THE GHARACTERIZATIONS OF A CLASS OF TRANSFORUATIONS AND OF A CLASS OF DIFFERENTIABLE FUNGTIOXS

by

Warren Keith Moore
A.B. Southwestern College, 1947 M.A., University of Kansas, 1948

Submitted to the Department of Mathematics and the Faculty of the Graduate School of the University of Kanses in partial fulfillment of the requirements for the degree of Doctor of Philasophy.

Advisory Committee:
Redacted Signature

Redacted Signature

Redacted Signature

TABLE OF CONTENTSPage
INTRODUCTION i
CHAPTER
I. GENERALIZED DERIVATIVES AND THE MOORE- SMITH LIMIT 1
I.1. Definitions of Generalized Derivatives and Classes of Increments 1
I.2. Generalization for n-Dimensional Space 11
I.3. The Moore-Smith Limit and Generalized Derivatives 14
1.4. Functions Which Have Generalized Derivatives 18
I.5. A Useful Theorem Concerning the Generalized Derivatives 29
II. THE CHARACTERIZATION OF A CLASS OF TRANSFORPATIONS 37
II.1. Introduction 37
II.2. Homogeneous Coordinates and Linear Transformations 39
II.3. p-Flats and Their Properties 48
II.4. Dimension of a p-Flat 64
II.5. Further Properties of p-Flats 71
II.6. p-Cells and Their Properties 74
II.7. The Characterization for the 2-Dimensional Case 98

II.8. The Characterization for the n-Dimensional Case 105

III. THE CHARACTERIZATION OF A CLASS OF DIFFERENTIABLE FUNGTIONS118
III.1. Introduction 118
III.2. The Characterization for the 2-Dimensional Case 119
III.3. The Characterization for then-Dimensional Case 142
BIBLIOGRAPHY 167

INYRODUCTION

It is the purpose of this paper to present the notion of a certain generalized derivative which has been defined by Professor G. B. Price, and to characterize the class of mapping transformations which possess a nonzero generalized derivative of this type at all points of an open, connected set, E.

In the theory of functions of a single real variable, one of the basic concepts is that of the derivative of a function $f(x)$ with respect to the variable x. When discussing a function of several real variables, $f\left(x^{(1)}\right.$, . . $\left.x^{(n)}\right)$, the notion of a partial derivative of f with respect to one of the variables, $x^{(i)}$, is fundamental. If one thinks of the function $f(x)$ as mapping a line segment (x values) onto another line segment with values $f(x)$, a geometric interpretation of the derivative of the function $f(x)$ with respect to the variable x at a point x_{0} is that of the limit of the ratios of the signed lengths $f(x)-f\left(x_{0}\right)$ and $x-x_{0}$ as x is allowed to become arbitrarily close to x_{0}.

With this interpretation of the derivative in mind, Professor G. B. Price has defined a generalized derivative of a mapping function
$F(x): f^{(i)}(x),\left(i=1, \ldots, n ; x=\left(x^{(1)}, \ldots . x^{(n)}\right)\right)$,
where F is defined in n-dimensional Euclidean space, $R^{(n)}$. In the n-dimensional case, the increments considered are those oriented n-cells, $\Delta\left(x_{0} x_{1} \cdot x_{n}\right)$ determined by the $n+1$ points, $x_{0}, x_{1}, \ldots, x_{n}$ (For $n=2$, the 2-cells are triangles.) The volume of such an n-cell is given by

$$
\Delta\left(x_{0} x_{1} \cdot x_{n}\right)=\frac{1}{n!}\left|\begin{array}{cccc}
x_{0}^{(1)} & x_{0}^{(2)} & \cdots & x_{0}^{(n)} \\
1 & \cdots & \cdots & \cdots \\
x_{n}^{(1)} & x_{n}^{(2)} & \cdots & x_{n}^{(n)} \\
1
\end{array}\right|
$$

Under the mapping F, the vertices, $x_{0}, X_{1}, \ldots, x_{n}$, are transformed into the points $F\left(x_{0}\right), F\left(x_{1}\right), \ldots, F\left(x_{n}\right)$, which also form the vertices of an n-cell,
$\Delta\left(F: x_{0} x_{1}, x_{n}\right)$, ith volume given by the expression

As In the one-dimensional case, the ratios of the signed volumes of the two increments
are considered and the limit is taken as the points x_{1}, x_{2},

- . x_{n} are allowed to become arbitrarily close to x_{0}. with certain restrictions on the points $x_{1}, x_{2}, \ldots, x_{n}$ If this limit exists and is finite, then the derivative of F: $f^{(i)}(x),(i=1, \ldots, n)$ with respect to $x=\left(x^{(1)}, \ldots x^{(n)}\right)$ is said to exist at the point x_{0}. This derivative is denoted by $\left.D_{x} F\right|_{x_{0}}$. One restriction on the points x_{1}, \ldots, x_{n} is of course that $\Delta\left(x_{0} x_{1} . . x_{n}\right) \neq 0$. Another restriction on the points x_{1}, \ldots, x_{n} is that these points together with the point x_{0} must always form an increment of a designated class while the limit is being taken. It happens that $\left.D_{x} F\right|_{x_{0}}$ may exist with respect to one class of increments but not with respect to another. Three classes of increments, denoted by I_{1}, I_{2}, and I_{3}, are defined, but only one is the object of discussion in the paper. That is the class of increments I_{1}, which is composed of all the increments $\Delta\left(x_{0} x_{1} \cdot x_{n}\right)$ which have n-dimensional volume not equal to zero. Thus, if the class I, is being considered, then the points $x_{0} \geqslant x_{1}, \ldots, x_{n}$ must always form an n-cell whose n-dimensional volume is not zero as $x_{1}, x_{2}, \ldots, x_{n}$ are allowed to become arbitrarily close to x_{0} 。

A precise definition of the generalized derivative, $D_{x} F$, of a mapping function F (defined on a region E of $R^{(n)}$) at a point x_{0} with respect to a certain class of increments I is the following:

Let F be a mapping function defined on a region E of $R^{(n)}$. The derivative of F with respect to the class of increments I exists at a point x_{0} of E and equals d if for every sufficiently small $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\frac{\Delta\left(F: x_{0} x_{1} \cdot x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdot x_{n}\right)}-a\right|<\epsilon
$$

for all $\Delta\left(x_{0} x_{1} \cdots x_{n}\right)$ in I such that $\left\|x_{0} x_{i}\right\|<\delta,(i=1, \ldots n)$, where the symbol $\left\|x_{0} x_{i}\right\|$ denotes the distance between the points x_{0} and x_{i}.

It is the purpose of this paper to characterize the class of mapping functions, $F: f^{(i)}(x),(1=1, \ldots, n)$, defined on a region E of $R^{(n)}$, which possess a non-zero derivative, $D_{x} F$ with respect to the class of increments I_{1}, at each point of E.

In Chapter I the above definition of the
generalized derivative is given and three classes of increments are defined. A special case of the generalized derivative is found by setting $f^{(k)}(x)=x^{(k)},(k=1, \ldots, 1-1,1+1, \ldots, n)$, and letting $f^{(i)}(x)=f(x)$. Then the ratios

$$
\begin{aligned}
& \left|\begin{array}{lllll}
x_{0}^{(1)} \cdots \cdots x_{0}^{(i-1)} f\left(x_{0}\right) x_{0}^{(i+1)} & \cdots & x_{0}^{(n)} & 1 \\
\cdots \cdots \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right| \\
& x_{n}^{(1)} \cdots x_{n}^{(i-1)} f\left(x_{n}\right) x_{n}^{(i+1)} \cdots \cdots x_{n}^{(n)} \\
& 1
\end{aligned}\left|\begin{array}{llll}
x_{0}^{(1)} & x_{0}^{(2)} \cdots \cdots x_{0}^{(n)} & 1 \\
\cdots \cdots & \cdots & \cdots & 1
\end{array}\right|
$$

are considered. The limit is taken with respect to a certain class of increments I, If this limit exists at x_{0} then it is called the derivative of $f(x)$ with respect to $x^{(i)}$ at the point x_{0} with respect to the class of increments I and is denoted by $\left.D_{x^{(i)}} f\right|_{x_{0}}$.

The classes of functions,
$f(x),\left(x=\left(x^{(1)}, \ldots, x^{(n)}\right)\right)$ which have generalized derivatives $D_{x^{(i)}} f$ with respect to the classes of increments I_{2} and I_{3} are discussed. These classes of functions have been characterized by G. B. Price. The class of functions, $f\left(x^{(1)}, \ldots, x^{(n)}\right)$, which have derivatives, $D_{x}(i)$ with respect to the class I_{2} is the class of Stolz differentiable functions. A function $f(x)$ Is Stolz differentiable at a point x oif there exist constants $a_{i}(1=1, \ldots, n)$, such that $f\left(x^{(1)}, \ldots, x^{(n)}\right)-f\left(x_{0}^{(1)}, \ldots x_{0}^{(n)}\right)=\sum_{i=1}^{n} a_{i}\left(x^{(i)}-x_{0}^{(i)}\right)+r\left[f\left(r^{n}\right)\right]$, where $r=\sqrt{\sum_{i=1}^{n}\left(x^{(i)}-x_{0}^{(i)}\right)^{2}}$ and $\epsilon(r)$ is a function of r such that $\lim \in(r)=0$.

$$
r \rightarrow 0
$$

The class of functions $f\left(x^{(1)}, \ldots, x^{(n)}\right)$ which have derivatives $D_{x}{ }^{(i)}$ with respect to the class of increments I_{3} is the class of those functions which have ordinary partial derivatives.

The important Moore-Smith Limit, due to E. H. Moore and H. L. Smith, is discussed and it is shown that the generalized derivative $D_{x} F$ of a mapping function F is a Moore-Smith Limit.

To conclude Chapter I, a useful theorem concerning the derivative is proved. This theorem is a generalization of a theorem of stieltjes for a function of a single variable, which states that if $\left.\frac{d f}{d x}\right|_{x_{0}}$ exists, then,

$$
\left.\frac{d f}{d x}\right|_{x_{0}}=\lim _{\alpha, \beta \rightarrow x_{0}} \frac{f(\alpha)-f(\beta)}{\alpha-\beta}
$$

where $x_{0} 18$ always between α and β.
Chapter II 18 not concerned with generalized derivatives. The main purpose of this chapter is to show that the precise class of transformations, $F: I^{(i)}(x),(1=1, \ldots, n)$, which are continuous, one-toone and map points of a straight line into points of a straight line are the linear fractional transformations:

F: $f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+\ldots+a_{i, n} x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(1)}+\ldots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}}(1=1,, \ldots, n)$,

$$
\left|\begin{array}{cccc}
a_{1,1} & \cdots & \cdots & a_{1, n+1} \\
\bullet & \cdots & \cdots & \cdots \\
a_{n+1,1} & \cdots & \cdots & a_{n+1, n+1}
\end{array}\right| \neq 0 .
$$

In order to prove this characterization for n-dimensional Euelidean space, the notions of linearly independent points and p-flats are important. The points $X_{k}=\left(X_{k}^{(1)}, \cdots, X_{k}^{(n)}\right)$ of $F^{(n)},(k=0, \cdots, p ; p \leq n)$ are said to be linearly independent if at least one of the $\theta(n, p)$ determinates of the form

$$
\left|\begin{array}{llll}
x_{0}^{\left(i_{1}\right)} & \cdots & x_{0}^{\left(i_{p}\right)} & 1 \\
\bullet & \cdots & \bullet & \\
x_{p}^{\left(i_{1}\right)} & \cdots & x_{p}^{\left(i_{p}\right)} & 1
\end{array}\right|
$$

is different from zero, where (i_{1}, \ldots, i_{p}) represents one of the $C(n, p)$ possible selections of p of the n colums of the matrix

$$
\left[\begin{array}{llll}
x_{0}^{(1)} & \cdots & \cdot & x_{0}^{(n)} \\
\cdots & \cdots & \cdots & \\
x_{p}^{(1)} & \cdots & \cdots & x_{p}^{(n)}
\end{array}\right],
$$

Geometrically, this means that the p-cell determined by the points x_{0}. . x_{p} has p-dimensional volume different from zero.

An equivalent definition is the following: The $p+1$ points, x_{o}, \ldots, x_{p} are saia to be linearly independent if the vectors, $\left(x_{i}-x_{0}\right)_{0}(i=1, \ldots, p)$,
are linearly independent in the ordinary sense.
The notion of a p-flat in Euclidean n-dimensional space has been used by many authors. Let x_{0}, \ldots, x_{p} be $p+1$ linearly independent points of $\mathrm{A}^{(n)}$. By the p-flat, S_{p} determined by these points is meant the set of points $\mathbf{x} \in \mathbf{R}^{(n)}$ such that

$$
x=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1
$$

An equivalent definition is the following:
Let x_{0}, \ldots, x_{p} be $p+1$ inearly independent points of $R^{(n)}$. By the p-flat, S_{p}, determined by these $p+1$ linearly independent points is meant the set of all points x of $R^{(n)}$ such that the vectors $\left(x-x_{0}\right)$ satisfy the relation

$$
\left(x-x_{0}\right)=\sum_{i=1}^{p} \beta_{i}\left(x_{i}-x_{0}\right),
$$

with no restrictions on the $\beta^{\prime \prime}$.
A p-flat is a direct generalization of a line and a plane in S-dimensional space. The name, 'p-flat', was taken from D. M. Y. Sommerville's book, An Introduction to the Geometry of N-Dimensions. (See the Bibllography at the end of this paper.) Alexandroff and Hopf, and Birkhoff and MacLane are other authors who discuss p-flats, although not under the name p-flat.

$$
\text { If } x_{0} . . ., x_{p} \text { are any } p+1 \text { inearly inde- }
$$ pendent points of $F^{(n)}$, the set of points x such that

$$
\mathbf{x}=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i} \geqslant 0,
$$

Is the p-ce11, $\Delta\left(x_{0} x_{1} \cdot, x_{p}\right)=\Delta x_{p}$.
Among the properties of p-flets and p-cells which are presented, the following are perhaps the most important to this paper:

1. A p-flat is isometric to the Guclidean space, $R^{(p)}$, and hence is p-dimensional.
2. If x is any interior point of a p-cell, Δx_{p} (relative to the p-flat, S_{p}, in which Δx_{p} lies), then a straight ine through x, lying in S_{p}, intersects the boundary of Δx_{p} in precisely two points.
3. If F is a continuous, one-to-one transformation defined on a convex region E of $R^{(n)}$ which takes straight Ines into straight ines and if $\Delta\left(x_{o} x_{1} \cdot x_{p}\right)=\Delta X_{p}$ Is any p-cell of E, then F maps the k-dimensional faces of $\Delta X_{p},(k \leq p)$, Into distinct k-dimensional faces of a p-cell, ΔF_{p}, where by the k-dimensional face of Δx_{p}, determined by the points $x_{0} \ldots x_{k}$ chosen from the $p+1$ vertices of ΔX_{ρ}, is meant the set of all points x such that

$$
x=\sum_{i=0}^{k} \beta_{i} x_{i}, \quad \sum_{i=0}^{k} \beta_{i}=1, \quad \beta_{i} \geqslant 0
$$

4. If F is a continuous, one-to-one trensformation defined on a convex region E of $R^{(n)}$, the necessary and sufiicient condition that p-ilats map into p-flats (p fixed; $1 \leq p \leq n-1$) is that straight Ines map into straight lines.

After the properties of p-flats and p-cells are presented, one important lemma is proved before the
characterization can be completed. This lerama, suggested by W. Kaplan of the University of Michigan, is the following:

Lemma. Let $x_{0} \ldots x_{n}$ be $n+1$ Inearly independent points in a convex region of $f^{(n)}$, which form the vertices of an n-cell, Δx_{n}. Let x^{*} be the intersection of the medians of ΔX_{n} Let $G: g^{(i)}(x),(1=1, \ldots, n)$, be a transformation defined on E which is continuous, one-to-one and carries p-flats into p-flats (p fixed; $1 \leqslant p \leqslant n-1$), and which leaves the points $x_{0} \ldots, x_{n}, x^{*}$ fixed. Then G is the identity trensformation.

Using this lemma, the main theorem of the chapter is proved; namely, that the class of transformations which are continuous, one-to-one, and map p-flats into p-flats (p fixed; $1 \leqslant p \leqslant n-1$) is the class of linear fractional transformations.

In Chapter III the generalized derivatives, $D_{x} F$, of a transformation F with respect to the class of increments I, is once again the topic of discussion. It $1 s$ shown that if $F: f^{(i)}(x),(1=1, \ldots n)$, is a transformation defined on a convex region E of $\boldsymbol{R}^{(n)}$, such that $D_{X} F$ exists with respect to the class of increments $I_{\text {, }}$ and is different from zero at each point of E, then F is continuous, maps points of a straight line into points of a straight line and is one-to-one. It is concluded from
the results of Chapter II that F must be linear fractional. The results are extended to the case in which E is any open connected set. It is also shown that if F is Iinear fractional, then $D_{x} F$ exists with respect to the class of inerements I_{1} and is different from zero. Hence, the precise class of transformations F defined on a region E. of $R^{(n)}$ for which the generalized derivative, $D_{x} F$, exists with respect to the class of increments I_{1} and is different from zero at each point of E, is the class of linear fractional transformations.

In carrying through the characterization, the results are first obtained for two dimensions and then extended to the n-dimensional case. While this is unnecessary in most cases, it is felt that a clearer understanding is obtained by organizing the developments in this way.

The similarity between generalized derivatives and Jacobiens of a mapping function should be noted. Expecially prominent in this similarity is Theorem I. 4.14, which states that if $F: f^{(i)}(x),(1=1, \ldots, n)$ is a transformation such that $D_{x^{(i)}} f^{(j)},(i, j=1, \ldots, n)$ exist at a point x_{0} with respect to a class of non-zero increments I, then $\left.D_{x} F\right|_{X_{0}}$ exists with respect to the class of increments I and equals.

$$
\left|\begin{array}{l}
\left.\left.D_{x^{(1)}} f^{(1)}\right|_{x_{0}} \cdot D_{x^{(n)}} f^{(n)}\right|_{x_{0}} \\
\bullet \bullet \cdot \\
\left.\left.D_{x^{(n)}} f^{(n)}\right|_{x_{0}} \cdot \bullet D_{x^{(n)}} f^{(n)}\right|_{x_{0}}
\end{array}\right|
$$

There have been other generalizations of the derivative. The generalization given in this paper can be compared with the generalized Jacobian introduced by Banach and with Burkili's modified Jacobian (see the Bibliography). However, in Banach's generalization (for the plane) squares are considered as increments, while in Burkill's generalization, four points in the plane form the vertices of the increments considered. It seems a more natural generalization to consider triangles in the plane as increments. In the one-dimensional case, (the ordinary case of the derivative of a function of a single variable), the increments considered are determined by two points -- one more than the dimension of the space. It seems natural then to consider triangles in the plane, tetrahedra in 3-dimensional space, and in general, n-cells in n-dimensional space as increments. Theorems in the theory of determinants can also be readily used in such a generalization.

For more complete information concerning p-flats, p-cells and their properties, one should study the references to Lefschetz, Alexandroff-Hopf, and Kerékjártó which are given in the bibliography. For more complete

Information concerning the theory of determinants, see the references to Kowalewski, Aitken and Price.

CHAPTER I

GENERALIZED DERIVATIVES AND THE MOORE-SHITH LIMIT
1.1. DEFINITIONS OF GENERALIZED DERIVATIVES AND GLASSES OF INCRENENTS
1.1.1. In the theory of functions of a single real variable, the derivative of a function, $f(x)$, with respect to the variable x at point x_{0} is defined to be

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\left|\begin{array}{ll}
f\left(x_{0}\right) & I \\
f(x) & I
\end{array}\right|}{\left|\begin{array}{ll}
x_{0} & I \\
x & I
\end{array}\right|}
$$

provided this limit exists. One interpretation of the derivative of $f(x)$ at the point x_{0} is that of the limiting position of the secant line through $f(x)$ and $f\left(x_{0}\right)$, the Imit being taken as x approaches x_{0}. (See Fig. 1.)

A natural generalization of the derivative, in the light of this geometric interpretation is the following: Consider the function $z=f(x)$, where $x=\left(x^{(1)}, x^{(2)}\right)$, the superscripts denoting coordinates of the point x. Let this function be defined on some set E in $R^{(2)}$, for example, on an open, convex set. The locus of $z=f(x)$ is a surface in $R^{(3)}$. Let $x_{0}=\left(x_{0}^{(1)}, x_{o}^{(2)}\right)$ be a fixed point of E, and $x_{1}=\left(x_{1}^{(1)}, x_{1}^{(2)}\right)$ and $x_{2}=\left(x_{2}^{(1)}, x_{2}^{(2)}\right)$ be two nearby points of E. The points $\left(x_{0}^{(1)}, x_{0}^{(2)}, f\left(x_{0}\right)\right),\left(x_{1}^{(1)}, x_{1}^{(2)}, f\left(x_{0}\right)\right)$, and $\left(x_{2}^{(1)}, x_{2}^{(2)}, f\left(x_{2}\right)\right) 11 \theta$ on the surface, $z=f(x)$. The equation of the secant plane through these three points is given by
(I.1.2)

$$
\left|\begin{array}{llll}
x^{(1)} & x^{(2)} & f(x) & 1 \\
x_{0}^{(1)} & x_{0}^{(2)} & f\left(x_{0}\right) & 1 \\
x_{1}^{(1)} & x_{1}^{(2)} & f\left(x_{1}\right) & 1 \\
x_{2}^{(1)} & x_{2}^{(2)} & f\left(x_{2}\right) & 1
\end{array}\right|=0 .
$$

Expanding and solving for $f(x)-f(x)$, one obtains
$(1.1 .3) f(x)-f\left(x_{0}\right)=\frac{\left|\begin{array}{lll}f\left(x_{0}\right) & x_{0}^{(2)} & 1 \\ f\left(x_{1}\right) & x_{1}^{(2)} & 1 \\ f\left(x_{2}\right) & x_{2}^{(2)} & 1\end{array}\right|}{\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array}\right|}\left(x^{(1)}-x_{0}^{(1)}\right)+\frac{\left|\begin{array}{lll}x_{0}^{(1)} & f(x) & 1 \\ x_{1}^{(1)} & f(x) & 1 \\ x_{2}^{(1)} & f(x) & 1\end{array}\right|}{\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array}\right|}\left(x^{(2)}-x_{0}^{(2)}\right)$.

Allowing x_{1} and x_{2} to 'approach x_{0} in some manner, this secant plane approaches the tangent plane at $\left(x_{0}^{(1)}, x_{0}^{(3)}, f\left(x_{0}\right)\right)$, under certain conditions at least. The equation of the tangent plane at $\left(x_{0}^{(1)}, x_{0}^{(2)}, f\left(x_{0}\right)\right)$ is given by the expression
(I.1.4) $f(x)-f\left(x_{0}\right)=\left.\frac{\partial f}{\partial x^{(1)}}\right|_{x_{0}}\left(x^{(1)}-x_{0}^{(1)}\right)+\left.\frac{\partial f}{\partial x^{(2)}}\right|_{x_{0}}\left(x^{(2)}-x_{0}^{(2)}\right)$.

Hence, it is logical to conclude that, under certain conditions at least,
(I.1.5) $\lim _{x_{1}, x_{2} \rightarrow x_{0}} \frac{\left|\begin{array}{lll}f\left(x_{0}\right) & x_{0}^{(2)} & 1 \\ f\left(x_{1}\right) & x_{1}^{(2)} & 1 \\ f\left(x_{2}\right) & x_{2}^{(2)} & I\end{array}\right|}{\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & I \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & I\end{array}\right|}$
and
(I.1.6) $\lim _{x_{1}, x_{2} \rightarrow x_{0}} \frac{\left|\begin{array}{ccc}x_{0}^{(1)} & f\left(x_{0}\right) & 1 \\ x_{1}^{(1)} & f\left(x_{1}\right) & 1 \\ x_{2}^{(1)} & f\left(x_{2}\right) & 1\end{array}\right|}{\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array}\right|}$
are derivatives of a sort. They will be denoted by $\left.D_{x^{(1)}} f\right|_{x_{0}}$ and $D_{X^{(2)}} f_{X_{0}}$ respectively,
I.1.7. Another geometric interpretation of the definition of the derivative of a function of a single real variable is the following: The function $y=f(x)$ may be regarded as the mapping of a straight line (x values) onto another straight Iine (y values). The image of x_{0} is yo and the image of a variable point x is y. The derivative of $f(x)$ at x_{0} is the limit of the ratios of the signed lengths, $\left(y-y_{0}\right)$ and $\left(x-x_{0}\right)$, the limit being taken as x approaches x_{0}. As a generalization of this interpretation, consider the mapping function $F i f^{(1)}(x), f^{(2)}(x)$, where $x=\left(x^{(1)}, x^{(2)}\right)^{*}$, defined on the oriented Euclidean plane. As increments in this case, one considers oriented triangles, denoted by $\Delta\left(x_{0} x_{1} x_{2}\right)$, or Δx, with vertices x_{0}, x_{1}, and x_{2}. These three points map into three points, $F\left(x_{0}\right)$ $=\left(f^{(1)}\left(x_{0}\right), f^{(2)}\left(x_{0}\right)\right), f\left(x_{1}\right)=\left(f^{(1)}\left(x_{1}\right), f^{(2)}\left(x_{1}\right)\right)$, and $F\left(x_{2}\right)=\left(f^{(1)}\left(x_{2}\right), f^{(2)}\left(x_{2}\right)\right)$, which also form the vertices of an oriented triangle, denoted by $\Delta\left(F: x_{0} x_{1} x_{2}\right)$ or by ΔF. The areas of these triangles are given by the expressions

[^0](I, 1, 8) $\Delta\left(x_{0} x_{1} x_{2}\right)=\Delta x=\frac{1}{2!}\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array}\right|$
and
$(1,1,9) \quad \Delta\left(F: x_{0} x_{1} x_{2}\right)=\Delta F=\frac{1}{2!}\left|\begin{array}{ll}f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) \\ f^{(1)}\left(x_{1}\right) & f^{(2)}\left(x_{1}\right) \\ f^{(1)}\left(x_{2}\right) & f^{(2)}\left(x_{2}\right) \\ 1\end{array}\right|$.

As in the one-dimensional case, the ratios of the signed areas of the two increments are examined and the limit is taken as x_{1} and x_{2} 'approach' the fixed point x_{0}. If this limit exists and is finite, it is called the derivative of $F=\left(I^{(1)}, f^{(2)}\right)$ at x_{0} with respect to $x=\left(x^{(1)}, x^{(2)}\right)$, and $1 s$ denoted by $\left.D_{x} F\right|_{x_{0}}$.
1.1.10. Pemark. The generalized derivatives $D_{x}(1)$ and $D_{x(2)^{\prime}}$ or (I.1.5) and (I.I.6) are only special cases of the generalized derivative $D_{x} F$, for if one sets $f^{(2)}(x)=x^{(2)}$ in (I.2.9) and takes the limit of the ratios of (I.1.9) and (I.1.8), then (I,I,5) is obtained; and if one sets $f^{(1)}(x)=x^{(1)}$ in $(1,2,9)$ and takes the limit of the ratios of (I.1.9) and (I.1.8), then (I.1.6) is obtained.

It should be further noted that in mapping the points of the plane onto another plane, it is not asserted that a triangle, Δx, is mapped into a triangle, ΔF, but only that the vertices of a triangle Δx are mapped into
points which are the vertices of a triangle, denoted by $\triangle F$. The value of $\triangle F$ depends entirely on the images of the vertices of Δx. However, in taking the limit, the ratio of the signed areas of the two triangles is considered.
1.1.11. The word 'approach' as used in the two generalizations must now be clarified. In the single variable case there is only one way in which x can approach x_{0} and that is along a straight line. However, in the plane, when dealing with $z=f(x)$ and with $F: f^{(1)}(x), f^{(x)}(x)$, there are infinitely many ways in which x_{1} and x_{2} can become close to x_{0}. In the single variable case the precise definition of the derivative of $f(x)$ with respect to x at a point X_{0} is the following:

The derivative of f with respect to x at x_{0} exists and equals d if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-d\right|=\left|\frac{\Delta f}{\Delta x}-d\right|<\epsilon
$$

whenever $\left|x-x_{0}\right|<\delta$.
This means that the difference quotient, $\frac{\Delta f}{\Delta x}$, gets as close to d as one chooses for all increments whose maximum length is less than a certain number, δ, as long as the increment is different from zero.

It is this idea of 'approach' which will be applied to the generalized derivatives. The derivative of $F(x)$ with respect to $x=\left(x^{(1)}, x^{(3)}\right)$ at a point x_{c} is said to exist and equal d there if for every $\epsilon>0$ there exlsts a $\delta>0$ such that

$$
\left|\frac{\Delta \mathrm{F}}{\Delta x}-\mathrm{d}\right|<\epsilon
$$

for all increments $4 x \neq 0$ (with certain requirements which w111 be discussed next) such that $\left\|x_{0} x_{i}\right\|<\delta,(1=1,2)$. The symbol $\left\|x_{0} x_{i}\right\|$ denotes the distance between the points x_{0} and x_{i}. Unless othervise stated, Δx is always understood to have the fixed point x_{0} as a vertex.

This interpretation of the word 'approach' will be used throughout the remainder of the paper. However, one must be careful, for, while in the one dimensional case there is only one possible type of increment-wthe length of the segment $\overline{x_{0} x}-$ in the plane one is confronted with all types of increments. In order to make the above generalizations meaningful, classes of increments will bo defined. Once a class of increments has been designated for a particular problem, the points x_{0}, x_{1}, and x_{2} must remain in the class while the limit is being taken. This particular point is important, for it turns out that some functions have a derivative with respect to one class of increments but not with respect to another.

Obviously, any number of classes of increments could be defined by making special requirements of the relative position of the vertices of the increments. However, only three important classes of increments will be defined here, and of these three, only one will be used in the remainder of the paper. The three classes of increments are:
I_{1} : The class of increments Δx, such that $\Delta x \neq 0$. This is the most general class of increments.
I_{2} : The class of increments Δx such that $\Delta x \geqslant \frac{1}{2!} \rho\left\|x_{0} x_{1}\right\| \cdot\left\|x_{0} x_{2}\right\|>0, \rho$ eixed, $0<\rho \leq 1$, where $\left\|x_{0} x_{i}\right\|$ denotes the distance between the points x_{0} and x_{i}.
I_{3} : The class of increments Δx such that

$$
\Delta x=\frac{1}{2!}\left|\begin{array}{lll}
x_{0}^{(1)} & x_{0}^{(2)} & 1 \\
x_{0}^{(1)}+\Delta x^{(1)} & x_{0}^{(2)} & 1 \\
x_{0}^{(1)} & x_{0}^{(2)}+\Delta x^{(2)} & 1
\end{array}\right|, \Delta x^{(1)} \neq 0, \Delta x^{(2)} \neq 0 .
$$

It is easily seen that these classes of increments have the following inclusion property:

$$
I_{3} \subset I_{2} \subset I_{1} .
$$

To verify, for example, that $I_{3} \subset I_{2}$, one notices that any increment of I_{3} satisfies the conditions of an increment in I_{2} with $\rho=1$. Furthermore, an increment ΔX in I_{2} is
certainly also an increment of I_{j}, since $\triangle X \neq 0$.
I.1.12. Hemark. There is one requirement that must be made. It is, that increments of the clasa in question must appear in every suffieiently small neighborhood of the fixed point, x_{0}, at which the derivative is being taken. This will cextainly be the case if the set E containing x_{0} is chosen properly; for example, if E is an open set, then increments of all three types will appear in evexy sufficiently small neighborhood of x_{0}.

Now that classes of increments have been defined, a precise definition of the derivative of $F: f^{(1)}(x), f^{(2)}(x)$ with respect to $x=\left(x^{(1)}, x^{(2)}\right)$ at a point x_{0} can be made. I.1.13. Definition. Let F: $f^{(i)}(x),(1=1,2)$, be a mapping function defined on a region $n^{*} E$ of $R^{(2)}$. The derivative of F with respect to x with respect to the class of increments I exists at a point x_{0} of E and equals if for every sufficiently mall $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\frac{\Delta F}{\Delta x}-\alpha\right|<\epsilon
$$

for all increments Δx in the class I such that
$\left\|x_{0} x_{i}\right\|<\delta,(1=1,2)$.
I.1.14. Remark. The $\epsilon \delta$ relationship of Definition I. 1.13 must hold for all increments Δx in the class I which appear

[^1]In $N_{\delta}\left(x_{0}\right)$, the δ-neighborhood of x_{0}. otherwise the derivative at x_{0} is not d_{s} but is either something else or does not exist.
I.1.15. Remark. The derivative, if it exists, is unique. Suppose there are two numbers, d and d, such that for every $\epsilon>0$ there exists a $\delta_{1}>0$ such that

$$
\left|\frac{\Delta F}{\Delta x}-d\right|<\epsilon / 2
$$

for all $\Delta x \ln I \ln \delta_{\delta_{1}}\left(x_{0}\right)_{9}$ and also a $\delta_{2}>0$ such that

$$
\left|\frac{\Delta F}{\Delta x}-d^{\prime}\right|<\epsilon / 2
$$

for all Δx in I in $N_{\delta_{2}}\left(x_{0}\right)$. Then if $\delta^{\prime}=\min \left(\delta_{1}, \delta_{2}\right)$, one would have,

$$
\left|d-d^{\prime}\right|=\left|d-\frac{\Delta F}{\Delta x}+\frac{\Delta F}{\Delta x}-d^{\prime}\right| \leqslant\left|\frac{\Delta F}{\Delta x}-d\right|+\left|\frac{\Delta F}{\Delta x}-d^{\prime}\right|<\epsilon
$$

whenever Δx is in I in $N_{\delta^{\prime}}\left(x_{0}\right)$. This implies that $d=d^{\prime}$. I.1.16. The functions which have a derivative, $D_{x} F$, with respect to the three classes of increments defined above have the following inclusion property:

$$
\left(\text { Class } I_{1}\right) \subset\left(\text { Class } I_{2}\right) \subset\left(\text { Class } I_{3}\right)
$$

where (Glass I_{1}) designates the class of functions having a derivative with respect to the class of increments I_{1}, etc.

That this is true is verified by noticing that if Definition 1.1 .13 holds for all increments of $I_{\text {, }}$ in $N_{\delta}\left(x_{0}\right)$, it will certainiy hold for the increments in the subclasses I_{2} and I_{3}. Similarly, if Definition I.I.13 holds for the class I_{2}, it will clearly hold for the subclass I_{3}.
I.2. GENERALIZATION FOR n-DIMENSIONAL SPACE
1.2.1. Definttion, By a p-cell, Δx_{p}, in $R^{(n)},(p \leq n)$ with the $p+1$ vertices $x_{0}, x_{1}, \ldots, x_{p}$, is meant the set of points x of $R^{(n)}$ which can be represented as (I.2.2) $\mathrm{x}=\sum_{i=0}^{p} \alpha_{i} \mathrm{x}_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i}>0$, all 1.
I.2.3. Remarls. Fuxther properties of p-cells will be developed in Chapter II.
I.2.4. Definition I. 1.13 1s readily extended to n-dimensions. In n-dimensional Euclidean space, $R^{(n)}$, the mapping function

$$
F: f^{(i)}(x),(i=1, \ldots, n)
$$

is considered, where $x=\left(x^{(1)}, \ldots, x^{(n)}\right)^{\%}$. The increments to be considered are those n-dimensional oriented n-cells, Δx_{n}, with vertices $x_{0}, x_{1}, \ldots, x_{n}$, The volume of such an n-cel1 is given by the expression [A1tken (1), pp. 42-44] $]^{* * *}$:
\% See the footnote at the bottom of page 4.
** Names and numbers in brackets refer to the biblogrophy at the end of this paper.
(I.2.5) $\Delta x_{n}=\frac{1}{n!}\left|\begin{array}{cccc}x_{0}^{(1)} x_{0}^{(2)} \cdots \cdots x_{0}^{(n)} & 1 \\ \bullet \cdots \cdots \cdots & \cdots & \cdots & \cdots \\ x_{n}^{(1)} & x_{n}^{(2)} \cdots \cdots & x_{n}^{(n)} & 1\end{array}\right|$.

The mapping function F maps these $n+1$ points into $n+1$ points, $F\left(x_{0}\right), F\left(x_{1}\right), \ldots, F\left(x_{n}\right)$, where $F\left(x_{j}\right)=\left\{f^{(i)}\left(x_{j}\right)\right\},(i=1, \ldots n)$. The volume of the cell with these points as vertices is given by the expression

$$
\text { (I.2.6) } \Delta F_{n}=\frac{1}{n!}\left|\begin{array}{ccccc}
f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & \cdots & f^{(n)}\left(x_{0}\right) & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|
$$

As before classes of increments are defined, the definitions being precisely analogous to those given in Section I.1.11. The ratio of the signed volumes of the two cells is examined and the limit is taken as $x_{1}, x_{2}, \ldots, x_{n}$ 'approach' x_{0}, in the sense discussed in Section I.1.11. It is understood, of course, that the cell Δx_{n}, with the fixed vertex x_{0}, remains in the designated class of increments while the limit is being taken. If this limit exists, it is defined to be the derivative of F with respect to x at the point x_{0} with respect to the class of increments in question. It is likewise designated by $\left.D_{x} F\right|_{x_{0}}$. To put this in precise form for the n-dimensional case, the following definition is given:
1.2.7. Definition, Let $F: f^{(i)}(x),(i=1, \ldots, n)$, be a mapping function defined on a region E of $R^{(n)}$. The derivative of F with respect to x, with respect to a class I of increments, exists at a point x_{0} of E and equals d if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\frac{\Delta F_{n}}{\Delta x_{n}}-\mathrm{d}\right|<\epsilon
$$

for all Δx_{n} in I such that $\left\|x_{0} x_{i}\right\|<\delta,(1=1, \ldots, n)$. Δx_{n} is always understood to possess the fixed point x_{\circ} as a vertex.
I.2.8. Remark. By choosing

$$
f^{(i)}(x)=x^{(i)},(i=1, \ldots, k-1, k+1, \ldots, n),
$$

a generalization of Definitions I.1.5 and I.1.6 will be obtained. For these choices of $f^{(i)}(x)$, the difference quotient, $\frac{\Delta F_{n}}{\Delta x_{n}}$, becomes

If the limit of this difference quotient exists as x_{1}, \ldots, x_{n} 'approach' x_{0}, remaining in the designated
class of increments, it will be called the derivative of $f^{(k)}$ with respect to $x^{(k)}$, and will be denoted by $D_{x^{(k)}} f^{(k)}$. Clearly, all the derivatives, $D_{x^{(i)}} f^{(j)},(i, j=1, \cdots, n)$, can be thus defined.
2.3. THE MOORE-SMITH LIMIT AND GENERALIZED DERIVATIVES
I.3.1. E. H. Moore and H. L. Smith have defined the limit which bears their name as follows [Moore-Smith, (1)]:
I.3.2. Definition. Consider a class P of elements p and a binary operation R defined on the class P subject to the following conditions:
(1) R is transitive. That is, if $p_{1} R p_{2}$ and $p_{2} R p_{3}$, then $p_{1} R p_{3}$.
(2) R has the combination property. That is, if p_{1} and p_{2} are any two elements of p, there is an element p_{3} of P such that $p_{3} R p_{1}$ and $p_{3} R p_{2}$.
(The notation $p_{1} R p_{2}$ means that p_{1} is in the relation R to $\left.p_{2}.\right)$ Let $\alpha(p)$ be a numerically valued function defined on P. Then $\alpha(p)$ is said to converge to a limit d, with respect to the relation R, if for every $\in>0$ there exists an element p_{ϵ} such that

$$
|\alpha(p)-d|<\epsilon \quad \text { for all } p \text { R } p_{\epsilon} .
$$

1.3.3. Exomples of the Moore-Smith Limit.

Example (1). Let P be the set of all positive integers. Let $\alpha(p)=a_{p}(p=1,2, .$.$) , be an infinite$ sequence of real or complex numbers. Let the relation $p_{1} R p_{2}$ mean that $p_{1}>p_{2}$. Then the ordinary limit of a sequence of real or complex numbers is a Moore-Smith limit. For a sequence of real or complex numbers, $\varepsilon_{\rho},(p=1,2, \ldots)$, converges to a limit, a, if for every $\in>0$ there is a positive number p_{ϵ}. such that

$$
\left|a_{p}-a\right|<\epsilon \quad \text { for } 211 p>p_{\epsilon}
$$

That is, the numerically-valued function, $\alpha(p)=a_{\rho}$, has a limit a if for every $\epsilon>0$ there exists a p_{ϵ}, such that

$$
|\alpha(p)-a|<\epsilon \quad \text { for all } p R p_{\epsilon}
$$

Example (2). Consider a function $g(x)$ defined on a closed interval I: $a \leqslant x \leqslant b$. Let π be a subdivision of $a \leqslant x \leqslant b$ by a certain number of intermediate points. Let $P=\{\pi\}$ be the class of all subdivisions of I.

Let π_{1} and π_{2} be two subdivisions of I. Then the binary operation R is defined as follows: $\Pi_{2} R \Pi_{1}$, if π_{2} is a refinement of π_{1}; that is, if π_{2} is obtained from π_{1} by adding points of division to π_{1}. The operation R is clearly transitive. R also has the combination property; for if π_{1} and π_{2} are two subdivisions of I, let them be superimposed. This subdivision,
π_{3}, is a refinement of both π_{1} and π_{2}. Define $\alpha(\pi)$ as follows:

$$
\alpha(\pi)=\sum_{i=1}^{n}\left[g\left(\xi_{i}\right)\right] \cdot\left(x_{i}-x_{i-1}\right),
$$

where $M\left[g\left(\xi_{i}\right)\right]=\sup \left\{g\left(\xi_{i}\right) \mid x_{i-1} \leqslant \xi_{i} \leqslant x_{i}\right\}$. Clearly, for

$$
\pi_{2} \mathrm{~B} \pi_{1}
$$

it follows that

$$
\alpha\left(\pi_{2}\right) \leqslant \alpha\left(\pi_{1}\right)
$$

since $\sup f(x)$ on a finer subdivision of an interval is always less than or equal to sup $f(x)$ on a coarser subdivision, for any function $f(x)$.

$$
\text { Define } \quad \inf _{\pi} \alpha(\pi)=\overline{\int_{a}^{b} g(x) d x}
$$

From the properties of the infimum of a function it follows that for every $\epsilon>0$ there is at least one π_{ϵ} such that

$$
\alpha\left(\pi_{\epsilon}\right)<\int_{a}^{b} g(x) d x+\epsilon .
$$

Since $\alpha(\pi) \leqslant \alpha\left(\pi_{\epsilon}\right)$ if $\pi R \pi_{\epsilon}$, then

$$
\left|\alpha(\pi)-\overline{\int_{a}^{b}} g(x) d x\right|<\epsilon
$$

for all $\pi R \pi_{\epsilon}$. That is, $\overline{\int_{a}^{b}} g(x) d x$ is the Moore-Smith limit of $\alpha(\pi)$. If $g(x)$ is Riemann integrable, then

$$
\lim \alpha(\pi)=\int_{a}^{b} g(x) d x .
$$

The Riemann integral of $g(x)$ is also defined to be

$$
n(\pi)_{\rightarrow 0} x(\pi) .
$$

where $n(\pi)$ is the length of the longest subinterval of π. The well-known lemma of Darboux states that the two definitions are equivalent.

Example 3. It will be shown that the generalized derivative defined in Dofinition I.2.7 is a Moore-Smith Limit. Let the class P be the class of increments I_{1}. For a given increment ΔX_{n} of P, define $\alpha(\Delta X)_{n}$ to be the numericallyvalued function $\frac{\Delta F_{n}}{\Delta x_{n}}$. Let $(\Delta x)_{n}^{\prime}$ with vertices $x_{0}, x_{1}^{\prime}, \cdots x_{n}^{\prime}$, and $(\Delta x)_{n}^{\prime \prime}$ with vertices $x_{0}, X^{\prime \prime}, ., x_{n}^{\prime \prime}$, be two increments of P. The increment $(\Delta x)_{n}^{\prime \prime}$ will be said to be in the relation f with $(\Delta x)_{n}^{\prime \prime}$ (written $\left.(\Delta x)_{n}^{\prime} R(\Delta x)_{n}^{\prime \prime}\right)$ if $\max \left\{\left\|x_{0} x_{i}^{\prime}\right\|\right\} \leqslant \max \left\{\left\|x_{0} x_{i}^{\prime \prime}\right\|\right\}, 1=1, \ldots n$, where x_{0} is a common fixed vertex of both $(\Delta x)_{n}^{\prime}$ and $(\Delta x)_{n}^{\prime \prime}$. The relation R is clearly transitive. It also has the combination property. For if $(\Delta x)_{n}^{\prime}$ and $(\Delta x)_{n}^{\prime \prime}$ are two increments of P_{0} since it is assumed that increments of P appear in every neighborhood of x_{0}, then there exists an increment $(\Delta \bar{x})$ with vertices $x_{0}, \bar{x}_{n}, \ldots, \bar{x}_{n}$ such that
$\max \left\{\left\|x_{0} \bar{x}_{i}\right\|\right\} \leqslant \max \left\{\left\|x_{0} x_{i}^{\prime}\right\|\right\}$ and $\max \left\{\left\|x_{0} \bar{x}_{i}\right\|\right\} \leqslant \max \left\{\left\|x_{0} x_{i}^{\prime}\right\|\right\}$, where $(i=1, \ldots, n)$. That is, $(\Delta \bar{x})_{n} B(\Delta x)_{n}^{\prime}$ and $(\Delta \bar{x})_{n} \mathrm{R}(\Delta \mathrm{x})_{n}^{\prime \prime}$.

How using the terminology of the Moore-Smith Limit, the function $\alpha(\Delta x)_{n}=\frac{\Delta F_{n}}{\Delta x_{n}}$ has the limit d at x_{0} if for every $\epsilon>0$ there exists a $(\Delta x)_{n, \epsilon}$ such that

$$
\left|\frac{\Delta F_{n}}{\Delta x_{n}}-\mathrm{d}\right|<\epsilon
$$

for all $(\Delta x)_{n} R(\Delta x)_{n, \epsilon}$. This clearly coincides with the definition of the generalized derivative of $F(x)$ given in Definition I.2.7, showing that the generalized derivative is a Moore-Smith Limit.
I.4. FUWGTIONS WHICH HAVE GENERALIZED DERIVATIVES
I.4.1. A natural question to ask is the following: Which classes of functions possess derivatives of the type given in Definition I. 2.7 , and which classes possess derivatives of the type described in paragraph I.2.8, with respect to the various classes of increments?

It is the purpose of this paper to answer the question as to which class of functions possess non-zero derivatives of the two types described with respect to the class I.
G. B. Price has shown that the precise class of functions $f\left(x^{(n)}, \ldots, x^{(n)}\right)$ which possess a derivative of the type $D_{\chi(i)} f,(1=1, \ldots, n)$, with respect to the class of increments I_{2} is the class of Stolu differentiable functions. A function $f\left(x^{(1)}, \ldots, x^{(n)}\right)$ is said to be Stolz differentlable at a point $x_{0}=\left(x_{0}^{(1)}, \ldots, x_{0}^{(n)}\right)$ if there exist constants $a_{i},(1=1, \ldots, n)$, such that $f\left(x^{(1)}, \ldots, x^{(n)}\right)-f\left(x_{0}^{(1)} \ldots, x_{0}^{(n)}\right)=\sum_{i=1}^{12} a_{i}\left(x^{(i)}-x_{0}^{(i)}\right)+r[\epsilon(r)]$, where $r=\sqrt{\sum_{i=1}^{n}\left(x^{(i)}-x_{0}^{(i)}\right)^{2}}$, and where $\epsilon(x)$ is a function of r such that $\lim _{x \rightarrow 0} \in(r)=0$. For a treatment of Stolz differentiable functions, see [Radamacher, (1)].

It is easily shown that the class of functions $f\left(x^{(1)}\right.$, , $\left.x^{(n)}\right)$ which have a derivative of the type $D_{x}\left(i f\right.$ with respect to the class of increments I_{3} is the class of functions which are differentiable in the ordinary sense. To show this, suppose that $D_{x}(\kappa)$ exists at a point x_{0} with respect to the class of increments I_{3}. That is, the limit of the following difference quotient oxists as the points x_{1}, \ldots, x_{n} approach x_{o}, remaining In the cless $I_{3}:$

where $f=f\left(x_{0}^{(1)}, \ldots x_{0}^{(n)}\right)$ and $f\left(\Delta X^{(i)}\right)=f\left(X_{0}^{(1)}, \cdots x_{0}^{(i-1)}, x_{0}^{(i)}+\Delta x^{(i)}, x_{0}^{(i+1)}, \cdots, x_{0}^{(n)}\right)$, $(i=1, \ldots n)$,

Subtract the first row from each of the remaining rows in both the numerator and denominator of (I, 4.2), obtaining

Expand both numorator and denominator of (1.4.3) by the last column and obtain

Expand the numerator of (1.4.4) by the first row and obtain (I.4.5) $\Delta x^{(1)} \cdot \Delta x^{(2)} \cdot \cdot \Delta x^{(k-1)}\left(f\left(\Delta x^{(k)}\right)-f\right) \cdot \Delta x^{(k+1)} \cdot . \cdot \Delta x^{(n)}$.
[The minor of $f\left(\Delta X^{(1)}\right)$-f is 0 since the kth row of this minor contains all zeros.] Hence, the difference quotient (I.4.4) reduces to

$$
\begin{aligned}
\left(f\left(\Delta x^{k}\right)-f\right) \Delta x^{(1)} \Delta x^{(2)} \cdot \cdot \Delta x^{(k-1)} \Delta x^{(k+1)} \cdot \cdot \Delta x^{(n)} \\
\Delta x^{(1)} \cdot \cdots \Delta x^{(n)}
\end{aligned}=
$$

Since it was assumed that the limit of the difference quotient (I.4.2) with respect to the class I exists, then

$$
\lim _{\Delta x^{(k)} \rightarrow 0} \frac{f\left(\Delta x^{(k)}\right)-f}{\Delta x^{(k)}}
$$

exists. But this is the ordinary partial derivative of f with respect to $x^{(k)}$. This proves the statement.

The classes of functions, $f\left(x^{(1)}, \cdots, \cdot x^{(n)}\right)$, having derivatives of the type $D_{x^{(i)}} f$ with respect to the classes of increments I_{2} and I_{3} have thus been determined. When one considers the classes of functions $F: f^{(i)}(x),(i=1, \ldots, n)$, which have derivatives of the type $D_{x} F$ with respect to the elasses I_{2} and I_{3}, the answer is not so clear. The following illustration will show what one is up against in dealing with $D_{x} F$ with respect to the class of increments I_{3}.

Consider the mapping function
(I.4.6) F: $f^{(1)}(x)=x^{(1)}-x^{(2)}-g\left(x^{(1)}\right), x=\left(x^{(1)}, x^{(2)}\right)$,
where $g\left(x^{(1)}\right)$ is defined for all $x^{(1)}$, and otherwise is completely arbitrary. clearly, the ordinary partials of $f^{(1)}(x)$ and $f^{(x)}(x)$ cannot exist with respect to the variable $x^{\text {(1). However, }} D_{X} F$ exists everywhere with respect to the class I_{3}. To show this, consider the difference quotient

$$
\begin{aligned}
& \left|\begin{array}{llll}
\left(x_{0}^{(1)}\right)-\left(x_{0}^{(2)}\right)-g\left(x_{0}^{(1)}\right) & \left(x_{0}^{(1)}\right)+\left(x_{0}^{(2)}\right)+g\left(x_{0}^{(1)}\right) & 1 \\
\left(x_{0}^{(1)}+\Delta x\right)-\left(x_{0}^{(2)}\right)-g\left(x_{0}^{(1)}+\Delta x^{(1)}\right. & \left.\left(x_{0}^{(1)+\Delta x}\right)^{0}\right)+\left(x_{0}^{(2)}\right)+g\left(x_{0}^{(1)}+x^{(1)}\right) & 1 \\
\left(x_{0}^{(1)}\right)-\left(x_{0}^{(2)}+\Delta x\right)-g\left(x_{0}^{(1)}\right) & \left(x_{0}^{(1)}\right)+\left(x_{0}^{(2)}+\Delta x^{(2)}\right)+g\left(x_{0}^{(1)}\right) & 1
\end{array}\right| \\
& \text { (I.L. } 7 \text {) } \\
& \left|\begin{array}{lll}
x_{0}^{(1)} & x_{0}^{(2)} & 1 \\
x_{0}^{(1)}+\Delta x^{(1)} & x_{0}^{(2)} & 1 \\
x_{0}^{(1)} & x_{0}^{(2)}+\Delta x^{(2)} & 1
\end{array}\right|
\end{aligned}
$$

Clearly, the denominator reduces to $\Delta x^{(1)} \Delta x^{(2)}$, by the same procedure.used in the last example. In the numerator, add the second column to the first column and obtain
(I.4.8) $2 \left\lvert\, \begin{array}{lll}x_{0}^{(1)} & x_{0}^{(1)}+x_{0}^{(2)}+g\left(x_{0}^{(1)}\right) & 1 \\ x_{0}^{(1)}+\Delta x^{(1)} & x_{0}^{(1)}+\Delta x^{(1)}+x_{0}^{(2)}+g\left(x_{0}^{(1)}+\Delta x^{(1)}\right) & 1 \\ x_{0}^{(1)} & x_{0}^{(1)}+x_{0}^{(2)}+\Delta x^{(2)}+G\left(x_{0}^{(1)}\right) & 1\end{array} .^{2}\right.$

Subtract the first column of ($1,4,8$) from the second column, obtaining
(I.4.9) $2 \left\lvert\, \begin{aligned} & x_{0}^{(1)} \\ & x_{0}^{(1)}+\Delta x^{(1)} \\ & x_{0}^{(1)}\end{aligned}\right.$

$$
\left.\begin{array}{cc}
x_{0}^{(2)}+g\left(x_{0}^{(2)}\right) & 1 \\
x_{0}^{(2)}+g\left(x_{0}^{(1)}+\Delta x^{(1)}\right) & 1 \\
x_{0}^{(2)}+\Delta x^{(2)}+g\left(x^{(1)}\right) & 1
\end{array} \right\rvert\,
$$

Multiply the last column by $x_{0}^{(1)}$ and $x_{0}^{(2)}$ and subtract from columns one and two respectively and ($\mathbf{X . 4 . 9) \text { becomes }}$
(I.4.10) $\quad 2\left|\begin{array}{ccc}0 & g\left(x_{0}^{(1)}\right) & 1 \\ \Delta x^{(1)} & g\left(x_{0}^{(1)}+\Delta x^{(1)}\right) & 1 \\ 0 & \Delta x_{0}^{(2)}+g\left(x_{0}^{(1)}\right) & 1\end{array}\right|$.

Subtract the first row from the last row and get
(I.4.11) $2\left|\begin{array}{ccc}0 & g\left(x_{0}^{(1)}\right) & 1 \\ \Delta x^{(1)} & g\left(x_{0}^{(1)}+\Delta x^{(1)}\right) & 1 \\ 0 & \Delta x^{(2)} & 0\end{array}\right|$.

Expanding (1.4.11) by the first column, the numerator of (1.4.7) finally becomes

$$
\begin{equation*}
2\left(-\Delta x^{(1)}\right)\left(-\Delta x^{(2)}\right)=2 \Delta x^{(1)} \Delta x^{(2)} . \tag{x.4.12}
\end{equation*}
$$

Hence, the difference quotient (I.4.7) becomes

$$
\begin{equation*}
\frac{2 \Delta x^{(1)} \Delta x^{(2)}}{\Delta x^{(1)} \Delta x^{(2)}}=2 . \tag{I.4.13}
\end{equation*}
$$

Clearly, the derivative $D_{x} F$ with respect to I_{3} exists everywhere in the plane and equals 2.

Since $g\left(x^{(1)}\right)$ was arbitrary one can see that the task of finding out more about the kinds of functions F
having a derivative $D_{x} F$ with respect to the class of increments I_{3} is not easy. Similar statements apply to the functions having a derivative with respect to the class I_{2}.

One additional fact can be proved concerning the functions $F: f^{(i)}(x),(i=1, \ldots, n)$; this is expressed in the following theorem.
1.4.14. Theorem. Let $F: f^{(i)}(x),(1=1, \ldots, n)$, be a mapping function such that $D_{\chi^{(j)}} f^{(i)},(1, j=1, \ldots, n)$, exist at a point x_{0} with respect to any class of non-zero increments. Then $\left.D_{x} F\right|_{x_{0}}$ exists and equals

$$
\left|\begin{array}{c}
D_{x^{(1)}} f^{(1)} \cdot \cdots \cdot D_{x^{(n)}} f^{(1)} \\
\bullet \cdot \cdots \cdot \\
D_{x^{(1)}} f^{(n)} \cdot \cdots \cdot D_{x^{(n)}} f^{(n)}
\end{array}\right|
$$

Proof. The proof of this theorem depends on the Bazin-Picquet-Reiss Theorem on determinants [Price, (1)], which states that if A and B are two $n \times n$ matrices, then
where $\left|B\left[A\left(J_{j}^{(k)}\right) / B\left(J_{i}^{(k)}\right)\right]\right|$ stands for the determinant

[^2]obtained when one of the $C(n, k)$ possible choices of k columns of B has been replaced by one of the $C(n, k)$ possible choices of k columns of A, and where the symbol, $C(n, k)$ stands for the number of combinations of n things taken k at a time. For each choice of k columns of B, all $C(n, k)$ choices of k columns of A are substituted successively, forming a row of the determinant $\left|\left|B\left[A\left(J_{j}^{(k)}\right) / B\left(J_{i}^{(k)}\right)\right]\right|\right.$. Since there are $C(n, k)$ choices of k columns of B, the resulting determinent, $\left|\mid B\left[A\left(J_{j}^{(k)}\right) / B\left(J_{i}^{(k)}\right)\right] \|\right.$, is a $C(n, k) \times C(n, k)$ determinant.

Consider the following product of determinants:

If one applies the Bazin-Piequet-Reiss Theorem with $k=1$, one finds that (I.4.15) is equal to (I.4.16):

$\left\|\begin{array}{ccc}\mathbf{f}^{(1)}\left(x_{0}\right) & x_{0}^{(2)} \cdots x_{0}^{(n)} \\ \cdots \\ \cdots \cdots & \cdots\end{array}\right\|$	$\left\|\begin{array}{l}x_{0}^{(1)} f^{(1)}\left(x_{0}\right) \cdot x_{0}^{(n)} 1 \\ \bullet \bullet \bullet \bullet \bullet \\ \left.x_{n}^{(1)} f^{(1)}\left(x_{n}\right) \cdot \bullet x_{n}^{(n)}\right]\end{array}\right\| \cdot\left\|\begin{array}{l}x_{0}^{(1)} \cdot x_{0}^{(n)} f^{(1)}\left(x_{0}\right) \\ \cdots \cdot \cdots \bullet \cdots \\ x_{n}^{(1)} \cdot x_{n}^{(n)} f^{(n)}\left(x_{n}\right)\end{array}\right\|$
$\left\|\begin{array}{llll} \mathbf{f}^{(2)}\left(x_{0}\right) & x_{0}^{(2)} & \cdots & x_{0}^{(n)} \\ \bullet \bullet \cdots & \cdots & \cdots \\ \mathbf{f}^{(2)}\left(x_{n}\right) & x_{n}^{(2)} \cdots & x_{n}^{(n)} & I \end{array}\right\|$	
$\left\|\begin{array}{lllll}1 & & x_{0}^{(2)} & \cdots & x_{0}^{(n)} 1 \\ \cdots & \cdots & \cdots & \cdots\end{array}\right\|$	

Since all the elements of the last row of (I.4.16) are zero except the last element, expanding by the last row, (I.4.16) becomes equal to

Dividing both (I.4.15) and the determinant product above by

$$
\left|\begin{array}{cccc}
x_{0}^{(1)} \cdots \cdots x_{0}^{(n)} & 1 \\
\cdots \cdots \cdots & \\
x_{n}^{(1)} \cdot \cdots & x_{n}^{(n)} & 1
\end{array}\right|^{n+1},
$$

one gets the equality

Taking the limit with respect to the class of increments in question, since it has been assumed that all the derivatives, $D_{x(j)} f^{(i)},(i, j=1, \ldots, n)$, exist, then the pight side of (I.4.17) has the limit
(I.4.18)

$$
\left|\begin{array}{l}
\left.\left.D_{x^{(1)}} f^{(1)}\right|_{x_{0}} \cdots \cdot D_{x^{(n)}} f^{(1)}\right|_{x_{0}} \\
\bullet \cdot \bullet \cdot \\
\left.\left.D_{x^{(1)}} f^{(n)}\right|_{x_{0}} \cdots \cdot D_{x^{(n)}} f^{(n)}\right|_{x_{0}}
\end{array}\right|
$$

Hence the left side of (I.4.17) must also have a limit and this limit is, by definition, $D_{x} F_{X_{0}}$ with respect to the class of increments in question. This proves the theorem.
I.5. A USEFUL THEOREM CONCERMING THE GENERALIZED DERIVATIVE
I.5.1. In the remainder of this paper, the only class of increments which will be considered is the class I_{1}, the most generel cless. It will be unnecessary to refer to this fact again, for it will be understood that when $D_{x} F$ appears In the discussion, it is always the derivative of F with respect to x with respect to the class of increments I_{1}. to conclude this chapter a useful theorem concerning the method of taking the derivative at a point will be stated and proved. Before doing this, however, a lemma must be proved.
1.5.2. Lemma. Let $F: f^{(i)}(x),(1=1, \ldots, n)$, be an arbitrary mapping function defined on a set E in $R^{(n)}$. Let
$x_{0}, x_{1}, \ldots, x_{n}, x^{*}$ be any $n+2$ points of E. Then $\Delta\left(F: x_{0} x_{1} \cdot x_{n}\right)=\Delta\left(F: x^{*} x_{1} x_{2} \ldots . \cdot x_{n}\right)+\Delta\left(F: x_{0} x^{*} x_{2} \cdot x_{n}\right)+\ldots$

$$
\cdots+\Delta\left(F: x_{0} x_{1}, \cdot x_{n-1} x^{*}\right) .
$$

Proos.

$$
\begin{aligned}
& \cdots+\frac{1}{n!}\left|\begin{array}{cccc}
f^{(1)}\left(x_{0}\right) & \ldots & f^{(n)}\left(x_{0}\right) & 1 \\
\cdots & \cdots & \cdots & \cdots \\
f^{(1)}\left(x_{n-1}\right) & \cdots & f^{(n)}\left(x_{n-1}\right) & 1 \\
0 & \ldots & 0 & 1
\end{array}\right| .
\end{aligned}
$$

This is verified by expanding the ith determinant in the sum above by the i th row ($i=1, \ldots, n+1$) and adding the terms together. The result is the same as if the determinant

$$
\frac{1}{n!}\left|\begin{array}{llll}
f^{(1)}\left(x_{0}\right) & \cdots & f^{(n)}\left(x_{0}\right) & 1 \\
\cdots & \bullet & \bullet & \bullet \\
f^{(1)}\left(x_{n}\right) & \bullet & f^{(n)}\left(x_{n}\right) & 1
\end{array}\right|
$$

were expanded by elements of the last column.

Now if $u^{(1)}, \cdots, u^{(n)}$ are arbitrary functions, one has, after multiplying the last column by $u^{(i)}$ and subtrecting this from the ith column $(1=1, \ldots n)$:

$$
\Delta\left(F: x_{0} x_{1} \cdot \bullet x_{n}\right)=\frac{1}{n!}\left|\begin{array}{l}
f^{(1)}\left(x_{0}\right)-u^{(1)} \bullet f^{(1)}\left(x_{1}\right)-u^{(1)}\left(x_{0}\right)-u^{(n)} \quad 1 \\
\bullet \cdot f^{(n)}\left(x_{1}\right)-u^{(n)} \quad 1 \\
f^{(1)}\left(x_{n}\right)-u^{(1)} \bullet \bullet f^{(n)}\left(x_{n}\right)-u^{(n)} \quad 1
\end{array}\right|
$$

Applying the results of $(1,5,3)$ to this expression, the following equality is obtained:

Multiplying the last column of each term on the right by $u^{(i)}$ and adding to the 1 th column $(1=1, \ldots, n),(1,5.4)$ becomes

$$
\begin{aligned}
& \begin{array}{l}
(I, 5,4) \\
\Delta\left(F: X_{0} X_{1} \cdot X_{n}\right)=\frac{1}{n!}
\end{array} \\
& \left|\begin{array}{ccc}
0 & 0 & 1 \\
f^{(1)}\left(x_{1}\right)-u^{(1)} \cdot f^{(n)}\left(x_{1}\right)-u^{(n)} & 1 \\
\bullet & \cdots & \cdots
\end{array}\right|+
\end{aligned}
$$

$$
(I .5 .5) \quad \Delta\left(F: x_{0} x_{1} \cdot \cdots x_{n}\right)=\frac{1}{n!}\left|\begin{array}{cccr}
u^{(1)} \cdots & u^{(n)} & 1 \\
f^{\prime \prime}\left(x_{1}\right) & \cdot & f^{(n)}\left(x_{1}\right) & 1 \\
\bullet & \cdots & \cdots & \cdots \\
f^{(1)}\left(x_{n}\right) & \cdots & f^{(n)}\left(x_{n}\right) & 1
\end{array}\right|+
$$

Since $u^{(1)}, \ldots, u^{(n)}$ are arbitrary, choose them to be $f^{(1)}\left(x^{*}\right), f^{(2)}\left(x^{*}\right), \ldots, f^{(n)}\left(x^{*}\right)$, where x^{*} is the point in the hypothesis of the lemme. Then (I.5.5) becomes
(I.5.6) $\Delta\left(F: x_{0} \cdot x_{n}\right)=\Delta\left(F: x^{*} x_{1}, x_{n}\right)+. .+\Delta\left(F: x_{0} \cdot x_{n-1} x^{*}\right)$.

This proves the Lemma.
I.5.7. Remark. A particular case of F is the identity mapping. Hence

$$
\Delta\left(x_{0} x_{1} \cdot x_{n}\right)=\Delta\left(x^{*} x_{1} \cdot \ldots x_{n}\right)+\ldots+\Delta\left(x_{0} x_{1} \cdot \ldots x_{n-1} x^{*}\right) .
$$

I.5.8. Theorem. Let $F: f^{(i)}(x),(i=1, \ldots, \ldots, n)$, be a mapping function defined on a region E in $R^{(n)}$. Let $D_{x} F$ exist at a point x_{0} of E and have the value d there. Let x_{1}, . . , x_{n}, x_{n+1} be $n+1$ variable points of E which are always such that x_{0} together with any n of the $n+1$ points $x_{1}, \ldots, x_{n}, x_{n+1}$ form an increment of I_{1} and where
(1.5.9) $\left|\frac{\Delta\left(x_{1} x_{2} \cdot \cdots x_{i, 1} x_{0} x_{i+1} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\right|<n, \quad(i=1, \ldots, n+1)$
for some fixed positive number M. Then

$$
d=\lim _{x_{i} \rightarrow x_{0}} \frac{\Delta\left(F: x_{1} x_{2} \ldots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \ldots x_{n+1}\right)},(1=1, \ldots, n+1) .
$$

Proof. It must be shown that for every $\epsilon>0$ there exists a $\delta>0$ such that
(I.5.10) $\left|\frac{\Delta\left(F: x_{1} x_{2} \ldots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \ldots x_{n+1}\right)}-a\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta,(1=1, \ldots, n+1)$, and where the x_{i} are such that the conditions of the hypothesis are satisfied.

From Lemma I.5.2,
$\Delta\left(x_{1} x_{2} \ldots x_{n+1}\right)=\Delta\left(x_{0} x_{2} \ldots x_{n+1}\right)+\ldots+\Delta\left(x_{1} x_{2} \ldots x_{n} x_{0}\right)$,
and
$\Delta\left(F: x_{1} x_{2} \ldots x_{n+1}\right)=\Delta\left(F: x_{0} x_{2} \ldots x_{n+1}\right)+\ldots+\Delta\left(F: x_{1} x_{2} \ldots x_{n} x_{0}\right)$. Hence

$$
\left|\frac{\Delta\left(F: x_{1} x_{2} * \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdot x_{n+1}\right)}-a\right|=
$$

$$
\left\lvert\, \frac{\Delta\left(P=x_{1} x_{2} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdot \cdot x_{n+1}\right)}-\left\{\left.\frac{\Delta\left(x_{0} x_{2} \cdot \bullet x_{n+1}\right)+\cdot+\Delta\left(x_{1} x_{2} * \cdot x_{n} x_{0}\right)}{\Delta\left(x x_{2} \cdot \cdot \cdot x_{n+1}\right)} d d \right\rvert\,=\right.\right.
$$

$$
\left\lvert\, \frac{\Delta\left(x_{0} x_{2} * \cdot x_{n+1}\right)}{\Delta\left(x_{x_{2}} \cdot x_{n+1}\right)}\left\{\left.\frac{\left(F: x_{0} x_{2} * \cdot x_{n+1}\right)}{\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right)}-d+++\frac{\Delta\left(x_{1} \cdot \cdot x_{n} x_{0}\right)}{\Delta\left(x_{1} \cdot+x_{n+1}\right)}\left\{\frac{\left(F: x_{1} \cdot \bullet x_{n} x_{0}\right)}{\Delta\left(x_{1} \cdot \cdot x_{n} x_{0}\right)}-d\right\} \right\rvert\, .\right.\right.
$$

Since it has been assumed that $D_{x} F=d$ at x_{0}, then for the given $\epsilon>0$, there exists a $\delta_{i}>0$ such that

$$
\left|\frac{\Delta\left(F: x_{1} \cdot x_{i-1} x_{0} x_{i+1} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} \cdot x_{i-1} x_{0} x_{i+1} \cdot x_{n+1}\right)}-d\right|<\epsilon / M(n+1)
$$

whenever $\left\|x_{0} x_{j}\right\|<\delta_{i},(j=1, \ldots, n+1 ; j \neq 1)$, $\Delta\left(x_{1}, \cdots x_{i-1} x_{0} x_{i+1} \cdots x_{n+1}\right) \in I_{1}$. This holds for $1=1, \ldots, n+1$. Hence, choosing

$$
\begin{gathered}
\delta=\min \left\{\delta_{i}\right\},(1=1, \cdot \bullet, n+1), \\
\left|\frac{\Delta\left(F: x_{1} x_{2} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot x_{n+1}\right)}-d\right|< \\
\left|\frac{\Delta\left(x_{0} x_{2} \cdot \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot x_{n+1}\right)}\right| \cdot \epsilon / M(n+1)+\cdots+\left|\frac{\Delta\left(x_{1} \cdot x_{n} x_{0}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\right| \cdot \epsilon / M(n+1)<\epsilon
\end{gathered}
$$

whenever

$$
\begin{gathered}
\left\|x_{0} x_{j}\right\|<\delta,(j=1, \cdots, n+1) . \text { Hence } \\
\left.D_{x} F\right|_{x_{0}}=\lim _{x_{1}, \cdots x_{n+1} x_{0}} \frac{\Delta\left(F: x_{1} x_{2} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdot x_{n+1}\right)}
\end{gathered}
$$

This proves the theorem.
1.5 11. Remark. $\left|\frac{\Delta\left(x_{1} \cdot x_{i-1} x_{0} x_{i+1} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \ldots \cdot x_{n} x_{n+1}\right)}\right|,(1=1, \ldots, n+1)$
is always bounded if x_{0} is interior to $\Delta\left(x_{1} x_{2}, x_{n+1}\right)$. Proof. If x_{0} is interior to $\Delta\left(x_{1} x_{2}, \ldots x_{n+1}\right)$, then the coordinates of x_{0} can bs expressed as

$$
x_{0}^{(l)}=\sum_{j=1}^{n+1} \alpha_{j} x_{j}^{(l)},(l=1, \ldots, n)
$$

where $\sum_{j=1}^{n+1} \alpha_{j}=1$, and where $\alpha_{j} \geqslant 0$, all j. (This statement is proved in Chapter II.) Now,

Multiplying the j th row by α_{j} and subtracting this from the
ith row, $(j=1, \ldots, i-1, i+1, \ldots, n+1)$, this determinant becomes

$$
\frac{1}{n!}\left|\begin{array}{ccc}
x_{1}^{(1)} & x_{1}^{(2)} \cdots x_{1}^{(n)} & 1 \\
\cdots \cdots & \cdots \cdots & \cdots \\
x_{i-1}^{(1)} & x_{i-1}^{(2)} \cdots x_{i-1}^{(n)} & 1 \\
\alpha_{i} x_{i}^{(1)} & \alpha_{i} x_{i}^{(2)} \cdots \alpha_{i} x_{i}^{(n)} & \alpha_{i} \\
x_{i+1}^{(1)} & x_{i+1}^{(2)} \cdots x_{i+1}^{(n)} & 1 \\
\bullet \cdots & \cdots \cdots & \cdots \\
x_{n+1}^{(1)} & x_{n+1}^{(2)} \cdots x_{n+1}^{(n)} & 1
\end{array}\right|
$$

which is equal to

$$
\alpha_{i} \Delta\left(x_{1} x_{2} \cdot \ldots \cdot x_{n+1}\right) .
$$

Hence,

$$
\left|\frac{\Delta\left(x_{1} \cdot x_{i-1} x_{0} x_{i+1} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot x_{n+1}\right)}\right|=\alpha_{i}<1 .
$$

This proves the statement.
I.5.12. Remark. Theoren I.5.8 is a generalization of a theorem due to Stieltjes concerning the derivative of a function of a single real variable. See [McShane, (1), p. 223$]$, and [stieltjes, (1)].

CHAPTER IT

THE CHARACTERIZATION OF A CLASS OF TRANSEORWATIONS

II. 1. INTRODUCTION

II.1.1. In this chapter the generalized derivatives which were dofined and discussed in Chapter I will play no role. However, the results of this chapter will be directly applicable to the problem of characterizing the class of functions which have non-zero derivatives of the types discussed in Chapter I with respect to the class of Increments I_{1}. This characterization will be the main purpose of Chapter III. Chapter II will be concerned with the characterization of the class of functions which are continuous, one-to-one, and which have the additional property that they map straight lines into straight lines.

A word of explanation should be stated concerning the statement that the mapping function maps straight lines Into straight ines. What is meant by this statement is that all the points on a straight line are mapped by the function into points which lie on a straight line. Nothing is stated about the distribution of the image points, except that they lie on a straight line.

Another atatement which is used frequently in the following pages must be explained also. Suppose a mapping
function is such that it carries straight lines into straight lines and which leaves two distinct points on a straight line fixed. Then the statement is made that this straight ine remains fixed. It is not implied in this statement that each individual point of the Ine remains fixed, only that each point of the straight line maps into some point on the same straight line. Clearly if two such fixed lines intersect, then that point of intersection must map into a point which is on both lines, and hence it must remain fixed in the strict sense.

These notions are extended to higher dimensions. When the statement is made that a certain function carries faces of an n-cell into faces of an n-cell, it means that every point of the n-cell maps into some point on the face of an n-cell, with nothing further implied. When the statement is made that a mapping function leaves the faces of an n-cell fixed, it means that every point of that face maps into some point on the same face. If every point remains fixed, it will be definitely stated as such.

It will be shown in this chapter that the precise class of mapping functions which are one-to-one, continuous, and which map straight lines into straight lines, is the class of functions of the form

$$
\left.F: f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+\cdots+a_{i, n} x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(n)}+\left(1=1, \cdot\left(a_{n+1, n} x^{(n)}+a_{n+1, n+1}\right.\right.}, n\right),
$$

where

$$
\left|\begin{array}{ccc}
a_{1,1} & \bullet & a_{1, n+1} \\
\bullet \bullet & \bullet & \bullet \\
a_{n+1,1} & \bullet & \bullet \\
a_{n+1, n+1}
\end{array}\right| \neq 0 .
$$

II. 2. HOMOGENEOUS COORDINATES AND IUNEAR TRANSFORMATIONS*
II.2.1. Homogeneous Coordinates. Although any point in the Euclidean plane 1 andquely determined by two quentities. it is sometimes convenient to use three quantities to locate the point. If this is dones the precise values of the three quantities are not important, but it is their ratios which are of value, Let $\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$ be the three quantities describing a point and define the ratios

$$
\frac{x^{(1)}}{x^{(3)}}=x^{(1)}, \quad \frac{x^{(2)}}{x^{(3)}}=x^{(2)},
$$

Where $\left(x^{(1)}, x^{(2)}\right)$ are the cartesian coordinates of the point in the plane. It is clear that any three numbers which are proportionel to $\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$ will represent the same point, $\left(x^{(1)}, x^{(2)}\right)$. Hence, to any set of three numbers; $\left(X^{(1)}, X^{(2)}, X^{(3)}\right), w 111$ correspond one and only one point, ($x^{(1)}, x^{(2)}$; but to each point, $\left(x^{(1)}, x^{(2)}\right)$, there will correspond an infinite number of sets of three numbers, all of which are proportional.

The set of numbers, $(0,0,0)$ will not describe a point at all, since the homogeneous coordinates of any

F For a more complete alscussion, see [(Bocher, (1), Chapters I and $\left.V I_{0}\right]$.
point may be made as small as one pleases; hence $(0,0,0)$ may be regarded as the limits of the homogeneous coordinates of any point.

What has been said above is true for n dimensions. In Euclidean n-dimensional space, $R^{(n)}$, the $n+1$ numbers, $\left(X^{(1)}, X^{(n+1)}\right.$ will determine the point

$$
\frac{X^{(1)}}{X^{(n+1)}}=x^{(1)} \cdot \cdot \frac{X^{(n)}}{X^{(n+1)}}=x^{(n)}
$$

where $\left(x^{(1)}, x^{(2)}, \cdots x^{(n)}\right.$) are the cartesian coordinates of the point in $R^{(n)}$. Any set of $n+1$ quantities proportional to these vill determine the same point of $R^{(n)}$. The set of numbers, $(0,0, \ldots, 0)$ will represent no point at all.
II.2.2. Linear Transformations. The equations

$$
(11,2.3)
$$

$$
\begin{aligned}
& \rho \bar{X}^{(1)}=a_{1,1} X^{(1)}+a_{1,2} X^{(2)}+a_{1,3} X^{(3)} \\
& \rho \bar{X}^{(2)}=a_{2,1} X^{(1)}+a_{2,2} X^{(2)}+a_{2,3} X^{(3)} \\
& \rho \bar{X}^{(3)}=a_{3,1} X^{(1)}+a_{3,2} X^{(2)}+a_{3,3} X^{(3)}
\end{aligned}
$$

define a linear, homogeneous transformation of the Euclidean plane into itself. That is, if $\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$ are the homogeneous coordinates of any point in the plane, a second point, $\left(\rho \bar{X}^{(1)}, \rho \bar{X}^{(2)}, \rho \bar{X}^{(3)}\right)$, where ρ is any constant $\neq 0$, w111 be determined by (II.2.3), the value of the coordinates, $\left(\rho \bar{X}^{(1)}, \rho \bar{X}^{(2)}, \rho \bar{X}^{(3)}\right)$ depending on the coerficients,
$a_{i, j}$ If $\left(\rho \bar{X}^{(1)}, \rho \bar{X}^{(2)}, \rho \bar{X}^{(3)}\right)=(0,0,0)$, then the point ($X^{(1)}, X^{(2)}, X^{(3)}$) is not transformed into any point at all. This will happen only when the determinent of the coefficients is equal to zero. To insure that this never happens, only the case where the determinant of the transformation is not equal to zero will be consldered. Such transformations are called non-singular. In this case, to every point ($X^{(1)}, X^{(2)}, X^{(3)}$ will correspond a defingte point ($\rho \bar{X}^{(1)}, \rho \bar{X}^{(2)}, \rho \bar{X}^{(3)}$) and conversely. A non-singular transformation such as (II.2.3) is continuous, one-to-one and transforms points on a line into points on a line.

What has been said concerning linear, homogeneous transformations in the plane can be extended easily to n dimensions. In this case, the following set of equations is considered:

$$
\text { (II. 2.4) } \rho \bar{X}^{(i)}=a_{i, 1} X^{(1)}+\ldots+a_{i, n+1} X^{(n+1)},(1=1, \ldots, n+1),
$$

where

$$
\left.\left|\begin{array}{l}
a_{1,1} \cdots \cdots a_{1, n+1} \\
\cdots \cdots \cdot \\
a_{n+1,1} \cdot \cdots
\end{array}\right| \not a_{n+1, n+1} \right\rvert\, \neq 0
$$

This transformation is one-to-one, continuous, and maps points of an n-1 dimensional hyperplane into points of an n-l dimensional hyperplane.

In terms of carteslan coordinates, the transformation (II.2.4) is of the form

The following theorems proved in homogeneous coordinates will be useful later on
II.2.6. Theorem. Every set of values of $x_{1}, \ldots, \mathbf{x}_{n}$, which satisifes a system of $n-1$ linearly independent homogeneous linear equations in n unknownsis proportional to the set of ($n-1$)-rowed determinents obtained by striking out from the matrix of the coefficients first the first column, then the second, eto.

Proof. Denote by a ${ }^{(i)}$ the (n-1)-rowed determinant obtained by striking out the ith coluran from the matrix of the equations. Since the equations are linearly independent, at least one of the determinants, $a^{(1)}, a^{(2)}, \ldots, a^{(n)}$, does not vanish. Let it be $e^{(i)}$. Assign to x_{i} any fixed value, c. Then

$$
\begin{aligned}
& a_{1,1} x_{1}+\cdots+a_{1, i-1} x_{1,2-1}+a_{1, i+1} x_{i+1}+\ldots+a_{1, n} x_{n}=-a_{1, i} c \\
& \bullet \bullet \cdot \bullet \cdot \bullet \cdot \\
& a_{n-1,1} x_{1}+\cdots \cdot a_{n-1, i-1} x_{i-1}+a_{n-1, i+1} x_{i+1}+\cdots \cdot a_{n-1, n} x_{n}=-a_{n-1, i} c
\end{aligned}
$$

This is a system of n linear non-homogeneous equations in n unknowns. Using Cramer's Rule, there is one and only one solution for ach x_{k}.

Solving for x_{k}, using Cramer's Rule:

$$
x_{k}=\frac{(-1)^{i-k} c a^{(k)}}{a^{(i)}},(k=1, \ldots, n) .
$$

Hence, x_{k} is proportional to $a^{(k)},(k=1, \ldots, n)$. II.2.7. Remerk. If two or more of the determinants, $a^{(1)}$. . . $a^{(n)}$ do not vanish (for example, $a^{(i)}$ and $a^{(j)}$, then one can assign any value to x_{i} and get a set of values for the remaining $x^{\prime} s$, as above. If one uses x_{j} instead (assigning any value to x_{j}), a different set of values for the x's will in general result. But once an x_{i} is picked and a value assigned, the remaining x 's are uniquely determined by Cramer's Rule. In either case x_{k} will be proportional to $a^{(k)}$.
II.2.8. Theorem. Any four coplanar points, no three of which are collinear, may be carrled over into any four coplanar points, no three of which are sollinear, by one and only one transformation of the type

$$
\bar{x}^{(1)}=\frac{a_{1,1} x^{(1)}+a_{1,2} x^{(2)}+a_{1,3}}{a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}}
$$

(II.2.9)

$$
\bar{x}^{(2)}=\frac{a_{2,1} x^{(1)}+a_{2,2} x^{(2)}+a_{2,3}}{a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}}
$$

where

$$
\left|\begin{array}{l}
a_{1,1} \cdots \cdots \\
\cdots \cdot \\
a_{1,3} \\
a_{3,1}
\end{array} \cdot \cdot \cdot a_{3,3}\right| \neq 0
$$

Proof. The theorem will be proved using homogeneous coordinates. The transformation will then be of the form
(II.2.10) $\quad \rho^{(2)}=a_{2,1} X^{(1)}+a_{2,2} X^{(2)}+a_{2,3} X^{(3)}$.

$$
\rho \bar{X}^{(3)}=a_{3,1} x^{(6)}+a_{3,2} x^{(2)}+a_{3,3} x^{(3)}
$$

Let $x_{1}=\left(X_{1}^{(1)}, X_{1}^{(2)}, X_{1}^{(3)}\right), x_{2}=\left(X_{2}^{(1)}, X_{2}^{(2)}, X_{2}^{(3)}\right)$, $x_{3}=\left(X_{3}^{(1)}, X_{3}^{(2)}, X_{3}^{(3)}\right)$, and $x_{4}=\left(X_{4}^{(1)}, X_{4}^{(2)}, X_{4}^{(3)}\right)$ be the four initial points. Let $\bar{x}_{1}=\left(\rho_{1} \bar{X}_{1}^{(1)}, \rho_{1} \bar{X}_{1}^{(2)}, \rho_{1} \bar{X}_{1}^{(3)}\right)$,
$\bar{x}_{2}=\left(\rho_{2} \bar{X}_{2}^{(1)}, \rho_{2} \bar{X}_{2}^{(2)}, \rho_{2} \bar{X}_{2}^{(3)}\right), \bar{x}_{3}=\left(\rho_{3} \bar{X}_{3}^{(1)}, \rho_{3} \bar{X}_{3}^{(2)}, \rho_{3} \bar{X}_{3}^{(3)}\right)$, and $\bar{x}_{4}=\left(\rho_{4} \bar{X}_{4}^{(1)}, \rho_{4} \bar{X}_{4}^{(2)}, \rho_{4} \bar{X}_{4}^{(3)}\right)$ be the points into which the initial points are to be transformed.

The transformation (II.2.10) carries any point, $X=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$, into a point, $\bar{X}=\left(\rho^{(1)}, p \bar{X}^{(2)}, \bar{X}^{(3)}\right)$, whose position depends on the values of the constants, $a_{i, j},(i, j=1,2,3)$. If it is possible to find one and only one (except for a constant factor which may be introduced throughout) set of thirteen constants (the nine above and four others $-\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}$, none of which is zero) which satisfy the twelve equations

$$
\begin{aligned}
& \rho_{i} \bar{X}_{i}^{(1)}=a_{1,1} X_{i}^{(1)}+a_{1,2} X_{i}^{(2)}+a_{1,3} x_{i}^{(3)} \\
& \text { (II.2.11) } \rho_{i} \bar{X}_{i}^{(2)}=a_{2,1} X_{i}^{(1)}+a_{2,2} x_{i}^{(2)}+a_{2,3} X_{i}^{(3)}(1=1,2,3,4), \\
& \\
& \rho_{i} X_{i}^{3}=a_{3,1} X_{i}^{(1)}+a_{3,2} X_{i}^{(2)}+a_{3,3} x_{i}^{(3)}
\end{aligned}
$$

the theorem will be proved.
Since the $X ' s$ and the \bar{X} 's are all known, (II.2.11) represents a system of twelve homogeneous Inear equations in thirteen unknowns. Hence, there are always solutions other than zero, the number of independent ones depending on the rank of the matrix of the coefficients. It will be shown that the rank of the matrix Is twelve, and that the ρ 's are all different from zero. Since the rank of the matrix is twelve, there will be only one independent solution and the theorem will be proved.

Transposing and rearranging the above twelve equations, one obtains (II.2.12):

$$
\begin{aligned}
& X_{1}^{(1)} a_{1,1}+X_{1}^{(2)} a_{1,2}+Z_{1}^{(3)} a_{1,3}+0+0+0+0+0+0-\rho_{1} \bar{X}_{1}^{(1)}+0+0+0=0, \\
& x_{2}^{(1)} a_{1,1}+X_{2}^{(2)} a_{1,2}+X_{2}^{(3)} a_{i, 3}+0+0+0+0+0+0+0-p_{2} \bar{x}_{2}^{(1)}+0+0=0 \\
& x_{3}^{(1)} a_{1,1}+x_{3}^{(2)} a_{1,1}+x_{3}^{(3)} a_{1,3}+0+0+0+0+0+0+0+0-p_{3} \bar{x}_{3}^{(1)}+0=0, \\
& 0+0+0+X_{1}^{(1)} a_{2,1}+X_{1}^{(2)} a_{22}+X_{1}^{(3)} a_{38}+0+0+0-\rho_{1} \bar{X}_{1}^{(2)} 0+0+0=0, \\
& 0+0+0+x_{2}^{11} a_{21}+x_{2}^{(2)} a_{2,2}+X_{2}^{(3)} a_{2,3}+0+0+0+0-\rho_{2} \bar{X}_{2}^{(2)}+0+0=0, \\
& 0+0+0+X_{3}^{(1)} a_{2,1}+X_{3}^{(2)} a_{2,2}+X_{3}^{(3)} a_{3,3}+0+0+0+0+0-p_{3} \bar{X}_{3}^{(2)}+0=0, \\
& 0+0+0+0+0+0+X_{1}^{(1)} a_{3,1}+x_{1}^{(2)} a_{3,2}+z_{1}^{(3)} a_{3,3}-P_{1} \bar{X}_{1}^{(3)}+0+0+0=0, \\
& 0+0+0+0+0+0+X_{2}^{(1)} a_{3,1}+X_{2}^{(2)} a_{3,2}+X_{2}^{(3)} a_{3,3}+0-\rho_{2} \bar{X}_{2}^{(3)}+0+0=0, \\
& 0+0+0+0+0+0+x_{3}^{(1)} a_{11}+x_{3}^{(2)} a_{32}+X_{3}^{(3)} a_{33}+0+0-\rho_{3} \bar{X}_{3}^{(3)}+0=0, \\
& x_{4}^{(1)} a_{1,1}+x_{4}^{(2)} a_{1,2}+x_{4}^{(3)} a_{1,3}+0+0+0+0+0+0+0+0+0-\rho_{4} \bar{x}_{4}^{(1)}=0, \\
& 0+0+0+x_{4}^{(1)} a_{2,}+x_{4}^{(2)} a_{2,2}+x_{4}^{(3)} a_{33}+0+0+0+0+0+0-\rho_{4} \bar{x}_{4}^{(2)}=0 \text {, } \\
& 0+0+0+0+0+0+X_{4}^{(1)} a_{1,1}+X_{4}^{(2)} a_{3,2}+x_{4}^{(3)} a_{3,3}+0+0+0-\rho_{4} \bar{X}_{4}^{(3)}=0 \text {. }
\end{aligned}
$$

The matrix of these equations is (II.2.13):

		$\mathrm{x}^{(3)}$	0	0	0	0		0	$\overline{\mathbf{x}}_{1}^{(1)}$	0		
$\mathrm{X}_{2}^{(1)}$	$\mathrm{x}_{2}^{(2)}$	$\mathrm{X}_{2}^{(3)}$	0	0	0	0	0	0	0	$-\overline{\mathbf{x}}_{2}^{(1)}$	0	0
	\mathbb{x}_{3}^{12}	$\mathrm{X}_{3}^{(3)}$	0	0	0	0	0	0	0	0	$-\bar{x}_{3}^{(1)}$	0
0	0	0	$x_{1}^{(1)}$	$\mathrm{x}_{1}^{(2)}$	$\mathrm{x}_{1}^{(3)}$	0	0	0	$-\overline{\mathbf{x}}_{1}^{(k)}$	0	0	0
0	0	0	$\mathrm{X}_{2}{ }^{(1)}$	$\mathrm{X}_{2}^{(2)}$	$\mathbf{z}_{2}^{(3)}$	0	0	0	0	$-\overline{\mathrm{X}}_{2}^{(1)}$	0	0
0	0	0		$x_{3}^{(2)}$	$\mathrm{x}_{3}^{(3)}$	0	0	0	0	0	- $\overline{\mathrm{X}}_{3}^{(2)}$	0
0	0	0	0	0	0	(1)	$x_{1}^{(2)}$	-	$-\vec{x}_{1}^{(3)}$	0	0	0
0	0	0	0	0	0	(1)	$x_{2}^{(2)}$	$x_{2}^{(3)}$	0	$-\overline{\mathbf{x}}_{2}^{(3)}$	0	0
0		0	0	0	0					0	$\bar{x}_{3}^{(3)}$	
X_{4}				0		0			0	0	-	$-\bar{x}_{4}^{\prime \prime}$
0	0	0				0				0		
		0	0	0	0	$\mathrm{x}_{4}^{(1)}$	$\mathrm{x}_{4}^{(2)}$	$x_{4}^{(3)}$,	0	0	$-\overline{\mathbf{x}}_{4}^{(3)}$

Since x_{1}, x_{2}, x_{3}, and x_{4} are distinct, coplanar and no three lie on a line, there exist non-zero constants, c_{1}, c_{2}, c_{3}, such that

$$
\begin{aligned}
& c_{1} X_{1}^{(1)}+c_{2} X_{2}^{(1)}+c_{3} X_{3}^{(1)}+X_{4}^{(1)}=0 \\
& c_{1} X_{1}^{(2)}+c_{2} X_{2}^{(2)}+c_{3} X_{3}^{(2)}+X_{4}^{(2)}=0 \\
& c_{1} X_{1}^{(3)}+c_{2} X_{2}^{(3)}+c_{3} X_{3}^{(3)}+X_{4}^{(3)}=0
\end{aligned}
$$

Adding c_{1}, c_{2}, c_{3} times the first, second and third rows respectively to the tenth row; c_{1}, c_{2}, c_{3} times the fourth, fifth and sixth rows respectively to the eleventh row; and c_{1}, c_{2}, c_{3} times the seventh, eighth and ninth rows respectively to the twelfth row, (II.2.13) becomes (II.2.14):

$x_{1}^{(1)}$	$X_{1}^{(2)}$	$\mathrm{X}_{1}^{(3)}$	0	0	0	0	0	0	$-\overline{\mathrm{x}}^{(1)}$	0	0	0
$\mathrm{x}_{2}^{\text {(1) }}$	$x_{2}^{(1)}$	$x_{2}^{(3)}$	0	0	0	0	0	0	0	$-\bar{X}_{2}^{(1)}$	0	0
$\mathrm{X}_{3}^{(1)}$	$\mathrm{X}_{3}^{(2)}$	$\mathrm{X}_{3}^{(3)}$	0	0	0	0	0	0	0	0	$-\bar{x}_{3}^{(1)}$	0
0	0	0	$\mathrm{X}_{1}^{(1)}$	$\mathrm{x}_{1}^{(2)}$	$x_{1}^{(3)}$	0	0	0	$-\bar{x}_{1}^{(x)}$	0	0	0
0	0	0	$x_{2}^{(1)}$	$\mathbf{x}_{2}^{(2)}$	$\mathbf{x}_{2}^{(3)}$	0	0	0	0	$-\bar{x}_{2}^{(2)}$	0	0
0	0	0	$\mathrm{x}_{3}^{(1)}$	$\mathrm{x}_{3}^{(2)}$	$X_{3}^{(3)}$	0	0	0	0	0	$-\overline{\mathrm{X}}_{3}^{(2)}$	0
0	0	0	0	0	0	$x_{1}^{(1)}$	$\mathrm{x}_{1}^{\text {(2) }}$	$\mathrm{x}_{1}^{(3)}$	$-\bar{x}^{(3)}$	0	0	0
0	0	0	0	0	0	$\mathrm{X}_{2}^{(1)}$	$\mathbb{X}_{2}^{(2)}$	$\dot{X}_{2}^{(3)}$	0	$-\overline{\mathbf{X}}_{2}^{(3)}$	0	0
0	0	0	0	0	0	$\mathrm{X}_{3}^{(1)}$	$\mathrm{X}_{3}^{(2)}$	$\mathrm{X}_{3}^{(3)}$	0	0	$-\bar{x}_{3}^{(3)}$	0
0	0	0	0	0	0	0	0	0	$-c_{1} \bar{X}_{1}^{(1)}$	$c_{2} \bar{x}_{2}^{\prime \prime}$	$c_{3} \bar{x}_{3}^{(1)}$	$-\bar{x}_{4}^{(1)}$
0	0	0	0	0	0	0	0	0	-c, $\bar{x}_{1}^{(2)}$	$-c_{2} \bar{X}_{2}$	$-c_{3} \bar{x}_{3}{ }^{(2)}$	$-\bar{x}_{4}^{(\lambda)}$
0	0	0	0	0	0	0	0	0	$-c_{1} \bar{X}_{1}^{(3)}$	$-c_{2} \bar{X}_{2}^{(3)}$	$-c_{3} \bar{X}_{3}^{(3)}$	$\left.-\bar{x}_{4}^{(3)}\right)$

The rank of the matrix is unchanged by the above operations. If the thirteenth column is deleted, the determinant of the resulting matrix is easily calculated to be

$$
D_{(13)}=-c_{1} c_{2} c_{3}\left|\begin{array}{lll}
X_{1}^{(1)} & x_{1}^{(2)} & x_{1}^{(3)} \\
X_{2}^{(1)} & X_{2}^{(2)} & X_{2}^{(3)} \\
X_{3}^{(1)} & X_{3}^{(2)} & X_{3}^{(3)}
\end{array}\right|\left|\begin{array}{lll}
\bar{x}_{1}^{(1)} & \bar{X}_{1}^{(2)} & \bar{X}_{1}^{(3)} \\
\bar{X}_{2}^{(1)} & \bar{X}_{2}^{(2)} & \bar{X}_{2}^{(3)} \\
\bar{X}_{3}^{(1)} & \bar{X}_{3}^{(2)} & \bar{X}_{3}^{(3)}
\end{array}\right| \neq 0,
$$

since x_{1}, x_{2}, x_{3} and $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$ are distinct points and neither set is collinear. So the rank of the matrix (II.2.14) is twelve and there is only one linearly independent solution for the thirteen constants. Furthermore, by Theorem II.2.6, $\rho_{4} \neq 0$, since it is proportional to $D_{(13)} \neq 0$.

In a similar fashion, $D_{(1))}, D_{(1)}$, and $D_{(10)}$ are all different from zero. Hence, ρ_{3}, ρ_{2} and ρ_{1} are all different from zero, by Theorem II.2.6. Thus, precisely one linearly independent solution for the thirteen constants can be found such that $\rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} are all different from zero, and the theorem is proved.
II.3. p-FLATS AND THEIR PROPERTIES
11.3.1. In Chapter I, the definition of a p-cell in $\mathrm{R}^{(n)}$ was given. The volume of a p-cell in $R^{(n)}$, determined by the $p+1$ points, $x_{0}, x_{1}, \ldots, x_{p},(0 \leqslant p \leqslant n)$, is proportional to

$$
\left|\begin{array}{ccccc}
x_{0}^{\left(i_{1}\right)} x_{0}^{\left(i_{2}\right)} & \cdots & x_{0}^{\left(i_{p}\right)} & 1 \\
\cdots & \cdots & \cdots & \\
x_{p}^{\left(i_{1}\right)} x_{p}^{\left(i_{2}\right)} & \cdots & x_{p}^{\left(i_{\beta}\right)} & 1
\end{array}\right|
$$

where the set $\left(1_{1}, i_{2}, \ldots, i_{3}\right)$ sepresents a selection of p of the possible n columns of the matrix

$$
\left(\begin{array}{cccc}
x_{0}^{(1)} & x_{0}^{(2)} & \cdots & x_{0}^{(n)} \\
\bullet & \cdot & \cdots & \cdots \\
x_{p}^{(1)} & x_{p}^{(2)} & \cdots & x_{p}^{(n)}
\end{array}\right)
$$

and where the symbol $\sum_{C(n, p)}$ slgnifles that the sum extends over all the $C\left(n_{2} p\right)$ possible selections for $\left(i_{1}, 1_{2}, \ldots, 1_{p}\right)$ [Birwhoff-Maclane, (1), pp, 293-296] and [Price, (1), pp. 77-78]. The p-cell will have p-aimensional volume equal to zero only if each of the determinants in the sum is equal to zero. If this occurs, then one of the points, $x_{0}, x_{1}, \ldots, x_{p}$, can be represented as a linear combination of the other points. This gives rise to the followIng definition:
II.3.2. Definition Let $x_{0}, x_{1}, \cdots, x_{p},(0 \leq p \leq n)$, be $p+1$ points of $R^{(n)}$. These points ere said to be Inearly independent if at least one of the $C(n, p)$ determinants of the form
(II.3.3)

$$
\left|\begin{array}{llll}
x_{0}^{\left(i_{1}\right)} & \cdots & x_{0}^{\left(i_{p}\right)} & 1 \\
\bullet & \cdots & \bullet & \cdots \\
x_{p}^{\left(i_{1}\right)} & \cdots & x_{p}^{\left(i_{p}\right)} & 1
\end{array}\right|
$$

Is different from zero, where the set of superscripts $\left(i_{1}, i_{2}, \ldots, 1_{p}\right)$ represents one of the $C\left(n_{\&} p\right)$ possible selections of p of the n columns of the matrix

$$
\left[\begin{array}{ccc}
x_{0}^{(1)} & \cdots & x_{o}^{(n)} \\
\cdots \cdots & \cdots & \\
x_{p}^{(1)} & \cdots & x_{p}^{(n)}
\end{array}\right)
$$

Otherwise, the $p+1$ points are said to be linearly dependent. II.3.4. Definition. Let $x_{0}, x_{1}, \ldots, x_{p},(0 \leq p \leq n)$, be $p+1$ points of $R^{(n)}$. These points are said to be Linearly independent if the vectors, $\left(x_{i}-x_{0}\right),(i=1, \ldots, p)$ are linearly independent in the ordinary sense; that is, if there are no constants, $a_{i},(i=1, \ldots, p)$, except all zeros, such that

$$
\sum_{i=1}^{p} a_{i}\left(x_{i}^{(j)}-x_{0}^{(j)}\right)=\theta,(j=1, \ldots, n),
$$

where θ represents the zero vector.
II.3.5. Theorem. Definition II.3.2, and Definition II.3.4. are equivalent.

Proof. The quantities

$$
\left(x_{1}^{(j)}-x_{o}^{(j)}\right), \ldots,\left(x_{p}^{(j)}-x_{o}^{(j)}\right),(j=1, \ldots n),
$$

are linearly dependent if and only if all the p-rowed minors of the matrix.
(II.3.6) $\left[\begin{array}{ll}\left(x_{1}^{(1)}-x_{0}^{(1)}\right) & \left(x_{1}^{(2)}-x_{0}^{(2)}\right) \cdot \cdot\left(x_{1}^{(n)}-x_{0}^{(n)}\right) \\ \bullet \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \left(x_{p}^{(1)}-x_{0}^{(1)}\right) & \left(x_{p}^{(2)}-x_{0}^{(2)} \cdot \cdot\left(x_{\rho}^{(n)}-x_{0}^{(n)}\right)\right.\end{array}\right]$
are equal to zero; that is, if and only if all the $C(n, p)$ determinants of the type

are equal to zero, where the superscripts have the same meaning and range as in Definition II.3.2 [Bocher, (1), p. 36]. But the determinant (II.3.7) is equal to zero if and only if (II.3.8)

$$
\left.\left\lvert\, \begin{array}{lll}
x_{0}^{\left(i_{1}\right)} & \cdots & x_{0}^{\left(i_{p}\right)} \\
x_{1}^{\left(i_{1}\right)} & \cdots & 1 \\
x_{1}^{\left(i_{p}\right)} & 1 \\
\cdots & \cdots & \cdots
\end{array}\right.\right]
$$

is equal to zero, since (II.3.7) and (II.3.8) are equal except possibly for sign.

This is precisely the definition of linear dependence of the $p+1$ points according to Definition II.3.2. Consequently, the $p+1$ points are linearly independent according to Definition II.3.2. if and only if they are linearly independent according to Definition II.3.4.
II.3.9. Remark. In Definition II.3.4, the point x_{0} has,
at first glance, been given a preferred position. However, the vectors $\left(x_{i}^{(j)}-x_{k}^{(i)}\right),(k$ fixed; $1=0,1, \ldots p ; 1 \neq k)$, are linearly independent if and only if $\left(x_{i}^{(j)}-x_{o}^{(j)}\right.$, ($i=1, \ldots, p$), are linearly independent.

Proof. The necessary and sufficient condition that the vectors $\left(x_{i}^{(j)}-x_{k}^{(j)}\right),(k$ fixed; $1=0,1, \ldots, p ; 1 \neq k)$, be linearly dependent is that the determinant of every prowed minor of the matrix
(II.3.10)
vanish. But these p-rowed determinants are
(II.3.11)
where the superscripts have the same meaning and range as In Definition II.3.2. But after the proper expansion each of these determinants is the same as one of those of the type (II. 3.8), except possibly for sign. Each of the
determinants of the type (II.3.8) is the same as one of the p-rowed minors of determinant (II.3.6), where x_{0} is given the preferred position.

Hence, all the p-rowed minors of (II. 3, 10)
vanish if and only if all the p-rowed minors of (II.3.6) vanish, and the vectors, $\left(x_{i}^{(j)}-x_{k}^{(j)}\right)$,
(k fixed; $1=0,1, \ldots p ; i \neq k$), are linearly dependent If and only if the vectors $\left(x_{i}^{(j)}-x_{0}^{(j)}\right),(1=1, \ldots, p)$, are linearly dependent, proving the statement.

The result of this remark is that the point x_{0} can always be put in the preferred position without any loss of generality, and with more convenience.
II.3.12. Theorem. Let x_{0}, \ldots, x_{p} be a set of $p+1$ linearly independent points of $\mathrm{B}^{(n)}$. Then any subset of those points is linearly independent. Proof. Suppose there is a subset of x_{0}, \ldots, x_{p} which forms a linearly dependent set of points. Assume, without any loss of generality, that the points are arranged so that the points, $x_{0}, \ldots, x_{j},(j<p)$, form the linearly dependent set. Consider the vectors, $\left(x_{i}-x_{0}\right)$, (i $=1$, . . , j). These are Inearly dependent; hence, there are constants, $a_{i},(1=1, \ldots, j)$ not all zero, such that

$$
\sum_{i=1}^{j} a_{i}\left(x_{i}-x_{0}\right)=\theta .
$$

But then,

$$
\sum_{i=1}^{j} a_{i}\left(x_{i}-x_{0}\right)+\sum_{i=j+1}^{\mu} 0\left(x_{i}-x_{0}\right)=\theta
$$

where not all the a_{i} 's are zero. This contradicts the assumption that x_{0}. . . x_{p} are linearly independent. Hence it must be concluded that any subset of x_{0}, \ldots, x_{p} is also linearly independent.

1I.3.13. Definition. Let $x_{0}, \ldots, x_{p}(p \leqslant n)$, be any $p+1$ fixed linearly independent points of $R^{(n)}$. By the p-flat, S_{p}, of $R^{(n)}$, determined by $x_{0}, \cdots x_{p}$, is meant the set of all points x of $f^{(n)}$ which can be represented as

$$
x^{(j)}=\sum_{i=0}^{p} \alpha_{i} x_{i}^{(i)} \quad(j=1, \cdots, n),
$$

where $\sum_{i=0}^{p} \alpha_{i}=1$.
II.3.14. Remark, The numbers, $\alpha_{i},(i=0,1, \ldots, p)$, are sometimes known as the barycentric coordinates of the point x. See [Alexandroff-Hopf, (1), p. 595].
II.3.15. Definition. Let $x_{0}, \ldots, x_{p},(p \leqslant n)$, be $p+1$ linearly independent points of $R^{(n)}$. By the p-flat, S_{p} of $R^{(n)}$, determined by the points $x_{0}, . . x_{p}$, is meant the set of all points, X, of $\mathrm{R}^{(n)}$ for which the vectors, $\left(x^{(j)}-x_{0}^{(j)}\right.$, satisfy the relation

$$
\left(x^{(j)}-x_{0}^{(j)}\right)=\sum_{i=1}^{p} \beta_{i}\left(x_{i}^{(j)}-x_{i}^{(j)}\right),(j=1, \cdot n),
$$

with no restrictions on the β 's.
II. 3.16 . Theorem. Definition II. 3.13 and Definstion II. 3.15 are equivalent.

Proof. Let x_{0}, \ldots, x_{p} be a set of $p+1$ linearly independent points of $R^{(n)}$. They determine a p-flat, s_{p}, according to Definition II, 3.13 and according to Definition II.3.15. Let x be a point of S_{p} according to Definition II.3.13. Then

$$
x=\alpha_{0} x_{0}+\alpha_{1} x_{1} \cdot+\alpha_{p} x_{p} \quad \sum_{i=0}^{p} \alpha_{i}=1 .
$$

Since $\sum_{i=0}^{p} \alpha_{i}=1$, then $\alpha_{0}=1-\sum_{i=1}^{p} \alpha_{i}$. Hence

$$
x=\left(1-\sum_{i=1}^{p} \alpha_{i}\right) x_{0}+\alpha_{1} x_{1}+\cdot \cdot+\alpha_{p} x_{p}
$$

Collecting terms,

$$
\begin{aligned}
\left(x-x_{0}\right) & =\alpha_{1}\left(x_{1}-x_{0}\right)+\cdot++\alpha_{p}\left(x_{p}-x_{0}\right) \\
& =\sum_{i=1}^{p} \alpha_{i}\left(x_{i}-x_{0}\right)
\end{aligned}
$$

with no restrictions on $\alpha_{i},(i=1, \ldots, p)$ Hence, x is a point of S_{ρ} according to Definition II. 3.15 .

Now suppose x is a point of S_{p} according to Definition II.3.15. Then

$$
\left(x-x_{0}\right)=\sum_{i=1}^{p} \beta_{i}\left(x_{i}-x_{0}\right),
$$

with no restrictions on the β^{\prime} 's. Rearranging terms, this becomes

$$
x=x_{0}+\sum_{i=1}^{p} \beta_{i}\left(x_{i}-x_{0}\right)=x_{0}-\sum_{i=1}^{p} \beta_{i} x_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}
$$

$$
=\left(1-\sum_{i=1}^{p} \beta_{i}\right) x_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}
$$

Setting $\left(1-\sum_{i=1}^{p} \beta_{i}\right)=\beta_{0}$, then $\sum_{i=0}^{p} \beta_{i}=1$, and

$$
x=\sum_{i=0}^{p} \beta_{i} x_{i}, \text { where } \sum_{i=0}^{p} \beta_{i}=1 .
$$

That is, x is a point of S_{p} according to Deifnition II. 3.13. Hence, the two definitions produce the same set of points, and are equivalent.
II.3.17. Remerk. The last theorem permits one to use either Definition II, 3. 13 or Definition II. 3.15 in discussing a pflat. Sometimes it is more convenient to use the one definition; sometimes it is more convenient to use the other. In the following pages, both definitions will be used interchangeably.
II.3.18. Theorem. Let $x_{0}, x_{1}, \ldots x_{p}$ be $p+1$ linearly independent points of $R^{(n)}$ which determine a p-flat, S_{p}. Then every point x of S_{p} has a unique representation of the form

$$
x=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1
$$

Proof. Suppose also that

$$
x=\sum_{i=0}^{p} \beta_{i} x_{i}, \quad \sum_{i=0}^{p} \beta_{i}=1
$$

Then,

$$
\left(x-x_{0}\right)=\alpha_{1}\left(x_{1}-x_{0}\right)+\cdots+\alpha_{p}\left(x_{p}-x_{0}\right),
$$

and

$$
\left(x-x_{0}\right)=\beta_{1}\left(x_{1}-x_{0}\right)+\cdots+\beta_{p}\left(x_{p}-x_{0}\right) .
$$

But these are vectors. Subtracting, the result is

$$
\theta=\left(\alpha_{1}-\beta_{1}\right)\left(x_{1}-x_{0}\right)+.++\left(\alpha_{p}-\beta_{p}\right)\left(x_{p}-x_{0}\right) .
$$

Since x_{0}, . . , x_{p} are linearly independent, then so are $\left(x_{1}-x_{0}\right), \ldots,\left(x_{p}-x_{0}\right)$. Hence, one concludes that $\left(\alpha_{i}-\beta_{i}\right)=0,(1=1, \cdots, p)$. That is, $\alpha_{i}=\beta_{i}$ $(1=1, \ldots, p)$. Therefore, $\alpha_{0}=\beta_{0}$, also, and the representation is unique, proving the theorem.
II.3.19. Theorem. Let S_{p} be a p-flat of $R^{(n)}$, determined by the $p+1$ linearly independent points $x_{0}, x_{1}, \ldots, x_{\rho}$, and let y_{0}, \ldots, y_{p} be any other set of $p+1$ linearly Independent points of S_{p}. Then S_{p} can be determined by the $p+1$ points, $Y_{0}, \ldots, \mathrm{X}_{\mathrm{p}}$.
Proof. Since y_{p} is a point of S_{p}, then

$$
y_{p}=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1 .
$$

At least one of the coefficients is not zero. Suppose $\alpha_{K} \neq 0$.

Consider the set $y_{p}, x_{o}, \ldots, x_{k-1}$, x_{K+1}, . . x_{p}. This set of points is linearly independent. For suppose it is linearly dependent. Then there exist
constants $a_{i},(i=1, \ldots, p ; 1 \neq k)$, not all zero, and a b_{p}. such that

$$
\sum_{\substack{i=1 \\ i \neq k}}^{p} a_{i}\left(x_{i}-x_{0}\right)+b_{p}\left(y_{p}-x_{0}\right)=\theta .
$$

The number b_{p} cannot be zero, since then $x_{0}, \ldots, x_{k,}$, x_{k+1}, \ldots, x_{p} would be linearly dependent, which is impossible, by Theorem II.3.12. Hence

$$
-b_{p}\left(y_{p}-x_{0}\right)=\sum_{\substack{i=1 \\ i \neq k}}^{p} a_{i}\left(x_{i}-x_{0}\right) .
$$

Dividing by $-b_{p}$, this becomes

$$
\left(y_{p}-x_{0}\right)=\sum_{\substack{i=1 \\ i \neq K}}^{p} c_{i}\left(x_{i}-x_{0}\right), \quad c_{i}=a_{i} /-b_{p} .
$$

Then

$$
\begin{gathered}
y_{p}=\left(1-\sum_{\substack{i=1 \\
i \neq k}}^{p} c_{i}\right) x_{0}+\sum_{\substack{i=1 \\
i \neq k}}^{p} c_{i} x_{i} \cdot \\
\text { Place }\left(1-\sum_{\substack{i=1 \\
i \neq k}}^{p} c_{i}\right)=c_{0} \cdot \text { Then } \sum_{\substack{i=1 \\
i \neq k}}=1, \text { and } \\
y_{p}=\sum_{\substack{i=1 \\
i \neq k}}^{p} c_{i} x_{i}, \quad \sum_{\substack{i=1 \\
i \neq K}}^{p} c_{i}=1 .
\end{gathered}
$$

But then y_{p} is a linear combination of x_{0}, \ldots, x_{k-1}, x_{k+1}, .., x_{p}. Since the representation is unique, this contradicts the assumption that $\alpha_{K} \neq 0$. Hence, the points $y_{p}, x_{0}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{p}$ are linearly independent.

Now since α_{k} is different from zero, X_{k} can be solved for, as follows:
(II. 3.20

$$
x_{k}=\frac{y_{p}-\sum_{\substack{i=0^{0} i \\ i \neq k}}^{p} x_{i}}{\alpha_{k}}
$$

Since $\sum_{i=0}^{p} \alpha_{i}=1$, then $\alpha_{k}=1-\sum_{\substack{i=0 \\ i \neq k}}^{p} \alpha_{i}$. Hence, $\sum_{\substack{i=0 \\ i \neq k}}^{p} \alpha_{i}=\alpha_{k}-1$. Therefore, the sum of the coefficients in (II.3.20) is

$$
\frac{1-\sum_{\substack{i=0 \\ i \neq k}}^{p} \alpha_{i}}{q_{k}}=\frac{1+\left(\alpha_{k}-1\right)}{\alpha_{k}}=\frac{\alpha_{k}}{\alpha_{k}}=1 .
$$

It follows from the above statements that the set of points $y_{p}, x_{0}, \bullet \bullet, X_{k-1}, \pi_{k+1}, \bullet, x_{p}$ determine S_{p} For let \bar{x} be any point in s_{p}. Then

$$
\bar{x}=\beta_{0} x_{0}+\cdot \cdot+\beta_{k-1} x_{k-1}+\beta_{k} x_{k}+\beta_{k+1} x_{k+1}+\cdot \cdot+\beta_{p} x_{p}
$$

where $\sum_{i=0}^{p} \beta_{i}=1$. Taking into account (II. 3.20), this

$$
\begin{aligned}
& \text { becomes } \\
& \vec{x}=\beta_{0} x_{0}+\cdots+\beta_{k-1} x_{k-1}+\beta_{k}\left(\frac{y_{p}-\sum_{\substack{i=0 \\
i \neq k}}^{p} d_{i} x_{i}}{\alpha_{k}}\right)+\beta_{k+1} x_{k+1}+\cdots \cdot+\beta_{p} x_{p} \\
& =\left(\beta_{0}-\frac{\beta_{K} \alpha_{0}}{\alpha_{K}}\right) x_{0}+\cdots+\left(\beta_{K-1} \frac{\beta_{K} \alpha_{K-1}}{\alpha_{K}}\right) x_{K-1}+\frac{\beta_{K}}{\alpha_{K}} y_{p}+\left(\beta_{K+1}-\frac{\beta_{K} x_{K+1}}{\alpha_{K}}\right) x_{K+1}+\cdots+\left(\beta_{P}-\frac{\beta_{K} \alpha_{p}}{\alpha_{K}}\right) x_{P} .
\end{aligned}
$$

Consider the sum of the coefficients in the above expression:

$$
\begin{aligned}
& \left(\beta_{0}-\frac{\beta_{k} \alpha_{0}}{\alpha_{k}}\right)+\cdot+\left(\beta_{k-1}-\frac{\beta_{k} \alpha_{k-1}}{\alpha_{k}}\right)+\frac{\beta_{k}}{\alpha_{k}}+\left(\beta_{K+1}-\frac{\beta_{k} \alpha_{k+1}}{\alpha_{k}}\right)+\cdots+\left(\beta_{p}-\frac{\beta_{k} \alpha_{p}}{\alpha_{k}}\right) \\
= & \beta_{0}+\cdot \cdot+\beta_{k-1}+\frac{\beta_{k}}{\alpha_{k}}+\beta_{K+1}+\cdots+\beta_{p}-\frac{\beta_{k}}{\alpha_{k}}\left(\alpha_{0}+\cdot+\alpha_{k-1}+\alpha_{k+1}+\cdots+\alpha_{p}\right) \\
= & \beta_{0}+\cdots \cdot+\beta_{k-1}+\beta_{k}\left(\frac{1-\alpha_{0}-\cdots \cdot-\alpha_{k-1}-\alpha_{k+1}-\cdot \cdot-\alpha_{p}}{\alpha_{K}}\right)+\beta_{k+1}+\cdots+\beta_{p} \\
= & \beta_{0}+\cdots \cdot \cdot+\beta_{k-1}+\beta_{k}+\beta_{k+1}+\cdots \cdot \cdot+\beta_{p}=1
\end{aligned}
$$

since $1-\sum_{\substack{i=0 \\ i k \\ \alpha_{k}}}^{p} \alpha_{i}=1$. Hence \bar{x} is a linear combination of the Inearly independent points $y_{p}, x_{0} \geqslant . x_{k-1}, x_{k+1}, x_{p}$, with the sum of the coefficients equal to I. Therefore, this set of points determines S_{p}.

Now further,

$$
y_{p-1}=\delta_{p} y_{p}+\sum_{\substack{i=0 \\ i \neq K}}^{p} r_{i} x_{i},
$$

where $\delta_{p}+\sum_{\substack{i=0 \\ i \neq k}}^{P} \gamma_{i}=1$. All the γ_{i} cannot be equel to zero, for then $Y_{\rho_{-1}}$ would be equal to y_{ρ}, contradicting the assumption that the y^{\prime} 's are linearly independent. Hence there must be a $\gamma_{i}\left(s a y \gamma_{l}\right)$ which is different from zero. As before, one proves that x_{l} is a Inear combination of the set of points
(II.3.21) $y_{p-1}, y_{p}, x_{0}, \cdots, x_{k-1}, x_{k+1}, \cdots, x_{\ell-1}, x_{\ell+1}, \ldots, x_{p}$
with the sum of the coefficients equal to one; that the set
(II.3.21) is Inearly independent; and that the set (II,3.2I)
determines S.
Repeating the same argument for each of the $p+1$ y's in succession, it is finally shown that every point of S_{p} can be written as a linear combination of the \bar{y} 's with the sum of the coefficients equal to one. Hence, since y_{0}, \ldots, y_{p} was any set of $p+1$ IInearly indepencent points of s_{p}, the Theorem is proved.
II.3.22. Theorem. If $y_{0}, \ldots, y_{r},(r<p)$, are $r+1$ linearly independent points in a $p-f l a t, S_{p}$, of $R^{(n)}$, then it is always possible to ind $p-r$ more points, x_{r+1}, \ldots, x_{p}, of S_{p}, so that the points

$$
y_{0}, \ldots, y_{r}, x_{r+1}, \cdots, x_{p}
$$

form a set of $p+1$ linearly independent points which determine S_{p}.

Proof. There are $p+1$ Inearly independent points, $x_{0}{ }^{*} \cdot x_{p}$ which determine S_{p} Carrying through the same procedure as in Theorem II. 3.19 , it is found, after $r+1$ steps, that $y_{o}, \ldots y_{r}$, plus $p-r$ of the set of x s. form a set of $p+1$ linearly independent points which determine the p-flats, S_{p}.

1I.3.23. Lemma. Let x_{0}, \ldots, x_{p} be a set of $p+1$ linearly independent points lying in a $p-f l a t, S_{p}$, $(p \leqslant n-1)$. Let x_{p+1} be a point of $R^{(n)}$ which is not in S_{p}. Then $x_{0}, \ldots, x_{p}, x_{p+1}$ form a set of $p+2$ linearly

Independent points.
Proof. Suppose the points, $x_{0}, \ldots, x_{p}, x_{p+1}$, are Inearly dependent. Then the vectors, $\left(x_{1}-x_{0}\right), \ldots$, $\left(x_{p+1}-x_{0}\right)$, are linearly dependent. That is, there exist constants, $a_{i},(1=1, \ldots, 1)$, not all zero, such that

$$
\sum_{i=1}^{p+1} a_{i}\left(x_{i}-x_{0}\right)=\theta
$$

Now a_{p+1} is different from zero, since it has been assumed that the points $x_{0}, * x_{p}$ are linearly independent. Hence,

$$
-a_{p+1}\left(x_{p+1}-x_{0}\right)=\sum_{i=1}^{p} a_{i}\left(x_{i}-x_{0}\right)
$$

Dividing by $-a_{p+1}$, one obtains

$$
\left(x_{p+1}-x_{0}\right)=\sum_{i=1}^{p} b_{i}\left(x_{i}-x_{o}\right)
$$

where $b_{i}=a_{i} /-a_{p+1}$. Hence

$$
x_{p+1}=\left(1-\sum_{i=1}^{p} b_{i}\right) x_{0}+\sum_{i=1}^{p} b_{i} x_{i}
$$

Setting (1- $\sum_{i=1}^{p} b_{i}$) $=b_{0}$, then $\sum_{i=0}^{p} b_{i}=1$, and

$$
x_{p+1}=\sum_{i=0}^{p} b_{i} x_{i}, \quad \sum_{i=0}^{p} b_{i}=1 .
$$

This implies that x_{p+1} is in S_{p}, contradicting the assumption that x_{p+1} is not in S_{p}. Hence the points x_{0}. . x_{p}, x_{p+1} must be linearly independent.
II.3.24. Theorem. If a p-flat, S_{p}, and a q-flat, S_{q}, ($p, q<n$), have an $r-f l a t, S_{r},(r \leqslant m i n(p, q))$, in common, then the whole configuration lies in a $(p+q-r)-f l a t$. Proof. S_{r} is common to both S_{p} and $S_{q} . S_{r}$ is determined by $r+1$ linearly independent points, x_{0}, \ldots, x_{r}. By Theorem II. 3.22 , since these points lie in $S_{p}, p-r$ other points, y_{r+1}, \ldots, y_{p}, all lying in S_{p} and not in S_{r}, can be found so that

$$
x_{0}, \ldots, x_{r}, y_{r+1}, \ldots, y_{p}
$$

form a set of $p+1$ linearly independent points which determine S_{p}. Also, since x_{0}, \ldots, x_{r} all lie in S_{q}, $q-r$ other points, z_{r+1}, \cdots, z_{q}, all lying in S_{q} and not in S_{r}, can be found so that

$$
x_{0}, \ldots, x_{r}, z_{r+1}, \ldots, z_{q}
$$

form a set of q + 1 linearly independent points which determine S_{q}. The points $\mathrm{y}_{r_{+1}}$, . . . y_{p} are linearly independent with the points determining S_{q}, by Lemma II.3.23, and the points z_{r+1}, \ldots, z_{q} are linearly independent with the points determining S_{p}, by the same lemma. Hence, the total number of linearly independent points in the configuration is

$$
(r+1)+(p-r)+(q-r)=(p+q-r+1) .
$$

This is the number of linearly independent points required
to determine $(p+q-r)-f 1 a t$, Clearly, this $(p+q-r)$-flat contains all the points of both s_{p} and S_{q}, and the theorem is preved.
II.4. DIMENSION OF A p-FLAT
11.4.1. Some mathematicians feel that one of the most important theories in analysis is that of dimension. There have been many definitions of dimension, the sarly ones being quite vague and intuitive. Such men as Cantor and Peano first made it clear that precise definitions of dimension were needed when they produced examples contradicting some of the beliefs concerning dimension. These examples showed that the dimension of a space can be changed by either a one-to-one transformation or by a continuous transformation.

The question as to whether a one-to-one and continuous transformation can change the dimension of a space was answered (in the case of Euclidean space) by Brouwer in 1911 [Brouwer, (1)], when he showed that m-dimensional Euclidean space cannot be the continuous and one-to-one image of n-dimensional Euclidean space, unless $m=n$. In other words, dimension is a topological property of Euclidean space. Brouwer further showed [Brouwer, (3)], that n-dimensional Euclidean space is precisely n-dimensional.

In 1922 Menger and Urysohn independently gave a definition of dimension which is applicable to very general sets of points in a metric separable space, [Menger, (1) and (2)] and [Jrysohn, (1) and (2)]. Mhis work was Independent of Brouwer's work and, while it closely followed the work of Brouwer, there were improvements as well.

Hurewicz and Wallman use the definition of Menger and Urysohn to prove that n-dimensional Euclidean space is precisely n-dimensional [Hurewicz-Wallman, (1), Chapters II, III, and IV]. This definition is as follows: II.4.2. Definition

1. The empty set and only the empty set has dimension-1.
2. A space X has dimension $\leqslant n(n \geqslant 0)$ at a point p if p has arbitrarily small neighborhoods whose boundaries have dimension $\leqslant \mathrm{n}-1$.
3. X has dimension $\leqslant n$ if X has dmension $\leqslant n$ at each point.
4. X has dimension n at a point p if it is true that X has dimension $\leqslant n$ at p and it is false that X has dimension $\leqslant n-1$ at p.
5. X has dimension n if $d i m x \leqslant n$ is true and $\operatorname{dim} X \leqslant n-1$ is false.
6. X has dimension ∞ if dimX n is false for each n.

The proof that $\mathrm{R}^{(n)}$ has dimension $\leqslant \mathrm{n}$ is by induction. The proof that $\operatorname{dim} \mathrm{R}^{(n)} \geqslant \mathrm{n}$ requires the use of the Browwer fixed point theorem, the notion of separation of sets, and the fact that a subspace of a space of dimension $\leqslant n$ hes dimension $\leqslant n$.
II. 4.3. Theorem. Any p-flat, $S_{p},(0<p \leqslant n-1)$, in $R^{(n)}$, is isomotric to $\mathrm{R}^{(\rho)}$, and hence is p-dimensional. Proof. Let S_{p} be a p-flat in $R^{(n)}$ and let $x_{0}, X_{1}, \ldots, x_{p}$, be $p+1$ linearly independent points which determine S_{p}. Every point x in s_{p} can be uniquely represented as
(II.4.4)

$$
x=\sum_{i=0}^{p} \alpha_{i} x_{i},
$$

$$
\sum_{i=0}^{p} \alpha_{i}=1 .
$$

Rearranging terms and remembering that $\alpha_{0}=\left(1-\sum_{i=1}^{p} \alpha_{i}\right)$, (II.4.4) becomes

$$
\begin{equation*}
\mathrm{x}=\mathrm{x}_{0}+\sum_{i=1}^{p} \alpha_{i}\left(\mathrm{x}_{i}-\mathrm{x}_{0}\right) \tag{II.4.5}
\end{equation*}
$$

Consider a new set of coordinates for $\mathrm{f}^{(n)}$, obtained by a translation, with the new origin at the point x_{0}. Then the vectors $\left(x_{1}-x_{0}\right), \ldots,\left(x_{p}-x_{0}\right)$ will be p linearly independent vectors with origin at x_{0}. Denote these vectors, for the sake of clarity, by $y_{1}, \ldots y_{p}$. With respect to the new coordinate system of $\mathrm{R}^{(n)}$, these vectors evidently form a basis for S_{p}, since every point x in S_{p} can be expressed uniquely as a Iinear combination of these p linearly independent
vectors. With respect to the new coordinate system the point x of s can be written

$$
x^{\prime}=\alpha_{1} y_{1}+\ldots+\alpha_{p} y_{p} .
$$

(The point x^{\prime} is the same point as the point x, but the coordinate system has just been changed.)

Since a Euclidean space is being considered, an inner product, $\left(y^{\prime}, y^{n}\right)=\sum_{i=1}^{n} y^{(j)^{\prime}} \cdot y^{(j)}$, and a norm,

$$
\left\|y^{\prime}\right\|=\left[\sum_{i=1}^{n}\left(y^{(j)^{\prime}}\right)^{2}\right]^{\frac{1}{2}} \text { are defined for all points } y^{\prime}
$$

and $y^{\prime \prime}$ in $R^{(n)}$.
Now by the Grem-Schmidt orthogonalization process, from the set of p linearly independent vectors, y_{1}, \cdots, y_{p}, one can construct a set of p orthonormal vectors as follows [Halmos, (1), p. 98]*:

Set

$$
\varepsilon_{1}=y_{1}, \quad \varphi_{1}=g_{1} /\left\|g_{1}\right\|
$$

By induction, set
(II. 4.6) $g_{K+1}=y_{k+1}-\sum_{i=1}^{k}\left(y_{k+1}, \varphi_{i}\right) \varphi_{i}, \quad \rho_{k+1}=g_{k+1} /\left\|g_{k+1}\right\| \cdot$

Now, $\quad\left(\varepsilon_{k+1}, \varphi_{j}\right)=\left(y_{k+1}-\sum_{i=1}^{K}\left(y_{k+1}, \varphi_{i}\right) \varphi_{i}, \varphi_{j}\right)$

$$
\begin{aligned}
& =\left(y_{k+1}, \varphi_{j}\right)-\left(y_{k+1}, \varphi_{j}\right) \\
& =0,(j=1, \ldots, k) .
\end{aligned}
$$

[^3]Hence, g_{k+1} is orthogonal to $\varphi_{j},(j=1, \ldots, k)$. Consequently, φ_{k+1} is orthonormal to φ_{j}, $(j=1, \ldots, k)$.

Continuing in this manner until the y 's are exhausted, p orthonormal vectors,

$$
\varphi_{1}, \varphi_{2}, \cdots, \varphi_{p},
$$

will be obtained. Each φ_{i} is a unique linear combination of $y_{1}, \ldots, Z_{i},(1=1, \ldots, p)$. Therefore, any linear combination of $\varphi_{1}, \varphi_{2}, \ldots \varphi_{p}$ is also a linear combination of $\bar{y}_{1}, \ldots, Y_{p}$, and hence is a point of S_{p}. Conversely, if one solves the set of equation (II.4.6) for y_{j}, one sees that y_{j} is a unique linear combination of $\varphi_{1}, \ldots \varphi_{j},(j=1, \ldots, p)$ Therefore, since every point in S_{p} is a unique linear combination of y_{1}, \ldots, y_{p}, it is also a unique linear combination of $\varphi_{1}, \ldots, \varphi_{p}$ Wis means that $\varphi_{1}, \ldots, \varphi_{p}$ form an orthonormal basis for S_{ρ}. Consequently, if x is any point in S_{p}, with respect to this coordinate system,

$$
x=\beta_{1} \varphi_{1}+\cdots+\beta_{p} \varphi_{p}
$$

One can extend this basis to be an orthonormal basis for $\mathbb{R}^{(n)}$. For $\mathrm{x} \in \mathrm{S}_{p}$, the components, $\varphi_{p+1}, \ldots, \varphi_{n}$, will all be zero.

Now to each point x in S_{p} with components $\left(\beta_{1} \ldots . . \beta_{\rho}\right)$, make correspond the point x^{\prime} in $R^{(p)}$ with
components $\left(\beta_{1}, \cdots, \beta_{p}\right)$. This correspondence is one-to-one and distance is preserved, since only Euclidean spaces are being considered, and since the distance between points x and x^{*} of S_{p} with components $\left(\beta_{1}, *, \beta_{p}\right)$ and $\left(\beta_{i}^{*}, \beta_{p}^{*}\right)$ respectively is $\left(\sum_{i=1}^{p}\left(\beta_{i}-\beta_{i}^{*}\right)^{2}\right)^{\frac{1}{2}}$.
With the law of correspondence stoted above, the distance between the image points x^{\prime} and $x^{* \prime}$ in $R^{(p)}$ is precisely the same. Hence, one concludes that S_{p} and $R^{(p)}$ are isometric.

Now a metric space is a topological space. If two metric spaces are isometric they are certainly homeomorphic as topological spaces. For if x is a limit point of one space, since distances are preserved, its Image will certainly be a limit point of the other space.

Since Euclidean spaces, which are separable metric spaces, are being considered, it can only be concluded that a p-flat, S_{p}, has dimension p, since it is homeomorphic with $\mathrm{R}^{(\rho)}$, and since the dimension of a Euclidean space is invariant under a one-to-one and continuous transformation, and therefore certainly under a homeomorphism.
II.4.7. Remark. In speaking of a p-flat, S_{p}, in $\mathrm{R}^{(n)}$, ($p<n$), one would like to be able to speak of open sets of S_{p} and interior points of a set in S_{p}. With respect to $R^{(n)}$, no set of S_{ρ} can be open, since every n-dimensional
neighborhood of a point in s_{p} contains points of $R^{(n)}$ which are not in S_{p}. That is, no point of a set E in S_{p} can be an interior point of E relative to $\mathrm{R}^{(n)}$.

It is convenient to consider sets which are open relative to S_{p}. Let U be an n-dimensional open set. Then the set $U \cap S_{p}$ is called open relative to S_{p}. Similarly, let E be a set in S_{p}. If x_{o} is a point of E such that a neighborhood, $\mathbb{N}_{\delta}\left(x_{0}\right) \cap S_{p}$, is completely contained in E, then x_{0} is called an interior point of E relative to S_{p}.
II.4.8. Remaxk. LetF be a continuous, one-to-one, transformation defined on a convex region E of $\mathrm{R}^{(n)}$, with nothing said concerning its values outside the region E. A question which one would logically ask is: Does the image of E under the transformation F still have dimension n? The answer was given by Brouwer who showed that the continuous, one-to-one image of an n-dimensional region is also n-dimensional [Brouwer, (2)]. Let s_{p} be a p-flat in $R^{(n)}$ which passes through E. Then $S_{p} \cap E$ is an open set relative to S_{p} and hence is p dimensional. Therefore, according to Brower, a continuous and one-to-one image of $S_{\rho} \cap E$ is also p-dimensional. It can never happen, therefore, thet the image of $S_{p} \cap E$ vill be of different dimension than S_{p} under a continuous, one-to-one transformation.
II.5. FURTHER PROPERTIES OF p-FLATS
II.5.1. Theorem. Two distinct p-flats, $S_{p}^{(1)}$ and $S_{p}^{(i)}$, which both lie in a $(p+1)$-flat, S_{p+1}, must intersect in a $(p-1)$-flat, if they intersect at all.

Proof. Without loss of generality, the coordinate system of $R^{(n)}$ can be assumed to be such that any point x_{i} in S_{p+1} has the coordinates

$$
x_{i}^{(1)}, \ldots, x_{i}^{(p+1)}, 0, \ldots, 0 .
$$

This is a consequence of Theorem IT,4.3. Then with respect to S_{p+1}, the p-flats, $S_{P}^{(1)}$ and $S_{p}^{(2)}$, will be p-dimensional hyperplanes. Each cen be represented as a single equation in the p+ivariables, $x^{(1)}, \ldots, x^{(p+1)}:$
(II. 5. 2) $S_{p}^{(1)}: a_{1} x^{(1)}+\cdots+a_{p+1} x^{(p+1)}+a_{p+2}=0$,

$$
s_{p}^{(2)}: b_{1} x^{(1)}+\cdots \cdot+b_{\rho+1} x^{(\rho+1)}+b_{p+2}=0
$$

If the two hyperplanes intersect at the point $x_{0}=\left(x_{0}^{(1)}, \ldots, x_{0}^{(p+1)}, 0, \ldots, 0\right)$, the two equations of (II.5.2) will then take the form

$$
a_{1}\left(x_{p}^{(1)}-x_{0}^{(1)}\right)+\ldots+a_{p+1}\left(x^{(p+1)}-x_{0}^{(p+1)}\right)=0,
$$

$$
\begin{equation*}
b_{1}\left(x^{(1)}-x_{0}^{(1)}\right)+\cdots+b_{p+1}\left(x^{(p+1)}-x_{0}^{(p+1)}\right)=0 . \tag{II.5.3}
\end{equation*}
$$

This system of equations has exactiy $p-1$ linearly independent, non-zero solutions, [Bocher, (1), pp. 49-52],

$$
\left(\left(x_{i}^{(1)}-x_{0}^{(1)}\right), \cdots\left(x_{i}^{p+1}-x_{0}^{(p+1)}\right),(1=1, \ldots, p-1) .\right.
$$

Since x_{0} was fixed, this means that there are exactly $p-1$ linearly independent points, $x_{i},(1=1, \ldots, p-1)$, $x_{i} \neq x_{0}$, which satisfy (II, 5,3). Hence,

$$
\begin{aligned}
& a_{1} x_{i}^{(1)}+\cdots+a_{p+1} x_{i}^{(p+1)}=a_{1} x_{0}^{(1)}+\cdots+a_{p+1} x_{0}^{(p+1)}=-a_{p+2} \\
& b_{1} x_{i}^{(1)}+\cdots+b_{p+1} x_{i}^{(p+1)}=b_{1} x_{0}^{(1)}+\cdots+b_{p+1} x_{0}^{(p+1)}=-b_{p+2}
\end{aligned}
$$

($1=1, \ldots, p-1$). This means that the points, x_{i}, ($1=1, \ldots, p-1$) satisfy (II.5.2).

$$
\text { since }\left(\left(x_{i}^{(1)}-x_{0}^{(1)}\right) \cdots\left(x_{i}^{(p+1)}-x_{0}^{(p+1)}\right)\right)
$$

(i = 1, . . pl), are linearly independent, then the points $x_{0}, x_{1}, \ldots, x_{\rho-1}$ are linearly independent and hence determine a $(p-1)-f l a t$. The points $x_{0}, x_{1}, \ldots, x_{p-1}$ are all common to both $s_{p}^{(1)}$ and $s_{p}^{(2)}$ and there are no more linearly independent points common to both flats. Hence, it must be concluded that the two p-flats $S_{p}^{(1)}$ and $S_{p}^{(2)}$ intersect in a ($p-1$)-flat, proving the theorem.
II. 5.4. Theorem. Let $F: f^{(i)}(x),(i=1, \ldots, n)$, be a continuous, one-to-one transformation defined on a convex region E of $R^{(n)}$, such that p-flats map into p-flats (p fixed; $1 \leqslant p \leqslant n-1$). Then distinct $p-f l a t s$ map into distinct p-flats for points of E.
Proof. Suppose the theorem is false. Let $S_{p}^{(1)}$ and $S_{p}^{(2)}$
be two distinct p-flats, containing points of E, such that $S_{P}^{(1)} \cap E$ and $S P_{P}^{(2)} \cap E$ map into the same p-flat, T_{p}. There are two cases.

1. $S_{P}^{(1)}$ and $S_{p}^{(2)}$ intersect in E in a $(p-1)$-flat, S_{p-1}. Since dimension is preserved by a one-to-one, continuous transformation, the image of $\mathrm{S}_{p-1} \cap \mathrm{E}$ must be a ($p-1$)-dimensional region.

The point sets $S_{p}^{(1)} \cap \mathrm{E}$ and $\mathrm{S}_{\mathrm{P}}^{(2)} \cap \mathrm{E}$ are $\mathrm{p}-$ dimensional regions for they are open, connected sets relative to $S_{p}^{(1)}$ and $S_{p}^{(2)}$ respectively. Hence, the images of $S_{P}^{\prime \prime \prime} \cap E$ and $S_{P}^{(X)} \cap E$ must both be regions in T_{p}. Since $S_{p}^{(1)}$ and $S_{p}^{(2)}$ intersect, then their images must also have points in common. In fact, the image sets must have a whole p-dimensional region, G ', in common. Since the image of S_{p-1} must be ($p-1$)-dimensional, then there are points of G^{\prime} which must be the images of two distinct points, one in $S_{p}^{(1) \cap E}$ and the other in $S_{p}^{(2)} \cap E$. This contradicts the assumption that the mapping is one-to-one. Hence, case 1 cannot occur.
2. The p-flats, $S_{p}^{(1)}$ and $S_{P}^{(2)}$, do not intersect in a $(p-1)$-flat in E. In this case, choose p Inearly independent points, x_{1}, \ldots, x_{p} of $s_{p}^{(1)} \cap E$, and choose x_{0} to be a point of $S_{p}^{(z)} \cap E$ which is not in $S_{p}^{(1)}$. Then $x_{0}, x_{1} \ldots, x_{p}$ form a set of $p+1$ linearly independent points and hence determine a $p-i l a t, S_{p}^{(3)}$, which intersects $S_{p}^{(1)}$ in E in a (p-1)-flat, S_{p-1}. By
case $1, S_{\rho}^{(1)} \cap \mathrm{E}$ and $\mathrm{S}_{\rho}^{(2)} \cap \mathrm{E}$ must map into distinct p-flats, T_{P} and $T_{P}^{(3)}$. The two p-flats, T_{P} and $T_{P}^{(3)}$, must contain a ($p-1$)-dimensional region in common, the image of $s_{\rho_{-1}}$.

Consider the point x_{0}. By hypothesis, $F\left(x_{0}\right)$ is a point of T_{p}. But since x_{0} is also a point of $S_{p}^{(3)}$, then $F\left(x_{0}\right)$ must belong to $T_{p}^{(3)}$. Hence, $F\left(x_{0}\right)$ belongs to the intersection of T_{p} and $T_{p}^{(3)}$. This means that $F\left(x_{0}\right)$ belongs to the images of both $S_{p}^{(1)} \cap E$ and $S_{p}^{(2)} \cap E$. This means that $F\left(x_{0}\right)$ is the image of two distinct points, one in $S_{p}^{(1)} \cap E$ and the other in $S_{P}^{(2)} \cap E$. This contradicts the assumption that the mapping is one-to-one. Hence case 2 cannot occur.

In either case a contradiction has been reached. Hence, one must conclude that for points of E_{y} distinct p-flats map into distinct p-flats.
II.6. p-CELLS AND meEIR PROPERTIES

Recall the definition of a p-cell, Δx_{p}, as given in Definftion I.2.1. Some fundamental properties of p-cells will now be developed.
II.6.1. Definition. Let Δx_{p} be a p-cell with vertices $x_{0}, x_{1}, \ldots, x_{p}$. If one chooses from this set of points, a subset of $k+1$ points $(-1 \leqslant k \leqslant p)$, then the k-cell determined by these $k+1$ points is called a k-dimensional face of the p-cell, Δx_{p}. If $-1<k<p$, then the $k-c e l l$ is called a proper face of the p-cell; otherwise it is called
an improper face.

Clearly, a point

$$
x=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i} \geqslant 0,
$$

of a p-cell, Δx_{p} is on a proper face of the p-cell if and only if at least one of the α 's is equel to zero.

By the definftion of a l-flat (straight line), the straight line through two distinct points, x_{1} and x_{2}, is the set of all points

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2},
$$

where $\quad \alpha_{1}+\alpha_{2}=1$.
II.6.2. Definition. The subset of the line,

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}, \quad \alpha_{1}+\alpha_{2}=1,
$$

for which $\alpha_{1} \geqslant 0, \alpha_{2} \geqslant 0$, is called the segment, $\bar{x}_{1} \bar{x}_{2}$. (From Definition I.2.1., it is also the l-cell determined by x_{1} and x_{2}.)

IT.6.3. Definition. A point set E of $R^{(n)}$ is called convex if for $x_{1} \in E$ and $x_{2} \in E$ it follows that $\overline{x_{1} x_{2}}$ belongs to E .
II.6.4. Theorem. A p-cell is a convex set.

Proof. Let $x_{0}, x_{1}, \ldots, x_{p}$ be the vertices of the p-cell, Δx_{p}. Let x^{\prime} and $x^{\prime \prime}$ be any two points of Δx_{p}. Then

$$
x^{\prime}=\sum_{i=0}^{P} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i} \geqslant 0, \text { a11 } i,
$$

and

$$
x^{\prime \prime}=\sum_{i=0}^{p} \beta_{i} x_{i}, \quad \sum_{i=0}^{p} \beta_{i}=1, \quad \beta_{i} \geqslant 0, \text { all } 1 .
$$

Every point x of $\overline{x^{8} x^{\prime \prime}}$ can be expressed as
(II.6.4) $x=\theta x^{\prime}+(1-\theta) x^{\prime \prime}$

$$
\begin{aligned}
& =\theta\left(\alpha_{0} x_{0}+\alpha_{1} x_{1}+\ldots+\alpha_{p} x_{p}\right)+(1-\theta)\left(\beta_{0} x_{0}+\ldots+\beta_{p} x_{p}\right) \\
& =\left[\theta \alpha_{0}+(1-\theta) \beta_{0}\right] x_{0}+\ldots+\left[\theta \alpha_{p}+(1-\theta) \beta_{p}\right] x_{p},
\end{aligned}
$$

where $0 \leqslant \theta \leqslant 1$. All the coefficients of (II.6.4) are clearly $\geqslant 0$.

Consider the sum of the coefficients of (II.6.4):
(II.6.5) $\left[\theta \alpha_{0}+(1-\theta) \beta_{0}\right]+\ldots+\left[\theta \alpha_{p}+(1-\theta) \beta_{p}\right]$

$$
\begin{aligned}
& =\theta\left(\alpha_{0}+\cdots+\alpha_{p}\right)+(1-\theta)\left(\beta_{0}+\cdots+\beta_{p}\right) \\
& =\theta+(1-\theta)=1 .
\end{aligned}
$$

Hence x belongs to $\Delta \mathrm{x}_{\mathrm{p}}$. Therefore the p -cell, $\Delta \mathrm{x}_{\mathrm{p}}$, is a convex set, proving the theorem.
II.6.6. Theorem. Let $x_{0}, x_{1}, \ldots, x_{p},(p \leqslant n)$, be $p+1$ linearly independent points of $R^{(n)}$ which determine a p-flat, S_{p}, and a p-cell, Δx_{p}. Then a point X^{*} of Δx_{p} which can be represented as

$$
\mathrm{x}^{*}=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i}>0, \quad \text { all } 1,
$$

is an interior point of Δx_{p} relative to S_{p}.
Proof. Any point $x=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$ of S_{p} can be represented uniquely as

$$
x^{(j)}=\sum_{i=0}^{p} \beta_{i} x_{i}^{(j)}, \quad \sum_{i=0}^{p} \beta_{i}=1,(j=1, \ldots, n) .
$$

For any given x of s_{ρ} the $\beta^{\prime} s$ are uniquely determined. It will bo shown that the β 's are continuous functions of x. Consider the equations
(II.6.7)

$$
\begin{aligned}
& x^{(1)}=\beta_{0} x_{0}^{(1)}+\beta_{1} x_{1}^{(1)}+\cdots \cdot+\beta_{p} x_{p}^{(1)} \\
& \bullet \cdot \cdot \cdot+\cdots+\beta_{p} x_{p}^{(p)} \\
& x^{(p)}=\beta_{0} x_{0}^{(p)}+\beta_{1} x_{1}^{(p)}+\cdots \cdots+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& x^{(n)}=\beta_{0} x_{0}^{(n)}+\beta_{1} x_{1}^{(n)}+\cdots+\beta_{p} x_{p_{1}^{(n)}} \\
& 1=\beta_{0}+\beta_{1}+\cdots+\beta_{p}
\end{aligned}
$$

Since the points $x_{0}, x_{1}, \ldots, x_{p}$ are linearly independent, the rank of the matrix of the coefficients of the β 's is $p+1$ (See Definition II.3.2.) Furthermore, since the β^{\prime} 's are uniquely determined for a given x, the augmented matrix also has rank $p+1$. That is, all the $C(n+1, p+2)$ determinants of the form
(II.6.8)

$$
\left|\begin{array}{cccc}
x^{(j, 1} & x_{0}^{\left(j_{1}\right)} & \cdots & x_{p}^{\left(j_{1}\right)} \\
\cdots & \cdots & \cdots & \cdots \\
x^{\left(j_{p+2}\right)} & x_{0}^{\left(j_{p+2}\right)} & \cdots & x_{p}^{\left(j_{p+2}\right)}
\end{array}\right|
$$

vanish, where $x^{\left(j_{p+2}\right)}, x_{0}^{\left(j_{p+2}\right)}, \cdots, x_{p}^{\left(j_{p+2}\right)}$ may all be ones, and where the set of superscripts $\left(j_{1}, \ldots, j_{p+2}\right)$ represents one of the $C(n+1, p+2)$ possible choices of $p+2$ of the $n+1$ rows of the augmented matrix of the set of equations (IT.6.7).

The rank of the matrix of the equations (II.6.7) is therefore equal to the number of unknoms. Hence, picking out a set of $p+1$ of the $n+1$ equations of (II.6.7), such that the determinant of the coefficients of the β 's is different from zero, the $\beta^{\prime \prime}$ can be solved for uniquely by Cramer's Rule. The set of β 's thus determined will be the same as those determined if any other set of $p+1$ of the equations of (II.6.7) is chosen such that the determinant of the coefficients is different from zero. [Bocher, (1), p. 46.] Suppose the equations chosen are

the set of superscripts representing the proper choice so that the determinant of the coefficients of the β^{\prime} s is different from zero.

Solving for β_{i} :
(II.6.10)

Expanding (II.6.10) by the eth column:

$$
\beta_{i}=A_{i, 1} x^{(j,)}+\ldots+A_{i, p+1} x^{\left(j_{p+1}\right)},(i=0, \ldots, p),
$$

where the numbers $A_{i, k}$ are constants defined by

Hence, β_{i} is a continuous function of $x(1=0, \ldots, p)$. When $x=x^{*}, \quad \beta_{i}=\alpha_{i},(i=0,1, \ldots, p)$, and
$\alpha_{i}>0$. In fact, there are numbers $\epsilon_{i}>0$ such that
$\alpha_{i}>\epsilon_{i}>0,(i=0,1, \ldots, p) . \operatorname{Let} \epsilon^{\prime}=\min \left\{\epsilon_{i}\right\}$, all i. Then $\alpha_{i}>\epsilon^{\prime}>0$. Since β_{i} is a continuous
function of x, then for every sufficiently small $\epsilon>0$ (in particular, for $\epsilon^{\prime}>0$), there is a $\delta_{i}>0$ such that

$$
\left|\beta_{i}-\alpha_{i}\right|<\epsilon^{\prime}
$$

whenever $\left\|x^{*} x\right\|<\delta_{i}, x \in N_{\delta_{i}}\left(x^{*}\right) \cap s_{p},(1=0,1, \ldots p)$. Let $\delta^{\prime}=\min \left\{\delta_{i}\right\},(i=0,1, \ldots, p)$. Then

$$
\left|\beta_{i}-\alpha_{i}\right|<\epsilon^{\prime}
$$

whenever $x \in \mathbb{N}_{\delta^{\prime}}\left(x^{*}\right) \cap s_{p},(1=0,1, \ldots, p)$. That is, for all points $x \in \mathbb{N}_{\delta^{\prime}}\left(x^{*}\right) \cap S_{p}$,

$$
\beta_{i}>\alpha_{i}-\epsilon^{\prime}>0, \quad(1=0, \ldots, p) .
$$

Hence, in a sufficiently small neighborhood of x^{*} (relative to S_{p}, all points x can be represented as

$$
x=\sum_{i=0}^{p} \beta_{i} x_{i} \quad \sum_{i=0}^{p} \beta_{i}=1, \quad \beta_{i}>0, \text { all } 1,
$$

and these points belong to Δx_{ρ}. Hence, x^{*} is an interior point of ΔX_{p} relative to S_{p}.
II.6.11. Corollary. It follows from Theorem II. 6.6 that if x^{*} is on a proper face of Δx_{p}, then it is a boundary point of Δx_{p} relative to s_{p}. For if x^{*} is on a proper face of Δx_{ρ}, then at least one barycentric coordinate of x^{*}, say α_{i}, is equal to zero. Since the α 's are continuous functions of x and since the representation of a point of S_{p} is unique, then in every small neighborhood of x^{*} (relative to S_{p}) there are points x of s_{p} such that
the corresponding α_{i} is <0, and hence such points do not belong to Δx_{p}. Hence, x^{*} is a boundary point of Δx_{p}.
II.6.12. Remark. It might be well to mention here another characterization of ap-flat in $R^{(n)}$. By Definition II.3.13, a p-flat, S_{p}, is the set of all points x of $R^{(n)}$ such that

$$
x=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad(j=1,, \ldots, n),
$$

where x_{0}, \ldots, x_{p} form a set of $p+1$ linearly independent points of $\mathrm{R}^{(n)}$. It is further shown that the ropresentation is unique. That is, the equations

$$
x^{(1)}=\alpha_{0} x_{0}^{(1)}+\cdots+\alpha_{p} x_{p}^{(1)}
$$

(II.6.13)

$$
\begin{aligned}
& \mathbf{x}^{(n)}=\alpha_{0} \mathbf{x}_{0}^{(n)}+\cdots++\alpha_{p} x_{\rho}^{(n)} \\
& \mathbf{I}=\alpha_{0}+\cdots+\alpha_{p}
\end{aligned}
$$

have precisely one solution for the α 's. From the work in the last theorem, it follows that the rank of the augmented matrix
(II.6.14)

$$
\left(\begin{array}{llll}
x^{(1)} & x_{0}^{(n)} & \cdots & \cdot \\
x_{p}^{(n)} \\
\cdots & \cdots & \cdots & \cdot \\
x^{(n)} & x_{0}^{(n)} & \cdots & x_{p}^{(n)} \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

is $p+1$. That is, all the $p+2$ rowed determinants formed from the matrix (II.6.14) must vanish. This is expressed
as
(II.6.15) $\left|\begin{array}{lll}x^{\left(j_{1}\right)} & x_{0}^{\left(j_{1}\right)} & \cdots \\ \cdots & x_{p}^{\left(j_{1}\right)} \\ \cdots & \cdots \cdots & \cdots \\ x^{\left(j_{p+2}\right)} & x_{0}^{\left(j_{p+2}\right)} & \cdots x_{p}^{\left(j_{p+2}\right)}\end{array}\right|=0$,
where the set of superscripts, $\left(j_{1}, \ldots j_{p+2}\right)$, represents one of the $C(n+1, p+2)$ possible choices of $p+2$ of the $n+1$ rows of the matrix (II.6.14). (The numbers,

Therefore, the points x of S_{p} must satisfy the $C(n+1, p+2)$ equations of the type (II.6.15).

Conversely, consider the set of equations

$$
x^{(1)}=\beta_{0} x_{0}^{(1)}+\cdot \cdot \cdot+\beta_{p} x_{p}^{(1)}
$$

(II.6.16)

$$
\begin{aligned}
& X^{(n)}=\beta_{0} x_{0}^{(n)}+\cdots+\beta_{p} x_{p}^{(n)} \\
& I=\beta_{0}+\cdots+\beta_{p}
\end{aligned}
$$

where the points, $x_{0}, x_{1}, \ldots, x_{p}$ are linearly independent. Suppose x is such thet all the $p+2$-rowed determinant minors of the augmented matrix of the equations (II.6.16) vanish. That is, suppose that x satisfies all $C(n+1, p+2)$ equations of the type
(II.6.17)
where the superscripts $\left(j_{1}, \ldots, j_{p+2}\right)$ represent one of the $C(n+1, p+2)$ possible selections of $p+2$ of the $n+1$ rows of the augmented matrix of the equations (II.6.16). Then there is a unique solution for the β 's and by the definition of a p-flat, x lies in the p-flat determined by the $p+1$ linearly independent points, $x_{0}, x_{1}, \cdots, x_{p}$

The conclusion is that the $p-f l a t, S_{p}$, is composed precisely of the set of all points x of $R^{(n)}$ which satisfy the $C(n+1, p+2)$ equations of the type (II.6.17). That is, S_{p} is characterized by this set of equations.
II.6.18. Theorem. Let x_{0}, \ldots, x_{p} be $p+1$ Inearly independent points of $\mathrm{F}^{(n)}$ which determine a p-flat, S_{p}, and a p-cell, Δx_{p}. Let x^{*} be an interior point of Δx_{p}, with respect to S_{p}. Then every straight line through x^{*}, iying in S_{p}, intersects the boundary of Δx_{p} in exactly two points.

Proof. The p-cell Δx_{p} is a closed and bounded convex set with respect to S_{p}. It can be shown [Alexandroff-Hopf, (1), pp. 599-600] that if M is any closed and bounded convex set of $\mathrm{R}^{(P)}$ and if x^{*} is interior to M with respect to $\mathrm{R}^{(\rho)}$, then a straight line through X^{*} intersects the boundary of $\frac{1}{}$ in precisely two points. It is first proved that a ray drawn from an interior point of a convex set intersects the boundary in at most one point. If a set M is closed and bounded, then any ray from an interior point
of M intersects the boundary of in at least one point. Hence, if M is a closed, bounded, convex set, a ray from an interior point intersects the boundary in exactly one point. Therefore, any straight line through an interior point of in intersects the boundary in exactly two points.

For the purposes of this paper the following theorem, although not so strong as Theorem II. 6.18 , is sufficient.

1I.6.19. Theorem Let $x_{o} . . x_{p}$ be $p+1$ inearly independent points of $R^{(n)}$, which determine a p-cell, Δx_{p}. and a p-flat, S_{p}. Let x be any interior point of Δx_{p}, relative to S_{p}. Let x^{n} be any other point of S_{p}. Then the straight line through x^{\prime} and $x^{\prime \prime}$ intersects the boundary of Δx_{p} in exactly two points.

Proof. The proof is an immediate consequence of the following Lemma:
II.6.20. Lemma. Let x_{0}, \ldots, x_{p} be $p+1$ Iinearly independent points of $R^{(n)}$ which determine a p-cell, ΔX_{p} and a p-filat, S_{p}. Let x^{\prime} and $x^{\prime \prime}$ be any two points of $A x_{p}$, at least one of which is interior to ΔX_{p}, relative to S_{p}. Then the straight line through x^{\prime} and $x^{\prime \prime}$ intersects the boundary of Δx_{p} in exactly two points.

Proof. Suppose $x^{\prime \prime}$ is intexior to Δx_{p} relative to S_{p}, and x^{\prime} is either interior to $4 x_{p}$ or is a boundary point. Then
85.

$$
x^{*}=\sum_{i=0}^{p} \alpha_{i} x_{i}, \quad \sum_{i=0}^{p} \alpha_{i}=1, \quad \alpha_{i} \geqslant 0, \text { all } i,
$$

and

$$
x^{\prime \prime}=\sum_{i=0}^{p} \beta_{i} x_{i}, \quad \sum_{i=0}^{p} \beta_{i}=1, \quad \beta_{i}>0, \text { a11 } 1,
$$

where not every α_{i} is equal to the corresponding β_{i}. In Pact, since x ' is distinct from x ", then at least two α 's are different from the corresponding $\beta^{\prime \prime}$ s. For if p of the α 's are equal to the p corresponding β 's, then since the sum of the α 's is one and since the sum of the β 's is one, the remaining α is equal to its corresponding β. Hence, each α is equal to its corresponding β, and the two points are not distinct, contrary to assumption.

All the points on the stright line through x^{3} and $x^{\prime \prime}$ can be expressed as

$$
\begin{aligned}
x & =\theta x^{9}+(1-\theta) x^{n} \\
& =\theta\left(\sum_{i=0}^{p} \alpha_{i} x_{i}\right)+(1-\theta)\left(\sum_{i=0}^{p} \beta_{i} x_{i}\right) \\
& =\left[\theta \alpha_{0}+(1-\theta) \beta_{0}\right] x_{0}+\cdots+\left[\theta \alpha_{p}+(1-\theta) \beta_{p}\right] x_{p}
\end{aligned}
$$

For any choice of θ, the sum of these coefficients is equal to one, for

$$
\begin{aligned}
& {\left[\theta \alpha_{0}+(1-\theta) \beta_{0}\right]+\cdots+\left[\theta \alpha_{p}+(1-\theta) \beta_{p}\right] } \\
= & \theta\left(\alpha_{0}+\cdot+\alpha_{p}\right)+(1-\theta)\left(\beta_{0}+\cdots+\beta_{p}\right) \\
= & \theta+(1-\theta)=1 .
\end{aligned}
$$

The problem is to find exactly two distinct values of θ such that for each of these two values, at least one of the coefficients, $\left[\theta x_{i}+(1-\theta) \beta_{i}\right]$, ($i=0,1, \ldots, p)$, is equal to zero, and such that the remaining coefficients are $\geqslant 0$. Clearly, all such possibilities for θ are found by setting each coefficient, $\left[\theta \alpha_{i}+(1-\theta) \beta_{i}\right],(1=0,1, \ldots p)$, equal to zero and solving for θ. This cannot always be done, since if $\alpha_{K}=\beta_{K}$, for some k, then the coefficient of x_{k} is $\theta \alpha_{k}+(1-\theta) \beta_{k}=\theta \beta_{k}+\beta_{k}-\theta \beta_{k}=\beta_{k}$, which clearly cannot be sat equal to zero. However, by a previous remark, there are at least two α 's which are not equal to their corresponding $\beta^{\prime \prime} \mathrm{s}$. Hence, one can always find at least two possibilities for θ. These possibilities for θ are found to be

$$
\theta_{i}=-\frac{\beta_{i}}{\alpha_{i}-\beta_{i}}
$$

for all 1 such that $\alpha_{i} \neq \beta_{i}$.
The following is a table of values of the coefficients of x_{i} corresponding to the possible values for $\theta:$

	x_{0}	x_{1}	\cdot	\cdot
θ_{0}	0	$\frac{\alpha_{0} \beta_{1}-\alpha_{1} \beta_{0}}{\alpha_{0}-\beta_{0}}$	\cdot	x_{p}
θ_{1}	$\frac{\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}}{\alpha_{1}-\beta_{1}}$	0	\cdot	$\frac{\alpha_{0} \beta_{p}-\alpha_{p} \beta_{0}}{\alpha_{0}-\beta_{0}}$
\cdot	$\cdot \omega_{1}$	\cdot	\cdot	\cdot
θ_{p}	$\frac{\alpha_{p} \beta_{0}-\alpha_{0} \beta_{p}}{\alpha_{p}-\beta_{p}}$	$\frac{\alpha_{p} \beta_{1}-\alpha_{1} \beta_{p}}{\alpha_{p}-\beta_{p}}$	\cdot	$\frac{\alpha_{1} \beta_{p}-\alpha_{p} \beta_{1}}{\alpha_{1}-\beta_{1}}$

Only values of θ_{i} will appear for those 1 for which $\alpha_{i} \neq \beta_{i}$.

The lemma will be proved if precisely two distinct choices of θ in the table will produce coefficients which are all non-negative. The points corresponding to these choices of θ wiI satisfy the requirements for being on the boundary of Δx_{p}.

Since $\sum_{i=0}^{p} \alpha_{i}=1$ and $\sum_{i=0}^{p} \beta_{i}=1$, and since et least two of the $\alpha^{\prime} s$ are different from the corresponding β 's, then $\alpha_{j}>\beta_{j}$ for at least one j and $\alpha_{k}<\beta_{k}$ for at least one K. Consider the ratios

$$
\frac{\alpha_{0}}{\beta_{0}}, \frac{\alpha_{1}}{\beta_{1}}, \cdot \frac{\alpha_{p}}{\beta_{p}} .
$$

Since there are only a finite number of these ratios, there must be at least one which is smallest and at least one which is largest. Suppose α_{h} / β_{h} is the smallest ratio. Since $\alpha_{h}<\beta_{h}$ then $\alpha_{h} / \beta_{h}<1$. Suppose
α_{k} / β_{k} is the largest ratio; then $\alpha_{k} / \beta_{k}>1$. Arrange the ratios in order of increasing size;

$$
0 \leqslant \frac{\alpha_{h}}{\beta_{h}} \leqslant \cdot \cdot \leqslant \frac{\alpha_{k}}{\beta_{k}} .
$$

Consider θ_{h} and θ_{k} (They exist since $\alpha_{h} \neq \beta_{h}$ and $\alpha_{k} \neq \beta_{k}$). Now $\theta_{h} \neq \theta_{k}$, since

$$
\theta_{h}=-\frac{\beta_{h}}{\alpha_{h}-\beta_{h}}>0
$$

and

$$
\begin{gathered}
\theta_{k}=-\frac{\beta_{k}}{\alpha_{k}-\beta_{k}}<0 . \\
\text { Since } \begin{aligned}
& \alpha_{h} \leq \alpha_{i}, \text { all 1, then } \\
& \beta_{h} \beta_{i} \\
& \alpha_{h} \beta_{i}-\alpha_{i} \beta_{\hbar} \leq 0, \quad \text { all 1. }
\end{aligned}
\end{gathered}
$$

Since $\quad \alpha_{\hbar}-\beta_{\hbar}<0$, then the ratios

$$
\frac{\alpha_{h} \beta_{i}-\alpha_{i} \beta_{h}}{\alpha_{h}-\beta_{h}} \geqslant 0,
$$

all 1.

These are the coefficients of x_{i} corresponding to θ_{h} in the table; hence θ_{h} is one of the desired choices. Similarly, since $\frac{\alpha_{k}}{\beta_{k}} \geqslant \frac{\alpha_{i}}{\beta_{i}}$, all i, then

$$
\alpha_{k} \beta_{i}-\alpha_{i} \beta_{k} \geqslant 0, \quad \text { all } 1
$$

Since $\alpha_{K}-\beta_{K}<0$, then the ratios

$$
\frac{\alpha_{k} \beta_{i}-\alpha_{i} \beta_{k}}{\alpha_{k}-\beta_{k}} \geqslant 0
$$

all. 1.

These are the coefficients corresponding to θ_{k} in the table. Hence, θ_{k} is also a desired choice.

It remains to be shown that no other distinct
choice of θ in the table yields a point of the line through x^{\prime} and $x^{\prime \prime}$ which is on the boundary of Δx_{p}. Consider θ_{l}, where $l \neq h_{,}, H_{1}$. (Then $\alpha_{l}=\beta_{l}$, since otherwise there would be no θ_{l} in the table). Suppose $\frac{\alpha_{l}}{\beta_{l}}=\frac{\alpha_{h}}{\beta_{h}}$ Then

$$
\theta_{l}=-\frac{\beta_{l}}{\alpha_{l}-\beta_{l}}=-\frac{\alpha_{l} \beta_{h}}{\alpha_{h}\left(\alpha_{l}-\frac{\alpha_{l} \beta_{h}}{\alpha_{h}}\right)}=-\frac{\alpha_{l} \beta_{h}}{\alpha_{h}\left(\frac{\left.\alpha_{l} \alpha_{h}-\alpha_{l} \beta_{h}\right)}{\alpha_{h}}\right.}=-\frac{\beta_{h}}{\alpha_{h}-\beta_{h}}=\theta_{h}
$$

In this case, the points corresponding to θ_{h} and θ_{l} are not distinct. A similar situation occurs if $\frac{\alpha_{l}}{\beta_{l}}=\frac{\alpha_{k}}{\beta_{k}}$.

Suppose $\frac{\alpha_{h}}{\beta_{h}}<\frac{\alpha_{l}}{\beta_{l}}<\frac{\alpha_{k}}{\beta_{k}}$, and suppose that
$\alpha_{l}<\beta_{l}$. Then, since $\alpha_{l} \beta_{h}-\alpha_{h} \beta_{l}>0$, the ratio

$$
\frac{\alpha_{l} \beta_{h}-\alpha_{h} \beta_{l}}{\alpha_{l}-\beta_{l}}<0
$$

and hence there is a coefficient corresponding to θ_{l} which is negative and this point is not in Δx_{p}.

$$
\text { Similarly, if } \alpha_{l}>\beta_{l} \text {, then }
$$

$$
\frac{\alpha_{l} \beta_{k}-\alpha_{k} \beta_{l}}{\alpha_{l}-\beta_{l}}<0
$$

and again the point corresponding to θ_{l} is not in Δx_{p}.
All possible cases have been exhausted. Hence there are precisely two choices of θ, in particular θ_{k} and θ_{K}, which jield points of the line through x^{\prime} and $x^{\prime \prime}$ which are on the boundary of Δx_{p}, proving the lemma.

From this lemma, the proof of the theorem easily follows. Let Δx_{p} be the p-cell with vertices x_{0}, \ldots, x_{p} and let x^{\prime} be the interior point of Δx_{p}, relative to S_{p}. If $x^{\prime \prime}$ is any other point of Δx_{p}, then by the lemma, the theorem is true. Let $x^{\prime \prime}$ be a point of S not in Δx_{p}. Construct the straight line, L, through $x^{\prime \prime}$ and $x^{\prime \prime}$. Since x^{\prime} is interior to Δx_{p} relative to S_{p}, then there is a neighborhood, $\mathbb{N}_{\delta}\left(x^{i}\right)$, such that $\mathbb{N}_{\delta}\left(x^{i}\right) \cap s_{\rho}$ is completely contained in Δx_{p}. Choose $x^{\prime \prime \prime}$ to be a point of $L \cap N_{\delta}\left(x^{\prime}\right)$ different from x^{\prime}. Since $x^{\prime \prime}$ and $x^{\prime \prime \prime}$ are distinct, they are linearly independent and therefore determine L. Applying the lemma, using x^{\prime} and $x^{\prime \prime \prime}$, it is seen that L intersects the boundary of ΔX_{p} in precisely two points, proving the theorem.
II.6.21. Theorem. Let x^{*} be an interior point of a p-cell, Δx_{p}, relative to $S_{p},(2 \leq p \leq n)$. Let $U \cap S_{p}$ be any spherical neighborhood of x^{*} relative to S_{p}, contained in Δx_{p}. Let L be any straight line through $x *$. Then there is a point
of $\mathrm{U} \cap \mathrm{S}_{p}$ (Hence an interion point of $\Delta \mathrm{X}_{\rho}$) which does not Iie on L.

Proof. The neighborhood $U \cap S_{p}$ is homeomorphic to S_{p}. Hence, $p+1$ Iinearly independent points (or what is the same, p Inearly independent vectors) can be chosen in $\mathrm{U} \cap S_{p}$.

Now I intergects the boundary of $U \cap S_{p}$ in exactly two points, y_{1} and y_{2}, by Theorem II,6.18. Consider the points x^{*} and $x^{\prime}=\frac{1}{8} x^{*}+\frac{1}{3} y$. These two points are linearly Independent since they are distinct, they both 11e on L, and they both belong to $U \cap S_{p}$. Let $x^{* \prime}$ be another point of $U \cap S_{p}$, chosen to be linearly independent With x^{*} and x^{\prime}. Men the vectors $\left(x^{* *}-x^{*}\right)$ and ($\left.x^{\prime}-x^{*}\right)$ are Inearly independent.

It follows that the point x^{*} does not 110 on L, for if it did, then

$$
x^{* * *}=(1-\theta) x^{*}+\theta x^{\prime},
$$

and

$$
\left(x^{* *}-x^{*}\right)=\theta\left(x^{*}-x^{*}\right)
$$

But this means that the vectors $\left(x^{* *}-x^{*}\right)$ and $\left(x^{\prime}-x^{*}\right)$ are Inearly dependent. This is a contradiction. Hence, x^{*} does not lie on $L_{\text {, }}$ and the theorem is proved.

1I.6.22. Theorem. Let $x_{0}, x_{1}, \ldots, x_{\rho}$ be $n+11$ inearly

Independent points of $\mathbb{R}^{(n)}$ which form the vertices of an n-cell, ΔX_{n}. Let F be a one-to-one, continuous transformation defined on a convex region E which containg the n-ce11, Δx_{n}, and let F be such that it maps straight Ines into straight lines. Then all the p-cell faces of Δx_{n} map into distinct $p-c e l l$ faces of an $n-c e l l, ~ \Delta F_{n}$, under the transformation $F,(0 \leqslant p \leqslant n)$.
Proof. The proof is by induction on p. Let $p=0$. Then since the trangformation is one-to-one, all the 0-cell faces (vertices) of ΔX_{n} map into distinct 0 -cell faces of an n-cell. ΔF_{n}, which turns out to be non-degenerate.

Let $p=1$. By hypothesis straight Ines map into straight lines. By Theorem II. 5.4 distinct Iines map into distinct lines. Since F is one-to-one and continuous, then each of the 1-cell faces of Δx_{n} formed by joining any two of the vertices of ΔX_{n}, map into a 1-cell, formed by joining the corresponding vertices of ΔF_{n}. Since these 1-cells must be distinct, this means that all the image points $F\left(x_{0}\right), \ldots F\left(x_{0}\right)$, taken three at a time, are linearly independent.

Let $\mathrm{p}=2$. Let $\Delta\left(\mathrm{X}_{i_{0}} \mathrm{X}_{i_{1}} \mathrm{x}_{i_{2}}\right)$ be any 2-cell of ΔX_{n}, where $\left(i_{0}, i_{1}, i_{2}\right)$ represents a choice of any thres of the $n+1$ vertices of Δx_{n}. The points $x_{i_{0}}, x_{i_{1}}$, and $x_{i_{2}}$ map into linearly independent points $F\left(x_{i_{0}}\right), F\left(x_{i_{1}}\right)$, and $F\left(x_{i_{2}}\right)$ by the statement above. Hence $\Delta\left(F: x_{i_{0}} x_{i_{2}} x_{i_{3}}\right)$ Is a non-degenerate $2-\operatorname{cel} 1$, and $F\left(x_{i_{0}}\right), F\left(x_{i_{1}}\right)$ and $F\left(x_{i_{2}}\right)$
determine a $2-f l a t, T_{2}$. By the induction hypothesis the boundary of $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$ maps into the boundary of $\Delta\left(F: x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. Let x^{*} be any interior point of $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$ relative to S_{2}, the 2-flat determined by $x_{i_{0}}, x_{i_{1}}$, and $x_{i_{2}}$. Let $x^{\text {, be a boundary point of }}$ $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. Let L be the stralght line through x^{*} and x^{\prime}. Then L intersects the boundary of $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$ in exactly two distinct points, x^{\prime} and $x^{\prime \prime}$, by Lemma II.6.20. The points x^{\prime} and $x^{\prime \prime}$ map into $F\left(x^{9}\right)$ and $F\left(x^{\prime \prime}\right)$ on the boundary of $\Delta\left(F: x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$, by the induction hypothesis. Hence,

$$
\mathbf{F}\left(\boldsymbol{x}^{\prime}\right)=\sum_{j=0}^{2} \alpha_{j} \mathbf{F}\left(x_{i j}\right), \quad \sum_{j=0}^{2} \alpha_{j}=1, \quad \alpha_{j} \geqslant 0, \quad \text { a11 } j,
$$

and

$$
F\left(x^{n}\right)=\sum_{j=0}^{2} \beta_{j} F\left(x_{i j}\right), \quad \sum_{j=0}^{2} \beta_{j}=1, \quad \beta_{j} \geqslant 0, \quad \text { a11 } j .
$$

Since straight lines map into straight 1 ines and since F Is continuous and one-to-one, then x^{*} on L between x^{\prime} and $x^{\prime \prime}$ maps into $F\left(x^{*}\right)$ on the line segment $\bar{F}\left(x^{*}\right) F\left(x^{n}\right)$, and

$$
F\left(x^{*}\right)=\theta F\left(x^{\prime}\right)+(1-\theta) F\left(x^{\prime \prime}\right), \quad 0<\theta<1
$$

Hence,

$$
\begin{aligned}
F\left(x^{*}\right) & =\theta\left(\sum_{j=0}^{2} \alpha_{j} F\left(x_{i_{j}}\right)\right)+(1-\theta)\left(\sum_{j=0}^{2} \beta_{j} F\left(x_{i_{j}}\right)\right) \\
& =\left[\theta \alpha_{0}+(1-\theta) \beta_{0}\right] F\left(x_{i_{0}}\right)+\ldots+\left[\theta \alpha_{2}+(1-\theta) \beta_{2}\right] F\left(x_{i_{2}}\right) .
\end{aligned}
$$

Clearly, all the coefficients are $\geqslant 0$ since $0<\theta<1$, and
the sum of the coefficients is equal to one by the work In Lemma II.6.20. Hence, $F\left(x^{*}\right)$ is in the 2-cell, $\Delta\left(F: x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. Since x^{*} was any interior point of $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$, then the 2-cell $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$ maps into $\Delta\left(F i x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$.

Let x be eny point of $S_{2} \cap E$ not in $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. Since $S_{2} \cap E$ is convex, x can be joined by a straight ine L^{\prime} to a point x^{*}, interior to $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. By Theorem II.6.19, L^{\prime} intersects the boundary of $\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$ in exactly two distinct points, $x^{\prime \prime}$ and $x^{\prime \prime}$. The transformation F carries x^{\prime} and $x^{\prime \prime}$ into $F\left(x^{\prime}\right)$ and $F\left(x^{\prime \prime}\right)$ on the boundary of $\Delta\left(F i x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$. Hence,

$$
F\left(x^{\prime}\right)=\sum_{j=0}^{2} \gamma_{j} F\left(x_{i j}\right), \quad \sum_{j=0}^{2} \gamma_{j}=1, \quad \gamma_{j} \geqslant 0, \text { all } j,
$$

and

$$
F\left(x^{\prime \prime}\right)=\sum_{j=0}^{2} \delta_{j} F\left(x_{i j}\right), \quad \sum_{j=0}^{2} \delta_{j}=1, \quad \delta_{j} \geqslant 0, \text { all } j .
$$

Since x is on the line through $x^{\prime \prime}$ and $x^{\prime \prime}$ and since straight lines map into straight ines, then $F(x)$ is on the line through $F\left(x^{\prime}\right)$ and $F\left(x^{\prime \prime}\right)$. Therefore,

$$
\begin{aligned}
F(x) & =\varphi F\left(x^{\prime}\right)=(1-\varphi) F\left(x^{\prime \prime}\right) \\
& =\varphi\left(\sum_{j=0}^{2} \gamma_{j} F\left(x_{i_{j}}\right)\right)+(1-\varphi)\left(\sum_{j=0}^{2} \delta_{j} F\left(x_{i_{j}}\right)\right) \\
& =\sum_{j=0}^{2}\left[\varphi \gamma_{j}+(1-\varphi) \delta_{j}\right] F\left(x_{i_{j}}\right),
\end{aligned}
$$

and the sum of the coefficients is one. Hence, $F(x)$ is in the 2-flat, T_{2}. Since x was eny point of $S_{2} \cap E$ not in
$\Delta\left(x_{i_{0}} x_{i_{1}} x_{i_{2}}\right)$, it has been shown that $S_{2} \cap E$ maps into T_{2}. The same ergument holds for each 2-cell face of ΔX_{n}. By Theorem II. 5.4, the distinct 2-flats determined by the vertices of all the e-cell faces of ΔX_{n} must map into distinct 2 -flats, determined by the vertices of the corresponding image 2-cells. Hence, distinct 2 -cell faces of Δx_{n} must map into distinct 2 -cells, since they lie in distinct 2-flats. This means that the points $F\left(x_{0}\right)$, . - . $F\left(x_{n}\right)$, taken four at a time, are linearly independent. Suppose it has been shown in this manner for $1 \leqslant k \leqslant n-1$, that all the k-cell faces of ΔX_{n} map into $k-c e l l$ faces and that all the k-flats determined by the vertices of each k-cell face map into k-flats, which by Theorem II.5.4 must be distinct; then distinct k-cell faces of Δx_{n} map into distinct k-cell faces. It follows that all the points $F\left(x_{0}\right)$, . . , $F\left(x_{n}\right)$, taken $k+2$ at a time, are linearly independent.

Consider the n-cell, Δx_{n}. By the induction hypothesis, the points x_{0}, \cdots, x_{n} map into linearly independent points, $F\left(x_{0}\right), \ldots F\left(x_{n}\right)$, (hence $\Delta\left(F: x_{0} . x_{n}\right)$ is non-degenerate $)$, and the boundary of Δx_{n} maps into the boundary of $\Delta\left(F: x_{0}\right.$. . $\left.x_{n}\right)$. Let x^{*} be any interior point of Δx_{n}. Let x^{*} be a boundary point of Δx_{n}. Then the Iine L through x^{\prime} and x^{*} Intersects the boundary of Δx_{n} in exactly two distinct points, x^{\prime} and $x^{\prime \prime}$, by Lemma II.6.20. By the induction hypothesis, x^{\prime} and $x^{\prime \prime}$
map into $F\left(x^{\prime}\right)$ and $F\left(x^{\prime \prime}\right)$ on the boundary of $\Delta\left(F: x_{0} \ldots x_{n}\right)$. That is,

$$
F\left(x^{\prime}\right)=\sum_{i=0}^{n} \alpha_{i} F\left(x_{i}\right), \quad \sum_{i=0}^{n} \alpha_{i}=1, \quad \alpha_{i} \geqslant 0, \text { al1 } 1,
$$

and

$$
F\left(x^{\prime \prime}\right)=\sum_{i=0}^{n} \beta_{i} F\left(x_{i}\right), \quad \sum_{i=0}^{n} \beta_{i}=1, \quad \beta_{i} \geqslant 0, \text { al1 } i .
$$

Since straight lines map into straight lines, and since F is one-to-one and continuous, then x^{*} maps into $F\left(x^{*}\right)$ on the line segment $\overline{F\left(x^{1}\right) F\left(x^{\prime \prime}\right)}$. Hence,

$$
F\left(x^{*}\right)=\theta F\left(x^{\prime}\right)+(1-\theta) F\left(x^{\prime \prime}\right), \quad 0<\theta<1 .
$$

Therefore,

$$
F\left(x^{*}\right)=\sum_{i=0}^{n}\left[\theta \alpha_{i}+(1-\theta) \beta_{i}\right] F\left(x_{i}\right),
$$

where all the coefficients are $\geqslant 0$ and where the sum of the coefficients is equal to one. Therefore, $F\left(x^{*}\right)$ is in $\triangle\left(F: x_{0}, x_{n}\right)$. Since x^{*} was any interior point of Δx_{n}, the induction is complete and the theorem is proved.
II.6.23. Remark. It has actually been shown in the proof of Theorem II.6.22 that if F is continuous and one-to-one and maps straight lines into straight lines, then p-flats map into $p-f l a t s,(1 \leqslant p \leqslant n-1)$.
II.6.24. Theorem. Let F be a continuous, one-to-one transformation defined on a convex region E in $R^{(n)}$, such that
p-flats map into p-flats for points in E (p fixed;
$1 \leqslant p \leqslant n-1)$. Then straight lines map into straight lines. Proof. The proof is by induction on p. If $p=1$, then straight lines map into straight lines by hypothesis.

Let $p=2$. By Theorem II. 5.4, distinct 2-flats map into distinct 2-flats for points in E. Let L be any straight line in E. Through L can be constructed two distinct 2-flats. This is easily done, since in E there will be a total of $n+1$ linearly independent points. The Ine L is determined by only two linearly independent points. These two, together with one more not on L, will determine one of the required z-flats, $s_{2}^{(1)}$. The same two points together with one point not on $S_{2}^{(1)}$ will determine the other required 2 -flat, $S_{2}^{(2)}$. Since L is common to both 2-flats, and since the mapping is one-tomone and continuous, then L, the image of $L \cap E$ is common to $T_{2}^{(1)}$ and $T_{2}^{(2)}$, the images of $S_{2}^{(1)} \cap E$ and $S_{2}^{(2)} \cap E$ respectively. Since L ' must be 1-dimensional, it must then be a straight line, as the Intersection of two planes. Hence, the theorem is proved for $p=2$.

Suppose it has been proved in this manner for $\mathrm{p}=1,2, . ., n-2$, that if p-flats map into p-flats then straight lines map into straight lines. It will be shown that if ($n-1$)-flats map into ($n-1$)-flats, then straight Ines map into straight Iines. In this case, by Theorem II.5.4, distinct ($\mathrm{n}-1$)-flats map into distinct ($\mathrm{n}-1$)-flats.

Let S_{n-2} be an ($n-2$)-flat with points in E. As in the case of $p=2$, two distinct $(n-1)-f 1 a t s, S_{n-1}^{(1)}$ and $s_{n-1}^{(2)}$, having S_{n-2} in common can be constructed. Under the one-to-one and continuous trensformation F, the two $(n-1)$-flats, $S_{n-1}^{(1)} \cap E$ and $S_{n-1}^{(2)} \cap E \operatorname{map}$ into distinct $(n-1)-f 1 a t s, T_{n-1}^{(1)}$ and $T_{n-1}^{(2)}$, and S_{n-2} must map into the intersection of $T_{n-1}^{(1)}$ and $T_{n-1}^{(2)}$ and hence the image of S_{n-2} must be an (n-2)-flat, by Theorem II.5.1. Since S_{n-2} was an arbitrary ($n-2$)-flat with points in E, then $1 t$ must be concluded that (n-2)-flats map into ($n-2$)-flats. This puts the situation back in the previous case, and by the induction hypothesis 1t is immediately concluded that straight ines map into straight lines for points in E. This completes the Induction and the proof of the theorem.
II.6.25. Remark. From Remark II.6.23 and Theorem IT.6.24 It follows that the necessary and sufficient condition that a continuous, one-to-one mapping dafined in a convex region E of $\mathrm{R}^{(n)}$ take p-flats into p-flats, (p fixed; $1 \leq \mathrm{p} \leq \mathrm{n}-1$), is that the mapping taike straight ines into straight lines.
II.7. THE CHARACTERIZATION FOR THE 2-DIMENSIONAL CASE II.7.1. All the material is now at hand to prove the main theorem of this chapter for the case $n=2$, except the following important lemma, which was suggested by W. Kaplan of the University of Michigan [Kaplan, (1)].

Fig. 2

1I.7.2. Lemma. Let $\Delta\left(x_{0} x_{1} x_{2}\right)$ be any 2-cell of a convex region E in $R^{(2)}$. Let x_{3} be the intersection of the medians of the triangle. Let $G: g^{(i)}(x),(1=1,2)$, be a continuous, single valued transformation defined on E such that straight lines map into straight lines and such that x_{0}, x_{1}, x_{2}, and x_{3} remain fixed. Then G is the identity transformation. Proof. Since straight lines map into straight lines and since x_{0}, x_{1}, and x_{2} remain fixed, then the sides of the triangle map into themselves. Furthermore, since x_{3} remains fixed, the medians remain fixed. Therefore, the midpoints of the sides, x_{4}, x_{5}, and x_{6} remain fixed as the intersection of fixed lines. (See Fig. 2).

Joining the midpoints of the sides, it is seen that the lines $\bar{x}_{4} x_{5}, \bar{x}_{5} x_{6}$, and $\bar{x}_{4} x_{6}$ map into themselves. The points x_{7}, x_{8}, and x_{9} romain fixed as intersections of fixed lines. The segments $\bar{x}_{5} x_{6},{\overline{x_{4}}}_{5}$, and $\bar{x}_{4} \bar{x}_{6}$ are parallel to $\bar{x}_{0} \bar{x}_{1},{\overline{x_{0}}}_{x_{2}}$ and ${\overline{x_{1}} x_{2}}$ respectively, since they divide the sides of $\Delta\left(x_{0} x_{1} x_{2}\right)$ in half. Therefore, $\Delta\left(x_{0} x_{4} x_{6}\right)$, $\Delta\left(x_{4} x_{1} x_{5}\right), \Delta\left(x_{5} x_{2} x_{6}\right)$, and $\Delta\left(x_{4} x_{5} x_{6}\right)$ are all similar to $\Delta\left(x_{0} x_{1} x_{2}\right)$. Eurthermore, the points x_{7}, x_{8}, and x_{9} are the midpoints of $\bar{x}_{4} x_{5},{\overline{x_{5}} x_{6}}$, and $\bar{x}_{4} x_{6}$ respectively. To prove, for example, that x_{8} is the midpoint of ${\overline{x_{5}} x_{6}, \text { notice first }}$ that since $\Delta\left(x_{5} x_{2} x_{8}\right)$ and $\Delta\left(x_{4} x_{1} x_{2}\right)$ are similar, then

$$
\frac{\overline{x_{2} x_{8}}}{\frac{\bar{x}_{2} x_{4}}{x_{5} x_{8}}}=\frac{\overline{x_{1} x_{4}}}{}
$$

Also, since $\Delta\left(x_{4} x_{2} x_{0}\right)$ and $\Delta\left(x_{8} x_{2} x_{6}\right)$ are similar,

$$
\frac{\bar{x}_{2} x_{8}}{\bar{x}_{2} x_{4}}=\frac{\bar{x}_{8} x_{6}}{\bar{x}_{4} x_{0}}
$$

Hence,

$$
\frac{\bar{x}_{5} x_{8}}{\bar{x}_{1} \bar{x}_{4}}=\frac{\bar{x}_{8} x_{6}}{\bar{x}_{4} x_{0}}
$$

To prove that the other two points mentioned are midpoints of the respective lines above, the same procedure is used.

The lines containing $\bar{x}_{7} x_{8}, \bar{x}_{8} x_{9}$, and $\overline{x_{7} x_{9}}$ remain Iixed. Hence, the points $x_{10}, x_{11}, x_{12}, X_{13}, x_{14}$, and X_{15} remain fixed as the intersection of fixed lines.

The points x_{13} and x_{14} are the midpoints of tho sides of $\Delta\left(x_{5} x_{2} x_{6}\right)$. To prove, for example, that x_{13} is the midpoint of ${\overline{X_{5}} \mathbf{x}_{2}}$, notice first that $\bar{X}_{8} \mathbf{x}_{13}$ is parallel to $\bar{X}_{6} \bar{x}_{2}$ since $\bar{X}_{10} \bar{x}_{13}$ is parallel to $\bar{X}_{4} \bar{x}_{5}$ (since X_{8} is the midpoint of $\bar{x}_{5} \bar{x}_{6}$ and x_{9} is the midpoint of $\overline{x_{4} x_{6}}$), which in turn is parallel to $\bar{x}_{6} x_{2}$, since x_{4} and x_{5} are midpoints of the sides of the triangle, $\Delta\left(x_{0} x_{1} x_{2}\right)$. Therefore, $\Delta\left(x_{5} x_{2} x_{6}\right)$ and $\Delta\left(x_{5} x_{13} x_{8}\right)$ are similar and

But x_{8} is the midpoint of $\bar{x}_{5} x_{6}$; hence,

$$
\frac{{\overline{x_{5}} x_{8}}_{\bar{x}_{5} x_{6}}=\frac{1}{2}}{}
$$

Consequently,

$$
\frac{\bar{x}_{5} x_{13}}{\bar{x}_{5} x_{2}}=\frac{1}{3},
$$

and x_{13} is the midpoint of $\bar{x}_{5} x_{2}$. In the same manner, x_{10} and x_{15} are the midpoints of the sides of $\Delta\left(x_{0} x_{4} x_{6}\right)_{\text {, and }}$ $x_{\|}$and x_{12} are the midpoints of the sides of $\Delta\left(x_{4} x_{1} x_{5}\right)$. Four small triangles, $\Delta\left(x_{0} x_{4} x_{6}\right), \Delta\left(x_{4} x_{1} x_{5}\right)$, $\Delta\left(x_{5} x_{2} x_{6}\right)$, and $\Delta\left(x_{4} x_{5} x_{6}\right)$, have been constructed which are all similar to $\Delta\left(x_{0} x_{1} x_{2}\right)$ and each of which has its vertices and the midpoints of its sides, hence the intersection of its medians, fixed under the transformation G. It will be shown that there is a set of points dense in the perimeter of $\Delta\left(x_{0} x_{1} x_{2}\right)$ which remain fixed under the transformation G. Let x^{*} be any point on the perimeter of $\Delta\left(x_{0} x_{1} x_{2}\right)$. It will be contained in one of the four smaller triangles which are similar to $\Delta\left(x_{0} x_{1} x_{2}\right)$. Choose this one and by a construction analogous to the preceding one, divide this triangle into four similar triangles, each of which has its vertices and the midpoints of its sides, hence the intersoction of its medians, fixed under the transformation G,
and one of which contains x^{*}. Choose the one containing x^{*} and repeat the construction, Continuing in this manner, a sequence of nested triangles is obtained, each of which has its vertices and the midpoints of its sides, hence the intersection of its medians, fixed under the transformation G, and each of which contains x^{*}. Eventually, a point on the perimeter of $\Delta\left(x_{0} x_{1} x_{2}\right)$, fixed under the transformation G, will be obtalned which is as close to x^{*} as one chooses. That is, the set of points fixed under the transformation G is dense in the perimeter of $\Delta\left(x_{0} x_{1} x_{2}\right)$.

Since G is continuous, it follows that each point of the perineter is fixed under G. Consider any point x of E which is an interior point of $\Delta\left(x_{0} x_{1} x_{2}\right)$. It also remoins fixed under G; for let x^{\prime} and $x^{\prime \prime}$ be two boundary points of $\Delta\left(x_{0} x_{1} x_{2}\right)$, not collinear with x. Each of the two distinct straight lines through $\overline{x^{\top} x}$ and $\overline{x^{\prime \prime} x}$ intersects the boundary of the triangle in two fixed points, by Lemma II, 6.20. Hence, the lines must map into themselves and therefore, their intersection, x, must map into itself. Since x was any interior point of $\Delta\left(x_{0} x_{1} x_{2}\right)$ then the whole 2-cell, $\Delta\left(x_{0} x_{1} x_{2}\right)$, maps into itself.

Let x^{*} be any point of E which is not in the 2-cell, $\Delta\left(x_{0} x_{1} x_{2}\right)$. Let x^{\prime} and $x^{\prime \prime}$ be two interior points of $\Delta\left(x_{0} x_{1} x_{2}\right)$ which are not collinear with x^{*}. Tvo such points exist by Theorem II.6.21. Since E is convex, x^{\prime} and $x^{\prime \prime}$ can each be joined to $x^{\prime \prime}$ by a straight line. Since x^{\prime} and $x^{\prime \prime}$
were interior points of $\Delta\left(x_{0} x_{1} x_{2}\right)$, each of these two straight lines must contain at least two fixed points of $\Delta\left(x_{0} x_{1} x_{2}\right)$, and hence the lines must map into themselves. Consequently, x^{*} must mep into itself, as the intersection of two fixed lines. Since x^{*}, was any point of E not in $\Delta\left(x_{0} x_{1} x_{2}\right)_{\text {, }}$ it has been shown that each point of Erenains ILxed under G and hence G must be the identity transformation.
II.7.3. Theorem. Let F: $\mathrm{I}^{(i)}(\mathrm{x}),(1=1,2)$, be a continuous, one-to-one-transformation defined on a convex region E in $R^{(2)}$ such that straight lines map into straight lines. Then F is of the form

$$
f^{(1)}(x)=\frac{a_{1,1} x^{(1)}+a_{1,2} x^{(2)}+a_{1,3}}{a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}}
$$

(II.7.4)

$$
f^{(2)}(x)=\frac{a_{2,1} x^{(1)}+a_{2,2} x^{(2)}+a_{2,3}}{a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}}
$$

where

$$
\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right| \neq 0 .
$$

Proof: Let x_{0}, x_{1}, and x_{2} be three linearly independent points of E. They determine a 2-cell of E. Let x_{3} and x_{4} be the midpoints of $\bar{x}_{0} x_{1}$ and $\bar{x}_{0} \bar{x}_{2}$ respectively. Let x_{5} be the intersection of the medians $\overline{x_{2} x_{3}}$ and $\bar{x}_{1} x_{4}$. F
carriea x_{0}, x_{1}, x_{2}, into three points $F\left(x_{0}\right), F\left(x_{1}\right)$, and $F\left(x_{2}\right)$ which are distinct and not collinear since F is one-to-one, continuous, and maps straight lines into straight lines. The point x_{3} goes into $F\left(x_{3}\right)$ on $\overline{F\left(x_{0}\right) F\left(x_{1}\right)}$ and
 $F\left(x_{2}\right), F\left(x_{3}\right)$, and $F\left(x_{4}\right)$ are aistinct because of onemooneness. The segments $\bar{x}_{2} x_{3}$ and $\bar{x}_{1} \bar{x}_{4}$ map into $\overline{F\left(x_{2}\right) F\left(x_{3}\right)}$ and $\overline{F\left(x_{1}\right) F\left(x_{4}\right)}$ respectively, Hence, x_{5} maps into $F\left(x_{5}\right)$ on the intersection of $\overline{F\left(x_{2}\right) F\left(x_{3}\right)}$ and $\overline{F\left(x_{1}\right) F\left(x_{4}\right)}$ and $F\left(x_{5}\right)$ is not on the sides of $\Delta\left(F: x_{0} x_{1} x_{2}\right)_{0}$ since $F\left(x_{3}\right)$ and $F\left(x_{4}\right)$ are distinct from $F\left(x_{0}\right), F\left(x_{1}\right)$, and $F\left(x_{2}\right)$.

By Theorem II.2.8, there is one and only one
transformation

$$
x^{(1)}=\frac{\alpha_{1,1} f^{(1)}(x)+\alpha_{1,2} f^{(2)}(x)+\alpha_{1,3}}{\alpha_{3,1} f^{(1)}(x)+\alpha_{3,2} f^{(2)}(x)+\alpha_{3,3}}
$$

$F_{1}:$

$$
x^{(2)}=\frac{\alpha_{2,1} f^{(1)}(x)+\alpha_{2,2} f^{(2)}(x)+\alpha_{2,3}}{\alpha_{3,1} f^{(1)}(x)+\alpha_{3,2} f^{(2)}(x)+\alpha_{3,3}}
$$

where

$$
\left|\begin{array}{lll}
\alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\
\alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\
\alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3}
\end{array}\right| \neq 0,
$$

which carries the points $F\left(x_{0}\right), F\left(x_{1}\right), F\left(x_{2}\right)$, and $F\left(x_{5}\right)$ into the points x_{0}, x_{1}, x_{2}, and x_{5} respectively. The
transformation F_{1} is continuous, one-to-one, and maps straight Iines into straight lines. Consider the transformation F, F. This transformation is continuous, one-toone and carries straight lines into straight lines. Furthemore, the points x_{0}, x_{1}, x_{2} and x_{5} remain fixed under $F_{1} F_{\text {. By }}$ Lemma II.7.2, $F_{1} F$ is the identity transformation. Hence $F=F_{1}^{-1}$, which is of the form (II.7.4), and the theorem is proved.

The characterization of the class of transformations Fe $f^{(i)}(x),(1=1,2)$, which are continuous, oneto-one, and map straight lines into straight lines is now complete. The next section of Chapter II extends the characterization to mapping functions F, which are continuous, one-to-one and map straight lines into straight lines, where F is defined in n-dimensions.
II. 8. THE GHARAOTERIZATION FOR THE n-DIMENSIONAL CASE.
II.8.1. In a triangle, the straight line which joins a vertex with the midpoint of the opposite side is called a median of the triangle. As a generalization of this concept, the following definition is given:
II.8.2. Definition. By a median of a tetrahedron is meant the straight line which joins a vertex with the intersection of the medians of the opposite face. In general, by a median of a $p-\operatorname{cell},(1<p \leqslant n)$, is meant the straight
line which joins a vertex of the p-cell with the intersection of the medians of the ($p-1$)-cell determined by the remaning p vertices of the $p-c e l l$.

This definition will be meaningful once it has been established that the medians of any p-cell intersect in a common point.
II. 8.3. Theorem. Let $x_{0}=\left(x_{0}^{(1)}, \ldots, x_{0}^{(n)}\right), \ldots$, $x_{p}=\left(x_{p}^{(1)}, \ldots, x_{p}^{(n)}\right)$, be the vertices of a $p-c e l l$, $(1<p \leqslant n)$. Then the point

$$
x_{p}^{*}=\left(\frac{x_{0}^{(1)}+\cdots \cdot+x_{p}^{(1)}}{p+1}, \cdots, \frac{x_{0}^{(n)}+\cdots \cdot++x_{p}^{(n)}}{p+1}\right)
$$

is common to all the medians of the p-cell; that is, the modians of a p-cell intersect in a common point.
Proof. The proof is by induction on p. Let
$x_{0}=\left(x_{0}^{(1)}, \cdots, x_{0}^{(n)}\right), x_{1}=\left(x_{1}^{(1)}, \ldots, x_{1}^{(n)}\right)$, and $x_{2}=\left(x_{2}^{(1)}, \ldots, x_{2}^{(n)}\right)$ be the vertices of a triangle in $R^{(n)}$. The median from x_{2} meets the opposite side of the triangle at the point

$$
x_{1}^{*}=\left(\frac{\left.x_{0}^{(1)}+x_{1}^{(1)}\right)}{2}, \frac{x_{0}^{(2)}+x_{1}^{(2)}}{2}, \cdots, \frac{x_{0}^{(n)}+x_{1}^{(n)}}{2}\right) .
$$

The point x_{2}^{*}, which divides the median $x x^{*}$ into the ratio

$$
\frac{\overline{x_{2} x_{2}^{*}}}{\overline{x_{2}^{*} x_{1}^{*}}}=\frac{2}{1}
$$

has the coordinates

$$
x_{2}^{i f}=\left(\frac{x_{0}^{(1)}+x_{1}^{(1)}+x_{2}^{(1)}}{3}, \cdots, \frac{x_{0}^{(n)}+x_{1}^{(n)}+x_{2}^{(n)}}{3}\right)
$$

The same argument shows that x_{2}^{*} al so divides the other two medians in the ratio 2:1. Hence, x_{2}^{*} lies on all the medians and the theorem is proved for the triangle.

Suppose it has been shown that the medians of the (p-1)-cell $\Delta\left(x_{0} x_{1} \ldots x_{p-1}\right)$ meet in the common point

$$
x_{p-1}^{*}=\left(\frac{x_{0}^{(1)}+x_{1}^{(1)}+\ldots+x_{p-1}^{(1)}}{p}, \cdots, \frac{x_{0}^{(n)}+x_{1}^{(n)}+\cdots+x_{p-1}^{(n)}}{p}\right) .
$$

Then, if $\Delta\left(x_{0} x_{1}, \cdot x_{\rho}\right)$ is a $p-c e l l$, the median from x_{p} meets the opposite $(p-1)$-cell at the point $x_{\rho_{-1}}^{*}$. The point

$$
\mathbf{x}_{p}^{*}=\left(\frac{x_{0}^{(1)}+x_{1}^{(1)}+\ldots+x_{p}^{(1)}}{p+1}, \cdots, \frac{x_{0}^{(n)}+\mathbf{x}_{1}^{(n)}+\cdots+\mathbf{x}_{p}^{(n)}}{p+1}\right)
$$

divides the median $x_{p} x_{\rho-1}^{*}$ into the ratio

$$
\frac{\overline{x_{p} x_{p}^{*}}}{\overline{x_{p}^{*} x_{p-1}^{*}}}=\frac{p}{1}
$$

The same argument shows that x_{p}^{*} divides the medians from the remaining p vertices of the p-cell in the same ratio. Hence, x_{p}^{*} lies on all the medians of the p-cell and the theorem is proved.
II.8.4. The two-dimensional case of the following theorem was proved on pages $43-48$. The generalization to n-dimensions is analogous to the two-dimensional case, but the proof is given here for completeness.
II.8.5. Theorem. Any $n+2$ points, $x_{1}, x_{2}, \ldots, x_{n+2}$ in n-dimensional Euclidean space, no $n+1$ of which lie in an $(n-1)-f l a t$, may be carried over into any $n+2$ points, $\bar{x}_{1}, \bar{x}_{2}, \ldots \bar{x}_{n+2}$, no $n+1$ of which lie in an (n-I)-flat, by one and only one transformation of the form
(II.8.6) $\bar{x}^{(j)}=\frac{a_{j, 1} x^{(1)}+a_{j, 2} x^{(2)}+\cdots+a_{j, n} x^{(n)}+a_{j, n+1}}{a_{n+1,1} x^{(1)}+a_{n+1,2} x^{(2)}+\cdots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}}$
$(j=1, \ldots, n)$, where

$$
\left|\begin{array}{llll}
a_{1,1} & a_{1,2} & \cdots & a_{1, n+1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n+1,1} & a_{n+1,2} & \cdots & a_{n+1, n+1}
\end{array}\right| \neq 0 .
$$

Proof. The proof will be carried through using homogeneous coordinates, as before. The transformation (II.8.6) will then be of the form

$$
\rho \bar{X}^{(j)}=\sum_{k=1}^{n+1} a_{j, k} X^{(k,} \quad(j=1, \ldots, n+1),
$$

Where the horogeneous coordinates of the point x are $\left(\mathrm{X}^{(1)}, \mathrm{X}^{(2)}, \cdots \mathrm{X}^{(n+1)}\right)$.

The projective transformation
$\rho \bar{X}^{(j)}=\sum_{k=1}^{n+1} a_{j, k} X^{(k)},(j=1, \ldots, n+1)$, carries over any given point x into a point \bar{x}, the position of \bar{x} depending on the values of $a_{j, k}$. The proof of the theorem will be complete if it is possible to find one and only one (except for a constant factor which may be introduced throughout) set of $n^{2}+3 n+3$ constants, (the $a_{j, k}$'s being $(n+1)$ of them, and the $n+2$ others being $\rho_{1}, \rho_{2}, \cdot ., \rho_{n+2}$-none of which is zerol which satisfy the $n^{2}+3 n+2$ equations

$$
\rho_{i} \bar{X}_{i}^{(j)}=\sum_{k=1}^{n+1} a_{j, k} x_{i}^{(k)},(1=1, \ldots, n+2 ; j=1, \ldots, n+1) .
$$

Since all the X's and X's are known, there are $n^{2}+3 n+2$ homogeneous linear equations in $n^{2}+3 n+3$ unknowns. Hence, there are always solutions different from zero, the number of independent ones depending on the rank of the coefficients of the unknowns. Transposing and rearranging the equations, the matrix of these equations becomes
(II.e. $)\left[\begin{array}{cccccc}\left(X_{i}^{(k)}\right) & (0) & \cdots & (0) & \left(-\delta_{i, k} \bar{X}_{i}^{(1)}\right) & (0) \\ (0) & \left(X_{i}^{(k)}\right) & \cdots & (0) & \left(-\delta_{i, k} \bar{X}_{i}^{(2)}\right) & (0) \\ \cdots & \cdots & \cdots & \cdots & \cdot & \cdots\end{array}\right]$
$(i=1, \ldots, n+1 ; k=1, \ldots, n+1)$, where the k's are column numbers and the i's are rov numbers of the submatrices. Notice that $\left(X_{n+2}^{(k)}\right)$ is a row matrix with $\mathrm{n}+1$ elements.

Since the points x_{1}, \ldots, x_{n+2} are all distinct and no $n+1$ lie in an ($n-1$)-flat, there are $n+1$ constants, c_{i}, none of which is zero, such that

$$
\sum_{i=1}^{n+1} c_{i} x_{i}^{(k)}+x_{n+2}^{(k)}=0, \quad(k=1, \ldots, n+1) .
$$

Adding to the $\left(n^{2}+2 n+2\right)$ th row c_{l} times the ith row, $(1=1, . ., n+1)$; adding to the $\left(n^{2}+2 n+3\right)$ th row c_{i} times the ($\left.n+1+i\right)$ th row, $(i=1, . ., n+1)$; etc.; until finally, ading to the last (the $\left(n^{2}+3 n+2\right)$ th) row c_{i} times the $\left(n^{2}+n+1\right)$ th row, ($i=1, \ldots, n+1$), (II.8.7) becomes

$(i=1, \ldots, n+1 ; k=1, \ldots, n+1)$, where the k 's stand for the colum numbers and the 1 's stand for the row numbers. (Notice that $\left(-X_{n+2}^{(i)}\right)$ is a column matrix of $n+1$ elements.)

Deleting the last column, the determinant of the matrix of the remaining columns is easily calculated to be

$$
D_{\left(n^{2}+3 n+3\right)}=(-1)^{(n+1}\left(\prod_{i=1}^{n+1} e_{i}\right)\left|X_{i}^{(k)}\right|^{n+1}\left|\bar{X}_{i}^{(k)}\right|
$$

This is different from zoro since the x 's and the \bar{x} 's are distinct and no $n+1$ 1ie in an ($n-1$)-flat. Alson by Theorem II.2.6, ρ_{n+2} is proportional to $D_{\left(n^{2}+3 n+3\right)}$, and hence is different from zero.

A similar situation is found to be true for $D_{\left(n^{2}+3 n+2\right)}$ * $D_{\left(n^{2}+2 n+2\right)}$.

Hence, $\rho_{i}=0,(1=1, \ldots, n+2)$; therefore, one solution to the equations has been found and it is the only independent one since the rank of the matrix of the equations is $\left(n^{2}+3 n+2\right)$, one less than the number of unknowns. The theorem is therefore proved.
11.8.9. Lemme. Let x_{0}, \ldots, x_{n} be $n+1$ linearly independent points in a convex region E of $R^{(n)},(n \geqslant 2)$, which form the vertices of an n-cell. Let x^{*} be the intersection of the medians of the n-cell. Let G: $g^{(i)}(x),(1=1, \ldots, n)$, be a transformation defined in E which is continuous, one-tomene and carries p-flats into p-flats (p fixed; $1 \leqslant p \leqslant n-1$), and which furthermore leaves the points $x_{0}, x_{1}, \ldots, x_{n}, x^{*}$ fixed. Then G is the identity transformation.

Proof. It should first be noted that since p-flats map into p-flats (p fixed; $1 \leqslant p \leqslant n-1$), then p-flats map into p-flats for all $p(1 \leqslant p \leqslant n-1)$ by Remark II.6.25.

The proof of the lemma is by induction. The lemma has already been proved for $n=2$. (Lemma II.7.2). Suppose $n=3$. Let x_{0}, x_{1}, x_{2}, and x_{3} be the vertices of a tetrahedron, $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$, in E and let x^{*} be the intersection of its medians. Since these points remain fixed and since straight lines map into straight lines, (hence faces of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ map into faces of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$, by Theorem II.6.22), then the intersection of the median from any vertex with the opposite face must also remain fixed. This point is the intersection of the medians of that face. Since the theorem is true for $n=2$, all the points of that face remain fixed under G. The same argument applied to the remaining faces shows that every point on the boundary of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ remains
fixed. Let x be any point interior to $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$. Let $x^{\prime \prime}$ and $x^{\prime \prime}$ be two points of the boundary of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ not collinear with x. Each of the two distinct lines through $\overline{x^{\prime} x}$ and $\overline{x^{\prime \prime} x}$ intersects the boundary of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ in two fixed points, by Theorem II.6.19, and therefore must map into themselves. Hence their intersection x, must remain fixed as the intersection of two fixed lines. Hence, since x was any point on the interior of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right), G$ maps every point of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ into itself. Let $x^{* *}$ be any point of E not in $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ and let x^{\prime} and $x^{\prime \prime}$ be two points interior to $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$ which are not collinear with $\mathrm{x}^{* \%}$. Two such points exist by Theorem II.6.21. Since E is convex, the points x^{\prime} and $x^{\prime \prime}$ can be joined to $x^{* *}$ by two distinct straight lines, each of which must contain at least two fixed points of $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$. Hence, these two lines must map into themselves. Consequently, $x^{* *}$ must map into itself as the intersection of two fixed lines. Since $x^{*} \%$ was any point of E not in $\Delta\left(x_{0} x_{1} x_{2} x_{3}\right)$, then it has been shown that every point of E maps into itself under G, and hence G is the Identity transformation, proving the lemma for $n=3$. Suppose the lemma is true for $n \leqslant k$. Let $n=k+1$, Let $x_{0}, x_{1} \ldots, \ldots x_{k+1}$ be $k+2$ inearly independent points of E in $R^{(k+1)}$ which form the vertices of a $(k+1)$-cell, $\Delta \mathbf{x}_{k+1}$. Let x^{*} be the intersection of the medians of Δx_{k+1}. By hypothesis all these points remain
fixed under G. Since straight lines map into straight lines, then all the m-cell faces ($0 \leqslant m \leqslant k$) must map into themselves by Theorem II. 6.22. Hence the point of intersection of the median from any vertex of Δx_{k+1} to the opposite k-cell must remain fixed under G. But this point of Intersection is the intersection of the medians of that $k-c e l l$ face. Since the lemma is true for $n=k$, by the Induction hypothesis, every point of that k-cell pacs remains fixed under G. Repeating the argument for the remaining k-cell faces of the $(k+1)$-cell, it is seen that every point of the boundary of the $(k+1)-\operatorname{cell}, \Delta x_{k+1}$, remains fixed under G.

Let x be any point interior to $A X_{k+1}$, Let x^{\prime} and $x^{\prime \prime}$ be any two boundary points of Δx_{k+1} not collinear with x. Each of the two distinct lines through $\overline{x^{7} x}$ and $\overline{x^{11} x}$ intersect the boundary of Δx_{k+1} in exactiy two fixed points, and therefore must remain fixed. Hence, x remains fixed as the intersection of two fixed lines. Since x was any point interior to Δx_{k+1}, then every point of the $(k+1)-\operatorname{cel} 1, \Delta X_{k+1}$, remains fixed under the transm formation G.

Let $x^{* *}$ be any point of E not in Δx_{K+1}, and Let $x^{\prime \prime}$ and $x^{\prime \prime}$ be two points interior to Δx_{k+1}, which are not collinear with $x^{* *}$. This is possible by Theorem II.6.21. Since E 1s convex, the points x^{\prime} and $X^{\prime \prime}$ can be Joined to $x^{* *}$ by two distinct lines, each of which must contain at least two fixed points of Δx_{k+1}. Hence, these
two lines must map into themselves. Consequently, the point $x^{* *}$ must map into itself as the intersection of two fixed lines, Since $x^{* *}$ was any point of E not in Δx_{k+1}, it has been proved that every point of E maps into itself, and G is the identity transformation. This completes the induction and the proof of the theorem.
II.8.10. Theorem. Let $\mathrm{F}: \mathrm{f}^{(i)}(\mathrm{x}),(i=1, \ldots, n)$, be a continuous, one-to-one mapping defined on a convex region E in $\mathrm{R}^{(n)}$, which is such that p-flats map into p-flats, (p fixed; $0<p \leqslant n-1$). Then F is of the form
(II.8.1I) $\begin{array}{r}F: f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+\ldots+a_{i, n} x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(1)}+\ldots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}}, \\ (i=1, \ldots, n),\end{array}$
where

$$
\left|\begin{array}{llll}
a_{1,1} & a_{1,2} & \cdots & a_{1, n+1} \\
\cdots & \cdots & \cdots & \cdot \\
a_{n+1,1} & a_{n+1,2} & \cdots & a_{n+1, n+1}
\end{array}\right| \neq 0
$$

Proof. By Femark II.6.25, p-flats map into p-flats for all $\mathrm{p}(\mathrm{I} \leqslant \mathrm{p} \leqslant \mathrm{n}-1)$. Let $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be $\mathrm{n}+1$ linearly independent points of E which form the vertices of an n-cell, Δx_{n}. Let $x^{\prime \prime}$ be the intersection of the medians of Δx_{n}. Under the mapping F, the vertices of Δx_{n} map into the $n+1$ Inearly independent points, $F\left(x_{0}\right), \ldots, F\left(x_{n}\right)$, which
form the vertices of an $n-c e l l, \Delta F_{n}$. This is true because F takes k-cell faces of Δx_{n} into distinct k-cell faces of $\Delta F_{n}(0 \leq k \leq n-1)$, by Theorem IT.6.22. The point $F\left(x^{*}\right)$, the image of x^{*}, does not 11 e in any k-cell face of $\Delta F_{n},(0 \leqslant k \leqslant n-1)$, since if it did, the mapping would not be one-to-one.

By Theorem II.8.5 there is one and only one

 transformation of the type$$
\begin{array}{r}
F_{1}: x^{(i)}=\frac{\alpha_{i, 1} f^{(1)}(x)+\cdots+\alpha_{i, n} f^{(n)}(x)+\alpha_{i, n+1}}{\alpha_{n+1,} f^{(1)}(x)+\cdots+\alpha_{n+1, n} f^{(n)}(x)+\alpha_{n+1, n+1}}, \tag{II.8.12}\\
(1=1, \ldots, n),
\end{array}
$$

where

$$
\left|\begin{array}{cccc}
\alpha_{1,1} & \alpha_{1,2} & \cdots & \cdot \alpha_{1, n+1} \\
\bullet & \bullet & \cdot & \cdot \\
\alpha_{n+1,} & \alpha_{n+1,2} & \cdot & \cdot \alpha_{n+1, n+1}
\end{array}\right| \neq 0,
$$

which carries the points $F\left(x_{0}\right), \ldots\left(x_{n}\right)$, and $F\left(x^{*}\right)$ into the points $x_{0}, x_{1}, \ldots, x_{n}$ and x^{*} respectively. The transformation F_{1} is continuous, one-to-one and carries straight lines into straight lines. Consider the transformation $F_{1} F$. This transformation is continuous, one-to-one, carries stralght lines into straight lines, and furthermore leaves the points x_{0}, \ldots, x_{1}, and x^{*} fixed. Hence, by Lemma II. $8,9, F, F$ is the identity transformation. Therefore $F=F^{-1}$, which is of the form
(II.8.11). This proves the theorem.
II. 8.13. Remark. It has been pointed out several times before that the transformations of the form (II.8.11) are one-to-one, continuous, and carry straight lines into straight lines (hence p-flats into p-flats, ($0<p \leqslant n-1$)). Conversely, it has been shown that the class of transformations which are continuous, one-to-one, and carry $p-f l a t s$ into $p-f l a t s(p f i x e d ; 1 \leqslant p \leqslant n-1)$, are the linear Iractional transformations of the form (II.8.11). Thus, one must conclude that the precise class of transformations which are continuous, one-to-one and mep p-flats into p -flats (p fixed; $1 \leqslant p \leqslant n-1$) are the Inear fractional transformations.

GHAPTER III

THE CHARACTERIZATION OF A CLASS OF DIFFERENTIABLE FUNGTIONS
III.1. INTRODUCTION
III.1.1. In this chapter the generalized derivatives defined and discussed in Chapter I will again be the main topic of discussion. It will be shown that the precise class of transformations, F: $f(x),(1=1, \ldots, n)$, which have a non-zero derivative, D F, with respect to the class of increments I, is the class of linear fractional transformations:

$$
\begin{aligned}
& \text { (III.1.2) } F: f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+\ldots+a_{i, n} x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(1)}+\ldots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}}, \\
& (i=1, \ldots, n),
\end{aligned}
$$

where

$$
\left|\begin{array}{llll}
\mathbf{a}_{1,1} & \mathbf{a}_{1,2} & \cdots & \mathbf{a}_{1, n+1} \\
\bullet & \cdots & \cdots & \cdots \\
\mathbf{a}_{n+1,1} & \mathbf{a}_{n+1,2} & \cdots & \mathbf{a}_{n+1, n+1}
\end{array}\right| \neq 0
$$

This will follow from the results of Chapter II when it has been shown that the transformation F, having a nonzero derivative, is continuous, one-to-one, and takes straight lines into straight lines.

The two-dimensional case will be discussed

 first to give a clearer understanding of what is taking place. The results will then be extended to n-dimensions. In the next section $x=\left(x^{(1)}, x^{(2)}\right)$.III.2. THE CHARACIERIZATION FOR THE 2-DIMENSIONAL CASE
III.2.1. Before the main theorem of this section can be proved, several preliminary theorems must be proved. These theorems give some important properties of the generalized derivatives with respect to the class of increments I.
III.2.2. Theorem. Let $F f^{(i)}(x),(1=1$, 2) be defined on an open set E in $R^{(2)}$ and let $D_{X} F$ exist and have the value $\alpha \neq 0$ at a point x_{0} in E. The F is continuous at x_{0}. Proof. Since it has been assumed that $\left.D_{x} F\right|_{X_{0}}=d$, then for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\text { (III.2.3) } \quad\left|\frac{\Delta\left(F: x_{0} x_{1} x_{2}\right)}{\Delta\left(x_{0} x_{1} x_{2}\right)}-d\right|=\left|\frac{\Delta F}{\Delta x}-d\right|<\epsilon / 3
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(1=1,2)$. In particular, choose $\epsilon=\epsilon^{*}$ so that $\epsilon^{*}<|d|$. Then there is a δ^{*} such that inequality (III.2.3) holds.

By theorem I. $5.8,\left.D_{X} F\right|_{X_{0}}$ can be calculated by taking the limit of the ratios, $\Delta\left(F: x_{1} x_{2} x_{3}\right) / \Delta\left(x_{1} x_{2} x_{3}\right)$, where $\Delta\left(x_{1} x_{2} x_{3}\right)$ is chosen to satisfy the conditions of the hypotheses of Theorem I.5.8. Choose three points, x_{1}, x_{2}, and x_{3} in $N_{\delta^{x}}\left(x_{0}\right)$ so that x_{0} is interior to
$\Delta\left(x_{1} x_{2} x_{3}\right)$ and keep these points fixed. For these three points

$$
\left|\frac{\Delta\left(F: x_{1} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}-d\right|<\epsilon^{x}
$$

since these three points were chosen to satisfy the hypotheses of Theorem 1.5.8.

The 2-cells, $\Delta\left(x_{0} x_{1} x_{2}\right), \Delta\left(x_{1} x_{0} x_{3}\right)$, and $\Delta\left(x_{0} x_{2} x_{3}\right)$, all have two-dimensional volume different from zero. Furthermore, since relation (III.2.3) holds for each of these increments with $\epsilon / 3<|d|$, and since $d \neq 0$, then $\Delta\left(F: x_{0} x_{1} x_{2}\right), \Delta\left(F: x_{1} x_{0} x_{3}\right)$, and $\Delta\left(F: x_{0} x_{2} x_{3}\right)$ must a11 be different from zero.

Consider the quantities

$$
\begin{aligned}
& \left|\frac{f^{(i)}(x)-f^{(i)}\left(x_{0}\right)}{\Delta\left(F: x_{0} x_{1} x_{2}\right)}\right|, \\
& \left|\frac{f^{(i)}\left(x_{k}\right)-f^{(i)}\left(x_{0}\right)}{\Delta\left(F: x_{1} x_{0} x_{3}\right)}\right|, \\
& \left|\frac{f^{(i)}\left(x_{l}\right)-f^{(i)}\left(x_{0}\right)}{\Delta\left(F: x_{0} x_{2} x_{3}\right)}\right|,
\end{aligned}
$$

where $(1=1,2),(j=1,2),(k=1,3)$, and $(l=2,3)$. These quantities are all fixed, since all the points involved are fixed points. Hence, there is a largest one, which will be denoted by S.

Let x^{\prime} be a variable point of $N_{f^{*}}\left(x_{0}\right)$, which for the moment, is restricted to lie off the lines containing the segments $\overline{x_{0} x_{1}}$, and $\bar{x}_{0} x_{2}$, Relation (III. 2.3) holds for $\Delta\left(x_{0} x^{\prime} x_{2}\right)$ and $\Delta\left(x_{0} x_{1} x^{\prime}\right)$ and their images.

Now given a sufficiently small $\epsilon>0$ (in perticular, for $\epsilon^{(} \leqslant \epsilon^{*}$), there exists $2 \delta_{1}>0$ such that

$$
\left|\Delta\left(F: x_{0} x^{i} x_{2}\right)\right|<\epsilon 1 / 2 S
$$

whenever $\left\|x_{0} x^{t}\right\|<\delta_{1}$. For suppose this assertion is false. Then for fixed $\epsilon^{*} \leqslant \epsilon^{*}$ and for every $\delta>0$, there is at least one point $x^{*} \in \mathbb{N}_{\delta}\left(x_{0}\right)$ such that

$$
\left|\Delta\left(F: x_{0} x^{*} x_{2}\right)\right| \geqslant \in 1 / 2 S .
$$

As δ is allowed to approach zero, $\Delta\left(x_{0} x^{\prime} x_{2}\right)$ approaches zero, since $\Delta\left(x_{0} x^{\prime} x_{2}\right)$ varies directly as $\left\|x_{0} x^{\prime}\right\|, x_{0}$ and x_{2} being fixed points. Then, as δ approaches zero, the difference quotient

$$
\frac{\Delta\left(F: x_{0} x^{\prime} x_{2}\right)}{\Delta\left(x_{0} x^{\prime} x_{2}\right)}
$$

becomes arbitrarily large for the points x^{\prime} in $\mathbb{N}_{\delta}\left(x_{0}\right)$ such that $\left|\Delta\left(F: X_{0} x^{\prime} x_{i}\right)\right| \geqslant \epsilon / 2 S$. For such points, relation (III.2.3), with $\epsilon^{\prime} \leqslant \epsilon^{*}$, cannot hold, contradicting the assumption that $\left.D_{x} F\right|_{x_{0}}=d$.

Similarly, if ϵ is any fixed positive number less than or equal to ϵ^{*}, there must exist a $\delta_{2}>0$ such that

$$
\left|\Delta\left(F: x_{0} x_{1} x^{\prime}\right)\right|<\epsilon^{1 / 2 S}
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta_{2}, x^{\prime}$ in the restricted region. Let $\delta^{\prime}=\min \left(\delta_{1}, \delta_{2}\right)$. Then

$$
\left|\Delta\left(F: x_{0} x^{\prime} x_{2}\right)\right|<\epsilon 1 / 2 S \text { and }\left|\Delta\left(F: x_{0} x, x^{\prime}\right)\right|<\epsilon^{\prime} / 2 S
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta^{\prime}, x^{\prime}$ remaining in the restricted region.

Now
(III.2.4) $\quad \Delta\left(F: x_{0} x^{\prime} x_{2}\right)=\frac{1}{2!}\left|\begin{array}{lll}f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & 1 \\ f^{(1)}\left(x^{\prime}\right) & f^{(2)}\left(x^{\prime}\right) & 1 \\ f^{(1)}\left(x_{2}\right) & f^{(2)}\left(x_{2}\right) & 1\end{array}\right|$
and
(III.2.5) $\quad \Delta\left(F: x_{0} x_{1} x^{\prime}\right)=\frac{1}{2!}\left|\begin{array}{lll}f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & 1 \\ f^{(1)}\left(x_{1}\right) & f^{(2)}\left(x_{1}\right) & 1 \\ f^{(1)}\left(x^{\prime}\right) & f^{(2)}\left(x^{\prime}\right) & 1\end{array}\right|$.

Subtracting the first row from the remaining rows and expanding by the last column in each case, (III.2.4) and (III.2.5) become
(III.2.6) $\Delta\left(F: x_{0} x^{\prime} x_{2}\right)=\frac{1}{2!}\left|\begin{array}{l}\mathbf{f}^{(1)}\left(x^{\prime}\right)-\mathbf{f}^{(1)}\left(x_{0}\right) f^{(2)}\left(x^{\prime}\right)-\mathbf{f}^{(2)}\left(x_{0}\right) \\ \left.\mathbf{f}_{2}\right)-\mathbf{f}^{(1)}\left(x_{0}\right) \mathbf{f}^{(2)}\left(x_{2}\right)-\mathbf{f}^{(2)}\left(x_{0}\right)\end{array}\right|$
and
(III.2.7) $\Delta\left(F: x_{0} x_{1} x^{\prime}\right)=\frac{1}{2!}\left|\begin{array}{l}f^{(1)}\left(x_{1}\right)-f^{(1)}\left(x_{0}\right) f^{(1)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right) \\ f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right) f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\end{array}\right|$
respectively. Expanding, (III.2.6) and (III.2.7) become

$$
\begin{gathered}
\text { 2: } \Delta\left(F: x_{0} x^{\prime} x_{2}\right)= \\
{\left[f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)\right]\left[f^{(2)}\left(x_{2}\right)-f^{(2)}\left(x_{0}\right)\right]-\left[f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\right]\left[f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{0}\right)\right]}
\end{gathered}
$$

and

$$
\begin{gathered}
2!\Delta\left(F: x_{0} x_{1} x^{\prime}\right)= \\
\left.-\left[f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)\right]\left[f^{(2)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right)\right]+f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\right]\left[f^{(1)}\left(x_{1}\right)-f^{(1)}\left(x_{0}\right)\right]
\end{gathered}
$$

respectively.
It is possible to solve for $f^{(1)}\left(x^{1}\right)-f^{(1)}\left(x_{0}\right)$ and $f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)$ provided the determinant of their coefficients in the above two equations is not zero. This determinant is

$$
\begin{aligned}
D & =\left|\begin{array}{cc}
f^{(2)}\left(x_{2}\right)-f^{(2)}\left(x_{0}\right) & -\left[f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{0}\right)\right. \\
-\left[f^{(2)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right)\right] & f^{(1)}\left(x_{1}\right)-f^{(1)}\left(x_{0}\right)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
f^{(2)}\left(x_{2}\right)-f^{(2)}\left(x_{0}\right) & f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{0}\right) \\
f^{(2)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right) & f^{(1)}\left(x_{1}\right)-f^{(1)}\left(x_{0}\right)
\end{array}\right| \\
& =\left|\begin{array}{lll}
f^{(2)}\left(x_{0}\right) & f^{(1)}\left(x_{0}\right) & 1 \\
f^{(2)}\left(x_{2}\right) & f^{(1)}\left(x_{2}\right) & 1 \\
f^{(2)}\left(x_{1}\right) & f^{(1)}\left(x_{1}\right) & 1
\end{array}\right| \\
& =\left|\begin{array}{lll}
f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & 1 \\
f^{(1)}\left(x_{1}\right) & f^{(2)}\left(x_{1}\right) & 1 \\
f^{(1)}\left(x_{2}\right) & f^{(2)}\left(x_{2}\right) & 1
\end{array}\right| \\
& =2: \Delta\left(F: x_{0} x_{1} x_{2}\right) \neq 0 .
\end{aligned}
$$

Hence it is possible to solve for $f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)$ and $f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)$ in the expansions of (III. 2.6) and (III.2.7). Solving these two equations, one obtains

$$
f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)=\frac{\left.2!\left\lvert\, \begin{array}{l}
\Delta\left(F: x_{0} x^{\prime} x_{2}\right) \\
\Delta\left(F: x_{0} x_{1} x^{\prime}\right)
\end{array} f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{1}\right)-f_{0}\right.\right) \mid\left(x_{0}\right)}{2!\Delta\left(F: x_{0} x_{1} x_{2}\right)}
$$

and

$$
f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)=\frac{2!\left|\begin{array}{cr}
f^{(2)}\left(x_{2}\right)-f^{(2)}\left(x_{0}\right) & \Delta\left(F: x_{0} x^{\prime} x_{2}\right) \\
-\left[f^{(2)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right)\right] & \Delta\left(F: x_{0} x_{1} x^{\prime}\right)
\end{array}\right|}{2!\Delta\left(F: x_{0} x_{1} x_{2}\right)}
$$

Now if $\left\|x_{0} x^{\prime}\right\|<\delta^{\prime}, x^{\prime}$ in the restricted region, then

$$
\begin{aligned}
& \left|f^{(1)}\left(x^{1}\right)-f^{(1)}\left(x_{0}\right)\right|< \\
& \quad \frac{\left|f^{(1)}\left(x_{1}\right)-f^{(1)}\left(x_{0}\right)\right| \cdot \epsilon / 2 S+\left|f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{0}\right)\right| \cdot \epsilon^{1} / 2 S}{\left|\triangle\left(F: x_{0} x_{1} x_{2}\right)\right|} \\
& \quad<\frac{2 L_{1} \in}{2 S}=L_{1} \in 1 / S,
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\right|< \\
& \quad \frac{\left|f^{(2)}\left(x_{2}\right)-f^{(2)}\left(x_{0}\right)\right| \cdot \epsilon / 2 S+\left|f^{(2)}\left(x_{1}\right)-f^{(2)}\left(x_{0}\right)\right| \cdot \epsilon / / 2 S}{\left|\Delta\left(F: x_{0} x_{1} x_{2}\right)\right|} \\
& \quad<\frac{2 L_{2} \epsilon^{\prime}}{2 S}=L_{2} \in^{\prime} / S,
\end{aligned}
$$

where

$$
L_{1}=\max \left\{\frac{\left|f^{(1)}\left(x_{i}\right)-f^{(1)}\left(x_{0}\right)\right|}{\left|\Delta\left(F: x_{0} x_{1} x_{2}\right)\right|}\right\}
$$

and

$$
L_{2}=\max \left\{\frac{\left|f^{(2)}\left(x_{i}\right)-f^{(z)}\left(x_{0}\right)\right|}{\left|\Delta\left(F: x_{0} x_{1} x_{2}\right)\right|}\right\},
$$

$$
(1=1,2)
$$

In exactly the same way, restricting x^{\prime} to remain off the lines containing $\bar{x}_{0} x_{1}$ and ${\overline{x_{0}}}_{3}$, it can be shown that for every sufficiently small $\epsilon^{\prime}>0$ there exists a $\delta^{\prime \prime}>0$ such that

$$
\left|f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)\right|<L_{3} \in 1 / S
$$

and

$$
\left|f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\right|<L_{4} \in 1 / S,
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta^{\prime \prime}, x^{\prime \prime}$ in this restricted region, and where

$$
L_{3}=\max \left\{\frac{\left|f^{(1)}\left(x_{j}\right)-f^{(1)}\left(x_{0}\right)\right|}{\left|\Delta\left(F: x_{1} x_{0} x_{3}\right)\right|}\right\}
$$

and

$$
\begin{aligned}
& \quad I_{4}=\max \left\{\frac{\left|f^{(2)}\left(x_{j}\right)-f^{(2)}\left(x_{0}\right)\right|}{\mid \Delta\left(F: x_{i} x_{0} x_{j} \mid\right.}\right\}, \\
& (j=1,3)
\end{aligned}
$$

Finally, letting x^{*} remain off the lines containing $\bar{x}_{0} \bar{x}_{2}$ and $\bar{x}_{0} \bar{x}_{3}$, for every sufficiently small $\in^{\prime}>0$ there exists a $\delta^{\prime \prime \prime}>0$ such that

$$
\left|f^{(1)}\left(x^{1}\right)-f^{(1)}\left(x_{0}\right)\right|<L_{5} \in 1 / s
$$

and

$$
\left|f^{(2)}\left(x^{\prime}\right)-f^{(2)}\left(x_{0}\right)\right|<L_{6} \in 1 / s,
$$

whenever $\left\|x_{0} x^{t}\right\|<\delta^{\prime \prime \prime} \cdot x^{\prime}$ in this restricted region, and where

$$
L_{5}=\max \left\{\frac{\left|f^{(1)}\left(x_{k}\right)-f^{(1)}\left(x_{0}\right)\right|}{\left|\Delta\left(F: x_{0} x_{2} x_{3}\right)\right|}\right\}
$$

and

$$
L_{6}=\max \left\{\frac{\left|f^{(2)}\left(x_{k}\right)-f^{(2)}\left(x_{0}\right)\right|}{\left|\Delta\left(F: x_{0} x_{2} x_{3}\right)\right|}\right\},
$$

$(k=2,3)$.
Choose $\delta^{*}=\min \left(\delta^{\prime}, \delta^{\prime \prime}, \delta^{\prime \prime \prime}\right)$. Since $S \geqslant L_{i}$,
(i = 1, . . . 6), it follows that for every sufficiently small $\epsilon>0$ there is a $\delta^{*}>0$ such that

$$
\left|f^{(1)}\left(x^{\prime}\right)-f^{(1)}\left(x_{0}\right)\right|<\epsilon^{\prime}
$$

and

$$
\left|f^{(2)}\left(x^{1}\right)-f^{(2)}\left(x_{0}\right)\right|<\epsilon^{\prime}
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta^{*}$, with no other restriction on x^{*}. Hence $f^{(1)}(x)$ and $f^{(2)}(x)$ are both continuous at x_{0} proving the theorem.
III.2.8. Lemma. Let F : $f^{(i)}(x),(1=1,2)$, be defined on a convex region E in $R^{(2)}$ and let $D_{x} F$ exist and be different from zero in E. Let x_{0} be a point of E. Then in a sufficiently small neighborhood of x 。 straight lines through x_{o} map into straight lines through $F\left(x_{o}\right)$, the image of x_{o} under F.

Proof. The transformation F is continuous in E by Theorem III.2.2, since $D_{x} F \neq 0$ at each point of E. Let $\left.D_{x} F\right|_{x_{0}}=d$. Let $\epsilon>0$ be given such that $\epsilon<|d|$. Since $\left.D_{x} F\right|_{x_{0}}=d \neq 0$, there exists a $\delta_{0}>0$ such that
(III.2.9) $\quad\left|\frac{\Delta\left(F: x_{0} x_{1} x_{2}\right)}{\Delta\left(x_{0} x_{1} x_{2}\right)}-d\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta_{0},(i=1,2), \Delta\left(x_{0} x_{1} x_{2}\right)$ in the class I_{1}. It will be shown that in $N \delta_{0}\left(x_{0}\right)$, straight lines through x_{0} map into straight lines.

Suppose the theorem is ralse. Then there is a straight line, L, through x_{0} such that $L \cap N \delta_{\delta_{0}}\left(x_{0}\right)$ does not map into a straight ine.

In $N_{\delta_{0}}\left(x_{0}\right)$, no point other than x_{0} maps into $F\left(x_{0}\right)$; for if $x_{i} \neq x_{0}$ maps into $F\left(x_{0}\right)$, then x_{1}^{\prime} and x_{0} together with a suitably chosen point x_{2}^{\prime} would map into on increment of zero area. For $\Delta\left(x_{0} x_{1}^{\prime} x_{2}^{\prime}\right)$, relation (III.2.9), with $\epsilon<|d|$, would not hold, contradicting the assumption that $\left.D_{x} F\right|_{x_{0}}=d$.

Let $x_{1} \neq x_{0}$ be a point on L in $N_{\delta_{0}}\left(x_{0}\right)$. The point x_{1} maps into $F\left(x_{1}\right) \neq F\left(x_{0}\right)$. Since the theorem is false there is a point $F\left(x_{2}\right)$, not on the line containing the segment $\overline{F\left(x_{0}\right) F\left(x_{1}\right)}$, which is the image of at least one point x_{2} on LI in $N_{\delta_{0}}\left(x_{0}\right)$. Let x be a variable point of $N_{\delta_{0}}\left(x_{0}\right)$, which, together with x_{0} and x_{1}, forms an increment of I_{1}. Let x approach x_{2}. Since F is continuous in $\mathrm{N}_{\delta_{0}}\left(\mathrm{x}_{0}\right), \mathrm{F}(\mathrm{x})$ approaches $\mathrm{F}\left(\mathrm{x}_{2}\right)$. Hence, $\Delta\left(x_{0} x_{1} x\right)$ approaches $\Delta\left(x_{0} x_{1} x_{2}\right)=0$ as x approaches x_{2}; but $\Delta\left(F: x_{0} x_{1} x\right)$ approaches $\Delta\left(F: x_{0} x_{1} x_{2}\right) \neq 0$, since $F\left(x_{0}\right), F\left(x_{1}\right)$ and $F\left(x_{2}\right)$ are not collinear. Hence the ratio

$$
\frac{\Delta\left(F: x_{0} x, x\right)}{\Delta\left(x_{0} x, x\right)}
$$

becomes arbitrarily large as x approaches x_{2}. Relation (III.2.9) does not then hold, contradicting the assumption that $\left.D_{x} F\right|_{x_{0}}=d$.

Hence, one must conclude that in $\mathbb{N}_{\delta_{0}}\left(x_{0}\right)$, straight Ines through x_{0} map into straight lines through $F\left(x_{0}\right)$.
III.2.10. Theorem. Let $F: f^{(i)}(x),(i=1,2)$, be defined on a convex region E in $R^{(2)}$ and let $D_{x} F$ exist and be different from zero in E. Then straight lines in E map into straight lines.

Proof. Let L be a line defined in E and let x_{0} be a point of L $\cap E$. By Lemma III. 2.8 there is a $\delta_{0}>0$ such that $L \cap N_{\delta_{0}}\left(x_{0}\right)$ maps into a straight line, L'. Let x^{*} be any other point on $L \cap E$. If it can be shown that x^{*} maps into L', the theorem will be proved.

If $\left\|x_{0} x^{*}\right\|<\delta_{0}$, the theorem is already proved. If $\left\|x_{0} x^{*}\right\|=\delta_{0}$, since x^{*} is in E, Lemma III. 2.8 applies to x^{*} and there is a $\delta^{*}>0$ such that $L \cap N_{\delta_{*}}\left(x^{*}\right)$ maps into a straight line. It must map into L' since $N_{\delta_{0}}\left(x_{0}\right)$ and $N_{\delta_{n}}\left(x^{*}\right)$ have points of L in common. In this case the theorem is proved.

If $\left\|x_{0} x^{*}\right\|>\delta_{0}$, let x, be the point of L between x_{0} and x^{*} such that $\left\|x_{0} x_{\|}\right\|=\delta_{0}$. The point x_{1} is a point of E and hence, by Lemma III.2.8, there is a $\delta_{1}>0$ such that $L \cap N_{\delta_{1}}\left(x_{1}\right)$ maps into a straight line, which is $L \prime$ since $N_{\delta_{0}}\left(x_{0}\right)$ and $N_{\delta_{1}}\left(x_{1}\right)$ contain common points of L. If x^{*} is in $N_{\delta_{1}}(x)$ the theorem is proved. If not, then repeat the above argument, choosing x_{2} to be the point of L between x_{1} and x^{*} such that $\left\|x_{1} x_{2}\right\|=\delta_{1}$. Then Lemma III. 2.8 can be applied to x_{2}, and there is a $\delta_{2}>0$ such that $\mathrm{L} \cap \mathrm{N}_{\delta_{2}}\left(x_{2}\right)$ maps into a straight line, which must be L^{\prime} since $N_{\delta_{2}}\left(x_{2}\right)$ and $N_{\delta_{1}}\left(x_{1}\right)$ contain common points of L. If
x^{*} is in $\mathrm{N}_{2}\left(\mathrm{x}_{2}\right)$ the theorem is proved. If not, continue in this manner until finally an x_{r} on L between x_{0} and x^{*} is reached such that there is a $\delta_{r}>0$ such that $L \cap N_{\delta_{r}}\left(x_{r}\right)$ maps into L^{\prime} and x^{*} is in $N \delta_{r}\left(x_{r}\right)$.

It seems possible that the δ_{i}^{\prime} s might become Increasingly smaller and the chosen centers of the $N_{\delta_{i}}\left(x_{i}\right)$'s might approach a limit point $x^{* N}$ of $L_{\text {, before }} x^{*}$ is reached. Concelvably, the above extension process could not be carried past x^{*}. But since $x^{3 *}$ is in E, Lemme III.2.8 applies to $x^{3 *}$, and there is a $\delta^{*}>0$ such that $L \cap N_{\delta^{*}}\left(x^{* 2}\right)$ maps into Lt. This neighborhood inciudes points of L which are beyond $x^{* *}$ (that is, between $x^{3 \%}$ and x^{*}); hence, the extension process can be carried beyond $x^{* *}$, and eventually x^{*} is reached and maps into L^{\prime}.
III.2.11. Lemme. Let F : $f^{(i)}(x),(1=1,2)$, be a mapping function defined on a convex region E in $R^{(2)}$, such that $D_{X} F$ exists and is difierent from zero in E_{*} Let x_{0} be a fixed point of E and let x_{1}, x_{2}, and x_{3} be three variable points of E such that $\Delta\left(x_{1} x_{2} x_{3}\right)$ is always in I, and such that x_{0} is always on the line joining x_{1} and x_{2}. Then

$$
\left.\mathbf{D}_{x} \mathbf{F}\right|_{X_{0}}=\lim _{\substack{x_{i} \rightarrow x_{0} \\ i=1,2,3}} \frac{\Delta\left(F: x_{1} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}
$$

Proof. Since $D_{x} F$ exists and is different from zero in E, the mapping is continuous and takes straight lines into straight Ilnes by Theorems III.2.2 and III. 2.10.

Let $\left.D_{x} F\right|_{x_{0}}=d$. Then for every $\epsilon>0$ there is a $\delta>0$ such that

$$
\left|\frac{\Delta\left(F: x_{0} x_{1} x_{2}\right)}{\Delta\left(x_{0} x_{1} x_{2}\right)}-d\right|<\epsilon / 2
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(i=1,2), \Delta\left(x_{0} x_{,} x_{2}\right)$ in I_{1}.
It must be shown that for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\frac{\Delta\left(F: x_{1} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}-d\right|<\epsilon
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(i=1,2,3)$, where $\Delta\left(x_{1} x_{2} x_{3}\right)$ is in I_{1}, and where x_{0} is always on the lIne between x, and x_{2}.

Let x_{1}, x_{2} and x_{3} be variable points such that the conditions of the hypothesis are satisfied. In this case, $\Delta\left(x_{0} x_{2} x_{3}\right)$ and $\Delta\left(x, x_{0} x_{3}\right)$ are in I_{1}. By Lemma I.5. 2

$$
\Delta\left(F: x_{1} x_{2} x_{3}\right)=\Delta\left(F: x_{0} x_{2} x_{3}\right)+\Delta\left(F: x_{1} x_{0} x_{3}\right)+\Delta\left(F: x_{1} x_{2} x_{0}\right)
$$

and

$$
\Delta\left(x_{1} x_{2} x_{3}\right)=\Delta\left(x_{0} x_{2} x_{3}\right)+\Delta\left(x_{1} x_{0} x_{3}\right)+\Delta\left(x_{1} x_{2} x_{0}\right)
$$

Since x_{0}, x_{1}, and x_{2} are collinear, then $\Delta\left(x_{1} x_{2} x_{0}\right)=0$. Also, since straight lines map into straight lines, then

$$
\begin{aligned}
& \Delta\left(F: x_{1} x_{2} x_{0}\right)=0 . \text { Hence, } \\
& \Delta\left(F: x_{1} x_{2} x_{3}\right)=\Delta\left(F: x_{0} x_{2} x_{3}\right)+\Delta\left(F: x_{1} x_{0} x_{3}\right)
\end{aligned}
$$

and

$$
\Delta\left(x_{1} x_{2} x_{3}\right)=\Delta\left(x_{0} x_{2} x_{3}\right)+\Delta\left(x_{1} x_{0} x_{3}\right) .
$$

Let $\epsilon>0$ be given. Then there is a $\delta>0$ such that

$$
\left|\frac{\Delta\left(F: x_{1} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}-d\right|=
$$

$$
\begin{aligned}
& \left|\frac{\Delta\left(x_{0} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\left\{\frac{\Delta\left(F: x_{0} x_{2} x_{3}\right)}{\Delta\left(x_{0} x_{2} x_{3}\right)}-d\right\}+\frac{\Delta\left(x_{1} x_{0} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\left\{\frac{\Delta\left(F: x_{1} x_{0} x_{3}\right)}{\Delta\left(x_{1} x_{0} x_{3}\right)}-d\right\}\right|< \\
& \left|\frac{\Delta\left(x_{0} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\right| \epsilon / 2+\left|\frac{\Delta\left(x_{1} x_{0} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\right| \epsilon / 2<\epsilon
\end{aligned}
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(1=1,2,3)$, and whenever the points x_{1}, x_{2}, and x_{3} satisfy the conditions of the hypothesis. This proves the lemma.
III.2.12. Remark. Since x_{0} is always on the Ine between x_{1}, and x_{2}, then

$$
\left|\frac{\Delta\left(x_{0} x_{2} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\right| \quad \text { and } \quad\left|\frac{\Delta\left(x_{1} x_{0} x_{3}\right)}{\Delta\left(x_{1} x_{2} x_{3}\right)}\right|
$$

are both less then or equal to one.
III.2.13. Remark. This lemma seems to be almost a special case of Theorem I.5.8. However, although the steps in the two proof's are similar, the hypotheses are not quite the same. The hypothesis that $D_{\gamma} F \neq 0$ is important to the last
lemme, for this fact implies that straight lines map into straight lines. From this fact, it follows that since $\Delta\left(x_{1} x_{2} x_{0}\right)=0$, then also $\Delta\left(F: x_{1} x_{2} x_{0}\right)=0$. Without this knowledge, the proof of Lemma III. 2.11 would not be possible.
III.2.14. Theorem. Let $F: f^{(2)}(x)$, $(1=1,2)$, be a mapping function defined on a convex region E in $\mathbb{R}^{(2)}$. Let $D_{x} F$ exist and be different from zero everywhere in E. Then the mapping in one-to-one.

Proof. By Theorems III.2.2 and III.2.10, F is continuous and maps straight lines into straight lines. It will be shown that every image point, $F\left(x_{0}\right)$, is the image of precisely one point, x_{o}, under the mapping F.

Suppose, on the contrary, that there is a point, $F\left(x_{0}\right)$, which is the image of two distinct points, x_{0} and x_{1}. Two situations may occur:

Case 1. The segment $\overline{X_{0} X_{1}}$ maps into the single point, $F\left(x_{0}\right)$. Suppose $\left.D_{x} F\right|_{x_{0}}=d$. Choose $\epsilon<|d|$. Then there exists a $\delta>0$ such that
(III.2.15)

$$
\left|\frac{\Delta\left(F: x_{0} x_{1} x_{2}\right)}{\Delta\left(x_{0} x_{1} x_{2}\right)}-d\right|<\epsilon
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(1=1,2), \Delta\left(x_{0} x_{1} x_{2}\right)$ in I_{1}. Let x_{2} be a point of E not on $\bar{x}_{0} x_{1}$. In every small neighborhood, $N_{\delta}\left(x_{0}\right)$, of x_{0}, the increment $\Delta\left(x_{0} x_{1}^{*} x_{2}^{*}\right)$, where x_{1}^{*} is on $\overline{x_{0} x_{1}}$, and x_{z}^{*} is on $\bar{x}_{0} x_{2}$, and both points are in $N_{\delta}\left(x_{0}\right)$, will
map into an increment of zero area. Then relation (III.2.15), with $\in\langle | d \mid$, cannot hold. This is a contradiction. Hence, it must be concluded that case 1 cannot occur.

Case 2. The segment $\overline{x_{0} x}$, maps into a line segment $\overline{F\left(x^{1}\right) F\left(x^{\prime \prime}\right)}$, where $F\left(x^{\prime}\right)$ is the image of at least one point x^{\prime} on $\bar{x}_{0} x_{1}$ and where $F\left(x^{\prime \prime}\right)$ is the image of at least one point $x^{\prime \prime}$ on $\bar{x}_{0} x_{1}$, and where $x^{\prime} \neq x^{\prime \prime}$. Without loss of generality, one may assume that x^{\prime} is between x_{0} and $x^{\prime \prime}$. $F\left(x_{0}\right)=F\left(x_{1}\right)$ is either an interior point of $\overline{F(x) F\left(x^{\prime \prime}\right)}$ or is an end point. Suppose $F\left(x_{0}\right) \neq F\left(x^{\prime \prime}\right)$. Then oither $F\left(x_{0}\right)=F\left(x^{\prime}\right)$ or $F\left(x_{0}\right)$ is an interior point of the interval.

Now every point x on $\bar{x}_{0} x_{1}$ can be written as

$$
x=\theta x_{1}+(1-\theta) x_{0}
$$

and x is a continuous, one-to-one function of θ. When $\theta=0, x=x_{0}$, and when $\theta=1, x=x_{1}$.

Let θ^{\prime} be the value of θ which ylelds x^{\prime} and let $\theta^{\prime \prime}$ be the value of θ which yielas $x^{\prime \prime}$. Then $\theta^{\prime}<\theta^{\prime \prime}$, since x^{\prime} is between x_{0} and $x^{\prime \prime}$.

Since $F(x)$ is a continuous function of x, it is also a continuous function of θ. Every point $F(x)$ on $\overline{F\left(x^{i}\right) F\left(x^{\prime \prime}\right)}$ can b e expressed
as

$$
F(x)=\varphi F\left(x^{\prime \prime}\right)+(1-\varphi) F\left(x_{0}\right),
$$

and $F(x)$ is a continuous, one-to-one function of φ. When

$$
\varphi=0, F(x)=F\left(x_{0}\right), \text { and when } \varphi=1, F(x)=F\left(x^{\prime \prime}\right), \text { and }
$$

conversely. By the work in Theorem II.6.6, φ is also a continuous function of $F(x)$. Hence, φ is a continuous Punction of θ, say $\varphi=\Phi(\theta)$.

When $\theta=0, F(x)=F\left(x_{0}\right)$, and hence $\varphi=\Phi(0)=0$. When $\theta=1, x=x_{1}, F(x)=F\left(x_{1}\right)=F\left(x_{0}\right)$, and $\varphi=0$ again. When $\theta=\theta^{\prime}, F(x)=F\left(x^{\prime}\right)$, and $\varphi=\Phi\left(\theta^{\prime}\right)=\varphi^{\prime}$. When $\theta=\theta^{\prime \prime}, F(x)=F\left(x^{\prime \prime}\right)$, and $\varphi=\Phi\left(\theta^{\prime \prime}\right)=\varphi^{\prime \prime}=1$.

Consider the closed interval $\left[x_{0}, x^{\prime}\right]$. This interval corresponds in a one-to-one manner with the closed interval $\left[0, \theta^{\prime}\right]$. Since $\Phi(\theta)$ is a continuous function of θ, φ takes on every value between 0 and φ^{\prime} at least once, as θ moves from 0 to θ^{\prime}. Hence $F(x)$ takes on every value between $F\left(x_{0}\right)$ and $F\left(x^{\prime}\right)$ at least once, as x goes from x_{0} to x^{\prime}.

Consider the closed interval $\left[x^{\prime}, x^{\prime \prime}\right]$. This corresponds in a one-tomone manner to the interval $\left[\theta, \theta^{\prime \prime}\right]$. Again, since $\Phi(\theta)$ is a continuous function of θ, ρ takes one every value botween φ^{\prime} and $\varphi^{\prime \prime}$ at least once, as θ goes from θ^{\prime} to $\theta^{\prime \prime}$. That is, $F(x)$ must take on every value on $F\left(x^{\prime}\right) F\left(x^{\prime \prime}\right)$ at least once as x goes from $x^{\prime \prime}$ to $x^{\prime \prime}$.

Finally, consider the closed interval $\left[x^{\prime \prime} x\right]$. It corresponds in a one-to-one manner with the closed interval $\left[\theta^{\prime \prime}, 1\right]$. Since $\Phi(\theta)$ is a continuous function of θ, φ must take on every value between $\varphi^{\prime \prime}=1$ and 0 at least once, as θ goes from $\theta^{\text {tI }}$ to 1. That is, $F(x)$ must take on every value between $F\left(x^{\prime \prime}\right)$ and $F\left(x_{1}\right)=F\left(x_{0}\right)$, at
least once, as x goes from $\mathrm{x}^{\prime \prime}$ to X_{1}.
It is concluded that every point $F(x)$ between $F\left(x_{0}\right)$ and $F\left(x^{\prime}\right)$ is the 1mage of at least two points on $\bar{x}_{0} \bar{x}_{1}$, one of which is between x_{0} and x^{\prime}, the other between x^{\prime} and $x^{\prime \prime}$. Similarly, every point $F(x)$ between $F\left(x_{0}\right)$ and $F\left(x^{\prime \prime}\right)$ is the image of at least two points on $\overline{x_{0} x_{1}}$, one of which lies between x^{\prime} and $x^{\prime \prime}$ and the other between $x^{\prime \prime}$ and x_{1}.

Consider the point $x^{\prime \prime}$. Let $\left.D_{x} F\right|_{x^{\prime \prime}}=d^{\prime \prime}$. Choose $\epsilon^{\prime \prime}<\left|d^{\prime \prime}\right|$. Then there is a $\delta^{\prime \prime}>0$ such that
(III.2.16)

$$
\left|\frac{\Delta\left(F: x^{n} x_{1}^{\prime \prime} x_{2}^{\prime \prime}\right)}{\Delta\left(x^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime}\right)}-d^{\prime \prime}\right|<\epsilon "
$$

whenever $\left\|x^{\prime \prime} x_{1}^{\prime \prime}\right\|<\delta^{\prime \prime},(1=1,2), \Delta\left(x^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime}\right)$ in I_{1} 。 In every neighborhood of $x^{\prime \prime}$ there is a point $x_{1}^{\prime \prime}$ on $\overline{x_{0} x}$, between x^{\prime} and $x^{\prime \prime}$ and a point $x_{2}^{\prime \prime}$ on $\bar{x}_{0} x_{1}$ between $x^{\prime \prime}$ and x_{1}, both of which map into the same image point.

By Lemma III.2.11, in taking the derivative at $x^{\prime \prime}$, the increments formed by two points, $x_{1}^{\prime \prime}$ and $x_{2}^{\prime \prime}$ on $\overline{x_{0} x_{1}}$, with $x^{\prime \prime}$ on ${\overline{x_{0}} \bar{x}_{1}}$ between them, and another point $x_{3}^{\prime \prime}$, not on $\bar{x}_{0} \bar{x}_{1}$, may be considered. For these increments relation (III.2.16) must hold with $\epsilon^{\prime \prime}<\left|d^{\prime \prime}\right|$. But among these increments will be found, in every neighborhood of $x^{\prime \prime}$, those for which the points $x_{1}^{\prime \prime}$ and $x_{2}^{\prime \prime}$ map into a single point. But in these cases the increments map into increments of zero area. Hence, for these increments the relation
(III.2.16), with $\epsilon^{\prime \prime}<\left|d^{\prime \prime}\right|$, cannot hold. This contradicts the assumption that $D_{x} F_{X^{\prime \prime}}=d^{\prime \prime}$. Hence it must be concluded that case 2 cannot arise.

In either case, a contradiction has been reached. Hence, every image point is the image of precisely one point of E, proving the theorem.
III.2.17. If $F: f^{(i)}(x),(1=1,2)$, is a mapping function defined on a convex region E in $R^{(2)}$, and if $D_{x} F$ exists everywhere in E and is different from zero, then F is continuous, one-to-one and maps straight lines into straight lines, by the theorems just proved. Now using the results of Chapter II, in particular, Theorem II.7.3, the following theorem has already been proved:
II.2.18. Theorem. Let $F: f^{(i)}(x),(i=1,2)$, be a mapping function defined on a convex region E in $R^{(2)}$ and let $D_{x} F$ exist everywhere in E and be different from zero there. Then F is of the form

$$
\text { (III.2.19) F: } f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+a_{i, 2} x^{(2)}+a_{i, 3}}{a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}},(1=1,2) \text {, }
$$

where

$$
\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right| \neq 0
$$

The following theorem is in the nature of a converse.
III.2.20. Theorem. Let
(III, 2, 21), $F: f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+a_{i, 2} x^{(2)}+a_{i, 3}}{a_{3,1} x^{(i)}+a_{3,2} x^{(2)}+a_{3,3}}(1=1,2)$,
where.

$$
\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right| \neq 0
$$

be defined on a region E of $R^{(2)}$ which does not contain points of the line $a_{3,1} x^{(1)}+a_{3,2} x^{(2)}+a_{3,3}=0$. Then $D_{x} F$ exists and is different from zero in E. Proof. Let x_{0} be any point in E and $\operatorname{let} x$, and x_{2} be two variable points of E so that $\Delta\left(x_{0} x_{1} x_{2}\right)$ is in I_{1} Examine the difference quotient
(III.2.22)

$$
\frac{\left|\begin{array}{ccc}
f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & 1 \\
f^{(1)}\left(x_{1}\right) & f^{(2)}\left(x_{1}\right) & 1 \\
f^{(1)}\left(x_{2}\right) & f^{(2)}\left(x_{2}\right) & 1
\end{array}\right|}{\left|\begin{array}{lll}
x_{0}^{(1)} & x_{0}^{(2)} & 1 \\
x_{1}^{(1)} & x_{1}^{(2)} & 1 \\
x_{2}^{(1)} & x_{2}^{(2)} & 1
\end{array}\right|}
$$

The numerator of this difference quotient is equal to

$$
\left|\begin{array}{ll}
\frac{a_{1,1} x_{0}^{(1)}+a_{1,2} x_{0}^{(2)}+a_{1,3}}{a_{3,1} x_{0}^{(1)}+a_{3,2} x_{0}^{(2)}+a_{3,3}} & \frac{a_{2,1} x_{0}^{(1)}+a_{2,2} x_{0}^{(2)}+a_{2,3}}{a_{3,1} x_{0}^{(1)}+a_{3,2} x_{0}^{(2)}+a_{3,3}} 1 \\
\frac{a_{1,1} x_{1}^{(1)}+a_{1,2} x_{1}^{(2)}+a_{1,3}}{a_{3,1} x_{1}^{(1)}+a_{3,2} x_{1}^{(2)}+a_{3,3}} & \frac{a_{2,1} x_{1}^{(1)}+a_{2,2} x_{1}^{(2)}+a_{2,3}}{a_{3,1} x_{1}^{(1)}+a_{3,2} x_{1}^{(2)}+a_{3,3}} \\
\frac{a_{1,1} x_{2}^{(1)+}+a_{1,2} x_{2}^{(1)}+a_{1,3}}{a_{3,1} x_{2}^{(1)}+a_{3,2} x_{2}^{(2)}+a_{3,3}} & \frac{a_{2,1} x_{2}^{(1)}+a_{2,2} x_{2}^{(2)}+a_{2,3}}{a_{3,1} x_{2}^{(1)}+a_{3,2} x_{2}^{(2)}+a_{3,3}} 1
\end{array}\right|=
$$

$\frac{1}{\prod_{i=0}^{2}\left(a_{3,1} x_{i}^{(1)}+a_{3,2} x_{i}^{(2)}+a_{3,3}\right)}\left|\begin{array}{lll}a_{1,1} x_{0}^{(1)}+a_{1,2} x_{0}^{(2)}+a_{1,3} & a_{2,4} x_{0}^{(1)}+a_{2,2} x_{0}^{(2)}+a_{2,3} & a_{3,} x_{0}^{(1)}+a_{3,2} x_{0}^{(2)}+a_{3,3} \\ a_{1,1} x_{1}^{(1)}+a_{1,2} x_{1}^{(2)}+a_{1,3} & a_{2,1} x_{1}^{(1)}+a_{2,2} x^{(2)}+a_{2,3} & a_{3,} x_{1}^{(1)}+a_{3,2} x_{1}^{(2)}+a_{3,3} \\ a_{1,1} x_{2}^{(1)}+a_{1,2} x_{2}^{(2)}+a_{1,3} & a_{2,1}^{(1)}+a_{2,2}^{(2)} x^{(2)} & a_{2,3} \\ a_{3,1} x_{2}^{(1)}+a_{1,2} x_{2}^{(2)}+a_{3,3}\end{array}\right|$.
Ey the multiplication theorem for dotexminants [Kowalewskl, (1), pp. 66 If.] (III.2.22) finally becomes equal to
$\frac{1}{\prod_{i=0}^{2}\left(a_{3,1} x_{i}^{(1)}+a_{3,2} x_{i}^{(2)}+a_{3,3}\right)} \frac{\left.\left|\begin{array}{lll}a_{1,} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3}\end{array}\right| \begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array} \right\rvert\,}{\left|\begin{array}{lll}x_{0}^{(1)} & x_{0}^{(2)} & 1 \\ x_{1}^{(1)} & x_{1}^{(2)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & 1\end{array}\right|}=$

$$
\frac{\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right|}{\left(a_{3,1} x_{1}^{(1)}+a_{3,2} x_{1}^{(2)}+a_{3,3}\right)\left(a_{3,1} x_{2}^{(1)}+a_{3,2} x_{2}^{(1)}+a_{3,3}\right)} .
$$

By hypothesis, the numerator is different from zero. Letting x_{1} and x_{2} approach $x_{0}, \Delta\left(x_{0} x_{1} x_{2}\right)$ remaining in the class I_{1}, it is seen that $\left.D_{x} F\right|_{x_{0}}$ exists and is equal to

$$
\frac{\left|\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right|}{\left(a_{3,1} x_{0}^{(1)}+a_{3,2} x_{0}^{(2)}+a_{3,3}\right)^{3}} \neq 0 .
$$

Since x_{0} was any point in E, the derivative is different from zero everywhere in E, proving the theorem.
III.2.23. Remark. It should be noted that since the determinants

$$
\left|\begin{array}{ccc}
x_{0}^{(1)} & x_{0}^{(2)} & 1 \\
x_{1}^{(1)} & x_{1}^{(2)} & 1 \\
x_{2}^{(1)} & x^{(2)} & 2
\end{array}\right|
$$

In (III.2.22) cancel out, it really does not make any difference if the points x_{0}, x_{1}, and x_{2} remain in the class I_{1}, or even that they approach x_{0}. If x_{0}, x_{1}, and x_{2} approach any point x^{*} of E in any manner at all, the derivative $D_{x} F$ exists at x^{*} and is equal to

$$
\frac{\left|\begin{array}{ccc}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{7,1} & a_{3,2} & a_{3,3}
\end{array}\right|}{\left(a_{3,1} x^{*}+a_{3,2} x^{*}+a_{3,3}\right)^{3}} \neq 0 .
$$

The linear fractional transformations have a generalized derivative under the most general conditions.
III.2.24. Remark. Theorems III.2.18 and III.2.20 together show that the precise class of mapping functions, defined on a convex region E of $R^{(2)}$, which have a non-zero derivative, $D_{x} F$, in E, is the class of linear fractional transformations.
III.2.25. Remark. The generalized derivatives $D_{x^{(1)}} f^{(1)}$ and $D_{x^{(2)}} f^{(z)}$ are only special cases of the generalized derivative $D_{x} F$, according to Remark I. 1. 10. It follows that if $D_{x^{(1)}} f^{(1)}$ exists and is different from zero in a convex region E then $f^{(i)}(x)$ is of the form (III. 2, 26) $f^{(1)}(x)=a_{1,1} x^{(1)}+a_{1,2} x^{(2)}+a_{1,3}$.

For if one sets $f^{(2)}(x)=x^{(2)}$ in the difference quotient

$$
\frac{\left|\begin{array}{lll}
f^{(1)}\left(x_{0}\right) & f^{(2)}\left(x_{0}\right) & 1 \\
f^{(1)}\left(x_{1}\right) & f^{(2)}\left(x_{1}\right) & 1 \\
\mathbf{f}^{(1)}\left(x_{2}\right) & f^{(2)}\left(x_{2}\right) & 1
\end{array}\right|}{\left|\begin{array}{lll}
x_{0}^{(1)} & x_{0}^{(2)} & 1 \\
x_{1}^{(1)} & x_{1}^{(2)} & 1 \\
x_{2}^{(1)} & x_{2}^{(2)} & 1
\end{array}\right|}
$$

and if the limit is taken with respect to the class I_{1}, then $\left.D_{x} F\right|_{x_{0}}=\left.D_{x^{(1)}} f^{(1)}\right|_{x_{0}}$. Since $f^{(2)}(x)$ and $f^{(i)}(x)$ must have the same denominators, then $f^{(1)}(x)$ must be of the form (III.2.26).

Similarly, if $D_{x^{(2)}} f^{(2)}$ exists and is different from zero in a convex region E, then $f^{(2)}(x)$ must be of the form (III.2.27)

$$
f^{(x)}(x)=a_{2_{1},} x^{(1)}+a_{2,1} x^{(2)}+a_{2,3} .
$$

III.3. THE CHARACTERIZATION FOR THE n-DIMENSIONAL CASE III.3.1. The results obtained in section III. 2 will now be generalized to the n-dimensional case. The procedure is the same, but certain difficulties arise in the generalization which did not occur in the 2-dimensional case.

$$
\text { In this section, } x=\left(x^{(1)}, x^{(2)}, \ldots, x^{(3)}\right) \text {. }
$$

III.3.2. Theorem. Let F: $f^{(i)}(x),(1=1, \ldots, n)$, be a mapping function defined on an open set E in $R^{(n)}$. Let $D_{x} F$ exist and have the value d different from zero at a point x_{0} of E. Then F is continuous at x_{0}.
Proof. For every $\epsilon>0$ there is a $\delta>0$ such that
(III.3.3) $\left|\frac{\Delta\left(F: x_{0} x_{1} \cdot \cdots x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdot x_{n}\right)}-d\right|<\epsilon /(n+1)$
whenever $\left\|x_{0} x_{i}\right\|<\delta,(i=1, \ldots, n), \Delta\left(x_{0} x_{1}, \ldots, x_{n}\right)$ in I_{1}. This is true since the derivative has been assumed to exist and equal at x_{0}. In particular, for $\epsilon=\epsilon^{*}$,
such that $\epsilon^{*} /(n+1)<|d|$, there is a δ^{*} such that the above inequellty holds.

By Theorem I. $5.8,\left.D_{x} F\right|_{x_{0}}$ can be calculated by taking the limit of the ratios

$$
\frac{\Delta\left(F: x_{1} x_{2} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot x_{n+1}\right)}
$$

where $x_{1}, x_{2}, \ldots x_{n+1}$ are chosen to satisfy the conditions of the hypothesis I.5.8. In particular, if $x_{1}, x_{2}, \ldots, x_{n+1}$ in $\mathrm{N}_{\delta}\left(\mathrm{x}_{0}\right)$ are chosen to form an inerement of I_{1} with x_{0} interior to $\Delta\left(x_{1} x_{2} \ldots x_{n+1}\right)$, then Theorem I. 5.8 can be applied and for these chosen points.

$$
\left|\frac{\Delta\left(F: x_{1} x_{2} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdot x_{n+1}\right)}-d\right|<\epsilon^{*} .
$$

Keep $x_{1}, x_{2}, \ldots x_{n+1}$ fixed. The increments $\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right), \Delta\left(x_{1} x_{0} x_{3} \ldots x_{n+1}\right), \cdots$, and $\Delta\left(x_{1} x_{2}\right.$. . $\left.x_{n} x_{0}\right)$ are all in the class I_{1}. Furthermore, since relation (III. 3, 3) must hold, with $\epsilon=\epsilon$, the image increments, $\Delta\left(F: x_{0} x_{2} \cdots x_{n+1}\right), \Delta\left(F: x_{1} x_{o} x_{3} \cdots x_{n+1}\right)$, - . and $\Delta\left(F: x_{1} x_{2}\right.$. $\left.x_{n} x_{0}\right)$ must all be different from zero, hence are in the class I_{1}.

Let x ' be a variable point of $N+(x)$, which for the moment is required to remain off the (n - I)-flats determined by the sets of points $\left(x_{0}, x_{2}, \ldots, x_{n}\right)$, $\left.\left(x_{0}, x_{2}, \ldots, x_{n-1}, x_{n+1}\right), \ldots, x_{n+1}\right)$. and $\left(x_{0}, x_{3}, \ldots, \ldots\right.$,

There are $C(n, n-1)=n$ of these $(n-1)$-flats. (Notice that the point x_{1} is in none of these ($n-1$)-flats).

Consider the increments $\Delta\left(x_{0} x_{2} . x_{n} x^{\prime}\right)$,

$$
\Delta\left(x_{0} x_{2}, \cdot x_{n-1} x^{\prime} x_{n+1}\right), \cdots, \text { and } \Delta\left(x_{0} x^{\prime} x_{3}, \cdot, x_{n+1}\right)
$$

These increments are in the class I_{1} in $N_{\delta}{ }^{*}\left(x_{0}\right)$, for x^{\prime} in the restricted region, and hence relation (III.3.3) holds for these increments and their images, with $\epsilon=\epsilon^{*}$. It must follow that for every sufficiently small $\epsilon^{\prime}>0$ (in particular for $\epsilon^{\prime} \leqslant \epsilon^{3}$), there exists a $\delta^{(i)}>0$ such that (III.3.4) $\left|\Delta\left(F: x_{0} x_{2} \cdot x_{i-1} x^{l} x_{i+1} \cdot \ldots x_{n+1}\right)\right|<\epsilon^{\prime} / \mathrm{s}$ whenever $\left\|x_{0} x^{\top}\right\|<\delta^{(i)},(1=2,3, \ldots, n+1)$, where s is an absolute constant which will be chosen later. Suppose this assertion is not true. Then for fixed $\epsilon^{\prime} \leqslant \epsilon^{*}$, and for every $\delta>0$, there is at least one point $x^{*} \in N_{\delta}\left(x_{0}\right)$ such that

$$
\left|\Delta\left(F: x_{0} x_{2} \ldots x_{i-1} x^{*} x_{i+1} \ldots x_{n+1}\right)\right| \geqslant \epsilon^{\prime} / s,(1=2,3, \ldots, n+1)
$$

As δ is allowed to approach zero,

$$
\begin{aligned}
& \Delta\left(x_{0} x_{2}, x_{i-1} x^{*} x_{i+1} \cdot, x_{n+1}\right) \text { also approaches zero, since } \\
& \Delta\left(x_{0} x_{2} \cdot x_{i-1} x^{*} x_{i+1} \cdot x_{n+1}\right) \text { varies directly as } \\
& \left\|x_{0} x^{*}\right\|, x_{2}, \cdots, x_{i-1}, x_{i+1}, \ldots, x_{n+1} \text { being fixed } \\
& \text { points. Then, as } \delta \text { approaches zero, the difference } \\
& \text { quotient }
\end{aligned}
$$

$$
\frac{\Delta\left(F: x_{0} x_{2} \cdot \cdot x_{i-1} x^{2+x_{i+i}} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{0} x_{2} \cdot x_{i-1} x^{n} x_{i+1} \cdot \cdot x_{n+1}\right)}
$$

becomes arbitrarily large for the points x^{*} in $N_{\delta}\left(x_{0}\right)$ such that $\Delta\left(F: x_{0} x_{2} \ldots x_{i-1} x^{*} x_{i+1} \cdots x_{n+1}\right) \geqslant \epsilon^{\prime} / \mathrm{S}$. For such points, which are also in $N \delta^{*}\left(x_{0}\right)$, the ϵ, δ relation (III.3.3) cannot hold, contradicting the assumption that $\left.D_{x} F\right|_{X_{0}}=d$. Hence, for every $\epsilon^{\prime} \leqslant \epsilon^{\text {H }}$ there is a $\delta^{(i)}>0$ such that (III.3.4) holds, ($1=2,3, \ldots, n+1$). Choose $\delta_{1}=\min \left\{\delta^{(i)}\right\},(1=2,3, \ldots, n+1)$.
Then

$$
\left|\Delta\left(F: x_{0} x_{2} \cdot \cdots x_{i-1} x^{\prime} x_{i+1} \cdots x_{n+1}\right)\right|<\in t / s
$$

whenever $\left\|x_{0} x^{*}\right\|<\delta_{1}, x^{\prime}$ remaining in the restricted region, $(1=2,3, \ldots, n+1)$.

Now
(1 = 2, 3, . . $n+1$). Expanding by the fth row, the above equation becomes (III, 3,5):
$(-1)^{(n)} n!\Delta\left(F!x_{0} x_{2} \cdots x_{i-1} x^{t} x_{i+1} \cdots x_{n+1}\right)=\sum_{j=1}^{n} A_{i, j} f^{(j)}\left(x^{j}\right)-f^{(j)}\left(x_{0}\right)$,
$(1=2,3, \ldots, n+1)$, where
$A_{i j},(1=2, \ldots, n+1 ; j=1, \ldots, n)$, is the cofactor of $f^{(j)}\left(x_{i}\right)-f^{(j)}\left(x_{0}\right)$ in the determinant

$$
A=\left|\begin{array}{l}
f^{(1)}\left(x_{2}\right)-f^{(1)}\left(x_{0}\right) \cdot \cdots f^{(n)}\left(x_{2}\right)-f^{(n)}\left(x_{0}\right) \\
\bullet \cdot \cdots \cdot \cdot \cdot \cdot \\
f^{(1)}\left(x_{n+1}\right)-f^{(1)}\left(x_{0}\right) \cdots \cdot f^{(n)}\left(x_{n+}\right)-f^{(n)}\left(x_{0}\right)
\end{array}\right|
$$

$\left(A=n!\Delta\left(F: x_{0} x_{2} \ldots x_{n+1}\right)\right.$, excopt possibly for sign. Hence, $A \neq 0$).

Equation (III.3.5) represents a system of n equations in the n unknowns, $f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right)$ $(j=1, . ., n)$. There will be a solution if the determinant of the coefficients is different from zero. This determinant is

$$
D=\left|\begin{array}{ccccc}
A_{2,1} & A_{2,2} & \cdots & \cdot & A_{2, n} \\
\bullet & \cdots & \cdots & \cdots & \cdot \\
A_{n+1,1} & A_{n+1,2} & \cdots & \cdots & A_{n+1, n}
\end{array}\right|=\operatorname{adj} A_{0} .
$$

By a corollary to the Sylvester-Franke Theorem on determinants $[$ Price, (1), p. 82],

$$
D=\operatorname{adj} A=A^{n-1}=\left[n!\Delta\left(F: x_{0} x_{2} \cdot \ldots x_{n+1}\right)\right]^{n-1},
$$

except possibly for sigh. Since $\Delta\left(F: x_{0} x_{2} \ldots x_{n+1}\right)$ is different from zero, there is a solution for $f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right),(j=1, \ldots, n)$. Solving for $f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right) ;$

$$
f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right)=
$$

$(j=1, \cdot \cdot \cdot n)$, except possibly for sign.
All the terms on the right are constants except the elements of the j th column. Expanding by elements of this column, and remembering (III.3.4), it follows that for every sufficiently small ϵ^{\prime} (In particular for $\epsilon^{\prime} \leqslant \epsilon^{\prime \prime}$) there is a $\delta_{1}>0$ such that

$$
\left|f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right)\right|<M_{1, j} \cdot \epsilon^{\prime} / s, \quad(j=1, \ldots, n),
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta_{1}$, (x^{\prime} remaining in the restricted region), where $M_{1, j}$ is a constant which is equal to the sum of the absolute values of the minors of

$$
\Delta\left(F: x_{0} x_{2} \cdot, x_{i-1} x^{\prime} x_{i+1} \cdot, x_{n+1}\right) \text { in the above expansion }
$$ all divided by $\left|n!^{n-2}\left[\Delta\left(F: x_{0} x_{2} \cdot \cdots x_{n+1}\right)\right]^{n-1}\right|$, $(i=2, \ldots, n+1)$.

In general, requiring x ' to remain off the ($n-1$)-flats determined by x_{0} together with any $n-1$ of the points $x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n^{\prime}+1}$, it is found in exactly the same manner for each 聚, $(k=1, ., \ldots, n+1)$,
that for every sufficientily small number $\epsilon^{\prime}>0$ (in particular for $\epsilon^{\prime} \leqslant \epsilon^{*}$), there is a $\delta_{k}>0$ such that

$$
\left|f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right)\right|<M_{k, j} \in 1 / S \quad(j=1, \cdots, n),
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta_{k}$, x^{\prime} remeining in the restricted region, where again $M_{k, j}$ is a constant which is equal to the sum of the absolute values of the minors of

$$
\Delta\left(F: x_{0} \cdot x_{i-1} x^{\prime} x_{i+1} \cdots x_{n+1}\right) \text { in the expension }
$$

corresponding to that on the previous page, all divided by $\mid n!{ }^{n-2}\left[\triangle\left(F: x_{0} \ldots x_{k-1} x_{k+1} \ldots x_{n+1}\right]^{n-1} \mid\right.$,
$(i=1, \ldots, \ldots-1, k+1, \ldots, 1)$.

The constants, $M_{K, j}$, depend on
$\Delta\left(F: x_{0} x_{2} \cdot x_{k-1} x_{k+1} \cdots \cdot x_{n+1}\right)$ and on column j of adj A. They are all absolute constants since they ultimately depend upon only the fixed numbers $F\left(x_{0}\right), \ldots F\left(x_{n+1}\right)$.

$$
\text { Choose } S=\max \left\{M_{k, j}\right\} \text {, all } k \text { and } j \text {, and choose }
$$

$\delta^{\prime}=\min \left\{\delta_{k}\right\}$, all k. Then

$$
\left|f^{(j)}\left(x^{\prime}\right)-f^{(j)}\left(x_{0}\right)\right|<\epsilon^{\prime}, \quad(j=1, \ldots, n),
$$

whenever $\left\|x_{0} x^{\prime}\right\|<\delta^{\prime}$, with no other restriction on x^{\prime}. Hence, F is continuous at x_{0}, proving the theorem.
III.3.6. Theorem. Let $F: f^{(i)}(x),\left(1=1, \ldots,{ }^{(1)}\right.$, be a mapping function defined on a convex region E in $A^{(n)}$ and let $D_{X} F$ exist and be different from zero in E. Let x_{0} be a point of E. Then in a sufficiently small neighborhood of x_{0}, ($n-1$)-flats containing x_{0} map into ($n-1$)-flats.

Proor. Let $\left.D_{X} F\right|_{X_{0}}=d$. Let $\epsilon>0$ be given such that $\epsilon\langle | d \mid$. Then there exists a $\delta_{0}>0$ such that
(III.3.7) $\left|\frac{\Delta\left(F: x_{0} x_{1} \cdot \cdot x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdot \cdot x_{n}\right)}-d\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta_{0},(1=1, \cdots, n), \Delta\left(x_{0} x_{1} \cdot \ldots \cdot x_{n}\right)$ in I_{1}. It will be shown that in $N_{\delta_{0}}\left(x_{0}\right),(n-1)$-flats containing x_{0} map into ($n-1$)-flats.

Suppose the theorem is false. Then there is an $(n-1)-f l a t, s_{n-1}$, through x_{0} such that $s_{n-1} \cap N_{\delta_{0}}\left(x_{0}\right)$ does not map into an ($\mathrm{n}-1$)-flat.

Let $x_{1}, x_{2}, \ldots x_{n-1}$ be $n-1$ points of $s_{n-1} \cap N_{\delta_{0}}\left(x_{0}\right)$ which with x_{0} form a set of n linearly Independent points. These n points will determine S_{n-1}. The pointa $X_{0}, x_{1}, \ldots x_{n-1}$ map into lineariy independent points, $F\left(x_{0}\right), F\left(x_{1}\right), \ldots, F\left(x_{n-1}\right) ;$ otherwise $x_{0}, x_{1}, \ldots x_{n-1}$ together with a suitable chosen point x_{n} of $N_{\delta_{0}}\left(x_{0}\right)$ would form an increment of I_{1} which would map into an increment of n-dimensional volume zero, contradicting the assumption that relation (III.3.7) holds, with $\epsilon\langle | d \mid$, for all increments in I_{1} in $N_{\delta_{0}}\left(x_{0}\right)$. The points $F\left(x_{0}\right), F\left(x_{1}\right), \ldots, F\left(x_{n-1}\right)$ determine an ($\mathrm{n}-1$)-flat, T_{n-1}. Let $F\left(\mathrm{x}^{*}\right)$ be a point, not in T_{n-1}, which is the image of at least one point x^{*} of $S_{n-1} \cap N_{\delta_{0}}\left(x_{0}\right)$. Such a point exists, otherwise the theorem is already true. The increment $\Delta\left(x_{0}, \ldots x_{n-1} x^{*}\right)=0$, since $x_{0}, x_{1}, \ldots, x_{n-1}, x^{*}$ are linearly dependent.

But $\Delta\left(F: x_{0} \ldots x_{n-1} x^{*}\right) \neq 0$, since $F\left(x_{0}\right), F\left(x_{1}\right), \ldots, F\left(x_{n-1}\right)$, and $F\left(x^{*}\right)$ are linearly independent.

Let x be a variable point of $N_{\delta_{0}}\left(x_{0}\right)$ which together with x_{0}, \ldots, x_{n-1} always forms an increment of I_{1}. Let $F(x)$ be its image. For the points $x_{0}, x_{1}, \ldots, x_{n-1}, x$, the ϵ, δ relation of (III. 3.7), with $\in\langle | \alpha \mid$, must hold. As x approaches $x^{*}, F(x)$ approaches $F\left(x^{*}\right)$, since the mapping is continuous by Theorem III.3.2. Now $\Delta\left(x_{0}\right.$. . $\left.x_{n-1} x\right)$ approaches $\Delta\left(x_{0} \cdot x_{n-1} x^{*}\right)=0$, while $\Delta\left(F: x_{0} \cdots x_{n-1} x\right)$ approaches $\Delta\left(F: x_{0}\right.$. . . $\left.x_{n-1} x^{*}\right) \neq 0$. Hence, the difference quotient

$$
\frac{\Delta\left(F: x_{0} \cdots x_{n-1} x\right)}{\Delta\left(x_{0} \cdots x_{n-1} x\right)}
$$

becomes arbitrarily large, contradicting the assumption that relation (III.3.7) holds for all increments of $I_{\text {, }}$ in $N_{\delta_{0}}\left(x_{0}\right)$. Therefore, the ($n-1$)-flat, $S_{n_{-1}} \cap N_{\delta_{0}}\left(x_{0}\right)$, must map into an ($n-1$)-flat, and the theorem is proved.
III.3.8. Corollary. Let F: $f^{(i)}(x),(1=1, \ldots, n)$, be a mapping function defined in a convex region E of $\mathrm{R}^{(n)}$ and let $D_{x} F$ exist and be different from zero in E. Then, if S_{n-1} is an $(n-1)$-flat with points in $E, S_{n-1} \cap E$ maps into an (n-1)-flat.

Proof. Let x_{0} be a point of $S_{n-1} \cap E_{\text {. }}$ By Theorem III.3.6, in a sufficiently small neighborhood, $N_{\delta_{0}}\left(x_{0}\right)$, of x_{0} $S_{n-1} \cap \mathbb{N}_{\delta_{0}}\left(x_{0}\right)$ maps into an $(n-1)$-flat, T_{n-1}. Let x^{*} be
any other point of $S_{n-1} \cap E$. It will be shown that x^{*} also maps into T_{n-1}.

If $\left\|x_{0} x^{*}\right\|<\delta_{0}$, the corollary is already proved.
If $\left\|x_{0} x^{*}\right\|=\delta_{0}$, then since x^{*} is in $S_{n-1} \cap E$, Theorem III. 3.6 applies to x^{*} and there is a $\delta^{*}>0$ such that $s_{n-1} \cap \mathbb{N}_{\delta}^{*}\left(x^{*}\right)$ maps into on ($n-1$)-flat, which must be T_{n-1}, since $S_{n-1} \cap N_{\delta_{0}}\left(x_{0}\right)$ and $S_{n-1} \cap N N_{\delta}\left(x^{*}\right)$ have points of S_{n-1} in common.

Suppose $\left\|x_{0} x^{*}\right\|>\delta_{0}$. Since E is convex, x_{0} and x^{*} can be joined by a straight line segment, $\mathrm{x}_{0} \mathrm{x}^{7}$, which lies entirely in E, and also in S_{n-1}. Let x_{1} be the point of $\overline{x_{0} x^{*}}$ between x_{0} and x^{*} such that $\left\|x_{0} x_{1}\right\|=\delta_{0}$. The point x_{1} is in $s_{n-1} \cap E$ and Theorem III. 3.6 can be applied. Then there is $a \delta_{1}>0$ such that $S_{n-i} \cap N_{\delta_{1}}\left(x_{1}\right)$ maps into an ($n-1$-flat, which must be T_{n-1}, since $N_{\delta_{0}}\left(x_{0}\right)$ and $N_{\delta_{1}}\left(x_{1}\right)$ have points of S_{n-1} in cormon. If x^{*} is in $N_{\delta_{1}}\left(x_{1}\right)$, the corollary is proved.

If x^{*} is not in $N_{\delta_{1}}\left(x_{1}\right)$, denote by x_{2} the point of $\overline{x_{1} x^{3}}$ between x_{1} and x^{*} such that $\left\|x_{1} x_{2}\right\|=\delta_{1}$. Theorem III. 3.6 applies to π_{2} and there is a $\delta_{2}>0$ such that $S_{n-1} \cap N_{\delta_{2}}\left(x_{2}\right)$ maps into an ($n-1$)-flat which must be T_{n-1} since $N_{\delta_{2}}\left(x_{2}\right)$ and $N_{\delta_{1}}\left(x_{1}\right)$ have points of s_{n-1} in common. If x^{*} is in $N_{\delta_{2}}\left(x_{2}\right)$, the corollary is proved.

If x^{*} is not in $N_{\delta_{2}}\left(x_{2}\right)$, continue in this manner until an x_{r} on $\overline{x_{0} x^{*}}$ is reached for which there is a $\delta_{r}>0$ such that $s_{n-1} \cap N_{\delta_{r}}\left(x_{r}\right)$ maps into T_{n-1} and such that x^{*} is in $N_{\delta_{r}}\left(x_{r}\right)$. Then x^{*} also maps into T_{n-1}.

It is conceivable that the δ_{i}-neighborhoods considered become smaller and smaller with the centers, x_{i}, approaching a limit point, \bar{x}, on $\overline{x_{0} x^{*}}$. Then possibly the extension of the argument could not be carried past \bar{x}. However, \bar{X} is a point of $S_{n-1} \cap E$ and Theorem III. 3.6 applies to \bar{X}. Hence there is a $\bar{\delta}>0$ such that $S_{n-1} \cap N \delta^{(\bar{x})}$ maps into I_{n-1}, and the inclusion of points of $x_{0} x^{2}$ beyond \bar{x} which map into T_{n-1} has been accomplished. (Beyond means between \bar{x} and x^{*}.) Therefore, the argument can be continued until x^{*} is found to be a point of $S_{n-1} \cap E$ which maps into T_{n-1}. Since x^{*} was any point of $s_{n-1} \cap \mathrm{E}$, it must be concluded that every point of $\mathrm{S}_{n-1} \cap \mathrm{E}$ maps into T_{n-1} and the corollary is proved.
III.3.9. Theorem. Let Fs $f^{\prime \prime \prime}(x),(1=1, \ldots, n)$, be a mapping function defined on a convex region E of $R^{(n)}$ and let $D_{x} F$ exist and be different from zero in E. Then, if L is a straight ine passing through E, the segment $L \cap E$ maps into a straight line.
Proof. Let L be a straight line passing through E. Let x_{0} be a point of $L \cap E$. Let $\left.D_{x} F\right|_{X_{0}}=d_{0}$. Let $\epsilon>0$ be chosen so that $\epsilon<\left|d_{0}\right|$. Then there exists a $\delta_{0}>0$ such that
(III.3.10) $\left|\frac{\Delta\left(F: x_{0} x_{1} \cdots x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdot x_{n}\right)}-d_{0}\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta_{0},(1=1, \ldots, n), \Delta\left(x_{0} x_{1}, \ldots x_{n}\right)$ $\ln I_{1}$ 。

Let $x_{1} \neq x_{0}$ be any other point of $L \cap N_{\delta_{0}}\left(x_{0}\right)$. Let x_{2}, \ldots, x_{n} be $n-1$ points of $N_{\delta_{0}}\left(x_{0}\right)$, not on L, which together with x_{0} and x_{1} form a set of $n+1$ linearly independent points. These points form the vertices of an increment, $\Delta\left(x_{0} x_{1} \ldots x_{n}\right)$ which has n-dimensional volume different from zero. The image increment, $\Delta\left(F: x_{0} x_{1}\right.$. . $\left.x_{n}\right)$, must also have n-dimensional volume different from zero, since otherwise relation (III.3.10), with $\epsilon<\left|d_{0}\right|$, would not hold. That is, $F\left(x_{0}\right)$, $F\left(x_{1}\right), \ldots, F\left(x_{n}\right)$ form a set of $n+1$ linearly independent points.

Consider the $(n-1)$-flats, $s_{n-1}^{(j)}$, determined by x_{0}, x_{1} and the $n-2$ other points, x_{2}, \ldots, x_{j-1}, $x_{j+1}, \ldots, x_{n},(j=2, \ldots, n)$. Since L is completely determined by x_{0} and x_{1}, then I must be common to all $s_{n-1}^{(j)}$. By Gorollary III. 3.8 each ($n-1$)-flat, $s_{n-1}^{(j)}$, maps into an ($n-1$)-flat, $T_{n-1}^{(j), ~ w h i c h ~ i s ~ d e t e r m i n e d ~ b y ~} F\left(x_{0}\right), F(x$,$) ,$ and $F\left(x_{2}\right), \cdots F\left(x_{j-1}\right), F\left(x_{j+1}\right), \ldots F\left(x_{n}\right)$, ($j=2, \ldots, n$), since for each j, the set of points $F\left(x_{0}\right), F\left(x_{1}\right), F\left(x_{2}\right), \cdots, F\left(x_{j-1}\right), F\left(x_{j+1}\right), \ldots$ $F\left(x_{n}\right)$, forms a set of n linearly independent points of $\mathbb{T}_{n-1}^{(j)}$. The image of L must be common to each (n-1)-flat, $T_{n-1}^{(j)}$. Denote this image by L'.

Now each ($\mathrm{n}-1$)-flat, $T_{n-1}^{(j)}$, can be represented as a single equation in the unknowns $f^{(1)}(x), \ldots, f^{(n)}(x)$, as follows:
(III.3.11) $T_{n-1}^{(j)}: a_{j, 1} f^{(1)}(x)+\ldots+a_{j, n} f^{(n)}(x)+a_{j, n+1}=0$, $(j=2, . ., n)$. It will be shown that the $(n-1)$-flats, $\Psi_{n-1}^{(j)},(j=2, \cdots, n)$, intersect in a straight line which contains the points $F\left(x_{0}\right)$ and $F\left(x_{1}\right)$.

Since $F\left(x_{0}\right)$ and $F\left(x_{1}\right)$ are common to all the (n-1)-flats, $\mathrm{P}_{n-1}^{(j)}$, then clearly they are both solutions of the set of equations (III.3.11), and they are linearly independent solutions, since $F\left(x_{0}\right) \neq F\left(x_{1}\right)$. The equations (III.3.11) may be written as
(III.3.12)

$$
a_{j_{1}}\left(f^{(1)}(x)-f^{(1)}\left(x_{0}\right)\right)+\ldots+a_{j, n}\left(f^{(n)}(x)-f^{(n)}\left(x_{0}\right)\right)=0,
$$ $(j=2, \ldots, n)$, since $F\left(x_{0}\right)$ is a solution of (III.3.11). This is a system of $n-1$ homogeneous equations in n unknowns. There is only one non-zero linearly independent solution of this system of equations [Bocher, (1), pp. 4952]. Clearly, this solution is $F\left(x_{1}\right)-F\left(x_{0}\right)$

$=\left\{f^{(i)}\left(x_{1}\right)-f^{(i)}\left(x_{0}\right)\right\},(i=1, \ldots, n)$. All the remaining solutions are linearly dependent on $F\left(x_{1}\right)-F\left(x_{0}\right)$, and hence all the points in common to all the $(n-1)$-flats, $T_{n-1}^{(j)}$, must lie on the straight line through $F\left(x_{1}\right)$ and $F\left(x_{0}\right)$. Hence, since L^{\prime} is common to $T_{n-1}^{(j)},(j=2, \cdots, n)$, then it must be contained in this straight line, and hence points of $L \cap E$ map into points on a straight line, which is the fact that was to be proved.
III.3.13. Lemma. Let $F: f^{(1)}(x),(i=1, \ldots, n)$, be a mapping function defined on a convex region E in $R^{(n)}$ and lat $D_{X} F$ exist and be different from zero in E. Let x_{0} be a point of E, and let x_{1}, \ldots, x_{n+1} be $n+I$ variable points of E such that $\Delta\left(x_{1} x_{2} \ldots x_{n+1}\right)$ is always in I_{1} and such that x_{0} is always on the line between x_{1} and x_{2}. Then

$$
\left.\mathrm{D}_{x} \mathrm{~F}\right|_{x_{0}}=\lim _{\substack{x_{i} \rightarrow x_{0} \\ i=1, \cdots, n+i}} \frac{\Delta\left(\mathrm{~F}: \mathrm{x}_{1} \mathrm{x}_{2} \cdot \mathrm{x}_{n+1}\right)}{\Delta\left(\mathrm{x}_{1} \mathrm{x}_{2} \cdots \cdot \mathrm{x}_{n+1}\right)}
$$

Proof. Since $D_{x} F$ exists and is different from zero in E, then F is continuous and maps straight lines into straight Ines. Let $\left.D_{x} F\right|_{X_{0}}=d$. Then for every $\epsilon>0$ there is a $\delta>0$ such that
(III.3.14) $\left|\frac{\Delta\left(F: x_{0} x_{1} \cdot \cdot x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdots \cdot x_{n}\right)}-\mathrm{d}\right|<\epsilon / 2$
whenever $\left\|x_{0} x_{i}\right\|<\delta,(i=1, \ldots, n), \Delta\left(x_{0} x_{1}, \ldots x_{n}\right)$ in I_{1}.

It must be shown that for every $\epsilon>0$ there is a $\delta>0$ such that
(III.3.25) $\left|\frac{\Delta\left(F: x_{1} x_{2} \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdots x_{n+1}\right)}-\mathrm{d}\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta,(i=1, \ldots, n+1)$, and where $\Delta\left(x_{1} x_{2} \cdots x_{n+1}\right)$ is always in I_{1} and x_{0} is on the line between x_{1} and x_{2}.

Let $x_{1}, x_{2}, \ldots, x_{n+1}$ be $n+1$ variable points such that the conditions of the hypotheses of the theorem are satisfied. The increments $\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right)$ and $\Delta\left(x_{1} x_{0} x_{3} \cdot x_{n+1}\right)$ are $\ln I_{1}$, but

$$
\Delta\left(x_{1} x_{2} \cdot x_{i-1} x_{0} x_{i+1} \cdot x_{n+1}\right),(1=3, \cdot, \ldots, \mathbf{n}+1)
$$

all have n-dimensional volume zero since x_{0}, x_{1}, and x_{2} are collinear.

Since straight lines map into straight Ines, $F\left(x_{0}\right), F\left(x_{1}\right)$, and $F\left(x_{2}\right)$ are collinear, and all the increments $\Delta\left(F: x_{1} x_{2} \cdots x_{i-1} x_{0} x_{i+1} \cdots x_{n+1}\right)$,
($1=3, \ldots n+1$), have n-dimensional volume zero.
By Lemma I.5.1 and Remark I.5.7, and from the above statement,

$$
\Delta\left(F ; x_{1} \cdot \cdots x_{n+1}\right)=\Delta\left(F: x_{0} x_{2} \cdot x_{n+1}\right)+\Delta\left(F: x_{1} x_{0} x_{3} \cdot \cdot x_{n+1}\right)
$$

and

$$
\Delta\left(x_{1} \cdot x_{n+1}\right)=\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right)+\Delta\left(x_{1} x_{0} x_{3} \cdot x_{n+1}\right)
$$

Let $\epsilon>0$ be given. Then there exists a $\delta>0$ such that

$$
\begin{aligned}
& \left|\frac{\Delta\left(F: x_{1} x_{2} \cdot \cdots \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}-a\right|= \\
& \left|\frac{\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot x_{n+1}\right)}\left\{\frac{\Delta\left(F s x_{0} x_{2} \cdot \bullet x_{n+1}\right)}{\Delta\left(x_{0} x_{2} \cdot x_{n+1}\right)}-d\right\} \frac{\Delta\left(x_{1} x_{0} x_{3} \cdot \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\left\{\frac{\Delta\left(F: x_{1} x_{0} x_{3} \cdot x_{n+1}\right)}{\Delta\left(x_{1} x_{a} x_{3} \cdot x_{n+1}\right)}-d\right\}\right| \\
& <\left|\frac{\Delta\left(x_{0} x_{2} \cdot \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\right| \cdot \epsilon / 2+\left|\frac{\Delta\left(x_{1}, x_{0} x_{3} \cdot \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} x_{3} \cdot \cdots x_{n+1}\right)}\right| \cdot \epsilon / 2,
\end{aligned}
$$

whenever $\left\|x_{0} x_{i}\right\|<\delta,(1=1, \cdot \cdot, n+1)$, and where the points x, \cdots, x_{n+1} satisfy the requirements of the hypotheses. This proves the theorem.
(III.3.16) Remark. The quantities

$$
\left|\frac{\Delta\left(x_{0} x_{2} \cdot \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\right| \text { and }\left|\frac{\Delta\left(x_{1} x_{0} x_{3} \cdot \cdots x_{n+1}\right)}{\Delta\left(x_{1} x_{2} \cdot \cdots x_{n+1}\right)}\right|
$$

are both $\leqslant 1$, since x_{0} is on the line between x_{1} and x_{2}. III.3.17. Theorem. Let $F: f^{(i)}(x),(1=1, \ldots, n)$, be a mapping function defined on a convex region E in $R^{(n)}$ and let $D_{X} F$ exist and be different from zero in E. Then the mapping is one-to-one,
Proof. By Theorems III. 3.2 and III.3.9, F is continuous and maps straight lines into straight lines. It will be shown that every image point, $F(x)$, is the image of precisely one point of E under the mapping F.

Suppose on the contrary, that there is a point $F\left(x_{0}\right)$ which is the image of at least two distinct points, x_{0} and x_{1}. Since E is convex, x_{0} and x_{1} can be joined by a straight Ine, $\overline{x_{0}} x_{1}$. Two situations may occur. Case 1. The segment $\overline{x_{0}} \bar{x}_{\text {, maps }}$ into the single point $F\left(x_{0}\right)$. Let $\left.D_{x} F\right|_{x_{0}}=d$. Let $0<\epsilon<|d|$, be given. Then there exists a $\delta>0$ such that
(III.3.18) $\left|\frac{\Delta\left(F: x_{0} x_{1} \cdot \cdots x_{n}\right)}{\Delta\left(x_{0} x_{1} \cdot \cdot x_{n}\right)}-d\right|<\epsilon$
whenever $\left\|x_{0} x_{i}\right\|<\delta,(\dot{1}=1, \ldots, n), \Delta\left(x_{0} x_{1}, \ldots, x_{n}\right)$ in I_{1}.

Since $\overline{x_{0}} x_{\text {, }}$ maps into the single point $F\left(x_{0}\right)$, then in every neighborhood of x_{0}, one can find an increment, $\Delta\left(x_{0} x^{*} x_{2} \ldots x_{n}\right)$ of I_{1}, where x^{*} is on $\bar{x}_{0} x_{1}$, such that for this increment, $\Delta\left(F ; x_{0} x^{*} x_{2} \cdots x_{n}\right)$ has n-dimensional volume zero since $F\left(x^{*}\right)=F\left(x_{0}\right)$. For such increments, relation (III.3.18) does not hold, for $\epsilon<|\mathbf{d}|$, contradicting the assumption that $\left.D_{x} F\right|_{x_{0}}=d$. Since a contradiction has been reached, it follows that case 1 cannot occur.

Case 2. The segment $\bar{x}_{0} \bar{x}_{1}$ maps into the segment $F\left(x^{*}\right) F\left(x^{n}\right)$, where $F\left(x^{\prime}\right)$ is the image of at least one point x^{\prime} on $\overline{x_{0}} x_{1}$, and $F\left(x^{\prime \prime}\right)$ is the image of at least one point $x^{\prime \prime}$ on $x_{0} x_{1}$, and $x^{\prime} \neq x^{\prime \prime}$. Without loss of generality, one may assume x^{\prime} to be between x_{0} and $x^{\prime \prime}$. The point $F\left(x_{0}\right)=F\left(x_{1}\right)$ is either an interior point of $F\left(x^{\prime}\right) F\left(x^{\prime \prime}\right)$, or else is one end
point. Assume that $F\left(x_{0}\right)=F\left(x_{1}\right) \neq F\left(x^{\prime}\right)$.
By the same argument as in Theorem III. 2.14, the following statements are true:

Every point $F(x)$ between $F\left(x_{0}\right)$ and $F\left(x^{\prime}\right)$ is the Image of at least one point x between x_{0} and x^{\prime}. Every point $F(x)$ between $F\left(x^{\prime}\right)$ and $F\left(x^{\prime \prime}\right)$ is the image of at least one point x between $x^{\prime \prime}$ and $x^{\prime \prime}$. Every point $F(x)$ between $F\left(x^{\prime \prime}\right)$ and $F\left(x_{1}\right)=F\left(x_{0}\right)$ is the image of at least one point x between $x^{\prime \prime}$ and x,

Consider the point x^{\prime}. Let $D_{x} F_{x^{\prime}}=d^{\prime}$. Choose a fixed positive $\epsilon^{\prime}\left\langle\left.\right|^{\prime}\right|$. Then there exista a $\left.\delta^{\prime}\right\rangle 0$ such that
(III.3.19) $\left|\frac{\Delta\left(F: x^{\prime} x_{1} \cdot \cdot x_{n}\right)}{\Delta\left(x^{\prime} x_{1} \cdot x_{n}\right)}-d^{\prime}\right|<\epsilon^{\prime}$
whenever $\left\|x^{\prime} x_{i}\right\|<\delta^{\prime},(1=1, \ldots, n), \Delta\left(x^{1} x_{1}, \ldots x_{n}\right)$ in I_{1}. In every sufficiently small neighborhood of x^{*} there is a point on $\bar{x}_{0} x_{\text {, }}$ between x_{0} and x and a point on $\overline{x_{0}} x_{1}$ between x^{*} and x^{n}, both of which map into the same point.

By Lemma III.3.13, in taking the derivative at x^{\prime}, the increments of I_{1} formed by taking two points, x^{\prime} and x_{2}^{\prime} (with x^{\prime} on the line between them) and $n-1$ other points, x_{3}, \cdots, x_{n+1}, none of which is on $x_{1}^{1} x_{2}^{1}$, may be used. For these increments, relation (III.3.19) must hold, with $\epsilon^{\prime}<\mid d^{\prime \prime}$. But among these increments, in every neighborhood of x^{\prime}, those for which the points x^{\prime}
and x_{2}^{\prime} map into the same point will bo found. For such increments, relation (III.3.19), with $\epsilon^{\prime}<d^{\prime} \mid$, will not hold, since the image increment has n-dimensional volume zero. This contradicts the assumption that $\left.D_{\chi} F\right|_{X_{0}}=d^{\prime}$, Hence, case 2 cannot occur.

In either case, a contradiction has been reached.
It is concluded that the mapping is one-to-one.
III.3.20. Remark. It has been shown that if F is defined on a convex region E in $R^{(n)}$ and if $D_{X} F$ exists and is different from zero in E, then F is continuous, one-to-one and maps straight lines into straight lines. Hence, from Remark II. $6.25, \mathrm{p}$-flats map into p-flats, ($1 \leqslant \mathrm{p} \leqslant \mathrm{n}-1$).
III.3.21. The main theorem of this chapter has now in effect been proved. For since F is continuous, one-to-one and takes straight lines into straight lines, Theorem II. 8.10 can be applied and the following theorem is true:
III.3.22. Theorem. Let $F: \mathrm{f}^{(i)}(\mathrm{x}),(\mathrm{i}=1, \ldots, \mathrm{n})$, be a mapping function defined on a convex region E in $R^{(n)}$ such that $D_{X} F^{\prime}$ exists and is different from zero in E. Then F is of the form
(III.3.23)

$$
\mathrm{F}: \mathrm{f}^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+\ldots+a_{i, n}+x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(1)}+\ldots+a_{n+1, n^{\prime}}+x^{(n)}+a_{n+1, n+1}},
$$

$(i=1, \ldots, n)$, where

$$
\left|\begin{array}{lll}
a_{1,1} & \cdot & a_{1, n+1} \\
\bullet & \cdot & \cdot \\
a_{n+1,1} & \cdot & a_{n+1, n+1}
\end{array}\right| \neq 0
$$

III.3.24. Remark. The theorems above have been proved for convex regions in $R^{(n)}$. The results can be extended to include any open, connected set E of $R^{(n)}$. This is done as follows:
III.3.25. Theorem. Let $F: f^{(i)}(x),(1=1, \ldots, n)$, be a mapping function defined on on open, connected set E in $R^{(n)}$, such that $D_{X} F$ exists and is different from zero at every point of E. The F is of the form (III.3.23). Proof. Let x_{0} and x^{*} be any two points of E. It must be shown that F is of the form (III.3.23) at x_{0} and x^{*}, with the same constants, $a_{i, j}$.

The points x_{0} and x^{*} can be joined by a path C lying entirely in E since E is open and connected. The path C is a closed and bounded set in E. Hence there is a $\rho>0$ such that every point of C is at a distance $\geqslant \rho$ from the boundary of \mathbb{E} [Knopp, (I), p. 19]. Divide C by a finite number of points of division, x_{0}, x_{1}, \ldots, $x_{k}=x^{*}$, such that $\left\|x_{i} x_{i+i}\right\|<\rho,(i=0,1, \cdots, k-1)$. Around each point of division, x_{i}, construct a sphere, I_{i}, IyIng entirely in E, with x_{i} as center and with radius $r_{i} \geqslant \rho$. Every point of C is in at least one of the spheres and adjoining spheres have points of C in common. Each
I_{i} is a convex region. Hence, Theorem III. 3.22 can be applied to each sphere. In each T_{i}, F is of the form (III.3.23). Since the spheres have points in common, it must be concluded that the coefficients, $a_{i, j}$, must be the same for each sphere, and hence, the $a_{i, j}$ are the same at x_{0} as at x^{*}. This proves the theorem.

The following theorem is in the nature of a converse to Theorem III.3.25.
III.3.26. Theorem. Let
$F: f^{(i)}(x)=\frac{a_{i, 1} x^{(1)}+a_{i, 2} x^{(2)}+\cdots+a_{i, n} x^{(n)}+a_{i, n+1}}{a_{n+1,1} x^{(1)}+a_{n+1,2} x^{(2)}+\cdots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}}$,
$(1=1, \ldots, n)$, where

$$
\left|\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n+1} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right| \neq 0,
$$

be defined in a region E of $R^{(n)}$ which does not contain the Inne $a_{n+1,1} x^{(1)}+\ldots+a_{n+1, n} x^{(n)}+a_{n+1, n+1}=0$. Then $D_{x} F$ exists and is different from zero at each point of E. Proof. Let x_{0} be any fixed point in E and let $x_{1}, x_{2}, \ldots x_{n}$ be n variable points of E so that $\Delta\left(x_{o} X_{1} \ldots x_{n}\right)$ is in I_{1}. Examine the difference quotient,
(III.3.27)

The numerator of this difference quotient is equal to

Using the multiplication theorem for determinants, the above product becomes
$\overline{\prod_{i=0}^{n}\left(a_{n+1,1} x_{i}^{(1)} t_{0}+a_{n+1, n} x_{i}^{(n)}+a_{n+1, n+1}\right)}\left|\begin{array}{l}a_{n, 1} \cdots \cdots a_{1, n+1} \\ \cdots \cdots \\ a_{n+1} \cdots \cdots a_{n+1, n+1}\end{array}\right|\left|\begin{array}{l}x_{0}^{(1)} \cdots x_{0}^{(n)} 1 \\ \cdots \cdots \cdot \cdot \\ x_{n^{*}}^{(1)} \cdots x_{n}^{(n)} 1\end{array}\right| *$

Hence, the difference quotient, (III.3.27) becomes

By hypothesis the numerator is different from zero. Allowing x_{i} to approach $x_{0},(1=1, \ldots, n), \Delta\left(x_{0} x_{1} \ldots x_{n}\right)$ remaining in the class I_{1}, it is concluded that $\left.D_{x} F\right|_{x_{0}}$ exists and equals

$$
\frac{\left|\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n+1} \\
\bullet & \cdots & \bullet \\
a_{n+1} & \cdots & a_{n+1, n+1}
\end{array}\right|}{\left(a_{n+1,1} x_{0}^{(1)}+\cdots a_{n+1,1} x_{0}^{(n)}+a_{n+1, n+1}\right)^{n+1}} \neq 0 .
$$

III.3.28. Remark. As in the 2-dimensional case, one sees that since the determinant $\Delta\left(x_{0} x_{1} \ldots x_{n}\right)$ cancels out and does not enter in the difference quotient while the limit is being taken, then $D_{x} F$ exists at any point x^{*} of E, with the limit being taken as $x_{0}, x_{1}, \ldots, x_{n}$ approach x^{*} in any manner whatever. In the IImit
III.3.29. Remark. Consider the function F, defined on a region E of $\mathrm{R}^{(n)}$, and assums that $D_{X} F$ exists and is not zero everywhere in E. Then F^{\prime} must be an affine transformation. That is, finite points must go into finite points. Otherwise, if some point, say x^{*}, mapped into an infinite point, then $\left.D_{x} F\right|_{x^{*}}$ would not exist, since all the image increments with one vertex at x^{*} would be infinite, and the difference quotient considered would be infinitely large. Then, for every $\epsilon>0$, there would be no $\delta>0$ such that the usual ϵ, δ relation for the difference quotient would hold.

It follows that if it assumed that F is defined on the whole Euclidean space $A^{(r)}$ and if $D_{x} F$ exists everywhere and is not zero, then F must not only be linear fractional, but must be linear:

$$
P: f^{(i)}(x)=a_{i, 1} x^{(1)}+\ldots+a_{i, n} x^{(n)}+a_{i, n+1}(1=1, \ldots, n) .
$$

Otherwise, there would be some finite points which would map into infinite points. This would be impossible, since it has been assumed that $D_{X} F$ exists and is different from zero everywhere.
III.3.30. Remark. Theorems III.3.25 and III.3. 26 together show that the precise class of mapping functions, F, defined on a connected, open set E of $R^{(x)}$ which have a non-zero derivative $D_{x} F$ at each point of E is the class of linear
fractional transformations. If the set E is the whole space, $\mathbb{R}^{(n)}$ then F is linear.

In the special case where F is of the form

$$
F: \mathbf{f}^{(i)}(x)=x^{(i)},(i=1, \ldots k-1, k+1, \ldots n),
$$

then, as in the 2-dimensional case mentioned in Remark III. 2.25, $f^{(k)}(x)$ must be Inear. That is, if $D_{x^{(k)}} f^{(k)}$ exists and is different from zero at each point of E, then $f^{(N)}$ is linear.

BIBLIOGRAPHY

A. C. Aitken.
(1). Determinants end Matrices. New York: Interscience Publishers, Inc., 1948.
P. Alexandroff und H. Hopf.
(1). Topologie I. Grundlehren der mathematischen Wissenshaften, Bd. 45. Berlin: Springer, 1935.
S. Benach.
(1). "Sur une classe de fonctions d'ensembles," Fundamenta Mathematicae, Vol. 6 (1924), pp. 170-188.
(2). "Sur les lignes rectifiables et les surfaces dont I 'aire est finie, " Fundamenta Mathematicae, Vol. 7 (1925), pp. 225-236.
B. Birkhoff and S. MacLane.
(1). A Survey of Modern Algebra. Hew York: The MacM111an Company, 1941.
M. Bôcher.
(1). Introduction to Higher Algebra. New York: The MacMillan Company, 1938.
L. E. J. Brouwor.
(1). "Beweis der Invarianz der Dimensionzahy," Mathematiache Annalen, Vol. 70 (1911), pp. 161-165.
(2). "Invarianz des n-dimensionalen Gebiets," Mathenatische Annalen, Vol. 71 (1912) pp. 304-313; $\sqrt{01.72}$ (1912), pp. $55-56$.
(3). "Über den naturlichen Dimensionsbegriff," Journal fur Mathematik, Vol. 142 (1913), pp. 146-152.
J. C. Burkill.
(1). "The Expression of Area as an Integral," Eroceedings of the London Mathematical Society, Vol. 22 (1924), pp. 311-336.
J. D. Gram.
(1). "Ueber die Entwickelung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadrate," Journal fur Nathematik, Vol. 94 (1883). pp. 41-73.
P. Halmos.
(1). Finite Dimensional Vector Spaces. Annals of Mathematics Studies, Number 7. Princeton University Press, 1942.

融 Hurewicz and H. Wallman.
(1). Dimension Theory. Princeton Mathematical Series, Number 4. Princeton University Press, 1941.
W. Kaplan.
(1). An unpublished letter to C. B. Price.
B. V. Kerékjártó.
(1). Vorlesuncen tuer Topologie I. Grundlehren der mathematische Wissenshaften, Bd. 8. Berlin: Springers 1923.
G. Kowalewski.
(1). Einführung in die Determinantentheorie. Leipzig: Veit und Comp., 1909.
K. Knopp.
(1). Theoxy of Functions I. New York: Dover Publications, 1945.
S. Lefschetz.
(1). Introduction to Topology. Princeton Hethematical Series, Number 11. Princeton University Press, 1949.
E. J. McShane.
(1). Integration. Princeton Mathematical Series, Number 7. Princeton University Press, 1947.
K. Menger .
(1). "Über die Dimensionalitat von Punktmengen,"
 33 (1923), pp. 148-160.
(2). "Über die Dimension von Punktmenger II," Monatshefte fur Mathematik und Physik, Vol. 34 (1924), pp. 137-161.
(3). "What is Dimension?" American Mathematioal Monthly, Vol. 50 (1943), pp. 2-7.
E. H. Moore and H. I. Smith.
(1). "A General Theory of Limits," American Journal of Mathematics, Vol. 44 (1922), pp. 102-121.
G. Peano.
(1). "Sur une courbe, qui remplit toute une aire plane," Mathematische Annalen, Vol. 36 (1890), pp. 157-160.
G. B. Price.
(1). "Some Identities in the Theory of Determinants," American Mathematical Monthly, Vol. 54 (1947), pp. 75-90.
H. Radamacher.
(1). "Über partielle und totale Differentiarbarkeit von Funktionen mehrerer Variablen und tber Transformation der Doppelintegrale," Mathematische Annalen, Vol. 79 (1919), pp. 340-359.
S. Saks.
(1). Theory of the Integral. Monografie Matematyczne, Tom VII. Warsawa-Lwow, 1937.
E. Schmidt.
(1). "Zur Theorie der linearen und nichtlinearen Integralgleichungen, Mathematische Annalen, Vo1. 63 (1907), pp. 433-476.
D. M. Y. Sommerville.
(1). An Introduction to the Geometry of n Dimensions. London: Methuen and Company, Ltd., 1929.
T. J. Stieltjes.
(1). "Eenige opmerkingen omtrent de differentiaalquotienten van eane functie van een veranderlijke," Nieum Archier voor Wiskunde, Vol. 9 (1882), pp. 106-111: 0ouvres Complètes, Vol. 1 (1914), pp. 61-72.
P. Urysohn.
(1). "Les multiplicites cantoriennes," Compte Rendus hebdomadaires des seances de 1 lacadémie des Sciences Paris, Vol. 175 (1922), pp. 440-442.
(2). "Sur les ramification des lignes cantoriennes," Compte Rendus hebdomadalrea des seances de liAcadémie des Sciences Paris. Vol. 175 (1922), pp. 481-483.

[^0]: * Throughout the remainder of this paper, the n coordinates of a point x in n-dimensional Euclidean space, $\mathrm{F}^{(n)}$, (n any positive integer), will be represented by superscripts; $x=\left(x^{(1)}, \ldots, x^{(n)}\right)$, or as $x^{(j)},(j=1, \ldots, n)$. Two distinct points of $R^{(n)}$ will be distinguished by subscripts, as x_{0} and x_{1}. If x_{0} only is written, it is understood that $x_{0}=\left(x_{0}^{(1)}, \cdots x^{(n)}\right)$
 necessary to use the coordinates of a point in the proof of a theorem or to make the meaning of a statement more lucid. Otherwise, the notation x_{0} will be used.

[^1]: * The term 'region' is understood to mean an open, connected set of Euclidean space.

[^2]: * The vertical bars here are all determinant signs.

[^3]: * For original papers on this topic, see $[$ Gram, (1)] and [Schmidt, (1), p. 442].

