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l. 

INTRODUCTION 

It is the purpose of this paper, to present the 

notion of a certain generalized derivative which has 

been defined by Professor G. B. Price, ,and to characterize 

the class of mapping transformations which possess a non-

zero generalized derivative .of this type at all points of 

an open, connected set, E. 
In the theory cf £unctions of e. single real 

variable, one of the basic ermeepts is that of the 

derivative of a funetlon f(x) with respect to the variable 

x. ?Jhen discussing a function of several real variables, 

r(x <n, ••• xc111 ) • tbe notion of a partial derivative of f 

with respect to one or the variables, x <i 1, is fundamental. 

If one thinks of the function f{x) as mapping a 

line .segment (x values) o~to another line segment with 

values r(x), a geometric interpretation ot the derivative or 
the !unction. f(x.) with respect to the variable x at a point 

x 0 is that of the 1imit of the ratios of the signed lengths 

f (x)-f(x 0 ) and x - x 0 as x 1s allowed to become arbitrarily 

close to x 0 • 

With this interpretation of the derivative in 

mind, Professor G. B. Price has de.fined a generalized 

derivative of a mapping function 

F(x): r<n(x), (1=1, ••• , n; x. =-(x<•), ••• , x<"))), 



ii. 

where F is defined in n•dimensione.l Euclidean space, Rtnr. · 

In then-dimensional case, the ·lncrementa considered are 

those oriented n-eells, · ~(x 0 x 1 ••• x) determined by the 

n + l points, x 0 , x,, ••• , Xn• (For n = 2, the 2-cells 

are triangles.) The volume of' such an n-cell is given by 

X(ll 
0 

X l'-) 
0 • • • x<'tl) l 

0 

6(X X . ·.~ . • X) ·~ o , · n n! • • • • • • • • • 
X <11 X. (1.) •- • • XlV!) 1 n n n 

tJnder the mapping F, the vertices• x O , x, , • • • , x.,,, are 

transformed into the points F (x0 )., I (x, ) , . • • • , F (x n), 

which also i'orm the vertices or an n-cell, 

.6(F:x0 x 1 .... xn) ;. with volume given by the expression 

. . ·•- . ,. .. .. . . . . -• . . . 
f ('-l (x) 

Ii • • 
As in the one-dimensional. case, the ratios or the signe<i 

volumes of the two increments 

f(,l (xo) r(;i) (xo) • • • f(nl(Xo) 

• • • • • • • • • • • • • • • 

6(F:x0 x, • • • X"') f(.r){x) rC:i) (x ) • .. • f (:n)(x . ) 

- n h . .,, 
-

11(xox, • • • xn) x(r) 
0 

xC:z.) 
0 • • •· xCn) 

0 l 

. . . . . . . . . - •· . 
• • x<n) 

• l"I l 

• 

1 

1 

l 

1 

are considered and the limit is taken as the points x,, x.:i.., 
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• • • , x 11 are allowed to become arbitrarily close to x 0 , 

with certain restrictions on the po.ints x,, x:i., ••• , xll. 

If this limit exists and is .finite, then the derivative of 

F:: f(iJ(x)., (1 = l, ••• , n) with respect to 

. - ( . (I) 
X - X 1 • • • , x (1'1)) is said to exiat at the point x 0 • 

This derivative is denoted by DxF1/ x • 
0 

' ' ' 

One restriction on the . points x, , • • • ; x n is 

of course that . .d(x 0 x, ••• xn.) I, 0, Another restriction 

on the points X,, • • • $ xn is that these points together . 

with the point x O must always form an increment of a 

designated class while the limit 1s being taken. It happens 

that DxFlx may exist with .respe(}t to one elass of 
0 ' 

increments but not with respect to another. · Three classes 

of increments., denoted by l 1 t I,1., and I 3 , are d.efined., but 

only one 1s the object of discussion in the paper. That is 

the class of increments I 1 , \Vhioh is composed of all the 

increments 4{.x0 x, ••• xr.) which have n-dimensional. volume 

not equal to zero. Thus, if the class 1 ·1 is being . con-

sidered, then the points x 0 , x, , • . • • , xn must e.lwe.ys 

form an n•eell whose n•dimeneional volume is not ze:r-o as 

x,, x.1., • • • , x-n are allowed to become arbitrarily close 

to X 0 • 

A precise definition of the generalized derivative, 
' ' ( ) 

Dx F, of a mapping function Jr (defined on a region E of R n ) 

at a point x 0 with respect to a certain class of increments 

I is the following: 
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Let F be a mapping function defined on a region E 

of R (nl. The ~eriva.tive of F with respect to the class of 

incremen.ts I exists at a point x 0 of E and equals d if for 

every sUi'f'iciently sma.11 E- > Q there exists a . J;, 0 such 

that 

~(lf:xox, • .•• xn) 

.l'l (.xox, .• • • xn) 
.. d I < E 

for all . 4(x0 x 1 • • • x 0 ) in I such that . 

llx0 x.:II < J., (i = l, •• ; ., n).where thesymbol . ((.x.0 ~11 

denotes the distance between thepointa Xc:i and x;_• 

It is the purpose or this pa.per to characterize 

the class of mapping functions, Fi r'c: > (x) ·, (1 =. l, • • • ; n), 

defined on a. region E of R (n )• which possess a non-zero 

derivative; DxF, with·respeat to the class of increments I,, 

at each point of E. 

:tn Chapter I the above definition of the 

generalized derivatlve is given e.nd three classes of 

increments are defined. A special ease of. the generalized 

deriv~tive is found by setting 

f (kl(x) = x<"), (k = l, • • • , i ,.. l, 1 + 1, • • • , · n), and 
(i) .· . . . 

letting f . (x) = f (x). Then the rElt1os 



···ljj···,··~··•······ 
x<,1 

0 

• • .. • • • • • . • • if 

. ·- xl"'l 
• h _ 

l 

l 

v. 

l 

a.re considered. 'l!he 11m1 t is taken with respect to a 

certain class of increments I. It this limit exists at x 0 . 

then it is cal.led the derivative of .f(:x:} with .respect to 

xu, at the point .x 0 with respect to the class or increments 

I and is denoted by :0 Ci.> f / _ • 
X X 0 

'rhe elasaes of !'unctions) 

t (.x), (x = (x < 11, • . . , x 1"))) which have generalized 

derivatives D cqf . with respect to · the classes of 
X 

increments I 2 and 13 are discussed.. 'l'hese classes of' 

functions have been characterized by G. B. Price. The 

class of functions, r (x <n, • • • x<h>)· - which have , . , 
derivatives, P lil f 

.· . X 
with respect to the class I.:z 1s the 

class of Stols differentiable functions. A rune tion r (x) 

is Stolz differentiable at a. point x 0 if'there &~1st 

constants a , t (1 = l, • •·- . , n), such the.t 
)'\ 

.. ., x~n1) = i al (x~i.J •x~l )+r [ E (r)J , 
L-1 · . 

I 

where r = 
such that 

-V .~ (x(il - .x (il } ,_ 
0 and E (r) is a function or r 

'-1 
lirn E (r) = 0. 
r-"> O 
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. ~e class ot tunet1ons tJx<r), • • ; xlnl) which 

· have derivatives D )c<, 1f' with respect to the class or 
increments I, is the el~ss of those functions whioh have 

ordinary partial derivatives. 

~e i:mportant . l\ioore-Smith Limit, due to E. H. 

Moore and H. L. Smith; is discussed e.ndlt is show~thnt 

the generalized. deri'vative Dx:F of . a mapping function F is 

a Moore-Smith Limit. 
To conclude ·.Ohapte?" l,. a us,eful theorem concern-

·, . \ ' 

1ng the derivative is pr~ved. This theorem js a.general• 
' ' ' 

ization of a theorem of $t1.eltjes for a £unction of a 

single variable, which states that if ~\ ><o . exists. then, 

t( o( 1 • t ( f3 .) 

o( ... 

where x 0 is always between c<'. and (3 •. 

Chapter II ·1s not . concerned wlth generalized 

derivatives. 'Iha main purpose of this chapter is to show· 

that the precise class of transformations, 

F: f 01 (x), (1 == 1, "· •• , n) 1 which are continuous, one--to .. 

one and map points of a straight 11.ne intQ points of' a 

straight line .are the ·linear fractional transformations: 

(,, + + . . ·x· \}]) + a . a . X · ••• g. <,, t 1 11 t,n1, 

a X 111 + • ., .+ S X(nl+ 8. 
Mr,, n11, n 11+1, nt r 

, ( 1 == 1; • • , n), 

where 
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a ,,, • • 8.1 ntl 
I 

j • • • • • • , o. 

In order to prove th:l. s characterization for 

n-dirnensional Eucl1dea.ri apa¢e, the notions of linearly 

independent points and p ... fle.ts are important. The points 

xk == (xt, ••• , x~ 1 ) of R1.,.. 1 , (k = o, ••• , p;p~n) 

a.re said to be linea,rly indep-endent if at least one of the,-

O(n,p) determinates of the form 

. " . 
• • • • • • • • 

(i,1 
X p • • X. tip) 

• p 

l 

l 

is different from zero, where (1 1., • • • , ip) l'"epresents 

one of the O(n,p) possible selections of p of then columns 

ot the matrix 

X(I) 
0 • • • Xh,J 

0 

• • • • • ' 
xc,1 .. • • Jt{ll) 

p f' 

Geometrically, this means that the p-cell deterrn1ned by the 

points X 0 ; ••• , xp hasp-dimensional volume different 

from zero. 
An equivalent definition is the following: The 

p + l points, x 0 , ••• , xP, are said to be linearly 

independent 1f the vectors, (xi x 0 ), (i = l, , • • • , p), 



are linearly in~epeno.ent in the. o~d:t.nEµ"y sense. 

Tlle notion · qf _. a p-..flat ; irl ls~clidelµl n-dimenaional 
' . . ·• ' , · . , . 

space has been used by manf authors. Let x. 0 ., ••• ., x 17 be 

p + l linearly independe~t ., points of R <ni. By the p-:!'lat, 

SP• determined by thes~ points is· n1eant the set ot points 
x E R(11 J. such that 

±. ,:;(. = 1. l ,O • 

An equivalent definition is the following: 

Let x 0 , • •• , xP be p + l linearly independent points ot 
B (-n>. By the p•.:Clat, Sr, cieterinined by these P, + l linearly 

independent points ia :mea.nt the set of all points x or Ren, 

such that the vectors (x ... x 0 ) satisfy the re.lation 
p 

2... ~- (x. - x h 
i =,f · ' 1;- 0 

with no restrictions on the p•s. 
A p-flat is a direct genex,a.1:1.eation or a line and 

a plane in S•dimensional spaee. The name, •p•flatt, was 

taken ft-om ,ll.,· M. Y • . J3ontmeryille •s book; An Introduction !2_ 

the Geometrz of N-Dimensions. (See •. the Bibliography at the 

end of this paper.} Alexandro.ff and Hopf, and Bi:rkhoff 

and Me.cLane are other ·autb.ors who discuss p-tlats, although 

not under the nsm.e p•t'lat. 

If x 0 , ·• •• _ , xP are o.ny p + l linearly inde-

pendent points oi' Rt"'., the set of points x such that 

X= 
p 

2_o(.x., 
• . t L t :: 0 

f 
<?<'-= l, . ( 

c(i 0, 
l::. o 
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ia the p•oell,. ~(X X • • • X ) i= 6 X p, o I · , _ . .p .. 

Among the p;roperties ot Ptf'l.ats end p..-cella which 

are presented, the fo1low1ng are perhaps the most important 

to this paper: 

1. . A p•fla.t is ison,etric to the Euclidean apace, 

R < f' 7, and hence 1 s p•dimensiona.l. 

· 2 •.. If x is any interior point or a p-cell, D xp 

(relat1ve ' to the ·p•flat, Sp• in which t1Xp · lies), then a 
' ' 

straight line through x, lying -in Sp, intersects the 

boundary of Li Xp in precisely two points. 

3. If Pis a continuous, one-to.one transforma.tion 
. " ·, 

defined on a convex :-eg:ton Eiot 1t<11 > which takes straight 

lines into straight lines and 1:f Ll (x0 x, • . • • x 17 ) = c, xP 
I / • 

is any p•cell ot E; · then , ·maps the ·k-ditnensional faces of 

axP, (k .s p), into distinct k•dimens:tonal faces of' .-'a p-call, 

~F:P • ·where by the . k•dimenslona.1 race dt Ll x r, determined 

by the points x 0 ,, • •• , .:itk chosen.from the p + 1 vertices 

of 4XP, · is meant the set of all points x suoh that 

X = 
k 

:?_ R.X-, ,. ::: o r, t 

k 

·• Z. ~; = l, 
i=o 

4.. It F J,.s a continuous, one-to-one transformation 

defined . on a convex · region E ot Ren J; the necessary and 

sufficient condition that p•t'lats map into p•flats 

(p fixed; l !:: p s n-l} is that straight lines .map into straight 

lines. · 
After the properties of p-flats a.nd _p .. cells are 

.presented, one important lemma is proved before the 
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characterization can be completed. 'l'his lemma, .suggested 

by w. Ke.plan of' the Univer,sityotM1ehigan1 1s the 

following; 

Lemma. Let .x O , • . • • , x Yl be n + l linearly ,independent 

points in, a convex region E of' Rln>, which form the vertices 

ot ah n-cell; L1 x.h. Let x,n be the interse.otion of the 

medians of · L.\ x '11 • · Let G; g Ci 1{.xl, (i = 1 J, • ·•· • , nJ, be a 

trsnst'orms.tion defined on E which is continuous, ·one-to-one 

and carries p-tls.ts into p•flats (p fixed; l.:::p~n--l), ·and 

which leaves the points x. 0 $ . • • • ; . . xn, · x* .fixed. Then G 

is the identity transformation. 

Using this lemma, the .. main theorem of the chapter 

is proved; namely, ·· that · the class of' . transformations which 

are continuous, one:...to-one, and map P•tlats into p•;fle.ts 

(p fixed; l :s p s n•l) is the class of linear i'ra.ctione.l 

transformations. 
In Ohapter III the generalized derivat.ives, DxF, 

. of a transformation F with respect to the class of 

increments I 1 is once a.gain the topic 0£ d1soussion .. • It 
1 4> F• "'<i.>( )· .(,, ·. l · . · ) · 1 is shown that ·... • ... . x , . • = . , • • • , n , · s a 

transformation defined. on a convex region E of R<n > 1 such 

that DxF exists with respect to the class of increments I, 

and is different from zero at each point ot .Ej then F it11 

continuous, me.pa points of a straight line into points of 

a straight line and is one•to•ona. lt is concluded from 



the results. of Chapter :£,I that Jr,:mu.it be. linear"f'raetional. 

The": results are extended to the case'· ih ,.whieh.: E, la any open . : , .. _ .... . ·. _ ,·;· . _\: , 

connected: set. lt is also shown, that ,if ·lt 1s 0 11nee.r : 
. . -~ . . 

f:rac·ttonal, 'then DxF exi~ts with respect to th~ : cias; -of 
·::., 

inc.:rements 1 1 , and is d1!'fe_rent · from ~ero· • . Hal,"loe, ,·the 

precise class of transformations · F defined. o.tt a regio~ -E: 

ot ·R<n) .for whieh the, generalized -der1v~tive~,- DxF, exists with 

respect 'to the .class, of increments I, ·. and is · different .t'ron1 

zero at each point; of E~ 1a the , cls.ss<of.:linear i'ra<:tional . 

transformations • 
., :in carrying through the chs.:re.eter1zation., . the 

re·sults are ·first · obtained tor. ·two dimensions and. then 
. . , 

extended to the n•d:bnensional ease. \lib~le this is un-

necessary in most ca:aes; it is felt· t~s.t a clearer under..;. 

standing la obtained by organizing the developments in this 

way. 

!l'he similarity between genarali.zed .der1vat1ves and 
Jaoobiaris or a ma.pplrig function should be note,d~ ·:. Fbtpeoially 

proniinant · in this similarity .. ts. Theorem :t. .. 4.14, which 

stat·es ·.that '.if Fi ,f ~i.>(x), .(i = 1 1 •• . • . ;, n) is a t~ans-

fo:rmation such ·that D x(il t 1j) ,(1, j = l, ' • . • • . . .., nl exist at 

a 'po1nt x 0 with respect .to ·a cla~s :ot ·non ... zero increments I, . 
then DxF)x exists with respect to the class of 

. . 0 

increments I and equals ' 
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. . . .. , .... ... 
(nll D . cnf .. • 

)( .,._a 
• • 

There have been other generalizations of the 

derivative. The ._ generalization given iri this paper can be 

compared with :the gerier:a.lJ.zed Jacob:ban introdu'ead ·by · 
. . 

Banach and wi t _h Burkill •s mod,~!'1ed Ja.c;obian ( see the 

Bibliography). However, in Banach• s generalization (tor , 

the plane) · squa.x:es ~e considered as· iner~ments, while in· 

Burklll' s . generalization; four . points in the plane form 

the vex-t!ces ·or the iner~ments considered. It seems . a 

·more natural generalization to consider triangles in the 

plane as increments. In the one-dimensional case,: ( the 
. . ' . . . , .· . .. 

ordinary case or the derivative or a funetionof a single 
. . ' . 

variable), the · increments considered are determined by 

two points .... ?ne more than the dimension of' the apace. 

It seems natural then· to_ consider triangles in the plan.e, 

t _etrahedra in 3•dimensione.l spaee., and in. general, n-cells 

ln n•dimensional space as increments. Theorems in the 

theo:ry of determinants can also be readily used in such 

a generalization. 

For.more complete information concerning p-f'lats, 

p•cells and their properties, one should study the 

ref'erences to Ee.t:schetz, Alexandrof,f•Bopf', and Kar0kjarto 

which are g1 ven in the bibliography. For more complete . 
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information concerning the theory or determinants, see the 

references to Kowalewski, ,Aitken and: Price .. 



CHAPTER I 

GENERALIZED DERIVATIVES AND' TiiE MOORE-SMITH Lit~I'I' 

I.l. DEFINIT_lOMS OF GEMERALlZE:O DERIVATIVES AND CLASSE$ 
OF INCREMEMTS · .., ,..·. 

I.1.1. ln the theory of functions of a ·single real variable, 

the der1ve.tive of a function, f (x.)', viith respect to the 

variable x at a point x 0 is defined to be 
. . 

f{x) - f(x 0 ) 

lim ------ = 11:m. · 
X - XO 

f (x 0 ) 

t'(x) 

X O · 

l 

l 

l 

X l 

provided this 1.imi t e.xists. · One interpretation of the 

derivative ·ot f(xl at the_ point x 0 · 1s that or the limiting 

position of the sec,ant line through f(x) and f(x 0 ), the 
. ' ' . ' 

limit being taken as x approaches xc:i. (See Fig. 1.) 

1---------------- X o X0 X 

Fig, 1 



A natural generali.zation of the der1vat1v-e, in 

the light of this geometrie interpretation is the follow-

ing: Consider the function z .::: t(.x.l, where X = (x <•>, x(~),), 

the ···auperscr:J.pts denoting coordinEttes .ot the point x. Let 

this · function be defined on some set E in .R (;!) ·, for exEUnple, 

on an open,, convex se:t. The locus of z = t(x,) is a surface 

in R( 3). Let x 0 = (.x<:'; x~~>) be a fixed point or E, and 

x, = (x~'). •, :x\~)J · and x.:i. l;:: .. (:x.~' 1 :x.:') be two nearby points 

. of E. The points ( X 1 , X~1,f(x6 r ;, ( xl; l I x\1.> ,f (x 0 ) ) , . 

and (,/' 1 , x<i),f(x >) lie on the sur.f'ace, z = f(x) ·~ The · 2 · 2 . . · 1 

equation of.' . the seoe.nt plane through these three points is 

given by 

( rl (;;q f(x) l X x · 
X <, I x fa) f(x: 0 ) l 

(I.1.2) 0 0 - o. -X !1~ x.l;z.) f (x, ) l 
' I 

. X < r) X (:i) t(x;i) l 
A. ,. 

Expanding end solving for f (xl ·~· f (x. } , one obtains 

f(x) x<i) 
0 

l x<'' 
0 

.t(x) 1 

f(x) .· (.J) 1 x:C'' f(x ) l. X . I . I I 

f(x:z) 
. (;!) 

x~ l X (I) £(:it ) l 
' i 

(I.1.3) £(x)-f (~0 ):::: (:,ti.. x~)+ (x<~'- t:z.) 
Xo • 

X <11 xr:i.) l X {, l X Ci1 1 
0 0 0 0 

X <1) :,c(z) l X (II X (;i.J l 
' I 1 I 

X (1) x<1) l X. (rJ x<:z.1 .1 
;2. 3, ;i ;i. 



3. 

Allowing x, and x.:i. to 'approach• x 0 in some manner, this 

secant plane approaches the tangent plane at 

. (x(~), x.~~ 1 , f(:x: 0 )), under certain conditions at least. The 

equation of the . tangent plane at · ( x~1 , x~ l , f.' (x 0 )) is 

given by the expression 

(I.l.4) J.f- \ (' " i,) - X -JX') X 
' 0 

Hence, it is logical to conclude that, under certain conditions 

at least, 

(I.1.5) lim 
x,,X.z-}x;, 

and 

{I.1.6) lim 
X11X;i~ X 0 

are derivatives of a sort. 

and D xri/\Y respect! vely •· 
0 

f'(xo) x(.ll 
0 

l 

f'(x ) (7.) 1 · 
I x, 

f(x:J..) Xl;() 
1. ' l 

X (11 
0 

xt7.l 
D . 1 · 

(1) .. x, X lt) 
I . 1 

X l1l xL:z;) l .z :2. 

X(I) 
0 

f(x 6 ) l 
X (,l f(x ) l 

I I 

X <, 1 . f (x-?) ,1 
;J.. 

x(r) 
0 

xfz.) 
0 

1 

x''l x<1.) 1 
I ' 

:x:\fl x<:(1 1 
;I. ;i, 

They will be denoted by D 1,,rlx 
'/( 0 



I •. 1 •. 7 •.. Ano the,r . geometric interp:r~tation of the ; .definition 
• • ·.,. ' f .-, • , . -, -•. -. ' ' 

of t};le . derivative of a fun~tion o:t' : a s1ngl&. real • variable. 
'· , ; ·- ,, . ··•, ' . ·,:,· 

• is . the- fol.lowing: · The function y = f (xJ ma:y: :be r.egar.ded 

as· the mapping of a straight: 11.ne (x values) . onto.ie.notbex-
' ' 

straight line {y values). 'lhe :tm~ge of x 0 la .. y~\ end the 
,~ . . . 
image of a variable point x is y. The der1vat1v$i of :t(x) 

at : Xo ' is the limit of the ratios of the si.gried lengths, 
' '' '·.· ' ';, ' '' ' ' ' ,' ', • •• · •• ', : ' 1' ' '.,,' ' 

(y-y o}, and . (x-xo l, the ~irrti t ·being ta~en as ·x. SJ>pfoaches xot\ 

As a. generalization of ·. this . interpx-et~tion~ 
co~s:tder the mappi.ng fu~cti0n F:r <1 '(x), r<~1(x), whet>~ '· 
x (x c, ', x(i.) )*,; defined o~ the orient~d Euclidean plane, 

As increments in thi!,1 ca~e, one ~0I1s_iders orient<'d triangles 1 
' ' 

denoted by ~(x0 x 1x~), or i1x, with verticea ·x 0 ; x:, • . and x.,_, 

1!hese three points map into three points, F(x 0 ) ,, 

~- ( f (ll(x~), ', £ (.1), (xJ}, F(x,) '= (t (I ') (x f ) . _ ', f {.i)(x, )), ,<;end . 
F(x.() = (r<' 1(x~}. f(:l)lx.i>), which also form the vert1ce$ of 

an oriented triangle. denotEJ,j,, .. by L\(F; ~o~,1 ~.< .L.:or by ' 4 F. 

The areas ot these triangl~a , are g1 ven by the exp~:essions • 

* Throughout the remainder of this 'paper, th~ n coordinates 
of a point x in n-dimens1one.1 Euclidean ,spac~, CR<:n 1, (n .e.ny 
positive integer), will berepr~sented by superscripts; 
.... ..;.; ·(• <11 - · .,.cn1) · or ""S' x<J> ( " ,_ l ·· ···· · · · ·n) .... - J>. ' , .. • • , ..... , ' ,Q ' ,· , ' .I .. - ' , ' • • '. • · • ' • · 
~wo distinct points of arni will be distinguished by sub-
scripts, as x O and x, • · It .x 0 only is written• .1 t is 
und~rstood that x 0 == . (x~), .••• • , X:(;1) , .. · 
- -<JJ (j - l ·' · ··n) · · m,...,,_ ·notationa (• 1'' · .· · · • , , ,..<,,,) - .,,.. o . I .· - , • • , . '. • . 4.U"" ' . . ; . ,... . 4o . # •! . • • ; ""o . 
or x<Jl, (j. :::: l, ••• ·, n), will be used only when it is 
nece$sal:'y to use the coordinates or ij point in theproor 

· or ·. a theorem or ,. to 'make tne meaning ~r · a. state:ment more 
lucid. Otherwise, the notation x 0 w~ll be used., 



(I.l.8) ~(xox,x?..) - LlJt = I 

-< ! 

and 

X(I) 
0 

X <~, 
C 

x<r) ,=(.:q , I 

lt (,} ;xC:q 
.:z · :z. 

f (1) (xo) 

' r en (x ) 
2( I 

f (I) {.X ) 
;z 

l 

1 

l 

i~) {x ) l · 
'' ,·. 0 

r<:i.i lx,) 1 

r c~) (x ) 1 
:l. 

5 .. 

• 

As in the one-d5.mens1onal case• the ratios or the eigned 

areas of the two increments are exeni:tned and the limit is 

taken as x, and :x.~ 1approa.oh 1 the fixed point x.0 • If 

this limit exists and is .finite, it 1s called the 

derivative of' F = (f lr>, f (.l)) at x0 with respect to 

x = (x: <rJ, x (:.:>), 'and {~ denoted by D FI • 
. X Xo 

I.1.10. Remark. The general.i.zed derivatives D ,,,r and 
'( 

D xYl of (I.1.5) and (I.1.el are only special cases of the 

generalized derivative Dx:F• for if one sets r C-< 7(x) = x1~) in 

(I.l.9) and tak.es the limit of the ratios of (I .• 1.9) and 

(I.l.8), the,n (l.1.5) is obtained; .and if one sets 

t (r>(.x) = x<•) in (I.1.9.) and takes the limit of the ratios 

ot (:t.1.9). and (I-,1"8) ~hen ,(I.1~6) · is .obtained. 

;It should be further noted that in mapping the 

points of the plane onto e.nother plane, 1.t is not asserted 

that a triangle, L3X, 18 xnappe'd into a triangle., F, but 

only that the vertices of a triangle Ax. are mapped into 
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points which are_- the verticea of a triangle, denoted by 

.aF. -'rhe value of ~, depencJ.a entirely on the images of 
. ' < ,,· ·.· :• ' •· ' . ' ' . ,. ' 

the vertices _ of 4 x.. -However, _ 4n taking the l!m1 t, the 

ratio of the 'signed . areas _ of _ the two tri~gles is · con .. 

s1dered. , 

t.:i..11. The word •app~oach' as uaed · in the two generali-

zations must no" be clarified. In the single variable 
case there is only one . way :ln which x can approach :x: 0 

-, ;,' 
" /. " ' '-. 

and that is ~long a stra.ight line+ However, .:in the plane, 

when dealing w1 th z = f (x) and with F: t {,, (xl, f '"'(xl, 
there are infinitely many ways in which x, and.x:z. can become 

close to x 0 • In the single variable case the precls& 

definition of the derivt.1tive of f (:x) with respect to x at 

a point x O is the foll.owing: 
,· 

The derivative of t with respect to x a.t x 0 

. exists and equals d 1.f for every > 0 there exi.ats a S > () 

such that 

6f 
d =··. .. d < E 

whenever Ix ... x 0 I < • 

This means that the difference quoti<ant,· 4 -F , 
LI X 

gets as close to d as one chooses for all increments whose 

maximum length is . less than .a certain riumber, J, as long 
as the increment is difi"erent froni zero. 



, · . ,' 

.Xt 1• this idea ot •app>:'oaeh • which· wil.+i 'be applied · 

to tht generalized derivatives. 1'.b.et derivative of' P(x) with 

resp.ect ·.-itc .. Jt :=: ·(~}'', ~<;n) at .a ·point x 0 is said to . exist 
-: .. · -•-- • • ' .J 

and equ.al d .. there \if to.l' evet'-y E > ·O there: exists , a .J-; 0 , 

su.eb.tbat 

- d ', ' < E 

for all 1ne:rements ..• LlX 0 (w1theerba1n,:requ.1:rements which 
. - , ,; . - . , 

·will bedls._cu.~~ed next) _$.U.ch _tha.t l(x0 X,!L< J 1\ (1 =' 1 1 2). 

The symbol : flX0 ~ill denotes _the -d.lstan~& between ·t~e;. points 

x 0 e.nd Xi, Unless otherwise ate.ted, 4~ 1& alwa~rs under--

stood to ~a.ye, the ~:txed. pc,113:t Xi 0 -a~ '.:~ v~~tex. 

fh1s 1nterp:retat10J1. of the woro. . ·•apprQach• will 
. . . - • 

be U$e'd throughout the remainder ot the paper. · Bo_wever, 
' ' 

· one . must be c.arerul, tor, while .1n ·. the on.e d1Jne:r.istonal case 

there 1s on.ly one possible type of increment--the. J.ength of 

the segment lt0 x---i11 the plane ._c;,ne -is_ ·porJf~nted wtth. all 
' . . 

types ot increments. In o:rde:r to make. the .above·general1• 

zations meaningful, classes or increments wi+l be• ·cietined .. 

Once a class of increments bas been designated fo:r 1 a 
. . ' . . ' -~ 

' ' 

particular problem, the points x
0

, x, , and x,_· must·, r _emain 

in the -class while the limit is- being ta~en. This , 

particular point is important, f~r . 1t turns out thttt some 

functions have a derivative with respect . to one elas$ of 

'increments but not w1~h r _espeet: to another. 



·a. 

Obviously, any num.ber or cla.sses of increments 

could l:>e defined by .making special requirements of .the 
relative position of the vertices of the inc:re:me.nts. 

However, .only three important cl.astlas of increments wi.ll 

be. defined heve • and of these three, only t1ne will be used 

in the remainder or the paper. The three classes of 

:tncre:ments are: 

I 1 : Wile class of increments l\ x, suob that 

6~ ~- o. This ls th.e most general class of: increments •. 

I:2..: The class ot :tnere:m.ents 11,c such that 

L\Jt ?-)! r(lxoX,I\ · 1\XoX:i.ll ~o, p fixed, O<f~l, 

where Hx
0

xc: /l denotes the dlstance between the point.s .x 0 

4X. 

I 3 : The class of increments x such that 

= I :z ! 

(2) 
.XO 

x('-) 
0 

l 

1 

l 

It is easily seen that these classes of•inorements 
have the following inclusion property: 

l C.I CI . 3 . ;i_ I 

1:o verify, for example, that I 3 CI-<-• one notices that any 

increment of I 3 satisfies the conditions of an increment in 

l.:z with p = l. Furthermore, an increment .6X in I;i :la 
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· :certainly also an increment of I . , · since 6 x -,. 0. I - . . 

I.1.12. Remark. There is one requirement that must be 

· made. · .lt is, -that 1ncrementsi or the class 1n question 
, . 

must appear in ---every suffieientl.y small neighborhpod of!. 

the fixed point, .x0 ., at -which the der.tvative is being taken. 

, This will , certainly ·be the case if the set E containing x 0 

.is chosen properlr; . for example, ·1r E is an open set, then 

increments of. all three· types w1ll appear in every 
' . . 

euff 1ciently small neighborb.ood .of x0 , · 

Now that classes of ·1ncrem.ents have been defined~ 

a precise definition or the derivative of F: 'r (,, (x).1 r ·c.z,(x) 

.with respect to x = (x((),, . xC~J) at a point x
0 

can be made. 

' . (i ) . ' ,· . I .-.l.13. pef·:l.n1tion. Let F: r -·(x)., ·(1 = l, 2), b:e a mapping 

function defined on a region* E of R<~)_; 'l'h.e derivative of -

F ,,'1th respect to x with respect to th& class of .increments 

I exists at a, point lt 0 or E and equals d it to~ every 

·sutf.icientl:y · small · E > O there e.xlsts a . J >o ,such _ that 

for all increments 4X ·'in the class I such that 

I .• l.14. Remark. The E-, J relationship of Definition I.l.13 

.;must hold for all increments ~x 1n the class l which_ appear 

* The term 'region' is understood to mean e.n open, connected 
set of Euclidean space. 
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in NJ (x0 ), the S --neighborho~d of X 6 • • •. Otherwise the 

derivative at x 0 is not d., but is. either something else or 

does not ex.1st. · 

I. l.15. ·· ·Remark. ~e deriv~tive, if it exists., is unique, 

Suppose there ara two ·nwnbers, d and .d', such that ·tor 
·(• :~. J 

every E:;:, 0 there exists. a > O ·such that 

I L\F .. 1· . - . - ca .... < '=-1.i 4x · '· · 

for all . L\X 1n I in N 6 (x 0 }, and also e. J;1.>0 such .. that 
I 

I . .af' - a·I < . E../2. 
. L\x 

. , . I 

for. all 4 x in I in NJ . (x0 ) • . Then if . J = min( J, , (,), one 
.i 

would have, 

whenever t'.\X is in I in N J,(x0 ). This implies that d = d'. · 

I.l.16. 'l'he functions which have . a derivative, DxF·, with 

respect to tl'.te three classes of increments defined abo\te 

have the following inclusion property; 

where (Class I 1 ) designates · the class. of functions having a, 

derivative with respect to the class of increments I 1 , etc. 



Tlurt this is true is verified by noticing that i.f 
. . ' ' 

Defin,~tion t •. 1.13 ··holds for .ail increments <:>f I, in 

N 8·(x0 ), lt will certainly hold 1~0~ the inorerne3nta in the 

· subclasses :t.:t .and X
3

• Similarly, .. i,f . Definition I .l.13 

holds .fox- the· class I.t • it will clearly bold for the · .sub--

class 1
3

• 

I.2.1. .Definltion • .. By . a p-cell,. L'.:\ :x.P, in Bth1 , (p n) 

with the p + l. •ertices x0 • · x, •• • • • , xr • is meant the 

set of points x of Rc-,,1, which · can be represented as 
p p 

(l.2.2) X = Lo( -X·i 
i :: 0 t , l 

·,, ~.:= i', 
i. = 0 ' 

I.2.3. Rem.ark. Further ·properties of. p•calls will be 

developed in · Qhapter :CI·. 

· I. 2. 4. . Def'1n1 tion I.l.13 1s readily extended · to n•dimensions. 

In n.;.diltlensional Euclidean space, afn J. the mapping function 

' . ' . ( i) ·, ' 
Ft f (x), (i = l, • • .. , n) ,. 

to be considered are those n•dimensional oriented n•calls, 

The volume ·of such 

an .n-celi is given by the expr~ssion [Aitken {ll, pp. 42-44THE-: 

•n• See the footnote at the bottom ·of page, 4. 
** Names and numbers in brackets refer to .the bibliography at 

the end of. this paper. 
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x<,) 
0 

x<.z) 
0 • • • .x("Tl) 

0 - l 

(I.2.5) 6X11= I 
7 • • .. • • • • • .. • • • . 11. 

x(r) (:z. ) 
l'I XYl • • • :,t~,} 

n l 

The mapping function F maps · these n + l points into n + l 

points, i 1 (x 0 ), F(.x,), • • • • F{:x:1-1), where 

F(xj) = {r<i\(xj)J , {i = 1, •• , nL 'The volume of the 

cell with these points a.s vertices is given by the 

expression 

(I.2.6) 6Fn= _!_ n! 

• • l 

• • - •• .. • • • • • • • • • • • • 

f (:1.) (x ·) 
. n • .. . l 

As before classes of increments are defined, the 

definitions being preotsely an.a.1ogousto those given iri 

Section I.1.11. The ratio of the s1gned volumes of the 

two cells is examined and the limit is taken as 

:x., , x~ • • • • , x 11 'approach' x 0 , in the sense die cussed 

in Section I.1,11. It is .understood, of course, that the 

cell ,LlXn., with the fixed vertex .x0 , remains in the 

designated class of increments while the, limit is being 

taken. If.' this limit exists, it is defined to be the 

derivative of F with respect to x at the point x 0 with 

respect to the class of increments in question. It is 

likewise designated by DxFlx • To put this in precise 
0 

form for then-dimensional case, the following definition 

is given: 
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I.2.7. Definition. Let F: :rliJ(x ), (i = l, ••• , n), 

be a mapping function defined o~ e. region E o:t R tnl. The 

derivative of F with respect to x, with respect to a 

class I of increments, exists at a point x 0 · of E and 

. equals d if for every E-:> 0 there exists a S ::> O s~ch that 

for all AX11 in I . such . that . II x0 Xc:/I <J $ ( i , = : l, , • • , n). 

LI x11 is always understood to possess the fixed point x 0 

. as a vertex. 

1.2.a. Remark. By choosing 

. . f Ci \.x) = x<i ) ,. ( 1 = l, • " • ·· , k• l, k + l , • • · • , n) , 

a generalization of .I>e~initions l.l.6 and I.1.6 will .be 
,. ' ' ' 

obtained. For these . choioE)s of £ <i)(x}, the. dif'f erence 

quotient, ~Fn , becomes 
~X-n 

; x<') • • 0 

(Ktl) 
X · • 0 • • . ·• . . . ·• ·• ·• . . ,:._ ,. . . . . .. .. ' 

x(11. • • x<K-•) f('<'(x J x~+,1 •• • • x<11) l (I. 2. 9) ~_,,. _____ n _____ Y\ __ . ; ___ .. _____ .,., ___ _ 

X (I 1 • • • • • • • • • • . • • • • • X (n) l O . . 0 ' 

• . • • • - • • • • • • 11 • • • • . • . • . • ., 

. . . .. • • • • • • • . .. _,. x~"t\J 1 

If the limit of this difference quotient .exists .as 

X, • •• , X •approach' X, remaining in the designated I n ·· D . 
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class or increments, it will be called the derivative of 
f (K) w:l,th re'spect ,.to ;x:l1<), :and w:tli be deno,ted by Dx(~)i'(I<) • 

•. . • · · ur .· · · · · · Clearly, ·e.11 the derivatives. D . f ; (1 1 j •l, .... , n), xCtJ . 
can be thus .d.efined .. 

· I.3. THE. . MOORE-SMITH LIMIT' AND . GENERALIZED DE.'.·. RIVATI. ·• VES. · . ·- ' . . , . . . . . . ' . 

I.S.l. E. li. Moore and H. L. Smith have defined the limit 

which bears their name as follows [Moore-Smith, (1) J: 
I.3.2. Definition. Consider a clasa P of elements p and 
a binary operation R defined on the class P, subject to the 

following conditions; 

(1) · R is transitive. That ia, .if P, E P;i and 

p R p, then p R p ~. 
:l I 3 

(2) R ha$ the ,combination property • . ,That is; 

.if' P, e.nd .Pz :'areany two elements of P, 

there is t1t1 .element p .. of. P such ~hat 
3 

pRp s.ndpRp • · 3 I 3 2. 

(The not~tion p R p means that p is in the relation· R to 
. , , I 2. I , ,· 

pi •. ) Let c< (p) be a numerically valuecl function defined on 

P. Th.en o< (p) ts said to converge to a 'limlt ·d, w:1 th 

respect to the· relation R, if.· for every · E- '? o: there exists 

an element PE such that 

lo{(p) .. d I < E for all p R pE. 
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Exarn:oles of the Moore-Smith Limit. - - --- --- ---
I\_ . ' 

Example (l). Let :P be the set: of ·ail posittv·e integers .. 

Let o{(p) I:\,) (p == l, 1#., • • • l, be an 1nt1n~te 

sequence of real or complex number~·• · Let · the rele.tion 

p R p mean that p_··, .> P.,. I .. . ;I.. . ,, • . ..._ Then the ordlnary limit of a 
,· . . . . ··; ·.• ' : 

' . ' ... : ·. . . -, -

sequence of real or cQmplex numbe.rs 1.s a 'l'loox-e-..Sm!th limit. · 

For a sequenoa --~-~ real , or comple.x :number,s., •r, Jp =l, . 2, • .•• ) , 

converges to a limit, a~ it for every E > O there 1s a 

positive number pE ·' such that 

tor all p > p~ • 

That is, the numerica.lly•Valued tunction·, o<. (p.) = ap I has a 

lim.1 t a if tor every • E -:> 0 there eidsts . a p<= , such . that . 

Example (2). Oonside:r a function g(x) detined .on a closed 

interval ·Ii a !S x b. ·Let rr be a subdivision of e. x b by 

a certain number of intermediate points., Let F = {rrj 
be the class of all subdivisions oi\ ,I~ 

Let 1T and 112. be two subdivisions of I. Then 
. I 

the binary operation R is defined as follows: ·~ R. n-, ·, 
if TT~ is a refinement of 1T1 ; that is, if TI:i.. is .obtained 

from 111 by adding points of division to r(, • The 

operation R is elearly transitive. R also has the 

combination property; for if · TT, and rr~ are .. two s·ub-· 

dlvisiohs or I, let them be superimposed. . Thia · subdivision, 



TT::3, is a refinement of: both rr, and .. 1'.z • 

. Define a< ( 1T) as follows; 
Y\ 

o< ( 1T) = .? M[g( ~.:)] · (x. - xi_,), 
L - f 

it .follows that 

o(_{Tr;i,) .$o((1T,) 

16. 

since sup .f(x) on a finer subdivision of a.n interval is 

always less than or equal to sup f(x) on a coarser sub-

division, for any function .f (x). 

Def'ine inf 9' ( 1T) = i b g(x) dx. 
TT . 

From the properties of the infimum of a function it follow.s 

· that for every • E: ;:> 0 there is a.t least one 1TE such that 

I o( ( TT ) - i bg ( X.) dx < E 

for all fr R • That is, fo..0 g(x.) dx is the Moore-Smith 

limit of o< ( ff). If g (x) is Riemann integrable, then 
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11m .,( ( 1T ) = 

1b.e Riemann integral of' g(x) is also defined to be 

.. lim ::< ( 1T ) , 
n( 1T}7 0 

whe11e n( rr) is the lEtngth or the l<>ngest . subinterval of' 1T • 

The well•knownlemmaof Da.rbou.x states that the two 

definitions ue equivalent .. 

Example . 3.. lt vd.11 be . shown that the generalizecL derivative 

defined in Definition I.2,.7 1s a .lttoore .. sm:ttb Limit .~ . Let the 

class P be the class of increments · I 1 • .. ·.for a · given . 
. : . 

increment 4 x 11 of P, define o<. ( A x>n to be. the .numeri.dally ... 

valued function 4Fn. Let ( ,1 x)' .With ~ertices . . .. n . 

x0 , x ;', ·, • • , x~ , and ( ~x.}; w:tth vertices 

X. •'' o·, ""','., ·• • 
' s , x: , be two incx-ements of. P. '!'he ': increment 

( L.\ Jt)~ will. . be said to be in the. relation R with ( t1 x)~1 

(written. ( 4 x)' R ( L\ x). ") .1r 
. tl l1 

where. x 0 is Jl. common fixed vertex of both (Ax): , and ( ~xt' . 
The relation R is . clearly tran.s1t1v:e. .It also 

has the combination property.. For it ( L1 x)11
1 and ;(Ax)" . . r, 

are two increments or P • since it is assumed that incre-

ments of ·P a.ppes.:r in every neighborhood of x0 , then there 

exists an increment ( i:1 xl with vertices x 0 , x, , • , •• , xh, 

such that 
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where (i = l, •• • , n}. ·. , - , , . . ' That is,. ( 4 .x)., R ( Ll x) n · and 

( Ll .x) R f Ll x:) 11 .. 
,, 'l'l 

Now using the terminology of the Moore-Smith Limit, 
. ·. · . L'i F . . . 

the function o< ( LI x.>i, = 11" has the limit d at x 0 if for 
LJ x,.., 

every E- ;> O there exists a ( L\ x.) 11 e: such that 
I 

l ,4 F,., ·I - ""d < E , ,1x.,, . . 

tor all ( L\ x} 
I'\ 

This clearly coincides with the 

definition of the generalized derivative of F(x) given in 

Definition I.2.,7,. showing that the generalized derivative 

is a Moore-Smith Limit. 

I.4. FUNCTIONS ·wHICH HAVE GENERALIZED DERIVATIVES 

I.4.1. A natural question to ask is the toJ.lowing: 

Vthichclasses of functions possess derivatives of the type 

given in Definition. I.2. 71 and which classes possess 

derivatives of the type described in paragraph I.2.s, with. 

respect to the various classes of in.orements? 

It 1s the purpose .of this paper to answe~ the 

· question as to which class of functions possess non-zero 

derivatives of the two types described with reapeot to the 

class 11~ 
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G. B. Friee has shown that the precise class of 

functions f(x(n, ••• , x<n)) which possess a derivative : 

o.t ·the type D c,l, (i = l, X . .• · . . . • • ,,. , n)., with respect to the 

class of incre~ents 12 is the class of Stolsi: differentiable 

. functions. A fun~tion f (x 01 , • • • , x''l1 1) is said to be 

Stolz differentiable at. a point Jr. 0 = (x~' 1, 

. there exist, cot1stants a. i., ( :t = 1, •• • · .• ·. ; n), such that 
, .. 

f (x <,~· .... , ?- a · (x1i1-x<•I) + r [ E (r) 1 , 
l :: r C. O 

,., 
where r = ? (x<i~:x:~1)-<-, and where E (rl is a function of r 

' -' 
such that lim E(r) = o. tor e. ·treatment or Stole differ-

r-;;,O 

ent1able functions, see · [:aadamacher, .. (l) l • 
lt 1a easily shown that the class or functions 

(I) . ) 
f (x , • • , x <n ) which, have a derivative of the typo 

D 1qf with respect to the class or increments J: 3 is the 
X 

class of functions which are differentiable in the 

ordinary sense. To show this, suppose that D x<1<J f exists 

• at a point x 0 ,,1th respect tQ the class of increments I 3 • 

That is, the limit of . the following · dif:ferenoe quotient 

exists as the points x, , • • • , x 'I'\ approach x 0 , remaining 

in the ele.ss 13 : 
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X(tl (21 x(\\'-,J f X.(Ktl) x\-n) l Xo • • • • • .. 0 0 0 0 

x.<'1 (,) x(:,.) X(K·fl f ( Ll ,rW) X(Ktt) xln) 1 0 tAX 0 • • • 0 0 • • • 0 

JI: (1 l (1.) ~ , (K.q f(A i~)) X(K-t•) X c·,q 1 
0 X 0 -tAX • · • Xo 0 • .. • . 0 

• ,,, • • j, • • • • • • • • • • • • • • • • • 
X \q . (2) X(K•t) f(Q.'i<lt<l) X(Ktt) X(-nl 1 0 XO • • • 0 0 • • " 0 

... ti•······ ....... ,. ..... . 
X (1' x<2."1 ~<-l) J:(t}.),!:nl) X(1<11l X\>i\Ai''~ 1 0 • • • XO • • • 0 0 (I.4.2} 0 

x\'"' x\2.1 . 
" • • • • • . . .. • • • • x<-,,1 l 0 0 • 0 

X('\o.-,/•l x<:i.) X\-nl l ... . Cl, • • * • .. • • • • ·• • • 0 . 0 0 

X (1) X('-l t>) • Xc,-,1 l 0 +AX • . • • • • • . • • • • • 0 0 

• • • • 0 • • • • • • • • • . • • • • •••• 

x ~, x: 1 • • • " .. • • • • • • • • • x:\ A)("'1 1 

where f = r(x~ 1 , • 

f( L\ x r.:il = f (x~1 , • 

(i. == l, • • • , n). 

• • x\'l1J) and , 0 

Subtract the first row from each of the remaining 
rows in both the numerator and denominator of (t.4.2), 

.obtaining 
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X \I) . , (2.1 X ,t<-•l f _x_(K+1) .x:l"''l l ·x • •· • . • • 0 0 0 0 0 

6X(') 0 • • • 0 f(AX( 11 ).-f 0 • • • 0 0 

0 llXW • • • 0 t{AxY1 ... f 0 • • • 0 0 

• • • • • ·• • .. • • .. .. • • .. • .. • • • • • 

0 0 • • • 0 r (LIX(l<))-r 0 • • • 0 0 

• · • • .. . • • • ... • .. • -• • • .. • .. • • ·· • • • 

0 0 • • • 0 f (A X\1'1)) ... f 0 • • .llX(nl _ 0 
(I ,.4.3) • 

X(I) x<:1.1 •· • .. • • ·• • • .. • . . • • • x<Y11 l 0 0 0 

~Jt(I) 0 • • e: • •· • • • • • • • • • • 0 0 

0 .1· X (~ l • • • • • • • • • • • • • • .. 0 0 

. . . . . . . . . . . . . . . . . . . . . . . 
0 0 •· .......... .. . 0 

Expand both numerator and denominator of (I.4~5) by the last 

column and obtain 

~.X(I) 0 • • • 0 r (A x('1}-r 0 • • • 0 

0 .Li x<~) • • • 0 f (4xu')-f 0 • •· • 0 

. :. • .. • • • • • • • • .. • .. • • • •· • • 
0 0 • • • 0 f (Ll X (K) •f 0 • • • 0 

.. . .. . . . . . . . •· ·• ....... . 
0 0 0 . .. 

(I.4.4) ---------------------------. 

Expand the nwnerator of (I.4.4) by the first row and obtain 

(I.4.5) 
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[ The mino~ of f fox<')) :...f 1s O since the ktb . row of' ., this minor 
' ' -

contains all zeros.] Renee, the dif.ferenee quotient 
(t. 4.t) reduce.s .,'to 

. .. ('n) 
;. • DX 

Sinoe it was assumed that the l1ln1t of the difference 

quotient (l.4.2) with respect to the class I exists, then 

exists. But this 1s the ordinary partiiil derivative off 
with respect to x (KJ. This proves the statement. 

The classes of .functions, !.' (x en.,. • .• . · • ·,· .... (111) , ' .... . , 
having derivatives of the type D wf with respect to the 

X 

classes of 1nox»ements I.1_ and I 3 have thus beep det~rmined. 
When one considers the classes of functions 
F':f' (i >(x), (1 = 1, • • • , n)., which have derivatives of the 

type D)(F with respect to the classes I.:z.. and I 3 , the answer 

is not so clear. The following illustration will .show what 

one .is up against in dealing with DxF with respect to the 

class of increments I3 • 
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Consider the · mapping function 

(I.4,6) F: 

where ·g(:i/n) is defined tor all x c,), and otherwise .is 

completely arpitrary. Clearly, the ordinary partials or 

f' cn(x) and r<i.) (x.) cannot exist with respect to the variable 

However. , D F exists everywhere with respect to the 
. X 

class 13• '."Co show this, ·consider the difference quotient 

(x ~) )•(x ~) . )•g(,/2) {x ~1 )-t(x(;1 )-tg(x 11)) l 

•: (~~~o.i)\.(x ~) )-g(~~1M :i~ · (;,;~h;fi<x; 27 )~(x~t~i') l 
' ·,· .· .' .. ··_;·· .: ' ,. . 

l (x~'' };(t~1 il)Jj .. g(x~ 7) (:Jt ~I) i+(x~2k~)+g{x~ 1) 

(I-h~7l ~~------- ----------'----- • 
le(') 
·. 0 

. ··• (I) X ·•. 
. 0 

. #(~) 
0 

X ~) 

X: {2) ·+L\XI.Z) 
0 

lL 
l 
1 

Clearly, the denominator reduces .to 4:ltY~ x<21 , by the same 

procedure.used in the last example. In t~e numerator; add 

the second column to the. first column and obtain 

(I.4.8) 2 

; x~' '+ x.~i + g(x~l ) 

x~ 1 + :~ xt'\ :x.~ 1-t g(x~ > -:1: 1fx(1') 

X (1) tzl . (2\g· ·(x( r) ) 
0 + )'.( O ·-t fl/Ci + 0 . 

1 

1 " 

1 

Subtract the first column of (I.4+8) ,from the ·seoond column, 

obtaining 
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X (I) 
0 

X t:2) 
0 -t- g(xC:1) l 

(1·. 4. 9) 2 X(il-t-4X(I) 
0 x~\ g(x~ 1 + Cl _x.('7) l • 

lt (r) 
0 

X (:,,)+A X(2 \ 
0 

g (.xu >> l 

Multiply the last column by x ~' and x~1 and subtract from 

columns one and two respectively and (l.4.9) becomes 

0 ghc.~' ) 1 

(I.4.10) LDt (I) g(x ~" + ~x ui ) l • 

0 ~x \l) + g(x 1" 
0 0 

) l 

Subtract the first row from the last row and get 

0 ( (I)) g XO . 1 

(I.4.11) 2 .6Xlll g(x~'' . x<rJ +A · ) l .. 
0 Ll X c~1 0 

Expanding (I.4.ll) by the first column, the numerator ot 
(I.4.7) finally becomes 

(I.4.12) 

Hence, the difference quotient (I.4.7) becomes 

(I.4.13) 
= 2. 

t'.lX(l)[lX{l) 

Clearly, the derivative DxF with respect to I 3 exists 

everywhere in the plane and equals 2. 

Since g(x ''l} was arbitrary one can see that the 

task .of r 1nd1ng out more about, the kinds of functions F 
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having a der.ivative D/F with respect to the class <,f 

increments I 3 is not . easy. Similar statements apply to• 

. the functions having a derivative with respect to the 

class I.2• 

One additio.ns.l.. :r a.ct can be proved concerning 

the functions F: t <il (x), (i = 1, • •. ,. , n); this ,. is 

expressed in thefoll~wing :theorem. 

l. 4.14. 'l.'heorem. Lat Fl f ci 't'xl, (:t = ·1, • • • , n), be a 

mapping function such that :·o <j,r<n , (1,j = l, ••• . , n), 
. . . . X . . . .· •· 

exist at ·a point x 0 with x-esp~ct to, any ciass of non-zero 

. increments. Then Dx Fix exists and equa..ls 
0 

• • • 
· ~ .... · ~ · - ..... . 

• 

Proof. The proof of this theorem depends on the Batin-

Picquet-Reiss Theorem on determinants [ Price, (l) J , which 

states that if A and B are two n x.' 11 matrices, then 

... . . .· * 
• , 0-(n.,k)) · , 

Where IB[A(J;"\)/B(J'?>JI stands for th$ determinant 

* The vertical be.rs here ·a.re all determinant signs~ 
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obtained when one of the O(n,k) possible choices ot: k 

colu.rnns of B has been replaced by one of the C(n,k) 

possible choices of k oolu.mn.s· of' A, and where the symbol, 

C(n,k) stands for the .nUl'ttber of combinations or n ·things 

taken k at E). time.. Fota ea.eh choice of k columns or B, 

all O(n,k) choices ot k columns of A are substituted 

successively. forming a row.or th~ .determinant 

\IB [ A(.r;1)/BVt>Jll- Since the?'(' are O(n,k) .choices or k 

columns of B, the resulting determinant, )la [A(J;1)/B(.r<t)]I\ • 
is a C(n,k) x O{n,k) determinant. 

(I.4.15) 

Consider the foll<Hd.ng product ot determinants! 

:c,i t (x
0

} 
x< ,) 

0 
...,lll .... .(111 
AO • ..,. .n.O 

l n 

. . . .. . . . . . . . . . . . . .. . . . . . . . 
X (I l X (:z. ") . • Jtl'"1 l 
, n n • n 

if one applies the Bazin.-Plcquet-Reism Theorem .with k ·= 1, 

one finds that (I.4.15) is equal to (I.4.16): 



f (rl {x ) 
n 

t . c.1) Cx l 
0 ' 

' ' 

''(2) < • f x. •· .· x-nrt 
O ·.• ' ' . 0 

«' . ; . .. \.. . \ " .! .~ ., ., .\ 
:f' (~-) (x ), 

?'1 ' ' 

l 

1 

( 2) ' ('11) : ' ' 
X •. • , X l 

-n n 

. X(l•)• (11 _) ·1· 
. 0 . , XO 

(:z. I 
X "'' Tl ,. 

(-z 1 
X , , : • · Y\ ' ' ' 

27.• 

(ll 4-"(I)( ·. } 
X6.1, Xo .· •• •. ·,l'n) l 

0 

( r ) . . • • ,,Jlll ..P(i ),X )· 
X 0•_·41,, •· -''li...o .J., •~ -- o - 1 

(n 4'>(TIJ(·. .. .) . · · ,n l 1 . xo. • xo . •·. •· xo 

X c11 1 
. 0 

l 

. l • · • •· ·if(, .• , . • • ' e· • . . ,a. ! •. . , • · .! •1 • 1 • • • ' 

X (I) 
l1 

1 l 

Since all· the elements of the la.st row of (I,,4.,16) are zero 

except the last element, expanding by the last row, (I.,4.,16) 

becomes equal to 

l 

• • • • • • i • 

( I ) ·•.·.··. .,,._(11 )_ 1 . .X,O • . .,,_ 0 · ... · 
..,.(11 - Vn·•) -<1'11 ~-··x :)·_ . 1· 

• -..,,• " - "11 • \ ' l1 ' 

(,) , . (-n l 
~ - , • X . l 

'Yl Tl 
l 

.. ' .. ' .. • ' ... ' .. . . . . . . . . 
l 

• 

• 
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Dividing both (I.4.15) and the determinant product above by 

:x( 1') X~n) 1 Y'l+I 
0 • • • 

·• • • • • • • ' 
x(r) • • • xY"1 1 

1'\ n 

one gets the equality 

r <''ex ) 
C> • • f (n(xo) l 

• • • • • • • • • • • 
i''(x ) • • • lYl'(xn) 1 

(I.4{17) n = 
X (11 • • • • • xt-n) l 

0 0 

• • • • " • • " • 
X(ll • .. • • • X(""l 1 n "l" 

f \l)(X ) 
0 

,l~1 
0 • • x<hl 

0 
l xl• 1 

0 • • • x~-,1 :r (I) {x) 
0 l 

• • • • • • it .. • • • • • • • .. • • • • • • • • 
r .U 1t,c) (l) :x,<"'l 1 X (I) (r, -1 I f 1' 1 (x ) 1 xn • • • • • X h · -,, n n 11 

• • . ·-X (ll 
0 • • . • x_ln l 

0 
1 X fr) 

0 • • • 0 
X r·,,1 

0 
1 

• • • • ·• • • • • • • • • • • • • • • 
:X[I) 

h • • • • X (n) 
h 

l X (r) 
'11 • • • • X (n) 

n 1 

• • • • • • • • • • • • • • • • • • • • . .. • • • • • 
f (n\ (x } (2-) (1'1) 1 x('' xlTl-,1 f (n) (xo ) 1 XO _ • • XO ' • • • 0 0 0 

• • • . • • • . • .. • • • • • • • • • • • • • • 

f !nl (x.) ('1-) :x(11) 1 rn x111-,J fin) (x ) 1 x,,., • • . . X • • • -,-, n n Y\ 

x rn • .. • • xtn) l x1,1 ·• • • • X(ll) l 
0 0 0 t, 

• • • • . • • • • . . • • • . • . • • • 
X (1) • • • • X (TI' 1 X Ii) • • • • ,l•,> 1 

l'l l1 n n 
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faking the liJnit . wit,h respect to. the olS.$S of' increments in 
' , • , · ·. • • . I ' '· . ,. .": · ·, . · , 

question,. since it h1iur been assumed that al,l ,th;e derfvativea, 
D·•. · . .p<; 1 · ( 1 " l ). . . x CJ>... , •., , • .. • • ; n , exist, then the :Pi_ght side of 

{l'..4.17) has the limit 

• • • 
. (I]) . 

• • • l) :X. C:,,)f. X., 

(:t.4.18) " . . .. . . •. . . . . . 
• • • ,. D (.,.,l f'njlx 

. · X .o 

Hence the .left side of (l.4.17) must also have a limit and 

this J.imi ~-: is., by definition, D,,Fil with respect to the class 
. . . . . . . . . " . Xo 

of increment$ in question. 1'h.is pro-ves the theorem. - ' 

I-~5~ A USEFUL THEOREM: CONO:ERNING ·2:a.E GENERALIZE:D. ·DERIVATIVE 

I. 5.1. In th• reme,inder of this pe.p_er, the only class of . ' ·., , ' . ' 

increments which will be considered ._.· 1s the class I 1 , ··the .. 

most $enera.l ele.ss. It will be unnecessarr to refer to this 

'fact again, for it will be understo.od that · when DxF appears 
in _the disoussio.n, it is always the derivative of 'Jr with 

~espe~t. to x with r•espeet to the c~ass of increments 1 1 • 

1'0 oonolude this_ chapter a useful theorem con-

cerning the method of taking the derivative at a point wiil 
be stated and proved. Before doing this., however, a lemma · 
must be proved. 

:r. 5. 2. Lemma. Let F: r :<i> (x), (1 = l., • ! • · , n), be an 

arb1trei>y mapping function defined · on a set E in R<n) • Let 
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, x, :x* be . any n + 2points ·or: E. 
n 

Then 

X )+. • 11 

Proo'!~. 

(I.5.,5) • • X )=i • • • • "' n! •· . . . . . . • • = 
t (1) (:x ) 

YI · . !I , • · l 

• • 
0 . ·• . 

·. f''/tx .) .. ,. 
0 

{ni 
• f \X . .) 

l 

1 

f {l)(x) 

0 

r(') (x ) 
. •· . o· 

f .th)(x· ) 

l 

l 
, f . I , 

I 
+ ll! 

1 -t 
n~ ' . 

.• ' . . . l . •,· .. ' . . . . ' . . . .. 
•.. . . . . " . . . '. . • • 

• • l 
(I) ( ) t .·•x,,, .• • • 

. ' . . 1 

••••••• ••••••• . .. . + _!_ 
' ' (1 ) 
l1. .f (x ) • • • n-1 

0 • • • 0 

l 

l 

l 

• 

This 1.a verified .by expanding the 1th determinant in the 
' ' 

sum above by the 1th row (1 = l,. • • , n + l) and adding 

the ter:rns together. ,The result is the same as if the 

determinant . 

, 
n! 

f <1'l (x ), 
0 • • 

... (n) • f (x) 
1') 

·were expanded by .elements of the last column. 

l 

.. . 
l 
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Now Jf u.(t} , • • • , u<-n) . are arbitrary functions, 

one·•has, aftermult1ply1rtg . the . lasteolmnn by u<i1 and sub~· 

tracting this from the !th column (1 :::; 1., · ·• • . , n): . 

,.p (r)(· ) ·. (I) .. r(l1) .(:-.. •o •)-u· · .. (Yl) l .L , x.
0

• -u • y ,I!,, 

t <,)(x ).-uc,, • " rt~} (x )-u<11 > l 
I I 

• ... ff .• • • • • . • .. • • . • • 

.,p. • ( I l ( · . . ·.,. ···•. (I) . •. . h1 )(.·· v . ·) - ·u· . h1) 
J. . lt)1 : .• -u 1' .L, "''-h 1 

Applying the results · of .·· tt. 5.3) to tb.1$ expression, the 

following .equality is obtained: 

0 0 l 

(I.9.~) ,p.· .. .• < .. ·,, (.· . . . )· . . · (1) "' X · •U • 
.. ' 

(F:xo XI • • x~.) = n'! . . . .. . . . ' . . 
f (I )(· . .)·: . . ·.( I ) 

. X -u • • · - h . . . 
.• :e<,,)c~\, Y-u(n) · 1 

+ 

f. <rl(·. . .\ . (tl :x.o ,-u •. U
(f) - .. ('Yl) . . · ·. ···. ('n) t (x )-u l 

0 

I 
n! 

0 

• • . .. • • 
(I l(· . .)• . . (,) f X .-u • • 

' "Y1 

• • • + .. t-'-
t)! r(I)( .. .... :'.)·. ' ·. x .. . n-1 

0 

. . . . ~· ..... 
• • 0 l 

Multiplying the last column of each term on• the right by -JO 
and adding . to , the ith column Ji = 1, ••• ·, n), (I. 5.4) 

becomes 



(I.5.5) 

(I) u 

~(F:x X • • X ) o , · n n'. 

•· . . (>1) u 

1 

l 

(I) u • • u (l'l) l 

l 

. , ... _ .. . . •- . . . . . 

• • 

+ 

. . . . . . ' . . . 
l 

' f ( I ) ( X.,,_ ) • }1! .,, • • ;n)(x2;) l + •. . + l. 
n! / 11(x ) .. • • tn'(x ) l 

n-1 · n-, 
• • • • • • • • • • 

. ( I) u U (YI) (, 'c . > f X .. n . • • • 1 
• • • 

· Since u en, • ,i • , u<n) are arbitrary; choose them to be 

1 

.. . • , rln)(x*), where :x:* is the point in 

the hypothesis of the lennna. Then (l.5.5) becomes 

(l.5.6) 6(F:xo ... • x .. )-=- LJ.{F:v-i}x.,. x )+ ••• +~(F:x •. *) •• I 17 · O • X,:n-lX • 

This proves the Lemma. 

I.5.7. Remark. A particular case of' Fis the identity 

mapping. Hence 

I. 5.8. Theorem. Let F: rC'1(x ) , (1 = 1., ••• ., n'), be a 

mapping function defined on a region E in R <n; Let Dx F exist 

at a point x 0 of' E and have the valued there. Let 

x, , • • , xn ,xnt I be n + 1 variable points of E which are 

always such that x 0 together with any n of the n + l points 

x, x + form an increment of l 1 and where '1 n I 



(I. 5.9} 
.1(x, x.:l. ••• X.:_,xoxl+r• • .xnH) 

(x, X::z.• • • Xn-t) 
<M, 

for some fixed posi,tiye, number M. Then 
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(i~l, ••• , n+l) 

d = lim 
xi~ xo -

dF;x; x·:1-• ·• • Xn+."> 

t1(x, x;l. ••• ·xn+r) 
, .(i ·~l, ••• , . n+l). 

Proof. It must be .sho.wn that for every E::, 0 there exists 

a ,6 .>0 --sueh that . 

(I.5,.10) 
,1 (F:x I x;t_ • • • xn-t,} 

L\(X 1 XA ••• X.l')-1,) _, 
- d < E 

whenever II x 0 xi II < J, ( 1 = l, • • • , l'l + l), and where the 

xi are such that the conditions oc the hypothesis are satis~ 

fied. 

From Lemma -I,.5.2, 

and 

Hence 



Ll (Ft:it\ )c;_• • .:·+:?~~ f 
fl <.:)t,11:... • .~:·xJ,)!>} 

4(1f:~';ii_. · • if x~,) 
~(,c:,x,_.~ , •t.~n+,) . l.1 .. <x x. •• • .. ·~·'· •• :,i·'.).· t-. . ·· .. •·.·.·.·•• .. ••.·.t . .. l\··.( .. x· ... ·X •·· • .!It .,c ..... >j· ••.· .. ··• ... •.··.·.• . . o ?. · · . ·tltl . . ; · · · · · I ::l. --,, o . · • ... ' .. :•,:' "'.':. ( .. ·.. . . . . . . 4 = 

. Ll(x,,x;.-.~, • • x: } . < < it( .. \ (. ?-<t ·. • . . ti -f I . . • 

Sint'$: ;:'1.t htts been . assumed that: D: ·F ·. :::i d at x ' then t6r · th<:t · 
. . .. . . •.. . . >,.: ""' . ··:.:r·••·,•·.•·.•····.:,./.·.· ... ·.••o](.•· . .. ·.\-.:.·:··.;,.; .• ,· .... :: .. •.: .... s;.?.)u.:.:_;.: c: .. . b.. t• h· 0 .t· 0 , s1v:e.~f:·:E~Q;J.-there ·ex:t,sts 0 o / ••• . .... 

• x , . X 0 X.:+ • • X ti) L-, .· . I . T) . .... d 
L.\{X, . , • x .. ltOXt·+ ·.• • X L). 

< EJM(n + l) 
.' . l~f · · . I · tlrl 

whenever llx0 x-11 S., f j .~· l; .. • • , n + l; j 7'- i), 
. J l 

,1(x1 •• · • xi_,x 0 x,-1,• •• :x:n+,) E- I,. r.rhis holds_ for 

i = 1, • • • , n + l. Renee, choosing 

S = min { ,( } , ( 1 = 1, • • • ,. n + l) , 

whenever 

4(F:x, :x.J. • . • Xi,+,) 

11 (x,x-i.. • x 11t,) 

D F\ X . X . 
. 0 

This proves the theorem.' 

- d < 

. . •. ' n + l). Hence 
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I. 5. 11. Remark. 1 (i ::: l, ••• , n+l) 

1s always bounded if x 0 is interior to (x, x:i. .- • xn_,, 1J. 
Proof. It .x O is interior to ~(x1 x.i. •• xn+I), then the 

coordinates ot x.0 oan be expressed a.s 

xli) 
0 = 

1'1+\ 

11-tl 
,;;;;-- \,9) 
L o<.·X · , 
j=r J J 

(L = 1, • n) 

where Z .c{J• • l!' and where o<; o 1 all j. (This statement 1.8 J ~, . 0 

proved in Chapter II.) Now, 

L.\ (x • • x. x0· x 1.t • • xn, ) I t -, I Tl 

_, ..,._ 
t1! 

- .. Ill .x 
I 

• 
X~1l 

I -1 

• • 
•-' . . ,. . . .. . . 
X(I\ 

0 

..,.. <_2) -•-· .... \-nJ .... . . ""'' l-/ t-1 

X \2) 
- · ... 

0 
• X (-n) 

0 

. x(n) . . ' 
(+I 

,,, . . . . . .. . .. . 
X (11 

htl 

• • 

x\;q • n+, 

xc21 • , 
• • • 
x~:z.1 

1-1 • 

.x (11) 
• • n-t1 

• • :1/11) , 
• • • • " 

l,, l 
• • .X, 

( -, 

1 

l 

l 

l 

1 

1111 'li+I Ct) 'M-+\ (n) l [ c{ . X <! l ~~-X _Zc<jX, ;f • • f, J d' J•~ I J J J =1 J 
X ~11 X ~2") • • • X. ~'tlJ 

1.+1 tfl l1·1 

• 

•••••• * .·• •••• 

X (1) 
11+1 

X ( .. ) • xlnJ 
11+1 • • nt, 

= 

l 

l 

l • 

1 

1 

Multiplying the jth row by c:xj and subtracting this. from the 
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1th row., (j = l, • ,. • ,. 1 ... 1, 1 + l, ••• , n + 1}, this 

determinant becomes 

x<'l x<;;r.) • , . • ;x_{T'-l . l , · 1 I 

• • ,, • .. • • • • • • • 
X ~,) (2) 

x{.n) l x. • IO • 1-1 l-1 l -I 

I ! 1l (~) c:(.X~""l <>(;, 
-n ! C\'iX. o(.-X' • • • l ' t 

X '.11 Xl;,.) • 1+1 . • • X ~"YI! 
Vt I 

l 

• • • • • • .. • • ., • • 
X 1,1 X l:i. l • X (111 l . . 

1'-t-1 n+• l1il 

which is equal to 

Hence, 

l\(x • • x. x.0 x:l.+ ,. • x .... + ) I l-1 I . • r I = ~: < 1. I 

!l'his proves the statement. 

I .. 5.12. Remark. Theorem I.5.8 is a generalization of a. 
theorem due to Stieltjes concerning the derivative or a 

function of a single real ·variable, See [ Mcshane, (1), 

p. 225 J, and f Stieltjes, (1) ] • 



CHAPTER II 

II.l. lll'l'RODUOTION 

II,.1a_ ln this chapter: the generalized der:1.vs.tlves ·which 

were defined and discussed in Chapter· I 11±11 · play no role. 

However, the results ot this ohapter v/1.11 be directly 

applicable to the problem · of cbaracte:r1z1ng the class of 

functions which· have non-zero ·derivatives · :or the types 

discussed 1n ·Ohapter I with ·respect to the class ot: 

increments I 1 • This chara.ete:r:t.z·a.tio1.·1 will be the main 

purpose of Ohapt~r III. _ Sha.pt.er I,I .w~ll be concerned with 

the characterlza.tion of the cl$Ei$ of. functions which are 

continuous, one-to-on.e., .and which have the additional · . · 

property that they map .straight lines into $tralght lines. 

A word of' e~plan.ation sho-uld be stated concerning 

the statement that the mapplng t~uriction ,maps straight lines 

into straight lines. What i's meant by this statement is 

that all the points on. .straight line are mapped by- the 

function into points ~hich .lie ona straight line. 
Nothing is stated about the ; distributiori ot the image 

' . 
points, excepif·that they lie on a. straight line. 

Another statement which is used frequently in the 

following pages must be expla.1n$d also. ·suppose a . mapping 



.tunct1.on is such that it carries straight lines into 

straight lines and which leaves two distinct points on a 

straight line fixed. ·Then the statement is made that this 

atraigh.t line remains fixed. It is not implied in this 

statement. that each 1nd.1vidual point of the 11.n.e remains 

fixed, only that each ·point·of' the stJ>aight line maps 1nto 

some point on •the same straight .line. , Clearly if two such 

·fixed l.ines intersect, then ·that point of intersection 

must map 1nto a ,point which !s on both lines, and hence it 

must remain fixed in the strict .sense.-

These notions are.e:tended to higher dimensions. 

'flhen. the statement i.s mo.de tbat a oertatn runct:t.on carries 

faces ·or an n-cell into faces of an n-cell, ·it means that 
every point ot the n•eell maps 1nto,som.a point on the face 

of an n•cell 1 with nothin.g further implied. When the 

statement is made that a mapping .function leaves the taoes 

ot an n•cell fixed, it means that everypoin~ of that face 

maps into some point on the Sam$ face. It every point 

remains fixed, it, will be .definitely stated as sue~. 

It will be shown in thi$ ob.apter that the precise 

class of mapping .t•unetions which are Qne-to•one, 

continuous, an.d which map straight lines into straight 

lines, is the class or functions of the form 

a.•,, X (J) + •. • • + al;, ... x(n) + a.t',ntl 
(i.~.)·. ' " ( . ) F: f ,x = ___________ ___.;..____ , · 1 = l, • • • n , 

a X (I} + ' .. • • + a X (n) + a 
n~1,1 11+1,n n+11nt1 
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where 

a .. 
I I • / .• • ,.. ., ·• a.,,ntr 

' ' II . .,2. · HOPdOGEMEOUS :COORDINATES . AND LINEAR T.RANSFORlilA'!'IONS"~ 

Il.2.1. Homogeneous Ooordinates. · 4lthough any point in 
' . ; . ··. . , . . 

· .the : Euclideroi plane is uniquely determin~d by two quantities, 
' ' 

it is sometimes convenient to use three quantities to locate 

the point! Ii' this is done, the precise values of . the three 
' quantities are not impertant., but it is their ratios which 

are of value,. Let- ('x (II:, X121 , ,x(3l )be the three quantities 
. ' 

describing a point .and define the ratios 

. ' (1) 
X x(.:i.) 

X. (IJ 
• • - C ..,.(l) . 

,0. , xr3, 

where . (x rn t x (2 >) are the ce.rtesian coordinates of' the point 

in the . plane• It is cleal' that_ any three numbers which are 

p~op.ort!onal to (X o,, X (~>, x<3 >) will represent the se.me 

point, (x C,) 1 x<:z.>). Hence.; to. any se~ of three numbers., 
<i> (-<-l (3) . . · (X , X ' X . ) I : will correspond one and only one point, 

(x u>,. x.c-zi); but to each point, (:x <u, x/~IJ; there will 

correspond an infinite number of sets of three numbers; all 

of which a.re propprtional. 

· The set of numbers, . (O; , o, . O) will not describe 

a point at e.11 1 · ,s1n,ce , the. homogeneous coordinat~s of an;t _· 

* For a rno;re co~plete · discussion, see [<aocher, (lfi, Chapters l and VI.]. · · .: 



40. 

point may be made a.a small as one pleases; hence (O., O, 0) 

may be regarded a·s the limits .ot ·the homogeneous 

coordinates.of e.n1 po;nt. 
What has been. sald above is t.rue for n .dimensions. 

ln Euclidean n•d1mensione.J.. space. ftl" >, the n + l numbers, 

(XC,l , • . • • it1t'') will d.etermine the point 

X (11 

- ¥ {I) . .· - .n. . , • • ... " . • ,. 

where (x <,), x(;i.J • • • • , x'11 >) ere tbe cartesiim coordinates 

or the point in R<r1,. A.ny se.t of: n + l quantities pro-
portional to these· ·w1ll determine th.e. srune point of Ren 7. 

The set of numbers, (o., o •••• , O) will represent no 

point at all. 

lI.2.2. Lin.ear Trana.formations. 'rhe equations 

(Il.2.3) 

a x<')+ ,,, 
a ,xcn+ 

.:l,I 

.fX(I) = 

p X <i> = 
-(3) pX v·(// 

SQ A ,+ 
3, I 

Q .X,{A) + 
I I :Z 

a x,ei, + 
i, :i 

a x<:-t) + 
3,:i.. 

define a linear, homogeneous transto:rmat1on of the: 

Euclidean plane into itselt. mh.at i.s, 11' (x<n, XJ~,, xC,)) 

are the homogeneous coordinates of any point in the plane, 

a second point, ( f X 1'', f :X (.i> , f X c:1>), where f is any· constant 

f= o, will be determined by (II.2.3). the value .ot the 

coordinates, (pX tn, .P xP>, f x,C:3) ~· depending on the coeff1o1ents, 
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a i
1
j. I.t (r,2(< 11 , f X(2

) , pl/3>) = (O, o, O), then the point 

(x<,>, x,\.~> 1 x< 3 >) :ts not transformed into_ any. point at all. 

'fhis will happen only when the ¢le;te;rmine.nt or •· the co• 
' \• ;f l \ 

etf icients 1..$ equal to taro.. fJ!o 1nsu.re that this never 

happens, only the oEise where the determinant of the trans-

formation 1s not equal to zero will be considere4. such 

tre.nsrormatione are called non-aingul~., Xn th.is case, 
to every point (x.c'', .x:<-<,, xC 3 >) will correspond a definite 

point ((X c,, ,. p x:<21 , f x<3J l and conversely. 

A non-singular transform.ation such as (Il.2.3) 

is continuous, one-to•ono and trans~orms points on a line 

into points on a line. 
Wlit:ft haa:·-'been said concernJn.g linear., homogeneous 

transformations in the plane can be e,ctended easily ton 
dimensions. In this ease, the following sat of.equations 

is considered: 

(II.2.4.) 

where 

• • • • • • 

This transformation is one-to-one, continuous, and·maps 

points of an .n•l d1mens1onalhtperplane into points or an 

n•l dimensional hyperplane .• 
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Xntermsor ·carteslan· coordinates, the trans-
' ' 

formation (II.Jl.4) is or the form 

a . :x. c, ) +. a ,.:<'") + a 
(II. 2. 5) 

..- ( i.) = L I If • ( >" .· . . . . • . «', n-tl 
JI,. ----'-----------, ( i == 

a x-ln+ ••• a ·· ,xtn)+ 
l, ... • , n). 

n+t,t n+t1li 

The following theorems · proved in homogeneous 

eoo:adinates v.rill be useful later on. 

lI.2.s. · Theorem. · Every- set of values of x, , ·4' .• • , xn, 

which satisifes a system o.f n•l linearly independent homo-

geneous · linear equations in n unknowns is proportional •· to the 

set of (n-1)-row~d determinants obtained by $triking out 

from the matrix of the coefficients first the: · first · ·column, 

then the second, eto .• 
' . . ' 

Proof. Denote by afd the (n-l)~rowed determinant obtained 

by striking out the th column trotn the matrix of the 

equations. Since the equations · a.re linearly · independent,. 

at least one of the determinants, ( n · (~ l · , . . ··. (n) a # a .,. • .: • ,. a , 

does not vanish. Lat it be af'>. Assign. to xi .any fiX~d · 

value, c • . T.hen . 

• • • ' j • • • • • • • • • • • • • • t • • 

'l'his is a system of n linear non•homogeneous &quations inn 

· unknowns. · Using Cramer• s Rule, there is one and only one 

solution for each x . • 
k 
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ltk -
aUJ 

• , n) • 

lX .,· 2. 7. R.eme.rk. It t-w~ qr. more of t'he . determinants, 

e.< 1>, •• ., a,<n\ do not va~:1.ah~ (£or example, a<u and aCJ)), 

then one oan assign any value to x, and get a set or values 
L . . 

for the remain~ng x•s, as above. -Ir one uses x~ instead 
(assigning an1 value to xJl,. a. diff~erent set -Of vaiue.s for 

the x•·.s will ·in. general result. But once an xi is•. picked 

a11.d , a value assigned,, th~ re1~n1.:1ning_ x 1s are .uniquely 

determined by O:ramer's Rule.. In either case x~ will be 

proportional to a CK) ., 

II.2.s. Thcaoram. Any four coplanar points, .no three •,o.f 

which ·are collinear, may be carried over'into any four 

coplanar points, no three of wh:leh · a.re ¢ol-;t:tnear, by one 

and only one transformation of·. the type 

. (I.I.2. 9) 

where 

-(:2.) 
X --

a,,, x<,J + a,,, ,l2
) + a,, 3 

a x.CI) + a xY21 + a3 , 
3, I 3, '2. , 

a~,' x. (o + t\2,2. .x(:n + a.1, 3 

a. x <') + a x(.:i > + a
3 3 ,,, 3,'J. ' 



:a ,,, 
·~·· . . .. . . 
a · • • • · a.3 3 ,,, I 

44. 

:J:O. 

Proof. The theorem will be proved .using homoge.neous 

coordinates. The transformation will th.en be or the form 

-en X cn fX = a. + 1, I 
a ·•·., •,~ x(2J + a,,~ x<:1> 

(II.2.10) ~(~) x 07 x<:z > x_(3) ,rX = a + ·a + a • ~., :/,~ :i, 3 

.F X <:3J = a5 .1 
x.<I) + 8. X <-<> + 8.3~ 

x<~) 
I ?,-< I 

Let x = (x<' 7 x( 2
' x{n) x = (X£1' x.<2 >·· x( 3>) 

I . . I I · I t . I ' }.. : . ;i J ..Z ' I 

X .;;.;. ·(. x(I) x<.2) x(:3) ) .- and JC =(XC,) · x(:z) ,, x<3> .... •)' be the r. our 
· 3 - . '3 1 3 · · ; 3 · 11 ·. 'I . ·. 4 1 . 4 I 'I 

initial .Pain.ts. Let x = ·(•.oxen · o x_(:2> · .f ,x c:H) · 
I I I I , JI I ' I I · J 

x ..-z = (f , y:l-x~> , f;i.X;~>) • x 3 = (f~Xt' 1 f~ XJ'2}, f,X} 3>), and 

.xLI = (o X c,, l' X c,, o .x c~J) be · the p·.·oin. ts into which the in. 1 tial 
' )'f "q , J'f q 1 1, 'f . . . 

points are to be transformed. 

The transformation (II.2.10) carries any point, 

X = (X('), X (2 >, x<3 > ), into a. point, X = :(fX ( 11, f x(.2), rX07 l, 
· whose positi'on depends on the values of the constants, 

a.,, (i,j = l, 2, 3}. · If it 1s possible to find one ·and 
L, J 

only one (except for a constant factor which may be intro-

duced throughout) set of thirteen constant's (the nine above 

e.nd , four others -- o, o· , P ., o none of whieh is zero) 
J, ,). )3 ),_, ) 

which satisfy the twelve equations -
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r,xt = a,,, x~' 1 
+ a,,2-J..<;7 + · a.,,/x/t 

(II.2.11) f,X?-1 = a 1 ,,x<l1 + a~,:i.xt' + a 2, 3i(~) (1 =·1, 2, .3, 4)·, 
f,if = a,.,, :xr + a,.~x.~1 + a,.,,,x~~) 

the theorem will be -pt>oved • 

. ,Since the X's a.nd the x·•s a.re all known, 

(II.2.ll) :represents a syste~ of tvtelve homogeneo·us 

. linear"'.equations in thirteen, unknowns. Henee, there are 

always solutions o.ther than -zero, the number of inde.pendent 

ones depending on the rank of the· matrix of th.e co-

eft1ci ents.. It will be··-.:ahown .that t:t:te rank ot the ·· matrix 

is twelve, and. that . the . pfa are : all different trom 1ero. 

Since the rank of the ma.tr-ix is twelve, there will be only 

one independent solution and the. theorem will be p:roved, 

Transposing and ree.:rra.nging the above twelve 

equittions, one obtain$ JI!. 2.12): 



(,\ :{2) (3) ' : 

x:, .a, -1X a, tX a,.;+ O 1- o + O t- O 1- O t O ,- " xrn i-. o -1- o · -r Q. 
11 f ,1 I , :, -. J 1 _ I · 

x('1a. +X·'2k +I'?k. • 1- o +- ·o + o + o 1- o + o t- o - x ''\ o +- o 
.2., ,,, 1)-;t ;J.. - ,,3 p;,.. ;t. 

Xrn 117.\. ·. vC3) . 0 . 0 t-' . . 0 - 'n 0 a t · a t.a. a t · + O. -1- O -1- O + ·. o. + O ·+ ·. - P,X3 · + · 
3 1,r 3 111 · 3 1,3 . I, 

ld ... (2l HI . ·. · -
0 0. o· + 'V x :v o + o o· - f v. ::• <2 ) o + o· ·. :,_ o. · ·.. -t- .· · t .·. A, a, + a. ,+.t1.. a.B -t ··. •. : . + · . .,,. , 

. · · "'i I ( _.,... I , I : .I , 

0 + 0, + 0 + x('k +X'2k tX3h +o 
·,' .l .t,, ). -1,2 .l . J.:'l -t-0+0 +- 0 

. . . ' (r) (2) (J) · 
() +- 0 · + 0 + X,a: .. +X,a tX,a.,,+0 

';} ;t 1J J ) 1J 7 I 

0 +,. o + 0 + 0 + 
. ltl (.:i) : .,/31 . -i~J . 

0 + 0 + X a +X a. .+,4 a -PX t O + 0 t- O 
I ;;'1 I f ',.2 . I 11 3 )I · J 

() t- () + 0 +-
(1) (:i.) ..J6 ) . · -(3) 

0 +- 0 t- X a3 t-X a"'.itx~a;;- 3 +0 - PX~ tO + 0 
. :Z ,I _;i 'I . . "'.' I J;,. r-, 0 i-

(1) ~.{.2.) ·.·· . (3) . · -(3) 
0 + 0 +- 0 + 0 +- 0 -t- 0 + X a, tX_a +X a., 3. +-0 t-- () - P X + 0 

3 ,,, 3 ",.2 3 ,, J ii . 3 

'X .. (,.) . c.2.1 <1> o· a rX a t-X a t- · t O + 0 t- 0 + 0 + 0 + 0 + 0 + 0 
Lt ,,, '{ :112 1 . 1, 3 . 

. •· {f) . (2) : (:;/ 
0 + 0 .+c O + Xa +X a rX a + o +- O +- o + o ·+ O + O 

·. 4 .?,1 'I. ~;, 1 "F . •. · 
' (1) _J-2) (3) 

O 1- o + O +- 0 + o + O + X a +Z a +X a t o · + o + O 
· . . · 'I ~' 1 ",l- 1 '3,3 

'!'he matrix of these , e.quations ls. (II. 2.l.3) • . 

( I ) . xc:i.) x.<3) 0 0 0 0 Ct _: X (1) 0 0 l . 0 , I I ' xro 
;;). 

x<:i.> 
. ·,.;i 

x(3) 
;i. ' 0 0 0 0 0 0 , 0 .... f(') 

;). 
0 

x<,, xr;iJ x(3) 0 0 0 0 0 0 0 0 -tr) - x:3 3 3 3 

0 0 () ' X (I) xCJ.) 1/3) 
. . I I / ' 

0 0 Q> _j(:z) 
r 0 0 

0 0 0 X (1) xc~) x01 0 0 O' 0 :xeii 0 ,· -
;1. ,.1 ;;). ;2. 

0 0 0 x<,i 
3 

1(.2) 
3 

1(3) 
:3 

0 0 0 () 0 - j(2.J 
? 

0 Q 0 0 0 0 
(I) X <"-> x<~, iY' 0 0 x, -

·1 , I' I 
,. .... ' 

0 ,Q X(' I x(:2.> , · (~) 
0 -c- ·x(D 0 · o 0 0 X 0 

;2. ;).. ,l. .:2 

0 · o 0 0 0 0 x(I) x<::z.> xc:1i 0 0 - j_Cn 
3 · 3 3 3 

0 

0 

0 

0 

0, 

0 

0 

0 

0 

-= O, · 

::::; OJ 

= ·o J 

= o ·· 
) 

= 0 . l 

=·o l 
-=- .o 

I 

1/ll 
.q 

x('z.) 

1 
X <3) 

1 
0 0 0 0 0 0 0 0 0 -x(I) 

'1 

0 0 0 X oi . (:i.) X <~) 0 0 0 0 0 0 ~(Z) X - x'I 'f '{ 1 
0 () 0 0 0 0 x~i x(,) 

Cf 
x<3) 

'I 
0 0 0 x<n 

: 'I 



Since x/, x.:l, x3 , and ,c4 .a:re d1st1net, coplanar 

and ·.no three lie on a line, there exist nori•eero, constants, 

X (f) .. · ' (/) ' 
e, . , + c..1-X.,, + 
' / ' < (;z) . ,. (Z) 

C X .• +· C X + , ·. I . I :z. ;i 

' ' (3) ' . '. 1i' c X + e··X . + 
I I : ?- 7-

· Adding ,c; c ;t, · e3 times the t1rst, second ancl< third rov1s 

· respectively to the. tenth row'; ~; ; o i' c~ times the fourth, . 
~; 

fi;Cth and · s.ixth rows respectively' to i the eleven.th :row; · and 
; ' ·.,. . . . . . . . 

c, , c~ , times ·.the s~venthj. ~ighth ~nd n,1nth rows 

. r~specti;~·ly t6 the twelfth x-~~j · (Il'.;2/ 13) . be~omes · . 

. (Il. 2 .14) : 

x.(1) x<:i.l x<3) 
I , I 

.x<'' xY 1 xC3' ,. 
x(I'· 

3 
x.f1> 

3 
X(3l 

3 

0 0 0 
, .; • 

0 o. 0 

o· o 
0 ' ·: 0 . 

0 0 
x<,, x(-.> 

I I 

x<n X (-.) 
;l .:l 

x<,) 
3 

,x(z) 
? 

0 0 , 0 · 0 · 0 

() . ' Q, 

0 .o 
o · · ·o. 
0 0 

0 : 0 . 0 

0 

0 

0 

0 

() 

0 

0 

' ' 0 

0 

0 

0 

0 

0 

0 
·X(3J 
' ' 

xt:11 
:i. 

x.<3' 3 

0 

0 

0 

0 

0 

0 

0 .. ·O O · 
' ' O . ' · O 0 

0 0 0 

0 () 0 

0 0 0 

0 0 0 
x(n x<2.) 

' x<3) 
I I I 

x<,, 11::i> . (-3) 
X;i. ;!. • ;l 

x<•) 
; 

,Xe;,) 
a 

x<~i_ 
3 

0 0 ,0 

0 ·O · 0 

0 0 0 

:..j<r) 
. I , 

0 

0 
.,.. (1) -x , A 

· o o 
~x<'-) o 

I'. 
,' . -1:;i) 

· 0 · -X' 
' ::i.. 

0 

•· () 

, 0 

0 

;_(3) -x 
2. 

0 

0 0 

0 0 

-i(fl 
3 0 

0 0 

0 ·. 0 
~(:i ) 

"'.'"x3 0 

0 () 

0 0 

i') 
- 3 · 0 

-c· X(''•c jfll-c zo1 .... x<r) 
I · I . ;J. ;:z. . 3 3 '-j 

•C X(.zl-C j(:i.)_.O jl.l), _jc:z) 
I f ;J. ,. 3 3 . '{ 

.;.c X(3)•C X.(3) ... e XO> -X<~) 
(I ;2.A 33 · I( 



. . 

1!he rank ot the matrix is unchanged by the above operati9ns. 
, .) . 

If the thirteenth column fs deleted, the 

determinant .of the resulting matr:Ht}s eaa.ily eialculated 

to be 

x:<11 Jt(.Z) x<3) JC(•>"· x(2) x(3) , I I I I. I 

~13) = •C Ci c1 
x(_,1 .xc~, x(3) .x(n Xb) jl3) 'F 0,, 

I . ?. ;i_ ::2. ;1. 2. 

x(r) 
3 

x(l.) 
' 3 

x<31 
' 3 

X{') 
' 3 

x.{2) 
3 x~> 

since x, , x~, x~ , and x, , . X·z, x 3 are distinct· points and 

neither set is collinear. So the rank of the matrix 

(II.2.14) is twelve and there is only one. linearly inde-

pendent solution .for the thirteen constants. Furthermore, 

by Theorem II~2.s, p
4

~ •-· 0, · since 1t 1ii ·proport1onal to 

D(l3) # o. 
In a similar· f~shion,. l'.luJ' Dc,,r, ·and lf,o) a:re all 

different from zero. ,Hence:; p
3 

, p;;,., and .P are all , ' 

dii'terent from zer.o, by Theore~·II.2.e. ~us, precisely 

one linearly independent solution to,:- ·the thirteen con• . 

stants can be found. such that f, ,. P:i., p
3

, and f'i ~e all 

different from zero, and the theorem is proved,. 

II. 5 • . p--FLATS AND fH]lIR .PROPER[•IES 

lI •. 3. l. In Chapter· I, the definition. of a p•call .in R(YI) 

was given •. ~e volume of a p-cell inJlt117 , determined by 

the p + l points, x
0 

, x 
1 

, • . • • · , . xP, (0 .~ p nJ, is 

proportional to 
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x<ir/ 
• • . 0 l .. ., • • • • • • • • • 

x;•l .xl.'-21 • • • ·,i'?) 1 
"P fl 

where the set. (i 1 , :t:i., • • • , i 3 ) represents a selection 

of p o:f the postlible n columns of the matrix 

xcn 
0 

xc21 
0 • • • x~71, 

0 

• . • • ,i. • • • • 
.x (1) :x.(21 x (-n) 

p p • • • p 

and where the symbol 2, signifies that the sum extends 
C(n,p) 

over all the C(n,p) possible selections i"or (i, , 1 .:i., • • • , if') 
' ' . . 

[ Birkhof.f•MaeLane., (1), pp •. 293-296 J and [Price, (l), PP• 

77-'78 J. ~e p•eell will have p ... dimensicmal volume equal 

to taro only if each ·Of the determinants 1n the sum is equal 

to tero. If this. oeou.rs, then one of the points, 

., x, can be represented as a linear combi-
P 

nation of the other points. ~his gives rise to the follow-

ing def1nit1oni 

It.3 .. 2.. Definition. Let x0 • x, ,. .. • .. , xP, (O !f p-=:: n), 
be p + l points of ac"l'\'. · These points are said to be 

linee.rl:9'. independent·if at least,oneot: the O(n,p) 

determinants of ·tha form 

(II.3 .. 3) 
• • 

. . . . . . . 
(i,) 

xp • • • 

l 

1 



is · different from zero• where .· the set of superscripts , 

(i,,. 1.2.., •• , . ip) i:-epresents one of the O(nrpl possible 

selections ot p of the n columns ,of the matrix 

. " · b,7 • . x 0 

. ..... •·· •· · 
• • • 

.. 
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. ·., 

Otherwiee, the p + l points are said to be linearly dependent. 

I:t.3.4. Definition. Let x0 , x 1,. •,, x~, (O~p.:::n), be 

p + l points of R <71 \ These points a.re a .aid .to be linearly 

independent if the veetors, (x. • x 0 ) , (i =· 1, . ••• , p) 
' t 

are linearly independent in the ordinary aense; that is, .if 

there a.re no constants, e.i, (l = l, ••• , p), except all 

zeros, such that 
p 

( (j) La. x. 
' c, C 

. t = I 
() • X J ) = @, 
0 

(j: 1, • • • , n), 

where e represents the zero vector .. 

II.3.5. Theorem. Definition II.3.2. and Definition Il.3.4. 

are equivalent. 

Proof .. The quantities 

( j))· .. :x ; 
0 

(j = 1 ••• , n), 

are linearly dependent if and only 11' all the p-rowed minors 

of the .matrix 
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• • •• (. (nl .. l""') X •X 
l O 

{Il:.,3 .. 5) • . ., .• .• ·• .• ·• .• ,., .• .• , •. •.. • , •· . , •. •.. •. 
( . (1) . (I)) 

.X - X '. "' I' 0 
(··•· .(.i.1 • . (.z\ X .. ... X I • p 0 

(x c-,,1 - x.t''n • • . p . ol 

are ~qual to zero; that is~ if and only if all the <Hn,p) 
detei•minants of' the type 

(lI.3.7) 

... ..).>.~ • .. • o I 

. . . . . . " . . . . . . . . . . . . 
(£,)). ""X 
0 

&.re equal to zero, where .the superscripts have the same mean-

ing and rang.e .as 1n l)e . .f'inition IJ:.3.2 .LBocher., (l), p~ 56] .~ 

But .the determinant (II. 3. 7) ia equal to .zero if' and only if' 

(It.3.8) 
• • • • 
. (i,) 
xr • •• 

• • • 
(ip) 

• xP 

.. • 

l 
1 

1 

is equal to zero, since {II.3.7) and {II.3.8) are equal 

except possibly for sign. 

~is 1s precisely the definition of linear depen-

dence of 'the p + 1 points according to Definition lI.3.2. 

Oonsequentl:r, the .P + .l points are linearly independent 

according to Defini~ion II.3.2. if and only if they are 

linearly independent according to Definition II.3,.4. 
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at fi:rst glance.,. been given a preter·:red position. Howeyer, 

the vectors (x\JJ_ x~), (k,.f'ixed; 1==0,: l.., •• • , p; i#kJ, 
are linearly independent it and only, :tr (x~jJ - xl~}, 
(i =. 1., ••. ,.·p),,. are .linearly independimt • 

. Proof. The necessary ·and sufficient. condi t1on that the 

vectors bt~jJ - x~?, (k fixed; :t=.0., 1, •• • r ;.PJ\i :f. k), 

be linearly depend.ent 1s that the de,term::tna.nt or every p• 

rowed minor of the matrix 

(II. 3.10..) 

• • • 
• •. • I'> • • • • • • • • • 

(X (' J .,.., ,cl'') 
1-<-1 k • • • '(x?1J - X\nl) 

K-1 K 

(x <n .. x(' ') 
Kt-1 K • • • (x (n1 ""' ·£'>) 

1<11 K 

iii '. .• • • • • • • • • • • 

(I\.· • .X .I I< • • • 

vanish •. But these_ p-ro\ved determinants are .. 

C e e • • • • • f • 

(II.3.11) 
• • 

.. . . . . . . . . . . • . .• 
(
' (i,) <.:,\ 
X • X J • • • p K 

where the superscripts ha.ve the·same meaning and range as 

in Definition,II.3.2. But after the proper expansion ea.ch 

of these determinants fs the same as one of those of the 

type (II.a.a), except.possibly for sign. Each of. the 
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determinants ot the type {II-.5.8) is the same as one of the 

p~rowed minors of . determinant (II. 5.6), · where l(.\=> is g1ven 

the pref erred positi•on·. 

Hence, al.1 , the p-.rowed minors of (II. 3,.10) 

vanish if, and only if' all the p.-rowed minors or (I.I.3.6) 

v8.nish, ·• and . the .. veetors, • (,; t • lt~1) , 

(k:,.l\;J~d; .. =.,O.,., .. ;, • • • , p; 1. i k} ·, are linearly dependent 

:tt ~nd only ir ~~e , ,-~c~Qr, (x?7 - x~) ,· (i . = ·1., ~-. ·. , • , , p ) , 

are linearly depe~dent~,· pt1)Ving the statement. 

The result ot tn1a re.mark is that · the point x 0 can 

~lways be put in the i:n:ief~rred. pos1 t:1on Without any loss of 

. generality, and .with ·more .oonvenie.noe. 

· '· 

II. 3.12. Theorem. Let x 0 i· ·• • • , xP be a se~ of p + l 

linearly independent points of a<nJ. Then ant subset of 

those points is l:inee.rly in~ependent. 

Proof.. Suppose. there ts a subset of' x 0 _, .· • • . , :, x P which 

forms a linearly dependent s.et· ot points. Assume., without 

any loss of generality. that the points :are .a.rranged so. 

that the potnts, ,:c~;·_' , • •. , xi, (3<-P), :fo.rm the linearly 

dependent set. Consider the vectors,., (x.: · - x 0 J~ 

(1 = l, ••• , - j).· · 'These a.re linearly dependent; hence, 

there are, co_nstants, .a,,~ {1 = l,,. _, J)_ no~.-all ·zero,- , 

such that 
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But then, 
f"' ± a. (x. - x ) + 2 o (x ... x ) ,::; 8 

. l I O . . £ o 
l":f;- t.=J-tl 

,1here not all the a. 's are · z.ero. 'l1his contradicts the " <,::.; , 

assumption that x 0 , • o- · • , xf are linearly lndependent. 

Hence it must be concluded that any subset of x
0

, •• , xr 

is also linearly independent. 

II.3~13. Def1.ni tion. Let X ·· 0, • • . • , x P (p nl, be an.y 

p + l fixed linearly independent points of R0 '>. By the 

p•flat, ,SP; of Rl'r\.), determined by·. x 0 , • • • • :xr, is meant 

the · set of all points x of Rc-n> which can be represented · as 

l j,) 
X = 

p 

where 2 cl; = l. 
i= 0 

p 
~ · <i> 
~d.X. 

- - 1, t. t. -D 
(j = 1 1 • • • ; n), 

II.3.14. Remark. The numbers, C\"i , (i = o., 1., p), are 

sometimes known as the barycentric coordinates of the point 

x. See [Alexandxioff-Hopf, (1), P• 595 J. 
II. 3.15. Definition. Let x

0
, • • • , xP, (p -n), be p + 1 
.. n. · <71->. B h .{.'}1 t S f linearly indep$ndent points 0.1. n y t e p-.t. a , · .. p, o 

( 71 \ R ; determi:ned by the points x 0 , • • • , x,'); is meant the 

set of all points, x , of R C-n) for which . the vectors, 

( ,,. C j > - X. C·oJ l} , 
4 satisfy the relation 

p 
. ) ('} (j) (j) . . 

(xtJ -x}) =~~;(xi-xi), (j= 
t.:: , 

1., • • • , n), 

with no restrictions on the i •s. 
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Il. 3.15 are equivalent-. 
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Proo.f. Let x
0

, ·~· .•• , x f be a set or p + l linearly 

independent points of a<n\ They determine a. p-flat, SP' 

accordi.ng ·to Detin.it.io.n. :tI,3.15 and according to Definition 

II.3.15. Let x be a point of ~P according to Definition 

:tI.3.15. '11hen 

Since 

~. =:: o( 0 :,( 0 .if- o{ I 

p 

2 c,(i = 1, then 
£ :: 0 

p 

X
1
-t~ • • 4o(pXp, 

fl 

o( = 1 -Zcr~·· 
O t:: I 

X = (l • 2: c{i )xo 
< -::. I 

f' 
~'·o1i ;:; '· 
l ::o 

Hence 

Collecting terms, 

lx .. xo> = o<,(x, .- XO) + ••• + o(p(xp - xo) 
(' 

= Z q"i (x l .. xo) , 
i :: ' 

with no restrictions on ol, 1 (1 = l, • • . • , p). Hence, x is 

a point o:f SP accor<iing to Perini tion II. 3.15. 

Now $1Uppose x is a point of Sr according to 

Definition. II.~.l.5! Th.en 
f7 

(:it .. xo) = li ~Jx, • xo ).~ 

with no restrictions. on the (3 •s. Rearranging terms, this 

becomes 



ss. 
f' ·e f' 

X = :X 0 + ? !3J:x, • X 0 ) = :X 0 "'2,•(J.%0 + 2/3; X; 
c,.:: f . . (.=I. t ::: I 

= <:t .. i; Mxo + }:r,,x,. 
l:::. I ( :::. t 

Setting (l .., t/J;} = f.lo , then f1, = i, and ,::, f- «==O 

:it= t /3, x,; where f.fl, = l. 
L=O i=O 

Tb.at is, x is a point of SP according to Definition II.3.13. 
Hence, the two definitions produce the same.set ot points, 

e.nd are equivalent. 

II.3.17. Remark. The·last theorem permits one to use either 

:Oetinition II,3.13 or Definition: lI.3.15 in. discussing a P• 

flat. Sometimes it is :more convenient to use the one 

definition; sometimes it is mort convenient t~ use the other. 

In the following pages, both.definitions will be used i~ter-

changeabl:y. 

II.3.18. Theorem. Let x0 • x,, ••• , xf be p + l linearly 
independent points or R <-n >which determine a p-flat, Sp• 

Then every point :x of Sp has a unique representation or 
the form 

p 

X = c(-X.,, 
' C. (. 

l ;:- 0 

Proof. Suppose also that 
f 

Then, 

X =. 2-; fl, X;, 
c.' ::: () 

f . L 4;= l. 
i. ::: 0 

f z. ~("' l, 
i. :::o 
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and 

(x • l = R. (x z) +. . c r, , C, • • + R {x - :<X }. r P . p o 

But these e.re vectors.. Subtracting, the r·esult is .. 
' . . 

8 =· ,(o(
1 

• .~) (X ··. ·_; ·X •····)···• + · •.· .-... + ( o(p • f?p) ( .. x .P ... · X 0 ) • r, ... ·• i' . o .· * _· • t. 

Si.nee x
0 

, . •• . • · , xP .are linearly, independent, then so are 

(x, .... ~0 ); ~ · .· • • , •<x F - x0 ). Hence., one . concludes that 

·(c:;fi. ~, 'f;) = 0$ · (i = l f ··• • ··• ·•· pJ. T.p.at is, o('- = 'f i 
( i' = l, • ·. • • . • p) • Th.a:r.e,:f'or~·, -efo = to , . al~o, and the 

representat:tonis u.ni<1u.e, proving the theorem. 

II .• 3..19. 
, . . . . . . . . . . (YI), 

'fheorem • . · Let .·~ f' bt:, a p-~lat of R , . det.ermined 
. . . . . . . . . 

by the p + l · linea~l:y independent points x 0 ·~ .x,, • _• . . , ·, x.P, 

and let y
0

, • • • ,, , y f' be any other set of p + l linearly 

independent ' poi?lt.it ,ot"·.· SP • . . Then Sp oan be determined by the 

p + f points, 10 • 0
• • • , Yp • 

Proof. Since Yp is ·a point .of Sp, then 
p f 

"'10 = L, of. X · , 2. of. = 1. 
r i==o t · L i=o t 

At least one of the coefficients is not zero. Suppose 

o(Kf. _0 • . 

•• • I _:gK· t . ·. . _, 
x

1
<+/ • • , , _xp. ; Th:ts set of points is linearly independent. 

F1or suppose it is linearly· dependent. Then there exist 
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constants a . ., (i = l, •••. , .. p; ii k), . not all zero, and a 
l, 

b p#. such the..t 
f 

L a 1.' (x . -· .xo) + b (_.Yp - .x f = 0. i = .I: · " .· P o 
i.:1= K 

The number bf7 cannot be zero, since, t ·ben x 0 , .••• , , x,<-•' 
x ., •. •.· ~-i , x. 0 would be linearlv_ dependent, Which is K+1 · r ., 

impossible, by 1:heoreril I!.3 .• _J.2.· Hence 
p 

... _ .. _ •. ·.boll,"_-p .. xol = z a .(x. - XO}, 
I i, ;:; ( L, t. 

l:1:K 

D.iv_ iding by -bo_, this becomes 
r: . , p 

(y "' X ) ;: ':E O. (x. 
" 0 i,::, I,. t. 

i. :f::K 

Then 
p p z O; )x_ + -~ Q ; X .• Yp = {l ..... 

p 
(. - , ' ' 'V 

i. -~ 1< 
L , L 

' i =' 
flaoe (1 - ~c-)i = . ' ( '::/ 

,· :f:K 

11 = p 

it~ 
.z_ ·-c .. = 
(,: I (. 

l, and 
i=tK 

p 

· e, - 1.· ,· :: , 
i =f= K 

But then Yp is a linear e_ombination ot 3:t 0 , •• , x,~-• , . 

xK+, , •• , xf'. Since the x-epresentat.ion is unique, this 

contradicts the assumption that otK =fr o. Hence, the po1n.ts 

Yp j , Jto, • • I lt K-1 .• XK·H I ;~: .• I Xr are linearly independent. 

Now sinee C\"K is different :fro111 zero, xK can be 

solved for, as followa1 



o( K 
p 

Since , 2o(,= l., then;, ,'.;(f< = l 
i,:::: O ' , 

= 

p .. z ·o1, • 
L::: 0 
ii I< 

/p 

Hence, ... za(. = o( ... l • 
• ' f< I:: o 

' i 'i-1-< 

Xt follows :from the above statements that, the set 

or points f O, x 0 , • • ; x , x,< , • • , , xP de,termine Sr. 
,. ,,·,,." K-1 · · t1 · 

For let x be ant point in Sr, Tb.en 

Jt ==~oXo+ •• ·+~1(-1 xk-1 t~Kxl<+f,1<+,Xkt,t- •• +}pXp 

p 

L f,= l. 
i = 0 

' ' 

'I'ak1ng into account (II.3.20), this 

becomes 

Consider· the sum of the coefficients in the 

above· expression: 
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((3 _ ~l,c(K-1) (3K ( B _ ~Ko<'l<tt) • • + K-1 o{ + 7 + p<+t o,{ +-
. M ~K . . 

·c.a ~ko(f') .. + rp----< k 

= ~b -/- • • • + ~K-1 +~K -f-~f<'t-t r • . • • T f]p - J._ l 

p 

since l .Io(,.;..1 
i=o - • Hence ' X is a linear combination of the 
i,4:1< 
.,( I< 

linearly 

with the 

ind~p~n~ent . p9int~ -y-P, x0 , ., • . , xK_,, 2t1<+i' • • , xf , 

~um of the co~ffi~ients equal to Therefore, 

this set of points determines s,,~ 
Now further, 

Yp-, = {yp + 
p 

where ~p+ z·y. 
. . ' = l. All the Y: l 
t:: 0 
l t K 

i "'O 
' i:f:K 

cannot be equal to zero, 

for · then Yp-, would be equal · to y P, contra.dieting the 

assumption that the y 1 s are iinee.rly .independent • . Hence 

there must be a Yi (say 1 , ) which is different from zero. 

As before, one proves that x1 is ·a linear .combination of the 

set of points 

, X, . , xn, , . • • , X, ; . ' 1:.. ,, . .. .,.., . p 

with the sum of the coeffioients ·equal to one; that the aet 

(II.;;,·21) is linearly independent; and that the set (II.3.21) 
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determines. s .• 
Bepeating "the same ar~enttor. each of the p + l 

y's :tn succession., .it 1s firuill7 shown that every point of 

SP can be wr1tte~: a~ a· linear combination of the Yi's with 

the su:mof the coefficients equal to one. Hence, since 

11
0

, • •• Yp wa~ anz set of p. + 1 linearly independent 

points of Sp, the Theorem :ts proved. 

II. 3.22. Theorem. It y
0

, ~· • • , y~, (r < p), are r + l 

linearly independent .Points in a p-tlat, 8,o , of R(11 >., then 

it is always possible to f.ind p -r mox,e po'ints., 

fox-ma set of p + l linearly independent points which 

determine Sr• 
Proof •. · There are p + l linearly independent points, 

x O • .. •• • xp, which determine Sr• Carrying through the 

same prooedure as in.Theorem II.3.19, it !a round., after 

r + l steps, that y
0

, ••• , Yr, plus p -r of the set of 

x.• s, form a set o:t:. p + 1 linearly, independent points which 

determine the p-tlats, Sp• · 

II. a. 25. Lemma. Let x
0 

• • • • ,. x P be a $et of p + l 

linearly independent points lying in a p•f'la.t, Sp~ 

(p n-1}. Let xpt, be a point ot Rt"h) which is not .in Sr. 

~en x
0 

, • , ·• , xf , xf-t, · torm a set of .. p + 2 linearly 
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$ndependent points. 

Proof. Suppose the points, Xo» • .• • .. ,xf', XP-t-1 t are 
linearly , depend,en.t. Then the vectors, bt, .- • x

0 
) ; , , • ' _ • • , , 

(x_Pt, • x
0
), are linearly ·dependent. ,, ~at is, there exist 

' ' 

.. constants., ai, (1 = l, ·• • • , p + 1), not all 2tero, such 

that 

Now a p+i is different tx-om zero, since it has been assumed 
' ' ; 

that the points x
0

, • ~ · •• , x f' .are linearly indepe,ndent. 

Hence, f ' 

- ~ 

l = I 
a . (x. - · x ) • .. l l 0 

Dividing by •ap+, , one obtains 
- - . , r 

(x ·· ,. x ) = b . (x. - x
0 

} , 
Ptl o <'=r . <- · 4 

· vihere bi. = s.i / .-aP+' • 'Hence 
p 

x· = (l - ?' bJx0 + 
Pt I (-::. I 

p 

Setting ,(1 -- L 6). = bo • then 
1'.=1 

Jt P-+1 - = 
(> 

zb.x., 
l= 0 c. l 

p 

2-, b.x .• 
, (. . l 
L = I 

i b. :: l, and . ,( (. -:::.o 

b . =· 1. 
t 

This implies 'that X P+·, is in Sp, contradicting the''' ' 

assumption that xPt, is not in Sp• Hence the point.a 

x
0

, • • • , xp, xPti must be linearly independetlt. 



· II. 3.24. Theorem. If .~ p--fle.t, s19 , -and a q•flat, S~i' 

(p,q < n), have an r•flat, Sr, (r mfn(p,q)), in common, 

63. · 

_ then the whole configuration ,ties in a (p + q - r) .... flat. 

Proof. S"' is common to. both SP and s'1.. s r- i .s determined 

by r +.l linearly independent points., x 0 .,. • • , . xr• By 

Theorem II.s.22, since these points lie in SP, p ..... r 

other p·oints, yr+, , , ·y P ., all . ly~ng in · SP and not in 

Sr, can be. found so that 

form a set of p -t- l li~early. independent points .vihich 
' ; 

determine Sp• Also, si.n.ce x.
0

, • • . • , , xr ail lie in Sg, 

q - r other points,. z r+i ,, • • • , z<:l, all lying in Sq 

and. not in. s, can be -found eo that r - . 

'Ii • -, ,. , , . X t Z -_ --. t · • <ii • ; Z -'1 
y ,, r+1 

form a set of q + l linearly independent points which 

determine Sep The points y r+i , •• •• , Yp are linearly 

independent , with the po:i.nts determining S'i, · by Lemma 

II~3.23, and the points Zr-+• ; ••• , Zq are linearly 

independent with the points determining Sp, by the s8.!11e 

lemrnA.. Hence, the total number of ,linearly independent 

points in the configuration is 

(r+. 1) + (p ·~ r) + (q - r) = (p + q ... r + l). 

This is the number o:r linearly independent points required 



to determine •· a. (p .+ q_ - . rJ-.fla.t. c.;earl.Y, this .. 

(p + q - , r) ... flat contains all:th~ po ;nt~ of b<:) th s P and 

s1 , an~i the theorem is ~~,ved. 

lI.4.l. $ome mathematicians t ·eel that one of the most · 
' . 

important :theorie$ 1?1. analysis is that of d:tlriension. There 

have. been man1 deftn:ttions .of _dimension, .. the ea.r~y- _ones 

being quite vague and , intuitive, Such .me~· as Qant()r and 

Fefu1o· first made it clear that pr~cise definitions of 

d1men$1on were needec;i ' w~en they ·. produced exrunples ·eon tr a .. · 
. . . . . ' . 

dieting some ot the ·beliefs eonoerning dimension~ ·-. These·· 
' . . . ' . . 

' ' 

examples ahowed · that the dimension of a space· can b~ changed 
' , ' ·. ,, 

by either a on.e"".to•.one t~anefprmation or by · ,i cont;fnuous 

trans:t'o:x-ma.tion. 

Th_ .. e .que. stion as to whether a .one-to-one · knd .-. ,. ------
' ' 

continuous transformation · can change · the dimensi,ort: of a 
' . 

_· space was answered ( in the ca'se of Euclidean spa.ca) by 
' ' ' ' ; ' 

. BrouVJer in .l9ll [ Bro;uwep, , (1)] • .when he showed that 
·. : ; .·· ' ' ,., . 

m-dimensione.l l!.'U,cl1dee,n space. cannot . be .the continuous 

an~ one-to-one image of n-difuensional Euclide:an · space, 

unless m = n. . !n other words, dimensio~ ~a a topological 

property of Eu~lidean .· ~pso~. . -Brouwer further showed 

[Brouwer, (3) ] , . that n-dimens1onal . Euclidean spaQe 1·s 

precisely . n-dimansi9na:L. · 
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In 1922 1\lenger ·and Urjsohri independently gave a · 

defini tio~ of dimension which is applicable to very general 

set~: or points in a metric .se:i;iara.b1~· space, [ Menge:r, (1) 

-and (2Jj and [urysohn, : (l) and (2) }. TJ:ils work ·was 
independent of Brouwerts: wQrk. and,, while it closely 

followed -the worlt ot _Brouwer, there were improvements as 

well. 

H~ewicz and Wail.lman use the: def't:nlt_:ton of Menger 

. and,l.lryeobn to. prove· that 1 n--d1mens1onal Euclidean ·apace is 

p·reoi sely ., n•dimensional · [ llurew·:t e 1~ Wallman, -. ( l) , Chapters 
. . - · 

II, III, and 1.v-·] /< This 'definition is as · follows:" 

I'I~4.2. Detin1tion 
1. The empty ·st;)t and only the emptJ' set has 

'dimension . .. 1. 

2. A space X, has d1mens1otl$n (n~ O) at a point 

p· if p .has arbitrarily small. neighborhoods \vhose. boundaries 

· have dimension~ n - 'l. · 
. s. · X. has,- d'imensi'on ~in 1r· X has, dimension~ n at 

each point. 

· 4. X has dimension n at a point p if it is true 

that X bas dimension· -~ n at ·p ·and it is false that X has . 

d1mens1on n _.;. l at P• ' 

5. X has dimension n 1~ ditnX ~-n is true and 

d1mX s;;; n - l is false • 
. 6. X has dimension .oo if ,dimX n is f ala a for 

each n. 



(11) 
The proof that R has d.tmen.sion .. · n is by 

\ 

induction. The proof .that dim N,); n. ;requires the· use 

~f the Brouwer fixed point theorem, the notion of 

separation or sets, and the :tact that a subspace of a 

spa.ca of dimension n has dimension n. 

II.t.h3.. Theorem.. Any p•tla.t, SP, (O < p n-1)., in R <n\ 
(p) .•. ·. . ' ··. ' . ' . its 1somet:r1e to R · , and hence is, p•d:tmensione.l. 
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Proof. Let SP be a p•flat' in R fnJ, artd, let x 01 x,, •••. , x.P, 
be p + l linearly" independent po int s v,h1cb de term1ne Sp •. 

Every point x in Sp ca.rt be uniquely represented as 

tII.4.4) 
p 

.1t = L c{,X·, 
' . l l 

l::: () 

f' 
Rearranging terms and :remembering that o(0 = (l - E of,·), 

i::. I 

{II.4.4) becomes 
f' 

(Ir. 4. 5) x.= x 0 + 2 ~-(X· • X 0 ). i=, \· t 

Oons1d.er a new set of coordinates for J\<)1,, 

obta~ned by a translation., with the new origin at the 

point x. 0 • Then the vectors (x, • x0 ), • • • , (x r - ·x0 ) 

will be p linee.r~y independent ve~tors with origin at x.0 • 

Denote these vectors,. for the sake of clarity~ by 

y-
1 

, • .. • _ • 'Yp. ·w1tb respect to the new coordinate 

system of R (n), these vee.tors eviden.tly form a bas1.s tor 
SP., since every point x. in SP oan be expressed uniquely 

as a linear combination ot these p linearly independent 



vectors. With respect to the new · coordinate system the 

point ·:x or Scan be written 

x' = o< y · + 
I . I ... . • + o( P Yp • 

.(The · point x. • is the same point .as the pcdnt x, but ,the 

·coordinate system ·has just been changed.). · 
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Since aEucl;t'dean space . is being considered, an 
. 71 

. . . . ( . . n ). . ~ - (jl t < ) ,r . inner produet, Y' ,Y . · L. y • -y J , and a. norm, 
i::;: I. 

llY' I\ rt· (y(J): if are defined for all points y• 

lrd e.nd yn in ll • 

· Now by the Gre.m•Sclimidt''\.orthogonalization pt-oces.s, 

from the set of p lfn.aarly independent veators', 

y 1 •• • • • , • yf , one can construct a set or p orthonormal 

veetors as follows [Hai~os, (l); P• 9al*: 
Set 

. Cf', = s, I II g, fl .. 

By induction, set · 
K 

(II. 4. 6} g i:: Yl<+1 - L (y , lflt. ) <f1· , 
. . 1(+1 i~ 1 l<i1 

I<' 

Now, (g ,<+, •· 'fj) - b 'r<t, - f • lf\ ) Cf.: ''Pj ) 
= (y Kt, I <f j, ) - (y({'f-1 I c.pj ) 

= O, (j = 1, • • , k). 

* For original papers on this topic,. see [Gram, (l} l ancl 
[Schmidt, (1), P.• .442]. 



Henc~,. gK-fl is orthogonal to Cf j , (j = l,. • • • , k). 

Consequently, <pK 1 , is orthonormal to Cf\, 
(,1 = l, • , k) • 

Continuing· in this.manner until the y•s are 

exhausted, p orthonormal vectors, 

will be obtained. Each <pi is a unique linear combi-

s,n-u- linear combine. tiom., .· of <D · w • • • 
t1 J1' l:i_"'·• 
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linear combination of Y,, ••• , Y'p• and hence is a point 
of Sp• Conversely, if one sol.ves the set of equation ·. 

(II.4.6) for :y. , one sees that y .. 1.$ a unique linear com.bi-t ·l 
nation of cp • •• •• , q,. ·, (j =· l, ••• , pJ. Therefore, , . ·•, ) 

since ·every point in SP is a unique linear combination ot 
'Y, • ••• , yp, it is.also a. unique .. linear oombination .. of 

. , • ·• • 1 c_p P • T.b.1 s means that: ~,, • . . • • . , <p P form an 

orthonormal basis for Sp• Oons.equently, if x is any point 

in Sp, with respect to., this coordinate system, 

One ee.n extend this be.sis to be an orthonormal 

basis for R <11
\ For x E SP, the components, Cf pt,•, • . .. • ., cp11 , 

will all be,zero. 
Now to each point x in sf with components 

( ~', • • • , fp ) , make correspond the point x• in a<FJ with 
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components f ~,, .• •• • • ~P ·)~ ·· Th.~s correspondence is 

one•to-9ne a11.d. dista:n.ee 'is preserved, . . sinee only Euclidean 

spaces a,re .being_ oo~sidereci.,, and si:nc.e the distance between 

points~--. e.n.d x* of. SP. with: components (~,, ,; .• , f5p) and 
. .( f' ,, ) I ( Pt, • • , ft> respe6tively is -- ~ ( fs1. - f 1.''f) i 1: • 

With the law of correspondence stated a.bov·e ·, the distance 

betv,een the image points ,:g: / and x*' in fttfJ 1s precisely 

the satne. Hence, on~ eonelud~s that s r and R(r). a.re 

isometric. 

Now a metric space is a topological space. If 

two· metric spaces are •:\1sometric: .:they are certainly 

homeomorphic as .topologica.'1 spaces. For if x. ls a liini t 

point of one space-• since . distan.eas are··.pres.erved~ its 
,. ' ' . . 

ilne.ga Will ee:rte.inly be a limit point of, the other space. 

Since, Euel1d~an spaeea ·, wh1ol'i . are separable 

metric spaces, are being considered, it oa.n only be con• 

eluded that a p-fle.t, SP:~ . llaa din.tenaion p, since it 1s 

homeomorphic with R (f >, and since .th~ dimension of a. 

Euclidean space is invariant undet' a one-~t9-one and 

continuous transformation, and theref'ore certainly .under 

a homeomorphism. 

( VI J 
lI.4 •. 7. Remark • . In· speaking of a p•flat, SP, in. R . , 

(p < n) ,. one would like to ba able to speak o.t' open sets 

of Sp and 'interior pointa of a set. in Sp• With respect 

to R·<n); no set of SP can be open_, s _ince every n-dimensional 
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neighborhood of a point in Sf, contains· points of R(nJ which 

. a.re not in Sp• That is, no point of a set E in Sp oan be 

an interior ,point ot E relative to R(n). 

It is convenient to consider · sets v1hich are ·open 

.relative ·to. SP. .Let U be an n-dimens:tona.l open set. Then 

the set un SP 1s called open relat~ve to Sf. Similarly, 

let E be a. set in.· Sp• · If :x 0 is a poin .. t of E' such that a 

ne1ghborboo~, .N~(x" )()Sr• _is ccnnpletely contained in E, 

then x 0 is called an in~e1~1or point ·or El rel.a.tiva to Sf. 

I!.4.8. · Remark. Let_)? be a continuous, or1e-to-ona, 

transformation defined otr a cc,nvex region E of! R (YJ,, with 

nothing sa:t.d concerning ite·val.ues outside the regionE. 

A question which one would logically ask1s:. Does the 

image of E under the transformation F still have 

dimension n? The answer was ··g:t.ven by Brouwer· who showed 

that the continuous, one-to-one image or an n-dimensional 

region is also n•dimensione.l [Brouwer, .(2) J. Let Sp 

be a p-flat in R <11 J which passes through E.. Then spn E 

is an open set relative to :Sp,, and hence is p-

dimensional. 11:heref ore,. acoord1ng .to Brcn.iv,er; a 

continuous and one•to-one. unage ot spnE is also 

p-dimensional. :t.t ca.rt never happen, therefore, that the 

image of spn E will be of'· different dimension than Sp 

under a continuous, one•i.io~one transformation. 
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II. 5 • . FTJRTHER PROPERTIES . OF p-FLATS 

IJ,.,.5 •. 1. Theorem. Two distinct p-f'lats, Sr and S (2.-, r . ' 
which both lie in a (p + 1)-f'lat, S p1-, , · must intersect 

in a (p ... 1)-fle.t, ii; they intersect at all. 

Proof. Without loss of generality, the. coordinate system 

of R (-nl can be assumed to be such that any point xi _ in 

s 17+t . has the coordinates 

(1 ) 
:X: i , X C Ptt) 0 !I ..: - , . , . • . ,. o. 

This is a consecpence of Theorem II.4.3. Then with respect 

to S Pi, · , the . p•f lats, .s ~' · e.nd. S >. , • will be P""'dimensional 

hyperplanes. Each ca.n be represented as a single equation 

in the p+1variables, x <, 1,. •• · • , x(Pi'): 

s (1) : a :x:<,l+ • • • + a :x?>+rl + ar-P. == o, 
(II.5 .. 2) p I P+, 

g<z) • b 4(1) + • • • + b f'-t I JP+•) ·+ b -· o. p • 
I pt :2. 

It the two hyperplanes intersect at the point 
(I) .x = (x . 

0 O . - <p+•l O · O} • , .xo , ; .•. . , . , the two · equations 

of' (II.5.2) will then take the form 

. . ( I ) (I)) ( (Pill (Pt•l) o, a -(x .. - X + • • • + 0. X -:x: = 
I / . 0 P'f-1 . 0 

(II.6.3) 
b t,/1> (I) b ( (pl1) cpt1)) o. - x . + • • • + X -X = 

I 0 pt, ' 0 

This · system of equations has exactly p .;#: 1 linearly inde-

pendent, non-zero· solutions., [ Bocher, (l), P.P• 49.,;,52 J, 
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• • ht;+' .. x.Cti} (1 = 1, • • • • p-1). 

Since x 0 was fixed, this means that there are exactly 

p - l linearly independent points, xi, (i= l, • ·~ •• , p-1), 

xi. :f:. x 0 • which satisf7 (II. 5. 3). He.nee, 

(f} bx.+• 
' l, 

(1 = l, . . . , 
(I) 

b, XO + It + b P+, 
(Pt1) 

X = 0 

This means that the points, x., 
L. 

(1 = l, •• , p~l) satisfy (II.5.2). 

Since (ext .. X 
1). • • • ' (:i-5~··' - x~:t•l >), 

(1 = l, •• , p-1), are linearly independent, then the 

points x 0 , x, , • • • , xv+, are linearly independent and 

hence determine a (p-1)-flat. The points 

are all common to both s~} and s(z) p 

and there are no more linearly independent points common 

to both flats. Hence, it must be concluded that .the two 

fl t S. <i1 an· d.· S (2.) p- as. P . P intersect in a (p•l)-fls.t, proving 

the theorem. 

l!.5.4. Theorem. Let F: r(O.(:x.) 1 (l = 1, ••• , nl, be a 

continuous, one-to-one transformation defined on a convex 

region E of R c(~l, such that p-flats map into p-:rlats (p 

fixed; l p !S n•l). Then distinct p•flats map into distinct 

p-flats for points of E. 

Proof. Suppose the theorem is false. Let S (n and S (.z> r P 
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be two distinct p•.flats, containing points or E, such that 

s ~11n E. and s ;>n E map into the same p-tlat, Tr• There are 

two cases. 

1.. S ~., and S~' · intersect in ls in a (p-1)-flat, 

sf-, • Since dlmenaion is preserved. by a one.-to-one, · 

continuous .transformation,· the linage of $ P-1 n E. must be 8. 

(p-l}-dimenslonal r$gion. 

t.J!be point sets S ~' 7 n E .and ac;, n ll are p• 

dimensional regions to~ they are open, connected aets 

relative to S ~,J and S ~> .respect:tva~y. Hence, the images 

of s ~'n E and s~' ()B must both be i1egions in rr,,. Since 

S ~1 > and S ~) intersect, then their images .must also have 

points in common. In fact, the image sets must have a . 

whole .p-dimensional :region, 0', 1n common. Since the 

image of Sr,, must be (:p-l)~dimensiona.1, then there are 

points of G • which must be the im.ages of two distinct 

points, one in s;• 1n E and the other ln s~>n E. This 

contradicts the ass.wnptlon that the mapping ls orie.-to•one. 

Hence$ case l cannot occur. 
2. The p ... flats, s ~J and s ~> , do not inter-

sect in a (p•l)•flat 1n E. In this case, choose p 

linearly independent points, x, .1 • • • ; xp, ot S~1n E, 

and choose x 0 to be .• a .point of S~7n E which is not in 
( } . • . • • .. • • .. ·. . • • . • . • • • .. . . · S • '?hen x 0

, x, , •• • , xF' torm a set of p .+ l linearly 

independent points and hence determine a p•flat, S ~J , 

which intersects S ~•J in E in a (p-1)-tlat, SP-, ., By 
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(1) . . . . . . ( ) .· . . . ·.' 
case l., .s P n E and S/ Y) E must map into distinct p-'flats, 

T P and T ~3
). · The two p-fla.ts. TP and T~), mu.st contain a 

(p-1)-dimensional region in . common, ·the image ot S P:-r • 

Consider the point x
0

• By· hypothesis., F(x 0 ) . is. 
' (3) 

a point of T P. · But stnce ~0 is also a point of .S f1 , then 
. . ' ' (3) 

F(x0 ) must belong to T p .. Hence,· F(x 0 ) belongs to the . 

. intersection ot T P and !I'~)• This means that F (x 0 ) belongs 

to :the images of both S~1n E and s~>n E. 'lhis means that 

F(xo) is the image of two distinct points; one in s ~1 n E 

and the other in S ~> (l E.. This contra.diets the assumption 

that the mapping is one-to--one. Hence case 2 cannot occur 1• 

In either ca:se a eontr'adiction has been rea.ched~ 

Bence, one must conclude that for points of E., distinct 

p•flats map into distinct p-flats. 

II.6. p-CELLS AND THEIR PROPERTIES 

Recall the definition o:r a p•cell, oxr,· aa given 

in Definition I .• 2 •. 1. Some fundamental properties of p•oells 

will now be de11eloped. 

lI.6.1. Definition. Let LlXpbe a p-cell with ver.tices 

x
0

, x, , • • • , Xp• U one chooses from this set of points, 

a subset of k + · l points (-l~k~ p)i then the k•eall 

determined by these k + l points is called a k-dimens:tonal 

race of the p-oell, ~xp• If •l < k < p, then the k•cell is 

called a proper face of the .p-cel1; otherwise it is eilled 



an improper face. 

Clearly, apo:i.nt 
p 

X = ;E_,~.X· ··• · \ 1, I, ., 
t.= 0 

c:<. -?- ·O, 
t 

of a P•cell, -.4 xp•' is · on a p~oper face or the p.-ce11· if and 

only if at least one of ·the , d. ls is eque.f to ze:ro • 

. By the .definition of· a l•:f'lat (straight l1x:,.e) • 

the straight line through two. dist1nctpoints., x, and x.:i., 

is the set ·ot •,all points 

where a(, + o( 2. = 1 •. . 

II.e.2. Definition. The subset of' the line, 

o(, +. o( -z. = 1. 

for which c(, ·~o, c{,_~O, is called the segment, x,x.:z.. 

(From Definition I.2.1 .. , it is also the 1,-.cell determined 

by x, a.nd . x 1 .} . 

II.a. 3. Definition. A point set E of R <>, l ls called 

convex it .for x, E E . e.nd ii f E 1t ·:rollows that x, x:i. belongs 

to E. 

IX.6.4 .. Theorem. A p•cell 1s a convex set. 

Proof. Let x 0 ~ x ·,, • · • , , xp be the vertices of the p-eell, 

L1 xP., Let x.' and x,11 .be any . two points of Ll x.P. Then 



and 

p 

.x ' = ·~ C\'.\ Xi ; 
i;: 0 

x" = 
i :::o 

o(, 0, all i, 
l 

6, == 1, fJ.· >., 0 , al 1 i • 

Every point x of x•x" can be expressed as 

(II.6~4) x =ex'+ (l - a)x" 
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where O e l. All the coefficients of (II.6. 4) are clearly 

o .. 

(II.6.5) 

Consider the sum of . the coefficients of (II.6.4): 

== e ( c{ 0 + • • • + c( p ) + ( 1-e) ( po+ 

= e + (1 - e) = 1. 

. .. . +pf') . 

Hence x belongs to AXp• Therefore the p ... cell, AXp, is a 

convex set, proving the theorem. 

II.6.6. Theorem. Let x 0 , x,, ..• , xf', (p .:::-n), be p + 1 

linearly independent points of R("Yl > which detennine a p-flat, 

SP, and a p-cell,; l).Xr• Then apoint3C} of L\XP which can 

be represented as 
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p 

* X. = 2 ·c1.=· 1, . ' o( i > 0, e.ll 1, 
. l ::o 

is an interior point of ~xf' re le.ti ve to Sr. 

Proof. Any po:int x = (JtY) :xl,., • • • ,. ., xnl ) of Sr cu1n be 

represented uniquely as _ 
p p 

<i> ~ -·p . _(j. ) X ::: L-. •X, f 
i==o ' . ' . ~· 

Z, r,= 1,. H = 1 •• • ,n). 
i.:: 0 . 

For' any given x of Sr the p ·•s are uniquely determined. .It 

\Vill be shown that the · p's .are continuous functions ot x. 

Consider the equations 

(II.6.7) 

(I) 
X = + • • + f3 xlr > • I p f' I . •· . ~· ;; . .. . . . .. . •· . . . . . .. 

(fl 
X. = Ro x(OP 1 ,L 13, .~ lip) ~L rj ,.. , x -r .• • • + 8 x' r> IP r, 
•• 0 • • ••• * •••••• 

+ e x(Y11 
Ip p I 

1 = + ••• + f 

Since the points_ x 0 • x,, ••• • xP are linearly independent, 

the rank of the matrix of the eoet'f 1c1enta of the p ts is 

p + 1 (See Definition lI.3.2.) Furthermore, since the r •s 

are uniquely determined for a givenx, the augmented matrix 

also has rank p + 1. · 'l1hat is; all the G(n + 1, · p + 2) 

determinants of the form 

0,) ( J,) <i,) 
Jt XO • .. • • xP 

(II.a.a) • • • • • • . . . . 
)ijPt,) ( jpfJ x<ip+J X . • • • (J p 
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(' 
• • , x~:+.i) may all. be ones, 

and where the set of superscripts (j 1 , ••• :# Jp .. ) 

represents one of the O(n+l, p+2) possible choices of 

p + 2 ot the n + l rows· of the aug.mented matrix ot the set 

or equations (lI.6,,7). 

The rank ot the matrix or ·the equations (:CI.6.7) · 

is therefore equal to the nwnber of unknotms. Hence, 

picking out a aet of p + l of the n + l equations ot 

(II •. 6. 7) • such ·that the determinant or the eoetfie1ents of 

the (3 •s is different from zero, the ~•s oan be solved for 

uniquely by Cramerts Rule. The set of p •s thus determ.1.ned 

will be the smn.a as those determ.ined if any other set of 

p + l of the equations of (II.6.7) is chosen such that the 

determinant or the coeffic:tents 1$' different from. zero. · 

[Bocher, (l), p. 46:] Suppose the equations chosen are 

(I) (' = B .XJ1 + B X J,) + ro o .• r I I • • 
(II.6.9) •· . . . . . . . . ... . ;. . . . . . 
the set of superscripts :repres.enting the p·roper choice so 

that the determinant of the coefficients .of the p•s is 

different from zero. 

Solving for (3 . ~. r' • 



(II~6.l0.) 

( i ) 
X'.' "' 0 • • 

t S, \ 
X . 

.'. ......... •· . ... . 

. . .. , ......... . 
• • 

Expanding (II.6.10) by the ith column: 
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, (1 = 0, • -~ , p) , 

where the numbers A,; K are constants defined by 
I 

= 

•• • 
. d,> 

X, ,-, 
d,) x. 

· I ti 

• • • • • it • .:. •· • - • • 

j • .••••••••• . • -

( iPt,) ( iP+ ) lJ. ) . .X<J.pt,) ' XO I 'V Pt• XO • • • . ~ . • • • p 
L-1 , ti ( ) ------------------, · k-= 1, ••• ; p + l • 

X ri,l ·• ..... _<i,) . . . . . . . . . . 
0 p 

• • • • • • • • • • • • 
. .. •· . • • • • • 

Hence, ·p, is a continuous ;f'unction of x (1= O,. ••, p). 

When x = x*, f i = o( , ( i = O, l, • • • • p ) , and 

a{ . ) o. 
' 

In faot,. there s.re numbers E, > 0 such that 

c{i > f; > o, (1 = o, 1,. • • • , p). Let E' = min 

all i. Then I 
o(i > €: > o. Since f3 i is a continuous 
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function of :x:, then for every sufficiently small E:, 0 

(in particular, for E.'; OJ, there is a Ji> 0 such that 

whenever ux*x(I < Ji , x E NJ. (.x*) n Sp, (1 = o, l, • • • ,: p), 
L 

l,e t J ' = min { Ji ) , ( i = O, l, • • ·~ f pl. Then 

whenever x e- N 6,(x*)n Sp, (1 = 0, l, ••• , p). That is, 

for all points x EN O, (x*) nsp, 
I 

~' > c{, - €.. > ~. (1 = o, , .• • , p). 

Hence, in a su.ffieiently<ame.11 neighborhood of' x* (relative 

to SP), all points x can-be represented as 
r 

X = ~P' X· . . t L 
t=o 

and these points belong to i\XP. Hence, x* is an interior 

point of ~xP relative to Sr• 

II.6.ll. Oorollarz. It f'ollows from.Theorem II~6.6 that 

if x* is on a. proper face ot axe, then 1 t is a boundary 

point of ~xP ·relative to Sp• For if x* is on a proper 

face of L\X.p,t then at lea.st one barycentric coordinate of 

x*, sa.y o(i • 1s equal to zero. Since the o( •s are 

continuous .functions of x and since the representation of 

a point of SP is unique,_ then in every .small neighborhood 

of x.* (relative to ·SP) the:re are points x of SP such that 
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the corresponding c(, is < 0 1 and hence aueh points do n.ot 

belong to ~x.f. Renee, x·U· ts a boundary point of ·.· A Xp. 

Il.6~12. Remark. It might be well to ·mention. he1:e another 
~haracteriztition of a p ... fla:t in R("Yt)• By Definition lI.S.13, 

a p•flat, sf, is the set _of all po1nta x or Rth1 such that 

X = 
p 

2_, qi.Xi. , 
L=o l 

p 

2,· cf. = 1, , ( j = 1, • • • · , n), 
i=o i 

where x 0 , • - • • , xp" form a set of p + l linearly independent 

points of R~l\\ It is further shown that the representation is 

unique. That· is, the equations 

• • • • • • • • •• • • ·• . . 
(II.6.13) 

tn) C-n) o( x· ('n) 
X = o(o X o + • • • + f'. 

1 + ••• + c(p 

have preeisely one solution !'or; the o< •s.. From the work in 

the last · theorem, it follows that the rank of the augmented 

matrix 

X <11 (I'\ x?l) XO • • • p 

• • • • • • • • • (II.6.14) 
x(Y\) (-n) x(">'lJ Xe • • • p 

l 1 • • • l 

i.s p + l .. That is, all the p + 2 rowed determinants :formed 

:from the matrix (II.6.14) must vanish. This is expressed 
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as 
(J·,) (J',) <i,) 

X :x: 0 • • • xP 

(II.6.15) • • • • • • • • • = o, 
.X( jpt-:i.) xciPt,\ • " • • X(J0

Pt> 
p 

where the set of superscripts, ( j 1 , • • • jP-t:i.), represents 

one of the C(n + l, p + 2) possible choices of' p + 2 of the 

n + l rows of the matrix (II.6.14). (The numbers, 

~tjpt:z) , xr1Pt:i.) , ••• , x.ctPt-:il may all be ones.) 

Therefore, the points x of Sf must satisfy the 

C(n + 1, p + 2) equations of the type (II.6.15). 

Conversely1 consider the set of equations 

(1) 
X = . .. . 
. . . . . .. ., . . . . . . 

(II.6.16) (-n) 
X = • • 

l = 

where the poihts, x 0 , x, , • • • , x r are linearly independent. 

Suppose xis such that all the p + 2-rowed determinant 

minors of the augmented matrix of the equations (II.6.16) 

vanish. That is, suppose that x sat:tsfies all C (n + l, p + 2) 

equations of the type 

<i,) <J°,) (i,) 
X XO • • • x.,, 

(II.,6.17) • • • I • • • • = 0 
l~pti) (Jpt~) X(jPt>) 

X XO • • • p 



where the superscripts (J, , • ~. , jP+~> represent one of 

the C(n + 1, p .+ 2) possible selections o,f p + 2 or the 

· n + 1 rows of the augmented matrix or the e·q_uationa 

(II.6.16). Then there ls a u.niqu.e solution tor the J3 •s 
..... 

and by the definition of. a p .. tle.t, x. lies in the p•flat 

determi.ned by the p + l linearly independent points, 

'!'he eonelusi<m is that the p-flat, s,,, is 

composed precisely ot the -set of all. points x or R(11 )whlch 
' ' ' 

satisfy the . C(n +· l!J p + 2} equations o·:r- the typ$ (II.6.17). 
, . • ' . • ' ' ' ' ' • • ' ' l ' ; •• 

'mlat is, s Pis ~haracterized bJ this set of equations. 

II.6.18. '.rheor.em. Let :x0 ., ••• ~ . xr . be p + l linearly 
· •.. .. . . tn) · 

;ndependent points .•of R · which determine a p•flat, Sp, 
' ' ' 

and a p-cell, A Xp• Le; .~* be . an interior ' poin~ ''ot ,1 xP, 

with respect to Sp• Then every straight line th:roughx*, 

lying in SP , intersects the bcnmdary of CJ xP in exactly 

two points._ 

Proof. The p-eeli D. xp . is a closed and bounded convex .set 

with respect to SP. It can be shown L Alexe.ndrorr-flopf, · 

(1), PP• 5~9~600 l · that if M is ·any closed and bounded 

'9onvex s':lt of R <P) and if ,x* is interior to M with respect 

to R {f), · then a straight line through .~ intersects the 

boundary of M 1n precisely two points .. It is first proved 

that a ray drawn from an interior point of a convex set 

intersects th~ ~oundary in at most one point • . Ir a set M 

is closed and bounded, , fu.e!l !3-n7 ray.from an interior point 
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or M intersects the boundary of M in at least one point • . 

Hence, if Mis a closed, bounded~ convex set~ a ray from 

an interior point intersects . the boundary .in exactly one 

point.. Therefore, any -straight line through an interior 

poin .. t of M intarsaets the boundary 1n exactly two points .. 

For . the purposes of this paper the following 

theorem, although not so strong as Theorem II.6.18., is 

sufficient •. 

II~6.19.. Theorem. Let x 0 ; ••• , Xp be It+ l linearly 

independent points of R <n), which determine a p-cell, 1.1 Xp, 

and a p•flat, .Sp• Let x 1 be any interior point or L\Xr• 

relative to Sr. · Let ?tfl be any other point _of Sp ••· Then 

the straight line through x• and x" .intersects the boundary 

or ~xP in exactly two points. 

Proof. · 'rhe proof is an immediate .consequence of .the follow~ 

ing lemma: 

II.a.20. Lemma. Let x.0 , ••• , Xr be .p + 1 linearly 

independent points or' Rtn) which ·de.ternuna a P-".eell_, o.xp 

and a p .. flat, Sp. .Let x• and x'' be s.ny two points of_, A Xr, . 

at least one of which is interior to A xr, relative to ~P 

Then the straight line through x• and X 11 intersects the 

boundary of l!XP in exactly two points •. 

Proor. Suppose : x•.• is , interior to .L\ xf , relat1 ve to Sr• and 

x• is either interior to 4 xP or is a boundary point. T.hen 
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f 

Lo<,.=l, 
L = 0 

o{; ~O, all i, 

and 
(' 

x" = z·p--1· _· . ' - , t=.o 

where not every o.;," i. is equal to the corresp()nding r;,,. In 

·fa.et, ·since ,ct is distinct from x", then at lee.at two a(, •s 

~re different from the correspond!ng -~ •s. For if p of the 
. . 

o( •s are equal to the p corresponding f-> 's, then since the 

sum of' the d.. • s is one and since the sum of the p's is 

one JP the remaining o< is equal . to 1 ts · corresponding 13. 

Henee, each oe is equal to its corresponding _(3 , and the 
. . 

two points are not distinct, contrary to assumption. 

All the points -on . the str.igh t line through. x 1 

and x" ca.n be expressed as 

X:: 8x 1 + (1 • 8)x" 
. p 

= e(.2' c<', xc:J + (1 
i = 0 

17 

- 8)( B.x . ) 
i=o/' i 

. . 

= [9o<'o+ (1 - 8) ~Jxo+ • •• + L8<-¥p+ (l - 8) /3p1 Xp• 

For any choice of a, the sum of these coefficients · is equal 

to one, for 

= e + (1 - e) = 1. 



The problem is to find exactly two distinct 

values of 8 such that for each or these. two values,. a.t 

least one of the coefficients, [e~i'. -.. (l - 8) pt'. l , 
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(i = O, l., •• · • , p)., is equal to zero, and auch that the 

remaining coefficients are o. · OlearlY~ all such possi-

bilities for 8 are found by setting each coefficient; 

[9«, + (1 .. eJ~il, (1 = o, l., ••• . , p), equal to zero 

and solving for 8. This cannot always be done., since if 

o(1< = f 1-< , for some k, then the coefficient of' x" is 

9 di<+ (1 ... e) ~I< = Q rl< + rK • Q ~({ = PK, which clearly 

cannot be set equal to zero. However, by a previous 

remark, there al"e at least two ct 1 s which are not equul 

to their corresponding ,P 1s. Hence, one ca.n always find 

at least two possibilities ro:r 8. 'rhese possibilities 

for e are !'ound to be 

Q. = -t 

for 411 1 such that of. -:I: R., 
L r, 

o(· - i:I, 
t l"t 

The .following ls a table of values or the 

coefficients of .x. co?'reeponding to the possible values L . . . 

fore: 



Xo X, . . -Xp 

eo 0 
d.op, - q,/30 c/o f>r, - ctr (!> o . 

o<o - /3o o(D - f3o 

e, . c(I /3o __ o{o (3, 
c(, ~f - o! p?1 

0 . 
o/, - {3, c<,-/3, 

. . - - . . . . . 

O{f'ro - o(o ~p c{Ff, - o<,~f 
0 gp . . . . 

0( - !3f o(p - (d I° f 

Only values of ei w1·11 appear for those 1 for which 

o(i. :I: fi • 

. 
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r.fha lemma will be proved if preeisely two distinct 

choices of a in ·the< table· will. produce coeffic.ient.s which 

are all non-negative_. The' points, correspo.nd:tng to· these 

choices ote will satisfy the requirements for being on 

the boundary of D..Xr• 
p p 

Since 2 o( · = 1 and R. == l •. and since at 
i,;:o z. t'=o't "' 

lea.st two of the ct 1s are diff~rent from the. corresponding 

p 'a, ·then c<j >fci for at least one j and ct,-< < fl( for at 

least one k. Consider the ratios 

) . . . 
~I f3p 

Since there are only a fin.it.a number of these ratios, 

tl';tere must be at least o·ne which is smallest and at lea.at 

one which is largest. Suppose ~-v. / /3f.. is the smallest 

ratio. Since c{.P <~i then c{~ /~ < l. Suppose 
"" ' f.. 
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CS,/ Pi is the largest ratio; then c{ K / 13 > l". Arrange the rK . . K 

ratios in order ot increasing size; 

0~ 
o<'-e,. o("< . . . - . 
f>~ /-'1-< 

Consider e~ and eK. -(They exist since o{t-.-:/:. (3~ and 

c( 1< -4= f> K ) • Now e.~ :/: e" t since 

and 

Since 

~-e.. e - · > o i - -

e = -I< 

c{~ 

qi-. - f {.. 

<0. 
o(I-'.. - /3K 

o( i , all 1, then 
~i 

Since q'
1-e.. -i.e.. < O, then the ratios 

c<-e. f, - cr't P-£.. ----- ~o, 

all 1. 

all 1. 

These are the coefficients of xi. corresponding to 9-fi. in 

the table; hence ef.. 1s one of ·the desired choices. 

Similarly,, since ~,< of-a· , all 1» then 
~I< f ,• 

all 1. 

Since c<
1
{ - t,~ < O, then the ratios 
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~ese are the coefficient;s corresponding to .9·\< in the 

table. Hence,, -~K is also .a desired choice. 

l:t remains to be shown tha:t no other distinct 
. . . 

choice o~ e in the ·table yields a point or the line 

through x' and x" w1:11ch, is on .the boundarY of 6-ltr ·• 

Opns1der 81, . where 1 -~-.h, -k~. (Then . o{J. = PJ. , since ·othe:r~ 

wise there would be no 8J. . in the table). Suppose 
o( o{ = ~ -• . Then 
Pi ff.. 

e=--·-.· J. o(-8 
1 rJ, 

= - °'.J. §-?. 
/ . ' • -

c<i( ~j_ - cl.P. #i) 
o(_e,_ 

c<-?-( c{.! C{f.. f~) 
o{"'k 

== e-e-. • 

In this case, t~e points. correspond1Ilg to 9-~ and 0.L are 

not distinct. · A simile.r slt1.1a.tion occurs if = . o(K • 
h fJ.I, 

c:V-f-. o(J. . c< K . . · . . • .. Suppose < _ ·< - .. , and suppose that 
f3-R f11 fdv-

< h . Then, . since . ff.. - o(-t.. fd.t > o, the ' ratio 

qi.£. ~t. - o{~ ,Bl 

c{j.. - f31 
< o, 

and hence there 1s e. coeff ic1ent corresponding to 8i 
which ls negative -e.nc\ :this point is not in L\Xp• 

Similarly, if - ·. c{_{ >}_t , then 



a(1 ~K - qi< ~.Q 

c{J. - f; J. 
< o, 
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and again the point corresponding to e1 is _not in 6. Xp• 

All possible eases have bean ·exhausted. Hence 

there ·are ·precisely two ehoicas of e, 1n particular 9l 

and et<, , which. yield points. of' the line through x' and .x" 
which are on the boundary of A xF, proving the lemn:u1-

From this lemma, tho proof of the theorem easily· 

follows. Let Llltp be the p•eell with vertices x 0 , • •• • xP, 
and let x' be the interior point of _Axp, relative to Sp• 

It x" is any other point of AXp.t than by the lemma, the 

theorem ls true. Let x" be a point of Snot in AXp• 

Construct the straight line,_ L., throttgh· x·• and x" • Since 

x t is interior to 6 Xr, re1ative to Sp, then there is a. 

neighborhood, N 6 (x'), such that N O (x 1)(\sr 1s completely 

contained in tl xP. Choose x1
" to be a po-1nt of Ln NJ (x') 

different from x•. Since x• and x'0 are distinct, they 

are linearly independent and therefore determine L. Apply ... 

ing the lemma, using x• and x.•0 , it is seen that L inter-

sects the boundary of LUtP in precisely two points, proving 

the theorem. 

II.6.21. 'l~eorem. Let x* be an interior point of.a p•cell, 

xr., relative to SP, (2 5 p n). Let tJ (\SP be any spherical 

neighborhood of x* relative to SP, contained in AXp• Let 

Lbe any straight line thr~ughx*. !rhen there is a point 
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o.t un sp (Hence a.11 interior point of A "r) which does not 

lie on L. 

Proof . ; !he neighborhood un Sp is homeomorph.l e to Sp• 
. . -. . 

Hence, p + r linearly independent points (or ;-what is the 

same, p 1:1.nearlyindependent vectorsl 'can be chosen 1n 
unsr. 

Now L-- 1nterseets-· thj boundary of Un Sp in 

exactly two points., yl .and,-,__. by Theorem II.6.18. '. 

Consider the points x* and x t = i·x'J- + ½1;. lfhese two points 

are linearly 1ndepe·ndent -~incEJ they; are distincti ,,.they both 
lie on L, and th.ey- :both belon.g. to · un Sp• Let x~ be 

another point of Un Sp, chosen to be. l1nea.rly independent 

with x* and . x'. t.rhen the vectors (xiHf-.-:xit-) and (x •_•x*) are · 

l~nearly independent. 
It follows that the point ~t--J~ does not ·11e on L, 

tor it it did• then 

and 

But this means that the vectors (x*-1s. _x*) and (x' • x.*) are 

l.inearly dependent. ~r' This is a contradiction •. Hence, x 

does not lie on L, and the theorem 1a :proved. 

II.s.22. Theorem. Let x0 , x, , . •• , xp be ~ -+ l linearly 



92. 

independent points of I-f'l which form the vertices ot an 

n•eell, LlXn• Let F be a one*·to•one, continuous trans-

formation .defined .01+ ·a . conv.-~xre.gion E.whieh . conta~ns the 

~-cel.l, .~x?1 .t , and let .1 ·.~e, ,such that _.it . ~~p_s $traight 

lines into straight. l~nes. Then .all the p-e~ll fao~EJ .. of 

. 6Xn .map into dis:tin~t p•cel.l ta~es; .of 8ll n•cell, t1 FY\,. 

,u.nder the transformation . F, ( o -~ p •~ nJ • 
.. Proof. . The, proof is -by ,in~uet,i ;on on p • . . L~:t p = 0;. . Then 

since the. tranaformatio.n is one-to-.one, a.llthe Cl-cell 
faces (v~rt:tces) of A xn,map into distinct O•cell races 

of an n ... cell. L\Fn, which turns out to be noritdegenerate. 

Let p = 1 • . By, hypothesis .straight lines map into 

straight lines.· By 'lheorem II.6.4 distinct lines map into 

distinct lines. Since Ii' is one•to•one and continuous, 

then each of' the l•cell faces of AXn, ·tormecf '. by :·joining 

any two of the vertices of' : 4 x~ , .>: map into a l•cell} formed 

by joining ~he corresponding vertices of' A Fn • Sinc.e 

these l•cells must be distinct, this means that all the 

image points F(x0 .), • . . , F(x 0 ), taken three at ·a · time, 

are linearly independent. 

Let p = 2. Let L\(x, xi x, ) be any 2--cell or 
o I 2 · 

.dX-n, where '(i 0 , i,, i:1..) x-epresents a choice ot any three 

or, the n + l . vertices or ts xh~ The points xi · , lt,• . , and 
· , o . · I 

xi;i_ map into linearly 1ndepe~dent _points F(x~o .~, _F(xi:, l, 
· an·d F(xi ) by th:f!t statement above • . Hence. ~(F:xc X.: xi ) 

;2. . . :· . .. ' . . . 0 . }. . 3 
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determine a 2-flat, T:i.• By the induction hypothesis the 

boundary of · (x.: x.. x i,. ) maps into the boundary of 
() I :l. 

6. (F::x. x. x, ) • Let x* be. any· interior .Point · of 
. Lo LI ;2. 

Ll(xio Xi:, Xc::l. ) relative to Si' the 2.-flat. determined by 
. . 

x. , Xi: , and Xi: • .Let .x• be a boundary point of 
. Lo I . · ;z_ · . 

tl {lt.i 0 Xi:, x i:2.. ) • . Let L be the straight line through x* and 

X , .• Then L intersecj;s _tb.e boundary of 

exactly tV:,o distinct· points, x• and x~', by Lemma II.6.20. 

The points x r and x" map into F(x t) e.nd F(x") on the 

boundary of A(F:xi xi ·:X,: ) , by the induction hypothesis. 
o I ;2. . 

Hence, 
:z. :J. 

F(:x)) = Z ""'i F(x, ) , ~~ -= l, <=<· o, all j, 
J=o . J j:;o / . J 

' 1" 

and 
J.. .:l 

F{xn) = z f -F(x. ), 2 ·. = l, fJ o, all J. i=O J £ • j:o PJ J 

Since ·straight lines map .into straight lines and since F 

1s continuous and one-to-one, · then x~s- on L between x' and 

x" maps into · F(x~~) on the line segment F(xt )F(x") • and 

F(x~·) = eF(x•) + (l -8)F(x0 ), O< 8<1. 

Hence, 
2 

P1 (x*) = e( 2 q'1lf(xi , ))+(1 -e)(i t-?;F(xL )) 
f o o J . . J-O lo d 

= r0c<0 + (l • 8) foJF(xi 0 .+ [8c{2+(l .. 8)p)£•1 (xi~). 

Clearly, all the coefi'1eients are ? O since O < e < l, and 



the sum of the coefficients i .s equal- to one b~ the work 

in Lemma lI •. 6.20. Hence,, F(x*l is in. the. 2-cell, 

4{F:.xc: Xe: Xe: ). Since x* was any interior point of 
o I .:i. 

L\ (x, x • x • ) , then the 2-.eell (x, x,• xt' ) maps -.into 
Lo '1 '.:i_ . . • o I , :2.. . 

~(F:xi Xi: Xi ). 
0 I ;l. 

Let x be any point 01\ $2. n E not 1n (xl. 0 xi:, xL,.:t ) • 

Since S;z. n E is convex, x can be joined by a straight line 

L' to e.pointx*, interior to 4(,c. x; xi'). By Theorem ' . 'o I ;l. 

II.6.19, L' intersects the boundary of 4(xi Xi: x, J in 
0 ' ;J.; 

exactly tv10 distinct points, :x• and x''• The trans ... 

formation F carrias x' and x" into F(x') and F(x") on the 

Hence JI 

~- 0, all j, 

and 
:i.. 

F(x") = 2 £~F' (x .. ), r= 0 a 'J 
£ 1- O, all j,. J 

Since x 1s on the line through x• and x" and since straight 

lines map into straight lines, then F(x) is on the line 

throughF(x') and F(xlf)"' Therefore, 

F(x) = pF(x•) = (l - p )F(xtr} 

= f ( z -I. F(x, )) + (l - f )( z ~i F(x 1)) 
j:: 0 o J J-o o J 

:i. 

= L[ro -( + (l - w l fl F(x . . } , • J d J J ll . J'= O 0 

and the sum of the ooef.ficients 1 .s one. Hence, F(x) is in 

the 2-flat, T ;i. Since x was any point of S1 n E · not in 
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,1(x, 
0 
x ~, x I'.~ ) , it :has b~en shown the. t s;,, n E tnaps into ,~;z • 

~e same .argument holds tor each 2-~ell face ot 
By Theorem Il •. 5.4, the distinct 2~fl,ats determined 

; •· ; . .' 

by the vertices ot s.11 th,e,, 2-cell ,fa~es of tJ. .x)'\ ~st map into 

distinet; , 2•tlats, ,a.etermined b7 the· vert1~es ot the 

co~r~sponding ,image 2•eelt~, Hence, d~stinat 2-cell faces 

or . 4 x 11 must map :lnto ,distinct 2-cells, since they lie in 

distinct ~-flats. . '1:bis m.eans that the points F(x0 l, • ., 

F(xn) ,· taken tour , $.t a, time; ar~ linearly inqependent. 

Suppose 1t has .been shown '.in this ,ma~~r . :for 
•.. _, '1 

1 k ~-1, that all the k•cell faces of L.\ Xn map into. k•cell 

f~.ces and , that a~l >t~e .k•f'l.e.ts det~rinlne~. or .. the vertices 

ot' eEJ.ch k•cell face ;map 1nt,o k•f'lat_s, which: by Theorem 
' ' 

lI. 5.4 mus.t be distinct; . . then dist1n·~t -k:ce-11 · tac;~s or D. x-n. 

map lnto -;41stinct k•cel.l facea. It follows that all the 

points F(x 0 ), . • , • • ,:, F(xn.), taken k +· 2 at s. time, are 

linearly j,ndepe:ndent. · 

Oonsider the n""!eell, ~x)'l.. By the induction 

hy-pothes'i s, the point~ :x.0 , , • • • · , :xTt. map in to linearly 

independent· points., F{x 0 ), • • • , F(xh), (hence 

4(Ftx0 • · ·~ , • · Xn -) is non-degenerate), e.nd, the boundary Of 

L\X-n maps into the boundary of D(Ftlt o • • Xn). Let x* be 

any ;nterior point ot .L.LXT\. Let x• be a boundary point ot 

nxn. Then the line L through x• and x* intersects the 

boundary of L\ x n in exactly two di'stinct points, x' and xn, 

by Lemma II.6.20. By the .induction hypothesis, X' e.nd x" 
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map into F(x ') and F(x'*,) on the boundary of ~(F:i~. • • · xn). 

That is, 
-rt 

Fb:') = ? o( i Ji'{x i ) ' o( i 0, all .1, 
' (, -= 0 ' 

and 
n 

F(x") = ~,6,F(xi), 
I.-=: 0 ' 

f; >:,,O, all 1. 

Since straight lines map into straight l:lnes, and sine.a .F 

is one-to-one .and continuotis, then x-tl- maps into F{x~~} .on 

the line segment F(x•lF(x''). Hence, . 

F(x.i}) = 8F(:x') + (l _- e)F(x"), 

Therefore, 

i :::. 0 -

where all the coefficients are 0 and where the :awn of the 

coefficients is equal to one. There.fore., F(.xiZ.) is in 

,6. (F;x0 • • xn). Since x·U· was .a~y , intex-ior point of ti xn~. 

the induction is complete and the .theorem is proved. 

II.6. 23. Remark. It has actually been shovm in the proof 

ot Theorem II.6.22 that if F 1s continuous and one-to-one 

and maps straight lines into straight ·11nes, then p-flats 

map into p•flats, (l p n - l). 

II.6.24. Theorem. Let F be a continuous, one ... to-one trans-

formation defined on a convex region E in Rf">t), such that 
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p-tiats-map into p~flats for points ·1;n _E (p fixed;, 

l p~ n-1). Then straif3ht lines me.p into straight lines. 

Proof. The proof is by induction on P• Ir p = l,t' then 

stre.i~t lines map :into straight lines by .hypothe~i:3. 

Let p ==2. By '.rheorem II.5.4, distinct 2-flats 

map into di etinct 2 ... flats for points in . EL Let L be any 
. I. . ·•", " -'.- _ _ _ \ ' , • , , •: 

straight line in E. Thi'ough · L can /be constructed .two 
. ' ·;:·.' .,,_ ' ---.. . 

distinct 2•flats. ,This is easily -.done, . sino& in E therE.' . 

wilf,be a total of . n + 1 linearly independent points. The 
. . . . . . . . . . 

line 'L -is · determined by only two 11:rteariy independent 
' ' 

points. These .two, together with one morf:lnot. on L, will . . :. ' . :- ·, ,_ , 

determine one ot·· ~he required 2•flats., s;) ::: The smn~i two 

potntEJ togethe~ with one point not on St) will .det-~rinine 

the other required .,2•flat, s ~) • Since lt · 1s eonmioif ito both 

2-:-tlat~, and since the mapping is one•to•one andcontin~us, 

the.n Lt, the image of L nE is common td T ~) and 'T (i) , the 

int~ges or S 0i E and s~) n .E respectively. , ~1n~e i;t must 

be l•dimensionaJ., . it must then be a straight linei as the 

intersection of two planes • . Hence, the theorem is proved 

for p = 2. 
Suppose it has been proved in this manner for 

. ,•, ' 

p = 1, 2, • • . ; n - 2, that if' p-fla.ts mtJ.p' into p•t'lats . 

then straight line~ map into straight lines. It will be 
. .· .. 

shown that ii' (n-l)-fl9:ts map into (n-1)-fJ.ats, then straight 

lines map into straight lines. In this case, by Theorem 

II.6.4, distinct (n-l)•flats map into distinct. (n-1.J•flats. 
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Let sn-.:i- be . an (n .. 2)-flat with points in E,. As in ,the case 

of p == 2, two cii~t1net . (n-l).;;£18.ts, sn<~; 
8 11_-;_ in. common :ce.n. be constructed.· ,Under the ona-to-one 

and cont:1;nuous t,ransforme.tlon '1!; tl)e two (n-1)-flats, 
s~~; n E ~d s~:!l, n E map into distinct (n-1)-:rlats ', 

and T ~~?, , and $ "YI -:i. mµst map into . the interaectic::m. of 

T ~,_,, . and T ~:>,. • and b:ence. the image qf S ")'\•~ must be an. 
(n-2)-f'le.t, by T.h.ec;,rem Il.5.1. · Since S.,,.,__ was an.11rbitre.ry 

·••: . . · ::·, ' 

(n-2)-f'lat w:tth points in E, ·then it must btt. conclud~d . that 

{n-2) .. flats map into (n ... 2) ... flata.. Tl'l1$ .,puta the situation 

back in the. irevious case, and by the .1nductibn' hyp~th@s1s -. 

1t_1s immediately concluded that stra1ght ·11nes·map ·1nto 

straight lines . .for points in E. Th:ts completes the 

induction and the proof .of the theorem. 

II ,.$.25. Remark. Fx-om Remark . II.6.23 and Theorem· :tI.6.24 

it :follows that the necessary a.nd suf:f'ieient condition that 

a continuous, one-to-one .ma,pping d.efineq. 1n · a ·convex region 

E of R ("Yl l take p•flats into p ... flats., (p, fixed; 1 p ls, rt..;.1) • is 

that . the mappi:qg take straight lines 1nto , stt-aight lines. 

II.7. THE CHARACTERIZATION FOR THE 2;...DIMl1'NSlONAL CASE 

I;t. 7.1. All · the material is now at· hand to prove· .the main 

theorem of this chapter tor the case n = 2, except, :the 

following important lemma., whioh was suggested by w. Kaplan 

ot the ·university of Michigan [ Kaplan, (1)] .,_ 
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II.7.2. Lemma •. tet A(x0 x,x.J b~ any2-cello:t a.convex 

region ·E in R<..1>. Let x 3 be 'the intersection o:r the medians 

of the triangle. Let G:g(i 1(x•), (1 = 1, 2), be a continuous, 

single valued transformation defined on E such that st;raight 

lines !118.P into straight lines and, .. such that x 0 , x, , x:z., and 

x? remain fixed. Then G _is the identity transformatioµ. 

Proof. Since straight lines map into straight lines and 

since XO, x, , and x,'2. remain fixed, then the sides or the 

triangle map · .into themselve·s~ FurthermoI>e, since x 3 remains 

fixed, the medians remain .fiied. Therefore, the midpoints 

of: the sides, x , • x 1f- and X{ remain fixed as the inter-. . • . . 

section otf':ixed lines~ (See .F1g~ 2). 
Joining the m1dpo1ntllot .the sides., it is seen 

that the lines' :x."x5 , xs-x"., and_ x,f'x" map into themselves. 
' . 

The po1ntsx7J x8 , e.ndx'f remainfixed as intersections of 

fixed lines. . The., segments X 5 Xc, , · :x4]f6-, and. x"xc; are parallel 

to .x 0 x 1 , · x 0 x 2 • and x, x.2 respectively, since they divide the 

sides of Ll(X 0 X,X.2) ·:1n half,. 1.t'herefore, ~(X~X'IX" ), 

Lt (x,,, x, X5) J ~(x5x.2 JC.~) J and 6(X.LfX5Xb) are all similar to 

Li(x0x,x). ,E\lrthermore, tn.,e po:tnt.s x 7 , xy, and x 9 are the 

midpoints of x x _., x ~x,_, and x x, .. respectively. To prove, 
, • . '( 6 !j <> · '{ IO 

for example, that x 8 is the mid~oint of X5 X~, notice first 

that since . ,6.(x5 x.2~J and L1(x,,x, X;z) are. similar, . then 

x-< x. 1 x, x1 
.'· 
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=---

Hence, 

x5xs x3 x" = • x,x1 xlf xo 

To prove that the o_th<;3r two points mentioned are 

'midpoints of' · the respective lines above, the same procedure 

is used. 

The lines conta1ning ·x7 x~, x 8 xo/, and x1 x 9 . remain . 

fixed. Renee, the points x, 0 , xi(, x,,., ·x, 3 , x,,, and x,5' re-

main fixed as the intersection of fixed lines. 

The points x,3 and x,1./ are the midpoints of the· 

sides of .. 1Cx0_x.1x1o>• To prove, for example, that x,? is 

the midpoint of x x • notice f _irst that x 0 x 1,, is parallel s _ .:z· • " 

to x(,, X..z since x,ox/5 is par$.llel' to . XL/ xti" ( si~e. x '8 is the 

midpoint of xs-xb and x 9 is .the midpoint of X,/x~)., which in 

turn is p~rallel to xi.x.2 ,• since x;; and x5 are midpoints of 

the sides of' the triangle,. LI (x0 x, X:;1._ l · Therefore, 

-4 (x x-< .x"') and - .,1(xsx,3x8 ) are similar and 
. 0 . 

::: 
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But x~ is the midpoint of X5'Xcc,; hence, 

--- ·· = ½-

Oonsequentl-y, 

and x,3 is the midpoint or X~-lt.2. • In the same manner, ·X,o 

and x, 5 are the midpoint.a of the sides of L\(x0 x1-1xeo J, and 

x. 11 and x ,:z ·are the midpoints or the sid.es or t:Jx
1
x

1
x5 ). 

Four small triangles, Ll(X 0 X'fxG,), L\ (x1x, x 5 ), 

d(x5 x.:z x"), and t1ht4Xs-X~) !I have been constructed which are 

all similar to (x 0
.x 1

·:x.2. l and each ot which has · 1t·s vertices 

and the midpoints of 1ts si·des, hence_ the interseetlon of its 

medians, fixed under the transformation G.. It will be shown 

that there is a set or points dense in the perimeter of 

Ll (x
0

x
1 
x.z) which rem.a.in fixed under the transformation G. 

Let x•n• be any point on the perimeter ot ti (x0
x 1 x~). 

It will be .contained in one of thefour smaller triangles 

which a.re similar to 4(x0 x1 x2 J .. - Choose this one and by a. · 

construction analogous to the preceding one, d1vld& this 

triangle into tour similar triangles, each of.which ha~ its 
vertices and the midpoints ot its sides, hence the inter• 

section of its medians; fixed under the transformation G, 
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and one of which contains x*. Choose the 'one containing x* 

and repeat the1 construction, - Continuing J.n this manner, a 

sequence o.f nested t~iiu1gles :ts obtained, each of which 
. . . 

has its Vertie-es and the midpoints · of' its sides,: hence the 

intersection ot its-", medians~ ti:x.ed under the transformation 

G, and .each: or Which cont,alns -,l~'. ' Eventu.ally, -a point ' on 

the perimeter of 6(XoX, X,il, fixed undor the transformation 

G, w:l.'ll be obtained Which 1~'. as eiose to x"~ ~s o~e . ~hoosea. 

'!hat isi the set of points fixed under the transformation G 

is -dense in the perimeter ot . a(x
0
x ,x:z.J• · 

S:tnce G is continuous, it follows th~t each point 

of' the perimeter · is fixed. under o.- 'Consider any point x of 

E which is an interior point of A(X 0 X,x.z)~ It also 

remains f ix.ed under GJ ;tor let x l and .x" be two boundary 

points of L\ (x0 x, x~), not, collinear · with x. Ee.ch or ~the 

two distinct straight lines through x•x and x''x intersects 

the boundary of the trian,gle -ln two fixed points~- by Lemma 

Il .• G.20_ •. _ .. .. ltence., the 11nea must map into themselves and 

therefore, their intersection, x, _rnustmap into -itself. 

Since x was any interior point.of ~(x;,x,x~) then the whole 

2-cell, · .1 (x 0 x, x~ )_, -maps into itselfi - · 

Let xi• be any point ·of E which is not in the 2-cell, 

4 (x
0 

x, x.:z) •. · Let x'' and- x" be two interior points or 

..6 (x
0

:x.
1 

x--<J which are ,not collinear , with x*.: Tv10 such points 

exist by Theorem II .. 6,21.. Since E is convex, •:!,:x' and x" can 
'i-'\ : 

eaeh be Joined to x* by a stra1ght line. Silica x' a.rid x•• 
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were interior points ot ~(x0 x1 x..:i.), each of these two 

straight lines must contain at least· two :fixed points -of 

.1 (x 0 x, x..,) ! and hence the lines must map into then,.selvea. 

Cfo11sequently1
, x* must map into itself, as the intersection 

of two fixed lines. Since ,x-lf_ was any point ot E not in 

6 (xox, X:7.) I it has been shown that . ea.ch point of E -re1nains 

fixed under G and hence G must be the identity transformation • 

Theo.rem. 
. (L) , . ·. ' . Let F: f (x), (1 = l, 2), be a .continuous, 

one-to-one -transformation defined on a convex region E in 

R (:n such that straight lines me.p into straight lines. Then 

F 1s or the form 

f (r) (x) = 

(II,7.4) 

where 

8. X r11 + 8. 
11 I . I 1 ;).. 

a x '" + a 
~I 

a x <11 + a , .1,, ' ,, :I 

a x<"+a 
~I ~a 

x(:z1 + a,,, 
I 

(;i) 
X + a~ 3 

I 

+ a ,, 
'J, 

a 
1, I a,, -z. a,, 3 

a .:i,, a.7 
'J a.:2, 3 4= o. 

Q~ I a:7, i. at5'.,'3 
I , 

, 

Proof: Let x 0 , . x, , and :x,;;. be tbree '' 'linearly independent 

points of E. They detemnine a 2-cel1 of E"' I,et x., and 

x be the midpoints of x 0 x, and x0 x,. respectively. Let 
" x5 be the intersection or the medians ·· x~ x.3 ' and x, x4 • · F 
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carries x
0 

x 
1 

• .x;i., into three po 1nts F (x J, lr (x , ) , and 

F(x~ .) which are distinct and not collinear since F .is one-
: ( ' 

to.•one,, continuous, and rn_ap-s straight lines into s _traight 
. . ·. · ----

lines.. The point X3 goes into F(x:3) on F(xo)F(x 
1

} and 

. ~'i ,goes .into F{xt./ l on F(xo )F(x_J e The points F_(xo), F(x t) I 

F(x=1-l., F(;,c ~l• ~nd F(x4) _are distinct be•cause of one~to• 

onenea.s. j~e segments x;z x~ and +"x, x4 map into F(x,t .)F(xj') 

and F (x, )F(~'f l .. r;'espect!y~iy. Renee, x.) maps into' F'(,xb_) 

on the intersection of F(x~ )F(xi) .an<i Ftx., )F(x1l and F(xb_) 

is not on the sides ot · L1(F: x0 x,x.i.), since lf(x~) and F(x4 ) 

are ~istinct :fr()m, F(x 0 ) ., F(x, ), and F(x~) • 

·ay ;Th.eo:rem 1:t.2~e, there is: one and only one 

transf orma tlon· 

' (:z ) 
. X (2 J = o( ,, 1 f ! 

1 
I ( X) 4 .{20 ,_ f! . ( X} + o(,, 3 

c< ff, '(x) +c<\, i. r<.z>(x.) +cia 3 . 
. 31 I I · 

where 

a{,, I at,,, «,,? 
q"'. o(:l i ~,3 -=/=-0, -7,t I 

o{-3, I o{-3 2.. 
I 

«-33 
I 

which carries the points F(x
0
), F(x, }, F'(x.il, an,d F(x:5 ) 

into the points .x
0

., x, , x~ ·, and x~r respectively. The 
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transformation F\ is- continuous, one-to•one, e.nd maps 

s_traight lines into straight lines. Oonaider the tra.ns-

:formation F1 F. This ' transformation is continuous, ,_ one-to-

one and carrles straight lines 'into straight lines;; 

Furthermore, the points x 1, X , X ; and X~- ~emain fixed 
:-'.' . . , o . l . :l . 

:unaet F\F~.• By Lemma l:t.7~a• F1F 1s the identity trans- · 

formation. Hence F = F - ', which is ot the form fII •. 7.4), -
. ' . , ,.. . ' 
and the _theorem !s proved. 

The charaoter1zat1on ot the class o:r transformations 
Cd .. .. · . ._.·· . 

F: r (x.), (1 = l, 2), which_ are continuous, one.-to .... one. 
? .;.,\:· __ \ 

and map straight li.nes into straight_ 1ines is ,.J1ow ~omplete. 

The next , section of Chapter II extends the characteri&ation 

to -mapping funet~ons F, which are continuous, ona•to .. one 
, ' . - ' '~ 

and map straight lines into straight lines, ·where ._F . is 

defined in n-dimenaiona. 

II.8. THE OHA'.RAOTERIZATION FOR THE n-OIMENSIONAL 'OASE. 

II.a.1., In a triangle; the straight line which joins -a 
vertex wi the midpoint .· of the oppos:1 te side is ~-alled_ a 

median of the triang~e. As a generalization .of this e_~:~cept, 

the following definition is given: 

II.a.2. Definition. By a median: of a tetrahedron 1s . 

meant- the straight line ,,h:tch' Joins a vertex -\dtb.-:,_·tbe inter-

section of the xnedia.ns o~ the opposite faoe. I.n general, 

by a median of a p•cell, (l < p n), is meant the straight 
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line which joins a vertex of the p-cell with the inter• 

section of .the medians :of the (p•l)-c.ell de~e:rmined by the 

,reinaini:ng p vertices of the p-cell. 

This deftnition vd.11 be meaningful once it has 

been established that the medi~ns of any p-eell inter- · 

sect in a common point. ' 

Il.8. 3. Theorem. . . . , 
'' ,, -· .·. (tl 

xp . = (xP ·, 

(1 ~- p n). 

x<,,l) - be the , vertices ot ap. •cell, p ' ' , 

Then tha point 

(X~l + . ; . 
p + 1 

I • • • J 

is common to all the medians of :the p~·cell; that · is,: the 

l'JlOdians or a p-oell intersect :tn a eomrnon point. 

Pr•oof. , The proof 1s · by induction ~n p. , ·. Let 

-~ (xo'•> ., XO • • • ' ' x~"t\l J, X, ·, = (x~') .~· .. • • J :t.\""' ) -;, a.nd 

X = .(·x (i> , ,. .:2 , . •. • , x~'ht ) be. - the trer·tices o,f a triangle in 

R ,..,, )• The median fro1n x..z meets the opposite side or the 
., , 

triangle at the point 

C'~: + X (I) ) xl:zJ + (z.) (7>) + x'.~i) 
{$- ( 0 x,, XO 

X = ') ' • .. , • , 
I 2 2 

. 

'rhe point x~·, which divides the median x x~· into the ratio 
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has the coordinates 

.. \n 1 l l x0 + x,11 + 
, ".. , 

3 

The same argument shows that x: also divides . the other two . 

medians in the ratio 2:1. Hence,· .x~ lies on all the .medians 

and the theorem is proved t:o.r the triangle. 

Suppose it has been shown that the medians of.' the . . . 

(p•l)•eell _· t.1(x0 x 1 ; · ,. • xr_,) ,meet in . the common point 

( X{ll + x<d + • • • + x.(I) x(-,,1 + X(TII+ ••• + x'"') * , o I . r-, 0 ' e-, 
X = ;, , ... , 
· P·I 

p p 

Then, if 6(x0 x 1 • · • ··· • xp) ia a p•cell,. the median .from Xp 

meets the opposite (p-1)-cell at the point x.~_ 1 • · The point 

( 
(i) . (.1 l . XO+ X + ••• I . = 

. p + l 

pil ('11) 

X + X + ••• 0 1 , . . . , 
p + l 

divides the median xpx:_, into the ratio · 

=,. -. 
x·'kx* l 

P P-1 

'* The same argument shows that xp . dlvides ·the medians from the 

remaining p vertices. of the p-cell in .the same ratio. Hence, 

x~ lies on all the medians of the p•oell and the . theorem is 

proved. 

"' 
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II'~8.4. 'l1he two-dimensional ease of.' the following theorem 

was proved oJ'l .,.pages 43 :,~. tL ,~-~ .e . gE:!neralization to 

n-dimensions is analogous to the two-dimensional case, but 

the proof is given here for completeness .. . 

II. a. 5.. Theorem. Any n + 2 points, x, ., X:z., • • • , Xn -i- .:i. 

in n•dimensional Euclidean space t no n + l of which lie in 

an (n-l)•flat, may be carried over into any n + .2 points, 

x, , x.,_, ••• , xn+;,., no n + l of which lie 1n an (n-l)-flat, 

by one . a.nd only one transt'ormation of the form 

(:tI.8.6) 
a· X{I) ... a . {:i.) + + a, X(?'ll+ a i,n+' -(~) .· 

X .. •· J ,, J,;,. ~]'11 
X = 

a x<•J + a. x',_> + .... + Q X(nl+ 
$.n-t1,11tl lltl, I n+•,~ n+1,n 

(j = 1, ••• , n), where 

a,,I S. I, z_ • • li $, l,nt• . . . . .. . . . . .. 
Proof. The proof will be carried through using homogeneous 

coordinates, · as before. · The transformation (II.8.6) will 

then be of the form 

1'I + I 

. = 2 a . x< I( • , 
f(: I J,k 

(j = l, • , n + l), 

where the homogeneous coordinates of the point x are 
(. x (I} , xc,.,, . • • • , i"ft.t') ) • 
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The projective transformation 

- ( ! ) :>· .. · . • ( K) . . 

p X = a X , ( j = l, • • • ; n + l) , carries over I(,., J,K . . . 

any given poi~t x into a point x, the position of x 

depending on the values of a_, . • The proof' of' the theorem 
Q ,,< . ' ' , 

will be complete if' it is possible to find one and _only 

one (except tor a constant factor which may ,be• introduced 
" 

throughout) set of n 2 + Sn + 3 constants, _(the aiK 1s being 
·. 

(n: + 1) of · _them, and the rt + 2 others being · 

f,• f;i,, • •• , fl')-t:i. •-none of which is. zero) .;vhich 

satisf'y the n :i. + 3n + 2 equations · 

-ntl 

Xlj) --· · .. x(K) c·1 l a . . , = , • • • . i i. K~ I . • J, ,~ L 
, n + 2; j = 1, •• ;~ n + l)i 

Since all the X's and x•s are known, · there are 

n + 3n + 2 homogeneous linear equations _. in n :i. + 3n + 3 

unknowns. Hence., there are always solutions different from . 
, , , I 

zero, the number of independent ones depending on ,the rank 

of the coeff'icients of the unknowns. Transp~sing and re .. 

arranging the equations., the matrix of these equations 

becomes 
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/ 
(X l_K)) 
.· l 

( 0 ) • • • ( 0 ) (~ f x<.n 
i
1
~ l 

) ( 0 ) 

( 0 ) (X(~1) • • • ( 0 ) (-b, I( x.<_2, ) ( 0 ) 
(, : " I 

........ .. .. .. •· ...... . 
( 0 ) ·( 0 ·) .. • '•· -(X(.K) _) {-[. X t,-n+11) ( 0 ) 

L . ,, I< ' 

(II.B.7) t~c.Jt<) > 
'ht:i. 

( 0 ) • • • ( ,0 ) ( 0 ) .... xl') 
n+i. 

( 0 ) <x'l4' > ,1+"J. • • • ( 0 ) ( 0 ) -X(:l) 
,-,+_1-. . .. . . . .. . . . . . ... . . . . .. . . . 

( 0 ) ( 0 ) • • • 
. ·cx<I<) )_. 

l,t1- 0 ) 

(1 = l, ••• 11 n + 1; k = l., ••• , n + 1), where the 

k's are column numbers and the i's ar,e row nu.":llbers of the 

submatrices. Notice · that (X~K;,.'l is a row matrix ,11th 

n + l elements. 
I 

Since the points x, , • • • , x 11 +A are all distinct 

and non+ 1 lie inan (n-1)-flat., there are n + l constants, 

cl, none of which is tero, suchthe.t 

n+I 2. c.X~K) 4 x<K) = o, 
· l . , 1'\t:Z.. 

i ::: ' 
(k = 1, •• • , n+l). 

A.dd ing to the :( n .2 + 2n + 2-)th :row e L times the 

1th row, (1 == 1, • • • , n + 1); adding to the 

(n:z. + 2n + 3}th row ci times the (n + 1 + -i)th row, 

(i = l, • • • , n + l); . etc.; until finally·; adding to the 

last (the (n..t + 3n + 2)th) row e. times the (n~ + n + l)th 
l, 

row, (i = 1, •••• , n + .l), (II.a. 7} becomes 



(II.a.a) 

(i = 1, • 

( 0 ) 

(,O ) 

( 0 ) 

• • 

(·.·x ... · (.") .) 
. t ·. • Cl • 

( 0 } 

( () ) 

( 0 ) .• 

( 0 ) • 

(X on.)• . . . ( 

( 0 ) 

111 • 

........ 
( - J. X <.n ) . ( 'O } 

i 1 I< · t · 

(-J. jy-) ) ( 0 ) 
• . ~II< . c. 

( 0 ) 

( --:- (<.) ) ( .... x cir) 
• C ¥-- X I< . •• . -n +1-

. ,;. , n + l; k = l, • •• ·, n + 1), where the k's 

stand for the column numbers and the 1.'s stand for the row 
(i1 

numbers. (Notice that (-.X'l1-t7-. ) is a column matrix of 

n + l elements. ) 

Delet·ing the la.st column, the determinMt of the 

matrix of the remaining columns is easily calculated to be 

(71 +t (. ·)· ·, \\<) r ntl .,-.. · (k}I (•l) I\ c · X. X . • 
. - l I. (. . c.-1 

lfuis is different from zero since the x 1s and. the x•a are 

distinct and non+ 1 lie in an (n-l)•flat., Also, by 

Theorem II.2.e., f11.+.1. is proportional to Dc'hi+ 311 +~, , 
and hence 1s d1ffe:rent from zero. 

A. similar situation is found to be true for 

Dt,,1.+~'nt-z..) , • • •, D<111.+7-·11+;1., • 

Renee. f;, = o, (i = 1, .• • • , n + 2); therefore, one 

solution to the equations has .b.een found and it is the only 

independent one since the rank of the matrix of the 

equations is (n .2 + 3n + 2) i one leas .. ~han the· number of 

unknowns. The theorem is theref'ore,;.,pr(?ved. · 



I+~s• 9. Lemma. Let ''x 0 , • ., • , x.Y\- be n + ,1 l.inearly 

independent points in a convex region E of R<-n 1., (n-;;, 2}, 

which .. .form the vertices o.f' an n ... eell. Let _x* be the 

intersection -of the medians or the n-eell. Let 

112,. 

'o: g (i) (x), · (1 = 1, • • • , n), be a transformation defined 
. . 

in E which is continuous, one .. to ... one and carries p•flats 

into p-flats (p fixed;. 1··~ p ~-n•l), and whf.ch furthermore ·. 

leaves the points x 0 , x 1 , •• · • • , xn, x•n• fixed. Then G is 

the identity tr'ansf'ormation. 

Proof. It should f1r~t .be noted that since p•f'lats map 

into p-flats (p f'ilted; · l p n•ll, then p•flats map into . 

p•flats for all p·(l p~ n-1) by Remark .lI.6.25. 

The proof , ot the lemma is by induction. The 

l.emmahas already been proved for n = 2. (Lemma II.7.2). 

Suppose n = s. · L~t Jt0 , x.1 , :x;z.. • and x3 . be the 

vertices of a tetrahedron, 4 (x0 :l\ Xi._X~), .in E and let x*' 
. be the intersection of its · medians .. Since these points 

remain tixed and . since straight .lines map into . straight 

lines, (hence faces ot A(x0 x, x.:zx3 ) map into faces of' 

4(x 0 x, x"'x3 ), _by Theol"em II.6.22), then the intersection 

of .the median from any vertex. with the opposite face must 

also remain fixed. This point is the intersection o~. the 

medians of that tace • . Since the_ theorem is true for 

n = 2, all the points of that face remain fixed under G. 

1'he same argument applied to the remaining faces shows 

that every point on the boundary of' Ll (x 0 x, x~ x3 ) remains 



fixed. Let x be any point inte~ior to Ll(x
0
x,.x;z.x.,) • 

.Let x• and .x*' be two points of the boundary of 

Ll (x 0 x, :x.:,_x8 ) not collinear vii th x. Each of the two 
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distinct lines ~hrough x'x and x"x int,ersects the boundary 

<lf 4 (x 0 x, x~ x.3 l _i~ two :fixed. points, by Theorem II.6-19 • 

and therefore must map into themselves tJ Hence their . 

intersection x, must remain fixed as the intersection of 

two fixed lines. ·Hence, since x w~s any point on the 

interior of 6(x 0 x 1 x;ix3 ), ~ - maps every point of 4 (x0 x, X;i_Xg) 

into 1tsel.t. · tet x*it- be any point of E not in l1 (xc>x _,x~x3 ) 

and let x' and att be two points fnteri.or to . 6(X oX, x..t x3 ) 

which a.re not collinear- with x*-it· ., ;l'wo such , points ·. ex.1 at 
.. 

by Theorem II~6.2l. Sine~ Eis cony-ex• the points x• and 

xu can be joined to by two ·distinct .j:&traight lines., 

eaoh of which must contain t1t least, two fixed point~ .of 

.d(x Jt,x~x~ ). Hence, these two lines · must map into ·them-

selves. Consequently., x?Ht must map into itself · a; .the 

1nterseotion of two fixed lines. S1rice x;Ht- was e.ny point 

o-f E not in .1(x0 x, x;;l.x 3 ) , : then 1 t has been shown that ._ every 

point of Emapsinto itself under· G, and hence .G 1s the 

identity transformation, proving the lemma for n = 3. 

Suppose the lemme. is true for n k. Let 

n = k + l. Let· x, x; 
o I • • • , xt-<+, be k + 2 linearly. 

independent points of E in R<f<ti> which form the vertices o:r 

a (k + 1)-oell, Ll x,< t-i • ' •Let · x* b•· ... th~ ip.tersection o:f the 

medians of L.l x r-< t-t • By hypothesis all these points remain 
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'fixed under G. Since straight lines map into straight 

lines,. ~hen all the m•cell races. (0$ m !: k) m~st map . into 

themselves by 1rb.eorem:tI.6.22ia Hence the po:t:nt of inter-
/ 

section ot the median .from any vertex of L\ lr-K+i to the 

opposite k•eell must :remain fixed undarG. But this point 

ot intersection is the interseetion of the medians of that 

k•eell Since the lemma is ti>ue tor· n = k., by tl1~ 

lnductionhypothes1s, .every: point of that, k~cell faca 

remains fixed under G. Repeating. the s.rgu.ment tor the 
..... , -

remaining k-~ell faces of .the (k + l)•cell:, it is-seen that 

every point of the boundary of the (k + 1)-cell, L\X. ,<1-, , 

remains fixed under .G. 

Let x be any po int 1ntel:'1or to A- x «+, • . :<~et x t 

and x0 be any two boundary points of -6.XK+r not c~~linear 

with x. Each of the two diatinct lines through x 1x and x"x 

· inter.sect the boundary, or 11 x\-<+l in exactly two fixed 

points, and .. t~erefore must rema;n fixed. Bence., x renia.:lns 

fixed as the intersection of two fixed lines. Since· x was 

any point interior to <lx,-<+1 . .. ·~ then every P,oint '. or the 

(k + l)•cell., 4 x 1-<+, , rem~ins fixed under. the tra.ns-

.f orma tion G. 

Let x-l1-* be any point of E not in x.k+, . , and 

let lt,. and x" be two points interior to l\Xk+, • which are 

not collinear with x**. '?his 1sr .possible by Theorem 

IL.6.21. .Sirtoe E is convex, the .. p<>i~ts x• and .x••can be 

joined . to .x4H} by two distinct lines, each. or which must 

contain at least two fixed points. of 4\X(<+'t , • · Hence, these 
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two lines must map into themselves. Consequently, the 

point x*it- must me.p into _itself as . the intersection of two 

f ix.ed lines• Since x*1r was any point of E not in 6 x· k-+, · , 

it has been proved that everr point of E maps into 1tsel.f, 

and G is the identity trans:rormation~ · This completes the 

induction and th~ proof of the .theore111. 

II.8.10.; Tbeoremo ,Let F; f (iJ(x), (1 = l, • • . ·~ , n); be 

'a continuous, . one.-to-one mapping defined on a convex .·region 

E .in R pt), which is sueh ·that p-flata map into .,p-fla.ts, . 

(p fixed; 0<p .~n-1} • . Then Fis or the form 

(II.8.ll)· F: f: (i'(x) = 
a. x.'' 1+ + a x'71 l+ a · 

t.
1 

I ••• 1,
1

7'1 . ,'
1
11-ft -----------~-___;_______ , 

-t a x <"' 1+ a -n +r,.,.., l1+1, .,_., 
Xu>+ ••• 

(i = l, • • ~- ~- n), 

.where 

. •. . •· . . . .. . to. 

Proof. By Remark II.6.25, p--rlats map into p..;.flats tor all 

p(l p .$ n-1). Let x01 x,, • , • · t xn be n + l linearly 

independent points of E which form .. the vertices of . an n~eill, 

tJ,xY\ • Let x* be the intersection of the medians of LlXn• 

Under the mapping F, the vertices of Ll x11 :map into the n + l 

linearly independent points', F {.x0 ), • • • < J' F(¾ ) ., which 
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form the vertices .of an n•cell, L\F~ • This is true because 

F tak:es k-cell faces .ot L! x 71 into distinct k-cell faces of 

aF (0~ k ~n-1), by Theorem II.6.22. The point F{x*), ' .,., ' ' 

the image of .lti~, does not · lie- in a.ny k•Cell :face or 

(0 k n•l), since. it it did, · the mapping· would not 

be one-to-.o:n.e •. 

By Wheorem. II.8.5 there is one ··and only one: 

-transformation cf the type 

(Il.a.12) 

where 

( i. I F,: X 
Pf· f(l)(-' x)· + 

::; t I I 
+· o( · f (n) (X) +of' i n+1 

~h I 

o( ,· ·_ t (I)( ..•. )'· + 
?HI I ,X 

' 
+o<71+1

1 
n+1 

(1 = 1, •• , n), 

at 
'> I 

ct,, :2. . • • ' ol 11 n ti 

• * ••• -~ • 

C\!nt1
1 

I c::;{ 11tl l. . • 
I 

, 

which carries the poi.nts F(x0 ), • .• • , F(x
11
), and F(x1&-) 

into the points x 0 , :ic·, , •• • •· ·• x-n. and x* respectively. 

!I.tie transformation. F, is continuous, one•to .. one and 

carries straight lines into straight line~. Consider the 

transformation F, F. This transformation is continuous, 

· one-to .. one., carries straight lines into straight lines, 

* and furthermore leaves the points .x
0

, • . • • , x., , and x 

fixed. Hence,, by Lamme. II. a:. 9, F1 ·F is the idepti ty · 

transformation. Therefore F = F1-
1 , which 1s of. the fo.rm 



117~ 

(II.8.11). This proves the theorem • . 

II.8tl~. Remark • . :Ithas.'b~ettpoi~ted t;,u~ ~aye~al ti~e~ 

before that .the transformations of the. form (Jlo.8.11) a.re 

one•to-one, . continuous, a.n<:i ca;-ry straight . lines into 

straight 11ne,s (hence J:>•flats into p•flats, (O .< p n-1)). 

Oonversely, 1 t has been. shown · that the class of trans-

formations which are continuous, one-to-one, and carry 
p-flats into p•flats (p .fi~ed; l p s. n•l), are the linear 

fre.9tional transformations of. the form (II• a. 11). Thus, 

one must conclude that the precise :class of' transformations 

which are continuous, one•to-one and map p•fla.ts into · 

p-flats (p fixed; 1 p~ n-l) are the linear fractional 

transformationa. 
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CHAPTER Ill 

THE CHARAOTERl:U.TION OF A CLASS OF DIFFERENTIABLE FUNCTIONS 

III.l. INTRODUCTION 

III.1.1. In this ehapt~r the generalized derivatives 

defined and discussed in Chapter l vd.il ·again be the main 

topic of discussion. .It will be shown ,. that the precise 

class of transformations~ F: f (.x), (1 = 1, ••• , n), 

which have a non•zero derivative, D F, with respect to the 

class of increments I• .is the class of linear fractional 

transformations: 

(III.1.2) 

where 

a. xC 11 + •••+a, •X(711 + a Ft •f(i) (x) = _t-'-, ,---, _________ 1,_n-'--'-____ 1·,_n-1_, ' 
a x,rn + 

77tl1 I . 

(1 = l, • • , n), 

a,,; a,,;l. • • • e.,,nti 
I 

• • 4 • • • • =/= o. 

This will follow from the results of Chapter II when it 

has been .shown that the tfansfor-mation F, having a non-

zero derive.ti Veg is continuous,. one•to-one, . . and takes 

straight l:J,nea into straight;, ;Line$• 



J.J.l:f. 

The two-dimensional case will be discussed 

first to give a clearer understanding of what 1s. talc1ng 

place, 'l'he results will then be extended to n-dimensions. 
· . ·( . (1) r~) ). In the next ae~tion x = .x . , x"' · . • 

Ili"~2. · THE CHARACTERIZATION ~OR. ~RE 2-DIMENSIONAL CASE 

III.2.1. Before the main theorem of this section can be 

proved,· several . preliminary theorems must be p~ved. These 
.. 

theorems . give some important properties of .the gen~rali_zed 

derivatives, with respect to the -class or increments I. 

III.2~2. Theorem~ · Let F-1- r(i1 (xl;, (i = i~ 2) be d,etined 

· ~n · an open s~ t E · iri · R(.7) arid. let· D~ F · exi~t and have · the · 

value d # 0 a·t ; p~int ·x 0 1n E • . The F is continuous at ,x 0 • 

Proof. 

every 

Since it has been assumed that ·ox FI x = d, · then for 
• I • 0 

E. '? 0 there exists a c5 > O su~11'' th~t 

(III.2.3) 

whenever llx0 x,11 < J , (1 = l, 2)o In particular., choose 

E = E: * so that f/4* c::.· Id \ • Then there is a J'* such 

that inequality (III.2.3) holds. 

By.' theorem I.5.8, DxF I Xo can be calculated by 

taking the limit of the ratios, 11(F:x, x:2.x. 3 )/ t1(x 1 x~x3 ), 

where L1(x, x.:ax3 ) is chosen ti:>' sa.tisf'y the conditions of 

the hypotheses of 'l'heorem I.th8 • . Choose three points, 

x, ., x..? , and 1n NJ-x-Cx0 ) ·so that xQ .is interior to 
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.b,(x, x~x5 ) and keep thes.e points .fixed. -- For these three 

points 

,6;(F:x, x.:2~ ) 

D. (x1 x ,,_x5 } 

since these· three points were chosen to satisfy the 

hypo-theses ot Theorem I.5.B. 

The 2•cells, .d..(x0 x 1 x"' ·), 4(x 1x 0 x:1J, and 

.· LJ (x6 x.,,x3 ), . all have . two-dimensional volume different from 

zero. Furthermore, ainoe relation (III.2.3) holds for each 
,, * ' · or these increments · with ½ .:: 1 di ,• and since d .7 • o, then 

6(F:x 0 x, X:z,), ~tFtx 1 x 0 x?'), and' - /.\ (F:x~ x2 x:3) must. all be . 

dif1'erent .f'rom zero. 
Consider the ·quantities 

. Ci) . .· . (iJ . . I t . (it) . ., t (x, 1 • 
L1 (F:xox,, X.z} 

l t Ul(x") - t 1i)<x 0 ) , 

· · Ll.(F:·x X X ) · 
. ' (. 0 3 

(il ,, ' ' (i) 
f (x1 )_ .. f (x 0 ) 

4 (F:x0 x~x;?) 
, 

where (1 = 1, 2), (j = l, 2), (k = l, 3), and ( i = 2, 3). 

1'hese quantities are all fixed, since all the points 

_involved are fixed points. · Hence, there is a largest one, 

which will be denoted bys. 
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Let x • be a variable ,, point of N Jt, (x0 )., which 

for the moment, is restricted to lie oft the lines con-

taining .the segments :x0 x I a.nd :K0 x:l. Belation (III •. 2 •. 3) 

holds for . ~(xc;x'x-2) and .6.(X0 x 1 x•) and their images • . 

Now given a sufficiently small f • ;;, O (in 

particular, for f' t .!: E *), there exists a · > 0 such that 

whenever Hx 0 x:•II < J, .. For suppose this assertion is fal.se. 

'.l'hen for fixed E • E and for every; J;, o., . there is at 

least one point x* f: Ngtx.'•0 ) , such that · 

. . . 

As J 1s allowed to approach zero., .d (x 0 x 'x..z) approaches 

zero, since .· ti(x0 x•x~) varies directly as \l'x 0 x'll , x 0 and 

x.:z. being fixed po~nts. ~en, as J approaches zero, the 

difference quotient 

6. (F:x0 x •x:<.) 

Li(xox'x~) 

becomes arbitrarily large for the points x' in N6{x0 } . such 

that I 4 {F:x0 x ':is,) I f f 1/2S. For such points, relation 

(III.2.3), with E:*sE{!-, cannot hold, contra.dieting the 

assumption that Dx FI'/. = d. 
' 0 

Similarly, if E' is any fixed positive nUntber 

less than or equal to E *, there; must exist a J; > O such that 



whenever ·. l\x0 x 'II < [~ , .x' in. the res-trieted region. Let 

. cS' ~.,min(~,~). · Then· 

whenever · //x0 :x'// < J', x' remaining in the restricted 

region. 

and . 

(III.2.5) · 

Now 
· . r (O(:xo > 

b(F:x x':x ) = _, rJI) (x,) 
' ' 0 .:i.. :z! 

/2)(:xo} 

f (.:,) (x' l 
r(~>cx > 

,.1 (F:x X X 1 } 
O I 

t'fd (x. J 
;1.. ;l. 

f (I )(x ) . t.C:1..) (x ) 
0 · 0 

r 0>(x ) tC.:i>(x ) 
I I 

f (I )(X 1 ) . f (;()(:X: I) 

l 

l 

l 

l . 

1 

l 

• 

Subtracting the :first row from the remaining rows and 

expanding by the last oolumn in each case, (III.2.4) and 

(III.2.5) become 

(III.2.6) 

and 

t('{x') - .f'(/)(xo) ' 
= ..L 

;;,f . f(l{x.1-) - i'u{x~) 

122. 

(1) (I) 
f (x ' ) - r (x o> 

(;1) 0) 
f(x 1 )-t(x0 ) 

(III.2.7) 6(F:x 0 x1 X 1 > .. = _L 
. j.l 
. . - ' 

l 0(x I) ... i/)(xo) f(;,.{x' ) . .. rC.:i7(x ) 
0 
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respectively. Expanding, (III.2.6) and (lII.2 .. 7) become 

r_ (r) . {I) r: (.i). (2) ;, r: (-;z) (;,) '1 r:: (r) (I' ... Lf (x') •f (x 0 lj.' {x1 )-f (x 0 L + iJ' (x') •t (x 0 L Lf (x, ) •t (x 0 i1 

respectively. 
r,) (J) It is possible to solve for f ' (x'} - f (x) and 

r (:z) (x.') - f (.:t\x: 0 ) provided the determinant of their 

coefficients in the above two equations. is not zero. 'f11is 

determinant is 

i'-)cx ) (;,) - [r(l)(Jt ) (I} ] .. r (xo) - t (xo) 
D ;l. ;. = -Clhc > i'r;i)(x 0 )] (I)( ) r('l(x.,) ... 

I 
f .x, 

f(:z'{x ) /;l)(xo) (I( ) /!)(xo) = ·- f x_. -J-

f(;l1(x ) r<?lx ) i'1c:x:} ( I) .. - f (x) 
I 0 I . 

/t)(xo) i'hc > 0 
l 

= /')(x. ) /'>ex > l 
;J.: . ;z. 

rf'-'cx ) f(l)(X I) l 
I 

f f1l(x0 ) /:t)(xo) l 

= ffl)(x ) /.u(x ) l 
( I 

l'tx:i.> rf:l(x.t) l 

= 21 fl (F:x 0 x1 x) o. 
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Hence it is possible to solve for fen (x') - f Cr> (x. 0 ) and 
( ~) . ' . ' (;1) . ' ' ' ., ' ' . ·. . . . ' ' 

,r~ (x') .., t . (x 0 ) in the expansions of (III. 2.6) and 

(III_.2~7) • . Solving these two equations, one obt8.i'ns 

A(F:x0 x'x.2) .. [f\')(x, .) ... f<1>(xJ 

(1) . ' ' (1) 21 t1(F:x Xx•) ' :f'\1)(J.t ,) .f(r)(xo) 
.f (x') .. f (xo) = _____ o__;_, ______ __:, __ _:;c__ 

21 L1(F:x 0 x, .x2 ) 

and 

(,) . •, ' 

f · (x•) -

Now if . /jx0 x'/I < S', ·x' in the restricted ·region, 

then 

\ r 1'1(xt) - _l'txo>I < 

and 

\ f('1(x ) - t(''cx ) \ · Et /2S + I :rw(x ) 
· ' 0 .. , • ·. 1 

< 
2L E- t 

' 
2s 

= L E 1 /S,, 
I 



< 

whepe 

and 

2L f' :i. 

2S 

( i = l_, 2) • . 

= L € '/s, J. 

(2) . · ] > - .r lx 0 ) · • E- •/2s 
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In exactly the same way_, restricting x .' to remain 

oi:i: the lines containing x 0 x I and x 0 x0 , it can be . shovm :that 
' 

for every sufficiently small f';, 0 ther.e exists a ttt > 0 · 

such .that 

and 

whenever /l'X 0 X 'II 8" • x• ·in this restricted r~gion, and where 
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and 

{J= 1, 3}.· 

-Finally., letting x • remain off the lines co~ta1n-

ing x 0 x;i and x0 x3 , for every sufficiently small E t > 0 there 

exists a J "' >O such that 

and 

whenever fl:x.0 xtll < J 111 ,, x 1 in this restricted region, and 

and 

(k = 2, 3). 

I (::z) (.:?) . I 
:f (xk) - f (x) 

/ l\(Ftx0 x;!x3 )) 

Choose cf* = min( d' ', (S'1, J"'). Since S !J'L. , 
. ( 

(1 = l, ••• , 6), it follows that for every. sufficiently 

small E' > 0 there is a J *;, 0 such that 



and 

whenever )/x0 x 'll < J -l~, w1 th no othei, restriction on x •. 

Hence f <'tx) and f'C:z)x) a,;-e both, continuous at x 0 , proving 

the theorem. 

III.2.8~_ Lemma. Let Ft ;rPJ(x), (i = l, 2), be.defined 

on a convex region E in R (.1) and let D'fF exist and be 

different from zero in E. Let x 0 be a point of E. Then 
«·. 
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in a sufficiently small neighborhood of x 0 straight lines 

through x 0 map intc) straight lines through F(x 0 ), the image 

of' x 0 under F. 

Proof. The transfot>mation F is continuous in E by Theorem 

III.2.2, since Dx,F 'F O e.teach point of E. Let DxFlx · = d. 
0 

Let E > 0 be given such that E < ldl • Since DxFI to = d 'F O, 

there exists e. d0 > 0 auch that 

(III.2.9) 
6 (F :x0 x, X ;2.,) 

' - d < E 

Vlhenever JI .x0 x;: /j c J:,, (1 = l, 2), L)(x0 x1 x~) in the class 1 1 • 

It will be shown that in N J (x0 ), straight lines . through 
0 

x 0 map into straight lines. 

Suppose the theorem is !'alse. Then there .is a 

straight line, L., through x 0 such that LflNJ (x 0 ) does not 
0 

map into a straight line. 



ln N s
0 

(x0 ), no ·point othe~ than x 0 maps into 

F{xo>; tor tr xr .,. XO tnaps into F(xO), then x~ and XO 
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together wtth a suitably, chosen point x; would map -into 

an 1ncremen.t of zero area. For L1(.x0 x,• x! J,. relation 

(III.2.9), with E- <- ldl .t would not hold, contradicting the 

assump.tion .that DxFI x 
O 

~ - d. · 

Let· x, i, Jt
0 

be a point on 'L in N r (x0 ). The 
Oo . 

po~nt x, maps in~o- F(x,) -:/ F(x0 ). Since the · theorem. 1s 

talse there is a point F(x:l) , not on .. the line containing 

the segment F(x 0 )F(x.,), _ •ihich• is the image of at: least 

one . point x.:t . on If in N s '{:!x-0). Let ... b~ .- a variable point 
- ' c) 

or N cf (x0 ) • ?Jh1ch, together with-x O and x, _, form's • e.n 
0 

increment. of :t,. Let :x. approach x~• Sinee F. is 

continuous in N do (xo ) ~- F(x) app~Oaohea F _(x;i) .. . Hence, 

. Ll (xox, x ) approac-hes . L\ (xOxf x~} = 0 as x approaches x~, 

b11t .1 (F:x
0
x, ·x) approaches 't.dF:x

0
x, x;{) ;i O, since 

~(x
0
), F(x,) and F(x.;1.l are not collinear~ Hence the ratio 

L)(F:x0 x, x) 

ll (x:
0
x, x)' 

becomes arbitrarily large as · x . approaches . x2 • Relation 

(III.2.9) does not then bold, contradicting the assumption 

that D'{F Ix 
O 

~ - d • . 

Hence, one must conclude that -1n N 0" (xo), straight 

lines through x.
0 

map into straight lines through F(x 0 ). 
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(') III.2.10. Theorem. Let F: f' (x l, (1 = 1 1 2). be defined 

on a convex region E in R c~) and let Dx F exist and be 

different. from zero in E. Then straight lines in E map 

into straight lines. 

Proof. Let L be a line de.fined in Band let x 0 be a point 

ot L{'\E. By Lemma Ill.2.8 there is a b0 >0 such that 

tnN. J'}~ 0 ) maps into a straight line. Lt• Let x* be any 

other point on L nE. U it can ba shown . that x* maps into 

L', the theorem will be proved. 

Ir llx.,x"~II < S0 , the theorem is already proved. 

If l(x0 x*i1 = c)0 , since x* !a in E, Lemma III. 2. 8 

applies to x* and there is a <)* 7 0 such that +1nN J-¥,-(x*) 
, · 

maps. into a. straight line. It must map into t• since 

Ncf,, (x0 ) and N J-x-Cx*) have points of L in common. In this 

case the theorem is proved. 
I.f 11x 0 x-r.•11 > J , let x be the point of L between 

o I 

X 'o and x* suoh that If :x.,,x, II = Jo • The point x is a point 
I 

of E ,and hence, by Lemma III.2.a, there is a 01 ;;;, o such. 

that Lf\ N 6 (x, ) mape into a. straight line, which is L • 
I 

since W 60 (x 0 ) and No, (x, ) contain common points of L. It 

x* is in N cf (x, .) the theorem is proved. If not, then repeat 
I 

the above argument, choosing :x.2 to be the point of L between 

x and x* such that !Ix ,; II = cf, • Them Lemma !II.2.a can 
' 1 . .< 

be applied to x..z , , and there is a 6.i -;, 0 such that 

LnN d' (x-1) maps into a straight line, which must be L' 
:i. 

since Nd. (x:i.) and N6 (x,) contain common points of L. If 
;i_ I 
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x* is· in NJ (x~) the theorem. is proved. If nQt, eQnt1.nue 
' ;J. 

in this manner until finally an x.,. on L betwe~n Xc, :e.nd x* 
. 1s reached . such that the:re is .a . cf~> 0 such. that 

~(\N&}xr} maps into L 1 and ;x;-lf is in Nd'r(xr>• 

. . :tt seams possible t~.t · the . < :•a migbt , become 
\ ,. ··, 

1ncreas1ngly ', smaller and :the' chosen' CEJnters of 'the :: 
Ne). (li:) ts llli~t 9.pproa~h 'a lixnft Po1nt x** of\, t, b~fo~e x* 

·.,· . 1, ' • . ··, ' ' ' ' ' ' : ' ' ' :. ':' '; ,· .·,. · . ' ' ' 

is reached~ . Concebte.bly, the above extena1on'. process could 
1\ot 'be .carried past x-u*. . But. s in.ce ,t-»i• ls in'· E, ':"enrtna 

:; .. , ·. . ' . . ' . " •• ·.. ... . . ._-. ;: .. •· 

1

lll~ 2.a applies to x1Ht~. and thex>e is a Jff ;> P slloh that 
t,1\If0f_lxH) · 111aps intO £•. . This neighbt°irhood in'e1udes 
;points of , .. L,whic~ ~re beyond x*.~ (th~t,;is', b.e.hween •. ·~{~;i and 
'x~}l;. hence, .:Jhe exte~sion ·process can be qarried .. beyond 

x~, and ·'.·e;e~tually x* :1s .:?ieached : and ,maps 1~~.to . t•' .. 
. ' (t) ·· ... ·· ' ,, ' . ·. ' : ' ' .· ·•,· .. ' ,> ' 

III.2.J.l•·· Lemma. L.et· F; f (x ,.) , .. J1 .~ l, 2) 1 .. b9- ,. 9r mapping 
' ,. . . _: . . . ·' 

,' .tunction 4erin,ci on·. a . c~·nvex . region E in; R (.7) • su~hi· tli~t 
' .. ... - :··.. . : . ' · ' , : 

,• .. J , , . 1 

D,cF e~i.sts and i .s different ~rom ee~o 1.n. E.. Let ·x·~ be 

· fixed pQl~t ·1of · 1i .·and iet s:1, x:l ·, .'and ~; be three 'v~riabl.e 

pClfots of E sUcb th;t · L\(X
1
X_,x,1) )s alway~ in 1 1 arid ~Udh 

'that XO is al.ways on ~he .· i1r1e jo1,ning ;x;, and X.z ·• '.rhe,n 

• 

; .t 

Proof. . Sirice DxF eXist~. ~nd is dltf~rent .,from _zero 1n E, 

the mapping is conttnuo.u~ and takes straight lines .into 

· .'straight lines by .Whe.qr.ems IlI.,2.2 .. and III.2-:10. 
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Let Dx F I = d. Then f'or every E- > 0 there is 
Xo 

a 6 > 0 such that 

.d(F:x0 x 1 x:z) 

D,(X 0 X1 X.:z) 
- d <- G /2 

whenever /jx0xJ < 6, {i = 1, 2), . . Lt(x 0x,xA) in I 1 •· 

It must be shown that for every E -;> 0 there 

exists a & > O such that 

t1 (F :x, x~x3 ) 

L\ (x I X;zX ~) 
• d < E 

whenever rl xoxJ -~ t , (i ::i:: 1, 2, 3), i.yhere 4 (x,x...Zx5) . is 

in I, , and Where x O _ is e:lways on the line between x , and 

x::z. 

Let x,, x~• and~ be variable points such that 

the conditions or the hypothesis ar~ satisfied. In this 

case, ,1 (x0 ~;ix3 ,and t1(x., x 0 x3 ) are ~n . I 1. • • By Lemma I. 6. 2 

~{F:x, x.;x..,) ·= . D(F:x X x:3· ) + 6{F':x X X.=-) + .6 (F:x X X ) 
,._;,, 0 . I · o " . I .:, o 

and 

Since x 0 , x 1 , and x~ are collinear, then £.Jx,x:..;x0 ) = o. 
Also, since straight lines map into- straight ;:Lines, _then 

6(F:x x x 0 ) = o. Hence, 
I .:2 
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Lat E > 0 be given • . Then there is a cf> 0 such that 

l\(x 0 x,,x3 ) . 

6(x, x-<-x :i') 

. 152. 

whenever II x0 xi 11 < J, ( i = l, 2, 3) , and whenever tha po int s 

x,; x:l, and x3 satisfy the conditions of the hypothesis. 

This proves the lemme. •. 

III~·2.l2. Remark. Since. x 0 is always on the line between 

x . and .x, then 
I :;. 

L\(X0 X.,_ Xa) 

L1(x 1 x:i.. x3 ) 
and 

6(x,x0.x3) 

D.(x,x:z.x-3) 

. are both less · than or equal to one. 

III.2.13. Remark. This lemma seems to be almost a special 

case of Theorem I,5.8. However, although the steps 1n the 

two proofs a.re similar, 'the hypotheses are not quite the 

same. The hypothesis that Dll'F # 0 is important t<:> ',the last 
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lemme., for this fact implies that_ stra.ight lines map into 

straight lines. From this fact, it follows that since 

A(x, x,<x 0 ) = O, then, also 6(F:x, x;zx:o) = o.: Without this 

knowledge, tba proof of Lemma III.2.,11 v10uld not be 

possible. 

III. 2.14. Th.eorem11 
ll 1 .· Let F: f (x), (i = 1, 2), baa mapping 

:runot ion. defined on a convex region E in R. (:<>. . Let Dx F 

exist and be difterent from tero everywhere in E. Then the 

mapping in one.-to-one. 

Proof. By Theorems III.2.2 and III.2.10; Fis continuous 

and maps straight lines into straight lines. It will be 

shown that every image point, F(x 0 .), :ts the illlage of 

.precisely one point, x.0 , under the mapping F. 

Suppose, on tbe contrary, that there is a polnt, 

F(x 0), which is the image of two distinct points., x 0 and 

x, • Two situat:kons may occur: 

Case 1. The segment x
0
x 1 maps into the sing+e point, F(1t

0
). 

Suppose DxF/ =; d. Ohoose , E <ld I • Then there exists a 
Xo 

J > 0 .such that . 

(III.2.15) 
L:\(F:xo.x., xJ . I 

- d < E 
~<xox \x,.) 

whenever //x0 xi(I < c:5 , (1 = 1, 21, L\(x0 x, x;) in I,. Let 

x;t be a point of E not on x
0
x,. In ·every small neighborhood~ 

NJ(x0 h of x
0

, the increment ~(x 0 xi;x!), where x~ is on 

x
0
x,; and xi: 1s on x

0
x.:2..., e.nd both points are in N0 (x 0 ) 1 will 
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map into an increment or . zero area. · Then relation 

(III. 2.15) 1 with "' < \d I , cannot hold. This is a contra• 

diction. Renee,., it must be concluded that ease 1 cannot 

occur. 
Ce.se 2. The segment x0 x 1 maps into a line segment 
F(x.t )F'(x11 ), where F(x•} 1~ the image of .at least one point , 

x' on x0 x 1 and where F(x") is the image of at lee.st one 
point x" on .x 0 x11 and where x 1 -/: x". Without· loss of 

g.eneralit:n one may assume · that i' is betw·een x 0 and xfJ~ 

F(xJ = FJ;,:, ) is either an interior point o:t F1(x ')F(x"J or 

is a.n end point. Suppose F{:;c) F(x"). Then either 

F(x 0 ) = F(x•) or F(x0 ) is an interior point of the , intarval. 
Now every point x on x 0 x 1• can be written as 

and xis a continuous,one ... to-one function ot 8 .. When 

8 = o 1 .x = x O , and when 8 = 1, x = x 1 • 

Let er be the value of 8 which yields x• and let 

a" be the value of e whlch yields xtf. Then e I < e"; since 
rt . x t is between x 0 and x • 

Since F(x) is a continuous function of x, it is 

also a continuous fu net ion Of 8. 

Every point F(x) on F(x' )F(x") can be expressed 

as 

a.ncl F(x} is a continuous, one-to-one function of •(j'· • When· 

g> = O, F(x) = F(x0), and when 9 = l, F(x) = F(x0 ), and 
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conversely. By the work in T.heorem II.6.6, '9 is also e. 

continuous function of F(x.). Hence·, <p .is e. continuous 

. function of e, se.y· == ~-(9).. 

\\hen e = O, F(x) = F(x
0
), and hence cp = J (0) = 0. 

Vehen 8 = 1, x. = x, , F(.xl -= P(x,) = F(x), e.nd cp = 0 again. 

When e = 8 1 , F(x) = F(x•), and <p = . p (8'} = p ~. lilhen 

8 ::: G", F(x) = F(xrt). 1 and cp = ]? (e'•) = ~-u = 1. 

Consider the closed interval [x 0 , x '] • This 

interval corresponds in a one-to-one manner with the closed 

interval ( O ,e • ] • Since J (8) is a continuous function of 

e, <_p takes on everyve.lue between O and cp' at lea.st once, 

as e moves from O to e•. Bance F{x) takes on every value 

between F(:x. 0 ) and F(x•J at least once, as x goes from x 0 

to x 1 • 

Consider· the clQsed interval [xi, .x"] • This 

corresponds 1.n a one-to--one manner to the interval [e, 9"]. 

Again, since . p (e) is _a continuous runction ot 8, takes 

· one every value between . <pt and C:P n at least onee, as 8 

go_es from e• to ett. That is, F(x) must take on every value 

on F(x• )F(x'') at least once .as x goes from x• to xft. 

Finally, consider the closed interval Cx'!x l . 
It corresponds in a one-to-one manner with. the closed 

interval [en,1 J. Since f(8) is a continuous· function · 

of a, <f must take on every value between <y>n = 1 and 0 

at least once, as e goes from en to l. That is, F(x) must 

take on every value between F(x") and F(x
1

) == F(x0 ), at 
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least once, .ae x goes from x" to x,. 
- . 

· xt is conclu~~d. that every point ;F(x) -between 

F(x0 ) _and F(x'l is the image of at least ~110_ points on 

x 0 x 1 , one of which is beti•1een x0 and .x ' . ., the o.ther between 

. x. 1 - and x". Similarly, every point F(x) between F{x0 ) and 

F(xff) is the image of at least two points o:n x0 x,, one of 

which lies between x • and xn and the other between x" · and 

X . 
( •. : 

.. n 
E < 

Consider the point x'•'• _Let A~F\ xu _= d" • . Choose 

Id" I. Then there is a Su > 0 such that 

(III.2.16) 

whenever II :£"x!• /I . < . 6 ft' ( f = l, 2)'' . a(xf'x:•x~ ). in I I O In 

every. neighborhood of x" ·there is a point x" on: x0 x 1 between 
' . ( 

.x 1 and x" and a point xi on x 0 x, between x" .and x 1 , both 

of which map into the same image point. 

By ,Lemma III.2.11, in taking th_e derivative at 

xn, the increments formed by . two points, x:' . and x1 on 

x0 x,, with x" on x 0 x, between them, and another .point x:, 

not on x 0 x1 , may be considered. P'or the$e increments _ 

relation (III.2.16) must hold Vlith f". < Id'' J • . But among 

these increments will be found, in every neighborhood of 

xlf, those for which · the points x~ and -?t~ inap ·into _ a single 

point. But in these oases the increments map into increments 

of zero area. Renee, for these increments the relation 
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(III.2.16), with E" <ld 0 1, cannot hold. This contradicts 

·the assmnpti'on that DxF\x" = d". Hence it must be con .. 

eluded that case 2 cannot ar•ise. 

In either case, a contra.diction has been reached. 

Hence, every image point is the image of precisely one 

point of E, proving the theorem. 

III.2.17. If F: f(i)(x), (i = l, 2), is a mapping function 

defined on a convex region E in R (~). and if DxF exists 

ever:ywhere in E and is different from zero, then F is 

continuous, one•to-one and maps straight lines into 

straight lines, by the theorems just proved. Now using 

the results or Chapter II, in pe.rticular, Theorem II.7.3, 

the following theo.rem has already been . proved: 

II.2.18. Theorem. Let F: rUJ (x), (i = 1, 2), be a mapping 
. U) . 

function defined on a convex region E in R and let DJ<.F 

exist everywhere in E e.nd' be different from zero there. 

Th.en F is of the form 

(III.2.19) F: f(il(x) = 
o. x r, > + a., x (;J> + a l,3 

l~ I ' <J ::t.. ( i 1 2 ) ' . . = ,. , 

where 

a,,' a ,.2. e,,3 

V.:, I a2..2 0..:,,5 t- o. , I 

ai,1 a.:1.1. . a:13 
I I 



The following theorem is in the nature of a 

converse. ·· 

.III.2.20. Theorem. Let 
. •'-'. \ 
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(III~2.21) 
\ ' 

, (1 = l, 2), 

where . 

8. a, 2. a,,, ,,, I . 

a a2,:1. 8..1,~ # 0 ;:,,, 

a e.,3' "- aa :3 a,i I I 

be def'ined on a region E of R:z. 1whieh does n.o:t contain 

poin:t;s ot the line a t xu> + a x<z> + a,,, =: o. The~ D.,F ' . ~r . ~a •• 

exist~ and 1s different from zero in E. 

:Proof'., Let Xo be any point in E a.nd let I and X,i be two 

variable pain.ts of E ~o th~t 4(X0 X;1 x"") 1s iD: I,. Examin'e 

the difference quotient 

· (r7 r (xo), f C:i) (x0 ) l 

t (P (x }. r ' f <:iJ (x, ) l 
. I 

:rm (x ) r (;!) .(x-<) 1 
(III.2.22) :z -

Jt(ll x(~J l 
0 0 

,x<n X (.2) 1 
1 I 

,x<r) xC.:zJ 1 
.;i ;I. 

The numerator of this diffe!'.ence · quotient is equal to 



(t) (;,.) . . . a,,, x0 r ~1t,;,.:ic 0 + a,,, 
a x(''+a ,cui+ a 

,,1 o ~,'- o l,3 

a :2l0 + a :l'\ a. . 1,1 · I. · ._ 11 .:i. I· · f1 ? 
= 

the multiplication theorem -£ox: · &terndnants [ Kowalewski, (l), PP• 

66 ft •J (III. 2.22) .f~ becomes equal. to 

a,,, a,,;_ -a,, 3 
x,<ll 

G 

a 
;l, I 

a1,, 
a. "2,t 

~,, 

xr,1 
I 

x<,, 
;). 

a., 2 
I 

a-<i~ 

a.i .2 
I 

X(I) 
I 

x(_r) 
;;_ 

x(.21 
(l l 

x<1.I 1 
I 

xc:i, 
.:J. 

l 

a,,3 

a,,. 3 
I 

a3' 
I 

:x:11.1 
0 l 

Xt2.I , 
xl::i/ 

2, 
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By hypothesis, the numerator :is different .. from 

zero.< Letting x and :x approach x ,_- t1tx. 0 x 1 .x,) remaining 
. I . .;i_ . D -< 

in the class I,, it 1$ $ 08~n that D xFI Xo exists and 1s 

equal to 

a,,, 8.,, 2 
I 

& I 3 
) 

a --
:1, I a.2,.2. a.,:::1 

a - a · · a --
~1 ~i ~3 _ _ .,. o. 

(a x,/1) + a X 121 ' + a ) 3 
i,1 0 .2. 0 

Sine~ x 0 w8:'s any ,Point in E, the derivative ls different 

from zero E)Verywhere in E, proving the theorem, 

III,2.23. , Remark. It should be noted that einee the 

deternlinants 

X (I) X <.2.J J. 
(> 0 

X (1J x<.2.1 1 
I I , 

:zJO ,x(.il 1 :z. ·:Z 

·1n (III.2,22) ea.noel out, . it really does not make any 

difference ff th~ points x0 , x,, and x2- remain in the . 

class I, , or even that they approach x 0 • It x 0 , x; , and 

x~ approach any point x* of E in any manner at all 1 the 

deriva_tive D>/~ exists · at x* and is equal to 



a.,,1 s., 2. 
J 

a,,3 

a .:1,, S..:,,.;,. a 2, .1 

a S.;;;.z a ,,.," -:1,, # o. 

'fhe linear fractional transformations have a gener~lized 

derivative under the most general conditions. 
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III.2.24 •. Remark. ·. Theorem.a III.2.18 and iII.2.20 together 

show that the pre~ise ela.s:;, of mapping f-unctions, defined 

on a convex region E of n<.1.), which have . a non-zero 

derivative, DxF., in E, is the class of linear fractional 

transformations·. 

III.2.25. Remark. ' 0) The generalized ¢1.erivatives D xr,1f ·and 

D x<iir<.:iJ are only special cases of the generalized ' derivative 
. (II 

DxF• according to Remark :t.1.10. It · follows that if D 0 ,,r 
exists and is dif.ferent from zero in a convex -region E 

then f (r)(x) is of the form (!II.2.26) 

.r <11 (x) = + a,,• 
I 

For if one sets f (A) (x) · = x '(.1) in the difference quotient 

r(f' .(x) f <27(x ) 
0 

;i 

t ro :(x .) 
. ' ( 

f (;iJ(x ) 
r 1 

f (IJ(x ) · (.7/ ( ) l _r .. . . .• ;J.. 

X (1) 
6 

X(l) 
. " l 

X (rJ 
I 

X (:i.} 
I 

l 
x(r) x .(2J l 

.2 :l 
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an_. d if the limit is · taken wit_h respect to the class r, . . .·. I 

then D FI == D f ml ·.. · Since f t:i l(jt) and f c, )(x) must 
. x; X O X <•l · X o 

have the same denominators, then . f en (x) must be o.f the to:rm 
(III.~2. 26) • 

. Similarly, if ·ox(,/(:i) e:1r.ists encl is different from 

zero in a convex region E, then f' <:z> (x) must be of . the form 

(III.2. 27) , 

ll:I.3. THB .CHARACTERIZATION FOR THE n-DIMENSIONAL OA$E 

III.3.1. The results· obtained -in Section 111.2 · will now ·· 
' ' 

be generalizea ·to the na1,dintensional ease. '?he prooed~re is 

the same, but certain difficulties a.rise in the general!• 
' ' 

zation which did not occur . in the . 2-dime}'.ls1onal case • . 
' ' ' 

In this section, x · 'tx (,', :z.,(;tJ , . • • • 

III.3.2. i'heorexn. Let Pi f <O (x), (i = l, • ·•· . · , n), be 

a .me.ppi~g .runetion defined on ah_ open set E in a<n.\ : Let 
, ,:, .. _, _,;: , •.,, 

DXF exist and have the ,. valu& d 'different from ~e~o at a 

point x 0 of' E. Then F 1s continuous at x 0 • 

Proof. For every E-? 0 there is a J > O such that 

(I.Il.3.3) 
•. 1,1(F1x,x,. ·•, xn) 

Ll(xc)x, • • • x ) . n 

- d <( 6/(n + 1) 

whenever 11 x 0 xi 11 . < cS , (i = 1, ••• , n), _;(x 0 .x, • • · .. xJ 

in 1 1 • ·This is true since the derivative has been assumed 

to exist and equal d at x 0 • . In ·. particular, for 



such that E-* /(n + l) < Id) , there is a J * such that the 

above inequality holds. 

By Theorem I. 5.81 DxF I Xe ca.n be calculated by 

taking the limit of the ratios 

t1(F:_x,x;1. ••• xn+,) 

D.(X,X;i.• · • • Xn+,) 
t 
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where x, ,· x~ ..... · .. x are chosen to satisfy the con.ditions _.. . l"l+t 

of the hypothesis I. s. 8., In particular. if x, , x .i..' • • • , xn+, 

in Nit- (x,,) a.re chosen to form an increment of I, with x 0 

intet-1or to L\(.x, x.:i., .... xn+) 1 then 'l1heorem I.5,8 can be 

applied and for these chosen points. 

\ i>(F'tx, x~ • •. • """) "' d \ < E* • 
/.l (x, X ,_ • • • X ntr) 

Keep x, , x ~, •· •· • , x n+, fixed., The increments 

~(x,x~• • • x x) are all in the class I,. n o Furthermore, 

since relation (III. 3, 3) must hold., with E = E*, the 

image increments, /J. (F:x 0 x.:i.. • · • · xnt,), Ll.(F:x 1 x 0x~~ - .• x ), 
7 • · l"l+t 

. . -· , and A(F:x,x-< ••• • X-n XO) must all be different 

from z~r<:,>, hence e.re in the class I 1 • 

Let x' be a . variable point of · N J.} (x ) , . whieh for 

the moment is required to remain off the . (n - l)•fle.ts 

determined by the sets of points (x0 , x~, • • • , x,J, 
• • , x: , x ) , • • • , and (x ,. , x3 , • • , 

. n -, n-t1 v · · 
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There are O (n,., ~-1) . = n or these (n-l)•tla.ts ., , (N'o:tice that 

the point -x, · is in· rtone o.t ,these {n.-l)~rla.tsJ. 
I • / S 

• • •. ·, ·and . n(X0 x 1x) • 
. _. ' -; .. 

.; •• . x.,,,-+,). 

These increments are in the clas_ s I .. 1 in N ""-(x' )··... .tbr · x • in 0-,,. . o . I 

the restricted region, and hence rel,ation (Ill'.;3~3) holds 
, . 

.tor .the•s'e increments arid their images, with .··. E: : ,' ·E*• · lt · 
. . .·, ', 

must follow that tor every sufficiently small E f·> o {in .· 

particular for . E' E:*).~ there exists a • c5 ui > O ~uch ,that 

(III • .3.4) • • ·. X . . ) ·1 < iE 1/S.· • n+r , · ' 

• • 
is :an absol,ute const'ant ·which will .be,. chosen later~ Suppose 

· thfs' ·assertion· 1s true, • · Then f'or f 1xed .·, .E ' ~ . E.;r.., and 

for everY ·. 6 _> 0, there 1s at lee.at one poin~ i*.~' (x~) 
' ,,. ' .. 
such. that 

l.a(F;x .•· x 
0 ;;J. ••• x. x*x. · ••• x~t· ,ll 7 E•/s, .(1 . = :2, o, 

l-1 ttl " 
. . . , 

As . cf is allowed to. appx-oach zer.Q , .. 

·. l\ (X:c,X;i_~ 

, A(XOX~• 

• • x 1._,x*xi+r• •• xn:+,) also .approaches zero, since 
. ' •. ·• 

• • x . x*x . • • • x ) varies directly . as< 
l -1 I f-1 THI 

ii X x*/1 , X ., • . • • ; X . , X .. . , .• , • , .. , Xn..:, being.fixed 
0 '· ' ::Z.. .,-, > £ t, · T 

points. Then; as cl' . approaches zero, the difference 

quotient 

( a . * . . . ·) £'.1· ,;: #x0 ·x • • · • ·X-_ X X. • • .. • X71 t, .· . .. · --:i. , t, I Ltt 

. ~(X 0 X,,• · • · • X. X*JI; , • • .. • Xn+•' ) 
,< ,-, •.t, 

rt . + l.) • 
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becomes arbitrarily: large i'Ot' ·the points x* in N0·(x~) such 

that ,. 11(F•x x · x x*x ; x ) h .<='/ .. s. • For.··.··. such . · · • o ·. i • • • i-, i·+, • • •· '· n+, · ' 

points, which at'e also. in N J¾(x), the E · , . J relation 

(III.3.3) cannot hold;; contra.dieting the s.ssumpt:ton tlla.t 

DxF l x = d. · Hence, tor every E: :t ·~ E:* there iS. . a d ti,> 0 
0 

such that (III·.3.4) holds 1 (i = 2 1 3 1 • •• • n + l.). 
~hoose J, = min { J<,> (1 2, 3, • . . , . n + 1). 

. Then 

I t1(F1x.o. Jt? • • •. .X . X •x. • • . • X ) I < E •/s / 
"'- '-/ l+t . n-t1 

whenever II x0 x' II < J, , x' re:m.aining 1n the restricted region, 

(1 = s, a, • •• , n + 1}. 

Now 



(-1) 
'ti 

n! L:l(F:x x~ •• x. x•x .•• . x . ) = · 
· 0 .,_ i -/ · L + , n + I 

.. . .. . ·• 

. .. . '. ·•· ' . 
('l'll( ' .. ·) f · X . () 

f (n)(x~) . 

1 . 

1 

• . • ~ - .••••••• . • - •••• 

·f· (1J (· >. } · . (n) . 
. X. • •• • • · • " f (X.) . , ... , (,-( 

f (1)( . , :). ., . .P_{n)( ...... t)·. 
. X . • • , • • • .L .,.. 

l 

l 

• -" • • . , ·• ·. • .. . • • '' • . -4J: • . • . ,., . •i ,. • • 
(r > 

f (x. ·)., n ~, ·. , . .. . . ... f ('11)(:x ) 
· · nJ.1 l 

.. .. 
• ~- . • • - , • • ' ·• ··. ·• • . . , • . ·• . • • • ·.' ·• • ' • • . , • fl; 

r (''(x_ .·. l 
1-1 

( I ) 
... f (xo) • • • 

. ' 

•. • f <717 (:x. J 
. . l -/ 

< I .. · - t 'ti (_x ) 
0 

f c,,, (x' ) - f (I )(X: ) 
0 • • • • • rcrii(x' ) ... r(n)(x ) 

' ., o 

.&0 ( II (•. . ·) f' (ti·.{ . ) . 
. J. ,A ti-/ . ... XO . • 

. . .. .. .. . . . •· .... ·•· ·-.. ,. .. ~- ... .... -• 
(I) 

f (xn-i-,) t (11 (xo) • • . .. . 

14$. 

(1 = 2 • ·3, • , • • . , n + l) • Expanding by the 1th row, the 

a"bove equation b~comes (lII.3.6): 

( ) ln;/ ' . ( F. . . . . . ' . . ) •l n. ,1 ,x.0 x., • • • x,. x x .j, • • • x · 
. . · ""' · . ., . , ., · ntr 

(1 = 2, · 3, • • • , n + l), where 

A .. , (1 = 2, •• • 1 n ·+ 1; j = 1, ••• , n), is the co-
',J .•· ' . . . . 

factor of f (J}(x.) - rfJ) (x ) in the determ:tnant 
L . CJ 
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A= • :• • '9 • o· • e • • • • • • • • • • · • • 

f c11 .(x· ·) c, >( ) - f XO ... n+, 

(A c nJ A(F:x 0 x;i_ • • • x~) • except possibly for sign. 

Hence., A -p O). 

Equation (III.3.5) represents a system of n 

equations in the n unknowns, f Lt)(x') ... t (})(x .) 
' 0 

( j = 1., • • • , n). irhere will be a solution if the 

determinant of' the coefficients is different from zero. 

This determinant is 

A . A~ ;I., • • • A:1, 1'-~,, , 
D ::: • • • • • • • • • = adj A. 

A n+1,1 An+,,i • • .. A n+I, 11. . 

By a corollary to the Sylvester-Franke Theorem 

on determinants [Price, (1), p. 82 l , 
l'\-1 

D = adj A = A . = X )] n- I 
• "+• , 

except possibly tor sigh. Since 4(F~:x:0 x~. • · • xn+,) is 

different from zero, there is a solution for 
t .(j)(.-t) • f(j)(x0 ),. (j --· l,· ) S l ..._ • • .. , n ·• o ving for 

:rli\xf) - f(j)(:x: 0 ): 



(fl ·• ... . · .. ,.· . (j l J: ,,,,(Xl) w f (~ .) --:= 
. • , . 0 

• xn-1,) A . • 2,Jtl 

·148., 

• • A, 71 I 

lit J .• • . . ..... . .. .. . . • .• • • 0 • .• 9 '"' • i> • . 

, .. , 

. ,~ <r•xox;t ••• , xnx' > A • • A l\/11j,-1 if/· . nH,1 
c, .• . • . . , . _ , . • 

[nl t1(Fax0x1 ~ • • xnt,fl n-• . 

{,j = l~· , •1 ••· •• y, · n) ,· except possibly for s•ign., 

Aii the terms on the right are. constants except 

the elements of the jth column., Exp~nd:lng by elements of 

this column;· and remembering {III.-3.A), it follows that 

for•,, every silffic'iently small E ,. (in particular for E' f~i ,J 

there is a. 6i > o such that 

whenever l\x 0 x 111 < c\ , (x' remaining in the restricted 

recion), where M • is a constant which is equal to the 
t:.:> ',J 

swn of the absolute values of the minors of 
i 

x. x •x. • • • x ) in the above expansion 
t-1 £ 1-1 'ntf 

all divided by r n1 n-,2, [ Ll (It1 :x.ox;t." •• x-n.+, ~n.-l I , 

{i = 2, • • • I n + l). 

In general, requiring x' to remain off the 

(n-1)-flats determined by x 0 together with any n-l of the 

i t •• , x .... +,, it is found in po n s x,, x-=<, .~ •• , xK_,, XK+i• •• 

exactly- the same manner for each If, (k = 1, .. , . . , n + l), 



that for every sufficiently small number ~' '.;) O (in 

particular· for . ct <::-r"), there is a · J > 0 such that 
(',. 

... 149. 

•• ,,.·, .nl, 

whenever I\XOX 'II < C , x:• remaining in the restricted region, 
I< .. : . . 

where age.in M • . k,J 1s · a constant which ·1iJ equal ·t() the; 1aum .. of 

the absolute valu(:)s of .the min,ors 6~ •· 

.1(Ftx •• ·• x. x'.,t. · ••• 'X . ) 1n ·the expansion 
· · 0 l - r t +1 ' )'\ + r· . . . .. : 

corresponding, to that 011 the previcrus page, all divided by 

ln1 'n,-;L. r.. <,:;,, : • 0· • • · .· • ·· "> 11-, l . 
l.L'.11:.n. • .xK_,x,<+1• •• xn.+,ll ·' · 

(1 = l, • •· ·• . , , k ... 1; k + l, •• • , • , · n + l) • 

The constants, M . . , depend o. n . 
k, cl 

4(F:xox~ • •• . x~-1 xl<+t " ' • ' . xntt :>, and on column r:or, adj A. 

They .are all .absolute constants since theY·:ultimately dep~nd 

upon only• the fixed numbers F(x 0 ), • · ••. F(xn+r>. 

· Choose S = max{rrl<.j , all k and j, and : choose 

O' = min {<\ \ , . all k. Then 

If (j lx t) ... f' U\xo) j < i E: ' , (j = l, • • • • n), 

whenever · llx0 x'II < l:i'; with no othe;r restr1ct'ion o~. x ,•~. 

Hence, F is cont1nuo'us at XO:; proving the theorem. 

III.3.6. Theorem. Let F; r 1i'(x), (1 == 1, ••• , \ n), be . a 

mapping function defined on a eon~ex region E: in. R~'YL) · and let 

DxF exist arid b~ differen~ ,from ,zero in . E, , Let x~ be ~. point 

of E. Then in a suff1ciently ·smallne1ghborh<:>od .of.' x 0 , 

(n-1)-flata containing x , map into (n•l)•flats. 
' .' ' 0 ' 
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:eroor. Let D xFI Xo : d. Let f ) O . be given such that. 

E < I d I • · 'l'hen there exists a J0 > 0 such that 

(IJ:I.3.7) I !'.)' (F' :x_ 0. x_ •.: •_,_·· .' ·. ' • X. n_ )_ ' l .. d . <. (; 
ti .<xox,. ' •• x.) 

whenever .()x0 x,U < J 0 • (1 = l, • · • • , n)~ L1(x 0 x,. •· . xn) 

in I 1 • . It will be shown; ~he.t in .NJ (xJ, (n-1)-f'la.ts con-
. a 

tainingx 0 map into (n-l.l•!'la.ts. 

Suppose the theorem is false. Then there is an 
' ' 

' ' 

(n-l)•,1'19.t, s "Y'l-1; through XO such that sn_,n N Jo (xo). does 

not m.ap into an (n-1)-fla.t. 

Let X .·, X.,, • • • I . . ~· x . be n-l. points of .. n-, . . ·. . ·. . 
Sn _J, N J

0 
(x 0 } . which with x 0 form a set of n. l:tneB.l'ly 

independent points. These n points will dete~mine ' Sn_;. 
. ' . . . 

'l'he points ·x01 x,, •• • x.n-, map into linea.riy independent 

pQinte, F (xJ, F (x, ) , . • • . • . , . Jr.{x -n _) _; o therwf$Ej 

Xoi x, I W I' xn--, together with 8, suitable chosen. point 

xn ot 'N 0 (x.J would torm an .inQrement of r, which would 
0 

map into an 1ne:t'ement of n•di~ensional 11olume zero~ 

contradictitig the e.ssil!nption. that rela'.bion (III.:3.7) holds, 

With E: < Id I , for all increments il'l I, . in N Sa (xo). 

The points F(x0 ), F(x, ) , • • · • , · F(x 11 ) determine 

an (n-l)•flat,· Tn-•. Let F(x*) be a point, not :tn T"l1._,, 

'Which is the . image o.f at ·. least one point x* ot 
Sn-, (\Nc5()(:x.OJ. ' Such a point exists, otherwise the theorem 

1s aiready true. The ' increment ' .6(X O • • ' • x,.. - I • i*) = 0, 

:&: . , x{t- ara linearly depend~nt. 
n-1 
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But dF:x
0 

• • • x x*l •-/:. O, since· F(x ) , F(x. ) , ••• , F(x ) , 
n-1 · o . · · , n-1 

and F(xi'°) are linearly independent. 

Let x be a variable point of .Nl (x0 ) which 
. . 0 

togethe.r with x
0

, ••• , . xn-, always forms · an increment 

or I 
1

• Let F(x) be its image. For the. points 

x 0 , x,, • • • , xl'l-\ , x, the E., J relation of (III. 3. 7), 

with -~<Id I , must hold. As x. ,approaches x*, F(x) · 

approaches F(x~t-), since the mapping is continuous by 

Theorem III.3. 2. Now ·L1(x
0

• • • xn-, x) approaches 

L1(x
0

• • • xn _, ~) == O, while t0(F:x0 •• • • x. 0 _ 1 x) · approaches 

D..(F:x.
0

- ••• x x*) # o. Hence, the difference quotient 
n-1 

b (F = Jt O • Jt n-, x) . 

.t1(x ,c; ••• xn_,x) 

becomes arbitrarily large,· contradicting the. assumption that 

relation lIII.3.7) holds f<>r all increments of I, in 

N d'
0

(x0 ). Therefore, the (n-l)~flat, $-n_/, NJ 
O 
(x), must 

map into an (n-l)•flat, and. the theorem is proved. 

. . . enc ) .(' .· . . ) III.3.8. Corollarz. · Let F: t x 1 = l, • • • , n, 

1. . . "° 1 i E o•-r· .R(.t1,) be a mapp . ng ,:function def1neu n a convex ·reg on · .. · .. _· 

and let DxF exist and be, different from zero in E • . Thtln, 

if Sn-, is an · (n-l)•flat with points in E, S .,,_,nE maps 

into an (n-1)-f'lat. 

Proof. Let x 
O 

be a po in_t of S-n _, t\E. By Theorem lII • 3. 6, 

in a sufficiently small neighborhood, -~ cr
0 
(x 0 ), of xc:>, 

Sn-, (\N 6 (x 0 ) maps into an (n-1}-flat, Tn_, • Let x* be . 
0 ... 
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any other point of s-ri·_,(\ E. · It will be shown· that x* also 

maps into ,~h;.;,• , 
. .,_, (' 

Ir . _ llx 0
x~ II oc,· , tbe . c,o~ollar:y is already proved. 

i:r l\Xolt~ ll .:-={, then ·since 'x* : is iri sn_;·n E, 

Theorem III.3.6 appliea to. x* and there is ·a cf*) O such 

that. s"h~ In Nes*(x~) maps into an (~•ll•tl~t_, which must be 

'J.'-n-,• since S
1171

f\N<)
0
(x 0 ) and S.,,},nNt{x*} h8.vepo1nts of 

s'Y\_,· in· cow..mon. 

·Suppose llx 0 x*tl > 'J • . Since E 1s convex., ,x,._ and 
, 0 V 

x4f can be joined by· a: straight li.na· segment~ xx* o I 
. . . 

·which lies entirely in E, ·.~d also in s,,_·_,. Lat X be the 
I . . 

- . - . . • • . ' -/_ : ' I 

point of x .x~ between x O and x~ , such that l\x ·x II = S0 • The · o · , · . · . o I 

!)01n.t x, is :tn S 11 _/") E and Theorem III. 3.6 can be applied. 

~-en ,t'.here _is. a {, /. Q such that $n_inw s btf:) _maps into an 
. ; . . . " ~, 

(n•ll•fle.t, which mus,t be 'l1n-, • since N,(;(x0 ) a~d N {, (x,) 

have po1nt$ ,of .$n-, in comm.on. · If x* is inN6 (x,)~ - ~he 
I . . 

corollary 1s proved. 

If x* ls . not in N 6 (x,), deno.te by x :z the point 
' . . ' , ' 

of_ xtx* between x. 1 S.f1:d x* -, such that llx,x~I/ =er,·. · 'Theorem 

III. 3.6 · applies ,to xp( and ·. there is a .. d; 7 O such that 

S;,._, fl Ni (x..z) maps into en (n-1)-flat r,hieh must be T -n-,, 
. . 

sinee. N,g (x.z) and N 67 (x l have ~o ints of SA"""' in common. 
. , , . . 

If x* is 1n 1'! r (x~J, the corollary is· proved •. · 
, O:z. . 

If -x* is not in NS'. ,(x,< ) , continue in this manner 
.!l. 

until e.n xr on x
0
x* . is reached tor which there/ is a cf r > 0 

such thS:t S-n-, (l NJ r(xr) .maps into 'l' _, arid such that x* is 

in NJ' (xr). Then x* also maps into T _, • 
r .. 
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It is conceivable that the t.-ne1ghborho9ds t . . 

considered become smaller and smaller with the centers, 

xi, approaching a limit point, x, ·on x
0
x*. Then possibly 

the extenai.on of the argument could not be carried pa.st x.. 
However, x is a. point of sn_,n E and Theorem III.5.6 
applies to i. Bence there is a cS > 0 .such that 

s"h_
1
n N g(x ) maps into T 11 _1 , and the inclusio~ of ._points 

of x
0
x* beyond x. which map into 'l! n-, bas been acco:rnplished. 

(Beyond mea.ns between x and x*.) Therefore, the argwnent 
can be eon.tinued until x* 1s found to be a point of 

s-n_/• E which maps into T)"\_,. Since x•n· was any point 9f 

-Sl'\_/"\ E, it m.ust be concluded that every point of S,,_,n E 

maps into T 11 _
1 

and the corollary is proved. 

III.3.9. Theoremfl Let Ft r"''(x), (:t = 1, ••• , n), be a 

mapping funet,1on defined on convex region E or R <n) and 

let D)(.,F exist and be di:ff"erent from zero in E. Then, it 
L is a straight line passing through E. the segment LnE 

:maps into a straight line. 

Proof. Let L be a straight line passing through E. Let x0 

be a point of LnE. 

so that c ~\d.,J • 

Let DxFI = d0 • Let .E. '? 0 be chosen 
Xo 

(III.3.10) 

Then there exists a J'0 7 O such that 

I L1(F:xo~ • • • . Xn) 

6(XOX, • • • xn) 
.. d <€ 

0 

whenever I\ xox ill < Jo , ( i = 1, • • , , n), ,,_o (xox, • • • x n) 

in I,. 
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Let x, ¥: XO be any other point of tnN a (xo). 
0 

Let X:z, • • • , xn be n--1 points of N 6 (x.
0
), not on L, 

0 

:whi~h . toge1h er with x O and x, form a set of n + l 

linearly .independent points. These points form the vertices 

of an increment, ~(x0 x 1 • • • xn) which has n•d:bnensional 

volume. different from zero. The image increment, 

~(F:x0 x 1 • • • xn)., must also have n--d1m.ensional volume 

different from zero, sinoe otherwise relation (III.3.-10), 

with , E- ld 0 l , would not hold. That ls, F(x0 ), 

F(x, ),.- • • • , F(xn) form a $et of: n + l line.arly inde-

pendent points. 
lJ) Consider the -(:n•l·l-flats, S · , determined by . n-, 

x
0

, .x, and the n-2 other points, x2., •. • • , x j-, , 

·xJH , ., • • , x.n., ( J = 2.,_ •. •, • , n). Since L is. completely 

determined by x
0 

and x,, then L must be common to all S~~), • 

By florollary J:Il.3.8 each (n•l)•flat, s~J} , maps,-,1nto an 

('n-ll•flat, T~J},, which is deter:m1ned by F(x), F(x,), 

and F(x ) , • • , .F(x . )., · F(x ,·+· ) , ,. • • , F(2h,.,}, 7.. .· .. · J-/ . a I 

(j = 2, ... 4 , n). sinee for each j, the set or points 

F (x ;) ., F (x , ) , F ( x ) , • · • .. , F (xi-,· ) , F (xi+ , ) , • • • , 
f (x.,), .forms a set of n linearly independent points of 

T {JJ The image o. t L must be common to each {n•l)-fle.t, n,-, 0 

T (J) • Denote this image by L •. 
11-t 

Now each (n-l)~fla~, T ;~! , can be :represented as 

a single equation in the Ul'lkno,m.s f CtJ (x), • • .•• , f l>l) (x ) , 

as follows: 
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lj) . . . (1)(. ,·. . ·· . . · .· . (n)( ) (III.3.11) Tl\ :a. f .x . + .••• + a. r x . + 
-, J>I J1 h 

= o, 

(.1 = 2, ·• · •• , n). It will be shown that thE• (n-l)•flats, 
; 

T~~.) , ( j = 2 • • • • , n), i'.tltersect in a straight line 

which contains the points F (x 
O

) and F (x , ) • 

Since F (x
0 

) and F (x, ) are common to all the 

(n-l}•flats, '11~~~. , then clearly they are both solv.tions of 

the set of equations (J:II.3.ll), and they e.re linearly 
independent solutions, since F(x

0
) {: F(x,). The. equations 

(III.3.11) me.y be written e.s 

(IlI.3.12) 

( j = 2, • • • , n) , since F1 (x 0 ) is a soiutlon of "(III. 5.11) • 

This is a system or n ... 1 homogeneous equatlo.ns in . n un ... 

knowns. There is only one non-zero linearly lndependent 

solution or this system of eq_uations [Booher, (l), pp .. 49-

52 J • Olearly, this solution is , F(x, >.-F(x
0

) 

{ 
ti.) . {l) . l ' = f (x, )-f (x0 } , (l = l, • • • , n). All the: remaining 

solutions are linearly- dependent on F(x )-F(x
0
),: and hence 

I , 

all the points in common to all the (n•l)•:flats, 'l' , 
must lie on the straight line through F(x,) e.nd F(x0 ). 

Hence, since L• 1a common to , · (j = 2 ••• ·• , n) • 

than it must be contained in this straight line,· and hence 

points of tnE map into points on e. straight line, which 

is the fact that was to be proved. 



III~.3 .. 13. Lemma. Le,t F: f' o, (x), ( 1 :::: l, • • • n) , be a 

mapping function defi.;ned on a. convex r,eg1on µ; · in R()'..); and 

let DxF exls~ Ind be different from zero· in E, Let x 0 

be a' point or ' E,: and ' let XI , • • • , xh-tr be ,n + ' l variable 

points . of E such that 11(.x ,x;t • • • xn+, ) 1s always in If. 

and such tbat x is alwe.y·s on the line betw8en x and. ·x • 
D . . f ;i_ . 

D Fl ::: 
)( • ')( 

' 0 

'L)(F:x,x~- •• ·Xn+I ), 
11m --. --------
,x,· ~<x ,:x .:z•.. .• X n +1 } 
, ==~: .. , nt, , · 

• 

Proof'. ' Since DXF exists and , Js different from zero in E,. 

then .F . is continuous end maps straight l'in~s into straigbt 

lines. Let DxFJ Xo = d. Then for · eyery E / 0 there is a 

·o >. 0 ·such that 

. .... xn) • di 
whenever · ;,xox;II < 61

, (1 -= l, •• . ~- , n), (xax, ••• xri) 

1n 1,. 
It must be shown that for every E ? . O there is .a 

c5 > 0 such that 

(III• 3.15) l. 
l}.(F'· ... ·.~. X.·' • • • Xn+t) · 1 · .. d .c::. - '=' 
. (XI X :2 • . • , • X 71 +1 ) 

whenever 11x
0 
xi fl <- cS , ( 1 = l, .• • • , . n + 1), and where 

L1(x
1 

x.:z •• • .: xn+, ) is al~ays in· I I and x 0 is on the line 

between x and x. 
, ' :-l. 



J:,et x, " x~ • • • • :;_ xn + 1 be n + -~-- varial)l.e 
points such that the conditions of the hypotheses p:f the 

theorem are satisfied. The increments. A{Xo~~• ' •• xn+1> 
and A(x,x0x3 • • • xn+-1) are in I I j }:)Ut 

(X 1 :X., • • • X; X X . • "'- __ . • :-1 0 l -f :_I . 
.. .. x . ) , (t = 3 • . f •>· . •• n + 1) ,· n+1 - - . " 

all bav~ n•d1mens1onal volume zero _since x 0 , x,; _and x.z 

are . collinear •. 

Since stra~gb.t lines map into straight ,~;nes 1 

F(x0 ), F(x,), and F(x.z) are collinear, a.nd all the< 

increments ,6 (F:x, x-<. • • . · X ,·-, xoxin • . • • X n-t/), 

(1 3, ••• , n + 1), have n•dimensional volllltle zero. 

By LeI!ll11a . I. 5 ~-1 · and Remark .. r. s. 7, and from the 

above statement, 

and 

n. (x X : x,, • • • Xn.,_ I ) • I ., o ., . . . -, 

Let E-;, 0 be given. Then there exists a · J';, 0 

such that 



C1(E'~X1 X.,_lf • • Xnt 1) 
-----"-------. ;;. d -
h(x;x~ • . ·~. :• xn:) 

.. t/2 

, n + l), e.nd' where 

the pbint~ x, f. • • -. ) x.n+1 satisfy the requirements of 
' ' 

the hypotheses. This pro~es the theorem. 

{III~3.16) Remark. The qu.antities 

D(XOX.2 • • - • · XYli-1) 

_n (x; x:i. • . • • xn+, ) 
and 

{1 (x, XOX3 • • • X ·n+,) 
o(x, ::iz , • _ • Xn+,-) 

are both 1, since x 0 is on the _line between x, and x.:z. 

III. :.3.17. -. Theorem. LetF: rli'(x ), (1· == . l, :: • . ' n), 
. _· . c~1 be a -mapping f'unetion defined on a convex region E .in R 

and let DxF ~xist ~nd be .d!ff'ere?1t· from zero in E • . Then 

the mapping 1 s one•_to"'.one •· 

Proof. By Theorems III.3.2 and III.3.-9, . F is continuous 

and maps straight ·lines into straight lines. It will be 

shown that every image point, F(x), is the image of 

precisely one point of. E under the mapping F. 
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Suppose on the contrary, that there is : a point · 

F(x 0 ) which ·is the :tmage of at least two distinct points., 

x0 and x,. Since E is convex, x and .x, . CQ!l bt3 jplned by . 

a ' straight line, x?c, • Two situations may occur. 
· , 

Case l. The segment -x0 x, maps into the single point F(x). 
Let D Fl = d. Let O < E <- Id I, be ,given. Then there X X o 

exists a J 'l O such that 

whenever )i.X0 X)/ < J , (1 = 1, • • • , n), (X 0X, • • Xn) 

in 1 1 • 

Since x0 x, maps into the single point F(:x: 0 ), then . ' 
in eve.ry neighborhood of x 0 , one can find an increment, . 

b. (x0 xifx:l ••• x") of I,, wpere .x* is on x0 x, , · such that 

tor this increment, ~(F;x0 x*x~. , •• 1t.,J has n-dim_en~ional 

volume zero since F(x*) = F(x0 ) • F,or:. suoh increments, 

relation (III.B.18) does not hold, · for <; <-, d . 1 ', contra--

dieting the assumption that DxF / Xo = d. ·'s:ince · a c6ntra-

diction has been reached, it follows that case a.cannot 
occur. 

Case 2. 
. .. 
The segment xx maps into the segment F(x')F(x")., o I · . 

where F'(x •) is the image of at least one point x' on. x0 x, , 
an~ F(xtt) is the image of at least one point x" on x;x, , 

and x•-:/ x". Without loss of generality, one may assume 
' ' 

x' to be between x0 and x". The point F(x0 ) ~(x 1) is 
either an interior point of F(xt)F(x") ,. or else · 1s one end 
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point. Assume that F(x0 ) = F'(x1 ) -I, F(x t). 

By the same argument as in . iheorem Ill.2.14, the 

following .statements ere true: 

Every point F(x) between F(x 0 ) and F(x') is the 

image of at least one point X between XO and x'. Every 

point F(x) between F(x') 'and F(x") is the image o:f .·· at least 

one point x between x r and xtt. Every point Ii'(x) between 

F(x"J · and F(x 1 ) = F(x 0 ) is ·the image of · at lea.st · one . point 

x between xn ·· a.:nd x 1 • 

Consider ,the point x•. Let DxFlx, ::= d'. Choose 

a fixed positive E' .:::. ld'l Then there exists a t• > 0 

such that 

(IIl.S.19)' 

whenever 

\ "(F:x•x,. • , . x,) . • d' 

ff(x_•x, • • • xh) 
< E .~. r , ,r .,. -. 

l\ .(X 'ti· • • • X ,J 
Ll 'i l " 

in 11• In every sufficiently small neighborhood o:t' x' 

there i's a point on · x0 .x, between x 0 . and x• iand a point on 

x0 x 1 · between x t and x", both of which map into the same 

point. 
By Lemma III.'3.13, in taking the derivative at 

x•, the increments of I 1 formed by taking two points, x,• 
and x' {wi:th x' on ,the line betwee_n them) and n-1 other . 

' ..z, 

points_, X , • 
3 

•• , xn-t, , none of which is on x}x! , '111~1 

be used. For these increments, ·relation (III~3.l9) :riiµ..st 

hold, with et < / d 'I • But. among these increments, iri 

every neighborhood or x t, those for which. the points x,• 
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and x; map into the same point will ba found. For such 

increments, relation (III. 3.19), with €. 1 < Id t l , will not 

hold., since the image increment has n•dimensional volume 

zero. This contradicts the assumption that DxF\ x = d'. 
0 

Hence, case 2 cannot occur. 

In either case, a contrad1o~ion has been -reached • 

. It is concluded that . the mapp:1.ng is. one-to-one., 

Remark. ----~ It has been shown · tha..t . if F is . defined 

on convex region _E in R (n) and if DxF exists and 1.s 

diff arent from zero in E, then F is continuous,. one•to-one 
. ,. ; . 

and maps straight l1nes .into straight 1ine~,,: , Renee, from 
;·:-:;, :-.:~ . 

Remark II_.6.25., p-flats map irito p•flats, .. (l :{p~ n~l) •· 

lil.3.21. The main theorem of this .chapter has now in 
J • 

effect been proved. For -since :F 1s eon.tinuous;·· one•to-one 

and te.kes straight lines into straight lines, Theorem 

II.8.10 can be applied e.nd the following theorem is true: 

(i)( · '} (' .· ) III.3.22 • . 'rneorem. Let F: t . x .· , 1 = 1, •. .- • . , n , 

be a mapping function defined on a .. convex region E in 11?·.l 
such that DxF' exists and is . different . from zero in E. 

Then F is ot the form 

a. ·X {I) + + a• + ' (n) + .Qin+r t (l)(~) 
•• X 

(III.3.23) F: -- ti I ', )1,, I -
-a X (I} + ••• + a.Min+ ;xJn) + an+t,n ti 11+{1 I 

(!. = 1., • • • · , n), where 

, 
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a,,, • • • a,, -nt, 

• • f . •••• ,'. o • 

III-.5.2~. Remark. The theorems above. have been proved 

for convex regions 'in R(11.1. The results can be extended t.o 

include' any open, connected set E of :R (n\. This is done as 

·follows: 

III. 3. 25. Theorem. Let· F: t<iJ (x)., (i ;: 1., • • • ., n)., be 

a mapping function defin.ed on an open, connected set E in 

R (YI), such that D F 
X. 

every point or~· 
.. 

exists and is different from zero at . . . ' ' . 
. ' . . ·. .· . . 

The Fis of the ·form (III.3.23). 

Proof. Let XO and x% be anY two points of E. It mus't be' 

sho.wn that F is of the form . (IIl. -3.23) at x. 0 and x*, with · 

.the same constants, ai: •. . . . . ,J . 
The potnts x O and x* can be joined by e. p,ath C 

lying entirely in E since E is open and connected. · Th.a 

path O is a clos,ed and bounded set in E. _Hence .there is a · 

p ? O such that ever-, point ·or O is at a· distance f 

from the boundary of E [Knopp, (l), P• 19 J • Di v1de C 

by a finite number of points ofd1viaion, XO, x,, ••• , 
. . .,.,~ . 

xK =x" ., · such that 11x.x. If< o , (i;: o, . l, • .•• , k•l). t ,1, J 

Around ea.eh point. of. division, xi, construct a sphere• 

T;,, lying entirely in $, w1 th xi as center and with radius 

ri -:r f • Every point of C is in at least one . of the spheres 

and adjoining spheres have _points ore in common. Each 



Ti is a convex region. Hence, Theorem +II.3.22 eanbe 

applied to each sphere. In eaeh Ti • , F1 is of the form 
. . 
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(III.3.23). Since .the spheres have points in common, it 

must be concluded that the coefficients, at" , must be the . " ,J . . 
same · for each sphere, and · hence, · the a. , • are the same at 

. ', J 

x O as at x*. This proves the theorem. 

The f'ollowing theorem is in the nature of a 

converse -to Theorem III,3.25. 

III.3.26. Theorem. Let 

Fi .. f(iJ(x) 
a , X (17+ a X(JI+ . • • • - t I I LI ;;t_ - a X (IJ + a . x<:l>+ .... ' 

n+1, I n+r, :i. 

(i = l, ••• , n), where 

a,,, a, .:t. 
I 

• • • a,, nn 

. . . . ~- ... • · .. 

+ 

+ 

a , 
", n. 

x<-,,> + 

a . ·. x<n) + 
n+1, n .. 

..i, 0 . r . , 

S,•, 11-1 I 

8.nt,,ni-1 

be defined 1n a regton E of' R {ri.)whioh . doea . not contain .tt;he 

line a .... x c,.? + ••• + a xC111 + an+ 11 .L, = O. Then Px:F 
n+~, '" nff,11 . ,, r 

exists and is dif:ferent from zero at each point ·or E. 

, 

Proof. Let x 0 be any fixed point- in· E and let x , x.,, ••• xn 
. I .._ 

be n variable points of E ao that L\(x 0 x, ••• x,,) is in .I 1• 

Examine the difference quotient, 



·r· (r) ,( ' ) ' · . . XO , 

r <,,1 (x J 
I 

f (,)( ) 
. ' :,c.1'\.,, 

f(.t\x 0 ) •• ,., ,., f(," 1 (X0 ) 

r<~) (x ) ,. ,. . • . l,,> (x. ,) 
.· I ' 

x<,> 
0 

x<•) 
, I 

X(I) 
'n. 

x<.o 
0 r• 

xc~i , ,,. 

xl.2> ·• 
.l'\ 

; ,. 
.• , . 

' .. ,. 

._ ... __ : 

f C~)(x ) . . n 
X (71) 

.:o 
' (11) x, 

X (11) 
)'l 

l 

1 

1 

l 

1 

1 
. '• 

~e numerator of this diff'erence quotient is equal to 

(1) a,,, ' ,tot-. 

' ' ' '°' •• • • ii' ·.·'" •. '<I' • ~· 4' • · :ia' , , • • • · •• • •· • · ft • · 1L to lit 

l 
a..,+,,, x~) •• :•-tlt'~.,_~..,)t~1+an+',nf> 

163. 

Using the multiplication theorem for determinants, 

· the above ··product. becomes 

"K · . . (ll h,l 
7T(a x. t •• :ta x. +a ) . 11+1,, I l'ltt,n. < lW,nH 
i=o 

.Xohl"" •··. ••·· Xo'"'l 1 a,,,. • •· a,,ntt " 

.. Ii ••• ....... ., .. 
Xhl l'\. ; 
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Hence, the difference quotient, (III.3.27) becomes 

.. ' •· .... 
. "n, ( 

TT s.ht-1,, . ( = 0 . . . 

By hypothesis the numerator is different?:fromzero. 
. . . 

Allowing' xi ,to approach xo, (1 = l, ••.• , n), ' l\(XoX, . • · •• x" ) 
'" 
remaining ~n. the class I 1 , it is eon.eluded that :,DxFI X' • exists 

• : . ' 0 . 

and equals .· 

a ,, ' . • • • a ,, n+.1 

• • • • • • 

8 v1+1 • • • 8 11H1h+_1 

X Cl) + • • • · + a , . .X: \n > 
o n+r, 1 o 

· · · # o. 
+ $,n+r,n-H ) l'Hf 

III.3.28. Remark. As in the 2 ... a1111ensional case, one sees 

that s~nce the determinant · ,1(x 0 x, ~-.. • , • xn) cancels out and 

does not enter in the dif'ference quotient while the limit 1s 

being taken, then DxF exists at any point x.'~~ ot E, ·with the 

limit being taken a.s x 0 , x,, • • • ., .x: 11 approach x'-1} in any 

manner whatever. In the limit 

a1 . • • • e., n+I' 
/ I I ' 

• • • • • • 
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lII.3.29. Remark. ·consider the function F., defined on a 

region E o:f R <11.) , and as sums that D.xF exists and is not 

zero everywhere in E. ·Then F must be an affine trans• 

t'ormation. · That is, finite points must go into f'inite 

points. Otherwise, if some point, say x*, mapped into an 

infinite point, then DxF\x-x- :would not exist, since all the 

image increments with one vertex at x* would be infinite, 

and the diff~rence quotient considered would be in:finitely 

large. Then, for every ~, 0, there would be no b? 0 

such that . the usual f ; re lat ion for the difference 

quotient would hOld .. 

It follovis that if 1 t assumed that F is defined 

on the whole Euclidean space R 011 and if D"' F exists every-

where and 1s not zero, then F must not only be linear 

fractional, but must be linear: . 

·• ... + a, x!nJ + a. t,n i 111+1 
(i =l, •.. , n). 

Otherwise., there would be some f'ini te points Which would map 

into infinite points. This would be impossible., since it 

has been assumed that D F exists and is different from zero . X 

everywhere. 

III.3~so; Remark. 
-;. 

Theorems III.3.25 and III.3.26 together 

show that the precise class .of mapping functions, F, defined 

on a connected, open set E of R (l'\.) which have a . non-zero 

derivative D><F at each .point of E. is the ale.es of linear 



fractional trans:f.'orma.tions. If the set Eis the whole 

spaoe, R\7'1-~ then Fis linear. 

· In the special case· where F is of the f'orm 

(i) ( i) ' ' ' < ' 

F: f (.x) == x 1 ( i = l, • • • k-1., k + 1, •• • • n); 

then, as in the 2-dimensional case mentioned in Remark 
(K'l . (I<) 

III+2.25, f "x) mu~t be lineB.l'• .That is, if D (K}t . 
. . ' X 

exists and is different from zero at eaeh point of E; · 

then f(I() is lineal". 
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