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ABSTRACT 

RNA-binding proteins (RBPs) are key regulators of post-transcriptional gene expression, and 

underlie many disease-relevant processes. However, they have historically been challenging to target with 

drug-like compounds. Inspired by the “anchor residues” of protein-protein interactions, we developed a 

computational approach for rationally designing small-molecule inhibitors of RBPs. In this dissertation, we 

first selected Musashi-1 and Musashi-2 to apply our “RNA mimicry” approach. Both Musashi proteins are 

well-studied RBPs, known principally as stem-cell markers that are upregulated in many cancers. In the 

future, we hope our “RNA mimicry” approach can be generally applied to inhibitor design of diverse target 

RBPs. 

To design inhibitors of Musashi proteins, we applied our strategy by mimicking the three-

dimensional interactions in the protein-RNA complex. As described in Chapter II, by using pharmacophoric 

screening, we searched for drug-like compounds that can present the same geometric arrangement of 

functional groups as the RNA in the complex. We hypothesized that such ligands would engage Musashi 

in a similar manner as the RNA binds to Musashi. Since the interaction geometries can be quite distinct 

from one another for different RBPs, we anticipated that this strategy would lead to inhibitors that were 

selective for Musashi. 

To facilitate characterization of these candidate Musashi inhibitors, I developed the “isothermal 

analysis” approach. As described in Chapter III, this method allows us to calculate quantitative binding 

constants by using differential scanning fluorimetry (DSF) data. The method requires only the protein 

unfolding information at a given temperature as a function of ligand concentration, and thus no 

thermodynamic parameters are included in the calculation. 

Finally, I describe the use of computational docking to better understand the basis for PROTAC-

mediated degradation of target proteins. PROteolysis TArgeting Chimeras (PROTACs) are 

heterobifunctional small molecules which can induce target protein degradation through cell ubiquitination 

process. Rational design of PROTACs is still challenging, however, because of the limited structural 
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understanding of their mechanism. In Chapter IV, I seek to predict the formation of the ternary structure 

complex by including both effects of the protein-protein interaction and effects of the chemical linker. 

Looking ahead, I hope to use these ternary structure models to explain the activity and selectivity of the 

given PROTAC molecules, and ultimately to use our designed Musashi inhibitors as a starting point for 

building new PROTACs to degrade Musashi. 

 

The text of Chapter II is a manuscript that is in preparation for publication as:  

Bai N‡, Adeshina Y‡, Lan L, Makhov PB, Xia Y, Gowthaman R, Miller SA, Johnson DK, 
Boumber Y, Xu L, Karanicolas J. Rationally designing inhibitors of the Musashi protein-RNA 
interaction by hotspot mimicry. 
‡equally contributing co-authors 
 
The supporting information for this chapter is included as Appendix A.1. 

The text of Chapter III is a reprint of the material from: 

Bai N, Roder H, Dickson A, Karanicolas J. Isothermal analysis of ThermoFluor data can readily 
provide quantitative binding affinities. Sci. Rep. 9, p. 2650 (2019). 
Note: the software disseminated with this paper has accumulated >1000 downloads in the 9 months 
since publication 
 
The supporting information for this chapter is included as Appendix A.2. 

The text of Chapter IV is a manuscript that is in preparation for publication as: 

Bai N, Karanicolas J. Predicting PROTAC-mediated ternary complex formation using Rosetta. 
 
The supporting information for this chapter is included as Appendix A.3. 
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Chapter I: Introduction 

More than 1500 human RNA-binding proteins (RBPs) have been discovered and studied to varying 

degrees (1-5). Many of these RBPs have been confirmed as key players in important, diverse biological 

processes by interacting with different types of target RNAs, including both double-stranded RNAs (6) and 

single-stranded RNAs (7). Mis-regulation of these RBPs has been implicated as related to multiple serious 

diseases, and in some cases this makes them potential therapeutic targets (8-10). 

Compared with their variety of functions and their diversity of cognate RNAs, the structures of 

RBPs are actually surprisingly conserved and modular (11, 12). Most RBPs are built from only a few 

functional domains, for example, RNA-recognition motif (RRM), hnRNP K homology domain (KH), and 

Zinc-Finger domain (ZnF). RRMs are the most abundant RNA-binding domains in humans, and has 

become a key focus of attention in the past decades (7, 13-17). RRMs are comprised of 80-90 amino acids, 

folded into a β-α-β-β-α-β topology. On the sequence level, there are two highly conserved short sequences: 

RNP1 on β-sheet 3 and RNP2 on β-sheet 1. In most cases, these two RNPs contain several conserved 

residues: an Arg or Lys, and two or three aromatic residues (11, 12, 17). The aromatic residues often form 

π stacking interactions with cognate RNA bases, and it has been shown that mutations to these aromatic 

sidechains disrupt binding to cognate RNA (7, 14). 

Mammalian Musashi (Msi) proteins are RBPs with two homologs: Musashi-1 (Msi1) and Musashi-

2 (Msi2). Each of them contains two RRMs, and these two RRMs are about 75% sequence identical (18). 

Their function was originally identified in the context of stem cell proliferation and differentiation, by 

binding to target mRNAs and regulating their stability and translation (18-22). Over-expression of Msi1 

and Msi2 has been linked to multiple serious diseases, including Alzheimer’s disease (23) and several 

certain cancers (24-34). Their rich biology makes both Msi1 and Msi2 attractive therapeutic targets, and 

already several independent groups have described small molecule inhibitors targeting Musashi proteins 
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(35-38). Each of these groups began with similar fluorescence polarization (FP) competition assays to 

screen their own distinct small molecule libraries, and ultimately each group arrived at distinctive inhibitors. 

Although each group discovered a potentially promising inhibitor, the size of the libraries they used 

and the biochemical assay they applied may have limited their outcomes from their screens. As a more 

robust and general approach, I instead developed a computational method for large-scale in silico screening 

against Musashi. I also developed a comprehensive biochemical assay for testing potential inhibitors by 

introducing a new analysis framework for the differential scanning fluorimetry (DSF) assay, a commonly-

used assay in drug discovery. Finally, to enhance the efficacy of the Musashi inhibitors, I began to develop 

a computational approach that will allow me to rationally design new PROteolysis TArgeting Chimeras 

(PROTACs) predicated on using these inhibitors as warheads for inducing Musashi degradation in cells. 

RNA Mimicry Approach 

Musashi proteins, like many other RBPs, have been considered “non-traditional” targets for 

therapeutic intervention because of their relatively flat binding surface (18, 38). Inspired by rational design 

of inhibitors against protein-protein interactions (39-45), another class of “non-traditional” target, we 

elected to adapt this “mimicry” idea for RBPs. 

To mimic the three-dimensional interaction of Msi-RNA, we start with identifying the essential 

chemical moieties of RNA fragment from Msi-RNA complex structure. We define these essential 

functional groups as “hotspot pharmacophores”, which is similar to the concept of hotspots in protein-

protein interactions (41, 43, 44). The “hotspot pharmacophore” will then be applied as a template for in 

silico pharmacophore-based screening. Our hypothesis is that small molecules which have similar structures 

to the “hotspot pharmacophore” extracted from the protein-RNA complex would mimic the interaction of 

the RNA with the protein, and thus competitively inhibit the protein-RNA interaction. 

Importantly, this underlying conceptual framework can also allow for consideration of selectivity 

of the resulting inhibitors. Because RBPs are so plentiful in humans (2, 3) and their structures are so highly 
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conserved (11, 14, 17), it is critical to incorporate selectivity as much as possible in the design process. In 

our approach, we therefore have multiple steps of at which we consider selectivity. During the initial 

computational design, the “hotspot pharmacophore” not only includes the identities of the polar and 

stacking interactions but also include the geometries of these interactions: our hypothesis is that this 

approach will lead to selective inhibitors of our target RBP, by virtue of mimicking the structure of the 

(bound) cognate RNA and not simply mimicking the chemical structure of the bases. Second, we also built 

a “hotspot pharmacophore library” using available RBP-RNA complex structures from the PDB, and we 

screened our candidate inhibitors against this library. If we find that one of our candidate inhibitors matches 

an off-target hotspot pharmacophore with a similar score as it matches the Musashi hotspot pharmacophore, 

this off-target RBP is prioritized for explicit testing in biochemical assays. Finally, we optimized our 

Musashi inhibitors with several rounds of structure activity relationship (SAR) studies to improve on-target 

potency and also the selectivity. 

While we have developed and used this pipeline to identify new Musashi inhibitors, we expect that 

in the future the same approach can be used for identifying inhibitors of other biologically important RBPs 

as well. 

Isothermal Analysis of ThermoFluor Data 

As we began to identify new Musashi inhibitors and test these in biochemical assays, we sought a 

complementary and efficient biophysical assay to validate our initial promising hit compounds. Differential 

scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, can detect ligand-protein 

interactions by measuring the shift of the protein melting temperature (46, 47). This method meets our 

criteria because of its many advantages, including that it is label-free, is low cost, has low sample 

requirement, and is fast to deploy (48). With all these benefits, DSF has been frequently applied in drug 

discovery for ligands screening (49-53). Although the protocol for a typical DSF assay is by now well-

developed, it is challenging to calculate accurate binding affinities from the resulting data. Because of the 
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complicated underlying thermodynamic process involved, it is typical to either use a rigorous but difficult 

“thermodynamic model” to calculate binding affinity (46, 52, 54-56), or use a so-called “Boltzmann model” 

to estimate the shift of the melting temperature resulting from ligand-protein binding but not try to obtain 

a binding constant (57-60). Overall, DSF is more popular as a qualitative approach rather than a quantitative 

method. 

Motivated by the opportunity to provide a straightforward method for obtaining binding constants, 

we sought to develop a novel analysis isothermal approach that would allow us to fit DSF data and readily 

achieve accurate binding constants. The basic idea of our isothermal analysis is to avoid the complexity of 

fitting to underlying thermodynamic process of heating a given sample. Instead of calculating binding 

constant from the whole melting curve with the traditional “thermodynamic model”, we select a single 

temperature which should be in the range of the protein’s unfolding transition, and we measure the change 

of the unfolded protein fraction along with the ligand titration at this specific temperature. We then calculate 

the binding constant by fitting the ligand concentrations and unfolded protein fractions into a protein 

folding-unfolding reaction as a competitive coupled equilibrium with ligand binding. Because all the 

unfolded protein fractions are collected at the same temperature, no thermodynamic parameters would be 

required in the fitting. 

Combining all the well-known advantages of DSF and our straightforward isothermal analysis 

approach, we now have in place a well-developed and optimized biophysical assay for validating our 

Musashi inhibitors. In the future, we expect that this DSF assay coupled with our isothermal analysis will 

also prove useful in efficiently testing inhibitors designed against other target proteins as well. 

PROTAC Prediction 

So far, the best compounds emerging from our Msi-RNA inhibitor design have exhibited single-

digit micromolar binding constants, and it has proven difficult to improve them further: this is probably a 

fundamental limitation of the relatively flat binding site available on the protein surface. Inspired by the 
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emergence and popularity of the PROTAC concept, we were inspired to use our top Musashi inhibitors as 

a starting point for developing Musashi-degrading PROTACs. 

PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional small molecules designed to 

recruit an E3 ubiquitin ligase to degrade some protein of interest (POI). A PROTAC molecule contains 

three parts: a warhead ligand which binds the POI, an E3 ligase ligand which recruits the E3 ligase, and a 

chemical linker that joins these two parts. When a PROTAC simultaneously recruits the POI and the E3 

ligase, this can induce ubiquitination and subsequent degradation of the POI. Because of their unique active 

mechanism, PROTAC molecules have multiple advantages over traditional small molecule drugs, including 

longer cellular lifetime (61); no specific requirement of binding to the active site (62-64); addressing “non-

traditional” targets (65-67); and low requirements for the binding affinity (61, 68, 69). 

Although PROTACs have been successfully designed to selectively degrade many broad and 

diverse classes of target proteins (70-85), PROTACs are still typically designed by trial-and-error: once the 

substrate-binding warhead and the E3-recruiting moieties have been selected, they are attached using tens 

or hundreds of different linkers to determine which one(s) yield efficient degradation. Thus, the field as a 

whole has not even begun to reach the point where PROTACs can be rationally designed. 

As a first step towards this goal, we propose to develop a computational approach for modeling the 

ensemble of ternary complexes that can be formed by a given POI / PROTAC / E3 ligase. This method 

involves protein-protein docking to identify complementary binding modes, followed by screening of low-

energy linker conformations to determine which docked binding modes are accessible to a given PROTAC 

linker. By modeling the ternary complexes in this manner, we seek to predict the activity and selectivity of 

a given PROTAC. To test this, we benchmarked our method using a variety of PROTACs reported in the 

literature. 

Having developed this new approach for predicting PROTAC ternary complexes, we are now eager 

to deploy it for building Musashi-degrading PROTACs. While the warheads developed in my earlier studies 

lack the potency to serve as useful chemical probes for in vivo applications, we expect that developing these 

into PROTACs may help overcome this limitation. Further, the fact that these inhibitors already appear to 
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be selective for Musashi over other RRM proteins suggests that their selectivity may be retained once we 

elaborate them into the PROTAC format. 
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CONTRIBUTIONS BY COLLABORATORS 

The RNA mimicry approach in Chapter II was developed in part by Ragul Gowthaman and Yan 

Xia. The pharmacophore library and MDS plot in Chapter II was generated by David Johnson. The NMR 

data in Chapter II were collected by Sven Miller. 
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Chapter II: Rationally designing inhibitors of the Musashi 

protein-RNA interaction by hotspot mimicry 
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Abstract 

RNA-binding proteins (RBPs) are key regulators of post-transcriptional gene expression, and 

underlie many important biological processes. Here, we develop a strategy that entails extracting a “hotspot 

pharmacophore” from the structure of a protein-RNA complex, and using this as a template for designing 

small-molecule inhibitors. With this approach we first target Musashi-1, stem-cell marker that is 

upregulated in many cancers. We report novel inhibitors that are active in biochemical and biophysical 

assays against Musashi-1, and then demonstrate how these inhibitors can also be used as tool compounds 

to probe the activity of close homolog Musashi-2. Finally, we explore the selectivity of these compounds, 

and consider the prospects of identifying potential off-target interactions by searching for other RBPs that 

recognize their cognate RNAs using similar interaction geometries (i.e. hotspot pharmacophores). This 

study extends the paradigm of “hotspots” from protein-protein complexes to protein-RNA complexes, 

supports the “druggability” of RNA-binding protein surfaces, and represents one of the first rationally-

designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we 

anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins. 

At the same time, we additionally expect that in future these compounds may serve as warheads for new 

PROTACs that selectively degrade RNA-binding proteins including Musashi. 
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Introduction 

RNA-binding proteins (RBPs) play crucial roles in many diverse cellular processes. They regulate 

the life cycle of mRNAs by controlling splicing, polyadenylation, stability, localization and translation, and 

also modulate function of non-coding RNAs (4). Mammalian proteomes are thought to include upwards of 

800 RBPs (1, 5), corresponding to both RNA-processing enzymes and non-enzymatic RNA-binding 

proteins. In light of the broad range of functions carried out by RBPs, the goal of this study is to devise a 

general and robust strategy for designing chemical tools that will allow precise manipulation of the 

interactions between RBPs and their cognate RNAs. We expect that such tools will help unravel the 

mechanisms of important biological processes controlled by RBPs, and may also serve as a starting point 

to validate RBPs as targets for therapeutic intervention (8-10). 

To date, there exist few classes of compounds that target protein-RNA interactions. Inhibitors of 

certain RBPs have been identified via high throughput screening (86, 87), including one series from virtual 

screening that competes with double-stranded RNA for binding to toll-like receptor 3 (88), and a number 

of compounds have been reported that disrupt binding by interacting with the RNA rather than with the 

RBP (89, 90). Among rationally designed small-molecule inhibitors that target RBPs, however, all 

examples reported to date can be categorized into two general classes. The first class comprises nucleoside 

analogues (91-97), such as anti-HIV-1 NRTIs, that mimic the chemical structures of natural-occurring 

nucleosides and rely on enzymatic processing by their targets to form covalent adducts. While nucleoside 

analogues can be straightforward to design, the inability of these molecules to provide sufficient binding 

affinity or selectivity without covalent linkage has prevented this strategy from being extended to non-

enzymatic RBPs. The second class of compounds comprises allosteric inhibitors (96, 98, 99), such as 

anti-HIV-1 NNRTIs, that bind to secondary sites on the protein target and shift its conformation to an 

inactive state. In principle, allosteric inhibitors could be used to target both enzymatic and non-enzymatic 

RBPs; in practice, however, challenges associated with both identifying allosteric sites and then finding 

small molecules to complement these sites have limited the general utility of this approach to all but a few 
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cases. Collectively, the fact that these RNA-binding protein surfaces are not thought to have evolved to 

bind small molecules makes RBPs a “non-traditional” class of drug target. Moreover, the relatively flat and 

polar nature of protein surfaces in this class typically leads to poor performance by structure-based virtual 

screening (docking) approaches (100), and given the lack of a known small-molecule binding partner it is 

even unclear a priori that such protein surfaces are suitable for inhibition by any small-molecule ligand at 

all (101). 

Here, we present a new approach for rationally designing small-molecule inhibitors of RBPs. We 

draw inspiration from a related class of “non-traditional” drug targets, protein-protein interfaces. In a 

protein-protein complex, each of the individual interfacial residues typically do not contribute equally to 

the energetics of binding; rather, the majority of the binding affinity derives from a small number of 

“hotspot” residues (40, 43, 44). This observation, in turn, motivated several groups to mimic these key 

interactions when designing small-molecule inhibitors (39, 41, 42, 45). In this study, we take the “hotspot” 

paradigm and extend it to protein-RNA interactions. 

Our approach entails identifying the chemical moieties of a given RNA that contribute critical 

interactions to a particular protein-RNA complex, and then identifying small molecules that recapitulate 

the precise geometrical arrangement of these moieties. Our underlying hypothesis is that compounds 

capable of mimicking the three-dimensional structure of the RNA “hotspot” will also mimic the 

energetically dominant interactions in the protein-RNA complex, using a much smaller chemical scaffold. 

By establishing a new method for reusing these protein-RNA interactions, we circumvent the challenging 

problem of needing to design interactions that target a flat, polar protein surface. 

Computational Approach 

New computational methods have been implemented in the Rosetta software suite (102) unless 

otherwise indicated. Rosetta is freely available for academic use (www.rosettacommons.org), with the new 
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features described here included in the 3.6 release and beyond. Computational methods are summarized 

below, and presented in further detail in the Supporting Methods section. 

Building “hotspot pharmacophores” 

While interfaces between RBPs and their cognate RNAs are mostly flat, complexes involving 

segments of single-stranded RNA often include a few interfacial nucleobases that are buried much more 

deeply than the others (Figure 1a); this uneven distribution is reminiscent of “hotspot” sidechains in 

protein-protein complexes (40, 43). The protein has evolved to interact with these buried nucleobases 

through precise intermolecular aromatic stacking interactions and hydrogen bonding. 

We have developed an automated framework that distills the structure of a protein-RNA complex 

to a “hotspot pharmacophore,” which in turn can serve as a template for ligand-based screening. Our 

framework first picks out those RNA aromatic moieties that are deeply buried in the protein-RNA complex, 

as well as any RNA atoms involved in intermolecular hydrogen bonds to the protein or ordered water 

molecules (Figure 1b). Any polar atoms on the nucleobases that do not participate in hydrogen bonds are 

then replaced with carbon atoms, since those polar groups need not be carried forward into inhibitor design. 

This gives a broad spatial map of the protein-RNA interaction, which typically cannot be spanned by a 

single drug-like small molecule; we therefore cluster neighboring moieties, and advance each cluster 

separately. Through this approach, we reduce the structure of the protein-RNA complex to a minimal 

“hotspot pharmacophore” that encapsulates the key interactions to be recapitulated by a small molecule 

(Figure 1c). 

Identifying complementary ligands 

To identify such compounds, we use this hotspot pharmacophore as a template for carrying out 

ligand-based virtual screening. In order to facilitate rapid characterization of compounds emerging from 

our screen, we restrict our search to the ~7 million compounds in the ZINC database (103) that are both 

commercially available, and predict to have drug-like physicochemical properties. We use OMEGA 
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(OpenEye Scientific Software, Santa Fe, NM) (104-106) to build low-energy conformations of each 

compound, then ROCS (OpenEye Scientific Software, Santa Fe, NM) (73, 107) to align each conformation 

to our hotspot pharmacophore. For each of the top-scoring hits emerging from ROCS, we then use the 

aligned orientation to position the compound relative to the protein, and evaluate the interaction energy of 

the protein-ligand complex using the fullatom Rosetta energy function (102). 

Musashi-1, an RRM-containing protein 

The approach described above can, in principle, be applied to the structure of any protein-RNA 

complex. As a first test, we selected a target from the most common and well-studied RNA-binding 

modules, the RNA-recognition motif (RRM) domain. Hundreds of structures of RRMs have been deposited 

in the Protein Data Bank, including more than fifty in complex with RNA (108). Collectively, these 

structures show that RRMs adopt a conserved fold that packs two α-helices against one face of a four-

stranded β-sheet; in most cases the opposite face of this β-sheet is then used to bind a single-stranded 

segment of RNA. Recognition of cognate RNA is usually driven by a cluster of three outward-facing 

aromatic amino acids on this β-sheet, which often form stacking interactions with a pair of adjacent RNA 

bases (14). Accordingly, mutations to the protein that remove these aromatic sidechains have been shown 

to disrupt binding in representative RRMs (14, 109), as has introduction of non-canonical bases to the RNA 

that alters the pattern of hydrogen bonding groups (13, 15, 16). Despite these shared features, however, the 

precise geometry of the dinucleotide pair in its complex with the RRM can differ very drastically across 

members of this family (14). 

Mammalian Musashi-1 (Msi1) recognizes its cognate RNAs through a pair of RRMs, RRM1 and 

RRM2 (110). Together these two domains bind to the 3’ UTR region of specific target mRNAs, including 

the mRNA encoding NUMB, and impede initiation of their translation (111, 112). NUMB mRNA encodes 

an inhibitor of Notch, so translational inhibition by Msi1 triggers Notch signaling and thus promotes self-

renewal and cell survival (112, 113). Relative to its protein levels in normal tissue, Msi1 is over-expressed 

in many cancers including colon adenocarcinomas, medulloblastoma, glioma, astrocytoma, retinoblastoma, 
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hepatoma, and endometrial, cervical, and breast carcinomas, and has particularly high levels in later stages 

of cancer progression (24, 28-30, 32-34). Considering the role of Msi1 in stem cell maintenance and 

renewal, and its over-expression in a wide array of cancers, disrupting its RNA-binding ability may inhibit 

cancer stem cells that play a role in drug- and radio-resistance, and thus serve as an attractive potential anti-

tumor strategy (19, 27, 31). 
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Figure 1: The hotspot mimicry approach. We demonstrate this approach by applying it to the Msi1 / 

NUMB mRNA interaction. (A) The structure of the Msi1 / RNA complex. The RNA (sticks) wraps around 

the protein (spheres). Two adjacent bases, A106 and G107 (magenta), are buried in a shallow pocket on 

the protein surface. (B) An interaction map is generated from the RNA in the complex, by collecting deeply 

buried bases (magenta) and atoms involved in intermolecular hydrogen bonds (acceptors shown in yellow, 

donors in green). (C) Components of the interaction map are clustered in space, and atoms that do not 

participate in hydrogen bonding are reverted to carbon atoms; this produces a “hotspot pharmacophore.” 

(D) The difference in binding free energy between an RNA harboring a single abasic site versus the wild-

type NUMB mRNA, as determined through competition with a fluorescently-labeled RNA. Positive values 

indicate diminished binding when a given base is replaced with an abasic site, showing that A106 and G107 

contribute more than the other nearby bases to Msi1 / NUMB mRNA binding affinity. (E) The hotspot 

pharmacophore serves as a template for ligand-based screening, searching for compounds that would mimic 

the three-dimensional features of the pharmacophore. The screen led to the identification of compound R12, 

which mimics the geometry of the rings and provides three of the four desired hydrogen bonding groups. 

(F) R12 competes with fluorescein-labeled RNA for Msi1 binding, as observed through a fluorescence 

polarization assay. These data do not allow the binding affinity to be confidently determined. (G) 

Superposition of the hotspot pharmacophore back onto the protein structure illustrates the interactions that 

should be captured by an ideal ligand: stacking against three aromatic sidechains, and four intermolecular 

hydrogen bonds. (H) Superposition of R12 onto the protein structure shows that this compound is expected 

to preserve the aromatic stacking, and recapitulate three of the four hydrogen bonds. 

Results 

Computational screening against Msi1 RRM1 

We applied our “hotspot mimicry” approach to the Musashi-1 RRM1 / NUMB mRNA complex 

(110), and found a single hotspot pharmacophore derived from an adjacent pair of buried nucleobases, 

Adenine106 and Guanine107 (Figure 1a). Because no ordered water molecules were included in this NMR 

structure, the resulting pharmacophore does not include any explicit contribution from solvent. This 

pharmacophore captures both the aromatic stacking and the hydrogen bonding of the RNA hotspot through 

its inclusion of ring moieties and donor/acceptor positions, respectively (Figure 1c). To test whether these 
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particular two bases indeed serve as a hotspot of the Msi1 RRM1 / RNA interaction, we used a fluorescence 

polarization (FP) competition assay (see Supporting Methods) to measure the binding affinity of NUMB 

mRNA variants that lacked individual bases. Using this assay, we found that introduction of an abasic site 

at either of these two positions led to a marked decrease in binding to Msi1 RRM1 (Figure 1d). In contrast, 

introduction of an abasic site at other nearby positions affected binding much less. Confirmation that A106 

and G107 serve as hotspot bases of this interaction thus provided experimental evidence supporting the 

pharmacophore selection from our computational approach. 

We then used this pharmacophore as a template for virtual screening, and found that the 12 top-

scoring hits could each be classified into one of three diverse chemotypes (Figure S1). While none of these 

scaffolds bear any obvious resemblance in chemical structure to a nucleobase pair, the overlap in three-

dimensional shape and hydrogen bonding potential between the hotspot pharmacophore and the modeled 

conformation of each compound is immediately evident. Despite this strong similarity, none of the 12 hit 

compounds recapitulated all four of the polar groups included in the hotspot pharmacophore, and only three 

hit compounds matched to three of the polar groups: R12 (Figure 1e), its close analog R4, and R7 

(Figure S2). Among these three, only R12 showed inhibition in FP competition assay (Figure 1f); that 

said, the binding affinity could not be reasonably quantified because of the low solubility of R12. 

As expected, superposition of the hit compounds back onto the hotspot pharmacophore in the 

context of the protein-RNA complex confirmed that these ligands might preserve the favorable interactions 

of the dinucleotide pair. In particular, the ring moieties in the pharmacophore represent the stacking of 

nucleobases against Phe23, Phe65 and Phe96 of Msi1, while the hydrogen bonding atoms indicate polar 

contacts with the sidechain of Lys21 and the backbones of Val94 and Phe96 of Msi1 (Figure 1g). Mimicry 

of these interactions through the hotspot pharmacophore allows the hit compounds to recapitulate these 

interactions, as exemplified by R12 (Figure 1h). In this model R12 adopts a similar three-dimensional 

geometry as the hotspot pharmacophore, and thus recapitulates its aromatic stacking and polar interactions 

(Figure 1h). 



 18 

SAR study of R12 derivatives 

With R12 as a starting point, and guided by our structural model (Figure 2a), we set out to improve 

potency of this interaction. While our initial screening had been restricted to ~7 million compounds in the 

ZINC database, the newly-available Enamine database included ~8 billion compounds: each of these not 

previously synthesized by Enamine, but readily available on-demand. Thus, the Enamine database afforded 

us an exciting opportunity to carry out “SAR-by-catalog” at a much larger scale than would otherwise have 

been possible. 

The low solubility of R12 prompted us to begin by looking for alternatives to the bromopyridine 

group on the left-hand side. Amongst a set of 16 bespoke analogs that we purchased, we found that two of 

these, R12-7 and R12-8 (Table S2), demonstrated superior inhibition and solubility than R12. As a 

secondary validation assay we used Differential Scanning Fluorimetry (DSF) to confirm the interaction, 

and found that R12-7 induced inconsistent changes in the protein’s melting temperature (Figure S3a), but 

R12-8 led to consistently stabilization with increasing dose (Figure S3b). Out of concern that R12-7’s 

activity may be associated with compound aggregation, we elected to proceed with R12-8 (Figure 2b). 

Refinement of R12-8 after aligning it to our initial model of R12 suggested a potential reason for 

the improved potency. In our initial model of R12, the carbonyl oxygen in its ester linker was positioned in 

close proximity to the Phe96 backbone carbonyl of Msi1 (Figure 2a); beyond simply the lost opportunity 

for an intermolecular hydrogen bond with the backbone, we expected electrostatic repulsion between these 

two negatively charged moieties. By contrast, this linker shifted slightly in our model of R12-8, turning the 

ester group upward to face solvent, and instead engaging Msi1’s backbone carbonyl using R12-8’s newly-

added amine (Figure 2b). Whereas R12 matched only three of the four desired hotspot pharmacophore 

features, our model of R12-8 now matched all four (Figure S3c). 

We next sought to optimize the right-hand side of this compound, and purchased another 50 custom 

analogs from Enamine. While the most potent compound from this second round was R12-8-46, we avoided 

this compound because catechols are well-known candidate PAINS (pan-assay interference) compounds. 

Instead, we focused our attention on R12-8-44, which provided more than ten-fold improvement in potency 
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(Figure 2c) and a consistently-increasing melting temperature with increasing ligand concentration 

(Figure S4). R12-8-44 retains the same polar interactions as R12-8 (and R12), but has slightly different 

aromatic stacking by replacing R12-8’s 4-quinazolinamine group for 5,6-dimethylthieno[2,3-d]pyrimidin-

4-amine. 

Satisfied with this large improvement, we returned to the left side of the compound. Based on our 

earlier SAR, we sketched ideas for preferred compounds; however, we found that preserving the right-hand 

side, restricted our choices somewhat. We therefore elected to purchase the compounds closest to the ideas 

we had laid out (Figure S5). Amongst these seven compounds, we found that R12-8-44-3 yielded another 

2-fold improvement in potency, ultimately providing an IC50 value of 9 µM (Figure 2d). In parallel, we 

also explored alternatives to the ester linker which may represent a metabolic liability. Though we could 

not yet incorporate the fully-optimized left-hand side at the time of these studies, we tested four alternate 

linkers, and found that activity was retained when replacing the ester with a thioether in R12-8-44-lk2 

(Figure 2e). Our strong focus in this first study on restricting our optimization to purchasable compounds 

eliminated certainly very natural choices, including merging the promising features of R12-8-44-lk2 with 

R12-8-44-3, or even replacing R12-8-44-3’s ester with an amide; these ideas will be explored in subsequent 

studies. 
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Figure 2: Optimization of R12 to the dual Msi1/Msi2 inhibitor R12-8-44-3. (A) R12 was the starting 

point for optimization, as identified from the computational screen of a limited library; availability of a 

much larger library was used to enable optimization. (B) The left-hand side of R12 was replaced to improve 

solubility and potency, yielding R12-8. (C) The right-hand side of R12-8 was replaced to improve potency, 

yielding R12-8-44. (D) Further exploration of the left-hand side provided improved potency, in R12-8-44-

3. (E) Exchanging the ester linker for a thioether did not diminish activity, as found in R12-8-44-lk2. 

(F) Superposition of R12-8-44-3 models bound to Msi1 (wheat) and Msi2 (green). (G) Zoomed-in view of 

the Msi2 model confirms that the expected interactions are unchanged relative to the Msi1 model. (H) R12-

8-44-3 competes with fluorescein-labeled RNA for Msi2 binding. 

Inhibition of Musashi-2 

While expression of Msi1 is tissue-restricted, its homolog Msi2 is ubiquitously expressed (25, 26). 

Moreover, functional redundancy between the two Musashi family members has led to the proposal that it 

would be most desirable to have a dual inhibitor that acts on both proteins (27). Like Msi1, Msi2 includes 

two RRM domains; the first of these shares 80% sequence identity with Msi1 RRM1. Sequence alignment 

of Msi1 and Msi2 reveals that with the exception of L50M, all but one of the residues that differ correspond 

to surface exposed positions far from the hotspot pharmacophore (Figure S6); based on this model, we 

anticipated that the R12-8-44-3 would also show activity against Msi2. 

With this hypothesis in mind, we first built a model of R12-8-44-3 bound to Msi2 by starting from 

our Msi1-bound model, and replacing the 17 residues that differ between Msi1 and Msi2 (Figure 2f). The 

resulting Msi2-bound model (Figure 2g) is essentially identical to our earlier Msi1-bound model 

(Figure 2d), implying that R12-8-44-3 should also inhibit Msi2. We tested this using the same FP 

competition assay, and confirmed that R12-8-44-3 indeed inhibits Msi2 with comparable activity as it 

inhibits Msi1 (Figure 2h). Thus, we have confirmed that R12-8-44-3 is a dual inhibitor of both Msi1 and 

Msi2, with the similar potency for each isoform. 
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Biophysical characterization of R12-8-44-3 

To further characterize R12-8-44-3, we next advanced it to differential scanning fluorimetry (DSF) 

as an orthogonal secondary assay. Surprisingly, addition of R12-8-44-3 did not increase Msi1’s melting 

temperature as we expected – and as we observed for its parent compounds R12-8 (Figure S3b) and R12-

8-44 (Figure S4a). In fact, it acted in the opposite direction: additional of R12-8-44-3 consistently 

decreased Msi1’s melting temperature (Figure 3a). While this could be a sign of apparent inhibition 

occurring through aggregation, there are indeed true inhibitors that have been shown to reduce their target 

protein’s melting temperature (114, 115). An alternate explanation could simply be that Msi1’s folding 

landscape is not simply two-state, and that a partially-folded intermediate affects the unfolding transition. 

To test the hypothesis that R12-8-44-3 engages Msi1 though specific binding interactions (rather 

than non-specific aggregation), we used HSQC chemical shift mapping. To facilitate interpretation of the 

spectra, we used only Msi1 RRM1 (rather than the construct with domains RRM1 and RRM2 used in the 

studies described above). We noted that R12-8-44-3 binds slightly less tightly to the RRM1-only construct 

(Figure S7), consistent with our model of binding at the C-terminus of RRM1. Nonetheless, the smaller 

RRM1-only construct facilitated collection and interpretation of the HSQC spectra. 

We collected HSQC spectra for this construct in the presence and absence of R12-8-44-3 

(Figure 3b), using previously-reported assignments from a very similar construct (110). Importantly, we 

find that only a small number of peaks respond to addition of R12-8-44-3: this confirms specific binding to 

Msi1, rather than non-specific interactions that would imply aggregation. Gratifyingly, the peaks with the 

largest chemical shift differences were three aromatic residues (Phe23, Phe65, Phe96), all of which 

comprise the expecting binding site for R12-8-44-3 (Figure 2d). Perturbation of Lys93 is also evident, 

consistent with this binding site. Overall, these results strongly support interaction of R12-8-44-3 with the 

intended binding surface from our computational designs. 
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Figure 3: Biophysical characterization of R12-8-44-3. (A) Differential scanning fluorimetry shows that 

addition of R12-8-44-3 decreases the melting temperature of Msi1 in a concentration-dependent manner. 

(B) HSQC spectrum of Msi1 RRM1 collected in the presence and absence of R12-8-44-3. Peaks showing 

the strongest chemical shift difference are labeled (Phe23, Phe65, Phe96, Lys93). 
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Exploring selectivity of R12-8-44-3 

Many RRM proteins recognize their target RNAs with high sequence specificity, through additional 

interactions outside the central RNA dinucleotide (14). Our mimicry of the Msi1 hotspot was predicated on 

recapitulating the interactions solely within this dinucleotide; we therefore sought to explore the target 

selectivity expected for these inhibitors by searching for potential off-target interactions. Starting from 

every example of protein-RNA complexes in the Protein Data Bank (PDB), we used our computational 

approach to extract the set of all available hotspot pharmacophores (see Supporting Methods). For a given 

compound of interest, we can then screen all conformers of this molecule against this “library” of 543 

unique hotspot pharmacophores (Figure 4a). The top-scoring hits in this experiment represent proteins that 

recognize their cognate RNAs through interaction patterns that can be recapitulated by the compound of 

interest, making these candidate proteins for off-target binding. In addition to Msi1, there are two other 

RRM-domain proteins in the PDB that recognize an A-G as the dinucleotide pair: human heterogeneous 

nuclear ribonucleoprotein A1 (hnRNP A1) (116), and yeast Prp24 (117). 

We applied this approach first to a hypothetical compound, comprised of adenine and guanine 

attached by a flexible linker (Figure 4b). We built low-energy conformers of this compound, and then 

evaluated how closely this compound could mimic the three-dimensional geometry of each hotspot 

pharmacophore found in our library. While this artificial compound can indeed adopt a conformation that 

aligns well to the Msi1 hotspot pharmacophore (a score of 0.936) and hnRNP A1 (a score of 0.965) but not 

Prp24 (a score of 0.747), this hypothetical A-G compound can also be matched to many other hotspot 

pharmacophores from the PDB just at least as well as these (Figure 4b). Thus, this implies that such a 

compound would bind to many other off-target RBPs, in addition to Msi1 and hnRNP A1. In a sense, this 

observation underscores the lack of selectivity that one might expect from simply mimicking the 

nucleosides’ chemical structure, without consideration of three-dimensional geometry. 

We next carried out the same analysis for our starting compound R12 and optimized compound 

R12-8-44-3 (Figure 4b). We found that these two compounds both matched to the Msi1 hotspot 

pharmacophore much better than they match to any other hotspot pharmacophore extracted from the PDB. 
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This result is unsurprising, given that R12 and R12-8-44-3 lack certain polar groups from the A-G pair 

(those that did not participate in the Msi1 pharmacophore), and also that these compounds have a restricted 

geometry that allows them only to mimic the specific orientation of the bases needed to complement Msi1 

and hnRNP A1. 

The reason for R12 and R12-8-44-3 matching well to the hotspot pharmacophore from hnRNP A1 

is because of its strong similarity to Msi1’s hotspot pharmacophore: although one of the bases is flipped, 

the structure of the central RNA dinucleotide in these two complexes is virtually superposable (Figure 4c). 

Overall, this analysis suggests that R12-8-44-3 is likely to be selective for Msi1 over the majority of other 

RBPs, but that hnRNP A1 could be a potential off-target interaction. 

To test this, we expressed and purified RRM1 domain of hnRNP A1. We confirmed that hnRNP 

A1 would indeed bind the same fluorescently-labeled RNA used in our previous experiments, and then 

probed the effect of adding R12-8-44-3 (Figure 4d). In this competition experiment, we find that R12-8-

44-3 does not inhibit hnRNP A1’s RNA binding. We propose that matching to a given hotspot 

pharmacophore may provide some modest degree of potential binding energy, but that further fine details 

of the interactions must also be complementary in order to achieve potent binding. Thus, optimization of 

R12 to R12-8-44-3 enhanced potency for Msi1 by design, and potency for Msi2 because the two proteins 

are so similar, but would not have impacted the very weak starting affinity for hnRNP A1. 

While further experimental evidence will be necessary to explicitly determine whether the 

compounds reported here engage in unanticipated interactions with any other RBPs, this computational 

approach provides a potential strategy to identify likely off-target interaction partners. While we cannot 

explicitly confirm that R12-8-44-3 does not inhibit any other RBPs in the human proteome, we can at least 

provide rationale for why selectivity should be expected from this compound. Looking ahead, this general 

strategy may also enable predicting at an earlier stage the potential selectivity of a given compound, which 

in turn may help prioritize specific scaffolds and drive further focused optimization. 

Taking this analysis one step further, we extracted hotspot pharmacophores from each of the 95 

RRM/RNA complexes currently present in the PDB, and evaluated their similarity in an all-versus-all 
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manner. From these pairwise distances, we then used multidimensional scaling analysis (MDS) to construct 

the two-dimensional projection that best reflects the pairwise distance between every pair of hotspot 

pharmacophores: this projection represents a visual “map” of all the hotspot pharmacophores in the PDB 

(Figure 4e). 

Unsurprisingly, all of the hotspot pharmacophores built from members of the Msi1 NMR ensemble 

cluster into a punctate group, reflecting their shared geometric features. The pharmacophore extracted from 

the hnRNP A1 crystal structure also overlaps the Msi1 cluster. A single hotspot pharmacophore was used 

in our initial screen that led to identification R12; this hotspot pharmacophore was extracted from model 

#1 of the Msi1 NMR ensemble, and looking retrospectively it is evident that this is one of the 

pharmacophores closest to that of hnRNP A1. Because of variation between the models that comprise this 

NMR ensemble, different models lead to slightly different hotspot pharmacophores (as seen on this 

projection). Indeed, included among the set of Msi1 hotspot pharmacophores are examples (such as model 

#7) that are quite distinct from that of hnRNP A1. We expect that screening against a template that is more 

dissimilar to the hnRNP A1 hotspot pharmacophore, and all other hotspot pharmacophores, will lead to 

compounds with even more assurance of selectivity from the outset. Further, the “isolated” points on this 

map that are most distant from any other points represent the most distinctive and unique hotspot 

pharmacophores in the PDB: these protein targets may be particularly amenable to design of highly 

selective inhibitors. 
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Figure 4: Predicting candidate off-target interactions of a given inhibitor. (A) We screened each 

conformer of a given ligand against the complete set of unique hotspot pharmacophores from other protein-

RNA complexes in the PDB. Hits in this screen correspond to other proteins that recognize their cognate 

RNAs using interaction geometry that can be mimicked by the compound of interest. (B) Application of 

this approach to a hypothetical compound built by connecting adenine and guanine with a flexible linker, 

to R12, and to R12-8-44-3. High scores correspond to other proteins that recognize their cognate RNAs 

using interaction geometry that can be mimicked by the compound of interest. The distribution of scores 

for the complete pharmacophore library is shown, with the score of the Msi1 (pink arrow), hnRNP A1 

(green arrow) and Prp24 (yellow arrow) pharmacophores indicated. The artificial compound matches the 

pharmacophores from many proteins equally well, whereas R12 and R12-8-44-3 match the Msi1 and 

hnRNP A1 pharmacophores much better than anything else in the library. (C) Comparison of the structures 

of the complexes reveal the basis for identification of hnRNP A1 as a candidate off-target interaction: this 

protein recognizes its cognate RNA (green) with similar positioning of functional groups as Msi1 

(magenta/wheat), even though the adenine on the right is flipped. (D) Evaluation of R12-8-44-3 in an FP 

competition assay shows that this compound does not inhibit hnRNP A1. (E) A projection of the hotspot 

pharmacophores from all RRM/RNA complexes currently available in the PDB. Each point corresponds to 

an individual hotspot pharmacophore; this map was generated by using multidimensional scaling analysis 

to generate the 2D projection that best preserves relative distances between points. With the exception of 

Msi1, only a single conformation was used for complexes that were solved by NMR. Hotspot 

pharmacophores from individual members of the Msi1 NMR ensemble are indicated (magenta), along with 

the one from hnRNP A1 (green). The compounds described here were identified by computational 

screening using the hotspot pharmacophore from model #1 of the Msi1 NMR ensemble; this hotspot 

pharmacophore is very similar to extracted from the hnRNP A1 complex, and accordingly the A-G 

dinucleotide pair is nearly superposable. In contrast, hotspot pharmacophore from other members of the 

Msi1 NMR ensemble (such as model #7) are more distant from that of hnRNP A1, and indeed the A-G 

dinucleotide pair is recognized in a different conformation in these models. The use of highly-distinct 

models as templates for computational screening may lead to identification of compounds incapable of 

mimicking the pattern of interactions recognized by other RRM domains, and thus very likely to be selective 

inhibitors. 
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Discussion 

The ability to rationally design selective inhibitors of RNA-binding proteins in a robust and general 

way will enable development of new tool compounds to help elucidate cellular processes mediated by these 

interactions. Naturally-occurring examples have shown that proteins can mimic certain structural features 

of RNAs (118, 119); here, we instead encode a key RNA epitope on a small-molecule scaffold. We 

demonstrate the application of our approach using Musashi-1 and Musashi-2, leading to a novel class of 

inhibitors that disrupt the RNA-binding activity of this tumor-promoting protein. By using the hotspot 

pharmacophore as a template for ligand-based screening, our approach circumvents the challenge of 

explicitly designing de novo interactions against a relatively flat and polar protein surface. 

The major advantages of this mimicry approach are its generality and simplicity. In our first 

application of this RNA mimicry approach, we elected to restrict our initial screening to commercially 

available compounds. Though none of the resulting hit compounds provided complete recapitulation of the 

desired hotspot interactions, we found that one of these, R12, complemented the protein surface without 

steric clashes and provided a starting point for new inhibitors of Msi1, thus validating the computational 

approach. In parallel with this work, a contemporaneous study also sought to design inhibitors of RBPs via 

mimicry of the cognate RNA (120). This study reports inhibitors of a different RRM-domain protein, HuR, 

by manually selecting key moieties from the RNA to mimic, then using computational approaches to design 

compounds accessible through multicomponent reaction chemistry. While STD-NMR confirmed the 

interaction of some of these compounds with the protein, the binding affinities for these compounds were 

not reported. 

To optimize R12, we then drew from an enormous new library of make-on-demand compounds to 

carry out a modern form of SAR-by-catalog. The availability of this resource allowed us to rapidly drive 

forward optimization, and ultimately led us to an inhibitor with single-digit micromolar binding affinity, 

R12-8-44-3. This library also enabled us to probe the effect of replacing the central ester linker in our initial 

series, leading to analog R12-8-44-lk2. In future, we expect that ongoing increases in the size of this (and 
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competitors’) “virtual catalogs” will greatly facilitate medicinal chemistry optimization of potency and 

selectivity for many other projects as well. 

With regards to selectivity, we propose that aligning candidate compounds to hotspot 

pharmacophores extracted from other RBPs can help identify potential off-target interactions. This can 

allow prioritization of selecting off-target RBPs for explicit biochemical testing, rather than simply 

collecting arbitrary off-target RBPs for evaluation. In this vein, we were especially pleased to note that 

R12-8-44-3 showed no inhibition for the RBP predicted as its most-likely off-target interaction, hnRNP 

A1. 

We do note, however, that predictions of potential off-target interactions in this manner are 

necessarily limited: both by the incompleteness of the set of RBP complexes in the PDB, and by the fact 

that complexes solved using x-ray crystallography are present as single points on this map, instead of 

clusters that reflect conformational flexibility. Even with this limitation, however, already this utility of this 

approach to identify potential off-target interactions is clear. 

Finally, we do acknowledge that our optimization of the R12 series did not lead to extremely potent 

compounds; we suspect that this may be an intrinsic limitation of the relatively flat binding site available 

on the protein surface. That said, PROTACs (PROteolysis TArgeting Chimeras) (62-64, 121, 122) have 

emerged as a viable strategy for addressing challenging targets, and may be exquisitely well suited for 

advancing these compounds. In considering development of RNA-mimicking inhibitors as warheads for 

development of new PROTACs, we note specifically that the binding affinity for the target has proven not 

to be a major determinant of effective target degradation. Thus, even if achieving highly potent direct 

inhibitors of RRM domains remains challenging, selective inhibitors may nonetheless offer a path forward 

for unlocking the tantalizing biology of RBPs, both as novel chemical probes and also as potential starting 

points for new therapeutics. 
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Methods 

Detailed descriptions of computational and experimental methods are provided in the Supporting 

Methods section. 
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Chapter III: Isothermal Analysis of ThermoFluor Data can 

readily provide Quantitative Binding Affinities 
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Abstract 

Differential scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, has 

become a commonly-used approach for detecting protein-ligand interactions, particularly in the context of 

fragment screening. Upon binding to a folded protein, most ligands stabilize the protein; thus, observing an 

increase in the temperature at which the protein unfolds as a function of ligand concentration can serve as 

evidence of a direct interaction. While experimental protocols for this assay are well-developed, it is not 

straightforward to extract binding constants from the resulting data. Because of this, DSF is often used to 

probe for an interaction, but not to quantify the corresponding binding constant (Kd). Here, we propose a 

new approach for analyzing DSF data. Using unfolding curves at varying ligand concentrations, our 

“isothermal” approach collects from these the fraction of protein that is folded at a single temperature 

(chosen to be temperature near the unfolding transition). This greatly simplifies the subsequent analysis, 

because it circumvents the complicating temperature dependence of the binding constant; the resulting 

constant-temperature system can then be described as pair of coupled equilibria (protein folding/unfolding 

and ligand binding/unbinding). The temperature at which the binding constants are determined can also be 

tuned, by adding chemical denaturants that shift the protein unfolding temperature. We demonstrate the 

application of this isothermal analysis using experimental data for maltose binding protein binding to 

maltose, and for two carbonic anhydrase isoforms binding to each of four inhibitors. To facilitate adoption 

of this new approach, we provide a free and easy-to-use Python program that analyzes thermal unfolding 

data and implements the isothermal approach described herein (https://sourceforge.net/projects/dsf-fitting). 
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Introduction 

Differential scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, has 

become an important label-free technique for biophysical ligand screening and protein engineering (123-

127). Briefly, this method makes use of a dye – typically either SYPRO Orange or 1-anilino-8-

naphthalenesulfonate (ANS) – that is quenched in an aqueous environment but becomes strongly 

fluorescent when bound to exposed hydrophobic groups of a protein. By heating one’s protein of interest 

in the presence of such a dye, the thermal unfolding transition can be monitored spectrophotometrically. 

Because ligands that interact with proteins typically stabilize the folded protein, this leads to a shift in the 

midpoint of the unfolding transition (i.e. the melting temperature, Tm) (128, 129). 

The simplicity of this assay makes DSF very straightforward to implement using an RT-PCR 

thermocycler, it can be inexpensive and fast, and it requires relatively little sample (48). These advantages 

have made this approach attractive for screening applications in drug discovery – particularly for 

moderately-sized fragment libraries (50, 123, 124) – and also for protein stability formulation (51, 130). 

Meanwhile, the fact that this method is label-free and well-suited to detect binding over a wide range of 

affinities has made DSF one of the most popular approaches in drug discovery for fragment screening (128, 

131-134) and for evaluating the “ligandability” of a target protein (135). While it would be desirable to 

obtain binding constants at an early stage, for example to prioritize fragment hits on the basis of their ligand 

efficiency (136), the magnitudes of the observed Tm-shifts (at a given ligand concentration) have been 

shown to correlate only weakly with compounds’ potency measured in other orthogonal assays (137). 

Typical DSF data are shown in Figure 1a. Here, SYPRO dye is used as a reporter for the extent of 

unfolding of maltose binding protein (MBP), and the melting temperature from each curve is determined. 

Using this method, MBP is observed to have a Tm of approximately 52.5 ºC in the absence of its ligand, 

maltose. Upon addition of increasing concentrations of maltose, the unfolding transition is shifted to 

increasingly higher temperatures: this implies that maltose stabilizes MBP, by binding to the natively folded 

protein. 
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Dose-response data in DSF experiments are typically presented by showing the Tm-shift as a 

function of ligand concentration (Figure 1b), and there are a number of ways to determine Tm from the 

fluorescence data. One simple method is to take the first derivative of the observed fluorescence data with 

respect to temperature, and to then identify the maximum value (corresponding to the steepest part of the 

transition). Other methods instead smoothly fit the whole melting curve, either by using a so-called 

Figure 1: Maltose binding to MBP, as probed via DSF. (A) Thermal unfolding of MBP is monitored 
using SYPRO Orange. Data were collected in the presence of increasing maltose concentrations, 
leading to a rightward shift in the unfolding transition. (B) The Tm-shift (∆Tm) is determined by plotting 
the increase in temperature at which each curve has 50% relative fluorescence, corresponding to a 
horizontal “slice” of the original data. However, this analysis does not provide the binding affinity of 
the protein/ligand pair. (C) Instead, here we use vertical “slices” of the original data. By plotting – at a 
single temperature – the fraction of protein that is unfolded as a function of ligand concentration (here 
at 53 ºC), the binding affinity can then be easily determined. All data are collected in triplicate, and 
error bars correspond to the standard error of the mean (some are too small to be seen). 
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Boltzmann model (57, 58, 60, 138), or by using a more rigorous “thermodynamic model” (123, 125, 128, 

139, 140), or occasionally by using other arbitrary polynomials (141-143). 

The Boltzmann model is the most widely-used approach, in part because it is very simple (58). The 

fluorescence at a given temperature is linearly related to the fraction of unfolded protein, which takes the 

form 𝐹"#$%&'(' 𝑇 = 1 + -

-.(
/01/
2

, where Tm is the melting temperature and a is a parameter that reflects 

the steepness of the thermal unfolding transition. This model is applied primarily because it provides a 

sigmoidal shape that can be fit quite well to experimental data, especially when additional fitting parameters 

are included to account for the fact that the dye itself often has some temperature dependence (Figure S1). 

Despite its name, however, this equation does not explicitly model the thermodynamic transition (138): for 

this reason, the Boltzmann model is not used to garner any information beyond accurately identifying the 

midpoint of the protein unfolding transition (Tm) (58, 138), and studies that use this model simply report 

the presence/absence of binding rather than using this data to determine binding constants (58, 126, 144-

148). 

In studies to date seeking quantitative binding constants, “thermodynamic models” have been used. 

The simplest of such models write the fraction of unfolded protein as 𝐹"#$%&'(' 𝑇 = 1 +

-

-.(
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;/

, where ΔH is the enthalpy change of protein unfolding and ΔCp is the 

change in heat capacity enthalpy change of protein unfolding (both assumed to be temperature-independent) 

(125, 149, 150). Typically ΔCp is under-determined given the available experimental data, and therefore 

determined through separate complementary experiments (139) or estimated from the buried surface area 

of the folded protein (151, 152), then fixed when fitting the thermal unfolding data. Though more 

complicated to write down, these models in fact have the same number of the effective free parameters 

(when ΔCp is fixed at a pre-determined value). Further, these models also have the advantage of using 

physically meaningful parameters. 
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Simply determining the Tm-shift as a function of ligand concentration is not sufficient to provide 

the binding affinity, however. Although some groups have simply fit these curves using the Hill equation 

(58, 153) – treating the Tm as an arbitrary “observable” that depends on the ligand concentration – this is 

not a physically reasonable approach. The Hill equation is only applicable when the observable is linearly 

proportional to the fraction of one of the species that is bound/unbound in solution, and Tm is not such a 

variable. The ∆Tm data are also (by definition) drawn from different temperatures: the binding affinity 

cannot be assumed to be constant at different temperatures, further making the Hill equation inappropriate 

for this usage. This point is further underscored by the fact that these experimental data do not correspond 

to a simple saturation-based ligand titration method (126): rigorous thermodynamic simulations show that 

∆Tm should change monotonically with increasing ligand concentration (139, 154), even if this behavior is 

not always observed in real cases due to artifacts like irreversible protein aggregation (154). 

Instead, correct binding constants have thus far been determined using a more rigorous approach 

that explicitly considers the temperature-dependent enthalpy, entropy, and heat capacity of both protein 

folding and ligand binding (125, 127). Using these thermodynamic parameters determined from the 

complete unfolding transitions, binding constants can subsequently be determined at the Tm. The means to 

do so was presented several decades ago (127), and also in the context of screening for ligands that bind a 

particular protein (123). In the earliest cases, these equations were formulated for the weak-binding regime 

(i.e. high dissociation constants), such that the free ligand concentration can be approximated by the total 

ligand concentration; these equations have since been extended to avoid the latter assumption (139, 154, 

155). In all cases, though, the binding constant is determined at the Tm; together with the binding enthalpy, 

the van’t Hoff equation can then be used to extrapolate binding constants at other temperatures. Because 

the binding enthalpy is difficult to determine from the unfolding transition data, this most commonly comes 

from a knowledge-based estimate (123) or is measured directly using other techniques like isothermal 

titration calorimetry (ITC) (156). 

While details of the model have been iteratively improved since the original formulation, the two 

key elements of the “thermodynamic model” have remained unchanged: a fit of the melting curves is used 
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to obtain multiple thermodynamic parameters, then these are used to calculate the binding constant at Tm 

and potentially (via extrapolation) at other temperatures (125). These elements of the model also remain 

the two key practical limitations of DSF. Because of the complexity associated with correctly replicating 

this analysis, it is often cited in modern studies but not frequently used: DSF is most popular as a qualitative 

test rather than a quantitative test, with the majority of literature reports reporting Tm-shifts as shown in 

Figure 1b but not attempting to extract binding constants (48, 130, 144, 145, 157-160). Collectively this 

has led to a general consensus that the observed Tm shifts “cannot be readily transformed into binding 

affinities” (161). 

Here, we develop and describe a new isothermal strategy for analysis of DSF data. Rather than 

determine the Tm values from the raw fluorescence data at each ligand concentration, we instead select a 

single temperature of interest, and at this temperature we evaluate the fraction of protein that is 

folded/unfolded at each ligand concentration (Figure 1c). Because all of the data used corresponds to the 

same temperature, no thermodynamic parameters are required; instead, a very simple model of coupled 

equilibria (protein folding/unfolding and ligand binding/unbinding) describe our system. Furthermore, 

because we only require the fraction of protein that is unfolded (for a given ligand concentration, at the 

temperature of interest), the raw data can be fit either with the simple Boltzmann model or with the more 

rigorous thermodynamic model (Figure S1). Other studies have similarly used isothermal slices of 

unfolding data, for example in analysis of cellular thermal shift data (CETSA) (162) and other protein-

ligand interactions (163, 164); however, each of these stopped short of using these data to quantitatively 

determine binding constants. As demonstrated below, here we show that this approach leads to a very simple 

formulation for determining the binding affinity near the protein’s unfolding temperature, and it provides 

values consistent with those measured in other orthogonal assays. 
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Theory 

Isothermal analysis of ThermoFluor data 

DSF experiments, specifically those in which large compound collections are screened, yield 

melting temperatures that shift either higher or lower when various compounds are added (125, 154, 155). 

Most non-covalent drug-like ligands stabilize their protein target upon selective binding, and accordingly 

they increase the protein’s Tm (58, 156, 165-167). Conversely, compounds that decrease the protein’s Tm 

are thought to operate by binding the unfolded protein more tightly than the folded protein, by competing 

with an endogenous (stabilizing) co-factor, or through potentially non-specific effects (134, 154, 155, 168); 

some metal ions, like Zn2+, can also destabilize proteins (169). We have excluded from the present analysis 

cases in which the ligand destabilizes the protein, and we focus solely on the scenario in which the ligand 

exclusively binds the natively-folded protein with a 1:1 stoichiometry. 

Accordingly, we write the protein folding-unfolding reaction as a competitive coupled equilibrium 

with ligand binding, as follows: 

𝑈 + 𝐿 	
	
	⇌		
KA

𝐹 + 𝐿
	
		⇌	
K'

𝐹𝐿 																																																										 1  

where [U] is the concentration of the unfolded protein, [L] is the concentration of free ligand, [F] 

is the concentration of the folded and unbound protein, and [FL] is the concentration of the protein-ligand 

complex. KU is the equilibrium constant for the protein unfolding reaction, and Kd is the equilibrium 

constant for the unbinding reaction. Both KU and Kd depend on temperature, but both are constant at fixed 

temperature (and fixed buffer conditions). Intuitively from this scheme, we see that the concentration of 

unfolded protein goes to zero as the ligand concentration becomes large and drives the equilibrium to the 

right. Importantly, this scheme assumes each reaction (folding and binding) has no intermediates, and thus 

can be represented in this two-state manner; we will consider further the implications of this assumption in 

the Discussion section. We also note that the presence of the reporter dye is not included in our model. 



 40 

From the conservation of mass and the definitions of these two equilibrium constants, we write the 

following: 

[𝑃]E = 𝐹 + 𝑈 + [𝐹𝐿]																																																									(2) 

[𝐿]E = 𝐿 + 𝐹𝐿 																																																																		(3) 

	𝐾K = [𝑈] [𝐹]																																																																					(4) 

𝐾' = ( 𝐹 	×	 𝐿 ) [𝐹𝐿]																																																												(5) 

 

where [U] is the concentration of the unfolded protein, [L] is the concentration of free ligand, [F] 

is the concentration of the folded and unbound protein, and [FL] is the concentration of the protein-ligand 

complex. In Equation 4 we define KU as the equilibrium constant between the unbound unfolded and folded 

states ([U] and [F]). This equilibrium constant is therefore independent of ligand concentration, and reflects 

the overall fraction of protein that is unfolded/folded only when no ligand is present (since inclusion of 

ligand shifts some of [U] and [F] into the [FL] state). Kd is the equilibrium constant for the unbinding 

reaction. [P]T is the total protein concentration, and [L]T is the total ligand concentration (both of which are 

known). We note that the interaction between the reporter dye and the protein is not explicitly included in 

this model, though the presence of the dye presumably does contribute to stabilizing the unfolded protein. 

Once the raw data have been normalized, fluorescence intensity in the DSF experiment (Figure 1a) 

is linearly related to the fraction of the unfolded protein fu. Starting from the definition of fu, we simplify 

using Equations 2-5 and obtain the following expression: 

𝑓" 	= 	
[𝑈]

𝑈 + 𝐹 + [𝐹𝐿]
	= 	

1
1 + ((1/𝐾K)	×	(1 + 𝐿 /𝐾'))

																									(6) 

 

This provides the fraction of unfolded protein in terms of the free ligand concentration [L], whereas 

the known quantity in this experiment is the total ligand concentration [L]T. From Equations 2-5 we obtain 

the following quadratic equation for [L]: 

[𝐿]R + [𝑃]E − [𝐿]E + 𝐾'(1 + 𝐾K) 	[𝐿] − 𝐿 E𝐾'(1 + 𝐾K) = 0																								(7) 



 41 

 

Thus, [L] can be written in terms of the total ligand concentration [L]T as follows: 

𝐿 = 	
1
2
( 𝐿 E − 𝑃 E − 𝐾' 1 + 𝐾K) + ( 𝑃 E − 𝐿 E + 𝐾' 1 + 𝐾K )R + 4 𝐿 E𝐾'(1 + 𝐾K) 					(8) 

 

We note that this expression corresponds to only one root of the quadratic equation, since the other 

root is unphysical. 

Together, Equations 6 and 8 provide a single expression to write fu in terms of [L]T, [P]T, KU, and 

Kd. As expected for the limiting case where [L]T becomes large, we see from this set of equations that fu 

goes to zero. Conversely in the limiting case when [L]T goes to zero, we see that [L] goes to zero and thus 

Equation 6 reduces to the definition of the equilibrium constant for unfolding. Together, these two limits 

correspond to the endpoints of the data shown in Figure 1c. 

[L]T and [P]T are known experimental parameters; our expression for fu therefore uses only two free 

parameters (KU and Kd). These two parameters can be fit to the normalized data at the same time (as we 

will demonstrate), or alternatively KU can be first determined at the temperature of interest from the thermal 

unfolding curve in the absence of ligand; this allows fitting of the data in Figure 1c to be subsequently 

carried out with a single free parameter (Kd). 

A simpler approximate solution 

Monitoring the fraction of unfolded protein in this competitive coupled equilibrium (Equation 1) 

is very much analogous to detecting the fraction of labeled probe molecule in a competitive binding assay. 

In the latter case, one uses increasing concentrations of the unlabeled inhibitor of interest to explore the 

effect on a labeled probe that binds at the same site. The concentrations of all species, as well as the binding 

affinity of the probe ligand, can then be used to determine the inhibition constant for the unlabeled species 

from its IC50 (170). 
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Inspired by this analogy, we explored whether the same strategy could be applied here. We 

summarize our solution for these equations below, and elaborate further in the Appendix. 

We again start from Equations 2-5, but this time we solve these equations for the specific scenario 

in which the total ligand concentration matches the EC50. By definition, the EC50 is the ligand concentration 

at which the fraction of unfolded protein is half of that observed in the absence of ligand (note: the EC50 is 

not defined by the ligand concentration at which half of the protein is unfolded, since this can happen even 

before ligand is added, depending on the temperature). For this special case: 

[𝐿]E = [𝐿]WX + [𝐹𝐿]WX = 𝐸𝐶WX																																																																														(9) 

[𝑃]E = 𝐹 WX + 𝑈 WX + [𝐹𝐿]WX																																																																										(10) 

𝐾K = 𝑈 WX 𝐹 WX 																																																																																																	(11) 

𝐾' = ( 𝐹 WX	×	 𝐿 WX	) 𝐹𝐿 WX 																																																																											(12)  

where [U]50, [L]50, and [F]50 are the concentrations of unfolded protein, free ligand, and folded 

unbound protein at the condition when [L]T = EC50. Recall from Equation 4 that KU is defined to be the 

equilibrium constant between the only the unbound unfolded/folded states (not the overall fraction of 

protein that is unfolded/folded), and thus for this reason Equation 11 does not include any contribution 

from [FL]50. 

Correspondingly, in the absence of ligand we write: 

[𝑃]E = 𝐹 X + 𝑈 X																																																																																																(13) 

[𝐿]E = 𝐿 X = 𝐹𝐿 	X = 0																																																																																				(14) 

𝐾K = 𝑈 X 𝐹 X 																																																																																																				(15) 

From Equations 13-15 we can solve for the fraction unfolded in the absence of ligand (fu0): 

𝑓"X =
𝑈 X

𝑈 X + 𝐹 X
=

1
1 + 1 𝐾K

																																																																																			(16) 

From the definition of EC50, we write: 

[𝑈]WX =
𝑈 X

2
																																																																																																			(17) 
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From Equations 15 and 17, we can write [F]50 in terms of [U]0 and KU. Substituting this into 

Equation 10 yields an expression for [FL]50 in terms of [P]T, [U]0 and KU; simplifying this with Equations 

15 and 16, we find that at the ligand concentration corresponding to the EC50, half of the total protein 

concentration has ligand bound to it: 

[𝐹𝐿]WX = [𝑃]E 2																																																																																																						(18) 

This allows solution of Equations 12 and 16 to yield a simple expression for [L]50 as well: 

[𝐿]WX = 	
	𝐾'

1 − 𝑓\X
																																																																																																								(19) 

Combining Equations 18 and 19 back into Equation 9, we obtain a simple expression that relates 

the EC50 to Kd: 

𝐸𝐶WX = 	
	𝐾'

1 − 𝑓\X
+

𝑃 E

2
																																																																																									(20) 

There are no additional assumptions required to reach this equation (e.g. no need to assume that 

[L] ≈ [L]T). This expression is intuitively gratifying, and it highlights the fact that the EC50 observed in this 

experiment cannot be simply interpreted as the Kd. Most notably, in the limit where ligand binding is very 

tight (low Kd), the observed EC50 is driven essentially by stoichiometry (enough ligand must be added to 

match half the number of available sites on the protein); this makes the EC50 very insensitive to changes in 

the Kd in this regime, and it suggests that our approach may not be well-suited to determining the binding 

affinity for very tight interactions. This implication is borne out in real experimental data, as presented at 

the end of the following section. 

Finally, rearranging Equation 20 yields: 

	𝐾' = 	 (1 − 𝑓\X)	×	 𝐸𝐶WX − 	
𝑃 E

2
																																																																				(21) 

[P]T is a known experimental parameter. fu0 corresponds to the fraction of protein that is unfolded 

(at the temperature of interest) in the absence of ligand, and thus it can be determined directly from the 

thermal unfolding curve in the absence of ligand. Even using a very simple and arbitrary fit of fu0 as a 

function of ligand concentration (e.g. the Hill equation), we can still easily estimate the midpoint of this 
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transition (the ligand’s EC50 value): thus, Equation 21 provides a rapid means to estimate the Kd when it 

is undesirable to fit the complete curve using Equations 6 and 8. That said, fitting with the functional form 

presented in Equations 6 and 8 leads to the most accurate estimate of the midpoint (since the complete 

curve is used to determine the fitting parameters), and is thus preferred. 

Results 

To test the utility of this isothermal fitting approach, we wrote a program in Python that fits the 

thermal unfolding curves and uses these to solve Equations 6 and 8 presented above. All of the analysis 

presented below was carried out using this program, and it is freely available for others to use 

(https://sourceforge.net/projects/dsf-fitting). 

Accuracy and robustness of isothermal analysis 

We first sought to test the accuracy of binding affinity values resulting from this isothermal 

approach. To do so, we generated realistic simulated thermal unfolding curves. The rigorous approach 

referenced earlier (139, 154) allows the fraction of unfolded protein to be calculated as a function of 

temperature and ligand concentration, provided thermodynamic parameters that describe protein unfolding 

in the absence of ligand (ΔHU
Tm, ΔCpU

Tm, Tm and KU
Tm) and thermodynamic parameters that describe ligand 

binding (ΔHb
Tm, ΔCpb

Tm and Kd
Tm). We selected values for each of these parameters by using values for 

maltose/MBP from the literature where possible, and then assigning reasonable values to the remaining 

terms such that the resulting curves were qualitatively similar to those observed experimentally for 

maltose/MBP. 

In our simulations we set Tm in the absence of ligand to be 50 ºC, and set the ligand’s dissociation 

constant (Kd) to be 1 µM at this temperature. By definition, the unfolding constant (KU) at the Tm is 1. Using 

the formulation laid out by others (139, 154) we then generated the corresponding simulated experimental 
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data (Figure 2a). To make the simulated data suitably approximate the type of experimental data that would 

be produced in a real experiment, we generated data with temperature intervals and ligand concentrations 

drawn from the real experimental protocol used earlier (Figure 1). Reassuringly, analyzing this data using 

the isothermal approach presented above yielded values for both Kd and KU that matched those used to 

generate the simulated data. The previous formulation (139, 154) makes it straightforward to generate 

unfolding curves from thermodynamic parameters, but the inverse problem is more challenging to solve; 

by demonstrating that our isothermal methods recovers the underlying Kd and KU, we show that our method 

is indeed compatible with the previous formulation of this system. 

To explore the robustness of our isothermal analysis, we next introduced noise into the simulated 

experimental data. Having already normalized each of the simulated unfolding curves to range from 0 to 1, 

we added to each point a random number drawn from a normal distribution defined by a given standard 

deviation (𝜎). We find that analysis of the resulting data yields Kd and KU values that closely match the true 

value for 𝜎 up to 0.05; only once the data becomes noisier than this (𝜎	= 0.1) do the estimates start to differ 

from those used to generate the unfolding data. The amount of noise in the simulated data at 𝜎	= 0.1 is more 

than observed in typical experiments, suggesting that indeed this isothermal analysis is robust to the random 

error present in most real experimental data. 
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Application to maltose/MBP 

As a first test of this approach, we analyzed in further detail the maltose/MBP interaction. This 

interaction has been frequently studied using many different forms of calorimetry (151, 171), in part 

because both the ligand and the protein are soluble to very high concentrations. We returned to the same 

DSF experimental design described earlier, with 12 increasing concentrations of maltose (Figure 3a). 

Given MBP’s Tm of about 52.5 ºC in the absence of maltose, we first elected to determine the binding 

affinity for this pair at 53 ºC. From individual fits to the complete thermal unfolding curves, we used the 

thermodynamic model to determine the fraction of unfolded MBP (at 53 ºC) at each maltose concentration. 

We also separately used the Boltzmann model to determine the fraction of unfolded MBP from each thermal 

unfolding curve, and we found that both methods yielded essentially identical results (Figure S1). 

We then used the expressions presented in Equations 6 and 8 to fit the fraction of unfolded MBP 

at each maltose concentration (Figure 3b). From the fraction of unfolded protein at each maltose 

concentration, there are only two free parameters to be fit: the fraction of unfolded MBP in the absence of 

maltose (Ku) and the dissociation constant for ligand binding (Kd). At low maltose concentration, the curve 

does not go to 100% unfolded, but rather plateaus at about 50% (the first free parameter): this is expected, 

given that we carried out our analysis at a temperature only slightly above the Tm. The Kd at 53 ºC, derived 

directly from this fit, is 2.7 µM, and the KU value at 53 ºC is 1.3. Because we have defined KU as the 

unfolding constant in the absence of ligand, we can also compare the value to that obtained directly from 

the thermal unfolding curve collected in the absence of ligand: the latter yields a value of 1.5 (at 53 ºC), in 

very close agreement with the value obtained from fitting the binding curve. 

Figure 2: Simulations to explore the consistency and robustness of isothermal analysis. 
(A) Simulated thermal unfolding curves were generated using a thermodynamic model for unfolding 
and binding. Parameters were set as follows: Tm = 50 ºC, Kd

Tm = 1 µM, ΔHU
Tm = 120 kcal mol-1, 

ΔHb
Tm = -10 kcal mol-1, ΔCpU

Tm = 4 kcal mol-1 K-1, ΔCpb
Tm = -0.5 kcal mol-1 K-1, and total protein 

concentration = 2 µM. By definition, KU
Tm = 1. Fitting this simulated data using the simpler isothermal 

approach yields KU
Tm = 0.99, and Kd

Tm = 0.99 µM. (B) Upon addition of increasing random noise to the 
simulated unfolding data, the isothermal approach still leads to accurate estimates of KU

Tm and Kd
Tm, up 

to values exceeding the noise typically present in real experimental data. 
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We additionally fit these data using the approximate solution shown in Equation 21: given the 

EC50 value of 6.8 µM (estimated by arbitrarily using the Hill equation to fit this curve), this expression 

yields a Kd value of 2.5 µM, in agreement with the more rigorous fit. 

 

 

One advantage of the isothermal fitting approach is that the binding constants can be directly 

determined at other temperatures close to the Tm, provided that there are sufficient differences in the fraction 

of unfolded protein. As a demonstration of this, we carried out the corresponding analysis using a slightly 

Figure 3: Determination of maltose/MBP binding affinity using isothermal analysis of thermal 
unfolding data. (A) Thermal unfolding of MBP is monitored using SYPRO Orange. Data were 
collected using 12 increasing maltose concentrations, each in triplicate; 4 representative unfolding 
curves are shown, after normalization using the Boltzmann equation. (B) The fraction of unfolded 
protein is calculated at 53 ºC for each maltose concentration. Fitting using Equations 6 and 8 yields a Kd 
value of 2.7 µM and a Ku value of 1.3. (C) Extracting instead the fraction of unfolded protein at 56 ºC 
yields a Kd value of 3.2 µM. (D) The thermal unfolding transition was instead monitored using MBP’s 
intrinsic tryptophan fluorescence, and the fraction of unfolded protein was calculated at 56 ºC for each 
maltose concentration. Two replicates were carried out for each maltose concentration. Fitting this 
complementary experimental data using Equations 6 and 8 yields a Kd value of 2.3 µM. 
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higher temperature, at 56 ºC (Figure 3c); as expected, the curve from this fit has a higher fraction of 

unfolded MBP in the absence of maltose. Binding at this slightly elevated temperature yields a very similar 

Kd value of 3.2 µM. 

This general approach for extracting dissociation constants is by no means specific to the DSF 

format; while this is a convenient method for monitoring protein unfolding, the analysis presented here can 

also be applied to data collected via using other experimental techniques. While DSF is label-free, in 

principle the presence of SYPRO Orange (or other analogous dyes) may shift the folding equilibrium by 

preferentially binding to the unfolded state (155); still, given the analysis outlined above, a systematic shift 

in protein stability (due to the dye, for example) is not expected to affect the resulting binding affinity. To 

further explore the effect of the dye, we repeated the experiment described above, this time in the absence 

of SYPRO Orange and instead relying on MBP’s intrinsic tryptophan fluorescence to monitor unfolding. 

From an initial experiment in the absence of maltose, we noted that the Tm was now about 2.5 ºC higher: 

this confirmed our expectation (and previous reports (155)) that the presence of the dye slightly destabilizes 

the protein. 

Using thermal unfolding traces collected via intrinsic tryptophan fluorescence, we plotted the 

fraction of unfolded protein at 56 ºC, as a function of maltose concentration (Figure 3d). We again fit these 

data using the expression from Equation 6 and 8, and again we find that this expression (with two free 

parameters) appropriately describes the underlying data. The Kd value resulting from this fit at 56 ºC is 

2.3 µM, in close agreement with the value obtained at this temperature using the DSF data. In contrast, the 

value of KU (in the absence of ligand) at 56 ºC is 1.1 using intrinsic tryptophan fluorescence versus 9.4 

using SYPRO Orange: this is consistent with the fact that this temperature is very close to the Tm determined 

via intrinsic tryptophan fluorescence but above the Tm determined using SYPRO Orange, and again implies 

that the dye destabilizes the protein. 

Using this pair of complementary detection modalities, we have thus confirmed that the general 

approach laid out above is applicable for analysis of thermal unfolding data, regardless of the experimental 

means by which the protein’s foldedness is monitored. Inevitably, however, this analysis reports on the 
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binding affinity at a temperature near the protein’s Tm (e.g. ± 4 ºC in this case). In the data presented above 

we obtain the binding affinity for maltose/MBP at 53 and 56 ºC, whereas other techniques to directly probe 

binding such as ITC and SPR can be used at more physiological temperatures (e.g. room temperature or 

37 ºC (151, 172, 173)). In general, extrapolation of binding data from DSF to lower temperatures will 

require knowledge of the thermodynamic contributions to binding: these may be derived from applying the 

isothermal approach multiple times over a small temperature range, or from complementary calorimetry 

experiments (156) / knowledge-based estimates (123) as described elsewhere. We will test the feasibility 

of these strategies in future work; here, instead, we next sought to explore whether addition of chaotropic 

agents would allow us to probe this interaction at lower temperature. 

Using denaturants to access binding constants at lower temperature 

Although thermal unfolding may be monitored over a large temperature range, accurate 

determination of the binding affinity by this method requires that there is a well-resolved range in the 

fraction of protein that is unfolded; thus, it is natural to carry out this analysis at temperatures close to the 

Tm measured in the absence of ligand. In many cases, however, it is desirable to probe binding at lower, 

more physiologically-relevant temperatures. 

To shift MBP’s Tm to the desired temperature, we added denaturant to our system. Guanidine 

hydrochloride (GdnHCl) has been shown not to greatly affect the binding affinities for most protein-ligand 

interactions, with the exception of strongly ionic ligands (161, 174-176). As a starting point, we used DSF 

experiments to monitor the MBP’s Tm in the presence of increasing denaturant (Figure 4a); based on these 

results, we elected to study maltose binding at a GdnHCl concentration of 0.7 M. At this denaturant 

concentration, we then carried out the same DSF experiments with increasing concentrations of maltose. 

Having shifted the transition temperature into the physiological range, we now determined the fraction of 

unfolded MBP at 35 ºC (Figure 4b). Under these conditions, the fit once again appropriately describes the 

data, and yields a Kd value of 2.3 µM: this estimate is consistent with previous studies reporting of values 

ranging from 0.5 to 2 µM for this interaction (171, 172, 177). 
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By adding this chaotropic agent, then, we have demonstrated that the thermal unfolding transition 

can be rationally shifted to allow determination of binding affinity at a specific temperature. Importantly, 

we also observe that – at least in this model system – the presence of GdnHCl does not significantly affect 

the resulting binding affinity, in agreement with previous reports (161, 174-176). 

 

 

 

Applying this approach to other protein-ligand pairs (without denaturant) 

We next applied this approach to study a different protein, with multiple ligands spanning a broad 

range of binding affinities. We selected another model system that has been frequently used in calorimetric 

studies (139, 140, 154, 161, 178), carbonic anhydrase (isoforms I and II). From among commercially-

available inhibitors of these two enzymes we selected the weak inhibitor sulfanilamide (SULFA, mM Ki) 

and the potent inhibitor trifluoromethanesulfonamide (TFMSA, nM Ki). We also selected two inhibitors 

with intermediate inhibition constants (µM Ki), acetazolamide (ACTAZ) and methazolamide (METAZ). 

The chemical structures of all four inhibitors are shown in Figure S2. There is no chemical denaturant used 

in these assays. 

Figure 4: Denaturant effect of MBP unfolding and MBP-maltose binding. (A) Tm of MBP 
decreases with increasing GdnHCl concentration. (B) MBP-maltose binding with 0.7 M GdnHCl at 
35 ºC. The value of Kd is 2.3 µM. All the experiments were carried out in triplicate. The protein 
concentration in all the assays was fixed to 2 µM. All assays were taken in the buffer: 120 mM NaCl, 
20 mM NaH2PO4/Na2HPO4, pH 7.4 with 1% DMSO and the melting program was set to 0.5 ºC/min.  
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From thermal unfolding data collected in the absence of inhibitor (not shown), we observed that 

b-CA II was slightly more stable than h-CA I. For this reason, we evaluated isothermal binding data for the 

two isoforms at 60 ºC and 57 ºC, respectively. From the resulting binding curves (Figure 5a-d), the relative 

activities of each inhibitor are clear: SULFA is the weakest, followed by ACTAZ and METAZ, and TFMSA 

is the most potent. Importantly, this experiment also distinguishes between the two isoforms, with tighter 

binding observed for b-CA II rather than h-CA I in all four cases. Overall, this isothermal analysis of the 

underlying thermal unfolding data provides a range of binding affinities between CA isoforms and their 

four inhibitors. 
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As noted earlier with regards to our discussion of Equation 20, the dissociation constant is difficult 

to obtain from the isothermal analysis of DSF data if Kd is much lower than the protein concentration, 

because binding becomes stoichiometric in this regime. The protein concentration used in these experiments 

was 2 µM (to allow robust detection of the unfolding transition), and thus Equation 21 shows that this will 

make it difficult to interpret the Kd for EC50 values below about 2 µM. For this reason, we used the EC50 

value to guide interpretation of the results: for cases with EC50 values greater than 2 µM we report the Kd, 

whereas for cases with EC50 less than 2 µM we simply conclude that the Kd is less than 0.5 µM (as seen 

from Equation 20, when [P]T = 2 µM and fu0 is 0.5, a Kd value of 0.5 µM will lead to EC50 = 2 µM). 

 

Interaction 

(ligand/protein) 
Kd (µM), from DSF Ki (µM), from enzyme assay 

SULFA / h-CA I 1134 ± 106 786 ± 60 

SULFA / b-CA II 106 ± 9 136 ± 5 

ACTAZ / h-CA I 7.2 ± 0.8 2.1 ± 0.2 

ACTAZ / b-CA II < 0.5 0.48 ± 0.03 

METAZ / h-CA I 1.2 ± 0.1 1.9 ± 0.2 

METAZ / b-CA II 0.35 ± 0.03 0.52 ± 0.03 

TFMSA / h-CA I < 0.5 < 1 

TFMSA / b-CA II < 0.5 0.12 ± 0.04 
 

Figure 5: Determination of binding affinities for carbonic anhydrase inhibitors using isothermal 
analysis of thermal unfolding data. Each inhibitor was characterized with two carbonic anhydrase 
isoforms, h-CA I (green) and b-CA II (pink). (A) Analysis of SULFA yielded binding constants of 1.1 
mM and 0.1 mM for isoforms h-CA I and b-CA II. (B) ACTAZ gave binding constants of 7.2 µM for h-
CA I and 1.5 µM as EC50 for b-CA II. (C) METAZ gave binding constants of 1.2 µM and 0.35 µM for 
the two isoforms. (D) TFMSA gave EC50 of 1.4 µM and 1.3 µM for the two isoforms. (E) Comparison 
of the binding constants obtained from isothermal analysis of thermal unfolding data versus inhibition 
constants obtained in an enzyme inhibition activity. The TFMSA/h-CA I, TFMSA/b-CA II and 
ACTAZ/b-CA II pairs are not included here, because they all have less than 2 µM EC50. All 
experiments were carried out in triplicate. 
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To obtain an independent measure of these interactions under identical conditions (temperature and 

buffer composition), we applied an esterase activity assay and determined inhibition constants (Ki) for each 

isoform/inhibitor pair (Table 1). Of the eight protein/ligand pairs, we could not accurately determine the 

inhibition constant for TFMSA with h-CA I due to its potency relative to the enzyme concentration used in 

our assay: standard Michaelis-Menten analysis cannot be used to determine the inhibition constant for a 

nanomolar inhibitor at an enzyme concentration of 2 µM. With the exception of this pair, we compared 

these inhibition constants to the binding constants obtained via DSF: overall there is excellent agreement 

between the inhibition constants and the binding constants, for activities in the sub-micromolar to 

millimolar range (Figure 5e). 

Discussion 

Limitations of using thermal unfolding to monitor ligand binding 

The simplicity and practical advantages of the DSF format have made this experimental approach 

very popular, particularly for fragment screening. Nonetheless, there are important considerations that can 

limit its application with respect to certain ligands and/or proteins. 

With respect to ligand screening, certain ligands can naturally interfere with the reporter dye 

through their own fluorescent properties (123). In addition, certain ligands may interact with the unfolded 

protein (125, 154), or promiscuously form non-specific (or covalent) interactions with the protein (179). 

Other ligands may also interact with the protein via a stoichiometry other than 1:1, or alternatively, and 

particularly for small fragment-like compounds, the ligand may interact with a single site on the protein 

Table 1: Binding/inhibition constants derived from isothermal analysis of DSF and from 
enzyme activity assays. 
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surface using multiple binding modes with comparable affinities (180). The isothermal formulation we 

present here does not yet consider any such scenarios, and it is currently restricted to stoichiometric 1:1 

binding. 

The protein to be studied is also subject to important restrictions. Most importantly, any equilibrium 

analysis involving protein folding assumes reversibility: this can be difficult to establish conclusively, and 

many proteins aggregate at elevated temperature. In the course of initiating the studies described here, we 

explicitly tested whether thermally-unfolded protein could be cooled, and then once again heated to yield 

the same thermal unfolding transition. In light of well-justified concerns about non-reversible unfolding 

and aggregation, a number of strategies have been proposed: these include using faster speeds for the 

unfolding process (to minimize the potential for aggregation) (181, 182) and including in the reaction dyes 

that explicitly detect protein aggregation (183, 184). 

Further, our formulation also makes the important assumption that protein folding/unfolding is two-

state, and that there are no substantially-occupied partly-folded intermediates. This is a pervasive 

assumption, because it greatly simplifies analysis of folding/unfolding data: however, it is also widely-

understood that this assumption is not valid in all cases (185). Relative to traditional thermodynamic 

characterizations of ligand binding, we expect that the isothermal nature of our analysis will somewhat 

mitigate the effect of partially-folded states science they will simply be lumped into the folded or unfolded 

state, depending on their ability to bind ligand. That said, the presence of such states can certainly confound 

this analysis if they bind the ligand with a different affinity than the folded state (e.g. leading to inadvertent 

determination of some ensemble-weighted average of the binding constant), or if they lead to errors in 

calculating the fraction of unfolded protein at the temperature of interest. 

Thermal versus denaturant-induced unfolding 

The binding constants derived from this isothermal approach can be accurately determined only in 

the vicinity of the target protein’s melting temperature, which may not correspond to a temperature of real 

biological (physiological) interest. We have shown that in such cases denaturant can be used to shift the 
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melting temperature to the desired range; an alternative approach, however, is simply to extract binding 

constants from the ligand-dependence of the denaturant-induced stability differences. 

Indeed, previous studies have laid the groundwork for determining binding constants – at room 

temperature – based on the denaturation midpoint of protein stability (50, 161). In both of these studies the 

extent of protein unfolding was monitored by intrinsic tryptophan fluorescence, obviating the need for a 

reporter dye. That said, an important drawback of this detection modality is the potential for interference 

from many drug-like compounds, which may limit the range of applicability of this technique. By contrast, 

typically used reporter dyes such as SYPRO Orange are much less likely to exhibit spectral overlap with 

potential ligands of interest. Additionally, whereas the data collection for denaturation profiles is usually 

more rapid, data are typically fit using closely-spaced increments in denaturant concentrations which 

necessitates more liquid handling to setup the assay. 

Overall, we envision that thermal and chemical unfolding can serve as complementary assays, 

depending on available instrumentation, the importance of obtaining binding constants at a specific 

temperature, and the spectral nature of the ligands of interest. 

Sensitivity of detecting protein unfolding 

As described in the context of Equations 20 and 21, the fraction of protein that is folded depends 

on the protein concentration relative to the ligand’s Kd. Under circumstances in which the dissociation 

constant is much smaller than the protein concentration (i.e. very tight binding), addition of ligand leads to 

stoichiometric binding and makes it difficult to determine the binding constant. Indeed, we encountered 

precisely this scenario in our characterization of the carbonic anhydrase inhibitor TFMSA. 

The natural solution to this problem is to use very low protein concentration, so that the EC50 

observed for unfolding is most sensitively dependent on the Kd rather than on the protein concentration. 

This raises a practical consideration, however, because the protein concentration to be used in the assay is 

determined by the sensitivity with which unfolding can be monitored. The observed fluorescence signal 

upon dye binding is related to protein size, with larger proteins yielding more signal: for this reason, 
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experiments typically use similar protein concentrations in mass units (i.e. mg/ml) rather than in molar 

concentrations. For larger proteins, then, lower molar concentrations are accessible for this experiment 

(provided they unfold in a single cooperative transition), which in turn may allow for characterization of 

tighter-binding ligands using this approach. 

Thermodynamic models versus our isothermal model 

Monitoring protein thermal unfolding transitions is a highly attractive means to access ligand 

binding, because in principle it can be rapidly setup and deployed for many different protein systems. In 

addition to DSF / ThermoFluor, analogous data can be collected using other experimental modalities: most 

notably, probing the protein directly via intrinsic tryptophan fluorescence or circular dichroism (CD) 

spectroscopy. Regardless of the method by which protein unfolding is monitored, however, the analysis is 

the same; and indeed, the same thermodynamic models described earlier in the context of DSF have also 

been applied to thermal unfolding probed via CD (181, 186, 187). Unsurprisingly, the challenges associated 

with applying thermodynamic models to directly quantify ligand binding at different temperatures apply to 

these other experimental formats as well (188). Here we have demonstrated that our isothermal analysis 

can equally well be applied to thermal unfolding transitions monitored via intrinsic tryptophan fluorescence, 

and we expect this framework to apply equally for data collected using any technique for monitoring protein 

unfolding. 

Materials and Methods 

Materials 

His-tagged maltose-binding protein (MBP) was expressed from a plasmid in E. coli and then 

purified through Ni-chelated Sepharose Fast Flow Resin (GE Healthcare) and HiLoad 16/60 Superdex 75 
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gel filtration column (GE Healthcare). The protein was exchanged into assay buffer (120 mM NaCl, 20 mM 

NaH2PO4/Na2HPO4, pH 7.4) by dialysis. Both carbonic anhydrases were obtained from a commercial 

vendor (h-CA I (Sigma C4396) and b-CA II (Sigma C2522)). All protein concentrations were determined 

with Quick StartTM Bradford Protein Assay Kit (Bio-Rad, catalog no. 5000201). 

Ligands were all obtained from commercial vendors, as follows: maltose (EMD Millipore 105910), 

acetazolamide (Sigma 97582), methazolamide (Sigma SML0720), sulfanilamide (Sigma 46874), 

trifluoromethanesulfonamide (Sigma 638455), and 4-nitrophenyl acetate (Sigma N8130). 

Generating simulated unfolding data 

Simulated experimental data were generated using the formulation laid out by others (139, 154) 

that allows the fraction of unfolded protein to be calculated at a given temperature and ligand concentration, 

provided a set of thermodynamic parameters that describe protein unfolding and ligand binding. Values for 

these thermodynamic parameters are reported in the caption of Figure 2. Data were calculated near the Tm 

value in 0.25 ºC increments. 

SYPRO DSF assay: experimental protocol 

All proteins (MBP, h-CA I and b-CA II) were used at a final concentration of 2 µM for this assay. 

SYPRO Orange (Invitrogen S6651) was used at a final concentration of 20X for MBP, and at 10X for the 

carbonic anhydrases. MBP experiments were carried out in 120 mM NaCl, 20 mM NaH2PO4/Na2HPO4, 1% 

DMSO, pH 7.4. Carbonic anhydrase experiments were carried out in 100 mM NaCl, 20 mM TRIS, 1% 

DMSO, pH 6.1. 

All DSF experiments were carried out with Eppendorf Realplex2 Mastercycler. Each sample was 

divided to three 50 µL replicates. Sample solutions were dispensed into 96-well optical reaction plate 

(Thermo Fisher Scientific 4306737) and the plate was sealed with optical PCR plate sheet (Thermo Fisher 

Scientific AB-1170). Fluorescence intensity was measured via the JOE emission filter (550 nm) and “PTS 

clear plate” was set as the background for the calibration. Temperature was continuously increased: 
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0.5 ºC/min for MBP, and 1 ºC/min for carbonic anhydrase. In the MBP-maltose-denaturant systems, 0.7 M 

guanidine hydrochloride (GdnHCl) was added into each sample and the reaction was carried out exactly as 

described above. Melting curves were directly exported from the instrument, and then were analyzed with 

Prism 6 (GraphPad Software Inc.). 

SYPRO DSF assay: data analysis 

DSF data were analyzed in three steps. First, raw fluorescence data as a function of temperature 

were fit to a modified form of the thermodynamic equation, as follows: 

∆𝐺 = ∆𝐻 1 −
𝑇
𝑇a

−	∆𝐶b 𝑇a − 𝑇 + 𝑇		ln
𝑇
𝑇a

																																		(22) 

𝐾K = 𝑒f
∆g
hE																																																																																				(23) 

𝑌(𝑇) 	=
1

1 + 𝐾K
𝑚k𝑇 + 𝑏k +

𝐾K
1 + 𝐾K

𝑚K𝑇 + 𝑏K 																																					(24) 

 

Here Equation 24 relates the observed fluorescence signal, Y, as a function of temperature (T). 

The two terms in this equation correspond to contributions from folded and unfolded protein, respectively. 

Each term consists of the fraction of folded/unfolded protein, with a term that depends linearly on 

temperature (due to the temperature-dependence of the dye); thus, mF and bF capture this dependence of the 

dye when the protein is folded, as observed in the baselines before the thermal unfolded transition. The 

fraction of folded/unfolded protein at a given temperature depends on the “effective” unfolding/folding 

equilibrium constant (KU), which is dependent on both the temperature and the ligand concentration. As 

noted earlier, interaction between the dye and the protein is not explicitly included in this model of 

unfolding. 

Throughout all of the analysis presented here, the value of ΔCp is held fixed. Thus, an individual 

thermal unfolding curve is fit using six free parameters: Tm, ΔH, mF, bF, mU, and bU. Because the 

temperature dependence of the dye is the same regardless of the ligand concentration, however, we found 
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that the fitting was be improved by using a single shared global parameter for the slopes of the baselines 

(mF and mU). 

From these fits, the fraction of unfolded protein can be determined at any temperature: collecting 

together data collected at different ligand concentrations for a single temperature of interest thus allows 

construction of the “isothermal” plots presented above. 

To facilitate adoption of this approach, software is provided that carries out all of the analysis 

described herein. The software, and its associated user guide, is freely available for download via 

SourceForge (https://sourceforge.net/projects/dsf-fitting). 

Intrinsic Trp fluorescence 

MBP was used at a final concentration of 2 µM in the buffer: 120 mM NaCl, 20 mM 

NaH2PO4/Na2HPO4, pH 7.4 and 1% DMSO. Data were collected with sample size 800 µL, in triplicate. All 

experiments were carried out using Photon Technology International (PTi) spectrophotometer with 4 X 10 

mm quartz cuvettes. The excitation wavelength was set to 290 nm with 1 nm light pass-width and the 

emission wavelength was set to 337 nm (where Trp has the highest fluorescence intensity), with 6 nm light 

pass-width. The sample was pre-incubated for 10 minutes prior to measurement for each different 

temperature, from 25 ºC to 72 ºC. Fluorescence was measured continuously for 60 seconds at every 

temperature, and intensity values were averaged over this interval. The average fluorescence intensity over 

this interval was plotted as a function of temperature to obtain the thermal unfolding curve. Based on this 

unfolding curve, the Tm was estimated to be 56 ºC. 

This temperature was then used to measure fluorescence as a function of maltose concentration. 

Serial dilutions of maltose were prepared with 2 µM MBP (in the same buffer described above), and 

fluorescence was determined as described above. Data were analyzed via the same isothermal approach 

used for DSF data. 
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Esterase activity assay 

Carbonic anhydrase activity (h-CA I and b-CA II) was measured using a spectrophotometer 

(Molecular Devices, SpectraMax® i3x) as described elsewhere (189). h-CA I was used at a final 

concentration of 2 µM and b-CA II was used at a final concentration of 0.5 µM in the buffer: 100 mM 

NaCl, 20 mM TRIS, pH 6.1, 1% DMSO. The substrate, 4-nitrophenyl acetate, was titrated through 0 to 

3 mM from a freshly-prepared 3.2 mM stock. All reactions of h-CA I took place at 57 ºC and reactions of 

b-CA II took place at 60 ºC. The change in absorbance was measured at 348 nm. Enzyme initial velocity 

was plotted with different substrate concentration using Prism6. Data were collected for each of the four 

inhibitors, and the change in initial velocities were analyzed with the “Enzyme-noncompetitive inhibition” 

equation in Prism6. 
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Chapter IV: Predicting PROTAC-mediated ternary complex 

formation using Rosetta 
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Abstract 

Recent years have brought a flood of interest in developing compounds that selectively degrade 

protein targets in cells. These compounds have been exemplified by PROTACs (PROteolysis TArgeting 

Chimeras), heterobifunctional molecules that combine a target-binding warhead with an E3 ligase-

recruiting moiety: if the PROTAC recruits both proteins into a ternary complex, this can induce 

ubiquitination and proteolytic degradation of the target protein. An important hurdle in this field, however, 

has been the rational design of effective PROTACs: specifically, how to identify a suitable linker between 

the two protein-recruiting moieties in order to enable formation of the ternary complex. Modern 

development of a PROTAC typically requires synthesis and evaluation many tens – or even hundreds – of 

candidate linker lengths, compositions, or attachment sites. Here, we describe a structure-based 

computational method to build models of candidate ternary complexes, and evaluate whether a given linker 

suitably bridges the protein-recruiting moieties. Briefly, the method entails docking the two proteins (with 

their respective fragments of the PROTAC in place) using the Rosetta software, then using pre-built low-

energy conformations of the linkers to evaluate which of the resulting models can be spanned by the desired 

linker. This allows many crude models of the ternary complex to be built, and these are subsequently 

refined. We have applied this approach to retrospectively evaluate the activity and selectivity of PROTACs 

reported in the literature, which address diverse targets (Brd4BD1, c-Met/EphA2/Stk10, and CDK4/CDK6) 

using different E3 ligases (VHL and CRBN). We find that this computational approach can indeed explain 

the observed activity and selectivity of these PROTACs, and further that explaining PROTAC activity is 

best carried out using an ensemble of structures of the ternary complex rather than a single district 

conformation. 
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Introduction 

PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional small molecules containing 

two functional ligand-moieties: a warhead ligand binding target protein of interest (POI); and an E3 ligase 

recruiting ligand binding an E3 ubiquitin ligase. Combining these two functional groups through certain 

choices of linker can induce formation of a POI – PROTAC – E3 ligase ternary complex. This complex can 

then lead to ubiquitination and degradation of the target protein. PROTACs have gained increasing attention 

in recent years starting from its first application in degradation of the target protein in 2001 (190). In contrast 

with genetic methods to decrease cellular abundance of a specific protein (e.g., CRISPR/Cas9, RNAi, 

antisense oligonucleotides), PROTACs retain the advantages associated with traditional pharmacological 

approaches, including oral bioavailability, superior tissue penetrance, and better stability (23, 61, 63, 121). 

PROTACs also provide multiple advantages over traditional small molecule inhibitors, including: 1) low 

requirement of binding affinity (61, 68-70); 2) prolonged cellular effects (61); 3) no requirement to bind at 

the target protein’s active site (23, 61, 63, 64), which facilitates addressing non-druggable targets such as 

scaffolding proteins (61, 64-67); and 4) the ability to simultaneously diminish (or eliminate) the activity of 

multiple functions spread over a multi-domain protein (61, 64, 65, 191-193). 

Over the past two decades, multiple successful PROTACs have been reported with good activity 

and selectivity. Among these promising PROTAC molecules, most target either BET proteins (74, 76, 78, 

82, 84) or enzymes (and kinases specifically) (65, 68, 70-73, 75, 77, 79-81, 83, 85), as these well-studied 

targets often have useful inhibitors that can be immediately adapted for use as warheads. Beyond these two 

classes, PROTACs have also been designed against other intriguing targets that include multi-functional 

proteins (e.g., TRIM24 (191), SMARCA2 (192) and tau (66, 67)), nuclear receptors (e.g., AR (194)), and 

HaloTag7 fusion proteins (engineered proteins to be degraded by HaloPROTACs (195)). Therefore, we can 

see this PROTAC method have been successfully applied for many different types of POIs. 

With respect to selecting an E3 ligase, since the very beginning much of the focus has been on two 

candidates: Von Hippel-Lindau protein (VHL) and Cereblon (CRBN). Spurred by extreme interest in 
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development of additional PROTACs, particularly for therapeutic applications, more potential E3 ligases 

have been explored recently, including MDM2 (83), IAP (81), RNF4 (196), beta-TRCP (197), parkin (197), 

and DCAF16 (198). As the field progresses, there is certainly reason for optimism that the availability of 

moieties to recruit other E3 ligases will further promote development of new PROTACs. 

Even with these rapidly accumulating success stories, many crucial challenges remain before this 

technology can be broadly applied. Foremost among these, the underlying features that contribute to 

effective cellular degradation are still not established. Certainly it has become evident that high binding 

affinity between the PROTAC and POI does not necessarily translate to efficient degradation of the POI 

(68, 70). Somewhat surprisingly, the selectivity does not directly translate from the inhibitor to the 

PROTAC either: a non-selective kinase inhibitor can lead to a highly selective PROTAC, given precisely 

the right linker (70, 73, 75, 77). To explain these observations, the field has generally concluded from 

published crystal structures of ternary complexes (74, 76, 192) and in-cell fluorescence assays (71, 199) 

that the ability to form the ternary complex (POI / PROTAC / E3 ligase) may be the key determinant. That 

said, it is currently controversial whether cooperativity in forming the ternary complex is necessary, since 

both cooperative (74, 85) and anti-cooperative (76) ternary complexes have been found to induce efficient 

target degradation. 

To optimize and explore the role of ternary complex structure formation, the linker between the 

warhead ligand and the E3 ligase ligand has naturally been the focus of attention (85, 200). In previous 

studies, a traditional but inefficient way to design PROTACs for a given pair of POI / E3 ligase is to 

synthesize a batch of PROTAC molecules with fixed warhead / E3 ligase ligands but many different linkers, 

and to test all these molecules in cell assays (78, 84). To improve the efficiency of PROTAC design, others 

have very recently applied computational approaches including protein-protein docking (76, 201), and also 

tried to use information from solved PROTAC crystal structures (192). Although these attempts have 

improved understanding into the role of the linker, and have provided very tentative clues for PROTAC 

design, there has not yet been reported a carefully-benchmarked computational approach for predicting the 

activity and selectivity of PROTACs. 
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Here, we develop and describe a computational strategy for evaluating the “fit” of a given linker in 

the context of a POI – PROTAC – E3 ligase ternary complex. In this approach, we combine protein-protein 

docking, screening of linker conformations, and analysis of protein-protein interactions associated with a 

given binding mode. Together these result in a collection of models for the ternary complex, which in turn 

allow the evaluation of a given POI / PROTAC / E3 ligase’s activity. By applying this approach to a family 

of linkers, one can test the effect on activity of varying the linker; conversely, by varying the POI one can 

test the effect on target selectivity arising from the chosen linker. 

To validate this approach, we have compiled data from a series of reports describing optimization 

and characterization of PROTACs addressing diverse targets using multiple E3 ligases. These include 

Brd4BD1 – CRBN (76, 78), c-Met/EphA2/Stk10 – CRBN/VHL (70), and CDK4/CDK6 – CRBN (71, 79). 

We find first that this computational method can indeed explain the activity of related PROTACs in 

response to different linker lengths. Next, we find that these models not only recapitulate the selectivity of 

a given PROTAC with different (kinase) targets, but that they can also explain different degradation 

efficiencies resulting from pairing a given POI with different E3 ligases. 

Computational Approach 

The PROTAC molecule contains three parts: the warhead ligand which can bind to the protein of 

interest (POI); the E3 ligase ligand which can recruit the E3 ligase; and the linker which joins these two 

parts. Among these three components, the two ligands are always well studied and modified, and also both 

typically have strong binding affinity for their respective protein targets. Thus, the key missing piece of this 

PROTAC design puzzle is the linker: how to find the suitable linker to connect these two ligands leading 

both activity and selectivity. When the POI / warhead ligand and E3 ligase / E3 ligand are determined, the 

question that if a given PROTAC can selectively work or not would be simplified to predict if its linker is 

properly designed. To answer this question, one straightforward idea is to build a ternary structure model 
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with this PROTAC by trying its different linker conformations. A PROTAC should be considered as a 

promising one if we can find a linker conformation to build a reasonable ternary structure model that has a 

good energy score and also shows strong interaction among the POI / PROTAC / E3 ligase. Here, we 

summarize our computational pipeline of building ternary structure model and model analysis below, and 

present the further details in the Supporting Methods section. 

 

 

Figure 1: Overview of the computational approach. Proteins are shown using cartoon representation, 
with PROTACs (or their component moieties) as sticks. (A) Protein-protein docking using Rosetta. (B) 
Generation of candidate linker conformations using OMEGA. (C) For each docking pose, the collection 
of linker conformations is screened in search of a compatible geometry. (D) If a match is found, the 
complete PROTAC molecule is built from the (compatible) component parts. (E) Because the protein-
bound parts of the PROTAC have not moved when the complete PROTAC is built, it can be trivially 
aligned back into the proteins’ binding mode to yield a model of the ternary complex. 
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Step 1: Protein-protein docking 

To generate the ternary structure models by testing different linker conformations for a given 

PROTAC, we need to separate this ternary complex to three groups: POI and its cognate ligand, E3 ligase 

and its paired ligand, and the linker. After the separation, we download the PDB structures for the two 

protein-ligand complexes: the POI and ligand complex, and the E3 ligase and ligand complex (Fig. 1A, 

left). We manually combine these two complexes structures together with PyMol (202), such that the two 

ligands face one another (Fig. 1A, middle). Then we apply protein-protein docking with Rosetta software 

suite (203) (Fig. 1A, right). During the docking process, we fix the relative positions of the two ligands 

with their cognate proteins and only allow them move together with the proteins. Total 50,000 decoys are 

generated in this case. We are interested in the docking decoys that have good interaction between the POI 

and the E3 ligase. Therefore, we rank them with the interface score (I_sc scores from Rosetta protein-

protein docking output score file) and pass the top 5,000 decoys (top 10%) to the next stage. 

Step 2: Identifying complementary linker conformations 

Next, we seek to identify low-energy linker conformations that appropriately join the two ligands 

in a given pose. To identify the linker conformer for a given PROTAC molecule, we first pre-build a library 

of linker conformers using OMEGA (OpenEye Scientific Software, Santa Fe, NM) (204-206). Because of 

the different linker lengths, the maximum available conformer numbers are different. We generated the all 

available conformers for a short linker with a maximum conformer number less than 1000. For the longer 

linkers, we generated 1000 conformers. When we generate this linker conformers library, we include not 

only the linker itself but also one piece from each ligand where the linker is attached, like the five-member 

ring from the POI ligand and the six-member ring from the E3 ligase ligand shown in Figure 1B. These 

two pieces are used for the alignment in the next step (Fig. 1C). To check if a linker conformer can 

successfully link the two ligands from a docking decoy, we align it to the two ligands from the docking 

decoy by calculating the optimized RMSD (root mean square deviation) of the two parts at both ends of the 

linker and the same two pieces from the two ligands (Fig. 1C). If the RMSD is less than the cutoff value, 
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in this case we use 0.4 Å, we keep this linker / docking decoy pair and pass it to the next step. 

Step 3: Building models of the ternary complex 

To build the ternary structure model, we first generate the whole PROTAC molecule by combining 

the linker conformer and its paired two ligands from the docking decoy with the small RMSD value, coming 

from the previous step (Fig. 1D). If a whole PROTAC molecule can be built by these three pieces without 

any distorted bond geometries, we then put this completed PROTAC molecule back to the docking decoy 

and use Rosetta to minimize this ternary structure model (Fig. 1E). If a ternary structure model can be 

successfully minimized by Rosetta, we consider it as a successful model and count this binding mode as a 

“compatible pose” for the PROTAC of interest. 

Step 4: Analysis 

Overall, the approach entails building a large set of docked poses, and then distilling these down to 

a collection of complete models of the ternary complex. From the collection of complete models, we 

evaluate the following: 1) the number of complete models resulting from this pipeline; 2) the interaction 

energy among the three components of any given model, and 3) the interaction energy in a given model 

between the POI and E3 ligase (i.e., excluding contributions from the PROTAC). We will discuss and 

analyze the utility of these quantitative outputs in the following sections. Finally, we also note that these 

models contain complete structure information, and thus can be used to evaluate interaction details further 

in select cases. 

Results 

To evaluate the utility of our computational approach, we turn to extensive data available in the 

literature describing the cellular activity and selectivity of various PROTACs. While crystal structures of a 
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small number of PROTAC ternary complexes have been reported, the number is insufficient for thorough 

evaluation of our method. Further, it remains unclear whether a single static snapshot is sufficient to 

understand the structural basis for PROTAC activity – as will be re-visited in the Discussion section. 

PROTAC activity versus linker length 

One of the most common approaches to PROTAC design is trying a series of linkers with different 

lengths while the warhead ligand and E3 ligase ligand are fixed. Therefore, we started to test our approach 

with two such scenarios drawn from the literature (76, 78): in each case the warhead ligand and the E3 

ligase ligand are fixed, and only the linker length changes. 

In Table 1, we have five PROTAC molecules, all drawn from a single study (76). Among these 

five PROTACs, zxh-3-27 has the shortest linker length and didn’t induce any target protein, Brd4BD1, 

degradation in the cell assay. zxh-2-147 and zxh-2-184 have a little bit longer linker and started to show 

some activity, but the EC50 values of these two are worse than zxh-3-26 and dbet70, which have the second 

and the first longest linkers among these five PROTACs. Comparing zxh-3-26 and dbet70: they showed 

similar EC50 in cell protein degradation assay while zxh-3-26 also showed selectivity between Brd4BD1 and 

Brd4BD2 while dbet70 can induce degradation for both proteins, meaning low selectivity. More interestingly, 

the activity is better and better when the linker is longer and longer from zxh-3-27 to zxh-3-26 but this trend 

stops at dbet70. Furthermore, the selectivity starts to get worse at the same point. zxh-3-26 has a five-carbon 

linker which is shorter than the eight-carbon linker of dbet70, but zxh-3-26 has the similar EC50 as dbet70 

and better selectivity than dbet70. Based on this interesting observation from the literature, we applied our 

approach to these five PROTACs in order to determine if our approach could identify this same trend and 

selectivity pattern as shown in their cell assays. We also want to explore and explain the reasons of these 

results. 
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The first and the most intuitive output result we got from our prediction pipeline is the number of 

the successful compatible poses for each PROTAC molecule. In Table 1, we can see the values of this 

number increasing from 36 of zxh-3-27 to 2535 of zxh-3-26, along with the increase of the linker length. 

To account for the fact that different linkers have different numbers of conformers (e.g., zxh-3-27 has the 

fewest conformers because it is the shortest), we calculated the success rate (SR) of compatible pose 

generation: this corresponds to the number of compatible poses normalized to the total number of decoys 

generated (a constant) and the number of available conformers for the linker provided (not constant) (Table 

1). After this transformation, SR still shows the same trend: zxh-3-27 has the lowest SR value, while zxh-

3-26 and dbet70 have the highest SR values (Table 1 and Figure 2B). This SR pattern also matches the 

activity results from the literature: zxh-3-27 has the worst EC50 and zxh-3-26 and dbet70 have the best 

EC50. We then thought there might be a positive correlation between these SR values and the activity of 

PROTAC molecules. 

Table 1: Evaluation of the Brd4 – zxh/dbet – CRBN complexes. 
 
*: The linker and the rings at either end are combined to generate conformers. 
**: SR (%) means success rate of compatible pose generation. SR (%) = (compatible poses #) / ((docking decoys #) X (conformers #)) X 
100%; docking decoys # equals 5000 in this case. 
***: All the cellular data in this Table are from Nowak, R. P. et al, 2018 
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To check whether the compatible poses we generated from this approach were reasonable or not, 

we also went through the top compatible poses, which have the best minimization scores from Rosetta. In 

Figure 2A, we can see one of the best compatible poses of zxh-3-26. In the zoom in view of this ternary 

structure model (Figure 2C), we can see the target protein (Brd4BD1) shows good interaction with the E3 

ligase (CRBN) with several hydrogen bonds forming at the interaction face. Based on the good energy score 

and the interactions on the model interface, we are more confident about the ternary structure models we 

generated through our pipeline. These observations also provide some clues that the protein-protein 

interaction between POI and E3 ligase may contribute in the formation of the ternary structure and promote 

this process. 

To test the idea of the SR value versus the activity of the PROTAC and the protein-protein 

interaction during the ternary structure formation, we applied our method to the second group of PROTAC 

molecules with different linker lengths (Table 2). These four PROTACs are from a separate study (78), 

and again the only difference is the linker length: from two carbons to five carbons. The SR values of these 

four PROTACs are shown in Table 2 and Figure 2E. The SR values increased from 0.05% of PROTAC-

28 with a two-carbon linker to 0.54% of PROTAC 30 with a four-carbon linker and these results match the 

cell data from the literature. The interesting observation is the decrease of the SR values between the 

PROTAC 30 and PROTAC 31. PROTAC 31 has a five-carbon linker which is longer than PROTAC 30, 

but the SR value is worse. We thought this may be because it is easier to induce the clashing during the 

ternary structure formation process when the linker is longer than some certain value as longer linker would 

require more space while the space between two proteins is limited. We also went into details of ternary 

structure models (Figure 2D and 2F), and observed the good protein-protein interactions in this structure 

model as described in the previous case. 
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Combining the results of these two groups of the PROTAC molecules, we suspected there might 

be a positive correlation between the SR values and the activity of the PROTAC molecules. We put forward 

this hypothesis because SR values reflect the success rate of building a ternary structure model for a given 

PROTAC, and the higher the value is, the easier to build a model. The easier a model can be generated 

might reflect it will be also easier to form the ternary structure in the real case. Furthermore, the formation 

of the ternary structure is related to the activity of PROTAC. All these together would suggest that the SR 

value may be positively correlated to the PROTAC activity. For future applications, we therefore plan to 

use 0.05% as a standard cutoff value (Figure 2B and 2E). This cutoff value would be tested multiple times 

in the following parts. As we also observed the good protein-protein interactions in both cases, suggesting 

that this may need to be considered as an essential part in identifying whether a PROTAC will have 

promising activity. This hypothesis will be explored further in the Discussion. 

 

Table 2: Evaluation of the Brd4 – 28/29/30/31 – CRBN complexes. 
 
*: The linker and the rings at either end are combined to generate conformers. 
**: SR (%) means success rate of compatible pose generation. SR (%) = (compatible poses #) / ((docking decoys #) X (conformers #)) X 
100%; docking decoys # equals 5000 in this case. 
***: All the cellular data in this Table are from Qin C. et al, 2018, here the cell line is MV4; 11 



 74 

 

Figure 2: Top compatible poses of PROTACs inducing a ternary complex for degradation of 
Brd4BD1 by CRBN. (A) Model of the Brd4BD1/zxh-3-26/CRBN ternary complex. (B) Success rate of 
compatible poses for the zxh/dbet series of PROTACs. (C) Zoomed-in view of the Brd4BD1/zxh-3-
26/CRBN interface from our model. (D) Model of the Brd4BD1/30/CRBN ternary complex. (E) 
Success rate of compatible pose generation for the 28-31 series of PROTACs. (F) Zoomed-in view of 
the Brd4BD1/30/CRBN interface from our model. 
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PROTAC activity and selectivity prediction of c-Met/EphA2/Stk10 – PROTAC1/2 – CRBN/VHL  

We next applied our approach to predict the selectivity with a more complicated group of PROTAC 

molecules: c-Met/EphA2/Stk10 – PROTAC1/2 – VHL/CRBN (70). These two PROTACs (PROTAC-1 

and PROTAC-2) were designed to recruit VHL and CRBN, respectively. The warhead ligand in this case 

is a well-known multi-kinase inhibitor, foretinib. This warhead ligand can bind all three kinases studied 

here (c-Met, EphA2 and Stk10), and all three inhibitor/kinase complex structures are available in PDB 

(Figure 3A). At the outset, one might expect PROTAC-1 and -2 to induce degradation of all these three 

target kinases by recruiting different E3 ligases. From the experimental data shown in Table 3, however, 

we see that PROTAC-1 only degrades c-Met, and PROTAC-2 degrades both c-Met and EphA2 but not 

Stk10. Thus, both PROTACs have selectivity for different kinases even though the warhead itself does not. 

We want to test our computational approach with this interesting and challenging case. We hope our 

computational approach can successfully predict the selectivity of these two PROTAC molecules and can 

explain the reasons of this interesting experimental observation. 

As described in the two previous cases, we first calculated SR values of all these six kinase / 

PROTAC / E3 ligase pairs and we were very excited to find that SR values match the cell data very well if 

we used 0.05% as the cutoff number (Table 3 and Figure 3B). The three pairs that worked in the cell assay 

are c-Met / PROTAC-1 / VHL, c-Met / PROTAC-2 / CRBN and EphA2 / PROTAC-2 / CRBN, and all and 

only these three pairs have the SR values higher than 0.05%. In the ternary structure models (Figure 3C 

and 3D), we can observe multiple hydrogen bonds on the kinase-E3 ligase interfaces of all these three 

ternary structure models. 

As the whole PROTAC molecule is the same for all three different kinases, including the linker 

part, and the warhead ligand doesn’t have the selectivity, this selectivity may come from the linker and the 

protein-protein interaction between the POI and the E3 ligase. Our computational approach can successfully 

catch this information: our method not only predicted that PROTAC-1 can only induce the degradation of 

c-Met and PROTAC-2 can only work for c-Met and EphA2, but also predicted that EphA2 can only be 

degraded by CRBN but not VHL. This makes the results more reasonable and reliable as this EphA2 case 
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can confirm the importance of protein-protein interaction: EphA2 may only have the good interaction with 

CRBN but not VHL. As our predictions are based on the protein-protein docking, our pipeline can extract 

and keep the information of protein-protein interaction from the docking step. The further analysis of this 

hypothesis will be described in the Discussion. 

 

 

Table 3: Evaluation of the c-Met/EphA2/Stk10 – CRBN/VHL PROTAC-1/2 complexes. 
 
*: The linker and the rings at either end are combined to generate conformers. 
**: SR (%) means success rate of compatible pose generation. SR (%) = (compatible poses #) / ((docking decoys #) X (conformers #)) X 
100%; docking decoys # equals 5000 in this case. 
***: All the cellular data in this Table is from Bondeson, D. P. et al, 2018. 
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After successfully our approach with these kinases, we decided to pursue and even more difficult 

challenge for which we selected CDK4/6 as the target proteins. Even though CDK4 and CDK6 are 94% 

identical in their ATP binding pocket (71) there are several PROTAC molecules that selectively to target 

CDK6 (71, 79), including BSJ-03-123 and PROTAC 6. 

PROTAC selectivity prediction of CDK4/CDK6 – BSJ-03-123/PROTAC 6 – CRBN 

Our principle objective was to determine whether our method can predict the selectivity of these 

two PROTACs against CDK6 over CDK4 and explain the possible reasons. We calculated the SR values 

for each of these four systems: CDK6 / BSJ-03-123 / CRBN, CDK4 / BSJ-03 / 123 / CRBN, CDK6 / 

PROTAC 6 / CRBN and CDK4 / PROTAC 6 / CRBN. In our initial hypothesis, we would expect to see 

the higher SR values, larger than 0.05%, for both CDK6 systems and the small SR values for the other two 

CDK4 systems. From the data shown in Table 4, the SR values don’t match our expectation and the SR 

values of CDK4 are even higher than the values of CDK6 systems (Figure 4B). These results can infer that 

we only successfully predict the positive cases. Our method predicted that these two PROTAC molecules 

would have activity for CDK6; but our method didn’t give the correct prediction of the negative cases. 

These two PROTAC molecules would also have activity for CDK4 in our prediction, which would not 

match the experimental observations (Table 4). 

Our next hypothesis would be that the two ternary structures of CDK6 should have good protein-

protein interactions but the other two of CDK4 would not have these good interactions, or not as good as 

the ones of CDK6 systems. In Figure 4C and 4D, we can see that both CDK4 ternary structures seem to 

show good protein-protein interactions with CRBN, just like CDK6 ones, which means our hypothesis still 

did not fit this situation. Even though neither of our first two hypotheses fit the real data at this point, we 

Figure 3: Modeling results of c-Met/EphA2/Stk10 in complex with PROTAC-1/2. (A) c-Met, 
EphA2 and Stk10 crystal structures solved with the same inhibitor, foretinib. (B) Success rates for each 
PROTAC (with the corresponding E3 ligase) with all three kinases. (C) Top compatible pose of c-
Met/PROTAC-1/VHL. (D) Top compatible poses of c-Met and EphA2 complex with PROTAC-
2/CRBN. 
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did notice something interesting in these top ternary structure models: the CDK4 poses were different from 

CDK6 poses for both PROTAC molecules (Figure 4C and 4D). We know that CDK4 is very similar to 

CDK6, both sequence and structure. If the E3 ligase and the PROTAC is the same, we would expect to get 

the very similar ternary structure models for both CDK4 and CDK6 coming from our prediction pipeline. 

In reality though, we obtained totally different poses for CDK4 and CDK6 when we aligned with CRBN. 

We wondered why this situation would happen and we thought this may explain the selectivity: the CDK6 

poses made better protein-protein interactions than the CDK4 poses. Put another way, we suspected that 

perhaps simply searching for PROTAC-compatible poses was missing information from the preferred 

conformations (and thus the underlying energetics). 

 
 

 

Table 4: Evaluation of the CDK4/CDK6 – BSJ-01-123/PROTAC 6 – CRBN complexes. 
 
*: The linker and the rings at either end are combined to generate conformers. 
**: SR (%) means success rate of compatible pose generation. SR (%) = (compatible poses #) / ((docking decoys #) X (conformers #)) X 
100%; docking decoys # equals 5000 in this case. 
***: The cellular data in this Table for BSJ-03-123 is from Brand M. et al, 2019. The cell data of PROTAC 6 in this Table is from Rana S. et 
al, 2019. 
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To check if our top compatible poses indeed match those with the best protein-protein interactions, 

we compared our top ternary structure models with top docking decoys. We removed the ligands from the 

docking decoys and did minimization for each of these 5000 decoys in each system (CDK6/CDK4 with 

BSJ-03-123/PROTAC 6 and CRBN) and rank them with the Rosetta minimization scores. As only the two 

proteins were kept in the decoys, the top decoys after ranking theoretically would be the ones with the best 

protein-protein interaction. We then calculated RMSD of our final top ternary structure models, top 1% in 

this case, and these top docking decoys, also top 1% in this case. The low RMSD values mean that the 

poses of the top ternary structure models match the poses of the top docking decoys and keep the best 

protein-protein interactions. After plotting these RMSD values in the distribution histograms (Figure 4E), 

we found that the top ternary structure models clearly have a good overlapping area (RMSD < 2 Å) with 

the top docking decoys in CDK6 cases for both BSK-03-123 and PROTAC 6; while this overlapping area 

disappeared in CDK4 cases, for both two PROATC molecules. This result confirmed our hypothesis that 

the CKD4 ternary models didn’t achieve the best protein-protein interactions. Therefore, this observation 

may also explain the selectivity of these two PROTAC molecules between CDK6 and CDK4. We will re-

visit this idea further in the Discussion. 
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Discussion 

Crystal structure: the only true answer or just one possible snapshot? 

In our computational approach, instead of using the existed crystal ternary structures as benchmark, 

we chose to validate our prediction with the cell protein degradation data directly. The reason underlying 

this choice was the concern that crystal structures may be biased in some cases, either by presenting just 

one out of a collection of relevant PROTAC-compatible poses, or instead by showing an artificial ternary 

complex stabilized by crystal packing. This idea is also mentioned in previous literature (76, 201). As 

monitored by the real-time fluorescence assay (199), the formation of the ternary structure is a dynamic 

process, the crystal structure may just be one possibility or snapshot of the ternary structure but not the only 

true answer. Therefore, we prefer to use the cell protein degradation data as the validation, but not to 

calculate the RMSD between the computational models from our approach and the crystal structures.  

Top decoy versus top ternary structure pose 

In the CDK4/CDK6 case, we introduced a sequential step following SR (success rate) value 

comparison: calculate RMSD of our top ternary models versus the top docking decoys. The docking decoys 

are minimized only including the two proteins and ranked by the minimization interface scores reflecting 

the protein-protein interactions meaning the top docking decoys have the best protein-protein interactions. 

The ternary structure models are minimized including both proteins and the PROTAC molecules, and 

ranked by the minimization interface scores containing both protein-protein interaction energies and 

Figure 4: Modeling results of CDK4/CDK6 in complex with BSJ-03-123/PROTAC 6 and CRBN. 
(A) Starting structures of CDK4 and CDK6 in complex with the same inhibitor, palbociclib. 
(B) Success rates of compatible pose generation for each of CDK4 and CDK6 with BSJ-03-123 and 
PROTAC 6. (C) Top compatible poses of CDK6 and CDK4 with BSJ-03-123 and CRBN. (D) Top 
compatible poses of CDK6 and CDK4 with PROTAC 6 and CRBN. (E) RMSD distribution of top 
docking decoys versus top compatible poses, for each PROTAC. 
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proteins-PROTAC interaction energies. Thus, a successful model of the ternary structure should not only 

have the top score as a ternary complex, but also use the best possible protein-protein interaction (i.e. 

leading to a similar pose as that found from docking without the PROTAC). If a ternary structure model 

only has the top score as a ternary complex but doesn’t not include the top docked decoy, we suspect there 

is a risk that it may not truly be PROTAC-compatible pose, because the protein-protein interaction pose is 

not sufficiently favorable. 

In Figure 4E, we see the CDK6 top ternary models of the two different PROTAC molecules both 

show good overlaps with their top docking decoys, low RMSD values. On the other hand, the top ternary 

models built for CDK4 along with the same two PROTAC molecules did not show this overlap. We propose 

that this may explain the CDK6 selectivity of these two PROTAC molecules. 

We also applied this idea to the Brd4BD1/2 / zxh-3-26/dbet70 / CRBN system. Based on the cell data 

(Table 1), zxh-3-26 and dbet70 both can induce degradation of Brd4BD1. Furthermore, zxh-3-26 also has 

good selectivity for Brd4BD1 versus Brd4BD2, while dbet70 doesn’t. From the SR values, we can see neither 

zxh-3-26 nor dbet70 appeared to be selective (Figure S1A). Thus we calculated the RMSD of the top 

ternary models and the top docking decoys. Unexpectedly, none of the Brd4BD1/2 / zxh-3-26 or dbet70 / 

CRBN pairs shows good overlap between the top ternary structure models and the top docking decoys 

(Figure S1B and S1C). The reason for these results may be because Brd4BD1/2 both have anti-cooperative 

interactions with CRBN. This anti-cooperative interaction may lead to a more complicated situation, in 

which the linker is forced to contribute more in the process of forming ternary complex structure, as 

compared with scenarios in which the POI / E3 ligase already have some natural affinity for one another, 

leading to a cooperative interaction. 

Cooperativity in the ternary complex 

Protein-protein interaction between POI and E3 ligase should be considered as a factor in the 

ternary complex structure formation process, but neither critical nor alone. As described in the previous 

studies, both cooperative (74, 85) and anti-cooperative (76) ternary complexes have been observed in 
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different PROTAC systems. Although both cooperative and anti-cooperative protein-protein interactions 

can work, the roles of protein-protein interaction and linker may slightly different in these two different 

situations. In the case that POI and E3 ligase have a cooperative interaction, this cooperativity may 

contribute more to promote the formation of the ternary structure and reduce the effort of the linker. Under 

this situation, the proper linker may be chosen because it can fit the best POI and E3 ligase interaction pose 

and let the cooperativity between two proteins can contribute most. On the other hand, when the POI and 

E3 ligase engage in an anti-cooperative interaction, there may be a different requirement for the linker 

choice. In this case, the linker may need to contribute more so that the ternary structure can still form even 

with the anti-cooperative POI / E3 ligase interaction. 

Direct contributions of the linker 

As we described above, we need to consider more about the linker when POI and E3 ligase 

interaction is anti-cooperative, like Brd4BD1/2 / zxh-3-26 or dbet70 / CRBN. To promote the ternary structure 

formation in such a case, the linker may also need to contribute to the interface energy of the ternary 

complex. To test this hypothesis, we calculated the interface energies of the top 1% ternary structure 

models, including the PROTAC molecules. We also calculated the interface energies of these top models 

but without the PROTAC molecules and compare the difference between these two energies. In Figure 

S1D and S1E, the negative energy difference reflects the interface energy is better when the PROTAC 

molecule is included meaning the linker or the PROTAC molecule can benefit the formation of the ternary 

structure. A positive value would refer to a punishment coming from the linker or the PROTAC molecule 

during the ternary structure formation. If we compare the effects of zxh-3-26 / Brd4BD1 to zxh-3-26 / 

Brd4BD2, we observe that this PROTAC linker confers benefit with the interface energy more in Brd4BD1 

than Brd4BD2 (Figure S1D). In contrast, there was no difference observed between the dbet70 / Brd4BD1 and 

dbet70 / Brd4BD2 interactions resulting from linker contributions (Figure S1E). We propose that this 

difference may explain the selectivity of zxh-3-26, and the lack of selectivity from dbet70. 
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Conclusions 

We report here the development of a new computational pipeline for structure-based modeling of 

PROTAC-mediated ternary complexes. Through the resulting models, we demonstrate that it is possible to 

retrospectively explain relationships between linker length/composition and cellular activity. Further, these 

models can also explain the surprising observation that the target-selectivity of a given PROTAC is not 

simply transferred from the target-binding warhead: rather, interactions with the E3 ligase in the ternary 

complex can shift the selectivity of the PROTAC. Moving forward, we expect that this approach can 

certainly be used to facilitate design of new PROTACs: by computationally screening small libraries of 

candidate linkers, we envision prioritizing a very small number of compounds for synthesis and 

characterization. Given the current landscape, which relies on synthesis of extensive collections of 

candidate PROTACs in order to screen for those yielding at least some target degradation, we are confident 

that if successful, this new approach will strongly contribute to many more groups designing PROTACs 

for their diverse targets of interest. 
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Chapter V: Conclusions and Future Work 

 
The overarching goal of my PhD thesis work was to develop a general and robust approach for 

rationally designing inhibitors of RNA-binding proteins (RBPs). With this motivation in mind, we proposed 

the “RNA mimicry” approach and demonstrated its feasibility by applying it to inhibitor design of Musashi 

proteins: Msi1 and Msi2. Starting with the de novo inhibitors coming from our initial RNA mimicry 

approach, we optimized them based on SAR studies built on fluorescence polarization competition assays 

and differential scanning fluorimetry (DSF). To take the advantage of the efficiency of DSF while 

determining binding constants, we developed a novel isothermal analysis approach to calculate binding 

affinities from DSF data. After several rounds of optimization of our Musashi inhibitors, we struggled to 

achieve further improvements in the compounds’ potency. In the long term, we envision improving these 

compounds further by building them into PROteolysis TArgeting Chimeras (PROTACs). As a first step 

towards this goal, we developed a computational pipeline for modeling PROTAC ternary complexes, to 

help predict the efficacy and selectivity expected for a given PROTAC molecule. Ultimately, in addition to 

building and testing new PROTACs based on the current Musashi inhibitors, in the future we look forward 

to applying this pipeline for rationally designing inhibitors of other RBPs as well. 

Rationally design selective inhibitors of Musashi  

With our “RNA mimicry” approach, we successfully designed single-digit micromolar inhibitors 

of Musashi1 and Musashi2, that are also selective (at least, in the studies we have carried out to date). We 

applied our “RNA mimicry” approach and initially obtained compound R12; our initial screening confirmed 

its inhibition of Msi1. After a first round of optimization, we demonstrated the binding mode of R12 and 

its derivatives (R12-8): these inhibitors bind the same position as Msi1’s cognate RNA, and they mimic the 

interaction of Msi1-RNA. To improve potency further, we went through a couple more rounds of 

optimization and ended with the single-digit micromolar inhibitor R12-8-44-3. In keeping with our initial 
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expectation, we find that R12-8-44-3 is a dual inhibitor of both Msi1 and Msi2, showing similar binding 

constants for both. At the same time, explored the selectivity of R12-8-44-3 using both computational 

prediction and in vitro experiments. We generated a pharmacophore library by extracting these from all 

structures of RBP-RNA complexes from the PDB, and screened R12-8-44-3 against this library. This 

computational experiment implied that R12-8-44-3 would be selective on the basis of pharmacophore 

matching, but also suggested a potential off-target interaction with hnRNP A1. We explicitly tested this in 

a biochemical assay, and confirmed that R12-8-44-3 is indeed selective for Msi1/Msi2 over hnRNP A1. 

Our hypothesis is that optimization of the R12-series for Msi1/Msi2 may have provided late-stage 

selectivity beyond that recognized through our pharmacophoric matching experiment. 

In the process of designing R12-8-44-3, several opportunities became apparent for how we might 

improve this approach in future. The first is the size of the compound library: at the start of these studies 

we used the ZINC database (103), which contained ~7 million commercially-available compounds at the 

time of our screen. This initial screen did not yield any compounds that fully matched all the chemical 

moieties of the template hotspot pharmacophore; perhaps relatedly, the only active compound from this 

initial screen (R12) showed both poor solubility and weak potency. We believe that the limited library size 

may be the reason, and therefore switched to a much larger library (Enamine), for our optimization. The 

Enamine library was not available when we began this project, but we expect that searching this much 

larger collection (currently 11 billion compounds) may yield more promising starting points. Second, we 

note that we carried out our selectivity studies only once we had reached the final inhibitor described in 

these studies, R12-8-44-3. In retrospect, though we did ultimately find this compound to be selective (to 

the extent tested), characterizing selectivity at every iteration of our SAR studies may lead optimization 

along a different path. 

Having thoroughly used this pipeline and optimized the resulting compounds, we are confident 

about the future utility of this approach for targeting other RBPs. We expect that these may prove useful 

both as chemical probes for exploring the biological role of RBPs, and also perhaps as a starting point for 

developing new therapeutics. 
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Application of isothermal analysis approach 

The isothermal analysis approach for DSF data was developed not only for our Musashi project, 

but also with an eye towards studying many other ligand / protein binding interactions. During development 

of the approach, we tested this novel analysis method with multiple different protein/ligand systems 

including maltose/MBP and multiple inhibitors of carbonic anhydrase (isoforms I and II). We demonstrated 

that this isothermal approach can be applied to characterize diverse ligand / protein interactions, and works 

well over a large range of binding affinities: from sub-micromolar level to millimolar level. Using simulated 

data, we further evaluated the accuracy and robustness of this isothermal analysis. Through these studies, 

we found that our isothermal analysis can provide highly accurate binding constant and can also tolerate 

extremely high amounts of noise in the data (much higher than in a realistic experimental setting). 

Our isothermal analysis approach is predicated on three important conditions: 1) protein/ligand has 

a 1:1 stoichiometry; 2) ligand binding stabilizes the protein; and 3) protein folding/unfolding and ligand 

binding/unbinding are both two-state and reversible. These conditions do cause limitations in certain real-

world cases. Already others have contacted us for help in scenarios in which unfolding is partially non-

reversible: for these, the lack of saturation in the unfolding curves (as a function of ligand concentration) 

may be addressed by carrying out the analysis at lower temperature (while requiring that the temperature is 

still in the range of the protein unfolding transition). Another strategy can be using faster heating rates, 

which make the process more non-equilibrium but can reduce the extent of protein aggregation (182, 207). 

In the future, we are eager to optimize this isothermal approach to make it suit wider situations, 

including when the ligands behave like a destabilizer instead of a stabilizer, or ligand / protein is not 1:1 

stoichiometry binding. For example, the top compound from among our designed Musashi inhibitors is not 

a stabilizer, which prevents us from using this method to determine its binding affinity. With this motivation 

in mind, we are exploring ways to make this approach more general, and also considering separate analysis 

frameworks that could be used for these alternate cases. 
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Pipeline of PROTAC prediction 

Our PROTAC prediction pipeline yields computational results that are consistent with multiple 

different systems: Brd4BD1 – CRBN (76, 78), cmet/epha2/stk10 – CRBN/VHL (70), and CDK4/6 – CRBN 

(71, 79). Through studies of each of these systems, we found that our PROTAC prediction approach gives 

ternary structure models that explain the activity and selectivity for a given POI / PROTAC / E3 ligase 

system. In the Brd4BD1 – CRBN cases, we selected two groups of PROTAC molecules with different linker 

lengths (from two different papers) and were able to rationalize the different cellular activities of these 

compounds. In the cmet/epha2/stk10 – CRBN/VHL and CDK4/6 – CRBN cases, we challenged our 

simplest approach with selectivity predictions. In the cmet/epha2/stk10 – CRBN/VHL case we found that 

our simplest method did match the reported cellular activities, but it did not match in the CDK4/6 – CRBN 

case. In this latter case we found that additional considerations of the protein-protein interaction were 

necessary to explain selectivity of these PROTACs. 

Despite the success of our method in these early benchmarks, there still remains ample opportunity 

to improve this approach. Additional features from the structural models could certainly be incorporated 

into these predictions, but at present further development is limited by the lack of availability of large 

datasets describing activity (and especially ternary complex formation) for many diverse PROTACs acting 

on many diverse protein targets. Given enough data, we ultimately envision using this structure-based 

modeling to analyze conformations of tertiary complexes, and then using very simple machine learning 

approaches to provide a way of combining these features with appropriate importance. We have recently 

begun to acquire much more data describing both cellular activity and ternary complex formation, which 

we hope will enable these improved predictions in future. 

Future work 

In the short term, we are eager to discover the cellular effects of treating cells with our top Musashi 

inhibitor, R12-8-44-3. We envision testing R12-8-44-3 in multiple cell lines, to probing effects of both 
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Msi1 and Msi2, and using multiple read-outs. In parallel, we envision additional optimization of this 

compound. Our primary target is now the linker: R12-8-44-3 includes an ester linker which may not be 

stable enough for future animal studies, and therefore we seek to identify more stable linker. Amides or 

ethers may be good options to investigate. Further, while the initial SAR studies we describe here were 

dramatically enabled by the availability of the Enamine collection, these nonetheless did impact the 

chemical space that we probed. Moving instead to custom-synthesis at this point in the project will slow 

the pace at which we can test new ideas, but may allow for development of improved compounds. 

In the long term, we are excited that now having each of these three pieces in place will enable the 

ability to start with an arbitrary RBP, and use rational design to develop and validate warheads and then 

ultimately PROTACs addressing this exciting and non-traditional class of target. 
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Supporting Methods 

PDB structures used in calculations 

The calculations that led to selection of R1-R12 were carried out using model 1 of the NMR 

structure of Musashi-1 bound to RNA (PDB ID 2RS2) (110). 

Building hotspot pharmacophores 

Hotspot pharmacophores were built using a new dedicated protocol implemented in the Rosetta 

software suite (102), and is freely available for academic use (www.rosettacommons.org). The hotspot 

pharmacophore is extracted solely from the structure of the protein-RNA complex, and thus does not take 

into any account potential rearrangement of the protein upon RNA binding. 

To select deeply buried RNA bases, the solvent accessible surface area (SASA) of each base in the 

RNA was calculated in the presence of the protein, then re-calculated after deleting the protein: this yielded 

the SASA that was directly buried by the protein in the complex. A base was carried forward if the change 

in SASA upon complexation was greater than a preset cutoff value (46.81 Å2 for adenine, 31.09 Å2 for 

cytosine, 45.06 Å2 for guanine and 52.66 Å2 for uracil); these values correspond to the median values of 

344 non-redundant protein-RNA complexes retrieved from the Protein-RNA Interface Database (PRIDB) 

(208) in March 2013 (http://pridb.gdcb.iastate.edu/download/RB344.txt). 

Polar groups from the RNA that participate in intermolecular hydrogen bonding (as defined using 

the Rosetta energy function) are also included. 

The Rosetta command line used to carry out this new functionality is as follows: 

get_rna_pharmacophore_with_water.macosgccrelease -input_rna xxx_rna.pdb -input_protein 

xxx_protein.pdb 

 

The resulting interaction maps are then clustered using a modified version of Kruskal’s minimum 

spanning tree algorithm. We first build a complete graph, in which vertices are the ring moieties, and the 
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edge weights are the Euclidean distances between vertices. Then we take edges in ascending order and 

cluster the end vertices of that edge if no cycle would be caused. We halt the clustering when the distance 

is greater than a user-specified cutoff value (default 5.0 Å). The donor/acceptor atoms are then assigned to 

the closest ring moieties if the distance is less than another user-specified value (default 5.0 Å). Finally, we 

output the pharmacophore templates if the cluster contains at least two ring moieties. This new Kruskal 

clustering code is also implemented in Rosetta, and is carried out as follows: 

cluster_pharmacophore.macosgccrelease –input xxx_rna.pdb –ring_cutoff xxx –da_cutoff xxx 

Identifying complementary ligands 

We used ROCS to screen large libraries for compounds that match the hotspot pharmacophore. We 

downloaded the standard ‘drugs-now’ subset of ~7 million molecules from ZINC database for screening 

(103). We generated up to 100 conformers for each molecule in the database using OMEGA (104-106). We 

screened the database using the hotspot pharmacophore (using default ROCS parameters), and carried 

forward the top 500 compounds ranked by 'TanimotoCombo' score. We then aligned these back to the 

protein using the hotspot pharmacophore, then carried out a gradient-based fullatom minimization of the 

complex using the Rosetta energy function (102). This energy function includes terms that capture packing, 

hydrogen bonding, implicit solvation (modeled via EEF1 (209)), sidechain rotamer preferences, and 

backbone dihedral preferences. After minimization, the top-scoring compounds were visually inspected and 

selected for experimental validation based on cost and availability. 

Predicting target selectivity 

The complete set of 1792 protein-RNA complexes was retrieved from the PDB in June 2014. 

Hotspot pharmacophores were extracted from each complex, and non-unique pharmacophores were 

removed (those with ROCS shape_tanimoto > 0.94 and color_tanimoto > 0.74). This left 543 unique 

pharmacophores that were comprised of at least two rings, derived from 362 different protein-RNA 

complexes. 
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Conformers for each compound were generated by OMEGA using the following command line: 

omega2 -in xxx.pdb -strictatomtyping false -strictstereo false -strictfrags false -

searchff mmff94s -buildff mmff94s -maxconfs 500 

For a given compound, we then used ROCS to screen conformers of this molecule against the 

library of hotspot pharmacophores using the following command line: 

rocs -dbase conformer_ensemble.pdb -query hotspot.pdb -oformat pdb –rankby 

FitTverskyCombo 

The multidimensional scaling (MDS) analysis presented in Figure 5 was carried out in R (210), 

using the “cmdscale” function. Pharmacophores for hnRNP A1 and Prp24 were extracted from PDB IDs 

4YOE and 4N0T, respectively. 

Compounds optimization 

We carried out sequential two rounds of optimization via automated fingerprint-based searched, 

followed by a round of traditional medicinal chemistry optimization by combining desirable fragments and 

R-groups from the best compounds from earlier rounds of optimization. For each of the rounds of the 

fingerprint-based optimization, we took advantage of Enamine Real Database, a database of greater than 

11 billion readily synthesizable compounds that boasts speed of compounds delivery and affordable price. 

We started by querying the database with our initial hit molecule from screening ZINC library (R12), based 

on fingerprint similarity score, we selected the top 1000 compounds. From this, we cluster based on 

diversity of substituent on the rings and linker length and select representative compounds of the clusters 

for biochemical characterization. In the first round of screening, we choose 16 compounds; In the second 

round, we selected 50 diverse compounds based on similarity to the best compound from the first round. 

Finally, the knowledge acquired from the structure activity relationship of the 66 compounds tested so far 

was combined in designing new inhibitors, in a typical traditional medicinal chemistry style; but, rather 

synthesizing the compounds, we found the most similar compound in Enamine database and purchase them. 

With this, we purchased 7 additional compounds for biochemical characterization. 
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Model building of R12 derivatives 

For each round of optimization carried out, we built structural models for the compounds to assess 

whether the compounds are making appropriate interaction with the protein. For this, we generated 300 low 

energy 3D conformations for each of the compounds using OpenEye OMEGA(104-106). Then, we aligned 

each of the conformers to Msi1 pharmacophore (generated from model 1 of the NMR structure with PDB 

ID 2RS2) using OpenEye ROCS(73); then, for each compound, we selected top 10 conformers with the 

highest shape and electrostatic overlap with the pharmacophore (TanimotoCombo). We placed these in the 

binding site of the protein and energy-minimized the complexes using Rosetta energy function. Finally, for 

each compound, we selected the conformer with the lowest energy. 

Protein expression and purification 

The RRM1-RRM2 domain of human Msi1 and Msi2 were purchased from Genewiz as a fusion 

protein with an N-terminal 6xHis-tag and a tobacco etch virus (TEV) protease site on vector pET28a (+). 

The RRM1 domain of human Msi1 with an N-terminal 6xHis-tagged streptococcal GB1 domain and 

hnRNP A1 with an N-terminal 6xHis-tagged maltose- binding protein (MBP) fusion proteins were 

purchased from Genewiz, both on vector pET28a (+). Each of these four constructs were expressed and 

purified as described below. 

The expression plasmid was transformed into Escherichia coli BL21(DE3) pLysS, then a 5 mL 

overnight starter culture was used to inoculate a 1 L culture of Luria-Bertani (LB) media. Cells were grown 

at 37 ºC to an OD600 of 0.6–0.8 and were induced with 1 mM IPTG at 37 ºC for 4 hours. The induced cells 

were harvest and the pellet was resuspended in lysis buffer (20 mM HEPES, 1 M NaCl, 50 mM imidazole, 

1 mM DTT, pH 7.4) and sonicated for 10 minutes (Fisher Scientific Sonic Dismembrator Model 100). The 

cell lysates were then centrifuged at 15,000g for 50 min. The protein of interest remained in the supernatant, 

which was purified by HPLC affinity chromatography with Ni-chelated Sepharose Fast Flow Resin (GE 

Healthcare). The buffer was exchanged with dialysis (20 mM HEPES, 150 mM NaCl, 0.1 mM EDTA, 1 

mM DTT, pH 7.4). 
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 All protein concentrations were determined with reference to bovine albumin standards using 

Bradford assays. 

Fluorescence polarization competition assays 

RNA oligonucleotides (UAGGUAGUAGU/36-FAM/) were purchased from Integrated DNA 

Technologies (Coralville, IA) and dissolved in RNase free water. To measure the dissociation constant of 

Msi1 RRM1-RRM2 and RNA binding, a fixed concentration (5 nM) of fluorescein-labeled RNA and 

increasing concentrations of Msi1 RRM1-RRM2 (0 nM to 128 nM) were mixed in binding assay buffer (20 

mM HEPES, 150 mM NaCl, 0.01% Triton-X100 pH 7.4). Fluorescence intensities were measured in 

replicate on the Molecular Devices SpectraMax® i3x (San Jose, CA) and the fluorescence polarization 

value (FP) was calculated by the following equation: 

𝐹𝑃 =
𝐼∥ 	− 	 𝐼o
𝐼∥ + 	 𝐼o

 

where 𝐼∥ refers to the intensity of the parallel fluorescence and 𝐼o refers to the intensity of the 

perpendicular fluorescence. The dissociation constant (KD) was fit using Prism 6 (GraphPad Software Inc.) 

as follows: 

𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚

1 + 𝐸𝐶WX
tu&&	v&%b(/𝐿tu&&	v&%b(

 

To examine the displacement of RNA by R12 derivative compounds, the competition assays were 

performed with 8 nM as fixed Msi1 concentration, 5 nM as fixed fluorescein-labeled RNA concentration, 

and a serial dilution of compounds were added. Data were fit to a single-site competition model to determine 

IC50 using Prism 6 (GraphPad Software Inc.). There are two RRM domains in the protein construct 

therefore the Hill coefficient was set to be free. Given the known experimental conditions and the binding 

affinity described above, the Ki was then computed from the IC50 using the method of Nikolovska-Coleska 

et al (170). 
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To test the contribution to binding affinity of each base in the NUMB RNA sequence, we purchased 

eight shorter oligos that one with the fluorescein-label, five of them harbor an abasic site at a different 

position, as well as the corresponding wild-type (Table S1). The shorter fluorescein-labeled RNA was 

applied here to match the other RNA fragments with the abasic site. Ki values were then determined from 

the competition experiment described as above.  

Differential scanning fluorimetry (Thermofluor) 

Differential scanning fluorimetry (DSF) experiments were carried out using a standard protocol 

described by others (58). The protein concentration was fixed to be 4 µM and SYPRO Orange (Invitrogen 

S6651) was used at a final concentration of 5X. The experiments were carried out in 20 mM HEPES, 150 

mM NaCl, 0.01% Triton-X100, 2.5% DMSO pH 7.4, with Eppendorf Realplex2 Mastercycler. Each sample 

was divided to three 50 µL replicates. Sample solutions were dispensed into 96-well optical reaction plate 

(Thermo Fisher Scientific 4306737) and the plate was sealed with optical PCR plate sheet (Thermo Fisher 

Scientific AB-1170). Fluorescence intensity was measured via the JOE emission filter (550 nm) and “PTS 

clear plate” was set as the background for the calibration. Temperature was continuously increased: 

0.4 ºC/min, from 37 ºC to 56.6 ºC. Melting curves were directly exported from the instrument, and then 

were analyzed with Prism 6 (GraphPad Software Inc.). 

Nuclear magnetic resonance (NMR) spectroscopy 

15N-labeled protein was expressed and purified as described above then cleaved with TEV 

overnight at 4 oC in 20 mM HEPES pH 6.3, 50 mM NaCl, and 2 mM DTT in a 1:20 ratio. Cleaved protein 

was then passed over a 5 mL HisTrap column. Pure fractions were then pooled and concentrated to 1 mL. 

Buffer exchange was performed using a NAP10 column (GE Healthcare) into 20mM HEPES pH 7.0, 1 mM 

TCEP and 10% D2O. 

All spectra were recorded at 298K on a Bruker Ascend 600-MHz spectrometer. DMSO control 

spectra were prepared by adding DMSO to a final concentration of 0.5% in a 75 µM protein solution. 
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Compounds R12.8.4.44 and R12.8.44.3 were added to final concentrations of 150 µM and 100 µM, 

respectively. All data were processed using TopSpin 4.0. 

Supporting Tables 

 

Name Sequence 

FC-NUMB 5’- F-GUAGU -3’ 

NUMBa0 (WT) 5’- UGUAGUU -3’ 

NUMBa1 (G104x) 5’- UxUAGUU -3’ 

NUMBa2 (U105x) 5’- UGxAGUU -3’ 

NUMBa3 (A106x) 5’- UGUxGUU -3’ 

NUMBa4 (G107x) 5’- UGUAxUU -3’ 

NUMBa5 (U108x) 5’- UGUAUxU -3’ 

 

Table S1: Sequences of RNA oligonucleotides used in this study. “F” refers to the fluorescein label, 

and “x” refers to an abasic site (i.e. internal RNA spacer site).  
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Table S2: Three rounds of compound optimization, starting from initial hit R12.  
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Supporting Figures 
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Figure S1: The 12 initial hit compounds. The chemical structure is shown for each compound, as well as 

a three-dimensional model of each compound (cyan) superposed with the Msi1 RBD1 hotspot 

pharmacophore (magenta). 
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Figure S2: An inadvertent steric clash may explain the lack of binding by R7. (A) The rings in the 

model of R12 (yellow) are well-superposed with those of the hotspot pharmacophore (magenta), allowing 

for aromatic stacking with Msi1. (B) The relative positioning of the rings in the R7 (cyan) do not quite align 

with the hotspot pharmacophore (right side of this perspective). (C) This difference in the positioning of 

the ring leads to a steric clash with Phe23 (orange). 

 

 

Figure S3: Inhibitors coming from the first round SAR study. (A) The chemical structure of R12-7 and 

the results of biochemical assays. The middle panel is the FP competition assay and the right panel is the 

DSF assay. (B) The chemical structure of R12-8 and the results of biochemical assays. The middle panel is 
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the FP competition assay and the right panel is the DSF assay. (C) Superposition of R12-8 (slate) and the 

hotspot pharmacophore (magenta). 

 

 

Figure S4: Inhibitors coming from the second round SAR study. (A) The chemical structure of R12-8-

44 and the results of biochemical assays. The middle panel is the FP competition assay and the right panel 

is the DSF assay. (B) The chemical structure of R12-8-46 and the results of biochemical assays. The middle 

panel is the FP competition assay and the right panel is the DSF assay. (C) Superposition of R12-8-44 

(slate) and the hotspot pharmacophore (magenta). 
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Figure S5: Compounds design of the third round SAR study. (A) Chemical structures of the initial 

compounds designed based on R12-8-44. (B) Chemical structures of the compounds which were 

commercially available. (C) Chemical structures of the compounds with similar structures as R12-8-44 but 

different linkers. 

 

 

Figure S6: Comparison of Msi1 and Msi2. (A) Sequence alignment comparing RBD1 from Msi1 to 

RBD1 from Msi2. Over these 90 residues, only 17 positions differ (81% sequence identity) and only 9 

correspond to non-conservative mutations (90% sequence similarity). This alignment was rendered using 

ESPript (165, 211). (B) The structure of Msi1 RBD1 is shown (grey cartoons), with the hotspot 

pharmacophore derived from its cognate RNA (magenta and blue spheres). Residues at which the sequence 

differs in Msi2 RBD1 are highlighted (orange sticks); with the exception of Leu50 (Met in Msi2), each of 

the residues that differ are surface exposed and located far from the hotspot pharmacophore. 
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Figure S7: Compounds activity: Msi1 RRM1+RRM2 vs. Msi1 RRM1. (A) FP competition assay of 

R12-8-44-3 with Msi1 RRM1+RRM2 (blue) vs. Msi1 RRM1 only (red). (B) FP competition assay of 

R12-8-44-lk2 with Msi1 RRM1+RRM2 (blue) vs. Msi1 RRM1 only (red). 
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A.2: Supporting Information for Chapter III 

Supplemental Figures 

 

 

 

 

Supplemental Figure S1: The fraction of protein unfolding, as calculated from raw fluorescence 
data using various models to fit melting curve. (A) For analysis using both the thermodynamic model 
and the Boltzmann model, we included in the fitting linear (non-flat) baselines which necessary due to 
the temperature dependence of the dye. Both models fit the data well, but they differ slightly at the 
lower baseline. (B) These fits can be used to calculate the fraction of unfolded protein at different 
temperatures: results match closely between the two models, but they do exhibit a slight difference just 
below the transition region. 
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Appendix 

Detailed derivation of Equation 21 

We start from the basic equilibrium between protein folding-unfolding and protein-ligand binding 

presented in the main text: 

𝑈 + 𝐿 	
	
	⇌		
KA

𝐹 + 𝐿
	
		⇌	
K'

𝐹𝐿 																																																																								 

From here, we will consider the two specific conditions. 

1) when no ligand is present: 

[𝑃]E = 𝐹 X + 𝑈 X																																																																																																(A. 1) 

[𝐿]E = 𝐿 X = 𝐹𝐿 	X = 0																																																																																				(A. 2) 

𝐾K = 𝑈 X 𝐹 X 																																																																																																				(A. 3) 

𝑓"X =
𝑈 X

𝑈 X + 𝐹 X
=

1
1 + 1 𝐾K

																																																																																			(A. 4) 

Here, fu0 is the fraction unfolded protein in the absence of ligand. 

Combining Equation A.1 and A.4 gives: 

[𝑈]X = 	 𝑓"X	×	[𝑃]E																																																																																															(A. 5) 

𝐾K =
𝑓"X

1 −	𝑓"X
																																																																																																							(A. 6) 

Supplemental Figure S2: Chemical structures of the carbonic anhydrase inhibitors used in 
this study. 
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2) at the EC50: 

 The EC50 is defined as the ligand concentration at which the initial fraction unfolded (fu0) is reduced 

to half its original value. So: 

[𝑃]E = 𝐹 WX + 𝑈 WX + [𝐹𝐿]WX																																																																										(A. 7) 

	[𝐿]E = [𝐿]WX + [𝐹𝐿]WX = 𝐸𝐶WX																																																																											(A. 8) 

𝐾K = 𝑈 WX 𝐹 WX 																																																																																																(A. 9) 

𝐾' = ( 𝐹 WX	×	 𝐿 WX	) 𝐹𝐿 WX 																																																																									(A. 10)  

[𝑈]WX =
𝑈 X

2
																																																																																																			(A. 11) 

where Equation A.11 is derived from the definition of the EC50 (the fraction unfolded is half its original 

value). Combining Equations A.9 and A.11 gives: 

[𝐹]WX =
𝑈 WX

𝐾K
=

𝑈 X

2	𝐾K
																																																																																								(A. 12) 

Combining Equations A.7, A.11 and A.12 gives: 

𝐹𝐿 WX = 𝑃 y − 𝑈 WX − 𝐹 WX = 	 𝑃 y − 	
𝑈 X

2
−	

𝑈 X

2𝐾K
= 𝑃 y −	

𝑈 X

2
1	 + 	

1
𝐾K

			(A. 13) 

Combining Equations A.5, A.6 and A.13 gives: 

𝐹𝐿 WX = 𝑃 y −	
𝑈 X

2
	×	 1	 + 	

1 − 	𝑓"X
𝑓"X

= 	 𝑃 y − 	
𝑈 X

2
	×	

1
𝑓"X

= 	 𝑃 y − 	
	 𝑃 y

2
= 	
	 𝑃 y

2
		(A. 14) 

Combining Equations A.5, A.6, A.10, A.12 and A.14 gives: 

𝐿 WX = 𝐹𝐿 WX×
𝐾'
𝐹 WX

=
	 𝑃 y

2
×𝐾'×

1
𝑈 X
2𝐾K

	
=
	 𝑃 y

2
×𝐾'×

2𝐾K
𝑈 X

								 

=
	 𝑃 y

2
×𝐾'×

𝑓"X
1 −	𝑓"X

	

1
2	𝑓"X	 𝑃 E

=
	 𝑃 y

2
×𝐾'×

1
1
2 𝑃 E 1 −	𝑓"X

 

=
𝐾'

1 −	𝑓"X
																																																																														(A. 15) 

Combining Equations A.8, A.14 and A.15 gives: 



 135 

𝐸𝐶WX = 𝐿 WX + 𝐹𝐿 WX =
	𝐾'

1 − 𝑓\X
+

𝑃 E

2
																																																														 A. 16  

	𝐾' = 	 (1 − 𝑓\X)	×	 𝐸𝐶WX − 	
𝑃 E

2
																																																																				(A. 17) 

The latter two equations (A.16 and A.17) correspond to Equations 20 and 21 in the main text. 
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A.3: Supporting Information for Chapter IV 

Supplemental Figures 

 

Figure S1: Sequential analysis of BD4BD1/2 – zxh-3-26/dbet70 – CRBN. (A) Success rate of compatible 
pose generation of BD4BD1/2 – zxh-3-26/dbet70 – CRBN. (B) Top 1% compatible poses of BD4BD1/2 – zxh-
3-26 – CRBN vs top 1% docking decoys of BD4BD1/2 – CRBN RMSD distribution. (C) Top 1% 
compatible poses of BD4BD1/2 – dbet70 – CRBN vs top 1% docking decoys of BD4BD1/2 – CRBN RMSD 
distribution. (D) Top 1% compatible poses vs. initial docking decoys energy difference distribution of 
BD4BD1/2 – zxh-3-26 – CRBN. (E) Top 1% compatible poses vs. initial docking decoys energy difference 
distribution of BD4BD1/2 – dbet70 – CRBN. BrdBD1 related data is shown in blue and Brd4BD2 related data is 
shown in red. 
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Supporting Methods 

PDB structures used in calculations 

The structures were applied to study Brd4 – PROTACs – CRBN cases are Brd4BD1 – ligand 

complex (PDB ID 3mxf), Brd4BD2 – ligand complex (PDB ID 5ueu), and CRBN – ligand complex (PDB 

ID 4tz4). 

The structures were applied to study c-Met/EphA2/Stk10 – PROTACs – CRBN/VHL cases are c-

Met – ligand complex (PDB ID 3lq8), EphA2 – ligand complex (PDB ID 5ia4), Stk10 – ligand complex 

(PDB ID 6i2y), CRBN – ligand complex (PDB ID 4tz4) and VHL – ligand complex (PDB ID 4w9h). 

The structures were applied to study CDK4/CDK6 – PROTACs – CRBN/VHL cases are CDK6 – 

ligand complex (PDB ID 5l2i) and CRBN – ligand complex (PDB ID 4tz4). There is no available CDK4 – 

palbociclib complex structure in the PDB, therefore this CDK4 – ligand complex structure was generated 

by using CDK4 sequence, complex structures that CDK4 with other ligands, and CDK6 – ligand complex 

structure. 

Computational approach 

The two proteins – ligand complex structures (POI – ligand1 complex and E3 – ligand2 complex) 

were downloaded from PDB and minimized using the Rosetta software suite. The two minimized complex 

structures were manually combined together with PyMol (202) and the two ligands were oriented towards 

one another. This combined structure with POI and E3 ligands and their ligands was prepared for docking 

with running Rosetta pre-pack command: 

$ pathwaytoRosetta/Rosetta/main/source/bin/docking_prepack_protocol.linuxgccrelease –

database pathwaytoRosetta/Rosetta/main/database –s POI_ligand1_E3ligase_ligand2.pdb –

use_input_sc –extra_res_fa ligand1.params ligand2.params 

A new complex structure with POI and E3 ligase and two ligands was generated through pre-pack 

step. This prepacked complex structure was then applied in Rosetta protein-protein docking with command: 
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$ pathwaytoRosetta/Rosetta/main/source/bin/docking_protocol.linuxgccelease –database 

pathwaytoRosetta/Rosetta/main/database –s POI_ligand1_E3ligase_ligand2_prepacked.pdb –

nstruct 50000 –use_input_sc –spin –dock_pert 5 20 –partners XY_MN –ex1 –ex2aro –

extra_res_fa ligand1.params ligand2_params –out:file:scorefile score.sc –

score:docking_interface_score 1 

where X and Y are the chain IDs of POI and its ligand1 and M and N are the chain IDs of E3 ligase and its 

ligand2. The “–partners XY_MN” flag was used to make the ligands only move together with their paired 

proteins. The “–nstruct” flag as used to set the docking decoy number and 50000 was used in this 

manuscript. The “–dock_pert” flag as used to set the freedom of the docking (distance and the rotation 

angle) and 5 Å and 20 degrees were applied in this manuscript. Finally, top 10% of the docking decoys 

were picked based on their I_sc values, referring the interface energy between POI – ligand1 complex and 

E3 ligase – ligand2 complex. 

For each linker, maximum number or 1000 conformers were generated using OMEGA (204-206), 

with command: 

$ oeomega classic –in linker_name.smi –out linker_name.oeb.gz –maxconfs 1000  

where the flag “–maxconfs” was used to set the conformer number. When the conformers were generated, 

two extra pieces from two ligands (Figure 1B) need to be added on each end of the linker and was used to 

align these conformers to every docking decoy. 

 The alignment between one linker conformer and docking decoy pair was performed using one 

python script written by us, with command: 

$ python decoy_linker_alignment.py –decoy_pdb decoy.pdb –linker_conformer_pdb 

linker_conformer.pdb –linker_atoms_alignment linker_atoms.txt –decoy_atoms_alignment 

decoy_atoms.txt –cut_off 0.4 –optimized_linker_conformer linker_conformer_op.pdb 

where the “–decoy_pdb decoy.pdb” was used to pass the docking decoy structure, and “–

linker_conformer_pdb linker_conformer.pdb” was used to pass the linker conformer. The “–

linker_atoms_alignment linker_atoms.txt” was used to let user apply a text file with the atom names 

which would be used to do the alignment, and the same as “–decoy_atoms_alignment decoy_atoms.txt”. 
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There are example files offered as Supplemental Documents which can be used as templates to write these 

two linker/decoy_atoms.txt files. The “–cut_off” flag was used to set the cut off value and 0.4 Å is the 

default setting. If one linker conformer and docking decoy pair can have a good alignment, RMSD value is 

less than the cut off value, an optimized linker conformer pdb file would be generated and the file can be 

named with the flag “–optimized_linker_conformer”. If the alignment RMSD didn’t pass the cut off 

value, no optimized linker conformer file would be generated. 

 A PROTAC file was generated with this new optimized linker conformer file and the two ligands 

from its paired docking decoy using another python script written by us, with command: 

$ python buildmodel.py –decoy_pdb decoy.pdb –linker_pdb linker_conformer_op.pdb –

warheads_atom_delete warheads_delete.txt -linker_atom_delete linker_delete.txt –

warheads_pdb warheads.pdb –protac_pdb protac.pdb –protac_rename_pdb protac_rename.pdb –

protein_pdb decoy_protein.pdb 

where the “–decoy_pdb decoy.pdb” was used to pass the docking decoy structure, and “–linker_pdb 

linker_conformer_op.pdb” was used to pass the optimized linker conformer. As the linker conformer 

was generated with two extra parts from two ligands, these two parts would be repeated when linker 

conformer and two ligands were combined. To exclude these repeated atoms, “–warheads_atom_delete” 

and “-linker_atom_delete” flags were used to pass two text files “warheads_delete.txt” and 

“linker_delete.txt”, with the atom names which would be deleted from ligand part and linker conformer 

part. There are example files offered as Supplemental Documents which can be used as templates to write 

these two warheads/linker_delete.txt files. The “–warheads_pdb warheads.pdb” flag was used to extract 

the two ligands from the docking decoy and “–protac_pdb protac.pdb” was used to generated the 

PROTAC file. The “–protac_rename_pdb” flag was used to rename and renumber the atoms in PROTAC 

file to exclude any repeated atom names or numbers, then the final PROTAC file, “protac_rename.pdb”, 

was generated and was used to combine with two proteins, POI and E3 ligase, extracted from the same 

docking decoy with flags “–protein_pdb decoy_protein.pdb”. 
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 The file with final PROTAC molecule, POI and E3 ligase was minimized with Rosetta. After 

removing the bad ternary structure models which had the bad Rosetta minimization scores, all the left 

ternary structures were considered reasonable models and the number of these ternary structures was used 

to calculate the success rate (SR). 

 

 

 


