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Abstract 

Enteric infections, particularly those leading to diarrhea, can profoundly disrupt intestinal 

function and have a major impact on global mortality and morbidity rates.1 Globally, there are 

1.7 billion cases of childhood diarrheal disease every year, which results in the death of 

approximately 525,000 children under the age of 5.2 Four pathogens were identified to be the key 

contributors to childhood diarrheal cases. These pathogens include rotavirus, Cryptosporidium, 

Shigella, and ST-ETEC. While rotavirus is the most prominent contributor to diarrheal episodes, 

specifically in infants (0 – 11 months), Shigella’s influence grows and becomes the primary 

contributor to diarrheal episodes as the child reaches the toddler stage of development (24 – 59 

months).3 Ingestion of Shigella bacterium results in the luminal infection referred to as 

shigellosis. Before symptoms appear, Shigella first crosses the colonic epithelium via M cells 

where it is engulfed by macrophages that then undergo pyroptosis. After release into the sub-

mucosa, Shigella invades intestinal epithelial cells using its type III secretion system (T3SS). 

The T3SS or injectisome is essential for Shigella virulence. The injectisome consists of three 

major components: extracellular needle, basal body, and a cytoplasmic sorting platform. Effector 

secretion is triggered by host cell contact and controlled by the sorting platform (SP). Shigella’s 

SP is comprised of five essential virulence proteins (MxiG, MxiK, Spa33, MxiN, and Spa47), 

which are highly conserved across all Shigella species. Characterization of the cytoplasmic SP 

via cryo-electron tomography allowed us to generate a 3D model of the SP containing six pod-

like structures (comprised most prominently of Spa33). Spa33 is then connected to MxiN spokes 

that link it to the central ATPase (Spa47) and to MxiK, which links it to the basal body.  This 

model differs dramatically from the contiguous arrangement of C ring proteins seen within the 

distantly related Gram-negative flagellum. Deletion of spa33 results in complete loss of the SP. 
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Spa33 consists minimally of a dimer of C-terminal Spa33 domains (Spa33C) and a full-length 

copy (Spa33FL). Spa33FL is unstable on its own, but is greatly stabilized by association with its 

alternatively translated Spa33C
 dimer. Here I provide support using various biophysical 

techniques in vivo and in vitro that the association between Spa33FL and Spa33C is essential to 

T3SS function, suggesting that both Spa33FL and Spa33C are necessary for SP assembly in 

Shigella.  
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Background and Significance  

ESKAPE and Enterobacteriaceae 

Antimicrobial resistance (AMR) is not a new phenomenon. Its presence has been felt since the 

first antibiotics were used to treat bacterial infections.4,5 The unfortunate circumstance of AMR 

is that novel antimicrobial medications developed in response to microbial resistance will 

ultimately become the catalyst for the next wave of newly resistant bacteria.6  Hence, we must be 

able to produce novel antimicrobial agents at a much greater pace and/or agents that have broad 

spectrum capabilities if we hope to keep up with AMR. This is a daunting task and one we do not 

seem to be winning. While several new clinically useful antibiotics have been approved since 

2013, reversing the downward trend in FDA approval, the urgency to develop new broad 

spectrum drugs should not be deterred.7,8 The Infectious Diseases Society of America (IDSA) 

continues to view with concern the lean pipeline for novel therapeutics to treat drug-resistant 

infections, especially those caused by gram-negative pathogens.9 Extensive research has 

identified a group of AMR pathogens that have been reported to have a high propensity to 

‘escape’ the effects of current antimicrobial agents.10,11 The appropriately named ESKAPE 

pathogens include: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia,  

Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. AMR has also been 

reported in the gram negative pathogens Escherichia coli, Salmonella typhimurium, and Shigella 

flexneri who are all members of the Enterobacteriaceae family and fall under the ESKAPE 

pathogens umbrella.12–14 The Enterobacteriaceae are a family of gram-negative, rod-shaped, non-

sporlating bacterial pathogens. Many of its members live in the gut of mammals where some can 

cause enteric diseases.15  
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Diarrheal Diseases 

Enteric infections, particularly those leading to diarrhea, can profoundly disrupt intestinal 

function and have a major impact on global mortality and morbidity rates.1 Globally, there are 

1.7 billion cases of childhood diarrheal disease every year, which results in the death of 

approximately 525,000 children under the age of 5.2 The majority of these deaths occur in 

developing countries. While the mortality rates have been steadily decreasing, morbidity has 

remained steady. Morbidity as a result of repeated infections by enteric pathogens triggering 

diarrhea, especially in the first 2 years of child-hood, greatly affect nutrient absorption and has a 

lasting impact on the growth and development of the child later on in life.1 Consequently, the 

long-term developmental and cognitive deficits seen with early child-hood diarrheal illnesses 

may be far more costly (in economic, as well as in human health) than previously thought.16  

In 2013, a study funded by the Bill and Melinda Gates Foundation was conducted to assess the 

burden and etiology of diarrheal disease in infants and young children in developing countries.3 

In this study, four pathogens were identified to be the key contributors to childhood diarrheal 

cases. These pathogens include rotavirus, Cryptosporidium, Shigella, and ST-ETEC.  An 

interesting dynamic of this group is that while rotavirus is the most prominent contributor to 

diarrheal episodes, specifically in infants (0 – 11 months), Shigella’s influence grows and 

becomes the primary contributor to diarrheal episodes as the child reaches the toddler stage of 

development (24 – 59 months).3 

Shigellosis and Shigella  

Shigellosis is an acute invasive enteric infection triggered by bacteria belonging to the genus 

Shigella.17 The Shigella genus is named after Kiyoshi Shiga, who isolated it in 1897. Shigella 

pathogens, members of the Enterobacteriaceae family, are Gram-negative, rod-shaped bacteria 
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and are phylogenetically separated into four subgroups with various serotypes: S boydii (19 

serotypes), S. flexneri (6 serotypes), S. dysenteriae (15C serotypes), and S. soneii (1 serotype).  

Shigellosis is endemic in most developing countries and was estimated to be responsible for 

212,438 deaths globally among all ages in 2016.18 S. dysenteriae and S. flexneri are the 

predominant and most virulent of the four species especially in resource limited areas, whereas S. 

soneii is more common in affluent regions.19–21 The number of diarrheal cases and deaths 

fortunately are decreasing due to massive efforts taken to improve general sanitary practices and 

health conditions in developing countries. 

Ingestion of as few as 10 organisms, usually from a contaminated food, water, or contact with 

fecal matter, may result in shigellosis.22 Symptoms begin 1-4 days after ingestion, and range 

from watery diarrhea to severe inflammatory dysentery characterized by strong abdominal 

cramps, fever, and stools containing blood and mucus.23 Isolation of the organism and serotyping 

is the only definitive method for diagnosis of Shigella because is cannot be distinguished from 

other causes of dysentery symptoms manifestation.17 Prevention of Shigella induced dysentery 

can be achieved by simple hand-washing, the availability of safe drinking water, proper disposal 

of human waste, breastfeeding of infants, safe food handling, and control of flies.  

Current methods for treating shigellosis and other diseases caused by enteric pathogens often 

attempt to target universal mechanisms that are vital for pathogen survival. Historically, 

ampicillin, trimethoprim-sulfamethoxazole, tetracycline, nalidixic acid, and chloramphenicol 

have been effective antimicrobial treatment options for targeting vital pathogen functions. 

However, with the rise of AMR, even fluoroquinolones such as ciprofloxacin and other broad 

ranging antibiotics are additionally proving ineffective towards certain serotypes of Shigella.25,26 

Vaccine effectiveness has also been hindered due to Shigella’s ability to employ serotype 
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switching via O-antigenic variation on its cell surface allowing it to evade host immunity.24–26 

Therefore, an alternative method that should be considered is to target mechanisms needed for 

virulence of Shigella, but are non-essential for the pathogen’s survival. Further study and 

treatment expansion focused towards the Shigella virulence pathway would ideally demonstrate 

chronic infection prevention of diarrhea manifestation until the immune system is able to clear 

the pathogen naturally. 

Shigella Virulence Pathway 

Stomach Survival 

Upon Shigella ingestion, the bacterium is able to survive the highly acidic environment of the 

stomach, pass through the small intestine and localize to colonic lumen where it can establish an 

infection in pH neutral environments.23 It has been shown that S. flexneri implements at least two 

acid-resistance stationary-phase pathways (AR1 and AR2) to facilitate its survival through the 

stomach.27 AR1 is an acid-induced, glucose-repressed, oxidative, decarboxylase independent 

pathway that protects Shigella between pH 3-5. Additionally AR2, a glutamate decarboxylase 

dependent system (GDAR) can protect bacterium below pH 3.28,29 The GDAR system, 

responsible for Shigella survival as it passes through the stomach, is characterized by the 

paralogous pyriodoxal 5’-phosphate dependent decarboxylase enzymes GadA and GadB, as well 

as an inner-membrane antiporter GadC.30  Cytoplasmic protons are consumed in a GadA/B 

facilitated reaction that converts glutamate to gamma-amino butyric acid (GABA) and CO2. 

Generated GABA is then transported out of the cell by GadC in a glutamate exchange process. 

This process allows the pathogen to survive the stomachs acidic environment.30,31  
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Luminal Epithelium Localization and Apical Mucosa Modification 

Unlike many other enteric pathogens, Shigella does not express a flagellum and therefore is 

unable to propel itself through the thick intestinal mucosa environment. Investigations revealed 

that Shigella accounts for its lack of motility machinery through manipulation of intestinal 

secretory pathways by promoting the trapping and accumulation of mucins (MUC5AC and 

Muc2) at the cell surface.32,33 A Gel-like matrix formed by the recruited mucins along with 

inhibition of antimicrobial peptides produced by the epithelial surface subsequently promotes a 

favorable environment for Shigella localization to the intestinal lumen.32,34–36 Following Shigella 

intestinal lumen localization, the pathogen must cross the colonic epithelial barrier before 

pathogenesis is observed. Shigella facilitates its transfer across the epithelial barrier via 

microfold cells (M cells).37 Studies suggest that M cell engulfment of bacterial agents is 

triggered by recognition receptors TLR-4, PAF-R and α5β1 integrin.38 After engulfment by the 

M cells, and trancytosis across the epithelial layer, the bacterium is released into the 

intraepithelial pocket where it encounters macrophages.  

Shigella Macrophage Engulfment and Escape 

The role of macrophages and their ability to phagocytose and present antigens as a part of the 

immune response to foreign agents has been widely studied.39 However, the uptake of Shigella 

following M cell trancytosis and entry into the laminal propria is not completely macrophage 

driven. While a clear mechanism has not been identified, it is reported that Shigella is able to 

direct its own internalization into macrophages through the secretion of the effector protein 

IpaC.40 Inside the macrophages, the bacterium is then able to escape the phagosome and kill the 

macrophage through apoptotic and pyroptotic pathways.41 These macrophage cell death 

pathways are triggered by the secretion of IpaD and IpaB proteins.42,43 Once internalized, IpaB 

causes permeabilization and subsequent disruption of the endolysosome along with the formation 
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of ion channels to promote K+ flux, which alters the membrane potential. Pyroptosis mediated 

cell death of the macrophage will occur due to the disrupted membrane potential and 

consequential activation of caspase-1 and release of IL-1β.44,45 IpaD was alternatively reported to 

activate caspase-9 (involved in positive-feedback loops and activation of caspases -2, -3, -6, -7, -

8, -10), which is part of the mitochondrial apoptotic pathway. 43,46 This apoptotic pathway also 

triggers loss of membrane potential and occurs in parallel with the IpaB pyroptosis pathway. 

Once the mitochondrial death and inflammatory responses are stimulated, Shigella is then able to 

escape into the submucosa. 

Shigella Intracellular Actin Driven Motility 

Upon entry into the submucosa, Shigella will continue to replicate and polymerize actin which 

directs intracellular movement towards the basolateral side of the intestinal epithelial cell (EC) 

wall.  Actin polymerization needed for intracellular motility of Shigella is driven by a VirG 

dependent process.47–49 VirG is expressed on the membrane surface and contains 3 domains (N, 

α, and C). The external presentation of α-domain of VirG is required for F-actin assembly.50 

Several reports also conclude that the N-terminal two-thirds of the α-domain is responsible for 

recruitment of F-actin through a direct interaction with vinculin, whereas the α-domain C-

terminus aids VirG asymmetric distribution in Shigella.51,52 Shigella is then able to induce actin-

based motility by VirG, N-WASP, and Arp2/3 complex interactions, which mediates filament 

polymerization and crosslinking needed for propulsion through the sub-mucosa and aid adhesion 

to the basolateral EC lining.47,52,53 

In build up to Shigella contact with host epithelial cells, I have described a large portion of the 

Shigella virulence pathway through the intestinal tract. Throughout this process Shigella has 

already initiated immune/inflammatory responses by the ongoing secretion of early effector 
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proteins such as IpaA, B, C, and D, which also aid in prompting macrophage cell death to allow 

Shigella escape into the sub-mucosa. In the following sections, I will discuss the complex protein 

nanomachine Shigella employs to modulate the secretion of the previously mentioned “early” 

effector invasion plasmid antigen (Ipa) proteins, which are required for infection.54 

Secretion/Injection modulation of effector proteins by this secretion system (see Table 1 for list) 

54,55 is involved not only in the secretion of early effector proteins, but actually plays a key role in 

host EC invasion by Shigella and secretion of numerous “late” effector proteins that dampen the 

inflammation response in order to prolong infection.41,44,56 While many Enterobacteriaceae 

express secretion systems to aid in pathogenicity or other cellular functions.57 Shigella are well 

known for their implementation of the type III secretion system (T3SS), also referred to as the 

injectisome.  

Type III Secretion System (T3SS) 

T3SS components essential for Shigella virulence are encoded by a ~30kb mxi-spa operon 

found in the virulence plasmid of Shigella.58  Shigella virulence plasmid (VP) (230kb) also 

maintains the ipa/ipg operon, responsible for the encoding of the secreted effector proteins 

mentioned previously (see Figure 1).54  Shigella acquisition of the VP through horizontal gene 

transfer is generally consider an important part of Shigella evolution from E. coli.59  While there 

are undoubtedly many more factors that played a role in Shigella evolution from a non-

pathogenic species, it is important to note that homologous T3SS injectisomes are prevalent in 

other pathogens including: Yersinia species, Salmonella enterica, Pseudomonas aeruginosa, 

Burkholderia pseudomallei, and Chlamydia species.60 However, Shigella is somewhat unique 

because the operons encoding its virulence components are located on a single VP (Figure 1).  
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Table 1 
 

Effector 

Early/Mid

dle/Late 

Host cell 

target 

Effect on 

cells 

Effect on inflammation and 

immune cells 

IpaB 

(Early) 

Forms pore 

 

CD44 

Bacterial invasion 

and 
rupture 

Bacterial escape from 

phagosome; Pyroptosis of 

MUs; Inhibition of 
EC-mediated inflammation 

IpaC 

(Early) 

Forms pore 

 
Actin 

 

Actin, Src, 

 

Bacterial invasion 

and 
rupture 

Bacterial escape from 

phagosome 

IpaD 

(Early) 

T3SS needle 
 

TLR2  MU and T cell apoptosis 

IpaA 

(Early) 

Actin 

 

Vinculin Bacterial invasion 

Reduction of cell–

matrix 
adhesion 

 

IpgB1 

(Early) 

Actin  Rac2 and Cdc42 invasion  

IpgB2 

(Early) 

Actin  RhoA invasion  

IpgD 

(Early) 

PI4,5P2 

conversion to PI5P 

PI4,5P2 Bacterial invasion 

and vacuolar rupture 

Apoptosis 
inhibition 

Inhibition of T cells 

migration; DAMPs 

secretion inhibition in EC 

VirA 

(Middle) 
κ  

signaling 

Tubulin, 

Rab1 

Bacterial intra-/ 

intercellular 

Apoptosis inhibition 
Golgi  

Inhibition of EC-mediated 

inflammation 

OspF 

(Middle) 

Inhibition of 

MAPK 
signaling 

ERKp38  Inhibition of EC-mediated 

inflammation 

OspG 

(Late) 

κ  
signaling 

Ubiquitin and 

Dephosorylates

MAPKs 

inhibition Inhibition of EC-mediated 

inflammation 

OspI 

 

κ  
signaling 

Deamidates 

UBC13 E2 

inhibition Inhibition of EC-mediated 

inflammation 

OspZ κ  
signaling 

Blocks p65 

nuclear 

translocation 

inhibition Inhibition of EC-mediated 

inflammation 

 Table 1 (Above): Hierarchal secretion of effector proteins and their function- Secretion of 

these effector proteins are dependent on T3SS activity. This table as referenced in the text was 

produced through combination of tables and data from Mattock and Blocker as well as from 

Belotserkovsky and Sansonetti et al. 54,55 
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Figure 1 (Above): Genomic organization of the Shigella virulence plasmid (VP)- As 

described  in the text, VP genes are clustered in two operons, the ipa/ipg and the mxi/spa 

operons. Genes are colored in the legend according to their protein class. Further information 

about each protein can also be found in Table 1. Secretion machinery (Light Blue) refers to 

the components that build the T3SS, particularly on the mxi/spa operon. Translocators (Navy) 

are components of the translocon, a pore inserted into the host membrane that allows effector 

translocation into host cell. Chaperones (Gold) are protein components that stabilize 

individual effectors prior to secretion from the bacterium. Regulators (Red) modulate T3SS 

expression and function. This figure was acquired from Mattock and Blocker (2017) who 

generated it via modifications to the virulence plasmid map produced by Buchrieser et 

al.(2000).54,106,107
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Alternatively, virulence operons in other pathogens, such as Salmonella, are located on 

chromosomal regions referred to as pathogenicity islands, but both do have the capability for 

horizontal gene transfer, which provides support for T3SS multi-species conservation. The 

addressed conservation and virulence mechanism pathway of the T3SS injectisome makes it a 

compelling candidate for antimicrobial drug targeting because: 1) The T3SS is required for 

pathogen virulence not survival. Therefore, antimicrobial drugs or vaccines targeting the T3SS 

may provide less selective pressure and reduced development of AMR risk. 2) Implementation of 

T3SS antimicrobial therapeutics could have widespread species and serotype effectiveness 

because the virulence mechanism is so highly conserved. Homologous injectisome component 

structure and function comparisons will frequently be alluded to throughout the remainder of this 

work (see Figure 2 for a general comparison).  

T3SS Structure 

The injectisome, is a highly conserved, transmembrane protein nanomachine that consists of 

three substructures: extracellular needle and tip comlex, basal body, and cytoplasmic sorting 

platform (SP) (Figure 3).61,62The basal body and SP substructures homologically also share 

several functional and structural features with flagellar systems.63 The apparent difference can be 

observed in the expression of a flagellar filament that directs bacterial motility, whereas the 

T3SS has evolved to express an extracellular needle to mediate intestinal delivery of effectors 

(Figure 4).64  

Polymerization of MxiH creates a hollow (7nm outer diameter), helical needle filament that 

protrudes 50 nm extracellularly from the Shigella outer membrane (see Figure 5).65,66 Upon 

contact with the host EC, secretion is stimulated to signal the translocators IpaB-D to be 

recruited to the MxiH needle tip. It has been reported that Shigella mutants lacking IpaB-D and  
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Figure 2 (Above): Multi-Species Overview Comparison of T3SS Injectiomes- As 

referenced in the text, images above highlight the many similarities found between the 

injectisomes of Salmonella enterica, Yersinia species, Pseudomonas aeruginosa, and Shigella 

flexneri. It should also be noted that many of the structures are not fully characterized. Some of 

these gaps will be addressed here. It should be noted that a Cryo/ET Pseudomonas model has 

not been achieved to date. The Psuedomonas image above is a conventional model used to 

represent all T3SS.108,109 
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A B 

Figure 3: Cryo-ET Model of the Type III Secretion System found in S. flexineri- A central 

subtomogram section average (A) and a 3D surface rendering (B) of the intact injectisome show 

OM, CM, peptidoglycan (PG), basal body, and needle in detail. Importantly, there is a large 

cytoplasmic complex that is 32 nm in diameter and 24 nm in height. Three cross-sections 

(indicated in A) of the cytoplasmic complex show sixfold symmetric features. The six pods 

(colored in red) are linked to the central hub (yellow) by radially arranged (spoke-like) linker 

densities (yellow). As referenced in text figure and text acquired from Hu et al. (2015).61 
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Figure 4:  Schematic Comparison of the T3SS Injectisom with Flagellum- As discussed in 

the text, protein complexes were designed using electron microscopy (EM) structures as a 

model. With the exception of the extracellular segment, there are many observable structural 

similarities between the two systems. The pathogenic injectisome model is generated using: 

EMD accession numbers 1875, 5720, 5721, and 2669, for the basal body; the model for the 

major export component (Abrusci et al., 2013)110 and EMD accession number 1647 for the 

hook.111 Homologous components are presented with the same color in the structures. The 

T3SS comprise the extracellular segment, the basal body, and the cytoplasmic components. 

Figure and text acquired from Portaliou et al. (2016).77,110,111 
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Figure 5: Visualization and Model Schematic of the MxiH Needle Filament Architecture-

As described in the text, images A and B provide low and high resolution reconstructions of the 

MxiH filaments that are viewed from the top and side. Top view of the structures reveals the 

helical arrangement of the MxiH subunits. Images provided in A were obtained from Cordes et 

al. (2003).  Image B was acquired from Demers et al. (2014) and provided a higher-resolution 

structure through the use of solid-state NMR and cryo-electron microscopy. The protein ribbon 

structure is provided in parallel with the surface electron densities for visualization of the MxiH 

subunit orientations and arrangement as it polymerizes to form the extracellular needle. 65,66  
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expressing only MxiH needles, have no secretion activity.67 More importantly, in the absence of 

Ipa B-D, Shigella invasion into the host cell does not occur.68 IpaD serves an important role in 

facilitating IpaB and IpaC host membrane translocon pore formation and control of their 

secretion as effectors.69,70 Further structural information and implication of IpaD in traslocon 

pore formation can be found by referring to Johnson et al. (2006) and Blocker et al. (2008).71,72 

Following host cell contact and translocon pore formation by IpaB and IpaC, active secretion of 

host cell effector proteins is triggered.73 Effector proteins will then be selected, secreted through 

the export apparatus (basal body), extracellular needle, and then into the host cell where together 

they can begin to modulate host cell function to trigger EC invasion by Shigella. Effector targets 

and function are listed in Table 1. Once Shigella has successfully invaded the host cell, it shifts 

its focus towards survival and propagation. This is achieved by secretion of VirA and IpaJ, 

which aid in preventing autophagy.54,74,75 VirG actin-based motility is then used for Shigella EC 

intercellular movement. The pathogen will then protrude into the neighboring EC in order to 

continually evade immune responses and maintain a favorable propagation niche. Invasion into 

neighboring EC also stimulates release of interleukin (IL)-8, which recruits polymorphonuclear 

leukocytes (PMN). The release of proinflammatory cytokines and Shigella’s movement through 

EC lining ultimately results in luminal lining destruction by PMN and symptomatic presentation 

of shigellosis (abdominal pain, diarrhea, and/or dysentery).44,52–54,56  

Cytoplasmic Sorting Platform 

Contact of the extracellular needle with host ECs activates delivery of virulence effector 

proteins.  Six to twenty of these secreted effectors modulate the function of host regulatory 

molecules.76 Secretion of effectors, while dependent on contact with the host cell, is largely 

controlled by the injectisome’s cytoplasmic sorting platform (SP). The SP is evolutionally well 
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conserved among the Enterobacteriaceae (e.g. Yersinia species, Salmonella enterica, 

Pseudomonas aeruginosa, and Shigella flexneri) and is similar to flagellar systems. There are 

five essential protein subcomponents required for the fully assembled SP. The five homologous 

protein SP components found in Enterobacteriaceae include: SctD, SctK, SctQ, SctL, and SctN. 

The Sct (secretion and cellular translocation) nomenclature has been applied to unify the 

homologous T3SS structural components.77 Table 2 has been provided as an aid to limit 

confusion as species comparisons between SP protein subunits are made.  

Structural studies of the inner membrane ring in Shigella have shown that the ring’s protein 

component is a 371 residue protein called MxiG (SctD homolog). The MxiG ring has 24 fold 

symmetry (Figure 6).78 It is also important to note that experiments with Salmonella spp SPI-1 

and Yersinia  have revealed that assembly of the inner membrane ring occurs independently of 

the other four SP components as well as the basal body.79–81 Therefore, the SctD inner membrane 

ring forms as the first sequential step in injectisome assembly and it serves as the “architectural” 

foundation for injectisome SP construction.  

After the SctD inner membrane ring has assembled, the remaining SP components (SctK, SctQ, 

SctL, SctN) are able to sequentially assemble below. While the roles and structural details of the 

SP components are unclear, efforts have been made to individually assess how the absence of 

one SP component effects the assembly of the others. Two methods that have been used to assess 

sorting platform assembly are 2D and 3D 4Pi single-molecule switching nanoscopy (4Pi-SMSN) 

and cryo-electron tomography (Cryo-ET). 4Pi-SMSN is a newly developed whole cell imaging 

technique that can reach resolution below 20 nm in 3D.82 This techniques is able to provide 

information towards the distribution of SP components within a bacterium.  For example, in wild 

type Salmonella typhimurium SpaO (SctQ) mutants fluorescently tagged with mEos3.2, SpaO  



17 

 

 

 
H

o
s

ts
 

F
la

g
e
lla

r 

H
u

m
a

n
s
 a

n
d

 A
n

im
a
ls

 
P

la
n

ts
 

C
o

m
m

o
n

 
F

u
n

c
ti

o
n

 
E

P
E

C
/E

H
E

C
 

a
e
ru

g
in

o
s
a

 

Y
e
rs

in
ia

 
S

h
ig

e
ll

a
 

fl
e

x
n

e
ri

 

S
a
lm

o
n

e
ll

a
 

s
p

. 
S

P
I-

1
 

S
a
lm

o
n

e
ll

a
 

e
n

te
ri

c
a
 

S
P

I-
2

 

C
h

la
m

y
d

i
a
 

B
u

rk
h

o
ld

e
ri

a
 

P
s
e
u

d
o

m
o

n
a

s
s

y
ri

n
g

a
e

 

R
a
ls

to
n

ia
 

X
a
n

th
o

m
o

n
a

s
 

s
p

p
. 

C
y
t
o

p
l
a
s
m

i
c
 
M

e
m

b
r
a
n

e
 

S
c
tD

 
E

s
c
D

 
P

s
c
D

 
Y

s
c
D

 
M

x
iG

  
P

rg
H

 
S

s
a
D

 
C

d
s
D

 
B

s
a

M
  

H
rp

Q
 

H
rp

W
 

H
rc

D
 

F
liG

 

C
y
t
o

p
l
a
s
m

i
c
 
C

o
m

p
o

n
e
n
t
s

 
 

 

S
c
tQ

 
ri
n

g
 

S
e
p
Q

 
P

s
c
Q

 
Y

s
c
Q

 
S

p
a
3

3
 

S
p
a
O

 
S

s
a
Q

 
C

d
s
Q

 
B

s
a
V

 
H

rc
Q

A
/H

rc
Q

B
 

H
rc

Q
 

H
rc

Q
A
; 

H
rc

Q
B

 

F
liM

; 
F

liN
 

S
c
tL

 
S

ta
to

r 
E

s
c
L

 
P

s
c
L

 
Y

s
c
L

 
M

x
iN

 
O

rg
B

 
S

s
a
K

 
C

d
s
L

 
O

rg
B

 
H

rp
E

 
H

rp
F

 
H

rc
L

 
F

liH
 

S
c
tN

 
A

T
P

a
s
e

 
E

s
c
N

 
P

s
c
N

 
Y

s
c
N

 
S

p
a
4

7
 

In
v
C

 
S

s
a
N

 
C

d
s
N

 
B

s
a
S

 
H

rc
N

 
H

rc
N

 
H

rc
N

 

S
c
tO

 
S

ta
lk

 
E

s
c
O

 
P

s
c
O

 
Y

s
c
O

 
S

p
a
1

3
 

In
v
I 

S
s
a
O

 
C

d
s
O

 
H

rp
D

 o
r 

B
s
a
T

 
H

rp
O

 
H

rp
D

 
H

rp
B

7
 

F
liJ

 

S
c
tP

 
ru

le
r 

E
s
c
P

 
P

s
c
P

 
Y

s
c
P

 
S

p
a
3

2
 

In
v
J
 

S
s
a
P

 
C

d
s
P

 
B

s
a
U

 
H

rp
P

 
H

p
a
P

 
H

p
a
C

 
F

liK
 

S
c
tW

 
G

a
te

-
k
e
e
p
e
r 

S
e
p
L

 
P

o
p
N

 
Y

o
p
N

/T
y
e
A

 M
x
iC

 
In

v
E

 
S

s
a
L

 
C

o
p
N

 
B

s
a
P

 
H

rp
J
 

H
p
a
A

 
H

p
a
A

 

c
o
m

p
n

e
n
t 

S
e
p
D

 
S

p
iC

 

S
c
tK

 
A

T
P

a
s

e
 

P
s
c
K

 
Y

s
c
K

 
M

x
iK

 
O

rg
A

 
O

rg
A

 
H

rp
D

 

C
h

a
p

e
r
o

n
e
s
 F
o

r 
e
a
rl

y
 

E
s
c
E

; 
E

s
c
G

 
P

s
c
E

; 
P

s
c
G

 
Y

s
c
E

; 
Y

s
c
G

  
 

 
C

d
s
E

; 
C

d
s
G

 

 
 

 
 

 

F
o

r 
m

id
d
le

 
C

e
s
A

B
; 

C
e
s
D

; 
C

e
s
D

2
 

P
c
rG

; 
P

c
rH

 
L
c
rG

; 
S

yc
D

; 
S

y
c
B

 Ip
g
C

; 
Ip

g
C

 
S

ic
A

 
S

s
e
A

; 
S

s
a
E

 
L
c
rH

 
 

 
 

 

F
o

r 
la

te
 

C
e
s
T

; 
C

e
s
F

 
S

p
c
U

; 
S

p
c
S

 
S

yc
E

; 

S
yc

T
; 

S
yc

H
; 

S
yc

N
; 

Y
s
c
B

; 
Y

s
a
K

 Ip
g
E

; 
S

p
a

1
; 

Ip
g
A

 

S
ic

P
; 
S

ig
E

; 

In
v
B

; 
S

ig
E

 

S
rc

A
; 
S

s
c
B

 
S

yc
E

 
B

P
S

S
1
5
1

 
S

h
c
A

; 
S

h
c
M

; 

S
h
cF

; 
S

h
c
V

; 

S
h
c
O

1
; 

S
h
c
S

1
; 

S
h
c
S

2
 

H
p
a
B

 
H

p
a
B

 
 

T
a
b

le
 2

: 
U

n
if

ie
d

 C
y
to

p
la

sm
ic

 S
P

 C
o

m
p

o
n

en
ts

 a
n

d
 C

h
a
p

er
o
n

e 
N

o
m

en
cl

a
tu

re
- 

A
s 

re
fe

re
n

ce
d
 i

n
 t

ex
t,

 T
ab

le
 2

 i
s 

p
ro

v
id

ed
 t

o
 

li
m

it
 c

o
n

fu
si

o
n

 w
h
en

 r
ef

er
en

ci
n

g
 h

o
m

o
lo

g
o
u
s 

p
ro

te
in

s 
ac

ro
ss

 v
ar

io
u
s 

E
n
te

ro
b
ac

te
ri

ac
ea

e 
sp

ec
ie

s.
 T

h
is

 t
ab

le
 w

as
 a

cq
u
ir

ed
 f

ro
m

 

an
d
 d

ev
el

o
p
ed

 b
y
 P

o
rt

al
io

u
 e

t 
al

.(
2
0
1
6
),

 w
h
o
 a

p
p
li

ed
 c

o
m

m
o
n
 n

o
m

en
cl

at
u
re

 r
u
le

s 
fi

rs
t 

su
g
g
es

te
d
 b

y
 H

u
ec

k
 (

1
9
9
8

).
 

 



18 

 

 

 

Figure 6: Positioning of MxiG-N(6–112) in the C24 S. flexneri NC EM map contoured to 

1σ (EMDB 6391). A- A position of MxiG-N(6–112) (red) in the density for the leg domains. 

However, the volume occupied by a single subunit supports the idea that 24 copies can assemble 

in the ring. B- View of the position of MxiG-N(6-112) as described in A symmetrized to give 

24 evenly arranged copies within the likely density for the MxiG-N ring. C- Model for a 24-

subunit MxiG ring. 112,113 The transmembrane region is depicted as an arbitrary 20-amino acid 

helix. Whereas the model shows the likely volume occupied by a 24-member ring, the 

positioning of the MxiG subunits with respect to each other represents one of many possible 

conformations. Figure and text acquired from McDowell et al. (2011). 
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fluorescent clusters were observed near the cell membrane, indicating SpaO localization to the 

SP. However, in the absence of OrgA and OrgB (SctK/L), SpaO fluorescent signals were evenly 

dispersed throughout the entire bacterium providing evidence that SP assembly requires the 

presence of all 5 components. 83 The accessory SctK protein, mentioned above, is the least 

studied of the five SP components and it has no homolog in flagellar systems, suggesting its role 

is unique to the T3SS.  While SMSN is an extremely powerful technique, it still lacks the atomic 

resolution needed to determine the position and structural features of the SP components.  

Fortunately, recent developments in Cryo-ET has enabled 3D reconstruction of SP structural 

features by aligning 2D subtomogram images.84 The aligned images are averaged to resolve a 3D 

model. Cryo-ET imaging by Hu et al. (2015) displayed the presence of pod like electron 

densities, comprised of Spa33 (SctQ). These densities were connected to the inner membrane 

ring by either MxiK (SctK) or the alternatively translated C-terminal truncation of Spa33.61 

Unpublished results using MxiK T4-lysosyme insertion mutants, analyzed by Cro-ET in Shigella 

mini-cells, places MxiK (SctK) as the adapter between the MxiG inner membrane ring and 

Spa33 (SctQ) (Figure 7) (Tachiyama et al. 2019). The binding affinity between SctK and SctQ 

SP has been shown to be affected by increased diffusion of Ca2+ under secreting conditions in 

Yersinia.85 This phenomena may lead to the increased exchange rate of YscQ (SctQ) which has 

been suggested to aid in effector transportation.86  

Cryo-ET and crystal structure renderings of SP components show similar structural homology 

across species even though their residue homology are not similar. Table 3 shows sequence 

homology comparisons across several Enterobacteriaceae. Amino acid sequence alignment 

percent similarity scores were acquired using CLUSTALW multiple sequencing alignment and  
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Figure 7: Visualization of the MxiK N terminal-T4L Insertion Mutant- Cryo-ET of MxiK-

T4L and Spa33 SP components, expressed in S. flexineri mini cells. A sub-tomogram 3D model 

reveals the localized position of MxiK in between the inner membrane ring and Spa33 below 

(Tachiyama et al. 2019).  
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UGENE distance matrix software.87,88  Homology between SP components (SctD, SctK, SctQ, 

SctL) were generally below 20 % similarity with exceptions found between Yersinia 

entericolitica and Psuedomonas aeruginosa SP components, whose alignment scores ranged 

between 40 and 50 %. It should also be noted that while SctQ similarity scores were under 20 %, 

the aligned residues contributing to this score were contained in the C-terminus (Figure 8). This 

is supported by an approximate 10% increase in similarity when comparing alignment scores of 

just the SctQ C-terminus residues (Table 4).  The substantial difference in overall sequence 

alignment scores makes the identification of essential interaction domains difficult. The poor 

sequence alignment scores may also explain differences between observed SctQ arrangement in 

T3SS and flagellar systems. Flagellar contiguous arrangement of SctQ (FliM/N) in a “C-ring” is 

well documented, and has similar structural homology to the T3SS.63 Early Yersina studies 

suggested that YscQ (SctQ) also assembled in a continuous C-ring with symmetry to SctD inner 

membrane ring proteins. The C-ring is connected by  SctL (YscL) spokes, which radiate 

centrally from SctN (YscN) to SctQ (YscQ).86  In agreement with the Yersinia C-ring model, 

assessments of Shigella sorting platform architecture also favored a Spa33 (SctQ) contiguous 

ring.76,84 However, a separate study performed by Hu et al., in 2015, provided SP visualization, 

which provided an alternative sorting platform architecture shown in Figure 9.  

The cytoplasmic SP model, proposed by Hu et al. (2015), was obtained via cryo-ET, and it 

suggests that in Shigella, SctQ (Spa33) is arranged into six pod-like structures, connected to six 

SctL (MxiN) spokes (Figure 10). This model is distinctly different from the earlier proposed 

contiguous T3SS C-ring arrangement in Yersinia. Visualization of the SctQ pod arrangement 

was also observed in the T3SS of Salmonella.89 As mentioned above, T3SS SctQ sequence 

homology  
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Figure 9 A: Cryo-electron tomography image of the 

extracellular needle, basal body, and cytoplasmic sorting 

platform (SP).1 B: A closer look at the sorting platform reveals 

the 5 essential components of the SP, including Spa33 (red), 

MxiN (yellow), Spa47 (orange), spa13 (green), and MxiK 

(grey).1 

Figure 10: Cryo-ET model of 

the six radiating spokes of 

MxiN (Yellow), connected to 

six Spa33 pods (Red). 
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resides in the C-terminus. The C-terminal homology is also conserved in comparison with the 

flagellar FliN protein (25-28 %). As mentioned, T3SS pathogens are proposed to evolve from 

flagellated bacteria, and both systems utilize an ATPase protein that is supported by the radiating 

SctL spokes. A well conserved interface between SctL and SctQ connecting the ATPase “motor” 

protein to the rest of the system may reflect the homology found between SctQ C-terminal 

residues and FliN. Alternatively, the poorer sequence homology observed between SctQ N-

terminus and the flagellar FliM (5%) may explain how T3SS pathogens evolved to use their SP 

to drive secretion and not flagellar motion. This selection for an alternative SctQ arrangement 

from a contiguous FliM to non-contiguous radiating pods (Figure 4) would be favorable for 

secretion system evolution because a non-contiguous arrangement of pods increases the space 

available for the SP to access and select effector proteins for secretion. SP spacing is further 

enhanced because SctQ interactions with the rest of the SP components are considered to be 

transient and involve weak protein-protein interactions. This also implies that Spa33’s role 

within the injectisome is dynamic as secretion of effector proteins occurs.86  

It is common for the stability of complex protein assemblies to be affected by the absence of one 

or more of its components. Even though SctQ interactions may be dynamic, its presence and 

interaction with SctL is essential to Shigella T3SS function. Deletion of sctQ (spa33) gene 

prevents the localization of SctL and SctN to the SP, which results in complete loss of the 

injectisome’s ability to construct the needle complex (NC) and subsequently direct effector 

protein secretion. Upon further analysis, the loss of secretion can be attributed to the sorting 

platforms inability to assemble in the absence of SctQ.61,90
  Deletion of the sctL (mxiN) gene, also 

prevented the localization of SctN and formation of the needle complex, however, the SctQ pod 

densities were still visible. These data would suggest that SctQ plays an important role in the 
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sequential assembly of SctD-SctK-SctQ-SctL-SctN and that the presence of all 5 components are 

essential for modulation of the T3SS activity.83 

SctQ/Spa33 

SctQ homologs are approximately 300 aa in length, but as discussed above, they have low 

sequence identity (Table 3).  However, even with poor sequence homology, a unique 

characteristic in the translation of the sctQ gene has been identified in Yersinia, Salmonella, and 

Shigella. While it was originally believed that prokaryotic translation is only initiated by start 

codons (AUG), recent discoveries of non-AUG alternative translation initiation (ATI) sites 

reveal that alternative forms of these proteins could be generated for specific cellular functions.91 

The ATI site for T3SS of Enterobacteriaceae was first identified in the SsaQ/SctQ component of 

Salmonella spp. SPI-2 T3SS by Yu et al. (2011).92 SsaQ (SctQ) translation from the ATI site was 

shown to occur in parallel with the conventional AUG start codon to produce a shorter SsaQ C-

terminal product (106 residues) along with the expected SsaQ protein (322 residues). Evidence 

for parallel ATI production of a truncated C-terminal and full length SctQ was also shown to 

occur in Salmonella spp SPI-1, Yersinia and Shigella.78,93  Various, nomenclatures have been 

used to denote the alternatively translated products. For consistency, I have chosen to denote the 

alternatively translated shorter C-terminal SctQ protein as SctQC (homologs: SsaQC SpaOC, 

YscQC, Spa33C) and the conventionally expressed SctQ version as SctQFL (homologs: SsaQFL, 

SpaOFL, YscQFL, Spa33FL). The existence of an alternative translation initiation site in the sctQ 

gene suggests its assembly in the SP is more complicated than originally thought. Recombinant 

expression and purification of the SctQ components resulted in a single peak, which suggests 

that the co-purification of SctQC and SctQFL components may form a complex.  Crystal 

structures (Figure 11) of Shigella  and Yersinia SctQC  revealed two overlapping SctQC chains 
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Figure 11: Crystal Structure of SctQC Overlay with FliN- A. The crystal structure of Spa33C 

(a.a 208-293) is shown as a ribbon diagram. Chain A and B dimers are colored teal and purple 

respectively. The Spa33C dimer is superimposed with the T. maritima FliN structure (pdb id 

1YAB), shown in grey. B. Three-dimensional structure of SsaQS and FliN. Superposition of 

the FliN (gray) and SsaQS (blue/red) dimer structures. Figure and text was combined from Yu 

et al. (2011) and McDowell et al. (2015) to make comparisons and show the homological 

similarities of the SctQC found in the T3SS SP and the flagellum C-ring. 

A B 
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implying the existence of SctQC as a dimer.78,92 Crystal structure alignment of SctQC with its 

flagellum homolog FliN also illustrated remarkable structural homology.  The behavior of SctQ 

in the SP is suggested to be dynamic in nature, however, very little is understood about its 

regulation. The role of SctQ in the SP is further complicated by the above-mentioned discovery 

of the ATI site and hypothesized interactions between the FL and truncated C-terminal 

components. Production of both Spa33FL and Spa33C (SctQFL/C) subunits was determined to be 

necessary for assembly of the sorting platform and T3SS function in Shigella. Alternatively, 

Salmonella secretion and invasion studies determined that SpaOC (SctQC) is a non-essential 

component for T3SS function, but is required for the stability of SpaOFL (SctQFL).94 In vitro 

evidence also suggests that the two protein subunits aggregate to form a heterotrimer through a 

1:2 stoichiometric complex of Spa33FL-Spa33C
2 (Spa33WT).78,94 Structural observations in 

Shigella are consistent with in vivo and in vitro results found in Salmonella SpaOWT trimeric 

complex formation.94 For SpaO, it was determined that the SpaOC component is not essential for 

SP injectisome function. On the other hand, Yersinia, YscQC (SctQC) was deemed essential for 

T3SS function. McDowell et al.(2015) suggests that Spa33C is also essential for Shigella T3SS, 

but extensive in vivo evidence to support an essential heterotrimeric Spa33WT complex for T3SS 

activity was not provided. Unfortunately, a literature review has also been unable to provide 

suggestions of amino acid composition of the domains necessary for Spa33WT interactions with 

MxiN and MxiK.  

Characterization of the Spa33FL,C subunit interaction using in vivo functional analysis and in 

vitro biophysical methods will provide us with a better understanding of how the Spa33WT 

complex affects sorting platform assembly and modulation of secretion.  The information gained 
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by characterizing the functional domains that Spa33WT
 uses to interact with surrounding sorting 

platform architecture could then be used for the development of novel T3SS inhibitors. 

Significance 

Antimicrobial resistance (AMR) emergence will have major effects on world health and 

economic infrastructure if not addressed. The unfortunate circumstance of AMR is that novel 

antimicrobial medication developed in response to microbial resistance will ultimately become 

the catalyst for the next generation of newly resistant bacteria.6  Therefore, we must be able to 

produce novel antimicrobial agents with broad spectrum capabilities if we hope to keep up with 

AMR. Several species from the Enterobacteriaceae have been noted to have a propensity to 

‘escape’ the effects of current antimicrobial agents as well as evade the host immune system.10–14  

Targeting mechanisms are needed for virulence, but are nonessential for a pathogen’s survival. 

They could serve as a method for preventing the onset of infection until the immune system is 

able to clear the pathogen naturally. A defining evolutionarily conserved virulence feature for 

many of these pathogens is their expression and implementation of a nanomachine referred to as 

the type III secretion system (T3SS).57 Notably, the enteric pathogen Shigella employs its 

injectisome to modulate secretion/injection of effector proteins to aid with contact and invasion 

of host EC.41,44,54–56 Shigella movement across the EC lining ultimately results in luminal wall 

destruction and symptomatic presentation of bacillary dysentery or shigellosis. Symptoms 

include: abdominal pain, diarrhea, and/or dysentery.44,52–54,56 The T3SS injectisome is therefore a 

compelling candidate for antimicrobial drug targeting because: 1) The T3SS is required for 

pathogen virulence, not survival. Therefore antimicrobial drugs or vaccines targeting the T3SS 

may provide less selective pressure and reduced AMR risk. 2) Implantation of injectisome 
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antimicrobial therapeutics could have widespread species or serotype effectiveness because the 

virulence mechanism is so highly conserved. 

Previous research in our laboratory has focused mainly on the general modulation, location, and 

structural characterization of Shigella proteins within the T3SS cytoplasmic sorting platform and 

tip complex. Thus, in response to the limited biophysical analyses available towards 

characterizing the interactions between sorting platform components, particularly Spa33, we 

hope to provide more clarity in this area. Spa33 interactions with surrounding proteins is 

suggested to be dynamic and essential for platform assembly and function. An improved 

understanding of the Spa33 functional interactions that are used to assemble its trimeric complex 

within the SP would be useful to learn how the Shigella T3SS is modulated. Ultimately, this 

research may be translated to develop T3SS inhibitor drugs that target the Spa33 functional 

domains. Inhibition of the Spa33 functional domains would prevent sorting platform assembly 

and thereby inhibit the injectisome functions necessary for Shigella host infection. 

Methods 

Expression Plasmid and Protein Expression: The coding sequences of Spa33 of S. flexneri was 

cloned into the pT7HMT expression plasmid. Gene specific primers were generated using the 

freely available online tool CloningTroll (http://biotroll.com).95 The corresponding genes were 

amplified by PCR from their respective genomic DNA. Amplified PCR products were restricted 

and In-Fusion Enzyme Premix (Takara Bio, Inc.) was used to ligate the 5’ and 3’ ends of the 

plasmid. Cloned plasmids were engineered to possess a N-terminal His6-tag followed by a TEV 

protease cleavage site. The presence of the gene insert and reading frame in the recombinant 

plasmids were verified using DNA sequencing services provided by GenescriptTM. Recombinant 

plasmids were transformed into Escherichia coli TunerTM cells and inoculated in Luria broth 

http://biotroll.com/
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(LB) containing 1 mM kanamycin antibiotic. For large-scale expression transformed cells were 

taken from glycerol stocks and inoculated into 15ml of LB and grown overnight. The starter 

culture was diluted and fresh cells were grown at 37 °C until A600
  0.6 was achieved (mid log 

phase). Cultures were cooled to 21 °C, and protein expression was induced with 2ml of 0.5 M 

isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated overnight at 16 °C under constant 

shaking conditions (200rpm).   

Protein Purification: The expression cells were harvested by centrifugation at 3470 x g for 10 

min at 4 °C. The cellular pellet was suspended in 1x IMAC binding buffer (5 mM imidazole, 0.5 

M NaCl, 20 mM Tris) pH 7.5. The lysate was sonicated on ice at 70 % amplitude, 15 s on : 30 s 

off for 12min and centrifuged at 21689 x g for 30min at 4 °C. The supernatant was applied to an 

immobilized metal affinity chromatography column (Ni-IMAC) with Ni-NTA resin and purified 

by a GE AKTATM purification system. The GE HisTrapTM FF crude Ni-NTA resin was 

equilibrated with binding buffer and the column was washed with increasing concentrations of 

elution buffer (0.5 M imidazole, 0.5 M NaCl, and 20mM Tris) pH 7.5 applied in a stepwise 

gradient until the bound protein selectively eluted from the Ni-NTA column. His-tag removal 

was achieved by the addition of TEV protease, 1mM DTT, dialyzed overnight in Binding Buffer. 

The protein was then applied to a second Ni-IMAC column. The flowthorugh was collected, 

concentrated, and buffer exchanged with 20mM Tris, 200mM NaCl, pH 7.5 and subsequently 

loaded onto an equilibrated Superdex 200 pg (GE) size exclusion gel filtration column (SEC). 

All fractions throughout purification were analyzed by SDS-PAGE. 

Bacterial Adenylate Two-Hybrid (BACTH) assay: The BACTH assay is useful for the detection 

of an interaction occurring between two proteins in an in vivo environment. Two proteins of 

interest are fused with a T25 or T18 adenylate cyclase toxin (CyaA) subdomain and co-expressed 
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in BTH101 E. coli cells that lack endogenous adenylate cyclase activity (CyaA). When two 

proteins of interest interact, the T25 and T18 subdomains will be brought together and 

subsequently restore CyaA activity. Restored CyaA activity in BTH101 cells results in a media 

dependent phenotypic color change of the plated cells (Blue: LB-XGal, Red: MacConkey, and 

Blue: M63). The observed color change indicates a protein-protein interaction. Preparation of 

Sorting Platform T25/T18 Fusion Proteins: Subdomain fusion proteins were made by cloning 

the proteins of interest genomic sequence into the T25 or T18 compatible vectors. The 

subdomains will be fused to either the N-terminal or C-terminal end of our protein of interest, 

which is dependent on the vector used.  The pkT25 expression vector will fuse the T25 

subdomain to the proteins N-terminus; alternatively, the pkNT25 vector will fuse the T25 

subdomain to the C terminal end of our protein. The same can be achieved for fusion of the T18 

subunit using the pUT18 or pUT18C vectors, which fuses the T18 unit on the N and C-terminus, 

respectively. When probing for the interaction between two unique proteins it is important to 

screen using all of the T25/T18 fusion permutation combinations possible. This is because the 

binding of one protein to another in BACTH analysis requires that the T25 and T18 domains be 

oriented such that they form an active adenylate cyclase. Some orientations may not allow this to 

occur, which could give rise to a false negative result. Thus, examining all possible permutations 

for the BACTH fusion we decrease the likelihood of a false negative result.  

Accuracy of the coding Spa33WT/FL/C, MxiK, and MxiN sequences was verified by GenscriptTM 

sequencing using T25 5’ primer (gcgcagttcggtgaccagcg) and T18 (cggataacaatttcacacag) primer. 

Two compatible hybrid plasmids covering all the combinations were co-transformed into E. coli 

BTH101 host strain lacking functional CyaA. Colonies expressing the fusion plasmids were 

grown in LB broth with 0.5mM IPTG overnight. The colonies were then washed with M63 
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minimal medial to remove LB. Colonies were spotted on indicator plates, LB agar with 40 µg / 

mL X-Gal and 0.5 mM IPTG, MacConkey agar with 1 % (w/v) maltose. All the growth media 

were supplemented with selection antibiotics (T18: ampicillin and T25: kanamycin). Plates were 

incubated at 30 °C for 2-4 days. More details are available are referenced in the Euromedex 

BACTH System Kit.96,97 

Circular Dichroism: CD measurements were performed with Jasco J-1500 spectrophotometer 

(Jasco, Easton, MD, USA) and the results were expressed as the mean molar ellipticity ([θ]). 

Molar ellipticity is calculated by the following formula: 

Molar ellipticity [θ] =  
θ x 100 x 𝑚𝑤 

C x ℓ x n x 1000
 . 

θ is the CD signal in mDeg, mw is the molecular weight of the protein, C is concentration in 

mg/mL,  ℓ is the path length in cm, n is number of amino acid residues in the protein. 100 is a 

factor to convert path length from cm into meters and 1000 is a factor to convert the raw CD 

signal from mDeg to Degrees. All spectroscopic measurements were carried out at 10 °C. CD-

measurements were done to analyze the secondary structure of Spa33WT and Spa33C. Purified 

protein was buffer exchanged into PBS (pH 7.4) to working concentration of 0.5 to 1 mg/mL  

CD-spectra were obtained over a range of 195-260 nm, and temperature was increased during the 

variable temperature analysis from 10 °C - 90 °C in 2° increments. CD values were converted to 

molar ellipticity and plotted against wavelength and temperature.98,99 

Overnight Steady State Secretion Assay: T3SS secretion activity was tested by detection of IpaB, 

IpaC, and IpaD secretory protein in overnight bacterial culture supernatants. Colonies of S. 

flexneri and complimented S. flexneri mutants were plated on tryptic soy agar (TSA) plates with 

ampicillin (Amp) and/or kanamycin (Kan) depending on the strain plated. These recombinant 
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plasmids were transduced into spa33 S. flexneri null competent cells by electroporation. Several 

colonies were selected and inoculated into tryptic soy broth (TSB) with strain dependent 

antibiotics (Kan/Amp). The bacterial cultures were grown at 37 °C overnight with slow shaking 

(100rpm) to prevent cell sheering and lysis and an 11 mL alliquot of the culture was collected 

and centrifuged at 4000 rpm for 15min at 4 °C. Fractions (9 mL) of centrifuged supernatant were 

then collected with care taken not to disturb the cell pellet. Proteins were precipitated from the 

fraction by adding 1 mL of a 100% trichloracetic acid (TCA) and incubated on ice for 30 min. 

Fractions were then centrifuged at 10,000 rpm for 15 min at 4 °C to collect protein precipitants. 

The supernatant was discarded and the protein pellet was washed with 5% TCA, again 

centrifuged, and followed by 2 sequential ice cold acetone wash steps. Acetone was evaporated 

and the precipitated protein was resupended in 400 µL of PBS and 200 µL of 3X SDS-PAGE 

Buffer. For Western bloting, a 10% polyacrylamide gel was used for separation and transfer of 

proteins onto a nitrocellulose membranes.  Rabbit anti-IpaB, IpaC, and IpaD and donkey anti-

rabbit IgG with infrared tag (Li-Cor, Lincoln, NE) were used to detect IpaB, C, and D. Blots 

were imaged using an Odyssey Li-Cor CLx system and near-infrared fluorescence was 

usedapplied to detect the fluorescently tagged donkey anti-rabbit IgG. Li-cor Image Studio Lite 

software provided blot densitometry quantification, which allowed us to compare relative 

amounts of secreted IpaB, C, and D. 

 Contact-mediated hemolysis: The ability of Shigella to form and insert functional translocons 

into target red blood cell (RBC) host membranes was tested by contact-mediated hemolysis. S. 

flexneri strains were inoculated from glycerol stocks and grown on TSA with Amp and Kan 

plates overnight. Colonies from each plate were selected and inoculated into 15ml fresh TSB and 

grown at 37 °C until the mid-log growth phase, between 0.5 and 1.0 A600, was reached. Ten mL 
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of culture was centrifuged at 30 °C for 10 min. The supernatant was discarded and bacterial 

pellets were resuspended in PBS to equal bacterial densities by:  

𝑟𝑒𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 =
(200 µ𝐿 x OD)

0.5
 

Defibrinated sheep red blood cells (RBC) from Colorado Serum Co. Denver, CO) were 

aseptically withdrawn (3.5 mL) and washed twice in 40 mL PBS (10 mM phosphate, pH 

7.4/150mM NaCl, 2.5mM KCl, pH 7.4) and centrifuged at 2876 x g at 30 °C for 10 min. The 

supernatant was discarded and the pellet was resuspended in 2.5 mL PBS. 10 µL of RBC was 

diluted 10,000 fold in PBS and RBC counts were measured with a Millipore Handheld Cell 

Counter Scepter. A measured RBC count on the order of 4x109  RBC/mL is desirable. 

Resuspended bacteria and washed RBCs were mixed 1:1 (v/v -100 µL total) on a 96 well plate. 

The plate was centrifuged at 2876 x g at 30 °C to promote contact, and then incubated at 37 °C 

for 15 min. After incubation, 100 µL of ice cold PBS was subsequently added to resuspend the 

cell mixture. The plate was then centrifuged at 3500 rpm for 15 min at 10 °C. Supernatants were 

obtained from the mixtures and transferred into new 96 well plates. Water and PBS were used 

for non-bacteria positive and negative controls respectively. Hemoglobin content was measured 

by absorbance of 545 nm in a plate reader. PBS blank background absorbance was subtracted 

and absorbance measurements were then normalized to Spa33WT compliment values.  

 

 



36 

 

Results 

Spa33FL/C Co-purification 

Existence of an alternative translation initiation (ATI) site in the sequence of Spa33 (Spa33WT) 

was first reported by McDowell et al. (2016).78  The spa33 ATI site begins with the ribosomal 

binding site (RBS) at nucleotide 562 and ends at the alternative start codon at nucleotide 577 

(Figure 12). Translation of the spa33 gene was shown to generate a full length copy Spa33FL and 

a shorter truncated C-terminal copy of Spa33C. We were able replicate findings observed by 

McDowell et al. (2016), using pT7Hmt expression vectors designed to N-terminally tag Spa33 

with six histidine residues. Spa33WT was then expressed in E. coli TunerTM cells and purified by 

Ni-affinity and size exclusion chromatography (SEC). Both protein copies were shown to co-

purify in a single SEC elution peak (Figure 13) when the protein composition was analyzed by 

SDS-PAGE (Figure 14). Analysis of purified Spa33WT yielded two distinct bands at ~11.5 kDa 

and ~38kDa, which correlates with the molecular weight of Spa33C and N-terminally His-tagged 

Spa33FL. Band identities were further confirmed by mass spectrometry (data not included). SDS-

PAGE visualization of the co-eluting bands support the observations made by McDowell et al. 

(2016) of an ATI site existing in the Spa33 gene. The co-elution following Ni-affinity and SEC, 

suggests that Spa33FL and Spa33C copies have a propensity to interact with each other. To test 

this hypothesis required isolating Spa33FL and its Spa33C subunits.  

Isolation of Spa33C was achieved by selective primer design for nucleotides encoding for 

residues 208-293 with the same purification protocol as Spa33WT. Elution fractions were 

analyzed by SDS-PAGE (Figure 15).  Spa33FL expression vector design was achieved by spa33 

inverse PCR with primers containing point mutations at nucleotides 564 and 576, both of which  
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A. Spa33WT Genomic Sequence 

ATGCTAAGAATTAAACATTTTGACGCTAACGAAAAACTACAGATTTTATATGCAA

AGCAACTCTGCGAGCGTTTTTCGATTCAGACATTCAAAAATAAATTTACAGGCAG

TGAAAGTTTAGTCACTCTTACTTCCGTGTGTGGGGATTGGGTAATTCGTATTGATA

CATTATCTTTTTTGAAAAAAAAATACGAGGTATTTTCAGGATTTTCTACACAAGA

ATCTTTACTGCATTTATCAAAATGTGTCTTTATAGAGTCGTCATCTGTATTTTCGAT

TCCAGAACTGTCTGATAAGATTACTTTCCGGATCACGAATGAAATCCAGTATGCA

ACTACTGGGAGTCATTTATGCTGTTTTTCCTCTTCTTTAGGTATTATTTATTTTGAC

AAGATGCCGGTATTACGTAATCAAGTTTCTCTTGACTCATTGCATCATCTTTTAGA

GTTTTGCTTAGGTTCATCTAATGTAAGGCTGGCTACTTTAAAAAGAATTCGCACTG

GTGATATAATCATAGTTCAGAAACTTTATAATTTATTATTGTGTAATCAAGTTATT

ATTGGGGATTATATTGTGAATGATAATAATGAGGCAAAAATTAATCTGTCAGAA

AGTAATGGTGAGTCAGAACACACAGAAGTTTCTTTGGCATTATTCAATTATGATG

ATATCAATGTAAAAGTGGACTTTATTCTTTTAGAAAAAAATATGACAATCAATGA

ACTAAAAATGTATGTAGAAAACGAATTATTCAAGTTTCCCGATGACATAGTTAAA

CATGTAAATATTAAAGTAAATGGTTCTTTGGTTGGGCATGGGGAACTTGTTTCTAT

TGAGGATGGTTATGGTATCGAGATTAGTTCTTGGATGGTAAAGGAGTAA 

B. Alternative Translation Initiation (ATI) Site  

Spa33WT: [TTATTGGGGATTATATTGTGCACAG] 

Spa33FL: [TTATT GGTGATTATATTGTCCACAG] 

Point Mutations 

Figure 12: A. spa33 Genomic sequence- As described in text, the alternative translation 

initiation site, highlighted in grey, begins with the RBS (nucleotides 562-568: blue) and ends 

with the alternative start codon (nuceotides 574-776: red). This region permits the translation 

of two Spa33 products. A full length copy (Spa33FL) and shorter C-terminal copy (Spa33C).  B. 

Alternative Translation Initiation (ATI) site (grey)- spa33 inverse pcr primers were 

designed to insert guanine to cytosine point mutations in the ATI site for nucleotides 564 and 

576. Nucleotides 564 and 576 are located in the ribosomal binding site (RBS-blue) and the 

Spa33C alternative start codon (ASC-red) respectively. The mutations made in the RBS and 

ASC prevent activation of the Spa33C ATI site and thus only expression of Spa33FL will occur. 
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Figure 13: Size Exclusion Gel-Chromatogram of Spa33WT- Ni-affinity purification followed 

by SEC purification of expressed Spa33 yields a singular peak following from 120ml Superdex 

gel matrix column. This is suggestive that the Spa33FL copy and the alternatively translated 

Spa33C copy are able to form an interacting complex.  
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Figure 14 (Left): SDS-PAGE Purified Spa33WT- Post recombinant N-terminal His-tagged 

Spa33WT expression and successive Ni-Affinity, SEC purification, and SDS-PAGE analysis of 

the singular elution peak from the SEC chromatogram in Figure 13 yielded two distinct bands, 

which run equivalently to the molecular weights of N-terminal His-Spa33FL (~38kDa) and 

Spa33C (~11.5 kDa). Band identity was confirmed by mass spectrometry (data not included). 

Figure 15 (Right): SDS-PAGE of Purified Spa33C- Post recombinant N-terminal His-tagged 

Spa33C expression and successive Ni-Affinity, SEC, TEV protease His-tag cleavage, 2° Ni-

Affinity purification, and SDS-PAGE analysis of 2° flow through fraction yielded a single band 

corresponding to Spa33C+(~11.5 kDa).  Based on multi-angle dynamic light scattering and size 

exclusion chromatography, Spa33C may exist as a dimer in solution (hydrodynamic dimeter = 

8 nm) that is able to interact with a single copy of Spa33FL to give a heterotrimer of 

Spa33FL(Spa33C)2 (hydrodynamic diameter = 21 nm 
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replace a guanine for a cytosine (Figure 12). The mutations made to the ribosomal binding site 

(564) and alternative start codon (576) prevent Spa33C ATI site recognition resulting in the 

expression of only Spa33FL. We were unable to purify Spa33FL after recombinant expression 

because of its insoluble nature in the absence of the Spa33C component.  Spa33FL was poorly 

soluble in the absence of Spa33C, indicating the importance of both components being present 

for proper SP assembly. If the copies were not in a complex with each other, they would not have 

co-purified during the Ni-affinity step because Spa33FL is N-terminally His-tagged, whereas the  

ATI site for Spa33C is a C-terminal domain, consequently lacking a His tag and would 

theoretically lack affinity for the Ni-column.  

McDowell et al. provided further evidence using mass spectrometry that Spa33FL and Spa33C 

interact minimally in 1:2 fashion (Spa33FL-Spa33C
2  equivalent to Spa33WT) with the ability to 

oligomerize further. McDowell proposed that Spa33 has a propensity to oligomerize, shown by 

SEC-MALS analysis, which was interpreted as the proteins assembling into a C-ring formation 

similar to that in flagellar systems. It should be noted that the above mentioned experiments 

suggesting oligomerization of Spa33WT and the Ishihara et al. (2005) report of Spa33WT 

interaction with other SP components using GST-pull down assays are all in vitro techniques.90 

While the insight provided by these in vitro studies is useful, additional studies will need to be 

done to fully address the assembly and function of the Spa33 FL and C components. 

Also included in the Ishihara et al. (2005) report, was their attempt to investigate the capacity of 

Spa33 to interact with SP associated proteins using a yeast two-hybrid system. However, 

screening with Spa33 and the other 5 essential SP constructs yielded no positive clones, 

suggesting these proteins were not interactive in the yeast two-hybrid system.  
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SP Protein-Protein Interactions Assessed by the BACTH Assay 

To detect Spa33WT interactions with the other proposed components of the type III secretion 

system (T3SS) cytoplasmic sorting platform, we utilized a BACTH assay. The BATCH system 

takes advantage of the adenylate cyclase toxin (CyaA) from Bordetella pertussis. CyaA is 

activated by eukaryotic calmodulin (CaM). Upon activation by calmodulin, CyaA catalyzes the 

synthesis of cyclic adenosine monophosphate (cAMP).100 CyaA catalytic domain (AC) contains 

two subdomains, T25 and T18 (Figure 16).101 The T18 subdomain carries the binding site for 

CaM, whereas T25 contains the catalytic domain.100 Co-expression of the T25/T18 subdomains 

restores the synthesis of cAMP in the presence of calmodulin.102 Complementation of the T25 

and T18 subdomains can also be achieved by fusing each subdomain to proteins of interest. If the 

two proteins of interest interact they will bring together the T25 and T18 subdomains and 

subsequently restore CyaA activity when co-expressed in Cya deficient cells. The restored 

activity of CyaA will initiate the synthesis of cAMP, which then forms a complex with the 

catabolite activator protein (CAP). The CAP complex then activates transcription of the lactose 

and maltose catabolic operons which can be easily detected by several different assays (Figure 

17).96 A qualitative measure of protein-protein interaction is achieved by plating BTH101 cya- E. 

coli transformed with our proteins of interest on indicator media (LB-XGal: Blue, MacConkey: 

Red, and M63: Blue). A phenotypic color change of the plated bacteria indicates a positive 

protein-protein interaction. A quantitative measure for detection of protein-protein interactions 

can be done by assessing β-galactosidase enzymatic activity, which is associated with cAMP 

production. 
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Figure 16: Secondary structure of CaM-Bound to CyaA Catalytic Domain- T25 and T18 

domains are colored in green and purple. Calmodulin (red) is bound to the T18/T15 subdomains 

which will inherently restore cAMP synthesis. Figure acquired from Guo et al. (2005). 101 
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Figure 17: BACTH Analysis Model- A BACTH assay was used to test for interactions 

between different Spa33 forms. The proteins of interests are fused with the inactive adenylate 

cyclase catalytic domains T25 and T18. A positive interaction between two hybrid proteins 

brings T18 and T25 together and restores CyaA activity in the E. coli BTH101 cells. Restored 

CyaA activity results in a BTH101 phenotypic color change. 
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Spa33FL with Spa33C Permutations 

While previous studies have provided in vitro support for the Spa33FL/C domains interacting in a 

1:2 fashion, confirmation of the SP protein-protein interactions in vivo has yet to be 

accomplished. In order to probe and confirm the protein-protein interactions between the Spa33 

FL and C protein domains in an in vivo setting, BACTH analysis was done. In Figure 18, of the 

8 permutation combinations, there are three combinations that detect a protein-protein interaction 

between Spa33FL and Spa33C on LB-XGal and MacConkey indicator media. These combinations 

include: Spa33FL
Nterm-T25 with Spa33C

Cterm-T18, Spa33FL
Nterm-T25 with Spa33C

Nterm-T18, and 

Spa33FL
Nterm-T18 with Spa33C

Cterm-T25. When comparing the positive combinations in Figure 18, 

we observe that in each of the three cases, only the Spa33C domain permutations are shown to 

interact with a Spa33FL permutation that has T25/T18 fused to its N-terminus. Assuming that the 

N and C-termini of Spa33FL are located on polar opposite ends of each other, we could 

hypothesize that the N-terminal region of Spa33FL contains the domain for the binding of Spa33C. 

In parallel, it appears that both Spa33C N and C-terminal-ends are capable of interacting with 

Spa33FL.  

Spa33C with Spa33C Permutations 

Even with confirmation of the direct intracellular protein-protein interaction of Spa33FL with 

Spa33C
 in Figure 18, this interaction required further investigation.  I hypothesize that there are 

two possible scenarios for the interaction of Spa33C with the N-terminus of Spa33FL: 1) Two 

Spa33C domains dimerize prior to interacting with the FL protein or 2) Two Spa33C domains 

interact separately with the FL protein.  Previous research concerning Shigella and Yersinia, has 

provided crystal structures (Figure 11) of the Spa33C and YscQC domains, with a crystal unit cell 

containing two Spa33C chains interacting to form a dimer. This provides support for scenario 1  
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Where the Spa33C domain forms a dimer prior to its interaction with the FL protein. If this 

dimerization occurs in vivo, we should be able to easily probe this interaction using BACTH 

analysis. Figure 19 BATCH screening indeed supports our hypothesis that Spa33C can form a 

dimer in the absence of the FL protein. The observed positive interactions in Figure 19 include 

Spa33C
Nterm-T25 with Spa33C

Cterm-T18 and Spa33C
Nterm-T25 with Spa33C

Nterm-T18.  When we examine 

the crystal structures in Figure 11, the observed positive interaction between two permutation 

combinations is not unexpected because the N and C-terminal-ends of a single Spa33C chain are 

within close proximity to the other chains N and C-terminal-ends. The close proximity of both 

chains’ terminal ends also indicates why we were able to observe multiple permutations of 

Spa33C interacting with the N-terminus of Spa33FL in Figure 19.  

Spa33WT permutations and Spa33FL with Spa33FL Permutations 

At this point in our Spa33 BATCH screens, we have provided data to support a protein-protein 

interaction that involves Spa33C dimer with the N-terminus of Spa33FL to form a heterotrimer 

complex (Spa33WT). In Figure 20, T25/T18 permutations of Spa33WT were screened. Binding is 

observed for all possible permutation combinations. This result suggests that Spa33 is able to 

form a heterohexamer. However, based on our previous results and the radiating pods shown by 

cryo-ET, a heterohexamer formation seems unlikely. This particular BACTH screen is further 

complicated because both T18 and T25 Spa33WT plasmids are expressing Spa33FL and Spa33C 

components, which are free to interact in various combinations with the other expressed 

components to assemble a heterotrimer as opposed to a heterohexamer. Thus, interpretation of 

these results should be considered with care given the multitude of scenarios that could lead to a 

positive interaction for this permutation screen. It also should be noted that if Spa33WT 

oligomerization did occur it would probably involve interactions between Spa33FL components.  



47 

 

 

 

Figure 19: Spa33C /Spa33C Permutation BACTH Screening Plates- BACTH analysis for 

the screening of Spa33C and Spa33C protein-protein interaction. A positive protein-protein 

interaction is dictated by the phenotypic expression and observation of blue colonies on LB-

XGal and red colonies on MacConkey indicator plates. A positive control is indicated by the 

(+) Zip protein, and the negative controls (-) are indicated accordingly. 
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Figure 21 depicts screening for the protein-protein interaction of Spa33FL and Spa33FL. As we 

can see in Figure 21, no positive interactions were observed, supporting the idea that Spa33WT 

heterohexamer formation is unlikely. 

Spa33WT with MxiN Permutations 

We next explored how Spa33WT and its individual components (FL and C domains) may interact 

with the surrounding sorting platform architecture using BACTH analysis. In Figure 22, the 

interaction between the Spa33WT complex and MxiN was investigated and reveals two 

combinations expressing a positive interaction. The positive interactions included MxiNNterm-T25 

with Spa33WT
Cterm-T18, and MxiNNterm-T25 with Spa33WT

Nterm-T18.  These results could indicate that 

the N or C-terminus of the Spa33WT complex is able to interact only with the N-terminus of 

MxiN. To investigate this interaction further, Spa33FL
 and Spa33C interactions with MxiN were 

individually assessed.  

Spa33FL with MxiN and Spa33C with MxiN Permutations 

BACTH analysis in Figure 23 shows a positive interaction with MxiNNterm-T25 and Spa33FL
C-term-

T18. These data suggest that the C-terminus of Spa33FL interacts with the N-terminus of MxiN. 

Comparison between the results shown in Figures 23 and 24 allows us to suggest that the 

interaction observed between the C-terminus of the Spa33WT and MxiN (Figure 22) can be 

accounted for by the C-terminus of the complex’s FL domain interacting with MxiN. This is 

supported by the absence of an interaction as shown in Figure 23 (Row 2).  BACTH analysis 

illustrated in Figure 24 revealed that Spa33C doesn’t interact with MxiN. Therefore, the 

observed interaction (Figure 23, Row 2) between the Spa33WT N-terminus with MxiN probably 

doesn’t involve the presence of the Spa33C dimer. 
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Spa33/ MxiK Permutations 

Employing the BACTH system we have been able to provide in vivo evidence for the interaction 

and assembly of many of the SP proteins. In particular proteins interacting with the Spa33WT 

heterotrimer’s FL and C-terminal components. A summary of the key interactions discussed 

above is provided in Figure 25 and Table 5. Also included in Figure 25 is the BACTH 

assessment of MxiK with the Spa33 components. The results indicate that MxiK is able to 

interact with Spa33WT
N-terminus (Figure 25: K). We were able to determine that this interaction is 

facilitated by the Spa33FL
N-terminus domain, and that Spa33C doesn’t appear to be essential for 

Spa33FL binding to the MxiK interface (Figure 25: L & M).  

BACTH Summary 

In response to the inability of the yeast two-hybrid system to screen for functional protein-

protein interactions of Shigella SP components, I was able to provide evidence for in vivo 

protein-protein interactions using a bacterial adenylate cyclase two-hybrid (BACTH) assay. 

After screening multiple permutations, positive protein-protein interactions were observed 

between Spa33FL (T25 or T18 fused to its N-terminus) and Spa33C (T18 or T25 fused to its N-

terminus). Comparisons reveal that the Spa33C domain only interacts with Spa33FL that has 

T25/T18 fused to its N-terminus. Therefore, I hypothesized that the N-terminal region of 

Spa33FL contains the binding domain for Spa33C. Spa33C dimerization was also detected. By 

including the compiled BACTH results in Figure 25 and Table 5, I have provided a 

hypothetical assembly model for the localization of the Spa33FL-Spa33C
2 trimeric complex 

binding domains with the rest of the SP platform components (Figure 26).  
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Figure 25: Summary of Key BACTH Assay Results- BACTH analysis summary for the 

screening of Spa33 protein-protein interactions with the other SP components. A positive 

protein-protein interaction is dictated by the phenotypic expression and observation of red 

colonies on MacConkey. A positive control is indicated by the (+) Zip protein, and the negative 

controls (-) are indicated accordingly. 
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Table 5: Summary of Key BATCH Assay Results Including the Terminus of Interaction- 

Table addressing the summarized Figure 25 (above) protein-protein interaction chart  (If no 

terminus is mentioned then it should be assumed the interaction was shown to be located at 

either the N or C-terminus. With this summary we can take this information and develop a 

comprehensive model, for how Spa33 and its subdomains may be oriented in the cytoplasmic 

sorting platform (Figure 26). 

 Protein 1 Protein 2 Interaction 

A Spa33WT Spa33WT Yes 

B Spa33FL N-terminus Spa33C (N or C)-terminus Yes 

C Spa33FL Spa33FL No 

D Spa33C Spa33C Yes 

F Spa33WT MxiN N-terminus Yes 

G Spa33FL C-terminus MxiN N-terminus Yes 

H Spa33C MxiN No 

I MxiN MxiN Yes 

K MxiK N-terminus Spa33WT N-terminus Yes 

L MxiK N-terminus Spa33FL N-terminus Yes 

M MxiK Spa33C No 
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Figure 26: Estimated Localization of Each of the SP Components and their Termini 

(Left): The graphic depicts the hypothesized localization and orientation of the Spa33WT 

components (Spa33FL and Spa33C) within the sorting platform derived from the BACTH 

results. (Right): Cryo-electron tomography model of the cytoplasmic sorting platform. Protein 

components are labeled as follows: MxiK (Orange), Spa33 (Yellow), and MxiN (Blue).  
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Determining Structural Form of Spa33 

Characterization of the cytoplasmic sorting complex, by cryoelectron tomography, has allowed 

us to generate a model of the sorting platform containing six pod-like structures (comprised most 

prominently of Spa33) connected to six spokes (MxiN) to a central ATPase (Spa47).61  This 

model is distinctly different from the contiguous arrangement of Spa33 seen with the distantly 

related flagellar C-ring. Using cryo-ET data, the location of the Spa33 FL and C domains cannot 

be pinpointed within the structure. The aforementioned BACTH results in combination with 

cryo-ET 3D subtomogram models provide in situ evidence that allows us to hypothesize the 

localization of the Spa33 proteins and other SP binding domains in a functional SP. Cryo-ET 

analysis of Spa33 containing higher electron density T4 lysosyme insertion mutants would also 

aid in orienting the protien within the SP. However, while major improvements have been made 

in cryo-ET methodology, reaching atomic resolution visualization in some cases, cryo-ET is 

limited by specimen thickness and total tolerable electron dose that can be deposited on one 

sample.103 Ultimately, the crystal structure must be determined to provide complete 

characterization of the proteins. We have already referred to the crystal structure of the Spa33C 

(McDowell et al. 2015) dimer, but to date, attempts to solve crystal structures for the Spa33WT 

trimeric complex and Spa33FL have been unsuccessful. Fortunately, there are other methods 

available to aid in general biophysical characterization of Spa33. These techniques include 

circular dichroism and dynamic light scattering. 

Characterization of the Spa33 subunits by these methods will provide not only low-resolution 

structural information, but insight into the extent to which the subunits interact with themselves 

and other proteins in the sorting platform. Further experiments utilizing these methods, combined 

with permutations to the characterized native subunits may permit identification of key amino 

acids necessary for Spa33 component interactions with the rest of the platform. 
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To implement these biophysical techniques purified Spa33WT and Spa33C are required. Spa33FL 

is insoluble in the absence of Spa33C, which has limited our ability to characterize the Spa33FL 

subunit. Nonetheless, the secondary structure of purified Spa33WT and Spa33C was characterized 

using circular dichroism spectroscopy (CD).  

Circular Dichroism (CD) Spectroscopy 

CD spectroscopy is a useful method that provides information about the secondary structure of a 

protein of interest.98 This method is thus able to provide the secondary structure of purified 

Spa33FL and Spa33C proteins. For example, if Spa33 proteins are predominately α-helical, their 

CD spectra will have wavelength minima near 208 and 222nm. Alternatively if the subunits 

secondary structure is more β-sheet or random coil like, their spectra will manifest a minima near 

217-218nm (β-sheet) or 195-200nm (random coil), respectively. 

Our measured Spa33C molar ellipticity at 10° C yielded a single minimum between 215-218nm, 

suggesting a protein rich in β-sheet 2° structure (Figure 27). The spectrum of Spa33C after 

thermal unfolding and then cooling suggests that Spa33C is able to refold after unfolding at 90° C 

and subsequent cooling back to 10° C. The Spa33C  CD spectrum is supportive of the already 

solved crystal structure in which β-sheet represent the majority of the structure (Figure 11).78 

Alternatively, when analyzing the CD spectrum of Spa33WT, a double minimum is seen (208 and 

222nm) suggesting Spa33WT is more α-helical in nature. Interestingly, the Spa33WT post melt 

spectrum (red) reveals a reduction in molar ellipticity and a change from α-helical to β-sheet 

secondary structure. This observation suggests that the Spa33WT α-helical  
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Figure 27: Circular Dichroism (CD) Spectroscopy of purified Spa33WT and Spa33C- The 

Spa33C (blue) spectrum, with a minimum near 215nm, suggests β-sheet 2° structure is present 

and this is consistent with its crystal structure. Spa33C post melt spectrum (green) shows that 

the Spa33C is very stable and is probably able to refold after melting and cooling back to 10 °C. 

The spectrum of Spa33WT (black), contains minima at 208nm and 220nm, which indicates a 

strong α-helical 2° structure presence. Spa33WT post melt spectrum (red), reveals that a β-sheet 

2° structure, which could indicated that after reaching melting conditions Spa33FL becomes 

denatured or aggregated while the Spa33C dimer is able to reobtain its 2° structure qualities. 

We thus hypothesize that the uncharacterized Spa33FL subunit has a mixed α/ β structure. 

Crystal Structure: The structure of Spa33C was solved by McDowell et al. 
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properties, measured before melting, could be entirely accounted by the Spa33FL component, 

which is currently uncharacterized due to its insoluble nature during protein 

expression/purification. Alternatively, this could suggest the formation of intermolecular β-

structure aggregation. CD α-helical signals tend to be stronger than those of β-sheet signals. 

Therefore, any β-sheet qualities contributed by Spa33C to the Spa33WT complex ellipticity would 

be overshadowed if Spa33FL has an N-terminus rich in α-helical structure. Consequently, after 

Spa33WT is exposed to unfolding temperatures, Spa33FL will disassociate from the Spa33C dimer 

and destabilize its secondary structure. However, because of the insoluble nature of Spa33FL and 

its inability to refold its secondary structure during subsequent cooling to 10° C, the spectrum of 

the disassociated Spa33C dimer is now detectable because Spa33FL is no longer able to contribute 

to the observed ellipticity. I thus hypothesize that the uncharacterized Spa33FL subunit, 

particularly its N-terminus, contains an elevated α-helical secondary structure compared to 

Spa33C. A CD-spectrum overlay for all of these conditions is provided in Figure 27. 

Functional Assessment in vivo of Spa33WT Components 

 The behavior of Spa33WT (SctQ) in the SP has been suggested to be a dynamic process due to its 

various interactions in vivo as shown by the BACTH assay and the role Spa33C plays in 

maintaining Spa33FL solubility as shown in vitro by CD-spectroscopy.  However, very little is 

understood about its role in regulating type III secretion. SctQ’s role in the SP is further 

complicated by the above-mentioned discovery of the ATI site and hypothesized interactions 

between the FL and truncated C-terminal components. Production of both Spa33FL and Spa33C 

(SctQFL/C) subunits was proposed to be essential for SP assembly and T3SS function in Shigella. 

Alternatively, Salmonella secretion and invasion studies determined that SpaOS (SctQC) is a non-

essential component for T3SS function, but is required for the stability of SpaOFL (SctQFL).94 In 
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vitro evidence also suggests that these two protein subunits also associate to form a heterotrimer 

with a 1:2 stoichiometric complex of SctQFL-ScctQC
2 (SctQWT).78,94 Observations in Shigella are 

consistent with what is seen for Salmonella SpaOWT trimeric complex formation.94 Although it 

was determined that SpaOC is a non-essential SP component needed for Salmonella activity there 

are reports that Spa33C is essential for Shigella T3SS activity. 94 

To address differences brought forth by McDowell et al. (2015) and Tejero et al. (2019) 

regarding the involvement of Spa33FL/C/SpaOFL/C towards SP function in Shigella and 

Salmonella, I investigated S. flexneri in vivo T3SS activity. McDowell et al. investigated T3SS 

activity by examining the secretion activity of Ipa(A,B,C,D), IpgD, and VirA through Congo red 

induction of type III secretion. Their results, analyzed by SDS-PAGE and silver-staining did not 

detect any secretion activity by ΔSpa33FL or ΔSpa33C S. flexneri mutants supporting their 

hypothesis that both components are essential to T3SS activity. Contrary to this, Terjo et al. 

found that ΔSpaoC Salmonella SPI-1 displayed only a slight reduction in secretion of SipB, SipC 

and InvJ (homologs to Shigella secreted proteins) compared to the wild type strain. This 

suggests, as previously discussed, that SpaOC is not essential to T3SS activity in Salmonella SPI-

1.  

Our investigation into SP in vivo activity contributions by Spa33FL and Spa33C required us to 

construct spa33 S. flexneri null strains complemented with Spa33WT, Spa33FL, and Spa33C 

expressing plasmids. After overnight secretion at 37 °C in TSB and western detection of IpaB, C, 

and D in culture supernatants revealed that in the absence of Spa33FL no secretion activity was 

observed for IpaB and IpaD with minimal band intensity for IpaC (Figure 28A).  However, 

residual secretion by the Spa33FL complimented strain was observed in the absence of Spa33C 

(Figure 28A). Odyssey CLX band intensity measurements (Figure 28C) normalized to the 
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S. flexneri band intensities for secreted Ipa proteins would suggest that residual secretion activity 

of Spa33FL compliment is detected in comparison to the Spa33C and Spa33(-) null bacteria. In 

other words, the absence of Spa33C may not completely prevent T3SS activity in Shigella as 

McDowell et al. had proposed.While the absence of Spa33C may not eliminate all T3SS activity, 

its reduction was profound compared to wild type S. flexneri 2457T and the Spa33WT 

complimented strain.  

While secretory detection of effector proteins by western blot is an accepted method for 

assessing T3SS activity in Shigella, this method is not the most sensitive for measuring 

quantitative differences. Thus, it is important to determine if the Spa33FL residual secretion 

activity, observed in Figure 28, is a significant observation or an artifact of cell lysis. To test 

this, we measured the ability for S. flexneri expressing Spa33WT, Spa33FL, and Spa33C to cause 

lysis of red blood cells (RBC). For successful invasion and the lysis of RBCs, Shigella must be 

able to form a translocon pore in the host cell membrane. Shigella will uses this pore to allow 

effector proteins to pass into the host cell. The hemolysis method is performed by growing 

Shigella cultures to 0.5 OD600 and forcing contact by Shigella centrifugation with the RBC. Once 

the injectisome has made contact with the host RBC, insertion of the IpaB/C translocon pore and 

secretion of effector proteins will occur causing the RBC to lyse. Hemoglobin will consequently 

only be released from the RBC if the translocon pore is assembled. If the injectisome is able to 

form the translocon pore and cause RBC lysis, higher concentrations of hemoglobin will be 

released, correlating with elevated T3SS activity. Alternatively, if the translocon pore is unable 

to form because of the SP inability to assemble, then the hemoglobin concentration will be low. 

Poor hemoglobin release correlates with reduced T3SS activity. This analysis is a more sensitive 
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in vivo measure of T3SS activity compared to secretion assays because RBC hemolysis is 

dependent on the formation and insertion of a functional translocon pore.104,105 

Measurement of RBC hemoglobin release by S.flexneri expressing Spa33WT, Spa33FL, and 

Spa33C is described in Figure 29.  Hemolytic activity was normalized to the Spa33WT 

compliment, which expresses both the Spa33FL and Spa33C components. In the absence of 

Spa33C, the Spa33FL complement bacteria hemolytic activity was reduced to about 8%. In the 

absence of Spa33FL and the Spa33C compliment no hemolytic activity was seen, which is the 

same as seen with the Spa33 null strain. These results suggest that the secretion activity of 

Spa33FL compliment (~16% IpaB secretion) observed in Figure 28 is real although at a greatly 

reduced level.  While our results do not entirely agree with McDowell et al. (2015) who 

proposed that the presence of both Spa33FL/C components is completely essential for Shigella 

injectisome activity, our hemolysis and secretion data certainly do suggest that Spa33FL ability to 

complex with Spa33C seems to have an elevated importance to Shigella injectisome activity 

relative to its SpaO homologs in Salmonella where the absence of SpaOC little effect on 

injectisome secretion activity (Tejero et al. 2019).  

Discussion 

Enteric infections, particularly those leading to diarrhea, can profoundly disrupt intestinal 

function and have a major impact on global mortality and morbidity rates.1 Rotavirus is the most 

prominent contributor to diarrheal episodes, specifically in infants (0 – 11 months). Shigella’s 

influence is shown to grow and becomes the primary contributor to diarrheal episodes as the 

child reaches the toddler stage of development (24 – 59 months).3 Shigella causes enteric  
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Figure 29: S. flexneri RBC Hemolysis Assay- Hemolytic assay measuring the release of 

hemoglobin from RBCs (Abs 545nm), post centrifugation and incubation (37°C) with S. 

flexneri spa33 null bacterium complimented with Spa33 WT, FL and C plasmids. The ability 

of the complimented plasmids to restore hemolytic activity was then assessed. Error bars were 

calculated by finding the standard deviation between triplicate samples. Results were 

normalized to the activity of Shigella complemented with Spa33WT. 
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infection through invasion of the intestinal epithelial cells using its type III secretion system 

(T3SS). The T3SS or injectisome is essential for Shigella virulence. The injectisome consists of 

three major components: extracellular needle, basal body, and a cytoplasmic sorting platform. 

Effector secretion is triggered by host cell contact and controlled by the sorting platform (SP). 

Previous research in our laboratory has focused mainly on the general modulation, location, and 

structural characterization of Shigella proteins within the T3SS cytoplasmic sorting platform and 

tip complex. Thus, in response to the limited biophysical information available towards 

characterizing the interactions between SP components, we have tried to provide more clarity in 

this area. Experimental results using various in vivo and in vitro techniques highlights the 

essential role Spa33 (SctQ) plays in modulating Shigella injectisome activity and SP assembly. 

Evidence for in vivo protein-protein interactions using the BACTH assay compiled in Figure 25 

and Table 5, supports my hypothesized assembly model for the binding domain locations of the 

Spa33FL-Spa33C
2 trimeric complex with respect to the other SP components (Figure 26). This 

model suggests that 1) MxiK (SctK) serves as the adapter protein between MxiG (SctD) and 

Spa33WT (SctQWT), 2) MxiK interaction with Spa33WT occurs between MxiK and Spa33FL N-

terminal domains, 3) Spa33C dimer was not observed to interact with MxiK, but does appear to 

localize to the N-terminus of Spa33FL, and 4) The C-terminus of Spa33FL interacts with the N-

terminus of MxiN.  Further biophysical characterization of Spa33C binding with Spa33FL 

determined that Spa33FL stability and type III secretion function is greatly affected by the 

presence or absence of the Spa33C dimer (Figures 27-29).  

Spa33’s involvement in the SP is complex due to its ability to interact with a multitude of 

cytosolic components. This complexity is further enhanced due to the presence of an ATI site, 

which enables the spa33 gene to encode for  FL and C-terminal copies of itself. This ATI site is 
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conserved in other T3SS, such as these from Yersinia and Salmonella, who also use it to express 

interacting SctQFL and SctQC proteins. The C-terminus of SctQ also shares some homology with 

the flagellar C-ring protein FliN. Because SctQWT’s role in injectisome activity involves 

interactions with the other SP components, development of inhibitor drugs targeting Spa33 could 

also be effective against SctQ proteins in other organisms. If so, Spa33 inhibitory drugs could 

have broad spectrum microbial effectiveness and be useful for treatment of various T3SS 

modulated diseases. 

The role of SctQ appears to impact T3SS activities differently depending on the organism 

encoding the injectisome. For example, SctQ has been proposed to assemble in a contiguous C-

ring arrangement in Yersinia and the flagellum of Enterobacteriaceae. Alternatively, the 

arrangement of SctQ in Shigella and Salmonella Typhimurium is observed by Cryo-ET to 

assemble as 6 individual non-contiguous pods. It was also found that the absence of Spa33C, 

compared to its SpaOC homolog, seems to be more detrimental to the Shigella injectisome 

activity relative to Salmonella activity (Figures 28-29). Even with these differences, it is still 

apparent the interaction of SctQC and Spa33FL is important to T3SS activity. Further research 

towards their individual roles should enhance our ability to develop small molecule/vaccine 

therapeutics against T3SS mediated pathogenesis. 
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