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Abstract

Moving sharp fronts are an important feature of many mathematical models from physical sciences

and cause challenges in numerical computation. In order to obtain accurate solutions, a high reso-

lution of mesh is necessary, which results in high computational cost if a fixed mesh is used. As a

solution to this issue, an adaptive mesh method, which is called the moving mesh partial differen-

tial equation (MMPDE) method, is described in this work. The MMPDE method has the advantage

of adaptively relocating the mesh points to increase the densities around sharp layers of the solu-

tions, without increasing the mesh size. Moreover, this strategy can generate a nonsingular mesh

even on non-convex and non-simply connected domains, given that the initial mesh is nonsingular.

The focus of this thesis is on the application of the MMPDE method to mathematical models from

physical sciences and image segmentation. In particular, this thesis includes the selection of the

regularization parameter for the Ambrosio-Tortorelli functional, a simulation of the contact sets in

the evolution of the micro-electro mechanical systems, and a numerical study of the flux selectivity

in the Poisson-Nernst-Planck model. Sharp interfaces take place in all these three models, bringing

interesting features and rich phenomena to study.
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Chapter 1

Introduction

Solutions of many partial differential equations (PDEs) arising in physical sciences have large

variations within a small portion of the domain. In this work, three models with this feature are

described and studied: the Ambrosio-Tortorelli functional as a variational approach to image seg-

mentation, a fourth-order parabolic equation that simulates the deformation of the micro-electro

mechanical systems (MEMS), and a quasi-one-dimensional Poisson-Nernst-Planck (PNP) model

as a dielectric continuum model of ionic fluxes. The sharp interfaces are a major property of all

the three models, and all cause challenge in numerical computation.

A practical approach is to place a high density of mesh points in the regions of sharp inter-

faces, while much less density in the rest of the domain. In this work, I will present a PDE-based

moving mesh strategy that is based on this idea. Rigorous mathematical formulation as well as

practical implementation are described. This strategy has been applied to all the three models

mentioned above using the linear finite element method. To complement the numerical approach,

an asymptotic analysis has been developed regarding to specific aspects of each model.

The outline of this work is as follows. In Chapter 2, the mathematical characterization of

an optimal adaptive mesh is derived, as well as the formulation of the corresponding energy func-

tional. The minimization of the energy functional yields a PDE system, which defines the MMPDE

method. MMPDE has been used to obtain the numerical results in Chapters 3, 4, and 5. With more

nodes concentrated around the sharp layers, the abrupt changes in the solutions are better resolved.

In Chapter 3, a strategy for the selection of the regularization parameter in the Ambrosio-

Tortorelli functional is derived and numerical results are presented. The Ambrosio-Tortorelli func-

tional is a phase-field approximation of the Mumford-Shah functional that has been widely used
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for image segmentation. It has the advantages of being easy to implement, maintaining the seg-

mentation ability, and Gamma-converging to the Mumford-Shah functional as the regularization

parameter goes to zero [1]. However, it has been observed in actual computation that the seg-

mentation ability of the Ambrosio-Tortorelli functional varies significantly with different values of

the parameter and even fails to Gamma-converge to the original functional for some cases. In this

chapter we present an asymptotic analysis on the gradient flow equation of the Ambrosio-Tortorelli

functional, from which a selection strategy for the regularization parameter is derived. An impor-

tant objective of image segmentation is to locate the edges of the objects in the image, which are

typically of small width, and thus high resolution of mesh elements is required. On the other hand,

the mesh elements do not have to be that small within each object, as the function of the image is

relatively smooth in this region. For this reason, the MMPDE method is highly desired for image

segmentation.

In Chapter 4, an investigation of the contact sets in electrostatic-elastic deflections model-

ing micro-electro mechanical systems is described, approached by both numerical and analytical

methods. The model for the membrane deflection is a fourth-order semi-linear PDE and the con-

tact events occur in this system as finite time singularities. Primary research interest is in the

dependence of the contact set on model parameters and the geometry of the domain. The adaptive

numerical strategy is applied to increase density where the solution has fine scale detail, partic-

ularly in the vicinity of forming singularities. To complement the computational tool, a singular

perturbation analysis is used to develop a geometric theory for predicting possible contact sets.

The validity of these two approaches are demonstrated with a variety of test cases.

In Chapter 5, a numerical investigation of the selectivity of the different fluxes through ionic

channels is described and corresponding numerical results are presented. Ionic channels are large

proteins that are embedded on cell membranes, through which the ions flux and control biological

behaviors. We study the effects of the permanent charge interacting with boundary conditions,

on the selectivity of the flux species. The permanent charge is a biological structure typically

embedded on a thin neck of an ionic channel. The MMPDE method is critical due to the sharp

2



Debye Layers at the interface between the permanent charge regions and uncharged regions of

ion channels caused by the permanent charge. Non-trivial behavior emerges as one varies the

permanent charge from small to large, in particular, bifurcations of flux ratios are revealed, showing

the rich phenomena of permanent charge effects.

3



Chapter 2

An Adaptive Moving Mesh Method

Abstract

For many differential equation models from the physical and biological backgrounds, sharp

layers and lack of regularity of the solution are a crucial feature and can cause great chal-

lenges in numerical computation. In this chapter, we describe an adaptive mesh strategy to

increase the accuracy of the solutions. This strategy is a moving mesh partial differential

equation (MMPDE) which dynamically relocates the mesh points to increase the density in

regions where the solution has fine scale details that require high spatial resolution. A notable

strength of this method is the ability to resolve not regular solutions in general geometries

including non-convex and non-simply connected geometries. The discussion in this chapter

is all based on simplicial meshes.

2.1 Characterization of M-Uniform Meshes

In this section, we describe the mathematical characterization of an adaptive mesh, based on an

idea that an optimal adaptive mesh is essentially a uniform mesh under a specific metric tensor.

2.1.1 Uniform meshes in Euclidean Norm

We first recall the definition of a uniform mesh. Denote the mesh as Th = {K}, where each K refers

to a single element. Then Th is a uniform mesh if and only if it satisfies these two conditions:

4



(i) All elements of Th have the same size, i.e.,

|K|= |Ω|
N

, ∀K ∈Th,

where N is the mesh size, |Ω| is the volume of the domain, and IKI is the volume of the

element K.

(ii) Each element of Th has the same shape. More specifically, for ∀K ∈ Th, K is similar to a

reference element K̂.

For more specific mathematical description of (ii), note that K and K̂ ∈ Rd are similar if and only

if

‖xK
i −xK

0 ‖= θ
1
2

K‖ξ
K
i −ξ

K
0 ‖, i = 1, · · · ,d (2.1)

where xK
i , i = 0, 1, · · · , d are the coordinates of the vertices of K, and ξ K

i , i = 0, 1, · · · , d are the

coordinates of the corresponding vertices of K̂, θK is a constant determined by element K. Let

FK : K̂→ K be the linear affine mapping that satisfies FK(ξ
K
i ) = xK

i . Thus,

F ′K(ξ
K
i −ξ

K
0 ) = xK

i −xK
0 , i = 1, · · · ,K (2.2)

where F ′K is the Jacobian matrix of FK . We then have

‖xK
i −xK

0 ‖2 = (xK
i −xK

0 )
T (xK

i −xK
0 ) = (ξ K

i −ξ
K
0 )T F ′TK F ′K(ξ

K
i −ξ

K
0 ).

On the other hand, by (2.1) we have

‖xK
i −xK

0 ‖2 = θK‖ξ K
i −ξ

K
0 ‖2 = θK(ξ

K
i −ξ

K
0 )T (ξ K

i −ξ
K
0 ),

5



we then have

(ξ K
i −ξ

K
0 )T F ′TK F ′K(ξ

K
i −ξ

K
0 ) = θK(ξ

K
i −ξ

K
0 )T (ξ K

i −ξ
K
0 ), i = 1, · · · ,d. (2.3)

Let

EK = [ξ K
1 −ξ

K
0 , · · · ,ξ K

d −ξ
K
0 ],

as ξ K
i −ξ K

0 , i = 1, · · · ,d, are linearly independent, EK is invertible. By (2.3) we have

ET
K F ′TK F ′KEK = θKET

K EK.

As EK is invertible, this is equivalent to

F ′TK F ′K = θKI,

where I is the d dimensional identity matrix.

Corollary 2.1.0.1. For any symmetric positive definite matrix Ad×d ,

tr(A)
d
≥ det(A)

1
d .

The equality only holds if A = θ I, where θ is a constant.

Corollary 2.1.0.1 is simply a result of arithmetic mean and geometric mean inequality.

As F ′K is a full rank matrix, F ′KFK is a symmetric positive definite matrix, and the condition (ii)

of the uniform meshes can be rewritten as

(ii) For ∀K ∈Th and the reference element K̂, the Jacobian Matrix of FK satisfies

1
d

tr(F ′TK F ′K) = det(F ′TK F ′K)
1
d .

6



2.1.2 Uniform mesh under a general metric M.

The MMPDE method employs a metric tensor M=M(x) to specify the size, shape, and orientation

of the mesh elements throughout the domain. Here we always assume that M is symmetric and

uniformly positive definite on Ω.

The main idea of the MMPDE method is viewing any adaptive mesh Th as a uniform one under

the metric tensor M.

The distance between two points x and x+dx under the metric tensor M is defined as

‖(x+dx)−x‖M = ‖dx‖M =
√

dxTM(x)dx,

and the volume of K under metric M is

|K|M =

ˆ
K

√
det(M(x))dx.

We now derive the mathematical characterization corresponding to (i), (ii) in Section 2.1.1 in

metric M. In practice, we choose M as a piecewise function for simplicity:

MK :=
1
|K|

ˆ
K
M(x)dx.

It is easy to see that (i) becomes

|K|det(MK)
1
2 =

σh

N
, K ∈Th

where

σh = ∑
K
|K|det(MK)

1
2 .

Corresponding to the similarity condition for a uniform mesh as described in (ii), similar to (2.3),

7



we obtain

‖xK
i −xK

0 ‖2
M = (xK

i −xK
0 )

TMK(xK
i −xK

0 ) = (ξ K
i −ξ

K
0 )T F ′TK MKF ′K(ξ

K
i −ξ

K
0 )

= θK(ξ
K
i −ξ

K
0 )T (ξ K

i −ξ
K
0 ), i = 1, · · · ,d.

As ξ K
i −ξ K

0 , i = 1, · · · , d are linearly independent,

F ′TK MKF ′K = θKI.

According to Corollary 2.1.0.1, this is equivalent to
1
d

tr(F ′TK MKF ′K) = det(F ′TK MKF ′K)
1
d .

We now conclude the conditions for M-uniform mesh:

Theorem 2.1.1 (Huang and Russel [36]). The mesh Th is uniform in metric tensor M if and only

if satisfies the following two conditions

Equidistribution: |K|det(MK)
1
2 =

σh

N
, K ∈Th (2.4a)

Alignment:
1
d

tr(F ′TK MKF ′K) = det(F ′TK MKF ′K)
1
d , K ∈Th, (2.4b)

where

σh = ∑
K
|K|det(MK)

1
2 . (2.5)

In practice, a typical option of M is the piecewise constant function

MK = det(I +α
−1
h |HK|)−

1
d+4 (I +α

−1
h |HK|), K ∈Th (2.6)

where HK is an approximate Hessian of uh on element K that is obtained using a least-squares

Hessian recovery technique, and uh is the finite element linear interpolation of the solution u.

More specifically, |HK| = Qdiag (|λ1|, . . . , |λd|)QT , with the eigen-decomposition of HK being

8



Qdiag(λ1, . . . ,λd) QT , and αh is chosen such that

∑
K∈Th

|K|
√

det(MK) = 2|Ω|.

The choice (2.6) of M is known to be optimal with respect to the L2 norm of the linear interpolation

error [33], with the expectation that the mesh points will be concentrated around the regions where

the recovered Hessian of uh has a large determinant.

2.2 Meshing energy functions

In this section, we describe a variational approach to derive the M-uniform mesh. In practice, it

is rather challenging to solve for the nonlinear equations (2.4a) and (2.4b). Instead, we obtain the

physical meshes by minimizing energy functionals corresponding to (2.4a) and (2.4b), which is

rather easy to implement.

Lemma 2.2.1 (Huang and Russel [36]). For any p > 1, there holds

(
∑
K

|K|det(MK)
1
2

σh

(
1

|K|det(MK)
1
2

)p) 1
p

≥∑
K

|K|det(MK)
1
2

σh

(
1

|K|det(MK)
1
2

)
, (2.7)

where σh is as defined in Equation (2.5), and the equality holds if and only if

|K|det(MK)
1
2 ≡ constant, ∀K ∈Th. (2.8)

Proof. Let q > 0 such that 1
p +

1
q = 1. Let

fK =
|K|det(MK)

1
2p

σh

1

|K|det(MK)
1
2
, gK =

(
|K|det(MK)

1
2

σh

) 1
q

.
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Thus, the right-hand-side of (2.7) is ∑
K

fKgK , and the left-hand-side is (∑
K
( fK)

p)
1
p (∑

K
(gK)

q)
1
q , where

(
∑
K
(gK)

q

) 1
q

=

∑
K

(
|K|det(MK)

1
2

σh

) 1
q∗q


1
q

=

∑
K
|K|det(MK)

1
2

σh


1
q

= 1.

Thus, by Höder’s inequality, (2.7) holds. The equality only holds when f = [ fK]K∈Th and g =

[gK]K∈Th are linearly dependent, i.e., when
fK

gK
≡ constant, which is equivalent to

|K|det(MK)
1
2 ≡ constant, ∀K ∈Th.

By Lemma 2.2.1, minimizing the left-hand-side of (2.7) will result in a mesh Th that satisfies

(2.8), which is the equidistribution condition of M-uniform mesh. With a slight modification of

(2.7), we can define an equidistribution energy function as

Ieq(Th) = d
d p
2 ∑

K
|K|det(MK)

1
2

(
1

|K|det(MK)
1
2

)p

= d
d p
2 ∑

K
|K|det(MK)

1
2 (det(F ′K)

−1 det(MK)
− 1

2 )p, (2.9)

where we have used det(F ′K)det(K̂) = det(K), and thus det(F ′K) = |K|/|K̂| = |K| (for simplicity,

we set |K̂|= 1). For purpose of computation, we have dropped σh from (2.7), which is essentially

a Riemann sum of the volume of the domain under the metric tensor M, and only depends on the

mesh weakly.

We now derive an energy function for the alignment condition (2.4b). By Corollary 2.1.0.1, we

know that
1
d

tr((F ′TK )−1M−1
K (F ′K)

−1)≥ det((F ′TK )−1M−1
K (F ′K)

−1)
1
d ,

10



or
1
d

tr((F ′TK )−1M−1
K (F ′K)

−1)≥ (det(F ′K)
−1 det(MK)

− 1
2 )

2
d . (2.10)

Therefore, by minimizing the left-hand-side of (2.10) for all K ∈ Th, we can obtain a mesh Th

that satisfies (2.4b). To obtain the same physical dimension as (2.9), we now define the alignment

energy function by rewriting (2.10) as

Iali(Th) = ∑
K
|K|det(MK)

1
2 [tr((F ′TK )−1M−1

K (F ′K)
−1)

d p
2 −d

d p
2 (det(F ′K)

−1 det(MK)
− 1

2 )p]. (2.11)

Note that the second term of (2.11) is the same as (2.9). We now combine Ieq(Th) and Iali(Th) with

a weight θ ∈ (0,1), and obtain a combined energy function for equidistribution condition ([32])

and alignment condition as

Ih(Th) = θ Iali(Th)+(1−θ)Ieq(Th),

which can be rewritten as

Ih(Th) =θ∑
K
|K|det(MK)

1
2 tr((F ′TK )−1M−1

K (F ′K)
−1)

d p
2

+(1−2θ)d
d p
2 ∑

K
|K|det(MK)

1
2 (det(F ′K)

−1 det(MK)
− 1

2 )p. (2.12)

It is easy to see that (2.12) is a Riemann sum of a continuous functional, which has been shown to

be coercive and polyconvex and has a minimizer when p > 1 and 0 < θ ≤ 1
2 . In practice, typical

choices for p and θ are p = 3/2 and θ = 1/3.

2.3 MMPDEs: x-Formulation and ξ -Formulation

In this section we describe the moving mesh equation (MMPDE), which is derived by a gradient

descent method to minimize the energy function (2.12). We use here a discrete approach of [34]

for the MMPDE method.

11



Let Ec = [ξ1− ξ0, · · · ,ξd − ξ0], where ξ0, ..,ξd are vertices of the reference element K̂. For

simplicity, we neglect the supscript K̂. Accordingly, Let EK = [xK
1 − xK

0 , · · · ,xK
d − xK

0 ], where xK
0 ,

· · · , xK
d are the corresponding vertices of the element K. Thus F ′KEc = EK , i.e.,

F ′K = EKE−1
c . (2.13)

Thus F ′K is a function of xK
i , i = 0, · · · , d.

By the definition of metric tensor, MK is also a function of xK . Thus the mesh energy function

(2.12) is a function of the mesh nodes, i.e., Ih = Ih(x1, · · · ,xNv), where Nv is the number of total

mesh nodes of Th, and xi, i = 1, · · · , Nv, are the coordinates of the mesh nodes.

To minimize Ih, one need to find solutions to the nonlinear equations

∂ Ih

∂xi
= 0, i = 1, · · · ,Nv (2.14)

where ∂ Ih/∂xi is the row vector

∂ Ih

∂xi
= [

∂ Ih

∂x(1)i

, · · · , ∂ Ih

∂x(d)i

].

However, (2.14) is typically highly nonlinear and has non-smooth derivatives, thus the conver-

gence of the Newton’s method is not guaranteed.

A gradient descent method to minimize Ih has been developed as

∂xi

∂ t
=−Pi

τ

(
∂ Ih

∂xi

)T

, i = 1, . . . ,Nv, (2.15)

where Pi is a positive function chosen to keep (2.15) invariant under the scaling transformation of

M, and τ > 0 is a positive parameter used to adjust the response time of mesh movement to the

12



changes in M. One can see that

∂ Ih

∂ t
=−

Nv

∑
i=1

Pi

τ

∂ Ih

∂xi
(

∂ Ih

∂xi
)T =−

Nv

∑
i=1

Pi

τ
‖∂ Ih

∂xi
‖2

2 ≤ 0.

Equation (2.15) is called the MMPDE mesh equation for x-formulation.

It has been proven in [35] that the mesh governed by (2.15) stays non-singular if it is non-

singular initially. This result holds for any convex or concave domain in any dimension and for

the semi-discrete form (2.15) or a fully-discrete form of (2.15). (In the latter case, the time step is

required to be sufficiently small but not diminishing.)

The drawback of this formulation is that M, as a function of x, needs to be constantly updated

during the integration, which can be costly especially in higher dimensions. In order to avoid this

disadvantage, the ξ -formula of MMPDE method has been derived.

For the ξ -formula, we shall use three meshes, the physical mesh Th = {x1, . . . ,xNv}, the com-

putational mesh Tc,h = {ξ1, . . . , ξNv}, and the reference computational mesh T̂c,h = {ξ̂1, . . . , ξ̂Nv},

with all of them having the same number of elements and the same connectivity.

Typically, T̂c,h is chosen to be a mesh as uniform as possible (under the Euclidean Metric) and

kept fixed throughout the computation. The computational mesh Tc,h has been included only for

computational purpose. For the ξ -method, the mesh energy function (2.12) is still used, with FK

being the affine mapping from Kc ∈ Tc,h to K ∈ Th, where Kc is the mesh element in Tc,h that is

corresponding to K.

In the ξ -formula, Ih is a function of both Th and Tc,h:

Ih = Ih(Th,Tc,h)≡ Ih(x1, · · · ,xNv,ξ1, · · · ,ξNv).

The ξ -formula performs the gradient descent method with respect to the computational mesh Tc,h:

∂ξi

∂ t
=−Pi

τ

(
∂ Ih

∂ξi

)T

, i = 1, · · · ,Nv. (2.16)
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This equation, with proper modifications for the boundary vertices (to keep them on the bound-

ary), is integrated from the initial mesh T̂c,h. The Matlab function ode15s, a Numerical Differen-

tiation Formula based integrator, is used for this purpose in our computation. Since T n
h is fixed

during the integration, there is no need of constantly reassigning the metric tensor M. The new

computational mesh obtained in this way is denoted by T n+1
c,h . Notice that T n

h and T n+1
c,h form a

correspondence, i.e., T n
h = Ψh(T

n+1
c,h ). Then, the new physical mesh at tn+1 is defined as

T n+1
h = Ψh(T̂c),

which can be approximated readily by linear interpolation.

2.4 Scalar-by-matrix differentiation

The partial derivatives ∂ Ih/∂xi and ∂ Ih/∂ξi, i = 1, · · · , Nv, in (2.15) and (2.16), can be found

analytically using scalar-by-matrix differentiation.

We first rewrite the energy function (2.12) in the form:

Ih = ∑
K
|K|G((F ′K)

−1,det(F ′K)
−1,M(xK),xK),

where xK is short for (xK
0 , · · · ,xK

d ), K ∈Th. By (2.13), F ′K is a function of both ξK = (ξ K
0 , · · · ,ξ K

d )

and xK .

As the metric tensor Mk(x) is a function of xK , the partial derivative ∂ Ih/∂xi involves the

partial derivatives of G with respect to all these four arguments. On the other hand, the formula

of the derivative ∂ Ih/∂ξi is relatively simpler, as partial derivatives with respect to the last two

arguments are not involved.

For the purpose of deriving ∂ Ih/∂ξi, i = 1, · · · , Nv, we introduce the scalar-by-matrix notation.

For simplicity, we only describe the formulation of ∂ Ih/∂ξi. ∂ Ih/∂xi can also be derived using the

tools described in this section.
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Definition 2.4.1. The derivative of f with respect to a matrix Am×n is defined as

∂ f
∂A

=


∂ f

∂A11
· · · ∂ f

∂Am1
...

...
...

∂ f
∂A1n

· · · ∂ f
∂Amn

 . (2.17)

We now introduce some properties of scalar-by-matrix differentiation.

Lemma 2.4.2. (1) (The Chain Rule) Let t be a scalar variable involved in the matrix Am×n, we

then have
∂ f
∂ t

= ∑
i, j

∂ f
∂Ai j

= tr(
∂ f
∂A

∂A
∂ t

).

(2) Assume A, B and C are squared matrix, then

tr(AT ) = tr(A),

tr(AB) = tr(BA),

tr(ABC) = tr(CAB) = tr(BCA).

(3) For any square matrix A which involves a scalar variable t, there hold

∂ tr(A)
∂ t

= tr(
∂A
∂ t

),

∂ det(A)
∂A

= det(A)A−1,

∂ det(A)
∂ t

= tr(det(A)A−1 ∂A
∂ t

).

Recall that for ξ -method, FK is the affine mapping from Kc ∈Tc,h to K ∈Th. Let

EK = [xK
1 −xK

0 , · · · ,xK
d −xK

0 ], Êk = [ξ K
1 −ξ

K
0 , · · · ,ξ K

d −ξ
K
0 ],

where ξ0, · · · , ξd are the vertices of Kc, and x0, · · · , xd are the corresponding vertices of K, then

15



the Jacobian matrix F ′K = E−1
K ÊK .

We first show the following observation: for each K ∈Th, there holds

∂G
∂ ÊK

=
∂G

∂
[
ξ K

1 −ξ K
0 , · · · ,ξ K

d −ξ K
0
] =


∂G

∂ξ K
1

...

∂G
∂ξ K

d

 . (2.18)

The last step follows from a simple scalar chain rule. Let ξ K
i, j be the jth component of ξ K

i , then the

jth component of ∂G
∂ξ K

i
is the scalar partial derivative

(
∂G
∂ξ K

i
)[ j] =

∂G
∂ξ K

i, j
.

As all elements of ÊK is independent from ξ K
i, j except the element ξ K

i, j−ξ K
0, j,

∂G
∂ξ K

i, j
=

∂G
∂ (ξ K

i, j−ξ K
0, j)

∂ (ξ K
i, j−ξ K

0, j)

∂ξ K
i, j

=
∂G

∂ (ξ K
i, j−ξ K

0, j)
,

thus (2.18) holds. Moreover,

∂G
∂ξ K

0
=

d

∑
i=1

∂G
∂ (ξ K

i −ξ K
0 )

∂ (ξ K
i −ξ K

0 )

ξ K
0

=−
d

∑
i=1

∂G
∂ (ξ K

i −ξ K
0 )

=−eT ∂G
∂ ÊK

,

where

e =


1
...

1

 .
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We have derived the matrix formula for ∂G/∂ξ K
i for each individual K ∈Th, i = 0, · · · , d:



∂G
∂ξ K

0

∂G
∂ξ K

1
...

∂G
∂ξ K

d


=

−eT

Id×d

 ∂G
∂ ÊK

. (2.19)

It remains to find ∂G
∂ ÊK

. Let t be any element of ÊK , and J = (F ′K)
−1 = ÊK(EK)−1, thus G can

be rewritten as

G =
√

det(MK)(tr(JM−1
K JT ))

d p
2 −d

d p
2
√

det(MK)

(
det(J)√
det(MK)

)p

.

By the train rule in Lemma 2.4.2,

∂G
∂ t

= tr(
∂G
∂J

∂J
∂ t

)+
∂G

∂ det(J)
∂ det(J)

∂ t

= tr(E−1
K

∂G
∂J

∂ ÊK

∂ t
)+det(E−1

K )
∂G

∂ det(J)
∂ det(ÊK)

∂ t

= tr(E−1
K

∂G
∂J

∂ ÊK

∂ t
)+det(E−1

K )
∂G

∂ det(J)
tr(det(ÊK)Ê−1

K
∂ ÊK

∂ t
)

= tr((E−1
K

∂G
∂J

+det(E−1
K )

∂G
∂ det(J)

det(ÊK)Ê−1
K )

∂ ÊK

∂ t
). (2.20)

Note that as t is any element of the matrix ÊK , the matrix ∂ ÊK
∂ t is a matrix with all elements 0 except

the one corresponding to t being 1. By consequently choosing different t, one can observe from

the Lemma 2.4.2 that (2.20) indicates that

∂G
∂ ÊK

= E−1
K

∂G
∂J

+
∂G

∂ det(J)
det(ÊK)

det(EK)
Ê−1

K . (2.21)

In order to complete the formula (2.21), the partial derivatives ∂G/∂J (a matrix-valued func-
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tion) and ∂G/∂ det(J) can be found as

∂G
∂J

= d pθ
√

det(MK)(tr(JM−1
K JT ))

d p
2 −1M−1

K JT ,

∂G
∂ det(J)

= p(1−2θ)d
d p
2 det(MK)

− 1−p
2 det(J)p−1.

We can see that if we choose P = det(M)
p−1

2 , the ξ -method (2.16) is invariant under scaling

transformation of M. For complete formula of the ξ -method, we can rewrite (2.16) as

∂ξi

∂ t
=

Pi

τ
∑

K∈ωi

|K|vK
iK , i = 1, . . . ,Nv (2.22)

where ωi is the set of all the elements having xi as a vertex and vK
iK is the local velocity contributed

by the element K to vertex xi, with iK denoting the local index of xi in K. The local velocities on

element K are given by rewriting (2.19):


(vK

1 )
T

...

(vK
d )

T

=−E−1
K

∂G
∂ det(J)

− ∂G
∂ det(J)

det(ÊK)

det(EK)
Ê−1

K , vK
0 =−

d

∑
i=1

vK
d . (2.23)

We note that the MMPDE equation (2.22) is already discrete in space (and thus no further

spatial discretization is needed). Moreover, its computation mainly involves the calculation of the

edge matrices and matrix inversion and multiplications.

2.5 Finite element discretization on a moving mesh

We now describe the finite element approximation on a moving mesh. Suppose we want to inte-

grate the PDE fron time instant 0 to T . Assume that we are given time instants

0 = t0 < t1 < .. . < tn f = T,
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the physical mesh T n
h , the numerical solution un

h(·, t), and the linear test functions vn
h(·, t) ∈V 0

h (t)

defined thereon at tn, where V 0
h (t) is the span of the linear basis functions that are compactly

supported on Th(t) at t. The computation alternates between the integration of the PDE and the

mesh equation. The new physical mesh T n+1
h is first generated by an MMPDE-based strategy

described in Section 2.3 and then the physical PDEs are integrated from tn to tn+1. The procedure

is repeated until T is reached. The number of the mesh elements and the mesh connectivity are

fixed throughout the computation.

To integrate the finite element approximation on a moving mesh, it is necessary to treat the

mesh as functions of time t. Denote the coordinates of the vertices of T n
h and T n+1

h by xn
j and

xn+1
j , j = 1,2, . . . ,Nv, respectively. We define the coordinates of the vertices between tn and tn+1

as

x j(t) =
t− tn

tn+1− tn
xn+1

j +
tn+1− t
tn+1− tn

xn
j , j = 1, . . . ,Nv, t ∈ [tn, tn+1].

We use the fourth order parabolic PDE system (4.1) to be described in Section 4.1 as an exam-

ple. Consider the fourth-order PDE:



ut =−ε2∆v− 1
(1+u)2 , (x, t) ∈Ω× (0,T )

v = ∆u, (x, t) ∈Ω× (0,T )

u = v = 0, (x, t) ∈ ∂Ω× (0,T )

u(x,0) = v(x,0) = 0, x ∈Ω.

(2.24)

The corresponding mesh at time t is denoted by Th(t). Then, a linear finite element approxi-

mation for (2.24) is to find uh(·, t), vh(·, t) ∈V 0
h (t), for t ∈ (t0,T ], such that


ˆ

Ω

∂uh

∂ t
ψ dx− ε

2
ˆ

Ω

∇vh ·∇ψ dx+
ˆ

Ω

ψ

(1+uh)2 dx = 0, ∀ψ ∈V 0
h (t)

ˆ
Ω

vhψ dx+
ˆ

Ω

∇uh ·∇ψ dx = 0, ∀ψ ∈V 0
h (t).

(2.25)
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Notice that linear basis functions and the linear finite element function space are time dependent.

For simplicity, we assume that the first Nvi out of Nv vertices are interior vertices. Denoting the

linear basis function associated with the vertex x j by ψ j(·, t), V 0
h (t) can be expressed as

V 0
h (t) = span{ψ1(·, t), . . . , ψNvi

(·, t)}.

With the linear basis functions being time dependent, the main difference between the integra-

tion of (2.25) from that on a fixed mesh lies in the term ∂uh
∂ t . To see this, expressing uh as

uh(x, t) =
Nvi

∑
i=1

ui(t)ψi(x, t), (2.26)

and differentiating it with respect to time, we get

∂uh(x, t)
∂ t

=

Nvi

∑
i=1

dui

dt
ψi(x, t)+

Nvi

∑
i=1

ui(t)
∂ψi(x, t)

∂ t
.

It has been proven (e.g., see [36]) that

∂ψi

∂ t
=−∇ψi · Ẋ, a.e. in Ω

where the mesh velocity Ẋ is defined as

Ẋ =
Nv

∑
i=1

ẋiψi(x, t),

and the term ẋi denotes the nodal mesh speed. Combining the results above, we get

∂uh

∂ t
=

Nvi

∑
i=1

dui

dt
ψi−∇uh · Ẋ.

Inserting these into (2.25) and taking ψ = ψ j successively, we can rewrite (2.25) into a system
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of differential-algebraic equations in the form as


M(X)U̇ = ε2B(X)V+F(X, Ẋ,U),

0 = M(X)V+B(X)U,

(2.27)

where X is a vector representing the location of the vertices, M(X) is the mass matrix, B(X) is

the stiffness matrix and U, V are vectors of the unknown nodal values. This system for U and V

is integrated from tn to tn+1 using the fifth-order Radau IIA method (e.g., see Hairer and Wanner

[29]), and the time step is chosen by a standard selection procedure [29] with a two-step error

estimate of Gonzalez-Pinto et al. [28].

2.6 Conclusions

In this chapter, we have developed a precision numerical tool for exploring the sharp interfaces in

physical models. Specifically, we have developed an adaptive moving mesh PDE method which

dynamically relocates the mesh points to provide additional resolution in spatial regions with fine

scale solution behavior. This method can automatically detect and resolve different types of dy-

namic features such as sharp interfaces and multiple forming singularities. The method can also

accommodate the complex geometries and topological defects, as to be shown in Section 4.3.

It should be pointed out that a number of other moving mesh methods have been developed in

the past and there is a vast literature in the area. The interested reader is referred to the books or

review articles [2, 3, 11, 36, 75] and references therein.
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Chapter 3

Selection of Regularization Parameter in the

Ambrosio-Tortorelli Approximation of the Mumford-Shah

Functional for Image Segmentation

Abstract

Image segmentation is an important tool of simplifying, characterizing, and preprocessing

images in the area of computer vision. It is a process of partitioning a given image into

multiple components. It has been widely studied via different approaches, and in this chapter,

I would like to describe and investigation of the variational approach. In the variational

approach, an optimal image is the minimizer of an image energy functional. An important

generalization of such functionals is the Mumford-Shah functional (1989). The Ambrosio-

Tortorelli functional is a phase-field approximation of the Mumford-Shah functional that

has been widely used for numerical computation. It has the advantages of being easy to

implement, maintaining the segmentation ability, and Γ-converging [1] to the Mumford-Shah

functional as the regularization parameter goes to zero.

However, it has been observed in actual computation that the segmentation ability of the

Ambrosio-Tortorelli functional varies significantly with different values of the parameter

and it even fails to Γ-converge to the original functional for some cases. In this chapter,

an asymptotic analysis on the gradient flow equation of the Ambrosio-Tortorelli functional is

presented. The asymptotic analysis shows that the functional can have different segmentation

behavior for small but finite values of the regularization parameter, and explains why it loses
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its segmentation ability as the parameter goes to zero. A selection strategy for the regular-

ization parameter and a scaling procedure for the solution are devised based on the analysis.

Numerical results show that they lead to good segmentation of the Ambrosio-Tortorelli func-

tional for real images.

3.1 The Mumford-Shah Functional and the Amboriso-Tortorelli Functional

Segmentation for a given image is a process to find the edges of objects and partitions the image

into separate parts that are relatively smooth. It has been achieved in mathematics by minimizing

functionals and multiple theories have been developed. One of the most commonly used function-

als, proposed by Mumford and Shah [61], takes the form

E[u,Γ] =
α

2

ˆ
Ω\Γ
|∇u|2dx+βH1(Γ)+

γ

2

ˆ
Ω

(u−g)2dx, (3.1)

where Ω is a rectangular domain, α , β , and γ are positive parameters, g is the grey level of the

input image, u is the target image, Γ denotes the edges of the objects in the image, and H1(Γ) is the

one-dimensional Hausdorff measure. Upon minimization, u is close to g, ∇u is small on Ω\Γ, and

Γ is as short as possible. An optimal image is thus close to the original one and almost piecewise

constant. Moreover, the terms in (3.1) represent different and often conflicting objectives, making

its minimization a challenging topic to study.

In order to avoid mathematical difficulties caused by the H1(Γ) term, De Giorgi et al. [17]

propose an alternative functional as

F [u] =
α

2

ˆ
Ω

|∇u|2dx+βH1(Su)+
γ

2

ˆ
Ω

|u−g|2dx, (3.2)

where Su is the jump set of u. They show that (3.2) has minimizers in SBV (Ω) (the space of special

functions of bounded variation) and is equivalent to (3.1) in the sense that if u ∈Ω is a minimizer

of (3.2), then (u,Su) is a minimizer of (3.1).
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Although it is a perfectly fine functional to study in mathematics, (3.2) is not easy to implement

in actual computation due to the fact that the jump set of the unknown function and its Hausdorff

measure are extremely difficult, if not impossible, to compute. To avoid this difficulty, Ambrosio

and Tortorelli [1] propose a regularized version as

ATε [u,φ ] =
α

2

ˆ
Ω

(φ 2 + kε)|∇u|2dx+β

ˆ
Ω

(
ε|∇φ |2 + 1

4ε
(1−φ)2

)
dx+

γ

2

ˆ
Ω

|u−g|2dx, (3.3)

where ε > 0 is the regularization parameter, kε = o(ε) is a parameter used to prevent the functional

from becoming degenerate, and φ is a new unknown variable which ideally is an approximation of

the complement of the characteristic function for the jump set of u, i.e.,

φ(x)≈ χu(x)≡

 0, if x ∈ Su

1, if x /∈ Su.
(3.4)

They show that ATε has minimizers u ∈ SBV (Ω) and φ ∈ L2(Ω) and Γ-converges to F(u). Γ-

convergence, first introduced by Ennio de Giorgi, is a concept that guarantees the minimizer of a

regularized functional converges to that of the original functional as the regularization parameter

goes to 0.

The first finite element approximation for the functional ATε is given by Bellettini and Cos-

cia [6]. They seek linear finite element approximations uh and φh to minimize

ATε,h[uh,φh] =
α

2

ˆ
Ω

(φ 2
h + kε)|∇uh|2dx+β

ˆ
Ω

(
ε|∇φh|2 +

1
4ε

πh((1−φh)
2)

)
dx

+
γ

2

ˆ
Ω

πh((uh−gε)
2)dx, (3.5)

where πh is the linear Lagrange interpolation operator and gε is a smooth function which converges

to g in the L2 norm as ε → 0. They show that ATε,h Γ-converges to F(u) when the maximum

element diameter is chosen as h = o(ε). It should be pointed out that Feng and Prohl [23] have es-

tablished the existence and uniqueness of the solution to an initial-boundary value problem (IBVP)
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of the gradient flow equation of (3.3) and proven that a finite element approximation of the IBVP

converges to the continuous solution as the mesh is refined.

It is noted that the Ambrosio-Tortorelli functional (3.3) is actually a phase-field approximation

of the Mumford-Shah functional (3.1). Phase-field modeling has been used widely in science

and engineering to handle sharp interfaces, boundaries, and cracks in numerical simulation of

problems such as dendritic crystal growth [44, 80], multiple-fluid hydrodynamics [56, 73, 74,

83], and brittle fracture [9, 24, 60]. It employs a phase-field variable φ , which depends on a

regularization parameter ε describing the actual width of the smeared interfaces, to indicate the

location of the interfaces. Phase-field modeling has the advantage of being able to handle complex

interfaces without relying on their explicit description. Mathematically, phase-field models such

as (3.3) have been studied extensively (e.g., see [1]) for Γ-convergence. However, few studies have

been published for the role of the regularization parameter in actual simulation. It is a common

practice that a specific value of ε is used without discussion or explanation in phase-field modeling.

Even worse, it has been observed [59, 66, 79] that a phase-field model for brittle fracture simulation

does not Γ-converge as ε → 0 and ε can be interpreted as a material parameter since its choice

influences the “critical stress”. More recently, ε has been chosen as a material parameter based on

theoretical and experimental analyses of a simplified phase-field model [63].

3.2 Behavior of the minimizer of ATε as ε → 0 for continuous g

As smaller ε values do not increase the segmentation capability of (3.3) as expected, we would like

to study the effects of the regularization parameter in (3.3). In this section, We consider the gradient

flow equation of the functional ATε subject to a homogeneous Neumann boundary condition and

carry out an asymptotic analysis for the solution of the corresponding IBVP as ε → 0. We present

numerical results that complement the asymptotic analysis in Section 3.2.2.
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3.2.1 An asymptotic analysis

We first explain why we consider g as a continuous function. In image segmentation, the function g

represents an image and is given the grey-level values at the pixels. Generally speaking, the values

of g at points other than the pixels are needed in finite element computation. These values are

computed commonly through (linear) interpolation of the values at the pixels. This means that g is

treated as a continuous function in finite element computation and such a treatment is independent

of the regularization parameter. Thus we consider g as a continuous function and want to study

how the minimizer of ATε behaves as ε → 0.

To this end, we consider the gradient flow equation of functional (3.3),

ut = α∇ · ((kε +φ 2)∇u)− γ(u−g),

φt = 2βε∆φ −α|∇u|2φ + β

2ε
(1−φ),

t > 0, x ∈Ω (3.6)

subject to the homogeneous Neumann boundary condition

∂u
∂n

=
∂φ

∂n
= 0 for x ∈ ∂Ω (3.7)

and the initial condition

u(x,0) = u0(x), φ(x,0) = φ
0(x), x ∈Ω. (3.8)

This IBVP has been studied and used to find the minimizer of (3.3) (as a steady-state solution)

by a number of researchers. For example, Feng and Prohl [23] have established the existence and

uniqueness of the solution of the IBVP and proven that a finite element approximation converges

to the continuous solution as the mesh is refined.

By assumption, g ∈ C0(Ω). Then we can expect that the solution u and φ of the IBVP is

smooth. To see the behavior of the solution as ε → 0, we consider the asymptotic expansion of u
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and φ as

u = u(0)+ εu(1)+ ε
2u(2)+ · · ·, (3.9)

φ = φ
(0)+ εφ

(1)+ ε
2
φ
(2)+ · · ·. (3.10)

Inserting these into (3.6), we get

u(0)t + εu(1)t +O(ε2) = α∇ ·
[(

o(ε)+(φ (0)+ εφ
(1)+o(ε))2

)
∇(u(0)+ εu(1)+O(ε2))

]
− γ(u(0)+ εu(1)+O(ε2)−g), (3.11)

φ
(0)
t + εφ

(1)
t +O(ε2) = 2βε(∆φ

(0)+ ε∆φ
(1)+O(ε2))

−α

∣∣∣∇u(0)+ ε∇u(1)+O(ε2)
∣∣∣2 (φ (0)+ εφ

(1)+O(ε2))

+
β

2ε
(1−φ

(0)− εφ
(1)−O(ε2)), (3.12)

where we have used kε = o(ε). Collecting the O(1) terms in (3.11), we have

u(0)t = α∆u(0)− γ(u(0)−g), in Ω. (3.13)

Similarly, collecting the O(1/ε) terms and O(1) terms in (3.12) we get

β

2
(1−φ

(0)) = 0, φ
(0)
t =−α|∇u(0)|2φ

(0)− β

2
φ
(1).

From these we obtain

φ = 1− ε
2α

β
|∇u(0)|2 +O(ε2). (3.14)

Like u, u(0) also satisfies the homogeneous Neumann boundary condition. Since g ∈ C0(Ω), it

can be shown (e.g., see [22]) that u(0) has continuous second-order derivatives and thus ∇u(0) is

bounded. Combining this with (3.14) we conclude that φ → 1 as ε → 0. Since the boundaries
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between different objects in u are indicated by φ = 0, this implies that u is a single object and there

is no segmentation as ε → 0 when g is continuous. Moreover, u and thus u(0) are kept close to g

and we can expect ∇u(0) to be large in the places where ∇g is large. From (3.14) we can see that,

for small but not infinitesimal ε , φ can become zero at places where ∇g is large. In this case, the

functional will have good segmentation.

We have seen so far that the choice of the regularization parameter in (3.3) can be crucial for

image segmentation: different values of ε can lead to very different segmentation behavior of the

functional and its segmentation ability will disappear as ε → 0.

It should be emphasized that the above observation is not in contradiction with the theoretical

analysis made in [1] for the Γ-convergence and segmentation ability of the functional (3.3). In

[1], these properties are analyzed for u ∈ SBV (Ω), implicitly implying that u is discontinuous in

general. The above analysis has been made under the assumption that g, and thus u are continuous

although they may have large gradient from place to place.

It is instructive to see some transient behavior of the solution to the gradient flow equation. To

simplify, we drop the diffusion term in the second equation in (3.6) and get

φt =−α|∇u|2φ +
β

2ε
(1−φ). (3.15)

It has been proven in [23] that the solution of (3.6) satisfies 0≤ φ ≤ 1. From this we see that the first

term on the right-hand side of (3.15) is nonpositive, which will make φ decrease, and the second

term is nonnegative, making φ increase. These two terms will compete and reach an equilibrium

state. Moreover, if φ = 1, we have φt = −α|∇u|2 ≤ 0, meaning that as long as |∇u| 6= 0, the first

term will decrease φ until φt = 0 is reached. Similarly, if φ = 0, we have φt =
β

2ε
> 0, which

means φ will increase until the system reaches its equilibrium. The equilibrium values of φ can be

obtained by setting the right-hand side of (3.15) to be zero, i.e.,

φ ≈ β

β +2εα|∇u|2
. (3.16)
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Thus, the equilibrium value of φ is around 1 for smooth regions where ∇u is small and around 0

on edges where ∇u is large.

3.2.2 Numerical results: behavior of (u,φ) as ε → 0

In this section, we present numerical results which support the analysis in Section 3.2.1. The

moving mesh finite element method described in Section 2 has been applied.

We choose two analytical functions for g, one of which is of one dimension, and another of two

dimensions, to simulate the grey-level values of images. In particular, the sharp jumps in g model

the object edges in the image.

Example 3.2.1 (1D hyperbolic tangent). In this example, we take

g = 0.5(1+ tanh(100(x−0.5))), x ∈ (0,1) (3.17)

which has a sharp interface at x = 0.5. This is an oversimplified 1-d image example, with the sharp

interface simulating the edge of an object in an image. An ideal segmentation should sharpen this

jump while smoothing out the regions divided by the jump.

We take N = 200, α = 0.01, β = 10−3, γ = 10−3, and kε = 10−9. The computed solution at

three time instants for ε = 0.1, 0.01, and 10−5 is shown in Fig. 3.1.

The first row of Fig. 3.1 shows the evolution of u and φ for ε = 0.1. One can see that the jump

is not sharpened and u is smoothed out on the whole domain as time evolves. This indicates that the

Ambrosio-Tortorelli functional with ε = 0.1 does not provide a good segmentation. The result is

shown for a smaller ε = 0.01 on the second row of the figure. As time evolves, the jump is getting

sharper and u becomes piecewise constant essentially, an indication for good image segmentation.

However, when ε continues to decrease, as shown on the last row (ε = 10−5) of Fig. 3.1, the jump

disappears for the time being, φ approaches to 1, and u becomes smooth over the whole domain.

This implies that the Ambrosio-Tortorelli functional loses its segmentation ability for very small

ε , consistent with the analysis in Section 3.2.
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It is interesting to see the transient behavior of φ . From the simplified equation (3.15), we

have φt =−α|∇u|2φ initially due to the initial condition φ = 1. Thus, we expect that φ decreases

initially and this decrease is more significant in the regions where ∇u is larger. This is confirmed in

the numerical results; see Fig. 3.1(a,d,g). As time evolves, the system reaches an equilibrium state

and φ is approximately given by (3.16). When ε is not too small and ∇u is sufficiently large at

some places, then φ can become close to zero at the places and this yields a good segmentation; see

the second row of Fig. 3.1. However, when ε is too small, φ will essentially become 1 everywhere

and the functional loses its segmentation ability (cf. the third row of Fig. 3.1).
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Figure 3.1: Example 3.2.1. The computed solution uh and φh at three time instants for various values of ε .
No scaling has been used on g and u.
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Example 3.2.2 (2D hyperbolic tangent). In this example, we choose

g =0.49
[

2+ tanh(50(
√
(x−0.5)2 +(y−0.5)2−0.05))

− tanh(50(
√

(x−0.5)2 +(y−0.5)2 +0.05))
]
, (x,y) ∈ (0,1)× (0,1)

which models a circle, being close to 0 on the circle and approximately 1 elsewhere. For the rea-

sons to be explained in Section 3.3, u and g in the IBVP (3.6) are scaled in this example according

to (3.19).

We take u0 = g, φ 0 = 1, N = 2×50×50, α = 10−3, γ = 10−5, β = 10−2, and kε = 10−10. The

numerical results obtained with ε = 10−3 and ε = 10−7 are shown in Figs. 3.2 and 3.3, respectively.

Fig. 3.2 shows that the Ambrosio-Tortorelli functional with ε = 10−3 makes a good segmen-

tation. The evolution of φ is given on the first row, and φ deceases rapidly to 0 along the circle at

t = 7. The image of the circle is clear as shown on the third row. However, the situation changes

when a smaller ε is used. As shown in Fig. 3.3 with ε = 10−7, the segmentation ability disap-

pears. As t increases, φ becomes close to 1 in the whole domain, failing to identify the circle. In

the same time, the image of u blurs out. As for Example 3.2.1, the above observation is consis-

tent with the analysis in Section 3.2, that is, when g is continuous, the segmentation ability of the

Ambrosio-Tortorelli functional varies for small but finite ε and disappears as ε → 0.

3.3 Selection of the regularization parameter and scaling of u and g

3.3.1 Selection of the Regularization Parameter

From the analysis in Section 3.2 and the examples in the previous section, we have seen that it is

crucial to choose a proper ε for the Ambrosio-Tortorelli functional to produce a good segmentation

when g is continuous. To see how to choose ε properly, we recall that φ is given in (3.14) for small
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Figure 3.2: Example 3.2.2. Evolution of the solution for ε = 10−3. The first, second, and third rows show
the evolution of φ , the moving mesh, and the image of u, respectively.

ε . We want to have φ = 0 on object edges. Taking φ = 0 in (3.14) we get

ε =
β

2α|∇u(0)|2
,

where u(0) is the solution of (3.13) subject to a homogeneous Neumann boundary condition. Since

u(0) is completely determined by its initial value g and an objective of the Ambrosio-Tortorelli

functional is to make u (and thus u(0)) close to g, it is reasonable to replace u(0) by g in the above

formula, i.e.,

ε =
β

2α|∇g|2
.
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Figure 3.3: Example 3.2.2. Evolution of the solution for ε = 10−7. The first, second, and third rows show
the evolution of φ , the moving mesh, and the image of u, respectively.

Since |∇g| varies from place to place and ε is a constant, in our computation we replace the former

with (|∇g|max + |∇g|min)/2 and have

ε =
β

2α ((|∇g|max + |∇g|min)/2)2 . (3.18)

To demonstrate this choice of ε , we apply it to Example 3.2.1 and obtain ε = 0.008. The

numerical result obtained with the same initial condition and parameters (other than ε) is shown in

Fig. 3.4. One can see that this value of ε leads to a good segmentation of the image.

3.3.2 Scaling of g and u

Our experience shows that (3.18) works well when the difference in ∇g between the objects and

their edges is sufficiently large. However, when the change of ∇g is small, the Ambrosio-Tortorelli
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Figure 3.4: Example 3.2.1. The evolution of u and φ for ε = 0.008 (determined by (3.18)). No scaling has
been used on u and g.

functional can still fail to produce a segmentation of good quality. To avoid this difficulty, we

propose to scale u and g in (3.6), i.e., u→ Lu and g→ Lg for some parameter L ≥ 1. This will

make the change of ∇g from place to place more significant. Moreover, the first equation of (3.6)

will stay invariant. The second equation becomes

φt = 2βε∆φ −L2
α|∇u|2φ +

β

2ε
(1−φ),

where the second term on the right-hand side is made larger, helping decrease φ . We choose

L = max
{

1,
|∇g|cr

|∇g|max

}
, (3.19)

where |∇g|cr is a parameter. Generally speaking, the larger |∇g|cr (and L) is, the more likely the

segmentation works, but this will also make (3.6) harder to integrate. We take |∇g|cr = 3×103 (by

trial and error) in our computation, unless stated otherwise.

To demonstrate the effects of the scaling, we recompute Example 3.2.1 with u0 = g = 0.5(1+

tanh(20(x− 0.5))), which has a less steep jump at x = 0.5 than the function (3.17). Results with

and without scaling are shown in Fig. 3.5. It can be seen that scaling improves the segmentation

ability of the Ambrosio-Tortorelli functional.
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Figure 3.5: Example 3.2.1 with g = 0.5(1+ tanh(20(x− 0.5))) and u0 = g. ε is chosen as in (3.18) and
other parameters are the same as in Example 3.2.1. No scaling is used for the top row while the scaling with
(3.19) for u and g is used for the bottom row.

3.3.3 Segmentation for real images

To further demonstrate the effects of the selection strategy (3.18) and the scaling (3.19) we present

results obtained for four real images. The results are shown in Figs. 3.6, 3.8, and 3.10 and the

corresponding meshes are shown in Figs. 3.7, 3.9, and 3.11, respectively. In these four experiments,

N = 2×70×70, α = 10−3, γ = 10−5, β = 10−2, and kε = 10−10 are used. A random field in the

range (−0.25,0.25) is added to g as well as u0. One can observe that the selection strategy (3.18)

for the regularization parameter significantly improves segmentation for all cases.

3.4 Conclusions

The Mumford-Shah functional has been widely used for image segmentation. Its Ambrosio-

Tortorelli Approximation has been known for its relative ease in implementation, segmentation

ability, and Γ-convergence to the Mumford-Shah functional as the regularization parameter ε goes

to zero. The segmentation ability is based on the assumption that the input image g is discontinu-

ous across the boundaries between different objects, and this discontinuity must be maintained in
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(a) t = 0.005, ε = 10−5 (b) t = 0.16, ε = 10−5 (c) t = 0.6, ε = 10−5

(d) t = 0.005, ε is chosen by (3.18) (e) t = 0.16, ε is chosen by (3.18) (f) t = 0.6, ε is chosen by (3.18)

Figure 3.6: A comparison of the image segmentation with different ε values.

the limit of ε→ 0 during numerical computation to retain the Γ-convergence and the segmentation

ability for infinitesimal ε (e.g., see [6]). However, the maintenance of discontinuity in g is often

forgotten and g is treated implicitly as a continuous function in actual computation. As a conse-

quence, it has been observed that the segmentation ability of the Ambrosio-Tortorelli functional

varies significantly with different values of ε and the functional can even fail to Γ-converge to the

original functional for some cases. Moreover, there exist very few published numerical studies on

the behavior of the functional as ε → 0.

We have presented in Section 3.2 an asymptotic analysis on the gradient flow equation of the

Ambrosio-Tortorelli functional as ε → 0 for continuous g. The analysis shows that the functional

can have different segmentation behavior for small but finite ε and eventually loses its segmentation

ability for infinitesimal ε . This is consistent with the existing observations in the literature and the

numerical examples in one and two spatial dimensions presented in Section 3.2.2 and Section 3.3.3.

Based on the analysis, we have proposed a selection strategy for ε and a scaling procedure for u and

g in Section 3.3. Numerical results with real images show that they lead to a good segmentation of
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(a) t = 0.005, ε = 10−5
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(b) t = 0.6, ε = 10−5
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(c) t = 0.6, ε = 10−5
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(d) t = 0.005, ε is chosen by (3.18)
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(e) t = 0.16, ε is chosen by (3.18)
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(f) t = 0.6, ε is chosen by (3.18)

Figure 3.7: The meshes corresponding to Fig. 3.6.

the Ambrosio-Tortorelli functional.

Finally, we recall that the Ambrosio-Tortorelli functional is a special example of phase-field

modeling for image segmentation. We hope that the analysis and the selection strategy for the

regularization parameter presented in this work can also apply to other phase-field models. We are

specially interested in the phase-field modeling of brittle fracture (e.g., see [9, 24, 60]).
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(a) t = 0.002, ε = 10−7 (b) t = 0.008, ε = 10−7 (c) t = 0.2, ε = 10−7

(d) t = 0.002, ε is chosen by (3.18) (e) t = 0.008, ε is chosen by (3.18) (f) t = 0.2, ε is chosen by (3.18)

Figure 3.8: Evolution of the image.
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(a) t = 0.002, ε = 10−7
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(b) t = 0.008, ε = 10−7
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(c) t = 0.2, ε = 10−7
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(d) t = 0.002, ε is chosen by (3.18)
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(e) t = 0.008, ε is chosen by (3.18)
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(f) t = 0.2, ε is chosen by (3.18)

Figure 3.9: The meshes corresponding to Fig. 3.8.
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(a) t = 0.00013, ε = 10−7 (b) t = 0.08, ε = 10−7 (c) t = 0.3, ε = 10−7

(d) t = 0.00013, ε is chosen by (3.18) (e) t = 0.08, ε is chosen by (3.18) (f) t = 0.3, ε is chosen by (3.18)

Figure 3.10: Evolution of the image.
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(a) t = 0.00013, ε = 10−7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) t = 0.08, ε = 10−7
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(c) t = 0.3, ε = 10−7
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(d) t = 0.00013, ε is chosen by (3.18)
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(e) t = 0.08, ε is chosen by (3.18)
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(f) t = 0.3, ε is chosen by (3.18)

Figure 3.11: The meshes corresponding to Fig. 3.10.
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Chapter 4

Contact Sets in Two Dimensional Models of

Elastic-Electrostatic Deflection Models

Abstract

The micro-electro mechanical systems capacitor is a key component of modern nanotechnol-

ogy [76, 77, 5]. It features a deformable elastic membrane held fixed above a rigid substrate.

The model for the membrane deflection is a fourth-order semi-linear partial differential equa-

tion and the contact events occur in this system as finite time singularities. Our primary re-

search interest is in the dependence of the contact set on model parameters and the geometry

of the domain. An increase in mesh density is necessary where the solution has fine scale

detail, particularly in the vicinity of forming singularities. As such, the moving mesh partial

differential equation (MMPDE) method has been applied for the numerical simulation. To

complement this computational tool, a singular perturbation analysis is used to develop a ge-

ometric theory for predicting the possible contact sets. As will be shown later in this chapter,

the validity of these two approaches are demonstrated with a variety of test cases.
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4.1 Introduction

The fourth-order parabolic partial differential equation system 4.1 models the deflection of a micro-

electro mechanical systems (MEMS) capacitor [52, 65, 64]:



ut =−ε2∆2u− 1
(1+u)2 , (x, t) ∈Ω× (0,T );

u = ∆u = 0, (x, t) ∈ ∂Ω× (0,T );

u(x,0) = 0, x ∈Ω;

(4.1)

where x = (x,y) ∈Ω can be a variety of bounded two dimensional geometries, and z = u(x) is the

non-dimensional vertical deflection. When an electric potential is applied between the deflecting

plates, the top surface deforms towards the substrate (see Fig. 4.1a). In equation (4.1), the pa-

rameter ε quantifies the relative importance of electrostatic and elastic forces in the system. If the

restorative elastic forces are too weak, the attractive Coulomb forces between the two surfaces will

bring them into physical contact. More specifically, if ε is close to 0 in (4.1), the second term on

the right is dominating, decreasing u close to its limit −1 (but never reaches −1) in a finite time

T , while ut(x, t) diverges as t → T . This event, called touchdown or snap-through, can be useful

or deleterious to operation, depending on the design of particular MEMS. The mechanism of the

pull-in phenomenon has been studied extensively and many references can be found in the reviews

[5, 85]. The design and operation of MEMS can be aided by placing physical limiters or con-
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(a) Schematic diagram. (b) A MEMS device (source: [71])

Figure 4.1: A MEMS device (right) and a schematic (left) around which models are formulated.
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straints at locations where contact between the two membranes is more likely [45]. These limiters

can prevent damage to the device that could occur when the two surfaces meet (see Fig. 4.1b). In

addition, they allow for bistability in the system by creating stable large deflection configurations

[52, 50, 69, 46, 47].

Therefore, it is important to know at which location(s) in Ω singularities can form. In the

one-dimensional case with Ω = (−1,1), equation (4.1) can form one singularity at the origin or

two singularities located symmetrically about the origin, depending on the particular value of ε

[51]. In the physically relevant two-dimensional scenario, the details of the geometry Ω and the

dependence on the parameter ε combine to make the set of possible singularity locations much

more complex [53, 49].

Touchdown is a very rapid process in which energy is rapidly focussed in small spatial regions

of Ω. This process is manifested in the governing equations (4.1) by a finite time quenching

singularity. The term quenching refers to the fact that u(x, t) is finite at the point of singularity

while ut(x, t) diverges as t → T . Theoretical results on the quenching behavior of fourth-order

parabolic equations such as (4.1) have established conditions under which quenching may occur

[51, 48], studied the local form of the profile near singularity [53, 51, 10, 26] and given upper

and lower estimates of the singularity time [25, 51, 67]. For reviews on the extensive literature on

blow-up/quenching for parabolic PDEs, see [27] and references therein.

In previous computational studies of singularity formation in second-order PDEs, moving mesh

methods based on parabolic Monge-Ampére (PMA) discretization have been successfully em-

ployed in one-dimensional [14] or rectangular two-dimensional domains [12, 15, 13]. The PMA

moving mesh approach has recently [16] been extended to the fourth-order PDE problem (4.1)

by constructing a high regularity mapping between the computational and physical domains. The

study [16] was based on a finite difference discretization of the PMA equation that restricted com-

putations to rectangular domains. As will be shown later, the MMPDE approach is a robust method

that can resolve the singularities of (4.1) in general non-simply connected two-dimensional regions

such as those utilized in real MEMS devices (cf. Fig. 4.1b).
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4.2 A geometric theory for singularity set prediction

In this section, we outline a geometric theory for predicting the location of singularities based on a

singular perturbation analysis of (4.1) as ε → 0. We use asymptotic analysis in the limit as ε → 0

to establish a prediction of the singularity set of (4.1). This theory explains the sensitivity of the

contact set and the multiplicity of touchdown points on the parameter ε and the geometry Ω.

We find that singularities are more likely to form on a set SΩ ⊂ Ω known as the skeleton.

The skeleton of Ω is defined roughly as the collection of points x ∈ Ω at which inward facing

normal vectors meet at points equidistant to ∂Ω. This geometric construction is a unique minimal

representation of the domain Ω and is widely used in computer vision to store two- or three-

dimensional objects [58].

4.2.1 Asymptotic analysis.

In the leading order analysis of (4.1) as ε → 0, it is assumed that the term −ε2∆2u is negligible

almost everywhere, except in the vicinity of ∂Ω. This suggests that the solution is largely spatially

uniform satisfying u(x, t)∼ u0(t), where u0(t) is the solution of the initial value problem

du0

dt
=− 1

(1+u0)2 , t ∈ (0,T0), u0(0) = 0. (4.2a)

The solution of (4.2a) is

u0(t) =−1+(1−3t)
1
3 , t ∈

(
0,

1
3

)
. (4.2b)

This gives a leading order approximation of the singularity time as T0 =
1
3 . We remark upon the

quenching phenomenon whereby u0 is finite as t → T−0 while u0t diverges. Clearly (4.2b) does

not satisfy the boundary condition u = 0 on ∂Ω which must be enforced in a boundary layer.

To analyze this layer for a general geometry, we introduce an orthogonal coordinate system (ρ,s)

where ρ = dist(x,∂Ω)> 0, while s, for x∈ ∂Ω, denotes the arc-length along ∂Ω. In this coordinate
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system, (4.1) becomes

ut =−ε
2
[

∂ρρ −
κ

1−κρ
∂ρ +

1
1−κρ

∂s

(
1

1−κρ
∂s

)]2

u− 1
(1+u)2 , ρ > 0; (4.3a)

u =

[
∂ρρ −

κ

1−κρ
∂ρ +

1
1−κρ

∂s

(
1

1−κρ
∂s

)]
u = 0, ρ = 0, (4.3b)

where κ = κ(s) is the curvature of ∂Ω. To analyze the boundary layer in this new coordinate

system, we introduce the stretched variables

u = f (t)w(z), z =
ρ

φ(t;ε)
, φ(t;ε) = ε

1
2 f (t)

1
4 , f (t) =−u0(t) = 1− (1−3t)

1
3 . (4.4)

The variables (4.4) are substituted into (4.3) and the resulting system is expanded in the form

w(z) = w0(z)+φ w1(z)+ · · · . (4.5)

Collecting terms at each order gives a sequence of problems for {w0,w1, . . .}. At leading order we

have

w0zzzz−
z
4

w0z +w0 =−1, z > 0; (4.6a)

w0 = w0zz = 0, z = 0; w0 ∼−1, z→ ∞. (4.6b)

While the solution of (4.6) can be developed in terms of hypergeometric functions, the resulting

expression is quite cumbersome and not particularly useful. The most important property is the

behavior of w0(z) as z→ ∞ which can be derived from a WKB analysis [49]. In particular,

w0(z)∼−1+Ae−ωz
4
3 sin[

√
3ωz

4
3 +ψ]+ · · · , z→ ∞, (4.6c)

where ω = 3 · 2− 11
3 and A,ψ are constants. The crucial observation from the limiting behavior

(4.6c) is the oscillatory decay for z large. This phenomenon is a manifestation of the lack of a
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maximum principle for fourth-order equations. In particular, w0(z) attains its global minimum at a

finite value, which can be approximated numerically as z0 ≈ 2.89 - see Fig. 4.2.

At the next order, we apply the decomposition w1(z,s) = κ(s)w̄1(z) and find that w̄1(z) satisfies

w̄1zzzz−
z
4

w̄1z +
5
4

w̄1 = 2w0zzz, z > 0; (4.7a)

w̄1 = w̄1zz−w0z = 0, z = 0; w̄1 ∼ 0, z→ ∞. (4.7b)

The two profiles w0(z) and w̄1(z) are shown in Fig. 4.2.
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Figure 4.2: The two profiles w0(z) and w̄1(z) satisfying (4.6) and (4.7).

The lack of monotonicity in the profiles of the stretching boundary layer lowers the value of

the solution at certain points. By superimposing the boundary layer solution with the flat solution

u0(t), and subtracting the overlap term, the following global solution at a particular x ∈Ω is

u(x, t) = u0(t)−u0(t)
N

∑
j=1

(
1+w0

(
|x−y j|

φ

)
+φ κ(y j)w̄1

(
|x−y j|

φ

)
+ · · ·

)
, (4.8)

where φ = ε
1
2 |u0(t)|

1
4 . For each x ∈ Ω, the boundary points {y1, . . . ,yN} ∈ ∂Ω are those with

inward facing normal vectors that pass through x, i.e., points such that the straight line between

x and y j is contained in Ω and meets ∂Ω orthogonally. The quantity κ(y j) is the local boundary
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curvature at the point y j. The asymptotic expansion (4.8) is valid for φ � 1 which corresponds

to short times t � 1. In this regime, the solution is composed of a flat central region coupled to

propagating boundary interfaces.

4.2.2 The skeleton of the domain.

We now use the asymptotic solution (4.8) to develop a predictive theory for how the geometry Ω

and ε combine to select possible singularity locations. As shown in Fig. 4.2, the profile w0(z) has a

unique global minimum at z = z0 whose value can be estimated numerically as z0 ≈ 2.89. In light

of this, and the arguments of the solution (4.8), the set of points

ω(t) = {x ∈Ω | dist(x,∂Ω) = z0φ(t;ε)} (4.9)

are particularly important. The condition (4.9) describes a curve of points (cf. Fig. 4.3a) that extend

inwards from ∂Ω a distance z0φ(t;ε) and along which the solution of (4.1) is, to first order in φ , at

a local minimum. In computer vision literature [58], this set is known as the firefront. In a radially

(a) ω(t) (b) SΩ

Figure 4.3: The two sets ω(t) and SΩ on which touchdown may occur.

symmetric scenario for which the boundary is of uniform curvature, the singularities may form

simultaneously along a ring of points [81, 49]. For domains whose boundaries have non-uniform

curvature, the effect is to promote touchdown at certain points rather than along entire curves.

This can be deduced from the asymptotic solution (4.8) by seeking a regular expansion solution
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zmin = z0 +φz1 + · · · of the equation ∇u = 0. This reveals that

zmin = z0−αφ
1
N

N

∑
j=1

κ(y j)+O(φ 2), α =− w̄1z(z0)

w0zz(z0)
≈ 0.3533. (4.10a)

The corresponding asymptotic prediction of the minimum is found from (4.8) to be

u(x, t) |z=zmin= u0(t)−u0(t)
N

∑
j=1

(
1+w0(z0)+φ κ(y j)w̄1(z0)+ · · ·

)
, (4.10b)

where numerically we determine the values

w0(z0) =−1.0822, w̄1(z0) =−0.1186. (4.10c)

Since w̄1(z0) < 0, we conclude that the solution will take lower values at points of ω(t) whose

contributing boundary points correspond to maxima of the boundary curvature κ(s).

As t increases and the curve ω(t) propagates, it may self-intersect at some time t = tS. If

this occurs, the solution minimum (4.10b) goes through a distinct change since the number of

contributing boundary points, N, increases. For example, in the scenario displayed in Fig. 4.3, the

set ω(t) eventually intersects the point x ∈Ω which receives boundary contributions from the two

points {y1,y2} and the number of boundary contributions increases from N = 1 to N = 2. These

points are important as multiple boundary contributions arrive simultaneously and superimpose

to lower the value of (4.10b) further - this set of points is called the skeleton of the domain and

denoted SΩ. The time tS is then known as the skeleton arrival time and can be defined explicitly as

tS = inf
t≥0
{t | ∃x ∈ SΩ, dist(x,∂Ω) = z0φ(t;ε)} . (4.11)

As indicted in Fig. 4.3b, a point x ∈ SΩ if it has at least two closest boundary points, i.e.,

dist(x,∂Ω) = dist(x,y j) for {y1, . . . ,yN} ∈ ∂Ω and N ≥ 2. The skeleton SΩ ⊂ Ω is a minimal

representation of the domain Ω. They are homotopic to one another so that each Ω defines a
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unique SΩ and vice-versa [58]. A particular point x∈ SΩ can potentially be associated with multiple

boundary distances in which case the most pertinent one is the shortest as that is where the trough

associated with w0(z) will reach first.

In summary the asymptotic analysis makes the following prediction for the touchdown set. Let

SΩ be the skeleton of the domain, tS ≥ 0 be the skeleton arrival time and define T to be maximum

global existence time of (4.1). Then, the leading order asymptotic analysis predicts the following

the dichotomy of possibilities:

1. If T < tS, the singularities form on ω(t) at point(s) corresponding to maximum boundary

curvature.

2. If T ≥ tS, the singularities form on SΩ at points x ∈ SΩ satisfying dist(x,∂Ω) = φ(T ;ε).

4.3 Numerical results

In this section, we demonstrate the efficacy of adaptive numerical methodology and the asymptotic

predictions on a variety of examples. For each of the domains Ω considered, we first calculate the

skeleton SΩ of the region defined in Sec. 4.2.2. The numerical integration of the PDE system (4.1)

is performed until minx∈Ω uh =−0.99.

Example 4.3.1 (Rectangular domain). We first consider the rectangular domain Ω = (−1,1)×

(−0.8,0.8).

In Fig. 4.4 we show Ω and the skeleton SΩ together with numerically obtained touchdown

points for the parameter range ε ∈ (10−4,10−1). In Fig. 4.4a and Fig. 4.4b results are shown for

meshes of size N = 6240 (40×39) and N = 15680 (70×56), respectively. We observe the location

of touchdown is robust as the mesh size increases. The set SΩ meets the boundary ∂Ω and so the

skeleton arrival time satisfies tS = 0.

As predicted by the analytical skeleton, there are four singularities close to each corner for

small ε . As ε increases, the four singularities move inwards along SΩ merging first into two
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(a) Skeleton with mesh size
N = 6240 (40×39).
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(b) Skeleton with mesh size
N = 15680 (70×56).

Figure 4.4: Skeleton for rectangular domain (solid blue) with numerically obtained touchdown locations (red
dots). Figs. 4.4a and 4.4b show results obtained with mesh sizes N = 6240 (40×39) and N = 15680 (70×
56) respectively.
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(a) Mesh at touchdown,
ε = 0.02.
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(b) Mesh at touchdown,
ε = 0.068.
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(c) Mesh at touchdown,
ε = 0.1.

(d) Solution at touchdown, ε = 0.02. (e) Solution at touchdown, ε = 0.068. (f) Solution at touchdown, ε = 0.1.

Figure 4.5: The profiles u(x, t) of (4.1) and associated meshes very close to singularity for ε = 0.02, ε =
0.068 and ε = 0.1 in the rectangle (−1,1)× (−0.8,0.8). The mesh size is N = 15680 (70×56).
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(a) Mesh at touchdown,
ε = 0.02.
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(b) Mesh at touchdown,
ε = 0.068.
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(c) Mesh at touchdown,
ε = 0.1.
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(d) Mesh at touchdown,
ε = 0.02.
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(e) Mesh at touchdown,
ε = 0.068.
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(f) Mesh at touchdown,
ε = 0.1.

Figure 4.6: The profiles u(x, t) of (4.1) and associated meshes very close to singularity for ε = 0.02,
ε = 0.068 and ε = 0.1 in the rectangle (−1,1)× (−0.8,0.8). The top row is obtained by mesh size
N = 6240 (40×39), and the bottom row is obtained by mesh size N = 15680 (70×56).

singularities and, as ε increases, eventually into one. The final mesh and solution for values ε =

0.02, 0.068 and 0.1 are shown in Fig. 4.5. In each case shown in Figs. 4.5d-4.5f, the numerical

algorithm correctly locates the position and multiplicity of the forming singularities and increases

local mesh density in their vicinity to accurately resolve the solution. To demonstrate that the

solution is robust with respect to grid refinement, we present the final mesh for ε = 0.02, 0.068

and 0.1 obtained with mesh size N = 6240 (40×39) and N = 15680 (70×56) in Fig. 4.6.

In comparing SΩ with the numerical touchdown points, we see that at smaller values of ε (for

which the singularities are confined to the corners) the set SΩ accurately predicts the touchdown set.

At larger values of ε , in particular those at which the four singularities merge into two, we observe

that SΩ has reduced accuracy in predicting the contact set. This reduction in the quality of the

prediction is not surprising considering the asymptotic formulation relies on the peaks being well

separated at touchdown which is not valid for larger ε values. Nevertheless, the skeleton theory

gives a qualitatively accurate description of the possible touchdown locations and multiplicities.

In Fig. 4.7 we display the evolution of the solution to (4.1) for the fixed value ε = 0.02 and

several temporal snapshots with the accompanying mesh. For this value of ε , touchdown is ob-
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served at four points simultaneously. At short times (Fig. 4.7a), the computational mesh is adapted

to the propagating boundary layers emanating around ∂Ω. By the touchdown time (Fig. 4.7f), the

mesh generation algorithm allocates resources between each of the four forming singularities and

the sharp ridges that join them.
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(a) Mesh at t = 0.002.
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(b) Mesh at t = 0.163.
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(c) Mesh at t = 0.312.

(d) Solution at t = 0.002. (e) Solution at t = 0.163. (f) Solution at t = 0.312.

Figure 4.7: Evolution of the solution of (4.1) and the associated mesh for ε = 0.02 in the rectangular domain
for three time instants.

Example 4.3.2 (Rectangular domain with a hole). Here we consider the rectangular domain Ω =

(−1,1)× (−0.8,0.8), with a circular hole of radius 0.2, centered at (0.2,0.3). In this example Ω

is non-convex.

For this example, we have found that it is important to keep a level of mesh concentration

around the hole. To this end, we modify the metric tensor as

M̃K =MK +β I, (4.12)

where MK is defined as

β =

e4(
√

(x−0.2)2+(y−0.3)2−0.2)−1+
2

max
K∈Th

√
det(MK)


−1

.
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Notice that for (x,y) on the circle, this gives

M̃K =MK +
1
2

max
K∈Th

√
det(MK) I,

which will give a level of mesh concentration around the circle comparable to that in the regions

with largest
√

det(MK). The exponential term makes β decrease sufficiently fast such that the

mesh elements are not over concentrated near the circle.

The skeleton SΩ of the domain which is displayed in Fig. 4.8. In this example SΩ is formed

from straight line segments that originate from each corner and are linked by four curved segments

contorted around the hole. The expressions for the parabolic segments of SΩ are found analytically

by considering the points that are equidistant from the boundary of the outer rectangle and the

perturbing hole.

The presence of the hole breaks the symmetry of the domain. In simulations, we observe that

this precludes touchdown at multiple points simultaneously, except for certain fixed values of ε .

Simultaneous touchdown at multiple points, as observed in the previous example of the rectangle

with no hole, relies on the symmetric properties of the domain. In the absence of such symmetries,

single point touchdown is the expectation for solutions of equation (4.1). However, as is clear from

the solution profile of (4.1) for ε = 0.044 shown in Fig. 4.9e, the solution may be forming multiple

troughs. When there are multiple troughs present, the singularity location will be selected by the

trough which has the lowest value as the singularity is approached. In terms of applications to

MEMS, each of these troughs can form contacts between the two surfaces and are important to

track. We remark that SΩ describes a set of potential points at which the asymptotic solution has a

local minimum and therefore considers all potential contact locations.

One interesting observation from the skeleton and singularity points shown in Fig. 4.8 is that

the track of the first touchdown point does not vary continuously with ε . We observe that the first

singularity point switches between branches several times suggesting that multiple simultaneous

singularities are possible only at fixed values of ε . In Figs. 4.9 and 4.10, single point touchdown
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Figure 4.8: Skeleton of rectangular domain hole (blue solid line) and numerically computed touchdown
locations (red dots). The points marked 1− 9 correspond to the first touchdown location for solutions of
(4.1) for values ε = 10−4, 2.662× 10−3, 5.2× 10−3, 7.78× 10−3, 0.01, 0.036, 0.044, 0.051, and 0.06,
respectively. The solution and mesh for Mark 5 (ε = 0.01), Mark 7 (ε = 0.044), and Mark 9 (ε = 0.06) are
shown in Fig. 4.9.

is observed, however, other troughs in the solution are also very close to singularity which helps

explain the sensitivity of the touchdown set on ε .
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(a) Mesh at touchdown, ε = 0.01.
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(b) Mesh at touchdown, ε = 0.044.
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(c) Mesh at touchdown, ε = 0.06.

(d) Solution at touchdown, ε = 0.01. (e) Solution at touchdown, ε = 0.044. (f) Solution at touchdown, ε = 0.06.

Figure 4.9: Solutions of (4.1) and meshes at singularity for values ε = 0.01,0.044,0.1 in the rectangular
domain with hole.

Example 4.3.3 (Asymmetric Domain). We consider the asymmetric domain given in polar coor-

dinates by

(x,y) = r(θ)(cosθ ,sinθ), r(θ) = 1+(0.15sin2θ +0.3cos3θ). (4.13)
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(a) Mesh at t = 0.035.
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(b) Mesh at t = 0.275.
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(c) Mesh at t = 0.311.

(d) Solution at t = 0.035. (e) Mesh at t = 0.275. (f) Mesh at t = 0.311.

Figure 4.10: The evolution of the solution for ε = 0.01. The mesh size is N = 11658.
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Figure 4.11: Skeleton and touchdown points for the non-symmetric domain (4.13). The points marked 1−4
correspond to the first touchdown location for solutions of (4.1) for values ε = 0.02,0.024,0.04,0.092,
respectively.

In Fig. 4.11 the skeleton SΩ for the domain is displayed along with the first touchdown locations

that arise from the parameter values ε ∈ (0.02,0.1). As ε increases, the singularity moves along

each of the three branches of the skeleton before becoming fixed near the center of the domain. As

with Example 4.3.2, we see that the track of the first touchdown location does not vary continuously

with ε . For the parameter values ε = 0.02(Mark 1),0.024(Mark 2),0.04(Mark 3),0.092(Mark 4)

marked on Fig. 4.11, we show snapshots of the evolution of the solution in Figs. 4.12-4.15, respec-

tively.
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In Fig. 4.12f the solution of (4.1) close to singularity is shown for ε = 0.02 and three distinct

troughs in the solution are clear. The trough with the lowest value, and the one that contacts first, is

centered at Mark 1 in Fig. 4.11. For the slightly increased parameter value ε = 0.024 the solution

close to touchdown is shown in Fig. 4.13f. At this value, the qualitative solution features look very

similar, however, the center of the lowest trough is now shifted to Mark 2 on a separate branch of

SΩ. At the value ε = 0.04, with final profile shown in Fig. 4.14f, the lowest point has shifted again

and is now centered on the third arm of SΩ at Mark 3 on Fig. 4.11. These observations suggest that

in this asymmetric case simultaneous two point touchdown can occur for particular fixed values of

ε in the ranges (0.02,0.024) and (0.024,0.4).

At the larger value ε = 0.092, the snapshots in Fig. 4.15 show that the three peaks merge very

quickly in the evolution of the solution. By the time the solution of (4.1) is close to singularity at

this value of ε , the solution has only one trough which is centered close to the geometric center of

the domain at Mark 4 in Fig. 4.11.

In each of the intermediary evolution plots in Figs. 4.12-4.15, the mesh is seen to be accurately

capturing the firestorm set ω(t). In this solution regime, the adaptive algorithm allocates grid

resolution to the vicinity of ∂Ω in order to capture this expanding boundary layer. The third

snapshot of the solution is taken very close to touchdown and the mesh has adapted to increase the

resolution in the vicinity of the forming singularities. This shows the numerical method capturing

multiple types of dynamic fine scale solution modalities.

4.4 Conclusions

In this chapter, we have presented an investigation into the influence of geometry and parameter

values on the location of singularities in a fourth-order PDE system modeling microscopic elastic-

electrostatic deflections. The MMPDE method can automatically detect and resolve different types

of dynamic features such as sharp interfaces and multiple forming singularities, with the advantage

of being capable of accommodating the complex geometries and topological defects common in

the design of real MEMS devices (cf. Fig. 4.1b).
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(a) Mesh at t = 0.010.
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(b) Mesh at t = 0.232.
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(c) Mesh at t = 0.310.

(d) Profile at t = 0.010. (e) Profile at t = 0.232. (f) Profile at t = 0.310.

Figure 4.12: Three snapshots of the evolution of the solution of (4.1) and the mesh for ε = 0.02 (Mark 1 in
Fig. 4.11). The mesh size is N = 5244.

To complement this numerical tool, we have used an asymptotic analysis to obtain the skeleton

- a reduced representation of the domain which gives an estimate of the potential singularity loca-

tions. This analysis also reveals that the sensitive dependence of the contact set on the equation

parameters and the shape of the domain Ω is due to a non-monotone boundary layer profile. The

superposition of the solution along rays emanating from ∂Ω lowers the value of the solution at
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(a) Mesh at t = 0.009.
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(b) Mesh at t = 0.190.
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(c) Mesh at t = 0.309.

(d) Mesh at t = 0.009. (e) Mesh at t = 0.190. (f) Mesh at t = 0.309.

Figure 4.13: Three snapshots of the evolution of the solution of (4.1) and the mesh for ε = 0.024 (Mark 2
in Fig. 4.11). The mesh size is N = 5244.
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(a) Mesh at t = 0.009.
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(b) Mesh at t = 0.280.
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(c) Mesh at t = 0.303.

(d) Solution at t = 0.009. (e) Solution at t = 0.280. (f) Solution at t = 0.303.

Figure 4.14: The evolution of the solution of (4.1) and the mesh for ε = 0.04. The mesh size is N = 5244.

certain points in the domain which then become more likely to be singularity locations. We find

that the skeleton gives a good qualitative description of the possible contact sets. The quantitative

accuracy of the skeleton is variable and in particular we find it to be diminished in non-simply

connected domains. For engineers seeking to prevent the two surfaces coming into physical con-

tact through the placement of deflection limiters [45], the skeleton provides a good estimate of the

points at which these should be centered.
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(a) Mesh at t = 0.004.
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(b) Mesh at t = 0.250.
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(c) Mesh at t = 0.303.

(d) Solution at t = 0.004. (e) Solution at t = 0.250. (f) Solution at t = 0.303.

Figure 4.15: The evolution of the solution of (4.1) and the mesh for ε = 0.092. The mesh size is N = 5244.
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Chapter 5

Permanent Charge Effects on Ionic Flow: a Numerical Study of

a Flux Ratio and Bifurcation

Abstract
Ionic flow, transportation of ions through ion channels across cell membrane, carries electric

signals for cells to communicate with each other. The permanent charge of an ion channel

is the crucial structure for ionic flow properties of the channel while boundary conditions

are the driving force for the ionic flow. The effects of permanent charges interacting with

boundary conditions have been studied analytically via a quasi-one-dimensional Poisson-

Nernst-Planck model for small permanent charges and for large permanent charges. The

analytical studies lead to an introduction of a flux ratio which seems to be appropriate for the

purpose. The flux ratio has a number of specifics for the interacting of permanent charges

with boundary conditions and a universal property. The objective of our work is to combine

the advantages of analysis and numerics to examine the effects of permanent charges on

individual fluxes, extending the results to general permanent charge cases. In this chapter,

I will present results of numerical investigation on the flux ratio to bridge between the two

extrema of small and large permanent charges. As expected, our numerical results verify the

analytical predictions for the two extrema. On the other hand, non-trivial behavior emerges

as one varies the permanent charge from small to large, in particular, bifurcations of flux

ratios are revealed, showing the rich phenomena of permanent charge effects by the power

of combining the analytical and numerical studies. The MMPDE method has been applied

which is critical due to the presence of Debye layers at the interface between the permanent
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charge regions and uncharged regions of ion channels.

5.1 Ion channels and Poisson-Nernst-Planck type models

Ion channels are large proteins embedded on the membrane of cells. They serve as a major way

for cells to interact with each other and connect to the outside world. Once the channels are

open, ions flow from one side to the other, producing electric signals that control many biological

functions. Within an ion channel, amino acid side chains are distributed, with acidic side chains

contributing negative charges, and basic side chains contributing positive charges. For example,

the ionic flow can create trans-membrane potentials that carry nerve signals. Two key structures of

an ion channel are the channel shape and the permanent charge. The ion channels typically have a

relatively narrow neck, where the permanent charge is distributed.

The basic models for electrodiffusion are self-consistent Poisson-Nernst-Planck (PNP) type

models. The PNP type models consider open stage of channels, and treat the medium implicitly as

dielectric continuum. These systems are continuum models, not direct limits of molecular dynamic

models. PNP type models miss details of motions of individual ions but capture all thermodynamic

quantities of the ionic mixture, such as, fluxes, pressure, and energy. PNP systems can be viewed

as the Fokker-Planck systems from molecular dynamic models ([72]), and they can be also derived

from Boltzmann equations ([4]) and from variational principles ([37, 39, 40]).

The movements of various types of ions through membrane channels with different structures

involves multiple physical parameters that interact with each other nonlinearly and globally. Anal-

ysis based on PNP has revealed a number of interesting, some counterintuitive, phenomena of

permanent charges effects, for two extremum situations, small permanent charge and large perma-

nent charge cases. It is interesting to mention that it used to be taken as granted, that the permanent

charge always promotes the ion species with opposite charge signs, and decreases the ion species

with the same charge sign as the permanent charge. However, it has been analytically proven via

a quasi-one-dimensional PNP model in [43] that for small permanent charge, the selectivity of ion

species are not monotone with respect to permanent charge. Besides, many biologists believe that
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if the gradient of electrochemical potential across the channel is increased in magnitude, the flux

through the channel should increase. This has been proven false in [84], where the effects of large

permanent charge on flux selectivity has been studied analytically. The declining phenomenon has

been observed, i.e., the flux of ions with the opposite sign as the permanent charge in a channel

can decrease dramatically as the driving force increases.

PNP type systems are primitive models for ionic flows that treat the aqueous medium (where

salts are dissolved into free ions and ions are migrating) as dielectric continuum. PNP systems can

be derived as reduced continuum models from molecular dynamic Langevin models [72], from

Boltzmann equations [4], and from variational principles [38, 41, 31, 82]. For an ionic mixture

with n ion species, PNP reads

∇ ·
(

εr(r)ε0∇Φ

)
=−e0

( n

∑
s=1

zsCs +Q(r)
)
,

∇ · ~Jk = 0, − ~Jk =
1

kBT
Dk(r)Ck∇µk, k = 1,2, · · · ,n

(5.1)

where Ω is a three-dimensional cylindrical-like domain representing the channel, r∈Ω, Q(r) is the

permanent charge density, εr(r) is the relative dielectric coefficient, ε0 is the vacuum permittivity,

e0 is the elementary charge, kB is the Boltzmann constant, T is the absolute temperature, Φ is the

electric potential, and, for the kth ion species, Ck is the concentration, zk is the valence (the number

of charges per particle), µk is the electrochemical potential depending on Φ and {C j}, ~Jk is the

flux density vector, and Dk(r) is the diffusion coefficient.

The Poisson equation for the electrical potential Φ (the first equation in (5.1)) is the continuum

version of Coulomb’s Law. The Nernst-Planck equation (the second equation in (5.1)) describes

the steady state of the conservation of mass of the ionic flow. The major modeling component is

the electrochemical potential µk. It is often expressed into two terms µk = µ id
k + µex

k , where µ id
k

and µex
k ideal and excess components, respectively. The ideal component is

µ
id
k (X) = zke0Φ(X)+ kBT ln

Ck(X)

C0
,
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where C0 is a characteristic concentration. The first term is the electric potential while the second

term is the ideal “gas" potential. The excess component µex
k accounts for ion-to-ion interactions

and ion size effects, and multiple models for µex
k have been established. Unless specified, we

consider only the ideal component µ id
k of the electrical potential.

Since ion channels have narrow cross-sections relative to their lengths, the three-dimensional

systems (5.1) can further be reduced to quasi-one-dimensional models, which are first proposed

in [62], and a special case of the reduction is justified in [57]. The quasi-one-dimensional PNP

boundary value problem reads as

1
A(X)

d
dX

(
εr(X)ε0A(X)

dΦ(X)

dX

)
=−e0

(
n

∑
s=1

zsCs(X)+Q(X)

)
,

dJk

dX
= 0, −Jk =

1
kBT

Dk(X)A (X)Ck(X)
dµk

dX
, k = 1, ...,n

(5.2)

subject to the boundary conditions (see [19])

Φ(a0) = V , Ck(a0) = Lk > 0; Φ(b0) = 0, Ck(b0) = Rk > 0, (5.3)

where X ∈ [a0,b0] is the coordinate along the axis of the channel, and A(X) is the area of the cross

section at location X .

To non-dimensionalize the quasi-one-dimension PNP, we introduce the dimensionless variables

as

ε
2 =

εrε0kBT
e2

0(b0−a0)2C0
, x =

X−a0

b0−a0
, h(x) =

A(X)

(b0−a0)2 , Q(x) =
Q(X)

C0
,

D(x) = D(X), φ(x) =
e0

kBT
φ(X), ck =

Ck(x)
C0

, Jk =
Jk

(b0−a0)C0Dk
,

µ̄k(x) =
1

kBT
µk(X), V =

e0

kBT
V , Lk =

Lk

C0
, Rk =

Rk

C0
.

(5.4)
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The dimensionless quasi-one-dimension PNP reads as

− d
dx

(
ε

2h(x)
dφ

dx

)
= h(x)(z1c1 + z2c2 +Q(x)) ,

dJk

dx
= 0, −Jk = Dk(x)h(x)ck

dµ̄k

dx
, k = 1,2

(5.5)

with the boundary conditions at x = 0 and x = 1

φ(0) =V, ck(0) = Lk; φ(1) = 0 ck(1) = Rk. (5.6)

In this work, we consider an ionic mixture of two ion species with z1 > 0 > z2. We also

assume that the dielectric coefficient ε is a constant and there hold the electroneutrality boundary

conditions

z1L1 + z2L2 = 0 = z1R1 + z2R2.

The reason for the electroneutrality boundary conditions is that, otherwise, there will be sharp

boundary layers which cause significant changes (large gradients) of the electric potential and con-

centrations near the boundaries so that a measurement of these values has non-trivial uncertainties.

We point out that the geometric singular perturbation framework for PNP type models developed

in [19, 55] can treat the case without the electroneutrality assumption; in fact, at the “foot" of

the boundary layers the concentrations can be determined by the boundary conditions directly and

satisfy electroneutrality condition.

Ideally, the experimental designs should not affect the intrinsic ionic flow properties. Thus the

electroneutral boundary conditions are enforced. Without the electroneutrality boundary condi-

tions, sharp boundary layers which cause significant changes of electric potential and concentra-

tions near the boundaries. On the other hand, the “landing point" of the ε = 0-limiting boundary

layer meets the electroneutrality condition and can be determined directly from the original bound-

ary conditions.

In the dimensionless form, µ̄k can also be written as µ̄k = µ id
k + µex

k , where µ id
k = zkφ + lnck
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and µex
k is taken to be zero for most cases.

The variable cross-section area is chosen to reflect the fact that the channel is much narrow in

the neck (1
3 < x < 2

3 ) than other region [43]. In this work, we choose the channel geometry as

h(x) =


3
(
0.4x+20(1

3 − x)
)
, 0≤ x < 1

3

3
(
0.4(x− 1

3)+0.4(2
3 − x)

)
, 1

3 ≤ x < 2
3

3
(
20(x− 2

3)+0.4(1− x)
)
, 2

3 ≤ x < 1.

(5.7)

As in [43], we assume the permanent charge is distributed on the neck of the channel as

Q(x) =


0, 0 < x < 1

3

Q0,
1
3 < x < 2

3

0, 2
3 < x < 1.

(5.8)

In addition, we choose D1 = D2 = 1, z1 = 1, z2 =−1, ε = 10−5, and L1 = L2 = L, R1 = R2 = R.

In computation, the discontinuity of Q(x) and h(x) at a = 1
3 and b = 2

3 is likely to cause diver-

gence when applying Newton’s method to solve for the nonlinear system resulting from discretiza-

tion of (5.5). To avoid this difficulty, we apply a regularization on Q(x) and h(x) as

Qδ (x) = Q0

(
tanh

(
δ (x− 1

3
)
)
− tanh

(
δ (x− 2

3
)
))

, (5.9)

and

hδx(x) =



3[0.4x+20(1
3 − x)], 0≤ x < 1

3 −δx

ã(x− 1
3 −δx)+0.4, 1

3 −δx ≤ x < 1
3 +δx

3[0.4(x− 1
3)+0.4(2

3 − x)], 1
3 +δx ≤ x < 2

3 −δx

ã(x− 2
3 +δx)+0.4, 2

3 −δx ≤ x < 2
3 +δx

3[20(x− 2
3)+0.4(1− x)], 2

3 +δx ≤ x < 1

(5.10)

63



where δ > 0 and δx > 0 are regularization parameters and

ã =
y1−0.4

4δ 2
x

, y1 = 3[0.4(
1
3
−δx)+20δx].

It can be verified that as δ → ∞, Qδ (x)→ Q(x) in L2 norm, and hδx(x)→ h(x) for x ∈ [0,1] as

δx→ 0.

5.2 A flux raatio for permanent charge effects

The major concern for an ion channel is the fluxes Jk’s of individual ion species. More precisely,

one would like to understand how individual fluxes depend on the channel structure and boundary

conditions. On the other hand, only the total current I = ∑
n
k=1 zkJk is measured in most experi-

ments and individual ionic fluxes Jk’s are difficult to measure directly. In fact, to measure the flux

of sodium in the sodium-chloride (Na+Cl−) solutions, a small amount of a radioactive isotope of

sodium is typically added, the flux of this isotope is measured by its radioactivity, and the flux of

sodium is then estimated using the flux of the isotope; see, for example, [30, 42, 78] for detail. As

such, analytical and numerical studies of the PNP systems are crucial for understanding and gain-

ing insights to flux dynamics, channel properties, and effects of permanent charge on each single

species.

To study the effects of permanent charge on fluxes, the flux ratios have been recently introduced

in [54] as

λk(Q;V,L,R,h) =
Jk(Q;V,L,R,h)
Jk(0;V,L,R,h)

, k = 1,2 (5.11)

where Jk(Q;V,L,R,h) is the flux of the kth species with permanent charge density Q and the bound-

ary conditions (5.6), and Jk(0;V,L,R,h) is the flux given the same boundary conditions and 0 per-

manent charge. It has been observed in [20] that Jk(Q;V,L,R,h) and Jk(0;V,L,R,h) have the same

sign as (µ̄k(0)− µ̄k(1)), which is determined by the boundary condition (V,L,R) and independent

of the permanent charge, and so λk > 0 for any Q.
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It follows from the definition that the permanent charge promotes the flux when λk > 1, and vice

versa. Thus the relation λk = 1 determines the boundary sets of the parameter space (Q,V,L,R,h)

separating the region over which the permanent charge promotes the flux Jk from that over which

the permanent charge reduces the flux Jk. Note that, with L, R, and h fixed, λk is a function of Q

and V . One major research interest is to understand how the selectivity of each single species is

affected by different permanent charge densities and voltages. Therefore, we study the effects of

Q and V on λ1 and λ2, with fixed boundary conditions L, R and channel geometry h. In addition,

it is crucial to study the threshold where the selectivity of the species is changed. For this purpose,

we take the advantage of numerical approach to locate the the parameter boundaries defined by

λk = 1, which partitions the Q−V space into regions defined by λ1 < λ2 < 1, λ1 < 1 < λ2, and

1 < λ1 < λ2, which can hardly be obtained via analytical appraoch.

A universal property about the effects of permanent charges on fluxes of cation and anion

has been established in [54] that, for general Q(x) > 0 (not necessarily the permanent charges of

the form in (5.8)) and z1 > 0 > z2, as one would expect, the permanent charge always promotes

the negative charged species more than the positive species, i.e., λ1(Q) < λ2(Q), independent of

boundary conditions and channel geometry. However, what could be against one’s intuition is that

λ1 < 1 < λ2 is not always the case.

Existing works have studied analytically how λ1 and λ2 depend on the combination of the

channel geometry and the boundary conditions for small Q0 (0 < Q0� 1) and for large Q0, with

z1 < 0 < z2. In [43], a singular perturbation analysis has been studied via a connecting problem of

(5.5). The connecting problem has been constructed due to the jumps in Q(x) and the conservation

of the flux densities Jk and first brought up in [19]. Jk has been expanded in small |Q0| as

Jk = Jk0 + Jk1Q0 + Jk2Q2
0 +o(Q2

0), (5.12)

and the zero order term Jk0 and first order term Jk1 have been derived via the connecting problem

in [19]. By the definition of λk as in (5.11), if Jk1Jk0 > 0, the kth species is enhanced, and vice
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versa.

It has been shown that the space of the parameters (V,L,R,α,β ) is the union of three regions,

Ω1 with 1 < λ1 < λ2, Ω2 with λ1 < 1 < λ2, and Ω3 with λ1 < λ2 < 1. Conditions of (V,L,R)

corresponding to each specific situation has been derived. The critical potential, V k
q , of the kth

ion species, has been derived as a function of the boundary conditions and the channel geometry.

More specifically, with L and R fixed, along the curves λk(Q0,V ) = 1 in the (Q0,V ) space, we have

V →V k
q as Q0→ 0.

We now present the results in details from [43]. Let L1 = L2 = L and R1 = R2 = R, and

t = L/R, γ(t) =
t ln t− t +1
(t−1) ln t

, H(x) =
ˆ x

0
h−1(s)ds, α =

H(a)
H(1)

,

β =
H(b)
H(1)

, A =
(β −α)(L−R)2

((1−α)L+αR)((1−β )L+βR)
,

B =
(1−β )L+βR− ln((1−α)L+αR)

A
.

(5.13)

It has been proven that for t > 1,

• if α < γ(t), there exists a unique β1 ∈ (α,1), such that

– 1−B < 0, for β ∈ (α,β1),

– 1−B > 0, for β ∈ (β1,1),

• if α ≥ γ(t), then 1−B > 0.

The critical potentials V 1
q and V 2

q are given by

V 1
q =V 1

q (L,R) =−
lnL− lnR
z2(1−B)

, V 2
q =V 2

q (L,R) =−
lnL− lnR
z1(1−B)

. (5.14)

We then have the following conclusion for small Q0 values with t = L/R > 1:

• if α < γ(t), and β ∈ (α,β1), then V 1
q < 0 <V 2

q , and
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– if V <V 1
q , 1 < λ1 < λ2,

– if V 1
q <V <V 2

q , λ1 < 1 < λ2.

– If V >V 2
q , λ1 < λ2 < 1,

• if α < γ(t) and β > β1 or α ≥ γ(t), then V 1
q > 0 >V 2

q , and

– if V >V 1
q , 1 < λ1 < λ2,

– if V 2
q <V <V 1

q , λ1 < 1 < λ2,

– if V <V 2
q , λ1 < λ2 < 1.

Similar analytical results for t = L/R < 1 have been rigorously developed and justified. For

more details, interested readers are referred to [43].

The above approach for small permanent charge |Q| does not work for the case for large per-

manent charge |Q|. Using a significantly different approach, in [84], the properties of λ1 and λ2

with large Q0 (Q� 1) have been studied via singular perturbation analysis. An expansion of the

flux Jk with respect to ν , where ν = 1/Q0, has been brought up as

Jk(ν) = Jk0 + Jk1ν +O(ν2). (5.15)

The mathematical formulas of J10, J11, J20, and J21 have been derived. In particular,

J10 = 0, J20 =
2
√

LR
H(1)

1

(1−β )
√

L+α
√

e−V R
(
√

e−V L−
√

R). (5.16)

and it has been proven that the following limits exist:

J10 = 0 lim
V→∞

J20 =−
1

1−β

2R
H(1)

, lim
V→−∞

J20 =
1
α

2L
H(1)

,

lim
V→∞

J11 =− lim
V→∞

J21 =
1

(1−β )2
((1−β )L+αR)2

2H(1)(β −α)
,

lim
V→−∞

J11 =− lim
V→−∞

J21 =
1

α2
((1−β )L+αR)2

2H(1)(β −α)
,

(5.17)
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where α , β are defined in (5.13). In particular, the fact that J2 is convergent is an indication of the

saturation effect. As a result, λk→ 0 as Q0→ ∞, V →±∞.

Moreover, combining the results from [84] and [43], analytical asymptotes of the parametric

boundaries λ2 = 1 can be derived on the Q0−V space. More specifically, by setting the ratio of

the zero order terms in (5.15) and (5.12) equal to 1 as

− 2z2
√

LR(
√

e−V L−
√

R)(lnL− lnR)

((1−β )
√

L+α
√

e−V R)(L−R)(z2V + lnL− lnR)
= 1, (5.18)

one can obtain the critical potentials corresponding to the parameter boundaries λ2 = 1. In other

words, along each curve defined by λ2 = 1 in the Q0−V space, as Q0→∞, V will converge to one

of the solutions of equation (5.18).

5.3 New results (Numerical) for fixed L, R and h(x)

Our major research interest is to extend the flux ratio studies to any value of Q0. In this section, we

study numerically how flux selectivity depends on the permanent charge density and the gradient

of electrical potential. Consistent to the existing results, permanent charge does not necessarily

restrain species with same sign or promote species with opposite sign. It is difficult, in most

cases, to predict the region of magnitudes of permanent charge or boundary condition of φ that

promotes or reduces any specie. A complete diagram of the flux selectivity is given based on these

studies, where a couple of saddle-node bifurcations observed, which associates to the fact that

the selectivity is usually not monotone with respect to Q0 or V . Throughout this section, unless

specified, we let L = 0.008, and R = 0.001. Note that these are scaled boundary values that are

associated to the boundary values of the concentration that can are common in practice.

5.3.1 Dependence of λ1 and λ2 on Q0 for fixed V

As described in the Sec 5.2, it is critical to identify boundaries separating the regions with different

cases of λ1 and λ2, (i.e., 1< λ1 < λ2, λ1 < 1< λ2, or λ1 < λ2 < 1). However, due to the difficulty in
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analytics, it is not realistic to expect that the effects of permanent charge coupling with the driving

force for electrodiffusion is fully studied analytically for all magnitudes of permanent charge. For

this reason, we take the advantage of numerical methods, more specifically, the adaptive moving

mesh finite element method, to derive a complete diagram of the effects of the permanent charge

interacting with the gradient of the electrical potential. We have observed that the partition of

different selectivities is rather complicated, with several saddle-node bifurcations taking place. We

emphasize that no specific boundary conditions are chosen to obtain this complication.

In fact, we have observed the same bifurcation phenomenon, though different in quantities, for

multiple different boundary conditions.

For this section, we will fix (L,R,h) and examine how permanent charge effects on fluxes are

interacted with the role of the electric potential V . Here we choose two values for V and examine

the dependence of λk on Q0. Fig. 5.1a, 5.1b, 5.1c and 5.1d show the trend of λ1 and λ2 for V = 10,

V = 50, V =−60 and V =−110, respectively.

In Fig. 5.1a, starting from λ1 = λ2 = 1, one can observe that λ1 < 1 and λ2 > 1 for Q0 ∈ [0,1].

This is the case coinciding with one’s intuition: the positive permanent charge helps promote the

negative ion species, and inhibits the positive ion species. However, Fig. 5.1b, 5.1c and 5.1d

demonstrates that λ1 < 1 < λ2 is not the only case that we can possibly obtain. For example, with

V = −110, and for small Q0, λ1 < λ2 < 1. As Q0 increases, the graph of λ1 and λ2 can cross

the value 1 multiple times. Indeed, we have observed all the three possibilities as described in

Section 5.2: λ1 < λ2 < 1, λ1 < 1 < λ2, as well as 1 < λ1 < λ2.

We remark that, for Q0 > 0 small, Fig. 5.1 is consistent with the analytical prediction in [43]

that has been described in Section 5.2. With L = 0.008, R = 0.001, a = 1/3, and b = 2/3, we have

V 1
q = −V 2

q = 18.97, where V 1
q and V 2

q are defined as in (5.14). One can compute that α = 0.07,

β = 0.93, and β1 = 0.89, where α , β and β1 are as described in (5.13). Thus the set of boundary

conditions corresponds to the case where L/R > 1, α < γ(L/R) (see (5.13)), and β > β1. As

described in Section 5.2, for small Q0:

• If V > 18.97, λ2 > λ1 > 1,
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(d) V =−110.

Figure 5.1: λ1 and λ2 are plotted as functions of Q0, with boundary values of the system (5.5) chosen as
L = 0.008, R = 0.001, and V = 10, 50, −60, or −110.
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• If −18.97 <V < 18.97, λ1 < 1 < λ2,

• If V <−18.97, λ1 < λ2 < 1.

These conclusions have been verified in Fig. 5.1a and Fig. 5.1d.

For large Q0, the trend of λ1 and λ2 is an indication of the analytical works in [84]. One can

relate this to Section 5.3.3 and get an insight of Fig. 5.3.

5.3.2 Dependence of λ1 and λ2 on V for fixed Q0

We now examine the dependence of λ1 and λ2 on V for several fixed values of Q0. In Fig. 5.2, they

are plotted as functions of V ∈ [−110,40] for Q = 0.0001, 0.00037, 0.00062, and 0.04.

We comment that Jk = 0 if zkVk + lnL− lnR = 0, independent of Q0. For L = 0.008 and

R = 0.001, V1 =−2.07944 and V2 = 2.07944. As remarked in [54], in this case, λk(Q0,Vk) should

not be set to 1. Instead, the value of λk(Q0,Vk) should be determined by requiring λk(Q0,V ) to be

continuous at V =Vk and, as expected, the value depends on Q0 (see Fig. 5.2).

Monotonicity in V for small Q0. From Fig. 5.2a one can see that for very small Q0 = 0.0001,

λ1 and λ2 are monotone. This is consistent with the theoretical prediction made in [43] and the

intuition that the flux ratios are dominated by the effects of V when Q0 is small. The V -intercepts

with λ1 and λ2 are close to the theoretical values obtained in [43], i.e., V 1
q = 18.97, and V 2

q =

−18.97 (cf. Section 5.3.1).

Saddle-node bifurcations of λk = 1. As Q0 increases to Q0 = 0.00037 and 0.00062, as shown

in Fig. 5.2b and Fig. 5.2c, respectively, λ1 and λ2 become non-monotone in V and can pass the

value 1 multiple times. This behavior is not predicted by the analysis in [43]. As a matter of fact,

it is basically impossible to determine the arrange of Q0 for which the analysis of [43] for small

Q0 is valid. As we will show later in Section 5.3.3, this range of Q0 varies with L and R.

Moreover, Q0 = 0.00037 for Fig. 5.2b is near a saddle-node bifurcation value for the relation

λ2(V,Q0) = 1 in the sense that, for Q0 < 0.00037, there are two values of V so that λ2(V,Q0) = 1

while for Q0 > 0.00037, there is no value of V so that λ2(V,Q0) = 1. Similarly, Q0 = 0.00062 for
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Figure 5.2: λ1 and λ2 are plotted as functions of V , with boundary values of the system (5.5) chosen as
L = 0.008, R = 0.001, and different values of Q0.
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Fig. 5.2c is near a saddle-node bifurcation value for the relation λ1(V,Q0) = 1.

A selectivity regime. It is also interesting to see that in Fig. 5.2d (Q0 = 0.04), λ1 is close to

zero, indicating that large positive permanent charges inhibit the flow of cation. On the other hand,

for V ∈ [−90,15], λ2 > 1 so the anion flux is enhanced, and otherwise, λ2 < 1 so the anion flux

is reduced (even if Q0 is positive and relatively large). This observation should be compared with

the behavior in Fig. 5.2c for Q0 = 0.00062 where λ2 > 1 for V ∈ [−110,40]. Moreover, around

V =−5, say V ∈ [−15,0], λ2 is much greater than 1, which shows strong selectivity for anion.

5.3.3 A Complete bifurcation diagram

We now are ready to study a complete bifurcation diagram of λ1, λ2, interacting with Q0 and

V together, with fixed boundary conditions, as seen in Fig. 5.3. The domain of (Q0,V ) ∈ (0,3)×

(−110,70) is divided into the regions with 1< λ1 < λ2, λ1 < 1< λ2, and λ1 < λ2 < 1. Particularly,

the curves labelled with C1 to C5 are the parametric boundaries defined by either λ1 = 1 or λ2 = 1.

We first remark that Fig. 5.3 is consistent with the theoretical analysis described in Section 5.2.

In particular, for small Q0, the situation switches from 1 < λ1 < λ2 to λ1 < 1 < λ2 as V decreases

and passes V 1
q = 18.97 and from λ1 < 1 < λ2 to λ1 < λ2 < 1 as V further decreases and passes

V 2
q =−18.97. This is confirmed numerically in Fig. 5.3. Moreover, we recall that λ1 = λ2 = 1 for

Q0 = 0 and all V . The numerical results show that V →V 1
q along the curves C1 (λ1 = 1) as Q0→ 0.

Similarly, V → V 2
q along C2 (λ2 = 1) as Q0→ 0. Furthermore, the curves C1 to C5 can be treated

as contour maps λ1(V,Q0) = 1 and λ2(V,Q0) = 1. Particularly, C1 along with the V -axis makes a

λ1 = 1 contour map while C2 along with the V -axis makes a λ2 = 1 contour map.

As mentioned in Section 5.2, there exist critical potential values such that V will converge to

along the parametric boundaries λ2 = 1. More importantly, this observation provides predictable

boundaries of the range of the permanent charge that enhances J2. This property has been demon-

strated in Fig. 5.3. Because we have applied regularization (5.9) and (5.10), while the analytical

works in [43] and [84] have been based on non-smooth permanent charges and channel shape as

in (5.7) and (5.8), the critical potentials that we have obtained in computation are slightly different
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Figure 5.3: A complete bifurcation diagram for the case with the boundary conditions L = 0.008 and R =
0.001. Region I and VI: 1 < λ1 < λ2; Region II, IV, and V: λ1 < λ2 < 1; Region III: λ1 < 1 < λ2.

the analytical results. We remark that it is possible to have smooth channel shape and permanent

charge in practice, and Fig. 5.3 still demonstrate the limiting properties, and is a reliable reference

for ion species selectivities with large permanent charge densities.

It is impressive how complexly the domain is partitioned into the regions 1< λ1 < λ2, λ1 < 1<

λ3, and λ1 < λ2 < 1. Multiple bifurcations on the curves λ1 = 1 and λ2 = 1 can be observed, which

are consistent with the diagrams in Section 5.3.2. In fact, if we treat λk as functions of the variables

Q0 and V , and the Q−V space in Fig. 5.3 as a domain of the functions λk(Q0,V ), Figures 5.1 and

5.2 can be treated as curves obtained by cutting through the surfaces λk(Q0,V ) vertically along Q0

axis direction or V axis direction. For example, Fig. 5.2b essentially shows the intersecting curves

of λk(Q0,V ) and the plane Q0 = 0.00037. Corresponding to the observation that Q0 = 0.00037 is

approximately the tangent line of the curve C5 (on which λ2 = 1) in Fig. 5.3, the curve λ2 = 1 in

Fig. 5.2b is tangent to the horizontal line λ = 1. In other words, with Q0 = 0.00037, λ2 ≥ 1, since

the line Q0 = 0.00037 completely lines in a region where λ2 ≥ 1, and the equality only happens at

the bifurcation near Point 5 as shown in Fig. 5.3.
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Figure 5.4: A complete bifurcation diagram for the case with the boundary conditions L = 0.5 and R = 0.1.

Further studies, both biological and mathematical, on the cause of the bifurcation are highly

demanded. We remark that we have not particularly chosen any boundary values to obtain such

bifurcations. Indeed, it has been observed that properties of Fig. 5.3 have been preserved with

other boundary conditions. Fig. 5.4 shows the complete Q−V diagram obtained with L = 0.5 and

R = 0.1. Despite the difference in the quantities, one can observe the same bifurcation and limiting

properties as in Fig. 5.3.

5.3.4 Internal dynamics and J−V Relation

A reasonable approach to the cause of the bifurcations in Fig. 5.3 is to investigate the channel

dynamics when the pair (Q0,V ) passes the bifurcation. For this purpose, we present the numerical

results of the channel dynamics at the Point 1, 2, and 3 in Fig. 5.3. However, it is very difficult to

obtain an observation from the flux dynamics that could be related to the cause of the bifurcation

or non-monotone features of λk. We look forward to any further studies on this topic.
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In Fig. 5.5a-5.5c, 5.5d-5.5f, 5.5g-5.5i, and 5.5j-5.5l, we present the flux and the current, the

electrochemical potential, the concentration of each species, and the electric potential, respectively,

at Point 1 (0.0005,67), Point 2 (0.0005,33), and Point 3 (0.0005,20) in Fig. 5.3. One can observe

from Fig. 5.3 that these three points are on a path where λ1 is first less than 1, then greater than 1,

then less than 1 again.

In Fig. 5.5a-5.5c, we have observed that as V increases, both the positive and negative species

are enhanced. While we know that λ1 > 1 at Point 2 while λ1 < 1 at Point 1 and 3, this trend

is not demonstrated in the trend of the flux. To further study the trend of the flux-V relation, we

present the plots of J1 and J2 as functions of V in Fig. 5.6a and Fig. 5.6b, where Q0 = 5× 10−4

and 0.003, respectively. We can see that for small Q0 value such as Q0 = 5×10−4, the fluxes are

almost linear in V . However, as we increase Q0 to Q0 = 0.003, the fluxes are not linear in V , as

shown in Fig. 5.6b. This observation is consistent to the linear I−V relation for small permanent

charge densities and the saturation effect for large permanent charge densities. Moreover, because

J1 and J2 are linear when Q0 = 0, the nonlinearity as shown in Fig. 5.6b is consistent to the fact

that λ1 and λ2 are not monotone with respect to V .

In Fig. 5.5d-5.5f, we observe that the voltage enhances the electrochemical potentials of both

species. In Fig. 5.5g-5.5i and Fig. 5.5j-5.5l, sharp layers of φ and ck are demonstrated at the edge

of neck of the channel.

5.3.5 The Hard-Sphere Case

So far we have treated ions as permanent charges and assumed the excess component µex
k = 0.

However, ions have positive volumes, and can have large influence on channel selectivity espe-

cially when they have large sizes and density. The excess potential µex
k typically contains two

components: the hard-sphere component µHS
k and the excess electrostatic component. In this sec-

tion, we apply a Local Hard Sphere (LHS) PNP model [68], derived by taking Taylor expansions

of the excess chemical potential of the Hard-Sphere(HS) model, which has been obtained based on

Rosenfeld’s fundamental measure theory (FMT) [70].
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(c) J1, J2, and I at Point 3 in Fig. 5.3.
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(d) µ1 and µ2 at Point 1 in Fig. 5.3.
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(e) µ1 and µ2 at Point 2 in Fig. 5.3.
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(f) µ1 and µ2 at Point 3 in Fig. 5.3.
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Figure 5.5: Internal dynamics at Point 1 (0.0005,67), Point 2 (0.0005,33), and Point 3 (0.0005,20) in
Fig. 5.3.
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Figure 5.6: J1 and J2 as functions of V with Q0 = 5×10−4 and Q0 = 0.003.

We now have

µ̄k = µ
id
k +µ

LHS
k ,

where µLHS
k is given by

µ
LHS
k (x) =− ln

(
1−Σ j

4
3

πR3
jc j(x)

)
+

RkΣ j4πR2
jc j(x)

1−Σ j
4
3πR3

jc j(x)

+
4πR2

kΣ jR jc j(x)

1−Σ j
4
3πR3

jc j(x)
+

4
3

π
R3

kΣ jc j(x)

1−Σ j
4
3πR3

jc j(x)
,

(5.19)

where R1 and R2 are the radii of the three-dimensional hard sphere particle of the species.

In Fig. 5.7b, we present the Q−V bifurcation diagram with boundary conditions L = 0.008

and R = 0.001 and the radii of the species chosen as R1 = 0.2 and R2 = 0.4. Fig. 5.7b is almost

identical to Fig. 5.7a, which is associated to µex = 0. If we change the boundary conditions to

be L = 0.5 and R = 0.1, and compare the Q−V bifurcation diagrams obtained with and without

excess component, we can easily observe difference in quantities, but same bifurcation properties,

as shown in Fig. 5.8. This result is expectable, since when concentration is large, more collision

will happen between ions, in which case the effects of the ion sizes play a more important role.

To quantify the effects of the ion sizes, we present the plots of the term Σ j
4
3πR3

jc j(x), the ideal

component µ id
k , and the excess component µex

k , in Fig. 5.9 and Fig. 5.10, with different boundary

conditions. As one can observe, Σ j
4
3πR3

jc j(x) is almost negligible compared to 1 in Fig. 5.9a,

with L = 0.008, R = 0.001, V = 30, and Q0 = 0.05, and is relatively large in Fig. 5.10a, where
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Figure 5.7: Comparison of bifurcation diagrams with µex = 0 and µex chosen as in (5.19), with L = 0.008
and R = 0.001.
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Figure 5.8: Comparison of bifurcation diagrams with µex = 0 and µex chosen as in (5.19), with L = 0.5 and
R = 0.1.
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L = 0.5, R = 0.1, V = 30, and Q0 = 1. As a result, µex
k in Fig. 5.9c is small compared to the ideal

component µ id
k as shown in Fig. 5.9b, and not making a significant difference in the flux ratio. As a

contrast, µex
k in Fig. 5.10c is relatively large, correspondingly, with the same boundary conditions

L = 0.5 and R = 1, one can observe that the LHS term has made a difference in the flux ratio

diagram, as shown in Fig. 5.8. A great deal of efforts have been made on deriving the excess
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Figure 5.9: Σ j
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jc j(x), µ id
k and µex

k , with L = 0.008, R = 0.001, V = 30, and Q0 = 0.05.
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jc j(x), µ id
k and µex

k , with L = 0.5, R = 0.1, V = 30, and Q0 = 1.

component µex. The uniform size modified Poisson-Bolzmann (SMPB) equation has been brought

up in. Modeling of the excess electrostatic component component µex
k is rather challenging, and

various approximations have been obtained [7, 8, 18, 21].

5.4 Conclusions

In this chapter, we have studied the effects of permanent charge along with boundary conditions on

ionic flows, via a quasi one-dimensional PNP model. We have given a complete diagram, divided

80



into different regions of the permanent charge density and the boundary condition of the electri-

cal potential, that have verified and connected the existing analytical results. We have observed

unexpected bifurcations, which might be useful reference in practice, and hopefully will bring up

interesting objects for the future studies. Moreover, we have provided the bifurcation diagrams cor-

responding to the quasi one-dimensional PNP model with the LHS (local hard sphere) modeling of

the excess electrochemical potential. Same bifurcation properties and difference in quantities have

been observed. The MMPDE strategy has been applied in purpose of resolving the discontinuity

of the solutions at endpoints of the “neck" of the channel. It remains an open question how the

bifurcations have been generated, and further studies in mathematics as well as biology are highly

demanded.
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Chapter 6

Conclusions and Future Work

In this work, we have described the mathematical characterization, as well as detailed formulation

and numerical integration of the MMPDE method. The MMPDE method is a PDE based adaptive

mesh method that is used to properly treat the sharp fronts that occur in the solutions of differential

equations. It has been shown that the MMPDE method has the advantage of not requiring a large

mesh size, adaptively relocating the mesh elements to sharp fronts of the solution and thus increas-

ing the accuracy, as well as stable non-singularity in regular and even non-convex and non-simply

connected domains. As examples of application of the MMPDE method, three models arising from

the physical background as well as image segmentation have been investigated.

The Ambrosio-Tortorelli functional is a phase-field approximation of the Mumford Shah func-

tional, which has been proposed as a variational approach to image segmentation. We have pre-

sented an asymptotic analysis to investigate the influence of the regularization parameter to the

segmentation capability of this functional, based on which a practical parameter selection strategy

for numerical computation has been derived. This approach can be used as an image preprocessing

tool, and is good at dealing with complicated images with high level noise. One possible improve-

ment is to couple this strategy with a procedure of labelling the objects in the objective image.

Moreover, the Ambrosio-Tortorelli functional is a special example of phase-field models, and we

hope that the analysis and the selection strategy for the regularization parameter can apply to the

underway phase-field investigations.

The MMPDE method has been applied to investigate the contact sets of the micro-electro

mechanical systems (MEMS), which has verified the asymptotic analysis developed to locate the

possible contact sets as described in Section 4.2. In order to improve the accuracy of the solution,
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as well as the performance of the MMPDE method in general, future studies could be carried on

to investigate the strategies of moving mesh nodes along curvy boundaries. Moreover, studies on

different types of micro-electro mechanical systems can be interesting and highly desired in the

nanotechnology industry.

We have carried on a numerical investigation of the influence of permanent charge density

along with voltage on flux ratios. The flux ratio has been brought up to quantify the effects of

the permanent charge on the flux selectivity in an ion channel. Our numerical results as shown

in Section 5.3 validate the existing analytical results, for both small and large permanent charge

densities. More importantly, we take the advantage of numerical approach, to bridge the two

extrema and get a general characterization of the flux ratio, in order to fully understand and quantify

the flux selectivity. We have observed the occurrence of bifurcations in the diagram of the flux

ratios. Studies on the cause of such bifurcations are highly desired.
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