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Abstract

In this dissertation we show the existence and stability of the normalized ground states for the

Kawahara, fourth order nonlinear Schrödinger (NLS) and the generalized Ostrovsky equations.

One of the starting points in our investigation were numerical stability results by S. Levandosky

in [32], [31] which agree with our rigorous stability results. We show existence of the waves

using variational techniques together with the concentration compactness argument. On the level

of construction, we encounter certain obstacles in the form of new Gagliardo–Nirenberg–Sobolev

type inequalities, which impose restrictions on the parameter space. We show stability utilizing

spectral theory developed in the recent work by Z.Lin and C.Zeng in [35].

For the Kawahara model, our results provide a significant extension in the parameter space of

the current rigorous results. In fact, our results rigorously establish the spectral stability for all

acceptable values of the parameters.

For the fourth order NLS models, we improve upon recent results on stability of, very special,

explicit solutions in the one dimensional case. Our multidimensional results for the fourth order

NLS equations seem to be the first of its kind. Of particular interest is a new paradigm that we

discover herein. Namely, all else being equal, the form of the second order derivatives (mixed

second order derivatives vs pure Laplacian) has implications on the range of the existence and

stability of the normalized waves.

For the Ostrovsky equation, we show that all normalized waves we construct are spectrally

stable. We also establish decay rates for the waves, extending the results in the paper by P. Zhang

and Y. Liu [51].
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Chapter 1

Introduction

In this chapter we introduce some notations, standard inequalities, lemmas and the instability index

counting theory used in subsequent chapters.

1.1 Function spaces and GNS inequalities

The Lp spaces are defined via

‖ f‖Lp =

(∫
| f (x)|pdx

)1/p

.

We will need some Fourier analysis basics. Fourier transform and its inverse in chapters 2 and 3

(for convenience reasons) are defined via

f̂ (ξ ) =
∫

Rd
f (x)e−2πix·ξ dx, f (x) =

∫
Rd

f̂ (ξ )e2πix·ξ dξ ,

and

f̂ (ξ ) =
1√
2π

∫
R

f (x)e−ixξ dx, f (x) =
1√
2π

∫
R

f̂ (ξ )eixξ dξ ,

respectively.

For an integer k, the classical Sobolev spaces W k,p are taken to be the closure of Schwartz

functions in the norm ‖ f‖W k,p = ‖ f‖Lp +∑|α|=k ‖∂ α f‖Lp . For a non-integer s, one may introduce
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a norm1 as follows

‖ f‖W s,p := ‖(1−∆)s/2 f‖Lp.

We also use the common notation Hs for p = 2:

‖ f‖Hs =

(∫
R
(1+ |ξ |2)s| f̂ (ξ )|2dξ

)1/2

,

and the homogeneous versions Ḣs defined via the semi-norms

‖ f‖Ḣs =

(∫
R
|ξ |2s| f̂ (ξ )|2dξ

)1/2

.

Recall the sharp Sobolev inequality ‖ f‖Lq(Rd) ≤ Cs,p‖ f‖W s,p(Rd), where n
(

1
p −

1
q

)
= s. In

addition, we shall make use of the Gagliardo-Nirenberg-Sobolev (GNS) inequality, which com-

bines the Sobolev estimate with the well-known log-convexity of the complex interpolation functor

‖ f‖[X0,X1]θ ≤ ‖ f‖1−θ

X0
‖ f‖θ

X1
. For example, the following estimate proves useful in the sequel

‖u‖Lq(Rd) ≤Cq,d‖∆u‖
d
2 (

1
2−

1
q )

L2 ‖u‖
1− d

2 (
1
2−

1
q )

L2 , (1.1.1)

whenever q ∈ (2,∞) for d = 1,2,3,4, and 2 < q < 2d
d−4 for d ≥ 5.

We record the formula for the Green function of (−∆+ 1)−1, that is Q̂(ξ ) = (1+ 4π2|ξ |2)−1

(see [13], p. 418),

Q(x) = (2
√

π)−n
∫

∞

0
e−(t+

|x|2
4t ) dt

tn/2 . (1.1.2)

Note that Q > 0, radial and radially decreasing. Also, ‖Q‖L1(Rn) =
∫

Rn Q(x)dx = Q̂(0) = 1, but

note that Q(0) = +∞ for n ≥ 2. In fact, there are the following classical estimates for it, p. 418,

1Which is equivalent to the standard one for an integer s.
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[13],

|Q(x)| ≤Ce−|x|, |x|> 1, (1.1.3)

Q(x)∼

 |x|
2−n +O(1), n≥ 3,

ln( 1
|x|)+O(1), n = 2,

|x|< 1. (1.1.4)

In particular, Q ∈ Lq(Rn), whenever q < n
n−2 (or q < ∞, when n = 2).

1.2 Instability index counting theory

In this section, we present the instability index count theory , as developed in [19], [20], [44]

(see also the book [21]), and, more recently, in [22], [35], which will be useful for our stability

arguments later. We will only consider appropriate representative corollaries, which serve our

purposes.

First, consider the following eigenvalue problem in the form

J L f = λ f , (1.2.1)

where J is assumed to be bounded, invertible and skew-symmetric (J ∗ =−J ), while

(L ,D(L )) is self-adjoint (L ∗ =L ), with finite dimensional kernel Ker[L ] : dim(Ker[L ])< ∞.

In addition, the Morse index, n(L ) (that is the number of negative eigenvalues of L ), is as-

sumed to be finite. Regarding the skew-symmetric part, we need to assume that J −1 : Ker[L ]→

Ker[L ]⊥.

Let kr denote the number of real instabilities of (1.2.1) (i.e. the number of positive eigenvalues

of J L ), whereas kc be the number of quadruplets of eigenvalues with non-zero real and imag-

inary parts. Finally, let k−i be the number of pairs of purely imaginary eigenvalues with negative

3



Krein-signature2. Introduce the matrix D as follows. Let Ker[L ] = {φ1, . . . ,φn}, then

Di j := 〈L −1[J −1
φi],J

−1
φ j〉. (1.2.2)

Note that the last formula makes sense, since J −1φi ∈Ker[L ]⊥ and hence L −1[J −1φi] is well-

defined. The index counting theorem3, see Theorem 1, [20], states that if det(D) 6= 0, then

kr +2kc +2k−i = n(L )−n(D). (1.2.3)

In particular, if n(L ) = n(D), we can conclude that all the terms on the left hand side of (1.2.3)

are zero, so spectral stability holds true.

Second, mostly following the theory developed in [35], in the specific case when the self-

adjoint operator is J = ∂x, we consider the following eigenvalue problem

∂xL z = µz. (1.2.4)

We require the following - there is a Hilbert space X over the reals, so that:

• L : X →X ∗ is a bounded and symmetric operator, in the sense that (u,v)→ 〈L u,v〉 is a

bounded symmetric form on X ×X ;

• dim(Ker[L ])< ∞ and, moreover, there is an L invariant decomposition

X = X−⊕Ker[L ]⊕X+,dim(X−)< ∞,

so that for some δ > 0, L−|X− ≤−δ and L+|X+ ≥ δ . That is, for every u± ∈X±, there is

〈L u−,u−〉 ≤ −δ‖u−‖2
X−

and 〈L u+,u+〉 ≥ δ‖u+‖2
X+

.

Introduce the Morse index n−(L ) := dim(X−), which is equivalent to the number of negative

2The precise definition of those is provided for example in [19], [35]. For us, this is irrelevant, in our application,
we will indeed have k−i = 0.

3See also Theorem 5.2.11 in [21] for the case n(L ) = n(D).
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eigenvalues of the operator L , counted with their respective multiplicities. Consider the general-

ized eigenspace E0 = {u ∈X : (∂xL )ku = 0,k = 1,2, . . .}. Clearly Ker[L ]⊂ E0, so consider the

complement in E0 of Ker[L ]. That is, E0 = Ker[L ]⊕ Ẽ0. Let

k≤0
0 := max{dim(Z) : Z subspace of Ẽ0 : 〈L z,z〉< 0,z ∈ Z}.

Theorem 2.3, [35] asserts that4 the number of solutions of (1.2.4), kunstable, is estimated by

kunstable ≤ n−(L )− k≤0
0 (L ). (1.2.5)

In particular, and this is what we use in this work, if n−(L ) = 1 and k≤0
0 (L ) ≥ 1, the problem

(1.2.4) is spectrally stable.

Let us now derive the so-called Vakhitov-Kolokolov criteria for the stability5. Assume that Ψ

is sufficiently smooth, Ψ′ ∈ Ker[L ] and, in addition, assume Ψ ⊥ Ker[L ]. In this case, we can

identify Q := L −1[Ψ] as an element of Ker[(∂xL )2] \Ker[(∂xL )] ⊂ Ẽ0. Indeed, ∂xL Q = Ψ′,

while (∂xL )2Q= ∂xL Ψ′= ∂xL Ψ′= 0. Now, if 〈L Q,Q〉< 0, we can conclude that k≤0
0 (L )≥ 1,

which together with n−(L ) = 1 would imply stability by (1.2.5). On the other hand,

〈L Q,Q〉= 〈L L −1
Ψ,L −1

Ψ〉= 〈L −1
Ψ,Ψ〉.

1.3 General spectral stability lemma

Lemma 1. Let H be a self-adjoint operator on a Hilbert space H, so that H |{ξ0}⊥ ≥ 0 for some

vector ξ0 : ξ0 ⊥ Ker[H ],‖ξ0‖= 1. Assume that 〈H ξ0,ξ0〉 ≤ 0. Then,

〈H −1
ξ0,ξ0〉< 0.

4Theorem 2.3, [35] is actually much more general, but we state this corollary, as it is enough for us.
5Although the original criteria and his derivation was done, strictly speaking, in the NLS context, it introduces an

important quantity, which turns out to be relevant in wide class of Hamiltonian stability problems.
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Remark: Note that the condition ξ0 ⊥ Ker[H ] guarantees that H −1ξ0 is well-defined.

Proof. Due to the self-adjointness, H −1 : Ker[H ]⊥→ Ker[H ]⊥. Consider

η0 := H −1
ξ0−〈H −1

ξ0,ξ0〉ξ0 ⊥ ξ0.

Note that 〈H −1ξ0,ξ0〉 is a real. Thus,

0≤ 〈H η0,η0〉

= 〈H [H −1
ξ0−〈H −1

ξ0,ξ0〉ξ0],H
−1

ξ0−〈H −1
ξ0,ξ0〉ξ0〉

= 〈ξ0−〈H −1
ξ0,ξ0〉H ξ0],H

−1
ξ0−〈H −1

ξ0,ξ0〉ξ0〉

=−〈H −1
ξ0,ξ0〉+ 〈H −1

ξ0,ξ0〉2〈H ξ0,ξ0〉

≤ −〈H −1
ξ0,ξ0〉.

Thus, 〈H −1ξ0,ξ0〉 ≤ 0. In fact, equality is also impossible. We argue by contradiction. Assume

that 〈H −1ξ0,ξ0〉 = 0. By the assumptions, for every η : η0 ⊥ Ker[H ],η ⊥ ξ0, we have that

〈H η ,η〉> 0. Applying this to η := H −1ξ0 ∈ Ker[H ]⊥ and η ⊥ ξ0, we conclude the contradic-

tory statement 0 < 〈H η ,η〉= 〈ξ0,H
−1ξ0〉= 0, whence we obtain that 〈H −1ξ0,ξ0〉< 0.

1.4 Sampling a W 1,1 function

We have the following elementary lemma, which may be of independent interest.

Lemma 2. Let N > 1 be an integer and f : R→ R, f ∈W 1,1(R). Then

∞

∑
n=−∞

∫ nε+ ε

N

nε

f (x)dx =
1
N

∫
R

f (x)dx+O(ε)

6



as ε → 0+. More precisely,

∣∣∣∣∣ ∞

∑
n=−∞

∫ nε+ ε

N

nε

f (x)dx− 1
N

∫
R

f (x)dx

∣∣∣∣∣≤ ε

N

∫
R
| f ′(y)|dy.

Proof. We are going to prove the lemma for a smooth function. The statement for a W 1,1(R)

function can then be proven by passing to the limit. Let us split each interval [nε + ε

N ,(n+ 1)ε)

into N−1 equal intervals and compare one of them with the integral over the interval [nε,nε + ε

N ).

We have ∣∣∣∣∣
∫ nε+ ε

N

nε

f (x)dx−
∫ nε+

(m+1)ε
N

nε+mε

N

f (x)dx

∣∣∣∣∣=
∣∣∣∣∫ nε+ ε

N

nε

f (x)− f
(

x+
mε

N

)
dx
∣∣∣∣

≤
∫ nε+ ε

N

nε

∫ x+mε

N

x
| f ′(y)|dydx

≤
∫ nε+ ε

N

nε

∫ nε+
(m+1)ε

N

nε

| f ′(y)|dydx

≤ ε

N

∫ (n+1)ε

nε

| f ′(y)|dy

(1.4.1)

for all m = 1, . . . ,N−1.

Now, using this last estimate, we get, after adding and subtracting ∑
N−1
m=1

∫ nε+
(m+1)ε

N
nε+mε

N
f (x)dx,

N
∞

∑
n=−∞

∫ nε+ ε

N

nε

f (x)dx =
∞

∑
n=−∞

(∫ nε+ ε

N

nε

f (x)dx+
N−1

∑
m=1

∫ nε+
(m+1)ε

N

nε+mε

N

f (x)dx

)

+
∞

∑
n=−∞

(
(N−1)

∫ nε+ ε

N

nε

f (x)dx−
N−1

∑
m=1

∫ nε+
(m+1)ε

N

nε+mε

N

f (x)dx

)

=
∞

∑
n=−∞

∫ (n+1)ε

nε

f (x)dx+
∞

∑
n=−∞

N−1

∑
m=1

(∫ nε+ ε

N

nε

f (x)dx−
∫ nε+

(m+1)ε
N

nε+mε

N

f (x)dx

)

=
∫

R
f (x)dx+

∞

∑
n=−∞

N−1

∑
m=1

(∫ nε+ ε

N

nε

f (x)dx−
∫ nε+

(m+1)ε
N

nε+mε

N

f (x)dx

)
.
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Rearranging the terms and using the estimate (1.4.1), implies

∣∣∣∣∣N ∞

∑
n=−∞

∫ nε+ ε

N

nε

f (x)dx−
∫

R
f (x)dx

∣∣∣∣∣≤ ∞

∑
n=−∞

N−1

∑
m=1

∣∣∣∣∣
∫ nε+ ε

N

nε

f (x)dx−
∫ nε+

(m+1)ε
N

nε+mε

N

f (x)dx

∣∣∣∣∣
≤ ε

∞

∑
n=−∞

∫ (n+1)ε

nε

| f ′(y)|dy

= ε

∫
R
| f ′(y)|dy.

Dividing by N yields the claim.
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Chapter 2

The Kawahara and Fourth Order NLS Equations

2.1 Introduction

We consider several dispersive equations in one and multiple space dimensions. Our main moti-

vating example will be the (generalized) Kawahara equation, which is a fifth order KdV equation,

allowing for the third order dispersion effects as well. Namely,

ut +uxxxxx +buxxx− (|u|p−1u)x = 0, x ∈ R, t ≥ 0, p > 1. (2.1.1)

This is a model that appears in the study of plasma and capillary waves, where the third order

dispersion is considered to be weak. In fact, Kawahara studied the quadratic case1 [28] and he

argued that the inclusion of a fifth order derivative is necessary for capillary-gravity waves, for

values of the Bond number close to a critical one. Craig and Groves, [7] offered some further

generalizations. Kichenassamy and Olver, [29] have studied the cases where explicit waves exist,

see also Hunter-Scheurle, [16] for the existence of solitary waves.

Another model, which is important in the applications is the non-linear Schrödinger equation

with fourth order dispersion. We consider two versions of it, which will turn out to be qualitatively

different, from a the point of view of the stability of their standing waves. Namely,

iut +∆
2u+ ε(〈~b,∇〉)2u−|u|p−1u = 0, (t,x) ∈ R×Rd, (2.1.2)

iut +∆
2u+b∆u−|u|p−1u = 0, (t,x) ∈ R×Rd, (2.1.3)

1Where the nonlinearity is in the form (u2)x, slightly different than ours.
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where d ≥ 1, p > 1,ε = ±1. These have been much studied, both in the NLS as well as Klein-

Gordon context, since the early 90’s, see for example [1, 2].

For both models, we will be interested in the existence of solitons, and the corresponding close

to soliton dynamics, in particular spectral stability. For the Kawahara, the relevant objects are

traveling waves, in the form u(x, t) = Φ(x+ωt), where Φ is dying off at infinity. These satisfy the

profile equation of the form

Φ
′′′′+bΦ

′′+ωΦ−|Φ|p−1
Φ = 0. (2.1.4)

Similarly, standing wave solutions in the form u = e−iωtΦ,ω > 0, with real-valued Φ for the fourth

order NLS (2.1.2) and (2.1.3) solve the elliptic profile equations

∆
2
Φ+ ε(〈~b,∇〉)2

Φ+ωΦ−|Φ|p−1
Φ = 0, (2.1.5)

∆
2
Φ+b∆Φ+ωΦ−|Φ|p−1

Φ = 0. (2.1.6)

Constructing solutions to (2.1.4) and, more generally, (2.1.6)-(2.1.5) is not straightforward. In fact,

it depends on the parameter p, the sign of the parameter b, as well as the dimension d ≥ 1. Here,

it is worth noting the works of Albert, [1] and Andrade-Cristofani-Natali, [2] in which the authors

have mostly studied stability of some explicitly available solutions in one spatial dimension.

We proceed differently, by means of variational methods. More specifically, we employ the

constrained minimization method, which minimizes the total energy with respect to a fixed particle

number, or L2 mass. In addition to being the most physically relevant, the waves constructed this

way (which we refer to as normalized waves) have good stability properties2.

This brings us to the second important goal of the chapter. Namely, we wish to examine the

stability of waves arising as solutions of (2.1.4), (2.1.5) and (2.1.6). Our constructions will not

yield explicit waves3. Thus, we need to decide, whenever possible, about their stability, based on

2This is probably the reason why these waves are considered the most “physical” in the first place.
3Although some do exist, for very specific values of the parameter b and d = 1, more on this below.
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their construction and properties.

2.1.1 Previous results

The Kawahara model. We would like to review the history of the problem for the existence and

stability of the traveling waves, by concentrating mostly on some recent results in the last twenty

years or so, which we feel are the most relevant in relation to our results. We would like to draw an

important point that since uniqueness results are generally lacking4, it is hard to compare results

about waves obtained by different methods, as they may differ in shape and stability properties.

In [17] and [23] the authors have shown that certain waves of depression (i.e. b < 0) are stable.

In [23], the author establishes an important Vakhitov-Kolokolov type criteria for certain waves, but

it appears that it is hard to verify outside of a few explicit examples. In [5], Bridges and Derks have

studied a Kawahara model with a more general nonlinearity. They have employed the methods

of Evans functions to locate the point spectrum (and hence the stability) of the corresponding

linearizations. The results of their work are mostly computationally aided.

Levandosky, [30] has studied the problem for existence of such waves via an energy-momentum

type argument and compensated compactness. Groves, [13] has shown the existence of multi-bump

solitary waves for certain homogeneous nonlinearities. Haragus-Lombardi-Scheel, [15] have con-

sidered spatially periodic solutions and solitary waves, which are asymptotic to them at infinity.

They showed spectral stability for such small amplitude solutions. We should also mention the

work [2], in which the authors consider the orbital stability for explicit periodic solutions of the

Kawahara problem, subjected to a quadratic nonlinearity.

The paper of Angulo, [3] gives some sufficient conditions for instability of such waves, both

for the cases b > 0 and b < 0. Levandosky, [32] nicely summarizes the results in the literature5

and offers rigorous analysis for stability/instability close to bifurcation points. Furthermore, his

paper provides a useful, numerically aided, classification of solitary waves of the Kawahara model,

4For both, minimizers of the constrained variational problem and solutions of the PDE.
5He considers more general non-linearities containing powers of derivatives as well.
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based on the type of non-linearity (i.e. the power p) and the parameters of the problem b,ω -

the exhaustive tables on p. 164, [32] provided a good starting point for our investigation. We

should mention that the waves considered in [32] are produced as the constrained minimizers of

the following variational problem

 Jω [u] =
∫

Rd |∆u(x)|2−b|∇u(x)|2 +ωu2(x)dx→min,∫
Rd |u(x)|p+1dx = 1.

(2.1.7)

We take a different approach below. Namely, by constructing the normalized waves, i.e., minimiz-

ing energy constrained on the L2 norm, in a physically relevant fashion (see Section 2.3.1). An

important point we would like to make is that the procedure outlined by (2.1.7) provides waves for

a considerably wider range of p than the ones produced in Section 2.3.1. Specifically, the mini-

mizers of (2.1.7) exist for p ∈ (1, pmax), with pmax(d) =

 ∞, d = 1,2,3,4,

1+ 8
d−4 , d ≥ 5,

whereas, the

normalized waves constructed herein are only available for p ∈ (1,1+ 8
d ).

Fourth order NLS models. The fourth order Schrödinger equation was introduced in [27]

and [26], where it has an important role in modeling the propagation of intense laser beams in

a bulk medium with Kerr nonlinearity. Moreover, the equation was also used in nonlinear fiber

optics and the theory of optical solitons in gyrotropic media. The problem for the existence and

the stability of the waves arising in (2.1.5) has been the subject of investigation of a few recent

papers, the results of which we summarize below.

For the case of d = 1, p = 3 (and in fact only for the special value of ε = −1,b = 1 and

ω = 4
25 ), the elliptic problem (2.1.4) (or equivalently (2.1.5)) was considered by Albert, [1] in

relation to soliton solutions of related approximate water wave models. The explicit soliton,

Φ0(x) =
√

3
10sech2

(
x√
20

)
, was studied in detail. Important properties of the corresponding lin-

earized operators were established. These properties allowed Natali and Pastor, [41] to establish

the orbital stability of this wave (see also [8] for alternative approach and extensions to Klein-

Gordon solitons). One of the central difficulties that the authors faced is that this solution is only

12



available explicitly for an isolated value of ω = 4
25 . This precludes one from differentiating with

respect to the parameter ω as is customary in these types of arguments. Additionally, the prob-

lem for stability of the equation (2.1.2) in d = 1, ε = −1,b = 1 and general p were addressed in

the works [24] and [25]. The numerically generated waves were shown to exists for every p > 1,

but stable for only p ∈ (1,5). Further (mostly numerical) investigations regarding this model are

available in the papers [26], [27].

Finally, it is important to discuss the recent work [4], as it has significant overlap with ours.

In it, the authors have studied (2.1.3) in great detail, including the stability of their waves. They

have constructed the waves in a similar manner, in fact the existence part of our Theorem 5 is

similar in nature, although more details on radial symmetry, the zero set and exponential decay

rates of the waves are derived as well. In addition, they discuss some cases, in which they can

show non-degeneracy, i.e. Ker[L+] = span[∇φ ]. This is verified in two cases:

• for any dimension d ≥ 1, but with b < 0 and |b| sufficiently large,

• the one dimensional case, d = 1, but with b < 0, b2 > 4ω .

Concerning stability of the waves, the authors of [4] do not establish stability for any given exam-

ple. On the other hand, they show that orbital stability holds, once one can verify non-degeneracy

and the index condition 〈L −1
+ φ ,φ〉 < 0. The non-degeneracy was already discussed, while the

verification of 〈L −1
+ φ ,φ〉< 0 is left as an open problem in [4]. This last condition however is es-

sentially equivalent, modulo some easy to establish technical assumptions, to the spectral stability,

see Corollary 1 below.

In this work, we actually do establish 〈L −1
+ φλ ,φλ 〉< 0 for all waves produced in Theorems 1,

4, 5, thus answering the open problem in [4]. Our results rigorously establish spectral stability for

all waves constructed therein - in all dimensions, for all values of b, positive or negative, large or

small. This combined with the results of [4] would also provide orbital stability for all normalized

waves enjoying the non-degeneracy property.
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2.1.2 Main results: Kawahara waves

It is easy to informally summarize our results - all normalized waves, whenever they exists, turn out

to be spectrally stable. Our hope is that the approach here will shed further light on this interesting

phenomena in a much more general setting. As we have alluded to above, the main focus will be

the Kawahara problem, (2.1.1), for both positive and negative values of b.

In order to construct solutions to the elliptic problem (2.1.4), we shall work with the following

variational problem

 I[φ ] = 1
2
∫

R[|φ ′′(x)|2−b|φ ′(x|2]dx− 1
p+1

∫
R |φ(x)|p+1dx→min,∫

R φ 2(x)dx = λ ,
(2.1.8)

where one could take φ in the Schwartz class, in order to make I[φ ] meaningful. Introduce the

scalar function

mb(λ ) = inf
φ∈H2(R),‖φ‖2

2=λ

I[φ ],

which will play a prominent role in the subsequent investigation. Let us say that it is not a priori

clear whether the problem (2.1.8) is well-posed (i.e. mb(λ )>−∞) for all λ . We have the following

existence result.

Theorem 1. (Existence of the normalized Kawahara traveling waves)

Let p ∈ (1,9),λ > 0,b ∈ R satisfy one of the following

1. 1 < p < 5,λ > 0,

2. For 5≤ p < 9 and all sufficiently large6 λ .

Then, the constrained minimization problem (2.1.8) has a solution φλ ∈ H4(R),‖φ‖2
L2 = λ and

ω = ω(b,λ ,φ) which satisfies

ω >


b2

4 , if b > 0,

0, if b < 0.
(2.1.9)

6Here, for all given p ∈ [5,9), for both b > 0,b < 0, there is a specific value λb,p and we assume that λ > λb,p.
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Moreover, φλ satisfies the Euler-Lagrange equation (2.1.4) in a classical sense. We call such

solutions φλ normalized waves.

Concerning the stability of the waves produced in Theorem 1, we have the following results

(we employ the standard definition of spectral stability, see Definition 2 in Section 2.2.3 below).

Theorem 2. Let λ > 0 and p satisfy the requirements of Theorem 1, and φλ is any minimizer

constructed therein. Then, φλ is spectrally stable, as a solution of the Kawahara equation (2.1.1).

Remarks:

• The Lagrange multiplier ω may depend on the particular normalized wave φ . In particular,

we can not rule out the existence of two constrained minimizers of (2.1.8), φλ , φ̃λ , with

ω(λ ,φλ ) 6= ω(λ , φ̃λ ). This is of course related to the uniqueness problem for the minimizers

of (2.1.8) (and it should be a much simpler one), but it is open at the moment.

• The results of Theorem 2 present rigorous sufficient conditions for stability of traveling

waves in much wider range than previously available. In fact, our results confirm7 the avail-

able numerical simulations by Levandosky, [32]. For example, it is quite obvious that the bi-

furcation point is at p = 5 (corresponding to the case p = 6 in the notations of [32]). Namely,

for powers p < 5 all waves are stable8, while for p≥ 5, some unstable waves start to appear

(which are of course not normalized). For p ≥ 9, Levandosky observed a very small set of

stable waves, again, none of them normalized, but rather generated as minimizers of (2.1.7).

• The non-degeneracy, Ker[L+] = span[φ ′], appears to be a hard problem in the theory. In

fact, an easier version would be to establish such a non-degeneracy of the kernel, if φ is

a minimizer of (2.1.8), while a harder problem would be to do so, knowing that φ is just

a solution to the PDE (2.1.4). In both cases, the non-degeneracy is directly relevant to the

7Here the usual caveat is that, since the uniqueness is not known, it is possible that the waves considered in [32]
are different from ours.

8Except at p= 4 (p= 5 in the notations of [32]), for a small region in the parameter space, an instability is observed
numerically. This could be a fluke of the computations in [32], because as we see from Theorem 1, the stable region
is up to p≤ 5.
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uniqueness of the ground state, which is an even harder open problem in the area. See [9]

for the discussion about these and related issues.

We first have the following special constrained minimizers, which we call limit waves.

Proposition 1. Let λ > 0 and p satisfy the assumptions of Theorem 1. Then, for every sequence

δ j→ 0, there is a subsequence δ jk , yk ∈ R and Φλ ∈ H4(R), so that

• limk→∞ ‖φλ+δ jk
(·+ yk)−Φλ‖H2(R) = 0, in particular ‖Φλ‖2

L2 = λ .

• Φλ is a constrained minimizer for (2.1.8), so in particular Theorem 1 applies to it.

We call Φλ a limit wave for the Kawahara problem.

Note that if there is uniqueness for the constrained minimizers of (2.1.8), all waves are limit

waves. Our next result is about the properties of the functions m, ω . This is of independent interest,

as it could be helpful in future studies on the uniqueness of minimizers for such models.

Theorem 3. The function mb : (0,∞)→ R is a negative, strictly decreasing and concave down

function. In particular, m is Lipschitz continuous on bounded intervals (a,b)⊂ R+.

As a consequence, m has a derivative on the full measure subset Am := {λ > 0 : m′(λ ) exists}

of R+. For λ ∈Am, there is the formula

m′(λ ) =−ω(b,λ ,φλ )

2
.

In particular, ω(b,λ ,φλ ) is uniquely defined (i.e. independent on the particular minimizer φλ ) on

the set Am, so we denote this a.e. defined function by ωλ : Am→ R. For each 0 < λ1 < λ2, there

is the formula

m(λ2)−m(λ1) =−
1
2

∫
λ2

λ1

ωλ dλ . (2.1.10)

The function λ → ωλ is a strictly increasing function. Thus, it has a derivative on a full

measure subset Aω := {λ ∈Am : ω ′(λ ) exists} ⊂Am and, in fact, there is the inequality

ω
′(λ )>

p−1
2λ 2 ‖φλ‖

p+1
Lp+1 > 0. (2.1.11)
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More generally, for points λ /∈Am, there is

lim
ε→0+

m(λ + ε)−m(λ )

ε
≤−ω(λ ,b,φ)

2
≤ lim

ε→0−

m(λ + ε)−m(λ )

ε
. (2.1.12)

Finally, suppose λ /∈Aω and let Φλ be a limit wave at λ . Then

ωλ ,b,Φλ
= lim

ε→0+

m(λ + ε)−m(λ )

ε
or ωλ ,b,Φλ

= lim
ε→0−

m(λ + ε)−m(λ )

ε
.

In particular, if there is uniqueness for the minimizers of (2.1.8), the function λ → ωλ is continu-

ous.

2.1.3 Main results: fourth order NLS waves

We start with the existence result for the models. Before we state the results for the fourth order

NLS models, we need to make an obvious reduction of the equation (2.1.2). Namely, picking a

rotation matrix A ∈ SU(n), so that~b = |~b|A~e1, we can clearly reduce matters (both the existence

of the solutions of the profile equation (2.1.5) and its stability analysis), by the transformation

û(ξ )→ û(A∗ξ ), to the consideration of the following problems:

iut +∆
2u+ ε|b|2∂

2
x1

u−|u|p−1u = 0, (2.1.13)

and the associated elliptic profile equation

∆
2
φ + ε|b|2∂

2
x1

φ +ωφ −|φ |p−1
φ = 0. (2.1.14)

That is, the existence of solutions to (2.1.14) is equivalent to the existence of solutions to (2.1.5)

(under the appropriate transformation) and their stability is equivalent to the stability of their coun-

terparts. Thus, it suffices to discuss the fourth order NLS problem (2.1.13), with its solitons satis-

fying (2.1.14). Below are our existence and stability results.
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Theorem 4. (Stability of the normalized waves for the fourth order NLS: mixed derivatives)

Let d ≥ 1,ε =±1. Let p ∈ (1,1+ 8
d ), λ > 0 and assume one of the following:

1. 1 < p < 1+ 8
d+1 and λ > 0;

2. 1+ 8
d+1 ≤ p < 1+ 8

d and a sufficiently large λ .

Then, there exists φλ ∈ H4(Rd)∩Lp+1(Rd) satisfying (2.1.14), with an appropriate ω(b,λ ,φλ ).

In addition,

ω(b,λ ,φλ )>


|b|2
4 , if ε = 1,

0, if ε =−1.
(2.1.15)

The solution φλ is constructed as a constrained minimizer of (2.4.1), with ‖φλ‖2
L2 = λ . The func-

tion λ → ωλ is increasing, in the sense that for each 0 < λ1 < λ2 and any constrained minimizers,

φλ1 φλ2 , we have ω(b,λ1,φλ1)< ω(b,λ2,φλ2).

Finally, e−iωλ tφλ (x) is a spectrally stable solution of (2.1.13).

Despite the obvious similarities with (2.1.5), the fourth order NLS with pure Laplacian, (2.1.3)

and its associated profile equation (2.1.6), turn out to be quite different - even at the level of the

existence of the waves and their stability. We have the following result.

Theorem 5. (Stability of the normalized waves for the fourth order NLS: pure Laplacian case)

Let d ≥ 1, b ∈ R. Let p ∈ (1,1+ 8
d ), λ > 0 and assume one of the following:

1. 1 < p < 1+ 4
d and λ > 0;

2. 1+ 4
d ≤ p < 1+ 8

d and a sufficiently large λ .

Then, there exists a normalized wave φλ ∈ H4(Rd)∩ Lp+1(Rd) : ‖φλ‖2 = λ , satisfying (2.1.6),

with an appropriate ω = ω(b,λ ,φ), which is increasing and satisfies (2.1.9).

The soliton e−iωλ tφλ (x) is a spectrally stable solution of (2.1.3).

Remarks:

• The results extend the stability results of Albert, [1] for the one dimensional cubic case p= 3.
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• The results here also extend the NLS related results of [8] (namely, stability for p < 1+ 8
d

and instability otherwise), which apply to the case b = 0.

• Both results, Theorem 4 and 5 of course coincide for d = 1, but are different for d ≥ 2.

We do not have a good physical explanation as to why the range of existence and stability

of standing waves for the models (2.1.13) vis a vis (2.1.3) differ. In particular, the mixed

derivative model (2.1.13) seems to support all stable normalized waves in the wider range

p ∈ (1,1+ 8
d+1),λ > 0, compared to p ∈ (1,1+ 4

d ) for (2.1.3). This topic clearly merits

further investigations.

2.2 Preliminaries

2.2.1 Distributional vs strong solutions of the Euler-Lagrange equation

Definition 1. We say that g ∈ H2(Rd)∩Lp+1(Rd) is a distributional solution of the equation

∆
2g+b∆g+ωg−|g|p−1g = 0,x ∈ Rd (2.2.1)

if the following relation holds for every h ∈ H2(Rd)∩L∞(Rd):

〈∆g,∆h〉+ 〈b∆g+ωg,h〉−〈g|p−1g,h〉= 0.

Proposition 2. Let p ∈ (1,1+ 8
d ) and b,ω be so that b2− 4ω < 0 or b2− 4ω > 0,ω > 0,b < 0.

Then, any weak solution g of (2.2.1) is in fact g ∈ H4(Rd)∩L∞(Rd)∩L1+ε(Rd) for any ε > 0. In

particular, the weak solutions of (2.2.1), in fact, satisfy (2.2.1) as L2 functions.

Proof. Note that by the restrictions on b,ω , we have that the operator (∆2 +b∆+ω) is invertible

on L2(Rd). Let g̃ := (∆2 + b∆+ω)−1[|g|p−1g]. From Sobolev embedding, we easily get that
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g̃ ∈ Hα(R),α < 4− d(p−1)
2(p+1) , since

‖g̃‖Hα (Rd) ≤ ‖|g|
p−1g‖H4−α (Rd) ≤C‖|g|p−1g‖

L
p+1

p
≤C‖g‖p

Lp+1 .

In addition, for every test function h, we have

〈∆g̃,∆h〉+ 〈b∆g̃+ω g̃,h〉= 〈|g|p−1g,h〉= 〈∆g,∆h〉+ 〈b∆g+ωg,h〉.

It follows that g = g̃ in the sense of distributions, whence g ∈ Hα(Rd).

We will show that g ∈ L∞(Rd). In fact, denote

q0 = sup{q : g ∈ Lq(Rd)}.

Clearly, q0 ≥ p+ 1, by assumption. We will show first that q0 = ∞. Assume not. By Sobolev

embedding, we have

‖g‖Lq(Rd) = ‖g̃‖Lq(Rd) ≤C‖|g|p−1g‖
L

p+1
p
≤C‖g‖p

Lp+1 < ∞

as long as 1
q > p

p+1−
4
d . In particular, we can take q as close to ∞, as we please, and hence q0 = ∞,

if d ≤ 4. So, assume d ≥ 5. It follows that 1
q0
≤ p

p+1 −
4
d .

Take any q0 < q < ∞. We have, by Sobolev embedding

‖g̃‖Lq(Rd) ≤C‖|g|p−1g‖Lr ≤C‖g‖p
Lrp , (2.2.2)

so long as d(1
r −

1
q) ≤ 4 or 1

r ≤
4
d + 1

q . If 4
d + 1

q < 1, we take r : 1
r = 4

d + 1
q , whereas, if we have

4
d +

1
q ≥ 1, we can take r = p+1

p and we have a contradiction right away, since the left-hand side of

(2.2.2) is unbounded (by the definition of q0), while the right-hand is bounded. For the remainder,

take r : 1
r =

4
d +

1
q .

Clearly, if rp < q0, this would be a contradiction, because the left-hand side is supposed to be
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unbounded (by the definition of q0), while the right-hand is clearly bounded. We claim that this is

the case, under our restrictions for p ∈ (1,1+ 8
d ). We have

1
r
− p

q0
=

4
d
+

1
q
− p

q0
=

4
d
− p−1

q0
+o(q−q0).

So, if we show that 4
d > p−1

q0
, we will have achieved the contradiction, as we can take q very close

to q0. Indeed, by the inequality for 1
q0

, we have p−1
q0
≤ (p−1)

(
p

p+1 −
4
d

)
. Resolving the inequality

(p−1)
(

p
p+1

− 4
d

)
<

4
d
,

leads to the solution 1 < p < 1+ 8
d−4 , which, of course, contains the interval (1,1+ 8

d ). Therefore,

it is true for all p in the set that we are interested in. We have reached a contradiction, with q0 < ∞.

Thus, q0 = ∞. This does not mean yet that g ∈ L∞(Rd), but this follows easily by Sobolev

embedding, once we know that g ∈ ∩2≤q<∞Lq(Rd). Furthermore, we see that the same type of

arguments imply g ∈ H5(Rd) and that for every p < ∞ and for every ε > 0, g ∈W 4−ε,p(Rd).

For our next step, we shall need a representation of the Green’s function of the operator

(∆2 +b∆+ω)−1 as follows. We have

(∆2 +b∆+ω)−1 =

(
−∆+

−b+
√

b2−4ω

2

)−1(
−∆+

−b−
√

b2−4ω

2

)−1

=(b2−4ω)−1/2

(−∆+
−b−

√
b2−4ω

2

)−1

−

(
−∆+

−b+
√

b2−4ω

2

)−1
 .

In the case b2−4ω > 0,ω > 0,b < 0, both −b±
√

b2−4ω

2 are positive numbers, so clearly the corre-

sponding Greens function G has decay e−
√
−b−
√

b2−4ω

2 |x|, according to (1.1.3).

As far as the case b2− 4ω < 0 is concerned, it is not hard to see, in the same way, that the
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Green’s function G has decay rate e−kω |x|, where

kω :=


√

2
√

ω+b
2 , b < 0, |b|< 2

√
w,

√
2
√

ω−b
2 , b > 0, |b|< 2

√
w.

In both cases, the Green’s function enjoys exponential rate of decay.

For p ≥ 2, we can actually conclude that g ∈ L1(Rd) since by the Hardy-Littlewood-Sobolev

inequality

‖g̃‖L1(Rd) ≤ ‖G‖L1(Rd)‖|g|
p−1g‖L1(Rd) ≤C‖g‖p

Lp(Rd)
< ∞,

as g ∈ L2∩L∞, in particular g ∈ Lp(Rd). For p < 2, denote q0 = inf{q : g ∈ Lq(Rd)}. Our claim

is that q0 = 1. Assume for a contradiction that q0 > 1. We will show that for every q > q0, we

have that g ∈ L
q
p (Rd), which would be a contradiction with q0 > 1. Indeed, by Hardy-Littlewood-

Sobolev inequality

‖g̃‖
L

q
p (Rd)

≤ ‖G‖L1(Rd)‖|g|
p−1g‖

L
q
p (Rd)

≤C‖G‖L1‖g‖p
Lq(Rd)

.

This establishes the contradiction with q0 > 1, hence g ∈ ∩1<qLq(Rd).

2.2.2 Concavity criteria

The following result was obtained in [47].

Lemma 3. Let f : (a,b)→ R be a continuous function that satisfies

limsup
δ→0

sup
λ∈(a,b)

f (λ +δ )+ f (λ −δ )−2 f (λ )
δ 2 ≤ 0.

Then, f is concave down on (a,b).
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2.2.3 Linearized problems and spectral stability

We next discuss the linearized problems and the stability of the waves. For solutions Φ of (2.1.4),

we introduce the traveling wave ansatz, u(t,x) = Φ(x+ωt)+ v(t,x+ωt). Plugging this back in

(2.1.1) and ignoring all terms O(v2), we obtain the following linearized problem

vt +∂x[∂
4
x +b∂

2
x +ω− p|Φ|p−1]v = 0. (2.2.3)

Denoting L+ := ∂ 4
x +b∂ 2

x +ω− p|Φ|p−1, the associated eigenvalue problem is obtained by setting

v(t,x)→ e−µtz(x) in (2.2.3), which results in

∂xL+z = µz. (2.2.4)

We proceed similarly with the linearization of the NLS problem (2.1.2). Consider solutions

Φ of (2.1.14) and then perturbations of the solution u(t,x) = e−iωtΦ of (2.1.13) in the form

u = e−iωt [Φ+ z1 + iz2]. Plugging this ansatz into (2.1.2), retaining only the linear in z terms and

taking real and imaginary parts leads us to the system

∂tz = J L z, (2.2.5)

where

J :=

 0 −1

1 0

 ,L :=

 L+ 0

0 L−

 ,

with  L+ = ∆2 + ε(〈~b,∇〉)2 +ω− p|Φ|p−1,

L− = ∆2 + ε(〈~b,∇〉)2 +ω−|Φ|p−1.

The eigenvalue problem associated with (2.2.5) (~z→ eλ t~z) takes the form

J L~z = λ~z. (2.2.6)
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For solutions Φ of (2.1.6), the linearized problem appears in the form

∂tz = J L z, (2.2.7)

where

J :=

 0 −1

1 0

 ,L :=

 L+ 0

0 L−

 ,

with  L+ = ∆2 +b∆+ω− p|Φ|p−1,

L− = ∆2 +b∆+ω−|Φ|p−1.

The eigenvalue problem associated with (2.2.7) (~z→ eλ t~z) takes the form

J L~z = λ~z. (2.2.8)

We are now ready to give the definition of the spectral stability.

Definition 2. The Kawahara waves are stable, provided the eigenvalue problem (2.2.4) does not

have non-trivial solutions9 (µ,z): ℜµ > 0, z ∈ H4(R).

The NLS waves Φ are stable, if the eigenvalue problem (2.2.6) ((2.2.8) respectively) does not

have non-trivial solutions (µ,~z): ℜµ > 0,~z ∈ H4(Rd)×H4(Rd).

We are going to use the following corollaries from the instability index counting theory pre-

sented in section 1.2.

Corollary 1. For the spectral problems (2.2.6) and (2.2.8) stability follows, provided

• n(L+) = 1, L− ≥ 0,

• φ ⊥ Ker[L+],

9Note that by the Hamiltonian symmetry of the problem µ → −µ , the existence of eigenvalues µ : ℜµ < 0 is
equivalent to the existence of µ : ℜµ > 0.
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• 〈L −1
+ φ ,φ〉< 0.

Corollary 2. For the spectral problem (2.2.4), stability follows, provided

• n(L+) = 1,

• φ ⊥ Ker[L+],

• 〈L −1
+ φ ,φ〉< 0.

2.2.4 Necessary conditions for the existence of solutions of (2.1.5)

We have the following Pohozaev identities.

Lemma 4. (Pohozaev’s identities) Let some smooth and decaying φ satisfy

∆
2
φ + ε

n

∑
j,k

b jbk∂ j,kφ +ωφ −|φ |p−1
φ = 0. (2.2.9)

Then

∫
Rd
|∆φ |2dx =

d(p−1)−2(p+1)
2(p+1)

∫
Rd
|φ |p+1dx+ω

∫
Rd
|φ |2dx, (2.2.10)

ε

∫
Rd
|~b ·∇φ |2dx =

d(p−1)−4(p+1)
2(p+1)

∫
Rd
|φ |p+1dx+2ω

∫
Rd
|φ |2dx. (2.2.11)

Proof. Multiplying (2.2.9) by φ and integrating over Rd we get

∫
Rd
|∆φ |2dx− ε

∫
Rd
|~b ·∇φ |2dx−

∫
Rd
|φ |p+1dx+ω

∫
Rd
|φ |2dx = 0.

Also, multiplying (2.2.9) by x ·∇φ and integrating over Rd we get

(
2− d

2

)∫
Rd
|∆φ |2dx−

(
1− d

2

)
ε

∫
Rd
|~b ·∇φ |2dx+

d
p+1

∫
Rd
|φ |p+1dx−ω

d
2

∫
Rd
|φ |2dx = 0.

Let A =
∫

Rd |∆φ |2dx, B = ε
∫

Rd |~b ·∇φ |2dx, C =
∫

Rd |φ |p+1dx and D =
∫

Rd |φ |2dx. Solving for
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A and B in terms of C and D we get


A = d(p−1)−2(p+1)

2(p+1) C+ωD,

B = d(p−1)−4(p+1)
2(p+1) C+2ωD,

which is (2.2.10) and (2.2.11).

Corollary 3. If d = 1,2, then ω > 0. If ε = −1 and ω > 0, then p < pmax. If~b = 0, then ω > 0

and p < pmax.

Proof. If d = 1,2, the first term on the right of (2.2.10) is negative, forcing the positivity of the

second term, so ω > 0. Next, from the relation (2.2.11), we see that if ω > 0,ε = −1, then
d(p−1)−4(p+1)

2(p+1) < 0, or p < pmax.

If~b = 0, it is clear from (2.2.11) that either ω > 0 and p < pmax or ω < 0 and p > pmax (the

second one being impossible immediately for d = 1,2,3,4). For d ≥ 5, assume for a moment that

ω < 0 and p > pmax =
d+4
d−4 . Let us look at (2.2.10). The second term is now negative, while for

the first term, since p > pmax >
d+2
d−2 , we also conclude its negativity. It follows that the right hand

side of (2.2.10) is negative a contradiction. Thus, ω > 0, p < pmax.

As we see from the results of Corollary 3, the Pohozaev’s identities are by themselves not

strong enough to derive necessary conditions on ω, p that are close to the sufficient ones.

We believe that the necessary conditions are close to the ones required by [32] to construct so-

lutions of the constrained minimization problem (2.1.7). Namely, we expect p < pmax and ω > b2

4

for b > 0, and, more generally, (2.1.9) to be necessary for the existence of localized and smooth

solutions of (2.2.9) and (2.1.6). Let us show that, in fact, these follow from a natural assumption

on the spectral theory for the operator L+. Specifically, the fact that zero cannot be an embed-

ded eigenvalue in the continuous spectrum of L+. Let us note that, while for the second order

Schrödinger operators H =−∆+V this is generally the case (the point spectrum does not embed

into the continuous one under some decay assumptions on V ), it is not the case for their fourth

order counterparts, [11]. However, in physically relevant situations (and the case of L+ certainly
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merits this designation), embedded eigenvalues do not exist. If this is the case for L+, we, using

Weyl’s theorem, see that

σa.c.[L+] = σa.c.(∆
2 +b∆+ω− p|Φ|p−1) = σa.c.(∆

2 +b∆+ω) =

 ω− b2

4 , b≥ 0,

ω, b < 0.

Clearly, if zero is not embedded, it must be that ω satisfies (2.1.9). If that holds, at least in the case

b < 0, it follows from Corollary 3 that p < pmax as well.

2.3 Variational construction in the one dimensional case

We start with some preparatory results.

2.3.1 Variational problem: preliminary steps

We now discuss the variational problem (2.1.8). It is certainly not a priori clear that for a given

λ > 0, such a value is finite (that is mb(λ )>−∞) and non-trivial (i.e. mb(λ )< 0). In fact, in some

cases, it is not finite, as we show below. Note that

mb(λ )

λ
= inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx− λ

p−1
2

p+1

∫
R
|φ |p+1dx

}
= inf
‖φ‖2

2=1
J[φ ]. (2.3.1)

This is, clearly, a non-increasing function. In particular, mb(λ )
λ

is differentiable a.e. and so is

mb(λ ). Our considerations naturally split in two case, b > 0 and b < 0. In this section, we develop

criteria (based on the parameters in the problem), which address the question for finiteness and

non-triviality of mb(λ ). The next lemma shows this for p ∈ (1,5) and, in addition, it establishes

the non-finiteness of mb(λ ) for p > 9.

First, we treat the case b < 0.

Lemma 5.

• If p ∈ (1,5), b < 0, then −∞ < mb(λ )< 0 for all λ > 0.
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• If p > 9, then mb(λ ) =−∞ for all λ > 0.

• If p = 9, then mb(λ ) =−∞ for all λ large enough.

Proof. Let φε(x) = ε1/2φ(εx), where ‖φ‖2
2 = λ . We have that

I[φε ] =
‖φ ′′‖2

L2

2
ε

4−
b‖φ ′‖2

L2

2
ε

2−
‖φ‖p+1

Lp+1

p+1
ε

p−1
2 . (2.3.2)

Since 0 < p−1
2 < 2 for 1 < p < 5, we see that mb(λ )< 0 in this case by choosing ε small enough.

On the other hand, if p > 9, it is clear that limε→∞ I[φε ] =−∞, whence mb(λ ) =−∞.

By the GNS inequality

‖φ‖Lp+1(R) ≤Cp‖φ‖
Ḣ

1
2−

1
p+1

(2.3.3)

≤Cp‖φ‖
3
4+

1
2(p+1)

L2 ‖φ ′′‖
1
4−

1
2(p+1)

L2 , (2.3.4)

we have

I[φ ] =
1
2

∫
R
|φ ′′|2−b|φ ′|2dx− 1

p+1

∫
R
|φ |p+1dx

≥ 1
2

∫
R
|φ ′′|2−b|φ ′|2dx− cp‖φ ′′‖

p−1
4

L2 ‖φ‖
p+1− p−1

4
L2

≥ 1
4
‖φ ′′‖2

L2− cp,λ ,b(‖φ ′′‖
p−1

4
L2 +1)

≥−γ,

for some γ > 0 because the function g(x) = 1
2x2− cp,λ x

p−1
4 , clearly, has a negative minimum on

[0,∞) for p ∈ (1,9). Therefore, mb(λ )≥−γ >−∞ for p ∈ (1,9). Letting ε → ∞ in (2.3.2) shows

that mb(λ ) =−∞ for p > 9.

Consider now the case p = 9. Clearly, for large λ , mb(λ )< 0, as it is evident from the formula

(2.3.1). Assuming that mb(λ ) ∈ (−∞,0) for some λ , let φ be such that mb(λ ) ≤ I[φ ] < mb(λ )
2 .
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Using φN as in the formula (2.3.2), we see that ‖φN‖2
L2 = λ , while for N ≥ 1, we have

I[φN ] = N4[
‖φ ′′‖2

L2

2
−

b‖φ ′‖2
L2

2N2 −
‖φ‖10

L10

10
] (2.3.5)

≤ N4[
‖φ ′′‖2

L2

2
−

b‖φ ′‖2
L2

2
−
‖φ‖10

L10

10
] (2.3.6)

≤ N4 mb(λ )

2
. (2.3.7)

But then

mb(λ )≤ liminf
N

I[φN ] =−∞,

a contradiction.

Our next lemma shows that for p∈ [5,9], there is a threshold value λp > 0, below which mb(λ )

is trivial.

Lemma 6. If b < 0 and p ∈ [5,9], then there exists a finite number λp > 0 such that for all λ ≤ λp

we have mb(λ ) = 0. In addition, if p ∈ [5,9), then for all λ > λp we have −∞ < mb(λ )< 0.

Proof. Take φε as in Lemma 5 with ‖φ‖2
2 = 1. We have

mb(λ )

λ
≤ lim

ε→0
J[φε ] = 0, (2.3.8)

which implies that mb(λ ) ≤ 0. Now, we are going to show that for each p ∈ [5,9) there exists a

constant cp > 0 such that

inf
φ 6=0

‖φ‖p−1
2
(∫

R |φ ′′|2−b|φ ′|2dx
)∫

R |φ |p+1dx
≥ cp. (2.3.9)

Using the GNS inequality (1.1.1), we get the following estimates for the Lp+1 norm:
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‖φ‖p+1
p+1 ≤ ap

∥∥φ
′′∥∥ p−1

4
2 ‖φ‖

3p+5
4

2

≤ ap

(∫
R
|φ ′′|2−b|φ ′|2dx

) p−1
8

‖φ‖
3p+5

4
2 , (2.3.10)

and

‖φ‖p+1
p+1 ≤ bp

∥∥φ
′∥∥ p−1

2
2 ‖φ‖

3p+5
4

2

≤ bp

(∫
R
|φ ′′|2−b|φ ′|2dx

) p−1
4

‖φ‖
p+3

2
2 . (2.3.11)

Note that for p ∈ [5,9], we have that p−1
8 ≤ 1 ≤ p−1

4 . Therefore, interpolating between the

estimates (2.3.10) and (2.3.11) we get

‖φ‖p+1
Lp+1 ≤ cp‖φ‖p−1

L2

∫
R
|φ ′′|2−b|φ ′|2dx.

Thus we have that for all φ ∈ H2 with ‖φ‖2
2 = 1

∫
R
|φ ′′|2−b|φ ′|2dx− 1

cp

∫
R
|φ |p+1dx≥ 0.

This implies that for λ : 0 < λ ≤ γp =
(

p+1
cp

) 2
p−1 , J[φ ] ≥ 0, which together with (2.3.8) implies

that mb(λ ) = 0.

Observe that for a large enough λ , the quantity

inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx− λ

p−1
2

p+1

∫
R
|φ |p+1dx

}

is strictly negative10, so λp < ∞. Clearly, λp = sup{γ > 0 : mb(λ ) = 0 for all λ ≤ γ}.

10This can be seen by fixing φ in the infimum and taking λ > λ (φ).
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Lemma 7. Suppose b< 0, 1< p< 9 and−∞<mb(λ )< 0. Let {φn}∞
n=1 be a minimizing sequence.

Then, there exists a subsequence {φnk}∞
k=1 such that:

lim
k→∞

∫
R
|φ ′′nk

(x)|2dx = L1, lim
k→∞

∫
R
|φ ′nk

(x)|2dx = L2, lim
k→∞

∫
R
|φnk(x)|

p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0.

Proof. We have already established in Lemma 5 that

I[φ ]≥ 1
4
‖φ ′′‖2

L2− cp,λ ,b(‖φ ′′‖
p−1

4
L2 +1). (2.3.12)

Since, {φn}∞
n=1 is minimizing, it follows that the sequence {

∫
R |φ ′′n (x)|2dx}∞

n=1 is bounded. By the

GNS inequality, the sequences {
∫

R |φ ′n(x)|2dx}∞
n=1 and

∫
R |φn(x)|p+1dx}∞

n=1 are bounded as well.

Possibly passing to a subsequence a couple of times, we get a subsequence {φnk}∞
k=1 such that all

of the above sequences converge(to L1, L2 and L3 respectively). We claim that L3 cannot be zero.

Indeed, otherwise

mb(λ ) = lim
k→∞

[
1
2

∫
R
|φ ′′nk

(x)|2dx− b
2

∫
R
|φ ′nk

(x)|2dx]≥ 0,

which is a contradiction with the fact that mb(λ ) < 0. By the GNS inequality, neither L1 nor L2

could be zero, as this would force L3 = 0, which we have shown to be impossible.

In the following 3 lemmas we will be concerned with the case b > 0.

Lemma 8. If b > 0 and 1 < p < 9, then −∞ < mb(λ )< 0 for all λ > 0.

Proof. Since 0 < p−1
2 < 4, the dominant term in (2.3.2) is max(ε2,ε

p−1
2 ), so if we just take ε small

enough, we see that mb(λ )< 0. Boundedness from below follows from (2.3.12).
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Lemma 9. Let 1 < p < 5, b > 0 and fix a constant c. Then, the inequality

‖φ‖p+1
Lp+1 ≤ c‖φ‖p−1

L2

[∫
R
|φ ′′(x)|2−b|φ ′(x)|2 + b2

4
|φ(x)|2dx

]
(2.3.13)

cannot hold for all φ ∈ H2(R).

For p ∈ [5,9], b > 0, there is a c(b, p), so that

‖φ‖p+1
Lp+1 ≤ c‖φ‖p−1

L2

[∫
R
|φ ′′(x)|2−b|φ ′(x)|2 + b2

4
|φ(x)|2dx

]
(2.3.14)

holds for all φ ∈ H2(R).

Proof. Let p ∈ [5,9]. Write

∫
R
|φ ′′(x)|2−b|φ ′(x)|2 + b2

4
|φ(x)|2dx =

∫
R
|φ̂(ξ )|2

(
(2πξ )2− b

2

)2

dξ .

Introducing g, so that φ̂(ξ ) := ĝ(2πξ −
√

b
2). Clearly, (2.3.14) is equivalent to the estimate

‖g‖p+1
Lp+1 ≤ c‖g‖p−1

L2

∫
R
|ĝ(ξ )|2|ξ |2|ξ −Cb|2dξ (2.3.15)

for some Cb 6= 0. We show (2.3.15) as follows. By Sobolev embedding and Hölder’s

‖g‖Lp+1 . ‖g‖
Ḣ

1
2−

1
p+1

= c
(∫

R
|ĝ(ξ )|2|ξ |1−

2
p+1 dξ

)1/2

. ‖g‖
p−1
p+1

L2

(∫
R
|ĝ(ξ )|2|ξ |

p−1
2 dξ

) 1
p+1

.

Clearly, this last estimate implies (2.3.15) as long as 2≤ p−1
2 ≤ 4, which is the same as p ∈ [5,9].

Let now p ∈ (1,5). Take a Schwartz function χ and then φ(x) = χ(εx). Testing (2.3.13) for

this choice of φ leads us to ε−1 ≤Cε−
p−1

2 (ε3 + ε). This is a contradiction as ε → 0+, so (2.3.13)

cannot hold.
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Lemma 10. Suppose b > 0,λ > 0 and 1 < p < 9. Let {φn}∞
n=1 be a minimizing sequence for the

minimization problem inf‖φ‖2
L2=λ

I[φ ]. Assume one of the following:

• p ∈ (1,5), λ > 0,

• p ∈ [5,9) and for some sufficiently large λb,p, λ > λb,p.

Then, there exists a subsequence {φnk}∞
k=1, such that:

lim
k→∞

1
2

∫
R
|φ ′′nk
|2dx = L1, lim

k→∞

∫
R
|φ ′nk
|2dx = L2 and lim

k→∞

∫
R
|φnk |

p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0.

Proof. First, by (2.3.12), the sequence {
∫

R |φ ′′n |2dx}∞
n=1 is bounded. By GNS inequality, so are the

sequences {
∫

R |φ ′n|2dx}∞
n=1 and {

∫
R |φn|p+1dx}∞

n=1 . Therefore, there exists a subsequence {φnk}∞
k=1

such that all three subsequences {
∫

R |φ ′′nk
|2dx}∞

k=1, {
∫

R |φ ′nk
|2dx}∞

k=1 and {
∫

R |φnk |p+1dx}∞
k=1 con-

verge to three non-negative reals L1,L2,L3 respectively.

First, suppose that L3 = 0. Then, consider the following minimization problem

inf
‖φ‖2

2=λ

1
2

∫
R
|φ ′′(x)|2−b|φ ′(x)|2dx := inf

‖φ‖2
2=λ

Ĩ[φ ].

Observe that since Ĩ[φ ]≥ I[φ ], we have

lim
n→∞

Ĩ[φn] = lim
n→∞

I[φn] = inf
‖φ‖2

2=λ

I[φ ]≤ inf
‖φ‖2

2=λ

Ĩ[φ ].

Thus, {φn}∞
n=1 is minimizing for Ĩ as well, and

inf
‖φ‖2

2=λ

I[φ ] = inf
‖φ‖2

2=λ

Ĩ[φ ].

On the other hand, inf‖φ‖2
2=λ

Ĩ[φ ] is easily seen to be−λb2

8 . Indeed, for a function φ with ‖φ‖2
L2 = λ ,
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we have by Plancherel’s

2Ĩ[φ ]+
b2

4
λ =

∫
R
|φ ′′(x)|2−b|φ ′(x)|2 + b2

4
φ

2(x)dx (2.3.16)

=
∫

R
|φ̂(ξ )|2

∣∣∣∣(2πξ )2− b
2

∣∣∣∣2 dξ ≥ 0. (2.3.17)

whence inf‖φ‖2
2=λ

Ĩ[φ ]≥−λb2

8 . On the other hand, for any Schwartz function χ , consider

φ̂ε(ξ ) :=

√
λ√

ε‖χ‖L2
χ

ξ − 1
2π

√
b
2

ε


which has ‖φ‖2

L2 = λ and saturates the inequality (2.3.16) in the sense that

lim
ε→0+

∫
R
|φ̂ε(ξ )|2

∣∣∣∣(2πξ )2− b
2

∣∣∣∣2 dξ → 0.

Thus, inf‖φ‖2
2=λ

I[φ ] =−λb2

8 . So, we have that

−λb2

8
= mb(λ )≤

1
2

∫
R
|φ ′′(x)|2−b|φ ′|2dx− 1

p+1

∫
R
|φ(x)|p+1dx

holds for all φ with ‖φ‖2
2 = λ . Applying this to an arbitrary f and φ :=

√
λ

f
‖ f‖L2

, so that ‖φ‖2
L2 = λ

the following inequality holds

λ
p−1

2 b
p−9

4

p+1

∫
R
| f (x)|p+1dx≤ 1

2
‖ f‖p−1

2

(∫
R
| f ′′(x)|2−b| f ′(x)|2 + b2

4
| f (x)|2dx

)

for all f 6= 0. This last inequality however contradicts Lemma 9 - for every λ > 0, if p ∈ (1,5) and

for all large enough λ , if p ∈ [5,9). Thus L3 6= 0. Clearly, by Sobolev embedding L1 > 0, L2 > 0,

otherwise L3 must be zero, which previously lead to a contradiction.

The following lemma will be useful for ruling out the dichotomy option in the concentration
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compactness argument.

Lemma 11 (Strict sub-additivity). Let 1 < p < 9 and λ > 0. Then for all α ∈ (0,λ ) we have

mb(λ )< mb(α)+mb(λ −α). (2.3.18)

Proof. First, suppose that 1 < p < 5 and b < 0. Then

mb(λ ) =
λ

α
inf

‖φ‖2
2=α

{1
2

∫
R
|φ ′′(x)|2−b|φ ′(x)|2dx− (λ/α)

p−1
2

p+1

∫
R
|φ(x)|p+1dx}

<
λ

α
mb(α),

where the last strict inequality holds because a minimizing sequence for mb(α) doesn’t loose

‖φk‖p+1. Namely, there exists a minimizing sequence {φk}∞
k=1, so that limk ‖φk‖p+1 > 0. The

existence of such a sequence was established in Lemmas 7 and 10. Hence the function λ → mb(λ )
λ

is a strictly decreasing function.

Assuming that α ∈ [λ

2 ,λ ) (and otherwise we could just work with λ −α) we get

mb(λ )<
λ

α
mb(α)

= mb(α)+
λ −α

α
mb(α)

≤ mb(α)+mb(λ −α),

where we have used mb(α)
α
≤ mb(λ−α)

λ−α
, since α ≥ λ −α . This completes the case p ∈ (1,5),b < 0.

Let 5 ≤ p < 9 and b < 0. Note that in this case, mb(λ ) is zero for small λ , by Lemma 6. So,

there are three possibilities:

1. mb(α)=mb(λ−α)= 0. In this case (2.3.18) trivially holds, since by assumption mb(λ )< 0.
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2. mb(λ )< 0, but mb(λ −α) = 0. In this case we have

mb(λ )<
λ

α
mb(α)

= mb(α)+(
λ

α
−1)mb(α)

< mb(α)+mb(λ −α).

3. When both mb(α),mb(λ −α) are negative, the proof is the same as in the case 1 < p < 5 for

b < 0.

Next, we consider the cases when b> 0. In this case for all 1< p< 5 and all λ > 0 we have that

−∞ < mb(λ )< 0. The proof is the same as in the case b < 0, p∈ (1,5), since we never develop the

complication that mb(λ ) = 0 for any λ > 0. The case p∈ [5,9) and λ > λb,p is similar as well.

2.3.2 Existence of the minimizer

Now, suppose  1 < p < 5, λ > 0,

5≤ p < 9, λ > λb,p,

so that Lemma 7 and Lemma 10 hold. Let {φk}∞
k=1 ⊂ H2 be a minimizing sequence, i.e.

∫
R
|φk|2dx = λ , lim

k→∞
I[φk] = mb(λ ).

Therefore, by passing to a further subsequence, by Lemma 7 and Lemma 10, we have

lim
k→∞

∥∥φ
′′
k
∥∥2

2 = L1 > 0, lim
k→∞

∥∥φ
′
k
∥∥2

2 = L2 > 0, lim
k→∞

‖φk‖p+1
Lp+1 = L3 > 0.

Let ρk = |φk|2, so
∫

ρk(x)dx = λ . By the concentration compactness lemma of P.L.Lions, there is

a subsequence (denoted again by ρk), so that at least one of the following is satisfied:

36



1. Tightness. There exists yk ∈ R such that for any ε > 0 there exists R(ε) such that for all k

∫
B(yk,R(ε))

ρkdx≥
∫

R
ρk− ε.

2. Vanishing. For every R > 0

lim
k→∞

sup
y∈R

∫
B(y,R)

ρkdx = 0.

3. Dichotomy. There exists α ∈ (0,λ ), such that for any ε > 0 there exist R,Rk→ ∞,yk and k0

such that

∣∣∣∣∫B(yk,R)
ρkdx−α

∣∣∣∣< ε,

∣∣∣∣∫R<|x−yk|<Rk

ρkdx
∣∣∣∣< ε,

∣∣∣∣∫Rk<|x−yk|
ρkdx− (λ −α)

∣∣∣∣< ε. (2.3.19)

We proceed to rule out the dichotomy and vanishing alternatives, which will leave us with tightness.

Dichotomy is not an option. Assuming dichotomy, we have by (2.3.19) and
∫

ρk(x)dx = λ that∣∣∣∫Rk<|x−yk|ρkdx− (λ −α)
∣∣∣< 2ε .

Let ψ1,ψ2 ∈C∞(R), satisfying 0≤ ψ1,ψ2 ≤ 1 and

ψ1(x) =


1, |x| ≤ 1,

0, |x| ≥ 2,
, ψ2(x) =


1, |x| ≥ 1,

0, |x| ≤ 1/2,
.

Define φk,1 and φk,2 as follows:

φk,1(x) = φk(x)ψ1

(
x− yk

Rk/5

)
, φk,2(x) = φk(x)ψ2

(
x− yk

Rk

)
.

Clearly, for k large enough we have

∣∣∣∣∫R
φ

2
k,1(x)dx−α

∣∣∣∣< 2ε and
∣∣∣∣∫R

φ
2
k,2(x)dx− (λ −α)

∣∣∣∣< 2ε.

In fact, by taking a sequence εn→ 0, we can find subsequence of φk,1,φk,2 (denoted again the same)
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and sequences {yk}∞
k=1 ⊂ R, {Rk}∞

k=1 with Rk→ ∞ as k→ ∞, such that

lim
k→∞

∫
R
|φk,1|2dx = α, lim

k→∞

∫
R

∣∣φk,2
∣∣2 dx = λ −α and

∫
Rk/5<|x−yk|<Rk

|φk|2dx <
1
k
. (2.3.20)

Consider I[φk]− I[φk,1]− I[φk,2]. Using (2.3.20) we get

I[φk]− I[φk,1]− I[φk,2] =
1
2

∫
R
|φ ′′k |2−b|φ ′k|2dx− 1

p+1

∫
R
|φk|p+1

− 1
2

∫
R

∣∣∣∣(φkψ1

(
x− yk

Rk/5

))′′∣∣∣∣2−b
∣∣∣∣(φkψ1

(
x− yk

Rk/5

))′∣∣∣∣2 dx+
1

p+1

∫
R

∣∣∣∣(φkψ1

(
x− yk

Rk/5

))∣∣∣∣p+1

− 1
2

∫
R

∣∣∣∣(φkψ2

(
x− yk

Rk

))′′∣∣∣∣2−b
∣∣∣∣(φkψ2

(
x− yk

Rk

))′∣∣∣∣2 dx+
1

p+1

∫
R

∣∣∣∣(φkψ2

(
x− yk

Rk

))∣∣∣∣p+1

=
1
2

∫
R

(
1−ψ

2
1

(
x− yk

Rk/5

)
−ψ

2
2

(
x− yk

Rk

))[
|φ ′′k (x)|2−

b
2
|φ ′k(x)|2

]
dx+

+
1

p+1

∫
R
|φk(x)|p+1

(
ψ

p+1
1

(
x− yk

Rk/5

)
+ψ

p+1
2

(
x− yk

Rk

)
−1
)

dx+Ek.

The error term Ek, contains only terms having at least one derivative on the cutoff functions, there-

fore generating R−1
k . At the same time, there is at most one derivative falling on the φk. So, we can

estimate these terms away as follows

|Ek| ≤
C
Rk

∫
Rk/5<|x|<2Rk

(|φk(x)|2 + |φ ′k(x)|2)dx≤ C
Rk
‖φk‖L2(‖φk‖L2 +‖φ ′′k ‖L2).

Since supk ‖φk‖L2,supk ‖φ ′′k ‖L2 < ∞, we conclude that limk Ek = 0. For the next term, we have the

positivity relation
∫

R

(
1−ψ2

1

(
x−yk
Rk/5

)
−ψ2

2

(
x−yk

Rk

))
|φ ′′k (x)|2dx > 0. Integration by parts yields

∫
R

(
1−ψ

2
1

(
x− yk

Rk/5

)
−ψ

2
2

(
x− yk

Rk

))
|φ ′k(x)|2dx =

= −
∫

R
φk(x)

d
dx

[

(
1−ψ

2
1

(
x− yk

Rk/5

)
−ψ

2
2

(
x− yk

Rk

))
φ
′
k(x)]dx.
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Thus, by Hölder’s

∣∣∣∣∫R

(
1−ψ

2
1

(
x− yk

Rk/5

)
−ψ

2
2

(
x− yk

Rk

))
|φ ′k(x)|2dx

∣∣∣∣≤
≤ C‖φ ′′k ‖L2‖φk‖L2(Rk/5<|·|<Rk)

+
C
Rk
‖φ ′k‖L2‖φk‖L2.

Note that since Rk→ ∞ and on the other hand ‖φk‖H2 is uniformly bounded in k, this term goes to

zero, by the last estimate in (2.3.20). Finally,

∣∣∣∣∫R
|φk(x)|p+1

(
ψ

p+1
1

(
x− yk

Rk/5

)
+ψ

p+1
2

(
x− yk

Rk

)
−1
)

dx
∣∣∣∣≤ ∫Rk/5<|x−yk|<Rk

|φk(x)|p+1dx.

Since by GNS

∫
Rk/5<|x−yk|<Rk

|φk(x)|p+1dx≤C‖φ ′′k ‖
p−1

4
L2 ‖φk‖

3p+5
4

L2(Rk/5<|·|<Rk)
,

and ‖φ ′′k ‖L2 is uniformly bounded in k, we conclude that this term also goes to zero as k→ ∞.

It follows that

liminf
k→∞

[
I[φk]− I[φk,1]− I[φk,2]

]
≥ 0. (2.3.21)

Now, let {ak}∞
k=1 and {bk}∞

k=1 be sequences such that

∥∥akφk,1
∥∥2

2 = α,
∥∥bkφk,2

∥∥2
2 = λ −α.

Note that ak,bk→ 1. Using (2.3.21), there is βk, limk βk = 0, so that

I[φk]≥ I[φk,1]+ I[φk,2]+βk

≥ I[akφk,1]+ I[bkφk,2]+βk−C(|1−ak|+ |1−bk|)

≥ mb(α)+mb(λ −α)+βk−C(|1−ak|+ |1−bk|),

where we have used that supk ‖φk‖H2 < ∞, the estimate |I(φ)− I(aφ)| ≤C(‖φ‖H2)|1−a| (which
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is a direct consequence of the definition of the functional I[·]) and the definition of mb(z). Taking

limits in k, we see that

mb(λ ) = lim
k

I[φk]≥ mb(α)+mb(λ −α),

which is a contradiction with the sub-additivity of mb(·) established in Lemma 11. So, dichotomy

cannot occur.

Vanishing is not an option. Suppose vanishing occurs and let ε > 0. Let φ ∈C∞ be such that

η(x) =


1, |x| ≤ 1,

0, |x| ≥ 2.

Using GNS we have for all R and y ∈ R

‖φk‖p+1
Lp+1(B(y,R)) ≤

∫
B(y,R)

|φk|p+1dx

≤
∫

R

∣∣∣∣φkη

(
x− y

R

)∣∣∣∣p+1

dx

≤
∥∥∥∥(φkη

(
x− y

R

))′′∥∥∥∥
p−1

4

L2(R)

‖φk‖
3p+5

4
L2(B(y,2R))

≤Cη ,R ‖φk‖
3p+5

4
L2(B(y,2R)) .

We can cover R with balls of radius 2 such that every point is contained in at most 3 balls, let it be

{B(y j,2)}. Moreover, we can choose these balls so that {B(y j,1)} still covers R. Choose N ∈ N

so large that for all k > N, ∫
B(y,2)

|φk|2dx < ε,
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for all y ∈ R. We can estimate the Lp+1(R) norm of φk as follows

‖φk‖p+1
Lp+1(R)

≤
∞

∑
j=1

∫
B(y j,1)

|φk|p+1dx

≤
∞

∑
j=1

Cη ,R ‖φk‖2
L2(B(y j,2)) ‖φk‖

3p−3
4

L2(B(y j,2))

≤ 3Cη ,Rε
3p−3

4 ‖φk‖2
L2(R) .

So, we get that ‖φk‖p+1
Lp+1(R)

→ 0 as k → ∞ which is a contradiction. Therefore, the sequence

ρk = |φk|2 is tight.

Existence of the minimizer. We have that there exists a sequence {yk}∞
k=1 such that for all

ε > 0 there exists R(ε) such that

∫
|x|>R(ε)

|φk(yk + x)|2dx < ε.

Define uk(x) := φk(yk+x). The sequence {uk}∞
k=1⊂H2 is bounded, therefore there exists a weakly

convergent subsequence (renamed to {uk}∞
k=1), say, to u ∈ H2 . By compactness criterion on

Lp(Rn), the sequence {uk}∞
k=1 has a strongly convergent subsequence in L2(R), say, to ũ ∈ H2.

Since weak convergence on H2 implies weak convergence on L2, we have that u = ũ by uniqueness

of weak limits. In addition, ‖u‖2
L2 = limk ‖uk‖2

L2 = λ , so u satisfies the constraint.

We also have that uk converges to u in Lp+1 norm. Indeed, using GNS inequality we get

‖uk−u‖Lp+1(R) ≤
∥∥(uk−u)′′

∥∥ p−1
4(p+1)

L2(R)
‖uk−u‖

1− p−1
4(p+1)

L2(R)

≤C‖uk−u‖
1− p−1

4(p+1)

L2(R)
→ 0 as k→ ∞.

Also, since

‖u′k−u′‖2
L2 ≤ ‖u′′k −u′′‖L2‖uk−u‖L2 ≤ (‖u′′k‖L2 +‖u′′‖L2)‖uk−u‖L2,

41



we conclude that limk ‖u′k−u′‖L2 = 0, and, in addition, limk
∫
(u′k(x))

2dx→
∫
(u′(x))2dx.

Finally, by the lower semi-continuity of the L2 norm with respect to weak convergence, we

have liminfk
∫

R |u′′k |2 ≥
∫

R |u′′|2. We conclude that

liminf
k

1
2

∫
R
|u′′k |2−b|u′k|2dx− 1

p+1

∫
R
|uk|p+1dx≥ 1

2

∫
R
|u′′|2−b|u′|2dx− 1

p+1

∫
R
|u|p+1dx,

whence we have that mb(λ )≥ I[u], therefore I(u) = mb(λ ) and u is a minimizer.

2.3.3 Euler-Lagrange equation

Proposition 3. Let p ∈ (1,9),λ > 0, be so that one of the following holds

• 1 < p < 5,λ > 0,

• 5≤ p < 9,λ > λb,p > 0.

Then, there exists a function ω(λ ) > 0, so that the minimizer of the constrained minimization

problem (2.1.8) φ = φλ , constructed in Section 2.3.2, satisfies the Euler-Lagrange equation

φ
′′′′
λ

+bφ
′′
λ
−|φλ |p−1

φλ +ω(λ )φλ = 0, (2.3.22)

where

ω(λ ) =
1
λ

∫
R

b(φ ′
λ
)2 + |φλ |p+1− (φ ′′

λ
)2dx.

In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. In fact L+|{φλ }⊥ ≥ 0.

Proof. We have shown that minimizers for the constrained minimization problem exist in the two

cases described above, for both b > 0 and b < 0.

Consider uδ =
√

λ
φλ+δh
‖φλ+δh‖ , where h is a test function. Note that ‖uδ‖2

L2 = λ , so it satisfies the
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constraint. Expanding I[uδ ] in powers of δ we obtain

I[uδ ] = mb(λ )+δ

[∫
R

φ
′′
λ

h′′−bh′φ ′
λ
−h|φλ |p−1

φλ dx

+
1
λ

∫
R

b(φ ′
λ
)2 + |φλ |p+1− (φ ′′

λ
)2dx

∫
R

φλ hdx
]

+
δ 2

2

[∫
R
(h′′)2−b(h′)2− ph2 |φλ |p−1 dx

]
+

δ 2

λ
〈h,φ〉

∫
R
(p+1)h|φ |p−1

φ +2bh′φ ′
λ
−2h′′φ ′′

λ
dx

+
δ 2

2λ 2 〈h,φ〉
2
∫

R
(p+3) |φλ |p+1 +4b(φ ′

λ
)2−4(φ ′′

λ
)2dx+

+
δ 2

2λ
‖h‖2

∫
R
|φλ |p+1 +b(φ ′

λ
)2− (φ ′′

λ
)2dx+O(δ 3).

Using only the first order in δ information and the fact that I[uδ ] ≥ mb(λ ) for all δ ∈ R, we

conclude that

〈φ ′′′′
λ

+bφ
′′
λ
−|φλ |p−1

φλ +ω(λ )φλ ,h〉= 0,

where ω(λ ) = 1
λ

∫
R b(φ ′

λ
)2 + |φλ |p+1− (φ ′′

λ
)2dx. Since this is true for any test function h, we

conclude that φλ is a distributional solution of the Euler-Lagrange equation (2.3.22). According to

Proposition 2, this turns out to be a solution in stronger sense, in particular φλ ∈ H4(R).

Now, using the fact that the function gh(δ ) := I[uδ ] has a minimum at zero, we also conclude

that g′′h(0) ≥ 0. This is of course valid for all h, but in order to simplify the expression, we only

look at h : ‖h‖= 1, which are orthogonal to the wave φλ , i.e. 〈h,φλ 〉= 0. This implies that

〈h′′′′+bh′′+ω(λ )h− p|φλ |p−1h,h〉 ≥ 0.

In other words, 〈L+h,h〉 ≥ 0, whenever h : ‖h‖ = 1,〈h,φλ 〉 = 0, that is exactly the claim about

L+|{φλ }⊥ ≥ 0. In particular, this implies that the second smallest eigenvalue of L+ is non-negative

or n(L+)≤ 1. On the other hand, since 〈L+φλ ,φλ 〉=−(p−1)
∫
|φλ (x)|p+1dx < 0, it follows that

there is a negative eigenvalue or n(L+) = 1.
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2.3.4 Norms of the minimizers are controlled

We have the following technical proposition, which will be useful in the sequel.

Proposition 4. Let λ , p satisfy the assumptions in Theorem 1. Then, there exists Cb,Db, so that

∫
R
|φ ′′

λ
|2 +

∫
R
|φ ′

λ
|2 +

∫
R
|φλ |p+1 ≤Cb(1+λ

Db). (2.3.23)

Proof. By (2.3.11), p < 9 and the Gagliardo-Nirenberg’s inequality ‖φ ′‖2
L2 ≤C‖φ ′′‖L2‖φ‖L2 , we

have that for all ε > 0, there is Cε ,

‖φλ‖
p+1
Lp+1 ≤ ε‖φ ′′

λ
‖2

L2 +Cελ
D.

Thus,

0≥ m(λ ) = I[φλ ]>
1
4
‖φ ′′

λ
‖2

L2−Cλ
D.

This yields the inequality for ‖φ ′′
λ
‖2

L2 . For all the others, we use the GNS bounds and (2.3.11).

2.4 Variational construction in higher dimensions

In this section, we follow the approach and constructions from Section 2.3. Most, if not all, of the

steps go through essentially unchanged, save for the numerology, which is of course impacted by

the dimension d. Thus, we will be just indicating the main points, without providing full details,

where the arguments follow closely the one dimensional case. We work with

 I[φ ] = 1
2
∫

Rd [|∆φ(x)|2− ε|~b|2|∂x1φ(x)|2]dx− 1
p+1

∫
Rd |φ(x)|p+1dx→min,∫

Rd φ 2(x)dx = λ .
(2.4.1)

Again, we introduce

m~b(λ ) = inf
φ∈H2∩Lp+1,‖φ‖2

2=λ

I[φ ].
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Noting that

m~b(λ )

λ
= inf
‖φ‖2

2=1

{
1
2

∫
Rd
[|∆φ(x)|2− ε|~b|2|∂x1φ(x)|2]dx− λ

p−1
2

p+1

∫
Rd
|φ(x)|p+1dx

}
, (2.4.2)

and hence λ → m~b(λ )

λ
is non-increasing, we conclude that m~b(λ ) is differentiable a.e..

As before, we split our discussion in the cases ε = 1, ε =−1.

2.4.1 The case ε =−1

We have the following regarding m~b(λ ).

Lemma 12. Let ε =−1. then,

• for p ∈ (1,1+ 8
d+1) and λ > 0, we have that −∞ < m~b(λ )< 0,

• for p ∈ (1,1+ 8
d ), m~b(λ )>−∞,

• for p > 1+ 8
d , m~b,λ =−∞ for all λ > 0.

• for p = 1+ 8
d , m~b,λ =−∞ for all λ large enough.

Proof. The proof goes through the same steps as in Lemma 5. Pick φδ = δ
d+1

2 φ(δ 2x1,δx′), with

‖φ‖2
L2 = λ . Clearly, ‖φδ‖2

L2 = λ , while

I[φδ ] =
δ 4‖∆′φ‖2 +δ 8‖∂ 2

x1
φ‖2

L2

2
+
|~b|2‖φx1‖2

2
δ

4−
‖φ‖p+1

Lp+1

p+1
δ

(d+1)(p−1)
2 .

Since for δ small enough and p< 1+ 8
d+1 , the last term is dominant, we have mb(λ )< 0. Similarly,

using ψδ = δ
d
2 φ(δx) we obtain

I[ψδ ] =
δ 4 ‖∆φ‖2 +δ 2|~b|2 ‖φx1‖

2

2
−
‖φ‖Lp+1

p+1

p+1
δ

d(p−1)
2 ,

and taking the limit δ → ∞ yields mb(λ ) =−∞, for p > 1+ 8
d .
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Next, by GNS, we have that

‖φ‖Lp+1(Rd) ≤Cp‖φ‖
Ḣ

d( 1
2−

1
p+1 )
≤Cp‖φ‖

1−d( 1
4−

1
2(p+1) )

L2 ‖∆φ‖
d( 1

4−
1

2(p+1) )

L2 .

Thus,

I[φ ] =
1
2

∫
Rd
[|∆φ(x)|2 + |~b|2|∂x1φ(x)|2]dx− 1

p+1

∫
Rd
|φ(x)|p+1dx

≥ 1
2

∫
Rd
|∆φ |2 + |~b|2|∂x1φ(x)|2dx− cp‖∆φ‖d p−1

4
L2 ‖φ‖p+1−d p−1

4
L2

≥ 1
4
‖∆φ‖2

L2− cp,λ ,b‖∆φ‖d p−1
4

L2 ≥−γ,

where in the last inequality, we have used that p < 1+ 8
d (whence d p−1

4 < 2). Therefore, ‖∆φ‖2
L2

is dominant. The fact that mb(λ ) = −∞ for λ large enough, when p = 1+ 8
d follows in the same

fashion as in Lemma 5.

Next, we present a technical lemma.

Lemma 13. For 1+ 8
d+1 ≤ p≤ 1+ 8

d , the following inequality holds

‖g‖p+1
Lp+1(Rd)

≤Cp‖g‖p−1
L2

∫
Rd
|∆g|2 + |∂x1g|2dx. (2.4.3)

For p ∈ (1,1+ 8
d+1), such an estimate cannot hold.

Proof. We apply the Sobolev embedding in the variables x1 and then in x′ = (x2, . . . ,xd)

‖g‖Lp+1(Rd) . ‖|∇x′|(d−1)( 1
2−

1
p+1 )|∇x1|

( 1
2−

1
p+1 )g‖L2(Rd). (2.4.4)
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Next, by Plancherel’s, Hölder’s inequality and Young’s inequality

‖|∇x′|(d−1)( 1
2−

1
p+1 )|∇x1|

( 1
2−

1
p+1 )g‖L2(Rd) =

(∫
Rd
|ĝ(ξ )|2|ξ ′|(d−1)(1− 2

p+1 )|ξ1|1−
2

p+1 dξ

)1/2

. ‖g‖
p−1
p+1

L2

(∫
Rd
|ĝ(ξ )|2|ξ ′|(d−1) p−1

2 |ξ1|
p−1

2 dξ

) 1
p+1

. ‖g‖
p−1
p+1

L2

(∫
Rd
|ĝ(ξ )|2[|ξ ′|4 + |ξ1|

q′(p−1)
2 ]dξ

) 1
p+1

,

where q = 8
(d−1)(p−1) . Clearly, (2.4.3) follows, provided 2 ≤ q′(p−1)

2 ≤ 4. Solving this inequality

yields exactly 1+ 8
d+1 ≤ p≤ 1+ 8

d .

If p < 1+ 8
d+1 , take φ = χ(ε2x1,εx′) in (2.4.3). Assuming the validity of (2.4.3), we obtain

that ε(d+1) p−1
2 ≤ const(ε4 + ε8). This is a contradiction for ε << 1 and p ∈ (1,1+ 8

d+1).

The next two lemmas are the generalizations of Lemma 6 and Lemma 7 to higher dimensions.

Lemma 14. If ε =−1 and p∈ [1+ 8
d+1 ,1+

8
d ), then there exists a finite number λ~b,p > 0 such that

• for all λ ≤ λ~b,p we have mb(λ ) = 0,

• for all λ > λ~b,p we have −∞ < mb(λ )< 0.

Proof. The inequality m(λ )≤ 0 follows in the same way as in Lemma 6. Then, by Lemma 13, we

have

inf
φ 6=0

‖φ‖p−1
L2

∫
Rd [|∆φ |2− ε|~b|2|φx1|2]dx∫

Rd |φ |p+1dx
≥ c~b,p > 0. (2.4.5)

Thus, for all φ ∈ H2(Rd), we have

∫
Rd
[|∆φ |2− ε|~b|2|φx1|

2]dx−
c~bp

λ p−1

∫
Rd
|φ |p+1dx≥ 0,

which by (2.4.2) implies that for λ ≤ λ~b,p :=
(

c~b,p(p+1)
2

) 2
p−1

, m~b(λ ) ≥ 0. Since we always have

the opposite inequality, this implies m~b(λ ) = 0, when λ is small enough. Note that for very large

λ , the quantity in (2.4.2) is clearly negative, so this implies that λ~b,p < ∞.
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The next lemma is the generalization of Lemma 7 to the higher dimensional case. Its proof

follows similar path and it is thus omitted.

Lemma 15. Suppose ε = −1, p ∈ (1,1+ 8
d ) and −∞ < mb(λ ) < 0. That is, one of the following

holds:

• p ∈ (1,1+ 8
d+1),λ > 0,

• p ∈ [1+ 8
d+1 ,1+

8
d ) and λ > λ~b,p.

Let {φn}∞
n=1 be a minimizing sequence for the constrained minimization problem (2.4.1). Then,

there exists a subsequence {φnk}∞
k=1 such that:

lim
k→∞

∫
Rd
|∆φnk(x)|

2dx = L1, lim
k→∞

∫
Rd
|∂x1φnk(x)|

2dx = L2, lim
k→∞

∫
Rd
|φnk(x)|

p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0.

We now turn to the case ε = 1.

2.4.2 The case ε = 1

The first observation is that for φδ (x) = δ
d
2 φ(δx), we have

I[φδ ] = δ
4‖∆φ‖2

L2

2
−δ

2‖∂x1φ‖2
L2

2
−δ

d p−1
2
‖φ‖p+1

Lp+1

p+1
.

Clearly for p ∈ (1,1+ 8
d ) and 0 < δ << 1, we conclude that mb(λ )< 0. Boundedness from below

follows from the estimate

I[φ ]≥ 1
4
‖∆φ‖2

L2− cp,λ ,b(‖∆φ‖d p−1
4

L2 +1)≥−γ,

established earlier. Hence, we have shown the following.

Lemma 16. If 1 < p < 1+ 8
d and ε = 1, then −∞ < m~b,p(λ )< 0.
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Next, we have a generalization of Lemma 9 to the case d > 1.

Lemma 17. Let p : 1 < p < 1+ 8
d+1 , ε = 1,κ 6= 0 and fix a constant c. Then, the inequality

‖φ‖p+1
Lp+1 ≤ c‖φ‖p−1

L2

[∫
Rd
|∆φ(x)|2−2κ

2|∂x1φ(x)|2 +κ
4|φ(x)|2dx

]
(2.4.6)

cannot hold for all φ ∈ H2(Rd).

For p ∈ [1+ 8
d+1 ,1+

8
d ] and ε = 1, there is a c = c(κ,d), so that

‖φ‖p+1
Lp+1 ≤ c‖φ‖p−1

L2

[∫
Rd
|∆φ(x)|2−2κ

2|∂x1φ(x)|2 +κ
4|φ(x)|2dx

]
(2.4.7)

holds for all φ ∈ H2(Rd).

Proof. Note that to prove (2.4.6) it is enough to prove a stronger inequality

‖φ‖p+1
Lp+1 ≤ c‖φ‖p−1

L2

[∫
Rd
|φ̂(ξ )|2

(
|ξ ′|4 +(ξ 2

1 −κ
2)2)dξ

]
.

Thus, one introduces a function g : ĝ(ξ1−κ,ξ ′) = φ(ξ ), so that (2.4.6) is now equivalent to

‖g‖p+1
Lp+1 ≤ c‖g‖p−1

L2

[∫
Rd
|ĝ(ξ )|2

(
|ξ ′|4 + |ξ1|2|ξ1 +2κ|2

)
dξ

]
. (2.4.8)

According to the estimate in Lemma 13, we have, with q = 8
(d−1)(p−1) ,

‖φ‖Lp+1 ≤ ‖g‖
p−1
p+1

L2

(∫
Rd
|ĝ(ξ )|2

(
|ξ ′|4 + |ξ1|

q′(p−1)
2

)
dξ

) 1
p+1

.

Again, this implies (2.4.8), provided 2≤ q′(p−1)
2 ≤ 4 or 1+ 8

d+1 ≤ p≤ 1+ 8
d . The contradiction in

the case 1 < p < 1+ 8
d+1 is obtained in the same way as in the proof of Lemma 13.

Our next lemma is a generalization of Lemma 10. Its proof follows verbatim the proof of

Lemma 10, where one needs to make some adjustments to account for the dimension.
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Lemma 18. Suppose ε = 1, λ > 0 and 1 < p < 1+ 8
d . Let {φn}∞

n=1 be a minimizing sequence11

for the constrained minimization problem (2.4.1). In addition, assume one of the following:

• p ∈ (1,1+ 8
d+1), λ > 0,

• p ∈ [1+ 8
d+1 ,1+

8
d ) and λ is sufficiently large.

Then, there exists a subsequence {φnk}∞
k=1, such that:

lim
k→∞

1
2

∫
Rd
|∆φnk(x)|

2 = L1, lim
k→∞

∫
Rd
|∂x1φnk(x)|

2 = L2 and lim
k→∞

∫
Rd
|φnk |

p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0.

2.4.3 Existence of minimizers

Before we go ahead with the existence of minimizers, we need analogs of Lemma 11 and Lemma

23. Their proofs in the higher dimensional case goes in an identical manner.

Lemma 19. Suppose the assumptions of Lemma 15 and Lemma 18 on λ , p and d hold. Then

λ → m~b,p(λ ) is strictly sub-additive. That is, for every α ∈ (0,λ ),

m~b,p(λ )< m~b,p(α)+m~b,p(λ −α).

In addition, λ → m~b,p(λ ) is twice differentiable a.e..

With the basic results in place, we can now proceed to establish the existence of the minimizers

of (2.4.1). Supposing  1 < p < 1+ 8
d+1 , λ > 0,

1+ 8
d+1 ≤ p < 1+ 8

d , λ > λb,p,

we take a minimizing sequence {φk}∞
k=1 ⊂ H2(Rd), with I[φk]→ m~b,p(λ ) as k → ∞. Possibly

passing to a subsequence, using either Lemma 15 for ε = −1 or Lemma 18 for ε = 1, we can

11According to Lemma 16, m(λ ) is well-defined, hence such a sequence always exists.
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assume that12

lim
k→∞

1
2

∫
Rd
|∆φk(x)|2 = L1, lim

k→∞

∫
Rd
|∂x1φk(x)|2 = L2 and lim

k→∞

∫
Rd
|φk|p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0. The next task is to show that this sequence does not split nor

vanish. The absence of splitting is established in the same way as the first part of Section 2.3.2.

Next, we rule out vanishing. The proof presented in Section 2.3.2 works for d = 1,2,3,4, but

breaks down in d ≥ 5, so let us present another one that works in all dimensions. More concretely,

for all R > 0 and y ∈ Rd and a cutoff function η introduced in Section 2.3.2, we have by the GNS

inequality

‖φk‖p+1
Lp+1(B(y,R)) ≤

∫
Rd
|φk(x)η

(
|x− y|

R

)
|p+1dx . ‖φkηR‖p+1

Ḣ
d( 1

2−
1

p+1)

. ‖∆[φkηR]‖
(p+1) d

2

(
1
2−

1
p+1

)
L2 ‖φkηR‖

(p+1)−(p+1) d
2

(
1
2−

1
p+1

)
L2 .

Since p < 1+ 8
d , it follows that (p+ 1)d

2

(
1
2 −

1
p+1

)
< 2. In addition ‖φkηR‖L2 ≤ ‖φk‖L2(B(y,2R),

whence

‖φk‖p+1
Lp+1(B(y,R)) ≤CR,η‖φk‖2

H2(B(y,2R))‖φk‖p−1
L2(B(y,2R)).

So, if we assume that vanishing occurs, then for every ε > 0, we will be able to cover Rd with balls

of radius 1, say B(y j,1), so that
∫

B(y j,3) |φk(x)|2dx < ε . Then,

‖φk‖p+1
Lp+1(Rd)

≤
∞

∑
j=1

∫
B(y j,1)

|φk|p+1dx≤
∞

∑
j=1

Cη ,R ‖φk‖2
H2(B(y j,2)) ‖φk‖p−1

L2(B(y j,2))

≤ 10Cη ,Rε
p−1

2 ‖φk‖2
H2(Rd) .

Clearly, since ‖φk‖H2(Rd) is uniformly bounded in k, we conclude that ‖φk‖Lp+1 → 0, which is in a

contradiction with limk
∫

Rd |φk|p+1dx = L3 > 0.

From here, it follows that the sequence ρk = |φk(x)|2 is tight and the existence of the minimizer

12For conciseness, we use φk instead of φnk .
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is done as in Section 2.3.2.

The Euler-Lagrange equation, together with the appropriate properties of the linearized opera-

tors is done similar to Proposition 3.

Proposition 5. Let p ∈ (1,1+ 8
d ),λ > 0, be so that one of the following holds:

• 1 < p < 1+ 8
d+1 ,λ > 0,

• 1+ 8
d+1 ≤ p < 1+ 8

d ,λ > λb,p > 0.

Then, there exists a function ω(λ ) > 0, so that the minimizer of the constrained minimization

problem (2.4.1), φ = φλ , satisfies the Euler-Lagrange equation

∆
2
φλ + ε|~b|2∂

2
x1

φλ −|φλ |p−1
φλ +ω(λ )φλ = 0. (2.4.9)

In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. Finally, L− ≥ 0, with a

simple eigenfunction at zero, i.e. Ker[L−] = span[φλ ].

As we mentioned above, the proof goes along the lines of Proposition 3. The only new element

are the statements about L−, which we now prove.

Note that by direct inspection, L−[φλ ] = 0, by (2.4.9), so zero is an eigenvalue. Assuming that

there is a negative eigenvalue, say L−[ψ] = −σ2ψ,‖ψ‖ = 1, we clearly would have ψ ⊥ φλ . In

addition, since13 L+ < L−,

〈L+ψ,ψ〉< 〈L−ψ,ψ〉=−σ
2,

〈L+φλ ,φλ 〉< 0.

But then L+|span{ψ,φλ } < 0, and dim(span{ψ,φλ}) = 2. This would force n(L+) ≥ 2, a contra-

diction. Thus, L− ≥ 0. Finally, 0 is a simple eigenvalue of L− along the same line of reasoning.

13This is an obvious statement, once we realize that φλ cannot vanish on an interval. Indeed, otherwise, since it
solves the fourth order equation (2.4.9), it follows that φλ is trivial, which it is not.
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Indeed, take ψ : L−ψ = 0,ψ ⊥ φλ . Again, we conclude L+|span{ψ,φλ } < 0, which leads to a

contradiction.

2.4.4 Discussion of the proof of Theorem 5: existence of the waves

We do not provide an extensive review of the existence claims in Theorem 5, as this would be

repetitious, but we would like to make a few notable points. In particular, we would like to clarify

the range of indices in p. More concretely, we have the following analogue of Lemmas 13.

Lemma 20. For 1+ 4
d ≤ p < 1+ 8

d ,

‖g‖p+1
Lp+1(Rd)

≤Cp‖g‖p−1
L2

∫
Rd
|∆g|2 + |∇g|2dx. (2.4.10)

For p ∈ (1,1+ 4
d ), such an estimate cannot hold.

The proof proceeds in a similar fashion, so we omit it. A combination of arguments in the

flavor of the proofs for Lemma 12 and Lemma 14 leads us to the following variant of Lemma 14

and Lemma 15.

Lemma 21. If b < 0 and p ∈ [1+ 4
d ,1+

8
d ), then there exists a finite number λb,p > 0 so that

• for all λ ≤ λb,p we have mb(λ ) = 0,

• for all λ > λp we have −∞ < mb(λ )< 0.

In addition, assume that −∞ < mb(λ )< 0, that is one of the following holds:

• p ∈ (1,1+ 4
d ),λ > 0,

• p ∈ [1+ 4
d ,1+

8
d ) and λ > λb,p.

Let {φn}∞
n=1 be a minimizing sequence for the constrained minimization problem

 I[φ ] = 1
2
∫

R |∆φ(x)|2−b|∇φ(x|2dx− 1
p+1

∫
R |φ(x)|p+1dx→min,∫

R φ 2(x)dx = λ ,
(2.4.11)
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then there exists a subsequence {φnk}∞
k=1 such that:

lim
k→∞

∫
Rd
|∆φnk(x)|

2dx = L1, lim
k→∞

∫
Rd
|∇φnk(x)|

2dx = L2, lim
k→∞

∫
Rd
|φnk(x)|

p+1dx = L3,

where L1 > 0, L2 > 0 and L3 > 0.

With these tools at hand, the existence of the waves follows in the same manner as before, so

we omit the details.

2.5 Stability of the normalized waves

Interestingly, the proof of the spectral stability proceeds by a common argument, both for the

Kawahara and the fourth order NLS case. From corollaries 1 and 2, it suffices to show that

n(L+) = 1, L− ≥ 0, φλ ⊥ Ker[L+] and to verify that 〈L −1
+ φλ ,φλ 〉 < 0. Indeed, the condi-

tion n(L+) = 1 was already verified as part of the variational construction, see Proposition 3 and

5. Similarly, L− ≥ 0 was verified in the higher dimensional case in Proposition 5.

First, we show the weak non-degeneracy.

Lemma 22. For each constrained minimizer φλ , we have that φλ ⊥ Ker[L+].

Proof. Take any element of Ker[L+], say Ψ : ‖Ψ‖L2 = 1. We need to show 〈Ψ,φλ 〉 = 0. To this

end, consider Ψ−‖φλ‖−2〈Ψ,φλ 〉φλ ⊥ φλ . Recall that due to the construction L+|{φλ }⊥ ≥ 0. We

have

0≤ 〈L+[Ψ−‖φλ‖−2〈Ψ,φλ 〉φλ λ ],Ψ−‖φλ‖−2〈Ψ,φλ 〉φλ 〉= ‖φλ‖−4〈Ψ,φλ 〉2〈L+φλ ,φλ 〉 ≤ 0,

where we have used that 〈L+φλ ,φλ 〉 = −(p− 1)
∫
|φλ |p+1 < 0. The only way the last chains of

inequalities is non-contradictory, is if 〈Ψ,φλ 〉= 0, which is the claim.

Apply Lemma 1 to the vector ξ0 := φλ and the operator H :=L+. Recall that the construction

of φλ involved the property L+|{φλ }⊥ ≥ 0. By Lemma 22, we have that φλ ⊥ Ker[L+]. Finally,

〈L+φλ ,φλ 〉< 0 was used repeatedly. Thus, we conclude that 〈L −1
+ φλ ,φλ 〉< 0.
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These arguments establish rigorously the spectral stability of the waves for the Kawahara and

the fourth order problems, i.e., Theorem 2 and the stability claims in Theorems 4 and 5.

2.6 Additional properties of the function m: Proof of Theorem 3

In this section, we prove Theorem 3. It is worth mentioning that identical results hold for the

multidimensional case as well, but it would be repetitious to prove it separately, so we just restrict

our attention to the one dimensional case.

Interestingly, a number of properties has already been established and utilized already for the

purposes of the variational construction. For example, we have shown that for λ , p satisfying

Theorem 1, we have that −∞ < m(λ ) < 0, see Lemma 5, Lemma 6 for b < 0 and Lemma 8 for

the case b > 0. In Lemma 11, we have established the strict sub-additivity of m, see (2.3.18),

m(λ )< m(α)+m(λ −α), whenever 0 < α < λ . This, together with the fact that m(λ −α)< 0,

implies that m is strictly decreasing. As a strictly decreasing function, m is differentiable at all, but

possibly countably many points. It also admits left and right derivatives at each point in (0,∞).

The remaining claims in Theorem 3 will be proved in a sequence of lemmas.

2.6.1 m is Lipschitz continuous

We start with the following lemma.

Lemma 23. The function λ → mb(λ ) is a Lipschitz continuous function. Moreover, m is twice

differentiable a.e. in (0,∞).

Proof. The simple proof is based on the representation formula (2.3.1). According to it, set

g(µ) = inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx− µ

p+1

∫
R
|φ |p+1dx

}
,

so that g
(

λ
p−1

2

)
= mb(λ )

λ
. Clearly, the properties of λ →mb(λ ) listed in the statement follow from

the concavity of the function g, which we are about to prove. So, it suffices to prove that g is
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concave down.

To this end, denote J̃µ [φ ] := 1
2
∫

R |φ ′′|2− b|φ ′|2dx− µ

p+1
∫

R |φ |p+1dx. Clearly, for every a ∈

(0,1),µ1,µ2 > 0, we have

J̃aµ1+(1−a)µ2 [φ ] = aJ̃µ1[φ ]+ (1−a)J̃µ2[φ ].

Hence, taking inf‖φ‖L2=1 on both sides

g(aµ1 +(1−a)µ2) = inf
‖φ‖L2=1

J̃aµ1+(1−a)µ2[φ ]

≥ a inf
‖φ‖L2=1

J̃µ1 +(1−a) inf
‖φ‖L2=1

J̃µ2

= ag(µ1)+(1−a)g(µ2).

Hence, the function g is concave down, whence twice differentiable a.e..

Our next result concerns the derivative of m, whenever it exists.

2.6.2 Computing the derivative of m

Lemma 24. On the set Am, m′(λ ) = −ω(λ )
2 . Moreover, m is concave down, and there is the

inequality, (2.1.12) for λ /∈Am. That is,

m′(λ+)≤−ω(λ ,φλ )

2
≤ m′(λ−). (2.6.1)

In particular, the function λ → ω(λ ,φ) is non-decreasing, in the sense that for every 0 < λ1 <

λ2 < ∞ and for every φλ1,φλ2 , we have the inequality

ω(λ1,φλ1)≤ ω(λ2,φλ2).
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Proof. According to Lemma 23, the function m is continuous and differentiable at all but countably

many points, at which left and right derivatives still exists. It also has a second derivative a.e. We

can now compute the derivative m′(λ ), whenever it exists. To that end, consider φλ + εh, for any

λ . We have, for a fixed test function h,

‖φλ + εh‖2
2 = λ +2ε〈φλ ,h〉+ ε

2 ‖h‖2
2 ,

whence according to the definition of mb(·),

I[φλ + εh]≥ mb(‖φλ + εh‖2
2) = mb(λ +2ε〈φλ ,h〉+ ε

2 ‖h‖2
2). (2.6.2)

Expanding I[φλ + εh] in powers of ε yields

I[φλ + εh] = mb(λ )+ ε〈φ ′′′′
λ

+bφ
′′
λ
−|φλ |p−1

φλ ,h〉+

+
ε2

2

[∫
R
|h′′(x)|2−b|h′(x)|2− p|φλ (x)|p−1

φλ hdx
]
+O(ε3)

= mb(λ )− εω(λ )〈φλ ,h〉+
ε2

2
〈(L+−ω(λ ))h,h〉+O(ε3).

where L+ := ∂ 4
x +b∂ 2

x − p|φλ |p−1 +ωλ . Take h = φλ . From (2.6.2) it follows that

mb(λ )− εω(λ )λ +O(ε2)≥ mb(λ +2λε +O(ε2)), or

mb(λ +2λε +O(ε2))−mb(λ )

2λ
≤−ε

ω(λ )

2
+O(ε2).

This gives two inequalities. For ε > 0, we obtain

mb(λ +2λε +O(ε2))−mb(λ )

2λε
≤−ω(λ )

2
+O(ε), (2.6.3)
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while for ε < 0, we obtain

mb(λ +2λε +O(ε2))−mb(λ )

2λε
≥−ω(λ )

2
+O(ε). (2.6.4)

Taking into account the fact that mb is Lipschitz, we can write

mb(λ +2λε +O(ε2)) = mb(λ +2λε)+O(ε2).

Setting ε →−ε in (2.6.4), we obtain the double inequality for all ε > 0

mb(λ +2λε)−mb(λ )

2λε
+O(ε)≤−ω(λ )

2
≤ mb(λ −2λε)−mb(λ )

−2λε
+O(ε). (2.6.5)

Form here, we deduce that if m has a derivative at λ , then clearly m′(λ ) = −ω(λ )
2 . Even when m

does not have a derivative, i.e. λ /∈Am, we can still take limits in (2.6.5) and conclude that

m′(λ+)≤−ω(λ )

2
≤ m′(λ−).

Finally, we derive the concavity of m, but we need to involve the terms O(ε2) in (2.6.3), (2.6.4) in

our analysis. To this end,

〈(L+−ω(λ ))φλ ,φλ 〉=−ω(λ )λ − (p−1)
∫
|φλ |p+1dx,

since φλ satisfies (2.1.4). Thus, we have the inequalities for all ε > 0

m(λ +2λε +λε2)−m(λ )

2λε
≤−ω(λ )

2
− ε

4λ
[ω(λ )λ +(p−1)

∫
|φλ |p+1]+O(ε2), (2.6.6)

m(λ −2λε +λε2)−m(λ )

2λε
≤ ω(λ )

2
− ε

4λ
[ω(λ )λ +(p−1)

∫
|φλ |p+1]+O(ε2). (2.6.7)

Setting δ = 2λε +λε2 in (2.6.6) and δ = 2λε −λε2 in (2.6.7), we can rewrite the previous two
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relations in the form

m(λ +δ )−m(λ )

δ
≤
[
−ω(λ )

2
− δ

8λ 2 [ω(λ )λ +(p−1)
∫
|φλ |p+1]

]
(1− δ

4λ
)+O(δ 2),

m(λ −δ )−m(λ )

δ
≤
[

ω(λ )

2
− δ

8λ 2 [ω(λ )λ +(p−1)
∫
|φλ |p+1]

]
(1+

δ

4λ
)+O(δ 2).

Here, it is important to observe that the terms O(δ 2) are bounded by Cδ 2 ∫ |φλ |p+1. Adding the

last two inequalities results in

m(λ +δ )+m(λ −δ )−2m(λ )

δ 2 ≤−(p−1)
4λ 2

∫
|φλ |p+1 +Cδ

∫
|φλ |p+1. (2.6.8)

This immediately implies that whenever ω ′(λ ) exists, we have the inequality

−ω ′(λ )

2
= lim

δ→0+

m(λ +δ )+m(λ −δ )−2m(λ )

δ 2 ≤−(p−1)
4λ 2

∫
|φλ |p+1,

which implies the estimate (2.1.11).

Now, for each interval (a,b)⊂ R+, we have

limsup
δ→0+

sup
λ∈(a,b)

m(λ +δ )+m(λ −δ )−2m(λ )

δ 2 ≤ 0,

provided, we can show that supλ∈(a,b)
∫
|φλ |p+1 ≤Ca,b. We can then apply Lemma 3 to the contin-

uous function m to conclude the concavity of m. The bound for supλ∈(a,b)
∫
|φλ |p+1dx in terms of

the function m(λ ) is contained in (2.3.23).

Lastly, in order to show that ω(λ ) is increasing, we observe that for any λ1 < λ2, by (2.6.1)

and the concavity of the function m (so m′ is non-increasing),

ω(λ1,φλ1)≤−2m′(λ1+)≤−2m′(λ2−)≤ ω(λ2,φλ2).
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2.6.3 Proof of Proposition 1

For the justification of the limit waves, we argue as in Section 2.3.2. More specifically, consider the

sequence φλ+δ j of constrained minimizers. For it, we have ‖φλ+δ j‖
2
L2 = λ + δ j → λ , while from

the continuity of λ →mb(λ ), we have I[φλ+δ j ] = m(λ +δ j)→m(λ ). It follows that φ̃ j :=
φλ+δ j√

λ+δ j
,

have ‖φ̃ j‖2
L2 = λ and lim j I[φ̃ j] = m(λ ). Thus, φ̃ j is a minimizing sequence. By the arguments

deployed early for the existence of the minimizers for (2.1.8), there is a subsequence jk and yk ∈R,

Φλ ∈ H2, so that limk ‖φ̃ jk(·+ yk)−Φλ‖H2(R) = 0 and Φλ is a minimizer of (2.1.8), since

m(λ ) = lim
k

m(λ +δ jk) = lim
k

I[φ̃ jk ] = I[Φλ ],‖Φλ‖2 = lim
k
‖φ̃ jk‖

2 = λ .

2.6.4 The range of λ → ωλ

Our next lemma establishes the range of λ → ω(λ ,φ).

Lemma 25. For λ , p satisfying Theorem 1, the function λ → ωλ is satisfies the inequalities in

(2.1.9).

Remark: Note that our results do not imply that the range of the function ω covers the whole

interval described in (2.1.9), since we cannot rule out discontinuities.

Proof. Since ωλ is non-decreasing, by Lemma 24, we have that for every λ > 0,

ωλ ≥ limsup
ε→0+

ω(ε)≥−2liminf
ε→0+

m′b(ε) =−2liminf
ε→0+

m(ε)

ε
.

In fact, we will show that limε→0+
m(ε)

ε
exists and we will be able to compute it, which will then

yield (2.1.9). By formula (2.3.1) and the construction of the infimum there, it is clear that for all
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λ ∈ (0,1),

m(λ )

λ
= inf
‖φ‖L2=1

Jλ [φ ] = inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx− λ

p−1
2

p+1

∫
R
|φ |p+1dx

}

= lim
k

1
2

∫
R
|φ ′′k,λ |

2−b|φ ′k,λ |
2dx− λ

p−1
2

p+1

∫
R
|φk,λ |p+1dx

for some minimizing sequence φk,λ : ‖φk,λ‖L2 = 1. Similar to our previous calculations, for k large

enough

0 > J[φk]≥
1
4
‖φ ′′k ‖2

L2− cp,λ ,b(‖φ ′′‖
p−1

4 +1
L2 ≥−γ,

for some absolute constant γ . It follows that we have an upper bound on limsupk ‖φ ′′k ‖L2 ≤ C,

which is independent on λ ∈ (0,1). Thus, by GNS

‖φk,λ‖Lp+1 ≤ ‖φ ′′k,λ‖
p−1

4(p+1)

L2 ‖φk,λ‖
3p+5

4(p+1)

L2 ≤C,

independent on λ ∈ (0,1). Hence

inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx

}
−Cλ

p−1
2 ≤ m(λ )

λ
≤ inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx

}
.

It follows that

lim
λ→0+

m(λ )

λ
= inf
‖φ‖2

2=1

{
1
2

∫
R
|φ ′′|2−b|φ ′|2dx

}
= inf
‖φ‖2

2=1

{
1
2

∫
R
|φ̂(ξ )|2[(2π|ξ |)2− b

2
]2dx

}
− b2

8
.

The consideration now splits into two cases: b ≥ 0 and b < 0. If b ≥ 0, we clearly have (try

φδ : φ̂δ (ξ ) = δ−1/2χ̂

(
2πξ−

√
b
2

δ

)
for δ << 1)

inf
‖φ‖2

2=1

{
1
2

∫
R
|φ̂(ξ )|2[(2π|ξ |)2− b

2
]2dx

}
= 0,
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whereas for b < 0, we have (try φδ : φ̂δ (ξ ) = δ−1/2χ̂(δ−1ξ ) for δ << 1)

inf
‖φ‖2

2=1

{
1
2

∫
R
|φ̂(ξ )|2[(2π|ξ |)2− b

2
]2dx

}
=

b2

8
.

Thus, we have shown for every λ > 0,

ω(λ )≥−2 lim
λ→0+

m(λ )

λ
=


b2

4 , b≥ 0,

0, b < 0.
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Chapter 3

The Ostrovsky Equation

3.1 Introduction and main results

The Ostrovsky model, which is ubiquitous in the modern water waves theory, is given by,

(ut−uxxx− (u2)x)x = u. (3.1.1)

The related, generalized Ostrovsky/Vakhnenko/short pulse equation is the corresponding equation

with a cubic nonlinearity

(ut−uxxx− (u3)x)x = u. (3.1.2)

These models have attracted a lot of attention in the last thirty years, as models of water waves

under the action of a Coriolis force, [42, 43, 12], as well as the amplitude of a “short” pulse in an

optical fiber, [46]. We shall be interested in the dynamics of a family of problems, which contain

these two. More specifically, we consider the following generalized Ostrovsky models

(ut−uxxx− (|u|p)x)x = u, (3.1.3)(
ut−uxxx− (|u|p−1u)x

)
x = u. (3.1.4)

Clearly, (3.1.3), in the case p = 2 is nothing but (3.1.1), while (3.1.4), for p = 3 is (3.1.2). Let us

comment on the seemingly more general form of the equations that appear in other publications,

(ut−βuxxx−σ(|u|p)x)x = γu, (x, t) ∈ R×R. (3.1.5)
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Using the scaling transformations t→ at,x→ bx,u→ cu, we obtain the equivalent problem

(
ut−

βb3

a
uxxx−

σb|c|p−2c
a

(|u|p)x

)
x
=

γ

ab
u,

which means that by choosing a,b,c appropriately, we may scale all the coefficients to plus or

minus one, just as in (3.1.3). In addition, by a judicious choice of the signs of a,b,c, one concludes

that all systems in the form (3.1.5) reduce to

(ut− ε1sgn(β )uxxx− ε2(|u|p)x)x = sgn(γ)ε1u

where ε1,ε2 ∈ {−1,1}. In this work, we stick to the case1 sgn(β ) = sgn(γ). In this case, an

appropriate further rescale leads us to

(ut−uxxx− ε(|u|p)x)x = u. (3.1.6)

Thus, our model, (3.1.3), covers the cases for which ε = 1.

Let us record another, mostly equivalent formulation of (3.1.3) and (3.1.4). Using u = vx in

(3.1.3) and integrating once (by tacitly assuming that v,vx vanishes at ±∞), we get

(vt− vxxx− (|vx|p))x = v,

(vt− vxxx− (|vx|p−1vx))x = v.
(3.1.7)

Regarding local and global well-posedness for these models, most of the theory has been devel-

oped for standard quadratic and cubic models (3.1.1), [14, 46, 48, 49, 36, 45]. Extensive further

references to earlier works can be found in [48, 49]. Break up in finite time is shown in various

situations in [38].

The main purpose of this chapter is the study of traveling wave solutions, namely functions in

the form φ(x−ωt). More specifically, plugging in this ansatz in (3.1.7) turns it into the profile

1It is well-known that solitary waves do not exists in the case when sgn(β ) 6= sgn(γ).
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equations

φ
′′′′+ωφ

′′+φ +(|φ ′|p)′ = 0,

φ
′′′′+ωφ

′′+φ +(|φ ′|p−1
φ
′)′ = 0.

(3.1.8)

These are fourth order nonlinear ODE’s, for which there is no very well-developed theory. In

particular, for non-integer values of p, existence has been proved by variational methods, [33, 34,

31], so that (3.1.8) is an Euler-Lagrange equation for these constrained minimizers. Uniqueness,

which is well-known to be a hard problem (even for second order problems of this type), is only

known in the case p = 2. This is the main result of [51], where it is shown that localized solutions

are unique, together with some asymptotic decay properties of φ and its derivatives. Note that the

result obtained there rely heavily on the quadratic nonlinearity as well as the precise structure of

the equation. We provide an independent analysis of the elliptic profile equations (3.1.8) and we

also compute the spatial exponential rate of decay, which we believe to be sharp, see Proposition 7

below.

Our approach to (3.1.8) is variational, but rather different than the works [31, 33, 34]. More

precisely, Levandosky and Liu construct their waves as minimizers of energy, subject to a fixed

Lp+1 norm. This method allows for a construction of waves for any power of p > 1. As shown

therein, some of these waves, for large enough p, are spectrally unstable. On the other hand, our

goal is to construct the so-called normalized waves - that is, we construct the waves to minimize

energy, by keeping their L2 norm fixed. As we show later in the chapter, see Theorem 6, this

imposes restrictions on p, but the result is that all of these waves are necessarily spectrally stable.

We state our results below, starting with the existence, and then proceeding onto the stability.
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3.1.1 Existence of the normalized waves

Let us first introduce the functionals that we work with, namely

I[u] =
1
2

∫
R
|uxx|2 + |u|2dx− 1

p+1

∫
R
|ux|puxdx,

J[v] =
1
2

∫
R
|vxx|2 + |v|2dx− 1

p+1

∫
R
|vx|p+1dx,

and their variants

I [u] =
1
2

∫
R
|ux|2 + |∂−1

x u|2dx− 1
p+1

∫
R
|u|pudx,

J [v] =
1
2

∫
R
|vx|2 + |∂−1

x v|2dx− 1
p+1

∫
R
|v|p+1dx.

Note I[u] = I [ux] and J[v] = J [vx]. For every λ > 0, we consider the variational problems


I[u] = 1

2
∫

R |uxx|2 + |u|2dx− 1
p+1

∫
R |ux|puxdx→min,∫

R |ux|2dx = λ ,

(3.1.9)


I [u] = 1

2
∫

R |ux|2 + |∂−1
x u|2dx− 1

p+1
∫

R |u|pudx→min,

u ∈ Ḣ−1,
∫

R |u|2dx = λ ,

(3.1.10)

and 
J[v] = 1

2
∫

R |vxx|2 + |v|2dx− 1
p+1

∫
R |vx|p+1dx→min,∫

R |vx|2dx = λ ,

(3.1.11)


J [v] = 1

2
∫

R |vx|2 + |∂−1
x v|2dx− 1

p+1
∫

R |v|p+1dx→min,

v ∈ Ḣ−1,
∫

R |v|2dx = λ .

(3.1.12)

Our existence results are as follows.
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Theorem 6 (Existence of solitary waves). Let λ > 0. Then,

• For 1 < p < 3, the constrained minimization problems (3.1.9) and (3.1.10) have solutions

ϕλ and φλ . In addition, φλ ∈H2∩ Ḣ−2(R),ϕλ ∈H4(R) : ϕ ′
λ
= φλ and they satisfy, for some

ω ∈ (−∞,2),

∂
2
x φλ +∂

−2
x φλ +ωφλ + |φλ |p = 0,

ϕ
′′′′
λ

+ωϕ
′′
λ
+ϕλ +(|ϕ ′

λ
|p)′ = 0,

respectively. The waves ϕλ ,φλ are exponentially decaying, together with their derivatives,

in fact

|ϕλ (x)|+ |φλ (x)|+ |φ ′λ (x)| ≤Ce−κω |x|,kω :=


√

2−ω

2 ω ∈ (−2,2),√
−ω−

√
ω2−4

2 ω <−2.
(3.1.13)

• For 1 < p < 5, the minimization problems (3.1.11) and (3.1.12) have constrained minimizers

ϕλ ∈ H4(R),φλ ∈ H2∩ Ḣ−2(R) : ϕ ′
λ
= φλ , which satisfy, for some ω ∈ (−∞,2),

∂
2
x φλ +∂

−2
x φλ +ωφλ + |φλ |p−1

φλ = 0,

ϕ
′′′′
λ

+ωϕ
′′
λ
+ϕλ +(|ϕ ′

λ
|p−1

ϕ
′
λ
)′ = 0.

The waves ϕλ ,φλ satisfy (3.1.13).

Below are some remarks:

• The waves ϕλ ,φλ , which initially satisfy the Euler-Lagrange equation in a distributional

sense, are actually smoother solutions, see Proposition 6 below.

• The waves satisfy the decay bounds (3.1.13) hold whenever one has a weak solution of

(3.1.8), see Proposition 7. This result matches the results in Zhang-Liu, [51], see Lemma
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3.2 and Remark 3.1, p. 824, for the case ω <−2. For the case ω ∈ (−2,2), the new bound

(3.1.13) provides the sharp rate of decay for the solitary waves.

Let us again point out that in [33, 34, 31], the authors have constructed traveling waves for values

of p beyond the range of Theorem 6, due to the use of an alternative variational approach.

3.1.2 Stability results

We start by describing in detail the state of the art, regarding the stability of the Ostrovsky waves.

For the reduced Ostrovsky case, that is the model without the dispersive term uxxx and with

quadratic or cubic non-linearities, much is known, as the model is completely integrable. A full

description of its periodic waves as well as their stability can be found in the recent papers, [10, 18].

For the full Ostrovsky model under consideration, Liu and Ohta, [39] and by a slightly different

method, Liu, [37] have established the orbital stability for the classical Ostrovsky’s equation (i.e.

p= 2) for large speeds. Another, set stability result, sometimes referred to as weak orbital stability,

is given in [40]. In the works, [33], [34], Levandosky and Liu have constructed the waves for the

generalized problems and they have shown that their orbital stability is reduced to the convexity

of certain scalar functions, a la Grillakis-Shatah-Strauss. In [31], Levandosky obtained rigorously

the orbital stability of the waves near some bifurcation points. In addition, he has launched an

impressive numerical study, which was our main motivation for this work.

In order to state our stability results, we need to introduce the linearized operators as well.

Namely, for a traveling wave φ , solving either one of the elliptic equations in (3.1.8), set

u(t,x) = φ(x−ωt)+ v(t,x−ωt) into (3.1.7). After ignoring O(v2) terms we get

(vx)t− vxxxx−ωvxx− v− p(|φ ′|p−2
φ
′vx)x = 0. (3.1.14)

Setting the stability ansatz v(t,x) = etµz(x) in (3.1.14), we obtain the eigenvalue problem in the

form

L+z = µ∂xz, L+ = ∂xxxx +ω∂xx +1+ p∂x(|φ ′|p−2
φ
′
∂x(·)). (3.1.15)
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Clearly, L+, D(L+) = H4(R) is unbounded, but self-adjoint operator on L2(R). Spectral instability

here is understood as the existence of a non-trivial pair (µ,z) : ℜµ > 0,z 6= 0,z ∈ D(L+), so that

(3.1.15) is satisfied. Spectral stability means non-existence of such pairs.

The eigenvalue problem (3.1.15) is a non-standard one, although problems in this form were

recently considered in the literature. An equivalent formulation, which is technically more conve-

nient for our approach is the following: write L+ =−∂xL+∂x, where

L+ =−∂
2
x −ω−∂

−2
x − p|φ ′|p−2

φ
′

and D(L+) = H2(R)∩ Ḣ−2(R). In terms of the new operator

µzx =−∂xL+zx.

Since the function spaces require vanishing at both infinities, this is equivalent to µz = −L+∂xz

or −µ is an eigenvalue for −L+∂x. Equivalently, −µ is an eigenvalue for the adjoint −∂xL+ or

∂xL+z = µz. (3.1.16)

Thus, the spectral stability of the traveling wave φ(x−ωt) is equivalent to the non-solvability of

(3.1.16). Our main result is the following.

Theorem 7. Let 1< p< 3 and λ > 0. Then, the constrained minimizers φλ for (3.1.9) is spectrally

stable. That is (3.1.16) does not have non-trivial solutions (µ,z) : ℜµ > 0,z 6= 0.

For 1 < p < 5 and λ > 0, let φλ be a constrained minimizer for (3.1.12). Then, φλ is spectrally

stable.

From the instability index counting theory presented in Section 1.2 it follows that the corollary

below is enough to prove spectral stability.

Corollary 4. Suppose that the wave φλ satisfies
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1. n−(L+) = 1,

2. the wave φλ is weakly non-degenerate, i.e. φλ ⊥ Ker[L+],

3. 〈L −1
+ φλ ,φλ 〉< 0.

Then, the wave is strongly spectrally stable, in the sense that the eigenvalue problem (3.1.16) does

not have non-trivial solutions, and in fact σ(∂xL+)⊂ iR.

3.2 Preliminaries

3.2.1 Weak solutions and bootstrapping regularity

In our considerations, we will need to rely, at least initially, on a weak solution formulations of

certain elliptic PDE’s, specifically (3.1.8). More concretely,

Definition 3. We say that g ∈ H2(R) is a weak solution of the equation

g′′′′+ωg′′+g+(F(g′))′ = 0, (3.2.1)

if the non-linearity satisfies F( f ′) ∈ L2, whenever f ∈ H2 and for every h ∈ H2, we have the

relation 〈g′′,h′′〉+ 〈ωg′′+g,h〉−〈F(g′),h′〉= 0.

A simple observation is that if g is a weak solution of (3.2.1), in the sense of Definition 3, then

we can bootstrap its smoothness, namely g∈H3(R). Indeed, since the operator ∂ 4
x +1 is invertible

on L2(R), introduce g̃ := (∂ 4
x + 1)−1[−ωg′′+ ∂x(F(g′))] ∈ L2(R). Of course, this is the formal

solution of (3.2.1), which should mean that g̃ = g, which we will prove momentarily. Before that,

let us observe that due to the smoothing nature of (∂ 4
x +1)−1 : L2→ H4, we can immediately see

70



that2 g̃ ∈ H3(R). Now, for every test function h, we have that3

〈(1+∂
4
x )g,h〉=−ω〈g′′,h〉−〈F(g′),h′〉= 〈(1+∂

4
x )g̃,h〉.

It follows that 〈g,(1+∂ 4
x )h〉= 〈g̃,(1+∂ 4

x )h〉 for all h, whence g = g̃. In particular, we have shown

the extra regularity g ∈ H3(R). One can immediately bootstrap this to g ∈ H4(R) by taking into

account the representation g = (∂ 4
x +1)−1[−ωg′′+∂x(F(g′))], if ∂xF(g′) ∈ L2. This is the case for

the profile equations (3.1.8). Thus, we have shown:

Proposition 6. The weak solution g of (3.2.1) is in fact g ∈ H3(R). For non-linearities in the

form F(z) = |z|p, |z|p−1z, this can be further improved to g ∈H4(R), whence the weak solutions of

(3.2.1) in fact satisfy (3.2.1) as L2 functions.

Due to this result, we will henceforth not make the distinction between weak and strong(er)

solutions of our profile equations.

3.2.2 Exponential decay of the waves and eigenfunctions

In this section, we show that the solutions to the elliptic profile equations (3.1.8) have exponential

decay at ±∞, and in fact we are able to compute explicitly the leading order terms. Similar result

holds for any element in the kernels of the linearized operators L+,L+. The precise result is as

follows.

Proposition 7. Let φ ∈ H4 solves either of the fourth order profile equations (3.1.8), with ω < 2.

Then, φ ,φ ′ both have exponential decay at ±∞ and in fact,

|φ(x)|+ |φ ′(x)| ≤Ce−kω |x|,kωλ
:=


√

2−ω

2 , ω ∈ (−2,2),√
−ω−

√
ω2−4

2 , ω <−2.
(3.2.2)

2This can be improved further to g̃H4, once we impose the mild extra smoothness assumption F(g) ∈ H1, which
will not be necessary for our purposes.

3This is understood as pairing between an element of the distribution space H−2 and H2.
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In addition, every eigenfunction of L+Ψ = 0 has the same exponential decay. Similarly, let

φ ∈ H2∩ Ḣ−2 solve, for ω < 2,

∂
2
x φ +∂

−2
x φ +ωφ + |φλ |p = 0.

Then, φ has the same exponential decay as in (3.2.2), together with the eigenfunctions correspond-

ing to zero eigenvalues for L+.

Proof. We work with the fourth order waves, namely the solutions of (3.1.8). Since ω < 2, we have

that ξ 4−ωξ 2 +1 > 0, for every ξ ∈ R, and, therefore, (∂ 4
x +ω∂ 2

x + 1)−1 is a bounded operator

on L2, so we have the representation

φ = −(∂ 4
x +ω∂

2
x +1)−1[|φ ′|p−1

φ
′],

φ = −(∂ 4
x +ω∂

2
x +1)−1[|φ ′|p].

Take a derivative in this last equation and denote g := φ ′, so

g = −∂x(∂
4
x +ω∂

2
x +1)−1[|g|p−1g], (3.2.3)

g = −∂x(∂
4
x +ω∂

2
x +1)−1[|g|p]. (3.2.4)

Clearly, it is enough to show the desired exponential decay for g, whence since φ vanishes at ±∞,

one can conclude from the representations φ(x) =−
∫

∞

x φ ′(y)dy =
∫ x
−∞

φ ′(y)dy, that φ vanishes at

the same rate at ±∞. Let V (x) := |g(x)|p−1 or V (x) := |g(x)|p−1sgn(g(x)), depending on whether

we consider (3.2.3) or (3.2.4). Either way,

g =−∂x(∂
4
x +ω∂

2
x +1)−1[V g], (3.2.5)

where lim|x|→∞V (x) = 0, since g ∈ H4 ⊂C0(R).
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Let us now comment on the operator (∂ 4
x +ω∂ 2

x +1)−1. Clearly

(∂ 4
x +ω∂

2
x +1)−1 f (x) =

∫
∞

−∞

Gω(x− y) f (y)dy,

where Ĝω(ξ )=
1

ξ 4−ωξ 2+1 . Note that since the roots of the bi-quadratic equation κ4−ωλ κ2+1= 0

are given by

k2 =
ω±
√

ω2−4
2

, (3.2.6)

from the formula ̂(ξ 2 + k2)−1 = π

k e−k|·|, it follows that G is a linear combination of two exponential

functions. In fact, taking into account ω < 2, after some elementary analysis, we conclude that the

solutions of (3.2.6), have ℜk =
√

2−ω

2 when ω ∈ (−2,2) and ℜk =

√
−ω−

√
ω2−4

2 for ω < −2. It

follows that

|Gω(x)|+ |G′ω(x)| ≤Cωe−kω |x|,kω :=


√

2−ω

2 , ω ∈ (−2,2),√
−ω−

√
ω2−4

2 , ω <−2.

We are now ready to analyze (3.2.5). To this end, let ε = εω > 0, to be selected momentarily. Let

N be so large that |V (x)|< ε , so long as |x|> N. We now rewrite (3.2.5) as

g(x)+
∫
|y|>N

G′ω(x− y)V (y)g(y)dy =−
∫
|y|≤N

G′ω(x− y)V (y)g(y)dy. (3.2.7)

We can view this as an integral equation in XN ∈ L∞(| · |> N), with

G g(x) = χ|x|>N

∫
|y|>N

G′ω(x− y)V (y)g(y)dy,

acting in a bounded way on XN . In fact, for every m, 0≤ m≤ kω and every g ∈ Ym, i.e.,

‖g‖Ym := sup
|x|>N
|g(x)|em|x| < ∞,
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we have

|G g(x)| ≤Cωε‖g‖Ym

∫
|y|>N

e−kω |x−y|e−m|y|dy

≤Cωε‖g‖Ym

∫
∞

−∞

e−kω |x−y|e−m|y|dy

≤ εDω‖g‖Yme−m|x|,

where we have used the fact that for 0< a< b,
∫

∞

−∞
e−a|y|e−b|x−y|dy≤Cbe−a|x|. Hence G : Ym→Ym

with ‖G ‖B(Ym) ≤ εDω . Thus, select ε(ω) : εDω = 1
2 .

In the particular case m = 0, we can use the von Neumann series to resolve (3.2.7)

g =
∞

∑
k=0

(−1)k+1G k
[∫
|y|≤N

G′ω(·− y)V (y)g(y)dy
]
. (3.2.8)

Using the representation (3.2.8), the fact that |
∫
|y|≤N G′ω(x− y)V (y)g(y)dy| ≤ Cωe−kω |x|, and by

the mapping properties of G , we conclude that g ∈ Ykω
. That is, sup|x|>N |g(x)| ≤Ce−kω |x|, which

by the boundedness of g can be extended to supx |g(x)| ≤Ce−kω |x|.

Regarding the eigenfunctions, we employ the same strategy, namely if L+Ψ = 0, this means

that for g = Ψ′,

g(x) =−p
∫

∞

−∞

G′ω(x− y)[V (y)g(y)]dy, (3.2.9)

with the same V as above. Due to the fact that |V | ∼ |φ ′(x)|p−1 has exponential decay now, clearly,

(3.2.9) can be bootstrapped to produce decay for g matching the decay of G′ω , that is e−kω |x|.

Finally, Ψ(x) =−
∫

∞

x g(y)dy =
∫ x
−∞

g(y)dy recovers the same exponential decay for Ψ as for g.

3.2.3 Pohozaev identities

Lemma 26. Suppose φ ∈ H2(R) is a weak solution of

φ
′′′′+ωφ

′′+φ +∂x(|φ ′|p−1
φ
′) = 0. (3.2.10)
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More concretely, for every test function h ∈ H2(R),

〈φ ′′,h′′〉+ω〈φ ′′,h〉−〈|φ ′|p−1
φ
′,∂xh〉= 0.

Then, the following identities hold

∫
R

∣∣φ ′′∣∣2 dx =
∫

R
|φ |2 dx+

p−1
2(p+1)

∫ ∣∣φ ′∣∣p+1 dx,

ω

∫ ∣∣φ ′∣∣2 dx = 2
∫

R
|φ |2 dx− p+3

2(p+1)

∫ ∣∣φ ′∣∣p+1 dx.
(3.2.11)

Similarly, suppose φ ∈ H2(R) is a weak solution of

φ
′′′′+ωφ

′′+φ +∂x(|φ ′|p) = 0, (3.2.12)

then

∫
R

∣∣φ ′′∣∣2 dx =
∫

R
|φ |2 dx+

p−1
2(p+1)

∫ ∣∣φ ′∣∣p φ
′dx,

ω

∫ ∣∣φ ′∣∣2 dx = 2
∫

R
|φ |2 dx− p+3

2(p+1)

∫ ∣∣φ ′∣∣p φ
′dx.

(3.2.13)

Proof. Multiplying (3.2.10) by φ and integrating over R we get

∫
R

∣∣φ ′′∣∣2 dx−ω

∫ ∣∣φ ′∣∣2 dx+
∫

R
|φ |2 dx−

∫ ∣∣φ ′∣∣p+1 dx = 0. (3.2.14)

Now, multiplying (3.2.10) by xφ ′ (recall that according to Proposition 7 this function has exponen-

tial decay) and integrating over R we get

3
2

∫
R

∣∣φ ′′∣∣2 dx− ω

2

∫
R

∣∣φ ′∣∣2 dx− 1
2

∫
R
|φ |2 dx− p

p+1

∫
R

∣∣φ ′∣∣p+1 dx = 0. (3.2.15)

Solving (3.2.14) and (3.2.15) for
∫

R |φ ′′|
2 dx and ω

∫
|φ ′|2 dx we get (3.2.11). Finally, the proof of

(3.2.13) follows similar path.
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An easy corollary of Lemma 26 is the following lemma.

Lemma 27. Suppose φ ∈ H1(R)∩ Ḣ−1(R) is a weak solution of

φ
′′+∂

−2
x φ +ωφ + |φ |p−1

φ = 0. (3.2.16)

Then, the following identities hold

∫
R

∣∣φ ′∣∣2 dx =
∫

R

∣∣∂−1
x φ

∣∣2 dx+
p−1

2(p+1)

∫
|φ |p+1 dx,

ω

∫
|φ |2 dx = 2

∫
R

∣∣∂−1
x φ

∣∣2 dx− p+3
2(p+1)

∫
|φ |p+1 dx.

(3.2.17)

Similarly, suppose φ ∈ H1(R)∩ Ḣ−1(R) is a weak solution of

φ
′′+∂

−2
x φ +ωφ +∂x(|φ |p) = 0, (3.2.18)

then

∫
R

∣∣φ ′∣∣2 dx =
∫

R

∣∣∂−1
x φ

∣∣2 dx+
p−1

2(p+1)

∫
|φ |p φdx,

ω

∫
|φ |2 dx = 2

∫
R

∣∣∂−1
x φ

∣∣2 dx− p+3
2(p+1)

∫
|φ |p φdx.

(3.2.19)

Proof. Just apply Lemma 26 to the function g, where φ = g′. Note that g ∈ H2 solves (3.2.10) or

(3.2.12).

3.3 Variational construction

In this section, we provide the variational construction of the waves. It turns out that for some

aspects of the construction, it is more beneficial to look at the following alternative I ,J defined

in the beginning. Introduce the following functions, which are the corresponding infima, if they
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exists, of the constrained minimization problems

mI(λ ) = inf
u∈H2,‖ux‖2=λ

{
1
2

∫
R
|uxx|2 + |u|2dx− 1

p+1

∫
R
|ux|puxdx

}
, (3.3.1)

mJ(λ ) = inf
v∈H2,‖vx‖2=λ

{
1
2

∫
R
|vxx|2 + |v|2dx− 1

p+1

∫
R
|vx|p+1dx

}
, (3.3.2)

mI (λ ) = inf
U∈H1∩Ḣ−1,‖U‖2=λ

{
1
2

∫
R
|Ux|2 + |∂−1

x U |2dx− 1
p+1

∫
R
|U |pUdx

}
, (3.3.3)

mJ (λ ) = inf
V∈H1∩Ḣ−1,‖V‖2=λ

{
1
2

∫
R
|Vx|2 + |∂−1

x V |2dx− 1
p+1

∫
R
|V |p+1dx

}
. (3.3.4)

We have the following sequence of lemmas, that establishes some important properties of the

functionals and the m functions.

3.3.1 The variational problems are well-posed and equivalent

Regarding well-posedness, we have the following result.

Lemma 28. For 1< p< 5, mI,mJ >−∞. That is, the problems (3.1.9) and (3.1.11) are well-posed.

Proof. Indeed, it is simple to see that 0≥ mI ≥ mJ . From the GNS inequality,

‖ux‖p+1
Lp+1 ≤C‖ux‖p+1

Ḣ
p−1

2

≤C‖ux‖
p+3

2
2 ‖uxx‖

p−1
2

2 ,

we have

I[u]≥ J[u]≥ 1
2

∫
R
|uxx|2dx−C‖ux‖

p+3
2

2 ‖uxx‖
p−1

2
2 .

Clearly, if p ∈ (1,5), p−1
2 < 2, so we can use Young’s inequality and absorb ‖uxx‖

p−1
2

L2 . Thus, we

get a bound

I[u]≥ J[u]≥Cλ .
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The next result is about the equivalence of mI,mI , and mJ,mJ respectively.

Lemma 29. For 1 < p < 5 we have that mI(λ ) = mI (λ ) and mJ(λ ) = mJ (λ ). Moreover, if ϕλ

is a minimizer for mI(λ ) (mJ(λ ) respectively), then φλ = ϕ ′
λ

is a minimizer for mI (λ )(mJ (λ )

respectively).

Proof. On one hand, let φ be a compactly supported function such that there exists a δ > 0, so that

φ̂(ξ ) = 0 for all |ξ |< δ and ‖φ‖2 = λ . Note that for such functions, ∂−1
x φ is well-defined.

Denote the set of all such φ as Aλ , noting that Aλ is dense in H1. For such a φ

I [φ ] = I[∂−1
x φ ]≥ mI(λ ). (3.3.5)

Taking the infimum over all φ ∈ Aλ gives us mI (λ )≥ mI(λ ). On the other hand,

mI (λ ) = inf
u∈Aλ

I [u]≤ inf
u∈Aλ ,u=vx∈H2

I [u] = mI(λ ).

So, mI(λ ) = mI (λ ). Now, suppose ϕλ is a minimizer for (3.3.1), then, clearly, for φλ := ϕ ′
λ

we

have I[ϕλ ] = I [φλ ].

3.3.2 Minimizing sequences produce non-trivial limits

Now that we know that the minimization problems for mI and mI are equivalent, suppose {uk}∞
k=1

is a minimizing for I , subject to the constraint ‖u‖2
L2 = λ . That is

lim
k→∞

I [uk] = mI, ‖uk‖2
L2 = λ (3.3.6)

(similarly for J). Clearly, there exists a subsequence, renamed to {uk}∞
k=1, such that

lim
k→∞

∫
R
|∂xuk|2dx = I1, lim

k→∞

∫
R
|∂−1

x uk|2dx = I2, lim
k→∞

∫
R
|uk|pukdx = I3, (3.3.7)
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or

lim
k→∞

∫
R
|∂xuk|2dx = J1, lim

k→∞

∫
R
|∂−1

x uk|2dx = J2, lim
k→∞

∫
R
|uk|p+1dx = J3, (3.3.8)

for J . We have the following key lemma, that shows that such minimizing sequences can not

possibly be trivially converging to zero.

Lemma 30. For any minimizing sequence satisfying (3.3.7)((3.3.8) respectively), we have

i) J3 > 0 for 1 < p < 5,

ii) I3 > 0 for 1 < p < 3.

Proof. First of all, clearly, I3 ≥ 0 and J3 ≥ 0. Let λ > 0. We need to show that the strict inequality

holds in both cases. We treat them separately.

Proof of J3 > 0. Suppose for contradiction that J3 = 0. Then we can estimate the infimum explicitly

mJ (λ ) = inf
‖u‖2

2=λ

{1
2

∫
R
|ux|2 + |∂−1

x u|2dx}

= inf
‖u‖2

2=λ

{1
2

∫
R

(ξ 2−1)2

ξ 2 |û(ξ )|2dξ +
∫

R
|û(ξ )|2dξ}

≥ λ .

(3.3.9)

In fact, there is an equality above, as it suffices to take a function, whose Fourier transform is

highly localized around, say, ξ = 1. The point is that this infimum is actually strictly smaller than

λ , which would give us the contradiction sought in this case.

To see this, let χ1 be a Schwartz function, whose Fourier transform χ̂1 is an even bump C∞

function, supported in the interval (− 1
100 ,

1
100). Consider then χ := χ2

1 , so that χ̂ = χ̂1 ∗ χ̂1. It has

essentially the same properties as χ1, except it, is in addition, a positive function. That is, χ ≥ 0

and supp χ̂ ⊂ (− 1
50 ,

1
50). Multiplication by a constant will help us to achieve ‖χ‖2

2 = λ/2, which

we assume henceforth.

Next, consider the function

v̂J,ε(ξ ) =
1√
ε

(
χ̂(

ξ −1
ε

)+ χ̂(
ξ +1

ε
)

)
.
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By the support properties of χ and ‖χ‖2
2 = λ/2, it is clear that for small ε , ‖vJ,ε‖2

L2 = λ . Since χ̂

is even, we have that the function

vJ,ε(x) =
√

εχ(εx)(eix + e−ix) = 2
√

εχ(εx)cos(x)

is real. Next, using the fact that χ̂(ξ−1
ε

) and χ̂(ξ+1
ε

) have disjoint supports and change of variables,

we obtain

1
2

∫
R

(ξ 2−1)2

ξ 2 |v̂J,ε(ξ )|2dξ =
1
2

∫
R

(εξ )2(εξ +2)2

(εξ +1)2 |χ̂(ξ )|2dξ

+
1
2

∫
R

(εξ −2)2(εξ )2

(εξ −1)2 |χ̂(ξ )|2dξ

= O(ε2).

(3.3.10)

Note that the denominators above are never problematic, as they vanish away from the support of

χ̂ . On the other hand, using lemma 2 and the non-negativity of χ , we get

∫
R
|vJ,ε(x)|p+1dx = 2p+1

ε
p−1

2

∫
R

χ
p+1(x)|cos

( x
ε

)
|p+1dx

≥ 2p+1
ε

p−1
2

√
2

2

∞

∑
n=−∞

∫
ε(2πn+π/4)

ε(2πn)
χ

p+1(x)dx

≥Cε
p−1

2

∫
χ

p+1(x)dx+O(ε
p+1

2 ).

(3.3.11)

Combining (3.3.10) and (3.3.11), we obtain

J [vJ,ε ] = O(ε2)+λ −Cε
p−1

2 ,

which implies that for p < 5, mJ (λ )< λ , and this is a contradiction with (3.3.9). Thus, J3 > 0.

Proof of I3 > 0. The considerations in this case are considerably more involved.

Similarly to (3.3.9), we first establish that mI ≥ λ in this case. There is a slight twist that

the quantity
∫

R |u|pudx is not necessarily non-negative anymore. However, since the other two

quantities in the definition of I are positive definite, we can (by switching u→−u if necessary)
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assume that the infimum is taken over u, with the property
∫

R |u|pudx ≥ 0. This will give a better

(i.e. smaller or equal) mI , which is what needs to happen anyway as mI is the infimum. Then, it

is clear that

mI (λ )≤ inf
‖u‖2

2=λ

{1
2

∫
R
|ux|2 + |∂−1

x u|2dx}.

On the other hand, our assumption that I3 = 0, means that the opposite inequality also holds true

as

mI = lim
k

(
1
2

∫
R
|∂xuk|2 + |∂−1

x uk|2dx− 1
p+1

∫
R
|uk|pukdx

)
≥ inf
‖u‖2

2=λ

1
2

∫
R
|ux|2 + |∂−1

x u|2dx.

This means, in particular that mI ≥ λ , as we have argued before. We will show that this is

contradictory. To that end, consider

v̂I,ε(ξ ) =
1√
ε

(
χ̂(

ξ −1
ε

)+ χ̂(
ξ +1

ε
)+ ε

α

(
χ̂(

ξ −2
ε

)+ χ̂(
ξ +2

ε
)

))
,

with χ as before and max( p−1
2 , 2

p+1)< α < 1. This is possible, due to the assumption 1 < p < 3.

Note that α > 2
p+1 > 1

2 , due to the same assumption. Then the function

vI,ε(x) =
√

εχ(εx)(eix + e−ix + ε
α(e2ix + e−2ix))

= 2
√

εχ(εx)(cos(x)+ ε
α cos(2x))

is real and even. Similarly to (3.3.10), we get

∫
R

(
ξ 2−1

)2

ξ 2 |v̂I,ε(ξ )|2dξ = O(ε2α)

for all ε small enough. Indeed, all terms in vI,ε have disjoint support on the Fourier side, due to the

properties of χ . However, the dominant terms, due to the choice of α , are those with εα in front of

it, whence the bound O(ε2α).
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Now, we are going to show that

∫
R
|vI,ε(x)|pvI,ε(x)dx≥Cε

p−1
2 +α , (3.3.12)

which will finish the proof of the lemma, since p−1
2 +α < 2α .

To this end, let γ > 0 be such that (p+ 1)(1
2 − γ) = 1 (or γ := p−1

2(p+1) ∈ (0, 1
2)) and split the

integral as follows

ε
p+1

2

∫
R

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)+ ε
α cos(2x)|pdx

= ε
p+1

2

∫
|cos(x)|≤ε1/2−γ

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)+ ε
α cos(2x)|pdx

+ ε
p+1

2

∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)+ ε
α cos(2x)|pdx

For the first term we have

∣∣∣∣ε p+1
2

∫
|cos(x)|≤ε1/2−γ

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)+ ε
α cos(2x)|pdx

∣∣∣∣
≤ ε

p+1
2

∫
R

χ
p+1(εx) · ε

1
2−γ · ε p( 1

2−γ)dx≤Cε
p−1

2 +(p+1)( 1
2−γ) =Cε

p+1
2 .

as ε → 0+.

Next, we show that the second term is bounded below by Cε
p−1

2 +α , and hence is dominant. In

order to prepare the calculation, note that for x : |cos(x)|> ε1/2−γ , and ε << 1,

|cos(x)+ ε
α cos(2x)|p = |cos(x)|p

(
1+2ε

α cos(2x)
cos(x)

+ ε
2α cos2(2x)

cos2(x)

)p/2

= |cos(x)|p
(

1+ pε
α cos(2x)

cos(x)

)
+O(ε2α+2γ−1),

where in this calculation, we have implicitly used that α > 1
2 ,γ > 0. Thus, using this expansion,
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we obtain

ε
p+1

2

∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)+ ε
α cos(2x)|pdx

= ε
p+1

2

∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)(cos(x)+ ε

α cos(2x))|cos(x)|p
(

1+ pε
α cos(2x)

cos(x)

)
dx

+ O(ε
p−1

2 +(2α+2γ−1))

= ε
p+1

2

∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)cos(x)|cos(x)|pdx

+ ε
α+ p+1

2 (p+1)
(∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)cos(2x)|cos(x)|pdx

)
+O(ε

p−1
2 +(2α+2γ−1))

= ε
p+1

2 (K + ε
α(p+1)Q)+O(ε

p−1
2 +(2α+2γ−1))+O(ε

p−1
2 +2α),

where we have introduced two quantities K and Q. Clearly, since 2γ < 1, it follows that the term

O(ε
p−1

2 +(2α+2γ−1)) is dominant over O(ε
p−1

2 +2α). We claim that K = O(1), whereas Q ≥ Cε−1.

This implies (3.3.12) and the proof of Lemma 30 will be complete.

First, let us deal with K,

K =
∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)cos(x)|cos(x)|pdx

=
∫

R
χ

p+1(εx)cos(x)|cos(x)|pdx+O(1).

The change of variables y = π/2− x yields

∫
R

χ
p+1(εx)cos(x)|cos(x)|pdx =−

∫
R

χ
p+1(ε(π/2− y))sin(y)|sin(y)|pdx.

Observe, however, that for F(u) :=
∫ u

0 (z− z2)p/2dz, 0 < u < 1, we have

sin(y)|sin(y)|p = 2p+1
∂y[F(sin2(y/2))],

83



and hence integrating by parts yields

∫
R

χ
p+1(εx)cos(x)|cos(x)|pdx =−2p+1

ε

∫
R

∂

∂y
(χ p+1)(ε(π/2− y))F(sin2(y/2))dy

= O(1),

since F is a continuous function.

Now, we prove the claim about Q. Similarly to K, we can write

Q =
∫
|cos(x)|>ε1/2−γ

χ
p+1(εx)cos(2x)|cos(x)|pdx

=
∫

R
χ

p+1(εx)cos(2x)|cos(x)|pdx+O(ε p( 1
2−γ)−1).

Noting that p(1
2 − γ)− 1 > −1, it suffices to show that the first term is bounded from below by

Cε−1.

Splitting each of the intervals [2πn,2π(n+1)) into eight pieces as follows

∫
R

χ
p+1(εx)cos(2x)|cos(x)|pdx

=

(
∞

∑
n=−∞

∫ 2πn+ π

4

2πn
χ

p+1(εx)cos(2x)|cos(x)|pdx+
∞

∑
n=−∞

∫ 2πn+ 3π

4

2πn+ π

2

χ
p+1(εx)cos(2x)|cos(x)|pdx

)

+

(
∞

∑
n=−∞

∫ 2πn+π

2πn+ 3π

4

χ
p+1(εx)cos(2x)|cos(x)|pdx+

∞

∑
n=−∞

∫ 2πn+ π

2

2πn+ π

4

χ
p+1(εx)cos(2x)|cos(x)|pdx

)

+

(
∞

∑
n=−∞

∫ 2πn+ 5π

4

2πn+π

χ
p+1(εx)cos(2x)|cos(x)|pdx+

∞

∑
n=−∞

∫ 2πn+ 7π

4

2πn+ 3π

2

χ
p+1(εx)cos(2x)|cos(x)|pdx

)

+

(
∞

∑
n=−∞

∫ 2πn+2π

2πn+ 7π

4

χ
p+1(εx)cos(2x)|cos(x)|pdx+

∞

∑
n=−∞

∫ 2πn+ 3π

2

2πn+ 5π

4

χ
p+1(εx)cos(2x)|cos(x)|pdx

)

and then pairing them as in Figure 3.1 yields
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2π
n

2πn
+
π/4

2πn+ π/2

2π
n

+
3π
/4

2π
n

+
π

2πn
+

5π/4

2πn+ 3π/2
2π
n

+
7π
/4

I

III

II

III

IV III

IV

Figure 3.1

∞

∑
n=−∞

∫ 2πn+ π

4

2πn
χ

p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

+
∞

∑
n=−∞

∫ 2πn+π

2πn+ 3π

4

χ
p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

+
∞

∑
n=−∞

∫ 2πn+ 5π

4

2πn+π

χ
p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

+
∞

∑
n=−∞

∫ 2πn+2π

2πn+ 7π

4

χ
p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

+
∞

∑
n=−∞

∫ 2πn+ π

4

2πn

(
χ

p+1
(

ε(x+
π

2
)
)
−χ

p+1(εx)
)

cos(2x)|sin(x)|pdx

+
∞

∑
n=−∞

∫ 2πn+π

2πn+ 3π

4

(
χ

p+1
(

ε(x− π

2
)
)
−χ

p+1(εx)
)

cos(2x)|sin(x)|pdx

+
∞

∑
n=−∞

∫ 2πn+ 5π

4

2πn+π

(
χ

p+1
(

ε(x+
π

2
)
)
−χ

p+1(εx)
)

cos(2x)|sin(x)|pdx

+
∞

∑
n=−∞

∫ 2πn+2π

2πn+ 7π

4

(
χ

p+1
(

ε(x− π

2
)
)
−χ

p+1(εx)
)

cos(2x)|sin(x)|pdx.
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Note that the first four terms are all positive for all values of n. In addition, taking the first term

∞

∑
n=−∞

∫ 2πn+ π

4

2πn
χ

p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

≥
∞

∑
n=−∞

∫ 2πn+ π

6

2πn
χ

p+1(εx)cos(2x)(|cos(x)|p−|sin(x)|p)dx

≥ cp

∞

∑
n=−∞

∫ 2πn+ π

6

2πn
χ

p+1(εx)dx

≥ ε
−1

∞

∑
n=−∞

∫ 2πnε+ π

6 ε

2πnε

χ
p+1(y)dy

≥ dpε
−1
∫

R
χ

p+1(y)dydy+O(1),

by Lemma 2.

On the other hand, for the error terms we have a bound of O(1), since

∞

∑
n=−∞

|
∫ 2πn+ π

4

2πn

(
χ

p+1
(

ε(x+
π

2
)
)
−χ

p+1(εx)
)

cos(2x)|sin(x)|pdx|

≤
∞

∑
n=−∞

∫ 2πn+ π

4

2πn

∫
ε(x+ π

2 )

εx
|(χ p+1)′(y)|dydx

≤
∞

∑
n=−∞

∫ 2πn+ π

4

2πn

∫
ε(2πn+ 3π

4 )

ε2πn
|(χ p+1)′(y)|dydx

≤C
∫

R
|(χ p+1)′ (x) |dx

and, similarly, we estimate the three other error terms.

We are now ready to present the main result of this section.

3.3.3 Existence of the waves

Proposition 8. Let 1 < p < 3, then the minimization problem (3.3.1) has a solution. Let 1 < p < 5,

then the minimization problem (3.3.2) has a solution.

Remark: By Lemma 29, this implies the existence of solutions to (3.3.3) and (3.3.4), in the cor-

responding range of p. The proof of Proposition 8 is based on the method of concentrated compact-
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ness. In the compensation compactness arguments, the sub-additivity of the function λ → m(λ )

plays a pivotal role. We begin with this lemma.

Lemma 31. (Strict sub-additivity) Fix λ > 0.

i) Suppose 1 < p < 3 . Then for all 0 < α < λ we have that the strict sub-additivity condition

holds for mI , namely,

mI(λ )< mI(α)+mI(λ −α).

ii) Suppose 1 < p < 5 . Then for all 0 < α < λ we have that the strict sub-additivity condition

holds for mJ , namely,

mJ(λ )< mJ(α)+mJ(λ −α).

Proof. The proofs of i) and ii) are identical. Let us prove i). First, we claim that the function mI(λ )
λ

is strictly decreasing. Indeed,

mI(λ ) = inf
‖ux‖2

2=λ

{1
2

∫
R
|uxx|2 + |u|2dx− 1

p+1

∫
R
|ux|puxdx}

=
λ

α
inf

‖ux‖2
2=α

{1
2

∫
R
|uxx|2 + |u|2dx− (λ/α)

p−1
2

p+1

∫
R
|ux|puxdx

<
λ

α
mI(α),

where the strict inequality follows from the fact that by lemma 30 there exist a minimizing se-

quence {uk}∞
k=1 such that limk→∞

∫
R |(uk)x|p(uk)xdx > 0. Finally, assuming that α ∈ [λ/2,λ )

(otherwise we argue with λ −α), since mI(λ )
λ

is decreasing, we get

mI(λ )<
λ

α
mI(α)

= mI(α)+
λ −α

α
mI(α)

≤ mI(α)+mI(λ −α).
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Proof. (Proposition 8)

Define ρk(x) = |∂xuk|2. By the concentration compactness lemma at least one of the following

holds:

i) Tightness. There exists {yk}∞
k=1 such that for all ε > 0 there exists an Rε > 0 satisfying

∫
B(yk,Rε )

ρkdx≥
∫

R
ρkdx− ε.

ii) Vanishing. For every R > 0

lim
k→∞

sup
y∈R

∫
B(y,R)

ρkdx = 0.

iii) Dichotomy. There exists an α ∈ (0,λ ) such that for every ε > 0 there exist R, Rk → ∞, yk

and k0 such that for all k ≥ k0

∣∣∣∣∫|x−yk|<R
ρkdx−α

∣∣∣∣< ε,

∣∣∣∣∫|x−yk|>Rk

ρkdx− (λ −α)

∣∣∣∣< ε,

∣∣∣∣∫R<|x−yk|<Rk

ρkdx
∣∣∣∣< ε.

First, let us rule out vanishing. Suppose, it occurs. Let 0 ≤ χ ≤ 1 be a smooth bump function

supported on (−2,2) with χ ≡ 1 on (−1,1). Applying the GNS inequality we get

∫
B(y,1)

|(uk)x|p(uk)xdx≤
∫

R
|(uk)xχ(x− y)|p+1dx

≤ ‖(uk)xχ(x− y)‖
p+3

2
2 ‖((uk)xχ(x− y))x‖

p−1
2

2

≤C‖(uk)x‖
p+3

2
L2(B(y,2)) ,

(3.3.13)

where in the last line, we have used that ‖uk‖H2 is a bounded sequence. By the assumed vanishing,

choose k0 so large that for all k ≥ k0

∫
B(y,2)

ρkdx < ε,

for all y ∈ R. We can cover the real line with intervals ∪∞
n=0B(yn,2), so that each x ∈ R belongs to
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at most ten intervals and ∪∞
n=0B(yn,1) still covers the whole line. Using (3.3.13), we obtain

∫
R
|(uk)x|p(uk)xdx≤

∫
R
|(uk)x|p+1dx

≤
∞

∑
n=0

∫
B(yn,1)

|(uk)x|p+1dx

≤Cε
p−1

2

∞

∑
n=0
‖(uk)x‖2

L2B(yn,2)

≤ 3Cε
p−1

2 ‖(uk)x‖2
L2

which is a contradiction, for sufficiently small ε > 0. Indeed, recall that supk ‖uk‖H2 < ∞, while

by Lemma 30, infk
∫

R |(uk)x|p(uk)xdx > 0. Hence, vanishing does not take place.

Next, we rule out dichotomy. For contradiction, suppose it occurs. Let η1,η2 ∈C∞(R), satis-

fying 0≤ η1,η2 ≤ 1 and

η1(x) =


1, |x| ≤ 1,

0, |x| ≥ 2,
, η2(x) =


1, |x| ≥ 1,

0, |x| ≤ 1/2.

Dichotomy implies that there exists a subsequence of {uk}∞
k=1 (re-indexed to be {uk}∞

k=1 again)

and sequences {Rk}∞
k=1 ∈ R, with limk→∞ Rk = ∞ and {yk}∞

k=1 ∈ R such that

lim
k→∞

∫
R
|(uk,1)x|2dx = α, lim

k→∞

∫
R
|(uk,2)x|2dx = λ −α,

∫
Rk/5≤|x−yk|<Rk

|(uk)x|2dx≤ 1
k
,

where

uk,1(x) = uk(x)η1

(
x− yk

Rk/5

)
, uk,2(x) = uk(x)η2

(
x− yk

Rk

)
.

Let {ak}∞
k=1 and {bk}∞

k=1 be sequences of real numbers converging to 1 such that

∫
R
|(akuk,1)x|= α,

∫
R
|(bkuk,1)x|= λ −α,
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for all k. It is easy to see that the following holds

I[uk]− I[akuk,1]− I[bkuk,1] =
1
2

∫
R

(
1−η

2
1

(
x− yk

Rk/5

)
−η

2
2

(
x− yk

Rk

))(
|(uk)xx|2 + |uk|2

)
dx

+O
(

1
Rk

)
+O

(
1
k

)
+O

(
|1−a2

k |
)
+O

(
|1−b2

k |
)
.

It follows that

I[uk]≥ mI(α)+mI(λ −α)+βk,

where βk→ 0. Taking the limit as k→ ∞ we obtain

mI(λ )≥ mI(α)+mI(λ −α),

which contradicts the strict sub-additivity condition shown in lemma 3.1.9. Hence dichotomy is

not an option.

Finally, using tightness we show existence of a minimizer. We show it only for the I functional,

but the steps for the J functional are exactly the same, if not easier. Define vk(x) := uk(x− yk).

Since {vk}∞
k=1 is bounded on H2(R) there exists a weakly convergent subsequence to some v ∈

H2(R), renamed to {vk}∞
k=1 again. From tightness it follows that for all ε > 0 there exists an Rε

satisfying ∫
Bc(0,Rε )

|(vk)x|2dx < ε. (3.3.14)

By the Rellich-Kondrachov theorem H1(B(0,Rε)) compactly embeds into L2(B(0,Rε)). So, there

exists a subsequence of {vk}∞
k=1 such that (vk)x → vx strongly on L2(B(0,Rε)). Taking ε = 1/n

and letting n→∞ in (3.3.14) we can find a subsequence of {vk}∞
k=1, again renamed to be the same,

so that (vk)x→ vx strongly on L2(R). With this in hand, we can show that

lim
k→∞

∫
R
|(vk)x|p(vk)xdx =

∫
R
|vx|pvxdx. (3.3.15)
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Indeed,

∣∣∣∣∫R
|(vk)x|p(vk)xdx−

∫
R
|vx|pvxdx

∣∣∣∣≤C
∫

R
|(vk)x− vx|(|(vk)x|p + |vx|p)dx

≤C‖(vk)x− vx‖2 (‖v‖H2 +‖vk‖H2)
p→ 0,

where we have used the inequality ||x|px− |y|py| ≤ C|x− y|(|x|p + |y|p) which holds for all real

numbers x and y, the Cauchy-Schwartz inequality and the fact that H1(R) embeds into L∞(R).

Finally, the lower semi-continuity of norms with respect to weak convergence and (3.3.15)

imply that mI(λ ) = limk→∞ I[vk] ≥ I[v], which means that I[v] = mI(λ ) and v is the minimizer.

Proposition 8 is thus proved in full.

The next order of business is to derive the Euler-Lagrange equations.

3.3.4 The Euler-Lagrange equations - fourth order formulations

Proposition 9.

• For 1 < p < 3 and λ > 0 there exists a real number ω such that the minimizer of the con-

strained minimization problem (3.3.1) φλ satisfies the Euler-Lagrange equation

φ
′′′′
λ

+ω(λ )φ ′′
λ
+φλ +∂x(|φ ′λ |

p) = 0, (3.3.16)

where ω = ω(λ ,φλ ) =
1
λ

∫
R[|φ ′′λ |

2 + |φλ |2−|φ ′λ |
pφ ′

λ
]dx.

• For 1 < p < 5 and λ > 0 there exists a function ω such that the minimizer of the constrained

minimization problem (3.3.2) φλ satisfies the Euler-Lagrange equation

φ
′′′′
λ

+ω(λ )φ ′′
λ
+φλ +∂x(|φ ′λ |

p−1
φ
′
λ
) = 0, (3.3.17)

where ω = ω(λ ,φλ ) = 1
λ

∫
R |φ ′′λ |

2 + |φλ |2−|φ ′λ |
p+1dx.
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Proof. Consider uδ = φλ+δh
‖φ ′

λ
+δh′‖

√
λ , where h is a test function. Clearly, uδ satisfies the constraint

and expanding I[uδ ] in δ we get

I[uδ ] = mI(λ )+δ

(∫
R

φ
′′
λ

h′′dx+φλ h+ |φ ′
λ
|ph′− 1

λ
(
∫

R
|φ ′′

λ
|2 + |φλ |2−|φ ′λ |

p
φ
′
λ

dx)
∫

R
φ
′
λ

h′dx
)

+O(δ 2).

Since I[uδ ]≥ mI[λ ] for all δ ∈ R we conclude that

〈φ ′′′′
λ

+φλ +ω(λ )φ ′′
λ
+(|φ ′

λ
|p)′,h〉= 0,

with ω = 1
λ

∫
R |φ ′′λ |

2 + |φλ |2− |φ ′λ |
pφ ′

λ
dx, holds for all h, i.e., φλ is a distributional solution of

the Euler-Lagrange Equation (3.3.16). For the minimizers of (3.3.2), we proceed analogously to

establish (3.3.17).

3.3.5 The Euler-Lagrange equations - second order formulation

Proposition 10. • For 1 < p < 3, there exists a function ω(λ ) such that for all λ > 0, the

minimizer of the constrained minimization problem (3.3.3) φλ satisfies the Euler-Lagrange

equation

∂
2
x φλ +∂

−2
x φλ +ω(λ )φλ + |φλ |p = 0, (3.3.18)

where

ω = ω(λ ,φλ ) =
1
λ

∫
R
[|∂xφλ |2 + |∂−1

x φλ |2−|φλ |pφλ ]dx. (3.3.19)

In addition, the linearized operator L+ :=−∂ 2
x −∂−2

x −ω(λ )− p|φλ |p−2φλ satisfies

L+|{φλ }⊥ ≥ 0. In fact, L+ has exactly one negative eigenvalue.

• For 1 < p < 5, there is ω(λ ), such that for all λ > 0, the minimizer of the constrained
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minimization problem (3.3.4) φλ weakly satisfies the Euler-Lagrange equation

∂
2
x φλ +∂

−2
x φλ +ω(λ )φλ + |φλ |p−1

φλ = 0, (3.3.20)

where ω =ω(λ ,φλ )=
1
λ

∫
R |φ ′λ |

2+ |∂−1
x φλ |2−|φλ |p+1dx. The operator L+=−∂ 2

x −∂−2
x −

ω(λ )− p|φλ |p−1 has L+|{φλ }⊥ ≥ 0 and it possesses exactly one negative eigenvalue.

Proof. The derivation of the Euler-Lagrange equations is pretty similar to the one presented in

the fourth order context, Proposition 9. For an arbitrary test function h ∈ H−2 ∩H2 and δ ∈ R,

consider uδ =
√

λ
φλ+δh
‖φλ+δh‖ . Since uδ satisfies the constraint ‖uδ‖2

L2 = λ , expand I[uδ ] in powers of

δ . We get

I [uδ ] = mI (λ )+δ

(∫
R

φ
′
λ

h′dx+
∫

R
∂
−1
x φλ ∂

−1
x hdx−

∫
R
|φλ |ph

− 1
λ

∫
R
|φ ′

λ
|2 + |∂−1

x φλ |2−|φλ |pφλ dx
∫

R
φλ hdx

)
+

δ 2

2

(∫
R
|h′|2 + |∂−1

x h|2dx− p
∫

R
|φλ |p−2

φλ |h|2dx
)

− δ 2

2
1
λ

(∫
R
|φ ′

λ
|2 + |∂−1

x φλ |2−|φλ |pφλ dx
)∫

R
|h|2dx

+δ
2
∫

R φλ hdx
λ

(
(p+1)

∫
R
|φλ |phdx−2(

∫
R

φ
′
λ

h′dx+
∫

R
∂
−1
x φλ ∂

−1
x hdx)

)
+δ

2
(∫

R φλ hdx
λ

)2(
2
∫

R
|φ ′

λ
|2 + |∂−1

x φλ |2dx− p+3
2

∫
|φλ |pφλ dx

)
+O(δ 3).

Since I [uδ ]≥ mI [λ ] for all δ ∈ R, we conclude that

〈
φ
′′
λ
+∂

−2
x φλ +ωφλ + |φλ |p,h

〉
= 0, (3.3.21)

with ω = 1
λ

∫
R |φ ′λ |

2 + |∂−1
x φλ |2−|φλ |pφλ dx, holds for all h. That is φλ is a distributional solution

of the Euler-Lagrange Equation. According to Proposition 6, this solution is, in fact, an element of

H3 and (3.3.18) is satisfied in the sense of L2 functions.
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The fact that φλ is a minimizer also implies that the coefficient in front of δ 2 must be nonneg-

ative. Choosing h orthogonal to φλ with ‖h‖= 1, we conclude that

〈
−h′′−∂

−2
x h− p|φλ |p−2

φλ h−ωh,h
〉
≥ 0,

i.e., the operator L+ =−∂ 2
x −∂−2

x −ω(λ )− p|φλ |p−2φλ , satisfies 〈L+h,h〉 ≥ 0 for all h orthog-

onal to φλ with ‖h‖ = 1, which implies that it has at most one negative eigenvalue. On the other

hand, recalling that
∫

R |φλ |pφλ dx > 0, we compute

〈L+φλ ,φλ 〉=−(p−1)
∫

R
|φλ |pφλ dx < 0. (3.3.22)

So, L+ has at least one negative eigenvalue. Hence it has exactly one negative eigenvalue. The

second part of the proposition is proven similarly expanding J [uδ ] in powers of δ .

The next corollary is a consequence of the Pohozaev’s identities and the fact that our waves are

minimizers4 .

Corollary 5. Let φλ be a minimizer for either one of (3.3.1), (3.3.3), (3.3.2), (3.3.4). Then, for

each λ > 0, ω < 2.

Proof. Let φλ be a minimizer for (3.3.1), so in particular ‖φ ′
λ
‖2

L2 = λ . Then, we have m(λ ) < λ ,

as established in the proof of Lemma 30. Therefore

I(φλ ) =
1
2

∫
R

∣∣φ ′′
λ

∣∣2 + |φλ |2dx− 1
p+1

∫
R
|φ ′

λ
|pφ
′
λ

dx < λ =
∫

R
|φ ′

λ
|2dx.

Rearranging the terms yields

1
2

∫
R

∣∣φ ′′
λ

∣∣2 + |φλ |2dx <
∫

R
|φ ′

λ
|2dx+

1
p+1

∫
R
|φ ′

λ
|pφ
′
λ

dx. (3.3.23)

4It is possible that the conclusions of Corollary 5 are valid, by just assuming that φ satisfies the elliptic profile
equations, without being a constrained minimizer, but we leave this open at the present time.
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Since φλ also satisfies (3.2.11), we get

1
2

∫
R
|φ ′′

λ
|2 + |φλ |2dx =

ω

2

∫
R
|φ ′

λ
|2dx+

1
2

∫
R
|φ ′

λ
|pφ
′
λ

dx. (3.3.24)

Combining (3.3.23) and (3.3.24), we have that

(
ω

2
−1
)∫

R
|φ ′

λ
|2dx =− p−1

2(p+1)

∫
R
|φ ′

λ
|pφ
′
λ

dx.

Recalling again that
∫

R |φ ′λ |
pφ ′

λ
dx > 0, we conclude that ω < 2. Similarly for the minimizers of

the other three variational problems.

3.3.6 Weak non-degeneracy of the waves and the proof of Theorem 7

Our first order of business is to show that φλ ⊥ Ker[L+]. Let us work with the second order

version, for which L+ =−∂ 2
x −∂−2

x −ω− p|φλ |p−1, the other one being similar. Take any element

Ψ ∈ Ker[L+],‖Ψ‖L2 = 1. Note that by Proposition 10, we have that L+|{φλ }⊥ ≥ 0. It follows that

Ψ−λ−1〈Ψ,φλ 〉φλ ⊥ φλ , since by construction ‖φλ‖2 = λ . Thus,

0≤ 〈L+[Ψ−λ
−1〈Ψ,φλ 〉φλ ],Ψ−λ

−1〈Ψ,φλ 〉φλ 〉= λ
−2〈Ψ,φλ 〉2〈L+φλ ,φλ 〉 ≤ 0,

where in the last inequality we have used (3.3.22). We conclude that 〈Ψ,φλ 〉 = 0, otherwise we

have a contradiction in the above chain of inequalities.

The proof of Theorem 7 consists of applying Lemma 1 to H = L+ and ξ0 := λ−1/2φλ . We

have shown that L+|{φλ }⊥ ≥ 0 and (3.3.22) establishes 〈L+φλ ,φλ 〉 < 0. This verifies all the

assumptions in Lemma 1, which implies 〈L+φλ ,φλ 〉< 0. Finally, corollary 4 implies the stability.
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