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ABSTRACT 
 
 

Virtually every process within a cell involves a protein. They serve as cellular 

workhorses carrying out functions such as catalysis of essential metabolites, to regulating which 

genes get turned on or off, to forming the structural scaffolding to retain rigidity of a cell. 

Proteins form the link between the genetic information encoded in DNA to the observable 

phenotype of an organism. The way proteins communicate is by direct physical contact with 

another molecule that alters its shape and dynamics to carry out a particular function. For 

example, G protein-coupled receptors are membrane imbedded proteins that bind to a small 

molecule or peptide in the extracellular environment and translate the binding event into an 

internal signal to regulate processes such as heart rate and even mood. The ability to selectively 

modulate such fundamental systems offers huge potential with broad applications from the 

ability to interrogate unknown cellular mechanisms to developing therapeutics when these 

interactions become aberrant.  

The scope of this dissertation encompasses determining what properties dictate protein-

ligand interactions and the application of these principles to the design of new ones. In particular, 

chapter 1 covers the design of a molecular switch that is turned on by small molecules. I follow 

this up in chapter 2 by investigating how to turn off protein function with small molecules in 

aberrant disease states. In chapter 3 we expand from the world of small molecule ligands to 

design a protein to turn off function of a protein involved in bacterial pathogenesis.  
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INTRODUCTION 
 

Activation of protein function with small molecules - Building molecular switches 

In the first chapter of this dissertation, I explore the rational design of a protein switch by 

engineering small molecule dependent control into an enzyme. A longstanding goal in chemical 

biology has been to build switches for diagnostics, biosensors, and synthetic biology. Small 

molecule dependent activity has been used to control pathways such as phosphorylation and 

protein degradation [1, 2]. Typically, this has been achieved using an engineering-centric bottom 

up approach where known functional domains are fused to a particular protein of interest to 

incorporate a regulatory domain not present in the wildtype protein [3]. For example, maltose-

binding protein was fused to β-lactamase such that binding of maltose results in a positive 

modulator of β-lactamase activity [4]. Predicting how a functional domain transduces an 

allosteric signal into its fusion partner poses a difficult problem. Finding successful designs 

requires a lot of screening and trial and error especially related to insertion sites and linker length 

and composition. Instead of fusion of an “input domain” (such as maltose-binding protein) to an 

“output domain” (such as β-lactamase) we explored an alternative approach to engineer a new 

small molecule binding site directly in the output domain. This removes the necessity to have to 

distinct entities communicate and provides a more rational way to engineer control into the 

protein.  

In order to achieve this, we devised a method called “chemical rescue of structure” [5-8]. 

First, we identify a buried “buttressing” side chain that is responsible for maintaining structural 
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integrity of the functional site of the protein (active site or binding site). We then remove the side 

chain (e.g. WàG) causing a cavity forming mutation that renders the protein inactive by 

disrupting the structural integrity of the active site. Addition of an exogenous ligand that can 

replace the structural moiety removed by mutation and restore structure and thus function.  

As a proof of concept, we applied this to the sugar metabolizing enzyme β-glycosidase 

from a species of thermophilic archaeon. In this example a buried tryptophan residue next to the 

active site was mutated into a glycine. The resulting cavity caused an active site tryptophan 

reside to rotate into the cavity to fill the void. This alternate conformation breaks an essential 

hydrogen bond formed between the pyrrole ring nitrogen and hydroxyl group of the substrate 

sugar. Addition of exogenous indole binds the cavity and causing the active site tryptophan to 

rotate back into the catalytically competent conformation. The mechanism of disruption and 

subsequent reactivation of activity is mediated by a discrete conformational change in a single 

tryptophan residue.  

In our proof of concept model, the cavity forming mutation was made by deleting a single 

tryptophan to glycine. This mutation caused a 730-fold reduction in kcat/Km which was fully 

rescued by complementing with indole. Indole in this case would replace all of the deleted atoms 

except for the β-carbon of tryptophan. Would replacing the β-carbon by adding a methyl group 

to the 3 position of indole improve rescue? In chapter 1, I explore the rules that dictate what 

makes the best protein-ligand pair such that these basic principles can be extended and applied to 

other systems [7]. What is the best way to design the cavity and complement it? How malleable 

is the de novo binding site? Will the effector-binding site be able to accommodate other ligands? 

To answer these questions, I applied a structure-activity relationship approach by exploring the 
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extent of rescue for a range of indole analogues. Additionally, I explore the possibility of using a 

double mutation to create a larger cavity. 

Inhibition of protein function with small molecules - Exploring small molecule druggable 

states in conformational ensembles of protein-protein interfaces 

In chapter 2, I use computational simulations to study the conformational landscapes of 

protein-protein interfaces (PPIs) to explore their druggability with small molecule inhibitors. 

Historically, targets of small molecules have been proteins whose cognate partners are 

themselves small molecules. These include enzymes, GPCRs, ion channels and transporters [9]. 

However, there is an ever-increasing interest in multiple classes of proteins that do not naturally 

bind small molecules for therapeutic intervention. These include proteins that bind to nucleic 

acids or to other proteins. In particular, systems involving protein-protein interactions have been 

much more difficult to target than traditional drug targets. Because they did not evolve to bind 

small molecules, they lack the deep pockets necessary interact with small molecules with high 

potency. The interaction surfaces between two proteins instead tend to be large and flat. This 

makes identification for potential sites of inhibition much more difficult.  

In cases where inhibitors have been identified, a pocket forms on the surface that was not 

present in the unbound structure. Additionally, small molecule inhibitors do not need to span the 

entirety of the interface. It was found that PPIs interact through binding “hot spots” which are 

residues that disproportionately contribute to the majority of the binding free energy [10, 11]. 

Together, this shows that PPIs are indeed druggable. However, since the existence of these 

pockets is transient in nature, identifying the druggable states poses a difficult challenge. 



 4 

Typical structure based experimental techniques like x-ray crystallography and NMR can 

reveal high-resolution snapshots of low energy states within the conformational ensemble. 

However, the dynamic nature of cryptic pockets means that transient states may not be captured 

using these techniques. Additionally, the pocket formed when bound to a small molecule is often 

different from the conformational changes observed when the protein is bound to its cognate 

protein partner. In recent years, the search for druggable cryptic pockets has been the focus of 

many computational efforts in an attempt to model them [12-14].  

Molecular recognition of protein-ligand complexes falls under two models. In the 

induced fit model, the small molecule ligand causes the conformational change necessary to 

bind. In the conformational selection model, the conformational change happens before the 

ligand is present as part of the normal conformational fluctuations. The small molecule then 

binds to the preformed pocket and pushes the equilibrium towards that state. Computational 

methods like molecular dynamics simulations provide a robust tool for sampling conformational 

landscapes that may reveal the underlying mechanisms at play.  

Once such tool has been developed in the lab using a biased sampling protocol within the 

Rosetta software suite [14]. Here we bias the conformational landscape to generate pocket 

containing conformations. If the conformational selection model holds true, our hypothesis is 

that pockets will form that are similar in shape to the pockets of known inhibitor bound 

structures. In chapter 2, I use this sampling method to explore the pocket dynamics within a set 

of four validated PPI targets. I then apply a high-resolution pocket shape comparison protocol 

that maps pocket topography of each snapshot and quantitatively assesses their shape similarity 

relative to known inhibitor bound pockets and between the ensembles themselves. The ultimate 
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goal is to then identify particular druggable transient pockets which can then be subjected to 

conventional computation aided drug design pipelines. 

Inhibition of protein function with other proteins - Designing a molecular plug of outer 

membrane protein efflux pump TolC 

The rise in multidrug-resistant bacteria has led to an increased unmet need for new 

therapeutics and strategies to combat deadly infections. The Centers for Disease Control 

estimates that in the United States alone, 2 million people will get antibiotic resistant infections 

resulting in the death of 23,000. Part of the issue is that there has been a dearth of new antibiotic 

drugs that have made it to market in the last several decades. The difficulty in bringing new 

drugs to market is a multifaceted complex problem that includes scientific, economic, and 

regulatory hurdles [15]. Multidrug-resistant clinical isolates deemed the ESKAPE pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been responsible for an 

increase in hospital acquired infections [16]. The ESKAPE acronym aptly designated for their 

ability to escape available antibiotic treatments. Of the seven pathogens, four are Gram-negative 

species. Gram-negative bacteria are particularly difficult to target due to their double-membrane 

cellular architectures that make a formidable barrier to penetrate. Furthermore, a new class of 

antibiotics targeting Gram-negative bacteria has not been introduced in the last half century [17]. 

One promising avenue however is the repurposing of currently available antibiotics to 

circumvent difficulties in generating new drug leads. 

The increased ability to tolerate antibiotics is largely in part due to overexpression of 

broad-spectrum efflux pumps like the resistance-nodulation-division (RND) superfamily that 

extrude drugs and reduce their effective intracellular concentrations [18, 19]. Of the RND 
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superfamily, the most notable and heavily studied system is the AcrAB-TolC efflux pump from 

Escherichia coli.  The AcrAB-TolC complex spans the entirety of the cell envelope from inner to 

outer membrane. AcrB forms the integral inner membrane transporter powered by proton motive 

force and contains the primary antibiotic binding pockets. TolC forms the conduit and consists of 

an alpha-helical periplasmic portion and a β-barrel outer membrane crown. AcrA is an adapter 

protein linking AcrB and TolC within the periplasm. The complex exists in a 3:6:3 stoichiometry 

for AcrB:AcrA:TolC [20, 21]. Once assembled, the AcrAB-TolC efflux machinery exhibits 

broad substrate specificity and has been shown to extrude various compounds such as bile salts 

and detergents [22] to multiple classes of antibiotics such as erythromycin, chloramphenicol, 

tetracycline, doxorubicin, β-lactams, acriflavine [23, 24]. Efflux pump inhibitors (EPIs) could 

serve to circumvent this mechanism and work synergistically with current antibiotics to increase 

their potency. 

Because the AcrAB-TolC efflux system requires many linked components to function, 

there exist multiple avenues to combat its activity. One strategy of exploration is the chemical 

modification of existing antibiotics [17] so they are no longer substrates for AcrB. However, 

chemical modification to abolish AcrB binding while retaining the physicochemical properties 

that afford membrane permeability and inhibitory action on the target can prove to be difficult. 

Synthetic DNA/RNA mimics that silence mRNA expression of efflux pump components have 

been shown to increase efficacy of antibiotics [25]. In principle, compounds that uncouple proton 

motive force from AcrB would collapse the energy required to support drug transport [26, 27]. 

However, currently known compounds such as carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP) are not compatible with endogenous mitochondrial function and only serve as 

experimental chemical tools. Recently, using computational virtual screening methods targeting 



 7 

the periplasmic adapter protein AcrA, small molecule inhibitors were identified that inhibit 

mature pump assembly and reduced the minimum inhibitory concentrations for novobiocin and 

erythromycin [28, 29]. 

One promising yet under explored tactic is plugging the channels responsible for 

antibiotic transport. It has been long postulated that an aspartate ring along the interior TolC 

presents a site for targeting when it was found that it could be blocked by cationic ions [30, 31]. 

Hexammine cobalt was shown to bind TolC by isothermal titration calorimetry and disrupt 

channel conductance. However, when determining minimum inhibitor concentrations in 

combination with erythromycin or fusidic acid it showed no synergistic effect. Targeting the 

system in this manner however offers the distinct advantage in that the acting agent does not 

have to cross the double membrane barrier to work on intracellular targets. 

I explore a means to target TolC from the extracellular environment by taking inspiration 

from nature. Colicins are a class of bacterial protein toxins that hijack outer membrane proteins 

to deliver a cytotoxic domain [32]. In particular, colicin E1 requires two outer membrane protein 

receptors BtuB and TolC. The N-terminal fragments have been shown to bind to TolC [33, 34]. 

In chapter 3, I use n-terminal fragments of colicin E1 to see if they can occlude TolC and thus 

prevent efflux.  

  



 8 

 

Chapter 1 
 
Full and Partial Agonism of a Designed Enzyme Switch† 

 
 

 

S. Jimmy Budiardjo1, Timothy J. Licknack2, Michael B. Cory2, Dora Kapros2, Anuradha Roy3, 

Scott Lovell4, Justin Douglas5, and John Karanicolas1,2* 

 

1Center for Computational Biology, 2Department of Molecular Biosciences, 

3High Throughput Screening Laboratory, 4Protein Structure Laboratory, 5Molecular Structures 

Group 

The University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534 

 

 

 

 

 

 

 
†The text of Chapter 1 is a reprint with permission from: Budiardjo SJ, Licknack TJ, Cory MB, 
Kapros D, Anuradha R, Lovell S, Douglas J, and Karanicolas J. (2016) Full and Partial Agonism 
of a Designed Enzyme Switch. ACS Synthetic Biology, 5(12), p. 1475-148 Copyright © 2016 
American Chemical Society. The supporting information for this chapter is included as 
Appendix A.1. 
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Abstract 
 

Chemical biology has long sought to build protein switches for use in molecular 

diagnostics, imaging, and synthetic biology. The overarching challenge for any type of 

engineered protein switch is the ability to respond in a selective and predictable manner that 

caters to the specific environments and timescales needed for the application at hand. We 

previously described a general method to design switchable proteins, called “chemical rescue of 

structure”, that builds de novo allosteric control sites directly into a protein’s functional domain. 

This approach entails first carving out a buried cavity in a protein via mutation, such that the 

protein’s structure is disrupted and activity is lost. An exogenous ligand is subsequently added to 

substitute for the atoms that were removed by mutation, restoring the protein’s structure and thus 

its activity. Here, we begin to ask what principles dictate such switches’ response to different 

activating ligands. Using a redesigned β-glycosidase enzyme as our model system, we find that 

the designed effector site is quite malleable and can accommodate both larger and smaller 

ligands, but that optimal rescue comes only from a ligand that perfectly replaces the deleted 

atoms. Guided by these principles, we then altered the shape of this cavity by using different 

cavity-forming mutations, and predicted different ligands that would better complement these 

new cavities. These findings demonstrate how the protein switch’s response can be tuned via 

small changes to the ligand with respect to the binding cavity, and ultimately enabled us to 

design an improved switch. We anticipate that these insights will help enable design of future 

systems that tune other aspects of protein activity, whereby, like evolved protein receptors, 

remolding the effector site can also adjust additional outputs such as substrate selectivity and 

activation of downstream signaling pathways. 
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Introduction 
 

Chemical biology has been used to engineer small molecule-dependent activity into a 

variety of select proteins: this has allowed external activation of pathways controlling 

phosphorylation [1], glycosylation [35], and proteolysis [2, 36]. However, each of these 

advances resulted from implementing pharmacological approaches uniquely tailored to the 

particular problem at hand. Recently, efforts have expanded to building synthetic switchable 

proteins in a more general way [3]. 

The potential utility of generalized protein switches is vast, and already they have 

successfully been used in certain cases to decipher cellular mechanisms and to construct novel 

devices such as biosensors [3, 37, 38]. Some of these generalized examples include switches that 

activate protein function by using a small-molecule to reverse constitutive degradation of the 

target protein [2, 36] or induce removal of a self-splicing protein element (an “intein”) [39-41]. 

These systems have typically been designed through an engineering-centric “bottom-up” 

approach [3]: functional modules from different biological systems are mixed and matched to 

obtain the desired function. In another example, maltose-binding protein (input domain) was 

fused to β-lactamase (output domain) such that sugar binding regulated β-lactamase activity [42]. 

However, engineering these switches is still far from rational; it entails extensive trial-and-error 

and/or directed evolution, particularly with regards to the linkers used for tethering together the 

functional modules [43]. Individual point mutants can also tune the behavior of such protein 

switches, through effects on either the input domain (effector binding) and/or the output domain 

(catalysis) [44]. While combinatorial libraries of randomized gene insertions and their point 

mutants can be tested to find combinations with the desired effect, it will nonetheless be 

advantageous to instead design these types of switches in a more rational way: this will enable 
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the switch’s output(s) to not only be predicted, but also tuned for use in different environments 

and timescales. 

As an alternative to this modular engineering strategy, we recently described a method 

called “chemical rescue of structure” that designs a new small molecule binding site directly into 

the protein’s output domain [5, 6]. We start by identifying a “buttressing” side chain in the 

protein core (e.g. a tryptophan) that is required to maintain the architecture of the protein 

functional site; removal of this structural feature by mutation to glycine (e.g. W�G) disrupts this 

architecture and leads to loss of function. We then restore the buttress by adding the cognate 

ligand (e.g. indole), which in turn restores the original protein conformation and rescues its 

activity. 

 

 

Our initial studies used β-glycosidase, a sugar-metabolizing enzyme from Sulfolobus 

solfataricus, as a model system. A high-resolution crystal structure revealed that when we 

Figure 1.1: Structural basis for inactivation and rescue in β-gly W33G. A comparison of 
the previously-determined crystal structures of wild type β-glycosidase (green) with its W33G 
mutant (pink). A covalent substrate analog (2-fluoro-2-deoxy-D-glucose, spheres) is included 
from WT structure to indicate the location of the active site; this compound was not present in 
either structure of β-gly W33G. (A) In the apo structure of β-gly W33G, W433 shifts into 
cavity that was previously occupied by W33; thus, W433 is no longer positioned to participate 
in hydrogen bonding with the substrate. (B) Upon soaking with indole, the holo structure of 
β-gly W33G shows that W433 has returned to its original position; indole (cyan spheres) 
occupies the cavity resulting from the W33G mutation. 
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introduced the W33G mutation, catalytic residue Trp433 shifted back into the newly-formed 

cavity (Figure 1.1a): this explained the observed loss of enzyme activity, because Trp433 

engages in key hydrogen bonding interactions with the substrate. Strikingly, by solving a holo 

crystal structure we found that indole binding shifts Trp433 back to its former position in the 

wild type conformation (Figure 1.1b): this explained the observation that addition of indole 

restores enzyme activity. Using the Michaelis-Menten model to interpret the enzyme kinetics, we 

found that introduction of the W33G mutation led to a 730-fold decrease in kcat/Km relative to 

wild type; this was completely restored upon addition of 10 mM indole [5]. 

Whether from “chemical rescue of structure” or from some other strategy, a current 

limitation in designing new molecular switches is the ability to selectively tune the responses of 

the switches in a predictable manner, as compared to the many other fields of engineering in 

which very precise control can be achieved [45]. Biological systems are inherently noisy and 

complex, making it difficult to predict in a rational way how a given system will react to a 

particular input signal [46]. In natural systems, such as G protein-coupled receptors (GPCRs), 

receptors have evolved to interact with a wide range of regulatory molecules [47] and can 

interact with different ligands that induce opposing responses [48]. In estrogen receptor-α, ligand 

binding dynamics can dictate the fate of unique signaling pathways [49]. In extreme cases, such 

as certain transcription factors, a single ligand can induce opposing responses on a given protein 

(agonist versus antagonist), depending on the context [50]. 

With regards to “chemical rescue of structure,” this comparison to natural signaling 

proteins prompts analogous questions. First, how should a cavity forming mutation be designed 

and then complemented in order to achieve optimal rescue? Second, how malleable is the 

resulting effector-binding site? In the case of the β-glycosidase example, the indole concentration 
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can be varied in order to tune Vmax. But natural systems are rarely regulated by just one ligand – 

to what extent will this synthetic system respond to other ligands? 

We envision two potential underlying structural mechanisms for rescue. In the first model 

the effector site behaves as a discrete switch, such that ligand binding exactly restores the 

geometry of the active site; such behavior is precedented by a recent study showing the discrete 

response of T4 lysozyme to a series of congeneric ligands [51]. Given such a model, the degree 

to which a given ligand activates the protein would be related solely to the ligand’s binding 

affinity at the effector site. In the second model, the effector site responds in a continuous 

fashion: more diverse ligands can be accommodated, and each may influence protein structure – 

and thus activity – slightly differently. In this model, activation by a ligand is driven not just by 

its binding affinity, but also by the extent to which the ligand precisely restores the active site 

geometry for catalysis; analogous behavior is observed in crystal structures of GPCRs bound to 

full and partial agonists, in that the partial agonists make only a subset of the specific interactions 

of the full agonists [52]. 

In this study we seek to distinguish between these two models, and to further define the 

ideal chemical and geometric characteristics of a maximally rescuing ligand. We anticipate that 

the governing properties of this system will shed insight on the tunability of molecular switches 

built from “chemical rescue of structure” for future applications. 

 

Results 
 

Structure-activity relationship of alternate effector ligands 

To probe the malleability of the effector site, we began by exploring the structure-activity 

relationship of rescue using a focused library of fifteen indole analogs with the β-glycosidase 
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W33G enzyme switch described above. To probe the effector site cavity (the void left behind by 

the Trp to Gly mutation), we compiled this set by adding or removing functional groups around 

the indole parent scaffold. In order to explore in-plane substituents, methyl groups were 

individually added to each of the seven outer positions. To probe the effect of removing the 

hydrogen bond donor and allowing ring pucker, we tested indene and indan. We also included 

naphthalene and quinoline to explore the effect of increasing the ring size slightly, and we 

included benzene, toluene, and N-methylaniline to explore the effect of smaller compounds. 

We tested each of these compounds in a β-glycosidase enzyme assay, to determine the 

extent to which each compound rescued activity (Figure 1.2). We used a high substrate 

concentration relative to the rescued enzymes’ Km values (Figure A1.1), such that our assay was 

designed to provide a readout on the effector’s influence on kcat. Because some effector 

compounds inhibited the wild type enzyme slightly at this high concentration, we normalized all 

results to the wild type enzyme under the same conditions. Each compound was tested at a 

concentration of 2 mM, because this was the maximum concentration at which all 15 compounds 

were soluble in our assay conditions. 
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Relative to the wild type enzyme, W33G retains 0.5% basal activity in the absence of any 

ligand. In our previous study we found that indole fully restored wild type activity at a 

concentration of 10 mM [5]; here, indole only restores 25% of the wild type activity because a 

lower concentration is used (2 mM). Of the 15 compounds tested, we found that 13 of them 

rescued activity; however, the extent of rescue was quite diverse. Among the seven 

methylindoles, for example, we observe the most rescue from 1- and 3-methylindoles; in 

contrast, 2-methylindole yields no increase in activity over the apo enzyme. Collectively these 

results show that structural details of the effector ligands can produce differing levels of catalytic 

activity – either through differences in binding affinity, or through conformational differences in 

Figure 1.2: Probing malleability of the β-gly W33G effector site. The initial velocity is 
shown relative to the wild type enzyme in the presence of the same effector ligand; compounds 
are presented in ascending order of activity. Product formation was measured 
spectrofluorometrically using 750 μM fluorescein di-β-D-galactopyranoside (FDGal) as a 
substrate; each effector ligand was tested at 2 mM. All data were collected in triplicate, and 
error bars correspond to the standard error of the mean. Bars marked with ** have a 
statistically significant difference in their mean values (p < 0.01). 
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the holo enzyme. In order to distinguish these possibilities, we next sought to directly detect 

binding of these ligands to the enzyme.  

 

Direct determination of effector binding 

We previously estimated the binding affinity of indole to β-gly W33G to be 0.75 mM in 

the presence of saturating substrate, and 15 mM in the absence of substrate [5]. The weak 

binding affinity of this interaction – and presumably those of the indole analogs – places it 

outside the sensitivity limits of many common approaches for detecting protein-ligand 

interactions. To overcome this hurdle we therefore turned to 19F NMR [53, 54]: the large 

chemical shift anisotropy of 19F nuclei results in line width differences of the fluorine signal 

between its free and protein-bound states, which is highly amenable for detection of weak 

interactions [55]. In other words, differences between the transverse relaxation times of the free 

and protein-bound states are manifest through broadening of the 19F signal [55, 56]. 

We began by identifying a fluorine-containing reporter molecule: we selected 6-

fluoroindole, having found that this compound rescues enzyme activity at a very similar level as 

indole itself (Figure A1.2). Free in solution, the fluorine in this compound exhibits a sharp peak 

at -122.07 ppm. Upon addition of WT β-gly there is no change to this peak; however, upon 

addition of β-gly W33G we observe considerable peak broadening indicating that the reporter 

binds to the cavity-containing mutant (Figure 1.3a, Table A1.1). Importantly, for this 

experiment we included 2,4-dinitrophenyl 2-deoxy-2-fluoro-β-D-glucopyranoside, a covalently-

attached substrate analog of this enzyme: given the allosteric linkage between the active site and 

effector site, we reasoned that inclusion of a substrate analog would order the active site residues 

for catalysis, and in doing so would also pre-order the effector site residues for ligand binding. 
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Next, we evaluated the ability of several ligands to compete with 6-fluoroindole for 

binding to β-gly W33G (presumably at the allosteric effector site). In addition to indole, we 

selected 3-methylindole (the next best rescuing compound), 2-methylindole (no rescue), and 

N-methylaniline (a smaller compound with intermediate rescue). 

Upon addition of indole to our sample, we find that the 19F signal sharpens (Figure 1.3a, 

Table A1.1): this implies that indole displaces some of the 6-fluoroindole from the effector site. 

Figure 1.3: Direct determination of effector binding using a 19F NMR competition assay. 
(A) 6-fluoroindole (2 mM) is used as a reporter molecule in all cases, with 500 μM protein 
concentration. Each competitor ligand was tested at a concentration of 5 mM. The sharp peak 
observed for the unbound reporter is broadened upon binding to the protein; ligands that 
compete for this binding site displace the reporter, leading to peak sharpening. (B) The packing 
of wild type β-glycosidase around Trp33 is tightest around the 2-position (arrow), making it 
particularly difficult to accommodate an extra methyl group here. 
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We also observe analogous peak sharpening for both 3-methylindole and N-methylaniline. In 

contrast, addition of 2-methylindole produces very little, if any, peak sharpening; this suggests 

that 2-methylindole binds to β-gly W33G much less strongly than 6-fluoroindole, and the other 

analogs included in this experiment. 

This in turn provides an explanation for why 2-methylindole rescued activity less than 

other analogs (Figure 1.2). It is not the case that 2-methylindole binds to the allosteric effector 

site in a manner unproductive for catalysis; rather, 2-methylindole fails to rescue activity because 

it simply does not bind to this site. This explanation is further consistent with the protein 

structure (Figure 1.3b): the protein environment around Trp33 in the wild type enzyme is 

tightest around the 2-position, making this the most sterically challenging location at which to 

accommodate an extra methyl group. 

19F NMR competition assays have been used to measure dissociation constants ranging 

from low nM to high μM [56], but unfortunately this experiment does not allow us to determine 

the binding affinities of these ligands in an accurate and quantitative way. Nonetheless, as a 

qualitative measure of binding this assay complements the enzymatic functional assay that will 

be presented below, for discriminating non-rescuing compounds that do not bind, versus those 

that bind but do not rescue.  

 

Effect on rescue of both the substrate and the effector ligand 

To directly examine potential differences in the active site geometry resulting from 

rescue by alternate ligands, we soaked crystals of β-gly W33G with 3-methylindole, with N-

methylaniline, and with several other ligands. While soaking with indole led to a very useful 

crystal structure of that complex [5], upon soaking with other ligands we found only the unbound 
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protein. Attempts to co-crystallize other ligands with β-gly W33G also yielded the unbound 

protein. For this reason, we sought to probe for small structural differences indirectly, through 

effects on substrate recognition. 

Others have shown for allosteric activators of an unrelated system that the level of 

activation can depend on the structural properties of a specific substrate, and is thus a function of 

the precise arrangement of the activator-enzyme-substrate complex [57]. Our previous study 

implicated Trp433 as the switch that distinguishes the active and inactive states of β-gly W33G. 

Accordingly, we anticipated that the precise placement of Trp433 in response to the rescuing 

ligand would be crucial for dictating the level of catalysis in the holo enzyme – and that rescue 

may be dependent not only on the effector ligand, but also on the choice of substrate. 

The structure of the wild type β-glycosidase has been solved in complex with two 

different covalent substrate analogs, 2-fluoro-2-deoxy-D-galactose (2F-Gal) and 2-fluoro-2-

deoxy-D-glucose (2F-Glc) [58]. While these two inhibitors form nearly identical interactions 

with the active site, the primary difference in these two structures is the interaction of the 

substrate analog with our “switch” residue, Trp433: 2F-Gal requires that the Trp433 sidechain 

splits its hydrogen bonding potential between the C3 and C4 hydroxyls (Figure 1.4a), whereas 

the different stereochemistry at the C4 position in 2F-Glc allows the Trp433 sidechain to 

hydrogen bond only with the C3 hydroxyl (Figure 1.4b). Based on this difference we anticipated 

that Gal-derived substrates would be more sensitive to structural perturbations of Trp433 than 

Glc-derived substrates. As a consequence, we further anticipated that Glc-derived substrates 

would be easier to rescue by effectors that do not perfectly fit the cavity, and may therefore not 

restore the perfectly ideal catalytic geometry of Trp433. 
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To test this hypothesis, we compared rescue using Gal-derived substrates versus Glc-

derived substrates. Starting with the same Gal-derived substrate utilized in Figure 1.2 

(fluorescein di-β-D-galactopyranoside, FDGal), we again observe better rescue with 2 mM 

indole than with 2 mM 3-methylindole. However, when we instead use the analogous Glc-

derived substrate (fluorescein di-β-D-glucopyranoside, FDGlc) the difference in rescue between 

these substrates is greatly reduced (Figure 1.4c). As anticipated, then, rescue of the Gal-derived 

substrate depends more on precisely recapitulating the catalytic geometry of Trp433. If its 

position were perfectly superposed with the Trp33 sidechain in the wild type enzyme, the 

additional methyl group in 3-methylindole would align to the original Cβ position; in the rescued 

mutant, this would form a steric clash with the Cα to which it was previously covalently 

attached. We therefore expect that the 3-methylindole location would be slightly shifted relative 

to Trp33 (and relative to rescuing indole), which in turn explains its slightly decreased ability to 

rescue activity against FDGal. Though subtle, the ability of these rescuing ligands to shift the 

Figure 1.4: Trp433 forms different interactions with Gal versus Glc, allowing effectors to 
rescue to different extents, leading to slightly different effector preferences. Crystal 
structures of wild type β-glycosidase bound to covalent substrate analogs (A) 2F-Gal and 
(B) 2F-Glc. The active site residue Trp433 makes distinct hydrogen bond interactions 
depending on the sugar’s stereochemistry at the C4 position. (C) Enhancement of initial 
velocity (relative to the apo enzyme) for substrates that differ only at this stereocenter (FDGal 
versus FDGlc), rescued using either indole or 3-methylindole. Assays were carried out using 
250 μM substrate and 2 mM effector. Bars indicated have a statistically significant difference 
in their mean values (* with p < 0.05, ** with p < 0.01). 
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substrate preference for this enzyme is also highly reminiscent of “functional selectivity” in the 

pharmacology of natural signaling systems [59-62]. 

 

Separating effects of binding affinity from effects of active site geometry 

To definitively separate effects of binding affinity from effects on the active site 

geometry, we next examined the concentration dependences of these effectors on the rate of 

product formation, using FDGal as substrate. To mitigate potential effects on Km (and thus 

simplify analysis), we again carried out experiments in a regime at which the substrate 

concentration (750 μM) is higher than Km of the rescued enzyme (Figure A1.1); thus, the 

observed initial velocity depends primarily on Vmax (which, in turn, depends in part on the 

effector concentration). 

To fit the resulting initial velocities, we adapted the rate equation of a simple allosteric 

kinetic mechanism [63] by simplifying under the limit of saturating substrate (see Methods). This 

gave an equation that relates the change in initial velocities due to rescue to two key parameters, 

KD and W. KD is the effector dissociation constant, and W is a “linkage” term describing the 

magnitude of the effect of the allosteric ligand on Vmax. Structurally, the term W can also be 

interpreted as the extent to which the rescuing ligand restores the enzyme’s catalytic activity, 

because it reports on the rate of the holo enzyme. 
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Indole, 3-methylindole, and N-methylaniline each produce dose-dependent increases in 

the initial velocity that are well-described by this equation (Figure 1.5). To remain within the 

solubility limits for all three compounds, we were constrained to a maximum concentration of 

5 mM. The curves have not fully saturated by this concentration, and so we present two views of 

the data: one that includes the extrapolated curve fitting (to show the full behavior of the model), 

and one that instead focuses only on the region for which experimental data was obtained (to 

show the agreement of the data to the model). Through these curve fits, the values of KD and W 

are obtained in tandem. To clearly establish the limits of this extrapolation, we report the bounds 

of KD and W (one standard error in either direction); the resulting bounds on the fitted curves are 

shown visually as well for comparison (Figure A1.3). 

Among these three compounds, indole has the highest linkage term (W); this is consistent 

with our expectation that indole most effectively rescues the precise geometry of the active site. 

Figure 1.5: Full and partial agonism of β-gly W33G. Enzyme assays carried out at high 
substrate concentration (750 μM FDGal) demonstrate the dependence of the initial velocity 
(and thus Vmax) on effector concentration. Both panels show the same data, expanded in the 
right panel to better show the agreement between the data and the model that was fit to it. All 
data were collected in triplicate, with all replicates shown explicitly on the plots. Experimental 
uncertainly of the fit values for KD and W are reported as a range corresponding to one standard 
error in either direction. 
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In fact, our extrapolation suggests that at high enough concentration the indole-rescued W33G 

mutant would actually surpass the rate of the wild type enzyme. While we cannot quite access 

these concentrations due to indole’s solubility, it is possible that the additional flexibility of the 

rescued enzyme allows W433G to adopt a conformation very slightly different than that of the 

wild type enzyme (and even more favorable for catalysis). 

While the linkage term (W) for 3-methylindole is unsurprisingly worse than for indole, 

the KD value is actually slightly better than for indole. Thus, 3-methylindole appears to bind to 

β-gly W33G at least as tightly as indole, but does not rescue activity to the same extent because 

it does not fully restore the catalytic geometry. This observation is also consistent with those 

from the experiments described in the previous sections. 

Finally, we compare the behavior of N-methylaniline to that of 3-methylindole. While the 

fitted values for W and KD are very similar for both ligands, the small differences provide an 

opportunity to visually highlight how these parameters together dictate the response to an 

effector ligand. 3-methylindole has a superior KD and thus more activity at low effector 

concentrations; in contrast, N-methylaniline has a superior W value and thus more activity at 

high effector concentrations – albeit at concentrations accessible only via extrapolation, due to 

solubility restrictions. 

Drawing from long-established “receptor theory” pharmacology of natural signaling 

systems [64], 3-methylindole and N-methylaniline behave as partial agonists for the β-gly 

W33G “receptor”, in relation to the full agonist, indole. 
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Designing a better activating ligand for β-gly W33G 

To test this model of β-gly W33G activation, we sought to rationally design a ligand with 

enhanced signaling relative to indole itself. Given our model, it will be very difficult to design a 

compound with more activity at high effector concentrations (better W), since this would require 

shifting the catalytic residues in a very prescribed way. Instead, we focused on ligands that might 

have better activity than indole at low effector concentrations, where binding affinity (better KD) 

is most responsible for determining activity. 

Selectively adding fluorine is a common step in medicinal chemistry when seeking to 

improve potency of a compound: this makes the compound more lipophilic and also allows for 

productive halogen-pi interactions [65, 66]. Because fluorine is isosteric with hydrogen, shape 

complementary for the receptor is typically preserved. Further, fluorine-substituted indoles (such 

as the reporter compound used in the 19F NMR competition assay) at almost all positions are 

commercially available. 
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To begin, we solved the crystal structure of one of these, 5-fluoroindole, in complex with 

β-gly W33G (Figure 1.6a). Unsurprisingly, we found that 5-fluoroindole engages β-gly W33G 

in the same manner as indole, with no notable differences relative to the indole-bound or wild 

type structures of the enzyme. We then characterized rescue of activity from 5-fluoroindole, as 

Figure 1.6: 5-fluoroindole rescues β-gly W33G with a different signaling profile than 
indole. (A) The crystal structure of 5-fluoroindole, solved to 1.75 Å resolution. At left, 
superposition with indole shows that 5-fluoroindole occupies essentially the same binding 
model (electron density for 5-fluoroindole is presented in Figure S4). At right, superposition 
with the wild type β-glycosidase shows that 5-fluoroindole restores the position of Trp433 
(superposition with the indole-bound structure is presented in Figure S5). (B) β-gly W33G 
activity can be rescued either by indole or 5-fluoroindole. 5-fluoroindole binds more tightly, 
and thus rescues more effectively at low concentrations. At higher concentrations the 
difference in activity is reduced, and extrapolation suggests that indole will provide more 
activity than 5-fluoroindole at saturation. In all cases 750 μM FDGal was used as substrate. All 
data were collected in triplicate, with all replicates shown explicitly on the plots. Experimental 
uncertainly of the fit values for KD and W are reported as a range corresponding to one standard 
error in either direction. 
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we previously did for 3-methylindole and N-methylaniline. Indeed, relative to indole we find that 

5-fluoroindole provides enhanced β-glycosidase activity at each of the concentrations we tested 

(Figure 1.6b). Notably, however, this difference is manifest most at low effector concentrations; 

as the concentration is increased indole starts to catch up with 5-fluoroindole, and is extrapolated 

to ultimately surpass the activity induced by 5-fluoroindole. This behavior is captured 

quantitatively through the parameters of each fit, in which KD favors 5-fluoroindole but W favors 

indole. While the crystal structure cannot provide an explanation for the difference in W, we 

attribute this to a very small difference in either the structure or dynamics of Trp433 in response 

to these two ligands. 

 

Designing activating ligands for β-gly W33A 

Encouraged by the ability to rationally design an altered response by varying the rescuing 

ligand, we next sought to adjust the shape of the β-gly cavity, and test whether complementary 

rescuing ligands could be designed to these new shapes. As a first experiment, we reduced the 

size of the cavity by incorporating W33A instead of W33G. Earlier, we explained the preference 

of β-gly W33G for indole over 3-methylindole (Figure 1.5) by pointing out that while 

3-methylindole restores the same number of removed (non-hydrogen) atoms that were removed 

by mutation, rescue would require close contact between non-covalent atoms that were 

previously bonded to one another (Cα and Cβ). Applying this logic to W33A, then, one would 

expect a steric clash between the Cβ of Ala33 and the atom replacing the Cγ of the original 

tryptophan sidechain (i.e. the indole 3-position). Instead, one would predict better rescue by the 

corresponding compound that lacks this atom: N-methylaniline. Spurred by this rationale, we 

therefore explored rescue of β-gly W33A by N-methylaniline, indole, and 3-methylindole. 
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Consistent with this expectation, we find that N-methylaniline rescues β-gly W33A better 

than either indole or 3-methylindole (Figure 1.7); however, the difference was surprisingly 

modest. A further surprise was the fact that 3-methylindole rescued activity better than indole, 

which was counterintuitive given that this experiment entailed reducing the size of the cavity. 

 

 

The explanation for both of these puzzles is found in the separate contributions from 

active site geometry (W) and binding affinity (KD). N-methylaniline was expected to be most 

compatible with the Trp433 geometry that is optimal for catalysis; indeed, N-methylaniline has 

the highest value of W. Its relatively modest activation, meanwhile, derives solely from its poor 

binding affinity, which may reflect the entropic cost of ordering its freely rotatable bond (that is 

not present in the other compounds). In the same vein, the surprisingly good activity of 

3-methylindole relative to indole also derives exclusively from a difference in binding affinity, 

presumably because 3-methylindole is more hydrophobic than indole. While it remains 

surprising that the value of W is not much worse for 3-methylindole than for indole, we speculate 

Figure 1.7: N-methylaniline is the optimal rescuing ligand for β-gly W33A. The relatively 
modest rescue by N-methylaniline, as well as the fact that 3-methylindole rescued better than 
indole, can be explained by separately examining the binding affinity (KD) and contribution to 
the active site geometry (W) for each compound. In all cases 750 μM FDGal was used as 
substrate. All data were collected in triplicate, with all replicates shown explicitly on the plots. 
Experimental uncertainly of the fit values for KD and W are reported as a range corresponding 
to one standard error in either direction. 
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that 3-methylindole may flip to position its methyl group towards the exposed region used by 

indole’s amine group (Figure 1.3b); this hypothesis could best be tested through crystallographic 

evidence, however we have been unable to solve a structure of either β-gly mutant in complex 

with 3-methylindole. Finally, we note that the 3-methylindole and indole values of W are lower 

for W33A than for W33G; this is also consistent with the hypothesis that neither of the 

compounds can restore the active site structure quite as accurately when disrupted by Ala33. 

In summary, while N-methylaniline proved to be the optimal ligand for rescuing this 

smaller cavity, the magnitude to which catalytic activity could be restored was nonetheless 

limited by the small size and flexible nature of this compound. To design a more sensitive 

switch, we therefore introduced a larger cavity into this enzyme. 

 

Designing activating ligands for β-gly W33G_V37A 

Based on the structure of the wild type enzyme, there was only a single nearby sidechain 

in plane with the indole ring of Trp33, Val37 (Figure 1.8a). To expand the allosteric effector 

site, we therefore introduced an additional mutation, V37A, into β-gly W33G. Based on the 

location of this additional cavity-forming mutation, we expected that β-gly W33G_V37A would 

best be rescued by indole substituted at the 5-position. 
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We initially tested the activity of both indole and 5-methylindole against β-gly W33G, at 

a concentration of 2 mM (Figure 1.8b). As in our previous experiment (Figure 1.2), we found 

that indole conferred about twice the activity of 5-methylindole under these conditions. Testing 

these two compounds against β-gly W33G_V37A, however, showed a reversal of their activities: 

now 5-methylindole proved superior over indole. 

To understand the basis for this difference, we explored β-gly W33G_V37A activity as a 

function of effector concentration (Figure 1.8c). Perhaps unsurprisingly, both compounds have 

very similar values of W: this implies that both compounds engage the effector site with very 

similar binding modes, and thus interact with Trp433 in the same way. Accordingly, the basis for 

Figure 1.8: 5-methylindole effectively rescues β-gly W33G_V37A. (A) Based on the crystal 
structure of the wild type enzyme, Val37 was a natural location at which to expand the 
allosteric effector site. We anticipated that reducing the size of this sidechain would allow an 
additional substituent at indole’s 5-position (arrow). (B) At a concentration of 2 mM, indole 
rescues the β-gly W33G and W33G_V37A mutants about equally well. Relative to indole, 
5-methylindole rescues β-gly W33G much less, and β-gly W33G_V37A much more. Error bars 
correspond to the standard error of the mean, and bars marked with ** have a statistically 
significant difference in their mean values (p < 0.01). (C) By separately examining the binding 
affinity (KD) and contribution to the active site geometry (W), it is clear that the basis for the 
difference in rescue of W33G_V37A derives from the tighter binding affinity of 
5-methylindole for this double mutant. In all cases 750 μM FDGal was used as substrate. All 
data were collected in triplicate, with all replicates shown explicitly on the plots. Experimental 
uncertainly of the fit values for KD and W are reported as a range corresponding to one standard 
error in either direction. 
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the greater potency of 5-methylindole comes from its binding affinity (KD), which is almost an 

order of magnitude tighter than that of indole. This observation is also unsurprising, given the 

extra hydrophobic surface area that is buried upon binding of 5-methylindole instead of indole. 

At the outset of this study, we tested a panel of indole analogs at 2 mM for rescue of 

β-gly W33G, and found that none of these surpassed the 25% of wild type activity recovered by 

indole itself (Figure 1.2). Now, with a more refined view of this system predicated on 

pharmacological receptor theory [64], we have designed a new protein-ligand pair that exhibits 

almost 80% of wild type activity at 2 mM effector (Figure 1.8b). 

 
Discussion 
 

In the introduction to this study, we laid out two potential structural mechanisms for 

rescue at this designed allosteric effector site. In the first model the effector site behaves as a 

discrete active/inactive switch, activated through ligand binding. In the second model the effector 

site behaves as a rheostat, reporting not only on the presence of an activating ligand, but also on 

its precise structural complementarity for the effector site. 

All of the accumulated evidence in our study points to the latter model. Numerous 

methylindoles show activity (all but 2-methylindole), highlighting the malleability of this site for 

accommodating alternate ligands. While certain ligands bind to this site more tightly than indole, 

none rescue the precise active site geometry optimal for catalysis quite as effectively as indole: 

instead, they serve as partial agonists of β-gly W33G. 

Through the structure-activity relationship compiled for β-gly W33G, two principles 

emerge that guide design of agonists to fit a given cavity. First, the ideal rescuing ligand should 

replace the protein atoms removed by mutation as closely as possible: this leads to the most 
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activity once the ligand is bound. Second, there may be a small tradeoff between a steric clash 

and a small cavity when replacing the deleted atoms: as demonstrated through indole’s rescue of 

β-gly W33G and N-methylaniline’s rescue of β-gly W33A, the small unfilled volume is less 

detrimental for activity than the structural rearrangement required to resolve the steric clash. 

With these design principles in mind, it became possible to rationalize the complete behavior of 

many different activating ligands, and also to design a new switch with enhanced activity. 

The key strategy motivating design of the 5-methylindole / β-gly W33G_V37A switch 

was to improve binding affinity while at the same time maintaining the precise complementarity 

that restored the optimal geometry of Trp433. Given the very small ligands (indole has only 9 

non-hydrogen atoms), there is an intrinsic biophysical limit to the potential binding affinity that 

can be achieved [4, 67]. Indeed, the ligand efficiency (binding free energy per non-hydrogen 

atom) [67] of indole binding to β-gly W33G is -0.31 kcal/mol⋅atom (Table A1.2), which is 

comparable to the median ligand efficiency of other protein-ligand complexes (-0.34 

kcal/mol⋅atom) [4]. By design, 5-methylindole incorporates an additional potent interaction 

(burial of the methyl group in a tight cavity), increasing the ligand efficiency to -0.43 

kcal/mol⋅atom. Given the typical limits of ligand efficiency [4], designing switches that respond 

to lower ligand concentrations will likely require the use of ligands that rescue larger cavities, or 

more sophisticated mechanisms that incorporate feed-forward signaling. 

In our studies of other model systems activated by indole after incorporation of W�G 

cavity-forming mutations, we found that inactivation and rescue could be mediated by local or 

global unfolding/refolding, rather than through a discrete conformational change [6]. This 

mechanism enabled the use of effector sites located much further from the active site, but may 

come at the expense of sensitivity towards slightly different ligands. Here, we demonstrated that 



 33 

the response to different ligands could be tuned through a combination of binding affinity (KD) 

and precise structural complementarity (W). We anticipate that longer-ranged allosteric switches 

built in manner are less likely to preserve the subtle structural response to different ligands as the 

signal is transduced through the protein; as a result, the response may instead be dominated 

simply by the binding affinity. The same limitation is also likely to switches that are built by 

recombining modular domains [45, 68], because it is difficult to predict precisely how the linkers 

will transduce the input signal over to the output domain. An important advantage of chemical 

rescue of structure is the ability to place the location of the effector site in close proximity to the 

output signal (i.e. the active site), which in turn may facilitate the graded responses we 

demonstrate here. 

Looking forward, careful modulation of the response over a short distance may also 

facilitate design of switches that exhibit functional selectivity. Already we observe this property 

in β-gly W33G – though not explicitly designed – in the fact that indole and 3-methylindole tune 

the enzyme’s preference for substrates containing galactose versus glucose. Natural systems 

make extensive use of this paradigm, as exemplified by GPCRs that initiate signaling through 

either the canonical G protein-mediated pathway or the non-canonical β-arrestin G protein-

independent pathway, depending on the particular ligand that it bound [48, 69, 70]. We anticipate 

that the design principles emerging from this study of the β-gly W33G designed allosteric 

effector site will provide a first step towards rationally designing new synthetic switches capable 

of absorbing information from several different molecular cues, and providing distinct and 

meaningful responses to each of them [3]. 
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Methods 
 

A complete description of methods is available as Supporting Online Materials. 

Coordinates and structure factors for the crystal structure of β-gly W33G bound to 5-fluoroindole 

has been deposited with the Research Collaboratory for Structural Bioinformatics Protein Data 

Bank (PDB) with accession code 5IXE. 

 

19F NMR competition assay 

The weak affinity of the interactions we sought to measure places them outside the 

sensitivity limits of techniques to such as surface plasmon resonance (SPR), isothermal titration 

calorimetry (ITC), and differential scanning fluorimetry (DSF). The sensitivity problem is 

exacerbated for some of these techniques by the particularly small ligands (< 200 Da) and the 

relatively large protein (56,000 Da). We recognized that the problem of detecting very weak 

binding of a small ligand is reminiscent of the challenges faced in fragment-based drug discovery 

campaigns, and therefore borrowed an emerging tool from their repertoire, 19F NMR [53, 54]. 

19F NMR spectra were acquired on a Bruker DRX spectrometer equipped with an 11.7 T 

magnet (19F resonance frequency equals 470 MHz). 500 μM β-glycosidase in 50 mM phosphate 

buffer in H2O with 10% protonated DMSO, 2 mM 6-fluoroindole and 5 mM of the competitor 

ligand. 

Protein samples were pre-treated with 2,4-dinitrophenyl 2-deoxy-2-fluoro-β-D-

glucopyranoside. The 2,4-dinitrophenol serves as a leaving group such that the 2-deoxy-2-fluoro-

β-D-glucose remains covalently attached to the protein. We confirmed labeling of the protein by 

broadening of the inhibitor’s 19F NMR peak, and also spectrophotometrically by production of 

2,4-dinitrophenol. 
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β-glycosidase enzyme assay 

All β-glycosidase enzyme assays were conducted using 58 nM β-glycosidase with 

fluorescein di-β-D-galactopyranoside (FDGal) or fluorescein di-β-D-glucopyranoside (FDGlc) as 

substrate, in a buffer of 50 mM sodium phosphate pH 6.5 and 10% DMSO at 37°C. Upon 

catalysis, FDGal is cleaved twice yielding one D-galactose and two molecules of fluorescein. We 

detect product formation by following fluorescence with excitation at 485 nm and emission at 

528 nm. 

 

Rate equation 

To fit the observed initial velocities, we adapted the rate equation of a simple allosteric 

kinetic mechanism [63] by simplifying under the limit of saturating substrate. This gave the 

relationship: 

   𝑉 = 𝑉$%& +	)
*+,	(./0)	[3]
567[3]

    (Equation 1.1) 

where V is the initial velocity at a given effector concentration, [A] is the effector concentration, 

KD is the effector dissociation constant, Vapo is the maximal velocity in the absence of effector, 

and W is a “linkage” term describing the magnitude of the effect of the allosteric ligand on Vmax. 

Functionally, W is defined as the ratio of the maximal velocity at saturating effector, to the 

maximal velocity in the absence of effector (in other words, W is the fold-increase in Vmax that 

the effector can bring about). Throughout this work we interpret W as the extent to which the 

rescuing ligand restores the protein structure required for catalysis, because it reports on the rate 

of the holo enzyme. 
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Statistical Analysis 

Statistical significance of differences in the standard error of the mean were evaluated 

using two-tailed t-tests (Figures 1.2, 1.4, and 1.8). 

Standard errors for log(KD) and W were calculated with GraphPad Prism version 6.0 via: 

𝑆𝐸(𝑃;) = 	<=𝑆𝑆 𝐷𝐹@ A ∗ (𝐶𝑜𝑣(𝑖, 𝑖))   (Equation 1.2) 

where Pi represents the ith adjustable (non-constant) parameter. SS is the sum of the squared 

residuals. DF is the degrees of freedom (the difference between the number of data points and 

parameters fit by regression). Cov(i,i) is the i-th diagonal element of the covariance matrix. 

The standard error of log(KD) was used to calculate the upper and lower bounds of the KD 

values (one standard error above/below the best-fit value). 

 

Associated Content 
 

A complete description of experimental methods and procedures. Figure A1.1 showing 

Km values for W33G when rescued by three different effectors. Figure A1.2 showing indole and 

6-fluoroindole activity for β-gly W33G. Figure A1.3 showing upper and lower bounds of initial 

velocity at ± 1 standard error. Figure A1.4 showing electron density maps of 5-fluoroindole 

bound to β-gly W33G. Figure A1.5 showing superposition of 5-fluoroindole-bound and indole-

bound crystal structures. Table A1.1 containing 19F NMR peak integrals. Table A1.2 containing 

ligand efficiency values for each ligand/protein pair reported in this study. Table A1.3 

containing crystallographic data for 5-fluoroindole-bound β-gly W33G. This material is available 

free of charge via the Internet at http://pubs.acs.org. 
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Introduction 
 

Protein-protein interactions (PPIs) are involved in essentially every pathway in the 

human interactome. Therefore, modulation of PPIs offers enormous untapped potential for 

therapeutic intervention of diseases afflicting society. There have been great advancements in 

drug discovery in the last few decades with the advent of high throughput screening [71, 72], 

fragment-based drug discovery [73-75], and computational techniques [76] leading to potential 

drug candidates. Yet even with today’s advancements, efforts in targeting protein-protein 

interactions are far from routine. This is made apparent by scarcity of drug candidates that have 

advanced into clinical trials over the last few decades. Protein-protein interactions have 

historically been deemed “undruggable”. Just over a decade ago, James Wells deemed them the 

“high-hanging fruit” of drug discovery [77]. An archetype of protein-protein interactions is the B 

cell lymphoma 2 (Bcl-2) family of proteins that regulate apoptosis. Bcl-2 family members have 

arguably been the most heavily studied proteins involved in PPIs due to their role anti-apoptotic 

activity of cancer cells. However, it was not until 2015 which marked the first FDA approval of a 

selective small molecule inhibitor of Bcl-2 [78]. Developed by Abbvie and Genentech, 

Venetoclax received breakthrough therapy designation as a first-in-class treatment against 

chronic lymphocytic leukemia (CLL).  

The difficulty in drugging proteins of this nature stems from their interaction surfaces, 

which are flat and relatively featureless [9]. In contrast, traditional drug targets such as enzymes 

or GPCRs contain well-defined deep binding pockets that make them amenable to structure-

based techniques for inhibitor design. A key discovery revealed that small patches of residues, 

known as hotspots, contribute to the majority of the binding free energy between proteins 

making them amenable to small molecule inhibition without the need to occlude the entirety of 
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the interface [10, 11]. Comparison of the binding interfaces in crystal structures between the 

unbound state versus inhibitor bound or cognate protein bound state reveal that the relatively flat 

interaction surfaces undergo conformational rearrangements resulting in well-defined pockets, 

known as cryptic sites. Experimentally, NMR [79], multiple solvent crystal structures [80], and 

molecular tethering [81-83] have been used successfully to reveal these cryptic sites. However, 

exploring dynamics at the atomic detail necessary to capture new druggable pockets is limited 

with current experimental techniques. 

For targets not amenable to these techniques, there has been an increased interest in 

recent years to use computational methods to reveal cryptic sites through implementation of 

many different flavors of molecular dynamics simulations. Analogous to experimental SAR by 

NMR, cosolvent simulations have been used to identify hotspot interfaces by including organic 

probe molecules (benzene, ethanol, propanol, imidazole, etc.) in solution that cluster on 

hydrophobic patches on the protein, and in some cases induce pocket formation [12, 84-87]. 

Long timescale MD simulations, on the order of hundreds of microseconds, have been used to 

build Markov state models that reveal cryptic binding sites confirmed by experiment [13, 88, 

89]. Enhanced sampling techniques such as Accelerated Molecular Dynamics (aMD) apply a 

boost potential to the wells of the energy landscape reducing the barriers between states allowing 

efficient transitions potentially missed by conventional molecular dynamics [90]. Coupled to a 

pocket mining algorithm, aMD was used to determine druggability of each snapshot within a 

Bcl-xL ensemble. In this study, they found that 2% of the ensemble adopted large druggable 

pockets comparable to the properties Bcl-xL bound the to small molecule ABT-737. Mapping of 

cryptic site location alone is not sufficient in identifying druggable protein conformations so 
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using a combination of enhanced sampling and cosolvent methods has shown to improve 

identifying pockets with the magnitude of depth needed to bind a drug like compound [91, 92].  

What the previous methods have in common is that they require intensive computational 

resources. We previously developed a non-MD based sampling approach implemented in the 

Rosetta software suite used to generate ensembles of low-energy conformations suitable for 

binding small molecules through biased simulations that is computationally less computationally 

demanding [14, 93, 94]. Rosetta uses a Monte Carlo search to explore backbone and sidechain 

degrees of freedom and we added a biasing potential to the standard Rosetta energy function to 

drive the ensemble towards pocket containing conformations, akin to enhanced sampling MD 

approaches. The biasing term can be interpreted as the energy associated with small molecule 

binding. Using this technique, we previously investigated cryptic pocket formation and found 

that the interfaces are more predisposed to forming pockets than the rest of the protein [14]. The 

Vajda group came to a very similar conclusion when analyzing NMR ensembles of PPI targets 

and found that predicted binding sites from the unbound ensemble overlap with the known 

binding sites from inhibitor or peptide bound structures [95]. In another study, we explored the 

determinants of selectivity within the Bcl-2 family members using our pocket-optimization 

sampling protocol. We found that cryptic pockets can be quite malleable as the same protein can 

adopt different conformations when bound to ligands of different chemical classes. Conversely, 

different proteins bound to the same ligand adopt similar pocket shapes [94]. With respect to 

their druggability, because inhibitor bound crystal structure only represent one low energy 

conformation in the ensemble, it is important to consider protein dynamics which, in principle, 

could reveal alternate low energy conformations that are suitable for the design of new drug 

candidates.  
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To explore this idea, we applied our Pocket-Optimization protocol to a set of four PPI 

targets. Bcl-xL, Mcl-1, MDM2, and IL-2 and compare conformational ensembles from 

simulation to known small molecule bound crystal structures. To do this, we next applied our 

newly developed high-throughput pocket shape comparison algorithm which uses a geometric 

analysis to map protein surface topography to compare cryptic site conformation similarity. 

Through this analysis we find that some proteins involved in protein-protein interactions can 

adopt druggable pockets that are distinct from currently known inhibitor bound complexes, 

which offers the potential for trapping distinct conformational states and has implications for 

selective targeting and the potential for novel small molecule drugs.  

 

Results 
 

Computational Workflow 

We previously showed that the Pocket-Optimization protocol generates low-energy 

ensembles that overlap with ensembles generated without the biasing term using the Rosetta 

“relax” protocol [14, 94]. The Rosetta software suite’s energy function is a combination of 

physics-based force field terms and knowledge based statistical potentials [96]. A systematic 

comparison between a purely Molecular Mechanics based force field Amber and Rosetta 

perform similarly well in protein structure evaluation [97]. As such, as a basis for determining 

physiological relevance of pocket optimized conformations, we also generated ensembles using 

conventional unbiased MD simulations as it provides a more thermodynamically rigorous 

ensemble for comparison.  
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For each system we set up 4 simulations: the unbound protein through Pocket-Optimization, 

unbound protein through molecular dynamics (Figure 2.1A left), and two inhibitor bound 

systems through molecular dynamics (Figure 2.1A right). Exemplars were generated for each 

Figure 2.1. Computational Workflow: (A) Ensemble generation from the unbound protein 
using Pocket-optimization and molecular dynamics to find pocket containing conformations 
(left). Ensemble generation of the inhibitor bound proteins by molecular dynamics to generate 
pocking containing conformations (right). Exemplars are generated for each snapshot as a 
pocket shape descriptor (purple, red, blue, yellow). (B) Pocket shapes are quantitatively 
compared by the volume overlap of each exemplar using ROCS which calculates the 
ShapeTanimoto where OAB is the volume overlap of exemplars A and B, IA is the self-volume of 
exemplar A, and IB is the self-volume of exemplar B. 
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snapshot of the ensemble as a geometric pocket shape descriptor as a basis for conformational 

comparison (Figure 2.1A). We previously introduced the concept of an “exemplar” which is a 

geometric descriptor of a pocket’s volume and shape [93, 94]. Exemplars are built by placing the 

protein onto a grid and filling the void volume of a pocket with a collection of spheres. The 

spheres are not constrained to physical bond lengths or particular atomic radii and can be seen as 

an “idealized” ligand that represents the perfect complementary surface structure. By 

representing the pocket in a ligand-centric manner, we can compare shapes in a high-throughput 

quantitative matter using available virtual-screening shape comparison tools.  

Rapid Overlay of Chemical Structures (ROCS) calculates the three-dimensional similarity as 

the volume overlap between chemical entities [98]. The “chemical entities” in our case being 

exemplars of pockets of pocket shapes. Distances are reported by the ShapeTanimoto as 

calculated with the following equation:  

 

																																					𝑠ℎ𝑎𝑝𝑒𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 = 	 QRS
TR7TS/QRS

                       (Equation 2.1) 

 

Where OAB is the volume overlap of exemplars A and B, IA is the self-volume of exemplar A, and 

IB is the self-volume of exemplar B. Exemplars from each ensemble are compared to the 

experimentally determined crystal structure to determine (Figure 2.1B). Likewise, exemplars 

between all snapshots of each ensemble (all vs all) can also be compared to determine the pocket 

space sampled.  

 

 

 



 45 

Systems 

Protein-protein interactions can be classified based on the secondary structure of interacting 

partners. It has been suggested that PPIs involving a globular protein and a single linear or 

helical peptide element of the other protein are more druggable [99-101]. The binding peptide 

typically engages with two or three hotspots or sub-pockets on the protein. Inhibitors typically 

mimic the interactions of the peptide sidechains in the pocket. We selected three systems from 

this category of PPI: Bcl-xL, Mcl-1 and MDM2 (Figure 2.2A-C). On the other hand, PPIs 

involving two globular proteins have proven more difficult to target. The interfaces are 

discontinuous and involve tertiary structural elements on both proteins. Assigning which protein 

to assign as the “receptor” vs “ligand” to target is arbitrary and both proteins could be probed for 

cryptic pockets. Under this category we also simulate IL-2 (Figure 2.2D). 

 

 

B-cell lymphoma extra-large (Bcl-xL) is a member of the Bcl-2 family of proteins which 

regulate apoptosis. The delicate balance between pro and anti-apoptotic activities determines a 

Figure 2.2. Protein-Protein Interaction Classes: Protein targets (grey surface) with 
cognate protein partner (magenta cartoon) for two different classes of PPIs. Class I - 
Globular protein with a single peptide (A) Bcl-xL bound to BH3 peptide BAD 
PDBID:2BZW (B) Mcl-1 bound to BH3 peptide Bim PDBID:2PQK (C) MDM2 bound to 
p53 PDBID:1YCR. Class II – globular protein with another globular protein (D) IL-2 bound 
to IL-2Rα PDBID:1Z92. 
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cell’s fate. When Bcl-xL is upregulated, antiapoptotic activity contributes a cancer cell’s ability 

to circumvent cell death. In the bound state, Bcl-xL forms a long cleft containing two 

hydrophobic pockets that interacts with a single helical peptide (BH3 domain) of proapoptotic 

partners. BH3 peptides burry four hydrophobic residues into pockets designated P1-P4 [102]. 

Small molecule inhibitors of Bcl-xL are large (~800 Da) elongated molecules that span the 

hydrophobic groove and engage hotspots P2 and P4 (Figure 2.3A) [103]. This is reflected in the 

shape of the exemplar which encompass the small molecule and fill the volume of the pocket.  

Induced myeloid leukemia cell differentiation protein (Mcl-1) is another Bcl-2 family 

member with antiapoptotic activity. Upregulation of Mcl-1 contributes to Bcl-xL inhibitor 

resistance [42]. Although sequence identity between Mcl-1 and Bcl-xL is only ~18%, they share 

the same structural fold and binding groove but have different selectivity profiles for BH3 

peptides. Relative to Bcl-xL, the P2 pocket is highly dynamic while the P4 pocket is more rigid 

[102]. As such, inhibitors identified for Mcl-1 only engage P2 but penetrate deeper (Figure 

2.3B) [104]. The pocket shape is represented by a compact clustering exemplar.  

Mouse double minute 2 homolog (MDM2) is an E3 ubiquitin-protein ligase that down 

regulates tumor suppressor p53 through ubiquitin mediated protein degradation and thus is a 

target in cancer therapy. Like the Bcl-2 family proteins, the PPI interface involves a globular 

protein (MDM2) that binds to a single short peptide p53 (Figure 2.3C). The MDM2 pocket 

forms a wide bowl-like conformation in which the peptide of p53 which presents three 

hydrophobic residues close in primary space [105]. Small molecule inhibitors of MDM2 form 

trident that burry into the same three hydrophobic hotspots [106]. 

Interleukin-2 (IL-2) is an immune response regulator involved in T-cell activation and 

proliferation upon antigen presentation. Suppression of the immune response during allograft 
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transplantation by IL-2 inhibition is of interest for reducing tissue rejection [107]. IL-2 forms a 

ternary complex with membrane bound receptors IL-2Rα, IL-2Rβ, and IL-2Rγ. Of therapeutic 

interest is the disruption of the interface between IL-2/IL-2Rα. Unlike the aforementioned PPIs 

that involve a globular protein with a single peptide, the interaction surface between IL-2 and IL-

2Rα involves tertiary structure elements between two globular proteins (Figure 2.2D). As such, 

interface topography is more complex and discontinuous between hotspots leading this class of 

PPI to be less druggable. The binding mode of known inhibitors span two regions on the surface 

(Figure 2.3D). The first is a pre-formed cluster of residues that form polar interactions and a salt 

bridge with E62 and the second, a dynamic hydrophobic pocket only present in the small 

molecule bound structure as a result of a groove forming through rotation of F42 [107]. Because 

E62 is already posed for binding, we focus our analysis on the dynamic hydrophobic pocket that 

forms upon complexation.  
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Figure 2.3. Representative small-molecule bound crystal structures and exemplars 
generated: Crystal structure conformations (blue, surface) are shown in the bound state 
with inhibitors (magenta sticks, left), exemplars mapping the pocket shape (green spheres, 
middle) and an overlay of the inhibitor and exemplar (right) for Bcl-xL 2YXJ (A), Mcl-1 
4OQ5 (B), MDM2 4HG7 (C), and IL-2 1M49 (D). For IL-2 the interface consists of two 
regions, a transient hydrophobic pocket and a preformed cluster of residues that form salt 
bridge interactions (yellow dotted lines).  
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Pocket Dynamics 

One of the most important factors in determining pocket druggability is its volume. 

Pockets with volumes greater than 200 Å3 have previously been determined to be the size 

necessary to bind a small molecule [90, 108, 109]. As the most reliable metric for druggability, 

we first determined the pocket volumes of the orthosteric site of each snapshot of the simulations 

using our “deep-volume” algorithm. Figure 2.4 shows distributions of pocket volumes from each 

ensemble, Apo-Pocket-Optimized (red), Apo-MD (blue), Holo-1-MD (solid line), Holo-2-MD 

(dashed line). Pocket volumes of the static crystal structure representing the starting structures 

for MD-holo-1 and MD-holo-2 are shown in the vertical solid and dashed lines, respectively. 

Unsurprisingly, the peak of the distributions for the bound simulations are above 200 Å3 and also 

sample larger volumes than the apo simulations. The exception is IL-2 since the transient pocket 

that forms only needs to encompasses half of the small molecule inhibitor and the pocket in the 

bound structures start just above 100 Å3. Starting from the apo structure, the orthosteric site 

interface is able to visit conformations that exceed the 200 Å3. Remarkably, in all cases the 

distributions of volume between the unbound ensembles (PO or MD) overlap with ensembles 

where the small molecule inhibitor is present during the simulation. This also not due to pocket 

collapse from complete dissociation of the inhibitor since they remained bound during the 

entirety of the simulations. However, the degree of overlap depends on the protein system. For 

Bcl-xL the most of the conformations contain no detectable pocket but a small subset of the 

ensemble opens as large as the inhibitor bound state. Although the distributions for Mcl-1 show 

more pocket containing conformations for Mcl-1 greater than 200 Å3, the overlap with the bound 

distributions is less than Bcl-xL. This could be due to the long shallow nature of the Bcl-xL 

interface versus the need for much deeper pocket formation in Mcl-1. Both IL-2 an MDM2 both 
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sample a large span of volumes similar to that of the bound ensembles. It is notable that the 

distributions between Pocket-Optimization and molecular dynamics are quite similar indicating 

that they are sampling similar landscapes.  
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Exemplar distance distributions  

Since the ensembles in all cases are able to visit states that are of similar size to the 

inhibitor bound ensembles, this poses to another question. For the pockets that do form, how 

similar are they to the experimentally determined inhibitor bound crystal structure? We 

generated exemplars for each snapshot and used ROCS to determine their similarities. Pocket 

similarities are expressed as the shapeTanimoto which describes volume overlap between 

exemplars. Exemplar score ranges between 0-1, with 1 being an identical match. Distributions of 

pocket distances to inhibitor bound crystal structures are shown in (Figure 2.5). In the holo 

simulations (black lines), the peak of the distance distributions range between 0.4-0.6 indicating 

that a majority of the time the protein samples conformations slightly altered from the inhibitor 

bound states. The long tails on both sides of the distribution suggest that the interfaces are quite 

dynamic and there is flexibility to deviate from the crystal structure. For IL-2 the bound 

simulations have a wide distribution which is indicative of the pocket forming similar shapes to 

the unbound simulation much more readily than the other proteins. Remarkably, the apo 

simulation distances overlap with the inhibitor bound ensembles. This suggests that both 

ensembles are visiting overlapping conformational space without any direct knowledge of a 

particular ligand from the unbound state.  

Figure 2.4 Pocket volumes from each simulation: Pocket volumes for each simulation for Apo-
Pocket-Optimization (red), Apo-MD (blue), Holo-1-MD (solid line), Holo-2-MD (dashed line). 
Vertical lines represent the volumes of the starting structures for the inhibitor bound simulations. Bcl-
xL: 2YXJ solid line, 3ZLN dotted line. Mcl-1: 4HW3 solid line, 4OQ5 dotted line. MDM2: 4HG7 
solid line, 4MDN dotted line. IL-2: 1M49 solid line, 1PW6 dotted line. Unbound ensembles show 
overlap of pocket volumes sampled in the inhibitor bound ensembles. 
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Figure 2.5 Exemplar distance distributions: Exemplar distances calculated with respect to the 
inhibitor bound crystal structures for Apo-Pocket-Optimized (red), Apo-MD (blue), Holo-MD (solid 
line). Unbound ensembles show overlap of pocket similarity sampled in the inhibitor bound 
ensembles. 
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From the Apo-Pocket-Optimization ensembles we pulled the protein snapshot with the highest 

scoring exemplar (Figure 2.6). To compare the conformational transitions associated with 

binding we superposed the unbound starting structure (magenta) with the protein conformation 

of the top scoring exemplar from the Pocket-Optimized simulation (green) to the inhibitor bound 

conformation (cyan). Features of the bound protein which did not exist in the starting unbound 

structure are recapitulated. Many of the conformational changes involve sidechain 

rearrangements that open the pocket. For Bcl-xL rotation of F97 opens part of the pocket which 

would otherwise clash with the ligand (Figure 2.6A), additionally helix winding which rotates 

W137. As Mcl-2 inhibitors engage a different pocket more deeply than Bcl-xL inhibitors, 

requiring more backbone rearrangement as seen in a helix shift which can be captured by M231 

(Figure 2.6B). In MDM2 we see a concerted outward rotation of M62, V93, H96, Y100 residues 

to open the pocket (Figure 2.6C). For the transient pocket of IL-2, we see the same rotamers 

necessary to open the groove upon rotation of F42 and M39 (Figure 2.6D). These features show 

that the unbound ensemble can access the bound states. This is in line with our previous study 

which suggested that pocket shape and thus selectivity are encoded in surface fluctuations akin to 

a conformational selection model of binding. 
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MDS analysis 

We next compared conformational “pocket space” to explore the differences between 

ensembles of each simulation. The distances between exemplars from each simulation were 

calculated and used for multidimensional scaling (MDS) analysis to produce a two-dimensional 

visual projection that preserves the distance between every pair of exemplars (Figure 2.7). For 

each simulation, 100 representative snapshots evenly spaced through the trajectory were selected 

Figure 2.6. Bound conformations are recapitulated in the unbound ensemble: 
Conformations of the top scoring exemplar from Apo-Pocket-Optimization ensembles (green) 
are superposed with the inhibitor bound conformation (cyan) and the unbound starting structure 
(magenta) for Bcl-xL 2YXJ (A), Mcl-1 4OQ5 (B), MDM2 4HG7 (C), and IL-2 1M49 (D). 
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for MDS analysis. Since not all conformations contain pockets and thus exemplars, each plot 

contains less than 100 points for each simulation. For each protein system, exemplars were also 

generated for all known experimentally determined inhibitor bound crystal structures and 

included in the MDS analysis (points 1-9, A-Z). In all cases, ensembles from the apo simulations 

(PO red, MD blue) show extensive overlap indicating that the conformations generated from 

Pocket-Optimization are indeed physiologically relevant. For the Bcl-2 family members (class I 

PPI) the unbound simulations do show some overlap with known inhibitor bound crystal 

structures indicating that the ensembles are able to visit inhibitor-bound like states. There is 

much less agreement to the ensembles from the inhibitor bound simulations as they sample 

conformations further away from the static inhibitor bound structures. Of particular interest, 

there are regions in the unbound simulations forming that sample distinct pocket shapes. Both 

pocket-optimization and MD are finding the same low-free energy pocket-containing 

conformations that have yet to be captured by any known inhibitor. This observation is notable 

because these conformations could offer underexplored regions of conformational space that 

have not been targeted by small molecule inhibitors. For MDM2, another class I PPI, shows 

similar behavior to the Bcl-2 proteins. Interestingly for IL-2, the sole class 2 PPI from this study, 

the unbound simulations show complete coverage of both the inhibitor bound crystal structures 

and the inhibitor bound ensembles indicating that the pocket that forms is always of the same 

shape. 
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Distinct Pocket in Bcl-xL 

We next sought to identify a pocket containing conformation from the distinct region on 

the MDS map and determine its druggability relative to the known inhibitor bound conformation. 

Instead of visually choosing a conformation from the MDS map, we instead used the exemplar 

distances to compute the distinct conformation by taking the ratio of the distance to the closest 

Figure 2.7. Conformational Pocket Space: MDS analysis projecting pocket space onto a 2D 
map where the distances between exemplars are preserved. Apo-Pocket-Optimization (red), 
Apo-MD (blue), Holo-1-MD (cyan), Holo-2-MD (green). Also included are exemplars from 
other known inhibitor bound crystal structures (1-9-A-Z). 
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crystal structure to the distance of the closest MD structure then ranking them. This gives us a 

conformation that is far from known inhibitor bound crystal structures and close to the 

conformations sampled by MD. We applied this to the unbound Bcl-xL ensemble from Pocket-

Optimization and the conformation is shown in Figure 2.8A (magenta).  
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As a reference, the inhibitor bound conformation and top-scoring conformation to the bound are 

shown in cyan and green, respectively. Druggability of each pocket was determined using 

PockDrug which determines a druggability score between 0.0 and 1.0 with a pocket >0.5 deemed 

as druggable [110, 111]. The distinct pocket containing conformation adopts a highly druggable 

state with a druggability score (0.92) similar to that of the top scoring conformation (0.93) and 

inhibitor bound crystal structure (0.98). Pocket shell residues from PockDrug analysis were 

extracted and superposed. The top scoring conformation adopts the canonical BH3 binding 

groove that would normally become occluded by the small molecule inhibitor (Figure 2.8B left). 

On the other hand, the distinct conformation contains two characteristics that make it appealing 

as a target. First, the pocket forms in a manner that precludes BH3 binding. Second, it overlaps 

with the P4 pocket yet extends in the direction orthogonal to the canonical BH3 peptide site 

making it a new state that has yet to be drugged (Figure 2.8B right, arrow). An inhibitor that 

binds to the distinct pocket would not be based entirely on mimicry of the BH3 peptide moieties 

since it would engage an entirely new region of the protein.  

 

 
 

Figure 2.8. The unbound ensemble of Bcl-xL visits a highly druggable distinct state: (A) 
Conformations of the inhibitor bound structure (cyan), the top scoring most similar snapshot from 
Apo-Pocket-Optimization (green), and distinct state from Apo-Pocket-Optimization (magenta). Each 
conformation was submitted to the PockDrug server to assess druggability. Pocket shell residues 
identified through PockDrug analysis are shown in surface with exemplars in black spheres. 
PockDrug scores >0.5 are deemed druggable. Each conformation scores high in druggability with 
scores of 0.92 for the distinct state, 0.93 top scoring state, 0.98 inhibitor bound state. (B) Pocket shell 
residues superposed for the top scoring and inhibitor bound conformations (left) and the distinct state 
and inhibitor bound conformation (right). The canonical BH3 binding groove is highlighted as a 
dotted line. The distinct state opens a pocket orthogonal to the direction of the BH3 binding groove. 



 59 

Discussion 
 

Discovering novel small molecules that inhibit protein-protein interactions remains an 

unsolved problem. The dynamic nature of their binding sites presents an enormous hurdle for 

structure-based drug design as the features that define a pocket are not present in the static 

unbound crystal structures. Moreover, for the proteins where the experimentally determined 

structures are known, the pockets of small molecule inhibitor bound proteins often times do not 

resemble the pocket when bound to its cognate protein partner. Although daunting, it also 

suggests that the interactions sites are malleable offering the opportunity to target undrugged 

states. Additionally, the use of previously identified inhibitors or pharmacophores based on side 

chains of cognate partners as scaffolds narrows the scope of potentially new molecular entities. It 

is therefore imperative to consider dynamics of the interface in order to broaden the success rate 

of discovering new drug candidates by finding new alternate highly druggable states.  

In this study, we sought to explore pocket dynamics of PPIs and the “pocket space” 

available at each interface. Using our Pocket-Optimization protocol we were able to rapidly 

generate ensembles low energy of protein conformations containing pockets. We then applied 

our high throughput geometric pocket shape comparison protocol and found two main 

conclusions. First, pocket shapes derived from Pocket-optimization ensembles overlap with 

pocket shapes generated from ensembles including the inhibitor. This suggests a conformational 

ensemble like model of binding since the protein can adopt a particular shape without any 

knowledge of one ligand. When comparing the top scoring conformation to the inhibitor bound 

crystal structure, the features necessary for opening a pocket emerge that resemble the bound 

state. Secondly, when considering pocket space more globally, there are regions distinct from 

any known available inhibitor visited by the pockets. We argue that these states will give us the 
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opportunity to attack underexplored new protein conformational states and inhibitor chemical 

space as seen with a new distinct highly druggable conformation of Bcl-xL. Additionally, this 

could reduce off-target effects. For proteins that share overlapping selectivity profiles like the 

Bcl-2 family members, we can exclude the overlapping pocket space and only choose distinct 

conformations.  

The caveat encountered is not all PPIs are created equal. We previously introduced two 

classes of PPIs. Class I being a globular protein-helical peptide interaction such as Bcl-xL, Mcl-

1, and MDM3. Our sole representative of a globular protein-globular protein interaction with IL-

2 showed different characteristics to the class I systems. There was much more overlap between 

unbound and bound ensembles. In addition, the MDS analysis shows that there was complete 

overlap between all ensembles and the inhibitor bound states indicating that when the pocket 

opens, it is the same pocket. The lack in alternate states could also be reflected in the difficulty in 

targeting class II vs class I PPIs, the interfaces of which are patchier and more discontinuous. 

Class II PPIs may need alternative strategies that rely on more traditional ligand centric methods 

for optimization like new in silico combinatorial chemistry libraries with drug-like properties.  

Looking forward, Pocket-Optimization adds to the available computational repertoire to 

explore pocket opening dynamics with the advantage of having a low computational cost relative 

to other methods. In the current study we limited our analysis with a priori knowledge of the 

orthosteric site of previously discovered inhibitors. In principle however, pocket-optimization 

could also be readily coupled to any of the pocket identification protocols that are currently 

available such as the co-solvent techniques. Additionally, this technique could also be applied to 

novel allosteric sites to identify new ligands such as stabilizers or activations, in addition to 

inhibitors. 



 61 

The real test of course is to find inhibitors for these distinct states. Our high throughput 

geometric pocket comparison protocol using exemplars can also be used in turn as a platform for 

virtual screening. Exemplars in the context of this study were used as a pocket shape descriptor 

but they can also be seen as the ideal ligand shape that would fit a particular pocket. One would 

first identify distinct conformations through finding unique exemplars within the ensemble. Then 

using this exemplar, one could use it as a template for ligand based virtual screening by not only 

including the shape and volume overlap of spheres, but also including chemical features such as 

hydrogen bond donors and acceptors. With the advances in computational power and the boom 

in machine and deep learning techniques applied to modulating protein-protein interactions 

[112], we believe new avenues in computational drug discovery will be available to address 

these challenging targets. 

 

Methods 
 

 

Pocket-Optimization simulations: 

Starting from the unbound structure of each protein, an ensemble of pocket containing 

conformations was generated using a modified version of the “relax” protocol in the Rosetta 

software suite [96]. Input structures of the apo proteins were taken from the Protein Data Bank: 

Bcl-xL (PDB 2M03), Mcl-1 (PDB 2MHS), MDM2 (PDB 1Z1M), IL-2 (PDB 1M47). Missing 

densities were built using homology modeling. The relax protocol uses a Monte Carlo search to 

sample backbone and side chain degrees of freedom. We have previously described a modified 

version that enriches sampling to include low energy pocket-containing conformations  [14, 94]. 

Briefly, a biasing energy term consisting of the “deep pocket” volume multiplied by a 
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proportionality constant was added to the standard Rosetta energy function which enhances 

conformations that contain surface pockets. From each unbound protein conformation of Bcl-xL, 

Mcl-1, MDM2, and IL-2, 1,000 independent trajectories were run. For this study, target residues 

for pocket optimization were selected manually by choosing residues making contacts with 

inhibitors in the small molecule-bound crystal structures.  

 

Molecular Dynamics Simulations: 

 Input structures were taken from the Protein Data Bank: apo Bcl-xL (PDB 2M03), small 

molecule bound Bcl-xL (PDB 2YXJ and 3ZLN), apo Mcl-1 (PDB 2MHS), small molecule 

bound Mcl-1 (PDB 4HW3 and 4OQ5), apo MDM2 (PDB 1Z1M), small molecule bound MDM2 

(PDB 4MDN and 4HG7), apo IL-2 (PDB 1M47), small molecule bound MDM2 (PDB 1M49 and 

1PW6). Missing densities were built using homology modeling. Input structures for molecular 

dynamics (MD) simulations were prepared using CHARMM-GUI Input Generator 

(http://www.charmm-gui.org) [113]. Each PDB was immersed in a cubic water box of 65 Å x 65 

Å x 65 Å. KCl concentration set to 0.15 M. CHARMM-GUI uses CGenFF to generate 

parameters for the small molecule inhibitors. 

 Simulations were run using NAMD2.10 [114] simulation package in NPT (constant 

particle number, pressure, and temperature) ensembles at 310 K and 1 atm using CHARMM all-

atom force field [115] parameter set CHARMM36, with a dihedral cross-term CMAP and a TIP3 

water model [116], van der Waals interactions smoothly switched off 10-12 Å by a force 

switching function [117], electrostatic interactions calculated using particle-mesh Ewald method 

and a 2-fs timestep [118]. Temperature and pressure were kept constant by Langevin dynamics 

and Nose-Hoover Langevin piston methods, respectively. The systems were equilibrated for 5-ns 
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with a decreasing RMSD harmonic-restraint potential on all heavy atoms by decreasing the force 

constant (10, 5, 2.5, 1, 0.5 kcal mol-1 Å-2). Production runs were conducted for 100 ns of 

simulation time. 

 

Pocket Volume Calculation 

 “Deep” pocket volumes were calculated within the Rosetta software suite as previously 

described [14]. Based on the same target residues used for the pocket opening simulations, a grid 

is placed around the target residue. Grid points are marked as solvent, surface, or protein and a 

linear search is conducted to find “Surface-Solvent-Surface” events. Pocket grid points that are 

within 2.5 Å of solvent are not included in the calculation and the remaining contiguous points 

are clustered and defined as “deep pocket”.  

 

Geometric Description of Pocket Shapes: Exemplars 

Backbones of each snapshot from every simulation were aligned to the unbound starting 

structure to orient the orthosteric site in the same position. Exemplars were then built at each 

orthosteric site of each snapshot as previously described [93, 94]. Briefly, Exemplars are built 

from the “deep volume” described above by filling the unoccupied space with carbon atoms 

using a greedy algorithm. Atoms are not constrained based on real physical chemical bond 

lengths or connectivity but the center of atoms are placed no less than 1.7Å apart. Atoms are then 

clustered within 5Å such that if a target residue is flanked by two pockets it will be included as 

one exemplar.  
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Comparing pocket shapes: ROCS scoring 

Rapid Overly of Chemical Structures (ROCS) software (OpenEye Scientific Software, 

Santa Fe, NM) is a virtual screening tool used to optimally superpose and calculate the volume 

and chemical overlap between two molecules[98]. ROCS uses the sum of atom centered 

Gaussians to represent molecular shape and volume. Additionally, the color descriptor represents 

chemical groups and uses another set of Gaussians. Since ROCS is primarily designed for the 

purposes of virtual screening, we turned off two functionalities for analysis and simply scored 

the volume overlap between exemplars. For exemplar shape comparisons, we turned off the 

superposition optimization and used the “score only” functionality since exemplars were already 

spatially oriented for comparison by generating exemplars from backbone aligned snapshots. 

Additionally, the color score was turned off since we are only reporting on pocket shape. 

 

Druggability Prediction 

Druggability was determined using the PockDrug web server (http://pockdrug.rpbs.univ-paris-

diderot.fr/) [110, 111] by uploading each protein with its associated exemplar and using the 

proximity method with a threshold of 5.5Å to the exemplar.  
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Introduction  
 

 In Gram-negative bacteria, the concentric structures of outer membrane, cell wall, and 

cytoplasmic membrane protect the cell from extracellular threats. Of these, the outer membrane 

is a particularly formidable barrier because of the structure of the lipopolysaccharide (LPS) 

constitutes the outer membrane’s outer leaflet [119]. Imbedded in each bacterium’s outer 

membrane are about a hundred varieties of barrel-shaped proteins [120]. Though these outer 

membrane proteins (OMPs) have a diverse array of functions, the most common role for these 

proteins is in transporting molecules across the membrane—importing nutrients and exporting 

toxins.  

 Due to the intrinsic impermeability of the outer membrane, accessibility of OMPs from 

the outside has led to interest in targeting the extracellular face of OMPs for the development of 

novel antibiotics which inhibit OMP folding [121]. Developing molecular plugs for the pores of 

OMP barrels would allow for the manipulation of bacterial transport, either starving bacteria by 

preventing the consumption of valuable nutrients or poisoning by preventing the release of 

toxins.   

In the service of bacterial warfare, bacteria have evolved protein toxin systems called 

bacteriocins that hijack OMPs to cross the impermeable outer membrane and kill a target cell.  
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Colicins (E. coli specific bacteriocins) vary widely by receptor targets and killing 

mechanisms yet share a common triad domain architecture with an N-terminal translocation (T) 

domain, a receptor (R) binding domain, and a C-terminal cytotoxic (C) domain (Figure 3.1A). 

Colicin import is initialized by the binding of the center R-domain to an OMP target with high 

Figure 3.1: Colicin E1 domains (A) homology model of Colicin E1 using pore forming 
Colicin Ia as a template. Model generated using i-TASSER web-server 
https://zhanglab.ccmb.med.umich.edu/I-TASSER/ (B) N-terminal colE1 truncations used in 
this study 
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affinity to localize and concentrate it onto the outer membrane. Once tethered to the outer 

membrane surface, the T-domain initiates translocation using a secondary OMP receptor distinct 

from the R-domain OMP target [32].  

For some colicins the T and R domains remain in contact with their outer membrane 

while the cytotoxic domain kills the target cell [122, 123]. If T and R domains do not fully pass 

through their receptors, their binding events could be harnessed to disrupt native function of 

OMP receptors. Co-crystal structures of colicin E3 and E9 fragments bound to OmpF reveal that 

the barrel is obstructed by the peptides [124, 125].  

Here we use the T and R domains of colicins to determine if the binding event between 

the N-terminal domains and the OMP pore is can plug and disrupt the native export function of a 

target OMP.  Specifically we use the T and R-domain (Figure 3.1B) from colicin E1 which is 

known to bind to the antibiotic efflux protein TolC [126]. Assessing efflux inhibition of TolC 

allows us to explore a novel mechanism of antibiotic potentiation. 

TolC is the outer membrane component of the acridine efflux pump which extrudes 

multiple classes of antibiotics such as erythromycin, chloramphenicol, tetracycline, doxorubicin, 

acriflavine [23, 24] as well as other compounds such as bile salts and detergents [22]. TolC is the 

efflux pump protein whose deletion makes E. coli most vulnerable to a wide variety of 

antibiotics [127]. Moreover, the pumps expression is linearly correlated to antibiotic resistance in 

clinical isolates [128]. As antibiotic resistance becomes a world-wide threat, finding proteins that 

can disable this primary mechanism of resistance could be useful therapeutics.  

Colicin E1 uses TolC as the receptor of the T-domain and BtuB as the receptor of the R-

domain [126]. Smaller constructs of the T-domain of colicin E1 have previously been shown to 

disrupt TolC channel conductance in vitro [33, 34]. Moreover, the n-terminal domain has been 
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shown to competitively inhibit cytotoxic activity of full length colicin E1. A stretch of residues 

100-120 deemed the “TolC box” was determined to be required for this interaction with TolC. 

Structural characterization by circular dichroism of the colicin E1-TolC complex suggests colicin 

E1 inserts into TolC as a helical hairpin [34]. This in vitro structural characterization led to the 

proposal of a model where TolC structurally supports translocation rather than acting as a 

channel for translocation. If this is the case, the T and R domains of colicin E1 will not pass 

through but should remain within the luminal conduit of TolC effectively plugging the channel.   

Here, through real-time efflux assays, synergistic MICs, and single molecule microscopy, 

we find that larger fragments of colicin E1 are able to inhibit TolC mediated efflux. We find that 

extracellular plugging of TolC reduces the amount of antibiotics required to inhibit cell growth—

reducing this mode of antibiotic resistance. This work demonstrates that colicin E1 can be used 

to bacterial susceptibility to antibiotics and shows the potential for using colicin fragments for 

bacterial species-specific antibiotic potentiation and more broadly, species-specific blocking of 

OMP import/export function.  

 

Results 
 

Colicin E1 Localization  

In order to determine colicin E1’s utility as a plug for antibiotic efflux, we assessed if the 

colicin E1 constructs localizes on the cell surface or if it translocates across the outer membrane. 

We conducted an extracellular protease digestion assay. ColE1 stalling on the outer membrane 

surface would render it susceptible to digestion when trypsin is in the extracellular environment. 

Conversely, if the protein translocates into the intracellular environment, it would be shielded 

from digestion by the outer membrane. For the T-domain alone, there is no detectible binding. 
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This suggests the affinity to TolC is not strong enough to withstand the washing steps. For 

colE1-TR there is a band present in intact cells without trypsin showing binding to cells. When 

incubated with increasing amounts of trypsin, colE1-TR is digested at all trypsin concentrations 

indicating that it is localized to the outer membrane surface (Figure 3.2A) whereas the control, 

periplasmic chaperone SurA, was not degraded at any trypsin concentration [129].  

 

 

After determining that colE1-TR remains at the cell surface, we probed binding and cell 

localization through single-molecule fluorescence microscopy. C-terminal cysteines were 

incorporated into colE1-T and colE1-TR to enable thiol coupling to the fluorescent dye cyanine 3 

Figure 3.2: Colicin E1-TR localizes on the extracellular surface of E. coli: (A) Extracellular protease 
digest assay. SurA used as a periplasmic localization control. (B) Single-Molecule Microscopy: Red 
arrow indicates colE1-TR bound at ~12 molecules per punctum. Fluorescence images overlaid on 
outlines of cells from phase-contrast microscopy for BW25113 and ΔtolC. Scale bars: 2 µm. 
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(Cy3). When colE1-TR is added to the extracellular environment, distinct punctate form on 94% 

(n=111) of cells containing TolC (Figure 3.2B, left). The appearance of puncta significantly 

decreases to 18% (n=99) of the population in cells lacking TolC (Figure 3.2B, right). When 

these puncta do appear, colE1-TR forms clusters of around a dozen molecules per punctum with 

a diameter of ~0.5 μm. The quantity of BtuB molecules and size of puncta is in agreement with 

previously determined clusters of BtuB [130, 131]. The existence of punctate formation but 

fewer puncta on cells lacking TolC is consistent with Colicin E1 initially binding to BtuB, but 

TolC enhancing the interaction.  

As in the extracellular protease digestion, without the R domain, colE1-T shows no 

detectable binding to cells containing TolC or in a TolC knockout strain (Figure A2.1) 

indicating that the TolC:colE1-T interaction is much weaker than the BtuB:colE1-TR interaction. 

Moreover, when observing time courses of bound colE1-TR, all puncta remain immobile 

(Figure A2.2) further supporting that colE1-TR does not translocate [132] and that it binds to 

BtuB. Limited mobility has been previously described with fluorescently labeled BtuB which did 

not show FRAP on longtime scales [130]. Punctate localization is indicative of colE1-TR being 

associated with an OMP receptor since OMPs have been shown to exist in clustered islands in 

the OM thought to be mediated by protein-protein interactions due to molecular crowding effects 

in the membrane [130].  

 

Colicin E1 Binding to TolC 

The interaction of TolC and Colicin E1 fragments have previously been characterized in 

vitro by co-elution of the peptides by size exclusion chromatograph [34]. To ensure the 

interaction with our Colicin E1 constructs were specific for TolC, we assessed peak shifts for the 
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two colicin fragments when mixed with TolC. ColE1-T (Figure 3.3A, right) and TolC alone 

elute from the SEC at 14.8 mL and 10.8 mL, respectively. When mixed together the TolC peak 

shifts slightly to 10.7 and there is an increase in the peak intensity. Similarly, when TolC + 

colE1-TR are mixed (Figure 3.3B, right), a peak at 10.0 mL appears corresponding to the 

complex. Peak fractions from colE1-T (10.7 mL) and colE1-TR (10.0 mL) were analyzed by 

SDS- PAGE and shows the presence of both colicin E1 N-terminal constructs and TolC (Figure 

3.3A and B, left).  
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Colicin E1 Inhibits Active Efflux 

Real-time efflux inhibition by colicin E1 fragments was assessed using a live cell assay 

using the NNN-dye which is effluxed by the acridine efflux pump [133] and which fluoresces 

when it is localized inside the cell. Efflux of NNN is turned off by the protonophore CCCP 

which neutralizes the proton motive force allowing for accumulation of the dye within the cell. 

Active efflux can then be monitored by the decay in fluorescent signal once proton motive is 

reenergized by the addition of glucose [133-137]. 

Figure 3.3: Colicin E1 fragments bind to TolC. Co-elution experiment to determine colE1 
binding to TolC. (A) Co-elution of colE1-T purple line, TolC green line and colE1-T+TolC grey 
line. (B) Co-elution of colE1-TR purple line, TolC green line and colE1-TR+TolC grey line. The 
T domain did not show binding in our in vivo but binds to TolC in vitro. Red stars indicate 
fractions that were analyzed by SDS-PAGE. TolC runs as a trimer ~100 kDa in semi-native 
unboiled sample and ~50kDa as a monomer. Red arrows indicate the presence of colE1 constructs 
that have co-eluted with TolC 
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 We assessed the effect of colicin E1 residues 100-143 (Figure 3.1B) on the real-time 

efflux of the fluorescent probe molecule NNN and found that efflux was not decreased by this 

peptide. (Figure 3.4A) though similar peptides have been found to bind TolC and occlude 

channel conductance [33, 34]. In contrast, the full colE1-T domain shows as a distinct decrease 

Figure 3.4: Effect of colE1 fragments on real-time efflux of N-(2-naphthyl)-1-
naphthylamine (NNN) in E. coli BW25113 and BW25113ΔtolC: (A) An n-terminal peptide 
fragment composed of residues 100-143 encompassing the “TolC box” (B) The entirety of 
colE1-T domain (C) The entirety of the T and R domain. In all cases, BW25113 with no 
protein is shown in a green line. BW25113ΔtolC in black lines. BW25113 + 10 μM protein in 
purple dots. BW25113 + 100 μM purple lines. The TolC box peptide does not show activity 
against NNN efflux. ColE1-T moderately inhibits NNN efflux at 100 μM. ColE1-TR shows 
partial inhibition at 10 μM and full inhibition at 100 μM.  
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in final fluorescence though it does not return to the baseline fluorescence indicating partial 

inhibition of efflux (Figure 3.4B). Finally, colE1-TR shows full inhibition of the acridine efflux 

pump as fluorescence is decreased after the addition of glucose. (Figure 3.4C). 

Colicin E1 increases E. coli Susceptibility to Antibiotics 

Because colE1-TR showed complete inhibition of efflux, we evaluated its ability to 

potentiate antibiotics through synergistic MICs. We chose a representative antibiotics from five 

different antibiotic-classes that are known TolC substrates: kanamycin, ciprofloxacin, 

erythromycin, rifampicin and the antimicrobial agent benzalkonium chloride. When 100 μM 

colE1-TR is used in combination with either kanamycin, ciprofloxacin, erythromycin or 

benzalkonium chloride, there is a significant reduction in the minimum inhibitory concentration 

(Figure 3.5). ColE1TR makes BW25113 E. coli ~2-4 fold more susceptible to these antibiotics 

(Table 3.1). Although there is a slight reduction in the MIC for rifampicin, the difference is less 

prominent.  
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Figure 3.5: Colicin E1 TR potentiates antibiotics: Antibiotic susceptibility was determined 
in the absence (green bars) and presence (purple bars) of 100 μM colE1-TR for kanamycin, 
ciprofloxacin, erythromycin, benzalkonium chloride, and rifampicin in E. coli BW25113. 
MICs for BW25113ΔtolC (grey bars) are included as a reference for total loss of TolC. For 
kanamycin, the MIC for BW25113ΔtolC was not determined since the deletion of the tolC 
gene is accomplished by insertion of a kanamycin resistance cassette. All data for BW25113 
were collected in triplicate with biological replicates, and error bars correspond to the 
standard error of the mean. Bars indicated have a statistically significant difference in their 
mean values (* with p < 0.05, ** with p < 0.01) 
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Table 3.1 

Antibiotic MIC 

BW25113 

MIC 

BW25113 + colE1-TR 
Fold reduction 

Kanamycin 15.5 ±2.0 μg/mL 4.0 ±0.9 μg/mL 3.9x 

Ciprofloxacin 48.5 ±2.0 ng/mL 25.0 ±4.7 ng/mL 1.9x 

Erythromycin 
253.3 ±10.8 

μg/mL 
138.7 ±10.8 μg/mL 1.8x 

Benzalkonium Chloride 40.6 ±2.4 μg/mL 20.7 ±2.8 μg/mL 2.0x 

Rifampicin 
1354 ±39.5 

μg/mL 
1202 ±17.6 μg/mL 1.1x 

 

Discussion 
 

 In this study we explore a novel method to modulate E. coli cell function by plugging an 

outer membrane protein channel using a fragment of a protein used for bacterial warfare. We 

leveraged the T domain of Colicin E1’s natural ability to occlude TolC and sought to determine 

if it could also disrupt native function involved in efflux of antibiotics. We found that Colicin E1 

lacking the cytotoxic domain, potentiates antibiotics of various classes including, 

aminoglycosides, fluoroquinolones, macrolides, and quaternary ammonium compounds.  

Previous functional studies have identified the stretches of colicin E1 required for TolC 

binding leading to two proposed models for utilization of TolC. The first is the ‘total thread’ 

model in which the entire colicin is unfolded and TolC serves as a channel to thread through 

[138]. Structural studies of the binding interaction between TolC and N-terminal peptides of 
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colicin E1 have led to an alternative model for utilization of TolC. The second model proposes 

that colicin E1 inserts into TolC as a helical hairpin which serves as a buttress to facilitate 

cytotoxic domain entry [34, 138]. It is the intrinsic properties of the cytotoxic domain itself 

which allow it to cross the OM which may be mediated by anionic LPS. The results presented 

here support the latter model. Without the cytotoxic domain, we observed that colE1-TR remains 

stalled on the outer membrane exposed to the extracellular environment. The total thread model 

would allow cell entry of colE1-TR. As such, we propose a mechanism of efflux inhibition based 

on the Cramer “pillar model” of colicin E1 interaction with BtuB and TolC. (Figure 3.6) First, 

the R-domain binds to BtuB with high affinity and acts as an anchoring point for the colicin on 

the cell membrane. Second, the T-domain is able to search for TolC and insert into the channel 

stabilizing its association with the membrane and more importantly forming a plug that blocks 

exit of TolC substrates. 
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We note that the truncation of colicin E1 required to inhibit efflux is much larger than the N-

terminal fragments known to occlude TolC in channel conductance and cell protection. The 

Figure 3.6: Model of colE1-TR inhibition of efflux: We propose a model for colE1-TR 
mediated inhibition of efflux adapted from the Cramer “pillar” model of interaction. The R-
domain first binds to BtuB with high affinity and anchors colE1-TR to the surface of the cell. 
The T-domain then inserts into the lumen of TolC, plugging the channel and blocking exit of 
antibiotics. The crystal structure of BtuB bound to the R-domain of E3 was used to depict  
Crystal structure of BtuB and E3, homology model of Ia 
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“TolC box” required for interaction with TolC was not sufficient to block efflux. The stretch of 

43 residues may be too small to adopt the necessary secondary structure to fully occlude the 

channel or may be overpowered by the energy dependent process of efflux. The relative affinity 

of the T-domain for TolC is much weaker than the affinity of the R-domain to BtuB. Avidity by 

the additional interaction of the R-domain with BtuB is required for full inhibition of efflux. This 

is not surprising since evolution has produced colicin E1 for a specific purpose and thus the 

affinity is constrained to be only as tight as necessary. Its limited potency precludes it from any 

direct practical application. However, as a proof of concept, it offers enormous potential for 

further development. In principle, a more potent binder would not need the R-domain anchor. If 

the interaction between TolC and colE1-T can be resolved to atomic detail, the colicin T-domain 

would serve as a perfect candidate for optimization to engineer an effective antibiotic potentiator 

to prevent the spread of antibiotic resistance.  
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Methods 
 

Expression and purification 

Colicin E1 constructs 

The gene for wild type Colicin E1-TR was synthesized as a double stranded linear 

fragment (Integrated DNA Technologies) and cloned into pET303 using megaprimer restriction 

free cloning. Deletion of the R-domain was conducted by inverse PCR to produce Colicin E1-T. 

Plasmids were transformed into E. coli BL21(DE3) cells and plated on LB + agar + 100 μg/mL 

carbenicillin. Single colonies were inoculated into 50 mL LB broth with 100 μg/mL carbenicillin 

and grown overnight at 37ºC with shaking at 250 RPM. Proteins were expressed by inoculating 

1L of TB supplemented with 0.4% glycerol, 10 mM MgCl2 and 100 μg/mL carbenicillin with 20 

mL of the overnight culture and grown at 37°C to an OD600 of 2.0 and induced with 1 mM 

IPTG. Expression cultures were grown at 15°C for 24 hours and harvested at 4,000g for 30 

minutes at 4°C. Cell pellets were resuspended in (3 mL/g of cell pellet) lysis buffer (TBS, 5 mM 

MgCl2, 10 mM imidazole, 1mM PMSF, 10 μg/mL DNase, 0.25 mg/mL lysozyme) and lysed via 

sonication (2 minutes, 2s on, 8s off, 40% amplitude, QSonica Q500 with 12.7 mm probe) in an 

ice bath. Lysates were centrifuged at 4,000g for 10 minutes to remove un-lysed cells and debris. 

The supernatant was centrifuged again at 20,000 RPM in a Beckman Coulter J2-21 for 1 hour at 

4°C. Clarified lysates were applied to a 5 mL HisTrap FF column and purified using an ÄKTA 

FPLC system with a 20 column volume wash step with (TBS, 25 mM imidazole) and eluted 

using a linear gradient from 0-50% elution buffer (TBS, 500 mM imidazole) in 10 column 

volumes. Proteins were concentrated in Amicon centrifugal filters with molecular weight cutoffs 
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of 10K and 30K for Colicin E1-T, Colicin E1-TR, respectively. Concentrated proteins were 

loaded onto a HiLoad Superdex 16/60 200 pg gel filtration column and eluted into PBS pH 7.4. 

 

TolC 

The gene for full length TolC was cloned into pTrcHis with a c-terminal 6x histidine tag. 

Plasmids were transformed into BL21(DE3)Omp8 and plated on LB + agar + 100 μg/mL 

carbenicillin. A single colony was picked and grown in LB-Lennox at 30ºC with shaking at 150 

RPM overnight. In the morning, 1L of LB-Lennox was inoculated with 20 mL of the overnight 

culture and grown at 30ºC with shaking at 150 RPM until the culture reached an OD600 of 0.6 at 

which point protein expression was induced with 1mM IPTG for an additional 4 hours then 

harvested at 4,000g for 30 minutes at 4°C. Cell pellets were resuspended in 30 mL of Lysis 

buffer (TBS, 5 mM MgCl2, 5 μg/mL DNase, 1mM PMSF) and lysed via sonication (2 minutes, 

2s on, 8s off, 40% amplitude, QSonica Q500 with 12.7 mm probe) in an ice bath. Cell lysates 

were centrifuged at 15,600g for 30 seconds at 4ºC to remove un-lysed cells and inclusion bodies. 

Total membrane fractions were harvested by centrifuging the lysate at 15,600g for 30 minutes. 

The resulting pellet was resuspended in 2% n-lauryl-sarcosine and incubated at room 

temperature on a rotisserie for 30 minutes to solubilize the inner membrane. The total membrane 

fraction in 20 mM Tris pH 8, 400 mM NaCl, 2% n-lauryl-sarcosine was centrifuged at 15,600g 

for an additional 30 minutes with the resulting pellet containing the outer membrane fraction. 

The pellet containing the outer membrane fraction was resuspended in 20 mM Tris, 400 NaCl, 

1.5% n-dodecyl-β-D-maltoside.  
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Single-Molecule Microscopy 

Cysteine mutants for microscopy were purified as described above with the addition of 1 

mM TCEP in all buffers to prevent covalent dimer formation. All subsequent steps were 

performed with limited exposure to light and the use of amber tubes. Cyanine3 maleimide was 

reconstituted in DMSO. Fluorophore labeling was achieved by mixing a 20-fold molar excess of 

Cyanine3 maleimide (Lumiprobe) to protein and incubating overnight at 4ºC. Free dye was 

removed by gel filtration on a Sephadex NAP-10 G-25 column. The sample was simultaneously 

buffer exchanged into storage buffer (PBS pH 7.4, 1 mM DTT, 1 mM EDTA). The degree of 

labeling was determined spectrophotometrically by the concentrations of the dye and protein 

using their respective extinction coefficients. (Cyanine3 ε548nm = 162,000 L•mol-1•cm-1; colE1-T-

E192C ε280nm = 9, 970 L•mol-1•cm-1; colE1-TR-E366C ε280nm = 14,440 L•mol-1•cm-1) Labeling 

efficiencies were ~75% and ~85% for colE1-T-E192C and colE1-TR-E366C, respectively. 

Protein concentrations were adjusted according to labeled protein.  

Cultures of E. coli (BW25113 or ΔtolC) were grown in LB medium at 37ºC with shaking 

(180 rpm) overnight, then transferred to MOPS minimal medium with 0.2% glycerol and 1.32 

mM K2HPO4, and grown at 37ºC for 13 h. A sample was transferred to MOPS medium and 

grown to turbidity at 37 ºC overnight. A 1-mL aliquot of culture was centrifuged for 2 min at 

7,500 rpm to pellet the cells. The pellet was washed in 1 mL MOPS and centrifuged a second 

time. The supernatant was then removed, and the cell pellet was resuspended in 500 μL MOPS. 

A 1.0 μL droplet of concentrated cells was placed onto a glass slide. Then, 1.0 μL droplet of 

1ug/mL Colicin E1-TR protein stock was added to the cells. The droplet was covered by an 

agarose pad (1% agarose in MOPS media) and a second coverslip.  
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Samples were imaged at room temperature using wide-field epifluorescence microscopy 

with sensitivity to detect single dye molecules as described previously [139]. Briefly, 

fluorescence was excited by a 561-nm laser (Coherent Sapphire 560-50) operated at a low power 

densities (4 – 5 μW), and imaged with an Olympus IX71 inverted microscope with a 100x, 1.40-

NA oil-immersion objective and appropriate excitation, emission, and dichroic filters (Semrock 

LL01-561, Semrock BLP01-561, Semrock Di01-R561). A Photometrics Evolve electron 

multiplying charge-coupled device (EMCCD) camera with >90% quantum efficiency captured 

the images at a rate of 20 frames per second. Each detector pixel corresponds to a 49 x 49 nm 

area of the sample. 

 

Extracellular Protease Digestion 

 BW25113 cells were grown to an OD600 of ~0.6. Cells were harvested by centrifugation 

at 4,000g for 5 minutes and resuspended in 1x Phosphate Buffered Saline (PBS). Cells were 

incubated with 10 μM protein and incubated for 1 hour at 37ºC with rocking. After incubation 

cells were harvested by centrifugation and washed 2x with PBS to remove any unbound protein. 

Cell pellets were resuspended in 5 mL of protease buffer (50 mM Tris pH=8, 7.5 mM CaCl2) and 

OD600 normalized. Cultures were split into two samples for trypsin digestion 1) intact cells 2) 

lysed cells. For the lysed cell sample 0.25 mg/mL lysozyme was added and incubated at room 

temperature for 15 minutes. The cells were lysed by 5x freeze-thaw cycles by submerging in 

liquid nitrogen followed by thawing. For each cell condition (lysed and intact) the sample was 

further split into 6 aliquots. Aliquots were incubated with a final concentration of 0, 5, 20, 50, 

100, 200 μg/mL trypsin. The reaction was incubated for 30 minutes with intermittent gentle 
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inverting of the tubes. After 30 minutes 100 mM PMSF was added to stop the digestion reaction. 

Samples were snap frozen in liquid nitrogen and stored at -20ºC until western blot analysis. 

 

Co-elution  

 The interaction of TolC and colicin E1 fragments were determined by coelution on a size 

exclusion chromatography column. Purified TolC and colicin E1 fragments were mixed at a 1:2 

molar ratio and incubated at room temperature for 1 hour before loading onto a Superdex 200 

Increase 10/300 GL column (GE Healthcare). The protein was eluted with 1.5 column volumes 

into 20 mM Tris pH 8.0, 200 mM NaCl, 0.05% n-dodecyl-β-D-maltoside. Elution fractions were 

collected every 0.5 mL. Peak fractions were concentrated to 20 μL and analyzed by SDS-PAGE. 

 

Real-time Efflux 

A single colony of E. coli BW25113 was inoculated into 10 mL of LB and incubated 

overnight at 37°C. The next day, 50 mL of LB was inoculated with 1 mL of the overnight culture 

and grown to OD600 of ~0.8. Cells were pelleted at 3,500g for 5 minutes. Cells were 

resuspended to OD600 1.5 in cold PBS with and without 10-100 μM Colicin proteins and 

incubated for 15 minutes on ice. To decouple proton motive force and turn off efflux, 100μM 

carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was added. After an additional 15 minutes 

the efflux dye N-(2-naphthyl)-1-naphthylamine (NNN) was added to the cells to 10 μM. The 

cells were incubated at 25°C with shaking at 140 RPM for 2 hours. Cells were harvested at 

3,500g for 5 minutes and washed once in 20 mM potassium phosphate buffer pH 7 with 1mM 

MgCl2. Optical densities were adjusted to OD600 1.0 and placed on ice. 2 mL of the cell 

suspension was loaded into a quartz cuvette (Agilent Technologies). Fluorescence was measured 
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with an Agilent Cary Eclipse fluorescence spectrophotometer with slit widths at 5 and 10 nm for 

excitation wavelength of 370 nm and emission wavelength of 415 nm. Fluorescence 

measurements were taken every 1 second. After 100 seconds 50 mM glucose was added to re-

energize the cells and initiate efflux and fluorescence was collected for an additional 600 

seconds. 
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CONCLUSION AND FUTURE DIRECTIONS 
 

This dissertation has focused on studying what properties dictate protein-ligand 

interactions and the application of these principles to the design of novel ones. In chapter 1, the 

rules of how best to design an enzyme switch by chemical rescue of structure was explored by 

probing steric effects of protein-ligand interactions through structure activity relationship 

experiments, both from the perspective of the ligand and from the perspective of the protein [7]. 

The findings suggest that to best rescue an inactivating mutation that acts through a discrete 

conformational change, a small molecule ligand must replace the exact atoms removed by 

mutation. Additionally, the cavity can accommodate alternate larger ligands at the cost of the 

level of activity rescue. A smaller ligand that leaves a small void is favored to a larger molecule 

that introduces a steric class. With respect to tunability, we also found that alternate ligands can 

not only modulate the magnitude of activity but also shift selectivity towards a particular 

substrate.  

One pitfall with using a single tryptophan to glycine mutation is that there is an intrinsic 

biophysical limit to the binding affinity for indole and molecules of this size. Ligand efficiencies 

and thus potencies seem to have hit a limit as seen with the requirement for millimolar 

concentrations of effectors necessary to illicit responses. At the end of chapter 1 we introduced 

the idea of adding a second mutation to accommodate an additional methyl group on the effector 

molecule which enhanced its binding affinity. In principle, this could be applied to introduce 

double or even triple mutants to find more potent molecules.  

Moving forward, the generalizability of chemical rescue of structure will be greatly 

enhanced by the introduction of computational techniques. Double or triple residue mutations 
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can be exhaustively enumerated for a protein of interest by extracting constellations of atoms in 

3D space associated with two or three residues. The next step would be to find the matching 

small molecule to replace the atoms removed by mutation. Using standard ligand based virtual 

screening methods like ROCS [98] introduced in chapter 2, the constellation of residues can be 

used as a query for a screen of a chemical library. The key in this approach would be to find 

coupled mutations that would not be too destabilizing. It may then be necessary to consider 

intermolecular mutation sites between protomers or intramolecular mutation sites between 

domains. This would allow the mutations to remain more conservative by only introducing one 

mutation per protomer or domain. Secondly, surface mutations are generally more tolerated than 

in buried residues. The frequency of successful applications of chemical rescue of structure 

based on indole rescue of a tryptophan to glycine mutation is surprisingly quite common. We 

anticipate that incorporating these developments will further expand its applicability. 

Chapter 2 explored the conformational landscape of protein-protein interaction targets to 

find the druggable states. The flat and relatively featureless interfaces seen in the unbound 

crystal structures are not amenable to small molecule ligand binding. Here we model low energy 

natural pocket fluctuations that form on these interfaces through sampling by a biased 

simulation. For the instances where pockets do form, we applied a high-resolution high-

throughput geometric shape comparison protocol to compare the pocket shapes that form to 

known pockets of previously discovered inhibitors. When comparing ensembles of the unbound 

protein and the ensembles of the protein with the molecule bound, we found that the pocket 

shapes sampled overlap. This indicates that proteins can adopt bound-like conformations without 

any information of the ligand. This is akin to the conformational selection model of binding 

where the surface fluctuations form before the ligand binds. Additionally, when all ensembles 
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were compared to each other, we found that the unbound protein can also sample pocket shapes 

that are distinct from any known inhibitor. These pockets reveal new untargeted states. The 

results of this work should allow for de novo design new small molecule inhibitors that are 

distinct from the current repertoire of available drugs.  

A rigorous test of course is to design new small molecule ligands that can bind to these 

distinct states. What we have generated for the purpose of pocket shape comparisons in 

exemplars not only represents the pocket shape but can also be seen as an idealized ligand with 

perfect shape complementarity to the surface. In addition, other features that contribute to potent 

binding like hydrogen bond donors and acceptors can be included in the exemplar description. 

Analogous to the constellations being used as a query for identifying a ligand for the designed 

buried pocket, a virtual screen of exemplars can be used to find small molecules that match the 

pockets of PPI targets. The rapid speed of these algorithms allows screening of millions of 

compounds in a short amount of time. Another factor that must be taken into account that will 

require careful thought is curation of the chemical libraries. The ZINC15 database provides 

digital libraries of up to 750 million commercially available compounds that can be purchased 

for experimental validation [140]. Additionally, high resolution crystal or NMR structures will 

have to be determined to validate the models. With advances in computational methods such as 

these, previously undruggable targets are now becoming a tractable problem. 

Lastly, in chapter 3 we investigated a novel way to target gram-negative bacteria by 

designing a molecular plug of a β-barrel protein on the surface of E. coli. Crossing the outer 

membrane of gram-negative bacteria to target intracellular targets has poses a difficult challenge 

in the discovery of new antibiotics. By plugging channels responsible for transportation nutrients 

or removal of toxins, we can essentially starve or poison the bacterial cell without the need to 
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cross the impermeable outer membrane. As a proof of concept, we investigated a naturally 

occurring protein that hijacks the efflux pump protein TolC to plug the channel. In its full form, 

colicin E1 utilizes TolC to deliver a cytotoxic domain to kill the cell in a process not fully 

understood [34, 138]. We found that a plug composed of an n-terminal fragment lacking the 

cytotoxic domain can block TolC. The molecular plug prevents active efflux and makes E. coli 

more susceptible to a diverse set of antibiotics.  

The relatively low potency of the colicin E1 truncations we observed is not surprising 

given that evolution has constrained its sequence for a particular function unrelated to the 

purpose of plugging. However, as a platform for further development it offers huge potential for 

potentiating antibiotics. It will be imperative to determine the precise structural details of the 

colicin-TolC interactions in order to fully understand what properties are responsible for the 

interaction. To date, attempts to solve the co-crystal structure of colicin E1 and TolC have not 

yielded well diffracting crystals. Further crystal optimization is ongoing. Alternate methods 

include cryo-electron microscopy which has advanced to the point where atomic resolution is 

achievable. The tripartite complex of AcrAB-TolC was determined to 3.6Å resolution by cryo-

EM [21]. However, the details of this interaction may be revealed, computational design 

methodologies could help guide design of a more potent inhibitor. Using algorithms like the 

design protocol within the Rosetta software suite [96] could potentially regenerate a sequence 

that would further optimize the packing interactions within the lumen of TolC. Another strategy 

could be to apply directed evolution to the currently existing sequence to achieve more potency 

without needing to know the structural details of the interaction. Of course, this will come with 

its own set of challenges such as a method to select and or screen for improved variants. 

Potential methods such as phage or ribosome display may prove useful. As is common with 
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many computationally designed proteins, it may be necessary sequentially couple the two by 

following a round of computational design with directed evolution. The design of a novel ligand 

to plug an outer membrane is unprecedented. We hope that the study presented in this 

dissertation will open the door for a new avenue of research to combat antibiotic resistance.  
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APPENDIX 

 

Chapter 1 Supporting Information 
A1.1 Supplementary Methods 

Expression and purification of β-glycosidase 

The gene for Sulfolobus solfataricus β-glycosidase, included in a pET29 vector, was 

transformed into E. coli Rosetta2(2DE3) pLysS cells and plated on LB + agar + 50 mg/mL 

kanamycin. Single colonies were inoculated into LB broth with 50 mg/mL kanamycin and grown 

to OD600 of 0.6 at 37°C. Protein expression was induced with 1mM IPTG for 4 hours at 37°C. 

Cells were centrifuged and resuspended in Lysis Buffer (50 mM sodium phosphate pH 6.8). The 

cells were lysed using three freeze thaw cycles in liquid nitrogen. The lysate was incubated at 

75°C for 30 minutes to aggregate endogenous cellular proteins. The lysate was centrifuged at 

27,000g for 30 minutes to clear cellular debris. The protein was purified from the supernatant by 

size-exclusion chromatography on a HiLoad 16/60 Superdex 75 gel filtration column (GE 

Healthcare).  

Functional assay 

β-glycosidase kinetic assays were conducted at 37°C in black 96-well plates. 100 μL 

reaction volumes contained 58 nM β-glycosidase in Assay Buffer (50 mM sodium phosphate pH 

6.5), and effector concentrations ranging from 0-5 mM in 10% DMSO, and 750 μM of FDGal / 

FDGlc substrate dissolved in 0.1% ethanol, 0.1% DMSO, and 99.8% water. Product formation 

was monitored by accumulation of fluorescein using a Synergy 2 Microplate reader (Biotek), 

with an excitation filter of 485 nm and an emission filter of 528 nm. Initial velocities were 
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calculated by linear regression in GraphPad Prism Version 6.0. Fitting to the simplified allosteric 

rate equation (Equation 1.1) was carried out using GraphPad Prism Version 6.0, to obtain 

dissociation constants of the various effectors. 

Crystal Structure of holo 5-fluoroindole W33G 

Crystallization and Data Collection: 

A β-glycosidase construct containing the W33G mutation concentrated to 10.0 mg/mL in 

Hepes pH 7.0 was screened for crystallization in Compact Jr. (Emerald biosystems) sitting drop 

vapor diffusion plates. Crystals were obtained from the Index screen condition E1 (Hampton 

Research, 45% 2-methyl-2,4-pentanediol, 100 mM Bis-Tris pH 6.5, 200 mM CaCl2) using equal 

volumes of protein and crystallization solution equilibrated against 100uL of the latter at 20°C. 

Prismatic crystals were obtained within 24 to 48 hours. To prepare the 5-fluoroindole bound 

complex, single crystals were transferred to a drop containing 100 mM indole dissolved in 

crystallization solution and incubated for 48 hours. Crystals were harvested directly from the 

soak solution and stored in liquid nitrogen for data collection. Data were collected at the 

Advanced Photon Source IMCA-CAT beamline 17ID using a Dectris Pilatus 6M pixel array 

detector. 

Structure Solution and Refinement: 

Intensities were integrated and scaled using XDS [141] and Aimless [142] respectively. 

Structure solution was carried out by molecular replacement with Phaser [143] using the 

isomorphous non-crystallographic dimer of a previously determined indole bound structure of 

the W33G mutant (PDB: 4EAN [5]) as the search model. Structure refinement and manual 

model building were performed with Phenix [42] and Coot [144] respectively. Structure 

validation was carried out using Molprobity [42]. Disordered side chains were truncated to the 
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point where difference electron density could be observed. Relevant crystallographic data are 

provided in Table A1.3. 

 

A1.2 Supplementary Results 
 

Large difference density (Fo-Fc) greater than 3 and consistent with 5-fluoroindole was 

observed near Gly33 of each subunit and was modeled in the orientation as shown in Figures 

A1.4a and A1.4b. Based on the difference electron density maps, the 5-fluoroindole molecules 

seem to fit best to the electron density in the orientation as modeled. In addition, feature-

enhanced (FEM) [113] electron density maps were computed which are depicted in Figures 

A1.4c and A1.4d. Combined with the observed electron density from the Fo-Fc omit maps, the 

orientation that was modeled for the 5-fluoroindole molecules seems to be the most plausible. 

However, it is feasible that a minor population exists such the molecules adopt an alternate 

orientation that does not contribute to the observed electron density. 

Superposition of the 5-fluoroindole bound model with the indole bound (PDB: 4EAN) 

using GESAMT [145] indicated that the structures are nearly identical with RMSD deviations of 

0.17 Å and 0.18 Å between Cα-atoms of subunits A and B respectively (483 and 485 residues). 

The superimposed non-crystallographic symmetry (NCS) related dimers are shown in Figure 

A1.5a. Given the high degree of similarity, it was not surprising that Trp 433 adopts the “ligand 

bound” conformation in which the side chain is moved away from the indole binding region as 

shown in Figures A1.5b and A1.5c. 
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A1.3 Supplemental Tables 
 

 

 Peak Integral (normalized to WT) 

WT + 6FI 1.00 

W33G + 6FI 0.48 

W33G + 6FI + indole 0.99 

W33G + 6FI + 3-methylindole 0.90 

W33G + 6FI + N-methylaniline 0.90 

W33G + 6FI + 2-methylindole 0.55 

 
 
Table A1.1: 19F NMR peak integrals. Integrated peak intensities are directly proportional to the 

number of 19F nuclei giving the signal, and are therefore reported relative to the sample 

containing wild type β-glycosidase. 
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Table A1.2: Ligand efficiency (binding free energy per heavy atom) for each ligand/protein pair 

reported in this study. Binding free energy is calculated from Kd values obtained by fitting 

enzyme kinetics.  

 LE (kcal/mol⋅atom) 

indole (W33G) -0.31 

3-methylindole (W33G) -0.31 

N-methylaniline (W33G) -0.32 

5-fluoroindole (W33G) -0.42 

N-methylaniline (W33A) -0.27 

indole (W33A) -0.24 

3-methylindole (W33A) -0.28 

indole (W33G_V37A) -0.33 

5-methylindole (W33G_V37A) -0.43 



 97 

 β-gly W33G + 5-fluoroindole 
Data Collection  
Unit-cell parameters (Å, o) a=b=167.71, c=95.87 
Space group P3121 
Resolution (Å)♯ 48.41-1.75 

(1.78-1.75) 
Wavelength (Å) 1.0000 
Temperature (K) 100 
Observed reflections 1,526,719 
Unique reflections 155,679 
<I/(I)> ♯ 10.7 (1.9) 
Completeness (%)♯ 100 (100) 
Multiplicity# 9.8 (10.1) 
Rmerge (%)♯, 11.5 (116.2) 
Rmeas (%)♯, ✔ 12.2 (122.4) 
Rpim (%)♯, ✔ 3.9 (38.4) 
CC1/2 ♯, 0.998 (0.821) 
Refinement  
Resolution (Å) 34.06-1.75 
Reflections (working/test) 147,863 / 7,720 
Rfactor / Rfree (%) 15.3 / 17.3 
No. of atoms (protein / 5-fluoroindole / water) 7,981 / 20 / 568 
Model Quality  
R.m.s deviations   
Bond lengths (Å) 0.009 
Bond angles (o) 1.005 
Average B factor (Å2)  
All Atoms 29.8 
Protein  29.1 
Indole 46.3 
Water 38.7 
Coordinate error 
(maximum likelihood) (Å) 

0.17 

Ramachandran Plot  
Favored (%) 97.8 
Allowed (%) 2.0 

♯)     Values in parenthesis are for the highest resolution shell. 
  )     Rmerge = hkl i |Ii(hkl) - <I(hkl)>| / hkl i Ii(hkl), where Ii(hkl) is the intensity 
measured for the ith reflection and <I(hkl)> is the average intensity of all reflections with indices 
hkl.  
  )     Rfactor = hkl ||Fobs (hkl) | - |Fcalc (hkl) || / hkl |Fobs (hkl)|; Rfree is calculated in an  
identical manner using 5% of randomly selected reflections that were not included in the 
refinement. 
✔)     Rmeas = redundancy-independent (multiplicity-weighted) Rmerge[142, 146].  Rpim = precision-
indicating (multiplicity-weighted) Rmerge[147, 148].  
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 )    CC1/2 is the correlation coefficient of the mean intensities between two random half-sets of 
data [149, 150]. 
 
 
Table A1.3. Crystallographic data for β-glycosidase W33G with 5-fluoroindole bound, 

refined to 1.75 Å resolution.
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A1.4 Supplemental Figures 

 

 

Figure A1.1: Initial velocities as a function of substrate concentration (FDGal, fluorescein di-β-

D-galactopyranoside), in the presence of 5 mM of various effectors (indole, 3-methylindole, and 

N-methylaniline). Data for each curve were fit to the Michaelis-Menton equation, to obtain the 

apparent KM values under each condition. In each case the KM values are below the 750 μM 

substrate concentration used in each of the other experiments reported in this study. KM values 

were not explicitly measured for all of the effector ligands used in this study, nor were they 

determined for protein mutants other than W33G. 
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Figure A1.2: 6-fluoroindole rescues β-gly W33G to the same extent as indole itself. Product 

formation was measured by fluorescence using 750 μM fluorescein di-β-galactopyranoside 

(FDGal) as substrate. 
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Figure A1.3: Maximal upper and lower bounds of the initial velocity. The range corresponding 

to one standard error above and below the best-fit values of KD and W are reported. The upper 

dashed gray line corresponds to the initial velocity that would be observed from KD = 8.7 mM 

and W = 162 (the lowest KD value with the highest W value). The lower dashed gray line 

corresponds to the initial velocity that would be observed from KD = 12.9 mM and W = 82 (the 

highest KD value with the lowest W value). Thus, the dashed gray lines represent the maximal 

confidence intervals of the curve, at ± 1 standard error. 
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Figure A1.4: Electron density maps showing the orientation of the 5-fluoroindole molecules 

within the β-gly subunits A (magenta) and B (cyan). Panels (A) and (B): Fo-Fc omit maps (green 

mesh) contoured at 3σ. Panels (C) and (D): Feature enhanced 2Fo-Fc maps (tan mesh) contoured 

at 1.5σ. 
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Figure A1.5: Superposition of 5-fluoroindole-bound and indole-bound β-gly structures. (A) 5-

fluoroindole bound β-gly NCS dimer showing subunits A (magenta) and B (cyan) superimposed 

with subunits A (light green) and B (gold) of indole bound β-gly (PDB: 4EAN). 5-fluoroindole 

molecules are shown as spheres. (B) and (C): Zoomed in view of the indole binding regions. 5-

fluoroindole and indole molecules are rendered as gray and light blue respectively. 
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Appendix A.2  
 
Chapter 3 Supporting Information 
A2.1 Supplemental Figures 

Figure A2.1: ColE1-T-Cy3 does not bind to cells.  
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Figure A2.2: Time course of ColE1-TR-Cy3 bound to E. coli BW25113. The puncta formed 

remains immobile.  
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