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The ensning work s concerned with variaus whaaes of & general

Introduction

theory of series expanaionq that has been investig“te& [15]* by G,

‘B Price and others, Let the functions f(x) and u (y), =041y ores

~ have either rea1 or complex values; vhile x may be an element af an

~ebetract set B, The points X, 4 X,, 4 esss X,, 8Te assumed to be

in E.

(8) &)=

Briefly, this gene?&} theorg breéts the series éxpangicns

£(x) = d,u, (x) + dlu,(x)-i-,... +d,0u, (x)+ ooy
)
d, = 55531 d,

‘ ‘1 (xno) U4 (xno) i 11,‘1 (Xna) f(xno) “,“1 (xna) exs B (xno)

.uo (xﬂ.l) u1 (xﬂi) .en ﬂ -1 (xna) f(Xn.!) uu,g(xnl.) ses 1 (xlu)

6,&5&i'%ii'06#6'6’.3,G"-‘éﬁii‘q’-nOtioi.b'i‘«'q'
. . St . T

‘ uo(x,,,,) ﬂ“i ‘(xm, Y oies ﬁ§-1(xnn)"ﬂ'£(xhh) Wy (X0n) ses n..(xn»)

Polme) #, (xng soe Uua(Xan)ug(xng) ey, (xnd ois wa(Ta0)

| gl O(xhl) uﬁ (xng) ese nn-ﬂ (x"x )u"(xnl) u.:'.ﬂ ‘xnz) “ne 'u;"(xn’ )

‘1”0 (x')n) uicxnn) *ns u"'l (xn" )un(xnn) 11.",(x,.,,,) ’.i:;; u”(x"n ?

,(1)

* Numbers in brackets refer to the bibliography at the end of the paper.




The denominator of 4 :) is assumed to be different from zero. Thisg
représents B restriction on‘tha fuhctiaﬁs u.f(x) and on the paints
{xn, } The specific problems to be treated in thia work can now ba

 gtated.

' Pro‘b.lemzl. Study the additive homogenemm functiona‘l a (f)'

in narticular, determina (a) the claas of functiona £ for w%ich it is

- dafined (b) 1ts continuity pranerties, and (c) ita representations ,

" by mveans af integrals,. derivatives, infinite deteminagtm snd so on,

In the traatment of Problem 1. certain mouified sequences are
lk brought under the general theory in&icated above. By & moéified

| u, (x)-sequence ig meant a sequence of functions of the form u (x)+¢ (x)‘,
. uhere the functions @ (x) must satisfy certain conditions. This ‘

: v“suggests another teslk;

’ Problem 2, Exemine the funetionals d,‘. ami “the exnansicns
" Z [u,, (x) + ¢n (x)] in the modiﬁed sequenaes encountered
L iw=o o o -
in Problem 1 as well 8s other modified Bequencesw

In working on Problem 1, the emression af ,f 4n (B) arises

fron the interpolation of a function f(k) defined n 2 by the 1nter~‘ir-*"7

, polating polynomial :

S S o

L ‘vdo uo(x) + 6‘1 ul(x)‘*"“*ia"‘ nn(X)
“on the n +1 points X,, i X 14 eiis X,,s Solving the system of
equations | :

(n) .

. ‘ .' (n) . B B () 'V- R » “,
dy uolx;) +d u, (x; )+ ... s, u, () = fxg),

()



i= O’, 1, waae Dy by Gramar‘islmlﬁ. we obtain d(:) az given in “(B)w ‘

It 1g fcund thet a useful device in the stmplification of a"

ig the notion of finite orthcganality. ‘.i‘hus m‘altiply both mmerm‘:or |
’emd& denominator o:f' ay K by the tranaposze of the ﬂenaminatar. It i
‘ :E’ound that in the restﬂtiz‘g dezemimnm. emept in the column that
‘invol'me f(y), &11 elementg will be of t’m :t‘orm

« Now, 'briefly, we say th&t the functiom u K(x) v k=0, 1, cess Iy
are finite orthoyonal ow-r the paints {x,,,f g the etpreasion 1n ;
(0) vanighes vhen k 1s not equel to 1 and is equal to & non-—zero

—,(n) tn) .

constant; of W vhen ¥ is equal to 1, d,, &epen&n on k and n in
" general; If the functions u w(x) are finite. orthogonal over the glven
pnints, it is aasily seen that the new expres«zion for 4 rr) reduces to

Z 'F(Xn‘_) u (Xﬂl)

p) ‘ ‘g k.‘z.ﬂ-, 1, coss n.,

2: Un (xi)
20 '

If the points %,;3 4 =0, .i.y 0, are properly chosen points in an

intervel [a, b] of the resl line and f(x) is Riamann integs ahle,
" 14 has been shown in some aaaee ‘[15:} thet the 1imit of the expression

in (D) 1s & Riemenn integral.

In addition to finite orthogonality, a mofe genersl notion, that.
of finite 'biorthoganalitv. is useful in the same way for the simnlifi-

(n
cation of 4 )

(111) ‘i



Using these notions 1t has already been shown that fhe Fourier
series [16. p. 1147 , the Fourier sine series [ 8, pp. 30-35]‘ |
and the Toylor series in the complex plane [ 15 ] come under the general
theory indicated above;~ In all of these cases d, turns ont to be an
integral, . Thé Taylor serles for resl x has algo been considered [15]

with d , being a derivative in this case.

In Gh&pter One it is shown.that‘the double Fourier series comes
under the genersl theory, Also, using the notion of finite blorthogo-

nelity, the Leurent series is breﬁght under thie framework,

In connection with Problem i.,a form:of Bessel's inequality is
proven for finité orthogonal functione which is of interest, It shows
‘that theknotion of Bessel's inequality is so sﬁrbng-thét,its skeleton
appéara‘when only the values of functions on & finite set of points
of an interval of the reasl line are considered rather than the values

on the whéla interval.

Certain other more artificial functions are brought under the general

‘theory in Chapter One.

The work in Chaptér\éﬁe is cbncerned'solely with 99quénces’pf funéa‘
tions whiéh are finite Q?thogonal or are associated with anothef finite
 ‘biorthogonal seqﬁence. In contrast, in Chap%er”@wo €he sequences of
functions eonsldered are no longer fin;te orthogonal Howe#ér'the
notion of finite ortnogonality is uaod to etudy du- and the seguences
are again brought under the'general theory. It is foun@ that & "o

in this case, is the ratio of two infinite determinants. The sequences

(1v)



considered there are of the type 1 + ¢o(x). cos x . + ¢1(x).~ sin x +
PA2)y wepcos kx4 @ (x), sinkx + @ lx), oo . Certain
more general typas; of modified sequences are aleo considered. 4An exe

tendeﬁ definition of finite biorthegcml functicenq is given ami a

« i:heorem aamerning auch functiong is prowfen.

i In working on Préb’ls-‘m' 2 VséVeral i;émults are a‘btains&k m#at; =
' a rather abstract situation in regard to mdiﬂea sequences is
kecnsi&era& Lat Zuw (x)}c be a seqnence of functions dei’insd
on gom}ei,iynterml of the real line or in some :agion of the conplex
plene, Let £(x) be defined bn the came interval or 5.?1 the regfbn‘
Tet f(&n e be 2 sequence of aﬁﬁit?va. homcgenecms funcoionazle TR
v‘such that O wfa ()] = 44 "’hen e‘tpansionﬁ £(x) *E (‘S)E‘x“’+¢ (]
’a,re investigaued where ¢(x) are some properly restric;aé‘{ seqmance | |

of fun::tians sble to he expan&e&. in a series of ﬂw n (x). Ths"

functzonalgﬁ i are also investiggted and found explieiﬁly&

Tt is seén that, 'because of the nature of the operators O,
,‘ modiﬁad orthaganal sequencea. modified Taylor sequences and modiﬁed
biorthogoml sequenceq an mll as thes.r asgac* ated expansionsg are to

fbe' inve stigated@

1 .&,hi‘g‘h*’ ’apnear that if from a Sequeﬁce; iu"(x) ?w | a modifi.eﬁ %
sequence, {uk(x) + ¢., (x)?  is o‘otained. which has certein |
properties, then & further modification to a aeqnanca {u.,(xl-:-tp (%)+8, (x)?

'might he Very fruitful }Iawaver in Chapter Three it is shown that

under reascnable hypotheaes the result of malcing two modifications in

(v)



_succeesion is completely equivalent to making'oné'two-stap'mpdification, »

An example of a modificaticn and an extension of the main result

to 2 Banach space are included in Gh&@tér_?hree‘.

In addition to the toPics already indicated the 1m§artant auesticn

' sf ccﬁnleteness of modified sequeﬁcns ia-diacussed. The notion af

the cowpleteness of & certain sot of oneratora is also used, Aff
essary snd sufficient condition for the completanass of modifie&

‘ gpquences {P (x) + ¢) (x)? N providing the aequence {E’,{ (x)}

' 13 conplete is given as the non-vanishing of a cprtaia infinite‘:

_ Jdeterm*nant. A criter*on for the noananﬁshing of some of these )

- ﬁetermiﬁanta is presented thet is indenendont of the problem considered ;;‘”

jhexe. Cartain ather proner ies of modified s@quences ‘are also diecussed;x

Some remarks about the methods are anpropriate. Hea&y ugé was o
‘\made of interpolatzon in the first two chnpters. but in the treatment '
of Problem 2 it was found that 1nterpolation could be abandoned ag a
tool, thus en&bling some of the neavier reetriationa on the prob;em to jf;
be rpmcved. The role ayad by'norual deuerminantq 1n nhe entire

~ paper ie a considersble one, Nowmsl &eterminants ware fira% &Ascovered
’;by Von noch in 1892 and most of the work done on them (366 [28] _LZQJL ):
1s due to him, A brief accounh of normal détérminants'is also giv§n2v' -
| by F Riesz [25] ; who 1n.add*tion nresenta the notion of an |
absolutely convergent determinant. It might be remarked that thp, i“
extension of the results,of this paper %o ;he4cage vhere the determinantg 

involved sre ebsolutely convergaﬁt'rather then normsl seems %o present

(v1)



no fealydifficulty;' Gnly'a féw,neé‘ragnitg déncerning norﬁalpdeterminants
‘ére:pruven héra. §heorem 19 represents one such vesult that seems to
héve beén 6ver1eeked, Theorem 21 wa.e prbﬁen,by E.lEieéz.in,a much

moze geﬁeral féshion, usiﬁg &ifferent‘méthudq, However, the proof

‘given in Theorem 21 uses only tha prop@rties of normal determinants.
Another reqult th&t deals nurelv with normal determinantq is

Thecrem 31, This theorem 1s a 3imple extension af one praven by

G, 'ﬁ; Pfice [2&:] - HWow, the fact thﬂt 2 narmal &eterminant will be
vdizfarent fram zera if *he elemen%v sat*afy certain conditions wag

proven [?Qi] by Vbn Koch Theoren 31 does not hanﬁle any more cases

but the bounds given there are &t timea sh&rpar than Von Knch's bounds.

Prohlem 1 has an interesting hiatorv that haa been;pointea out

o [1)] before. Problem 2 lies in a fleld that wes apaned by G D

| Birlchoff [3] in 1917. At that time he 1laid amm 2 ,guiding princijplé
that is af interpst aud which cartainly holds true in this Paper.

_FAny,set‘of«vectors in a functional space lying ngar.anough to a j
ééﬁplete get of veatoré'admiﬁfing & reciprodéi get 1s itself’édmpieta
and admitava reciprocal aet;? The ?eciprocal’seié here.aan;be thought

of s biarthogonrl aets.

jlﬁirkhoff‘s work on modifieﬁ sequences was continue& by 7, La ,
walsh [30] vho in 1924 discnsqed ervanaiona in sequences which vere
" near arthogonal zequencea. Paley and Weiner in 1934 [23] che an
imnortant criterion hnving to do vxuh expensions in & sequence cf
functions thet were "near" en crthonormal gequence, Most of the work |

done since that time'has been of the Paleyeweiner type. JFor some of

(vii)



thege regulis one «hcnld consult the h*bliograﬁhy‘ In this later .
vwcrk. & modified exnanoion is obtained if if? (x)} is 8 sequence of
orthonormel functiops and {g;n(z)fis any sequence of functions close
to zP (x) z in some gense.. The modified expansion is in terms of the
enlz). Being claee in some sense 1nv01VPs 2 aertain numerical
trestricticn on the aifJerence of P,,(x) and g,,(x) In this
oissertction it is seen that if' instaad of teking any set of functions
g,,{x) near P,(x), ve take only certain g n{x), this numer* al To=

~striction can be discarded."

‘-QneiunsQIVQﬁ problen in éoﬁnection with this‘woﬁk deéer?es further
maﬁtion, It has'heéﬁ found '[8 Y. 30435'] [lé;wn; 114] ' [27,'
‘»: 150] that the sequence 1, cos X, sin E, vsee CO8 kx, sin ¥x, ..a
e f:niﬁe orthogonal over & certain set of points; in addltion. the‘

sequences

: 2 ,
a) 1; 2, 37 4 iei 4

-2 -1 2 ,
DT T R P I AR T

¢) 1; sin =z, sin 2x, ...
a) the Haar gseguence of functions,;

have been shpwn [15} ﬁ;‘lj] to be finite biorthogonél ovef certain
4A39téw°f points: Other more artificial functione are shown in ﬁhapﬁer |
One to possess this propgrﬁy; But these are all the sequences with
this property that ﬁa&@ béen found. The locating of other such sequences

or the establisning of the fact that there are no more must remain

(viii)’



28 intriguing problems at this writing,

. In aﬂditian:iﬁbis suggeste& thet there is a continuing need for
 more knbwledge,abaut;infinite determinznts, (¥er a different class

_of infinite determinents then thoge studied hefég see  [15, vn. 168-125] )

7'gﬁfﬁér the'complation of‘this thesis it was foﬁnd thet The&rem“‘
lﬁktégéthar'with,Thecrsm.zﬁ had*been proven by H. ﬁaryvr[zj: and even
foé the case where the infinite‘determin&nts invoLVei were aﬁsolueély |
convergent deterninente rzther than normal determinents. Bary csn~;
'sidereﬁ oﬁiy the iﬁtegr&l case hawevér. - Theorem 29 which is a generali=

zation of Theorem 28 was nct considered by Bary,

As far as the mechaniqs-of the thesis arebaoncnrned, chapters,
‘sections of chapters and certain items in the sections are indicated
numericslly. Thue an entry such as 4.%.2 refers to the second

designated 1tem of the third section of Chepter Four,

In conclusion, the suthor wishes to extend his sincere thanks to
Professor G, B, Price whose encouragement, aid and inspiration have

made this thesis pogsible,

‘(ix}



1.

CHAPTER ONB
FINITH ORTHOGONALITY

1.1. Applications of Finite Orthagonality.
A general theory of series ernansions has been pointed out by G. B
Price E15] It will be described briefly 'below, and the applieation of

finite orthogonality to this general theory will be diseusqeﬁ.

Consider the series expaﬁsiOn

L1 :(g) - agFo(x) ﬂ;.alPl(ln;) I efi(x) + voe
: x;here | - o
1z | ag‘-},ﬁn_gg( n),

and

(2 L. e () 2(x)) pm(x(“)) coe By (D)
2™ oo () sl pm(én’) oy ({“’)

‘QD“' ..'0""!.... Q ‘I..,Q"QQ

P (x(n)) ' ( (n)) £ (n)) { (n)) fei P (x(n))

. (n)
1.1, =
- %= (x(n)) Pk (= =) p (x(")S P! )¢ (“)) fie P (x(n))

P (xln)) 0ee Pk 1(’:1 )3 P( (n>> k+1 n)) iie P ( gn))

P (x(n)) bes P l(xtbn)) P ( n% P l(x(n)) PRI P (x(n)) k

Here the denominator of ckn) is aggumed to be different from zero for all n,
This represents & restriction on the sequence of functions P (x), P (x), ves &

This agsumption will be ever present in this work, althoug;h in speoial cages



the non-zero value of the denominator ofl,‘\.’ri(;n) will be calculated,
| The general theory ai&ses frbﬁz the étudy"of interpolation of an
arhitrary i‘unation f(x) by a finite 1inear cambim%ion of the ‘gequence

3 “‘P (Y)g l(x), LXK TP Thus le‘b ( )g 3- mG, 1. sany n,, be 11+1 points

'Vrlying in en interval [a, bj af the ree.l axis, or in & region of the

- ccmplex plane. ; Let :{‘(z) be defined on [a, b] St
f(xin)) = &ﬁn)P (xgn)>+ ain);, (X n)) + (Ik)? (x(n)) . | 1 ~..-; 0‘ 1' i_ .
\ "‘ n' : ' ‘ R : . : ¢z‘~,

Salving this set c«f equaﬁiona in the uaual way. oearing in mimi the

. jrestrictione on the P (x) ai:atad a‘nove, vie find that (n) ckn) k= 0.
1, »vu. 0, as given in 1. 1.3‘ Tow 1. 1.3 is ra,the:f ‘unwieldy in general.

' "-"I?herefore 1%t would be *nteraqtine; to ohtain an explicit evaluation af the_
{n) L

operator ck . ‘I‘his hag 'been done in two special tages .

(n)

Let Py(x) = . sin :jx and. %, 11; e Tenown [8 PDe 30.35] that

H‘aén)uc n+1 ;' f(x)ain\m‘l‘

' LetP(x)al._‘

Zk l{x) a cos kx‘ 2 (x) ot s:ln kx, ‘u“ . Hére

.'klet x§ n) o 127T 1 i 0, 3.. cevy 2a, It is known [16, D, 115] ‘thet

(n) , zn’ ' ’. :
% : 2;1-#1 Z f(xi) ". o

éﬁz‘i = ‘Z%'T Z i‘(x ) cos k:x a k: =1, ses, n,
(n) : : , R

It is appropriata to look: briefly .at the calculation of the Operatbr

(n) 3=0,1, ..., o, in this last case as it will bring to ue,ht ab

, intaresting property of the sine functions e.ncl of the sine and cosine



3
f_unctiovné which will be examined in the case of other. sequencéa of
functions.

Therefore consider 1.1.3 with B (z) =1, <+, B, (x) = cos kx, |

: ; tn) ,

P, (z) = sin kx, ++e . Set x; = %%g.:. Hereaffer the supersoript
' n) . » Ry s
(n) will be omitted from 'x; but it ie to be borme in mind thet the set

of interpolation pbinte varies with n,

Multiply both the numerator and denominator of cK in 1,1.3 from
the left by the transpose of the deneminator. In the resulting ratio

of two determinants, except in the column that involves the funetion

: , 20 ‘
f(x), all of the elements will be of the form Z cos kx; coslx; ,
: 2n . 2n i=o0 ' :

Z sin kx . sin x4 4 or Z sin kx ; cos 1lx{

1*0 1=0 .
0£k, 1 €n, We use the following property of the sinea and cogines,

1z = 2L, 1=0,1, «, 20, then

n+l
2n ' ' L
&) ). coskx; coslx; = A §uu , 12k 150,
i=0 L L . '
2 v I .
1.1.4 D) Zf cos kx; sinlxy = 0 v 0k, 1%n,
f:o . - » : ' .
| 2n | .
e) D, stnkx; sinlx; = 2282 {m , 12x12n,
i=o ' ' ‘ »

a) and c¢) may 'be. verified by expressing the terms’ on the left as cosine
geries and using the formla fér the sum of a cosine series, ,b) mayv
be verified by using the symmetry of the vpoints x ; asboub 7 . In
Chapter Two formulae ineluding the sbove for more genéml values of k

and 1 will be derived,

It is clear that the expression obtained for ¢y, mey be evaluated

immediately when the relations of 1.1.4 are used.' We f\inﬁ
i 4 , o
. 1 ,
%o = %mi Z f(xi) .
1=0



5,

2h

cz'(_" = = 3 , £x; ) cos kx,, . k"f" 1, e n,

¢ - < f,x sin kx; koo ly ceey Dy
2k Zhel 12.0( ) ] , * s Be

.-cZK I ean 'be written as
2n

czK-—l"‘" ’1’17 f(xl}' cos mi zh+l *
‘ | i= o ;

kIf f(:a:) is Riemann integrable,. it 13 fo‘una that
33“& oo = #,ff(x)coal_m !
. S %
) which iq the cuatomary Fourier noefficient | The same argument épplies

to ez,r ami o

‘?Ihen given an arbitrsry sequance of immtians. set of relations
analogous to 1 1, lt' would be nf use then, =8 t;his wcum enablp us to
caleulate o x readily, These conméemtions lead natnmlly to the

~ following definttion,

Defint tion, {i'l.;e‘seq!;ence of functions @h(x), 9§ (z), ‘¢2(x)‘
ess 1s srid to be finlte crthagonal over the set of points {x?‘} '
1 =0, 1, esuyn, 1f and only if ' | _ |
(n) n) Y L ,
§A ¢K(XA. ) ¢1(Xi ): dk le)ifcjlﬁl‘_"oi 1y, weoy 1y
(ny | o

- where d: ig & constant depending on k and n in general, The
pro’blem of findirg sequences of functions which gatisfy this property
of finite orthogonalit?,r seems to be a ‘difficult one in general.

Some sequences which satisfy this property. or another quite similer

one, in addition to the sequences seen above will 'De pointed out

below. Also it has been found that the Hasr functions [15. p. 52]



, satisfy this property over a certain set of points,

1.2 Double Fourier Series. - ’J R i
An obvious extension of the woric in +ho preaeﬁing paragreph to '
aouble Fourler series is possible. f:on«ider {irst tne sequence of

functions '{s.’m X gin qy}, p,__l, veey N q-—l, casy n. . Choose ’
7_

ATl s -
the &euble sequence of nmberg xi = 550 i ..jl. RS n:,& =i

1 =1, soey n, Now take the poin’és ,(x“ yj) in the "glane.}v The
given sequence of functions is finite orthogonal over the«sé n? points

'for every n, For 0 2m, 1, p, q £n,

. n n = . -
Z\ Z sin mx; sin ly; sin px; «gin ay

i=1 =1 , ; , '
, n ‘ n ‘ » S -
c P e 5T ey ey = (22, (00,
izl = , - |
. © ', m¥#porl¥qg :
R d B 2 - - .
N+l 5 , ,
(%), m=p and l=q.
Then we have fromll‘l.B
‘= E:)(n-u) Z ’f(%i‘yj) sin fex g sin 1y,
‘ 1:] :

The limiting process mey be applied end 'thexraaitianal‘%urier

i

double-sine coefficient is obtained :-
™ T | |
o 2 2 [ ) o i
Cyy = (_n__.) ‘ f (X,.Y)sm’kx ;ml,}' clxc/y ,‘f,l,integers.,

o0



1Thé“ ‘dog'b'le Fourier series may be handled yin‘an analogous manner,

1.3 Bvaluation of the Operator fo:: Laurent Series.
’ «'E’of ksimpliciﬁy, let us consider an gnnulus sbout the origin in
 the z— plane with radii R and r, 7< Ra :t is to henotéd thet the

. :E‘ollowing result will hold for an annulus abou?: the point 2 o By

ﬂet f(z)'bé S function that is anal,ytic in the mmulua. Let

Cen e pet n
é-_n ‘5~."+,a_nf’ z + pt¢'fa°+001+8-n-, Z ,+ a,., z‘

be an interpalating polymmial th«.t 1nterpol&tes the given function

on ?.n +1 paints lying on the circle ]zl P~ § r & f’ < R More |

compactly 1e*!; Zj Pe BJ w‘nere eJ = J .2?7;{-“) , ;},..‘.’::\l 2, .,..,

m+1; ; Ve have the system of eqnationa T

_=n+l : . N B
fczl) '-a-n zJ, + ‘B‘_”.’.J_zl L) ""ao"' *un -l-a,, zl 5

.3‘1 &l!Otobntaicﬂqq'?’.iv,.kw"obvtt“!‘!‘o‘i,l -‘i"j
-n ~n+l . n
L f(zzml) 6‘n an+/+ a—nﬁ 2n¢ +'  DU - PO e (5,., 22,,.,, o
'Lebting Z; = P e '+ we have by Gramer‘vs‘rhle
v 1 14
| Pe %))
— = -n,N;

f’e

IR R N Lo ;(H §(pe’ >)
h’en

indicates that the column with elemerits P Y 1y replaced

(< )
'by the colunn of elements £ (P e’ ) se=lia 2n+1.

Ve ma;r factor out the P’sfrom all of the columna leaving = multi'plier ’



Of -—F“ 'S

denominator from the left by the cézijugate transpose of ﬁhé‘denominatar.‘

Ve multiply the remaining exprevssion in: the numerégtd,r‘and ’

Lemma, o
: m . o ‘ S i
S (1) ) e’mees,leb‘:znﬂ,, -r=s mod(2n+y
) ']:.3.02 =1 | |
H pig. sio; ‘ Lo SRRV
(2) e ‘e "= ¢ , =r#s mod(an+ti)
J=1 ' ‘

Prooft The first identity is obvious, In (2)

2011 | 2n+1 an+l - o
2 : ; ' i ;2

rx ZE‘ (r-fs)-"- 9 ZG‘HS)IJ'Z"*"
=1 ; ; J -1 :

The last sum is merely & geometric }irbgression¢ its sum being

2n+2.

1 - [ (res)i 2,::,]

(r+s)s =
2n+l (r+s)i 27
1 - e ?ﬂ+1

]
0

The denominator is never equal to zero sinee © + g # k(znw) ¢ k an

integer. '

Using these identities, the transformed expression for &, is

clearly

_KJ.GJ 19
1.3.3 &y = f,lf ZTT Z 'SL(F )an-rl



‘ 8. .
Now as 0 —» oo, sima f{z) is analytio in the ennulue and 2';;_'1~A 9.
the a.bove sum iy merely a Cemchyniﬁiema,nn sum ami ‘

- 1 1 ~-hie ie) de
%g“waw“?kzn.[e; F(Pe*t) de .
. (¢}
' , i1 e ‘ '
How 2z = ' = -’-- dz ~ go that
| = fe s ;“/9« i = &
e | $(z) J
‘ni—ineo P = amd o2 ‘
| 1zl= P

This is the usual Laurent coefficient. OFf course, a further study

can be mede of the convergence of the interpolating polymomisl

an z-n*’ k n-1 n
a =z B e vee +8 2 o+ B '
on & -+ oy 4 ase + B st see -+ -1’ ‘ nt L

vhere ‘éj is now given by 1.3.3 to £{z) in the anmlus,

It hag also been shown [15, D 6] that the functions 1, 2,
Ji2r
’,zz,g a;.,}_zzngre,auch that on the points z . = P e Th+2

=0, 1% ooy ﬁg

-K ) :
Z. Zl = (n"'l) J‘Kl
Z ; S Y S :
i=o S

The proof ig similar to thet used for the Lanrant gerien,

1.4  Another Set of Fin;te.ox'thggbnal Functions. .
Let {x,,} a1, 2, ey be 2 Seyqu‘ence of digtinct pointe
in the intervel [0,1] that have the poiﬁt 0 as an accumulation point,

We cen assume the sequence ie ordered in descending megnitude.
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Define a sequence of functions ¢n(x): &, (xj) =0, J# n, ¢”(X,,)_
is not zero but otherwise arbitrary, ’Ehén 1t is clear that for

1k 12n |

Z ¢w(xf) ¢1(XJ):O p) # 1

BERNTS S

‘ 2

:[95"()‘#)] , =1
The process used in paragraph 1.1 mey be carried out simply. Ve
obtain \ |

5 (%)

¢H (%)

——r ‘ k A 0 ‘ «-nn ‘ n.
K' A )" 3" . *
Here it is assumed that the functions £(x) is defined and finite
throughqut the mmm[c,m] » Now, if the resulting aeries', is $o

represent f(x) at each of the points x,, then obviously |

a1 D= 1) gy 1T gy E0 g e
o) T g x) o)

‘Eere 1t ig seen that the interpolating coefficient ig actué.ny the

geme as the series coefficiént without using the limiting process.

The series 1.4.1 is the same for 211 functions which have the same

value at the points %xnf.- n=1, 2, «ii +  Therefore at other poixits

in EO;I] it cen represent only one of the functions from this set:

It is clear that many such sets of finite orthogonal functions

can be constructed.

1.5 “Bessel's Inequality" for Pinite Orthogonal Functions,

Suppose the set of functions ¢a(x). '¢1(x); vees “¢n(x),\



ig finlte orthogonzl over the péints Xo » xkir,‘ .u; X, ‘contained

‘in some interval [2,b] . Then in the usual wey
- k“(ﬂ) k B IR 2 '

g m g =L §(Xi)¢,,(xi)\

‘ i-o ' :

where d,f = Z¢”(x1-)2 provirﬂ.ing; £f(x) i.s deﬁmﬁf and finite

. Theorem 1. - ( a"r )ZOIH = Z ['f(/\’.i.)].
: : iz=0

X
U
A

3

In order to prove this theorem, consider the expression

(f<x> - Z a, ¢ (x))
Lf(")] -2 Za %(x) ¢,,O<)+Z £ a, a ¢,,(x)¢(x)

Jz=o M=o
Therefom" _ | ’ | |
[&-("D Z a,, ¢,,(X1)] Z [_f (% )]2 zi a,,f(nm,(x);y
‘ i i= =0 k=0

+Z L Za” 8,00 9,05

.1. o J=o K=o

Inberchange summations ‘and gum over i first. Using tha finite

orthogonality propert,/ of ¢ (:ts:),.i cony ¢ (x)y we find



R ] , ,, ; 2 ‘,n ,/ 2
PINELCEPNEVTECS) KD N LIS EEDNCAE A

1l=0

ZZ’aad 5” )

[=o fr=o

H

Zn: Csoa)] - 2 3" (a;)%, + > a;)d,
izo ) =a tr=o0 ‘ :
INECY DN EAR

i

Ex}amining the expression on the left; it is seen that 1t is equel to
zerd for each i; since the 1nterpelé,ting polynomial is equal to

£(=x) _at the points xo . ‘xl 4 eees Xp Therefora

1.5 Z: (a;)%d, Z[f(x )]

This is true for every n, This completes the proof,

If the set { ¢n (x)] ’ n...o. 1y «eey i for example 1, _

i277
2n+1

becomes, with a trivial change in the range of sumwation,

cos x; sin %, ...; and the points xl are xj = 4  then 1.5.1

2n+1

s 3 (3 i) - ampﬂf(@

This is obviously the pointg analogue ofyBeasel»‘s inequ&lity for the

Foui‘ier geries but with equality occurring instead,

If we consider the functions z ". sves Ly eeey 27, and instea&

of calcuiating Z ['f'(xl) — 2 a Q}K (x;)j we

11,
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2n+1 K Wi g 2 ) .
calculate E l ¥ ( zj) ~ E b /o e 7 / ' . where
‘ - J=1 204 o wio: r==-n AT , o ;
,bx v_ F”’ zn+: Z: i J_}(Fe‘ ) - we b’btainyin & menner

co-nnletely am»logous to the shove . | ‘
’ !'lf’
y —-T Hz

Thia ig the Foint analogue of an equlitv uged in the proof [26, D Slg

of Ceuchy's 1ngqua1ity._f '

Corollary. Suppose 4, = &j = o ,all k, j. Then let f(x)=1,

We have from 1.5. 1

Z"I( Z¢(X1)) = n+l,

or

L5.2 Z: (Z ¢”(x1) = a (n+1)
| o

1.5.2 is e necessary eon&ition that the functions ¢a(x), ¢ (1).
¢2(x); et ¢,,(x) be finite orthogonpl over the points x,, %y
X, siseg x + It should be nate& that q denands on n in genersl, E
1.5.2 is e 1itt1e dwa.ppoinﬁing in many cases, If the function 1
{or if & ‘constant funntion ¢) is one of the functions ¢ (r), say

¢0(x)-l then
)—‘\ ¢“ <XJ_)¢ (X Z ¢”(X)_ O‘) K'#O,

by finite orthogonality. Therefore 1.5.2 reduces to

n 2 , .
[Z %("i)} = a(n+?)

which is trivial, since X must Ee» n-+1l,.
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CHAPTER TWO
. PINITE ORTHOGONALITY AWD MODIFIZED SERTES BXPANSIONS

In this chapter we will still be concerned wﬂ;hvi"the evalvation
of a, in1,1.2, However, the expreseion o(',}) in 1.1.3 will no
longer reduce to a Riemann sum as it has iﬁ the other cases, Here,:
c'n’ will keep its form as the ratlo of two deterninante and we will
be concerned with proving the existence of lim o..-?(:) and the .idants.fiu
cation of the limit, Before proceeding further in this direction
it is pertinent o review gsome elementary notions abcuf; normal
determinznts wvhich will be used rather heavily in the remainder of
this work, A rather complete discussion of normal determinants will

. " - »
be found in Kowalewski's book, BINFUHRUNG IN DIE DETERMINANTENTHEORIE

[20].

2.1, Tormal Deﬁermix_xant& L

Agsume that the series s :-.':c;’ + cl., -+ c; -+ cg -+ ci
+ c: -+ cg + ... converges absolutely:. Then the infinite
determinant
2:1,1 &1" -+ Ci v 1, =0, 1¢ iy

has meaning and is called & normel determinent. Its value is taken
ae 1im D, vhere Dp is the (n+ 1)x(n + 1) determinant in the upper

left hend corner of 2:1.1,
Consider the matrix

: J‘ | ‘ . . - .
2.1.2 o . ” Ci " ’ ’ ‘ ] 1_. 5:0. 1' wsu &



. 1-'»?,

We shall consider minors af 2,41 z and these are formed in the usual

, way, for example

ezl

Theorem 2.\ %e seriea :f'ormed ‘b,,r taking a].l miners o:f 2 1.2 co:marges

¥ 15"3‘ = 1y weey N

absolutely.

‘ This is proven by ﬂahows.!xg: :that the geries of absqlute valueg of
all products appearing in 211 n-rowed minors of 2,1,2 is less than

: LN
or equal to =, , where
tr:[eg'l + Ic:] +"lc.ﬂ(+ lc:“-f-‘ ]cil'—r- [c:, + e S
The result follows from 'ohe ccn%rgence of Z ‘ ‘

Theore"z 3 If one c¢olumn of 2.1.1 is replez:ed by & bounded number
aeqnence. the determinant etill has meaning 5.n the sense that 15.m D
i eﬁ.sts._

 The prbof of this»tﬁéofeié nay b‘eifounﬁ in Kowalewaki's ’bodm

Haw consider the following get af equations (sea EZO. P '*83] )
) in the unknowns x j 1
B Ry b By Rt A Xy + S48 =Py

Ba1 X3 t 8, Xp + B3 X3 + 4ey omb,y

‘ 2.1.3 : §
831 Xy + 83; X, + 833 ‘Xaj-l- ea 'V'-':“b; e

6 & 6 & § B 4 8 6 & K & & & ¢ % & & % & & & @

Assume that A = la;; | 1 J=1, 2, ..‘i.‘. is & non-vanishing
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" normal determinsnt, Assume |b, | < M, n =0, 1, .\, vhere M is
a constant independent of n, |

Theorem 4, There ig one and only one b&;in&ed' golution of 2‘,1".,3.:"
némely A
| 3ij] (n, b])

Ty = v i, J‘:'-'vlr 2y yust k=1, 24y
R a1J | - - Sl

using the notation pf pamg’réph 1.3,

Theorem 5. _The‘product of two normal determinants is a normal

determinant,

2.2 Modificetions of Fourier Series,

After pointing out a few importent theorems aoncerﬁing normai

= &eteminants we are nov ready to diacuss tha medification ai‘ the

Fourier gseries, This will be dona from the standpoint of inter;golaticn,
By a modification of the'lr‘purierjgeriea is meant & change in thg, bagie
segquence l 008 X; 81N X, ;.,; COS NX, 'sin nx, ‘.~-” t0 a néw set of
functions 1 + Polx); cos x .+ ¢ (x), sinx + ¢ (=), veey COBAX

+ @y (s sinnx + o, (x); oon o Here only the evalus-
tion of the coefficlents in the new series will be qonsideredg This.
involves thé solution of a typical double-alimit nroﬁlem. The coné-
vergence of the givan interpolating polynomlal tc & given function
- remsaing to Ve aiscussed However the conv«xrgence of the rssmlting
vseries in a special cage will be discussed in fhe next ehapter from

a different viewpoint than interpolation,  One wo:d of caution is:
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needed, Here and. in the next chapter &ll thﬂorems_wil.l b‘e gtated |
under the tacit assumpﬁion that the deﬁerminsnt appearing in the
denominater of the coefficients is ncn«vanighing. %is assumption »

'is always yreaent except where tha question 13 speciﬁcally treated

Theorem 8. Let £f(x) be a centinuouq function defined on the 1nberva1 B
[o. 277) end define& by periodiaity (perioﬁ 2 T ) over the resl line.

Further assume that the Fourier series of £(x) tzonwrg:es abaolutely

'in [0, 277] ‘Let £(x) be interpolated on the points 3 ( 2,”1 "

0, l. an sy Zn, by the intemol&ting pelynomial
a‘o(lzf} , ¢° (x_)) + &, ( ‘305 x + qg (x)) + b, (sinx + ¢Z(x))+
48, (cos nx + 2/) J(x)) +h (sinnx + 952.(:&))'

| A].ao 1et ¢> (x) be continvous on [0. QTT] perie&ic of perioei 2’T ’
end 191} the totality of Fourier coefﬂcients of ¢ (x), ¢1(x),.” |

lin b,

taken in seriea form converge absclntely, - Then lim By b
. o . N«

‘exist “a'rzdf fzheir precise values can be statad;

 Interpolate £(x) on the 2n +1 points J ( Aiey ) . d=0ili

uﬂ Zﬁ, as 'des‘cri‘b‘ed in the theorein., Ve, a‘bﬁainthe set of ec«,ua'tions L
ao(l + 95(::,))1- a. (cos xJ + ¢(x\) + b (sinxJ + ¢(x ))

+ +. & (cos m:J + 20_, (xj)). + 'b (sin nxJ+¢2n(x)) -f(J)
J=0,1, very 2ms | B

© We obtein by Crmer's ‘rule, under the assumption that the deteminanﬁ



17 -j'

of the coefficients does not venish,

2.2.1 3,7

1+ @,(X)) cos X, +x) SIN X, + G,006). - $(0) - sinntet Pyp (Ko

1+ ¢° (xJ.) costwqi(xﬂ Sin XJ'*¢’2(*J)5""5(XJ')"‘5"”""9""/’en(’w ,

1+ @, (x,,) COS X, .t Do) Sin Kyp+ B(Xon)i $0an)...5i0 Xyt Foplhe)

COos kX, + ¢, (Xo)

; 2 H-1 J "

Ccos wx:+q X)),
J Same

"Same’

.
cosnx, + @, (%)

X=1, 2, +ssq 0. Analogous expressions are obtained for e, and

b K s E=1, i 0. 'me proof glven beiow needs only slight modifica—

tion for a, and b, .

Multiply both numerator and denominator from the left by the

transpose of the denominator of a, with all ¢J (x) set equai to zero.

(This non-zero multiplier can be readily evaluated when it ie multiplied

by itself and the relations 1.‘1.4&1'3 used), If the relations 1.,1l.4

are applied to the resulting expression for a,and if every row in

2n+1

_ the numerator and the denominator is divided by o except the

2

first rows and those by 2n+1 we fird (311 sums run from j = 90 io

J = 2n):



’1 * a0l % (XJ) | SN 21£+J1 | Z ., %) 57;?1
|22 8, () cosx; Gt SOgesy 2 Z‘qﬁz (x)cash_w |
|57 ¢ (%) simog 27 Sstgsong B, 1+ 23 Ponlhsin 25,

‘2.2.24,= oo
Z QS2#’f~1,(v") -27);1-

. P Poug(Xi) cosx; 2 v |
“Same” Z s T Same "

Z¢ (XJ)Smn)r ol
" We wish to prove that lin &, exists, Firgt'si‘ma the @.(x) and
-] . .
£(x) are integrable over [0, 21T]  each element in the two -
' detefminants sbove approaches a limit, If we temporarilv ignere the

dou‘ble 1imﬁ; pro’blem invclve& ve xmuld emeat lim A, to be

|1+ [¢,(X)c/x /¢1rx)dx . -—/:’-Oc)o’x

——f¢, (x) cosxdr 1+ /¢(X)C°SXJX -[&(x) cosxdx + -

R
1 Kedx
. vﬁ';x)cos XJx .

0 ) .

T
B {9 I

2.2,4 4

"

“Sime" | | 7 y "Same
]
| | "ﬁaﬁ cosxdx .

.o 27
[}
1 +?/%”(§1)Coslfxc/r

re
.
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*l’hs expreassion has the form of a rotlo of two normal determinznts.
By hypotheses, the totality of elements in esch detsrﬁinant
{excluding the numbers one on the main diagonal) taken in series form

converges sbsolutely. Thus the proposed a K has meaning,

We have yet to show t‘mt J;,in 8, = E‘n + For this purpose, let
.)-a :

—

Pz,, 41 Genote the (2n + Ux{2n+ 1) prineipal minor in the upper
left hand corner of the denominator of &, . We know thet lim QM

; , L : n>e0 = 2
exists and is equel to the &enoming;tor of EH i Let E_,,.,J_ denote

the (2n+ 1)x(2n+ 1) determinant in the denominator of a , in 2.2.2,
We will prove that lim P, lim P,.;. Since the Fourier series

haeo 2h% 15 e

of S?ji(x) converges uniformly to @ (x) we may write

~ i i i
~¢i(x) =8, + & cosxt b‘x ein X + .as

where a; ig the Fourler cosine coe’fficient of ¢1- (x) and "blk is
the Pourier sine coefficlent of ¢i(x)¢ We use the elementary facts

concerning finite orthogonality to write P 2n+1 Iin the following

form: :
2R oo
+a’ + L
144, "‘2,,“ gé’{i o8 KX + b sin m;) 2”” iZ,;, ;:(:3 cosx; +é’ sin k)g)
X
l zllﬂz;g'(j cosH. +b s"”“) cosA; dl 3’",’2:’,%;5?" Cosh’{i'é’ Sm%)(osx‘
Poner =
2n o0 . 2n o0
b: +z'§lzz Z'(a:cosux_,_- +b: sin ng)sinmg--- 1+ b”+zif ZZ(& oS “4‘&‘”’ sin "’)"Mki
J=0 Wan#1 A=0 wanyd
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For brevity we will set

‘.Ea”"'l =I§’-J l . i' ngi 2",'(“"2“’ * ,Panu #}%J"

4 3= 0; 1y oss2n,  We mey slso write -

'"ch,,:'|P1+ Ul 4320, 2m,
‘wﬁai‘e the o ij may be identiﬁeﬁ easil,; in the daterminant F,psy ebove,
” (2n+1)
Let ak heak-—rowaci minor of R = ]r“| y iy 3=0, 1, asl

zn;‘ Let s K denote the corregpon&ing minor of P ¥ and ?.‘K the

2n+
alge‘braic complement of 8, . (A cemplete demonstmtion of this
method. applied to another pro‘blem, can he found in Komlemki's book

[_Zao. PP 38&389] )i Then

za:.n-;-;-.:_ ='" ?.n-ri + Z lezn"‘"‘ + 2: R mj+aenf1

o ' (2n+2)
: ,where Z &anotea mxmmation over all k-roved minors of R ‘ .

’I‘hie e:;pression for ann is o‘btained bv eypresaiﬂg Poner &8 %he

: 2n+1 .
-, um of 2 detarminants and exnanding each tern by means of the .

‘ninors involving only ¥; . j termss Iaetting Tanes = Z la,[

we gee that

' I Pans1— -i;z’nﬁ { = ‘Z‘l ‘Rl ?a”’ + “""‘Z}j‘zn 5’1' + ,Rznﬁ,, )

and i} : .
| Z ‘ o -2 2t
Bl & T ) |m g B | n Je o
1‘ 1‘ = 11 L, ZI = 277 | 2n# Con1) !

: ) n . ' .
whe'r'e Tonsy = E: l ij, + Thig last statement can be “verifigd by

“ij=o . o
congidering r'f :1 o Bach term in ZJR,’J .appears iz; the. axpansiqn
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of v, k! times. Now as n-» oo, the T are minors of a normel

deterninent. Therefore they are wniformly bounded [20, p. »5] .
Let P be this bound. Then

o 2 - a2n#t
Pz - P( zn+1+ G’”'I-f Yonsd +. mP( emz
nt1 2n+1 ! 2! ( 2n+) !

Therefore if we prove that 1ifn ra el :g”ol.c ve will have ahms-n ﬁhe,exis-r-:'

t@me of the lim sz; and that it equals 1im Pzn-u. . “'Hawever'

h 2nn"'z ’R l- Z ;] : ["’mz,ZZ'(&«“"“*b’”"”‘)

i,j=0 - 5%o - 1=0 wsh#t

+ 2n+l

i Z‘(a coskry + b Sin kx,_) cos X; l+

1z=0 Henil

; b sintx;) si
¥ 2 Z i ( ak.C‘oS KXi’ + 1 ' i) Sth nXx;

e |
: iLemmaév
' 2n . N ‘ , .
‘&) Z cos kx, cos rx; 0, . k+rf.0(2n+l) and k«-r:ﬁO(Zn—r&);
T gm0 ' i
=2 k+r “0(2n+1) end k~r¢0(2n+l).
' B or k-r ,*:0(2114-1) and k-r:.(}(zm-l)ﬁ :
. - 2n+l; k+rz 0(2n+1) and ker= 0(2n*1)¢
2.2.4 an L
b)) Z cos kx; sin rx; =0 2ll rand k ;
iso ‘ o

c) Z sin kx; sin rxi=0 , k+r¢0(2n+) and kerf 0(?1'1*1) .
- 4=0 SRR SR
= ‘(2"?”) k+r £0(2ns1) and k-r# 0(2n+),
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204 rer=0(2n4l) and kerg 0(2ml),

-
G-

= '0 . k-o-rg o{2n+1. ) and k»ra O(Znﬂ_).k

P‘roéf. We shall prove only the statement iven: in a), 'b) f‘ollows‘
from the fact thet the set oi‘ points :} ine ]_, J= 0, }.. .... 2n are
equally spaced about T while the sine and cosine i‘smc;tians are odd and

evén 'about, T respectively, The proaf of‘ e) is analbgoug to 8), Mow

2n
2 2.5 Z Cos kX, Cosvy = —é—{zcos(wr)x + ZCOS(K r)x-}

i=0 v ‘ i1=0 .
| n+r) 20 Gy (tr-1r) 2T
L ran+d )( an-J. ~ o sin(znvy) ShTT
1 J1 sih +.L +
="é‘ F + Ssin (r+v) 2T » 2 2 sin (r-v) 21 )
| ‘ 2(2nt1) ‘ L 2{2n+1)

substituting the proper value for X ; and using the formula for the

aum o:ﬁ' : cogine eerieq. Tow we can write

Ktr)2T (w2l

4 (-—-—-——‘— =(ktr)em — L 1=

(2n *32) 2n+1 (K/' ) Z T2n+l

Then e¢learly
2n | ' k 1 (er)am . (n'-r)ZTT) '
. | _ SinZ Fhv1 _ Sin_2(2n+1

Z:Cos WXicosrxy = — {l 2S8in (r+r) 2T | 2s n(lf-r)alT } ‘
1=0 o 2(ant1) 2(zh+L)

’The»f-irst cage of &) follows immediately, For the other three cages
one or both of the sums in 2.2.5 ¢an be evali;atetl immediately while

the treatment given above ,ié applied to the remaining sum,

The relations 2.2.4 are not new. They can be foumi,‘_k for example
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L4

in Tonelli's book EZ’?; e 150] .

‘ Applying the lemma to r ensx after & chenge in stmmation,, we

see that
N 2N s e . “ s\ N ] ‘) [ vs- v s ’ '
zhﬂ = Z {[aznﬂ + az(znu) """+33(2,,,,)"‘"']",'[32"‘*"_aqml +
T T T
. e o+ ... 4 -+ ee e R ee.
' aénfz +ah(2n+2)~1 * aZ"HZ Ayne3 a¢0+4+ +aa(2n1l)+1 :]+' +

S +a’ +as o as +' "4 d +as +]
E3n+t Qgpye™ Osnrs?t -t a(zml)—n snei Qeha aﬂwa LA (20+1)+n ]

— 7 S 'S s s .
+l__f' (b +l’t/n+1+ bcn-rz a(zmr): "'(bznfz b?nﬁﬂfmy ba(gﬂi,», )J

oo ...: s e -
"'[- (bzn : 5”” ba(zn-n) 2)+( 2n13 6%';’;/ AG”""* +éa(2”i-')+z ).]

| . . S‘ S s S
Sy b> +. .
-+ "'[ (b,,“* 63,,_,‘5 a‘m;’ ;}(an-ﬂ)- ) (3n+: 0+§ m-;?‘_'; + a(zf.u)m)]j

A & positive inﬁegera

s .
Congider the set of b j firet, Clearly each b. from hn H i
’cs,st , ¢es¢ oOnward appesrs once and only once except for the b, (z,,ﬂ)

_which do not appear in this set, Consider the set of a 34

;o Clearly

each a§ in the sequence & .7 + &, , s +:s 2ppears once &nd only

once.

Therefore it is seen that r, ., is a series of elements token

from & subset of the set of Fourier coefficients of ¢_i(x)f; 1=0 1
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X '.'..,:-f 2n, The series fomed 'by adding a1l elements of the set cf E’aurier‘_
: 6oefficients of @; (x), i=0, l. ‘wes  WaS assnmed to ccmverge ~

absolutely. ‘Tis series might be written in block i‘ashian as

0. o o o o ‘ & ,‘
as+ al+ by + az-p by vt 2) + b, 4 aid
| ~+&o""&1 + b, + az+bz+u.+a,, +‘bn+e.~;.
‘-+--' T L T T A RE TS U TN TN T S | yu P T S ‘- R

"f'a +a-1+b1 ""az "'b +th+a +‘hn+b‘Q

vq»fi{..uﬂ‘»ﬁ.«)o«g’gt-.q-.l’&i-g-o»»tty’;bcii t
"It may be written in aonventional series forn by gtarting at the
m)per 1eft hend corner and praceeﬁin@ as

1 1 ) o L 1 2. 2 2 SR

L It is clem- that for an ar‘bitrary € > 0 we c:an i‘ind an Ni for Zn 7 H

o .“'_':'9,11 tems teken in abgolute value in the abave geriesn awearing outside

for these nis

fof the abom box have a eum less than 6 But T ane1

,iless than or equal to the sun of & aubsaries of this se:cias‘ Hemce =~

-] -u."'o"

: .‘*"*‘zm-'i Z e,.' Since 6 ia ar‘bibrarv, we hmre lim r
SRR , RERE AL ) .. = . =(D
"‘E&ierefore it has been proven that 1im P, = 1im P, = a_
v ,whe«re the snperscript D denotes the denominator of a, The prodf

g Vfor the numeratar of a 1s analogous if i;he Fourier coefficzieuts of

o i‘(x) eanverge absolutely. ‘

‘i‘he cenvargenee of the reasulting series will be discuaaed in the -

next chapter‘

2.3 ,& Genera.l Theorem on Modificatians, |

The theorem in the preceding paragrsmh auagests & possible
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geﬁeralization.' To obtain this gexieralivzatibn en extended definition

‘of finite blorthogonality will now be given,

' Definition: Léti ¢1-(:i:) 3 ,i=0, 1, }..*. “be dai‘ined‘on an
interval [a. '!g of the raal line or on a reeion B. of %he comnlex

~ plane, ILet x("’ ) x.(:’ ' vy x‘,?) be a csrtain set‘of points in the
: ibnter‘valv ‘Laj. Lb_-] {or in R). Ifef‘f i ei-(;x)l} C ‘i :“-0, 1, “..*.’_ bq

another sequence of functions defined in [B; b] such that

2) ¢n()(i)9r( X;) ='6n‘f&”)" , Cnk #"; H)rz-o,gu,-,n. L

) Z ¢ (X) ek(x *IO* k=n+l, n“"zt teen r‘— “)’7;

s (r) 0 ) (1)
ezce‘*)t for k= ﬁ ﬁz P oeee s HQI‘Q ﬂl' ¥ 2 g YY1 Aj ﬁz i f
Ty eeey i , ﬁzm), vee is & set of integers greater t;nan or

equal to n + 1 in vhich esch integer appears at most M times; M is i

indevendent of n and is the same Finite number for each integer in |

' 'ciuestion; | |
Z’ A,0x)8,6)= en”,;é 0o ‘:qr the 3y set:
i=0 S S
5) _’3.!_6"__&}’ £ P, Pfinite J=0,1, vy 1=y ciiym

all n,

Then e say that the two sequance'az ¢ (:c) } end { 8; (=) } are

{n)
finite biorthogonal over {x g j.... 0, }.. vevs 1y 211 1,

(n) ' T -
Example 1. Let x5 = —-_;- . Letqul (x) }ami {@(x)}



I
o

"be tha gequence 1, cos x, sin x, cos ax, :‘zn ?x, ese o« Then 1) i1g

,trne where M =1, o1l s and n, 2) ami 3) are tma 'by the pmvious

2n+4

l&) is aloarly truﬁ es 5 conaequence of 3), 5) is 'smé _vhere we tai«:e

o theorem where c,,,r; 1, ‘eey gn.‘ Cho =20 + 1) =1,
2n+1,

?—2, since by 2.2.4 c,, ﬂfl) l is 2n 41 or'* — %ince the |

~ two _aequences of functmna gre idan iecal in thi& cage we call tham

fini‘te orthoéoﬁal;

xampla 2‘ Let {x"} = f’ e J—_"—“ ' i‘. ’I"“‘.’vﬁi‘@(z)z -1

: ,_z. 3‘;1" zz 2%, e Letz &; (z)g =1, ?‘1 " 2t a.Z'_? . z° wk"eé.‘-:"t.’ :
e Then l) 13 ﬁrue taking M to be f’( ,)5‘[_ J ¢ where the b‘r,,ckeﬁ e

g mpans tha greateat 1nteger conhained in 's-'%‘l- , 2) is true by 143.2.;

‘ ‘l‘o‘show thet 3) iq true nse 1:3. ?‘,’ Then z emg lisy =0

8 }é}:cepﬁ' for k=«l + A (2n+1); A is ea:h and every integer in

e éc;im,, 1‘-;-;.»:1;, toes 1y siay i Ve s, take B =1 L) 15 & mnaeq‘aenée

of 3)i 5)1is true with P =1,

It ia passiblé to give other exampleg; namely the functions in
Lk with some obvious restrictions ,,:imposed;; and the non<negative

powers of Z;

| Theorem 7. Let £{x) be‘:a’ function able to be .ex*pandéd' in an absolutely
” qonvefgent ¢J (x)<series m‘ [a,"bj- . Assﬁme‘ that the :syet: of series '
coefficients teken in series form conVergés 'absolutély; Let £(x) be

int;erpolated on the points x° $ xl i veis TR a‘bom by the interpolating

polynomial

a.vo‘( ¢°(X) + v l'Po (31)) +§l( ¢1(x) +  LlVi (x)) + ’:.‘?'4. an(¢”tz) +%(x))
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Aséﬁme thot the determinant of the'coefficients is nch~Vanishing for

, a11~n.:»Further;'feouire that the ¢V'(x);are able to Be expénded in:

i abvolutely conVQrgent gﬁ (x)~ser4es and that tﬁe totality of series

- coefficients tagen in series form converges abqoluxely. ?hen'%ﬁgé?q
exists and ibs precise value ecan be gstated. The notation of the
theorem was chosen in accordance with the aafinwtion g*ven st the

first cf the parpgrauh

Interpolate £{x) as described sbove, Ve obtain the set of

equations?

o(¢ )+ Y 0) + ai(@cxn G e
a, (¢,,(x1) +W,,(X)) = f()&)
1::0‘ li‘o‘no"j Z!ka
By aésumption=the determinant of the coefficlients is not equel to zero;

then

o |85 )+ 00) |, Hm)
K ' ¢J (X1)+ % (xi)'

i 1, 3" 04 1: e 56

1«;-.:0.51, ey T | e, T
‘Muitiﬁld both‘numeratof and &enominato§4by " 8, (X“)"ivi' J=0;
1; o0.4 1y whicn 1is not equal to zero, (multinly 1t by I ¢1 (X;) l '
i; j ~A0,,1, sie3 1 and use orthogonality ralations) Yot uivzde the

j<th row in numerator'and denominator by ¢,; to obtain

S+ Z 1), )

| f+5 1) 00
Ch2

(K Z Ql(Y H:(x.z))

(n) .
a I=0 , ) IJJ 20{1)..., ), |
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Now by hypotheses QV]_ (XJ = Z: A, ¢ <X) vhere ‘o‘},4ca ‘

1,4
Then foraﬁg Sn, !

Ze(x,)%m Z’e(x,)za c;b(x
_.Ze %)Z"‘ @) +Zq(x1)z é()

ixo JEnil

N N DAY 608
’ . i=e | '

‘-ml

using the &bsolute oonwrgeme'éf the series and #he f_é,ct; that
| 8, (X; ), £ M, @ll 1. Using this relation, it is possible to

write

) |8l ead e’ |(naf+r)
R

e 8y, J= 05 1 45y ny

By

k=03 1y vuiy n,

| C X) Lo e
THere r g Z; (X1 Z.:,,:,(h ¢"( 0 _ s We wigh to prove

‘that"‘A - Cns

'ma ‘S +°(ll(‘f/ f)
T

y 8y L=0, 15 usy

811 k. To do th‘ia we proceed‘aa, in 2.2; ,Consider’ the denominator;

(The proof 1s enzlogous for the mumerstor,) Using the notation of 2.2,

iz0 J=ntl

Cnt.

OZ%WZd%W D




Yow by the hypothesis, i et(x,-) l £ Mt s =1, ,...' n, Since
o0

o] @ (X)  converses absolutely for each i, interchange
.‘nf]- .
summations and o’btain

HMX

i ;q 8.0%) @, (x:) )

n $=0 =0 Che
n (
_ Z Z °‘/3 o Cra¥e ’
- J=n+l 9 )
$=0 +=0 c
ne (t-)
(+) ,
where BJ Z n+l, Now by hypothesis ' P, ,1...0

lg sevy t:""-lg PR n, 'l‘hen
NN %‘*’}
530 t=q j=hil
Ag the t-summation is performed, eny integer greater then n + 1 appesars

(o) (0) 1) [+ VR (1) (i ,
in the sequence f& /5, , , Bs , By /9 ... at most

¥ times, Then ‘

PmZZ EHE

$=0 J"n'fi ‘
., S
But by hypothesis Z | °(sl &£ = . Hence lim Z Z: ldj ":O.
s,i=0 ‘ °aS‘0 J=ntl

Therefore lim =, = 0. ‘l‘he theorem is eren.' ,
n-=>°0 A . :
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- GKAP?I&R ‘I‘HHEE
MQDIFIES) S“HII}S EXE’AE‘SIGI%

- The q_uaatian of modifying some well-known sequences of :t‘unctions
use& in expensions will nm ‘be discussa&. In eentrast to the last
. chapte:v, interpolation will not be used, but the Tesults here are
- suga‘eqted by the interpuletion procedm'es already diecussed Indeed, ;
;if the results in this chaptar are comvared with t}mse of the last, &
| 11; is seen that they mra more genaral. ‘it"he prapartv of finite | |
| ¢ orthogonality i;hat was 80 easentiﬁl izx the pmnfa of the lmt ehapter
is here a.banéoned. On the other hand.,, the scqusnces cscnsi&ered in
) "‘this chapter have not in general been ‘nrouuhb under the general theory
5 iindicated in Chapter One.

" Theoren 8 snd its genaralizatidns a.re the mein results, Theoren
8 itsalf ig quite geneml as is pointad eut in the applications. For |
any speeial s@quenae of mnctians, the hypotheses are rather ssvare, L

but tha advantage 1ies in the generality.

"It should be sgain noted thet the assumption that the determinant
e ‘of'i;:he. cosfficients is non-&vanishing ig ev;"er' presént'«, except when it

is stated to be 1e.ck‘inga ,

3.1 An Abstremt Modification Theorem:

Theorem 8. LetP; (x)y I = 0. RSy denote a sequence oi‘
functions defined for a$ x £, Lket. 0 s 1 =0, 1. 2, sasy denote
a got of additive, homogeneous functionals such that O C ‘pj ""]3 & !

1=20, 1, ¢oep J=0, 1, sss « Det (R) derote the space on which



s
| 91 s 1=0,1, +u., ig defined, Supfposse fy‘(x) € (R) and can be
emn&eﬁ i‘n a series of the Pj(x) ¢ :f(x) ‘ i ‘& ‘ P (=), where -
dn = 0p [£(x)] and |an|< ¥, n=z=o0, 1, ..?.oaizd the series cone
verges ahﬁolutely.. Consider another seguence of functions ¢,,(x)’ -
such that ¢q(x) € (R) and ¢ (x) = Z in P; (x) in [a., 5],
n=0, 1, osos whero ci = O; L% 1] and. 5 lel|z oo, and the
series Z‘; 8] Pi (x) converges a‘bsé xix’:aly in [a, B] . Then

£(x) cen ’be ezpanded in & geries of the functions P (x)+ ¢ (x).

That ia,,
301 £ = ). 8, (P (D)4 Paln)
e - n=o :

The series on the right of 3.}1.1 convergés ebeolutely to f(x). Here -

l SU ""C:EJ.. ‘ (n, OK(H)
| & + cJ-.}

3-152 ‘ 8

= . \i;‘j:ﬂrﬁg Ly, see s
Here I&_ jt Ci,(n,q,(f)) indicates that the column with elements 5;;,""

is replaced 'by the column of elements O [f(x)] s k=0, 1, siv o

'Bemark 1. In the above and ensu:mg. x ma.y ‘e a co:zmlex varia'ble.
A1l functions will be then functioncs of a complex variable.‘ ‘L’n this

event, replace [a., b] ‘by some regicn in the complex plana;

Remerk 2, It is possible to alter the }’ypotheses of ?his theorem . -

slightiy. 1¢ |P ()| < My 3= 0,1y ..oy vhere ¥ 1a & const.m,

'[\’]8

[« Q=]

we may of course drop the hypothesisi ? i (x) convergas

TR

N

absolutely.

_kcons:ider' the -éxpresf:;i,oz;lj.l.ls If the series on the right con-



verges in guch a way that it is éus(wmtﬂiiéE ﬁa 04 ,bveréﬁibn we have
e ) -

v"'i‘,Oi.kEf(xﬂ = Z: &n 1@ (K)"' ¢"(3~'J 'i“‘o‘ 1’ “"k

. CET)
But aim:e Qi[}?n (xﬂ : d}n and Qi[}:“n (x)+ ¢n{x)] o 1[53 K (x]
+0[¢(xﬂ s then ' e

Cou[] = e+ Do g0, 40T,

gl

iG] =y en 0y [41 .
GZE\‘.‘(x)] =8, & > an 2[¢,,(xﬂ
) n=0

.u.nuvt#tvtvb;n»ln‘mq&l

,’By hypothesia, since 04 E¢ {x)] cl i the 1‘bove get of equations '

"becomes
i K ) ‘ 
0o fftx)] = g+ )} a 00
S e : ;n:oo B
313 0y[Ha]] = ey + ) ap el
S ERTNE I _ [( ﬂ s Z;o . ‘,,
0,18z - 8, e, e
2 2 .:L::":Q n%%2

3:1.3 consists of an infinite number of equations in an infinite
num‘ber of unlmowna 2o 4 al § s o Since 'O (f(x))l(_ M, n-0.

15 s end Z Ic,_, < ©0; we can solve 3. 1.3 by the obvious
Hn=0.
extension of Cremer's rule Esee Theorem l& in 2, 1___) and ve obtein a

nnique bounded aaluﬁion: -1

ne 0. l, ...‘as Ziven in}l 2.

The permaneﬁt assumpbion, l(f .+ c ’ % 0; wes mede in

4j
aecordence with previous remarks, and was used above.

From the hypotheses, thias is the ratio of a determinant, that

is a normal ‘deteminant with one column replaced by & bounded number



sequence, to a normel determinent. a , therefore hes meaning [ see

Theorem 3 of 2.1 | .

There is hawévar no & priori reason for agsuming the qgnvefgence
of the series in 3.1.1 so that the process used above ig of questionable
iralidity, ‘l‘ﬁerefora congider the system’ of equatibna j.l.glmitright.
ka.,“‘ y =0, 1, ,-‘.f form the one and oniy bounded solution o‘f' this

system. We can transform 3.1.3 into

3

39101" ) ) OJ B(x)] PJ- (x) = aj PJ (X) + E '} an u;" PJ‘ (x)’ d = 0’ 1, ir.’

N=o -
It is desired to add these equations, We notice that
o o )
P loernl = 5 [ o e 2y Z(a» R
=0 v

=0

r=o

Z [0 (B (r)l + i , a,,'c,': P (x)l'

ﬁow. smce the first aerie‘a on the right conw-rges by hypatheses, a,nci

{a,,} s N 0, 1, ¢ivy forms 2 ‘bomded mmber sequence. end

W=0

o0 . '
n Y, - ’ A
chk P, (x)lcgnmrgesg then we heve § , &y Pk(‘x), < = .
=0 N : - k= ‘ : S

Ik is easily seen that the sa,mev statement ig true under thé_ali:érea,

hypotheses mentioned after the statement of the theorem:

In either case; the equations 3.1.4 m'azf be added and become

Z a,P,(x) = Z a, B, (x).;.Z Z‘ a, ¢, P, (x}
LEL h=o - Bs0 w=o o
 Since the series on the right converges absolutely, interchange
aumrﬁation \ . , -
- B S
Z d,P,(z) = Z a P, (r) + Z a Z c:?n (z)
h=o - : =0 nzg : :



= i a,®, (x) o+ Z‘ ¢K(x)

:’~4n:Q ! . r=o
Thus . . S RGP
‘f(z)::' Z 4, Fn‘CX) = > an(2, () + Balx) .
o A= ; Azo L e
(=] . S
The canclusion is then tlmt the series . Z a8 ,.,-(P,-, (:r')vf Dn (x))
A=a

o using the stated value of a.,, converges absolutely to. f(x). e ’this
_saries aonvergas to t‘(x) in auch s manner that i% yields to an DL -
oyeration, then t!m cuefﬂaients a,, can he ohtainea 'by -3 term by term _

operation on 3.1 1.

In ,;Thecmmis, if we omit 211 hy‘potheséaiaomern&!ngbpemtom and
“ vc‘:‘onsic'ler only a get of mmbe#a ﬁn y = Oy 1, suey & cortain
‘-generali zation can ba made.

‘,‘%eorx"em'g“ 'Lﬁ‘b f(k) = Z d nPn (x) vhere )Cln’< M, nzO, .
1.‘..., and the ssries for g(::) convzggsa ahc;olutely. C‘onaider the
. sequence of ftmctiona ¢n{x) Z:; ; (%) in Ea. 1] for
n...O. 1y ouuy vhere Z )cl ’4 o:‘and the sories ; c- P, (x)
“converg,ea a‘bsclntelﬁ 11: m[a. v] . Then £(x) has en expansiont
ff( ) Z (P (x) + ¢,,(x)) , vhich convergas absoluteiy :
-n=o

2 and whe-re the anpropriate nodification is made in the a ,, of 3 1.2,
‘ »ﬁ‘hi/s mey bé proven in a ,f“ashion‘simma'r t’a@heamm 8,

Remark 1. In Theoreai?.‘., x ocan be tzken as & complex varisble, All
funct;iam are then functions af a complex vari=ble. ,Replace E a4 'b]

by a region in the complex plane,
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" Remark 2. If ey (x)l & My 1=0, 1, «u.y then thez-hypoti;ééis“

that Z: c; Py (=) converges absolti’cely mey be removed,
: ,n=o ’ .
3.2 The Grrmp Pronerty Apylied to Modification,

If it is desired to modify the basic sequence P, (%), P, (x),
wees DY two sequences of functions, that is te P, (z) + &, (x)
+9°(x). P, (z) + ¢1,(3t) + 6‘1,‘(:‘!); oy there geem to be two

_ways to proceed, The first method is clear,

In Theorem 8 keep all hypothgses on the functiong{? 5 (x)} and

{ ¢J,(x)z . Impose on the new sequence { ¢,-,(z)? the restrictions:

--)

1. 6(x)e(R) and §(x) = E v, P; (=) tn [a, 5] &
A=0 ‘
o= 03 1{)‘ san .
. n ) )

3e j{: \bi l‘i <0
ooj,,,:o

b Z b; P;(x) converges sbsolutely in [a. B] .
1;’)-"-'0 . .

Then the desired modification can be made, Thus we must check the
hypotheses of Theorem 8 for the functions {@(:) + Sn(x)} "

n::.O, 1, sen .

1. @,(x) + 0, (x) € (B), since #(x), ©,(x) € (R) ana 0 ; is additive,
for all i, n. Alse ’

oo ' hoad :
@l=) + 6,,(_3) = z: c:‘Pi (z) + Z 'b: Py (x).
- i=o o i=0

Since both series converge absolutel;sr, they may be added term by term,:
Tus @ fx) + G,lx) = Z (cf+v] ) Py ().
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y

. ci +. 'bl :z" 0; [¢(x)]+ o [_'e (x)] *01[(?5(1:) + © (x):)

'-sé Rl g Ehlle .

o PEel] 1 n ls 5 et ohe

'i'herefore all h;ypothesas are ahecimd for the functions ¢ (x) + 6 (x}. |

i‘hen by Theorem 8, w’ can_ obtain an vz-:;hga}.utely convergent expansion for

3.2

-'Vf(x)zg o |
0 = Y e [Pa0+ 8,0+ 6,(]]
E . - h=go ‘ . . :
whgré_‘ ‘
--+Cf'+bJ-. n, ql$5] L
,8“ L ‘I(n 52) s e 320, 1, ey o

|&j +cir bl

n= 0, 1, ;,. . Therefore the first type of two-atep modification is
kclear-." It is apparent that the result of meking o twoustep modification

is a‘c;mpleteiy eqnivalené to making a single one-giatep-modiﬂc&tion‘ ;

Tha-seconﬁ type is Just elightly more subtle. ' It is interesting -
to mske, the following tramformation‘ in Théorem 8, ﬁet P,(x) trans-
fo:i'ni into P, (x) + ¢n(")’ Let 0 p tranafom into 9.,., s considered ag
,az‘z Operatém ‘I’his last statenent rea'aires sone explanation since
‘ang n= 0, 1,_...5 as given in 3.,1,2, sre simply numbers, _But if we
(conai&ér( a“,i, -with:f(:?) rém‘cxvad from the (n-l- i)st column of the
- determinant in the numamtor, it 1ss alear that we now have an onerator.’
th is t.his opemtor which is. meani: in the ahove statement Ve wi*ah |

to ahec.«:: tha h,rpotheses of Theorem 8 nsing the shove transformation,



E‘irst. P; (x) + ¢ (r)‘ = 0 1y ens denotes a sequence of
“functions defined for e & x = ‘b.‘_ .Hext, a s 1 20, l. 2, e is
ohviously an additive and hemogeneous functiona,l. It is also true

thab a;[}? (I)+ ¢ (K)] = J’ i 03 [ ERE J“"‘a l* ey ﬁ,

To see this, rep}.ace £(x) in the (n+1)st column of a, in 3.1.2%7 .
P, (;;)» +,¢i(x)" " We remember that 0 ; [_i’ (z) + ¢ (J:)] = U + c" .
Yow 4f J = n, the detemin&nts in the numemtor and denominator are

1denticé:al. if jsén, then in the determinant in the mmarator. two

: calumns are menticaL ‘Hence aa[P (x) + ¢J (x)] = d}J &

& ﬂow, by T ”heorem 8 we already know thae
o0
:E'(‘z) = Z 2 [£xy] [P, (x) + ¢,,(xj
: ”n=o,.._ , _
where the convergence ie a'bnolute. Ag a fgrther»msult, we k:now that
there exists a number M @ |a,, [:f.‘(x)] 14 M, n=0, 1, ... » Then if
o o ; o7 |
S,,"‘) - Z ,cg (Pi {x) + ¢-(x)) vhere 'c'i" = 8y [f (x):] ,
o ; i=o,
and {Z]c"l4oa‘.am1 Z lc""}’ (x)«f-@v)léoo

. Anze
all x, we may apply Theorem 8 agasl.n to obtain

| 3:2.2 f(x) = Z (1 (x) + ¢n(x)+ n(‘x))yk
: h=o0 '

where

l&ﬁc [(h,a D;cx)])
IJJJ +c’*]

2= 0,1, .. i Fero “1 and &, ars infinite doterminants for all 1, 5

2.2.3 bp = Ay J=0, 1, sis

Moreover the seriea in 3.2,2 cémre'rges abgolutely. A'I’his process. may be :
kept wp indefinitely but there 1a hardly sny point in doing this, as

will be seen shortly.



ﬁ'he:c}x”én‘a';ia.-e If 1t 1s kmown _th‘atg Sl o

R Y, @ |
e : B n:o R : :
with the same hvpathesps as in Thecm'a 8 and as before tha,fs ¢5 (:c)
-..: | Zci G.‘l Py (x) with the name hypotheses es in 'ﬁworem 8; bhen 1
: 1-0 . )

00
zz} f(x) Z (,,(x>+¢,,(r>)

.n=o

‘ ? where the {ang s n.n..g 1. “. &re given 1n ‘mmurem 8 %Bn 3..:, S

§= (x) = Z (P (x) + ¢ (x)) whera }: Ic l< <o and ~
','"'c’" = a, Efn(x)j and Z lc“} )P (:»:) +¢(x)l< oo
all 3’, it is knonm frﬁm th;l;’o;egoing remar?‘ thad:

~"'OO
: G) f(x) - Z [}’ (x) + ¢,,(x) + f (x)]

N=z=o

for. scma nunbers a , . Then the expanaion B) may . “be o‘nfsaimad from ’
A) *gnoring emansion B) proviﬂing
' S5 B 6B e
; [ : . i=o :
Oi 1! c«o: n "oa 1: .-» e

To show this ve need only to conclu&e that the funcﬁions ﬁ,(‘x)
4 §° (x) sati@fy thp hyzmtheaes of Theorem 8 in virtue of the westric—

tiona in this theorem.

‘ ¢,., (x) +- §' (x) e (R) since ¢,,(x)e(R) and §° (€3] *“Z [P (z)
o+ ¢1 (x)]where ¢y lfg\' (x)] This impliea that G;TF (z)]
has maaning for a1l i, n, Then §° (x) e (B) Algo

3;2;5' - ¢,,(x') +§°,,(x)'=? Z ‘6';-' Pilx) + Z o” [i’i‘(jx)'%é(‘x)’]

i=zo ‘ i<o



z ‘ n oo, ad P

= , QV_,'_ ?1 (x) -+ Z [P (x) + E QKV‘ I’K(@

i=o » =0 :
Tow the double geries on the right converges absoluxely, sance ‘

w By () converges sbsclutely and [ci ) 18 less than a constaﬁt

" M for all i, n, For

’"l (lP Wl + t)c.fP,, (x)l) Zlc"up (x)l,v
SN Hc«!lﬂxu s

oo 3%0 #=o

48(3'",, Py (x) | _,,.‘ M Z Z ]c.,f[ ' P (x)l‘

c i=0 3=0 =g
ﬂow the secon& term on the right is finite for all b Coneider lthe ‘

o0

~ first term

'Z(c'-"llé- (=) | -y ]c’"} lp (x) — @;(x) +¢1<x>{

Z lc/n HP (x)-i- ¢1(x)1 -I-Z'a ’ , 3" P,’,(x)lv

Both termg on the right are finite for all x,

'l‘herefore in 3. 2.5 W8 CEL interchange sxmma,tions and obtaln
g5n<x)+{(x) = Z<.+c")P (x)-]—Z Z (.»)
= Z(" + ¢ *(Z " J)) ; w

2. Tow Theorem 8 requirea that the ccefﬁcient of Py (x) e of the

 form 0i[¢n(x) .-r-g‘n(x)] + But

c;’+ c;:"+(i ‘é:” .c--f— Z { + ¢ )
= ¢ +0 E{' (x)]

1



j
by 3.2.4, Then
i ,

c: + 31 + (Z G ‘dj_j) | % ,0, E¢ (X)j-l»'ﬁ- B.(KB
0, E¢n(’;) + fun (x-)]

as requireﬁ.‘

3; uext it must be shown ﬁhza.t
ZDG"H +<z: )auo
J=o D=0

But this quantity is laas than or equal to

Z\cl+2"'”!+ ZLI(Z”" )1';

,no : Jn=o

Becauge the §1 rst two sories convarge ’oy hypotheses aa.mil Z cJ.’ I |
ico

7' , 4(2‘ ]c”‘ ] )( Z‘ [ c"[ ) which implies that the third series

,cnnvezges, then the geries in question converges.

. . . . n ) ’
_lh’ fi’e shew that Z E ] (c + ¢ + (Z ﬁ )’ ’P (X)‘z-“o
for all x, is 2 a’oraight forw&rﬂ tark using the same 1deas as in the

 'preceding work.

Therefore all hjpathesaé of Theorem 8 are s&tisﬂed relovent to

the functions @,(x) + ? (x);, We can then apply Theorem 8 directly
to o‘ntain | |

| = ‘f N

0 =) = ». el [P+ )+ ]
o n=o '
vhere )
:s“-m‘ | (n, afﬂ)
! +o(il

3-2.6 .u 'ia j&' 6{ 1 ;~‘9



L
. ) . J‘_ N W, - J /d /g 4
=0, 1, .., 2nd 0(1-... OIE(PJ-(X) + g(x)] = e + “i*Zcr e,
' . , S rs
Then Theorem 10 is proven,

Theorem 11, In Theoren 10, assume that the functicns P,., (x) + ¢,,(x)

—r ?'7 (x) are such that

oD

Z a EP (x) + ¢r(1{) + ,.(x).] =0

F=0 .
im‘olies ap= 0, r=0, 1. ced » 'I.’han apn of 3.2, 1. repla.cing &,(x)
by F,.,(x) is equal to b n °f 3. 2.3 a.nd they are both equal to a,{ of‘

3 2.6 nrovids.ng 3. 2.l:~ holds.

The' proof of this theorem is ele:;r, ag we have obtained Vt‘z‘x_;’c‘éa B
expensions for £(x) in terns of the functions P,,((x)‘-l- B (x) + (=)
_nétdely 3.2.2 vhere t.h'e.alezrnen‘ts of_'b,‘, are infinite &etéminahﬁa; C)
of Theoren 10 bv' means of a single Jump i’rom A), and ihe expension -
nreceding 3 2,1 with a a.sb %ha coéfficﬁent‘s; ﬁll three of iv;he’séi ;‘
'bexpansxons converge absolutely to f(z:) Subtraétiné i:he exﬁaﬁ%ioﬁs
from each other ami us:mm the thothesis, we obtain equa.liby as &e— o L

;,,mzméad in the theorem.

"'he fact that a/ of 3,2,1 is equel to a) of 3 2*6 is actu lly

trivial vhen 3.2. l:, holds. For then 0 1[? ('ﬁ:}] = ‘b &= c’.,. Ze

According to Theorem 10, the effect of verforming tx}a transfcma-{ )
tions 1n succession on the P (x) snd then on the P (x) + ¢ (x) into ;
P (x) +¢ (=) + ?(x) is ccmnlptely equivwlent to performing one
transformation of the type aascribed in .Lheorem 8 from the P; (x) to
the P j (D)t ¢J.(x) + §°j(x), pmvmng 3.2k holds, Since, in the

hypothesis fn (x) = Z 1 [P (x) + (x)] where Zlc ,4«:

A=0



l;j R

: To satist tha hyna’bheeea of 'Ihet:rem 8,, we must requim that I—S "o JZ.M

o : ?i qome, co*mi;ant f‘nr k=0, 1, . con w *t}bviou«\},y G . m thie casa.

is an add:!.tive ' homcgeneaus functional for all i, We reqnire tha,t

the series 3.3.1 converge a‘bsolutely in some 1ntefval. How if 3.3.‘-.!,; '
R converges in [-b, b—_] " en&—pointa e:mmde& or noﬁﬂ,r then it converges ‘
absolutely in any interval [-»b + e s b ,uej ‘whe:t“eb € ig \any '
arbitrgrzw small pogitiv‘e num‘be:c 'less; than 2b, (See E.l p. 535]

for examp}.a) The mo&ify*ng functions (ﬁ,,(x) must be analytic in an

interval contaimng [-v, v Thug
- (n)
() = i OB
¢h“~x ST ! |
| ‘ M=o og B
: S ( o)]
where 1t is required that , Z and (
Lo g 'nzi;zo ‘h’.‘ n,Zn;o n ) ‘
converges absolutely in-b +€ T x b~ €, AlY hypatheses

of ‘I‘h'earc:}n 8 are sza,tisfie&; ‘I'he eonc:lusion i that £{x) has an a’bsolute~

ly canver,genh expmaion in tarns of the f.'\mc%ions x 7 ¢,,(x.)-f.;
f(x)f = Z a, (:x:” + ¢n(x))

.' n=o R S : ‘
vhere & ¢ n = 0; 1; ¢ss is given by 3.1.2 with the proper expressions
substituted for c 1' snd O 1 [:'E(x)j The resulbing series oenverges
'absolutelv to :C(x) in ~b +€ =b» € , Care must be tak:en that

the determinsnt in the denaminator of 3,1.2 does not vanish;

(b) e Taylor series for i’uncﬁiox'm of 2 complex varizble.
Let P; (2) = zV . Let £{z) belong to (R) the spece of functions
Camelytic in & cirele [z| £ ki A di_i.scx;sséfion for & circle sbont an

arbitrary point z=a would be anazlogoug, Let

4] n[f(Z)]x é—ﬁ.'i f_—"— C/W - Y n::ﬂ, l, s



and #hg geries for f,,(x)J Z c: EPI. (x) + @(x)] v is assuied o

. i . 10 . . ’
- be absolutely comvergent to §,(x), 1t 15 seen that there ie little room

. for & continuation process such as is described gbove, in other words

~ for a special case of the a}pem’tcr 0, 3.2.4 will almost always hold.
3.3 Applications of Tﬁeérem 8.

| (2) The Teylor series for functions of 2 rezl varisble.

' i E -F‘i’(o)
Let PJ' (;) : x  and 05_ ff] x ' —]—-,— « Then
0y (_-PJ' ("A‘ﬂ-—- Jxt 1!

Yow if 1 > Jy then °'iE’J (x)] = 0 for any x. If 1 < J; then

d x| DG -1 (=) i .
Cdt i ks T = X
; vdx 1 lx=0 1 ’ » X<o

}Zf i = J; then from the last statoment

5 . N(i-1 -_.‘ . 1
PR of ) (L5 (€ar. SR I
g‘;‘i FE 1 X=o
Hence -
1 »
4 X =g,
i 411 B |

a8 required; Lot (R) denote the space of enslytic functions, Assume
~ that £(x) has a Taylor expansion shout the point O, A discussion

for an arbitrary point a would be analogous. Then

3.3.1 f(x) = Z 3 .° x"
) : , =0 kKl




27T

P (z) =L dw = L de . -
[ ] W"H‘l | 277 ’{n‘Je(”-J);@“ 5\}/7
0

vaioualy 0 ,-,iq a&di?iw au& homogeneoua for all n, We can expzfesa
. f( )&S  ‘ ) S 4 |
£(wW) n
:i'(z) = Z 2'71[ Wnﬂdw .
n=o wi=k s
‘ Bince f(z) is aualytic :1n Izl - &€ k;' thanbthis series»ccnverges;

absolutely m 2] £ k -€ , where €15 an erbitrerily amell

’ “kpositive number less than k, ‘by Abel‘s Lemma [}1, Ds 535]

' :must require t}mt o

| | 'S:(W)
21 whtl
lwl"f

dW}L M ﬁ“"“oolj e5s &

. Then the modifying; functions are 8o chogen that; they are ansalytic in

regwns eontaining the circle lzl =3 14:;
where Z |e ;] <eoznd Z Z : d;’ zY converges
n,J ) : n=o J=o : .

hd .
gbsolutely in & region containing the circle |2/ € 'k — € &
Here | |
J T 2mri - Wj'f'.l
iwi=k

Then 211 hypotheses of Theorem 8 are satisfied; £(z) can thug be

: ii,l;‘ '



by,
expanded in » geries of the analytic functions z7 + Pple) 3

«o) = Z ,,( "+ 8, (z))

.h=d , ‘
vhere &, , n= 0, 1, .., are g;iVen by 3.1,2 with th‘e eppropriate
modification of the elements, The resulting series converges absolutely '

in l‘zlék—-é.“

(e) The Lourent series for functions of 2 complex variable.

Let the sequence {PJ' (z)} be 1, z, -%5 ‘ZZQ 'zi"e' ey 27, -i'-;,.' iae s

Let the sequence - O; Dbe z—,—"-ﬁ[&—v—\-/— dwv ) 2_1!7: 'E_(..\;V\/’)-Z C/VV)
! d : . 171
- 2A=P B
| $(w) o v | |
v ems [, 0t 2,71 vy L

Let f( ) be analytic in an annulus about {;he origin with circles of
| dius T an@ R where » = P‘- R say, and v < R, Then GnEP (z)]n: J,,.
1n a. simlle.r faghion to (b) 0 n is abviously additiva and homogeneaua
for 211 n, ‘l‘hen we can exprens f(z) H | |
#(z) = Z‘ & 2"
n—-soO

vhere

Y A 15V
n - Z?Ti o anl
J2l=pP- L

We require that |a, for pome constant M, Now this




: series for £(z) converges absolutely in an,y smmxlue r + € :é— 1zl <

R - ‘p. whare e v are arbitrarily small pasitive numbersg, . Let ¢,,(z)

be analytic in amuli containinglrl Zlzl & R, As usuel require that,
Where | L . ’ |
¢<z>-Z YRS
NEIL ' ,
+00’ + 20 " J EEFER A
then Z |a"] 4 o= m Z E a J z~ converges absolutalyv

J . Nz=-=a0 j':;-;w
inr €1z & R Here ‘

o 271 w J+2
R Mizi=Pp | .
Then all hyz;otheses of Theoren 8 ere s&tisfieﬁ f(z) has a1 expansion

| in terms of the functions 2" + ¢,,(z) n'~ aer =1y 04 1y aes

i where the aoefficients are detornined in the uswal way. The resulting

aeries converges absolutely to £(z) in the anxmlus r + € % )zl R« f).

. () Grt:hanormé;l f‘uncti’oﬁﬁ.’ ‘
. Lat {P (x) } be & sequence of functionu orthnnam&l with a weight
funcuion w(x) over some interval [a. 'bj Lat 0 [f]** fw(x) f(x)P(xh/x
;7:* g* i‘or all. f(x) for which t‘mis has memxing ond for 911 i

' Then S R r |
"01','.1’.1' (x)] = f wlx) Pj(x) Py (z) ax = §;
by }hypbth‘esis; If wx) =1, this is sinply an orthonomal sequence

of ftmétidhs. Sun vose £{x) can be expanded in a series of the P; (x) T
£(x) -;'..*ﬂ v Z d j .'PJ. {x) , dJ. = /;:(3:) “f(x) P; (x) dx.

Jj=o b



X

by }383@91‘" inccuality i‘m orthonormal fmwtions, it is here true en’
4 can be found; such the,t ]a ] € M, M a constant, all j, Ve L.szc

 that j!:his series converge a‘osolutely in [z, b] or in some.subinterval
2 .

- ~ ‘ oon Sl
bof [e, b]. Tet QS (x) = Z : f' By - (x) , where ¢ J=E wl=)
) 0 o5 -
fv @R x) ax, Wo ask that E (c "I < o0 and that Z E o 'c’."P .'(x)
' h‘J n=o 30

shall converge sbsolutely for 811 x in Ez. b] or in the su‘binterval.

Then as before f£(x) has an erpansion

, | - | '
() = ) a,,(P,.(x) + Patx))
| . h=Eo S
where ap, n =0, 1, ... are given by 3.1.2 with the appropriate

specializ.ation of c; and O i[f(x):] .

1% seems pertinent to remerk that if w(x) 1 and the P (x)
ai'e the normalized Fourier sines snd cosines, then_a‘,,‘ .a‘faova is the
gome »coefficient a8 was obtai’ned in Chepter Two, 2.2;3: There thev
prbcegs uséﬁ wag interpolation, To mention was maée of the ccmyergencé
of t;hé résultjlﬁg series to the function, It is Q]{.ear”that the work ‘,
in‘_thils chapter is a natural genez;aliz'ation}of ‘the work do'ne» in Chapter
T\;’Og Howeve'i' ma;hy of thel seguences ‘of functions treated in the rpregeh’é
:éhapter,he..ve not been brought under -the genez;al theory indicated in
Chapter One and which is exhibited for some special czges in bha';oter |

Two .

(e) B:.orthog;onpl Funcbions. ;
Definition. Given two seque*zces of functions P (x), J =0, 1. i
and“VJ (=) 3=0, 1, .ca defined on aninterval Cag_,‘b] i we say

~ thet the sequences are biorthonormal over Ca;; "b] if



Pi (X} VJ- (X) dx = 53'_." 1:: G; 1; '.“v' J “.":0; Li see .
‘a | S : i
Therefore %n Theorem 8, let P J-'(x) be the given sequence and let

0;Bwil= | £(x) v; (x) ax, all 1, for all £(x) for vhich this has

y meaning. ‘I’hexp '
Pt b

R S M

- j.... 0, 1y eav o O i 1is ubvioualy an additi'sre end homcgeneo’us functional, .

'_ Aaaume f(x) can be expamiea ine aeriea of the P; (:x:) {

S - ‘ w’ | b
=) 4 nw e, [ 0 v, (=) 0x
e H=0 i ‘ |

B : .a ' :

. ﬁhere ld"] z.M, some comzt:ant M; all k, a.nd the ‘geries for f(y)

. ‘convergea absolutelv in Ea. ] or 1n sume subinterval, If R :
¢,,(x) Z (x). ¢ "w, fb By(x) v, (x) ax ; and
z \cf‘ l < oo ; while Z Z : P, (x) converges absolutely

=0 M=
L]

: in [a. b] or in the subinterval, ‘::hen ‘the hynothesea of Theoren 8
~are satisfied; Then f(x) has an e:mansion in terms of the functiona R
;1>"'ivpn(x) + Palx) &
Cfx) = Z a, (7, (x) +'¢,,(x))
‘ Aso

‘where a,,; n=0y Ly dees are given by 3.1.2. The reaulting seriee

‘--'converges absolutely to f(x) in [a.. b] or in tha au‘oéinterval. f

3 l» An Example. af s Modification, N
At this paint, a concrete example would help to illuetrate the |
| thacry‘. "herc»fore in Theoren 8, let the sem&ence F (x) ve the ‘

sequence —k cos x  sinx °?.§..§25.’ «vs o With O; being

Van ' VR VT v
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the opera.to.ﬁr indicated in 3.3 (d) with w(x) =1, this sequence

satisfies the hypotheses of Theoreizi 8 with interval EO. 217] : I:et‘

f( x) 'be any ftmetion with an absolutely convergent Fourier geries H
l

~:E'(x) = o + Z‘( ﬁOBnX‘_,__«bn"sinnx)

T

where a and b} n are the usual Fourier coefficiants aac.h mul\‘ziplieﬁ

by 2 factor \/— y while a’ o is the usual coefficient multiulied by

mmm——

: \/ -an: . Since the geries for f(x) converges ahsolutely, it is clear “

jthat the aoafﬁcienfzs are bounded. Considar the fellowinp aequenaa of
functicns { B z) z

a0 = 1)
Gx) = b o2E b
g = fE e Lol - —é-‘-?“\ﬁ_gx ,
) ,f_}..¢(x) = 1_16931_13! +_i_.1.6_icc\;s_1_}lix * 1'15‘;?\1}%}14'1'1'@;303;:: )

B(x). = __lZ gin 3x .,._Lcos bx + Loeinbx . 1 cos 5z

kT

"

@fx) ic sin 3x + i-:‘écos‘l&x + = sin bx .,_'_1_-_" cos 5x
L

o=

i



“To satisfy th& h,ypctheses of Thwrem 8 we must have Z \ c"|< 0

i,J

‘ Xn this Qase‘ when the elements are swmed. 111 an obvious muner. Al
Z \atl +1;(!-) + (—) + 16( )t 25(,a)+ ver nfl )+-~-f 5
¥l , i

To show that ﬁhis aerieaconvergae use the simple ratio teat.

1im uﬂ'l-im 1im ('7+1) <& atm L (n+1) =1 AECEIEI
n-eo q,., " hseo 2n+1 ")2~  , n—>°° . ) ‘2 o v

‘ Bince bhe limit ia 1933 than l, Z Ie:! I ia canvergent. It is & o ‘

oo ,
trivial fact that Z ¢(x) . in serieq fom, comrarges abso}.utely. S

s nTOo. ‘
The only stipulatian left %o be cheoked 1s that | o] + J, quéo.

E
-+
wie

o 0o 0 0 0 0 .. |
o 1+y % 0 0. 0 0 e h
gelle |0 oD TE BB
Y0 s e g e
o 0 0 1 %,“3 01 el
6 o o 0 0 0 1+iz ..
I . . .

“ “‘

Clesrly, since the existence of the determinent 1s already estebliched,

‘ o ncolumns
» 1 1 1
| -‘—"" “’z‘", z A B R )
n=1 _2~'1 ‘:2 2" | n=1
o2 e




1.

~Lemma §

en columng o

1+ & 8 yer 8

(n) a lta ., a8 |

A - . . . b~ 1"‘113"
. . P . Tl
- L " “
a a lts

: ,}?‘tbqf; Subtract the last column from each other column. Then

A(”);_‘.. .

A -l . -l La

Ada the first; second; ... (n - 1)st »réw to the last row,

1 0 .. O & i
0 1 . O a- :
o .
() ‘ . ’ ‘ ' o
, An ::‘ o K O . . "'..“'.'11“%‘
0 o0 Cess l a - |
LT (n-1) times
0 ¢ ‘ &'gd-: G (1+ &)"' (a-‘f‘&to *a)
R O | : S
Letting a = —5 4 Dm;‘: 1+ -'-1- n & k«?hereforalcg +°1I ~T(1+ Z")

~ Bince the determinant !g +e? \ is already known ta be & normal
‘ 'determinaut; this inﬁnﬂ.te prac’iuct ezista. An» altermtﬁxe proof o:£

existence follows.. "‘he infinite vraduct exists (see E?S e 15] )
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o0
if Z Qn < eo, B’se the ratio test
n=1 ¢ 5 |
limo U1 o 1in ‘('Zfi) _2.. S = lim "‘(1"'5):::5-1-'
N0 (,{n n-no 2n+1 n- hoo n__ 2

Therefom tha series and algo the prodmt commrgee. Since all bha
o i‘actora 1in the product are greater them 1, the produat is not zero,

Hencze ‘5 +a1[;£9 ’

%s’e can nov apply %eorem 8. ~ The conclusien is that f(x) hag an B

' absomtely conwrgent expension in [0. 2 'ﬂ'jt

0w o A e o e 4T, [ ]
o o =1t : : SRR
vhere S
1 Co (k +1)at colmzm'
1+2 O - ‘ 0 : 0 tob O aa K o seel|
o 1+g o 3 o..,o 8] 0 ..
R B T N A -
8.;-:"""" 0 _-' o l+—- N ¢ uﬂiq} 0 bl ‘O'#oi ;
: K', &<1+ﬂ') ¢ ,‘f . . # . PRER . ol b
h=1 2 & e 3 T P s
R T . n « - ‘ W : . ." -\ . ‘
; ‘ n(n+1)
To simylii‘y Boa) locata k betwean succassive values of =

s n¢ (a+) <k <(n+1)(n+2) Then .
: T2 2 -
& {(n +1) columng —

L2 1 : : 1

B R R I L
1 1 1+3, Anmee) o

1+(n+1) ol LT gl n(n;i) 17 Zaw

1y : . .
2m : : | :
’ 1 A 0(@+a)(n+2) PN |
eIl 2n+1 . -1+ 2N+l

5 %ere the di a.re a sat of the ‘9‘1

' and'b

rwhose idmitities avre elear,

3;5- Modified Expanaiona 1n & B,anac.h_smce.’,

‘Firét sy some elementary notions concerning Banech spaces will be.
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reviewed. Briefly, a Banach gpace (B) El. Pe 53] is a non empty
set of elements vhich comprise a normed, dbmplete; linear vector space.
" Complete, in this sense means that any Cauchy sequencé of élemén‘b‘s of

 the space converges to &n element in the space.

We say zh-mt 0 is on a2dditive functiona.l defined on (B) if for

every xe (B), 0 [x] is defined and s&tisfies
ox+yl=oE]+o(F]., alix ye (B),

(B) may be sald to have a biorthogonal system {xi)ai] s 1=0, 1,
‘eesy When x i€ (B), a11 %, and 0- 4s 2n aaditive homogeneous functione
‘&l defined on (B), while 0; [%j]= dl.l For every xc(B) we thus

: =]

hgve an expansion Z Oi Ex] X convergent or not,
. 1z0 » g ‘

Ve are now in a position to generalize Theorem 8, using the notion

. of a Banach space,

: ‘;'L'haozi'em 12, Let (B) ve & B&nach space with a biorthogonal sfs‘rbste:‘n i |
$xi oiz ) £20, 1yt . Suppose ; xe(B), x= b ' ['x].x; .
and the convergence is sﬁéh that Z‘ [O [_x]l llx Uc 0 while
there exists 2 number M:- 10 (‘:) ’4 My 120, 1, sus s Gonsider

& sequence of elements iy,, D= =0, 1, oo where yhe (B) and

=9
Y, = Z 0 [¥.] x] and such that
) ciTo oO o

. 1,.,*:@ o

2. z’f(c L.v,.al Hx,ncoo |

1,n=0

k. 3s ! +01 E;v"]l i, J... 04 1; ove 1o different from zero.



sh,
 Then x can be represented as

xr: i n[x] an * yn]

‘where : \an(x)‘ ”xn + y,,|I< o0 lan(?)l < M

gMa B

nz= O, 1, 4o where ¥ ig some cenatamt and furthemare {x n +’ y,,, 'a.,,? :

n=0,1, ... is 2 blorthogonal system, Here

RESTEIARD l (n,0,[x1)

3.5.1
l 511 + Oz.[y.)]‘

2 i, J*”;Ot Ly ans v

n-—-Og 1; “«se

Constder the system of equations

0,[x] = ao+y. 2, 0%[%n),
o n=o ‘ _ ‘
; = , X
3:5,2 - 0 [3?] = &, 4 &, Olv[.-?'n—l )
. ) ' . ,’=o . ’ . )
. . e e . . « . . PR . [
i . .A=p , :

~dn ‘the_unkmwna a,y3=0,1, ... s Since .Iéj (x)‘ < M, 3=0,1, a;;‘
and the determinant of the coefficients is normal and different from |

yzera,‘ there is one and only one bounded golution, hemely 3.5 ;1.'

Trom 3.5.2 we obtain .
."1'«‘ “ - .‘ o0 ‘l c oo e T "»
353 OJ‘E.KJ X, ,"-“-‘.- aj %, + Z ;an QJ[Yn] xd" ‘ Jai} Ly s

To see “this, for any G 20, choose k’, a positive integer, such that for
K > K, then

‘0 C”'] (a + Z a’h @ l_y,,])‘ ”x||‘
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((li“# 0, since 0; [x‘i] =1.) Therefore

= LR ‘
i.\{jj[x],‘xj"— (aj x, + Z 2,0, [ % ” |
B A=0,, o
‘oj (x)~ (aj + Z 2, 0, [‘yn]l 1E: ”4 Hx Iy
. RTe . \

This is velid for all J. Since€gg is arblirary, 3.5.3 holds.

I

. We wish to sum over J-in 3.5.3: Let kq s k4 be fk’positive ziixxt:egers .

with k, > k) , say. ' Then

4.li9.cx]x. - i 2, [ynj xJ -i;o [:x]

| ,J.o =
0 x x - 0 n] Xj
- —Z'° cx (ux I+ fg lan 0; [.v.,])ux n -
J=ml J=i+1 N=o

By hypotheses; and since ]a.h\ < ", n=0; 1, cous both of these
| expressions go to zero as Ie.:l i k2+ oo , Thus |

s‘f(x)} {L (0 [z]x--—-‘Za 0. [3"»] }

n=o
ko= 04 1, «ui is a Cauchy sequence. Its limit .’w the obvicus ons. :

- Thus we can sum over 3 in3.5-.3 and o‘btain ;

Dotan = 5 ek b eno,Bal
J o h=<o . .

oo
=0 | J=0 ize

. or

= = . =0
Jd °Oo h (¢« J
= ® +z 2, o
J:o h=O
b an(xn-f y’} )v



The serieg?amerges as demended, ‘_Also ,gh[‘x jrv J =4 nj
by inspection of 3.5,1. Since a ) is =dditive and homogeneous for
all n, ?:x,,‘-r s an? \ n=0, 1, ,.. iz a biorthogonal ‘systen

for (3).

The next theorem is the obvious general.izai;ian of Theorem 9,'

end 1s prdvén in a sinilar fashion to the above.

| "’heorem 13+ I’:eﬁ x € (B) end z = Z d, x,vhere ‘{‘xn } y Nz 0y
< “ : .

h-.

; 1, ves 5.9 3 basis in (B), Assume that E lan] Il zall <=0 .
. . n i nso: . _ea n - ,
,Latyr):‘- Z e§ i.nm{).l; ..‘mare,rz ]c..‘éwaﬁa
‘ 22, i=o oo i,n=0
l:flllx,uu< oo"Thenx-nZ'; an(x, +¥n)
130 N0 v
- wWhers. . Z lenl =+ Vn”<°° where the atmrmria?a moﬂifwation

i 18 made in the a of- 3~51‘1‘0\

| Gor&llarzr to" T&éorém 12, Let (B) be & Banach é}ﬁaéé with o biorthbgonal
syatem ixi i 90§ ? . Fcr an;sr sequence of elements {Yn ;7 e(8)t

Z:: lO [y'j l L 00, there is s set of a&ditives functionals ‘a_i V
 1-{), Y, siv b 1,_‘:';,,4-;?,,] n' provide& I&J*O [’y],

i; .j~ O. 1. e ia &iff’arent from 2erc.

N 3 6 Soma Rasults on Biorthogonality.
In 3. 3 e), it vas seen that ve can considar the moaification af
a sequence ‘of functions which is Mnrthogonal to another seqnenae of
| fmctions. In the last aectian, we saw that we were dealing with 8
| ‘biarthagona}. system in general. Now i} can f»e shown that the céefficients
a ni B :-.:Q. 1y 4euy of ae'lézlcan'ba xzt'e.du’ced 'So integrale in a grea‘l’:

nany cases.
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Consider &, of 3.1.2. Then a , cen be written as
3‘.6.1 : an = Z 9!’ [f(x)j A"Lﬂ L .g nos Oi‘ ln cuey

r=o

: where Appn is the coi‘actor of ¢ + 5 rn in A= lé’l + "1‘ e 1 ...0. l,‘
sy ;] =0, 1, s d ‘From the theory of normal determinsnfm E’?,O, p. 373]

we kuow that |&pn| < M, ¥ a constant, for al}. r, 0 znd thet

| Z(A"’l<°o'

?heorem 14, Let {p (x), 1; (x)z s J=0, 1, «s+ be a biorthonormal

- system of functions in I‘z such that each set u unifomly 'boumied. WO
- Let ¢(x) = i c;’ p (x) , j...O, Ly aies where Zlc:_l<oo."“‘

b
Let 0 Ef(x)] [f(x) 1, (x) dx, vhere fx) belongs t;o Ina .
There exlsts & sequence of functions iv,, (x)? n= 0, 1_, ¢+ guch

that
: b

= J'f(x) ’v,,(x) dx n':‘.f. O 1y oes

Farthermore;

b | |
[V (x) [¢(X)+ P(?).] dT = 5,,\, y =0, 1; vk i
e 3“0: }4 ree k ' |

: b

Ve fzrst note ‘thet the numbers [f(ic) 1 (x) dz, T -vO, l,‘;;‘

a .
have a uniform bound, ?his follows from a gtraight fom»:ard application
of Schwa'rz's‘ inequality end as a ccnseo_uence Q;f' the nniform bound
of ,b-t(ilr (z’)z‘s‘ r=0;1, +. . Hence, from 3.6.1,

. - S
+ ZO W) AL, = -%- Z Ay, | f(x)1lx) ax
'~ b ‘ Ll X

. rzo
a

N

a | f(x) 4,1 (x) ax .
A Ze.:o a : :
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o

‘31nce e le‘s ,.-nl <e0s ‘the 1 (r) are undformly. ‘bmmded, and f(x)
, ‘ r-o .

belengs toLg then the series Zﬂm 1, {x) converges

[fabaclutely and unifamly to = fﬁuctién v,,, (x) in [_'a, ‘b]

= ‘i’herefara intagmting tem by tom. RS 7 R
f‘/ﬂ?“‘)y‘;’"»é‘(x)' ax = j} Z [f(x) 1, (zc) Amé‘x ...  o,
B . ) A a ¥ " ’ oo ‘MA; ' ' V-.o a . .~ \ N f) . . . ')‘
Ii = 0, li e A,d‘ Thué_ ' ' : R e

_tﬂoreov;r, s S S
_ _l.[nm {¢J<x>+ ¥ <x>f e
m f(A i Ar‘hl (x))(f(c +d, )P (x) o .

r=o

5 o S ,.‘;::.: .,’-i R k, Brasl
L Z v (ai+cf”) E RERY (x} =
RN S Ayr=e - ' , o e
e };[— - (c ) )] §i= Z - (e +5,J)
' ‘A‘~~..-.-. Eﬂgna J}’J B | . .

In the abom calculaticn, the *fa,et that the two eeries in the integrand
‘. czomrerge absolutely and that bhe 1, (x)g P, (x) ara mxiformly
bmm&ed was used. S’Phis impliqd uniform ccnvergence of the renulting

kdouble seriaa,, and tem by tem inte@ration vas pemis@ible.

Gorolle.ry; CIf {1,, (::':)? s r}:“. 0, 1, ses 3 is 2 sec;penqeof eontinuous -

 functions, then the sequence {v,,, (x) f s =0, 1, (iuyina sequence



resulting series is not #lways convergent to f(x} T‘rle hypétheses

59
- of continuonsg functions,

This 45 cleer since the defining series for vn(x), nw= 0, 1,
iesy is then 2 unifo:mly convergent ﬁeriea ef continuaua functionm

By a wel}.-lmam theorem, the 1im1b is continuous,

ERE Gomperigon Vith Known RBesulbs.
Asg menﬁione&. in the introduction, Theorem 8 and its aonsequencas
can ’ba compared with the work of J. Lo W&lsh ['30]&;1& thzs,t of Paley

and Weiner [23, P. 100]

~In case -’i?aecz‘em B is speaiaﬁz’e& Asfn; that *he‘ ééquence §P lfz:)}
is a sequense of orthonormpl, unii'oml*r bounded i\mction over some
inf;ez:val‘ [a;, b ] and O j [f(}t)] = fi‘(x) P (x) d:c, the fompaing :
‘results are quite close to those of J; L. Welsh [3(}] ‘ ’G’aing |
' \aur previoue notatian,' Ea achieves ezj;&ngions 1n terms of functions
{PJ (z) + & (x)} for sny function £(x) that i‘g integrable and

with an integrable square over [a; ‘b] + although, of course, the

in Walsh's paper among others are thpt the three series

Z (a’;f)z, R Z(Z (c") | . (c)z‘(‘ )

1)}{- ’ 10 =0 : =0 j=o

'eanverge end that the value of the geries in (&) 1s less than ones
o0

These hynotheses are to be ccmpe.red with the hypothesisn Z lcllzoo

) 1)”’0

This implies (b) and (c) converges for

(e’ Zfz;y.,:)(zm) zlcﬂw‘

i=o if=o iirzo




g0,

and éimﬁarly for (c). Iri-éézémr the value of ,(é) is not leas th‘ah 1 kifr

. an;r one of the c is greater thzm or aqual tc 1 in a%aalute *mlua.
“ h’

Walsh‘s metlmd of proef 13 mﬁher different than t?mt ef Thearem 8.
. bui’. results are obtained *fox- fanctions whase }? (x}uaeries does mot
conver&e. In Thearam 8, attentian vas restrict@d to those ‘functiona i

‘mth abaolutelg corwergent P (z)naeries.

‘ &ﬁth the sane speeialization cf ’l’heomm 8 as in tha above, it ‘
"csm ba ‘aempared with the ra«mlts of Paley and Wainer EE + p. 1DCD .
“‘i‘he hypotheais Z[a" ' < oo g here to “be Gom&rea uith the |

AN
hypothesi 8

fZ ¥(P (x)-g(x))[ = & Z‘%'

nzo
o whera ®© 41 ; end where © is independent of N and fanfi The

| ian}is eny set of numbers eud ig x) is the seguence in which

| ';it in dasired '!;o obtain ex@ansians, An ~expansibn in temms of the

g,,(x) is obtaine& for all functions T(x) that belong to L , over
[z ’b] Zn gome cases, the g,.,(x) are not asymptotic %o the

n (x)y whareas in Thearem 8; the P (x) + ¢ {x) ave asymﬂtotic
to the P (x). 1f the g,(x) are of the form P, (x) + ¢,,(x)* the

aﬁbove condition 'becomes L

| J‘) n¢(x)| ax £ 6 Z Ia;,:z |

, e n ; : R

| I‘ri‘i‘heamm" 8, we had ¢n(x) ;:;e: i c,-_ 1’ (=), n= i).; i ene
~where for each n the convergence ;;oaﬁsalute and wniform in La. Y|
due to the uniform boundnaas of P_.,_ (x), 1 =02 +es » Thus

[ i B; (}')l dx “ ‘62 Z'!jan'l

h=0

i
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Since 2,4 ssey &,y Torms a bounded set of numbax'q. we eon

_ i*zterchange summaticn aml o‘otain

/'Z (o 1) ol e i,,

or

3.7 Z\Z 'a‘(n‘en

Let 84 v al PR - 'be equal to 1, a\“‘;':. Oﬁ“‘The canﬁ.itiah must

'1"2 N’ o
, SRR A

be a*tisfie& for this set ?hat 13

- Now with ¥ fixed; c}mose Gg s e I co i s C

¥ e®

S
o tobeany set

i of rmmbers grepter then or equal ta 1. and chooqe the other ¢, ‘so‘.},

o ;{;h’g{; ZIGJ l< cQ zmd the &eteminant \51J+e1]4.- o N
:.Then‘,b | ’ 2;_) ’

o  N-1

N =g L
Z‘Z“i { =8
10 ' n=o -

Thernfore a o <1 cannot be found fcr which 3.? 2 1s gatieﬁ&fi. G

Hewever Theorem 8 is apnlicablea

-Foi' eyzample“. let E:Z;‘c: ::2. c'}, =2 alllyot'h‘ér a" ;'.-:'0;,
Then ZI°114°° trivially and ‘J +-c" ] = 3, 28 may be ,
seen ea;ﬁy. Using this set of c" i the sequence {P {=x) + ¢ (x)} ;
'vbecomes’ ,, olx); Py (x) +2 7 (x)i P, (x), P, (F); was o The
 sequence {v’i (x) z_becqmesé- PO(:;) - 3 31 (x)i Py (x)s f‘a(:,;)'6 ,-- -

It may be verified quite easily that the twq,,seqﬂ,uences‘are biorthogonal;

On the other hand, let ¢l = 44 ey = Lyed =4, .o

._le
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cj =0, 5.:# 3. then 3.7, 1 beeomes ‘

‘ 4.
ZlZan—% ,,,: e wa
This will be satiasfied if we ask @ha{;

2 2 ‘ .
Tlool* + Zlaal® & e n F Loyl T € 67 ) Ia?

n=o0

oy

L\a”|2 zg Zla"'._,

Then choose © mzch that -;;— < 6941 . The condition is satisfied.
- R ;
Howevar ‘ Z‘(—“é—)daas not converge., Therefore for this set of c“

’i‘hearem 8 ﬁoes not apply, bub the results of Paley and Weiner hold,

Again, 1f Theorem 8 is specialized so that thp sequence EP- (x)} |
s {z’} ¢ the Towlte obtelned can be compared vith those [3] of
‘Gr D Birkhoff. ILet | ; ‘ ‘
Q [f(z)] ZTTI [ ’C_(_ZV%I | dw , n=0,1, -n
R wl=k w ‘ :
. where f(z) is analytic in |z} < ik It will be found that the results
: o*mrla? ag in ’che last two cases. For ex&mple:, using our previous
notation, let ¢J.(z) =0, J >0 ani let ¢(z) = 2, ‘l‘han the
modﬁf:’ied gsequence becomes 3, 2z, z'a dosve o It is eaeily seen that
Birkhoff's theorem does not cover thi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>