -prag,ér:faca of the p~cell if end
only if at least one of the «'s is equal to zerc.
By the definition of a 1l-flat (straight line),

the stralght line through twa_distinct points, x, end x_,
1s the set of all points

a<(x'*+ o, X,
where « +o, = Lo
11.6.2., Definition. The subset of the line,

K+ X, Ky A Fey, =],

for which « >0, «,>0, 1s called the segment, X X,.
{From Definition I..‘?.; 1., it is elso the 1=-—calyl datermii_;ed

by x and X .)

11.6.5. Definition. A point set E of R”' is called

convex if for x ¢ E and x_ ¢ E 1t follows that X x, belongs

to BE.

I1.6.4. Theorem. A p-cell is a convex set,
Proof. Let x_, Xis o v s 5 %X be the vértices of the p-cell,

ax,, Let x' and x" be any two points of Ax,, Then
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P P
x! = Z XiEi» 2 = 1, « >0, all i,
i=0 ~(::o .
and
3 ? ' |
x" = Z/sixi’ Z 81: 1, ‘/5,->,0, ell 1.
[:o . ) Xl : ‘ ‘

Every point x of x'x" can be expreassed as

(I1.6.,4) x = ex! + (1L - 8)x"

B

Olet, X, + X, + eaute,x, )4{1-8) (g, X, + oot fBrx,)
- f@ 0/04“ (l"'e)ﬁoj X°+ q‘n.‘“" fgdp*(l"e) ij XP’

where 0 €8 <1, All the coefficients of (II.6.4) are clearly
2 0. :

Consider the sum of the coefficients of (II.6.4): "
(11.6.5) [® oo+ (1-0)p,1+ o « « + [Ba, + (1-8)pp)
= 0(d, + . . . +p ) + (1-8){p+ . . . “"FF_’)‘
=6+ (1 -6) = 1.

Hence x belongs to Ax Therefore the p-cell, AXp, is a

PQ
convex set, proving the theorem.

11,6.6. Theorem. Let x 5, X 5 + « « s Xg» (p<n), bep +1

linearly independent points of R which determine a'p-»flat »

P P
be represented as

S,» and a p-cell, ax,. Then a point ¥X* of Ax, which can
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- | o
X o= Zo(x, ‘ 2d~1, % >0, all i,
Lt <o t=o , ~ B
is an interior paiﬁt of Aﬁ$ relative to S,.
Proof. Any point x = (x", x=, , . . 5 &) af’Spiean be
rapresented uniqualy as
‘ P
Z ZP“’=1,'(J~“1’.. .,,n);
"v*o . ‘
For sny glven x of S, the P s are uniqusly determined. I%
will be shown that the P's are continuous functions of x.
Gansider the equations

x - g X e s prg:

1
=
b
[+3

B & & & 6 e & 2 s 8 & € B % 8 & »

e & = Px(ﬂ 4' F,X(r‘ +* s s & /QP ‘PP?

(11.6.7)

(n
= XD+ PR 4.t op, ?:

R

-
i}

Since the points X,, X 5 ¢+ « « » X, are linearly independent,
the raﬁk of the matrix of the‘coaffinients of the p's is
p + 1 (See Definition II.3.2.) .Fdrtheerre, since the p's
‘are uniquely &aterﬁined for a given x, the sugmented matrix
also has rank p + 1. That is,’all the C{n +1, p«%E)
determinents of the form |

| XQJ i | é@)

(IIOGQB) a % & & ® . ‘.'l'
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) Gpg) o Gpya)
vanish, where x°™, X' s 4 40 s x'Pe

l?

may all be ones,
and where the set of superscripts (jl, e v v 3 jm; )
represents one of the C{n+1, p+2) possible choices of

p + 2 of the n + 1 rows of th¢ éugmented matrix of the set
of equations (II1.6.7).

The rank of the matrix of the equations (11;6.7) 
is therefore équal to the number of unknowns. Hence,
picking out a set of p + 1 of the n,+kl eguations of
(XI;6;7), such that the determinant of the coefficlents of
the p's 1s different from zero, the p's can be solved for
uniquely by Gramer*a-ﬁﬁla. The set of p's thus determined
will be thé seme ag those determined if any other set of
p + 1 of the equations of (I1.6.7) 1s chosen such that the
determinant of the coefTicients is different from zero.

fBoéher, (1), p. 46:] Suppose the equations chosen are

(k (3 ' G
xt)v)a Poxzt)‘() ” qu(,a‘) 4. .+ fo;|)7

(II.&.Q) ‘ e o 8 » w G

‘“ & & 6 & 8 8 #

)

)

»
God _  Lewd 4 o
x z)pﬂz . xfﬂ P, xI3P1|)+ L.+ prépn

the set of superscripts representing the proper choice so
thet the determinant of the coefficlents of the @'s 1is
different from zero.

Solving for §;¢
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pi-

B
- ' 2 {1=0, +.,p).
‘;’") I ?"d R X(:V')V |
e 5 & a w s e s % e s 5 & »
"x(‘i"") . » » ; s v-"a- LT I T 'K(iptl\?;

Expanding (»II.'S.lQ) by the ith columns

+ A,

L,P-n

x‘j Vh)

kg (“11‘-—"0, « & @ "’P),

where the numbers A, are constants defined by

Gy

G a0 G ,
o * * v Dy My v v xP
& % 8 R % & & ¥ ® 9w »
Gy (J.K;-\ ) Gy
xo L -1 l4r * * * xp
G n Gen Gika) ()
okl o xled ghked ool gl
o ) vt Ly e
A w & s & & @& & % 8 o«
(A‘Ph) Gon) wlpp) Ops)
. P Pt
o v 0 s X £+|’ o -
AiK'a 0 (.\’(k"ly s 0wy p+1)o
! -Xg' o v e s e e xP"‘ ‘ :
* » » » . E ] - - L . »
Ay )
xoPH).' O T T T T T T 'xsm,‘ .

Hence, f; is a continuous function of x (1=0, ..., p).

4> 0, 1In fact, there are numbers

%en,x#x””",‘ ,P;vﬁd;, (1 '-*'-'03‘13 s s B ’p),‘and

€;> 0 puch that

¢(£‘>C~3>O’ (130, ls & o ,:p)q Let ‘€'=m1n {E"},

81l 1. Then «; >¢'>0. Since fi is a continuous
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function of x, then for every sufficiently smell € > 0
(ii'l perticular, for ¢'>0), there is a J,.m:i such thet

lﬁéfdi‘<’€,

whenever Ux%xu < cgi s e N (x*)N S5 (1 =0, 1, . « « 5 D)o
Let J’*.—:min{cgtgg (1 “-—“ G, 19 o‘v . Qp)o Then

'lﬁw%‘_ <e'

whenever x eﬂs,v(x"“_)ﬂ‘sp, {1=0,1, ...+ 5 p)e That is,
for all pnirits X € ?Ké,y(x%)ﬂ Sos

| ‘5i>¢¥z‘€’>,.oiv (1=0,...,p)

Hence, in_a; sufficiantlyamﬁli neighborhood of x* (relative

to SP), all pointa x can be represented as
- P -

. ? ‘
X = ZP; X, Z Bi = 1, §i>0, ell i,

(=0 (=o

and these points belong, to Ax,. Hence, x* is an interior

point of Aax, relative to S..

iI.6.11, Cor.'ellarx._ It follows from"l‘heamm 11.6.6 that
vif x* is on a proper face of AX, , then 1t is & boundary
péint of Ax_P ‘rélative to ::SP. For if x* 1s on a proper
face of ..L\'xf,, ‘then at iea.s'b one barycentric coordinate of
x*, say «; ",‘ is equal to gzero. Since the « 's are
continuoué functions of x and since ti'ze representation "of
a point of S, 1s unique, then in every small neighborhood

of x* (relative to S,) there ere points x of S, such that
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the corregponding o, is < 0, and hence such points do not

belong to ,Ax?.‘vﬁénce,‘xﬁ is a bavndapy péint of ‘AXg.

11.6.12. Remark, It might be well to mention here enother
émacm{zamn of a p-flat in R™\. By Definition 11,3.153,
a pwflat, os 1s the set of all painta x of R““ sunh that

X=324XL, Zd’-‘*l’ JWI-’ .,."n),

where 34;5@ R %, form a set of pl¢ 1 1inear1yvindepandent7
points of E™, It is further shown that the representation is

unique. That 1s, the equations

o (n | .
X o= oA e o xt?

}
A
#
+
»
L 3
L
4
L

N * L
(I1.6.13)
y
2 = o x e+ « x?’

l ':"‘7(0 “"’0'."’"4()

have precisely one solution ror;thé < 's. From'thb work in
the last theorem, it follows that the renk of the augmented

matrix

/o m MY
| X, s . x:
L ] L L 2 - L 2 » & » L d
(II.6.14) o)
x™ Xy e e s x?”
1 1 e o o 1
N

is p + 1. That’is, all the p + 2 rowed &éterminants formed
from the matrix (II.6.14) must vanish, This is expressed
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as :

X(j') x(("l) . (J.I)
(II46Q15) Y - e @ . LA ° = 03,
(Jph\ (J‘Pfl

Xo . u‘o;xP

pr)
where the set of superscripts, (j;‘, e e Jo ) répreaants
one of the C(n + 1, p + 2) possible:chaicas of p + 2 of the
n + 1 rows of the matrix (II.6,14). (The numbers,
ﬁq“” ,Jﬂf“\, 6« « s 3 x%mﬂ may all be ones. )
Therefore, tha"péints x of‘ S, must satisfy the
G(n + 1, p + 2) equations of the type (I1.6,15).

Conversely, consider the sét of equatilons

)
=" = pozc,f,')+ « et B x;”

e % s s ® & © ® © e e # &

(I1.6.186)

m) ()‘
X = fxH . ..+ Box)

= P° +;OQ+FP

where thé poihts, x_, X, , « . . 5 X, are linearly independent.
Suppose X is such that all the p + 2-rowed determinant

minors of the éugménted matrix of the equations (II.6.16)
vanish., That is, suppose that x satisfies all C{n + 1, p + 2)

equations of the type

gy Q) (4
x‘ xo . . L 4 XP
(11.6.17) v s e e e =0
Qerz) G
0712 xdpu) . xapu)

o P
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where tha supersaripta (3 PERTERSEP P | represent one of ‘
the C{n + 1, p + 2) ‘possible selections of p 4+ 2 of the
n + 1 rows of the augmented matrix of the aquatioms
(11.6.16) Then there is @‘uniqueksalution £dr the B's
and by the definition of a p~£1at, x lies in the pnflat
determined by the p + 1 linearly indepandant points,
Xgs Eys o 005 Epu |

The conclusion is that the p~f1at, Sp» is
composed preciselg of the seb of all points x of R" ’whicb
satisfy the C(n + 1, p %‘z)téguat;ons‘o£~tha type (II.6.17).
That is, Slgis characterized by this seﬁ of«aqnatiahs.

11.6.18. [Iheorem. Let X,s » + s+ » X, be p + 1 linearly
independent points of HO” ﬁhich ﬂetermine a p-flet, SP,

and a p~cell,,‘ax - Let x be an interior paint of AX

~p* p?
with respect to S s+ Then every straight line threugh x*,
lying in 3?’ intersecta the bounéary of DX, 1n exactly
two points.

Proof, The p-cell Ax, is a closed and bounded convex set

P
with respect to SP.‘ It can be shownu[fAlexandrbff~H0pf,
(1), pp. 599-600] thet if M 1s eny closed and bounded
¢on§ex set 6f R ana ir x* is interior to M with respect
to K“”,‘thén a stfaight line,thraugh~x% intersects the
}boundary of ¥ in precisely two points. It 1s first proved
that a ray drawn from an interior point of a convex set

intersects the boundary in attmast one point. If a set M

1s closed and bounded, then sny ray from an interior point



84,

of M intersects tha‘bdﬁndary of M in at least one point.
Hence, if M is a closed, bmundéd, convex,set;'a ray from
an interior point interséats.the boundary in exactly one
point. Therefore, anyvstraight line thrcugh an interior

point of M intersects the boundary in exactly two points.

Por the purposes of this paper the following
theorem, aithmugh not so strong as Tbebrem I11,6.18, is
sufficient. .

I1.6,19, Theorem. Let X5 « » » 5 X, be p + 1 linearly
independent points of R“”Q which datérmine a puaell;zsxp,
and a p-flat, 8,. Let x! be any interlor point of ax,,
relative to Se» Let x" be any other point of S,. Then

the straight liné,th£aﬁgh x! and x" intersects the baundary'
of Ax, inIGXactlj t@o points, |

Proof. The proof is sn immediate consequence of the follow-

ing lemmat

I1,6.,20. Lemma. Let X 5 « + « s X, be p 4+ 1 linearly
independent points of R™ which‘éetermine a p=cell, aXx,
and & p-flat, 8,. Let x' and x" be any'two.paints of AXy
at 1east\one of which is interior to AX,, relative to SP{,
‘Then the étraight line through x' and x" intersects the
boundary of AxF,in exactly two points..

ggggg. Suppose x" is interior to A X, relative to S,, and

x! is either interior to Ax, or is a boundary point. Then
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x? = Zo(.l:&'i, ' ZO(;“ 1, «; 20, ell i,
L=o {=o0 . .
and
o P y e

where not evefy o -;’Ls equal to the*cnrréspanding ,F" s In |
fact, ‘since x' is distinet from x“, then at least two « 's
are diffarent from the corresponding p's. For if p of the
« 's are equal o tha P correspending g *s, then sinc@ the
'sum of the « tg ia one and since the sum of the p s is
one, the remaining % is equal to its-mrresponding o
Hence, each o( is equal to its corraspending B and ‘the
two points are not distinct, contrary to assumption.

A1l the polnts on the stright line through x'

and x" cen be expressed as

x=0x? + (1 - 6)x"

t

o g
9(.20&2{;) + (1 - e)(«éﬁxi)
= [’é{,a« (1 - G}ﬁ.ﬁx& e v o+ lows (1 -0)plx,.

For any choice of 6, the sum of these coefflclents is equal

to one, for
(6, + (1 - 9)/33{. e o +lex,+ (1 - 8)B]
‘u‘i‘g("(o."‘ LR T +5<P) + (1 - e)(Pd"}" * v . +FF)

=08 4 (1 ~-96)=
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The problem is to find exactly two distinet
velues of © such that for sach of these. two valuas,,aﬁ
‘least one of the coefficlents, féqt ¥ (1 - e)pil .,

(1 =0, 1, « v+ « » p)s i3 equal %o zero, and such that the
remaining coefficients are =0, Glaarlﬁ, all such poséi-
bilities for © are found by setting aach‘coeffieientg
e« + (1 ~~9)F{], (1 =0, 1, . . .y p);~aqnal to zero
and solving for‘é. This cannot always be done, since if
= Pr » Tor samé k, than the coefficient of x, is

QozK +(1-0)Bc =0f + P - 6 fu = ﬁK s which clearly
canno£ be SQt equel to zero., However, by a previous
ramark;'there are at 1east‘twc‘é(‘s which are not eoual
to their ccrraspénding ﬁs'a. Henae,(éne ban always find
at least two possibilities for ©. These possibilities

for & eare found to be

B
Qi b2
B

for all i such that « % f.
The following is a table of values of the
coefflcients of x, corresponding to the possible values

for 01
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X, L X, - e C Xp /
o 0 : °<0/81 «o(lﬁ"’ ’ L °(OEP"O[PP°
0 ’ ) O(o'ﬁo ' . ) : 0(0—~ﬂo
'd,ﬁo"“";’(o/sl : k Q(:ﬂF"'dP,ﬁ!'
. e‘ _— 0 .. . - - ALY N N O
'Q/'—‘ﬁ‘ - ) O(|—/5,
o Pfg - % fe Lpf, - P o
P %p= fp A~ fp

Only values of 8, will éppeér for ’those" 1 for vshich

G E Bre

R The lemma will be praved if precisely two éistinet
choices of & in the table will nroduce coaffician’cs which
are all non-negativey The: paints cmrrespnnding to these
‘choices of @ will satisfy tha requirements for being on

the boundary of AKP

Sit;ce : LZ_PO o<; = 1 end | %(} fi = 1, and since at
least two of the «'s are different from the corrasﬁonding‘
p 'ss then °(J'>(gé' for at least one j éand“ oL, <ﬂK qu at
leagt one k., Consider the ratios ) |
| | <o« ol
6. p 0T

Since there are only a finite number of these ratios ’

there must be at lesst one which is smallest end at least
one which 1ls 1arge‘st. Suppose < /ﬁf‘ i3 the smallest
,‘ra"tia. Since f’(& <'f5ﬁ then o, /ﬁg < 1. Suppose



88,

“/};/ﬂK is the largest ratio; then %, /s > 1. Arrange the

ratios in order of increasing size;

o . o\
0s — ¢ < X

.
~

ﬁf\, . ' ﬂl(

Consider € and @ . {They exist since q/&% f, and’

A, * B )e Now fe,k + 6 , since

g = =
R
a(—pi

and

<o.

A a(v\‘/%K !
Since’ ** ¢ i , a1l 4, then
P i : ‘

'9(“9‘. ~ B, <0, all 1,

Since | o(%-» ,8& < 0, then the ratios

‘°(n;ﬂ /5\' ~ i By
"<f\" Be

These are the coefficients of x, corresponding to G{ in

the tabie; hence ‘Qﬂ' is one of the desired choices.

Similarly, since —X 5 T , &ll i, then

2 3

P« B
A B — o fx 205 all 1.

Since Qé(lg-'-’ B < 0, then the ratios
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O(Kﬁi - /8K

>/0, all i.
Tk B
These are the cée'fficients corresponding to ©_ 1in the

’ 15' also a desired choice.

table. Hence, ‘E}K

It remains to be shown thet no other dist:inct
chalce of € in the table yields a point of the nna
thraugh x! anci x" which is on the boundary of AX,
ﬁonsidﬁr e, ; where ) # h,‘ K.  {(Then =P e ainca\othér«-
wise there would be no o, in the table). Suppﬁsa’;
X1 2 %, Then

P P
6=~ 6 L _ék -‘zlb_‘%z/gﬁ oL ﬁ’?‘ _ 8

/5 ' ( qff,ﬁ&) B c(a(dl¥&;%ﬁﬂ'] s /55

In this case, tha points coi-raspendmg to 6, end O, ere

not distinet. A similar situation occurs if %‘f - _‘1‘&
o« o, :
_* - *.__* , end suppose that

T SR R L
A <Py 'l?hen,ain\ca : o(l/gﬁ_ 2 By > 0, ther ratio

Suppose

% By ~ % By
°(1;- By

<0

and hence there is a coefficlent corresponding to ©,
which 1s negative end this point is not in. A:xp.‘
- 8imilarly, if °(1'>/5)L s then
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O(JJ pK ~ % /511

7 B

< O)

 and ggain the point carresp&ndimg to Gj v' is not in ax,.
All possible cases,’have"fbean exhausted. ‘Hence
- there are precisely two ch‘cicéa‘ Qr‘e,"in particu‘lér 8,
v,and“QK' » which yield points of the line through x' and x"

which are on the boundary of AX,s 'provﬂ.ng the lemma.

| From this lemma, the proof of the theorem easily
follows. Let AX, be the p-cell with vertices Koy eee 5 Xp4
vanéaiei x! be thé‘interiar point of aAx,, relative to Sp.
Ir x" is any’ other pbint of AX,s then by the lemma, the
theorem 1s true. Let x" be a point of S not in ax,.
Construct the straight line, L, through x' end x". Since
_‘x? is interior to Axé< relative to SP', then there is a
neighborhood, N ; {(xt), ‘such that W (x’)f\sf, is completely

contained in ax Choose x"' to be a point of LNNK 5 (x*)

o*
differeﬁt from vx"‘. Since x! and x"' are distinct, they
are linearly independent and therefore determine L, Apply-
ing ’tha lemma, using x' and x"', it is seen that L inter-
sects’ the boundary of AX, in preciavely two points, éfoving

the theorem,

I1.6.21. Theorem. Let x* be an interior point of a p=-cell,
AXps relative to SP, {(2<p<n). Let U/\SP be any spherical
neighborhood of x¥ relative to SP',‘ contained in Ax,. Let

L be any stralght line through x*. Then there is & point
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of UT\SP £Hence an interlor point of zxxp) which does not
1lie on L.
‘ggggg.f The neighborhood U/\SP is hemaomorphis to 8
Hancs, p+1 1inearly independent points {or what 13 the
same, p linearly 1ndapen&ant vgstars) ean be chosen in
uNS,.

Now L intersects the boundary of UNS, in -
exactly two points, y, and yg, by5Thearem I1.6. 1&‘(”
/donéiéerltha'pointa xﬁ an&'x5'~ %x + ﬁE. These two points
are linearly 1ndependent since they are distinct, thay both
lis on L, and ﬁhey~bmth helmng to UNS,. Let x¥H be
another point uf ﬁf\s s chnaen to be 11nsarly 1ndependent :
with x¥ and x' K‘hen the veators {x“‘-x"*) and (x'ax%) are |
linearly‘indepanﬁent.

It follows that the point x** does not 1ie on L,
for if 1% did, then

el o (1 - 9}:&%'} ex?t,
and
{(x¥*-x™) = g{xt - x¥#),

But this means that the vectors (x*¥-x™) and (x' -x*) are
linearly dependent. This is a contradiction.. Hence, x**

does not lie on L, and the theorem is proved.

11.6.22. Theorem. Let X,, X4 + « & 5 X, be n + 1 linearly
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independent points of R” which form the verticegvﬁfJan
n-cell, 4x,. Let F be a onthﬁ~one, continuoué ﬁrans-
fcrmatian-defined;Qn;a con?ax4ragi§n‘E whicn,containg the
n-cell, A%y and let F»ﬁé‘sudhzthabit maps straight
lines into straight lines. Then all the p-cell faces of
AX, map into dlstinet p~celigfa¢es nf an,n~¢eil,.lkF;,
under theltranéformatian,F, (Q:spe;ﬁ);v
Proof. The proof 1s,b§_in§uct;an on p.‘;Laﬁ'p’:;O@ﬂ“Than
since the;transférmation~is oneétc—onaq‘allﬁthé_9+§all |
faces (vertices) of ax, map into distinet ouﬁéillfaeas
of an n-cell, AF,, which turns oub»tc be'non;d6g9nerateu

Let p = 1, By,hypothesisﬂatraight lines mep into
straight lines. By‘ﬁhébrem‘xi¢5.é distinct lines map into
d;stincé linaé. Sinca‘F is one~to-one and continuous,
then each of the l-cell faces of ‘Axn,'férmedfbj'jainiﬁg
any two of the vertices 0£  Axn,;map'inﬁo'a lweell; formed
by Joining the corresponding vertices of AF, . Siﬁqp
these l-cells must be distinct, this maans,thé§ ailAthe
image points F(x;), » » oy F(x ), taken tﬁreé‘aﬁ'é-tima,
are linearly independent.

Let p = 2, Let alx, x, x. ) be any 2-cell of
AX,s Where {t,, 1,, 1,) represents a choice‘of'ahy §hree
of the n + 1 vertices of Ax,. The points xﬁs,;xﬁ_,‘and
‘xflnmap into linearly independent points F(x, ), F(x, )s
‘and F(xgl)'by thevstatément abovq,_,Henee“A(Faxioﬁiixdg)

1s & non-degenerate 2-cell, and Flx, ), Flx, ) and F(x, )
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determine a 2-flat, T,. By the induction hypothesis the
boundéryof A(x‘ x; % " ) ma}éa into the boundary of
A(F:x JX % ). Let x* be any interior point of
A(x X, X ) relative to Sys the 2——1'3.&1; detaminad by
X0 Xy and x, 2t Let x' be & beundary point of
HA (x, x, Yy }. Let L be the stralght line thrcmgh ‘x¥% and
x'; Then L intex*aects the bnumiary of alx, :s: x, ) in
‘exaatly twcx diatinct points, %! and x“ » by Lemma II 6.20.
The paints x! and x" mep into F(x?) an«i F(x") on the
boundery of -A(F.xco xL-":x,-.l), by the induction hypoth&sia.v

Hencey -
. .

2
F(x@) ﬁ.ZoﬁF(x;-,),' Za(:l, ~ 20, all §s
: . )‘—10 . ) J:o .J ' 4 .

and
2
F(x“) “Z PJF(X Ys Z PJ : j., /5;%0, all j.
J oo yFe ‘

Since 'sbraight lines map into straight lines and since F

is continuous and one-to-one, then x* on L between x' and

x" maps into F(x*) on the line segment F(x!)F(x"), and
F(x*) = oF(x') + (1 - 6)F(x"), 0<9< 1.
Hence,

‘ 2 ‘ 2
Px*) = 0( 2 Plx, )1+(1 -8)(, 8, Flx, )
. J':-O A Ld ) . J—O J d
= (e;(o+ (1~ e)ﬁo]ﬂxio L feo(1+(1” e’f@f‘"‘(xiz ).

Clearly, 81l the coefficients are > O since 0<©<¢1l, and
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the sum éf the coefficients is equal to one by the work
in Lemma 1I.6.20. Hence, F(x*) 1s in the 2-cell,
4,A(F:x£0x4 xgz).~ Since x*‘was any interior point of
| A(xfcx5,x¢l)g‘then the 2-cell Aixtox,;xéz)‘waps‘into
A(th;ox¢,x52).
Lot x be any point of S,NE nct'iﬁ.‘A(x[;xg,xﬂl).

Since S, E is convex, x can be joined by a stralght line
L' to a point x*, interior to ZA(x 55 x L )e By ﬁheorem
11.6.19, L' intersects the boundary of A(x JEo Xy ) 1n
exactly two distinct points, x' and x". The trans~‘
formation F carries x' and x" into F(x') and F(x") on the

baundary of AlFs X X xv Y. Henca”
.
F(x') = me Rr }Zoﬁ =1, %0, all j,
)= = | |
and
. 2
P = 2 S, ), Z !. =1, o0, al ;.
J=o ¥ ¢ J'_,o J
Since x is on the line through x! and x" and since straight
lines map into straight lines, then F(x) is on the line

through‘F(x‘) and F(x"). Therefore,'

Flx) = w(x') (1 - ¢)F(x")

gp(Z»/mx ) + (1 - 97)(25 F(x,))
AT AT
i | |

and the sum of the coefficients is one. Hence, F(x) is in

it

i

the B-flat; TQ. Since x was any point of Slf\E ‘not in
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A(x X Xy ), it has been shawn thet S, NE maps inho T .
The eame argument holds for ea&h 2~ca11 faea af
Ax . 3y Theorem II 5,4, tha distinct E-flats detarmined
by the vertices of all the chell facas nf Ax, muat map inta
distinct Enflats, determined by the vertiees of the
corresponding 1maga Q»ealla. Hance, distinct 2~cell facaa
of AX., must map inte distinct Q~malla, since they lie 1n
distinet 2-flats. %his means that the p@ints F(x o o
« o 3 Flx ), taken four at a time, are lin@arly independent.
, Suppmsa it has been shown in this manner for
‘1<<k<5n~1, tﬁat allvthe kﬁcelllfaeesuaf ;xxg map inte k-cell
faaas and thah all the k*flata dstermined by the verticaa
of aach k*¢611 face nap into kmflats, which by Theorem
II 5 4 must be distinat' then distinct k»call faces of Ax,
map into distinct k»cell faaea. It fOllOWs that all the
points F(x Js v e v s ?(x }s taken k + 2 at & time, are
1inearly indapendent.
60nsider the nrcell, Axn. By the in&uetion
hypothesis, the painﬁs xo, « s ey x - map Into linearly
1ndependent pmints, F(x ), e o o Flxp), (henae‘
Y § 25 SERPR < ) is non»degenarata), end the boundery of
AX., maps into the boundary,cf D(FIx, o & xn)f Let " be
any 1ntefior point of zixﬂ. Let x! be & béunﬂary point of
le . Then the line L through x' and x* Intersects the
baundary of Ax,in exactly two distinct poiuts, x? and x",

by Lemma 1I.6,20., By the induction hypatheais, ﬁ"and ="
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map into F(x') and F(x") on the boundary of A(Fix_. . . x.).
That is,

Zo( Flx;), Zo( >0, all i,

F(x?) =
(=0 (=
and
n _ ; .
t=o0 R4 ' R

Since straight lines map inbo straight liﬁes,‘and since F
is one-to-one and continuous, then x maps into F(x*):qn

the line segmenth(x’)F(x“).v Hence,

F(x”) = QF(;:') + (l - G)F(x“) 0<A“Q€i.

Therefore,
F(X%) = Z [gql+ (l - Q)ﬁl]F(xl),
(=0

where all the coefficients are > O end where the sum of the
coefficients is equal to one, Therefore, F(x*) i1s in
A(Fix o« X)) Since x* was eny interior point of AX,,

the indﬁcticn is complete and thevthecrem‘is'proved.

I1.6.23. Remark. It has actually been shown in the proof
of Theorem II.6.22 that if F is continuous and’one~t0none
and maps straight lines into straight lines, then p-flats
map into p-flats, (1< p<<n - l)

IT.6,24., Theorem. Let F be a continuous, one~to~-one trans-

formation defined on a convex region E in R””, such that
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p«flata map into pnflats for paint& in E (p fixed;
lspsn-l}. Then straight lines map inta straight lines.
ggggg. The proof is by 1ndu¢tion on p.. If p= 1, then |
straignt lines map into straight lines by hypothasis¢
Let p = 2. By Theorem IT1.5.4, ﬁistinct 2~f1ata

map 1nto diatinct 2~f1ats for points in E* Let L be any
straighb 1ine in E. Throngh L can be censtructed two
distinct anflats. This 1s easily dene. ‘since in B ﬁhere;
will be 8 total Of n+ 1 11near1y independent. points. The
1ine L 1s determined by only two linearly 1ndapendent ,
paints.’ Thesa two, togsthar with one more not on L, will
determine one of " the raquired anflats; Sg), The aame two
points togaﬁher with one poiﬂt nat on 81 will determina
the other requireﬁ 2~f1at, S(“ . 8inca L 1s ccmman to both
z—flats, and since ﬁhe mapping is ane-to~one anﬂ continucus,
then L', the image of LNE is common to 70 ana T“’ . the
1magas of 8 ”/“\E<and S“‘/\ E respectivsly. Since L* must
be 1~dimensi0na1, 1t must then be a straight line, as the
intersection‘ofrtwo‘planes.“Hence,}tha theoremris proved
for p = Q,g‘ | B

| Suppose 1t has been proved in]hhigﬂ@anner for
é = 1.’2, . ,‘. ’ n‘Q 2, that if p-flats mainnto'prlats.
then straight lines map inte atraight lines. It will be
shown that if (n«l)-flata map into (n-1)~f1ats, then straight
1ines map into straight lines. In this case, by Theorem
I1.5.4, distinct (nwl}-fiata‘map into distinct.(nuilwflata.
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Let 8, ,be an (n-2)-flat with points in E, As in the case
of p = 2, two distinct (n~1)~f1ats, S(”; and's‘ﬂ  , having
8,.,in common can be constructed. Ender the ona»tonone
_andgcontipuoua~transformatian F, the two;(nal)aflahs,ﬂy
s,"NE andvsg?,(ﬁ,ﬂ map 1hto'dist1nct (ﬂ“l)ifléﬁS}’T(”

and T s and S.,., must map intc thﬂ 1ntarsection of
R end T - and hence the image of S, must be an
(n-2)-flat, by @hearem 11, 5.1; Since 37\1 was an arbiﬁrary
(n-2)-flat with points in B, then it must be concluded that
(n-2)-flats map into (n~2)~flats. This puhs the situatien
back in the previoua case, and by the 1ﬂducticn hypothesis
it ia immediately concluded that straight linea map into
straight 11nes for’peints in E. ,This.eampletes thea
indﬁctidn and the progffof‘thathQOramx'

11,6.25. Remark, ‘From Remark I1,6.23 end Theorem II.6.24
it follows that the necessary and suffioienﬁ condition that
a‘continucus, one-to-one~mapping defined in’ a~c0uvexvregion

(m)

E of R take p-flats into pwflats, (p, fimd, 1< ps<n=l), is

/that,the.mapping_take straight,lings,inra«straightvlines¢

I1.7, THE GHARACTERIZATION FOR THE 2~-DIMENSIONAL CASE

11.7'1._ All'éhe materigl 1s‘noﬁ;étghand‘to prove the main
theorém ofkthia’chapteé'fdr’ﬁhé caéé n ='2,’axGepﬁvthe
following 1mportant lemma, whiéh was suggeated by W. Keplan
of the University of Michigen {f&aplan, (1)1,
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II.?{?Q' Qgggg. ‘Let A(x XX, ) be any 2-cell of a’ convex
regiog E in B9, Let x, be the intarseetion of the medians
of theytriﬁngie.v Let G (”(x), {i : 1, 2), be a continuous,‘
siﬁgle'valﬁed‘bran&formaticn defineé on E such that straight
11nes map 1nto straight 1inas and auch that X s X, 3 X,, and
X, remain fixed., Then G is the 1dentity transformation.
Proof.‘ Since atraight 11nes map into atraight 1ines and
sinoe xo, x‘, and X, remain fixed, then the sldes of the
trisngle map into thﬁmselves., Furthermore, since X, remains
fixed, the medians remain fixea.v Thérerore,‘the midpoints
of the sides, x s x ’ and xc ramain fixed as the inter-
section of Pixad lines. (See Fig. 2).

' Jaining the midpoints of the sides, 1t 13 seen
that the linea XX, XX x s and X, X X map intn themsalves.‘

The p@ints X, 5 X s and x remain fixed as interaections of

7, ki
fixed lines. Tha sagments X 3 s r X xb;kand X xé are parallel
to X X, ; X_X,, and x x rﬁspectively, since they divide the
sides of alx x, x, ) in half. Therefore,, A(x XX, ),
zx(qu,x5), A(x X X, Vs and alz x.x. ) are 81l similar to
A(x;x{x;)a-~Eurthermorg,thp po1nt§ X,y X end xs are the
midpoints of ETR';WEZEG,Iahd §Ti6 respectively.- To'prove,
for example, that x, is the midpoint of x xb, natice firat

mﬂsmmnggg)mdAmxx)amsMﬂw,mw

Xl Xg' XSXXQ :
X X,
X Xy T
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Also, since alx x x,) and alx x x ) are similar*,

%5 Fsx¢
xFy Xy ®o
Hence,
X X, X X,
= .
xx, XX
But x x, = X X ,, Henqe, X X, = X X .

4o 14

To prmré that Vthe: vc«thax*‘twq points ‘menyti.oned_ are
midpoints of the respective iine;‘syé.bﬁve,}'the seme procedure
1s used.

The lines containing X, X, @7, and '&Tiq remain
fixed, Hence, the points x ., »x“",r x,z, X,s X, aﬁd X,, re-
‘main fixed as the intérsaetionv of i‘ixéd lines.

| ‘The points x 5 and X, ‘are the midpoints of the
‘sides of A(xsyxjx,a). To pz?ové, for exemple, that x 1s
the midpoint of X% , notice first that ¥,X, s parallel
to i;ié ' since X%, 1s parallel to X x, (singe x, is the
midpoint of X%, and x, 1s the midpoint of X,%,), which in
turn is parallel to X X,, since x p and’ x, are midpoints of
the sides Of‘ the triangle_, "Al(xox,xl ) Theraforei,’

4‘:;5%;%) and 4"‘5"13’%) .ar:ejsimilgr‘ and

X_X, X X,

i
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But x. 1s the midpoint of X X, j hence,

X X

58 3
‘ = ¥,
‘xb"‘x(p
Consequently,
xb'x/?:
- &
R < I |
XX,

and x,, 1is the midpoint of X x . In the same mannar,-kw
and %, are ths.midpointslef‘tha sides of Aaflx x x )}, and
x, end x are the midpoints of the sides of olx x %),
Four small triangles, alx,x.x ), A(qu,xg),
A(x5;2xb), and A{x,x,x ), have been canstrﬁcted whidh aren;
all similar to a{x x x,) and each of which has‘its verticasf 
‘aha the midpoints of its sides, hence the intersection of its
medians, fixed under the transformetion G. It will be shown
that there is a get of poinﬁs dense in the yerimeter,cf‘
Alx,x x,) which remein fixed under the transformation G.
Let x* be any point on the perimeter of A(x x x,).
It will be contained in one of the four gmaller“trianglesf‘
which sre similar to 4(x,x x,). Choose this one and by &
canstrﬁctian analogous to the pfecédimg one, ﬁivida this
triangle into four similarvtriangles, esch of which has its
vertices and the midpoints of its sides, hence the inter-

section of its medians, fixed under the transformation G,
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and ong of which combains x*, Choose the one containing x*
and repeat the aﬁnétruetion.’ Cantinning in thim manner,; a
sequenca of nesteﬁ trianblas is obtained, each of which |
hag its vertices ana the miﬁpcints of 1ts sides, hence the
1ntersectian of itagmedians, fixed under the transfarmaﬁionv
G, and each of which ebnﬁains‘xgﬂ ‘Evéntually;fa point on
ﬁha periméﬁar éf A(x X, x }s fixed under the transfanmation
Q, will be obtained which is as. close ta x* as one choaaes.
That isy the set cf‘pmints fixad undar the transformation G
is dense in the perimeter Qf A(x x x.).

: Since G is zontinnaus, it fallbwa ﬁhatkeadh point
of the perimeter ig fixed‘under G ;Gonaider'any‘poinﬁ x of
E which is an 1nteriar‘point:af A(ﬁ k k ). It also
remains fixed under G; for let x! and x% be two bounéary
pcinta of A(xbx,xz), not collineer with x. Each of the
two distinct atraigﬁﬁ lines threugh x'x and'iai intersects‘
the boundary of the triangle in two fixed points, by Lemma
‘11*6 20,. Hence, the lines maat map 1nto themselvea and
therafore, their intersaction, x, must map 1nt9 1tself.
Since X wes eny 1nterior point of A(x x, x,) then tha whale
2-cell, A(x X X, ),.maps into itself. '

Let ¥ be any point of E which is not 1n the 2~cell,
alx,x x, ) Let x! and x" be two 1nterior points of
Alx,x %, ) which ere not collineayr with x* Two such points
exiat by Theorem 11, 6 21 Since E is convex, x’ and x" can

sach be jcined to x* by a straight 1ine. Sinc@ x! and x"
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were interior points of QA(xlx x,) each of‘thase twb4
straight lines must contain at leaaﬁ two fixed points of
Alx x x, ), and hence the 1inea mua% map inta themselves.
Consequently, x* must map imta itself, as the intersgection
of two fixed 1inaso Sinae x* wasg any point of E‘npt in
Ax,x x,), it has been shownkthaﬁveach pqiht_of E~rema1ﬁs

fixed under G and hence G must be the identity tranﬁformatiQn.

I1.7.5. Theorem. Let F: £''{x), (1 =1, 2), be a continuous,
enewtowone-tfansfd%maﬁion defined on & éanVax région E in

R @ guch that streight lines mep into straight lines, Then
F is of the formv | |

‘ .(”. . 2) N
&'l' X <+ a"; X + ﬁ,’& .

() '
£ (=)= @) ‘
() - : 2
a, x" +a, XV +a,,
(II(?.%) T
m (a)
) B, X o+ 8y X + a,,
£ (X) = ( » 2y
a x 0 4 s x +a8
2 33
wvhere
am a",l &1,3
8, &, 8, # 0
8, 8, B3

Proof: Let x_, X s and X be three linearly independent
points of B, They determine'a;ewceli'af‘E, Lat‘xb and
x_ De the midpoints of T %, and XX, respectively. Let

X be the intersection of the"msdians‘izk;~and‘i7x4.' F 
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carries xu, X s X, , into three points F(x_ ), F(x,), and
F(x,) which are distinct end not collinear sinece F 1s one-
to-one, continuous, and maps stm\igiht lines into straight
1inea,.~_ - The point x, ggwé iﬁtﬁ Flx,) on m ) =nd
x, goes into F{xq,).bn Flx,)F(x,). The points F(x_), Fix,),
Fix, ), P(x ,)s end Flx,) are distinct because of dm_-to‘»
oneness. The segmenta K:i, and X %, map into W)
and W‘/—) _if"espectivelyg Hence, x_ maps into _F‘{%.;,)‘
ox:;,the iritersetzﬁiﬁﬁ of W;} and W) and F(x)
is not on thé‘ s.‘tdes of a(F: x.x x,), since ,F(xb) and F(xq)‘
are distinct .i'x"c;m; F{x_ ), Fﬁx, ), end Fix_ ).

, 'By;Thebram Z‘LLE,&,";:hsre :13; one and only one -

transformation
(1) ” "(v,c £ (”(x) + cz"z'f(:”(x) +.°(':3
x o - .
| Ay, £x) o, £Px) 4ot
‘F‘ H
( ‘o ft2! \
5 £ "NUx) + 9(’7'1 g (;;;) + A3
X = :
4, £0x) +, €9 R) vl
where
1 “(/,1 L3

%, dz,yz °(.7,3 F0,

t

} a(i‘l d:!,; q/-3,3

which cerries the points F(x ), F(x ), F(x,), end F(x,)

into the points x , x 5;2',» and.xb_‘ respectively. The
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transformation F, 1s continuous, one-to-one, and maps
straight lines inte straight linas‘ Congider the trens-
formation F,F. Thig transﬁarmatien is aontinuous, ana*ten
ohé and carries straight linaa intc straight 11nes*‘
Furt@sfmore, the points R‘y X s X, s and X, remain fixed
under F\F. By Lemma II.7.2, F,F is the identity trans-
Jf_‘(grmtian;, Hence F = F ™', which is of the form (11:.7.4),
and the theorem is préved‘

. Ehe chafacterizaﬁion of ths c1ass of trﬁnéformaticna

F: (t)

(x), (1 =1, 2), whieh are continuaua, ona~to~ane,
and map atraight lines inta straight linea is now complete.
The next sectien af Ghapter II axtenda the characterization
to mapping funeﬁions ¥, Whlch are continucus, 0ne~te~ona
and map straight lines into straight lines, Where . is

defined in n-dimenaions‘

1I1.8, THE CHARACTERIZATION FOR THE n~DIMENSIONAL CASE.

Ir.8.1. In s triangle, the straight line which 5oina a
vertex with the midpoint of the opposite side is a&lle& a
median of the triangle. As & generalization ef this concept,

the following definition is given:

I1.8.2. Definltion. By a median of a tetrahedron ls-
meent the straight line which joins a vertex with the inter-
gsection of the medians of the opposite face. _In'geaeral,

by a median of a pacell,‘(1<:§:sn), is meant the straight
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‘1ine which joins =& vertex of the p-cell with the inter-
sscﬁion of the medians of the (pul)éqell determined by tha
remaining p vé#tices cf’tha p—cellgv

This d@finitian‘wiil be meaningful once it has
been established that the medians of eny p-cell inter-

sect in a common ?oint.f

II.«S;:“&. Theorem. L@t . (3 .(x:\, . e w3 x(:))g + s & 3
xP;:?(xgy; v e s xtﬂ), be the vertices of a p-cell,
(1< p<n), Then the point

M L, L ™,
. <xj + e o+ Xy Xy e o4 oa ¥+ x?)

Xy =

p+ 1 p + 1

is common to &1l the medians of the p-cell; that is, the
madians of a p-cell intersect in a common point.

Proof. . The prooflis by induction on p.. Lét

n (n i n L LU
xo = (XO' R )v’xo ,)9 x|:: (-}Q', LA ¢ ."':?.., )5 &nd
x, = (x5 0 0 ey x') be the vertices of a triengle in
(n) '

R . The median from xé‘meets the opposite side of the

triengle &t the point

{ (]

1 () (@) () Cim (m)
. (35 +x ) x¥ +x v X, + X

2 2 2

The point xf, which divides the median x x* into the ratilo

s
X, X} _ e
Fou A
X)X, 1



has the coordinates

(0 ) (m)

e 4z x "4 x + X}

»%a"s

T T3 see 3 v .
3 3
The samé~argument shows that xg.also dividea.the other two
medians in thé‘ratio 231, ‘Hance,vxﬁ lies on all the medians
and the theorem is proved for the triangle.

_Suppaée it has been shown that the medisns of the

(p=1)-cell :4(303‘; v . X, ) meet in the common point

N x ¢+ x" L cos * x" ' ™y x""‘-t— cer + x:,f”

xp,lz : " ] - ’,’!'v" -~

P P

Then, 1f Alx,x, + +°« X,) 18 2 p-cell, the median from x,

meets the opposlte (p~1)-cell at the point x p  + The point

’ ) (M (Y (n) (m S oA
3% . XO + Xl + cse 4 XP ) .’K.o ""’ x' "" L W 2 + XP
X o= - s ves » - - — »

p +1 p+ 1

divides the median x?quk into the ratio

The seme argument shows that x divides the mediens from the

remaining p vertices of the p-cell in thg same ratio, Hence,

x% 1les on all the medians of the p-cell and the theorem is

proved;
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II‘S;é; The tww»dimenaianal éass of the following theorem

was praved on.pages 43 = 48, _.The géneralization to

n-ﬁimensions is analogous to the two~dimensional case, but

the prgaf is givenvhera for»enmplatenass._

II.8.5. Theorem. Any n + 2 poiﬁta,‘x'; xz, R S
in,n-dimensional Euclidean space, no n + 1 of which lie 1n

an (n~1)wflat, may be carried over into any n + 2 points,

X 3 x}, o o os s xn+2, no n + 1 of which lie in an (n-1)~flat,

by one and only one ﬁranafmrmationAof the form

S L) C(2) v m, ..

: a. X4+ &, K% pae + 8, %X 4+ &
— . d, . yny
(11&8.6) x(ﬂm J)! A Hn

o x"+a  xs wee v x™

T4, | - n+nz nin * am'.”‘f'

(3 =1, . .. , n), where

all'f 9.,'2_ L a,'m,
[ TR S 20 T TR N #1 Q.
a amu,v. w0 arw n+g

n

Proof. The proof will be carried through using homogeneous
»ccerdinates,'aa'before;‘*The'transformatidn (I1.8.6) will
then be of the form

ntl

a S,

\ K=y Alk

it

l, . ."n""’l),

where the homogeneous coordinates of the point x are

) . )
(x, x, 0. ., ),
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The pro Jective transformetion

mntl
—¢)
pX y ;;; a X , (j = 1, PRI S 1), carriaa OVer '

ény given point xiinto a pcint X, the position of:x
depending on'ﬁha valﬁés of 8 The prcof of the théorem
will be eempleta 1f it 1is pessibla to find one and cnly
one (exoept for a conatant factor which may be 1ntraduced
.throughcut) set of n®+ n + 3 cmnatants, (the a '3 being
{n + 1) of tham, and the n + 2 others being ‘

Ps oo s o s ,fn+2 ﬁdneiof which is gero) which

satisfy tha n’ + 3n + 2 equations

TnH
() ®Y. R ‘ o .
A KZ. az;,u i ’ (izl’,"_,’ s B # 25 J =1, sy m 4 1)

Since 2ll the X's and Xﬁs are known, there‘are
n® + n + 2 ‘homogeneous linaar aquations Inn*+ 3n + 3
unknowns. Hence, there are always solutions different from :
zero, the number ef independent ones depanding on the rank
of tha‘coefficients\of the unknowns. Tranqusing and re-
arranging the equations, the matfix'qf these equations

becomes
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(0) (-6X0 ) (o))
(o) (»8 X0 (o)

VUL“‘) (0)
(o) &, .

.
j hd
L

-

4 & A ¢ & & 4 s & & ‘s 2 9 & & 4 e & @ » =

(0 ) ( 0 ) EE ] (X‘(K))‘ ( S(kxtﬂ“)} ( 0 ) ‘

(e |G (o) ... (0) ( o ) X"
(o) (x‘“‘) .. (0) ( o ) 3@

*

N

0l‘.vto"ﬁ'v..llt')"..('i'

vq;sl) (0) ... (x™) ( o ) X

U 2

(1 =1, 0+ 30+l k=1,. .., n+1), vhere the
k's are column numbers and the i's are row numbers of the
submatrices. Notice that (X:?;)'isva row matrix with

n + 1 elements.

Sinée the points Xos o o s » %_ .. are all distinet
and no n + 1 1ie in an (n-1)-flat, there sre n + 1 constents,
¢, s none of which is;zéra,‘such thet

n+
2 oiX:K) + 73&('(] = 0, {k =1, . NI < 3K 4 ).

n+x

-

(=

Adding to the (n + 2n + 2)th row ¢, times the
ithrow, (1 =1, . . . s n+ 1), adding to the
(n* + 2n + 3)th row ¢, times the (n + 1 + 1)th row,
(1=1,...,n¢+ 1); ete.; until finslly, adding to the
last (the (n* + &n + E)th) row ¢, times the (n* 4 n'+ 1)th

row, (1 =1, . . .‘, n + 1), (II 8.7) becomes
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) (0) ... (0 (<4F0) (0]
(o) (x¥) ... (0) (‘L<x“’) (o)
G N - R ‘u;ff..i; S
(0) (0) ... (x™) (-5, IP™) (o)

o) Coyevi(o) (¢, X)) (X))

Nt~

(1=1,...,n41; k=1, ... ,n+1), vhere the k's
stand for the column numbers and the i1's stand for the row

numbersa, (Notice that (~X ) is & column matrix of

nNn+=
n + 1 elements, )
Deleting the last column, the determinant of the

matrix of the ﬁemaining columns is easily 6&10&1&596 to be

b(n%amay = -(""'.'l.)(”".*l ( m: ) 'xuﬂ ' nt) I_(k)

»

This is différant from zero since the x's and the x's are
distinet and no n + 1 lie in an (n-1)-flat. Also, by
Thedrem,II.Q.G,’ Pre, 1s progortional 20 D ipanizy  »
and hénce 1g different from zero.

| A similar situation is found to be true for
D(v\’w%nn) s+ o v 3 Digarangay o
Hence, {. = 0, {1=1, ..., n +2); therefore, one
solution to the equations has been found end it is the only
independent one since the rank of the matrix of the
equations 1s (n?+ 3n + 2), ane lesaJthan_the‘nﬁmﬁer of

unknowns, The theorem is therefore proved.



I1,8.9, Lemma. Let'X,, « « » » X, be n + 1 linearly
1ﬁdepandent'points'in(a convex region E of 3°"L (n> 2),
which form the vertices of an ﬁ*éeil; Let x* be the
intersection of the medlsns of the n-cell. Let
VG‘ (”{x),:(i n'l,','Q . s n), be a tranafﬁrmation‘defiued'
in B xhiah is ccntinnous, one-to~one and earries pwflats
'inte puflats (p fixed' l<’p~<n~1), and which furthermcra
fleaves the points X , X, 5 « « » s X, X* fixed. Then G is
the identity transformation.

Proof. - It should first ba noted that sinee p~flats map
into p«flats {p fixed; 1< p'<n~1), thén p-flats map into
p~flats for all pl(l spsn~l) by Remark 11.6,25.

The proof of the lemma 1s by 1nducti@n. The
lemma has already been prnvad forn = . {Lemma. II 7.2)
Suppqsa:n = G, Lat X, x«, X,s and x, be the

vertices of a tatraheérén, A(x,x %, X, ), in E end lat
.be the 1ntersection of 1ts medians, Since thease pcinb5
remain fixed and since atraight linas map 1nt0 straight
lines, (hence faces of A(x X %,X;) map into faces of

Alx, x, XX ), by Themrem II.6. 22}, then the intersection
of the median from any vertex witb the opposite face must
also remain fixadf This point is tha intersection of the
‘medians of thét faée, Sinca the thearem.is true for

1 = 2, allythe polnts of_that}faca;remain,fixad under G.
‘The same argument applied to the remﬁining facés shows

that every point on the boundery of A(x x x x;) remains
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fixed. Let x be any point interior to Alx x x.x,).
Let x! anﬁ.x“ be two points of the beunﬂary of

afx.x x,x,) not collinear with x. Each of the two

distinct lines tﬁrough';F% and x'x intersects the 5oundary
of A(xox,x;xz)Ain two fixed points; by Theorambll.ﬁ.lg,
and therefore rmust map into themselves. Henae‘thair 
Intersection x, must feméim.fixed as the intersection of
two fiﬁed lines. Hence, since x was any point on the
interior of A(xox‘xzxgl, G maps évery point of aflx x x,x;)
into ltself. Let x*¥ be any point of E not in alx x x.x,)
and let x? an& x“ be two points interior to. Alx.x X,x,)
which are hc?.céllineér with x*¥, Two such points exist
by;Thecrém 11,6‘21: Sincé B is cenvex¢ the points x! and
x" can.be"Jained to x*¥ bj twa‘diatinctﬂﬁtréight lines,
eadh.of wh1¢h must contgin at least two fixed pointg,éfv
Alx x x.x, ). Hence, these two liheé‘must map into them-
selves, Cdnsequently} x*%‘must maﬁ 1nto,itsalf‘é§ the
intersection of twb fixed‘liﬁes. Since x%% was any point
of E not in alx,x x,%,), then 1t has beanvshown’ﬁhat_every
point of E'maps'inta itself.under'é, and henéanG is the
identity transformation, proving the lemma for n = 3.
Suppose‘thé lemme 1s true for n<k. Let
n=k+1l, Letx , X, ... 5%, bek+ 2 linearly
independent points of E in R*"’ which form the vertices of

a (k + 1)=cell, ax, . 'Let'x%fhéﬂtha intersection of the

K+

‘medians of 4x . By hypothesis all these points remain

K+
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fixed under G. Since straigﬁt lines map into straight
lineé, thén ‘all the m«-cell f‘arzes {(O<m<k) must m&p into
themselves by ‘rhearam II 6. 22. Hﬁncs tha pein'b of inter~
saction of the median fx*om any verte:z’. ai‘ Ax to the
oppesi‘se k-cell fmuat remain i‘ixaﬁ under G. But this point
of intersectién is the im:ersection of the madia%ns of ‘thyai:'
ké'géll ‘faaea ~Since the lemma is true for n = k, by the
induction hypothesis, every point of that k-cell face
rvainilain‘s fixed under G, Repeating the argument foz* the
remaining k-c.ell faces Qf ‘the (k + 1l)=cell, it 18 seen that
every point of the baundary of the (k + l)-cell, ax w2
remains fixed unéler» G

Let x be any point interior to ax ., Let xt
and x" be eny two boundary paints of Ax o mt. eollinear
with x. Each of the two distinct lines through x'x and *x
intersect the boundary of A:a\;ﬂ in exactly two fixed
paihta, and themfcre n'mét remain fimd. ~ Hence, x remaina
fixed as the intérsection of‘v two fixed lines. Since x was

eny point interior to ax ‘y““bhen every point of the

l'(-H .
(k + 1,-;:@11, AR, p r&mains fixed under the trans-
farmation G.

Let x** be any point of E not in AX,, » &nd
let x* end x" be two points interior to ax,, , which are
not collinear with %, Thig 1s possible by Theorem
II.6. 21. Since E 1s convex, the points x! and x" can be
joined to x*¥ by two distinet lines, each of which must

contginrat least two fixed points of ax._ ., . Hence, these
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two lines mu_st map into themselves. Consequently, the
point x¥¥ must map into itself as. the intersedtidﬁ of two
fixed lines. Since x** was any point of E mot in AXx,,,
it Qas been proved that évary point of E meps Into itself,
and G is the identity trensformation. This mmpietes the

induction and the proof of the theorem.

11.8.10. Theorem. Let F: £ '(x), (1 =1, . . . , n), be

“a.:‘ca'ntinuous, ‘one~to-one mapping defined on a convfexjregion
E in H(m, which is such that péflata‘map into p-flatas,
(p fixed; O< p}én»l)'. . Then F is of the form

(1) L (7 .
8 . X "% se0e ¥ ad'71 X 4 aqﬂ“

(11.8.1) Frr®(x) = £l ‘ ,
a 204 oon va_, L, xMra

'H'H' n+t
(1 =1, + « « 5 1),

where

&,'. a"l s s & a"n“
[ T T 2 QV « ° ». B 4.‘ 0,-
am'., ‘ amt,z" oo aml.ml ’

Proof. By Remark II.6.25, p-flats map into p-flats for all
p(l"sps:nnll). Let x_s X s+ v o s X De n‘«!» 1 linearly
independent points of B which form the vertices of an n-cell,
A%, . Let x¥ be the intersection of the Amedim‘;a éf AX,
Under the mapping F, the #ertices of A x_n,-map into the n + 1
1inearly indepemierit points, P(x,), + « « » F(x ), which
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fmrm the verticés of anindceil, AF__ This‘1§ ﬁrue because
F tokes k-cell faées,of A‘x,hintc dlstinct k-éell‘facaa of
AF_(0< ksh-l)g by fl’heoi*em ‘11.6.22.’ The g}oin’t F(x¥*),
the imege of x*,wdaés‘not‘lie«ih-any‘k«cell face of
AR, (0<ksn-1), since if it did, the mepping would not
be onééto~one.

B& Theorem I1.8.5 there is one and only one
trensformation of the bype

Xq'f(”(x) + aee +, TOUR) Heli e

(11.8,12) F : x" = ' ,
) "(m-l,f(”(x) 4' AR m«hf(n)(x) +°<‘n+ln+l

(1 =1, « » n),;

where

o« A -
Hi ‘,}’ o dc,nﬂ
[ N ¢> * % @ b .6 » ’ :’: 0,
‘ , .o o '
%, 1 Anp, 2 T

which carries the peints F(x Yo o . . , F{x, ), and F(x¥)
inta ‘the points x_, > P RS x, and x* respectivély.
The transformation F, is continuous, one-to-one and
carries atraight 1lines into straight lines. Consider the
transformation F, ¥, This transformation is continuous,
one~to-one, carries straight 1inea into straight lines,
and furthermore leaves the points B 5 v o o 3 x', and x¥
fixedj Hence, by Lemma 1I1.8,9, FlF is the identity

transformation. Therefore F ='FY", which is of the form
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(I1.8,11). This proves the theorem..

11.8,13. Remark. Itnhgs,baeﬁ;p01ntaa out seversl times
before that the tranafcrma;igng‘offthe,fﬁrm,(11«8,11) are
ona»to~one;-conﬁinupus, énd carry atraight;lines_into
étraight lines (henca p~flats 1nto p-flats, (0<’p<:nv1)).
Oonversely, it has been ¢hown,that the elass of trans-
formations whieh are oontinucus, one—te«one, and carry
p~f1ats 1nto p-flats (p fixeds 1<=p<:n~1), are the linear
fractional transformations of the form (11.8,11). Thus,
one mnst conclude;that the preqisa c1ass af”transformationa
which are continuous, one-ta~one,gnﬂ,mgp p~flats intof
p~flats (p fixed; 1:59;;n;1} are the linear fraetiohal

transformations,
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CHAPTER IIX
THE CHARAGTERIZATION OF A CLASS OF DIFFERENTIABLE FUNCTIONS
III.1. JINTRODUGTION

II1.1.1., 1In this chepter the generalized derivatives
defineﬁ and discussed in Ghaptar T will again be the main
topic of &isnusaion. It will be ShOWnnthat the precise
class of tranafermations, F: .f x)y L =1, v s n),
which have a non~zern darivative, D F, wiﬁh respect to the

claas of increments I, is the class of linaar fraetional

transformations:
- (1) By »J&(”‘)- see k8B x4+ Bt
(111.1.2) F: ' (x) = ¢ — on
a”’f’»' R A ik Bfml;nx' + B
(1 = 1,‘ Y - 9 n)',
where

9.,}* a,;l . v w a,)m,
£ L] - L] L3 “' ° L * 0'
am',( anu,z" - o B

ninng

This willyfailow from the results of Chapter 1I when it
has begn shawn‘that the:transférmation‘F, hav1ng & non-
zero darivativa,~is‘eontinuaus,.6ne~tq~one,‘and takes

straight lines into straightwlinas.
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The two-dimensional case will be discussed
first to give a clearer under"atahdingof what 1s taking
place, The results will then be extended to n-dimensions.

In the next section x = (x O, x@),
III.2. THE CHARAGTERIZATION FOR THE 2-DIMENSIONAL CASE

I1I1.2.1. Before the main theorem of this seotion cen be
proved, several preliminary theorems must be proved. ‘ 'I‘hese
theorems glve seme 1mportant: propertias of the ganeralizad

darivatives,, with regpect to the class of increments I.

Ili.zc.2. ‘I‘hearem;' ‘LetbF@“f(‘)

(x), (1 = 1, 2) be defined
'on an apan sah E :Ln R(;) and let 1} P exist and ha*\re the
value @ # O at a point x m E. The F is continuous at X .
‘ggggg.“ Since it has been asaumed that n Fl = &, then for
ever& ¢>0 there exists a 4> 0 such ‘that

MFix, % x,) AF,

(III.2.3) e d]'=' — -4 ]<. ¢
A xzx, ) opx ,

whenever flxoxLII <é s 1=1,2). In particular, choose
€ ~e‘“‘ 80 that e/ < ;d\ 'I'hen there 1s a J§ ¥ such
that inequality (III.2.3) holds.
By theorem I. 5.8, D FI can be calculated by
taking the 1imit of the ratios, A(F.x x,x,)/ olx x,x;),
where A(x X, X;) is chosen to satisi‘y the conditions of
the hypoi:heses of Theorem I. 5 8, Choose three points,

x’ » X,5 and X in ch“(x ) 80 that x_ 1s intarior to
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;,g{x,xgxg) and keep thesa 9¢int8‘fixeé.~ For these three

points

A Fex x_x; ) —
— = .a|< €

‘ A(xlx,lxi)

since these three points were chosen to satisfy the
hypbtheées of Theorem I.5.8.

| The 2-cells, Aixox'xgé, a(xijxi}’ and
jg{xcxﬁxg}, a1l have two-dimensional volume different from
zero. Furthermore, since velation (III.2.3) holds for each
'of'these‘inaremeﬁta‘with‘ 9§*< |d$'; and since 4 # O, then
different from zero.

Consider the quantities

“ (x) - ¢ Mgy

:

2{Fix_x x,)

l s (:ik\) -t (x)

, A{F:xjxox5)'

y

lrﬁﬁxl)~f”on)

A{Fix x x )

where (1 =1, 2), (§ =1, 2), (k =1, 3), and (L = 2, 3).
These qaantitias'are a1l fixed, since all the points
“involved areffixed”péinﬁs.’ Eanee, there is a lergest one,

which will be denoted by S.
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Let x' be & variabléipaint; of N x(x,), which
for the moment, is restrictad‘ to 1ie off the lines con-
ta:{ning the segments x, X X, snd 'x,x,. Relation (III.2.3)
‘holds for alx, x‘x ) end A(x x x') and their imagas.

Haw given a suffieiently small c?>0 (In

partiaular, fcr cl¥<e ), the:ce exists a J(>G such that
| atPix,xtx, )| < €'/28

whenever lz,xt < 4 . For suppose this assertion is false.
Then for fixed ¥ < e; and for everx d > 0, there 1g at

least one point x*c NoAx, ) such that

|atFsx x¥x,)|7 e 1/2s.
As ¢ is allowed to approach zero, af{x_x'x,) approaches
zero, since Alx x'x,) varies directly as (x,x'l , x, and

x, being fixed points. Then, as 4 approaches zero, the

@ifference quotient

A{Fix x'x )

: Av(,xox '.X’z )

becomes arbitrarily lerge for the points x! in N 5‘(’%) such
that I A(F:'xox'xﬁ)l > €'/28. For such points, relation
(III.2.3), with ¢! g_e*,. cannot hold; contradieting the
assumption that D F| = d.

'Similariy,. 1f ¢! is any fixed positive number

less than or equal to ¢ ¥, there must exist a .o§> 0 auch that
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‘ AlFix x x') ] < et/28

whenever . onx'ﬂ < SJ » X' in the restricted region. Let

. S ' = min( 5, s JR.),‘ - Then
| A(F:xék’xg) | <c'/28 - and | A(Fix =, x') | Py

whenever |x x'|| < §', x* remaining in the restricted

region,
- Now
1 fm(xo) (ﬂ)(x ) 1
(111.2.4)  AFixxix) =5 | £C&D) @& 1
T ae vy @y
£ (x,)  £7(x,) 1
and .

ePix) 2=y 1

(III;E&E) “ A(F:Xoxlx’} = -

sub‘hracting the first row from the remaining rows and
expanding by the last ‘coltimn in each case,. 111‘1.2.4) and
(III.2.5) become

() |

EE B e at S (x') - £%%x,) =) - =)
{111.2.6) o(Fix x'x )} = — | ; ; ”
| oA a0 i‘(’)(xl) - f{’)(x;)) fw(,xg\ ). - 1 )(xo)
and
Q ( @) ()
e flx) - elx) £ix)) - 2
(I11.2.7) A(Fix x x') = L 0 Y @
oal f(x)-f(xo) ')»f(X)
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respectively. Expanding, (III.2.6) and (IIX.2.7) become
2! AFix x'x ) =
BI(')(x»' ) ~f‘(')(#ail [fu)(x ) »i‘(g)(xo)] fEf(Z)(x")*fw(xoﬂ B‘(')(x 3 )*fm(xoﬂ
and
2! alFix x x') =
f‘&'(')(x°)f‘f(')(xoﬂ E{,(z)(x' )“f&)(#oﬂ . i'(z)(’#")f-f(z)(x'oﬂ I__f(’ ’(x, )f*f(,)(xoﬂ

respectively.

It is possible to solve for £ xt) - f("(xo) and
fm(x’) - f(‘j)(x O)‘“provmed‘ the deterzixinant of their
coefficients in the above two equations is not g670. This

determinant is

. A2 - e -t - ix )
- 5(2)(;;') - :E'm(xo‘):]‘ 'f(n(x|) - f(’”(x o)

- \ f(l)(xz) " f(n)(x’o)‘ fm{xz) . f(f)(xo)
fm(x, ) -f%x ) f(‘,){x,) - fm(x ]

Az ey oy

) , (1),

£ )(xz,)v_ g )‘«"z) 1
2, )

=) =) 2

i

f(r)(x()) f(ﬂ)(xo) | 1 ‘

fm(x{ ) i‘m(x’ ) 1
(1) (2)( ‘ .
£ (xa) f xz) 1

i

il

2! a(Fix x x,) # 0.
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Henca 11: is possible to solve for £ (x’) Wix, ) and
(2) {x’) m(x ) :{n the expansiens of (211‘2.6) and
(III,E.'?).; Solvirxg these two equationa, one obtains

AMPix x'x,) v[f(')(xn} - f‘(')(:’: R
!la(Fex x x') fm(,x,} f(‘)( Rl

2! AFix x %)

0,
f‘_(xﬁ') - f(')(xo) =

and
l (x ) - £ A=) aPix x'x )
- 2 . |
»- -3 -B‘ - 1x,)]  alFix x x')
f‘(’)-—:t‘m() . ‘ i o,
: 23, A’(F:xoxlxx)'
Now if | xox'}] < §'s %' 1n the restricted reglon,
then

|22 - £ )}

\f“’(x ) - r"(x y|etses & | £ (x) - %= ) |- /28
iA(F;x X X )’ '

2L et o
< =hes,

and
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‘f(j,)(#') . f(z)(x‘o)|<
[ £%x,) - Ax,) | er/es +]e%x ) - £Mx,) | e r/es
e A |alFix x X, ]| |

2L, e' .
: e 3
< o5 ~ L:Z é\/S:
where |
( O
1£%x ) -« (=)
L =max ¢ -
C | |atFix x x )|
‘and
;-“ (2)
| | 16 ) - £7= )] |
L, = max e -
| la(Fex x x,)|
(1 =1, 2).

 In exsctly the same way, restricting x' to remain
off the lines containing'iii"anﬁ X X, it can be‘shown‘that
for every sufficiently sﬁail g’;«O,thene exists a;'£§;>b'

such thet

%)

{n

< Lgyé'/s

and
lf@kx') - fkkxb)l <L e'/s,

whenever |x x'|| < §", x' in this restricted region, and whers

.v If(')(x)) - f(l)(xo)’ '

]D(F:xrxoxa)l‘
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and

7 - o s,

L = max ’
B ‘;alA(F°x;xoxg+

(5= 1, 3),

\Finally,' letting x? ramain off the lines contain-
ing X%, and XX o X5 for every suffiaiantly small < !> O there
exists a §">0 such that

1/3
and
oy ; |
Ifg(X') - I‘(?)(xo),] <L, et/s,

Wheynever‘ [z, = < & ”', x' in this restricted region, and

wasre %) - £%x,)

25 = max

, 'A( I1X X, X )f
and
| ' (25 (:)

L = .

b, T max ;,A(F:xo ij )l s
(k = 2, 3).

Ghocse J#% '-min(J' 5"y ") Since 3 L ’
(1=1, « ¢ « 6), it follows that for every sufficiently

small €t >0 thera is a 54’70 such that

Ifukxf) } fakxo),<e‘
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and
lf@kx');~ f&%xo)l <e

whenever |[x,x'| < {*, with no other restriction on x¥,
Hence £ Ax) and ¢ kx) are both continuous at x,, proving

the theorem,

II1.2.8. Lemma. Let F: £(x), (1 =1, 2), be defined
on a convex regien E in BR® and 1et D F exist and be
ﬂiff&rent from gzero 1n E. Let x_ be a point of E. Then
in a sufficiently small naighborbeod of x_ straight lines
through X, map 1nt0 streight lines through F(x_ ), the image
of x, under F,
Proof. The transformation F is continuous in E by Theorem
I1I.2.2, since}an # Ovat‘éach point of E; Let Bfox; = d.
Let ¢€>0 be given such that c<|d|. Since Dxleo = a #£ 0,
there exists & J, > 0 such that |
MFix, % %)

(111.2.9) -alce
A(xox‘xl} v

whenever | x x;l<d s (1 =1, 2), alx,x x ) in the class i.
It will be shown that in N 5 (x.), straight lines through
X, map into straight lines.

Suppose the theorem‘is false. Then thareAis 8
straight line, L, through x_ such that~Lf1NA~(xo) does not
Imép into a straight line. | i
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In Ng;ixo), no point other than xd meps into
F(x,): for if x! # x, maps into F(x_), then x! and x,
‘together with & suitably chosen point x! would map into
:an 1ncrement,0f‘zero area. For alx x! x! ),‘reiaticn
(III.2;9), with e<4é], would not hold, contradicting the
assumption that D.F|, = d.

Let x, # x_ be a point on L in Ng{x,). The
point x maps into F(x¢) # F(xo).“Since,ths‘thearem is
taisg theré is a point F{x ), not on the line containing
the segment F(x,)F(x ), which is the image of at least
ana.pqint X, an_L‘inYNK;(ib). Let x be & variabla,poinb
of Nég(xo), which, tugéther'wibh x_ and x, , forms en
increment of I . Let x appreach,xz- Since F is
continﬁous in ﬂé;{xo),'F(x);apprcaehea ?(xl).- Hence,
:A(xox,x ) approaches A(xox‘x,) =0 as x appfgaches,ng
bﬁt ‘A(szox;x)'appruache&Qg(F:xokixi) # 0, since

E(xo), F{x{) and F(x,) are not collinear, Hence the ratio

A(Fix, %, x})

Alx x =)

becomes arbitrarily large as x approaches x . Relation
(III.2.9) does not then hold, contradicting the assumption
thet D F|, = d.

‘Hence, one must conclude that in N, (x,), straight

lines through x,_ map into straight lines through F(x ).
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IIIk.QalO. Theorem. Let VF:’ f(”(x ) (1 =1, 2), be defined
on a convex region B in r® and~:'let D F exist and bé
different from zero in E. Then straight lines in E map
into straight lines.

Proof. Let L be & line defined in E and let x, be a point
of L(\E. By Lamma.IIIQE..a there 1s a §,>0 such that
L‘/\E&(xo) maps into a straight 41ihe, L', Let x¥ be any
other point on LNE. If it can be shown that x* meps into
L', the theorem will be proved.

If ; [lxox*{‘ <o, s the theorem is already" proved.

Ir x,x%| =5,, since x* 1s in E, Lemma III.2.8
applies to x* and there is & §%, 0 such that %ﬂNﬁ.(x*)
maps into-a straight line. It must map into Lve'« since
H,& (x,) and ¥ J;x.(x*) have pointa of L in common. In this
case the theorem is proved.

AIf x,x% >4 , let x be the peiht‘of L between
x:o and x¥ such that x,x || = §, « 'The point X, is a peinb_ ‘
of E and hence, by Lemma II1,2.8, there is a > O such.
that L/\N& (x,) meps into a straight line, which is L!
since N, (x,) and N, (x,) contain common points of L. If
x* 1s in ¥ . (x,) the theorem is proved. If not, ‘then repeat
the gbove a'rgument, choosging x, to be the point af L between
x, and x* such that Iz x 1l = §, « Then Lemma‘ I71,2.8 can
be applied to X s end there is a 4, >0 such that
L/\Ndnl (x,) maps into a straipght line, which must be L'

since N¢ (x,) and N o (x,) contain common points of L, If
a I



xF 1s in Ké\(x } the thaorem is praved‘ ir not, centinne
in this manner until finally an x, on L betwaen x and
'1s raa&hed sudh that there is & d,.>0 such that
"Lﬂﬂg (x,) maps into L! and x¥ 1a in NJ (x,.).

| It aeams possibla ﬁhat the 6“5 might become
1neraasingly amaller ané the choaau eantera of the
iﬁé‘(x )‘s might appreaah a limib point xﬁ* of L, berore =¥
’is reached. Ganceivably, the abave extension process could
not be earried past x**.‘ But aince X ig 1n E,rLemma
fIII.E 8 applias ta P and there 1s L 5**;>0 sudh that
\Lf\ﬂ LX) maps into LY, This nsighborhooé includes
A5

;points of L which are beyond x* i (that ia, betwaen = and

%) hence, the extanaimn prooeas can be carried beyona

’x**, and aventually x* is reaehad and maps 1nto L'

kIII 2. 11.‘ gégmg. Let F: “)ix )y =1, 2), be a,mapping
{funetian definad on @ canvex regicn E 1n/R°”, suah that ”
JD F exista and ia different fram zero in E, Let x_ be a
f£ixed peint cf E and 1et X 4 X, ’ and xs be three variable 
'pointa of E such that A(x‘ xg) is always in I, and such‘
"tﬁét'xé'is‘always”bn1ﬁhéfline.joining xv ‘and xz.' Than

o s AMFix x x )
n’(FIX 3)(1};!2)( ( )
[:tl,? 30_ A x' x'zx5

,?roaf. Since D F exists and 19 different from zero in E,
the mapping 13 continuoua and takaa straight 1ines into
 stra1ght lines by Theorems III 2 2 and IIL, 2 10.
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Let DxFl,( = d. Then for every ¢ >0 there is
. N o
a & >0 such that

APix x x,)

-d|< €/f2
alx x x)
whenever |x x| <4 , {1 =1, 2), A(xox,lx‘i)‘ in I
It must be shown that for every ¢ >0 there
exists a & >0 such that

|AlFx = x,) N

< €

AlE xx)

whenever l'xox;}( <&, A(i =1, 2, 3), where Alx x x;) is
in I, and where x, 1s always on the line between x , and
- S

Let x , x,, and x; be varlable points such that
the conditions of the hypothesis are satisfied. In this

case, A(xbggxgl and Alx x x.) arelli,nyi"k.x By Lemma I.5.2
AFix x;x ) = A(F“:xox_?xg:)‘ + alFix xx,) + al(Fix xx,)
and
alx, x,x) = aAlx x.x.) + A(x,x;x:?) + alx x.x,).

Since x , x , and x, are collinear, then (% x,x,) =0.

Also, since straight lines map into straight lines, then

AFex, x’?xo) = 0, Hence,

A(sz,xzxj;,) = alFix x,x,) + alFix x x.)
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and
alx x,x) = alxzx ) + alx xx,).

Let €> O be glven, Then there is a J >0 such thet

‘ AMPix x,x )

e
| A(x!xlx),)

alx x,x;) |olFix x x )

——as

alx,x,x, ) {A(F'zxox_z% ) }

= , -al + — - all<
alx, X, %, ) | alx, x.x.) alx x,x) alz xx.) i
N alzx,x, ) lalx xx ) |
: o' s 6/2 + ezt 5/2 < €,
Az x %) ol x,x))

whenever ||x x|l <J, (L =1, 2, 3), and whenever the points
X5 X, 5 and 'x-_?' satisfy the cdnditians of the hypothésia.

This proves the lemma.

III.2.12. Remark. Since x; is always on the line between

x, and x_, then

ax x, %) olx x,x,)

and

afx x_x, ) alx x %)

_are both less then or equal to one.

'I1I.2.13, Remark. This lemma seems to be almost a special

case of Theorem I.5.8, However, although the steps in the
two proofs are 'sizéailér, ‘\the'»hypothe’ses are not qulite the |

same. The hypothesis that D,F # O is important to the last
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lemma, for this fact implies that straight lines map into
straight lines., From this fact, it follows fhat since

alx x,x,) = 0, then also alFfix x.x,) =0, Without this
knowledge, the proof of Lemmé II1.2.11 wouid not be
possible.

IIX.2.14. ITheorem. Let F: £%'(x), (1 = 1, 2), be a mapping
function defined on a cqnvéx region E in RT”.‘ Let D F
~exist and be different from zero everywhere in E.  Then the
mapping in one-to-one.
Proof. By Theorems III.2.2 and II1.2.10, F is continuous
and maps straight lines into straight lines. It will be
shown that every image point, F(x, ), is the image of
precisely one point, x_, under the mapping F.

‘Suppoée, on the céntrary, that there is a point,
F(x.), which is the image of two distinct points, x_ and
x . Two situations may occurs
CGase 1. The segment X_X, mapé into the single point, F(x ).
Suppose'DxFlLy = d.» Choose ¢ <|d| . Then there axists a
| § >0 such that

Q(F‘:x‘;x,’xz)

(III.2.15) , -d|<e
| alx x x,)

whenever [Ix,x.[l< &, (1 =1, 2), alxxx.) inI . Let
x, be a point of E not on X X . In‘évery small neighborhood,
“5(10)9 of x_, the increment alx x7x%¥), where x* is on

i:i‘; and xﬁ is on E;il, end both points are in Ng(xo), will
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_map into an inarsment ef zero ar&a. Then relation

(11I.2. .15), wii;h el , eannot hold. Tais 13 a contra-
diction. Hance, it must be cancludad that case 1 cannot
ocour.

Gésekz. The aegment XX, maps into a line segment
F(£77§f£i3, whera F&x’) 13 the image af at 16&8t one- peint;
x! on x_X, anﬁ where F(x“} is ﬁﬁe imaga of at least one
point x on XX, , and where x! £ x". Witheut loss of
generality, one may assume that x’ ig between‘x and x" 5
'F{x ) = F(x ) 1s eiﬁher an interior point of §IESE§Q;;) or
via an enﬂ paint~ Suppose F(x ) # F(x”) Then aiﬂher

F(x o) = F(x‘) or F(x ) 1s an interior pmint of the interval,

Kaw avery point X on X X x can be Writﬁen as
=6x, + (1~ 0)x,,

and x is a continuous, onewtonone function of €. Vhen
e a-O, X = x_, and when 8 = 1, X = Xe
- Lgt'g'cbe;tha value of © which yial&s xt and let
e" ‘be the value of & which ylelds x". Then Q‘kae",‘sinca
x' 1is between X, and x" .
Bince F(x) is & continuous functlon of x, 1t 1s
also a conbtinuous fanetion of 6.
| Every éoint F(x) dn F(x')F(x") eéht:e ex@raéaed
as

F(x) = ¢F(x") + (1 - ¢)F(x),

and F(x) is a continuous, one-to-one funaticn‘ef 9’; When'

9= 0, F(x) = F(x ), and vhen ¢=1, F(x) = P(x"), and
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~conversely., By the work in Theorem II.6.6, ¢ is also a

amxvatinuoug function of F(x). Hence, ¢ '1s & continuous
function of Q, say ©= & (e).

When 8 = 0, F(x) = P(x_), end hence ¢ = (0} =
Vhen & = 1, x = x, s F{x) = Fix ) = I“(xoi), and' ) #}O'agai_n.
When & = €', F(x) = F(x'),‘ and ‘cja = ,@(9’) = 9;!," When
@ =0", F(x) = F(x"), and ¢= (") = o" = 1.

Consider the closed interval [x_, x'] . This
interval corresponds in a one-to-one menner with the closed
interval [0,8' ]J. Since & (0) 1s a continuous function of
©, ¢ tekes on eﬁrery value batweénv 0 and q)' at 1éast once,
as © moves from O to 6%, Hence F(x) takes on every value
between F(x_ ) and F(x!) at least once, as x goes from x,
to xt,

Consider the closed intervel ([x', x"] . This
corresponds in & one-to-one menner to the interval (e, o"].
Again, since " @(’9) 1s a continuous funetion of @, ¢ takes
‘one every value between ga' and q;ﬁ at least once, as © '
goes from ©°' to 8". That ‘i'si, F(x) must take on every value
on F(x')F(x") at least once as x goes from x' to x".

Finally, consider the closed interval [x"= 3.
It corresponds in a one~to-one manner with the closed
interval [6",1 ]. Since &(6) is a‘coﬁtinuous function
of 6, ¢ must take on every value between @" =1 and O
at least once, as @ goes from 8" to 1. That is, P(x) must

take on every valus between F(x") and F.(x‘) = F(x,), at
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'least once, &3 X goes from x" to x .
It is concludsd that everyvpainb P(x) Dbetween

F{x ) and F(xi) is the 1mage of at least two pcints on
"X X, one of whiﬁh is between X, and x*( tha other batween
‘x’ and x". Similarly, every peint F(x) between F(x_) and
F(x“) 13 the image of at least two points on X x(, one ef
which lies between x' and x" and the other between xf and
e

| Gonsiﬁer the point x". ZLet D F‘ = 4", Choose
'e" < 1a"l. Then there is & 5” >0 such that

(I11.2.16) alFixx"x!)

2 g < e
Alx"x"x¥) b
whenever ™= ?<'5“, {1 =1, 2), alx"x"x}) In I . In
| evarykﬁeighbcrhoad of x" there is a pbint x' on X X between
x! and‘x"‘an& a point x“ on XX, batmeen x" end x , both
of which map into the same 1mage peinte

By: Lemma I1I.2. 11, 1n taking the derivative at
x", the incrementa foﬁma& by two pcints, x'" and x on
X X with x" on XX, between them, and another point x? ’
not on‘ifi ,«may*be oonsidered. For these ineremgpts
relation (XII 2 16) must hold with e"< (d“). But among
these incrementa will be found, in every neighborhood of
x", those for which the~points x" end xJ map into a single

point. But 1n these eases the increments map 1nto increments

of zero area. Hence, for these inorements the relation
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(I1I.2.16), with <" <{d"|, cannot hold. This contradicts

the assumptibh that DKF\X"g d", Hence it must‘bekbon~
cluded that case 2 cannot arise.

In either4case, a‘contradiction hag been rsached,
Hence, every image point is the image of precisely one

point of E, proving the theorem.

IIr,2,17. If F: f(w(x), (i =1, 2), is a mapping function
definéd on a convex region E in R©@), and if D P exists
everywhere in E and 1 different from zéta, then F 1is
coﬁtinuous, one-to-one end maps straight lines into
straight linses, by the theorems juSt proved, Now using
the results of Chapter II, in particular, Theorem I1.7.3,

the following theorem has already baén_pravad:

I1.2.18. ‘Egggggga Let F: £(x), (1 =1, 2), be a mapping
funétion defined on & convex region B in R? and let b F
exist everywhe:é in E end be different from zero there.
Then ¥ 1s of the form

a,
(

)l

@ x4+ 8, x4+ 8,
(III.2,19) F: £ (x) = o

. s (i = 1, 2)»
(2 2 ;
agl x4 aalzx 4+ 33,3

(3
wvhere

h al,z. al,?’

3,( , )
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The following theorem 1s in the nature of =a

converse. -
I11.2.20, Theorem. Let

m ) '
al:'(x ‘f‘"acllx + a,;

(111,2.21) F: £9x) = »(1=1,2),

‘e (D g 5 (2 :
‘aa”x +a3uzx %aj';

where .

,av,, al'l al,s
8, a,, a,, % 0
2 8. 8y,

be dafinédfbn a region E of R*'which does not contain

points of the line a&rﬁ“?+,aﬂzxﬁir+ a,; = 0, Then D F

exists and 1s different from zero in E,
Proof. Let x, be any point in E and let x eand %, be two

varieble points of'E 80 that' alx,x x,) is in I;. Examine

the difference quotient

| (17

£(x,). fta(xd) 1
f(”{xI) :’f(ﬂ(x7} 1
(III.2.22) 2% (x,) ff”(écz’)' 1
x,) x2 1
xq’ xT) 1
x x® 1l

The numerator of this difference quotient is equal to



n (2)

a,x+ax+a‘~ax+ax

20" fa’.??
a x("'f a x(l-u_ a 3 x(l),‘._ a xu)_f_ a
. ( :
8, x"+a X, a, x"‘+a x“’mz,
‘ 1] =
: ('\ ]
a x aalxﬁa,,' e x +anx,+a33~
(|)+ (1) .
8 X auxzata | ‘azl,x a“x; 8
Oy 8 x®% W, o @ m
‘_" 1 . L
8 ’:m a ;o B ® aallx‘zf 85
. o ‘@ L '_'fu)' n
| | | | | B xe X088 XhE X8, XA A,
Tria xa x%a ) |ax"as%s, axaxla, axex
R TR ¥ IO i (S By BEGS TR 343‘:‘4.331 *853) -
{n ) n @) )
amxz ax%-:8, aél':é;g':g;; am g‘x1+§x+a

By the multiplication theoren for detaminanta [Kwelewskﬁ., (1), ppe
66 ££.] (111.2,22) finally becones eqnaa. to

. \ -

8, &, 8, [x) = 1
S 1) yl2)

' a, &, &8, |x x| 1
) Q)

8’3,& 9'5,3 xz xz 1

2 - &

U 2) : 2,1 .
"!T(ax'w;x'm 3y — , =
X ' x(n x(Z) 1

o T =
" 2?1
(U v—m‘
X, x5 1

a'l,' a’!,z [

8 Bz Byl

a?,l a; 2 af, 3

(4

‘ wa, ) ‘. W, < (O u)
(%',xo * a¥ *.as’,s)(aa,rxw g% f.;ag,;)(aa,. X a, as}
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By hYpothesis;_the numerator ‘is different from
zero. Letting x and x spproach xo,?>¢ﬁxgx,x2)'remaining

in the elass I,, it is seen that D F|, exlsts and is

equal to
al,l a‘l,z. a’l,i
a.?,, a.z,:z &,
85 Baa B4

' (y - (2) : ) 3 # 0.
(ailxo‘ e x0 +e
Since x  was any point in E, the derivative is different

kfrom;zerq’g#erywherarin E, proving thebthaafem.

I11,2,23, Remark. It should be noted that since the

determinﬁntéT

S ° i
x M x @ 1
‘.

x (0 (2)
x x 1

in (III,2,22) cancel out, 1t really does not make any
difference if the‘pcintaxg,,xl, and x, remain in the
class I , or evenvthat t$ey;a§prbach x,. If x;,rx;, and
xi,appfoach‘any*point.x* of E in any manner at‘all, the

derivative bvaexlsts~g§ «* eand is equal to
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» a‘v" 8‘“2_ ' .i“l,a
a—'(.l a”:z '8715
aﬁ, a;, 8,

: : # 0.
(aafx;%+-a%1x *+va%3)a
The linear fractional transformations have a generalized

derivative under the most general conditions.

III.2.24. Remark. iTheorems;IIi}2.18 end III,2.20 together
ghow éhat the‘ﬁré¢i99 élasé~of mapping fun&tinns, defined
on a convex region B of R®, Wﬁich‘have,a nonrzafo‘
'derivativs;‘DxF, 1ﬁ'E;'isvthevclass of linear fractional

transformations,

I1I.2.25. Remark. The generalized derivatives mefwand
Dxmf“’ are only spéaialwaases of the generalized derivative

D F, according to Remark 1.1.10. Itvfollows that if D nfm

x¢
exists and is different from zero in a convex region E
then £ “'(x) 1s of the fcrm'{III,2.25)¢

£x) = a yx‘”'+'a,;x“”+‘a“3g

'J

For if one sets £?(x) = x® in the difference quotient

1ex,) 29 1

£ =) =) 1
My v pl@lg

: :(xi) ' ",i,f (xz) 1

x' =1
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and if the 1imit is taken with respect to the class x ¥
then‘DxF}X Dﬂnf”)’ . $ince ft“(x) and £ “(x) muat
have the same denominators, then £ ('{x) must be of the form
(III.2.26),

Similarly, 1 a £ exists and is different'rfom

zero in 8 convex region E, ‘then f(”{x) must be of ﬁhe form

(Z)()‘_,& x’))+a X()

A

(II1.2.27) . e, .

111,35, THE CHARACTERIZATION FOR THE n-DIMENSIONAL CASE

III.3.1. The results obtained in Section III.2 will now
be generalized'té‘the'nédimanaionai‘caSG. ‘The prcaedure is
the same, but certain difficulbiea arise in the generali~
zetlon which did not oceur in the 2«d1menaiona1 ease.

In ﬁhis section, x'= (x‘” x“’,'. oy x“’).

III.5.2. Theorem. Let i f‘”(x), (1= 1, « + « 5 m), be

ahmapping function defined on an open set E 1n R”” ‘Let

b, ¥ exist and have tha value d ﬁifferent frcm zero at a

point‘xo of.E. Then E 1s continuous at x .

zgggg.’;ﬁer every e 0 thare is a d>0 sueh‘thati
AMFix,x, . o « x,)

(I11.3.3) |——= ~dal¢ ¢/ln+1)
' ' /’\(x@xl’ & » Xn) ) ‘

whené?er V“xox‘_u e (i l, LR I n)’ A(x x: . x.)

in I;. This 18 true since the derivative has been assumed

to exist end equal 4 at x,. In perticular, for e = ¢¥,
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such that ¥/(n + 1) <1d), there is & ¢ ¥ such that the
above inequelity holds.

| By Theorem I1.5.8, D,F|, can be calénlated 5y
taking the limit‘af'tha ratios

Ang‘X'xzo € # xn“}

: ¥

alx %0 0 0 x )

where X 5 X,» « » » » X, 8re chosen to satisfy the conditions

of the hypothesis I.5.8. In particular, if X oy Xyp o 0 v 9 X

in Ngﬁ(xb) are chosen to form an inerement of I with x_

interior to al(x x,5 « » « % )y then Theorem I.5.,8 ean be

applied and‘far these chosen points.
\A(F5X,J§J\o . - xm.,)

) - d < E e
. A(x':{,\. ¢ v Xm,) ‘ i

Keep X, 5 X, » » « » 3 X, Tixed, The increments

AMx X, e v 0 % ), alx, %%, » + X )5 ¢ o a5 and
oflxx e o o x %) are all in,the_classyl'. Furthermore,
since relation (III.3,3) must hold; with ¢ = e*, the
image increments, a(Fix x,. . » %, ), alFix xx . .. x ),
e+ o sand alFfixx.. . .x, %) must all be different
from zero, hence are in the ciass I

Let x' be a variable point of N ={x ), which for
the moment is required to remsin off the (n - 1l)-flats
determined by the sets of points (X, X 5 + « + 5 X)),
Jo o v o poand (x ., X5 o o v 5 X ).

(xog ng « v » ;.xnﬂp xnh
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There are C{n, n-1) = n of these (n-»l)‘«flats‘.l, (Notice that

ths point. x, 13 .’m none of these (n~1)~flats}¢
Gonsider the 1ncrements A(X Xioo o 4 X x’),

A(XX e X, x’xw), + « « 5 and A(X x.'x .}'v’ x_, )
"I‘hase increments are in ths class I !m w -M:A: ), i‘oxﬂ x! in
[the restricted mgmn, and hence ralation (1‘11’. 3.5) holds
for thesa 1ncrements and their images, with e= e¥, It
must fellawf that for every aufficiently small < '> 0. (in

particular‘fcr _e‘? < ¥*), there exists a S ‘,‘f >0 such that
(]:11.3'4) \A(szOxﬁz, . t"x[—fxf!“x’fﬂj ’ .f . x”ﬂ”,l < N'CJ/S'

whanever \\x x'n < 5(‘), (i = 2, 5, A B n +:1)y whera s
’:ta an absolute mnst:ant hich w:tll be- chosen later.: Suppcae
‘thia assertion is not true; ‘l?hen fox‘ fixad e*’, and
for evary 0n >0, there 13 a:b leaat: cma pain‘b x""e N (x,)

such‘_ ‘bhat,
‘A(stoxz ;ﬁ.,vx;.;"x*x[ ,‘ PR xn“)‘ E’/s’ (1 = 2; 3’ co" n + l)

As d is a?l}.cwed to. apprcach 2670,

(x Xye o 0 X x*x " ..xm,) ‘also appraaches zero, since
K A(xoxz. . . xl.ﬂx*xl.ﬂ. .. sz’) varies dir.ectyly‘asﬂ
| ukox“‘*”ﬂ_v ,‘xl,f NPIEIPE FEME ST beingf fixed
points. Then, as J | ~ap§réachea zero, the difference

quotient

A(F:xoxla L ‘xi_"x*x’-t s » ‘x )
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becomes arbitrarily 1argalfer>tha poinhs x*‘in'Naiié}_such
%hat‘ A(sz Xio o o X, x*x ;. . ¢vx ) Qe'/ﬁ.: For such
pointa, which are also in N %(x )» the ¢ ) 'relafion
(III¢3.5) cannot hold, contradicting the asaumptian ﬁhat
D, F! .‘ Hence, for every et < e there 15 a J 50
such that (III.3.4) holds, {1 = 2, 5, e e e s m+1).
Choese <§ = min {'5“’§ . (1 = 2, 3, ; s s s m o+ 1),
Then

’A(F:xoxz. v o xc.__’x'xiﬂ& . @ xn“‘) ‘ < 6'/3',

wheheﬁér' nx xt < 5 ¢ x* remaining in the restricted ragion,
‘(1»9,3,‘.-311'!-1)

N@w{



4.

n! offixx. » x. x'x ¢ . x )=

oot

;f"‘c DI AT

£ M) e 2P
m(x ). ke f@(xt._‘) | 1
POURY) W e w2 MU=t 1|
e de we e 0 £Mx) 1

i

L+

L JEAT R AT T T R N SRR S N R R N B S

. ) ‘ v . -
f I (xnh) }i‘: L L f(m'(xn”). S

fo)(x, ,’)I‘_» fm (x J e s e ,‘.‘f@’){x:{ ) _;f@?;(«xo}
T T ».‘,,_: .‘E.,. Pele e .’*“ . ' L "*
| m(ﬁi_,)-" fmc o) o . LI f'(ﬁ"‘(xl-»l'ﬂ')' - : '(”’(‘k")" ;
("1)" f(“(x‘ ) - f(n(xb) viele v (m( , ) (n)( ).

£ x,.) - :_t’(,” (X)) o o 0 o f(“,)ixt‘ﬂ)‘ .-.»-(m(*xo)

13

a"0&'00'.‘(‘:;-#3'-.u‘a';nn0¢0

f(l) (xh“) a f(”‘(xo) f, PR f(n)(xn+‘) -~ (Y\)(x )

(:l = 2, By e e n + 1). Expending by the ith row, the

abow equation becomes (III.&.,B);

(-l)( )n.A(F:x X, 000 % %! xm... x ) mZA )fm(x’) f (x ),
. i A ‘J"' ‘

(8 =2, Bs 0 0 sy n+ 1), where

AL,(i = 2, TR B 1: j =1, « » o » n), 13"‘31’16 cO~

1

factor of £¥(x,) - £9(x,) in the determinant
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Q (] (n .n
£x) -2 x) v 2T - £ xy)

-3 ES

A = L I T T T T R Y S T R ST S BT SR S T )

£ (x ) £%x,) 0 0 o 2 Mx ) - 2

N N

]

(A=n! aA(Fex.x. « » x,,)s except possibly for sign.
Hence, & # 0},

Equation (III.3.5) represents a system of n
equations in the n unknowns, f‘jkx*)’~ f(p(xo)
(J ‘aw 1, «+ « + 5 n). There will be a solution if the
determinent of the coefficlents is different from zero.

This determinant is

AR,' AJ,Z v A & A'J,T\-
D= ¢ & @ - a’.is v @ u\ 36.(333..
A A 4 « A

n+y) Ny 2. n+, .

" By a corollary to the Sylvegter-Franke Theorem
on determinants [?rice, (1), p. 82 *],

D=gadj A= AThf = [p3tA(F2on2w « s Xnﬂ)]n-’ ’

except possibly for sigh. Since AKF:xoxz; R S B £
different from zero, there 1s a solution for

rﬂ”(x*) - f(”(xo), {ij =1, 4+ « » s n). Solving for
£Wxn) - £9(x )
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(v, .00,
: f‘r{xx) _‘ f(ﬂ{xé) o

-
®
L

[Ae v e Ammxm, .0z A

4=t N 2" T Y e
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{3 =1,,*. iy n), except possibly for sign.
All the tarms an the rip-ht are consﬁzmts excep‘b
the elemants of the gth column. Expanding by elements of
this column, and remem‘nermg (ITI. Bod)s it i‘ollows that
ffor every qufficiently small (intpartlcular for 61525%9

there is e dfl> 0 such that
() oy ), - ;
lf ‘)(x‘) - f ".(zo), < I‘a‘i,)v.a ce'/Sy £ij =1y « « o s n),

whenever (x,x!| < §, 5 (x' remaining in the restricted
region), where Mo }is a constant t‘(-shich_is equal to the
sum of the asbsolute values of'thé} minorskof

AMFIX X o o & x‘.-‘ir."x‘.”‘ + » « %, ) in the above expansion
“la(Fix x. 0 o % )]"" ] )

(i"'"' 21 s s - 3 n“'yl).

ali divided by

In general, recuiring x! to remain off the
(n-1)-flats determined by x_ together with eny n-1 of the
points X , X,5 « o o xK_',‘xKH. <« s X, 1t is found in

exactly the game manner for each B, (k=1, . « +. 0+ 1),
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that for every sufficiently amall number ¢'>0 (in

psrtiaular for .6‘  < %), thera is a 45 >0 auch that

Y ' (j) ' a
(#9420 - e =) |« M, et/s =1 . 00y,

whenavér uxox'u'< &(,‘xf remaining in the’ragtgictad region,
where aga1n~M§”; ‘is'ahcanstant~ﬁhieh‘i$fequai‘té_thejaumuof
the'aﬁsoluté values of the minors of

CA(Fix. o . ox, Lx’x[ﬁ',-*j.’kﬁ+,) in the expension
corresponding to that on the pfeviﬂua page, all divided by
‘n'“’&(Fuc . ng‘xglﬁg .xmﬂj“ﬂ

Ci 1;...,1{*1,1{*1,,..;!14'1).

The constants, M N dapand on ,

K. &
AFIX X, o o % .1xK+.' .. xrnq) and on column iof ed] A.
.They are all absoluta const&nta ainca they ultimately depana
upon only tha fixed numbers F(x )» e v Flx )
Ghoose S = max {MKJ i ’ all k and 3, and choaae

§' =min {£K§ , all k. Then
lf,(”(.x’l stV ety U=l m,

whenever [x x'l <4', with no other restriction on x'.

Hence, ¥ is.dontinudus at xo,'prbving-tha:theoreﬁ;

II.3.6. | Theorem. Let F‘ ‘”(x), (1 = 1, . ee P n), be &
‘mapping function definad on a cenvsx region E 1n R and let
D,F exist and be different from zero in B, Let x be & point

of E. Then in a sufficiently small nsighborhood of x,
(n~1)-flats containing x -map into (n-l)-flats.
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Proof. Let §~F‘ o d-“*Lét ‘e'>o‘he given aﬁch that
€< ldl + Then there exists a 5;>G sueh that

\A(szoxL?‘» « x)

PNEE
whenevér~,nxoxdl< S.sli=1y 044 5m)y alxxe o.x))
in I . It will be shown that in Néo(xo)é (n~-1)-flats con-
taining x_ map into (n-1)-flats.

Supposa the theorem is false. Theh thafa is an
(n-1}-f1'at, sm s thx'augh X, sneh that s, Ny s (x, ) does
not m&p into en (n~l)~f1at.

; Lat x 2 Eys e .‘. s X be n=1 points of
/\Rg (x ) which with x, form a aat of n linaarly
1ndependant points. Theae n points will determina S,
s o map into linear;yvindependeht}

The péinﬁs”x', Xy o oo x 5

points, F(x ), F(x Yo o o 44, F{x ) otherwfsé
Koo X, 9 s o v 5 x together with 8 suitable choaen puinﬁ
k 'of H (x ) would form an increment of I, which would
map into an increment of n*dimensional volume zero,
ccntradicting'tha assnmption that‘ralatian (III,S.?),holds,
with ¢ <ld| , for 'aii' inorements in I in N éia(xo); |

The points F(x ), F(x ), . . ,'F(x “)‘éé£erm1ne

an {n—l)—flat, T" Let F(x*) be a point, not 1n T

7\.-4"
which is the 1mage of at least one point x* of

f\Né (x | Such e point exists, otherwise the theorem
1s alraady true,‘ The incremant c&xo .'.,. x x*) = 0,

since X_, X, + « + » X__, X are linearly depandent‘

-1
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But {Fix_ . ; . x x¥) £ 0, aincevF(xo) ’ F(x ), «ver Flx_ ),
and F(x*) are linearly independent. |
Let x be a variabla point of ﬁé;(xo) which

together with x_, . . . s X, always forma an increment
of I . Let F{x) be its imaga;  For the points |

s Xig o o o ,'x“_‘ s X, the é,<§ relation of (IiI.&.?),
with e<ld| , must hold, As x approaches x*, F(x)
approaches F(x*),‘since the mepping is continuous by

x} approaches

Theorem III.3.2. Now Afx_. . X,
alx_s « o %, ,x%) = 0, while alFix_ . « . x__ X) approaches

A(szo ® & e hx

n

“x*) # 0. Hence, the difference quotient

A(FSXO. o .Xn_ X).

\

Alx, oo o x, %)

becomes erbitrarily large, contradicting the assumption that
relation (III.3.7) holds for all increments of I in
Nd,(xo). Therefore, the (n»l)fflat, Sp VN (x,), must

map into an (n-1)-flat, and the theorem is proved.

I11.3.8. Corollary. Let Fi: £“Yx), (1 =1, . .. , n),
be & mapping function defined in & convex region E of R
end let D F exlist and be different from zero in E. Then,

1s an (n-1)-flat with points in E, S, N\E maps

n- -

if 8
into an (n-1)-flat.

Proof. Let x_be & point of S,  \E. By Theorem III.3.6,
in & sufficiently smé11vneighborhood, Ncﬁ(xo), of X.s
Sn_;f\Ngo(xo) meps into en (n-1)-flat, T, . Let x* be
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any other point of §, (\B. It will be shown that x¥* also
maps 1n%;0 & S ,.‘

ir ltx I < &5 the corollary is &lready proved,

=g x*(| =f,, then sinee x¥ 1s in 8 /\13,

Theorem III. 5 6 appliaa to x¥ and there is 2 é"""" >0 such
that 8. NN '“'( } maps into en (n~1)~f‘1at, which must be
T, s since S /\Ng {x,) and s S NE %( “) have points of
S

no i common.

\Suppose =, X 1 > S  Since E is convex, x, and

x* can be joined by 8 straight 1line segment, x x*

which 11es entirely in E, ‘and also in 8Sn.,+ Let x be the
point of xox*__between x, and x¥ such that = x| = S.. The
‘pd}in’«b 'x" 1g in 8, NE and 'I‘hearem 1L, 3,6 can be applied.
Then there 1is a'ff7 0 such t:hat 8 ./‘\ﬁg (=, ). meps into an
(n-1)-flat, which must be TTL 3 » since W (x,) and ﬁg (x)
have points of s N in common. - Ii‘ x* is in Ng (x )s the
‘qomllar:v‘ is proved.

Ir x* ia not in Kg (x, ), denote by x _ the point
of m between x, and ‘such that x %0 = 5, . Theorem
III1. 5.6 applies to x, e.nd there is a §, 70 such that
s, N ﬁ; (x.) maps into an (n»l)«flat which must be '1‘,\ . »
since NS (x ) and I«I (x } have pointa of S,., in common,
If x* 1s in I\I(; (x }, the corollary is proved. :

Ir x"" is not in N (x ), continue in this manner
until an X, on x, x X is reached for which there 1s a d,>0
sz;ch that S, _ ﬂﬂ s, (x,) maps into T, _, and such ‘that x* is

in Ngr'(xr).‘ Then .x* also maps into 4‘I‘n_’,,



1563,

It 1s conceivable that the & -nelghborho@ds
considered become smaller and smaller with the centers,
x, , approaching a limit point, X, on ?j“"‘ Then possibly
the extension of the argument éoﬁid not be ‘caﬁr‘ied‘ past X.
Howévar, x is & point of 8, (\E and Theorem III‘.YISV.B
applies to %. Hence there is & J >0 such that

S,/ N g(i‘) meps into T, , and the inclusion of points

of xoxﬁ' beyond Si‘which map into T, _, has been accomplished,
{Beyond means between X and x¥.) Therefore s the argument
can be continued until x%* is found to be a point of

S, /) B which meps into T, . Since x* was any point of
‘S’““' N B, 1t must be concluded that every point of 8, M E

maps inte T, _ and the corollary is provéd.

I11.3.9. Theorem. Let F2 £'(x), (1 =1, . . . , n), be a
mapping functiion deﬁnad on a convex region E of R and
let D,F exist and be different from zero in B. Then, if

L is & 'straigh'b‘ 1ine )passing through E,; the néegment‘ LNE
maps into a straight line. |
Proof. Let L be a straight line passing through E. Let x_
be a point of LN\E. Let-})xﬂxo = d,. Let ¢ >0 be chosen
so that ¢ <ld,| . Then thers exists a J,7 O such that

AMFIx X o o o X,)

(I11.5.10) | — -a | <e
A(xox,' « 8 O‘Xn)‘

wheanever “xoxbl( < 303 (1 = 1’ e 6 . 9 n)y /,/.\(X'ox.,/ € ¢ » xh)

in I'n
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Let x # x, be any other point of L/\Né;(xo).
Let X, 5 « » » » X, be ngi points of N&;(xo); not on L,
,whish,togeﬁaer with xéxané X, farm~a’set of n'+ 1
1inaarly,independant péints. Théée points form the vertices
of an inarément,‘fA(xQx‘ PO xn)‘which hég‘nedimehsional
volume éifferent'from zgrc. The‘imagefincra&ent,

A(F:xoiJ “ v v xn); must also have n—diménaional volume
diffarsnt.frém Zero , siﬁoe otherwise relation (iII;é.lO),
with . e <ld_| , would not hold. Thet 1s, Fix,),

FIX s e o o s F(x_ ) form & set of n + 1 linesrly inde-
pendent points.
(4)

Consider the {n-1)-flats, 8 7 , determined by

x » K &ﬂé the n=-2 other inﬂtS’“ 'xz,‘ . ’o o 3 X ’y’

a-!
‘JH s e %, (3=2 ... ,n). Since L is completely

determined by x_ end L then L must be common to all S(”
By Borollary 111,3.8 each (nwl)oflat, s({z, maps .into an

(n—l)mflat, T(?,, which is determined by Fix,), Flx,),
and F(x )’ s = 3 F(x )QF(J{)) ‘o e v F(x )J

{j= 2, s s & 3 M), since for aaeh Js the sat of points

F{X ) F(:{ ) F(K ):,ofc . 8 F‘x )s F(x

d+’)’ . .'v."
F(z )s farms a set of n linearly 1ndependent points of

n-~i

. The image of L must be common to each {n-1)-flat,
T7%Z.‘ Denote this image by L'.

Now each (n—1)~f1at, Tn{?, can be represented as
a single equation in the unknowns £ x), . .« o f“”(x )s

ag follows:
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(111.3.11) T,sa; £%x) +ouv 8, £4x) + 8, =0,

,)nn

(3 =2, « « « s n), It will be shown that the (n-1)-flats,

;Q » (J=2, ..., n), intersect in a straight line

which contains the points F(xo)‘and Pix ).

Since F(x, ) and ?(x,) are common £c~a11 the
{n-1)~-flats, Tm{), then clearly they are b@ﬁh‘adlutiana of
the set of equations (III.3.11), and they are linearly
independent solutions, since F(x_ ) # F{x;)..'Thé equations

(III.3.11) mey be written as
(I11.5.12) & (e"(x)-""x,))+ .00 & y ((x)-2"x,)) = o,
) ot ;

(J=2, ..., n), since F(x,) 1s & solution of (III.3.11).
This is a system of n-l'homcgeneous'equaiions iﬁ_n_unw
knowna. There is only one non-zZero 11near1y’independent
solution of this system of equations [Bbchar, (i);}pp. 49~-
52 . Glearl‘y, this solution is‘F‘(’x')u-F(J;o)'

{f‘”{x -2z, (A=1, ... » n). All the remaining
solutions ere linearly dependent on F(x')wF(xo); and hence
all the points in common to all the (n-1)-flats, T;{z,
must lie on the straight 1ine‘thraugh F(x ) and'F(x )e
«4)

«n,’(j”g,oo.;n),

Hence, since L' is common to T
then 1t must be contained in this straight line, and hence
points of LNE map into poeints on a straight line, which

1s the fect that was to be proved.
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.III.&-’:.lﬁ; Lemma. Let F' (”(x), (i=1, « « « »n), bo a
mapping function defined on & convex region E in R("‘) and
1@% D XF exist gnd be different from zero in E. Lat %,
be a point éf'E,» and let X, g o o v 3 x,, ben + 1 variable
points of E such that .A(x‘f"'x,,L e« « %, ) is elways in I,
end such that x, 1s always on the iine ‘betwean x, and "x% . 
Then |

o5 DR ‘A(If‘zx,‘ng .o X)) '

Xo Koo AT X oeee v X, 00
{,:l)’..,’)nh '

Proofs Since b F exists and is different from zero in B,
then F is eantinuous and mapa straight 1ines into straight
lines. Let EXF)X = d. Then for ey;ary € > O there is &
‘8> 0 such that

A(F:xox' i e e xn)

(.121,3..14;)_ ; ’ -d| ce€/fe
' A(xox',‘. .o x) |

whenever |Ix Xl <6 s (1 =2, « o s s 0}y Alxx .. %))
in I’ ]
‘It must be shown that for every ¢, O there is a

0> 0 such that

)

/,\(F'::s:/:v:’2 <Xy ) a

(I11.3.15)

: A{'leﬂ_n, « x,n_“)

whenever [Ix x;l<S, (1 =1, « + + 5 n+ 1), and where
A(x(xz . e 'an+, ) is alvéayvsv in ,I) and x_ 1s on the line

between x, and x .
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Let x 2 Xys o v 09 X be n 4+ l variable
points such that the eonditians af the hypetheaes of the
thearem are satisfied. The ineremants A(x oXas 4 v xh+‘}‘
and A(A XK e o 0 X )Hare in I, but

A(x Xpooo o X, KX, . oe X, ), (4=3, ;i‘f,;;‘nv+ 1),
all have hadimanaional\vo;ums zero giﬁcé,x;, #l,yénd x;'
are collinear. | |

Einca‘stra;ght lines map into straightl}ines;
F(x,), F(x,); and'F(gi} are eollinear,,and ail'thef |
'increments A(F?x Koo o o X, X xi”,.ﬂ. . x,vﬂ),

(i = 3, « e s pn+1), have n-dimensional volume zero.«

By Lemma.I,&,l and Remark_l.5,7, and, frcm the

sbove statement,

AMFix, . o . n+') aa@:x b S xﬁ+') + zx(?Sx(xdxé. . s X

and

n+)

Alxe v ex )= oalxxe .0 x ) 8 A(X{géxs;i,_,&xn+,).

Let ¢>0 be given. Then there exists a & >0
such that

)
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APx X0 o« xnﬂ) : )
-

A(x’ xlﬂ o nh}

A(ﬁ\'» ‘ ’ Km')

sl -

A(xx.a:x i R A(x:@z.*.x ) A(xxx.,x )

(st }: - . xm») i A{X K x%“ . th} A(ng X xa‘ a xn{-l) }‘
Y

A{?il * » Xm‘)

A(Xoiﬁ l » X )

S Y A(xx 1@¢3C}

nt

e/a

<

-ef2
A(x:x‘..x ) (xxxs.a‘x Yy d

,whanever = =, <<§ s (1 = 1, . ﬁ. , n + l), and where‘

the paints X, ,'.,.,J. . x

i aatiafy the requirements of

tha hypo‘bheses. 'I‘his proves the theoram.

(III.3.16) Remerk. The quentities

A{z:x oo X)) alx XXs0 o 0 x)

and

Q(Xl xzv,,n "a X ) ‘

Nt Q(xl~ ;XZ . s = xn“ )

are both $1, since x, 1s on the 1line between x and x_.

II1.3.17.  Theorem. Let Fi £(x ), (L=1,.. . ., n),
be a mapping fune’c:ion defined on a. canvex region B in B(")
zmd let D ¥ exist and be different from zero in E.. Then
the mapplng is one-to-one.

Proof. By Theorems III.3.2 end III.5.9, F 1is continuous
end maps straight iines into straight lines, It will be
shown that every mége. point, F(x), is the image of
precisely one point of E undér the mapping F.
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Supposa on the contrary, that there 1s a paint
F(x ) which is the image of at least two distinct points,
X, and x . Since E ia aonvax, x , and x, can be joinad by
a straight 1line, x X, .‘ Two situations may oceur.
Case 1. Ths segment X x meps into the singla point F{x )‘
Let DXFIX =d. Let Oc<c <]d)y be given. Then there
exists a § > 0 such that

AlFix x o o o 2,)

(I11,3.18) |—— wdle ¢
alxx o v o x) |

whenaver nxcxinz J s ‘{i‘ = 1o o oo “3 n),-‘a()‘;oﬁx, i s X))
in‘I;.' |

| Since X X meps into the ‘single point F(x ), then
in every neighborh@od of x , one can find an: inarement,

A x¥x oo x ) of I, whera x* is on X X, » such that
for.this'increment, A(sz x*x s.» + X.) hag n-dimensional
volume zero since F(x*) = P(x ). For such 1ncrementa,
relation (III.3.18) does not hold, for _e<;ldj‘} contra-
dicting the aasumptipn‘that b*?lxoyz‘d.’$incéf& 6§§tfé~;
diction has been4r6acbed; it follows that case l!é&nﬁct
oceur.

Case 2. The segment %x_x, maps into the segment F(x!')F(x"),
where F(x!') is the image of gtlleast one;point x? on X X ,
and F(x") is the image of at'least one point x" on X,x, ,
and x' £ x". Without loss of génerality,-oﬁe'ma? assume
x' to be between x, end x". The point F(x ) = ﬁ(x ) is

either an interior point of F(x')F(x"), or else 1s one end



1569,

point, Assume that F(x } = F(x ) # F{x').
By the same argument es in Theorém I1I.2,14, the
following st&taments are trua'

Every point F(x),betweéan(xO)‘and P(x') is the
imagé_af at least one point x between x, snd x'. Every
point F{x) between ?(x')lané F(x") is the image of at least
one poinb x between x' and x". Evary'point F(x) between
F(x") and F(x ) = F(x, ) is the image of at least one point
x between~x ‘and x .

Gcnéidér;the pbinﬁ,x‘.r Let Dkaw = at. Choose
a Tixed positive ¢t <|dt). Then there exists a {'>0
such that
oflFixtx o o o X,)

(II1.3.19) | —— — = d'| < el
| nlx' o o o X)) L

whenever vnxfxglk,S '; (1 = 1, « o s s 1), A(x{#?. o o %)
in I . In'évéry sufficiently small’néighbcrhood’dfnx'
thera is a point on E X, batween x, end x' and a point on
X X x' between x' and x" s both of which map into the same
point.

By Lemma III.3.13, in tsking the derivative at
x', the increments of I formed by btaking tWO‘points; x*
énd,xl (with xt on the line between them) and n—l other
pcinta, xy, . e e x s ® DOTIE of which is on x'x’ » may
be uséd;. For these increments, relaticn (III 3. 19) must

hold, with Y < (4] . But amcng;theselincremgnts, in

every neighborho¢d of x!', those for which the points x!



160,

and xﬁt map into the same point willkba found. For such
indremenbs, reiétion (III.EQIQ), with e’<(df(, wiil not
hold, since the image inérement has n-dimensional volume
zero, This contradicts'ﬁheyassumptien that DRF‘XO# 4,
Hence, case 2 caﬁnut occuf.

In elther case, a contrediction has been reached.

It 1s concluded that the mapping is one~to-~one,

1i1.3,20. Remark. It has been shown that if F is defined
on a convex rogion B in R ") and if DXF'exists and is

differsnt from zero. in B, then F isydagtinﬁnus; one=to~one
and maps straighﬁ lihééAinto straighﬁflinéig iHence; from

Bémark 11.,6.25, p~flats map into pﬂflats, f1;éps?n#l).

II1.5.21., The main theorem of this chapter has now in
effect been proved. Fcr-sinca:F.is,eohtinﬁaﬁs,7ona~to§one
and tekes straight lines into straight lines, Theorem
II.8.10 can be applied and thé‘followihg‘theorem is true:

ITI.3.22. Theorem. Let Pt £ (x ), (L =15 + « o » 1)
be & mapping function defined on & convex reglon E in R™
such that DXF exlists and 1s different from zero in E,

Then F is of the form

( ‘ ) _
8, % AT VR O Ry

(111.3.23) PF: £ (x) =

e w0 , (1)
am“x + see * an,(,l,;** X o a”ﬂ/””'

{1 =1, « « +' 5 n), where
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a,” 'v L) ', . 8.,, Nl
*» & ! .“ » * L3 . # 0..
aYh‘l,/ . anw.nﬂ

13115@24;"Ramark, The theorems above have been proved

for cénvax-regions"in R™M), The results cen be extended to
include any open, connected set B of Bhg. This is done as

followss

IIi 5.25; Theorem. Zét‘F‘ “)(x), (1 = 1o ooy n), be
8 mapping function defined on an opan, connaoted set E in
RC“E such that D, F exista an& is different from zero at
every point of E, The F is of the rorm (111, 5.23).

Proof. Lot x, end x* be any two points of E. It must be
shéwn.that F is of the form (111.5.23) at xozand ¥, with

the same constants, aia
N & ; ]

The‘pdints x_ end x* can be joined by a path C

Te

1ying entirely in E since E 1s open and cannebted;:,Tha
path C is a‘ﬁiogad/éné bounded,set‘in E, Hence there 1s a-
[ 0 such that avety point of © is‘at a~d1atancé z¢
from tﬁe boundary;of E [Knopp; (1), p. 19 ]. Divide C
by a finite nuﬁber of'péints qf«divigion, X, s X, ;‘,”.‘,
x, = i%,)sﬁch that;‘ux‘xvh Il < p‘ y (1 = 0, 1,Q. @ ; B k»l).
Around each point of diviaion, X construct a sphera,

T, lylng entirely 1n E, with x  as center and with radlus
r, 7P Every point of C is in at least one of the spheres

and adjdining spheres have points of C in common. Each
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T, 1s a convex region. Hence, Theqrem xII.3.22~can be
‘applied to each sphere. In each T., F is of the form
(III,&;ES), Since\the spherés‘hgva ysints in o§mmon, it
must be concluded that the cbeffigiehts; aéj, mustbe}the'
same for egch sphere, ana‘henca,»the aﬁjtare the geme st
x_ as at x¥., This proves the theorem.

The following theorem is in the nature of a

conVerse?to Theorem III.3.25,

I111,3,26. Theorem. Let

_— ) o () _ m) '
) ' . + 8 X4+ 8,
S ) 'a"l X *8‘ RTH wes ¢ v, nt)
F; f (x) - / : ‘ P ' ,( ‘ ) ,
‘ 1) ‘ (2) ) . . n)
N, X7+ an-H,:zx *oeee * a'ﬂﬂ,hxﬁ + anﬂ,nﬂ
(i 53‘ 13' e » o n), where
&, 82  ' s o 8y,
LI S I T N I T DU R T PR # O,y
an“" am“ s v o 8.,'1,'"“"

be defined in & reglon E of R™which does not contain the

| el e - '
line a, x91 + . . .+ an“"x’” + &, = 0. Then D F
exists and is different from zero at eachvpaintvbffﬁ;‘
Proof;' Let x_ be any fixed point in E end let X 5 X,5 eos X,
be n variable pointsyof_E'sc that oflx x, «ve x.) 18 In I.

Exemine the difference quotient,
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Je %) £ %) W e . TR, 1
f“”;{xl.) I’m (x')' o fm)(x,,) 1

,f(,)\(x“[) f(.?)(xn) ‘ . . f(@‘(xn) Al

(I11.3.27) : P e SEEE
S = 2 4
b Klm wow Xy 1l
=" 2.0 x™m 1

x&) XU) . ’,,',‘4‘ x;‘h) . ‘1 1 k«‘

Tpe‘inﬁmeratcr of this difference quotient is équal to

: 8 x *’ "7'& .’Ef +arml -8, x(")" f"’"*‘*’ah nxh*’an,m.
| (m R v h)
0 g n
a’nﬂ 32 1.‘ * ha’m»nx Wy B.M" x » ~'+ah+, n e R
E R ¥ # - e w W & #‘~~§~ PR l‘,. L 700 S R T =
‘ e (0 B )
B x(ﬂﬂ. ‘-i-a 5( %ﬂ.,)"ﬂ PR &n‘ X fs e ""‘.*an, x 8, .,
‘ 0 n) N A‘ ‘
&, it x te .+a x a,m,m B ah““x.ﬁ 13 . .«pf& x , &n,r,n“

Voo L C ) » -
(a(,xﬂ’/; ‘,,fa, hx,+st, e e .@M x;m, e, X, af,m,\

| R

T ‘:(')”,1 (") #twﬁnsuuanoquuovoaqu ‘
] ' (an H'”x,‘-f&{ “hal'yf:,n & 1-86"‘”} ( ; , )

im0 o a' xt na x +a,)nh\« - Wx " ua X By

Using the multiplication theorem for determinants,

the above product b&comes

L () m
Bm‘h» ] a’,nﬂ zo ¢ 4% Ky l
) ON e & A "'t/cod"’q_v." ‘&

TT(K X ft P

x'+a . ‘ : :
LSRR X Pt ¢ Mk P < ~x(n) 1
=0 ' : av'm,, . Q»r,rm 7}’ s % '
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Hence, the difference quotient, (111.3.27) beches

a e v B

n (b} ‘ m :
_' J (ahﬂ,. (xi CF e e w8 N+,'h x, + anu,nﬂ)
. (=0 ¢ : . o

By hypothesis the numerator ls different frcm zero.
Allowing X, .to approach X, (1= 1, e y n), a(x X wes X, )
ramaining in the class I s 1t is concluded that D Fl axiSts

and equals

» e g‘l,nﬂ

¢ e & & 3 o

4
v
.
-

Bt
# 0.

o) C ‘ 0) T4+
’(ah+“( SR SRR A VT DA an%nﬂ)

IIT,3,28,  Remark. Ag in the 2-dimensional case, one sees
that siﬁce ﬁhe aeﬁerminant’ Alx,x, o . x,.) canceis out and
does not enter in the difference qubfieﬁt while fhé'limit is
being»faken, then D‘F,exists at ény point x¥ 6f.E,iwith the
limit being taken 8S X 5 X 5 s+ o 3 X, approach " in any

manner whatever. In the limit

a1 » ® * ‘a,,nﬂ”e‘
» ® & . [ ] -

L hd aml‘m

X ' 0% 4 v ; ’ (ny¥ "t
‘ , (a“HJ ¥4, 48, X + 8, )
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1I1.3.29, Remark. Consider the function F, defined on a
region E of R™, and sssums that D,F exists and is not
zero everywhere 1n\E.' ThanAF must be an‘affine trang-
formation. That’is, finite‘pcihta must'gokinté fiﬁihe'
points. Otherwise, 1f some point, sey x¥, mapped inte an
infinite point, then D, F| y would not eﬁist; since éllythe
image increments with one vertex at x%“#oulﬁ be infihite,
and the diffgrencé‘quotiﬂat considered wﬁuld be infinitely.
large. Then, for every ¢70, there would be no &0
such thatithe usual.‘é;‘é relation for the difference
quotient would hold.

It follbﬁié' that 1f 1t assumed that F is defined
on the whole Euélidean space R and if}QxF}exists every-
whefe,and’is ﬁot'aero,(then F must nét oniy be linear

'£raetional, but must be 1iﬁearz

Yz ) =a. xW4s .0, +# 8, x"N & g
S 4 - 4n Ln

F:f(l (i = 1,‘ 2oy n).

+1

Otherwise, there would be some finite points which would map
into infinite points.  This would be impossible, since it
has been agsumed that‘D;F exists and is different from gero

everyvhers.

111.3.50. Remark. - Theorems 111;3.25 énd,III,S.ZG together
show that the préciseAclass of‘mapping functiéns, ¥, defined
on é connected, open gset E of R(“) which have a non-zero

dérivative DXF'at'éachvpoint of E is the class of linear
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fracﬁibnal transformations. If the set E is the whole
Space, Ew, then P is linear@;-

In the special case where F is of the form
P £0x) =20 (1-1, « « o k-1, K+, 4 . .0y

then, as in the 2-dimensional case mentioned in Remark
II1,2.25, £(x) mst be linear. That is, 1f D £
exlsts and is differen‘tv from goro at each point of Ej

then £71s linear,
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