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Abstract 

 

Members of the echinoid order Spatangoida, a highly diverse and abundant marine invertebrate 

clade, were important denizens of the Cretaceous Western Interior Seaway (WIS), an 

epicontinental seaway that divided North America in two during an interval of greenhouse 

conditions between roughly 100 and 65 million years ago. Despite being well represented in the 

Cretaceous rocks of Texas and surrounding areas, the phylogenetic patterns of spatangoid 

echinoids of the WIS, especially at the species level, have yet to be fully resolved. Further, 

because of their complex morphologies, they represent one of the few marine invertebrate groups 

from this time period that are amenable to phylogenetic study. Another interesting question 

pertaining to taxa found in the WIS is their biogeographic origins and whether they represent an 

endemic radiation or are instead derived from one or more invasions from other regions.  In 

order to reconstruct a hypothesis of spatangoid phylogenetic relationships, a parsimony analysis 

was conducted using a character matrix of 32 characters collected from 20 species.  Species that 

occur in the WIS were considered comprehensively; species from other regions such as South 

America, Europe, and North Africa were additionally incorporated into the analysis.  

Phylogenetic biogeographic analysis was then conducted on the spatangoid phylogeny using a 

modified version of Fitch Parsimony Analysis, and several episodes of vicariance and range 

expansion were identified across the phylogeny. These were possibly further related to some of 

the various major episodes of sea-level rise and fall during the Cretaceous. 
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Chapter 1: Phylogenetic Analysis of WIS Spatangoids 

Introduction  

The Western Interior Seaway (WIS) was an epicontinental sea that existed during the 

Cretaceous Period, effectively dividing North America into two terrestrial regions and originated 

due to tectonic forces associated with the Sevier orogeny that formed the Rocky Mountains 

(Kauffman & Caldwell 1993; Frakes 1999) and extremely warm climatic conditions which may 

serve as a proxy for those likely to be experienced in Earth’s near-term future (Myers et al. 2013; 

Frakes 1999). Today the WIS is preserved as a spectacular set of fossil deposits running from 

Texas, through Kansas, and up into Alberta, Canada. The WIS supported a highly diverse marine 

ecosystem comprising a richly abundant fossil record of microorganisms, invertebrates, and 

vertebrates. These deposits have been collected from extensively by paleontologists for over 140 

years, and the fossils from the WIS played a pivotal role in the history of North American 

paleontology (Shore 1971; Lanham 1973; Mayor 2005). Fossils from this region have also 

provided a wealth of macroevolutionary and biogeographic data (e.g. Kauffman 1984; Glancy et 

al. 1993; Cochran et al. 2003; Myers & Lieberman 2011; Myers et al. 2013). 

Echinoids are a highly successful group of marine invertebrates present in a plethora of 

habitats today, including interdidal zones, continental shelves, and deep water (Kroh & Smith 

2010). They are characterized by a rich and diverse fossil record dating back to the Ordovician 

period (Smith 1984). The group experienced a sharp diversity decline at the end of the Paleozoic 

in which the majority of stem group echinoids went extinct after the end-Permian mass 

extinction (Thompson et al. 2016). However, their diversity rebounded in the Mesozoic era with 

the appearance of irregular echinoids, which express bilateral symmetry superimposed over the 

typical radial symmetry of other echinoderms. Echinoids were also abundant denizens of the 
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shallow benthic communities of the southern parts of the WIS, in what is today part of the 

southwestern United States (e.g. Texas, New Mexico) and northern Mexico (Sonora, Coahuila). 

This is where the WIS opened into the much larger North Atlantic/West Tethys for much of its 

duration (Blakey 2014). Many of the first echinoids found in this region were described in 

various 19th century studies (e.g. Roemer 1849, 1852; Clark 1893). Subsequent works include 

descriptions by Clark & Twitchell (1915), Cooke (1946, 1953, 1955), and publications focused 

on taxa from Texas (Adkins 1928; Whitney & Kellum 1966; Smith & Rader 2009; Thompson 

2016). 

Among the irregular echinoids, the most diverse and abundant are the heart urchins of the 

order Spatangoida. In the present day, spatangoids, like other echinoids, inhabit all oceans and a 

wide array of habitats (Stockley et al. 2005). Spatangoids are deposit-feeding burrowers that 

became diverse in the Cretaceous and survive into the present day (Smith 1984). Spantangoida 

are currently subdivided into the suborders Micrasterina, Brissidina, Hemiasterina, 

Paleopnuestina, and the extinct stem families Toxasteridae and Somaliasteridae (Smith & Kroh 

2011). Spatangoid taxonomy has been studies throughout the 20th century, with a special 

emphasis on the family and subordinal levels (Mortensen 1950; Fischer 1966). More recently, 

echinoids have been the subject of phylogenetic study (Kroh & Smith 2010), including analyses 

that incorporated both living and fossil spatangoids (Villier et al. 2004; Stockley et al. 2005). 

However, there have been no previous studies that focused on species-level phylogenetic 

relationships of the Cretaceous spatangoids of North America. The goal of the present study is to 

rectify this gap in knowledge and develop a more detailed picture of spatangoid phylogeny, with 

special emphasis on taxa in the WIS. Additionally, this study aims to use that phylogenetic 
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perspective to increase our understanding of the biogeographic relationship between the WIS and 

other parts of the Cretaceous world. 

Methods 

Taxonomic Sampling – In order to analyze the phylogenetic relationships within WIS 

Spatangoida, 20 taxa were selected for phylogenetic analysis, comprising representatives of the 

families Toxasteridae, Hemiasteridae, and Micrasteridae (Table 1). Specimens were examined 

from the collections of: the University of Kansas Museum of Invertebrate Paleontology 

(KUMIP); the Non-Vertebrate Paleontology Laboratory at the University of Texas in Austin 

(UT); and the New Mexico Museum of Natural History (NMMNH). In addition, loans of type 

specimens from the National Museum of Natural History (NMNH) were obtained.  High quality 

stacked images were sourced from specimens housed at the aforementioned institutions, as well 

as Universität Bonn, The Natural History Museum London (NHM), and online from The NHM 

Echinoid Directory (Smith & Kroh 2011). Due to the large number of species, not all 

spatangoids could be considered in the analysis, including Cenozoic and modern 

forms. Additional Cretaceous spatangoid species from outside the WIS were selected using the 

criteria that: 1) type specimens or quality photographs of these needed to be accessible; 2) 

species needed to be defined such that at least 50% of characters could be coded; 3) and all major 

Cretaceous biogeographic regions should be represented. This meant that species that were the 

subject of more recent systematic treatments were better represented in the analysis. Although 

analyzing additional species would be beneficial, expanding the number beyond those considered 

would entail approaching the n-1 character-to-taxon limit, utilizing species defined on the basis 

of poorly preserved specimens, and incorporating species that had not been revised in a very long 

time to the point that status of types would be difficult to verify. Toxaster retusus (Lamarck, 
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1816) was selected to represent the outgroup, as previous phylogenetic analysis by Stockley et al. 

(2005) suggests that it comprises a basal representative of the clade.   

 Table 1. List of species considered in phylogenetic analysis, including the temporal stage(s) they occur in, 

geographic distribution, all material examined or a relevant reference. Select specimen images can be found in 

Appendix. 

Species Age Location Material examined 

Toxaster retusus 

(Lamarck, 1816) 

Valanginian-

Hauterivian 

France, Switzerland NHM Echinoid Directory; 

UT 11704 

Heteraster oblongus 

(Brongniart, 1821) 

Valanginian-

Barremian 

France NHM Echinoid Directory; 

UT 14575 

Heteraster texanus 

(Roemer, 1849) 

Albian Mexico; Texas, 

USA 

KUMIP 370536, 370548–

370556; UT BEG 34165; 

Universitat Bonn Texas No 

org 157 
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Washitaster riovistae 

(Adkins, 1920) 

Albian Texas, USA UT BEG 21491–21493; 

NHM Echinoid Directory 

Washitaster 

wenoensis (Adkins, 

1920) 

Albian Texas, USA UT BEG 21496 

Macraster elegans 

(Shumard, 1853) 

Albian Texas, USA KUMIP 420253, 490608, 

490611; UT BEG 21497, 

34161 

Mecaster fourneli 

(Agassiz & Desor 

1847) 

Turonian-

Maastrichtian 

Algeria, Brazil UT 14285; NHM Echinoid 

Directory 
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Mecaster batnensis 

(Coquand, 1862) 

Cenomanian-

Turonian 

Brazil; Mexico; 

New Mexico(?) & 

Texas, USA 

UT 14252, 83026 

Mecaster texanus 

(Roemer, 1849) 

Santonian-

Campanian 

Texas, USA UT BEG 34771; Universität 

Bonn Texas No org 156; 

NHM Echinoid Directory 

Micraster schroederi 

Stolley, 1892 

Campanian Germany UT 53845 

Pliotoxaster 

comanchei  

(Clark, 1915) 

Albian Texas, USA USNM 103893; UT BEG 

21264, 21270 
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Proraster dalli 

(Clark, 1891) 

Albian Texas, USA USNM 19114; UT 83036 

Palhemiaster calvini 

(Clark, 1915) 

Albian Texas, USA UT BEG 21268, 21487; 

NHM Echinoid Directory 

Hemiaster bufo 

(Brongniart, 1822) 

Cenomanian United Kingdom NHM Echinoid Directory 

Hemiaster bexari 

Clark, 1915 

Albian Texas, USA USNM 8330 
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Hemiaster cranium 

Cooke, 1946 

Albian Texas, USA USNM 103890 

Hemiaster estepi 

Lucas, 2000 

Albian New Mexico, USA NMMNH P-26501, 26508, 

26515 

Hemiaster 

humphreysanus  

Meek & Hayden, 

1857 

Maastrichtian Montana, USA USNM 331 

Diplodetus 

americanus 

Stephenson, 1941 

Maastrichtian Texas, USA UT 83001; USNM 76285 
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Diplodetus 

parvistella Schluter, 

1900 

Maastrichtian Netherlands NHM Echinoid Directory 

 

Phylogenetic Methods - Phylogenetic relationships were determined using a parsimony analysis 

implemented via PAUP 4.0 (Swofford 2003). Data were subjected to a branch and bound search 

in order to find the most parsimonious tree (Hendy & Penny 1982). Consistency index and 

retention index were recorded. In the event of multiple trees, a strict consensus was calculated. A 

bootstrap analysis was conducted using PAUP 4.0 to determine support for each node appearing 

in the most parsimonious tree(s), using 100 bootstrap replicates in a stepwise search that 

employed 5 random replications per bootstrap replication. Jackknife analysis was also used, with 

the percentage of characters removed value chosen at 10%, which equates to 3 characters. For 

both support tests, groups were retained that were compatible with the 50% majority rule 

consensus tree. In addition, a Bremer branch support analysis (Bremer 1994) was conducted to 

calculate node support using the difference between the length of the most parsimonious tree and 

the largest tree in which a node is maintained. 

Characters and Character States - Character and character state descriptions were developed 

via detailed comparative examination of the exterior tests of specimens.  The pre-existing 

literature was additionally considered to identify characters that had been used previously to 

diagnose groups and to infer relationships between groups. Villier et al. (2004) and Stockley & 
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Smith (2005) were especially helpful regarding character data sets used in phylogenetic analyses 

of echinoids, including spatangoids. In total, 32 characters were identified (listed below), 

including a combination of qualitative and quantitative characters. Quantitative characters were 

measured from photographs of spatangoid specimens using the program ImageJ (Schneider et al. 

2012), scale was set with with known measurements for determining ratios of measured features 

as well as for angle measurements. Character states are non-continuous relative to each other and 

multi-state characters were treated as unordered. 

 Apical disc 

1. Plating: genital plate 2 does not extend between the posterior genital plates – referred to 

as Ethmophract (0)/ genital plate 2 extends between posterior genital and ocular plates – 

referred to as Ethmolytic (1). 

2. Position: Below midpoint of test (0) / at midpoint (1) / above midpoint (2). 

 

Frontal ambulacra (III) 

3. Width is much narrower than central width of paired petals (0) / width is much broader 

than central width of paired petals (1) / width is approximately equal to width of central 

width of paired petals (2). 

4. Frontal ambulacra depth shallow (0) / frontal ambulacra depth substantial (1). 

5. Distal end of frontal ambulacra tapers to form a “notch” present at ambitus (0) / distal end 

of frontal ambulacra does not form “notch” at ambitus (1) / deep “notch” formed by 

frontal ambulacra (2). 

6. Pore pairs of the frontal ambulacra are uniform and uniserial (0) / pore pairs are 

heterogenous and not uniform (1). 
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7. Tubercles located between ambulacra pore pairs: absent (0) / present (1). 

 

Anterior paired ambulacra 

8. Angle axis of petals forms relative to apical disc: 6–14 degrees (0) / 18–22 degrees 

(1).  This character describes the degree at which the ambulacra inflects from a straight 

line to the apical disc. 

9. Relative size of pairs of pores on both axes: equally developed (0) / not equally 

developed (1). 

10. Termination of paired petals: subpetaloid (0)/ divergent (1) / in linear branches (2) / 

closed (3). 

 

 Posterior paired ambulacra 

11. Angle axis of petals forms relative to apical disc: 2–7 degrees (0) / 10–11 degrees (1) / 

more than 14 degrees (2). This character describes the degree at which the ambulacra 

inflects from a straight line to the apical disc. 

12. Relative size of pairs of pores on both axes: equally developed (0) / not equally 

developed (1). 

13. Termination of paired petals: subpetaloid (0)/ divergent (1) / in linear branches (2) / 

closed (3). 

 

Fasciole 

14. Subanal fasciole: absent (0) / present (1). 
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15. Partially developed fasciole that does not fully encircle the test (sometimes called 

peripetalous parafasciole): absent (0) / present (1). 

16. Fully developed peripetalous fasciole: absent (0) / present (1). 

17. Multiple fasciole bands on the test: absent (0) / present (1). 

18.  Ambulacral plates: decrease in size at fasciole (0) / do not decrease in size such that 

ambulacra are not “pinched” (1). 

 

Interambulacra 

19. Interambulacra: flush or level with paired ambulacra (0) / raised above ambulacra (1). 

 

Periproct 

20.  In posterior view of the test, the periproct: positioned at the midline (0) / positioned 

above the midline (1). 

 

Plastron 

21. Plates 2a and 2b: asymmetrical (protamphisternous) (0) / symmetrical 

(mesamphisternous) (1). 

 

Peristome 

22. Labrum: does not project over the peristome (0) / projects over the peristome (1). 

23. Peristome shape: rounded (0) / pentagonal (1). 

24. Peristome: not surrounded by apparent rim (0) / surrounded by apparent rim (1). 

25. Peristome orientation: flat (0) / oblique (1) / strongly oblique (2). 
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Test Shape  

26. From an adapical view, posterior end shape: rounded (0) / truncate (1). 

27. Anterior end in lateral view: has flat angular slope (0) / has inflated curvature (1). 

 

Labrum 

28. Posterior termination of labral plate extends to: 2nd ambulacral plate (0) / 3rd ambulacral 

plate (1) / 4th ambulacral plate (2). 

29. Sternal suture: straight or lightly curved (0) / concave (1). 

 

Measurements 

30. Anterior ambulacra length/ length to ambitus ratio: 0.5–0.55 (0) / .65–.68 (1) / 0.72–1.0 

(2). 

31. Posterior ambulacra length/ length to ambitus ratio: 0.3–0.47 (0) / 0.51–0.60 (1) / 0.65–

1.0 (2). 

32. Anterior ambulacra length/posterior ambulacra length ratio: 0.9–1.3 (0) / 1.54 –1.9 (1) / 

2.5–2.8 (2). 

Character codings for the taxa analyzed are shown below in Table 2. 
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Table 2. Character state distributions for taxa used in phylogenetic analysis. Missing data is indicated by “?”. 

Character numbers are listed at the top of the table. 
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Results 

The phylogenetic analysis resulted in a strict consensus of four most parsimonious trees 

of length 111 steps, consistency index (CI) of 0.41, and retention index (RI) of 0.60 (Figure 1). 

To assess whether this result might be influenced by the inclusion of relatively incompletely 

preserved taxa, an additional analysis was run. Two taxa, Proraster dalli and Hemiaster bexari, 

which could only be coded for ~ 80–90% of the characters and creating a polytomy, were 

removed, and a branch and bound analysis was performed again. This resulted in a strict 

consensus of two trees of length 100 steps, a CI of 0.44, and an RI of 0.61 (Figure 2) that had a 

topology identical to that of Figure 1, indicating that the result was not influenced by including 

these incomplete taxa. In terms of tree support statistics, four nodes of the cladogram in Figure 1 

were supported by bootstrap values greater than 60%, with 15 nodes supported by jackknife 

values greater than 60% (with 5 jackknife values above 80%).  Bremer support was found for 

four nodes in the tree. 
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Figure 1. Strict consensus of four most parsimonious trees of length 111 with 20 taxa. Numbers in blue refer to 

Jackknife support values, numbers in green represent Bootstrap support values, remaining numbers are Bremer 

support values. Asterisk represents non-North American species. 
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Figure 2. Strict consensus of the two most parsimonious trees of length 100 excluding two taxa (Proraster dalli, 

Hemiaster bexari). Numbers in blue refer to Jackknife support values, numbers in green represent Bootstrap support 

values, remaining numbers are Bremer support values. Asterisk represents non-North American species. 
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The analysis suggests several notable relationships relative to traditional groupings and 

previous analyses. Regarding traditional groupings, the genera Hemiaster, Mecaster, Heteraster, 

and Proraster are paraphyletic or even polyphyletic (see also Smith & Bengston 1991 and 

Neredeau 1994). To make the classification more compatible with the phylogeny, several 

taxonomic changes were made, including lumping some species within other genera to produce 

monophyletic groupings (Figure 3). For instance, Proraster is defined herein to contain P. dalli, 

P. humphreysanus, and P. bexari (Figure 3). In addition, some genera were designated as 

paraphyletic using the within quotes convention of Wiley (1979). These are: “Heteraster” 

texanus; “Hemiaster” batnensis; “Hemiaster” texanus; “Hemiaster” estepi; and “Diplodetus” 

americanus (Figure 3). At this time this seemed preferable to establishing several new monotypic 

genera, as not all relevant species could be considered in the present analysis. In broad terms, the 

phylogeny indicates that Mecaster fournelli and Palhemiaster are closely related, with Proraster 

comprising the sister group of these; a paraphyletic set of species referable to Hemiaster and 

“Hemiaster” comprise several successive lineages sister to these.  Diplodetus and Micraster are 

also all closely related, as are Washitaster and Heteraster, and Pliotoxaster and 

Macraster.  Further, Washitaster plus Heteraster comprise the sister group to all spatangoids 

(excluding Toxaster). 
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Figure 3. Strict consensus of four most parsimonious trees of length 111 with 20 taxa, with taxonomic changes 

applied. 
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Discussion  

In general, the phylogenetic results match various aspects of previous interpretations. For 

instance, Micraster and Diplodetus had previously been grouped into a Micrasteridae clade due 

to the shared presence of an ethmophract apical disc and similarly-patterned subanal fasciole 

(Smith & Stockley 2005), although part of Diplodetus was found to be paraphyletic. Several 

species of Mecaster were originally described as Hemiaster (Agassiz & Desor 1847; Roemer 

1849; Coquand 1862), matching the placement herein of the species within Hemiasteridae. 

 

Figure 4. Simplified branching patterns of clades represented in the phylogenetic analysis. 

The phylogenetic analysis of Villier et al. (2004) is not directly comparable to the 

analysis performed herein as they focused on Early Cretaceous taxa and had fewer WIS 

representatives. However, some similarities emerge between the results retrieved in the present 

study and the fifty percent majority rule consensus tree they presented. For instance, they also 

retrieved a monophyletic clade of Heteraster oblongus, “H.” texanus, and Washitaster riovistae. 

In addition, Villier et al. (2004) found that a clade containing Macraster elegans was sister to 



21 

 

two clades, one that includes Micrasteridae and the other that includes Hemiasteridae. They did 

not, however, retrieve Macraster as closely related to Pliotoxaster comanchei (referred to as 

Palhemiaster comanchei in their study). 

Some aspects of the phylogeny (Figure 1) were also in agreement with the phylogeny 

presented in Stockley et al. (2005), although they included a much broader range of taxa. For 

instance, they too found Mecaster and Hemiaster to be closely related, although they did not 

retrieve a monophyletic Hemiasteridae. They also held Toxaster to be the basal member of the 

spatangoids. 

Moving forward, it will be valuable to increase the number of taxa considered in 

phylogenetic analyses of fossil spatangoids, perhaps through the employment of supertree 

methods (see Lieberman 2002). In addition, several of the spatangoid taxa found in the WIS have 

not been revised since their original descriptions in the 1900’s so it would be useful to provide 

detailed taxonomic descriptions and revisions for these. 
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Chapter 2: Phylogenetic Biogeographic Analysis of WIS Spatangoids 

Introduction 

In addition to phylogenetic relationships, another focus of this thesis was unraveling the 

biogeographic patterns within spatangoids. Of special interest is the origins of taxa found in the 

WIS and determining whether these taxa represent an endemic radiation or instead were derived 

via invasions from one or more other regions. Several studies of Cretaceous echinoid 

biogeography have been conducted over the years. For instance, Smith (1984) summarized 

general patterns of echinoid biogeography (in the absence of a detailed phylogeny) and argued 

that: during the Cretaceous the present-day Mediterranean region (then Tethys) was a 

biodiversity hotspot for echinoids; and the group subsequently dispersed to colonize other 

regions throughout the world. In addition, Neraudeau & Mathey (2000) focused on the 

biogeography of echinoids found in the Cretaceous of the present day South Atlantic region.  

Like Smith (1984), they also were unable to incorporate phylogenetic information in their study 

but posited a migration between the Mediterranean region (Tethys) and parts of Africa and South 

America. Further, they suggested that both pre-Aptian and Aptian South American spatangoids 

were closely related to similar-aged species found in the WIS.  

Rosen and Smith (1988) and Smith (1992) later rejected the earlier more “narrative” 

approaches to echinoid biogeography and endorsed phylogenetically-focused biogeographic 

studies. Rosen and Smith (1988) used parsimony analysis of endemicity (PAE) on Campanian-

Maastrichtian echinoids, and found the WIS, in particular a joint region comprising Texas and 

Mexico, to be the sister region to North Africa plus Europe. Smith (1992) analyzed patterns in 

Cenomanian echinoids using distance-based methods, cladistic biogeography, and PAE (see 

Lieberman 2000 for discussion of these various methods). The PAE indicated Brazil and Angola 
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were closely related biogeographically and sister to the Texas region. Smith’s (1992) cladistic 

biogeographic analysis indicated that Texas could be sister to western European and northern 

African faunas, or in fact part of a cosmopolitan fauna present across the multiple habitats. 

Aside from these studies, there has been little research on the biogeography of Cretaceous 

spatangoid echinoids, and no previous studies have focused on elaborating biogeographic 

patterns at the species level for WIS spatangoids. The purpose of this chapter is to conduct a 

biogeographic analysis of Cretaceous Spatangoids of the WIS and infer the timing and overall 

nature (i.e. involving vicariance or dispersal or within region differentiation) of biogeographic 

events.  

Methods 

The biogeographic approach utilized follows the method described in Lieberman (2000). 

In particular, the species names on the phylogeny presented in Figure 1 were replaced by their 

areas of geographic distribution. The following regions were considered: Western Europe 

(comprising Portugal, France, Spain, England, Germany, and The Netherlands) [0]; North Africa 

(comprising Algeria, Egypt, Libya, Morocco, and parts of the present-day Middle East) [1]; 

South America (comprising Brazil and Peru) [2]; and North America (comprising Mexico, the 

United States, and Canada) [3] (Figure 5). These all represented regions of significant faunal 

endemism (including echinoid endemism) during the Cretaceous Period. Further, each of these 

regions represent either separate tectonic blocs or broad parts of cratons that were separated from 

other such regions by geographic barriers, and they, or similarly defined regions, had also been 

identified by Smith (1984). Geographic distributions were determined by a comprehensive 

consideration of the literature and museum specimen records. Biogeographic distributions in the 
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literature were only treated as valid if actual specimens or photographs of specimens could be 

examined to ground truth taxonomic assignments.   

 
Figure 5. Paleomap of the Late Albian from Scotese (2013). Numbers indicate locations of taxa selected for 

analyses.[0] represents Western Europe, [1] represents North Africa, [2] represents South America and [3] 

represents the WIS. 

Biogeographic areas were optimized to the nodes of the strict consensus tree of the 

previous chapter (Figure 3) using the modified version of Fitch (1971) parsimony described in 

Lieberman (2000). This was done in order to consider how geographic range changed at 

cladogenetic events. For instance, if range expansion occurred during the transition between 

adjacent nodes on the tree or adjacent nodes and terminals it was treated as compatible with 
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some type of dispersal (either traditional or geodispersal sensu Lieberman 2000). If range 

contraction occurred, it was treated as compatible with vicariance. If range remained unchanged 

it was treated as within region diversification which could involve either sympatry or within-

region allopatry. To infer the timing of various biogeographic transitions, information on the 

temporal duration of fossil species was also considered. Species were assigned to the resolution 

of stage using information from the literature and then the ghost lineage method described in 

Norell et al. (1992) was applied. 

Results 

Biogeographic patterns provide evidence for vicariance within the spatangoids (Figure 6). 

For instance, following an initial range expansion by the group from being jointly distributed in 

western Europe and north Africa to being jointly distributed in these areas and the WIS during 

the Valanginian, there was subsequent vicariance between northern Africa and the WIS & 

Western Europe during the Albian along the backbone of the tree and in the clade comprising 

Heteraster and Washitaster. There is further vicariance between Western Europe and the WIS 

within Heteraster and Washitaster. Another vicariance event occurs in the Campanian associated 

with the divergence of the WIS “Diplodetus” americanus and the western European Micraster 

and Diplodetus parvistella.  
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Figure 6. The biogeographic distribution and ages of terminals, along with the biogeographic distribution of 

ancestral nodes, calculated using the modified version of Fitch parsimony described in Lieberman (2000), and 

minimum divergence age of nodes, determined using the ghost lineage method described in Norell & Novacek 

(1992). [0] represents Western Europe, [1] represents North Africa, [2] represents South America and [3] represents 

the WIS (left). The consensus phylogeny from the previous section is provided for comparison (right) 
 

There also appears to have been range expansion by spatangoids from the WIS into 

Europe, North Africa and South America, but it is not possible at this time to determine if these 

comprise geodispersal or traditional dispersal sensu Lieberman (2000) because phylogenetic 

biogeographic information from other groups is not available. For instance, at some time 
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between the Albian and the Cenomanian there was a range expansion by the lineage leading to 

Hemiaster bufo. There was also a range expansion from the WIS into South America during the 

Cenomanian associated with the origin of “Hemiaster” batnensis. Finally, sometime between the 

Albian and the Turonian there was a range expansion from the WIS into North Africa and South 

America associated with the origin of Mecaster fourneli. 

 The rest of the diversification within the clade comprises speciation occurring within the 

WIS, though at this time it could not be determined whether this involved smaller scale vicariant 

events within the WIS or actual sympatric differentiation. The pattern of substantial within-

region speciation in the WIS suggests that the WIS itself might also have served as another 

biodiversity hotspot for echinoids, beyond just the Mediterranean (Tethyan) region, at least in the 

spatangoids. 

Discussion 

It is clear that sea-level changes would have had a major impact on the biogeography and 

evolution of marine taxa like echinoids (Smith & Rader 2009), and thus it is highly useful that 

multiple studies have been conducted that investigated changes in sea level during the 

Cretaceous (e.g Hallam 1992; Haq 2014). For instance, prominent sea-level changes are 

associated with the following transgressive-regressive cycles seen in the North American 

Cretaceous carbonate platform series: the Coahuilan (Valanginian – mid Aptian); the 

Comanchean (late Aptian – early Cenomanian); and the Gulfian (mid-Cenomanian – 

Maastrichtian) (Scott 1993; Smith & Rader 2009). The results from the biogeographic analysis 

presented herein suggest a possible connection between specific transgressive-regressive cycles 

and patterns of echinoid vicariance and range expansion. For instance, a regression during the 

Coahuilan series may coincide with the vicariance event that led to the diversification both of, 
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and within, the WIS “toxasterids”, including Heteraster and Washitaster (Figure 6); the 

regression during the Comanchean series may have also led to the vicariance involving the 

divergence at the base of all spatangoids excluding the “toxasterids” (Figure 6); another sea-level 

drop during the Gulfian series may coincide with Campanian vicariance in the Micrasteridae 

(Figure 6). In addition, sea-level rise associated with the Comanchean could account for the 

range expansions associated with Mecaster fourneli, Hemiaster bufo, and “Hemiaster” batnensis 

(Figure 6). However, ultimately a broader range of marine taxa will need to be considered to see 

if these are patterns that consistently emerge in other groups, thereby indicating biogeographic 

congruence and an overarching earth history control (e.g. Lieberman 2000), or instead do not, 

and then may be related to specific aspects of spatangoid ecology.  



29 

 

References 

Adkins, W.S. (1928). Handbook of Texas Cretaceous fossils. University of Texas at Austin. 

Agassiz, L.  (1847). Catalogue raisonné des familles, des genres, et des espèces de la classe des 

échinodermes. Annales des Sciences Naturelles, Troisième Série, Zoologie, 7, 16. 

Blakey, R. (2014). Paleogeography and Paleotectonics of the Western Interior Seaway, 

Jurassic-Cretaceous of North America. Retrieved from Search and Discovery: 

http://www.searchanddiscovery.com/pdfz/documents/2014/30392blakey/ndx_blakey.pdf.

html 

Clark, W.B. (1893). The Mesozoic Echinodermata of the United States. Govt. Print. Off. 

Washington. 

Clark, W.B. & Twitchell, M.W. (1915). The Mesozoic and Cenozoic Echinodermata of the 

United States. Washington: Govt. print. off.  

Cochran, J., Landman, N., Turekian, K., Michard, A., & Schrag, D. (2003). Paleoceanography of 

the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: 

Evidence from Sr and O isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 

191(1), 45–64. 

Cooke, C. (1946). Comanche Echinoids. Journal of Paleontology, 20(3), 193–237. 

Cooke, C. (1953). American Upper Cretaceous Echinoidea. U.S. Geological Survey Professional 

Paper (254-A), 1–44. 

Cooke, C. (1955). Some Cretaceous Echinoids from the Americas. U.S. Geological Survey 

Professional Paper (264-E), 87–112. 
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Appendix 

All scale bars represent 1cm unless otherwise noted. 

Toxaster retusus (Lamarck, 1816) (From Smith & Kroh, 2011) 
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Heteraster oblongus (Brongniart, 1821) (From Smith & Kroh, 2011) 
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“Heteraster” texanus (Roemer 1849) 

UT BEG34165 
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Washitaster riovistae (Adkins 1920) 

UT BEG 21491 
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Washitaster wenoensis (Adkins, 1920) 

UT BEG 21496 

 

  



40 

 

Macraster elegans (Shumard, 1853) 

UT BEG34161 
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Mecaster fourneli (Agassiz & Desor 1847) (From Smith & Kroh, 2011) 

 

  



42 

 

“Hemiaster” batnensis (Coquand, 1862) 

UT83026 

 

  



43 

 

“Mecaster” texanus (Roemer, 1849) 

Universität Bonn Texas No org 156 

 

  



44 

 

Micraster schroederi Stolley, 1892 

UT 53845 
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Pliotoxaster comanchei (Clark, 1915) 

USNM PAL 103893 

 

  



46 

 

Proraster dalli (Clark, 1891) 

USNM PAL 191114 

 

  



47 

 

Palhemiaster calvini (Clark, 1915) 

UT BEG21487 

 

  



48 

 

Hemiaster bufo (Brongniart, 1822) (From Smith & Kroh, 2011) 

 

  



49 

 

Proraster bexari Clark, 1915 

USNM PAL 8330 

 

  



50 

 

Hemiaster cranium Cooke, 1946 

USNM PAL 103890 

 

  



51 

 

“Hemiaster” estepi Lucas, 2000 

NMMNH P-26515 

 



52 

 

Proraster humphreysanus Meek & Hayden, 1857 

USNM PAL 331 

 

  



53 

 

“Diplodetus” americanus Stephenson, 1941 

USNM PAL 76285 
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Diplodetus parvistella Schluter, 1900 (From Smith & Kroh, 2011) 

 


