
Surface and bulk moving mesh methods based on
equidistribution and alignment

By

Avary Kolasinski

Submitted to the Department of Mathematics and the Graduate Faculty of the University
of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Committee members

Weizhang Huang, Chair

Estela Gavosto

Agnieszka Miȩdlar

Suzanne Shontz

Erik Van Vleck

Date defended: May 2, 2019

The Thesis Committee for Avary Kolasinski certifies
that this is the approved version of the following thesis :

Surface and bulk moving mesh methods based on equidistribution and alignment

Weizhang Huang, Chair

Date approved: May 7, 2019

ii

Abstract

In this dissertation, we first present a new functional for variational mesh gener-

ation and adaptation that is formulated by combining the equidistribution and

alignment conditions into a single condition with only one dimensionless pa-

rameter. The functional is shown to be coercive which, when employed with

the moving mesh partial differential equation method, allows various theoretical

properties to be proved. Numerical examples for bulk meshes demonstrate that

the new functional performs comparably to a similar existing functional that is

known to work well but contains an additional parameter.

Variational mesh adaptation for bulk meshes has been well developed however,

surface moving mesh methods are limited. Here, we present a surface moving

mesh method for general surfaces with or without explicit parameterization. The

development starts with formulating the equidistribution and alignment condi-

tions for surface meshes from which, we establish a meshing energy functional.

The moving mesh equation is then defined as the gradient system of the energy

functional, with the nodal mesh velocities being projected onto the underlying

surface. The analytical expression for the mesh velocities is obtained in a com-

pact, matrix form, which makes the implementation of the new method on a

computer relatively easy and robust. Moreover, it is analytically shown that

any mesh trajectory generated by the method remains nonsingular if it is so ini-

tially. It is emphasized that the method is developed directly on surface meshes,

making no use of any information on surface parameterization. A selection of

two-dimensional and three-dimensional examples are presented.

iii

Acknowledgements

I would first like to express my deep gratitude to my advisor, Professor Weizhang

Huang, for his support, expert guidance, and encouragement throughout my re-

search. Without his direction and persistent help, this dissertation and all other

accomplishments during my graduate school career would have not been possible.

In addition, I would like to thank the members of my thesis committee, Professor

Estela Gavosto, Professor Agnieszka Miȩdlar, Professor Suzanne Shontz, and Pro-

fessor Erik Van Vleck for their comments, thoughtful questions, and constructive

criticism. Each one of them has been supportive and influential throughout my

career. Specifically, I would like to thank Estela Gavosto and Agnieszka Miȩdlar

for, on various occasions, taking time from their busy schedules to meet with me

and offer new perspective and advice.

I would like to acknowledge my gratitude toward the office support staff: Gloria

Prothe, Kerrie Breicheisen, and Lori Springs for their consistent help with pa-

perwork, deadlines, and continuously keeping the department running smoothly.

I would also like to thank my parents, Ed and Sandy, and my sister and brother,

Sidney and Taylor. They have supported me beyond belief throughout my life

and have shaped me to become the person I am proud to be today. I truly

cannot express how thankful I am for the unbound love and support my parents

have given me not only during graduate school but my entire life. Additionally,

I would like to personally thank my sister, Sidney, for being there for me as a

truly amazing sister, roommate, and most importantly, best friend.

I am also deeply thankful for my fiancé, Justin, who was my rock during the most

iv

difficult weeks I endured during graduate school. He believed in me at times when

I was too tired to believe in myself and never went without reminding me how

strong I was. His unwavering support and love during the last year especially

has been crucial and I am quite lucky to have him by my side. I would also like

to thank Justin’s family for their encouragement the past few years. Specifically,

Debbie for the support and patiently listening to my rants about the difficulties

of research and teaching.

I wouldn’t be in the position I am today without each and every person mentioned

above, and some who were not mentioned. I am truly grateful for this experience

and am looking forward to the next part of my research journey.

v

Contents

1 Introduction 1

2 Bulk Mesh 7

2.1 Meshing functionals based on equidistribution and alignment 8

2.1.1 Equidistribution and alignment . 8

2.1.2 The existing functional . 10

2.1.3 The new functional . 13

2.2 The moving mesh PDE and direct discretization 15

2.2.1 The moving mesh PDE solution strategy 15

2.2.2 Scalar-by-matrix derivatives . 16

2.2.3 Analytical formulas for derivatives of discretized functional 21

2.3 Theoretical analysis of the new functional 22

2.3.1 Coercivity . 22

2.3.2 Nonsingularity of the mesh trajectory 24

2.3.3 Limits of the mesh trajectory . 26

2.4 Numerical examples . 27

2.5 Conclusion for the new functional . 39

3 Surface Mesh 40

3.1 Equidistribution and alignment conditions for surface meshes 41

3.1.1 Area and affine mappings for surface elements 41

3.1.2 Equidistribution and alignment conditions for surface meshes 46

3.2 Surface energy functional . 48

vi

3.3 Surface moving mesh PDE . 52

3.3.1 Gradient of meshing energy . 52

3.3.2 Derivatives of the meshing functional with respect to the physical co-

ordinates . 53

3.3.3 Surface moving mesh equations . 61

3.4 Theoretical Properties . 64

3.4.1 Equivalent measure of minimum height 64

3.4.2 Mesh nonsingularity and existence of limiting meshes 65

3.5 Numerical experiments . 72

3.5.1 Definition of curvature for curves and surfaces 72

3.5.2 Numerical results . 80

3.6 Conclusions for surface mesh adaptation . 112

4 Conclusions 114

4.1 Conclusions . 114

4.2 Future Research . 116

A Appendix 125

A.1 Proof of Corollary 2.2.1 . 125

A.2 Derivatives of existing functional for bulk mesh 127

A.3 Formulation and coercivity of the new meshing functional for surface meshes 129

A.4 First derivatives of surface meshing functional 132

A.5 Formulation of surface MMPDE . 133

vii

List of Figures

2.1 Example 2.4.1. Example meshes (left), close-ups near the inflection point

(middle), and a closer version of the inflection point (right) with N = 25600. 29

2.2 Example 2.4.1. The energy and minimum element volume are plotted as

functions of t with N = 25600. 30

2.3 Example 2.4.1 with more anisotropic features. Adaptive meshes (left) and

close-ups near the inflection point (right) with N = 25600. 33

2.4 Example 2.4.2. Example meshes (left), close-ups near the circle meeting the

boundary layer (middle), and a closer version of the circle meeting the bound-

ary layer (right) with N = 25600. 35

2.5 Example 2.4.2. The energy and minimum element volume are plotted as

functions of t with N = 25600. 36

2.6 Example 2.4.3. Example meshes (left), close-ups near the the tip (middle),

and a closer version of the tip (right) with N = 25600. 38

3.1 Adaptive and uniform meshes for the ellipse with N = 100 for the adaptive

mesh and N = 100, 300, and 500 for the uniform meshes. 82

3.2 Meshes of N = 10 and N = 40 for the cardioid using analytical and approxi-

mate normal vector with the Euclidean metric tensor. 85

3.3 Example 3.5.7. Meshes of N = 80 are obtained for Φ(x, y) = x2 + y2 − 1. . . 86

3.4 Example 3.5.8. Meshes of N = 60 are obtained for Φ(x, y) =
x2

64
+ y2 − 1. . 88

3.5 Example 3.5.9. Meshes of N = 60 are obtained for Φ(x, y) = 4 sin(x)− y. . 89

3.6 Example 3.5.9. Ih and Kmin plotted as functions of t for Φ(x, y) = 4 sin(x)− y. 90

viii

3.7 Example 3.5.10. Meshes of N = 60 are obtained for the lemniscate Φ(x, y) =

(x2 + y2)2 − 4(x2 − y2). 91

3.8 Example 3.5.10. Meshes of N = 120 are obtained for the lemniscate Φ(x, y) =

(x2 + y2)2 − 4(x2 − y2). 92

3.9 Example 3.5.11. Meshes of N = 3200 are obtained for the surface Φ(x, y, z) =

(2−
√
x2 + y2)2 + z2 − 1. 93

3.10 Example 3.5.12. Meshes of N = 3200 are plotted for Φ(x, y, z) = x2 + y2 − 1. 95

3.11 Example 3.5.13. Meshes of N = 3200 for the surface Φ(x, y, z) = sin(x+y)−z. 96

3.12 Example 3.5.13. Ih and Kmin are plotted as functions of t for Φ(x, y, z) =

sin(x+ y)− z. 98

3.13 Example 3.5.14. Meshes of N = 1280 are plotted for Φ(x, y, z) = x2 + y2 +

z2 − 1. 100

3.14 Example 3.5.14. Meshes of N = 1280 are plotted for Φ(x, y, z) = x2 + y2 +

z2

4
− 1. 101

3.15 Example 3.5.14. Meshes of N = 5120 are plotted for Φ(x, y, z) = x2 + y2 +

z2

4
− 1. 102

3.16 Meshes for the cardioid (3.79) with N = 70. 103

3.17 Meshes for the spiral defined by x(θ) = θ cos(θ), y(θ) = θ sin(θ) for θ ∈ [0, 10]. 104

3.18 Meshes for four-petal rose defined by x(θ) = cos(2θ) cos(θ), y(θ) = cos(2θ) sin(θ)

for θ ∈ [0, 2π]. 104

3.19 Meshes for the flower defined by x(θ) = cos
(
θ
4

)
cos(θ), y(θ) = cos

(
θ
4

)
sin(θ)

for θ ∈ [0, 8π] with N = 220. 104

3.20 Meshes for the rose defined by x(θ) = cos
(

3θ
4

)
cos(θ), y(θ) = cos

(
3θ
4

)
sin(θ)

for θ ∈ [0, 8π] with N = 260. 105

3.21 Meshes for the ribbon defined by x(θ) = −10− 3θ2, y(θ) = θx(θ)

for θ ∈ [−0.85, 0.85]. 105

ix

3.22 Meshes for the nephroid defined by x(θ) = 3 cos(θ)− cos(3θ),

y(θ) = 3 sin(θ)− sin(3θ) for θ ∈ [0, 2π]. 105

3.23 Meshes for limaçon defined by x(θ) = (−1 + 2 cos(θ)) cos(θ),

y(θ) = (−1 + 2 cos(θ)) sin(θ) for θ ∈ [0, 2π]. 106

3.24 Meshes for the dip defined by Φ(x, y) = x2 + 3x− y3 with N = 60. 106

3.25 Meshes for the paraboloid defined by Φ(x, y, z) = x2 + y2 − z. 107

3.26 Meshes for the saddle defined by Φ(x, y, z) = −x2 + y2 − z. 108

3.27 Meshes for the hyperboloid defined by Φ(x, y, z) = x2 + y2 − z2. 109

3.28 Meshes for the ripple defined by Φ(x, y, z) =
sin

(√
x2+y2+16

)
√
x2+y2+16

. 110

3.29 Meshes for the cavatappi with N = 10952 defined by

x(θ, γ) =
(
3 + 2 cos

(
π
35
θ
)

+ 0.1 cos
(

2π
7
θ
))

cos
(
π
30
γ
)
,

y(θ, γ) =
(
3 + 2 cos

(
π
35
θ
)

+ 0.1 cos
(

2π
7
θ
))

sin
(
π
30
γ
)
,

z(θ, γ) = 3 + 2 sin
(
π
35
θ
)

+ 0.1 sin
(

2π
7
θ
)

+ γ
6
. 111

A.1 Meshes for Φ(x, y) = 2 sin(x) = y with N = 20 using the delayed projection

MMPDE. 136

x

List of Tables

1.1 Steps in developing the surface moving mesh method. 6

2.1 Mesh quality measures and the L2 norm of linear interpolation error for Ex-

ample 2.4.1. 29

2.2 Mesh quality measures and the L2 norm of linear interpolation error for Ex-

ample 2.4.1 with more anisotropic features. 32

2.3 Mesh quality measures and the L2 norm of linear interpolation error for Ex-

ample 2.4.2. 35

2.4 Mesh quality measures for Example 2.4.3. 37

xi

Chapter 1

Introduction

The solutions of partial differential equations (PDEs) arising in science and engineering can

frequently have large variations occurring over small portions of the physical domain. A

major challenge when solving such problems is how to appropriately resolve the solution

behavior there. When finite difference or finite element methods are employed, a fine mesh

is required in these particular regions of the physical domain. Typically, in one-dimension,

using a uniform fine mesh is feasible, however, in higher dimensions this can become a

substantial computational expense in terms of computer memory and processing time. This

particular challenge has led to the study of mesh adaptation methods which consist of three

mesh adaptation techniques. The h-method seeks to improve accuracy by adding more mesh

points in regions of the domain with large solution variation. In this, the h is a standard

notation representing the size of the mesh element. Although intuitive, this approach requires

continuously adding elements and changing connectivity of the mesh for which, in some cases,

can be expensive or even forbidding in terms of memory. The p-method (where the p stands

for polynomial) seeks to improve the accuracy by increasing the polynomial degrees of the

solution approximation in regions with large solution error. The p-method, unlike the h-

method, does not add more points or change the connectivity of the mesh however, it is

difficult to implement in many cases. The final method is the r-method (adaptive moving

mesh method) where the r stands for relocation. This method seeks to improve the accuracy

by moving mesh points into the regions that require a fine resolution. Adaptive moving

mesh methods can attain a similar accuracy to that of a uniform mesh or an h-method with

significantly less mesh points.

1

More specifically, adaptive moving mesh methods consist of two major components: the

strategy used to move the mesh and the approach used to solve the system of mesh equations.

The mesh movement strategy is typically performed either by solving a system of PDEs

involving the mesh coordinate transformation or by doing a direct error-based minimization.

Here we focus on the former and take a velocity-based variational approach to formulate the

mesh strategy. To solve the system of mesh equations, we use a general ordinary differential

equation (ODE) solver. In this variational approach, a (adaptive) mesh is generated as

the image of a reference mesh under a coordinate transformation which is determined as

the minimizer of a meshing functional. The meshing functional is typically designed to

measure the difficulty in the numerical approximation of the physical solution and involves

a user determined metric tensor or monitor function to control the movement. Due to the

inherent ability of the method to easily incorporate user determined mesh requirements

such as smoothness, orthogonality, adaptivity, alignment, etc., it has received considerable

attention in the scientific computing community; e.g., see [8, 38, 42, 46, 55] and references

therein. In addition to being a method for mesh generation and adaptation, this approach

can also be used as a smoothing device for automatic mesh generation [22, 35] and a base

for adaptive moving mesh methods [37, 38, 39, 45].

A number of meshing functionals have been developed from different problems and for-

mulated based on different focused requirements. For example, Winslow [59] develops an

equipotential method that is based on variable diffusion. Brackbill and Saltzmann [6] com-

bine mesh concentration, smoothness, and orthogonality to create a functional. Dvinsky

[17] develops a method based on the energy of harmonic mappings. Knupp [40] and Knupp

and Robidoux [41] focus on the idea of conditioning the Jacobian matrix of the coordinate

transformation. Huang [30] and Huang and Russell [38] have proposed two methods based

on the so-called equidistribution and alignment conditions. Together, these two conditions

completely characterize a uniform mesh. Huang [30] formulates a single energy functional

(referred to as the existing functional hereafter) by averaging the equidistribution and align-

2

ment conditions with a dimensionless parameter [30]. The idea is that minimizing the existing

energy functional will result in a mesh that closely satisfies both the equidistribution and

alignment conditions.

Compared to the algorithmic development, very few theoretical results are known. For ex-

ample, Dvinsky’s meshing functional [17] is guaranteed to have a unique invertible minimizer

by the theory of harmonic mappings between multidimensional convex domains. Winslow’s

functional [59] is known to have a unique minimizer due to its uniformly convexity and coer-

civity but its invertibility depends on the convexity of the domains. The existing functional

based on the equidistribution and alignment condition has been proven to be both coercive

and polyconvex and has minimizes. These results, however, are only at the continuous level.

At the discrete level, studies have typically been focused on one spatial dimension. How-

ever, Huang and Kamenski have recently proposed a theoretical study on variational mesh

generation and adaptation at the discrete level for any dimension. In this method, the mesh-

ing functional is first discretized and then the mesh equation is defined as a modified gradient

system of the discretized functional. This formulation provides an explicit, compact, and

analytical formula for the mesh velocity, which makes the implementation of the method

much easier and more robust (see Section 2.2). More importantly, several properties of the

discrete MMPDE can be established; see [32] and/or Section 2.3 for detail. In particular,

if the meshing functional satisfies the coercivity condition then the mesh trajectory of the

discrete MMPDE stays nonsingular if it is so initially. Moreover, the altitudes and volumes

of its elements are bounded below by positive numbers that depend only on the initial mesh,

the number of elements, and the metric tensor. Furthermore, the value of the discrete func-

tional converges as time increases which can be used as a stopping criteria in computation.

Finally, Huang and Kamenski prove that the mesh trajectory has limiting meshes that are

critical points of the discrete functional and satisfy the lower bounds on the element altitude

and volume.

As mentioned, the existing functional satisfies the coercivity condition and hence, main-

3

tains the theoretical properties proposed by Huang and Kamenski. Although known to work

well in many problems and clearly has significant proven theoretical advantages, the existing

functional contains two parameters which can be considered large disadvantages. In partic-

ular, it is still unclear how to optimally choose either of the parameters. The performance

of the existing functional does not seem sensitive to the value of the parameters however,

their choice is still arbitrary and there is hardly a convincing guideline for choosing them. In

Chapter 2, we formulate a new functional that combines the equidistribution and alignment

conditions without introducing any new parameters. We prove that this new functional

satisfies the coercivity condition and thus has similar properties to the existing functional

when employed with the MMPDE method. Moreover, two-dimensional numerical results are

presented to verify theoretical findings as well as demonstrate comparable performances of

the two functionals.

Indeed, variational mesh adaptation for bulk meshes has been studied extensively, as

discussed above, however, mesh adaptation methods for surface meshes are limited. There

has been some work done on mesh movement and adaptation for surfaces. For example,

Crestel et al. [11] present a moving mesh method for parametric surfaces by generalizing

Winslow’s meshing functional to Riemannian manifolds and taking into consideration the

Riemannian metric associated with the manifolds. The method is simplified and implemented

on a two-dimensional domain for surfaces that accept certain parameterizations. Weller et

al. [7] and McRae et al. [48] solve a Monge-Ampére type equation on the surface of the

sphere to generate optimally transported meshes that become equidistributed with respect

to a suitable monitor function. MacDonald et al. [47] devise a moving mesh method for

the numerical simulation of coupled bulk-surface reaction-diffusion equations on an evolving

two-dimensional domain. They use a one-dimensional moving mesh equation in arclength

to concentrate mesh points along the evolving domain boundary. Dassi et al. [13] generalize

the higher embedding approach proposed in [44]. They modify the embedding map between

the underlying surface and R6 to include more information associated with the physical

4

solution and its gradient. The idea behind this mapping is that it essentially approximates

the geodesic length on the surface via a Euclidean length in R6. The mesh adapts in the

Euclidean space and then is mapped back to the physical domain.

We, however, are interested in methods that can directly move simplicial meshes on

general surfaces with or without analytical expressions. Such surface moving mesh methods

can be used for adaptation and/or quality improvements of surface meshes and thus are

useful for computational geometry and numerical solutions of partial differential equations

(PDEs) defined on surfaces; e.g., see [15, 19, 56]. More specifically, the functionals based on

equidistribution and alignment when combined with the MMPDE method for bulk meshes

is known to work well hence, we are interested in developing an extension of this method to

surface meshes.

The main challenges in the development of surface mesh movement come from the fact

that the Jacobian matrix of the affine mapping between the reference element and any

simplicial surface element is not square. This prevents us from using any bulk mesh results.

To overcome these challenges (see Chapter 3), we start by connecting the area of the surface

element in the Euclidean metric or a Riemannian metric with the Jacobian matrix of the

corresponding affine mapping. This connection allows us to formulate the equidistribution

and alignment conditions and ultimately, form a single meshing energy functional for surface

meshes. This meshing functional is similar to Huang’s functional [28, 30, 34, 43] for bulk

meshes which has been proven to work well in a variety of problems. Following the MMPDE

approach, we define the surface moving mesh equation as the gradient system of the meshing

functional, with the nodal mesh velocities being projected onto the underlying surface. The

analytical expression for the mesh velocities is obtained in a compact, matrix form, which

makes the implementation of the new method on a computer relatively easy and robust. The

steps in developing the surface moving mesh method are given in Table 1.1.

Several theoretical properties are obtained for the surface moving mesh method. In

particular, it is proven that a surface mesh generated by the method remains nonsingular

5

Table 1.1: Steps in developing the surface moving mesh method.

Equidistribution
condition

↗ ↘
Area of surface element in Meshing energy → Surface
terms of Jacobian matrix functional MMPDE

↘ ↗
Alignment
condition

for all time if it is so initially. Moreover, the altitudes and areas of the physical elements

are bounded below by positive constants depending only on the initial mesh, the number

of elements, and the metric tensor that is used to provide information on the size, shape,

and orientation of the elements throughout the surface. Furthermore, limiting meshes exist

and the meshing functional is decreasing along each mesh trajectory. These properties are

verified in numerical examples.

It is emphasized that the new method is developed directly on surface meshes, making

no use of any information on surface parameterization. It utilizes surface normal vectors

to ensure that the mesh vertices remain on the surface while moving. Since the surface

normal vectors can be computed even when the surface only has a numerical representation,

the new method can apply to general surfaces with or without explicit parameterization. A

large selection of two- and three-dimensional examples are presented in Chapter 3.

6

Chapter 2

Bulk Mesh

In this chapter we are going to describe two meshing functionals that are formulated from the

equidistribution and alignment conditions (see (2.6) and (2.7) below). These conditions have

been developed based on the concept of uniform meshes in some metric tensor [38]. They

provide total control of the mesh element size, shape, and orientation of mesh elements

through a metric tensor. The first meshing functionals to be described was first introduced

in [30] and involves averaging functionals associated with the equidistribution and alignment

conditions. It has a number of advantages and is known to work well in practice but involves

two dimensionless parameters. Although the performance of the functional does not seem

sensitive to the value of the parameters, the choices are still arbitrary and there is hardly a

convincing guideline for choosing them.

The second functional is new. It is formulated by directly combining the equidistribution

and alignment conditions into a single condition which, in turn, has eliminated one of the

two parameters in the existing functional. We will show that the new functional satisfies the

coercivity condition and has similar theoretical properties as the existing functional when

employed with the MMPDE method. In particular, we will show that the mesh associated

to the MMPDE remains nonsingular for all time if it is so initially. Moreover, the mesh

trajectory has limiting meshes, all of which are nonsingular. Two-dimensional numerical

results will be presented to verify theoretical findings as well as demonstrate comparable

performances of the two functionals.

7

2.1 Meshing functionals based on equidistribution and alignment

2.1.1 Equidistribution and alignment

Let the physical domain, Ω ⊂ Rd, d ≥ 1, be a bounded (not necessarily convex) polygonal or

polyhedral domain and M = M(x) be a given symmetric, uniformly positive definite metric

tensor defined on Ω which satisfies

mI ≤M(x) ≤ mI, ∀x ∈ Ω, (2.1)

where m and m are positive constants, I is the identity matrix, and the inequality is in

terms of negative semi-definiteness. Our goal is to generate a simplicial mesh for Ω which

is uniform with respect to the metric M. Denote this target mesh by Th = {K} and let N

and Nv be the number of its elements and vertices, respectively. Assume that the reference

element K̂ has been chosen to be equilateral and unitary (i.e., |K̂| = 1, where |K̂| denotes

the volume of K̂). For any element K ∈ Th let FK : K̂ ⊂ Rd → K ⊂ Rd be the affine

mapping between them and F ′K ∈ Rd×d be its Jacobian matrix. Denote the vertices of K by

xKj , j = 0, ..., d and the vertices of K̂ by ξj, j = 0, ..., d. Then

xKj = FK(ξj).

From this we have

xKj − xK0 = FK(ξj − ξ0)

or

[xK1 − xK0 , . . . ,xKd − xK0] = F ′K [ξK1 − ξK0 , . . . , ξKd − ξK0]

which gives F ′K = EKÊ
−1, where EK and Ê are the edge matrices for K and K̂, i.e.,

EK = [xK1 − xK0 , . . . ,xKd − xK0], Ê = [ξK1 − ξK0 , . . . , ξKd − ξK0].

8

It should be noted that since K̂ is not degenerate, Ê−1 ∈ Rd×d exists. From this one can

readily see that

|K| = det (F ′K) , (2.2)

where |K| denotes the volume of K in the Euclidean norm. Moreover, define

MK =
1

|K|

ˆ
K

M(x)dx (2.3)

and recall that the Riemannian distance in MK , denoted ‖ · ‖MK
, is given by

‖x‖MK
=
√
xTMKx =

√(
M

1
2
Kx
)T (

M
1
2
Kx
)

=
∥∥∥M 1

2
Kx
∥∥∥ , (2.4)

where ‖ · ‖ denotes the Euclidean metric. That is, the geometric properties of K in the

metric MK can be obtained from those of M
1
2
K in the Euclidean metric. Therefore

|K|MK
= |M

1
2
KK| = det(MK)

1
2 |K| = det (F ′K) det (MK)1/2 , (2.5)

where |K|M denotes the volume of K in the metric M.

With this in mind, we can define the equidistribution and alignment conditions that

completely characterize a non-uniform mesh. Indeed, any non-uniform mesh can be viewed

as a uniform one in some metric tensor. Using this viewpoint it is shown (e.g., see [38]) that

a uniform mesh in the metric M satisfies that, ∀K ∈ Th,

equidistribution: |K| det(MK)
1
2 =

σh
N
, (2.6)

alignment:
1

d
tr
(
(F ′K)−1M−1

K (F ′K)−T
)

= det
(
(F ′K)−1M−1

K (F ′K)−T
) 1

d , (2.7)

where

σh =
∑
K∈Th

|K| det(MK)
1
2 . (2.8)

9

From (2.5) we can see that the equidistribution condition essentially requires that all of the

elements have the same volume with respect to the metric M. On the other hand, the left-

and right-hand sides of the alignment condition (2.7) are the arithmetic mean and geometric

mean of the eigenvalues of the matrix (F ′K)−1M−1
K (F ′K)−T , respectively. Thus, the condition

implies that the eigenvalues of the matrix be equal, i.e.,

(F ′K)−1M−1
K (F ′K)−T = θKI, (2.9)

where θK is a positive constant. It can be shown [38] that geometrically, the condition (2.7)

requires all elements K, when measured in the metric MK , to be similar to the reference

element K̂. Combining the equidistribution and alignment conditions, we see that if a mesh

satisfies both of them then all of its elements have the same volume and are similar to the

reference element, thus are uniform with respect to the metric M.

2.1.2 The existing functional

We now describe the existing meshing functional based on the equidistribution and alignment

conditions. To this end, first consider the equidistribution condition (2.6). From Hölder’s

inequality, for any p > 1 then

(∑
K∈Th

|K| det(MK)
1
2

σh
·

(
1

|K| det(MK)
1
2

)p) 1
p

≥
∑
K∈Th

|K| det(MK)
1
2

σh
·

(
1

|K| det(MK)
1
2

)
, (2.10)

with equality if and only if

1

|K| det(MK)
1
2

= constant, ∀K ∈ Th.

10

That is, minimizing the difference between the left-hand side and the right-hand side of (2.10)

tends to make 1/(|K| det(MK)
1
2) constant for all K ∈ Th. Noticing that the right-hand side

of (2.10) is N/σh, we can rewrite this inequality as

∑
K∈Th

|K| det(MK)
1
2 ·

(
1

|K| det(MK)
1
2

)p

≥
(
N

σh

)p
· σh . (2.11)

Since σh ≈
´

Ω
det(M)

1
2dx, it only weakly depends on the mesh so we can consider σh to

be a constant. Therefore, we can use the left-hand side of (2.11) as the functional for the

equidistribution condition. By (2.2), we thus have the equidistribution energy funtional1

Ieq(Th) = d
dp
2

∑
K∈Th

|K| det(MK)
1
2

(
det(F ′K)−1 det(MK)−

1
2

)p
, (2.12)

where d
dp
2 has been added to agree with the alignment energy functional (2.14) below and

|K|MK
= |K| det(MK)

1
2 is a weight.

We now consider the alignment condition (2.7). Recall that its left- and right-hand sides

are the arithmetic and geometric mean of the eigenvalues of the matrix (F ′K)−1M−1
K (F ′K)−T ,

respectively. By the arithmetic-mean geometric-mean inequality, we have

1

d
tr
(
(F ′K)−1M−1

K (F ′K)−T
)
≥ det

(
(F ′K)−1M−1

K (F ′K)−T
) 1

d , (2.13)

with equality if and only if all of the eigenvalues are equal. From this, we have

(
tr
(
(F ′K)−1M−1

K (F ′K)−T
)) dp

2 ≥ d
dp
2

(
det(F ′K)−1 det(MK)−

1
2

)p
1In literature, typcally an energy functional refers to the continuous case, i.e., integration, whereas an

energy function refers to the discrete case, i.e., summation. For the purpose of consistency, however, in this
thesis we will refer to both as an energy functional.

11

and thus

∑
K∈Th

|K| det(MK)
1
2

(
tr
(
(F ′K)−1M−1

K (F ′K)−T
)) dp

2

≥
∑
K∈Th

|K| det(MK)
1
2d

dp
2

(
det(F ′K)−1 det(MK)−

1
2

)p
,

where p > 0 and |K| det(MK)
1
2 have been added to agree with the equidistribution energy

functional (2.12). Minimizing the difference of the left- and right-hand sides makes the mesh

tend to satisfying the alignment condition. Therefore, we can define our alignment functional

as

Iali(Th) =
∑
K∈Th

|K| det(MK)
1
2 tr
(
(F ′K)−1M−1

K (F ′K)−T
) dp

2

− d
dp
2 |K| det(MK)

1
2

(
1

det(F ′K) det(MK)
1
2

)p

. (2.14)

We now have two functionals and want to obtain a mesh that tries to minimize both.

One way to ensure this is to combine the two functionals into a single one. For example, we

can average the equidistribution functional (2.12) and the alignment functional (2.14) with

a dimensionless parameter θ ∈ [0, 1], i.e.,

Ih(Th) = θIali(Th) + (1− θ)Ieq(Th)

= θ
∑
K∈Th

|K| det(MK)
1
2

(
tr
(
(F ′K)−1M−1

K (F ′K)−T
)) dp

2

+ (1− 2θ)d
dp
2

∑
K∈Th

|K| det(MK)
1
2

(
det(F ′K)−1 det(MK)−

1
2

)p
. (2.15)

This functional was first proposed in [30] in the continuous form. As one can notice, the

equidistribution and alignment conditions are balanced in equation (2.15) by the dimension-

less parameter θ, for which full alignment is achieved when θ = 1 and full equidistribution

12

is achieved when θ = 0. For 0 < θ ≤ 1
2
and p > 1, the functional is coercive [38], i.e.,

G ≥ α
[
tr
(
JM−1JT

)]q − β, (2.16)

where the functional is written in the form

Ih =
∑
K∈Th

|K|G,

(see (2.19) for more details) and α > 0, β ≥ 0, and q > d/2. More specifically, for the

existing functional α = θmd/2, β = 0, and q = dp
2
in (2.16). Coercivity gives rise to a number

of theoretical properties. One important one being that the MMPDE mesh equation (see

Section 2.2) associated with this functional has a mesh trajectory that stays nonsingular for

all time if so initially and has element volumes and altitudes bounded away from zero [28].

The functional has also been successfully used for many problems.

2.1.3 The new functional

The existing functional (2.15) contains two dimensionless parameters which can be considered

large disadvantages, especially since it is still unclear how to choose an optimal θ. Ideally we

would like to take θ = 1/2 to ensure (2.15) is convex, but, unfortunately, previous numerical

experiments show that this choice of θ does not put enough emphasis on the equidistribution

condition which controls the mesh concentration. Moreover, larger values of θ emphasize

the alignment condition which produces a more regular mesh however, this regularity can

also be achieved by choosing larger values of p [38]. It has been known experimentally that

θ = 1/3 and p = 3/2 work well for many problems but this relation between θ and p is not

very clear. Here, we consider a new functional that eliminates the additional parameter θ.

To this end, we first notice that (2.6) and (2.7) can be cast in a single condition. Indeed,

13

taking the determinant of both sides of (2.9), we obtain

θdK = det((F ′K)−TM−1
K F ′−1

K) = det(F ′K)−2det(MK)−1 = |K|−2 det(MK)−1,

which gives

|K| det(MK)
1
2 = θ

− d
2

K .

Comparing this to the equidistribution condition (2.6) we get

θK =
(σh
N

)− 2
d
.

Thus, we obtain a single condition

(F ′K)
−T M−1

K (F ′K)
−1

=
(σh
N

)− 2
d
I, ∀K ∈ Th

which directly combines the equidistribution and alignment conditions. From this, we can

define a new functional as

Ih =
∑
K∈Th

|K| det(MK)
1
2

∥∥∥∥(F ′K)−1M−1
K (F ′K)−T −

(σh
N

)− 2
d
I

∥∥∥∥2p

F

, (2.17)

where σh is given in (2.8) and ‖ · ‖F is the Frobenius norm for matrices. Generally speaking,

since we are working with d × d matrices, we can use any matrix norm and produce an

equivalent form of the functional. We choose the Frobenius norm because it is convenient

to compute. We remark that the weight, |K| det(MK)
1
2 , is chosen so that (2.17) is more

comparable to (2.15) which includes the energy functional of a harmonic mapping as a

special example. Moreover, this weight factor is used to emphasize the region where det(M)

(error density) is large.

Minimizing (2.17) will then ensure that the mesh satisfies both the equidistribution and

alignment conditions as closely as possible. Notice that this functional only contains one

14

parameter, p. In Section 2.3, it will be proven that this new functional has similar theoretical

properties as the existing functional.

2.2 The moving mesh PDE and direct discretization

2.2.1 The moving mesh PDE solution strategy

In principle, we can directly minimize the two functionals (2.15) and (2.17) given in the

last section, however, this direct minimization problem is too difficult due to their extreme

nonlinearity. Instead, we will employ the moving mesh PDE (MMPDE) method [38] to find

the minimizer. To be specific, we define the mesh equation as a modified gradient system of

Ih, i.e.,
dxi
dt

= −Pi
τ

(
∂Ih
∂xi

)T
, i = 1, . . . , Nv, (2.18)

where ∂Ih/∂xi is considered as a row vector, Pi is a positive scalar function used to make the

equation have invariance properties, and τ > 0 is a constant parameter used to adjust the

time scale of mesh movement. It is interesting to notice that integrating (2.18) is equivalent

to solving the minimization problem using the fastest descent method.

We consider functionals in a general form

Ih =
∑
K∈Th

|K|G
(

(F ′K)
−1
, det (F ′K)

−1
,MK

)
, (2.19)

where G = G(J, det(J),M) is a smooth function of three arguments,

J = (F ′K)−1 = ÊE−1
K , det(J) = det(F ′K)−1 =

det(Ê)

det(EK)
, M = MK .

For the existing functional (2.15), we have

G (J, det(J),M) = θ det(M)
1
2

(
tr(JM−1JT)

) dp
2 + (1− 2θ)d

dp
2 det(M)

1
2

(
det(J) det(M)−

1
2

)p
.

15

Moreover, for the new functional (2.17), we have

G (J, det(J),M) =
√

det(M)

∥∥∥∥JM−1JT −
(σh
N

)− 2
d
I

∥∥∥∥2p

F

. (2.20)

Notice that G is a function of the physical nodes xK1 , · · · ,xKd+1, that is

IK
(
xK1 , · · · ,xKd+1

)
= G

(
(F ′K)

−1
, det (F ′K)

−1
,MK

)
(2.21)

which gives

Ih (x1, · · · ,xd+1) =
∑
K∈Th

|K|IK
(
xK1 , · · · ,xKNv

)
. (2.22)

One of the keys to the MMPDE approach is to find the derivatives of Ih with respect to

x1, · · · ,xNv . In order to do so, we first obtain and assemble the elementwise derivatives

of IK with respect to xK1 , · · · ,xKd+1 which requires scalar-by-matrix differentiation. To this

end, let us first recall some notation and results for scalar-by-matrix derivatives.

2.2.2 Scalar-by-matrix derivatives

Let f = f(A) be a scalar function of a matrix A ∈ Rm×n. Then the scalar-by-matrix

derivative of f with respect to A is defined as

∂f

∂A
=


∂f
∂A11

· · · ∂f
∂Am1

...
...

∂f
∂A1n

· · · ∂f
∂Anm


n×m

or
(
∂f

∂A

)
i,j

=
∂f

∂Aj,i
. (2.23)

With this we can then define the chain rule with respect to the real parameter t as

∂f

∂t
=
∑
ij

∂f

∂Aj,i

∂Aj,i
∂t

=
∑
ij

(
∂f

∂A

)
i,j

∂Aj,i
∂t

= tr
(
∂f

∂A

∂A

∂t

)
. (2.24)

16

We will use the following four lemmas throughout the applications of scalar-by-matrix dif-

ferentiation. It should be noted that the first two lemmas can be verified directly, the third

can be proven using the determinant expansion by minors, and the forth by differentiating

AA−1 = I.

Lemma 2.2.1.

tr
(
AT
)

= tr (A) ,

tr (AB) = tr (BA) ,

tr (ABC) = tr (CAB) = tr (BCA) .

Lemma 2.2.2.
∂tr(A)

∂A
= I.

Lemma 2.2.3.
∂ det(A)

∂A
= det(A)A−1.

Lemma 2.2.4.
∂A−1

∂t
= −A−1∂A

∂t
A−1.

With these four lemmas, we can derive a number of identities which we will use in our

application.

Corollary 2.2.1. Assume M is independent of A. Then

∂tr(AMAT)

∂A
= 2MAT , (2.25)

∂tr(A−TM−1A−1)

∂A
= −2A−1A−TM−1A−1. (2.26)

17

Moreover, assume A is independent of M. Then

∂tr(AMAT)

∂M
= ATA, (2.27)

∂tr(AM−1AT)

∂M
= −M−1ATAM−1. (2.28)

Proof. See Appendix A.1 for details.

The above results give rise to expressions for ∂G
∂J and ∂G

∂r
which, as we have mentioned,

are needed for the derivative computation of the discrete functional (2.19).

For the existing functional, recall that

G = θ det(M)
1
2

(
tr(JM−1JT)

) dp
2 + (1− 2θ)d

dp
2 det(M)

1
2

(
det(J) det(M)−

1
2

)p
.

Then the derivatives of G are given by



∂G

∂J
= dpθ

√
det(M)

(
tr(JM−1JT)

) dp
2
−1 M−1JT ,

∂G

∂ det(J)
= p(1− 2θ)d

dp
2 det(M)

1−p
2 det(J)p−1,

∂G

∂M
= − θdp

2

√
det(M)

(
tr(JM−1JT)

) dp
2
−1 M−1JTJM−1

+ θ
2

√
det(M)

(
tr(JM−1JT)

) dp
2 M−1

+ (1−2θ)(1−p)d
dp
2

2

√
det(M)

(
det(J)√
det(M

)p

M−1.

(2.29)

See Appendix A.2 for details.

Consider now the new functional (2.17) where

G (J, det(J),M) =
√

det(M)

∥∥∥∥JM−1JT −
(σh
N

)− 2
d
I

∥∥∥∥2p

F

18

as given in (2.20). Denoting A =
(
JM−1JT −

(
σh
N

)− 2
d I
)
we have

G =
√

det(M) ‖A‖2p
F =

√
det(M) tr

(
AAT

)p
. (2.30)

Then

∂G

∂t
=
∂
(√

det(M) tr
(
AAT

)p)
∂t

= p
√

det(M) tr
(
AAT

)p−1 tr

(
∂ tr

(
AAT

)
∂AAT

∂AAT

∂t

)

= p
√

det(M) tr
(
AAT

)p−1 tr
(
∂A

∂t
AT + A

∂AT

∂t

)
= p
√

det(M) tr
(
AAT

)p−1 tr
(

2AT
∂A

∂t

)
. (2.31)

From the definition of A, we have

tr
(

2AT
∂A

∂t

)
= tr

(
2

(
JM−1JT −

(σh
N

)− 2
d
I

)(
∂J
∂t

M−1JT + JM−1∂JT

∂t

))
= tr

(
4M−1JT

(
JM−1JT −

(σh
N

)− 2
d
I

)
∂J
∂t

)
. (2.32)

Combining (2.31) and (2.32) we obtain

∂G

∂J
= 4p

∥∥∥∥JM−1JT −
(σh
N

)− 2
d
I

∥∥∥∥2(p−1)

F

√
det(M)M−1JT

(
JM−1JT −

(σh
N

)− 2
d
I

)
. (2.33)

In a similar fashion, consider

∂G

∂t
=
∂
√

det(M) tr
(
AAT

)p
∂t

= ‖A‖2p
F

∂
√

det(M)

∂t
+
√

det(M)
∂tr
(
AAT

)p
∂t

. (2.34)

19

The first term of (2.34) is

‖A‖2p
F

∂
√

det(M)

∂t
=

1

2
‖A‖2p

F det(M)−
1
2
∂ det(M)

∂t

=
1

2
‖A‖2p

F det(M)−
1
2 tr

(
∂ det(M)

∂M
∂M
∂t

)
=

1

2
‖A‖2p

F det(M)−
1
2 tr

(
det(M)M−1∂M

∂t

)
. (2.35)

Moreover, the second term of (2.34) is

√
det(M)

∂ tr
(
AAT

)p
∂t

= p
√

det(M) tr
(
AAT

)p−1 ∂ tr
(
AAT

)
∂t

= p
√

det(M) tr
(
AAT

)p−1 tr

(
∂ tr

(
AAT

)
∂AAT

∂AAT

∂t

)

= p
√

det(M) tr
(
AAT

)p−1 tr
(

2AT
∂A

∂t

)
, (2.36)

where, using the definition of A we get

∂AAT

∂t
= tr

(
2AT

∂A

∂t

)
= tr

(
2

(
JM−1JT −

(σh
N

)− 2
d
I

)
J
∂M−1

∂t
JT
)

= −tr
(

2

(
JM−1JT −

(σh
N

)− 2
d
I

)
JM−1∂M

∂t
M−1JT

)
= −1

2
tr
(
∂G

∂J
JM−1∂M

∂t

)
, (2.37)

with ∂G
∂J is given as in (2.33). Thus (2.35), (2.36), and (2.37) give

∂G

∂M
=

1

2
GM−1 − 1

2

∂G

∂J
JM−1.

Finally, one can readily see that
∂G

∂ det(J)
= 0

20

since G does not depend on det(J). In summary, the derivatives of G for the new functional

are given by



∂G

∂J
= 4p

∥∥∥∥JM−1JT −
(σh
N

)− 2
d
I

∥∥∥∥2(p−1)

F

√
det(M) M−1JT

(
JM−1JT −

(σh
N

)− 2
d
I

)
,

∂G

∂ det(J)
= 0,

∂G

∂M
=

1

2
GM−1 − 1

2

∂G

∂J
JM−1.

(2.38)

Note that in the above derivation, we have viewed σh as a constant since σh ∼
´

Ω
det(M)

1
2dx.

2.2.3 Analytical formulas for derivatives of discretized functional

Using the formulation (2.19), we can rewrite the mesh equation (2.18) in a compact form as

dxi
dt

=
Pi
τ

∑
K∈ωi

|K|vKiK , i = 1, ..., Nv (2.39)

where ωi is the patch of elements having xi as one of their vertices and iK and vKi are the

local index and velocity of xi on K, respectively. The local velocities are given by


(vK1)T

...

(vKd)T

 = −GE−1
K + E−1

K

∂G

∂J
ÊE−1

K +
∂G

∂ det(J)

det(Ê)

det(EK)
E−1
K

− 1

d+ 1

d∑
j=0

tr
(
∂G

∂M
Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x

 ,

(vK0)T = −
d∑

k=1

(vKk)T −
d∑
j=0

tr
(
∂G

∂M
Mj,K

)
∂φj,K
∂x

,

21

where Mj,K = M(xKj), φj,K is a linear basis function associated with xKj , and ∂φj,K/∂x is

the gradient of φj,K as a row vector. Note that in order to calculate the above velocities, we

need

G,
∂G

∂J
,

∂G

∂ det(J)
,

∂G

∂M
,

where the derivatives for the existing and the new functional are given in (2.29) and (2.38),

respectively. See [33] for details or Section 3.3.2 for a similar derivation.

It is remarked that the mesh equation (2.39) needs to be modified for boundary vertices.

For example, for corner or fixed boundary vertices, the corresponding equation is replaced

by
dxi
dt

= 0.

For other boundary vertices, the velocity should be modified so that they only slide along

the boundary curve (in 2D) or surface (in 3D) represented by Φ(x) = 0. That is, the mesh

velocities dxi/dt need to be modified so that the normal component along the curve or

surface is zero, i.e.,

∇Φ(xi) ·
dxi
dt

= 0.

With appropriate modifications for boundary vertices and for a given metric tensor M, (2.39)

can be integrated for an adaptive mesh. We use Matlab’s ode15s (a variable-order ODE solver

based on the numerical differentiation formulas) in our computation.

2.3 Theoretical analysis of the new functional

2.3.1 Coercivity

In the continuous case, ensuring the existence of a minimizer is closely related to coercivity

and convexity of the meshing functional. Loosely speaking, coercivity ensures that the

functional grows rapidly as the norm of the input tends to infinity whereas convexity provides

a kind of compactness property. It is still unclear if this relation between the existence of a

22

minimizer and the coercivity and convexity of the functional holds true in the discrete case

however, coercivity in the discrete case gives rise to a number of important properties.

Theorem 2.3.1. The new functional (2.17) with p > 1 is coercive, i.e., there exist

positive constants α and β such that the function G defined in (2.20) satisfies

G ≥ α ‖J‖4p
F − β. (2.40)

Proof. For notational simplicity, we denote γh =
(
σh
N

)−2/d. From the triangle inequality and

Hölder’s inequality, we have

∥∥JM−1JT − γhI
∥∥2p

F
≥
(∥∥JM−1JT

∥∥
F
− ‖γhI‖F

)2p

≥ 21−2p
∥∥JM−1JT

∥∥2p

F
− γ2p

h ‖I‖
2p
F

= 21−2p
∥∥JM−1JT

∥∥2p

F
−
(
γ2
hd
)p
.

Notice that for a d × d matrix A, we know that ‖A‖2 ≤ ‖A‖F ≤
√
d‖A‖2. With this, it

follows

‖JM−1J‖F ≥ ‖JM−1J‖2 ≥
1

m
‖JJT‖2 =

1

m
‖J‖2

2 ≥
1

md
‖J‖2

F .

Combining the above results, we get

G ≥ m
d
2‖JM−1J− γhI‖2p

F ≥
21−2pm

d
2

m2pd2p
‖J‖4p

F −m
d
2 (γ2

hd)p.

Thus, G satisfies (2.40) with α = 21−2pm
d
2

m2pd2p
and β = m

d
2 (γ2

hd)p.

Thus the new functional is coercive. Unfortunately, it is not convex. As a consequence,

there is no guarantee that the minimizer of Ih is unique. It does, however, have other

important properties that are discussed in detail next.

23

2.3.2 Nonsingularity of the mesh trajectory

Consider the semi-discrete MMPDE (2.18) with the new functional (2.17). For a given metric

tensor M, which is independent of t and satisfies (2.1), the MMPDE will generate a mesh

trajectory Th(t), t > 0 for any given nonsingular initial mesh. We denote the minimum

altitude of K in the metric MK by aK,MK
. Moreover, proper modifications of the boundary

vertices are required in practical computations however, the theoretical analysis for the

MMPDE with or without these modifications is similar. Therefore, for simplicity we only

consider the case without boundary modifications.

Corollary 2.3.1. For any t > 0, the elements of the mesh trajectory of the semi-discrete

MMPDE (2.18) with the new functional (2.17) satisfy

aK,MK
≥ C1m

− d
2(4p−d)N−

4p
d(4p−d) , (2.41)

|K| ≥ C2m
− d2

2(4p−d)
− d

2N−
4p

(4p−d) , (2.42)

for all K ∈ Th(t), where C1 and C2 are constants give by

C1 =

(
26p d!

4p
d α

d4p(d+ 1)4p− 2p
d (β|Ω|+ Ih (Th(0)))

) 1
4p−d

, C2 =
Cd

1

d!
, (2.43)

and α and β are defined in the proof of Theorem 2.3.1. Moreover, Th(t) is nonsingular for

all t > 0 if it is nonsingular initially.

Proof. This is a consequence of Theorem 4.1 in [32] which is stated for a general coercive

functional. A direct application of this theorem with q = 2p and Theorem 2.3.1 in the

previous subsection gives the desired result.

The key components in the proof of Theorem 4.1 in [32] are the coercivity of the functional

24

and the decreasing energy along the mesh trajectory of (2.18). The latter can be seen from

dIh
dt

=
∑
i

∂Ih
∂xi

dxi
dt

= −
∑
i

Pi
τ

∂Ih
∂xi

(
∂Ih
∂xi

)T
= −

∑
i

Pi
τ

∥∥∥∥∂Ih∂xi

∥∥∥∥2

≤ 0.

It should be noted that in general, this property cannot be guaranteed.

The role of the parameter p can be explained to some extent from the inequality (2.41).

Indeed, from (2.41) we have

aK,MK
≥ C1m

− d
2(4p−d)N−

4p
d(4p−d) → C1N

− 1
d , p→∞.

Noticing that N−
1
d represents the average diameter of the elements, the above inequality

implies that the mesh becomes more uniform as p gets larger.

One may notice that the bounds in (2.41) and (2.42) depend on N and m. This is

natural since the elements becomes smaller for larger N . Moreover, from the equidistribution

condition (2.6), we can see that |K| ∼ det(MK)−
1
2 , thus we can expect the lower bounds for

the altitudes and volumes of the elements to become smaller as m gets larger.

Consider now the fully discrete case. Let tn, n = 0, 1, . . . denote the time levels with

tn → ∞ as n → ∞. Assume that we have chosen a one-step integration scheme for (2.39)

such that the energy is decreasing, i.e.,

Ih(T n+1
h) ≤ Ih(T nh). (2.44)

Then, Corollary 2.3.1 will also hold for the mesh sequence, T nh , n = 0, 1, It should

be noted that many schemes such as Euler’s and the backward Euler satisfy (2.44) with a

sufficiently small but not diminishing time step; e.g., see [26, 33].

25

2.3.3 Limits of the mesh trajectory

A direct application of Theorem 4.3 in [32], which is stated for a general coercive functional,

and Theorem 2.3.1 in Section 2.3.1, gives the following corollary.

Corollary 2.3.2. The mesh trajectory of the semi-discrete MMPDE (2.18) with the new

functional (2.17) has the following properties.

(a) Ih(Th(t)) has a limit as t→∞, i.e.,

lim
t→∞

Ih(Th) = L.

(b) The mesh trajectory has limiting meshes, all of which are non-singular and satisfy the

bounds given in Corollary 2.3.1.

(c) The limiting meshes are critical points of Ih, i.e., they satisfy

∂Ih
∂xi

= 0, i = 1, . . . , Nv

The result in Corollary 2.3.2 ensures that as time increases, the values of the functional

for the mesh trajectory converge. This is significantly beneficial since it can be used as a

computational stopping criteria. It should be noted that in general, there is no guarantee the

mesh trajectory converges. In order to guarantee this convergence, stronger requirements

need to be placed on either the descent in the functional value or on the meshing functional;

e.g., see [33] for more details or Section 3.4.2 for a similar discussion. Moreover, like Corol-

lary 2.3.1, Corollary 2.3.2 also holds for the fully discrete case provided that the time step

is sufficiently small and the scheme satisfies the energy decreasing condition (2.44).

To conclude this section, we recall that the existing functional (2.15) is also coercive for

p > 1 and θ ∈ (0, 1/2]. Thus, Corollary 2.3.1 and Corollary 2.3.2 apply to the existing

functional as well.

26

2.4 Numerical examples

Here we present numerical results for three examples in two dimensions to demonstrate

the theoretical findings discussed in Section 2.3. Two of the main focuses will be showing

the positive lower bound of the element volumes and the monotonically decreasing energy

functional. Additionally, we will provide and compare meshes associated with the new and

existing functionals. In order to asses the quality of the generated meshes, we compare the

linear interpolation error (error, measured in the L2 norm), and the equidistribution (Qeq),

alignment (Qali), and geometric (Qgeo) mesh quality measures which are defined as

Qeq =

√
1

N

∑
K∈Tc

Q2
eq,K , Qali =

√
1

N

∑
K∈Th

Q2
ali,K , Qgeo =

√
1

N

∑
K∈Th

Q2
geo,K , (2.45)

where

Qeq,K =
|K|det(MK)

1
2

σh/N
, Qali,K =

tr
(
(F ′K)TMKF

′
K

)
ddet

(
(F ′K)TMKF ′K

) 1
d

, Qgeo,K =
tr
(
(F ′K)

TF ′K
)

ddet
(
(F ′K)

TF ′K
) 1

d

. (2.46)

The equidistribution and alignment measures are indications of how closely the mesh satisfies

the equidistribution condition (2.6) and the alignment condition (2.7), respectively. The

closer these quality measures are to 1, the closer they are to a uniform mesh with respect to

the metric M. The geometric measure is the same as the alignment quality measure taking

M = I. It measures how skew the mesh is in the Euclidean metric. It should be noted that

these, in a sense, measure the average quality measure over all elements K in the physical

mesh.

We use p = 3/2 and θ = 1/3 in the existing functional (2.15) and p = 1 in the new

functional (2.17). The defined parameters p and θ for the existing functional are commonly

used and known to work well for most problems. The choice for p in the new functional is

based on the desire to ensure that (2.17) is a quadratic function of matrix entries, which,

computationally, makes the MMPDE less difficult to solve. The parameter τ in the MMPDE

27

(2.39) is taken to be τ = 10−2. Additionally, for the positive function Pi in (2.39) we use

Pi = det(M)
p−1
2 for the existing functional and Pi = det(M)

2
d for the new functional to

ensure, for both cases, that the MMPDE (2.39) is invariant under the scaling transformation

of M, i.e., M : M → cM for any positive constant c. The two dimensional meshes for

Example 2.4.1 and Example 2.4.2 are constructed on the domain Ω = (0, 1) × (0, 1). We

take the metric tensor as

MK = det(|HK |)
−1
d+4 |HK |,

where HK is the recovered Hessian using least squares fitting to the function values at the

mesh vertices and |HK | = Qdiag(|λ1|, ..., |λd|)QT , assuming that Qdiag(λ1, ..., λd)Q
T is the

eigen-decomposition of HK . It is known [38] that the above form of the metric tensor is

optimal corresponding to the L2-norm of linear interpolation on triangular meshes.

Example 2.4.1. In this example, we generate adaptive meshes for the sine wave modeled

by

u(x, y) = tanh (−30 [y − 0.5− 0.25 sin(2πx)]) .

For the following results, we run to a final time of 5.0.

The example meshes and close-ups are given in Figure 2.1. The mesh associated with the

new functional provides good shape and size adaptation. There is a high concentration of

mesh elements in regions with large curvature near the interface. This is consistent with the

fact that the metric tensor used is Hessian based. A closer look at the mesh shows that the

elements are more skew (in the Euclidean metric) in the places with larger curvature. This

is also shown in Table 2.1 with Qgeo ≈ 2. On the other hand, Qali is close to 1, indicating

that the mesh almost satisfies the alignment condition under the metric M. Therefore, the

mesh may seem skew in the Euclidean metric but is very regular in the metric M.

While studying Table 2.1, we can also see that the equidistribution quality measure

Qeq for the new functional is close to 1, hence indicating that the mesh associated with

the new functional is close to satisfying the equidistribution condition with respect to M.

28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) New functional
0.45 0.5 0.55 0.6 0.65 0.7

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.52 0.54 0.56 0.58 0.6
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Existing functional

0.45 0.5 0.55 0.6 0.65 0.7
0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.52 0.54 0.56 0.58 0.6
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Figure 2.1: Example 2.4.1. Example meshes (left), close-ups near the inflection point (mid-
dle), and a closer version of the inflection point (right) with N = 25600.

Table 2.1: Mesh quality measures and the L2 norm of linear interpolation error for Exam-
ple 2.4.1.

Functional N Qgeo Qeq Qali error

Existing
1600 1.684 1.065 1.041 5.563e-3
6400 2.000 1.071 1.042 1.219e-3
25600 1.986 1.081 1.039 3.038e-4

New
1600 1.593 1.088 1.028 6.077e-3
6400 1.896 1.094 1.030 1.305e-3
25600 2.019 1.091 1.030 3.138e-4

29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

t

I h

(a) New functional Ih

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2.05

2

1.95

1.9

1.85

1.8

1.75

1.7

1.65

1.6

t
I h

(b) Existing functional Ih

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10-6

10-5

10-4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 510

10

10-4

-5

-6

t

|K
| m

in

(c) New functional |K|min

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10-6

10-5

10-4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-410

-510

-610

t

|K
| m

in

(d) Existing functional |K|min

Figure 2.2: Example 2.4.1. The energy and minimum element volume are plotted as functions
of t with N = 25600.

30

Therefore, with the alignment and equidistribution conditions close to being satisfied we can

conclude that the mesh is almost uniform under the metric M. The error value is a good

indication that the mesh associated with the new functional is accurate. In this example, the

error associated with the new functional is reasonably low. Moreover, as N increases, the

numerical results show that the error decreases like O(N−1), a second-order convergence rate

in terms of the average element diameter h̄ = 1/
√
N . This is consistent with the analysis of

linear interpolation on triangle meshes.

As discussed in Section 2.3, theoretically we know that the Ih value is decreasing and |K| is

bonded below. To see these numerically, we plot Ih and |K|min as functions of t in Figure 2.2.

The results are consistent with the theoretical predictions. Specifically, Figure 2.2(a) shows

that Ih is decreasing while Figure 2.2(c) suggests that |K|min is bounded below about 10−5.

It is interesting to observe that Figure 2.2(a) shows Ih decreasing faster at the beginning

then leveling out more quickly when compared to the existing functional (Figure 2.2(b)).

This shows that the energy is converging faster for the new functional than for the existing

functional.

For comparison purposes, we also show the results obtained with the existing functional in

Table 2.1, Figure 2.1, and Figure 2.2. From these, we see a high correlation. With respect to

the mesh, both are very similar with high concentration near the interface where the function

has large curvature. The quality measures Qgeo, Qeq, and Qali are very similar as well. We

further remark that the CPU time for both functionals are almost equivalent, differing at

most by a few seconds. Hence, we can see that the two functionals are very comparable

and both seem to work well in this example. To save space, we do not present numerical

results comparing (2.15) and (2.17) with other meshing functionals. The interested reader

is referred to [34] for additional numerical comparisons.

To show how both functionals perform in a more anisotropic example, we change the

constant 30 in Example 2.4.1 to 100 and generate adaptive meshes. In this case, we run

to a final time of 0.1. Figure 2.3 shows the meshes and close-ups. As we can see from

31

studying the meshes, the new functional provides a more adaptive mesh around the region

with large curvature. That is, there is a higher concentration of mesh elements that are

skew with respect to the Euclidean norm in this region. This is further confirmed by Ta-

ble 2.2 where we see Qgeo ≈ 1.894 for the new functional and Qgeo ≈ 1.279 for the existing

functional (N = 25600). It is also observed from Qeq and Qali in Table 2.2 that the mesh

associated with the new functional is slightly more uniform with respect to the metric tensor

M. Moreover, the interpolation error for the new functional is about half that of the existing

functional for N = 25600. Overall, both functionals handle this more anisotropic example

well and comparably.

Table 2.2: Mesh quality measures and the L2 norm of linear interpolation error for Exam-
ple 2.4.1 with more anisotropic features.

Functional N Qgeo Qeq Qali error

Existing

1600 1.626 1.155 1.034 1.807e-2

6400 1.548 1.312 1.058 3.942e-3

25600 1.279 1.553 1.107 2.462e-3

New

1600 2.059 1.148 1.031 1.232e-2

6400 2.203 1.249 1.028 2.616e-3

25600 1.894 1.436 1.067 1.261e-3

32

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) New functional

0.5 0.52 0.54 0.56 0.58 0.6
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Existing functional

0.5 0.52 0.54 0.56 0.58 0.6
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Figure 2.3: Example 2.4.1 with more anisotropic features. Adaptive meshes (left) and close-
ups near the inflection point (right) with N = 25600.

33

Example 2.4.2. In this example, we generate adaptive meshes for a five sphere figure

modeled by

u(x, y) = tanh

(
30

(
X2 + Y 2 − 1

8

))
+ tanh

(
30

(
(X − 0.5)2 + (Y − 0.5)2 − 1

8

))
+ tanh

(
30

(
(X − 0.5)2 + (Y + 0.5)2 − 1

8

))
+ tanh

(
30

(
(X + 0.5)2 + (Y − 0.5)2 − 1

8

))
+ tanh

(
30

(
(X + 0.5)2 + (Y + 0.5)2 − 1

8

))
,

where X = −2 + 4x and Y = −2 + 4y. We integrate the MMPDE to a final time of t = 0.5.

Figure 2.4 shows the meshes and close-ups of both functionals for this example. Studying

the figure we see that the new functional provides a mesh with accurate shape and size adap-

tation. This can be further confirmed by the quality measures and the linear interpolation

error given in Table 2.3. One may notice that the mesh has smaller values of Qgeo and thus is

less skew than those in the previous example. This may be due to the fact that the function

in this example is more isotropic than that in the previous example. Moreover, the linear

interpolation error behaves like O(N−1), showing a second-order convergence rate.

Figure 2.5 shows the energy and minimum volume of the elements as functions of time.

One can see that Ih is decreasing and converging faster for the new functional than for the

existing functional, and that |K|min is bounded by about 10−5. Moreover, the results and

performance of the new functional are similar to those with the existing functional.

34

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) New functional
0.25 0.3 0.35 0.4 0.45 0.5

0.25

0.3

0.35

0.4

0.45

0.5

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Existing functional

0.25 0.3 0.35 0.4 0.45 0.5
0.25

0.3

0.35

0.4

0.45

0.5

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Figure 2.4: Example 2.4.2. Example meshes (left), close-ups near the circle meeting the
boundary layer (middle), and a closer version of the circle meeting the boundary layer (right)
with N = 25600.

Table 2.3: Mesh quality measures and the L2 norm of linear interpolation error for Exam-
ple 2.4.2.

Functional N Qgeo Qeq Qali error

Existing
1600 1.051 1.134 1.056 6.954e-2
6400 1.094 1.231 1.057 1.326e-2
25600 1.122 1.342 1.040 3.068e-3

New
1600 1.031 1.188 1.026 6.946e-2
6400 1.076 1.300 1.030 1.794e-2
25600 1.137 1.370 1.030 3.310e-3

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.25

2.3

2.35

2.4

2.45

2.5

2.55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.25

2.3

2.35

2.4

2.45

2.5

2.55

t

I h

(a) New functional Ih

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.94

1.92

1.9

1.88

1.86

1.84

1.82

1.8

t
I h

(b) Existing functional Ih

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2

1.4

1.6

1.8

2

2.2

2.4
#10-5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2

1.4

1.6

1.8

2

2.2

2.4x10-5

t

|K
| m

in

(c) New functional |K|min

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.5

2

2.5

3

3.5

#10-5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.5

2

2.5

3

3.5

x10-5

t

|K
| m

in

(d) Existing functional |K|min

Figure 2.5: Example 2.4.2. The energy and minimum element volume are plotted as functions
of t with N = 25600.

36

Example 2.4.3. In the final example, we solve the initial-boundary value problem of a

special case of Burgers’ equation

ut = 10−3∆u− uux − uuy, in Ω = (−1, 1)× (−1, 1)

subject to a homogeneous boundary condition and the initial condition

u(x, y, 0) = e−36.8414(x2+y2), in Ω.

The partial differential equation is discretized in space using linear finite elements and in

time using the fifth-order Radau IIA method [27]. It is solved with the mesh equation in an

alternating manner [38]. For the following results, we start at t = 0.25 and run to a final

time of t = 1.25.

The meshes and close-ups for this example are given in Figure 2.6. Studying the figure

we see that the new functional mesh is much more adaptive when compared to the existing

functional mesh. The mesh associated with the new functional provides good shape and

size adaptation. As seen in the close-ups, the concentration of mesh elements in the region

with large curvature is high which, as we have seen in Example 2.4.1 and Example 2.4.2,

is consistent with the Hessian based metric tensor. Moreover, the elements for the new

functional are much more skew (with respect to the Euclidean metric) in the regions with

larger curvature which is confirmed in Table 2.4 with Qgeo ≈ 17.01.

Table 2.4: Mesh quality measures for Example 2.4.3.

Functional N Qgeo Qeq Qali

Existing
1600 1.502 5.696 1.842
6400 1.934 14.20 2.391
25600 1.677 31.77 3.426

New
1600 2.130 4.705 1.577
6400 8.215 6.470 2.731
25600 17.01 14.68 4.7111

37

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) New functional
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Existing functional

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 2.6: Example 2.4.3. Example meshes (left), close-ups near the the tip (middle), and
a closer version of the tip (right) with N = 25600.

38

2.5 Conclusion for the new functional

In the previous sections, we have introduced a new functional based on the equidistribution

and alignment conditions. The functional is formulated by directly combining these two

conditions into one with only a single parameter. It should be pointed out that (2.17) does

not contain θ, a parameter that requires one to try to effectively balance the equidistribution

and alignment conditions in (2.15). We have proven a number of theoretical results for this

new functional at the discrete level which are similar to those of an existing functional that

is also based on the equidistribution and alignment conditions but contains an additional pa-

rameter. For example, the new functional was proven to be coercive (Theorem 2.3.1). With

this, it was then shown that the element altitude and volumes of the mesh trajectory of the

discrete MMPDE associated with the new functional are bounded away from zero and the

mesh trajectory stays nonsingular for all time if it is nonsingular initially (Corollary 2.3.1).

Moreover, Corollary 2.3.2 states that the value of the meshing functional decreases monoton-

ically along the mesh trajectory, while the latter has limiting meshes that are critical points

of the meshing functional.

The numerical results shown in Section 2.4 demonstrated that the new functional pro-

duces correct mesh concentration and its performance is comparable to that of the existing

functional which has been used successfully for various applications. In addition, the numer-

ical results validated the theoretical properties of the new functional. It was shown that the

meshing functional was monotonically decreasing and the minimum volume of the mesh ele-

ment was bounded below as functions of time. From these results, we conclude that the new

functional is similar to the existing functional in both numerical performance and theoretical

properties.

39

Chapter 3

Surface Mesh

As mentioned in Chapter 1, mesh adaptation methods are well developed for bulk meshes

however, methods on surfaces are limited. We are particularly interested in methods that

adapt the mesh directly on a general surface with our without analytical expression. Here,

we present such a method. The method can be viewed as a nontrivial extension of the

MMPDE method that has been developed for bulk meshes discussed in Chapter 2 and

demonstrated to work well for various applications; e.g. see [37, 38, 39]. It is emphasized

that this method is developed directly on surface meshes, making no use of any information

on surface parameterization.

The development starts with revealing the relation between the area of a surface element

in the Euclidean or Riemannian metric and the the Jacobian matrix of the corresponding

affine mapping. From this, we formulate two conditions that completely characterize a

uniform mesh, the equidistribution and alignment conditions. These two conditions are

then combined to establish a single meshing energy functional for which minimizing this

functional will result in a mesh that closely satisfies these two conditions. In order to

minimize the energy functional, we define the surface MMPDE equation as the gradient

system of the energy functional in which the nodal mesh velocities are projected onto the

underlying surface. Just as in the bulk mesh case, we obtain a compact, matrix form of the

analytical expression for the mesh velocities making the implementation easy and robust.

A number of theoretical properties can then be proven. In particular, if the elements of

the mesh trajectory of the surface MMPDE have positive areas initially then they will have

positive areas for all time. This implies that there is no mesh tangling or closing. It is noted

40

that this MMPDE method utilizes surface normal vectors to ensure that the mesh vertices

remain on the surface while moving. Thus, this new method can apply to general surfaces

with or without explicit parameterization since the surface normal vectors can be computed

even when the surface only has a numerical representation. A number of two- and three-

dimensional examples are presented to verify the theoretical findings as well demonstrate

the effectiveness of the method.

3.1 Equidistribution and alignment conditions for surface meshes

3.1.1 Area and affine mappings for surface elements

Let S be a bounded surface in Rd (d ≥ 2). Assume that we have a mesh Th = {K} on S and

let N and Nv be the number of its elements and vertices, respectively. The elements K are

surface simplexes in Rd, i.e., they are (d−1)-dimensional simplexes in a d-dimensional space.

Notice that their area in d dimensions is equivalent to their volume in (d − 1) dimensions.

Assume that the reference element K̂ has been chosen to be a (d−1)-dimensional equilateral

and unitary simplex in a (d − 1)-dimensional space. For K̂ and any element K ∈ Th let

FK : K̂ ⊂ Rd−1 → K ⊂ Rd be the affine mapping between them and F ′K be its Jacobian

matrix. Denote the vertices of K by xKj ∈ Rd, j = 1, . . . , d and the vertices of K̂ by

ξj ∈ Rd−1, j = 1, . . . , d. Then

xKj = FK(ξj), j = 1, . . . , d.

From this, we have

xKj − xK1 = F ′K
(
ξj − ξ1

)
, j = 2, . . . , d

or [
xK2 − xK1 , . . . ,xKd − xK1

]
= F ′K [ξ2 − ξ1, . . . , ξd − ξ1] ,

41

which gives F ′K = EKÊ
−1, where EK and Ê are the edge matrices for K and K̂, i.e.,

EK =
[
xK2 − xK1 , . . . ,xKd − xK1

]
, Ê = [ξ2 − ξ1, . . . , ξd − ξ1] .

Notice that Ê is a (d − 1) × (d − 1) square matrix and its inverse exists since K̂ is not

degenerate. However, unlike the bulk mesh case, matrices EK , F ′K ∈ Rd×(d−1) are not square.

This makes the formulation of adaptive mesh methods more difficult for surface than bulk

meshes. Nevertheless, the approach is similar for both situations, as will be seen below.

In the following we can see that the area of the physical elementK ∈ Th can be determined

using F ′K or EK .

Lemma 3.1.1. For any surface simplex K, there holds

|K|
|K̂|

= det
(

(F ′K)
T
F ′K

)1/2

, (3.1)

where |K| and |K̂| denote the area and the volume of the simplexes K and K̂, respectively,

and det(·) denotes the determinant of a matrix.

Proof. From F ′K = EKÊ
−1, we have

det
(

(F ′K)
T
F ′K

)1/2

= det
(
Ê−TET

KEKÊ
−1
)1/2

= det
(
Ê−T

)1/2

det
(
ET
KEK

)1/2
det
(
Ê−1

)1/2

= det(Ê)−1 det
(
ET
KEK

)1/2

=
1

(d− 1)! |K̂|
det
(
ET
KEK

)1/2
,

where we have used |K̂| = 1
(d−1)!

det(Ê). Let the QR-decomposition of EK ∈ Rd×(d−1) be

given by

EK = QK

RK

0

 ,
42

where QK ∈ Rd×d is a unitary matrix, RK ∈ R(d−1)×(d−1) is an upper triangular matrix, and

0 ∈ R1×(d−1) is a row vector of zeros. This decomposition indicates that K is formed by

rotating the convex hull with edges formed by the column vectors of

RK
0

. Thus, we have

|K| = area(EK) = area

QK

RK

0


 = area


RK

0


 ,

where we have used the fact that rotation, QK , does not change the area. Since the convex

hull formed by the column vectors of

RK
0

 lies on the x(1) – · · · – x(d−1) – plane, its area

is equal to the (d− 1)-dimensional volume of the convex hull formed by the column vectors

of RK in (d− 1)-dimensions. Then,

|K| = volume(d−1)(RK) =
1

(d− 1)!
det(RK) =

1

(d− 1)!
det(RT

KRK)1/2.

On the other hand, we have

det
(
ET
KEK

)
= det


RK

0


T

QT
KQK

RK

0


 = det

[RT
K 0

]RK

0


 = det

(
RT
KRK

)
.

Therefore,

det
(

(F ′K)
T
F ′K

)1/2

=
1

(d− 1)! |K̂|
det
(
ET
KEK

)1/2
=

1

(d− 1)! |K̂|
det
(
RT
KRK

)1/2
=
|K|
|K̂|

.

We now formulate the area of a surface element in a Riemannian metric using F ′K or

EK . The formula is similar to (3.1) and needed later in the development of algorithms for

mesh adaptation. For this formulation we first consider a symmetric, uniformly positive

43

definite metric tensor MK defined in (2.3). Recall (2.4) and the discussion thereafter, i.e.,

the geometric properties of K in the metric MK can be obtained from those of M1/2
K K in the

Euclidean metric. This leads to the following lemma.

Lemma 3.1.2. For any surface simplex K, there holds

|K|MK

|K̂|
= det

(
(F ′K)

T MKF
′
K

)1/2

, (3.2)

where |K|MK
denotes the area of K in the metric MK.

Proof. The Jacobian matrix of the affine mapping from K̂ to M1/2
K K is given by

F ′MK ,K
=
(
M1/2

K EK

)
Ê−1 = M1/2

K F ′K .

From the discussion following (2.4), we know that the area of K in the metric MK is equal

to the area of M1/2
K K in the Euclidean metric. Thus, from Lemma 3.1.1 we have

|K|MK

|K̂|
=
|M1/2

K K|
|K̂|

= det
((
F ′MK ,K

)T
F ′MK ,K

)1/2

= det

((
M1/2

K F ′K

)T
M1/2

K F ′K

)1/2

= det
(

(F ′K)
T MKF

′
K

)1/2

.

The following lemma gives a lower bound for the area of K with respect to the metric

MK in terms of the minimum altitude of K with respect to MK .

Lemma 3.1.3. Let aK,MK
denote the minimum altitude of K with respect to MK. Then,

|K|MK
≥ 1

(d− 1)
d−1
2 (d− 1)!

ad−1
K,MK

. (3.3)

44

Proof. From Lemma 3.1.2 and F ′K = EKÊ
−1, we have

|K|MK
= |K̂| det

(
(F ′K)

T MKF
′
K

)1/2

=
|K̂|

det(Ê)
det
(
ET
KMKEK

)1/2

=
1

(d− 1)!
det

((
M1/2

K EK

)T (
M1/2

K EK

))1/2

.

Let the QR-decomposition of M1/2
K EK be denoted as

M1/2
K EK = QK

RK

0

 ,
where QK ∈ Rd×d is a unitary matrix, RK ∈ Rd−1×d−1 is an upper triangular matrix, and 0

is a (d− 1)-dimensional row vector of zeros. This gives

|K|MK
=

1

(d− 1)!
det

((
M1/2

K EK

)T (
M1/2

K EK

))1/2

=
1

(d− 1)!
det

[RT
K 0T]QT

KQK

RK

0




1/2

=
1

(d− 1)!
det(RT

KRK)1/2

=
1

(d− 1)!

d−1∏
i=1

si,

where si, i = 1, . . . , d−1 denote the singular values of RK . By [3, Lemma 5.12] we have that

si ≥
aRK√
d− 1

,

where aRK
denotes the minimum altitude of the simplex formed by the columns of RK .

45

Combining these, we get

|K|MK
≥ 1

(d− 1)
d−1
2 (d− 1)!

ad−1
RK

.

Since QK is a rotational matrix, the minimum altitude of K with respect to the metric MK

is the same as the minimum altitude of the convex hull formed by the columns of RK i.e.,

aK,MK
= aRK

. Thus, we have obtained (3.3).

The relationship given in the above lemma between the area and minimum height will be

used in the proof of the nonsingularity for surface meshes in Section 3.4. It is instructional

to note that in two dimensions (d = 2), K is a line segement and both |K|MK
and aK,MK

represent the length of K in the metric MK and are equal. In this case, the inequality (3.3)

reduces to

|K|MK
≥ aK,MK

,

which is very sharp. For d = 3, (3.3) becomes

|K|MK
≥ 1

4
a2
K,MK

,

which is not as sharp as in two dimensions. Indeed, when K is equilateral with respect to

MK , we have [20]

|K|MK
=

1√
3
a2
K,MK

.

3.1.2 Equidistribution and alignment conditions for surface meshes

We can now define the equidistribution and alignment conditions characterizing a general

nonuniform, simplicial surface mesh. As in the bulk mesh case, notice that any nonuniform

mesh can be viewed as a uniform one in some metric tensor. Specifically, a mesh is uniform

in some metric if all of the elements in the mesh have the same size and are similar to a

reference element with respect to that metric. In this point of view, the equidistribution

condition requires that all of the elements in the mesh have the same size. Mathematically,

46

this can be expressed as

|K|MK
=
σh
N
, ∀K ∈ Th (3.4)

where, as before, | · |MK
denotes the area of the surface with respect to the metric MK and

σh =
∑

K∈Th |K|MK
. Using Lemma 3.1.2 and recalling |K̂| = 1, we have

|K|MK
= det

(
(F ′K)

T MKF
′
K

)1/2

, σh =
∑
K∈Th

det
(

(F ′K)
T MKF

′
K

)1/2

.

Thus, the equidistribution condition (3.4) becomes

det
(

(F ′K)
T MKF

′
K

)1/2

=
σh
N
, ∀K ∈ Th. (3.5)

The alignment condition, on the other hand, requires that all of the elements K ∈ Th be

similar to the reference element K̂. Notice that any element K is similar to K̂ if and only

if FK : K̂ → K is composed by dilation, rotation, and translation, or equivalently, F ′K is

composed by dilation and rotation. Mathematically, F ′K can therefore be expressed as

F ′K = αU

I
0

V T , (3.6)

where α is a constant representing dilation and U ∈ Rd×d and V ∈ R(d−1)×(d−1) are orthogonal

matrices representing rotation. This gives

(F ′K)
T
F ′K = α2V

[
I 0T

]
UTU

I
0

V T = α2I.

One can readily verify that

(α2)d−1 = det
(

(F ′K)
T
F ′K

)
(3.7)

47

which gives

(d− 1)α2 = tr
(

(F ′K)
T
F ′K

)
(3.8)

and therefore

det
(

(F ′K)
T
F ′K

) 1
d−1

=
1

d− 1
tr
(

(F ′K)
T
F ′K

)
. (3.9)

Consider now MK . From (3.6) we have

M1/2
K F ′K = α M1/2

K U

I
0

V T .

and thus, from (3.9) and the discussion following (2.4), we have

1

d− 1
tr
(

(F ′K)
T MKF

′
K

)
= det

(
(F ′K)

T MKF
′
K

) 1
d−1

, ∀K ∈ Th (3.10)

which is referred to as the alignment condition. Together, (3.5) and (3.10) completely char-

acterize a uniform surface mesh with respect to the metric MK .

3.2 Surface energy functional

With these two conditions, we can now formulate a meshing functional similar to (2.15) in

the bulk mesh case which averages (3.5) and (3.10). To do so, we first consider the alignment

condition (3.10) and note that an equivalent condition is

1

d− 1
tr
[(

(F ′K)
T MKF

′
K

)−1
]

= det

[(
(F ′K)

T MKF
′
K

)−1
] 1

d−1

.

Notice that the left- and right-hand sides are the arithmetic mean and the geometric mean

of the eigenvalues of the matrix
(
(F ′K)TMKF

′
K

)−1, respectively. The inequality of arithmetic

48

and geometric means gives

1

d− 1
tr
[(

(F ′K)
T MKF

′
K

)−1
]
≥ det

[(
(F ′K)

T MKF
′
K

)−1
] 1

d−1

, (3.11)

with equality if and only if all of the eigenvalues are equal. From (3.11), for any general

mesh which does not necessarily satisfy (3.10), we have

tr
[(

(F ′K)
T MKF

′
K

)−1
]d−1

≥ (d− 1)d−1 det
(

(F ′K)
T MKF

′
K

)−1

,

and therefore

tr
[(

(F ′K)
T MKF

′
K

)−1
] p(d−1)

2

− (d− 1)
p(d−1)

2 det
(

(F ′K)
T MKF

′
K

)− p
2 ≥ 0,

where p > 0 is a dimensionless parameter which has been added to agree with the equidis-

tribution energy functional below. Then, we define the alignment energy functional as

Iali =
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2 tr
[(

(F ′K)
T MKF

′
K

)−1
] p(d−1)

2

− (d− 1)
p(d−1)

2

∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1−p
2
, (3.12)

whose minimization will result in a mesh that closely satisfies the alignment condition (3.10).

One may notice that |K̂| det
(

(F ′K)T MKF
′
K

) 1
2

= |K|MK
has been added as a weight.

Similarly, we consider the equidistribution condition (3.5). From Hölder’s inequality, for

any p > 1 we have

∑
K∈Th

|K|MK

σh
· 1

det
(

(F ′K)T MKF ′K

)1/2
≤

∑
K∈Th

|K|MK

σh
· 1

det
(

(F ′K)T MKF ′K

)p/2


1
p

, (3.13)

49

with equality if and only if

det
(

(F ′K)
T MKF

′
K

)−1/2

= constant, ∀ K ∈ Th.

That is, minimizing the difference between the left-hand side and the right-hand side of

(3.13) tends to make det
(

(F ′K)T MKF
′
K

)−1/2

constant for all K ∈ Th. Noticing that the

left-hand side of (3.13) is simply N/σh, we can rewrite this inequality as

(
N

σh

)p
· σh ≤

∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1−p
2
.

We can consider σh constant since σh ≈
ˆ
S

det(M(x))1/2dx and hence it only weakly depends

on the mesh. Therefore, we define the equidistribution energy functional as

Ieq = (d− 1)
p(d−1)

2

∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1−p
2
, (3.14)

whose minimization will result in a mesh that closely satisfies the equidistribution condition.

We now have two functionals, one for each of equidistribution and alignment. Our goal

is to formulate a single meshing functional for which minimizing will result in a mesh that

closely satisfies both conditions. One way to ensure this is to average (3.12) and (3.14), that

is, define Ih = θIali + (1− θ)Ieq for θ ∈ [0, 1]. This leads to

Ih = θ
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2 tr
[(

(F ′K)
T MKF

′
K

)−1
] p(d−1)

2

+ (1− 2θ)(d− 1)
p(d−1)

2

∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1−p
2
, (3.15)

where p > 1 and θ ∈ [0, 1] are dimensionless parameters, with the latter balancing the

equidistribution and alignment conditions for which full alignment is achieved when θ = 1

and full equidistribution is achieved when θ = 0.

50

It should be noted that we can also formulate a functional similar to (2.17) in the surface

mesh case, i.e.,

Ih =
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2

∥∥∥∥((F ′K)
T MKF

′
K

)−1

−
(σh
N

)− 2
d−1

I

∥∥∥∥2p

F

. (3.16)

In the bulk mesh case the associated functionals to (3.15) and (3.16) are proven to be theoret-

ically and numerically comparable hence, for simplicity, we only consider (3.15) in numerical

examples. For details on the formulation and properties of (3.16) see Appendix A.3.

We can write (3.15) as

Ih =
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2
G̃K , (3.17)

where

G̃K = θ tr
[(

(F ′K)
T MKF

′
K

)−1
] p(d−1)

2

+ (1− 2θ)(d− 1)
p(d−1)

2 det
(

(F ′K)
T MKF

′
K

)− p
2
. (3.18)

We remark that for 0 < θ ≤ 1
2
and p > 1, G̃K is coercive, i.e.,

G̃ (J, det (J) ,x) ≥ α

(
tr
[(

(F ′K)
T MKF

′
K

)−1
])q
− β, ∀x ∈ S (3.19)

where q > (d − 1)/2, α > 0, and β ≥ 0 are constants. More specifically, for the surface

functional (3.18) we have α = θ, β = 0, and q = p(d−1)
2

. As we will see in Section 3.4,

coercivity is an important property when proving mesh nonsingularity. It is also instructional

to point out that the functional (3.15) is very similar to a Riemann sum of the meshing

functional (2.15) for bulk meshes based on equidistribution and alignment. One of the main

differences is that
(

(F ′K)T MKF
′
K

)
cannot be simplified in (3.15) since it is not a square

matrix as it is in the bulk mesh case. Additionally, the constant terms and exponents that

contain d are (d − 1) in (3.15) instead of d in the bulk mesh case functional (2.15). The

51

functional (2.15) has been proven to work well for a variety of problems [38].

3.3 Surface moving mesh PDE

3.3.1 Gradient of meshing energy

Motivated by the functional (3.15), we consider meshing functionals in a general form (3.17),

i.e.,

Ih =
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2
G̃K ≡

∑
K∈Th

G(JK , rK), (3.20)

where G̃K is a given smooth function of

JK =
(

(F ′K)
T MKF

′
K

)−1

, rK = det
(

(F ′K)
T MKF

′
K

)−1

,

that is, G̃K = G̃(JK , rK), and

G(JK , rK) = |K̂|r−
1
2

K G̃K . (3.21)

Indeed, a special example is (3.18) but G̃K can be chosen differently. Moreover, both JK

and rK depend on the coordinates of the vertices of the physical element K and hence G is

a function of them, i.e., G (JK , rK) can be expressed as

G (JK , rK) = GK

(
xK1 , . . . ,x

K
d

)
, (3.22)

where xKi ∈ Rd for i = 1, . . . , d are the coordinations of the vertices of K. As a consequence,

the sum in (3.20) is a function of the coordinates of all vertices of the physical mesh Th, i.e.,

Ih (x1, . . . ,xNv) =
∑
K∈Th

GK

(
xK1 , . . . ,x

K
d

)
, (3.23)

52

where xi ∈ Rd for i = 1, . . . , Nv are the coordinates of the vertices of the mesh with global

indices. One of the underlying keys to our approach is to find the derivatives of Ih with

respect to the physical coordinates x1, . . . ,xNv which requires elementwise derivatives of GK

with respect to xK1 , . . . ,xKd . That is,

∂Ih
∂xi

=
∑
K∈Th

∂GK

∂xi
=
∑
K∈ωi

∂GK

∂xKiK
, i = 1, . . . , Nv (3.24)

where iK denotes the local index of vertex xi in K and ωi is the element patch associated

with xi.

Recall the properties of scalar-by-matrix differentiation in Section 2.2.2

∂tr (A)

∂A
= I,

∂A−1

∂t
= −A−1∂A

∂t
A−1,

∂ det(A)

∂t
= det(A) tr

(
A−1∂A

∂t

)
(3.25)

where A is a square matrix. Using (3.25), we can find the expressions for ∂G
∂J and ∂G

∂r
which

are needed to compute (3.24). For the functional (3.15), the first derivatives of G are given

by 

∂G

∂J
=
θp(d− 1)

2
|K̂|r− 1

2 tr(J)
p(d−1)−2

2 I,

∂G

∂r
= −θ

2
|K̂|r− 3

2 tr(J)
p(d−1)

2 +
p− 1

2
(1− 2θ)(d− 1)

p(d−1)
2 |K̂|r p−3

2 .

(3.26)

See Appendix A.4 for details.

3.3.2 Derivatives of the meshing functional with respect to the

physical coordinates

From (3.24), we can see that we will need ∂GK/∂x
K
iK

to compute ∂Ih/∂xi. The former

can be obtained once we know the derivatives of GK with respect to the coordinates of all

53

vertices of K, i.e.,

∂GK

∂[xK1 ,x
K
2 , . . . ,x

K
d]

=


∂GK

∂xK1
...

∂GK

∂xKd

 .

To do so, let t be an entry of [xK1 ,x
K
2 , . . . ,x

K
d]. Using the chain rule we have

∂GK

∂t
= tr

(
∂GK

∂EK

∂EK
∂t

)
+ tr

(
∂GK

∂MK

∂MK

∂t

)
.

Denote
∂GK

∂t
(I) = tr

(
∂GK

∂EK

∂EK
∂t

)
, (3.27)

∂GK

∂t
(II) = tr

(
∂GK

∂MK

∂MK

∂t

)
. (3.28)

Now consider (3.27). When t is an entry of [xK2 , . . . ,x
K
d], recalling that EK = [xK2 −

xK1 , . . . ,x
K
d − xK1], we have

∂GK

∂t
(I) = tr

(
∂GK

∂EK

∂[xK2 , . . . ,x
K
d]

∂t

)
,

which implies
∂GK

∂[xK2 , . . . ,x
K
d]

(I) =
∂GK

∂EK
.

Moreover, for t =
(
xK1
)(1) (the first component of xK1), we have

∂GK

∂ (xK1)
(1)

(I) = tr


∂GK

∂EK



−1 −1 · · · −1

0 0 · · · 0

...
...

...

0 0 · · · 0




= −

∑
i

(
∂GK

∂EK

)
i,1

.

54

We can obtain similar expressions for
(
xK1
)(j) for j = 2, . . . , d. This gives

∂GK

∂xK1
(I) = −eT ∂GK

∂EK

where eT = [1, . . . , 1] ∈ R1×(d−1). For (3.28), we assume that M = M(x) is a piecewise linear

function defined on the current mesh, i.e., M =
d∑
j=1

Mj,Kφ
K
j , where φKj is the linear basis

function associated with the vertex xKj for all j = 1, . . . , d and Mj,K = M(xKj). Denote

the ith components of x and xK by x(i) and x(i)
K , respectively. Then, for any entry t of

[xK1 ,x
K
2 , . . . ,x

K
d], we have

∂GK

∂t
(II) = tr

(
∂GK

∂MK

d∑
i=1

∂MK

∂x(i)

)
∂x

(i)
K

∂t

= tr

(
∂GK

∂MK

d∑
i=1

d∑
j=1

Mj,K
∂φj,K
∂x(i)

)
∂x

(i)
K

∂t

=
d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x

∂xK
∂t

,

where we notice that ∂φj,K/∂x and ∂xK/∂t are a row and a column vector, respectively,

and thus
∂φj,K
∂x

∂xK
∂t

is a dot product. From this and the identity xK = (xK1 + · · ·+ xKd)/d, we get

∂GK

∂[xK2 , . . . ,x
K
d]

(II) =
1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x


and

∂GK

∂xK1
(II) =

1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x

.

55

Summarizing the above results, we have

∂GK

∂[xK2 , ...,x
K
d]

=
∂GK

∂EK
+

1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x

 , (3.29)

∂GK

∂xK1
= −eT ∂GK

∂EK
+

1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x

. (3.30)

Notice that (3.30) can thus be rewritten as

∂GK

∂xK1
= −

d∑
j=2

∂GK

∂xKj
+

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x

. (3.31)

Next, we establish the relations between

∂GK

∂EK
,

∂GK

∂MK

and
∂GK

∂J
,

∂GK

∂r
.

First recall that F ′K = EKÊ
−1, thus

J =
(

(F ′K)
T MKF

′
K

)−1

= Ê
(
ET
KMKEK

)−1
ÊT . (3.32)

Let EK = EK(t). Then we have

∂GK

∂t
= tr

∂GK

∂J

∂
(

(F ′K)T MKF
′
K

)−1

∂t

+
∂GK

∂r

∂ det
(

(F ′K)T MKF
′
K

)−1

∂t

= tr

(
∂GK

∂J
Ê
∂
(
ET
KMKEK

)−1

∂t
ÊT

)
+ det(Ê)2∂GK

∂r

∂ det
(
ET
KMKEK

)−1

∂t
. (3.33)

56

Consider the first term of (3.33). Using the properties of matrix derivatives (3.25) we get

tr

(
∂GK

∂J
Ê
∂
(
ET
KMKEK

)−1

∂t
ÊT

)

= −tr

(
∂GK

∂J
Ê
(
ET
KMKEK

)−1 ∂
(
ET
KMKEK

)
∂t

(
ET
KMKEK

)−1
ÊT

)

= −tr
(
∂GK

∂J
Ê
(
ET
KMKEK

)−1
(
∂ET

K

∂t
MKEK + ET

KMK
∂EK
∂t

)(
ET
KMKEK

)−1
ÊT

)
.

Since ∂GK

∂J , MK , and
(
ET
KMKEK

)−1 are all symmetric, it follows that

tr

(
∂GK

∂J
Ê
∂
(
ET
KMKEK

)−1

∂t
ÊT

)

= −2tr
((
ET
KMKEK

)−1
ÊT ∂GK

∂J
Ê
(
ET
KMKEK

)−1
ET
KMK

∂EK
∂t

)
.

Consider now the second term of (3.33),

det(Ê)2∂GK

∂r

∂ det
(
ET
KMKEK

)−1

∂t

=
det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr

((
ET
KMKEK

) ∂ (ET
KMKEK

)−1

∂t

)

= − det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr

(
∂
(
ET
KMKEK

)
∂t

(
ET
KMKEK

)−1

)

= − det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr
((

∂ET
K

∂t
MKEK + ET

KMK
∂EK
∂t

)(
ET
KMKEK

)−1
)

= −2
det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr
((
ET
KMKEK

)−1
ET
KMK

∂EK
∂t

)
.

Therefore

∂GK

∂EK
= −2

(
ET
KMKEK

)−1
ÊT ∂GK

∂J
Ê(ET

KMKEK)−1ET
KMK

− 2
det(Ê)2

det (ET
KMKEK)

∂GK

∂r

(
ET
KMKEK

)−1
ET
KMK . (3.34)

57

Combining this with (3.30) we obtain


∂GK

∂xK2
...

∂GK

∂xKd

 =− 2
(
ET
KMKEK

)−1
ÊT ∂GK

∂J
Ê(ET

KMKEK)−1ET
KMK

− 2
det(Ê)2

det (ET
KMKEK)

∂GK

∂r

(
ET
KMKEK

)−1
ET
KMK

+
1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x

 . (3.35)

We can compute ∂GK

∂MK
in a similar fashion. Let MK = MK(t) and consider (3.33). Then,

for the first term we have

tr

(
∂GK

∂J
Ê
∂
(
ET
KMKEK

)−1

∂t
ÊT

)

= −tr

(
∂GK

∂J
Ê
(
ET
KMKEK

)−1 ∂
(
ET
KMKEK

)
∂t

(
ET
KMKEK

)−1
ÊT

)

= −tr
(
∂GK

∂J
Ê
(
ET
KMKEK

)−1
ET
K

∂MK

∂t
EK
(
ET
KMKEK

)−1
ÊT

)
= −tr

(
EK
(
ET
KMKEK

)−1
ÊT ∂GK

∂J
Ê
(
ET
KMKEK

)−1
ET
K

∂MK

∂t

)
.

58

The second term of (3.33) is then

det(Ê)2∂GK

∂r

∂ det
(
ET
KMKEK

)−1

∂t

=
det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr

((
ET
KMKEK

) ∂ (ET
KMKEK

)−1

∂t

)

= − det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr

(
∂
(
ET
KMKEK

)
∂t

(
ET
KMKEK

)−1

)

= − det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr
(
ET
K

∂MK

∂t
EK
(
ET
KMKEK

)−1
)

= − det(Ê)2

det (ET
KMKEK)

∂GK

∂r
tr
(
EK
(
ET
KMKEK

)−1
ET
K

∂MK

∂t

)
.

Therefore

∂GK

∂MK

= −EK(ET
KMKEK)−1ÊT ∂GK

∂J
Ê(ET

KMKEK)−1ET
K

− det(Ê)2

det (ET
KMKEK)

∂GK

∂r
EK
(
ET
KMKEK

)−1
ET
K , (3.36)

which we can use in the last term of (3.35).

Finally, we derive the relations between

∂φj,K
∂x

, j = 1, ..., d and EK .

First, note that the basis functions satisfy

d∑
i=1

φi,K = 1 and
d∑
i=1

xKi φi,K = x.

Eliminating xK1 yields

x− xK1 =
d∑
i=2

(xKi − xK1)φi,K .

59

Then differentiating with respect to x(k) gives

ek =
∂(x− xK1)

∂x(k)
=

∂

∂x(k)

(
d∑
i=2

(xKi − xK1)φi,K

)
=

d∑
i=2

(xKi − xK1)
∂φi,K
∂x(k)

,

where ek is the kth unit vector in Rd. Hence we have

I = EK


∂φ2,K

∂x
...

∂φd,K
∂x

 ,

which gives

ET
KEK


∂φ2,K

∂x
...

∂φd,K
∂x

 = ET
K

and thus 
∂φ2,K

∂x
...

∂φd,K
∂x

 = (ET
KEK)−1ET

K ,
∂φ1,K

∂x
= −

d∑
j=2

∂φj,K
∂x

. (3.37)

60

Summarizing the above we have


∂GK

∂xK2
...

∂GK

∂xKd

 =− 2
(
ET
KMKEK

)−1
ÊT ∂GK

∂J
Ê(ET

KMKEK)−1ET
KMK

− 2
det(Ê)2

det (ET
KMKEK)

∂GK

∂r

(
ET
KMKEK

)−1
ET
KMK

+
1

d

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x

 , (3.38)

∂GK

∂xK1
=−

d∑
j=2

∂GK

∂xKj
+

d∑
j=1

tr
(
∂GK

∂MK

Mj,K

)
∂φj,K
∂x

, (3.39)

where ∂GK

∂J and ∂GK

∂r
are given in (3.26), ∂φj,K/∂x for j = 1, . . . , d are given in (3.37), and

∂GK

∂M is given in (3.36). Having computed ∂GK/∂x
K
j (j = 1, ..., d) for all elements using

(3.38) and (3.39), we can obtain ∂Ih/∂xi from (3.24).

3.3.3 Surface moving mesh equations

As mentioned above, we employ the MMPDE method to minimize the meshing functional

(3.15) or a more general form (3.20). An MMPDE is a mesh equation that involves mesh

speed. There are various formulations of MMPDEs; we focus here on the approach where

the surface MMPDE is defined as a modified gradient system of the meshing functional. A

distinct feature for surface meshes, other than bulk meshes, is that the nodes need to stay

on the surface during movement. By Section 3.3.2 we may assume that we have the matrix

∂Ih
∂xi

, i = 1, · · · , Nv.

61

Let Φ(x) = 0 denote the surface, where Φ can be defined through an analytical expression

or a numerical representation such as by spline functions. Then for the vertices to stay on

the surface we should have Φ(xi) = 0 for all i = 1, . . . , Nv or at least

dxi
dt
· ∇Φ(xi) = 0 (3.40)

where dxi/dt is the nodal mesh velocity. Following the MMPDE approach, we would define

the mesh equation as the gradient system of Ih, i.e.,

dxi
dt

= −Pi
τ

(
∂Ih
∂xi

)T
, i = 1, ..., Nv (3.41)

where Pi is a positive scalar function used to make the equation have desired invariance

properties and τ > 0 is a constant parameter used for adjusting the time scale of mesh

movement. Obviously, this does not satisfy (3.40). Here we propose to project the velocities

in (3.41) onto the surface and define the surface moving mesh equation as

dxi
dt

= −Pi
τ

[(
∂Ih
∂xi

)T
−

((
∂Ih
∂xi

)T
· ni

)
ni

]
, i = 1, ..., Nv (3.42)

where ni = ∇Φ(xi)/‖∇Φ(xi)‖ is the unit normal to the surface at xi and the difference inside

the square bracket is the projection of the vector ∂Ih/∂xi onto the tangential plane of the

surface at xi. Notice that this surface MMPDE inherently ensures that (3.40) be satisfied or,

in words, the nodes stay on the surface during the mesh movement. Moreover, it is important

to note that (3.42) only utilizes the unit normal vectors of the surface whose computation does

not require explicit parameterization or analytical expression of the surface. As mentioned,

for surfaces without an analytical expression, spline functions may be used to approximate

the gradient for (3.42). It should be noted that (3.40) is a weak imposition. A stabilized

62

version is given by

dxi
dt

= −Pi
τ

[(
∂Ih
∂xi

)T
−

((
∂Ih
∂xi

)T
· ni

)
ni

]
− Φ

δτ |∇Φ|
ni, (3.43)

where δ ≥ 0, and the last term, in a sense, determines the projection method of the nodes.

That is, when δ = 0 then Φ(xi(t)) = 0 and hence, the nodes are directly projected to the

surface. On the other hand, when δ = ∞, (3.43) is equivalent to (3.42) and so the nodes

are projected onto the tangential plane. For a direct formulation of (3.42) using Lagrange

multipliers and a more detailed discussion of (3.43), see Appendix A.5.

Using (3.24) we can rewrite the above equation in a compact form as

dxi
dt

=
Pi
τ

∑
K∈ωi

vKiK , i = 1, ..., Nv (3.44)

where vKiK ∈ Rd is the local mesh velocities contributed by K to xKiK and has the expressions

vKiK = −
(
∂GK

∂xKiK

)T
+

((
∂GK

∂xKiK

)T
· niK

)
niK , (3.45)

and ∂GK/∂x
K
iK

is given in (3.38) and (3.39).

The surface MMPDE (3.44) must be modified properly for boundary vertices when S has

a boundary. For fixed boundary vertices, the corresponding equation is replaced by

dxi
dt

= 0.

The velocities for other boundary vertices should be modified such that they slide on the

boundary which is defined on a case-by-case basis.

With proper modification of the boundary vertices, the system (3.44) can be integrated

in time. To do so, one first starts by calculating the edge matrices EK for all elements

and Ê for the reference element. One can then readily calculate (3.26) which is needed for

63

(3.38) and (3.39). Then one can integrate (3.44) in time. For this work we use Matlab’s ODE

solvers ode45 and ode15s. The explicit scheme, ode45, implements a 4(5)-order Runge-Kutta

method with a variable time step. The implicit scheme, ode15s, is a variable time step and

variable-order solver based on the numerical differentiation formulas of orders 1 to 5. All of

the numerical examples in this paper use ode45 although both ode45 and ode15s have been

tested and proven to work very well in computation.

3.4 Theoretical Properties

3.4.1 Equivalent measure of minimum height

We begin the theoretical analysis by establishing the relation between
∥∥∥∥((F ′K)T MKF

′
K

)−1
∥∥∥∥

and the minimum altitude of K with respect to MK .

Lemma 3.4.1. There holds

â2

a2
K,MK

≤
∥∥∥∥((F ′K)

T MKF
′
K

)−1
∥∥∥∥ ≤ (d− 1)2â2

a2
K,MK

, (3.46)

where â is the altitude of K̂ and aK,MK
is the minimum altitude of K with respect to the

metric MK.

Proof. First of all, we have

∥∥∥∥((F ′K)
T
F ′K

)−1
∥∥∥∥ =

∥∥∥∥(Ê−TET
KEKÊ

−1
)−1
∥∥∥∥ =

∥∥∥Ê (ET
KEK

)−1
ÊT
∥∥∥ .

Now, consider the QR decomposition of EK

EK = QK

RK

0

 ,
where QK ∈ Rd×d is a unitary matrix, RK ∈ R(d−1)×(d−1) is an upper triangular matrix, and

64

0 is a (d− 1)-dimensional row vector of zeros. With this we have

∥∥∥Ê (ET
KEK

)−1
ÊT
∥∥∥ =

∥∥∥∥∥∥∥Ê
[RT

K 0T]QT
KQK

RK

0



−1

ÊT

∥∥∥∥∥∥∥
=
∥∥∥ÊR−1

K R−TK ÊT
∥∥∥

=

∥∥∥∥(RKÊ
−1
)−1 (

RKÊ
−1
)−T∥∥∥∥ .

By [33, Lemma 4.1] we have

â2

a2
RK

≤
∥∥∥∥(RKÊ

−1
)−1 (

RKÊ
−1
)−T∥∥∥∥ ≤ (d− 1)2â2

a2
RK

,

where aRK
is the minimum altitude of the simplex formed by the columns of RK . Since QK

is a rotation matrix, aRK
is the same as aK , the minimum altitude of K with respect to the

Euclidean metric. Combining the above results, we get

â2

a2
K

≤
∥∥∥∥((F ′K)

T
F ′K

)−1
∥∥∥∥ ≤ (d− 1)2â2

a2
K

.

The inequality (3.46) follows from this and the observation that the geometric properties

of K with respect to the metric MK are the same as those of M1/2
K K with respect to the

Euclidean metric.

Lemma 3.4.1 indicates that if K̂ is chosen to satisfy |K̂| = O(1) then

∥∥∥∥((F ′K)
T MKF

′
K

)−1
∥∥∥∥ ∼ a−2

K,MK
. (3.47)

3.4.2 Mesh nonsingularity and existence of limiting meshes

We now consider the MMPDE (3.44). Recall that the velocities for the boundary vertices

need to be modified in order for them to stay on the boundary. However, the analysis is

65

similar with or without modifications. Hence, for simplicity we do not consider modifications

in the analysis. We also note that for theoretical purposes, we assume that K̂ is taken to

satisfy |K̂| = 1
N

instead of being unitary as we have been considering thus far. This change

does not affect the actual computation. However, since typically we expect |K| = O(1/N),

the assumption |K̂| = 1
N

will likely lead to F ′K = O(1) and thus Ih(Th(0)) (the value of Ih

on the initial mesh Th(0)) stays O(1). On the other hand, if |K̂| = 1 (unitary), we have

F ′K = O(1/N) and Ih(Th(0)) will depend strongly on N .

In the following analysis, the mesh at time t is denoted by Th(t) = (x1(t), . . . ,xNv(t)).

Theorem 3.4.1. Assume that the meshing functional in the form (3.20) satisfies the

coercivity condition as given in (3.19), i.e.,

G̃ (J, det (J) ,x) ≥ α

(
tr
[(

(F ′K)
T MKF

′
K

)−1
])q
− β, ∀x ∈ S (3.48)

where q > (d− 1)/2, α > 0, and β ≥ 0 are constants. We also assume that K̂ is equilateral

and |K̂| = 1
N
. Then if the elements of the mesh trajectory of the MMPDE (3.44) have

positive areas initially, they will have positive areas for all time. Moreover, their minimum

altitudes in the metric MK and their areas in the Euclidean metric are bounded below by

aK,MK
≥ C1

[
Ih(Th(0)) + βm̄d/2|S|

]− 1
2q−d+1 N−

2q
(d−1)(2q−d+1) , (3.49)

|K| ≥ C2

[
Ih(Th(0)) + βm̄d/2|S|

]− d−1
2q−d+1 N−

2q
2q−d+1 m − d

2 , (3.50)

where

C1 =

(
α d

q(d−2)
d−1 (d− 1)!

2q−d+1
d−1

(d− 1)
d−1+2q

2

) 1
2q−d+1

, C2 =
Cd−1

1

(d− 1)
d−1
2 (d− 1)!

. (3.51)

66

Proof. From (3.42) we have

dIh
dt

=
∑
i

∂Ih
∂xi

dxi
dt

= −
∑
i

Pi
τ

∂Ih
∂xi

[(
∂Ih
∂xi

)T
−

((
∂Ih
∂xi

)T
· ni

)
ni

]

= −
∑
i

Pi
τ

∥∥∥∥∂Ih∂xi

∥∥∥∥2

−

((
∂Ih
∂xi

)T
· ni

)2


≤ 0.

This implies Ih (Th(t)) ≤ Ih (Th(0)) for all t. From coercivity (3.19) and Lemma 3.4.1, we get

Ih (Th(t)) ≥ α
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

)1/2
(
tr
[(

(F ′K)
T MKF

′
K

)−1
])q
− βm̄d/2|S|

≥ α
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

)1/2
∥∥∥∥((F ′K)

T MKF
′
K

)−1
∥∥∥∥q − βm̄d/2|S|

≥ α
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

)1/2 â2q

a2q
K,MK

− βm̄d/2|S|.

By Lemma 3.8, |K̂| det
(

(F ′K)T MKF
′
K

)1/2

= |K|MK
≥ 1

(d−1)
d−1
2 (d−1)!

ad−1
K,MK

, thus

Ih (Th(t)) + βm̄d/2|S| ≥ αâ2q

(d− 1)
d−1
2 (d− 1)!

∑
K∈Th

1

a2q−d+1
K,MK

, (3.52)

and therefore

a2q−d+1
K,MK

≥ αâ2q

(d− 1)
d−1
2 (d− 1)!

(
Ih (Th(0)) + βm̄d/2|S|

)−1
. (3.53)

Moreover, from the assumption that K̂ is equilateral and |K̂| = 1
N

it follows that

â =

√
d (d− 1)!

1
d−1

√
d− 1 d

1
2(d−1)

N−
1

d−1 . (3.54)

Combining (3.53) and (3.54) we get

aK,MK
≥ C1

[
Ih(Th(0)) + βm̄d/2|S|

]− 1
2q−d+1 N−

2q
(d−1)(2q−d+1) , (3.55)

67

where

C1 =

(
α d

q(d−2)
d−1 (d− 1)!

2q−d+1
d−1

(d− 1)
d−1+2q

2

) 1
2q−d+1

which gives (3.49).

Furthermore, we have

ad−1
K,MK

(d− 1)
d−1
2 (d− 1)!

≤ |K|MK
= |K̂| det

(
(F ′K)

T MKF
′
K

)1/2

≤ m d/2|K̂| det
(

(F ′K)
T
F ′K

)1/2

= m d/2|K|.

Then (3.50) follows from the above inequality and (3.49).

Finally, from (3.38) and (3.39) it is not difficult to see that the magnitude of the mesh

velocities is bounded from above when |K| is bounded from below. As a consequence, the

mesh vertices will move continuously with time and |K| cannot jump over the bound to

become negative. Hence, |K| will stay positive if so initially.

From the proof we have seen that the key points are the energy decreasing property and

the coercivity of the meshing functional. The former is satisfied by the MMPDE (3.44) by

design while the latter is an assumption for the meshing functional. We emphasize that the

result holds for any functional satisfying the coercivity condition (3.19).

On the other hand, the condition (3.19) is satisfied by the meshing functional (3.15) for

0 < θ ≤ 1
2
and p > 1 (with q = (d− 1)p/2 and β = 0 in Theorem 3.4.1). It is interesting

to point out that the role of the parameter p can be explained from (3.49). Indeed, for this

case the inequality (3.49) becomes

aK,MK
≥ C1

[
Ih(Th(0)) + βm̄d/2|S|

]− 1
(d−1)(p−1) N−

p
(d−1)(p−1) → C1 N

− 1
d−1 , p→∞. (3.56)

Since N−
1

d−1 represents the average diameter of the elements, the above inequality implies

that the mesh becomes more uniform as p gets larger. In numerical computation, we take

68

p = 3/2, which has been found to work well for all examples we have tested.

Theorem 3.4.2. Under the assumptions of Theorem 3.4.1, for any nonsingular initial

mesh, the mesh trajectory {Th(t), t > 0} of MMPDE (3.44) has the following properties.

1. Ih(Th(t)) has a limit as t→∞, i.e.,

lim
t→∞

Ih(Th(t)) = L. (3.57)

2. The mesh trajectory has limiting meshes, all of which are nonsingular and satisfy (3.49)

and (3.50).

3. The limiting meshes are critical points of Ih, i.e., they satisfy

∂Ih
∂xi

= 0, i = 1, . . . , Nv. (3.58)

Proof. The proof is very much the same as that for [32, Theorem 4.3] for the bulk mesh

case. The key ideas to the proof are the monotonicity and boundedness of Ih(Th(t)) and the

compactness of S. With these holding for the surface mesh case, one can readily prove the

three properties.

It is remarked that the above two theorems have been obtained for the MMPDE (3.44)

which is semi-discrete in the sense that it is discrete in space and continuous in time. A

fully discrete scheme can be obtained by applying a time-marching scheme to (3.44). More

specifically, consider the time integration of (3.44) and denote the time instants by tn for

n = 0, 1, . . . where we assume that tn →∞ as n→∞. For integrating the MMPDE (3.44),

we are interested in methods of the form

T n+1
h = Ψ(T nh), n = 0, 1, . . . (3.59)

69

for which integrating from tn to tn+1 can be carried out in more than one step. One of the

key points to the proof of Theorem 3.4.1 is the monotonically decreasing property of the

energy functional. Therefore, for the fully discrete case we must assume that the scheme

satisfies

Ih(T n+1
h) ≤ Ih(T nh), n = 0, 1, (3.60)

It should be noted that many schemes satisfy (3.60) including the forward and backward

Euler schemes, and algebraically stable Runge-Kutta schemes (such as Gauss and Radau

IIA schemes) under a time-step restriction involving a local Lipschitz bound of the Hessian

matrix of Ih (e.g., [29, 54]).

Theorem 3.4.3. Assume the assumptions of Theorem 3.4.1 are satisfied and that a

numerical scheme in the form (3.59) is applied to the MMPDE (3.44). Furthermore, assume

that the resulting mesh sequence {T nh }∞n=0 satisfies the energy decreasing property given by

(3.60). If the time step is sufficiently small but not diminishing and the elements of the

mesh trajectory have positive areas initially then they will have positive areas for all tn > 0.

Moreover, the minimum altitudes in the metric M and the element areas are bounded away

form zero by (3.49) and (3.50), respectively.

Proof. We only need to show that the volumes of the elements will stay positive if the time

step is sufficiently small but not diminishing after which the proof is similar to Theorem 3.4.1

for the semi-discrete case. To this end, assume G has continuous derivatives up to the third

order. Similar to the discussion in the last paragraph of Theorem 3.4.1, when the mesh

satisfies (3.49) and (3.50) we can show that the right-hand side of (3.44) as well as its

gradient and Hessian are bounded by bounds independent of time and individual elements.

After which, it can be shown that there exists δt0 > 0 that only depends on the bounds

mentioned above and thus is not diminishing such that if tn+1 − tn ≤ δt0 then ‖xn+1
j − xnj ‖

for j = 1, . . . , Nv do not exceed a fixed fraction of the minimal altitude and, in the case

an implicit scheme is used for (3.59), Newton’s (or some other) iteration for the resulting

70

nonlinear algebraic equations converges. This then guarantees that the elements of the mesh

trajectory will remain nonsingular during the current time step. The same argument can be

repeated for each time step since the new mesh satisfies (3.49) and (3.50) and therefore, the

volumes of the elements stay positive for tn > 0.

Extending Theorem 3.4.2 to the fully discrete case we are able to prove the following.

Theorem 3.4.4. Under the assumptions of Theorem 3.4.3, for any nonsingular initial

mesh, the mesh trajectory {T nh , n = 0, 1, . . . } of the scheme (3.59) applied to the MMPDE

(3.44) has the following properties.

1. Ih(T nh) has a limit as n→∞, i.e.,

lim
n→∞

Ih(T nh) = L. (3.61)

2. The mesh trajectory has limiting meshes, all of which are nonsingular and satisfy (3.49)

and (3.50).

3. If we further assume that the scheme satisfies a stronger property of monotonically

decreasing energy,


Ih(T n+1

h ≤ Ih(T nh), n = 0, 1, . . . ,

Ih(T n+1
h ≤ Ih(T nh), if T nh is not a critical point,

(3.62)

then the limiting meshes are critical points of Ih, i.e., they satisfy (3.58).

Proof. The proofs are very similar to those in Theorem 3.4.2. See [32] for more details.

Notice Theorem 3.4.2 and Theorem 3.4.4 state that the values of the functional for the

mesh trajectory converge which, as mentioned previously, can be used as a stopping criteria in

computations. However, in general there is no guarantee that the mesh trajectory converges.

71

In order to guarantee convergence, a stronger requirement on the decent in the functional

value or on the meshing functional is needed. For a more detailed discussion, see [32].

3.5 Numerical experiments

3.5.1 Definition of curvature for curves and surfaces

In the numerical results we will consider a metric tensor M based on curvature. In order

to define such an M we must first derive the definition of curvature for both a curve in

two-dimensions and a surface in three-dimensions. We will begin by deriving the curvature

of a curve in three-dimensions then extending this to a surface in three-dimensions. To this

end, let the curve in space be defined by γ = γ(t) : I → R3 where I ⊂ R. The curvature of

γ measures the rate at which γ is turning. This can be described by the position and size of

γ′′ relative to γ′ given by

κ(t) =
‖γ′ × γ′′‖
‖γ′‖3

. (3.63)

The term ‖γ′‖3 in the denominator is used to ensure the value of the curvature does not

change under reparametrization. One can use dimensional analysis to see this or, more

rigorously, denote the reparametrization by β(t) = γ(φ(t)). Then

β′(t) = φ′(t)γ′(φ(t)) (3.64)

and

β′′(t) = φ′′(t)γ′(φ(t)) + φ′(t)2γ′′(φ(t)) (3.65)

which gives

β′(t)× β′′(t) = φ′(t)3γ′(φ(t))× γ′′(φ(t)). (3.66)

72

Therefore

‖β′ × β′′‖
‖β′‖3

=
|φ′(t)|3‖γ′(φ(t))× γ′′(φ(t))‖

|φ′(t)|3‖γ′(φ(t))‖3
=
‖γ′(φ(t))× γ′′(φ(t))‖

‖γ′(φ(t))‖3
=
‖γ′ × γ′′‖
‖γ′‖3

(3.67)

and thus the curvature is independent of reparametrization.

From (3.63) one can readily see that the curvature κ for a curve is measured as the

change in the tangential direction. The tangential direction is used because the tangent of

a curve is a unique vector whereas the normal of a curve is a plane hence it is natural to

define the curvature in terms of the unique vector. In the numerical results we only consider

curves in R2 however, κ preserves definition (3.63) where z = 0 as we will see in the following

examples.

Example 3.5.1. In our first example we consider a line given by

γ(t) = (t, ct+ b, 0)

where c and b are constants. From (3.63) we have

κ(t) =
‖γ′ × γ′′‖
‖γ′‖3

=
‖(1, c, 0)× (0, 0, 0)‖
‖(1, c, 0)‖3

= 0.

Thus a line has 0 curvature which is consistent with the definition of curvature, i.e., curvature

measures the rate at which a curve is turning.

Example 3.5.2. In our second example we consider a circle with radius r and a coun-

terclockwise parametrization given by

γ(t) = (r cos(t), r sin(t), 0).

73

By (3.63) we have

κ(t) =
‖γ′ × γ′′‖
‖γ′‖3

=
‖(−r sin(t), r cos(t), 0)× (−r cos(t),−r sin(t), 0)‖

‖(−r sin(t), r cos(t), 0)‖3

=
1

r
.

Thus a circle has constant curvature κ(t) = 1
r
.

Example 3.5.3. In the last example we consider an ellipse given by

γ(t) = (a cos(t), b sin(t), 0)

where a, b > 0. From (3.63) we have

κ(t) =
‖γ′ × γ′′‖
‖γ′‖3

=
‖(−a sin(t), b cos(t), 0)× (−a cos(t),−b sin(t), 0)‖

‖(−a sin(t), b cos(t), 0)‖3

=
ab

(a2 sin2(t) + b2 cos2(t))3/2
,

and therefore

κ(t) =
ab

(a2 sin2(t) + b2 cos2(t))3/2
.

Notice that when a > b, κ attains its maximal value a
b2

when sin(t) = 0, i.e., the denominator

is minimal. Furthermore, κ attains its minimal value b
a2

when cos(t) = 0, i.e., where the

denominator is maximal.

74

This is consistent with the fact that the curvature of a line is 0 (Example 3.5.1) and hence

the regions of the ellipse that are more linear will have smaller values of κ compared to those

regions of the ellipse that have more curve, i.e., less linear.

We would like to extend (3.63) from a space curve to a surface in R3. In order to do

so, the definition must now be formulated in terms of the normal of the surface due to

its uniqueness (in the same way that we used the tangent for the curve). To this end, let

σ : U → R3 denote the surface, p = (u0, v0) ∈ U ⊂ R2 a point, and Tσp the tangent space of

σ at the point p. Then it follows that the unit normal vector at p is

N =
σu × σv
‖σu × σv‖

, (3.68)

where σu = σu(p) and σv = σv(p). It is important to notice that ‖N‖ = NTN = 1 and

therefore

2

(
∂N

∂u

)T
N = 0 and 2

(
∂N

∂v

)T
N = 0.

From this we know that Nu, Nv are orthogonal to N and thus Nu, Nv ∈ Tσp.

As mentioned above, to define the curvature κ of a surface we want to measure the

change in N however, N = N(u, v) thus we must consider both Nu and Nv. This could be

done by using the Jacobian matrix for N however, this derivation does not remain the same

under reparametrization. To ensure that reparametrization does not affect the curvature,

we consider the mapping W : Tσp→ Tσp defined by

W (σu) = −Nu = aσu + bσv and W (σv) = −Nv = cσu + dσv. (3.69)

where a, b, c, d ∈ R and it should be noted that span{σu, σv} = Tpσ and −Nu,−Nv ∈ Tpσ.

75

By (3.69) we see that W has the following matrix representation

W =

a c

b d

 ∈ R2×2

thus we can write (3.69) as

[
σu σv

]a c

b d

 =

[
−Nu −Nv

]
.

This gives σTu
σTv

[σu σv

]a c

b d

 =

σTu
σTv

[−Nu −Nv

]

and therefore a c

b d

 =

‖σu‖2 σTu σv

σTv σu ‖σv‖2


−1 −σTuNu −σTuNv

−σTv Nu −σTv Nv

 . (3.70)

Thus the shape operator W defined by (3.69) where

a c

b d

 =

‖σu‖2 σTu σv

σTv σu ‖σv‖2


−1 σTuW (σu) σTuW (σv)

σTvW (σu) σTvW (σv)

 . (3.71)

As discussed earlier, we use W rather than the Jacobian to ensure that the curvature is

unchanged under reparameterization. The idea behind using W is that a reparametrization

will change Nu and Nv but will also change σu and σv. It turns out that these changes are

directly related and so the map remains essentially the same. This implies that the shape

operator is more directly related to a geometric property of the surface than the vectors Nu

and Nv.

Theorem 3.5.1. The shape operatorW is unchanged under reparametrization which pre-

serve orientation and it changes to −W under reparametrization which reverse orientation.

76

Proof. : See [53] for details.

With the shape operator W , we can now define the principal curvatures. The principal

curvatures, denote as κ1 and κ2, are the eigenvalues of the shape operator W . It follows

by Theorem 3.5.1 that under reparameterization the principal curvatures are unchanged in

absolute value. The principal curvatures lead to the definition of the Gaussian curvature

κG = κ1 · κ2 (3.72)

and the mean curvature

κM =
κ1 + κ2

2
. (3.73)

To see the difference between (3.72) and (3.73) we consider the following examples.

Example 3.5.4. Consider a cylinder defined by

σ(u, v) = (cos(v), sin(v), u).

Then we have

σu = (0, 0, 1), σv = (− sin(v), cos(v), 0), N = (− cos(v), sin(v), 0),

and hence

Nu = (0, 0, 0) and Nv = (− sin(v),− cos(v), 0).

By (3.70) it follows that

W =

1 0

0 1


−1 0 0

0 1

 =

0 0

0 1

 .
One can readily see that the eigenvalues of W are κ1 = 0 and κ2 = 1. This is consistent

77

with the fact that the normal direction associated to κ1 is vertical and hence the principal

curvature is 0. Moreover, the normal direction associated to κ2 is that of a planar circle with

radius 1 and hence the principal curvature is 1 by Example 3.5.2. The Gaussian (3.72) and

mean (3.73) curvatures are thus

κG = 0 and κM =
1

2
.

Notice that (3.63), (3.72), and (3.73) are defined for curves and surfaces that are parame-

terized parametrically. The naturally question that arises is how can we define curvature for

a curve or surface with a Cartesian representation. For planar curves the following theorem

holds true.

Theorem 3.5.2. Consider the planar curve, Φ(x, y) = 0. Then

κ =
(−Φy,Φx) · Hess(Φ) · (−Φy,Φx)

T

|∇Φ|3
(3.74)

where κ is the curvature of Φ at the point (x, y), ∇ is the gradient, and Hess is the Hessian.

Proof. See [24] for details.

We can examine (3.74) by using Example 3.5.2 as follows.

Example 3.5.5. Consider a circle of radius r given by

Φ(x, y) = x2 + y2 − r2.

Then

(−Φy,Φx) = (−2y, 2x), ∇Φ = (2x, 2y) and Hess(Φ) =

2 0

0 2

 .

78

Therefore, (3.74) gives

κ =

(−2y, 2x) ·

2 0

0 2

 · (−2y, 2x)T

|(2x, 2y)|3
=

8x2 + 8y2

(4x2 + 4y2)3/2
=

1

(x2 + y2)1/2
=

1

r
,

which is consistent with the calculation in Example 3.5.2.

The results for Example 3.5.3 are similar.

For surfaces in R3 with Cartesian representation, the Gaussian and mean curvature are

defined as in the following theorem.

Theorem 3.5.3. Let Φ(x, y, z) = 0 define an implicit surface. Then

κG =
∇Φ · Hess∗(Φ) · ∇Φ

|∇Φ|4
, (3.75)

and

κM =
∇Φ · Hess(Φ) · ∇ΦT − |∇Φ|2 tr(Hess(Φ))

2 |∇Φ|3
, (3.76)

where tr(·) is the trace, ∇ is the gradient, Hess is the Hessian, and Hess∗ is the adjoint of

the Hessian.

Proof. See [24] for details.

We can examine (3.74) in Example 3.5.4 as follows.

Example 3.5.6. Consider a cylinder defined by

Φ(x, y, z) = x2 + y2 − 1.

79

Then

∇Φ = (2x, 2y, 0) and Hess(Φ) =


2 0 0

0 2 0

0 0 0

 ,
which gives that tr(Hess(Φ)) = 4 and Hess(Φ)∗ is the zero matrix. Then it readily follows

that κG = 0 and

κM =

(2x, 2y, 0) ·


2 0 0

0 2 0

0 0 0

 · (2x, 2y, 0)T − 4 |(2x, 2y, 0)|2

2 |(2x, 2y, 0)|3
=
−4x2 − 4y2

(4x2 + 4y2)3/2
= −1

2
.

Notice that the mean curvature here is negative but ∇Φ = (2x, 2y, 0) is the outward pointing

normal. Thus, as one would expect, the mean curvature vector defined as
κM
|∇Φ|

∇Φ points

into the cylinder and has magnitude 1
2
. The magnitude of the curvature is consistent with

Example 3.5.4.

3.5.2 Numerical results

As mentioned in Chapter 1, mesh adaptation has been proven to be an extremely useful

tool due to its ability to concentrate elements in specific regions of the domain or, now with

the method described above, the surface. One of the main advantages to using an adaptive

mesh rather than a uniform mesh is that fewer elements are required to accurately represent

a curve or a surface. To see this we compare an adaptive mesh with a curvature based metric

tensor to a uniform mesh for the ellipse defined by

Φ(x, y) =
x2

64
+ y2 − 1.

80

More specifically, Figure 3.1(a) and (e) show the adaptive mesh for the ellipse using a total of

N = 100 elements. Indeed, the concentration of elements is higher in the regions with larger

curvature and smaller in the more linear regions of the curve which is consistent with the

curvature based metric tensor used. With this concentration, the adaptive mesh represents

the geometry of the curve well with only 100 total elements. However, when a uniform mesh

is used, significantly more elements are required to attain a similar concentration of elements

in the curved regions (Figure 3.1(e)).

From Figure 3.1(b) and (f), one can readily see that curve is not well represented when

a uniform mesh with a total of 100 elements is used. The elements are equidistant along the

curve making the regions with larger curvature poorly represented. When we increase the

number of elements to 300, although better than N = 100, the uniform mesh can still be

seen to be a less than ideal representation of the curve, specifically in the regions with large

curvature. Finally, when N = 500, we can see a similar concentration in the curved regions to

that of the adaptive mesh. The concentration of elements at x = −8 and 8 (Figure 3.1(h)) is

similar to the concentration with the adaptive mesh (Figure 3.1(e)). There are more elements

in the linear regions of the curve when using the uniform mesh with N = 500 compared to

the adaptive mesh however, this is not necessary since these more linear regions can be well

represented with few elements. Thus, the curve has a similar representation when using

an adaptive mesh with 100 total elements or a uniform mesh with 500 total elements. For

computational purposes, one can see that it is a significant advantage to use the adaptive

mesh method compared to a uniform mesh as shown in Figure 3.1.

With this in mind, we present numerical results for a selection of two- and three-

dimensional examples to demonstrate the performance of the surface moving mesh method

described in the previous sections. The main focus will be on showing how our method

can be used for mesh smoothing and concentration. To assess the quality of the generated

meshes, we compare the equidistribution (Qeq) and alignment (Qali) mesh quality measures

81

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(a) N = 100 adaptive.

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(b) N = 100 uniform.

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(c) N = 300 uniform.

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(d) N = 500 uniform.

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(e) Zoomed in (a).

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(f) Zoomed in (b).

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(g) Zoomed in (c).

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(h) Zoomed in (d).

Figure 3.1: Adaptive and uniform meshes for the ellipse with N = 100 for the adaptive mesh
and N = 100, 300, and 500 for the uniform meshes.

which are defined as

Qeq = max
K∈Th

det
(
(F ′K)TMKF

′
K

) 1
2

σh/N
, (3.77)

and

Qali = max
K∈Th

tr
[(

(F ′K)TMKF
′
K

)−1
]

(d− 1) det ((F ′K)TMKF ′K)−
1

d−1

. (3.78)

These measures are indications of how closely the mesh satisfies the equidistribution condi-

tion (3.5) and the alignment condition (3.10), respectively. The closer these quality measures

are to 1, the closer they are to a uniform mesh with respect to the metric MK . It should

be noted that the alignment condition does not apply to the two-dimensional case where a

“surface” is actually a curve. Mathematically, when d = 2, (F ′K)T MKF
′
K is a number and

hence (3.10) is always satisfied.

For all computations we use p = 3/2 and θ = 1/3 in the meshing functional (3.15). This

choice has been known to work well in bulk mesh applications. Interestingly, we have found

that it also works well for all surface mesh examples we have tested. We take τ = 0.01,

82

dt = 0.01, and

Pi = det (M(xi))
p(d−1)−d

2 .

The latter is to ensure that the MMPDE (3.44) be invariant under scaling transformations

of M. For all of the results, we run to a final time of 1.0.

We choose two forms of MK . The first is MK = I, which will ensure the mesh moves

to become as uniform as possible with respect to the Euclidean norm. The second is a

curvature-based metric tensor defined as a scalar matrix MK = (kK + ε) I, where kK is the

mean curvature and ε is machine epsilon. The mean curvature is defined [24] for a curve

Φ(x, y) = 0 in R2 as (3.74) given by

k =

∣∣∣∣∣∣ΦxxΦ
2
y − 2ΦxyΦxΦy + Φ2

xΦyy(
Φ2
x + Φ2

y

) 3
2

∣∣∣∣∣∣
and for a surface Φ(x, y, z) = 0 in R3 as (3.76) given by

k =

∣∣∣∣∣D1 +D2 +D3 −D4

2
(
Φ2
x + Φ2

y + Φ2
z

)3/2

∣∣∣∣∣ ,
where

D1 = Φx (ΦxΦxx + ΦyΦxy + ΦzΦxz) ,

D2 = Φy (ΦxΦxy + ΦyΦyy + ΦzΦyz) ,

D3 = Φz (ΦxΦxz + ΦyΦyz + ΦzΦzz) ,

D4 =
(
Φ2
x + Φ2

y + Φ2
z

)
(Φxx + Φyy + Φzz) .

We would like to explore more metric tensors in future work but will focus on these two for

the numerical results in this thesis.

Not all of the examples have an analytic expression for Φ thus, in these cases, the normal

vectors must approximated using spline functions. The initial mesh for all of the examples

83

provided is taken to be fine enough so that this approximation does not affect the mesh

movement however, if the initial mesh is too coarse, the nodes can move from the surface

during adaptation. To see this consider the cardioid defined by

Φ(x, y) =
(
x2 + y2

)2
+ 4x(x2 + y2)− 4y2. (3.79)

We adapt the mesh on the curve for both N = 10 and N = 40. Here, we consider the

metric tensor associated to the Euclidean metric (Figure 3.2(a) - (f)). For the curvature

based metric tensor, see Figure 3.16. In this example, we fix the node x1 = (0, 0). Figure 3.2

compares the final meshes using normal vectors calculated explicitly to the final meshes using

normal vectors approximated via spline functions for the Euclidean metric.

From Figure 3.2 we see that the mesh adapts from a very nonuniform initial mesh (Fig-

ure 3.2(a) and (d)) to a uniform final mesh (Figure 3.2(b),(c),(e), and (f)) which is consis-

tent with the fact that the metric tensor corresponds to the Euclidean metric. However, for

N = 10, we see the nodes move off of the curve when the normal vectors are approximated

(Figure 3.2(c)) whereas when the normal vectors are calculated explicitly, the nodes remain

on the curve (Figure 3.2(b)). For N = 40, the nodes remain on the curve when the normal

vectors are approximated and calculated explicitly as shown in Figure 3.2(e) and (f).

This example shows that the initial mesh must be fine enough in order for the nodes to

remain on the surface during movement when the normal vectors are approximated. When

the initial mesh is fine, however, the final meshes when using approximate normal vectors

and analytical normal vectors are identical. When a Cartesian representation is available,

we will note whether the normal vectors are approximated or calculated explicitly however,

the initial meshes are fine enough that there is no difference in the final mesh between the

approximate and explicit normal vectors.

84

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Initial Mesh.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) Final Mesh, explicit n.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(c) Final Mesh, approximate n.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(d) Initial Mesh.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(e) Final Mesh, explicit n.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(f) Final Mesh, approximate n.

Figure 3.2: Meshes of N = 10 and N = 40 for the cardioid using analytical and approximate
normal vector with the Euclidean metric tensor.

85

Example 3.5.7. For the first example, we generate adaptive meshes for the unit circle

in two dimensions,

Φ(x, y) = x2 + y2 − 1.

We take N = 80 and fix the node x1 = (1, 0). The normal vectors are calculated explicitly

in this example.

Figure 3.3 shows the meshes for this example. Studying the figures we see that the

initial mesh Figure 3.3(a) is very nonuniform but the final meshes Figure 3.3(b) and (c) have

adapted to be equidistant along the curve. Moreover, the final meshes for both MK = I

(Figure 3.3 (b)) and MK = (kK + ε)I (Figure 3.3(c)) adapt the mesh in the same manner.

This is consistent with the fact that the curvature of a circle is constant thus the nodes do

not concentrate in one particular region of the curve. The final meshes in both cases provide

good size adaptation and are more uniformly distributed along the curve when compared

with the initial mesh. This can be further supported assessing the mesh quality measure for

which Qeq improves from 7.509604 to 1.000004 for both cases of MK . The fact that Qeq ≈ 1

indicates that the mesh is close to satisfying the equidistribution condition (3.5) and hence

the mesh is almost uniform with respect to the metric tensor MK . It can also be seen that

the nodes remain on the curve Φ, which is an inherent feature of the new surface moving

mesh method and indeed an important one when adapting a mesh on a curve.

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Initial Mesh

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Final Mesh, MK = I

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c) Final Mesh, MK = (kK + ε)I

Figure 3.3: Example 3.5.7. Meshes of N = 80 are obtained for Φ(x, y) = x2 + y2 − 1.

86

Example 3.5.8. The second two-dimensional example is the ellipse defined by

Φ(x, y) =
x2

64
+ y2 − 1.

In this example we take N = 60 and fix the node x1 = (8, 0). The normal vectors in this

example are approximated via spline functions.

The initial nodes (Figure 3.4(a)) are randomly distributed along the curve. However, for

MK = I, the final mesh (Figure 3.4(b)) is equidistant along the ellipse providing a much

more uniform mesh. This can also be seen in Qeq which improves from 5.497002 initially to

1.026912 in the final mesh.

Now considering the curvature-based metric tensor (Figure 3.4(c)), we can see a high

concentration of elements near the regions of the ellipse with large curvature. This is con-

sistent with the equidistribution principle which requires higher concentration in the regions

with larger determinant of the metric tensor (larger mean curvature in the current situation).

The mean curvature is large in the regions of the ellipse close to x = −8, 8 and almost 0

for x ∈ (−2, 2). From Figure 3.4(c) we can see that the adaptation with MK = (kK + ε)I

provides a mesh that represents the shape of the curve much better than other two meshes.

The improvement of Qeq from 5.126216 to 1.015848 indicates that the final mesh is almost

uniform with respect to the curvature-based metric tensor.

Example 3.5.9. For the next two-dimensional example, we generate adaptive meshes

for the sine curve defined by

Φ(x, y) = 4 sin(x)− y.

In this example we take N = 60 and fix the end nodes x1 = (0, 0) and x61 = (2π, 0). We

calculate the normal vectors explicitly in this example.

Figure 3.5 shows the meshes for this example. From Figure 3.5(a) and (b) we see that

for MK = I, the mesh becomes much more uniform. This is consistent with the fact that for

87

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(a) Initial Mesh

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(b) Final Mesh, MK = I

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

(c) Final Mesh, MK = (kK + ε)I

Figure 3.4: Example 3.5.8. Meshes of N = 60 are obtained for Φ(x, y) =
x2

64
+ y2 − 1.

M = I, the minimization of the meshing functional will make the mesh more uniform with

respect to the Euclidean norm. The observation can be further supported by assessing the

mesh quality measures for which Qeq measure improves from 4.183312 to 1.002906 indicating

that the final mesh satisfies the equidistribution condition (3.5) closely.

Now studying Figure 3.5(c) where MK = (kK + ε)I is used, we see that there is a high

concentration of mesh elements in regions with large curvature, i.e., the hill at y = 4 and cup

at y = −4, which is consistent with the use of the curvature-based metric tensor. Moreover,

the equidistribution measure Qeq improves from 6.254755 to 1.007493. This indicates that

although the mesh may seem nonuniform in the Euclidean metric, it is almost uniform in

the metric MK .

As discussed in Section 3.4, theoretically we know that the value of Ih is decreasing and

|K| is bounded below. To see these numerically, we plot Ih and |K|min as functions of t

in Figure 3.6, where |K|min denotes the minimum area of K over all elements in Th. The

numerical results are shown to be consistent with the theoretical predictions. Specifically, for

MK = I, Figure 3.6(a) shows that Ih is decreasing and bounded below by 9.535. Additionally,

Figure 3.6(b) suggests that |K|min is bounded below by 0.235 which is the value of |K|min of

the initial mesh. As we see, |K|min first increases and then converges to about 0.285 ≈ |S|
N
.

The reason is because in the final mesh, the elements are close to being uniform with respect

88

-1 0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

(a) Initial Mesh

-1 0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

(b) Final Mesh, MK = I

-1 0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

(c) Final Mesh, MK = (kK + ε)I

Figure 3.5: Example 3.5.9. Meshes of N = 60 are obtained for Φ(x, y) = 4 sin(x)− y.

to the Euclidean metric and thus |K| ≈ |S|
N

for all K. Since the initial mesh is nonuniform,

we expect an increase in |K|min as the mesh is becoming more uniform. Moreover, as the

mesh reaches the limiting mesh trajectory around t = 0.05, we see that |K|min converges as

shown in Figure 3.6(b).

For the case with MK = (kK + ε)I, the numerical results are again consistent with the

theoretical predictions. Figure 3.6(c) shows that Ih is decreasing for all time and bounded

below by 15.5. This figure also shows that at around t = 0.15, Ih begins to converge. In

Figure 3.6 (d), |K|min has similar properties to Figure 3.6(b). That is, we see an initial

increase in |K|min after which, the value converges to 0.11 starting at around t = 0.15.

Furthermore, Figure 3.6(d) suggests that |K|min is bounded below by the initial value of

0.045.

Example 3.5.10. As the final two-dimensional example, we generate adaptive meshes

for the lemniscate defined by

Φ(x, y) = (x2 + y2)2 − 4(x2 − y2).

In this example we adapt the mesh on the curve for both N = 60 and N = 120. In both

situations, we fix the node x1 = (2, 0). The normal vectors are calculated explicitly.

89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9.53

9.54

9.55

9.56

9.57

9.58

9.59

9.6

9.61

(a) Ih, MK = I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

(b) |K|min, MK = I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15.5

16

16.5

17

17.5

18

18.5

(c) Ih, MK = (kK + ε)I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05

0.06

0.07

0.08

0.09

0.1

(d) |K|min, MK = (kK + ε)I

Figure 3.6: Example 3.5.9. Ih and Kmin plotted as functions of t for Φ(x, y) = 4 sin(x)− y.

90

From Figure 3.7 we see that for N = 60 the mesh adapts from a very nonuniform initial

mesh (Figure 3.7(a)) to a uniform final mesh (Figure 3.7(b)) when considering the metric ten-

sor corresponding to the Euclidean metric. The nodes are equidistant apart while remaining

on the curve. This improvement in uniformity can be further supported by the equidistribu-

tion quality measure which improves from 2.083287 for the initial mesh to 1.002549 for the

final mesh.

We see a similar result when the curvature-based metric tensor is used (Figure 3.7(c)).

A higher concentration of nodes occurs in the circular regions with larger curvature com-

pared to the cross section which has smaller curvature (i.e., the linear regions). It is not a

significant difference in concentration but this is consistent with the fact that the curvature

of the lemniscate is close to but not exactly constant. The equidistribution quality measure

improves from 3.364232 to 1.001011 indicating that the final mesh is much more uniform

with respect to the curvature-based MK than the initial mesh.

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Initial Mesh

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(b) Final Mesh, MK = I

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(c) Final Mesh, MK = (kK + ε)I

Figure 3.7: Example 3.5.10. Meshes of N = 60 are obtained for the lemniscate Φ(x, y) =
(x2 + y2)2 − 4(x2 − y2).

For N = 120, Figure 3.8 shows similar findings. When considering the Euclidean metric,

we see the mesh, Figure 3.8(a), is very nonuniform initially and adapts to a equidistant

spacing of the nodes along the curve. This is further supported in the quality measures for

which the equidistribution measure improves from 2.552134 to 1.002167 indicating that the

final mesh is close to satisfying the equidistribution condition.

91

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Initial Mesh

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(b) Final Mesh, MK = I

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(c) Final Mesh, MK = (kK + ε)I

Figure 3.8: Example 3.5.10. Meshes of N = 120 are obtained for the lemniscate Φ(x, y) =
(x2 + y2)2 − 4(x2 − y2).

The curvature-based metric tensor results in a similar adaptation as before. Figure 3.8(c)

shows the final mesh has adapted in such a way where there is a higher concentration of nodes

in those regions of the curve with larger curvature, i.e., circular regions. Comparatively,

there are fewer nodes in the cross section which has smaller curvature. The difference in

concentration can be clearly seen in Figure 3.8(c) with N = 120 nodes. The adaptation is

consistent with the curvature of the lemniscate, which is close to but not exactly constant.

This improvement in uniformity can be further supported by the equidistribution quality

measure which improves from 8.023253 for the initial mesh to 1.001855 for the final mesh.

Example 3.5.11. Let us now consider surfaces in R3. In this first example, we consider

adaptive meshes for the torus defined by

Φ(x, y, z) =
(

2−
√
x2 + y2

)2

+ z2 − 1,

where x, y ∈ [−3, 3], and z ∈ [−1, 1]. We take N = 3200. The normal vectors are approxi-

mated using spline functions in this example.

Figure 3.9 shows the meshes for this example in two different views. Studying Fig-

ure 3.9(a), the initial mesh, and Figure 3.9(b), the final mesh with MK = I, we can see that

92

the final mesh provides a more uniform distribution of the nodes. That is consistent with

the use of the metric tensor M = I whose goal is to make the mesh as uniform as possible

in the Euclidean norm. This can also be confirmed from the equidistribution and alignment

quality measures. The equidistribution measure for the initial mesh is 15.50150 and for the

final mesh 1.332488. Similarly, the initial alignment quality measure is 30.63276 compared

to that of the final mesh which is 1.920701.

For the curvature-based metric tensor, we see similar results to that of the Euclidean

metric. That is, the final mesh for the curvature-based metric tensor, Figure 3.9(c), looks

identical to the final mesh for the Euclidean metric, Figure 3.9(b). This is because the ab-

solute value of the mean curvature of a torus is close to constant and hence, the elements do

not concentrate in any particular region of the surface.

4

2

0

-2

-1 -4

-0.5

0

0.5

-4 -3 -2 -1 0 1 2 3 4

1

(a) Initial Mesh

3

2

1

0

-1

-2

-3-0.5

0

0.5

-3 -2 -1 0 1 2 3

(b) Final Mesh, MK = I

3

2

1

0

-1

-2

-3-0.5

0

0.5

-3 -2 -1 0 1 2 3

(c) Final Mesh, MK = (kK + ε)I

-4

-1

-3 -2

-0.5

-1 0

0

1 2

0.5

3 4

1

(d) side view of (a)

-3 -2

-0.5

-1 0

0

1 2

0.5

3

(e) side view of (b)

-3 -2

-0.5

-1 0

0

1 2

0.5

3

(f) side view of (c)

Figure 3.9: Example 3.5.11. Meshes of N = 3200 are obtained for the surface Φ(x, y, z) =
(2−

√
x2 + y2)2 + z2 − 1.

93

Example 3.5.12. The second three-dimensional example is the cylinder defined by

Φ(x, y, z) = x2 + y2 − 1,

where z ∈ [−2, 2]. For this example we take N = 3200. In this example, the normal vectors

are calculated explicitly. Two boundary nodes were fixed, x1 = (0, 1,−2) and x1 = (0, 1, 2),

but the remaining boundary nodes were allowed to slide along the boundary. Although the

cylinder has constant curvature like Example 3.5.11, this example shows the adaptation on

a surface with a boundary.

Figure 3.10 shows the adaptive meshes for the cylinder in two different views. For both

MK = I and MK = (kK + ε)I, the mesh becomes much more uniform and identical. This

is consistent with the constant curvature of the cylinder hence the nodes do not concentrate

in any specific region of the surface. The equidistribution quality measure improves from

19.07656 to 1.054857 and the alignment quality measure from 23.35403 to 1.192268. The

fact that the final quality measures for both conditions are close to 1 indicates that the final

meshes are close to satisfying conditions (3.5) and (3.10).

Example 3.5.13. Our next example is the sine surface in three dimensions defined by

Φ(x, y, z) = sin(x+ y)− z,

where x ∈ [−2, 2], y ∈ [π
2
, 3π

2
], and z ∈ [−1, 1]. For this example we take N = 3200 and fix

the boundary nodes. The normal vectors are approximated using spline functions.

Figure 3.11 shows the adaptive meshes for this examples in two different views. It is clear

in Figure 3.11, when MK = I, the mesh becomes more uniform in the Euclidean metric from

the initial mesh Figure 3.11(a) to the final mesh Figure 3.11(b). The top view of the surface,

Figure 3.11(d) and (e), further confirm this. It is also supported by the improvement of the

quality measures from Qeq = 4.234781 to 1.669880 and Qali = 6.643755 to 1.702617.

94

-2

-1.5

-1

0.5

-0.5

0

0

0.5

-0.5 0.50

1

-0.5

1.5

2

(a) Initial Mesh

-2

-1.5

-1

0.5

-0.5

0

0

0.5

-0.5 0.5

1

0-0.5

1.5

2

(b) Final Mesh MK = I

-2

-1.5

-1

0.5

-0.5

0

0

0.5

-0.5 0.5

1

0-0.5

1.5

2

(c) Final Mesh MK = (kK + ε)I

-2

-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) side view of (a)

-2

-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) side view of (b)

-2

-1.5

-0.5

-1

0

-0.5

0.5

0

0.5

1

1.5

2

(f) side view of (c)

Figure 3.10: Example 3.5.12. Meshes of N = 3200 are plotted for Φ(x, y, z) = x2 + y2 − 1.

95

When MK is curvature-based, we see a similar result to Example 3.5.9. That is, Fig-

ure 3.11(c) and (f) show that the elements are more concentrated in those regions of the

surface with larger curvature, i.e., the dip when z = −1 and the hill when z = 1. The quality

measures with respect to the metric tensor improve from Qeq = 21.696868 to Qeq = 1.634091

and Qali = 6.527829 to Qali = 2.586702. The final quality measure for the equidistribution

condition is close to 1 hence indicating that the final mesh is close to satisfying (3.5). The

final quality measure for the alignment condition is not as close to 1 as the equidistribu-

tion condition. Recall that θ in the meshing functional (3.15) balances equidistribution and

alignment and the choice θ = 1/3 has been used in the computation. Further computations

show that increasing θ will improve the alignment quality but worsen the equidistribution

quality, and vice versa. This suggests that a perfectly uniform mesh cannot be obtained by

minimizing (3.15) for the curvature-based metric tensor for this example.

-2

-1

0
-1

-0.5

0

1

0.5

1

2 2.5 3 3.5 4 24.5

(a) Initial Mesh

-2

-1

0
-1

-0.5

0

1

0.5

1

2 2.5 3 3.5 4 24.5

(b) Final Mesh, MK = I

-2

-1

0
-1

-0.5

0

1

0.5

1

2 2.5 3 3.5 4 24.5

(c) Final Mesh, MK = (kK + ε)I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

2.5

3

3.5

4

4.5

(d) top view of (a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

2.5

3

3.5

4

4.5

(e) top view of (b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

2.5

3

3.5

4

4.5

(f) top view of (c)

Figure 3.11: Example 3.5.13. Meshes of N = 3200 for the surface Φ(x, y, z) = sin(x+ y)− z.

96

Finally, we would like to take a look at the changes of Ih and |K|min along the mesh

trajectory. As we recall from Section 3.4, |K| is bounded from below and Ih is decreasing.

These can be seen numerically for MK = I in Figure 3.12(a) and Figure 3.12(b). Similar

to what we saw in Example 3.5.9, Figure 3.12(a) shows that Ih is always decreasing and at

around t = 0.10 begins to converge. In Figure 3.12(b) we see an initial increase in the |K|min

value and then it begins to converge to 4.64×10−3 ≈ |S|
N

at t = 0.10. This initial increase, as

discussed above, is due to the nonuniformity of the initial mesh. That is, the initial mesh is

very nonuniform and therefore |K|min can be very small whereas when the mesh is adapted,

the mesh becomes more uniform and hence the values of |K| ≈ |S|
N

become almost identical.

This implies that the value of |K|min is likely to increase as the mesh adapts.

For the case with MK = (kK + ε)I, Figure 3.12(c) and (d) show similar findings. In

Figure 3.12(c) we see that Ih is decreasing for all time and converging beginning at around

t = 0.15. Figure 3.12(d) shows |K|min initially increases then begins to converge to about

2.0×10−4. Furthermore, |K|min is bounded below by the initial |K|min value of 0.90× 10−4.

These numerical results for the curvature based metric tensor further support the theoretical

predictions.

Example 3.5.14. Our final example explores the sphere and ellipsoid defined by an

icosahedral initial mesh (see [58] for more details). We begin with the sphere

Φ(x, y, z) = x2 + y2 + z2 − 1.

For this example we take N = 1280. The normal vectors are calculated explicitly for all

surfaces in this example.

As we see from Figure 3.13(a), the initial mesh is close to being uniform however, there

is a very slight difference in the final mesh Figure 3.13(b) when MK = I. Indeed, this slight

adaptation can be seen in the quality measures which change from Qeq = 1.068461 and

Qali = 1.025691 for the initial mesh to Qeq = 1.289843 and Qali = 1.025972 for the final

97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1980.4

1980.6

1980.8

1981

1981.2

1981.4

1981.6

(a) Ih, MK = I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4.44

4.46

4.48

4.5

4.52

4.54

4.56

4.58

4.6

4.62

10-3

(b) |K|min, MK = I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

(c) Ih, MK = (kK + ε)I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10-4

(d) |K|min, MK = (kK + ε)I

Figure 3.12: Example 3.5.13. Ih and Kmin are plotted as functions of t for Φ(x, y, z) =
sin(x+ y)− z.

98

mesh. The difference in the quality measures indicates that the initial icosahedral mesh is

almost uniform and so the moving mesh method does not affect the mesh significantly.

We further this example to consider adaptive meshes for the ellipsoid defined by

Φ(x, y, z) = x2 + y2 +
z2

4
− 1.

We move the mesh on the surface for both N = 1280 and N = 5120.

First consideringN = 1280, Figure 3.14 shows the meshes for this example in two different

views. Studying Figure 3.14(a) and Figure 3.14(d), the initial mesh, and Figure 3.14(b) and

Figure 3.14 (e), the final mesh with MK = I, we can see that the final mesh adapts to provide

a higher concentration of elements in the middle region of the ellipsoid and fewer elements

near the tips. The quality measures improve from Qeq = 1.724289 and Qali = 1.453207

for the initial mesh to Qeq = 1.571401 and Qali = 1.102655 for the final mesh. Although

the initial mesh is close to uniform, the final mesh adapts in such a way to satisfy the

equidistribution and alignment condition on the surface. However, this is not an accurate

representation of the shape thus we consider a curvature-based metric tensor.

In our numerical experiments, when MK = (kK + ε)I is used, we saw the mesh adapt in a

similar way as with the Euclidean metric. This is because the curvature of the ellipsoid does

not change significantly at the tips thus not many nodes move there. With this in mind, we

altered the curvature-based metric tensor to concentrate more mesh elements at the tips of

the ellipsoid by redefining MK as

M̃K = MK +

(
1√

(zK − 2)2 + ε
+

1√
(zK + 2)2 + ε

)
I. (3.80)

Figure 3.14(c) and Figure 3.14(f) show the final mesh using this altered metric tensor. As we

can see, the mesh elements have concentrated at the tips of the ellipsoid thus better repre-

senting the shape of the surface. The equidistribution quality measure changes from 1.374300

initially to 1.967482 whereas the alignment quality measure from 1.453207 to 1.262156. Simi-

99

lar results are seen with a finer mesh in Figure 3.15 for both the Euclidean metric and altered

curvature-based metric.

-1
1

-0.5

0

0.5 1

0.5

1

0 0.5
0-0.5

-0.5
-1 -1

(a) Initial Mesh

-0.8

-0.6

-0.4

-0.2

0

0.5

0.2

0.4

0.6

0.8

0 0.5
0-0.5

-0.5

(b) Final Mesh MK = I

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) top view of (a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(d) top view of (b)

Figure 3.13: Example 3.5.14. Meshes of N = 1280 are plotted for Φ(x, y, z) = x2+y2+z2−1.

100

-2

-1.5

1

-1

-0.5

1

0

0

0.5

1

0

1.5

2

-1 -1

(a) Initial Mesh

-2

-1.5

-1

0.5

-0.5

0

0 0.5

0.5

1

0-0.5

1.5

-0.5

2

(b) Final Mesh MK = I

-1.5

-1

0.5

-0.5

0

0 0.5

0.5

1

0-0.5

1.5

-0.5

(c) Final Mesh M̃K in (3.80)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) top view of (a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(e) top view of (b)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(f) top view of (c)

Figure 3.14: Example 3.5.14. Meshes of N = 1280 are plotted for Φ(x, y, z) = x2+y2+
z2

4
−1.

101

-2

-1.5

1

-1

-0.5

1

0

0

0.5

1

0

1.5

2

-1 -1

(a) Initial Mesh

-2

-1.5

-1

0.5

-0.5

1

0

0

0.5

1

0-0.5

1.5

2

-1

(b) Final Mesh MK = I

-2

-1.5

1

-1

-0.5

0

0 0.5

0.5

1

0

1.5

-0.5

2

-1 -1

(c) Final Mesh M̃K in (3.80)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) top view of (a)

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(e) top view of (b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(f) top view of (c)

Figure 3.15: Example 3.5.14. Meshes of N = 5120 are plotted for Φ(x, y, z) = x2+y2+
z2

4
−1.

102

For completeness, we include additional 2D and 3D examples (see Figure 3.16 through

Figure 3.29). For all of the two-dimensional examples, unless otherwise specified, we use a

total of N = 100 elements and take dt = 0.01 and τ = 0.001. For all of the 3-dimensional

examples, unless otherwise specified, we take N = 3872 total elements with dt = 0.01 and

τ = 0.001. We run to a final time of 1.0 in both cases. As mentioned above, many of

the following examples do not have an explicit Cartesian representation, i.e., Φ(x, y) = 0

or Φ(x, y, z) = 0. In these cases we use spline functions to approximate the normal vector

required for the MMPDE method and approximate the curvature for the curve [49] and the

surface [14] via open source codes. All of the meshes show an accurate adaptation based on

the metric tensor used, similar to the examples discussed above.

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Initial Mesh

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) Final Mesh, MK = I

-5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(c) Final Mesh, MK = (kK + ε)I

Figure 3.16: Meshes for the cardioid (3.79) with N = 70.

[]

103

-10 -8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

(a) Initial Mesh

-10 -8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

(b) Final Mesh, MK = I

-10 -8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

(c) Final Mesh, MK = (kK + ε)I

Figure 3.17: Meshes for the spiral defined by x(θ) = θ cos(θ), y(θ) = θ sin(θ) for θ ∈ [0, 10].

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Initial Mesh

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Final Mesh, MK = I

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c) Final Mesh, MK = (kK + ε)I

Figure 3.18: Meshes for four-petal rose defined by x(θ) = cos(2θ) cos(θ), y(θ) = cos(2θ) sin(θ)
for θ ∈ [0, 2π].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Initial Mesh

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Final Mesh, MK = I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c) Final Mesh, MK = (kK + ε)I

Figure 3.19: Meshes for the flower defined by x(θ) = cos
(
θ
4

)
cos(θ), y(θ) = cos

(
θ
4

)
sin(θ)

for θ ∈ [0, 8π] with N = 220.

104

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Initial Mesh

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Final Mesh, MK = I

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c) Final Mesh, MK = (kK + ε)I

Figure 3.20: Meshes for the rose defined by x(θ) = cos
(

3θ
4

)
cos(θ), y(θ) = cos

(
3θ
4

)
sin(θ)

for θ ∈ [0, 8π] with N = 260.

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

(a) Initial Mesh

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

(b) Final Mesh, MK = I

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

(c) Final Mesh, MK = (kK + ε)I

Figure 3.21: Meshes for the ribbon defined by x(θ) = −10− 3θ2, y(θ) = θx(θ)
for θ ∈ [−0.85, 0.85].

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

(a) Initial Mesh

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

(b) Final Mesh, MK = I

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

(c) Final Mesh, MK = (kK + ε)I

Figure 3.22: Meshes for the nephroid defined by x(θ) = 3 cos(θ)− cos(3θ),
y(θ) = 3 sin(θ)− sin(3θ) for θ ∈ [0, 2π].

105

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Initial Mesh

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Final Mesh, MK = I

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

(c) Final Mesh, MK = (kK + ε)I

Figure 3.23: Meshes for limaçon defined by x(θ) = (−1 + 2 cos(θ)) cos(θ),
y(θ) = (−1 + 2 cos(θ)) sin(θ) for θ ∈ [0, 2π].

-6 -5 -4 -3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

(a) Initial Mesh

-6 -5 -4 -3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

(b) Final Mesh, MK = I

-6 -5 -4 -3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

(c) Final Mesh, MK = (kK + ε)I

Figure 3.24: Meshes for the dip defined by Φ(x, y) = x2 + 3x− y3 with N = 60.

106

22 0 -2
0

8

7

6

5

4

-2

3

2

1

(a) Initial Mesh

22 0 -2
0

8

7

6

5

4

-2

3

2

1

(b) Final Mesh, MK = I

22 0 -2
0

8

7

6

5

4

-2

3

2

1

(c) Final Mesh, MK = (kK + ε)I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) aerial view of (a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) aerial view of (b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(f) aerial view of (c)

Figure 3.25: Meshes for the paraboloid defined by Φ(x, y, z) = x2 + y2 − z.

107

2-4

-3

2

-2

0

-1

0

0

1

2

-2-2

3

4

(a) Initial Mesh

2-4

-3

2

-2

0

-1

0

0

1

2

-2-2

3

4

(b) Final Mesh, MK = I

2-4

-3

2

-2

0

-1

0

0

1

2

-2-2

3

4

(c) Final Mesh, MK = (kK + ε)I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) aerial view of (a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) aerial view of (b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(f) aerial view of (c)

Figure 3.26: Meshes for the saddle defined by Φ(x, y, z) = −x2 + y2 − z.

108

2

1

0
-2

-1

-1.5

-2

-1

-1

-0.5

0

0 -2

0.5

1

1

2

1.5

2

(a) Initial Mesh

2

1

0
-2

-1.5

-1-2

-1

-1

-0.5

0

0 -2

0.5

1

1

2

1.5

2

(b) Final Mesh, MK = I

2

1

0
-2

-1

-1.5

-2

-1

-1

-0.5

0

0 -2

0.5

1

1

2

1.5

2

(c) Final Mesh, MK = (kK + ε)I

-2

-2

-1.5 -1 -0.5 0

-1.5

0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

(d) aerial view of (a)

-2

-2

-1.5 -1 -0.5 0

-1.5

0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

(e) aerial view of (b)

-2

-2

-1.5 -1 -0.5 0

-1.5

0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

(f) aerial view of (c)

Figure 3.27: Meshes for the hyperboloid defined by Φ(x, y, z) = x2 + y2 − z2.

109

-0.25

-0.2

-0.15

20

-0.1

-0.05

0

0.05

0.1

0.15

10
0

15-10 1050-5-20 -10-15

(a) Initial Mesh

-0.25

-0.2

-0.15

20

-0.1

-0.05

0

0.05

0.1

0.15

10
0

15-10 1050-5-20 -10-15

(b) Final Mesh, MK = I

-0.25

-0.2

-0.15

20

-0.1

-0.05

0

0.05

0.1

0.15

10
0

15-10 1050-5-20 -10-15

(c) Final Mesh, MK = (kK + ε)I

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(d) aerial view of (a)

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(e) aerial view of (b)

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(f) aerial view of (c)

Figure 3.28: Meshes for the ripple defined by Φ(x, y, z) =
sin

(√
x2+y2+16

)
√
x2+y2+16

.

110

-5

5

0

10

5

15

20

25

30

(a) Initial Mesh

-5

5

0

10

5

15

20

25

30

(b) Final Mesh, MK = I

-5 0 5

5

10

15

20

25

30

(c) Final Mesh, MK = (kK + ε)I

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(d) aerial view of (a)

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(e) aerial view of (b)

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(f) aerial view of (c)

Figure 3.29: Meshes for the cavatappi with N = 10952 defined by
x(θ, γ) =

(
3 + 2 cos

(
π
35
θ
)

+ 0.1 cos
(

2π
7
θ
))

cos
(
π
30
γ
)
,

y(θ, γ) =
(
3 + 2 cos

(
π
35
θ
)

+ 0.1 cos
(

2π
7
θ
))

sin
(
π
30
γ
)
,

z(θ, γ) = 3 + 2 sin
(
π
35
θ
)

+ 0.1 sin
(

2π
7
θ
)

+ γ
6
.

111

3.6 Conclusions for surface mesh adaptation

In this chapter, we have proposed a direct approach for surface mesh movement and adapta-

tion that can be applied to a general surface with or without analytical expressions. We did

so by first proving the relation (3.2) between the area of a surface element in a Riemannian

metric and the Jacobian matrix of the affine mapping between the reference element and

any simplicial surface element. From this we formulated the equidistribution and alignment

conditions as given in (3.5) and (3.10), respectively. These two conditions enabled us to

formulate a surface meshing functional that is similar to a discrete version of Huang’s func-

tional (2.15) for bulk meshes [30]. The surface functional satisfies the coercivity condition

(3.19) for θ ∈ (0, 1/2] and p > 1.

We defined the surface MMPDE (3.42) as the gradient system of the meshing functional,

which utilizes surface normal vectors to inherently ensure that the mesh vertices remain on

the surface during movement. Equations (3.38) and (3.39) give explicit, compact formulas

for the mesh velocities making the time integration of the surface MMPDE (3.44) relatively

easy to implement. Moreover, we showed that this surface MMPDE satisfies the energy

decreasing property, which is one of the keys to proving Theorem 3.4.1. This theorem is an

important theoretical result as it states that the surface mesh remains nonsingular for all

time if it is so initially. We then proved Theorem 3.4.2 that states the mesh has limiting

meshes, all of which are nonsingular. Finally, both Theorem 3.4.1 and Theorem 3.4.2 were

proven for the fully discrete case in Theorem 3.4.3 and Theorem 3.4.4.

A point of emphasis is that the new method is developed directly on surface meshes thus,

making no use of any information on surface parameterization. As mentioned, the MMPDE

(3.42) only depends on surface normal vectors which can be computed even when the surface

has a numerical representation. This allows the new method to be applied to general surfaces

with or without explicit parameterization.

The numerical results presented in this work demonstrated that this new approach to

surface mesh movement is successful. In all of the examples, the final mesh was seen to be

112

much more uniform with respect to both cases of the metric tensor MK = I and MK =

(kK + ε)I which was supported by the mesh quality measures. Moreover, the theoretical

properties were numerically verified in Example 3.5.9 and Example 3.5.13 as we showed that

Ih is decreasing and |K| is bounded below.

113

Chapter 4

Conclusions

4.1 Conclusions

Variational mesh adaptation has proven to be an extremely useful tool however, Huang’s

functional (2.15), which is known to work well in a variety of problems, involves two di-

mensionless parameters. Although the parameters do not seem to affect the success of the

method, the optimal values are still unknown. To overcome this, in Chapter 2 we introduced

a new functional based on the equidistribution and alignment conditions. The formulation

of the new functional directly combines the equidistribution and alignment conditions into

a single condition with only one parameter. In particular, (2.17) does not contain the pa-

rameter θ from (2.15) which requires one to try to effectively balance the equidistribution

and alignment conditions. Various theoretical results for the new functional that are similar

to those of an existing functional were proven. More specifically, the new functional was

shown to be coercive (Theorem 2.3.1). With coercivity we could then prove Corollary 2.3.1

which states that the element altitude and volumes of the mesh trajectory of the discrete

MMPDE associated with the new functional are bounded away from zero. Moreover, if the

initial mesh is nonsingular then the mesh trajectory remains nonsingular for all time. Fur-

thermore, Corollary 2.26 showed the existence of limiting meshes that are critical points of

the meshing functional and all nonsingular.

Numerical results in Section 2.4 demonstrated that the new functional is comparable to

that of the existing functional. The new functional produces correct mesh concentration

and adaptation. In addition, the theoretical findings for the new functional were validated

114

through numerical results. More specifically, it was shown that the meshing functional was

monotonically decreasing and the minimum volume of the mesh element was bounded below

as functions of time. From these results, we conclude that the new functional is similar to

the existing functional in both numerical performance and theoretical properties.

After studying mesh adaptation for bulk meshes, the natural question that arises is if

these methods apply to surfaces. There are a number of mesh adaptation methods for

surfaces that have been proposed, all of which have strict requirements. In Chapter 3, we

proposed a direct approach for surface mesh movement and adaptation that can be applied

to a general surface with or without analytical expressions. We did so by first establishing

the relation (3.2) between the area of a surface element in a Riemannian metric and the

Jacobian matrix of the affine mapping between the reference element and any simplicial

surface element. With (3.2) and the concept of a uniform mesh we were then able to derive

the equidistribution and alignment conditions as given in (3.5) and (3.10), respectively. We

then combined these two conditions into a single surface meshing functional that is similar to

Huang’s functional (2.15) for bulk meshes. This surface meshing functional was then shown

to satisfy the coercivity condition (3.19) for θ ∈ (0, 1/2] and p > 1.

In order to minimize this meshing functional, we defined the surface MMPDE (3.42) as

a modified gradient system of the meshing functional. This MMPDE utilizes surface normal

vectors to project the nodes onto the tangential space and hence ensure that the mesh vertices

remain on the surface during movement. We then derived explicit, compact formulas for the

mesh velocities given by (3.38) and (3.39). This makes implementation and time integration

of the surface MMPDE (3.44) relatively easy. Furthermore, we showed that this surface

MMPDE satisfies the energy decreasing property, a key property to proving Theorem 3.4.1

which states that if the surface mesh is initially nonsingular then it will remain nonsingular

for all time. We then proved Theorem 3.4.2 stating the existence of a limiting meshes, all of

which are nonsingular. Finally, we extended these two theorems to the fully discrete case as

given in Theorem 3.4.3 and Theorem 3.4.4.

115

A point of emphasis is that the new method makes no use of any information on surface

parameterization since it is developed directly on surface meshes. As mentioned, the MM-

PDE (3.42) only depends on surface normal vectors which can be computed even when the

surface has a numerical representation. This allows the new method to be applied to general

surfaces with or without explicit parameterization.

The numerical results presented in Section 3.5 demonstrated that this new approach to

surface mesh movement is successful. In all of the examples, the final mesh was seen to be

much more uniform with respect to both cases of the metric tensor MK = I and MK =

(kK + ε)I which was supported by the mesh quality measures. Moreover, the theoretical

properties were numerically verified in Example 3.5.9 and Example 3.5.13 as we showed that

Ih is decreasing and |K| is bounded below. It was also shown that, assuming the initial

mesh is fine enough, spline functions can be used successfully to approximate the normal

vector required in computation. This proves the theoretical assumption that meshes without

explicit parameterization work well with our method without any additional assumptions or

requirements. Finally, throughout various examples in two-dimensions we have also showed

that the proposed method successfully adapts meshes with crossings.

4.2 Future Research

In order to better understand the performance of the new functional, more work and a variety

of examples are necessary. Specifically, one of the main disadvantages of the new functional

is that it is not convex whereas the existing functional is known to be polyconvex and can

be made convex with the special choice of the parameter θ (θ = 1/2). With this in mind,

it is hard to say how the non-convexity of the new functional affects the numerics. For the

examples we tested, we did not experience any difficulty with computation or CPU time but

this may be a topic for further investigations.

The future research for the surface mesh method is a natural continuation of the work

described above. The first goal is to implement more numerical examples with various

116

intricate curves and surfaces. Moreover, most of the numerical examples thus far are limited

to having fixed boundary points. It would be useful to provide more interesting examples for

which the points are allowed to move along the boundary. The monitor functions we used in

the examples are limited to simple scalar metric tensors. It will be interesting to see how an

anisotropic metric tensor, such as one based on the shape map, affects mesh movement and

quality. It is then necessary to develop the method to include adapting the nodes to improve

the solutions of PDEs defined on surfaces. This would require concentrating mesh elements

to account for the curvature of the surface as well as the solution of the PDE. The final step

in this research is to expand the method to moving surfaces which will be extremely useful

for a variety of applications.

117

References

[1] T. Apel. Anisotropic finite elements: local estimates and applications. B. G. Teubner

Stuttgart, 1999.

[2] T. Apel and M. Dobrowolski. Anisotropic interpolation with applications to the finite

element method. Computing, 47: 277-293, 1992.

[3] J.-D. Boissonnat, F. Chazal, and M. Yvinec. Geometric and Topological Inference.

Cambridge University Press, 2018.

[4] H. Borouchaki, P. L. George, P. Hecht, P. Laug, and E. Saletl. Delaunay mesh generation

governed by metric specification: Part I. Algorithms. Finite Elem. Anal. Des., 25: 61-83,

1997.

[5] F. J. Bossen and P. S. Heckbert. A pliant method for anisotropic mesh generation. 5th

International Meshing Roundtable, Sandia National Laboratories, 63-74, 1996.

[6] J. U. Brackbill and J. S. Saltzman. Adaptive zoning for singular problems in two

dimensions. J. Comput. Phys., 46: 342-368, 1982.

[7] P. Browne, C. J. Budd, M. Cullen, and H. Weller. Mesh adaptation on the sphere using

optimal transport and the numerical solution of a Monge-Ampére type equation. J.

Comput. Phys., 308: 102-123, 2016.

[8] G. F. Carey. Computational Grids: Generation, Adaptation, and Solution Strategies.

Taylor and Francis, Washinton, DC, 1997.

118

[9] M. J. Castro-Díaz, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic unstruc-

tured mesh adaptation for flow simulations. Int. J. Numer. Meth. Fluids, 25: 475-491,

1997.

[10] J. Cavalcante-Neto, M. Freitas, D. Siqueira, and C. Vidal. An adaptive parametric sur-

face mesh generation method guided by curvature. Proceedings of the 22nd International

Meshing Roundtable, Springer International Publishing. 425-443, 2014.

[11] B. Crestel, R. D. Russell, and S. Ruuth. Moving mesh methods on parametric surfaces.

Procedia Engineering, 124: 148-160, 2015.

[12] E. F. D’Azevedo and R. B. Simpson. On optimal triangular meshes for minimizing the

gradient error. Numer. Math., 59: 321-348, 1991.

[13] F. Dassi, S. Perotto, H. Si, and T. Streckenbach. A priori anisotropic mesh adaptation

driven by a higher dimensional embedding. Computer-Aided Design, 85: 111-122, 2017.

[14] A. Dastan. Gaussian and mean curvatures calculation on a triangulated 3D surface.

MathWorks, https://www.mathworks.com/matlabcentral/fileexchange/61136-gaussian-

and-mean-curvatures-calculation-on-a-triangulated-3d-surfaces_tid=FX_rc2_behav.

Updated 1/21/2017.

[15] A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace-Beltrami

Operator on implicitly defined surfaces. SIAM J. Numer. Anal., 45: 421-442, 2007.

[16] A. S. Dvinsky. Adaptive grid generation from harmonic maps on Riemannian manifolds.

J. Comput. Phys., 95: 450-476, 1991.

[17] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. Springer,

New York. Lecture Notes in Math., Vol. 1357, 2006.

[18] G. Dziuk and C. Elliott. Finite element methods for surface PDEs. Acta Numerica, 22:

289-396, 2013.

119

[19] G. Dziuk and C. Elliott. Surface finite elements for parabolic equations. J. Comput.

Math., 25: 385-407, 2007.

[20] J. Emert and R. Nelson. Volume and surface area for polyhedra and polytopes. Math.

Mag., 70: 365-371, 1997.

[21] L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Numer. Math.,

89: 641-667, 2001.

[22] L. A. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swapping

and smoothing. Int. J. Numer. Meth. Engrg., 40: 3979-4002, 1997.

[23] M. J. Gander and R. D. Haynes. Domain decomposition approaches for mesh generation

via the equidistribution principle. SIAM J. Numer. Anal., 50: 2111-2135, 2012.

[24] F. Goldman. Curvature formulas for implicit curves and surfaces. Comp. Aided Geo-

metric Design., 22: 632-658, 2005.

[25] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-

G. Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-independent

and solver-independent CFD. Part I: general principles. Int. J. Numer. Meth. Fluids,

32: 725-744, 2000.

[26] E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J.

Numer. Anal., 34: 452-461, 2014.

[27] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II, volume 14 of

Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition,

1996. Stiff and differential-algebraic problems.

[28] R. D. Haynes and F. Kwok. Discrete analysis of domain decomposition approaches for

mesh generation via the equidistribution principal. Math. Comp. 86: 233-273, 2017.

120

[29] E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J.

Numer. Anal., 34: 452-461, 2014.

[30] W. Huang. Variational mesh adaptation: isotropy and equidistribution. J. Comput.

Phys., 174: 903-924, 2001.

[31] W. Huang. Metric tensors for anisotropic mesh generation. J. Comput. Phys., 204:

633-665, 2005.

[32] W. Huang and L. Kamenski. On the mesh nonsingularity of the moving mesh PDE

method. Math. Comp., 87:1887-1911, 2018.

[33] W. Huang and L. Kamenski. A geometric discretization and a simple implementation

for variational mesh generation and adaptation. J. Comput. Phys., 301: 322-337, 2015.

[34] W. Huang, L. Kamenski, and R. D. Russell. A comparative numerical study of meshing

functionals for variational mesh adaptation. J. Math. Study, 48: 168-186, 2015.

[35] W. Huang, L. Kamenski, and H. Si. Mesh smoothing: an MMPDE approach. Research

note at the 24th International Meshing Roundtable, WIAS Preprint No. 2130, 2015.

[36] W. Huang, Y. Ren, and R. D. Russell. Moving mesh partial differential equations

(MMPDEs) based upon the equidistribution principle. SIAM J. Numer. Anal., 31:

707-730, 1994.

[37] W. Huang and R. D. Russell. Moving mesh strategy based upon a gradient flow equation

for two dimensional problems. SIAM J. Sci. Comput., 20: 998-1015, 1999.

[38] W. Huang and R. D. Russell. Adaptive Moving Mesh Methods. Springer, New York.

Applied Mathematical Sciences Series, Vol. 174, 2011.

[39] W. Huang, Y. Ren, and R. D. Russell. Moving mesh partial differential equations

(MMPDEs) based upon the equidistribution principle. SIAM J. Numer. Anal., 31:

707-730, 1994.

121

[40] P. M. Knupp. Jacobian-weighted elliptic grid generation. SIAM J. Sci. Comput., 17:

1475-1490, 1996.

[41] P. M. Knupp and N. Robidoux. A framework for variational grid generation: condi-

tioning the Jacobian matrix with matrix norms. SIAM J. Sci. Comput., 21: 2029-2047,

2000.

[42] P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC Press, Boca Raton,

1994.

[43] A. Kolasinski and W. Huang. A new function for variational mesh generation and

adaptation based on equidistribution and alignment conditions. Comput. Math. Appl.,

75: 2044-2058, 2018.

[44] B. Lévy and N. Bonneel. Variational anisotropic surface meshing with Voronoi parallel

linear enumeration. The 21st International Meshing Roundtable, Springer-Verlag, 344-

366, 2012.

[45] R. Li, T. Tang, and P. W. Zhang. Moving mesh methods in multiple dimensions based

on harmonic maps. J. Comput. Phys., 170: 562-588, 2001.

[46] V. D. Liseikin. Grid Generation Methods. Springer, Berlin, 1999.

[47] G. MacDonald, J. A. Mackenzie, M. Nolan, and R. H. Insall. A computational method

for the coupled solution of reaction-diffusion equations on evolving domains and mani-

folds: Application to a model of cell migration and chemotaxis. J. Comput. Phys., 309:

207-226, 2016.

[48] A. T. T. McRae, C. J. Cotter, and C. J. Budd. Optimal-transport-based mesh adaptivity

on the plane and sphere using finite elements. SIAM J. Sci. Comput., 40: A1121-A1148,

2018.

122

[49] A. Mjaavatten. Curvature of a 2D or 3D curve. MathWorks,

https://www.mathworks.com/matlabcentral/fileexchange/69452-curvature-of-a-2d-

or-3d-curve. Updated 11/26/2018.

[50] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for

compressible flow computations. J. Comput. Phys., 72: 449-466, 1997.

[51] J. D. Pryce. On the convergence of iterated remeshing. IMA J. Numer. Anal., 9:

315-335, 1989.

[52] J. Remacle, X. Li, M. S. Shephard, and J. E. Flaherty. Anisotropic adaptive simulation

of transient flows using discontinuous Galerkin methods. Internat. J. Numer. Methods

Engrg., 62: 899-923, 2005.

[53] H. Schlichtkrull. Curves and Surfaces- Lecture Notes for Geometry 1. Department of

Mathematics. University of Copenhagen.

[54] A.M. Stuart and A.R. Humphries. Dynamical systems and numerical analysis. Volume

2 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge

University Press, Cambridge, 1996.

[55] J. F. Thompson, Z. A. Warsi, and C. W. Mastin. Numerical Grid Generation: Founda-

tions and Applications. North-Holland, New York, 1985.

[56] N. Tuncer and A. Madzvamuse. Projected finite elements for systems of reaction-

diffusion equations on closed evolving spheroidal surfaces. Comm. Comp. Phys., 21:

718-747, 2017.

[57] Yu. V. Vassilevski, V. G. Dyadechko, and K. N. Lipnikov. Hessian-based anisotropic

mesh adaptation in domains with discrete boundaries. Russian J. Numer. Anal. Math.

Modelling, 20: 391-402, 2005.

123

[58] N. Wang and J. Lee. Geometric properties of the icosahedral-hexagonal grid on the

two-sphere. SIAM J. Sci. Comput., 33: 2536-2559, 2011.

[59] A. M. Winslow. Adaptive mesh zoning by the equipotential method. Technical Report

UCID-19062, Lawrence Livermore Laboratory, 1981.

[60] X. Xu, W. Huang, R. D. Russell, and J. F. Williams. Convergence of de Boor’s algorithm

for generation of equidistributing meshes. IMA J. Numer. Anal., 31: 558-596, 2011.

[61] S. Yamakawa and K. Shimada. High quality anisotropic tetrahedral mesh generation

via ellipsoidal bubble packing. 9th International Meshing Roundtable, Sandia National

Laboratories, 263-273, 2000.

124

Appendix A

Appendix

A.1 Proof of Corollary 2.2.1

Corollary A.1.1. Assume M is independent of A. Then

∂tr(AMAT)

∂A
= 2MAT , (A.1)

∂tr(A−TM−1A−1)

∂A
= −2A−1A−TM−1A−1. (A.2)

Moreover, assume A is independent of M. Then

∂tr(AMAT)

∂M
= ATA, (A.3)

∂tr(AM−1AT)

∂M
= −M−1ATAM−1. (A.4)

Proof. Let t be an entry of A. Then using Lemma 2.2.1 and Lemma 2.2.2, we have

∂tr(AMAT)

∂t
= tr

(
∂tr(AMAT)

∂(AMAT)

∂(AMAT)

∂t

)
= tr

(
∂(AMAT)

∂t

)
= tr

(
∂A

∂t
MAT + AM

∂AT

∂t

)
= tr

(
∂A

∂t
MAT

)
+ tr

(
AM

∂AT

∂t

)
= tr

(
MAT

∂A

∂t

)
+ tr

(
∂A

∂t
MAT

)
= tr

(
2MAT

∂A

∂t

)
.

Applying the chain rule (2.24) gives (A.1).

125

Alternatively, using Lemma 2.2.1 and Lemma 2.2.4, we have

∂tr(A−TM−1A−1)

∂t
= tr

(
∂tr(A−TM−1A−1)

∂A−T
∂A−T

∂t

)
= tr

(
2M−1A−1∂A

−T

∂t

)
= tr

(
2M−1A−1

(
−A−1∂A

T

∂t
A−T

))
= tr

(
−2A−1∂A

∂t
A−1A−TM−1

)
= tr

(
−2A−1A−TM−1A−1∂A

∂t

)
,

which gives (A.2).

In a similar fashion, using Lemma 2.2.1 and Lemma 2.2.2, we have

∂tr(AMAT)

∂t
= tr

(
∂tr(AMAT)

∂(AMAT)

∂(AMAT)

∂t

)
= tr

(
∂(AMAT)

∂t

)
= tr

(
A
∂M
∂t

AT
)

= tr
(
ATA

∂M
∂t

)
,

which gives (A.3).

Finally, using Lemma 2.2.1, Lemma 2.2.2, and Lemma 2.2.4, we have

∂tr
(
AM−1AT

)
∂t

= tr

(
∂tr
(
AM−1AT

)
∂ (AM−1AT)

∂
(
AM−1AT

)
∂t

)

= tr
(
A
∂M−1

∂t
AT
)

= tr
(
−AM−1∂M

∂t
M−1AT

)
= tr

(
−M−1ATAM−1∂M

∂t

)
,

which gives (A.4).

126

A.2 Derivatives of existing functional for bulk mesh

Consider (2.19) for the existing functional (2.15), i.e.,

Ih =
∑
K∈Th

|K|G (J, det(J),M) ,

where

G = θ det(M)
1
2

(
tr(JM−1JT)

) dp
2 + (1− 2θ)d

dp
2 det(M)

1−p
2 det(J)p.

To find ∂G
∂J consider

dG

dt
= tr

(
∂G

∂J
∂J
∂t

)

= tr

θ |K| det(M)
1
2
∂tr
(
JM−1JT

) dp
2

∂J
∂J
∂t


= tr

(
dp

2
θ |K| det(M)

1
2 tr
(
JM−1JT

) dp−1
2

∂tr
(
JM−1JT

)
∂J

∂J
∂t

)

= tr
(
dpθ |K| det(M)

1
2 tr
(
JM−1JT

) dp−1
2 M−1JT

∂J
∂t

)
,

where we used Corollary 2.2.1. Similarly, to find ∂G
∂ det(J)

consider

dG

dt
= tr

(
∂G

∂ det(J)

∂ det(J)

∂t

)
= tr

(
(1− 2θ)|K|d

dp
2 det(M)

1−p
2
∂ det(J)p

∂ det(J)

∂ det(J)

∂t

)
= tr

(
p(1− 2θ)|K|d

dp
2 det(M)

1−p
2 det(J)p−1∂ det(J)

∂t

)
.

Finally, to find ∂G
∂M consider the first term of G, denoted as G1, i.e.,

G1 = θ det(M)
1
2

(
tr(JM−1JT)

) dp
2 .

127

Then

dG1

dt
= tr

(
∂G1

∂M
∂M
∂t

)

= tr

θ|K|
∂ det(M)

1
2

∂M
(
tr(JM−1JT)

) dp
2 + det(M)

1
2
∂
(
tr(JM−1JT)

) dp
2

∂M

 ∂M
∂t


= tr

(
1

2
θ|K| det(M)−

1
2
∂ det(M)

∂M
(
tr(JM−1JT)

) dp
2
∂M
∂t

)
+ tr

(
dp

2
θ|K| det(M)

1
2

(
tr(JM−1JT)

) dp
2
−1 ∂tr(JM−1JT)

∂M
∂M
∂t

)
.

Then by Lemma 2.2.3 and Corollary 2.2.1 we have

dG1

dt
= tr

(
1

2
θ|K| det(M)

1
2

(
tr(JM−1JT)

) dp
2 M−1∂M

∂t

)
− tr

(
dp

2
θ|K| det(M)

1
2

(
tr(JM−1JT)

) dp
2
−1 M−1JTJM−1∂M

∂t

)
.

Considering now the second term of G, denoted as G2,i.e.,

G2 = (1− 2θ)d
dp
2 det(M)

1−p
2 det(J)p,

we have

dG2

dt
= tr

(
∂G2

∂M
∂M
∂t

)
= tr

(
(1− 2θ)|K|d

dp
2 det(J)p

∂ det(M)
1−p
2

∂M
∂M
∂t

)

= tr
(

1− p
2

(1− 2θ)|K|d
dp
2 det(J)p det(M)

1−p
2
−1∂ det(M)

∂M
∂M
∂t

)
= tr

(
1− p

2
(1− 2θ)|K|d

dp
2 det(J)p det(M)

1−p
2 M−1∂M

∂t

)
.

Thus with ∂G
∂M = ∂G1

∂M + ∂G2

∂M we obtain the derivative ∂G
∂M .

Therefore the first derivatives of G are as given in (2.29), i.e.,

128



∂G

∂J
= dpθ

√
det(M)

(
tr(JM−1JT)

) dp
2
−1 M−1JT ,

∂G

∂ det(J)
= p(1− 2θ)d

dp
2 det(M)

1−p
2 det(J)p−1,

∂G

∂M
= − θdp

2

√
det(M)

(
tr(JM−1JT)

) dp
2
−1 M−1JTJM−1

+ θ
2

√
det(M)

(
tr(JM−1JT)

) dp
2 M−1

+ (1−2θ)(1−p)d
dp
2

2

√
det(M)

(
det(J)√
det(M

)p

M−1.

(A.5)

A.3 Formulation and coercivity of the new meshing functional for

surface meshes

To formulate the surface energy functional similar to (2.17) for bulk meshes, consider the

alignment condition (3.10) and note that this implies all of the eigenvalues of (F ′K)T MKF
′
K

are equal, i.e.,

(F ′K)
T MKF

′
K = θKI,

where θK denotes the eigenvalue. This gives

det
(

(F ′K)
T MKF

′
K

)
= θ

d−1
2

K . (A.6)

Comparing (A.6) to the equidistribution condition (3.5) we get

θ =
(σh
N

) 2
d−1

,

and therefore

(F ′K)
T MKF

′
K =

(σh
N

) 2
d−1

I. (A.7)

129

This gives rise to the energy functional

Ih =
∑
K∈Th

|K̂| det
(

(F ′K)
T MKF

′
K

) 1
2

∥∥∥∥((F ′K)
T MKF

′
K

)−1

−
(σh
N

)− 2
d−1

I

∥∥∥∥2p

F

(A.8)

as given in (3.16).

As with (3.15), we can write (A.8) as (3.20), i.e.,

Ih =
∑
K∈Th

G(J, r) =
∑
K∈Th

|K̂|r−
1
2

∥∥∥∥J− (σhN)− 2
d−1

I

∥∥∥∥2p

F

(A.9)

To find the expressions for ∂G
∂J and ∂G

∂r
which are needed to compute (3.44), we use the

scalar-by-matrix properties given in (3.25). First, let us consider ∂G
∂J and let

A =

(
J−

(σh
N

)− 2
d−1

I

)
.

Then

∂G

∂t
= tr

(
∂G

∂ATA

∂ATA

∂t

)
= tr

(
|K̂|r−

1
2
∂ ‖A‖2p

F

∂ATA

∂ATA

∂t

)

= tr

(
p|K̂|r−

1
2 ‖A‖2(p−1)

F

∂tr
(
ATA

)
∂ATA

∂ATA

∂t

)

= tr
(
p|K̂|r−

1
2 ‖A‖2(p−1)

F

∂ATA

∂t

)
.

130

Now using the definition of A we obtain the following

∂G

∂t
= tr

p|K̂|r− 1
2

∥∥∥∥(J− (σhN)− 2
d−1

I

)∥∥∥∥2(p−1)

F

∂

(
J−

(σh
N

)− 2
d−1

I

)T (
J−

(σh
N

)− 2
d−1

I

)
∂t



= tr

2p|K̂|r−
1
2

∥∥∥∥(J− (σhN)− 2
d−1

I

)∥∥∥∥2(p−1)

F

(
J−

(σh
N

)− 2
d−1

I

) ∂

(
J−

(σh
N

)− 2
d−1

I

)
∂t


= tr

(
2p|K̂|r−

1
2

∥∥∥∥(J− (σhN)− 2
d−1

I

)∥∥∥∥2(p−1)

F

(
J−

(σh
N

)− 2
d−1

I

)
∂J
∂t

)
.

Similarly, let us consider ∂G
∂r
. That is

∂G

∂t
= tr

(
∂G

∂r

∂r

∂t

)
= tr

(
|K̂|

∥∥∥∥J− (σhN)− 2
d−1

I

∥∥∥∥2p

F

∂r−
1
2

∂r

∂r

∂t

)

= tr

(
−1

2
|K̂|r−

3
2

∥∥∥∥J− (σhN)− 2
d−1

I

∥∥∥∥2p

F

∂r

∂t

)
.

Therefore, for the functional (A.8), the derivatives of G are given by



∂G

∂J
= 2p|K̂|r− 1

2

∥∥∥∥((F ′K)T MKF
′
K

)−1

−
(σh
N

)− 2
d−1

I

∥∥∥∥2(p−1)

F

·
((

(F ′K)T MKF
′
K

)−1

−
(σh
N

)− 2
d−1

I

)
,

∂G

∂r
= −1

2
|K̂|r− 3

2

∥∥∥∥((F ′K)T MKF
′
K

)−1

−
(σh
N

)− 2
d−1

I

∥∥∥∥2p

F

.

(A.10)

131

A.4 First derivatives of surface meshing functional

Consider (3.20) for the surface energy functional (3.15), i.e.,

Ih =
∑
K∈Th

G(J, r) =
∑
K∈Th

θ|K̂|r−
1
2 tr (J)

p(d−1)
2 + (1− 2θ)(d− 1)

p(d−1)
2 |K̂|r

p−1
2 .

Using the scalar-by-matrix properties (3.25) we can find ∂G
∂J and ∂G

∂r
. To find ∂G

∂J consider

dG

dt
= tr

(
∂G

∂J
∂J
∂t

)
= tr

(
θ |K̂|r−

1
2

K

∂tr (J)
p(d−1)

2

∂J
∂J
∂t

)

= tr
(
θp(d− 1)

2
|K̂|r−

1
2

K tr (J)
p(d−1)−2

2
∂tr (J)

∂J
∂J
∂t

)
= tr

(
θp(d− 1)

2
|K̂|r−

1
2

K tr (J)
p(d−1)−2

2 I
∂J
∂t

)
.

Similarly, to find ∂G
∂r

consider

dG

dt
= tr

(
∂G

∂r

∂r

∂t

)
= tr

([
θ |K̂| tr (J)

p(d−1)
2

∂r−
1
2

∂r
+ (1− 2θ)(d− 1)

p(d−1)
2 |K̂|∂r

p−1
2

∂r

]
∂r

∂t

)

= tr
([
−θ

2
|K̂| r−

3
2 tr (J)

p(d−1)
2 +

p− 1

2
(1− 2θ)(d− 1)

p(d−1)
2 |K̂|r

p−3
2

]
∂r

∂t

)
.

Therefore the first derivatives of G are as given in (3.26), i.e.,



∂G

∂J
=
θp(d− 1)

2
|K̂|r− 1

2 tr(J)
p(d−1)−2

2 I,

∂G

∂r
= −θ

2
|K̂|r− 3

2 tr(J)
p(d−1)

2 +
p− 1

2
(1− 2θ)(d− 1)

p(d−1)
2 |K̂|r p−3

2 .

(A.11)

132

A.5 Formulation of surface MMPDE

The surface MMPDE (3.42) is intuitively derived from the MMPDE approach for bulk

meshes with a slight alternation which ensures that the nodes remain on the surface during

movement by projecting the velocities onto the tangential space. However, it should be noted

that (3.42) can also be formulated directly using Lagrange multipliers. That is, for a given

i for i = 1, . . . , Nv, we want to solve the minimization problem given by

min
xi

Ih(xi) s.t. Φ(xi) = 0. (A.12)

By the method of Lagrange multipliers, we define

L(xi, λ) = Ih(xi) + λΦ(xi) (A.13)

and hence we obtain the system of equations given by


(
∂Ih
∂xi

)T
+ λ∇Φ(xi) = 0

Φ(xi) = 0, i = 1, . . . , Nv.

(A.14)

Employing a modified gradient decent method to (A.14) we obtain

dxi
dt

= −Pi
τ

((
∂Ih
∂xi

)T
+ λ∇Φ

)
(A.15)

such that Φ(xi) = 0. Since xi = xi(t), instead of requiring Φ(xi) = 0, we impose a weaker

condition to (A.15) given by

∇Φ · dxi
dt

= 0. (A.16)

133

Applying (A.16) to the MMPDE (A.15) we obtain

0 = ∇Φ · dxi
dt

= −Pi
τ

(
∇Φ ·

(
∂Ih
∂xi

)T
+ λ ‖∇Φ‖2

)
(A.17)

which gives

λ = − ∇Φ

‖∇Φ‖2 ·
(
∂Ih
∂xi

)T
. (A.18)

Inserting λ into (A.15) we obtain (3.42), i.e.,

dxi
dt

= −Pi
τ

[(
∂Ih
∂xi

)T
−

((
∂Ih
∂xi

)T
· ni

)
ni

]
(A.19)

where ni = ∇Φ
|∇Φ| is the outward normal vector to the surface Φ at the point xi.

As previously mentioned, we imposed a weak condition (A.16) to obtain (3.42) however,

we can impose a stronger condition to obtain a stabilized MMPDE. That is, we impose

Φ(xi(t+ δτ)) = 0 (A.20)

to (A.15) where δ ≥ 0 is a constant. In this, we are not requiring that the nodes be directly

projected onto the surface at time t, i.e., Φ(xi) = 0, but instead be projected onto the surface

at some time t+ δτ . This is called a delayed projection which is a stronger imposition than

(A.16). By Taylor’s Expansion on xi in (A.20) we have

0 = Φ(xi(t+ δτ)) = Φ

(
xi(t) + δτ

dxi
dt

+O((δτ)2)

)
. (A.21)

Moreover, by Taylor’s Expansion on Φ we get

0 = Φ(xi(t)) + δτ∇Φ · dxi
dt
. (A.22)

134

Combining (A.22) with (A.15) we obtain

∇Φ · dxi
dt

= −Φ(xi)

δτ
= −Pi

τ

(
∇Φ ·

(
∂Ih
∂xi

)T
+ λ ‖∇Φ‖2

)
(A.23)

which then gives
1

Piδ
Φ(xi)−∇Φ ·

(
∂Ih
∂xi

)T
= λ ‖∇Φ‖2 . (A.24)

Therefore, by (A.15) we have

dxi
dt

= −Pi
τ

[(
∂Ih
∂xi

)T
−

((
∂Ih
∂xi

)T
· ni

)
ni

]
− Φ

δτ ‖∇Φ‖
ni (A.25)

where ni = ∇Φ
|∇Φ| as before. The role of the last term can be seen through the different values

of δ. That is, from (A.25) we can see that if δ = 0 then Φ(xi(t)) = 0 and hence we project the

nodes directly onto the surface. If δ =∞ then (A.25) gives (3.42), i.e., we project the nodes

onto the tangential space. For all values 0 < δ <∞, (A.25) uses a delayed projection of the

nodes onto the surface. It should be noted that we use δτ as the delay parameter so that

dimension of τ in all of the terms in (A.25) agree. Furthermore, an explicit parameterization

of the curve is required for the delayed projection method and cannot be approximated for

obvious reasons.

To see the effectiveness of the delayed projection method, consider Figure A.1, i.e.,

Φ(x, y) = 2 sin(x)− y.

In this, the initial mesh shows the nodes off of the surface however, when (A.25) is employed,

the nodes are projected directly onto the surface and the method continues as the examples

in Section 3.5.2. Here we use N = 20, dt = 0.01, τ = 0.01, and δ = 0.001. It should be

noted, however, that δ depends on N and the initial mesh. That is, if the initial mesh is

fine (i.e., N is large) and the nodes are close in distance, δ must be chosen to be sufficiently

small otherwise the delayed projection will result in a singular mesh.

135

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Initial Mesh.

0 1 2 3 4 5 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Final Mesh, MK = I.

0 1 2 3 4 5 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) Final Mesh, MK = (kK + ε)I.

Figure A.1: Meshes for Φ(x, y) = 2 sin(x) = y with N = 20 using the delayed projection
MMPDE.

136

	Introduction
	Bulk Mesh
	Meshing functionals based on equidistribution and alignment
	Equidistribution and alignment
	The existing functional
	The new functional

	The moving mesh PDE and direct discretization
	The moving mesh PDE solution strategy
	Scalar-by-matrix derivatives
	Analytical formulas for derivatives of discretized functional

	Theoretical analysis of the new functional
	Coercivity
	Nonsingularity of the mesh trajectory
	Limits of the mesh trajectory

	Numerical examples
	Conclusion for the new functional

	Surface Mesh
	Equidistribution and alignment conditions for surface meshes
	Area and affine mappings for surface elements
	Equidistribution and alignment conditions for surface meshes

	Surface energy functional
	Surface moving mesh PDE
	Gradient of meshing energy
	Derivatives of the meshing functional with respect to the physical coordinates
	Surface moving mesh equations

	Theoretical Properties
	Equivalent measure of minimum height
	Mesh nonsingularity and existence of limiting meshes

	Numerical experiments
	Definition of curvature for curves and surfaces
	Numerical results

	Conclusions for surface mesh adaptation

	Conclusions
	Conclusions
	Future Research

	Appendix
	Proof of Corollary 2.2.1
	Derivatives of existing functional for bulk mesh
	Formulation and coercivity of the new meshing functional for surface meshes
	First derivatives of surface meshing functional
	Formulation of surface MMPDE

