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Abstract

The application of statistical procedures to real data sets seldom proceeds as seamlessly as a

textbook problem where all assumptions are verified, and sample sizes are adequate. Common

issues include lack of adherence to the statistical analysis plan, missing data and in early stage

research, small sample sizes and a large number of variables of interest, i.e. multiplicity considera-

tions. We present novel statistical methodologies that have been developed for use in these adverse

scenarios with applications to research into Alzheimer’s Disease. Specifically, we have developed

an approach for the analysis of paired categorical data when the pairing has been lost, in the con-

text of a study examining the effectiveness of a type of therapy on perceptions of Alzheimer’s. We

used a weighted bootstrap approach to compare the euclidean distance between the pre and post

centers of mass the pre and post therapy groups and despite the loss of the pairing, were able to

make conclusions about the research hypothesis.

In addition, we developed a new global hypothesis test, the Prediction Test, which is intended

for use in early stage research when the sample size is small and the number of endpoints of interest

is large. We utilize researcher’s predictions about the direction different endpoints will move, e.g.

increase/decrease, and weight these predictions based on the sample correlation matrix. Using

this test, we are able to come to a go/no-go decision concerning the feasibility of continuing to

study the current research hypothesis, a common concern in early and exploratory studies. The

prediction test had good power properties even for very small sample sizes and a large number of

variables of interest, a situation in which most tests fail, while also controlling the Type I error

rate. We demonstrate the methodology with a data set consisting of Arterial Spin Labeling (ASL)

measures on older adults before and after a 12-week exercise regimen. The research hypothesis

for this study was that the exercise intervention would alter the structural/functional aspects of the

brain, specifically that ASL would increase in the different regions of the brain.

We then provide extensions to the predictions that can be made in the Prediction Test and

compare the method to a Linear Mixed Model and a set of t-test on a data set consisting of Dif-
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fusion Tensor Imaging (DTI) measures on pre and post kidney transplant patients. The research

hypothesis of this study is that kidney transplantation will lead to a normalization of DTI measures,

which are emerging bio markers for cognition and Alzheimer’s Disease. We also discuss power

calculations and conduct a simulation comparison between a set of t-tests and the prediction test.
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Chapter 1

Introduction

Alzheimer’s Disease (AD) is one of the most common diseases in the United States, with estimates

of 5.7 million cases, and healthcare costs in the hundreds of millions of dollars with projections

showing both the number of cases and the overall costs will increase. It is the fifth leading cause

of death for adults over 65 (Alzheimer’s Association, 2018) but there is currently no treatment

that can either cure or stop the disease progression and little evidence to suggest that the few

available treatments are effective at slowing disease progression (Townsend, 2011). In fact, even

in treatments that have been deemed effective, the clinical relevance of these treatments has been

called into question (Winslow et al., 2011). In short Alzheimer’s Disease is a major public health

crisis that given the ageing population of the United States and the lack of effective treatment will

most likely get worse before it gets better.

With Alzheimer’s disease the patient is not the only one who experiences adverse health con-

ditions, the primary care giver of Alzheimer’s patients also experience significant health burdens

(Dauphinot et al., 2015) and some studies have shown that a large proportion, 49%, of the gen-

eral population is equally afraid of developing Alzheimer’s themselves as they are of becoming a

caretaker (Anderson et al., 2009). The statistical methodologies we have developed were used to

address these two concerns with AD; the need for methods to cope with the disease and the need

to understand the disease better in order to develop more effective treatments.

In Chapter 2 we discuss the methodology developed to deal with problems encountered during

a study aimed at evaluating the effectiveness of a type of therapy called Self Revelatory Perfor-

mance (SRP) (Emunah, 2015). SRP is a type of theater performance in which audience members

participate in what is essentially a group therapy session. The impetus for the study came from

Arts and AGEing KC, a theater company that encourages healthy ageing through the arts. Arts and

Ageing KC has conducted some informal surveys of participants in their programs, which consist
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primarily of elderly adults, that led them to believe Alzheimer’s disease was the largest source

of concern. In an attempt to meet their community’s need they reached out to the Alzheimer’s

Disease Center (ADC) at the University of Kansas Medical Center (KUMC) about support for an

experiment they wanted to conduct using SRP (Burns et al., 2018). The result was a simple obser-

vational study, subjects who came to the performance would be asked to complete a pre and post

survey that measured their attitudes and feelings toward AD. The research hypothesis was that the

SRP would lead to an improvement in perception of Alzheimer’s disease. In this observational

study, over 80% of the participants knew someone with Alzheimer’s and over 20% were primary

caregivers for someone with AD.

The study design called for pre-post data comparisons on the observational sample. It was

also determined that the KU ADC could not help with the collection of data but would provide

support for the development of the survey and the analysis of the data. Unfortunately, due to a

miscommunication between KU ADC and Arts and AGEing KC, during data collection the pairing

was lost, i.e. the pre and post surveys were placed into two piles with no identifier available to

connect a single participant’s responses. We were presented with collected data that was intended

to be paired but was not. The methodology we developed focuses on one specific question from the

survey, a question asking participants to use an Affect grid, essentially a two-dimensional Likert

item. We observed 93 completed pre Affect grids and 87 completed post Affect grids and based

on the study design we expected that there were dependencies between these two groups, i.e. we

could not consider them independent. We developed a modified bootstrap approach to determine

how extreme the differences were between the centers of mass of the two groups under the null

hypothesis that the SRP was ineffective. Despite the lost data, and the need to throw out the original

statistical analysis plan we were able to come to a conclusion concerning the research hypothesis.

In Chapter 3 we present a novel hypothesis test called the Prediction Test. This test is intended

for use in early stage research, specifically when the number of measures collected relative to the

sample size is large. In early stage research the goal is often to determine whether or not a given

researcher hypothesis is worth pursuing further, that is, given preliminary findings is the hypothesis
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being borne out to such a degree that a larger more targeted study is warranted. We make use of

researcher’s predictions about the result of each measure as part of our test statistic. For instance,

if a researcher collected measures such as BMI, VO2 max, etc. for participants of a weight loss

study with an exercise intervention, a natural prediction would be that BMI would decrease from

baseline and VO2 max would increase relative to baseline. If the observed difference from baseline

was a decrease in BMI and an increase in VO2 max, we would consider these two predictions to

be correct. Our test statistic is the sum of the correct predictions, weighted using the sample

correlation matrix, this insures that predictions for variables that are highly similar will be down

weighted.

We show that the prediction test has good power and type I error control, even for very small

sample sizes, and that the power increases as the number of measures increases for a fixed sample

size. In addition, we discuss the exact distribution of the test statistic and a normal approximation

to it when the computational requirements become too intensive. We also include an example

showing how the test works with a real data set consisting of ASL measures. We conclude that

the prediction test can be a powerful tool for making a go/no-go decision in early stage research,

and that the test performs best in scenarios when many methods fail, i.e. small samples but many

variables of interest, a common problem for exploratory and feasibility studies.

In Chapter 4 we provide extensions to the Predictions Test as well as a detailed example of

using the test with a different data set concerning the effect of kidney transplantation on func-

tional/structural changes in the brain. We use a real data set to compare our method to two other

potential types of analyses, a linear mixed model, which would be the ideal way to analyze the

data given a large enough sample, and a set of t-tests on the endpoints with a specified primary

endpoint, a common choice of analysis for studies with many measures and small sample sizes.

We also discuss empirical power estimates for the test, conduct a simulation study comparing the

method to a set of t-tests and discuss best practices for the prediction test.

Finally, in Chapter five we discuss the advantages and disadvantages of the new methodologies,

including directions for future work. The Appendices include code for the Prediction Test and an
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overview of a Shiny Web application for the Prediction test.
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Chapter 2

Evaluating Paired Categorical Data when the Pairing is Lost

This chapter has previously been published in whole without any adaptations since publication

and is reprinted here with permission. R. N. Montgomery, A. S. Watts, N. C. Burns, E. D.

Vidoni & J. D. Mahnken (2019) Evaluating paired categorical data when the pairing is lost,

Journal of Applied Statistics, 46:2, 351-363, DOI: 10.1080/02664763.2018.1485013

Abstract

We encountered a problem in which a study’s experimental design called for the use of paired

data, but the pairing between subjects had been lost during the data collection procedure.

Thus we were presented with a data set consisting of pre and post responses but with no

way of determining the dependencies between our observed pre and post values. The aim of

the study was to assess whether an intervention called Self-Revelatory Performance had an

impact on participant’s perceptions of Alzheimer’s disease. The participant’s responses were

measured on an Affect grid before the intervention and on a separate grid after. To address the

underlying question in light of the lost pairing we utilized a modified bootstrap approach to

create a null hypothesized distribution for our test statistic, which was the distance between

the two Affect Grids’ Centers of Mass. Using this approach we were able to reject our

null hypothesis and conclude that there was evidence the intervention influenced perceptions

about the disease.

2.1 Introduction

A joint study between The University of Kansas Alzheimer’s Disease Center (ADC) and Arts and

AGEing KC investigated whether a particular type of therapy called Self Revelatory Performance

(SRP) (Emunah, 2015) had an impact on participant’s perceptions of Alzheimer’s disease. The
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research hypothesis was that the SRP had a positive effect on participant’s emotional stance. The

study’s design called for collecting a survey, which consisted of two 5-point Likert items (Likert,

1932) and an Affect grid (Russell et al., 1989), from each participant before and after the perfor-

mance. Using this paired data the goal was to analyze whether or not each individual’s response

was affected by the performance and quantify the average individual’s shift in perceptions about

the disease. Unfortunately, the surveys were collected in such a way (they were put into two piles)

that the pairing between subjects was lost. Due to this issue, the original analysis was no longer

viable and we were brought on in an attempt to salvage as much information from the data as

possible in order to address the research question. This paper focuses on the methodology used to

analyze the responses to the Affect grid. The Likert items were analyzed by permuting 10,000 pos-

sible unique pairings and using an Ordinal-Quasi Symmetry model as a sensitivity analysis to the

effect of the lost pairing. All statistical analyses and data management procedures were conducted

in R (R Core Team, 2018).

Stress Excitement

Depression Relaxation
1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Figure 2.1: The Affect Grid with added row and column numbers

6



2.1.1 The Affect Grid

Participants were presented with an Affect Grid identical to the one in Figure 2.1 with the exception

that we added the row and column labels 1 through 9 after data collection. These labels were added

in order to analyze the results and we have no reason to believe the choice of these values affected

the analysis. The Affect Grid is an item that addresses two questions at once; the horizontal axis

measures valence (on a range from unpleasant feelings to pleasant feelings), while the vertical axis

measures arousal (on a range from sleepiness to high arousal) (Kinsinger, 2004). In an Affect Grid

participants are prompted to mark a cell that best describes their current combination of valence

and arousal. Affect Grids were originally designed to measure a single instance of a participant’s

emotional state and in these instances has been shown to be a “moderately valid measure of the

general dimensions of pleasure and arousal” (Killgore, 1998). However, many authors have used

the Affect Grid in paired and longitudinal studies despite the lack of validation in these scenarios.

While some work has been done on specific issues related to multiple measurements on the Affect

Grid in response to participant’s tendency to exaggerate (Russell & Gobet, 2012), we are unaware

of any studies that address multiple paired measurements using an Affect Grid to study population

wide changes. The original developers of the Affect Grid intended for the item to be scored as

two separate measures, which is similar to simply using the Affect Grid to graphically visualize

the combination of two Likert items. However, for our analysis we treated the responses to the

Affect Grid as a pair, using the coordinates as a combined measure of emotional state. Despite

the parsimony that could be achieved by using responses to the Affect Grid as a single response,

no validation studies for its use in this scenario have been undertaken. By analyzing the data as a

single item we could have unknowingly introduced bias into the responses.

Survey items are often susceptible to extreme responding bias (ER) and central tendency bias

(CTB) (Furnham, 1986), which are both concerns with this type of two-dimensional Likert item.

The other types of bias often encountered such as acquiescence, or social desirability bias would

not be of concern due to the lack of “yes” or “no” questions and the apolitical nature of our topic

respectively. If our approach had introduced ER or CTB we would expect to see the responses on
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the extremes of the grid or clustered near the middle. The pre-responses In Figure 2.2a show some

evidence of ER, with most responses toward the left side of the grid; however the post responses

in Figure 2.2b appear to show evidence of CTB with most responses clustered in the middle of

the grid. Taken together these provide no evidence of either ER or CTB bias, which cannot occur

at the same time. The more likely explanation for the apparent pattern of responses is that the

SRP had an effect and shifted the participants more extreme responses to more neutral responses.

Overall we cannot rule out the possibility of response bias, however there is no evidence bias was

introduced by treating the Affect grid as a single item.

Figure 2.2: Heatmaps of participants responses before and after the SRP

We had a total of 180 observations, 93 completed pre Affect Grids, and 87 completed post

Affect Grids. In light of the lost pairing we modified the research hypothesis to the more broad

statement that “The SRP had an effect on participant’s emotional state concerning Alzheimer’s

disease.” If we concluded there was an effect, then based on the shifts in the Affect Grid we would

claim that the shift appeared to be in a certain direction, while noting that we did not test for a

directional shift but merely any shift. Thus our null hypothesis (H0) was that the SRP had no effect
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on the participant’s emotional state. Under H0 any differences between the two samples (the pre

and post) were assumed to be due to sampling error and therefore the two samples can be viewed

as draws from some true distribution of the participant’s emotional state, which we refer to as the

null distribution. To analyze the data we reformed H0 to the equivalent statement that the pre and

post responses are samples from this null distribution. Under this hypothesis we were able to get

an estimate of the null distribution.

2.2 Methods

2.2.1 The Estimated Null Distribution

Without loss of generality, the counts of the cells in the Affect Grid follow a multinomial distri-

bution, where each cell has a certain probability of being chosen such that the total probability

equals 1. To form our null distribution these cell probabilities were estimated using the frequency

of the total (pre and post) observed cell responses divided by the total number of responses. For

example there were 17 total pre and post participants who marked the cell (1,5), thus the relative

frequency for this cell was 17
170 = 0.10. We justified combining the pre and post responses to esti-

mate the distribution for two reasons: 1) under our Null distribution these samples are draws from

the same distribution, and 2) the sample size was relatively small in relation to the number of cell

probabilities we needed to estimate.

There were 93 completed pre Affect Grids and 87 completed post Affect Grids, the combi-

nations of which are graphically displayed by discrete heat maps in Figure 2.2a and 2.2b. Note

that both the pre and post samples contained 43 empty cells out of the 81 total cells. Combining

these samples into the estimated null distribution resulted in 54 cells with at least one observation;

however, even after this combination there were still 27 cells with no responses.

Figure 2.3a displays a heat map of the estimated null distribution with the relative frequencies

for each cell. In estimating this distribution we did not want to force the cells with no observations

to have an expected value of 0, which would result in a degenerate conditional binomial distribu-
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tion for those cells, which we did not believe was an accurate description of the true null distribu-

tion. Instead we believe these cells are sampling 0’s and following the advice of Agresti (Agresti,

2013) we adjusted the observed null distribution by adding small constants. We added 0.0005 to

the estimated probability of the 27 empty cells and reduced the estimated probability of the 54

cells with an observation by 0.00025 so that the total probability would sum to 1. We considered

more sophisticated approaches to dealing with these empty cells such as assigning probabilities by

weighting the responses near that cell, or by using a function of the row probability multiplied by

the column probability. Nevertheless, we felt these approaches would have smoothed the distribu-

tion too much, especially given the scarcity of the data. By adding small equal constants to each

cell we avoided the issue of having cell probabilities of 0, while staying as close as possible to the

observed values.

Figure 2.3: Observed and adjusted estimates of the null distriubtion.

The cells with observed responses that would be most influenced by having their relative fre-
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quency reduced were the cells with only 1 response. We can see from Figure 2.3a that these cells

had a relative frequency of approximately 0.0056. After reducing the observed cell’s relative fre-

quency by 0.00025 the relative frequency of the cells with only 1 observation was approximately

0.0053, a reduction of 4.5 percent. While this percent reduction is much greater than the 0.25

percent reduction in relative frequency experienced by the most common cell response (1,5), we

felt comfortable that overall it was a fairly modest reduction. Given that we added such small

constants to the formerly empty cells, the expected value of a response occurring in any of these

previously empty cells is only 1.35 percent. Figure 2.3b shows the adjusted null distribution on

the same scale as the observed estimate of null distribution. A sensitivity analysis on the effect of

different constants is included in the Results section.

2.2.2 Bootstrap Testing Procedure

In order to analyze our observed data we needed to measure the central tendency of the pre and post

samples. To do this we used the center of mass (COM). In a physical system the COM is the point

at which the system balances or rests. If we had a physical 9x9 grid with weights corresponding

to the participant’s responses, the COM would be the point at which we could put a fulcrum and

balance the grid. If the responses on the grid shifted so too would the COM. For a two dimensional

discrete system of points the center of mass is (xcm , ycm) where

xcm =
n

∑
i=1

mixi

n
and ycm =

n

∑
i=1

miyi

n
(2.1)

and mi represents the mass at each point (Protter & Protter, 2009). We summed over the n =

93 participants for the pre center of mass and n = 87 participants for the post center of mass to get

the corresponding center of mass (xcm , ycm) for the observed pre and post responses.

To test our null hypothesis that the performance had no effect on participant’s responses, we

used the Euclidean distance (Deza & Deza, 2009) between the COM of the pre and post samples.

We refer to this distance as COMD. Under our null hypothesis these samples come from the same
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distribution and therefore we would expect COMD to be small, attributing the difference in the

central tendencies of the two samples to random error. To get a measure of the distribution of

distances under the null we used a bootstrap approach (Efron, 1979) on our adjusted null distribu-

tion. We drew 10,000 samples of size 93 from the modified null distribution and 10,000 samples

of size 87 to function as bootstrapped pre and post samples. We then calculated the distance be-

tween each of the 10,000 simulated pre and post samples and compared our observed COMD to

the bootstrapped distribution of COMD generated under H0. Our observed pre COM was (2.796,

4.774) and the COM of our post sample was (3.920, 5.333), thus our observed distance was 1.255.

We calculated a bootstrap p-value by summing the total number of bootstrapped distances that

were as or more extreme than our observed distance divided by the total number of bootstraps.

Due to the inherent sampling variation of a bootstrap p-value we followed the advice of Li, Tai,

and Nott (Li et al., 2009) and calculated a confidence interval for our bootstrap p-value. We used

the confidence interval originally suggested by Wilson (Wilson, 1927), with a continuity correction

(Newcombe, 1998) the confidence interval (L,U) is given as

L = max
{

0,
2np̂+ z2

α/2
− [zα/2

√
z2

α/2
− 1

n +4np̂(1− p̂)+(4p̂−2)+1]

2(n+ z2
α/2

)

}
(2.2)

U = min
{

1,
2np̂+ z2

α/2
+[zα/2

√
z2

α/2
− 1

n +4np̂(1− p̂)− (4p̂−2)+1]

2(n+ z2
α/2

)

}
(2.3)

where p̂ represents the estimated p-value, and n is the total number of bootstrap samples.

In order to get a good estimate of our p-value we used 10,000 bootstrap samples, which with the

assumption that the p-value would be near 0.05 results in an estimated length of the 95% confidence

interval being less that 0.01.
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2.3 Results

Our bootstrapped distances ranged from .0025 to 1.339; however, only 2 of the 10,000 distances

were as or more extreme (i.e. larger) than our observed COMD value of 1.255, resulting in a boot-

strap p-value of .0002. Our bootstrap confidence interval for the p-value was (0.00003, 0.0008).

Figure 2.4 displays a histogram of the simulated distances and a dotted line marking our ob-

served distance. While the theoretical distribution of the test statistic COMD is unknown, the

observed value of 1.255 clearly lies in the extreme tail of the empirically derived distribution.

Under the null distribution we would not expect to draw such different samples from the same

distribution.

Figure 2.4: Simulated Distances (with observed distance represented by dotted line).

Thus we rejected our null hypothesis that the samples came from the same distribution and there-

fore rejected the hypothesis that the SRP had no effect. The original research question was whether
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the performance had a positive effect. While we did not test for a shift in a certain direction, given

that we found evidence a shift had occurred and by examining the observed responses in Figure

2.2, we concluded that there appeared to be a shift in the positive direction (i.e. toward the right

side of the grid). We take this as evidence that the SRP had an effect, specifically a positive shift

in participant’s perceptions about Alzheimer’s disease.

2.3.1 Sensitivity Analysis

To evaluate whether either the value we chose to add to the empty cells or possible dependencies

between the pre and post responses could have affected our results we conducted a sensitivity

analysis for both potential problems.

For the analysis of the effect of added constant we allowed the value chosen to vary among

six different levels, the smallest being 0.0001 and the largest being 0.011. As the weight increases

so does the amount of smoothing we are applying to the observed data. We would expect that

smaller values would have little effect on our results since they would be closest to the actual

observed data, which is why only two of the new values are below our original value of 0.0005.

The maximum weight we looked at was restricted to 0.011, the reason for this is that we did not

want to smooth the data too much and restricted ourselves to removing an equal probability from

each of the cells that already contained an observation. The cells that only had one observation

had an estimated probability of 0.0056 and thus we could take a maximum of .0055 (allowing for

a very small remaining probability) away from the cells with one observation. This corresponds to

adding a value of 0.011 to the empty cells. We drew 10,000 samples of size 93 for the pre sample

and size 87 for the post sample, calculated their center of mass, and recorded how many of them

were as or more extreme than our observed distance.
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Table 2.1: Sensitivity Analysis

Weight Empirical

P-value

0.00010 0.0001

0.00025 0.0001

0.00075 0.0005

0.00100 0.0004

0.00250 0.0006

0.01100 0.0024

Our original weight of 0.0005 resulted in an empirical p-value of 0.0002.

Table 1 shows that as the weight increased so did the empirical p-value; nevertheless for all

the weights chosen the p-value was still far below the significance level of 0.05. Of course by

making the weight arbitrarily large the p-value could potentially be greater than our significance

threshold, but the weight would need to be larger than 0.011.Thus we would need to reduce the

estimated probability of the cells with observations in an unequal manner (taking more away from

cells with more observations, or perhaps based upon regions of observations). There is no evidence

to suggest that such an invasive redistribution of the weight of observed values is warranted, thus

we concluded that our analysis was not sensitive to the choice of weight.

In addition we also looked at whether different levels of correlation among the responses could

have had an effect on the results. We generated 100,000 pre and post draws from the null distri-

bution, recorded the Pearson correlation between the pre and post x, pre and post y and also the

distance between the pre center of mass and post center of mass. We then fit several linear mod-

els with COMD as the response and main effects and interactions of both the correlation in the x

axis and the correlation in the y axis. We fit this model with the full 100,000 draws and also a

subset of the draws which resulted in large, i.e. greater than 1, values of COMD. In both of these
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models neither the main effects or the interaction term were statistically significant. Thus we don’t

believe that possible correlation between the pre and post responses would have greatly impacted

our results.

2.4 Discussion

2.4.1 Limitations

While we feel confident in the result of this study there are limitations to the method we used to

analyze the data. One concern is that the lack of validation of the Affect Grid as a single item

introduced response bias that we are unaware of. However, we did not see any evidence of the

most common types of bias. We reiterate that we only tested for a shift in perceptions, we found

evidence that this shift occurred and based on the apparent positive direction of the shift we feel

the SRP had a positive impact. While it is highly unlikely that the Affect Grid would be biased in

such a way that the apparent shift toward the positive side of the grid was actually indicative of a

different type of response this possibility must be entertained and is an unavoidable symptom of

the lost pairing.

Another issue with our approach is that it has poor power to detect specific types of shifts.

As an example, Figure 2.5a displays a heat map of possible pre responses that would indicate the

population had extreme feelings about Alzheimer’s disease. Figure 2.5b displays a heat map of

possible post responses that would indicate the population had very neutral feelings. While these

two populations clearly differ in their observed emotional state they have the same center of mass,

and therefore our test statistic would detect no difference between them. In general, any systematic

shift or rotation around the pre center of mass would result in an identical or very similar post center

of mass. In theory, there could be many shifts within the population so long as they did not alter

the center of mass, none of which would be detected by our test statistic. It is important to note

that the shift could merely be a change in the dispersion or variance between our two samples. If

the both the dispersion and the COM changed we would detect this difference, but if the dispersion
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Figure 2.5: Theoretical shift which would result in COMD = 0 despite obvious differences in the

samples

changed from pre to post while the COM remained unchanged our approach would not detect this

difference because we were concerned with a change in the central tendency of the samples. If

this method was used and the null hypothesis was not rejected our method provides no way to

definitively know whether there was no evidence of a shift or that there was an undetectable shift.

In our study we rejected the null and thus this limitation was not an issue for this particular data

set.

2.4.2 Validation and Generalizations

In order to check the validity of our method we did a simulation study to compare its power

and type I error rate to that of Hotelling’s T 2 (Hotelling, 1931). We chose Hotellings T 2 which

is a generalization of the t-statistics for multivariate testing because we were testing the change

of central tendency across two dimensions. There is no standard test designed for the situation

we found ourselves in. However Hotelling’s T 2 is a logical choice in the same way that the on
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dimensional t-test is often used to analyze Likert data. While Hotellings T 2 assumes Normality

and data from the Affect grid is clearly discrete, it is fairly robust to departures from Normality

(Mardia, 1975). In addition we used sample sizes of 100 per sample so that by the multidimensional

central limit theorem the samples of coordinate pairs should be fairly Bivariate Normal.

To compare COMD with Hotellings T 2 we created nine distributions that we felt were repre-

sentative of what might be encountered when using the Affect Grid. Figure 2.6 shows heatmaps

of the distributions. These were created by thinking of the data as a combination of two 9-point

Likert items which correspond to the x and y axes. Often Likert data exhibit either extreme re-

sponses or central tendency bias, which provides three options for each of the axes. Values can

be positive skewed, negative skewed or centered in the middle of the nine points. For instance in

Figure 2.6 the distribution (Positive, Center) is a combination of right skewed responses on the

x-axis and centered responses on the y-axis. The vectors of cell probabilities for Positive, Nega-

tive, and Centered are found in Table 2 and thus the cell probabilities for these distributions can be

found by multiplying those vectors in the appropriate way. For instance the cell probabilities for

the Distribution titled (Right, Centered) are found by calculating RTC. The cell probabilities for

the other eight distributions in Figure 2.6 can be calculated similarly.

Table 2.2: Probability Vectors used to Generate Distributions

1 2 3 4 5 6 7 8 9

RT .22 .20 .15 .135 .085 .06 .055 .05 .045

CT .055 .075 .1 .16 .22 .16 .1 .075 .055

LT 0.045 .05 .055 .06 .085 .135 .15 .20 .22

These values represent the probability of a given number 1,...,9 being chosen. Using these vectors

we can get the cell probabilities for the distributions.

We wanted to compare how COMD performed relative to Hotelling’s T 2 in a scenario where

we were drawing equal sample sizes from two distributions. For the distributions shown in Figure
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Figure 2.6: Heatmaps showing the differences in cell probabilities for the nine distributions

2.6 there are 36 combinations of the distributions and the 9 scenarios where both samples are

actually coming from the same distribution. For the 36 combinations of different distributions we

estimated the power for COMD and Hotelling’s T 2 by drawing 1,000 random samples from each

distribution and calculating the p-value for Hotelling’s T 2 and the bootstrapped p-value for COMD.

Our estimate of power was then the percentage of those simulations that had resulted in a p-value

≤ 0.05. Similarly for the estimate of Type I error, we took the percentage of significant results out

of the total number of simulations. For the COMD method on each of the 1,000 samples we used

a bootstrap of size 1,000.

Table 3 provides estimates of the power in detecting differences between the pairs of distribu-

tions. The estimated power of COMD is comparable to Hotelling’s T 2 in every instance we looked

19



Table 2.3: Estimated Power for COMD and Hotellings T 2

PC PN CP CC CN NP NC NN

PP .914(.915) 1(1) .918(.929) .999(.999) 1(1) 1(1) 1(1) .909(.910)

PC — .908(.913) 1(1) .943(.924) .996(.996) 1(1) 1(1) .917(.918)

PN — 1(1) .9(.912) .907(.911) 1(1) 1(1) 1(1)

CP — .927(.915) 1(1) .920(.926) .998(.998) 1(1)

CC — .934(.921) .999(.999) .931(.923) .999(.999)

CN — 1(1) .999(.999) .907(.911)

NP — .913(.921) 1(1)

NC — .915(.920)

Table 2.4: Estimated Type I error for COMD and Hotellings T 2

PP PC PN CP CC CN NP NC NN

Hotellings T 2 0.062 0.039 0.044 0.050 0.036 0.045 0.044 0.055 0.052

COMD 0.058 0.045 0.045 0.053 0.039 0.054 0.047 0.060 0.054

at. Both methods achieved greater than 90% power for comparing these specific distributions. A

more comprehensive simulation study that drew samples from more similar distributions or looked

at different sample sizes would have yielded different and probably lower power estimates for both

COMD and T 2. Nevertheless, both methods performed very well under these conditions.

Similarly, Table 4 provides estimates of the Type I error rates, when the two samples came from

the same distribution. Again we see that COMD and Hotellings T 2 provided very similar results.

The Type I error rate was controlled around the nominal 0.05 level for both COMD and Hotellings

T 2. A more extensive simulation study comparing the two methods is needed to determine which

method performs better in certain scenarios. In addition more work on the operating characteristic

of COMD would need to be done in order to be comfortable using this approach outside of this

specific instance. Nevertheless, in this set of simulations it has shown itself to be at least as good as

Hotelling’s T 2 while not making as many assumptions about the data. We believe it shows promise

as a way to analyze discrete grid data, specifically data that can be thought of as combinations of

Likert items.
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2.5 Conclusions

The loss of pairing and the type of data encountered in this problem presented a unique challenge

for analysis. Using our methodology we were able to address the research hypothesis and provide

evidence in its favor. The extreme nature of the observed COMD and the apparent direction of the

shift toward the right side of the grid lead us to believe that Self Revelatory Performance had an

effect on participant’s responses, specifically a positive effect. More work would need to be done

to validate SRP as an effective tool for educating seniors about Alzheimer’s disease, but both the

therapy and the methodology developed show promise for application outside of this study.
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Chapter 3

The Prediction Test: A go/no-go hypothesis test for early stage research studies

Abstract

This paper introduces a global hypothesis test for studies with many measures intended for

use at early stages of research when a go/no go decision is needed on whether to continue

on the current research track. We believe this will be especially useful when the number

of measures collected is large and the sample size small. Our test makes use of a priori

predictions about the direction of the result for each measurement provided by the researcher,

we then weight these predictions using the sample correlation matrix. The global alternative

hypothesis is that the researcher’s ability to predict the results of each measure, φ , is greater

than a null hypothesized value φ0. If a researcher is able to successfully predict many of the

study measures this would provide evidence that the researcher’s theory about the underlying

phenomenon or process is correct and worthy of more study. We show that this method has

adequate power and type I error control even in situations where the number of measurements

relative to the sample size is large and the measures are correlated, a situation under which

traditional approaches have poor power.

3.1 Introduction

In contemporary biomedical science many studies involve multiple outcomes. While significant

advances in the methodologies to deal with multiplicity have been developed, the tendency in

biomedical research to measure as many endpoints of interest as possible within each study is not

well suited to balancing sufficient multiplicity adjustments along with sample size, financial, and

logistic constraints, especially in early stage research. We present a paradigm for experimental

testing that controls the type I error rate of the overall experiment (or more specifically of the
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global research hypothesis) while maintaining adequate power. We believe this methodology will

be especially useful for early stage research.

The scenarios in which multiple endpoints arise are varied, ranging from trials with distinct out-

comes of interest, such as endpoints for both efficacy and safety, to trials where the complex nature

of or the inability to directly measure the hypothesis of interest necessitates multiple endpoints that

can be used as proxies. (FDA, 2017) Having more than one endpoint can have serious implications

on the operating characteristics of a study and typically needs to be addressed. This has led to a

wealth of literature about the topic (Dmitrienko & D’Agostino, 2017), including guidance from

government agencies about best practices. (EMA, 2017) (FDA, 2017) Common approaches to the

issue of multiplicity include single step procedures such as the Sidak adjustment (Sidak, 1967),

multi-step procedures such as the Holms method (Holms, 1979), global procedures such as Sime’s

Global test (O’Briend, 1984) as well as many related methods such as False Discovery Rate, gate

keeping procedures, etc. (Benjamini & Hochberg, 1984) (Dmitrienko et al., 2009). However, de-

spite these advances, when faced with multiple endpoints a common default continues to be the

designation of a primary endpoint, with all others analyzed as secondary, or exploratory, even if

there is not a true “primary” endpoint. Our test provides a method for arriving at a go/no-go de-

cision when there is not a true primary endpoint, a common occurrence in early stage research

when the validity of the overall theory or research hypothesis is being tested. We incorporate

the correlation of the measured endpoints along with the researcher’s predictions to form our test

statistic.

Section 3.2 provides a motivating example for our methodology. In section 3.3 we introduce

the test statistic and associated hypothesis test, section 3.4 presents an empirical assessment of the

Normal approximation, Section 3.5 provides simulated empirical power and type I error estimates

over various experimental setting, in Section 3.6 we look at the sensitivity of using a small sample

correlation matrix, Section 3.7 discusses the choice of the parameter φ and maximum hypothesized

values for a given number of measures, Section 3.8 applies our methodology to an example data

set and in Section 3.9 we discuss the methodology presented including its limitations and areas
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for future work. The supplemental material provides R code for implementation of the Prediction

Test, a proof showing the Lindberg condition of the central limit theorem holds and more detail on

the analysis of the example data set.

3.2 A simple example

Consider an experiment concerning the population mean. Let the null hypothesis be H0 : μ ≤ 0

vs H1 : μ > 0. At the boundary point, 0, between the null and alternative space, the sampling

distribution of the sample mean under the null hypothesis is normal with μ = 0. We consider a

simple statistical test with decision rule that would reject the null if we observe x̄ > 0, and fail to

reject the null for x̄ ≤ 0. The rejection region for this test is shown in Figure 3.1 A. Under the

null hypothesis the type I error rate for this test is 0.5, which is unacceptably high for most, if not

all, conceivable applications. However, the power will also be high since if the population mean

is > 0 the sample mean often will be as well. For instance, if the true population were normally

distributed with μ = 0.5 and σ = 1, with n = 10, the probability of the sample mean being greater

than 0 is almost 95%.

Now consider a similar test of two independent population means defined in the same way. Let

the global null hypothesis be that neither mean is greater than 0; H0 : μ1 ≤ 0∩ μ2 ≤ 0. Here we

define a statistical test which will reject the null if and only if both observed sample means are

greater than zero. This rejection region is shown in Figure 1 B. The type I error of the first test

is 0.5, and the Type 1 error of this second test is 0.25. If we added three additional independent,

standard normal endpoints and required positive responses from all five measures to reject the null

then the type I error would drop below the conventional 0.05 threshold to 0.03125, thus controlling

the error rate for this test by simply requiring results in the direction of our alternative hypothesis,

no matter how large. Of course, to reject this global null hypothesis we would require all five

endpoints to show an increase which is a fairly strict requirement that could lead to a reduction in

power.

24



Figure 3.1: For m independent one-sided measures where we would reject the global hypothesis if

each measure showed a positive response the Type I error would be 0.5m. Examples are shown for

m = 1 and m = 2. The density shown over the possible responses is the null distribution, N(0,1).

Finally consider a more realistic scenario of two standard normal endpoints with some level

of dependence between them. The type I error rate for the global test would be between 0.25,

which would be the case if the two endpoints were independent, and 0.5, if the endpoints were

perfectly dependent, i.e. having a pairwise correlation of ±1. As more endpoints are included

and also required to be positive for rejection then the overall type I error rate will continue to

decrease, provided that these endpoints are not perfectly dependent. Given a large enough number

of endpoints with one sided rejection regions we could control the type I error rate even in situations

of extreme multiplicity, however rejection of the null would require that the sample means all be

greater than 0. We have developed a statistical test that makes use of the correlations between

endpoints to better measure the true underlying distribution for a global test of endpoints under the

null hypothesis using one-sided rejection regions. Further we have done so in such a way that does

not require the correct directional prediction for all endpoints and thus a rejection criterion can be

selected that can balance controlling the type I error rate with maintaining adequate power.

Our methodology asks researchers to make a prediction about the direction of each endpoint,

or measure, for example that the sample mean of a measure will be greater than some value, such
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as 0. We give the researcher credit for correct predictions and weight these predictions using the

sample correlation matrix so that correctly predicting more “independent” endpoints leads to a

larger test statistic. Our null hypothesis concerns the researcher’s ability to predict the result of the

endpoints, which we denote with the parameter φ , which can take values in {0,1}. We hypothesize

that H0 : φ ≤ φ0. If the researcher can predict the direction of many measures, something unlikely

due to chance, we would have evidence that their theory was providing more understanding of

the natural phenomenon and conveying an advantage in the predictions, i.e. it was correct, while

few correct predictions would cast doubt on the validity of the theory. In addition we weight

the predictions depending on how “independent” the underlying measures are, for instance if two

measures have a high pairwise correlation, say r = 0.90 correctly predicting both of them is only

slightly more impressive than correctly predicting one of them, thus we down weight measures

that are highly correlated with other measures in the data set. In this way, we require not only a

good deal of correct predictions to reject the null hypothesis, but correct predictions of measures

that are not simply copies of one another.

3.3 Test statistic and associated test

Let n represent the number of experimental units, and m be the number of measurements taken on

each experimental unit. We set our predictions to be one sided, so that without loss of generality

we describe these as being predictions of either a positive or negative result for each measure. Let

p be an m× 1 vector of the results of the predictions for the measures, where pi, the ith value of

the vector, is an indicator function that equals 1 if the prediction on measure i is correct, and 0

if the prediction is incorrect. Let C represent an m×m correlation matrix between the measures,

where ρi j is the pairwise correlation between measure i and j, which we estimate with the sample

correlation ri j. Any type of correlation measure can be used with the choice depending on the

underlying data (Maturi & Elsayigh, 2010), for all examples and simulations we use Pearson’s

correlation coefficient.
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For the ith measure we have defined a weight wi, i = 1, . . . ,m, that is the inverse of the sum of

the squared pairwise correlations for the ith row of C, that is

wi =

( m

∑
j=1

r2
i, j

)−1

Table 3.1: Correlation matrix C between the measures, with weights

C 1 2 . . m Weights

1 r11 r12 . . r1m w1 = (r2
11 + . . .+ r2

1m)
−1

2 r21 r22 . . . w2 = (r2
21 + . . .+ r2

2m)
−1

. . . . . . .

. . . . . . .

m rm1 . . . rmm wm = (r2
m1 + . . .+ r2

mm)
−1

W = ∑m
i=1 wi

The weight wi will take a value of 1/m for all i when there is a perfect pairwise association

(positive or negative) between each measure and will take a value of 1 for all i when the measures

are independent. Thus W, the sum of these weights, will equal 1 if the correlation matrix is a matrix

of ones and will equal m if the correlation matrix is an identity matrix. Conceptually we view W as

an estimate of the number of “unique” or effective endpoints being considered, similar in spirit to

the idea of the effective number of variables advanced by several authors in significance threshold

correction (Chevrud, 2001) (Li & Ji, 2005). When the measures are perfectly independent W =

m implying we have m unique endpoints, while if the measures are perfectly dependent W = 1

implying there is effectively only one independent measure. For levels of correlation between

these extremes 1 ≤ W ≤ m. For example, if data was collected on 10 measures, but W = 4.8, we

would take this as an implication that the real number of unique endpoints being examined by the

study was between 4 and 5, that is some of the 10 endpoints were measuring the same thing.

Our test statistic increases in value for each correct prediction by the corresponding weight wi.

We define our test statistic as
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Tm =
m

∑
i=1

piwi

where 0 ≤ Tm ≤ W . Notably, larger values of Tm indicate experimental results more aligned

with the researcher’s hypothesized predictions, while those closer to zero imply less concordance

between prior predictions and experimental results. It’s important to note that for the same number

of correct predictions the value of the test statistic will change depending on which measures are

correctly predicted, thus predicting measures with higher weights, will result in larger test statistic

values. We give greater importance to correctly predicting measures that are more independent

of the other variables in the data set, in this way correctly predicting a large amount of highly

correlated measures may lead to a relatively small test statistic.

3.3.1 Test Statistic under the Null

Our null hypothesis is that the researcher’s predictive ability φ is less than or equal to φ0. The pa-

rameter φ is chosen in regard to the specific experiment of interest. For example, in early discovery

experiments if the researcher was able to predict the result of more than φ0 = 0.50, i.e. 50%, of the

measures then perhaps that would be enough to warrant further study because it would indicate that

the researcher’s theory was able to predict what would happen at a rate better than chance. Under

our null hypothesis we assume that the results of each prediction pi follow a Bernoulli distribution

with success parameter φ . We also assume that the weights, wi, are independent of the predictions.

If the weights are treated as fixed our test statistic is therefore a weighted sum of Bernoulli random

variables, with expected value E[Tm] = φ ∑m
i=1 wi and Var(Tm) = φ · (1−φ)∑m

i=1 w2
i .

If the correlation matrix C is such that the off-diagonal values are not all equal then there are a

discrete number of unique w′
is and the vector p can take on 2m permutations, as each pi ∈ {0,1}.

Given a sample correlation matrix we can calculate the exact distribution of the test statistic. In

doing this we need to consider that different combinations of correct predictions will result in
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different values of the test statistic even if the overall number of correct predictions is the same.

Unlike a binomial probability we do care about which specific combination leads to x correct

predictions, thus the pmf of our test statistic can be considered as a binomial pmf without the

constant
(m

x

)
where x = ∑m

i=1 pi, i.e. the number of correct predictions for the observed statistic tm.

More formally the pmf is

f (Tm = tm) = φ ∑ pi
0 (1−φ0)

m−∑ pi

When φ0 = 0.50 the probability of all possible values of Tm will be equal due to the symmetry of

the binomial; however as φ0 deviates from 0.50 the probability of observing different values of the

test statistic will change.

3.3.2 Special Cases

There are two special cases concerning the distribution of our test statistic, when C = JJJm, an m×m

matrix of ones, and when C = I, the identity matrix.

For C = I, wi = 1 for all i thus our test statistic can be written as:

Tm = 1 ·
m

∑
i=1

pi

The sum of independent Bernoulli random variables is a Binomial random variable. Thus, the test

statistic would simply follow a Binomial(m, φ0).

If the sample correlation matrix C = JJJm (with the off diagonals being either positive or negative

one) then wi = 1/m for all i. Our test statistic in this scenario can be written as:

Tm =
1

m

m

∑
i=1

pi

If we let X = ∑ pi, and let Y be the transformation Y = 1
mX we can show the probability mass

function of Tm is:
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(
m

y ·m
)

py·m(1− p)m−m·y

with support y = {0,1/m,2/m, . . . ,1}. Thus Tm is simply a linear transformation of a Binomial

random variable in the completely dependent case. For sample data the only realistic way either of

these scenarios could occur would be through error, or in a contrived way such as measuring the

same variable but with different units, for example height in inches, centimeters and meters.

3.3.3 Decision Rule

We are most concerned with whether the researcher’s theory provides an advantage in understand-

ing the outcome of different measures, thus we define our null and alternative hypotheses as fol-

lows:

H0 : φ ≤ φ0

H1 : φ > φ0

We also require that Tm > 1 in order to reject the null, that is we require the sum of correct

scores to be greater than 1. This forces the researcher to correctly predict every endpoint when the

endpoints are perfectly dependent, thus simply correctly predicting linear, or monotonic combina-

tions of other endpoints provides no advantage, i.e. the null hypothesis cannot be rejected when

C = JJJm. We consider the sum of Tm to be the number of effective endpoints correctly predicted

and thus it is intuitive we would require the researcher to correctly predict endpoints with a value

greater than one. In situations where the Type I error rate was of most concern φ would be close to

1, and in situations where power was the main concern φ would be closer to 0, although we would

recommend φ0 ≥ 0.5 without strong reasoning otherwise.
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3.4 Normal approximation

The exact distribution for Tm becomes computationally difficult to calculate as the number of end-

points increases, with m = 30 the number of possible permutations of p, the prediction vector, is

over 1 billion. In the supplementary material we have shown that the sum of the T ′
i s satisfies the

Lindberg CLT, indicating that as the number of endpoints increase the central limit theorem will

apply as long as the value of φ0 is bounded away from 0 and 1 (Billingsley, 1995). We show these

restrictions on φ0 will always be met as we let m → ∞. We also conducted a simulation study for

various values of φ and m. We found that if m is large enough and φ is not too close to either

boundary:

Tm ∼ Normal(μ,σ)

where μ = φ ·W and σ =
√

φ(1−φ) ·∑w2
i , the distribution of our test statistic can be approxi-

mated with a Normal distribution.

We looked at values of m ranging from 20 to 70 in increments of 5, with m > 20 the calculation

of the exact distribution becomes computationally expensive. We generated random correlation

matrices using the R (Team, 2017) package clusterGeneration (Qui & Joe, 2015) which uses partial

correlations and a recursive method to generate a random m-dimensional covariance matrix which

we converted to a correlation matrix (Joe, 2006). The method depends on the dimension of the

correlation matrix and on a parameter αd . We used αd = 1 which is a special case that is uniform

over the space of positive definite correlation matrices. For each value of m, we simulated 100

different correlation matrices, for each of these correlation matrices we randomly generated 1,000

sets of predictions from a Bernoulli(φ0) distribution. We used these predictions and the correlation

matrix to estimate the exact CDF of Tm which we then compared to the approximate CDF using

the normal approximation. We calculated the mean absolute error (MAE), i.e. the sum of absolute

differences between the values divided by the number of approximated percentiles, 1,000 in this

case. We took the mean of these 100,000 MAE’s (1,000 for each of the 100 correlation matrices) to

form the grand mean absolute error (GMAE), averaging over the generated correlations matrices
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Figure 3.2: For each combination of m and φ0 we calculated the GMAE. We see a clear decrease

in GMAE as the number of endpoints increases.

for each combination of m and φ . Figure 3.2 shows the results.

When φ0 is near one of the boundaries the approximation is poor especially with a small number

of endpoints. However, as the number of endpoints increases the GMAE decreases even when φ0 is

near the boundary. With a more moderate value of φ0 the normal approximation is much closer to

the value from the exact distribution, with φ0 = 0.50 the error quickly approaches 0.01 on average.

3.5 Simulation Study of Power and Type I error

Using simulation, we evaluated the empirical type I error and power of our test. We considered

situations with between 5 and 40 measures, set our sample size to 20, and considered hypothesized

values of φ0 = 0.50 and φ0 = 0.70. The simulated sample data were all drawn from a N(1,1), and

the predictions were all of an increase so the effect size for each measure is 1. Thus the predictions

were all correct but due to the variability of the measures the sample mean will not always be
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greater than 0. For each of these hypothesized values we examined the operating characteristic for

true values of φ in the null and alternative space. For both hypothesized values we examined the

operating characteristics of φ = φ0 as well as two values such that φ < φ0, i.e. the null space and

four values such that φ > φ0, the alternative space. We plotted the results in Figure 3.3, values in

the alternative scale are on a blue scale and values in the null space are on a red scale. For each

combination of m, φ and φ0 we randomly generated 50 sample data sets and simulated the results

200 times on each sample for a total of 10,000 simulated results for each combination. The plotted

values are the number of times out of 10,000 that our test statistic would have led to rejecting the

null hypothesis at α = 0.05.

With φ0 = 0.50 we see that empirical power quickly increases as both m or φ increase. For ex-

ample, with φ = 0.8 and m= 15 we achieve approximately 80% power to reject the null hypothesis.

Conversely the empirical Type I error rate is always at or below the nominal 0.05 level.

For φ0 = 0.70 the empirical power and type I error estimates when m = 5 are both 0, this is

due to the discreteness of the test statistic. Under the null of φ0 = 0.70 about 16%, P(∑m
i=1 pi = 5 |

m = 5,φ0 = 0.70), of the time all 5 predictions would be correct, thus the null hypothesis cannot

be rejected at the typical α = 0.05 level for this combination of m and φ0. However, as m increases

the power increases and the type I error is controlled at 0.05. It is important to note that for certain

hypothesized value of φ0 the power will be 0 unless m is large enough, a table of minimum values

of m for common values of φ0 is provided in Section 3.7. The problem of discrete test statistics is

not new and when appropriate we can use techniques such as the mid p-value. We also note that

the sample size, n, only comes into play indirectly though the sample correlation matrix. For a

fixed n, power will be non-decreasing as the number of measures increases, so the inclusion of as

many endpoints that are relevant to the research hypothesis as possible can be encouraged.
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Figure 3.3: Empirical Power and Type I error. These estimates are the percent of times we

rejected the null hypothesis of φ0 for combinations of m and φ .
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3.6 Sensitivity analysis of sample correlation matrix

A concern when applying our method could be the instability of the sample pairwise correlations

for a small sample size, n, with some estimates of the required sample size being in the hundreds

depending on the application (Bonnett & Wright, 2000). Most of the literature concerning adequate

sample sizes for sample correlations has been focused on doing hypothesis testing on a single

sample correlation or estimating a confidence interval for a single sample correlation. While we

are not directly interested in using the pairwise correlation for testing it is of concern that unstable

pairwise correlations could affect our weights and therefore affect the overall test statistic. To

examine this situation, we conducted a simulation study. We used the same combinations of φ0, φ

and m as in the Type I error and Power simulation in Section 5. We generated a “true” correlation

matrix, then sampled from a multivariate normal in R using the true correlation matrix to generate

a sample, calculated the “true” weights and the sampled weights and simulated our tests for n = 20.

We kept track of the proportion of times that our test came to the same conclusion, these values are

presented in Table 3.2.

Table 3.2: Proportion of tests coming to the same conclusion for combinations of n, φ0 and m.

Average Agreement calculations do not include m = 5 for φ0 = 0.7 since the null cannot be rejected

in this case.

n φ0 m = 5, 10, 15, 20, 25, 30, 35, 40
Average

Agreement

10
0.50 100 97.1 96.6 97.4 97.7 97.9 98.1 98.2 97.6%
0.70 100 97.0 96.4 98.0 97.0 96.3 96.2 96.9 96.8%

20
0.50 100 97.9 97.4 97.9 98.1 98.4 98.5 98.4 98.1%
0.70 100 97.8 97.0 98.5 97.8 96.8 96.6 97.2 97.4%

The results show that estimating the true correlation matrix with a sample correlation matrix,

even for with a relatively small n, leads to the same conclusions as if we had the true correlation

matrix. Despite these results if there is concern over the validity of the sample correlation matrix,

we would suggest eliciting expert opinions or using historical studies to estimate the matrix, which

can then be used for a sensitivity analysis.
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3.7 Choice of φ

The choice of the hypothesized value φ0 is a critical decision that needs to be made before the

data is analyzed. A higher choice of φ0 will lead to a decrease in power. Note that the simulation

studies in Section 3.4 all used correlation matrices that were uniform over the set of all positive

definite correlation matrices for a given dimension and if this assumption is known to be untrue

it could change the power and type I error. In general, we advocate for using a value of φ0 of

0.5. When controlling the Type I error rate at α = 0.05 this will still achieve decent power for a

small number of measures. With φ = 0.8, our simulations suggest 80% power can be achieved

with only 16 measures that have an effect size of 1. This means that regardless of sample size

if a researcher measured 16 different things on even a single experimental unit, such as a mouse,

and the researcher’s ability to predict what will happen is about 80% then they will reject the

null hypothesis of φ0 = 0.50 80% of the time. This would imply that their understanding of the

theory appears to be correct and warrant investigation with much larger sample sizes and more

targeted hypotheses. We also note that for φ0 = 0.50 the accuracy of the Normal approximation

is maximized, which will be of interest for studies collecting more than 30 measurements on each

experimental unit. For some combinations of m and φ0 it is impossible to reject the null hypothesize

due to discreteness, Table 3.3 provides the minimum m that can be chosen for a given φ0 such that

the null hypothesis could still be rejected.

Table 3.3: Minimum required m for hypothesized value φ0

φ0 0.50 0.60 0.70 0.80 0.90

Minimum required m 5 6 9 13 29

3.8 Arterial Spin Labeling example

A data set consisting of measures of Arterial Spin Labeling (ASL) in different regions of the brain

will be used to demonstrate our hypothesis test. This data comes from Dr. Vidoni at the University
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of Kansas Medical Center. The data was collected as part of a larger study examining the relation-

ship between exercise and Alzheimer’s disease that measured pre-post changes after a 12-week

exercise intervention in 14 older adults. The data we present here consists of ASL measures on six

regions of the brain: BA46, Frontal mid, Hippocampus, M1, Superior Parietal and Precuneus, thus

m = 6. The research hypothesis is that ASL will increase in the six regions of the brain following

the intervention. No single region is of greater interest, and we take the observed result across

these different regions as a proxy for the more general research hypothesis concerning structural/-

functional changes in the brain following the intervention. The researcher provided predictions

were that blood flow would increase in every region. For this data we observed the following

pre-post sample means [-1.13, 0.77, -1.19, 1.69, 0.97, 0.70] for BA46, Frontal mid, Hippocampus,

M1, Superior Parietal and Precuneus respectively. Thus four of the 6 regions did actually increase

meaning the predictions were correct on only two thirds of the measures. The results of the pre-

dictions are therefore p = [0,1,0,1,1,1]T . For our data set we calculated the differences in ASL

in the six regions before and after the intervention and calculated the following sample correlation

matrix of those differences.

We observed the following weights wBA46 = 0.411, wFrontalMid = 0.408, wHippocampus = 0.623,

wM1 = 0.388, wSuperiorParietal = 0.389 and wPrecuneus = 0.403, with W = ∑6
i=1 wi = 2.62. Our ob-

served test statistic is tm = 0 · (0.411) + 1 · (0.408) + 0 · (0.623) + 1 · (0.388) + 1 · (0.389) + 1 ·
(0.403) = 1.589.

The weight given to the ASL measure in the Hippocampus is about 150% of all the other

measures, indicating that ASL measure in the Hippocampus was more “independent” of the other

regions, thus the result of the prediction in that region is given more weight.

There are 26 possible combinations of predictions, thus our test statistic can take on 64 different

values. The null hypothesis for this study was set at φ0 = 0.50. The probabilities of correctly

predicting {0,1,2,3,4,5,6 } responses are (0.015625, 0.09375, 0.234375, 0.3125, 234375, 0.09375,

0.015625), these are simply binomial probabilities with success parameter 0.50 and n = 6. There

are (1,6,15,20,15,6,1) combinations respectively of getting the {0,1,2,3,4,5, 6} correct predictions.
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Thus, the probability of any single test statistic value depends on the number of correct predictions

shown below.

[
0.015625

1
,
0.09375

6
,
0.234375

15
,
0.3125

20
,
0.234375

15
,
0.09375

6
,
0.015625

1

]

=

[
0.015625,0.015625,0.015625,0.015625,0.015625,0.015625

]

There are 15 ways to have 4 correct predictions out of the 6 total, each one of those sets of four

correct predictions will result in a different value of the test statistic, but each one has the same

probability of occurring under the null, 0.015625.

In the case where φ0 = 0.5 the probability of any single test statistic value will be the same as

any other value, however this is not the case when φ0 
= 0.5. Given the probabilities of all possible

test statistic values, we can then calculate the distribution of the test statistic exactly since we can

enumerate the probability of every possible value and could calculate every value.

For our observed tm = 1.589 with φ0 = 0.50 the probability of getting a test statistic as or more

extreme under the null, i.e. the p-value, is 0.34, thus we would fail to reject the null hypothesis at

the traditional α = 0.05 level in favor of the alternative that the research’s true predictive ability

is ≥ 0.50. Based on this information we would feel less confident about enrolling a larger sample

size to look at the interactions between the intervention and structural changes in the brain, i.e.

we have little evidence to suggest enrolling a larger sample will show results in the direction the

research hypothesis supposes in relation to the ASL data, a “no-go” decision. We note that if t-tests

had been carried out on all 6 measures, and one specified as primary, with the others as secondary,

it would not matter which one was designated as primary because the p-value for all six tests is

> 0.05. Additional analysis of this data set with two hypothetical prediction vectors is presented

in the supplemental section.
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3.9 Discussion

We have described a new statistical test for a global hypothesis for many measures. Our technique

makes use of researcher’s predictions and is essentially a test of whether a researcher’s understand-

ing of the natural process, i.e. their ability to correctly predict the outcomes, is convincing enough

to continue on to larger studies. This test can answer an essential question in early biomedical

research, does the researcher understand enough about the natural process to continue supporting

that research, or should it be abandoned in favor of a more promising research track. Our test has

good power and type I error properties under our simulated scenarios and has a normal approxima-

tion for when the exact distribution is difficult to calculate. We believe our testing procedure will

be widely useful especially but not limited to exploratory and early stage studies.

3.9.1 Limitations and Future work

For small sample sizes it has been shown that sample correlations can be unstable (Schonbrodt

& Perugini, 2013) (Bonnett & Wright, 2000). This is the main concern with treating the weights

as fixed since for large sample sizes the sample pairwise correlations and thus the weights will

be close to their true values. The literature on the topic has been concerned with the stability of

estimates for hypothesis testing while we are interested in the point estimate; nevertheless, for

small sample sizes the instability of the pairwise sample correlations could lead to our weights

being far from the true value and our test might over or under weight various endpoints. While

this is a concern, we note that our test came to the same conclusions over 96% of the time in all

scenarios we examined in Section 6. However, for very small sample sizes, and where available

we recommend eliciting estimates of the pairwise correlations either from the researcher or from

available literature which can then be used as a sensitivity analysis to the sample correlation matrix.

In addition, the current methodology is limited to one-sided predictions, continuous variables

and paired data, extensions to these are an avenue for future work.

We believe that not only does our method provide researchers with an extremely useful ap-
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proach for early stage research but that it can be greatly extended beyond what we have shown

here. Our current work and plans for future work include: extending the methodology beyond one

sided predictions to encompass two sided predictions, allowing different prediction probabilities

for different endpoints, thereby assigning more importance to different endpoints, extending our

method to situations with both discrete and continuous data, and the development of a user friendly

tool for researchers to be able to upload their data sets, make predictions and get relevant results

and graphs using our methodology.

3.10 Supplemental material for Chapter 2

3.10.1 Asymptotic Normal Approximation

The Lindberg Condition states (Billingsley, 1995) that for a set of independent but not necessarily

identically distributed random variables Xi with expected values μi and variances σ2
i where we let

s2
m = ∑m

i=1 σ2
i that

m

∑
i=1

Xi −μi√
∑m

i=1 σ2
i

d→ N(0,1)

as long as the following condition holds for all ε > 0

lim
m→∞

1

s2
m

m

∑
i=1

E
[
(Xi −μi)

2 ·1|Xi−μi|>ε·sm

]
= 0

We show that as long as φ0 is bounded away from 0 and 1 this condition will hold. We consider

the approximation for φ0 ∈ (0,1) and we do not consider the cases where C = I or C = Jm since we

have shown that in both cases the test statistic follows a binomial distribution and thus has a well

known normal approximation. We also make the assumption that as m → ∞ the number of unique

w′
is, the weights, also goes to infinity. By assuming this we restrict this approximation to settings

where the measure of interest are not all equal, or for instance where all but 1, or 2 are all equal.

We assume here that the number of unique measures grows.

40



Let Xi = piwi then under the null hypothesis and treating the weights as fixed leads to E[Xi] =

φ0wi and σ2
Xi
= φ0(1−φ0)w2

i and sn =
√

φ0(1−φ0)∑m
i=1 w2

i gives the following formulation of the

Lindberg condition

lim
m→∞

1

φ0(1−φ0)∑m
i=1 w2

i

m

∑
i=1

E
[
(piwi −φ0wi)

2 ·1|piwi−φ0wi|>ε·
√

φ0(1−φ0)∑m
i=1 w2

i

]
= 0

The LHS of the limit

(
1

φ0(1−φ0)∑m
i=1 w2

i

)
will always go to 0 as m → ∞ because since wi > 0 for

all i and we assume the weights are not all identical the sum of the squared weights will go to ∞ as

m → ∞.

Thus we focus on the expectation and specifically on the indicator function. We show that for

given restriction of φ0 the indicator will always be 0, thus the expectation will always be 0 and thus

the limit as m → ∞ equals 0, satisfying the condition and we show that these restrictions on φ0 will

always be satisfied as m → ∞.

There are two scenarios to consider the indicator function under, when pi = 0 and when pi = 1.

For all i such that pi = 0 :

Note that wi and φ0 are always > 0. The indicator function depends on

| −φ0wi | > ε

√
φ0(1−φ0)

m

∑
i=1

w2
i (3.1)

= φ 2
0 w2

i > ε2φ0(1−φ0)
m

∑
i=1

w2
i (3.2)

= φ0w2
i > ε2(1−φ0)

m

∑
i=1

w2
i (3.3)

= φ0w2
i > ε2

m

∑
i=1

w2
i −φ0ε2

m

∑
i=1

w2
i (3.4)

−φ0(w2
i + ε2

m

∑
i=1

w2
i )> ε2

m

∑
i=1

w2
i (3.5)

(3.6)

⇒ φ0 >
ε2 ∑m

i=1 w2
i

(w2
i + ε2 ∑m

i=1 w2
i )

(3.7)

41



Thus when pi = 0 the indicator function will be 1 for all i if the above inequality holds, thus

the indicator function will be 0 for all i such that pi = 1 if the following inequality holds.

φ0 <
ε2 ∑m

i=1 w2
i

(w2
i + ε2 ∑m

i=1 w2
i )

For all i such that pi = 1 :

Note that wi and φ0 are always > 0. The indicator function depends on

| wi −φ0wi | > ε

√
φ0(1−φ0)

m

∑
i=1

w2
i (3.8)

| wi(1−φ0) | > ε

√
φ0(1−φ0)

m

∑
i=1

w2
i (3.9)

w2
i (1−φ0)

2 > ε2φ0(1−φ0)
m

∑
i=1

w2
i (3.10)

w2
i (1−φ0) > ε2φ0

m

∑
i=1

w2
i (3.11)

w2
i −w2

i φ0 > ε2φ0

m

∑
i=1

w2
i (3.12)

w2
i > (ε2

m

∑
i=1

w2
i +w2

i )φ0 (3.13)

w2
i

ε2 ∑m
i=1 w2

i +w2
i
> φ0 (3.14)

Thus when pi = 1 the indicator function will be 1 for all i if the above inequality holds, therefore

the indicator function will equal 0 for all i such that pi = 1 if the following inequality holds.

w2
i

ε2 ∑m
i=1 w2

i +w2
i
< φ0

These two scenarios, that for a given i pi = 0 or pi = 1 cover all possible outcomes. When

we combine these two restrictions on φ0 they give an upper and lower bound for φ0 such that the
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indicator function will equal 0 if for all i φ0 is within

(
w2

i

ε2 ∑m
i=1 w2

i +w2
i
,

ε2 ∑m
i=1 w2

i

(w2
i + ε2 ∑m

i=1 w2
i

)

If this holds then the indicator function will always be 0 and the limit will equal 0, thus the

Lindberg condition will hold. We note that as m → ∞ the summation ∑m
i=1 w2

i will tend to infinity

so long that as m increases the number of unique weights also increases (i.e. the increase in m

is not solely driven by adding copies of the same measure). Thus as the lower bound will tend

to 0, and the upper bound will tend to 1, so the restriction on φ0 tends to (0,1) as m → ∞. Thus

asymptotically the normal approximation will hold so long as φ0 is not set equal to 0, or 1.

3.10.2 Additional analysis for the example data

The ASL example presented in the paper resulted in a failure to reject the null hypothesis. Here

we present an analysis using two hypothesized prediction vectors. Let’s compare the results of

two different prediction vectors p1 = [1,1,0,1,1,1] and p2 = [1,1,1,0,1,1], the only difference

being that in p1 the researcher incorrectly predicts the third measure while in p2 the researcher

incorrectly predicts the fourth measure, otherwise they both consist of 5 correct predictions on the

6 total measures.

3.10.3 Analysis for p1

Here the observed test staistic would be

tm = 1 · (0.411)+1 · (0.408)+0 · (0.623)+1 · (0.388)+1 · (0.389)+1 · (0.403)≈ 2

This would results in a p-value of 0.11, in which case we would still fail to reject the null hypoth-

esis.
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3.10.4 Analysis for p2

Consider the result for p2, here we have a test statistic of

tm = 1 · (0.411)+1 · (0.408)+1 · (0.623)+0 · (0.388)+1 · (0.389)+1 · (0.403) = 2.234

which results in a p-value of 0.03125, in which case we would reject the null hypothesis of φ0 =

0.05 in favor of φ0 ≥ 0.50.

3.10.5 Difference between p1 and p2

The reason these two prediction vectors come to such different conclusion even with the same

number of correct predictions has to do with what was correctly predicted and what was not. In p1,

the one incorrect prediction concerned the ASl region with the highest weight, the Hippocampus

which had a weight almost double any of the other measures, similarly the real predictions were

also incorrect on this region. This is the region our test considers the most unique and thus correct

predictions here are of more weight. Conversely in p1 the direction in the Hippocampus was

correctly predicted while the incorrect prediction was for the M1, the region with the least weight.

We can see that depending on which measures are correctly predicted we can either reject or fail to

reject the null even with the same number of correct predictions and in this case we can see exactly

why. There are 26 = 64 possible outcomes of the test statistic, the top 4 highest possible test

statistics would all lead to a p-value > 0.05, there is one way to correctly predict all 6 measures

and 6 ways to correctly predict 5 of the 6 measures. Thus, if a researcher correctly predicts all

measures or the 3 highest test statistics coming from predicting all but one of the measures we will

reject the null hypothesis.
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Chapter 4

Comparing the prediction test to other methods via an application to brain

imaging data

Abstract

We discuss a new hypothesis test intended for early stage research with small sample sizes

and many endpoints called the Prediction Test. The test allows for a go/no-go decision

concerning further study of a research hypothesis. The Prediction test is most powerful with

a large number of variables of interest. We provide extensions to the types of predictions

that can be made and discuss estimating power. In addition, we compare the Prediction test

to other typical approaches to paired data with multiple outcome variables, specifically we

compare it to a set of t-tests and a linear mixed model with data coming from a recent study

of diffusion tensor imaging.

4.1 Introduction

We have developed a hypothesis test intended for use in early stage research. We see our method

as being most applicable when sample sizes are small and the number of measures (i.e. variables)

observed on each experimental unit is large. Our test allows researchers to make a “go/no-go”

decision regarding their research hypothesis. Essentially, we provide a formal way to test whether

a hypothesis is being borne out in a small study, if it is then there is evidence to warrant a larger

study, if it is not then a reassessment of the research hypothesis is in order. Our test can be applied

to any study on which the principal investigator (PI) can make a prediction about the results of

the measures based on their hypothesis. These predictions can be one-sided (e.g. predicting that

a measure will increase after an intervention) or two-sided (e.g. predicting that a measure will

be different, though not necessarily “statistically significantly different” from some value), and
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in general the prediction can be of any type so long as the probability of making a successful

prediction given that the prediction is actually wrong can be specified. We believe our method has

many advantages over other methods of analysis that deal with multiplicity, especially when the

sample size is small.

A common approach to dealing with the issue of multiplicity is to designate a primary endpoint

and relegate all other endpoints to secondary status, or sometimes co-primary status for certain

situations (Dmitrienko et al., 2009). Ideally the primary endpoints are chosen as the endpoints

most clinically relevant. Secondary endpoints are then also measured on each experimental unit

but are only used in an exploratory sense and even then interpretations of them may not be valid

unless the primary endpoint is “statistically significant” (O’Neill, 1997). Secondary endpoints are

not typically considered when controlling the Family Wise Error Rate (FWER) or doing power

calculations. A study using this approach depends on the outcome of the primary endpoint(s),

with a designated “win” criteria, often “statistical significance” of the primary endpoint, while the

secondary endpoints are used to help interpret the primary endpoint or as impetus for future work.

This technique allows research to be done, even with small sample sizes, on a large number of

endpoints but formal inference can only be concluded on one.

Unfortunately, in practice the use of primary and secondary endpoints can be problematic,

and this approach is not always appropriate given the underlying data and research hypothesis. It

has been well noted in the literature that secondary endpoints are often misinterpreted. That is,

given unimpressive results from a primary endpoint, but interesting (i.e. “significant”) results in a

secondary endpoint the primary endpoint can become “unceremoniously unseated when discovered

to be negative at the trial’s conclusion ... receiv[ing] little attention in the end” (O’Neill, 1999).

There is also cause for concern when there is not a true “primary” endpoint. In studies with multiple

endpoints that are of equal clinical relevance, or perhaps are all proxies for some true endpoint of

interest that cannot be directly measured then the choice of primary endpoint can be arbitrary and

the temptation to over-interpret secondary endpoints, since they are not true secondary endpoints,

is even greater. In this scenario if the “win” criteria is that the primary endpoint is “statistically
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significant” then an arbitrary choice of that endpoint can easily be the determining factor in the

success or failure of a study.

Our hypothesis test is a global test that allows for a single go/no-go decision at the end of

the study. Our test is not intended for confirmatory studies or trials, but is focused on early stage

research, with small sample sizes, many endpoint and lots of variability in determining the worth of

a given research hypothesis. In section 4.2 we present our hypothesis test and discuss its properties

including extensions to previous work, section 4.3 provides an overview of properties of our test,

section 4.4 illustrates the method with an example on a real data set as well as a comparison to

other methods, section 4.5 reports the results of a simulated comparison between our method and

a set of t-test, and section 4.6 includes discussion of best practices, conclusions and limitations of

our method.

4.2 Hypothesis test

Our null hypothesis concerns the principal investigator’s (PI’s) predictive ability. The predictions

that can be made on the endpoints can be one sided (e.g. predicting the mean response will increase

from baseline) or two sided (predicting a change from baseline, or pre-post, or relative to some

standard even if that change is not “significant”). In general, the predictions can be of any form

such that when we assume the prediction is incorrect, similar to the assumption of a null hypothesis

being true, we can specify the probability of getting a correct prediction. The testing procedure is

currently limited to paired data due to the need to calculate a sample correlation matrix. Our test

makes use of the fact that if the research hypothesis that the study seeks to address is correct then

this should provide the PI with a better idea of what will happen on each of the endpoints than

random chance alone would. In this case we would have evidence that the research hypothesis is

correct if the PI can correctly predict many of the endpoints, while we would have little evidence

it was correct if the number of endpoints correctly predicted was relatively small or unimpressive,

such as around 50%.
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We define φ ∈ [0,1] to be a parameter that measures a researcher’s ability to predict what will

happen on various endpoints of an experiment. The parameter φ can be thought of as a binomial

success parameter, where a large value of φ means we would see more correct predictions on

average, while a small φ would lead to fewer correct predictions. We let φ0 be the hypothesized

value, typically chosen to be φ0 = 0.5, this would correspond to the researcher having no more

understanding about what would happen on the endpoints than would be expected by flipping a fair

coin. Our alternative hypotheses is that the researcher’s true ability is greater than the hypothesized

one, that is φ > φ0, more formally the null and alternative hypotheses for our test are:

H0 : φ ≤ φ0

H1 : φ > φ0

If we reject this null hypothesis in favor of the alternative we would say that we have evidence

to suggest that φ > φ0. For φ0 = 0.5 this would mean we have evidence that the researcher is able

to predict what will happen on different endpoints at a level greater than if they simply guessed

on each endpoint, note that for each endpoint there are only two possible outcomes such as an

increase vs no increase, or a difference vs no difference. In this case it would seem likely that

the research hypothesis, or theory about the underlying natural process would be what was giving

the researcher this advantage thus we would consider this hypothesis suitable for further research

since the research hypothesis is being borne out, a “go” decision. Other choices of φ0 would lead

to similar interpretations, for instance rejecting the null hypothesis of φ0 = 0.70 would imply that

the researcher is able to predict the result of what will happen on more than 70% of the measures.

The test statistic is given by

Tm =
m

∑
i=1

piwi

where m represents the number of endpoints, or variables that are being measures on each ex-

perimental unit, pi is the result of the researcher’s prediction on the ith variable (1 for a correct

prediction, 0 for an incorrect prediction) and wi = (∑m
j=1 r2

i j)
−1 is a weight calculated from the
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correlation matrix between all endpoints, where ri j is the sample pairwise correlation between

endpoint i and j. This weight will give higher values to endpoints that are more “independent”,

meaning less correlated, from the other endpoints and lesser value to endpoints that are more highly

correlated. In this way correctly predicting many endpoints that are highly correlated provides lit-

tle advantage, for instance if a researcher correctly predicted the results of an exercise intervention

on the weight and mass of a set of mice we would down weight these predictions so that the two

correct predictions were worth little more than 1 (since mass is a linear function of weight only

one unique measure has been correctly predicted) (Montgomery & Mahnken, 2019).

4.2.1 Distribution under the null

Our test statistic has an exact distribution, given the number of measures of interest, m, the number

of possible outcomes of the test statistic is simply the possible combinations of predictions. Since

every prediction is either correct or incorrect (2 options) there are 2m total outcomes. Given the

observed weights every test statistic value can be enumerated, and exact p-values and other statis-

tics can be calculated. For large m, typically greater than 20 to 30, the exact distribution becomes

computationally expensive. In these cases, we can use a Normal approximation. We have shown

that

Tm ∼ N
(

φ0 ·
m

∑
i=1

wi,

√
φ0(1−φ0) ·

m

∑
i=1

w2
i

)

the average error for this approximation, that is how far the approximated cdf is from the exact

cdf has been shown empirically to be small when φ0 is not too close to 0 or 1 (Montgomery

& Mahnken, 2019).The test can be conducted using either the exact or approximate distribution,

when feasible we recommend the exact distribution.

4.2.2 Types of Predictions

In our previous work we restricted our analyses to one sided predictions, that is we required re-

searchers to predict whether an endpoint would increase or decrease. That is would the value of
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an endpoint after some intervention be larger than at baseline, indicating an increase, or smaller

than at baseline, indicating a decrease. However, the prediction test is more general and can deal

with any type of prediction so long as it can be either categorized as a success or failure at the end

of a study and that the probability of success on any single endpoint can be specified. This leads

to great flexibility in designing a study since the actual predictions based on the research hypoth-

esis, be it an increase, decrease, difference or something else can be included. Here we discuss

directional predictions and how to make a prediction of a difference between endpoints. Based

on the need to calculate a sample correlation matrix we assume all the data is paired. That is we

have either pre-post measures or approximate pairings between experimental units controlling for

different demographics.

4.2.2.1 Directional prediction

A directional prediction is made if the PI believes a measure will increase or decrease, typically this

change would be relative to baseline values. As an example we will consider the implications of a

positive prediction, a negative prediction would follow directly. If the prediction for an endpoint is

positive, that means the PI believes that given some intervention the resulting value will increase.

We don’t know the actual result, whether or not there is an increase, but by specifying the null

hypothesis φ0 we designate how often we expect the researcher to designate the true condition of

the measure (an increase). If x̄i > 0 then we would conclude that the prediction of an increase was

correct and set pi = 1 for the ith measure. The prediction will be incorrect if the sample mean is on

the opposite side of 0 as the prediction, i.e. it’s negative for a positive prediction or positive for a

negative prediction. An error can occur even if the prediction is correct, that is the true mean μ is

on the same side as the prediction but the sample mean x̄ is not, which can occur for small samples.

When the true value of φ is larger than the hypothesized φ0 the researcher will make more correct

predictions than would be assumed under the null, and given enough we would reject the null in

favor of the alternative.
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4.2.2.2 Prediction of a difference

If the prediction on a single measure was that the result of treatment, intervention etc. was non-

zero, that is it had some effect on the response then the prediction would be of a difference. Due

to random chance the difference before and after some intervention will almost certainly not be

exactly zero, so we need to determine how to quantify how far away from 0 the difference needs

to be for a prediction of a difference to be deemed successful.

We can take a cue from traditional hypothesis testing where we assume the null hypothesis, the

opposite of what we are hoping is true. If our prediction is that there is a difference between two

measures one way to define thresholds such that a prediction result can be decided is to assume that

the prediction is incorrect, that is there is no difference between the two groups. If the prediction

is incorrect we want the researcher to make a “correct’ prediction of a difference at less than or

equal to φ0 · 100% of the time. If we assume the data is approximately normal, an assumption

that may be violated in practice, we can easily define appropriate thresholds. As an example

consider the following hypotheses H0 : φ ≤ 0.50 vs H1 : φ > 0.50 and assume that for a given

measure the researcher predicted a difference between two groups. If the values of the difference

are approximately normal with mean 0, that is assuming the prediction is incorrect, then there is a

50% chance of observing a value beyond approximately 0.68 standard deviations. For the sample

data, a threshold of 0.68 · s√
n where s is the sample standard deviation and n is the sample size, will

provide thresholds such that 50% of the time the prediction is incorrect the sample mean will be

beyond those thresholds. We divide the sample standard deviation by the square root of the sample

size because we know that for the sampling distribution of the sample mean σx̄ =
σ
n .

If the researcher’s true predictive ability is greater than 0.50 then they will correctly predict a

difference on greater than 50% of the endpoints that a difference is predicted on. Table 4.1 provides

thresholds for various hypothesized values of φ0.

These thresholds will work as expected, that is a correct prediction designation will be made φ0

percent of the time when the prediction is actually false, and a correct prediction designation will

be made > φ0 percent of the time when the prediction is actually true. However, these thresholds
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φ0 0.50 0.60 0.70 0.80 0.9

Thresholds ±0.68 · s
n ±0.53 · s

n ±0.39 · s
n ±0.26 · s

n ±0.13 · s
n

Table 4.1: Recommended threshold for a correct prediction given φ0, s = sample standard deviation,

and n = sample size

assume normality of the underlying data which may not be true. If possible, the use of clinically

relevant, but not necessarily “statistically significant” thresholds is recommended. In addition it is

valid to use a threshold from table 4.1 that is to the left of the recommended threshold for a given

φ0, for instance with φ0 = 0.80 a valid, and conservative, threshold would be ±0.39 · s
n .

4.3 Properties of our test

In our previous work (Montgomery & Mahnken, 2019) we have shown that the prediction test has

good type I error control and competitive power, especially in the adverse situation of small sample

sizes and many endpoints. In all of our simulated scenarios the type I error was controlled at the

nominal 0.05 level. In addition we have shown that m increase, that is as the number of endpoints

being measured increases, the power will increase for a fixed sample size. For example given a

sample size of 20, and 10 measures relevant to the research hypothesis, the prediction test will be

more powerful if the study had been conducted with additional relevant measures also included.

The caveat to this is that the endpoints need to deal the same research hypothesis for the test to

provide a valid go/no-go decision about that research hypothesis.

4.3.1 Power calculations

The power of our test depends on the correlation matrix between all endpoints and so cannot be

calculated before the data has been collected. However empirical power calculations carried out

via simulation can provide good estimates of power. Values need to be chosen for φ0 and φ , along

with the number of experimental units n and the number of endpoints measured, m. To simulate

power estimates three of the four parameters can be fixed, for instance if funding limits n = 10,
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there are m = 20 endpoints of interest and φ0 = 0.5 then we would be allowing φ to vary in order to

achieve a given power. It is important to note that unlike traditional testing methods power will not

generally increase as the sample size increases unless the effects are on each measure are small;

however, power will increase as the number of endpoints increases, we would suggest letting either

φ0 or m vary.

The choice of φ0 will depend on the goal of the study. The Prediction test is intended to provide

a go/no-go decision on the research hypothesis, rejecting the null of φ0 = 0.50 would imply that

the researcher’s theory is providing an advantage in predicting the results over what chance alone

would provide and is an appropriate choice for many situations. If φ is also fixed and m allowed

to vary then an effect size can determined. For φ and φ0 this effect size can be calculated using

Cohen’s h (Cohen, 1988) which for the Prediction test is defined as

h = 2 · arcsin(
√

φ)−2 · arcsin(
√

φ0)

rules of thumb exist such that h = 0.2 is a “small effect”, h= 0.50 is a “medium effect”, and h=

0.80 is “large effect”; however as with all rules of thumb an effect size made specific to the study

at hand is better than an arbitrary rule of thumb. For φ0 = 0.50 and φ = 0.80 the Cohen’s h = 0.64

which is classified as between a “medium” and “large” effect.

Once the parameters are fixed then a set of simulated correlation matrices can be generated. For

instance the R package clusterGeneration (Qui & Joe, 2015) allows for easy generation of valid,

that is positive semi-definite, covariance matrices which can be converted to correlation matrices

in R or other software.

The following is an example of how to estimate power. Depending on certain study values,

goals and expectations about parameters the number of simulated correlation matrices (Step 1) and

number of estimates on each correlation matrix (Step 3 ) may need to be changed. We present an

example where φ is free to vary.

1. Choose a set of potential φ values, e.g. (φφφ = [0.6, 0.7, 0.8, 0.9 ])
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2. For i =1: φφφ i = 0.6:

• Generate 100 correlation matrices, Cj; j = 1, . . ., 100.

• For each of the 100 correlation matrices (i.e. for (j in 1:100)):

– Calculate the the weights for the correlation matrix Cj by squaring the entire matrix,

summing every row and taking the inverse of the row sums. This will result in a vector

wj of weights.

– Simulate 100 prediction results vectors, r j,k, k = 1, . . . ,100. (Simulate draws from Bino-

mial(m, φ = φφφ 1 = 0.6) for the jth correlation matrix)

– Calculate the observed test statistic for the jth correlation matrix and the kth prediction

vector for that correlation matrix as r j,k ·w j.

– Calculate the prediction test given Cj, w j and r j,k, and the decision ( p-value less than

pre-specified α: d = 1, or p-value > α: d = 0). Record the value of d.

• Repeat the above steps for all values of i

• For each value of φφφ i calculate the sum of all the values of d divided by 10,000 (100 corre-

lation matrices multiplied by 100 prediction vectors for each matrix). This is the empirical

power estimate.

A post-hoc power analysis is shown in the following section for the example data set.

4.4 DTI Analysis

We have a data set consisting of diffusion tensor imaging (DTI) measures across 12 regions of the

brain. For each region we collected both Mean Diffusivity (MD) and Fractional Anisotropy (FA),

resulting in 24 different measurements of interest. The 12 tracts that MD and FA were measured
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on are: ATR, CG, CH, CST, FMAJ, FMIN, IFOF, ILF, SLF, SLFT, UF and All tracts which is a

combination of the other 11 tracts.

DTI measures the diffusion of water molecules along different tracts (O’Donnell & Westin,

2011). It can be used to measure structural changes in the brain due to the fact that pathologic

processes can change the way that water is diffused in tissue (Alexander et al., 2007). MD measures

the mean diffusivity while FA is very sensitive to any changes in diffusivity, the two measures are

often used together in studies. It is sometimes assumed that MD will be higher in the presence of

damaged tissue, while FA will be lower (Soares et al., 2013), thus if the disease of interest was

mitigated in some way we would expect MD to decrease and FA to increase.

The intervention in this study was Kidney transplantation; we had paired pre and post data on

n = 22 subjects with End Stage Renal Disease (ESRD). The research hypothesis of interest is that

kidney function and thus kidney transplantation causes structural changes in the brain that may

be related to Alzheimer’s disease and/or cognition. As an early step toward understanding the

relationship between healthy kidney function and Alzheimer’s disease we first seek to understand

the structural changes in the brain that are caused by kidney transplantation. By using paired pre

post data we can compare the brain structure before transplantation, when kidney function was

poor, and after, when kidney function was improved.

Prior to receiving the data set we discussed the directional change the principal investigator

expected for the pre-post DTI measures, the predictions were that FA values would increase across

all tracts and MD values would decrease, that is they would normalize. To analyze this data set

using the Prediction test we set α = 0.05 and φ0 = 0.50 a rejection of this null hypothesis in favor

of the alternative that φ > 0.50 would imply the PI’s understanding of the structural changes in the

brain as measured by all 24 tracts was greater than we would expect due to chance. All analyses

were conducted in R (R Core Team, 2018).

Figure 4.1 shows the observed pre-post changes in DTI for all tracts categorized by DTI mea-

sure (FA or MD) where the band inside the box is the sample mean. All FA measures except for

SLFT had sample means above 0, and all MD measures had sample means below 0, the exact
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sample means are displayed in Table 4.2.

Figure 4.1: Boxplots of observed DTI measures for FA and MD

The calculated weights for each measure are given in Figure 4.2, the tracts that are combina-

tions of the other tracts, All tracts FA and All tracts MD, have the lowest weights as we would

expect since they are simply combinations of the other 11 measures for FA and MD respectively.

The tract with the highest weight is CG MD, with a weight of 0.59. The weight given to CG MD

is more than the weight given to the lowest three measures combined. The reason CG MD is given

so much weight is that it is the most “independent” or unique of the measures. For instance, the

highest pairwise correlation between CG MD and another tract is 0.28, while All Tracts FA has

14, of 23 pairwise correlations larger than 0.28 and All tracts MD has 13 pairwise combinations

greater than 0.28. These regions are given little weight in the test statistic because a correct predic-

tion on them considering correct predictions on other measures which they are highly correlated

with is less impressive than a correct prediction on CG MD which is not highly correlated with

any other measure. By weighting the endpoints, we insure that correct predictions of many sim-
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ilar endpoints do not contribute too greatly to the test statistic since predicting 2 or more highly

correlated endpoints is not as impressive as correctly predicting multiple independent endpoints.

Figure 4.2: Weights for the DTI tracts.

All but one (SLFT FA) of the PI’s predictions are correct. The observed test statistic is simply

the sum of the weights multiplied by the result of the prediction (1 for correct, 0 for incorrect),

tm = 6.88, this is the sum of all the weights in Figure 4.2 except for SLFT FA. For m = 24 the

exact p-value is difficult to calculate, there are over 16 million possible combinations that need to

be computed and ordered, thus we used the Normal approximation, this resulted in a p-value for

our test statistic of 0.000011, thus we would reject H0 : φ ≤ 0.50 in favor of H1 : φ > 0.50. We have

evidence that the PI’s ability to correctly predict the outcome of different measures informed by the

research hypothesis of structural changes in the brain due to kidney transplantation is greater than

we would expect if the research hypothesis was false. There is evidence that going from a poorly

functioning kidney to a healthy kidney causes structural changes in the brain, thus our resulting

decision is a “go”. That is the research hypothesis seems promising even with a small sample size
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and should be studied further.

4.4.1 Post-hoc power calculation

To illustrate the method of a power analysis for the prediction test we conduct a post-hoc power

analysis. We make no interpretations of the results based on this analysis and reiterate that it is

simply an example of the process. For the DTI data set, the sample size was n = 22, with m =

24 tracts that would be measured. Before the data was collected we pre-specified α = 0.05 and

φ0 = 0.50. Suppose the PI was only interested in rejecting the null hypothesis of φ ≤ 0.50 if the

effect size was 0.50. Using Cohen’s h we can solve and show that for φ0 = 0.50 we would require

φ ≈ 0.70 to get h = 0.50. Given φ = 0.70 and the other specified parameters we can use R, or

other software, to get an empirical power estimate. For the simulated data we simulated 12 FA

measures with means of 0.5, and MD measures with means of -0.5, and standard deviations of 1,

the predictions for these simulated data points are all true. This allows us to see how powerful the

prediction test would be to detect effects that are one half of the standard deviation. Following the

template in Section 4.3.1 we get an empirical power estimate of 0.6318, or approximately 63%

power.

Under this simulation all the predictions were assumed to be true, but due to the small simulated

means (0.5 and -0.5) the predictions were not correct all the time. Depending on the situation at

hand the parameters can be tweaked to better fit the research hypothesis, for instance a certain

proportion of the predictions could be simulated as “true”, various effect sizes for the measures

themselves could be examined, etc. The flexibility of empirical power calculations is one of their

main advantages.

4.4.2 Comparison to other methods

The analysis of the DTI data could have been conducted using other methods, we compare our

test, and discuss advantages and disadvantages between our test, a set of t-tests and a linear mixed
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model.

4.4.2.1 T-tests

T-tests are an obvious candidate for testing hypotheses concerning these endpoints since the end-

points are all continuous and the parameter of interest is the population mean of the pre-post

difference. To conduct t-tests on on the 24 different regions we would set the null and alterna-

tive hypothesis for each region to H0 : μ = 0 vs H1 : μ 
= 0. Due to the large number of tests we

would need to do a multiplicity correction; however in situations like this a common approach to

dealing with multiplicity is to choose a primary endpoint that will be used for inference and treat

all other endpoints as exploratory. Unfortunately, for this particular data set since there is not a

true “primary” endpoint since the research hypothesis is about structural changes throughout the

brain. Nevertheless, we could choose one of the All tracts measures as the primary endpoint since

they are combinations of the other tracts, with α = 0.05, and treat all others as secondary, after

discussion with the PI All tracts FA was chosen as the primary endpoint. If we conduct a t-test on

All tracts FA, we get an observed test statistic value of t = 3.003 and a p-value of 0.006, indicating

that we would reject the null hypothesis in favor of the alternative that the mean of the pre-post

difference is greater than 0. We treat the response in All tracts FA as a proxy for structural changes

in the brain, and thus we have some evidence that structural changes do occur in the brain, and the

direction of the change, an increase, implies that normalization is occurring post transplant.

4.4.2.2 Linear Mixed Model

An alternative approach to both the prediction test and a set of t-tests is to use a linear mixed

model since patients with ESRD all had pre and post DTI measures on the 24 tracts. Due to the

large number of regions and the relatively small sample size we would again pick one model, with

All tracts FA as the response, as our primary outcome, and then compute models for the others

regions to explore what if anything is driving a pre-post change. The patients all have a pre and

post transplant observation; however, the times before and after the transplant are not equal. To
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Region Sample Mean Weight Prediction Result
T-test

p-value

Coefficient

p-value

All Tracts FA 0.006 0.175 Increase Correct 0.006∗ 0.003∗

All Tracts MD -0.02 0.178 Decrease Correct < 0.001∗ < 0.001∗

ATR FA 0.008 0.180 Increase Correct 0.01∗ 0.008∗

IFOF FA 0.009 0.180 Increase Correct 0.004∗ 0.003∗

ATR MD -0.02 0.190 Decrease Correct 0.07 0.04∗

SLF FA 0.00002 0.195 Increase Correct 0.99 0.67

CST FA 0.006 0.210 Increase Correct 0.19 0.15

IFOF MD -0.01 0.233 Decrease Correct 0.005∗ 0.003∗

FMIN MD -0.02 0.237 Decrease Correct 0.03∗ 0.01∗

UF FA 0.006 0.238 Increase Correct 0.56 0.44

CG FA 0.001 0.249 Increase Correct 0.87 0.73

SLFT FA -0.0005 0.268 Increase Incorrect 0.92 0.87

SLF MD -0.01 0.269 Decrease Correct 0.002∗ < 0.001∗

CH MD -0.03 0.294 Decrease Correct 0.03∗ 0.04∗

ILF MD -0.02 0.300 Decrease Correct 0.002∗ 0.001∗

CH FA 0.026 0.302 Increase Correct 0.09 0.10

FMAJ MD -0.04 0.323 Decrease Correct 0.002∗ 0.002∗

FMIN FA 0.005 0.359 Increase Correct 0.33 0.17

UF MD -0.01 0.375 Decrease Correct 0.30 0.80

CST MD -0.008 0.401 Decrease Correct 0.18 0.13

ILF FA 0.009 0.424 Increase Correct 0.003∗ 0.002∗

SLFT MD -0.008 0.447 Decrease Correct 0.02∗ 0.008∗

FMAJ FA 0.006 0.526 Increase Correct 0.17 0.13

CG MD -0.01 0.592 Decrease Correct 0.01∗ 0.006∗

Table 4.2: Results for the predictions, the set of t-tests and the linear mixed models for DTI tracts.
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account for the difference in a post transplant observation 3 weeks after transplant compared to

one two months after transplant, we let age be the temporal variable instead of a possible arbitrary

value such as days before/after transplant. In this way, we also control for the covariate of age. Our

covariate of interest was a group variable to distinguish pre vs post. The research hypothesis is that

βGroup would be positive, that is post transplant patients would have higher All tracts FA scores

when accounting for other covariates. By using a linear mixed model we were also able to include

clinically relevant covariates: age, gender, race, and education. Fitting the LMM in SAS resulted

in β̂Group = 0.006, with p-value of 0.003, indicating that we should reject the null hypothesis of

βGroup = 0 in favor of the alternative that βGroup 
= 0 and given the direction conclude that there is

a positive effect of kidney transplant on All tracts FA. The interpretation of this effect is that for all

other covariates held constant the post-transplant patient has a mean FA, as measured by All tracts

combined, that is 0.006 units higher than a pre-transplant patient.

The prediction test, t-tests and linear mixed model all came to the same conclusion, they re-

jected their respective null hypotheses and all provide evidence to support the research hypothesis

of normalization of DTI measures post kidney transplant. However, the conclusions that can be

drawn from rejecting these different null hypotheses are different. For the prediction test, we would

reject the hypothesis that the researcher’s ability to predict the endpoints was equivalent to a guess,

and take this as evidence that their research hypothesis was providing an advantage in predictions

and is therefore plausibly correct. This would be encouraging for future research concerning the

same research hypothesis, with larger sample sizes and statistical methods that address more tar-

geted hypotheses. With the t-test we were able to reject the null hypothesis that the mean pre-post

change for All tracts FA was less than or equal to 0. In this case we treat All tracts FA as the

primary measure and the other tracts as exploratory. These tracts, with the exception of SLFT FA,

all showed a result in the hypothesized direction and 13 of the 24 were “statistically significant” as

shown in Table 4.2, however this is with no multiplicity adjustment. For the set of t-tests if we used

another common way to address multiplicity, such as Sidak’s adjustment where we could compare

each p-value to 0.0021 (Sidak, 1967). The only “significant” results were on All Tracts MD and
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SLF MD, indicating that the choice of primary endpoint is extremely important.

The linear mixed allows us to control for other covariates, an advantage when possible, and led

to the rejection of the null hypothesis of βGroup = 0, thus we conclude that the effect of transplant,

when controlling for other covariates had a positive effect on All tracts FA. Similarly to the t-test

the other models with the 23 other tracts as the response indicate showed results in the expected

directions, higher for FA and lower for MD, and the coefficients for group were “statistically

significant” in 14 of the 24 regions.

4.4.3 Advantages and Disadvantages

We were surprised to see the different methods all perform so well given a relatively small sample

size (n=22) and a large number of endpoints (m=24) and note that in general it is unlikely these

methods will come to the same conclusions, that is each will be more powerful in certain scenarios.

We discuss some of the advantages, disadvantages and assumptions of the respective methods.

4.4.4 Advantages and Disadvantages of the Prediction Test

An advantage of the prediction test is that as the number of endpoint under analysis grows and the

sample size remains fixed the power increases. The test can be performed with a sample size as

small as n=2, the only concerns for extremely small sample sizes is that a prediction of a measure

could be correct, but the sample mean could be on the wrong side of 0, or outside the specified

thresholds due to variability in extremely small sample sizes or that the estimated weights could

be unstable. The prediction test makes few assumptions about the underlying data, namely that

a correlation matrix can be constructed, typically through a paired design, and that the measures

themselves are continuous. As a global test, it is ideally suited for addressing research hypotheses

that rely upon multiple endpoints and actually uses all of the endpoints in coming to a decision.

Essentially the test provides a rigorous way to define a go/no-go decision.

The main disadvantages of the prediction test is that is does not provide an inference about the
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research hypothesis of interest, such as structural changes in the brain, instead it makes a claim

about whether the hypothesis is worthy of more study instead. The test should not be used in a

confirmatory setting, and outside of early research where a proof of concept is sought, it’s utility is

diminished. For certain studies getting predictions on all the different endpoints, or comparisons

between them could be time consuming or infeasible. In addition, the test is currently restricted to

paired data due to the need to calculate the sample correlation matrix, although we are exploring

ways to use the test for unpaired data.

4.4.5 Advantages and Disadvantages of the T-test

The t-test is fairly robust to departures from it’s assumptions, which is especially useful in the

settings of small sample sizes where the assumptions can be questionable. The t-test is also easy

to implement, easily interpretable, and the interpretation concerns the population mean, whereas

the prediction tests interpretation concerns the predictive ability of the researcher.

Some disadvantages of the t-test, and specifically we are considering the t-tests conducted on

a set of different endpoints not a single endpoint, include the need to choose a primary endpoint

or do some sort of multiplicity adjustment. This can be difficult to do if there is no true “primary”

and failure to do so will greatly inflate the family wise error rate. In addition, when doing a set of

t-tests with a primary endpoint this allows for an inference to be drawn on only a single endpoint.

Thus any decision about the research hypothesis, or continuing to study the research hypothesis,

relies on a single endpoint, with all other collected variables being used in an exploratory setting.

If a multiplicity adjustment is used instead and the endpoints provide mixed signals this can be

difficult to interpret.

4.4.6 Advantages and Disadvantages of the Linear Mixed Model

The main advantage of a linear mixed model is the ability to account for the effect of covariates. In

addition, the fitted model can be used to predict the effect of an intervention on future experimental
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units.

The disadvantage of a Linear Mixed model, especially in early stage research, is that it simply

may not be feasible due to small sample sizes, large number of endpoints and potential covariates

of interest. Similarly to the t-test, when there are many endpoints of interest a primary one can be

chosen and inferences drawn from the primary model with other endpoints being exploratory or a

multiplicity correction for the number of endpoints would need to be undertaken.

4.5 Empirical Comparison to the t-test

We also conducted an empirical comparison between the prediction test and a set of t-tests. We

excluded the linear mixed model due to the arbitrary nature of simulating covariate values such as

race and age which could have a large impact on the results. If more was known about a specific

target population for some intervention then an empirical comparison including the linear mixed

model could be done. For the comparison we simulated data with sample sizes of n = 5, 10, 15, and

20, and for each sample size simulated m = 5, 10, 15, 20, and 25 measures. For simplicity of the

simulation we used directional increases of a prediction on each measure and simulated the pre-

post difference as being positive. Specifically, we simulated post data from Normal distributions

with means = 0.5 and standard deviations of 1 and pre data from N(0,1) distributions. The effect

size for each of the endpoints is thus 0.5−0
1 = 0.5 which commonly used rules of thumb of Cohen’s

d would classify as “medium effects”. The only endpoint that was simulated differently was the

first one in the data set, for this endpoint we let the mean be 0.64 and the standard deviation be 1.

For the t-test we picked a primary endpoint, the first simulated endpoint, and also calculated

the results using Sidak’s adjustment on the α threshold. For the t-test with a primary endpoint,

we set the primary endpoint to be the first endpoint in the data set. This was simulated to have

the largest mean, i.e. the chosen primary endpoint has the largest effect size d = 0.64 of every

endpoint in the data set. This effect is between “medium” and “large”, and we know that it is in

the correct direction. In addition, for the t-test with a primary endpoint we conducted a one-sided

64



hypothesis test, in essence we halved the threshold for “significance”, if the p-value is below this

threshold we consider this a finding of a significant result, that is, a rejection of the null hypothesis.

This is intended to be somewhat of an ideal scenario for the primary endpoint method. For the set

of t-tests using Sidak’s adjustment we compare each of the p-values to αS = 1− (1− 0.05)1/m.

In an attempt to also make these comparisons advantageous for the t-tests we will reject the null

hypothesis if any of the m measures are below αS, for example if only 1 out of 20 measures for a

given simulation is below this threshold we will still reject the null hypothesis.

We compare the t-tests to the prediction test when the true predictive ability is φ = 0.80, which

gives Cohen’s h = 0.64, between a moderate (0.50) and large (.80) effect, the same effect size as

for the t-test with primary endpoint. For these comparisons we simulated 1,000 data sets with the

specified means and standard deviation. Figure 4.3 displays the empirical power estimates for the

three approaches at combinations of n and m.

Figure 4.3: Power comparison between the Prediction Test and T-tests

Both of the approaches utilizing the t-test will increase in power as N increases and while
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there may be some increase in power for the prediction test as the sample size increases the main

increase is due to an increase in the number of measures of interest. The t-test with a primary

endpoint seems to be more powerful than the set of t-tests using the Sidak adjustment, which is

not surprising since the primary endpoint data was drawn from the most extreme endpoint given

the null hypothesis was true. Only when the number of measures of interest, m, are small do the

other techniques outperform the Prediction test, which is to be expected since it is intended for use

with many endpoints. As m increases so does the power of the prediction test for a fixed sample

size. For smaller sample sizes, especially n = 5 and n = 10 the prediction test outperforms the

other methods except when m = 5. For n = 15 and n = 20 the prediction test out performs both

competitors for m ≥ 15.

Overall when comparing the methods there were 20 combinations of n and m, the Prediction

test achieved the highest empirical power in 14 of the 20 even with the attempts to provide ad-

vantages to the t-tests. The prediction test performed well; this provides more evidence that the

prediction test should be used for go/no-go decisions in early stage research.

4.6 Discussion

We have discussed a global hypothesis test that can provide a go/no-go decision in early stage

research with an application to a real data set and comparisons to other common methods. The

prediction test came to the same conclusion as both the set of t-tests and the linear mixed model

for the DTI analysis. All analyses showed that the research hypothesis of structural changes in the

brain post transplant is promising, there is evidence that this is what is occurring and this should

be researchered more fully to understand the interaction between kidney function and Alzheimer’s

disease.

The prediction test is unique in that it addresses a real issue in early stage research, that of

whether to continue following an idea. The point of pilot studies, and other studies with small

sample sizes is typically not confirmatory in nature; however the methods that are often used in
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these studies seek to draw a conclusive inference despite the fact that even if the null hypothesis

is rejected a larger study will still be needed to verify the result. Our test acknowledges that

early stage research is primarily seeking to identify promising research hypotheses and weed out

ones that are unlikely to be true. By doing this we are able to gain an advantage in power. The

prediction test provides a formal mechanism that can be used for very small sample sizes and many

measures, if the research hypothesis as predicted by the PI is holding true, regardless of whether the

individual endpoints are “statistically significant” then the research hypothesis should be studied

in more depth.

4.6.1 Best practices

The applications of the prediction test can be quite broad, we provide a couple best practices in

order to insure that the testing procedures performs well. The predictions on the endpoints must

be made before the data is collected and cannot be changed post analysis. We believe that our

test is especially susceptible to misuse due to the fact that a single change of prediction could

result a different conclusion and after the data has been collected and analyzed it can seem easy to

understand how predictions went wrong in ways that could still support the research hypothesis.

The test is only valid if the predictions are made a-priori. The endpoints that are included in the

study need to all deal with the same research hypothesis, if the endpoints are not all somehow

related then they should not be analyzed using the prediction test.

4.6.2 Limitations

Like any method there are limitations to our approach. One of the simplest is making predictions,

in some settings such as truly exploratory research there may not be a prediction about a given

endpoint. All endpoints on which predictions are made need to be influenced by the research hy-

pothesis, that is if the research hypothesis concerns cerebral blood flow as in our example, correctly

predicting the results of pre-post differences in views about a political issue would be of little in-
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terest to the research hypothesis and thus should not be included in the set of predictions. The test

also currently requires paired data. The biggest limitation is that the test cannot make an inference

about the research hypothesis, rather it deals with whether the researcher’s hypothesis should be

studied in more depth.
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Chapter 5

Summary and Future Work

We have developed multiple statistical techniques to deal with issues common in biomedical re-

search, and have applied them specifically to Alzheimer’s disease studies. Our methods deal with

adverse situations when standard approaches may fail. The study of the impact on Self Revelatory

Performance could provide a method for mediating negative perceptions of Alzheimer’s disease at

a community level. More generally, our methodology could be applied to Likert Scale data, since

the Affect Grid is essentially a two dimensional Likert Scale. Likert Scale data is often analyzed

using a combined summary score and a t-test, either of a difference between groups or against a

null hypothesis for a single group. For an n dimensional Likert scale we could compute the dis-

tance between the n dimensional center of mass of different groups, or of the distance relative to

some hypothesized center of mass. This would take into account all the data instead of simply

using a summary scale and would not make assumptions about the data that are not true, such as

the data being continuous. As n increases we would expect scarcity to be a problem, thus different

approaches to weighting would need to be used, nevertheless this could provide a more sensitive

test than using a t-test.

The results of the Prediction Test for the ASL data suggest that the exercise intervention may

not have a strong impact on structural changes in the brain in older adults; nevertheless the test

we developed provides researchers with a formal decision criteria for whether or not continue

studying a given hypothesis. We’ve shown that the test has good power and type I error control,

and specifically that the power increases for a fixed sample size when more endpoints are predicted,

an excellent property for early stage research. We believe it has the potential to be a useful tool for

researchers.

The analysis of the DTI data was more promising and showed that post Kidney transplantation

both FA and MD values appeared to normalize, lending credence to the research hypothesis that
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kidney function impacts structural changes in the brain. The next steps on this research track will

be to verify those results and determine specific structural changes and what is driving them. In

addition, we extended our original predictions to include two sided predictions, and showed via the

DTI data and a simulation that the prediction test seems to have advantages for studies with many

endpoints and small sample sizes. More work needs to be done to determine specific scenarios

when the prediction test should be used.

Future research could include extending the set of possible predictions, for instance including

equivalence prediction. We are also investigating ways to use the Prediction Test with unpaired

data, with unpaired data we can easily get the result of a prediction, e.g. this group has a larger

sample mean than another group; however we cannot calculate a pairwise correlation between

unpaired data thus another method of estimating the “correlation” will need to be used. Tt would

be interesting to apply the prediction test to a set of early research studies as a supplementary

analysis and then, given enough funding, do larger studies of the same hypothesis and see how

the prediction test compares to other methods in identifying promising hypotheses. The Shiny

application, with early work presented in Appendix A, is another avenue of research. The app

currently can calculate the prediction test for several different types of data and predictions, we

would like to extend this to more scenarios and make it more user friendly as well as adding the

ability to do a power calculation so that researchers would not have to code their own functions or

know a specific programming language to use the test.
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Appendix A

Shiny app for the Prediction Test

A.1 Introduction

We’ve developed a user friendly tool for the Prediction Test. The tool is a shiny app (R Core

Team, 2018) (Chang et al., 2018).This tool requires no software on the user-end, and the help file

provides instructions on using the app. The focus of the prediction test is on early stage research, a

stage when funding might not be available for a statistician or programmer to do an analysis, thus

the tool allows a researcher to upload their data in several different formats and get the calculated

results. Figure A.1 shows the prediction test as seen when opened.

A.2 Types of data and predictions

Researchers are currently only able to upload their data sets to the app in a Comma Separated

Variable (csv) format. The two required data sets are one with the data on the relevant endpoints

and another separate data set consisting of predictions for the endpoints. If both are successfully

uploaded a progress bar displaying “Upload Complete” will display beneath the upload boxes.

Both the data set and the predictions can take on two types of formats.

A.2.1 Raw data

The first format for the data set is the “Raw” format. This consists of a column for every endpoint,

with the values for every endpoint being those needed to conduct the Prediction Test. For instance

if the predictions are on a comparison to baseline measures, then the values in the Raw format

would need to be the differences from baseline for every measure. An example data set is shown

in on the left side of Figure A.2.
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Figure A.1: App as displayed when opened

A.2.2 Pre-post data

Data in the “Pre-post” format are required to be input with the following variables only: an ID

variable, named ID, a time point variable, named TP, and all the observed values for the endpoints

of interest. By default the prediction test will do the pre (TP 1) vs post (TP 2) difference. If there

are more than 2 time points for each participant only the two on which the prediction is being based

should be included, and example is shown on the right side of Figure A.2 .

A.2.3 “Results” predictions

The simplest way to upload the predictions is the upload the “Results” of the predictions, a 1 for

a successful prediction and a 0 for an unsuccessful prediction for each endpoint. This method is

the most flexible in that predictions of many types can be calculated however it may be more time

consuming on the front-end to determine the result of each individual prediction.

The predictions need to be formatted as a column in the CSV named Predictions, with row 1 in
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Figure A.2: Example Data Sets

column 1 corresponding to prediction for the first endpoint column in the data set, row 2 in column

1 corresponding to the prediction for the second endpoint column in the data set and so on. An

example is shown on the left of Figure A.3.

A.2.4 “Type” predictions

The “Type” prediction allows for one-sided and two sided predictions to be entered. Similarly to

the “Results” prediction the format needs to be a single column with row 1 corresponding to the

first endpoint column in the uploaded data set. Predictions in this format must have three columns,

“Predictions”, “Null” and “SD”. The Predictions column refers to the type, a “U” stands for up,

a prediction of a directional increase, “D” stands for down, a prediction of a decrease, and “Diff”

is for a two sided prediction of being different from some value. The Null column will default to

0 if left blank, for directional predictions it is the value the prediction is being over or under. For

predictions of a difference, it is the value that the prediction states the endpoint is different from.

The SD column denotes how many standard deviations away from the Null value the observed

value needs to be for a two sided prediction to be deemed correct. A discussion of the choice of

this value is in Chapter 4. An example is show in Figure A.3
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Figure A.3: Example Predictions

As an example third row the predictions would correspond to a prediction of a decrease below

a baseline of 3, the fourth row would indicate a prediction of a difference from 0 with 0.75 standard

deviations as the threshold.

A.3 Parameters

The parameters of the app are the hypothesized value φ which can take on any value between 0

and 1. The default is set to 0.5. The critical value α is the threshold for “significance”, it’s default

is 0.05. The type of test can either be exact or using a normal approximation. The exact test can

only be used for m < 20.

A.4 Output

When the data has been uploaded correctly, selecting the Run button will run the Prediction Test

according to the provided predictions. The output consists of the observed test statistic value, the

p-value, weights for all the variables of interest and the decision based on the critical value. Figure

A.4 displays the results with an example data set.
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Figure A.4: Results of the Prediction Test
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Appendix B

Code for to calculate the prediction test

# Required values :

#C: Sample correlation matrix

# observed : The Observed test statistic

#null_phi: Hypothesized value of phi

#alpha: alpha level

#By default the test will be calculated using the Exact

distribution when m < 20,

#and the Normal

# approximation for m >=20, this can be changed within the function

prediction _test <- function (C, observed , null_phi , alpha){

n_tests <- ncol(C)

if (n_tests <20){ #Use exact test for m <20

options ( digits = 10)

n_perm <- 2^n_tests

m <- n_tests

W <- as. matrix (1/ rowSums (C^2))

SW <- sum(W)

perms <- as. matrix ( expand .grid(rep(list(0:1), n_tests)))

correct <- rowSums (perms)
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perms <- cbind(perms , correct )

perms <- perms[ order(perms[,m+1]) ,]

out <-as. numeric (perms[,1:m] %*% W)

perms <- cbind(perms ,out)

perms <- cbind(perms , as. numeric ( dbinom (sort( correct ), m,

null_phi))/as. numeric ( lapply (sort( correct ), function (x)

choose (m,x) )))

perms <- perms[ order(perms[,m+2]) ,]

perms <- cbind(perms , cumsum (perms[,m+3]))

pval <- (1-perms[which(round(perms[,m+2],10) ==

as. numeric (round(observed ,10))) ,m+4]) +

perms[ which(round(perms[,m+2],10) ==

as. numeric (round(observed ,10))) ,m+3]

if (pval < alpha)

{

decision <- 1

} else if (pval >= alpha){

decision <- 0

}

} else if (n_tests >=20){ #Use Normal Approximation for m >=20

W <- as. matrix (1/ rowSums (C^2))

SW <- sum(W)

z <- ( observed -

null_phi*SW)/sqrt(null_phi *(1-null_phi)*sum(W^2) )
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pval <- 1-pnorm ((z))

if (pval < alpha)

{

decision <- 1

} else if (pval >= alpha){

decision <- 0

}

}

return (list(pval , decision ))

}
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