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Abstract

In this dissertation, we first present a new functional for variational mesh gener-
ation and adaptation that is formulated by combining the equidistribution and
alignment conditions into a single condition with only one dimensionless pa-
rameter. The functional is shown to be coercive which, when employed with
the moving mesh partial differential equation method, allows various theoretical
properties to be proved. Numerical examples for bulk meshes demonstrate that
the new functional performs comparably to a similar existing functional that is

known to work well but contains an additional parameter.

Variational mesh adaptation for bulk meshes has been well developed however,
surface moving mesh methods are limited. Here, we present a surface moving
mesh method for general surfaces with or without explicit parameterization. The
development starts with formulating the equidistribution and alignment condi-
tions for surface meshes from which, we establish a meshing energy functional.
The moving mesh equation is then defined as the gradient system of the energy
functional, with the nodal mesh velocities being projected onto the underlying
surface. The analytical expression for the mesh velocities is obtained in a com-
pact, matrix form, which makes the implementation of the new method on a
computer relatively easy and robust. Moreover, it is analytically shown that
any mesh trajectory generated by the method remains nonsingular if it is so ini-
tially. It is emphasized that the method is developed directly on surface meshes,
making no use of any information on surface parameterization. A selection of

two-dimensional and three-dimensional examples are presented.
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Chapter 1

Introduction

The solutions of partial differential equations (PDEs) arising in science and engineering can
frequently have large variations occurring over small portions of the physical domain. A
major challenge when solving such problems is how to appropriately resolve the solution
behavior there. When finite difference or finite element methods are employed, a fine mesh
is required in these particular regions of the physical domain. Typically, in one-dimension,
using a uniform fine mesh is feasible, however, in higher dimensions this can become a
substantial computational expense in terms of computer memory and processing time. This
particular challenge has led to the study of mesh adaptation methods which consist of three
mesh adaptation techniques. The h-method seeks to improve accuracy by adding more mesh
points in regions of the domain with large solution variation. In this, the h is a standard
notation representing the size of the mesh element. Although intuitive, this approach requires
continuously adding elements and changing connectivity of the mesh for which, in some cases,
can be expensive or even forbidding in terms of memory. The p-method (where the p stands
for polynomial) seeks to improve the accuracy by increasing the polynomial degrees of the
solution approximation in regions with large solution error. The p-method, unlike the h-
method, does not add more points or change the connectivity of the mesh however, it is
difficult to implement in many cases. The final method is the r-method (adaptive moving
mesh method) where the r stands for relocation. This method seeks to improve the accuracy
by moving mesh points into the regions that require a fine resolution. Adaptive moving
mesh methods can attain a similar accuracy to that of a uniform mesh or an h-method with

significantly less mesh points.



More specifically, adaptive moving mesh methods consist of two major components: the
strategy used to move the mesh and the approach used to solve the system of mesh equations.
The mesh movement strategy is typically performed either by solving a system of PDEs
involving the mesh coordinate transformation or by doing a direct error-based minimization.
Here we focus on the former and take a velocity-based variational approach to formulate the
mesh strategy. To solve the system of mesh equations, we use a general ordinary differential
equation (ODE) solver. In this variational approach, a (adaptive) mesh is generated as
the image of a reference mesh under a coordinate transformation which is determined as
the minimizer of a meshing functional. The meshing functional is typically designed to
measure the difficulty in the numerical approximation of the physical solution and involves
a user determined metric tensor or monitor function to control the movement. Due to the
inherent ability of the method to easily incorporate user determined mesh requirements
such as smoothness, orthogonality, adaptivity, alignment, etc., it has received considerable
attention in the scientific computing community; e.g., see [8, 38, 42, 46, 55| and references
therein. In addition to being a method for mesh generation and adaptation, this approach
can also be used as a smoothing device for automatic mesh generation |22, 35] and a base
for adaptive moving mesh methods [37, 38, 39, 45].

A number of meshing functionals have been developed from different problems and for-
mulated based on different focused requirements. For example, Winslow [59] develops an
equipotential method that is based on variable diffusion. Brackbill and Saltzmann [6] com-
bine mesh concentration, smoothness, and orthogonality to create a functional. Dvinsky
[17] develops a method based on the energy of harmonic mappings. Knupp [40] and Knupp
and Robidoux [41] focus on the idea of conditioning the Jacobian matrix of the coordinate
transformation. Huang [30] and Huang and Russell [38] have proposed two methods based
on the so-called equidistribution and alignment conditions. Together, these two conditions
completely characterize a uniform mesh. Huang [30] formulates a single energy functional

(referred to as the existing functional hereafter) by averaging the equidistribution and align-



ment conditions with a dimensionless parameter [30]. The idea is that minimizing the existing
energy functional will result in a mesh that closely satisfies both the equidistribution and
alignment conditions.

Compared to the algorithmic development, very few theoretical results are known. For ex-
ample, Dvinsky’s meshing functional [17] is guaranteed to have a unique invertible minimizer
by the theory of harmonic mappings between multidimensional convex domains. Winslow’s
functional [59] is known to have a unique minimizer due to its uniformly convexity and coer-
civity but its invertibility depends on the convexity of the domains. The existing functional
based on the equidistribution and alignment condition has been proven to be both coercive
and polyconvex and has minimizes. These results, however, are only at the continuous level.

At the discrete level, studies have typically been focused on one spatial dimension. How-
ever, Huang and Kamenski have recently proposed a theoretical study on variational mesh
generation and adaptation at the discrete level for any dimension. In this method, the mesh-
ing functional is first discretized and then the mesh equation is defined as a modified gradient
system of the discretized functional. This formulation provides an explicit, compact, and
analytical formula for the mesh velocity, which makes the implementation of the method
much easier and more robust (see Section 2.2). More importantly, several properties of the
discrete MMPDE can be established; see [32] and/or Section 2.3 for detail. In particular,
if the meshing functional satisfies the coercivity condition then the mesh trajectory of the
discrete MMPDE stays nonsingular if it is so initially. Moreover, the altitudes and volumes
of its elements are bounded below by positive numbers that depend only on the initial mesh,
the number of elements, and the metric tensor. Furthermore, the value of the discrete func-
tional converges as time increases which can be used as a stopping criteria in computation.
Finally, Huang and Kamenski prove that the mesh trajectory has limiting meshes that are
critical points of the discrete functional and satisfy the lower bounds on the element altitude
and volume.

As mentioned, the existing functional satisfies the coercivity condition and hence, main-



tains the theoretical properties proposed by Huang and Kamenski. Although known to work
well in many problems and clearly has significant proven theoretical advantages, the existing
functional contains two parameters which can be considered large disadvantages. In partic-
ular, it is still unclear how to optimally choose either of the parameters. The performance
of the existing functional does not seem sensitive to the value of the parameters however,
their choice is still arbitrary and there is hardly a convincing guideline for choosing them. In
Chapter 2, we formulate a new functional that combines the equidistribution and alignment
conditions without introducing any new parameters. We prove that this new functional
satisfies the coercivity condition and thus has similar properties to the existing functional
when employed with the MMPDE method. Moreover, two-dimensional numerical results are
presented to verify theoretical findings as well as demonstrate comparable performances of
the two functionals.

Indeed, variational mesh adaptation for bulk meshes has been studied extensively, as
discussed above, however, mesh adaptation methods for surface meshes are limited. There
has been some work done on mesh movement and adaptation for surfaces. For example,
Crestel et al. [11] present a moving mesh method for parametric surfaces by generalizing
Winslow’s meshing functional to Riemannian manifolds and taking into consideration the
Riemannian metric associated with the manifolds. The method is simplified and implemented
on a two-dimensional domain for surfaces that accept certain parameterizations. Weller et
al. [7] and McRae et al. [48]| solve a Monge-Ampére type equation on the surface of the
sphere to generate optimally transported meshes that become equidistributed with respect
to a suitable monitor function. MacDonald et al. [47] devise a moving mesh method for
the numerical simulation of coupled bulk-surface reaction-diffusion equations on an evolving
two-dimensional domain. They use a one-dimensional moving mesh equation in arclength
to concentrate mesh points along the evolving domain boundary. Dassi et al. [13]| generalize
the higher embedding approach proposed in [44]. They modify the embedding map between

the underlying surface and R® to include more information associated with the physical



solution and its gradient. The idea behind this mapping is that it essentially approximates
the geodesic length on the surface via a Euclidean length in R®. The mesh adapts in the
Euclidean space and then is mapped back to the physical domain.

We, however, are interested in methods that can directly move simplicial meshes on
general surfaces with or without analytical expressions. Such surface moving mesh methods
can be used for adaptation and/or quality improvements of surface meshes and thus are
useful for computational geometry and numerical solutions of partial differential equations
(PDEs) defined on surfaces; e.g., see [15, 19, 56]. More specifically, the functionals based on
equidistribution and alignment when combined with the MMPDE method for bulk meshes
is known to work well hence, we are interested in developing an extension of this method to
surface meshes.

The main challenges in the development of surface mesh movement come from the fact
that the Jacobian matrix of the affine mapping between the reference element and any
simplicial surface element is not square. This prevents us from using any bulk mesh results.
To overcome these challenges (see Chapter 3), we start by connecting the area of the surface
element in the Euclidean metric or a Riemannian metric with the Jacobian matrix of the
corresponding affine mapping. This connection allows us to formulate the equidistribution
and alignment conditions and ultimately, form a single meshing energy functional for surface
meshes. This meshing functional is similar to Huang’s functional [28, 30, 34, 43| for bulk
meshes which has been proven to work well in a variety of problems. Following the MMPDE
approach, we define the surface moving mesh equation as the gradient system of the meshing
functional, with the nodal mesh velocities being projected onto the underlying surface. The
analytical expression for the mesh velocities is obtained in a compact, matrix form, which
makes the implementation of the new method on a computer relatively easy and robust. The
steps in developing the surface moving mesh method are given in Table 1.1.

Several theoretical properties are obtained for the surface moving mesh method. In

particular, it is proven that a surface mesh generated by the method remains nonsingular



Table 1.1: Steps in developing the surface moving mesh method.

Equidistribution
condition
/! N\
Area of surface element in Meshing energy —  Surface
terms of Jacobian matrix functional MMPDE
N\ /
Alignment
condition

for all time if it is so initially. Moreover, the altitudes and areas of the physical elements
are bounded below by positive constants depending only on the initial mesh, the number
of elements, and the metric tensor that is used to provide information on the size, shape,
and orientation of the elements throughout the surface. Furthermore, limiting meshes exist
and the meshing functional is decreasing along each mesh trajectory. These properties are
verified in numerical examples.

It is emphasized that the new method is developed directly on surface meshes, making
no use of any information on surface parameterization. It utilizes surface normal vectors
to ensure that the mesh vertices remain on the surface while moving. Since the surface
normal vectors can be computed even when the surface only has a numerical representation,
the new method can apply to general surfaces with or without explicit parameterization. A

large selection of two- and three-dimensional examples are presented in Chapter 3.



Chapter 2

Bulk Mesh

In this chapter we are going to describe two meshing functionals that are formulated from the
equidistribution and alignment conditions (see (2.6) and (2.7) below). These conditions have
been developed based on the concept of uniform meshes in some metric tensor [38]. They
provide total control of the mesh element size, shape, and orientation of mesh elements
through a metric tensor. The first meshing functionals to be described was first introduced
in [30] and involves averaging functionals associated with the equidistribution and alignment
conditions. It has a number of advantages and is known to work well in practice but involves
two dimensionless parameters. Although the performance of the functional does not seem
sensitive to the value of the parameters, the choices are still arbitrary and there is hardly a
convincing guideline for choosing them.

The second functional is new. It is formulated by directly combining the equidistribution
and alignment conditions into a single condition which, in turn, has eliminated one of the
two parameters in the existing functional. We will show that the new functional satisfies the
coercivity condition and has similar theoretical properties as the existing functional when
employed with the MMPDE method. In particular, we will show that the mesh associated
to the MMPDE remains nonsingular for all time if it is so initially. Moreover, the mesh
trajectory has limiting meshes, all of which are nonsingular. Two-dimensional numerical
results will be presented to verify theoretical findings as well as demonstrate comparable

performances of the two functionals.



2.1 Meshing functionals based on equidistribution and alignment

2.1.1 Equidistribution and alignment

Let the physical domain, Q C R d > 1, be a bounded (not necessarily convex) polygonal or
polyhedral domain and M = M(x) be a given symmetric, uniformly positive definite metric

tensor defined on {2 which satisfies

ml <M(x) <ml, Vax €, (2.1)

where m and m are positive constants, [ is the identity matrix, and the inequality is in
terms of negative semi-definiteness. Our goal is to generate a simplicial mesh for 2 which
is uniform with respect to the metric M. Denote this target mesh by 7, = {K} and let N
and N, be the number of its elements and vertices, respectively. Assume that the reference
clement K has been chosen to be equilateral and unitary (i.e., |[K| = 1, where | K| denotes
the volume of K) For any element K € 7T, let Fi : K c RY - K C R? be the affine
mapping between them and Fj. € R?*? be its Jacobian matrix. Denote the vertices of K by

a:JK, j=0,...,d and the vertices of K by €;,J=0,..,d. Then

From this we have

:B]K_mOK:FK(gj_go)

or

@ —2g g —xg ] = Flél — &0, 60 — €0

which gives Fj, = EKE_l, where Ex and E are the edge matrices for K and k, ie.,

Ex =zl —af, ... zf —zf], E=[¢f ¢, ... ef -¢f



It should be noted that since K is not degenerate, E~! € R¥d exists. From this one can

readily see that
K| = det (F}). (2.2)

where | K| denotes the volume of K in the Euclidean norm. Moreover, define

1
Mg = — / M(x)dx 2.3
71 | M@ (2.3
and recall that the Riemannian distance in M, denoted || - ||p,, is given by
1 T 1 1
lz|vyx = VETMix = (Mf(:n) (M%w) = HM%Q} (2.4)
where || - || denotes the Euclidean metric. That is, the geometric properties of K in the
metric Mg can be obtained from those of M? in the Euclidean metric. Therefore
K|y, = Mz K| = det(Mg)2|K| = det (Fy) det (Mg)"?, (2.5)

where |K |y denotes the volume of K in the metric M.

With this in mind, we can define the equidistribution and alignment conditions that
completely characterize a non-uniform mesh. Indeed, any non-uniform mesh can be viewed
as a uniform one in some metric tensor. Using this viewpoint it is shown (e.g., see [38]) that

a uniform mesh in the metric M satisfies that, VK € Tj,

equidistribution: | K| det(MK)% = %, (2.6)
1 1
alignment: i (Fi) "M (F) ™) = det ((Ffo)"™Mg (Fg)™ )7, (2.7)
where
on =Y |K|det(My)z. (2.8)
KeTy,



From (2.5) we can see that the equidistribution condition essentially requires that all of the
elements have the same volume with respect to the metric M. On the other hand, the left-
and right-hand sides of the alignment condition (2.7) are the arithmetic mean and geometric
mean of the eigenvalues of the matrix (Fy ) 'M ! (F )T, respectively. Thus, the condition

implies that the eigenvalues of the matrix be equal, i.e.,
(Fre) "M (Fi) ™" = 0k, (2.9)

where 0 is a positive constant. It can be shown [38] that geometrically, the condition (2.7)
requires all elements K, when measured in the metric M, to be similar to the reference
clement K. Combining the equidistribution and alignment conditions, we see that if a mesh
satisfies both of them then all of its elements have the same volume and are similar to the

reference element, thus are uniform with respect to the metric M.

2.1.2 The existing functional

We now describe the existing meshing functional based on the equidistribution and alignment
conditions. To this end, first consider the equidistribution condition (2.6). From Hoélder’s

inequality, for any p > 1 then

| K] det(Mg)? 1 \”

([é Oh <|K|det(MK)é> )
K| det(Mx)= 1

=) <|K|det<MK)%>’ (2.10)

KeTh

3=

with equality if and only if

1

m = COHStaIlt, VK € 77L
(S K)?

10



That is, minimizing the difference between the left-hand side and the right-hand side of (2.10)
tends to make 1/(|K|det(Mg)z) constant for all K € Ty,. Noticing that the right-hand side

of (2.10) is N/oy, we can rewrite this inequality as

. 1 TN
> \K\det(MK)2-<m> > (a—h> op (2.11)

KeTy

Since o), ~ fQ det(M)%dw, it only weakly depends on the mesh so we can consider o to
be a constant. Therefore, we can use the left-hand side of (2.11) as the functional for the

equidistribution condition. By (2.2), we thus have the equidistribution energy funtional®

Lo(Ta) = 4% 37 K| det(M)* (det(Fp) ™ det(Mi) )", (2.12)
KeTy

where d has been added to agree with the alignment energy functional (2.14) below and
|K |, = | K| det(Mg )2 is a weight.

We now consider the alignment condition (2.7). Recall that its left- and right-hand sides
are the arithmetic and geometric mean of the eigenvalues of the matrix (Fy ) M (Fy)~ 7T,

respectively. By the arithmetic-mean geometric-mean inequality, we have

1 1

b ((Ff) ™M (7)) 2 det ((Fj) ™ Mg (Ff) ") (2.13)
with equality if and only if all of the eigenvalues are equal. From this, we have

(tr ((F) "Mz (Fie) ™)) ? = a% (det(F;()—ldet(MK)-%y

n literature, typcally an energy functional refers to the continuous case, i.e., integration, whereas an
energy function refers to the discrete case, i.e., summation. For the purpose of consistency, however, in this
thesis we will refer to both as an energy functional.
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and thus

dp

D K] det(Mi)* (tr ((Fio) M (F) 7)) *
KeT,
> 37 K| det(My)2d¥ (det(F;{)*ldet(MK)*%y,
KeTy
where p > 0 and |K| det(MK)% have been added to agree with the equidistribution energy
functional (2.12). Minimizing the difference of the left- and right-hand sides makes the mesh

tend to satisfying the alignment condition. Therefore, we can define our alignment functional

as

La(T) = S K] det(M )t (Fp) ™ Mz (Fj) ) *
KeTy

p

, 1 1

— d¥ | K| det(Mg)? . (2.14)
det(F}) det(Mk)2

We now have two functionals and want to obtain a mesh that tries to minimize both.
One way to ensure this is to combine the two functionals into a single one. For example, we
can average the equidistribution functional (2.12) and the alignment functional (2.14) with

a dimensionless parameter 6 € [0, 1], i.e.,

In(Th) = 010i(Th) + (1 = 0)Leq(Th)

=0 " [K|det(M)? (tr ((F) "Mz (F) 7)) %
KeTy

+(1—20)d% 3 |K|det(M)? (det(F}()‘l det(MK)—%)p. (2.15)

KeTy,

This functional was first proposed in [30] in the continuous form. As one can notice, the
equidistribution and alignment conditions are balanced in equation (2.15) by the dimension-

less parameter @, for which full alignment is achieved when § = 1 and full equidistribution

12



is achieved when # = 0. For 0 < 0 < % and p > 1, the functional is coercive [38], i.e.,
G > aftr (IM 7)) - B, (2.16)

where the functional is written in the form

Ih = Z |K|G7

KeT,

(see (2.19) for more details) and o« > 0, f > 0, and ¢ > d/2. More specifically, for the
existing functional o = §m¥?, 3 =0, and ¢ = % in (2.16). Coercivity gives rise to a number
of theoretical properties. One important one being that the MMPDE mesh equation (see
Section 2.2) associated with this functional has a mesh trajectory that stays nonsingular for
all time if so initially and has element volumes and altitudes bounded away from zero [28].

The functional has also been successfully used for many problems.

2.1.3 The new functional

The existing functional (2.15) contains two dimensionless parameters which can be considered
large disadvantages, especially since it is still unclear how to choose an optimal 6. Ideally we
would like to take 6§ = 1/2 to ensure (2.15) is convex, but, unfortunately, previous numerical
experiments show that this choice of € does not put enough emphasis on the equidistribution
condition which controls the mesh concentration. Moreover, larger values of # emphasize
the alignment condition which produces a more regular mesh however, this regularity can
also be achieved by choosing larger values of p [38|. It has been known experimentally that
0 = 1/3 and p = 3/2 work well for many problems but this relation between 6 and p is not
very clear. Here, we consider a new functional that eliminates the additional parameter 6.

To this end, we first notice that (2.6) and (2.7) can be cast in a single condition. Indeed,
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taking the determinant of both sides of (2.9), we obtain
0% = det((Fj) "M Fiet) = det(Ff) " 2det(Mg) ™ = | K| 2 det(Mg) ™,

which gives

K| det(Mg)? = 6,2

vl

Comparing this to the equidistribution condition (2.6) we get

o\ 2
t=(5)
Thus, we obtain a single condition
(F) "M (F) T = (3) 1 VK e

which directly combines the equidistribution and alignment conditions. From this, we can

define a new functional as

—2 1%
b= 3 Kl dentotn)? | (F a0 - () o L @an
KEeT, F
where oy, is given in (2.8) and || - ||r is the Frobenius norm for matrices. Generally speaking,

since we are working with d X d matrices, we can use any matrix norm and produce an
equivalent form of the functional. We choose the Frobenius norm because it is convenient
to compute. We remark that the weight, |K|det(Mg)z, is chosen so that (2.17) is more
comparable to (2.15) which includes the energy functional of a harmonic mapping as a
special example. Moreover, this weight factor is used to emphasize the region where det(M)
(error density) is large.

Minimizing (2.17) will then ensure that the mesh satisfies both the equidistribution and

alignment conditions as closely as possible. Notice that this functional only contains one

14



parameter, p. In Section 2.3, it will be proven that this new functional has similar theoretical

properties as the existing functional.

2.2 The moving mesh PDE and direct discretization

2.2.1 The moving mesh PDE solution strategy

In principle, we can directly minimize the two functionals (2.15) and (2.17) given in the
last section, however, this direct minimization problem is too difficult due to their extreme
nonlinearity. Instead, we will employ the moving mesh PDE (MMPDE) method [38] to find
the minimizer. To be specific, we define the mesh equation as a modified gradient system of

[h, i.e.,

T
d;: _ —% (gih) i=1,....N, (2.18)
where 01;,/0x; is considered as a row vector, P; is a positive scalar function used to make the
equation have invariance properties, and 7 > 0 is a constant parameter used to adjust the
time scale of mesh movement. It is interesting to notice that integrating (2.18) is equivalent

to solving the minimization problem using the fastest descent method.

We consider functionals in a general form

I =" IKIG ((Fr) ™" det (Fj) ™ Mk ) (2.19)
KeTy

where G = G(J,det(J), M) is a smooth function of three arguments,

A

J= (F) ' = BB, det(]) = det(F),)~! = SeUE)

=—~"  M=Mg.
det(Er)’ K

For the existing functional (2.15), we have

N|=

G (T, det(), M) = 0det(M) (r(@M37) ¥ + (1~ 20)a¥ des(M)? (det () det(b)+)”.
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Moreover, for the new functional (2.17), we have

G (J,det(J = /det(M) HJI\\/JI 1T — "h)?‘ I 2p (2.20)
F
Notice that G is a function of the physical nodes - - ,a:é(ﬂ, that is
I (5, 2k ) =G ((F;()—l Jdet (F1) " ,MK> (2.21)
which gives
L (1, wap) =y |K|Ik (2, @R . (2.22)

KeTy,

One of the keys to the MMPDE approach is to find the derivatives of Ij, with respect to

i, -+ ,xy,. In order to do so, we first obtain and assemble the elementwise derivatives
of I with respect to i< .- ,wflil which requires scalar-by-matrix differentiation. To this

end, let us first recall some notation and results for scalar-by-matrix derivatives.

2.2.2 Scalar-by-matrix derivatives

Let f = f(A) be a scalar function of a matrix A € R™ ™. Then the scalar-by-matrix

derivative of f with respect to A is defined as

of ... _9f
af 0A11 0Am1 8f af
(9__/4 = : : or (a—A)Z ‘ = 8Aj7i. (2.23)
of ... _Of
O0A1n OAnm

nxm

With this we can then define the chain rule with respect to the real parameter ¢ as

aof Of A ~—~(0f\ 0Au  (9f0A
—~ 9A;; Ot _Z,Zj(aA)m. ot~ "\aaar) (2.24)
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We will use the following four lemmas throughout the applications of scalar-by-matrix dif-
ferentiation. It should be noted that the first two lemmas can be verified directly, the third

can be proven using the determinant expansion by minors, and the forth by differentiating

AAT =T

Lemma 2.2.1.
tr(A") = tr(A),
tr(AB) = tr(BA),
tr(ABC) = tr(CAB) = tr(BCA).
Lemma 2.2.2.
Otr(A) 7
0A
Lemma 2.2.3.
Odet(A) B 1
A det(A)A
Lemma 2.2.4.
OA~! 0A
=A== A
ot ot

With these four lemmas, we can derive a number of identities which we will use in our

application.

Corollary 2.2.1. Assume M s independent of A. Then

Otr(AMAT)
o = 2", (2.25)
—TR—1 A1

oir(4 (fj AT) _ oaarMe A, (2.26)
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Moreover, assume A is independent of Ml. Then

Otr( AMAT)

=ATA
oM ’
Otr(AM1AT)
e Mt ATAMTL
oM

Proof. See Appendix A.1 for details.

The above results give rise to expressions for 2 8_J and 6G

are needed for the derivative computation of the discrete functional (2.19).

For the existing functional, recall that

G = 6 det(M)2 (tr(JM*JT))%p +(1—20)d? det(M)2 <det(J) det(M)~

Then the derivatives of G are given by

ol

4 1=20(-p)d? 2‘”(2 a* det(M)<

See Appendix A.2 for details.

Consider now the new functional (2.17) where

G (J,det(J = /det(M HJM 1t —

18

S = dpf+/det(M) (tr(JM_lJT))%_

8G dp 1-p
= — 2 2 p_l
Faoi () p(1 —260)d% det(M) =" det(])
oG = b 177} F Ly
5 = det(M) (tr(JM~J7))

) (tx(
det(MD) (tr(JM1J7)) % M

det(J) pM_1
det(M '

O'h) EI

1 M—IJT

1JTJM 1

2 2p

F

(2.27)

(2.28)

]

which, as we have mentioned,

(2.29)



_2
as given in (2.20). Denoting A = (JI\\/JIAJT — (%) ¢ I) we have

= /det(M) ||A|? = \/det(M) tr (AAT)"". (2.30)
Then

oG 0 (V/det(M) tr (447)")
ot ot

_ AAT T
det(M) tr (AAT)"™" tr (8 t;jg o )8/;;1 )

T
det(M) tr (AAT)" ™ tr (%A A%)

det(M) tr (AAT)" "¢ (QAT %’j) (2.31)

From the definition of A, we have

8A (Th % (9 _ &HT
T _ 17T —14T
(m at)_tr( (m J )(a I vt at))
—tr (41\\/J1‘1JT (JM T — (%‘)]) at)' (2.32)

Combining (2.31) and (2.32) we obtain
oG 2(p—1)

o —4pHJM 1jT _ ( ")31

det(M)M ' J” (JM LT — ( A’;)J) (2.33)

In a similar fashion, consider

0G  0y/det(M )tr (AATY?
ot

_ Ay Qe 8\/det Aot ) Otr (AAT) (2.3

19



The first term of (2.34) is

gz 2D 2 g deroay-1 29T
1. {Odet(M) oM
I 2p 3 -~ -
= gl e o (PO TR
1 1 M
= 2 A det ()% (det( M- a{%) (2.35)

Moreover, the second term of (2.34) is

AAT)? _ AAT
det (M) % = py/det(M) tr (AAT)" ' %
_ 0 tr (AAT) 9AAT
T\p—1
det(M) tr (AA") tr( SAAT T )
det(M) tr (AAT)" "¢ (2AT %’3) (2.36)

where, using the definition of A we get

T
AT (a2
ot

1 (0G . OM
= tr(aJJM 875) (2.37)

with aG is given as in (2.33). Thus (2.35), (2.36), and (2.37) give

oG 1 10G
— = _GM! - M
0 QG 20] a1’
Finally, one can readily see that
oG 0
ddet(])
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since G does not depend on det(J). In summary, the derivatives of G for the new functional

are given by

oc = 4p|lIM1IT - <@>_3I v (M) M7 ( JM-137 — (@>_31

a7 - N . ¢ N ’
oG,

ddet(])

oG - . 10G

(2.38)

Note that in the above derivation, we have viewed oy, as a constant since o, ~ [, det(M)%dw.

2.2.3 Analytical formulas for derivatives of discretized functional

Using the formulation (2.19), we can rewrite the mesh equation (2.18) in a compact form as

dazz

== Z Kk, i=1,..,N, (2.39)

KEwZ

where w; is the patch of elements having @; as one of their vertices and 7x and le are the

local index and velocity of x; on K, respectively. The local velocities are given by

(v)" R
_ L 0G - 0G  det(E) __
= -GE'+E —EE 1
CEx T B 57 EEC T 5 aen(T) det(Br)
()"
09, K
1 ¢ oG o
_ﬁztr<0MMﬂK) ’
§=0 00, K
or
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where Mj; x = M(x), ¢; x is a linear basis function associated with &, and d¢; x /0x is

the gradient of ¢; x as a row vector. Note that in order to calculate the above velocities, we

need

oG oG oG

G, ]’ 9det(]) oM’

where the derivatives for the existing and the new functional are given in (2.29) and (2.38),
respectively. See [33] for details or Section 3.3.2 for a similar derivation.
It is remarked that the mesh equation (2.39) needs to be modified for boundary vertices.

For example, for corner or fixed boundary vertices, the corresponding equation is replaced

by
da:i

=0.
dt

For other boundary vertices, the velocity should be modified so that they only slide along
the boundary curve (in 2D) or surface (in 3D) represented by ®(x) = 0. That is, the mesh
velocities dx;/dt need to be modified so that the normal component along the curve or
surface is zero, i.e.,

dx;

With appropriate modifications for boundary vertices and for a given metric tensor M, (2.39)
can be integrated for an adaptive mesh. We use Matlab’s ode15s (a variable-order ODE solver

based on the numerical differentiation formulas) in our computation.

2.3 Theoretical analysis of the new functional

2.3.1 Coercivity

In the continuous case, ensuring the existence of a minimizer is closely related to coercivity
and convexity of the meshing functional. Loosely speaking, coercivity ensures that the
functional grows rapidly as the norm of the input tends to infinity whereas convexity provides

a kind of compactness property. It is still unclear if this relation between the existence of a
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minimizer and the coercivity and convexity of the functional holds true in the discrete case

however, coercivity in the discrete case gives rise to a number of important properties.

Theorem 2.3.1. The new functional (2.17) with p > 1 is coercive, i.e., there exist

positive constants a and B such that the function G defined in (2.20) satisfies

G>a|Jl[F -5 (2.40)

Proof. For notational simplicity, we denote v, = (%)_2/ *. From the triangle inequality and

Holder’s inequality, we have

| IM1 T — 'YhIHif > (f|aM= T ludllr) ™
> 212 || IV T || — |12

=27 | - )

Notice that for a d x d matrix A, we know that ||Aly < ||A|lr < Vd||Al|z. With this, it
follows

. . 1 1 1
M3l > [IMT ]l = — 33l = — 1915 > — (13115

~ md

Combining the above results, we get

d - 21~ 3 d
G > m?[|IM ] = |7 > WHJH? —m2(y;d)P.
1—-2p %
Thus, G satisfies (2.40) with a = QWT% and 8 = m? (12d)P. O

Thus the new functional is coercive. Unfortunately, it is not convex. As a consequence,
there is no guarantee that the minimizer of I, is unique. It does, however, have other

important properties that are discussed in detail next.
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2.3.2 Nonsingularity of the mesh trajectory

Consider the semi-discrete MMPDE (2.18) with the new functional (2.17). For a given metric
tensor M, which is independent of ¢ and satisfies (2.1), the MMPDE will generate a mesh
trajectory Ty (t), t > 0 for any given nonsingular initial mesh. We denote the minimum
altitude of K in the metric Mg by axm,. Moreover, proper modifications of the boundary
vertices are required in practical computations however, the theoretical analysis for the
MMPDE with or without these modifications is similar. Therefore, for simplicity we only

consider the case without boundary modifications.

Corollary 2.3.1. For anyt > 0, the elements of the mesh trajectory of the semi-discrete

MMPDE (2.18) with the new functional (2.17) satisfy

_ d _ 4p
K Mg Z Clm 2(p=d) N d<4p*d>, (241)

__d® _d____dp
|K| > Com 2Gr=d 2 N~ Gr=d) (2.42)

for all K € Tp(t), where Cy and Cy are constants give by

1
200 IIF o

- ) e
! d*r(d + 1)417—%? (B2 + I, (T1(0)))

9 02_57

(2.43)

and o and B are defined in the proof of Theorem 2.3.1. Moreover, T,(t) is nonsingular for

all t > 0 if it is nonsingular initially.

Proof. This is a consequence of Theorem 4.1 in [32] which is stated for a general coercive
functional. A direct application of this theorem with ¢ = 2p and Theorem 2.3.1 in the

previous subsection gives the desired result. O]

The key components in the proof of Theorem 4.1 in [32] are the coercivity of the functional
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and the decreasing energy along the mesh trajectory of (2.18). The latter can be seen from

2
<0.

o1y,
aiBZ’

dl, ~— 0L, dz; P oI, (o5,\" P

%

It should be noted that in general, this property cannot be guaranteed.
The role of the parameter p can be explained to some extent from the inequality (2.41).

Indeed, from (2.41) we have

_ d ___4p 1
agm, > Cym 20— N dte=d) — CYN~4d, p— o0.

Noticing that N ~i represents the average diameter of the elements, the above inequality
implies that the mesh becomes more uniform as p gets larger.

One may notice that the bounds in (2.41) and (2.42) depend on N and 7. This is
natural since the elements becomes smaller for larger N. Moreover, from the equidistribution
condition (2.6), we can see that | K| ~ det(M)~2, thus we can expect the lower bounds for
the altitudes and volumes of the elements to become smaller as m gets larger.

Consider now the fully discrete case. Let t,, n = 0,1,... denote the time levels with
t, — 00 as n — oo. Assume that we have chosen a one-step integration scheme for (2.39)

such that the energy is decreasing, i.e.,
LT < (7). (2.44)

Then, Corollary 2.3.1 will also hold for the mesh sequence, 7", n = 0,1,.... It should
be noted that many schemes such as Euler’s and the backward Euler satisfy (2.44) with a

sufficiently small but not diminishing time step; e.g., see [26, 33].
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2.3.3 Limits of the mesh trajectory

A direct application of Theorem 4.3 in [32], which is stated for a general coercive functional,

and Theorem 2.3.1 in Section 2.3.1, gives the following corollary.

Corollary 2.3.2. The mesh trajectory of the semi-discrete MMPDE (2.18) with the new

functional (2.17) has the following properties.

(a) In(Th(t)) has a limit as t — oo, i.e.,

lim 1,(7;) = L.
t—o0

(b) The mesh trajectory has limiting meshes, all of which are non-singular and satisfy the

bounds given in Corollary 2.3.1.

(¢) The limiting meshes are critical points of Iy, i.e., they satisfy

oI,
=0, +=1,...,N,
ami 9 ? ) )

The result in Corollary 2.3.2 ensures that as time increases, the values of the functional
for the mesh trajectory converge. This is significantly beneficial since it can be used as a
computational stopping criteria. It should be noted that in general, there is no guarantee the
mesh trajectory converges. In order to guarantee this convergence, stronger requirements
need to be placed on either the descent in the functional value or on the meshing functional;
e.g., see [33] for more details or Section 3.4.2 for a similar discussion. Moreover, like Corol-
lary 2.3.1, Corollary 2.3.2 also holds for the fully discrete case provided that the time step
is sufficiently small and the scheme satisfies the energy decreasing condition (2.44).

To conclude this section, we recall that the existing functional (2.15) is also coercive for
p > 1and 0 € (0,1/2]. Thus, Corollary 2.3.1 and Corollary 2.3.2 apply to the existing

functional as well.
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2.4 Numerical examples

Here we present numerical results for three examples in two dimensions to demonstrate
the theoretical findings discussed in Section 2.3. Two of the main focuses will be showing
the positive lower bound of the element volumes and the monotonically decreasing energy
functional. Additionally, we will provide and compare meshes associated with the new and
existing functionals. In order to asses the quality of the generated meshes, we compare the
linear interpolation error (error, measured in the L? norm), and the equidistribution (Q.,),

alignment (Qq;), and geometric (Qge,) mesh quality measures which are defined as

1 1 1
Qeq = N Z ng,m Qaii = N Z QZM’,K? Qgeo = N Z QzeovK’ (2'45)
KeT. KeTy, KeTy

where

|K | det(Mg )2 O — tr ((Fj)"Mg Fy)
on/N ddet ((FI) "My FL)

tr (Fk)" Fi)
ddet ((Fj)TFy)

(2.46)

Qeq,K = 5 Qgeo,K =

=
=

The equidistribution and alignment measures are indications of how closely the mesh satisfies

the equidistribution condition (2.6) and the alignment condition (2.7), respectively. The
closer these quality measures are to 1, the closer they are to a uniform mesh with respect to
the metric Ml. The geometric measure is the same as the alignment quality measure taking
M = I. It measures how skew the mesh is in the Euclidean metric. It should be noted that
these, in a sense, measure the average quality measure over all elements K in the physical
mesh.

We use p = 3/2 and # = 1/3 in the existing functional (2.15) and p = 1 in the new
functional (2.17). The defined parameters p and 6 for the existing functional are commonly
used and known to work well for most problems. The choice for p in the new functional is
based on the desire to ensure that (2.17) is a quadratic function of matrix entries, which,

computationally, makes the MMPDE less difficult to solve. The parameter 7 in the MMPDE
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(2.39) is taken to be 7 = 1072. Additionally, for the positive function P; in (2.39) we use
P, = det(M)"s for the existing functional and P, = det(M)3 for the new functional to
ensure, for both cases, that the MMPDE (2.39) is invariant under the scaling transformation
of M, i.e., M : M — c¢M for any positive constant ¢. The two dimensional meshes for
Example 2.4.1 and Example 2.4.2 are constructed on the domain Q = (0,1) x (0,1). We

take the metric tensor as

My = det(|Hy|)# | H,

where Hp is the recovered Hessian using least squares fitting to the function values at the
mesh vertices and |Hg| = Qdiag(|\], ..., |\a|)QT, assuming that Qdiag()y, ..., \g)QT is the
eigen-decomposition of Hg. It is known [38] that the above form of the metric tensor is

optimal corresponding to the L2-norm of linear interpolation on triangular meshes.

Example 2.4.1. In this example, we generate adaptive meshes for the sine wave modeled
by
u(z,y) = tanh (=30 [y — 0.5 — 0.25sin(27z)]) .

For the following results, we run to a final time of 5.0.

The example meshes and close-ups are given in Figure 2.1. The mesh associated with the
new functional provides good shape and size adaptation. There is a high concentration of
mesh elements in regions with large curvature near the interface. This is consistent with the
fact that the metric tensor used is Hessian based. A closer look at the mesh shows that the
elements are more skew (in the Euclidean metric) in the places with larger curvature. This
is also shown in Table 2.1 with Q4 ~ 2. On the other hand, () is close to 1, indicating
that the mesh almost satisfies the alignment condition under the metric M. Therefore, the
mesh may seem skew in the Euclidean metric but is very regular in the metric M.

While studying Table 2.1, we can also see that the equidistribution quality measure
(Qeq for the new functional is close to 1, hence indicating that the mesh associated with

the new functional is close to satisfying the equidistribution condition with respect to M.
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Figure 2.1: Example 2.4.1. Example meshes (left), close-ups near the inflection point (mid-
dle), and a closer version of the inflection point (right) with N = 25600.

Table 2.1: Mesh quality measures and the L? norm of linear interpolation error for Exam-
ple 2.4.1.

Functional

Qgeo

Qeq

Qali

error

Existing

1600
6400
25600

1.684
2.000
1.986

1.065
1.071
1.081

1.041
1.042
1.039

5.563e-3
1.219e-3
3.038e-4

New

1600
6400
25600

1.593
1.896
2.019

1.088
1.094
1.091

1.028
1.030
1.030

6.077e-3
1.305e-3
3.138e-4
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Figure 2.2: Example 2.4.1. The energy and minimum element volume are plotted as functions

of t with N = 25600.
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Therefore, with the alignment and equidistribution conditions close to being satisfied we can
conclude that the mesh is almost uniform under the metric M. The error value is a good
indication that the mesh associated with the new functional is accurate. In this example, the
error associated with the new functional is reasonably low. Moreover, as N increases, the
numerical results show that the error decreases like O(N 1), a second-order convergence rate
in terms of the average element diameter h = 1/ V/N. This is consistent with the analysis of
linear interpolation on triangle meshes.

As discussed in Section 2.3, theoretically we know that the I;, value is decreasing and | K| is
bonded below. To see these numerically, we plot Ij, and | K|, as functions of ¢ in Figure 2.2.
The results are consistent with the theoretical predictions. Specifically, Figure 2.2(a) shows
that I, is decreasing while Figure 2.2(c) suggests that | K|y, is bounded below about 107°.
It is interesting to observe that Figure 2.2(a) shows I, decreasing faster at the beginning
then leveling out more quickly when compared to the existing functional (Figure 2.2(b)).
This shows that the energy is converging faster for the new functional than for the existing
functional.

For comparison purposes, we also show the results obtained with the existing functional in
Table 2.1, Figure 2.1, and Figure 2.2. From these, we see a high correlation. With respect to
the mesh, both are very similar with high concentration near the interface where the function
has large curvature. The quality measures (g0, Qeq, and Qg are very similar as well. We
further remark that the CPU time for both functionals are almost equivalent, differing at
most by a few seconds. Hence, we can see that the two functionals are very comparable
and both seem to work well in this example. To save space, we do not present numerical
results comparing (2.15) and (2.17) with other meshing functionals. The interested reader
is referred to [34] for additional numerical comparisons.

To show how both functionals perform in a more anisotropic example, we change the
constant 30 in Example 2.4.1 to 100 and generate adaptive meshes. In this case, we run

to a final time of 0.1. Figure 2.3 shows the meshes and close-ups. As we can see from
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studying the meshes, the new functional provides a more adaptive mesh around the region
with large curvature. That is, there is a higher concentration of mesh elements that are
skew with respect to the Euclidean norm in this region. This is further confirmed by Ta-
ble 2.2 where we see (Qgeo ~ 1.894 for the new functional and Qg., ~ 1.279 for the existing
functional (N = 25600). It is also observed from Q., and Q,; in Table 2.2 that the mesh
associated with the new functional is slightly more uniform with respect to the metric tensor
M. Moreover, the interpolation error for the new functional is about half that of the existing
functional for N = 25600. Overall, both functionals handle this more anisotropic example

well and comparably. [

Table 2.2: Mesh quality measures and the L? norm of linear interpolation error for Exam-
ple 2.4.1 with more anisotropic features.

Functional N Qgeo | Qegq Quali error

1600 | 1.626 | 1.155 | 1.034 | 1.807e-2
Existing 6400 | 1.548 | 1.312 | 1.058 | 3.942¢-3
25600 | 1.279 | 1.553 | 1.107 | 2.462¢-3

1600 | 2.059 | 1.148 | 1.031 | 1.232¢-2
New 6400 | 2.203 | 1.249 | 1.028 | 2.616e-3
25600 | 1.894 | 1.436 | 1.067 | 1.261e-3
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Example 2.4.2. In this example, we generate adaptive meshes for a five sphere figure

modeled by

u(z,y) = tanh (30 (X2 +Y2 %)) + tanh (30 ((X 0.5)2 + (Y — 0.5)2 ;))

+ tanh (30 <(X —0.5)2+ (Y +0.5)2 - é))
+ tanh (30 ((X +0.5)% + (Y — 0.5) ;))

+ tanh (30 ((X +0.5)2 + (Y +0.5)? — 8)) :

where X = —2+4x and Y = —2 + 4y. We integrate the MMPDE to a final time of ¢ = 0.5.

Figure 2.4 shows the meshes and close-ups of both functionals for this example. Studying
the figure we see that the new functional provides a mesh with accurate shape and size adap-
tation. This can be further confirmed by the quality measures and the linear interpolation
error given in Table 2.3. One may notice that the mesh has smaller values of ()4, and thus is
less skew than those in the previous example. This may be due to the fact that the function
in this example is more isotropic than that in the previous example. Moreover, the linear
interpolation error behaves like O(N~!), showing a second-order convergence rate.

Figure 2.5 shows the energy and minimum volume of the elements as functions of time.
One can see that [, is decreasing and converging faster for the new functional than for the
existing functional, and that |K|u, is bounded by about 107°. Moreover, the results and

performance of the new functional are similar to those with the existing functional. ]
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Figure 2.4: Example 2.4.2. Example meshes (left), close-ups near the circle meeting the
boundary layer (middle), and a closer version of the circle meeting the boundary layer (right)

with N = 25600.

Table 2.3: Mesh quality measures and the L? norm of linear interpolation error for Exam-

ple 2.4.2.
Functional N Qgeo | Qeqg | Quis erTor

1600 | 1.051 | 1.134 | 1.056 | 6.954e-2

Existing 6400 | 1.094 | 1.231 | 1.057 | 1.326e-2

25600 | 1.122 | 1.342 | 1.040 | 3.068e-3

1600 | 1.031 | 1.188 | 1.026 | 6.946e-2

New 6400 | 1.076 | 1.300 | 1.030 | 1.794e-2

25600 | 1.137 | 1.370 | 1.030 | 3.310e-3
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Figure 2.5: Example 2.4.2. The energy and minimum element volume are plotted as functions
of t with N = 25600.
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Example 2.4.3. In the final example, we solve the initial-boundary value problem of a

special case of Burgers’ equation
uy =107 Au — wu, —uu,, in Q= (-1,1) x (=1,1)
subject to a homogeneous boundary condition and the initial condition
u(z,y,0) = 6_36‘8414(‘”2+y2), in Q.

The partial differential equation is discretized in space using linear finite elements and in
time using the fifth-order Radau ITA method [27]. It is solved with the mesh equation in an
alternating manner [38]. For the following results, we start at ¢ = 0.25 and run to a final
time of t = 1.25.

The meshes and close-ups for this example are given in Figure 2.6. Studying the figure
we see that the new functional mesh is much more adaptive when compared to the existing
functional mesh. The mesh associated with the new functional provides good shape and
size adaptation. As seen in the close-ups, the concentration of mesh elements in the region
with large curvature is high which, as we have seen in Example 2.4.1 and Example 2.4.2,
is consistent with the Hessian based metric tensor. Moreover, the elements for the new
functional are much more skew (with respect to the Euclidean metric) in the regions with

larger curvature which is confirmed in Table 2.4 with Qg ~ 17.01. [

Table 2.4: Mesh quality measures for Example 2.4.3.

Functional N Qgeo | Qeq Qi

1600 | 1.502 | 5.696 | 1.842
Existing 6400 | 1.934 | 14.20 | 2.391
25600 | 1.677 | 31.77 | 3.426
1600 | 2.130 | 4.705 | 1.577
New 6400 | 8.215 | 6.470 | 2.731
25600 | 17.01 | 14.68 | 4.7111
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Figure 2.6: Example 2.4.3. Example meshes (left), close-ups near the the tip (middle), and
a closer version of the tip (right) with N = 25600.
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2.5 Conclusion for the new functional

In the previous sections, we have introduced a new functional based on the equidistribution
and alignment conditions. The functional is formulated by directly combining these two
conditions into one with only a single parameter. It should be pointed out that (2.17) does
not contain #, a parameter that requires one to try to effectively balance the equidistribution
and alignment conditions in (2.15). We have proven a number of theoretical results for this
new functional at the discrete level which are similar to those of an existing functional that
is also based on the equidistribution and alignment conditions but contains an additional pa-
rameter. For example, the new functional was proven to be coercive (Theorem 2.3.1). With
this, it was then shown that the element altitude and volumes of the mesh trajectory of the
discrete MMPDE associated with the new functional are bounded away from zero and the
mesh trajectory stays nonsingular for all time if it is nonsingular initially (Corollary 2.3.1).
Moreover, Corollary 2.3.2 states that the value of the meshing functional decreases monoton-
ically along the mesh trajectory, while the latter has limiting meshes that are critical points
of the meshing functional.

The numerical results shown in Section 2.4 demonstrated that the new functional pro-
duces correct mesh concentration and its performance is comparable to that of the existing
functional which has been used successfully for various applications. In addition, the numer-
ical results validated the theoretical properties of the new functional. It was shown that the
meshing functional was monotonically decreasing and the minimum volume of the mesh ele-
ment was bounded below as functions of time. From these results, we conclude that the new
functional is similar to the existing functional in both numerical performance and theoretical

properties.
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Chapter 3

Surface Mesh

As mentioned in Chapter 1, mesh adaptation methods are well developed for bulk meshes
however, methods on surfaces are limited. We are particularly interested in methods that
adapt the mesh directly on a general surface with our without analytical expression. Here,
we present such a method. The method can be viewed as a nontrivial extension of the
MMPDE method that has been developed for bulk meshes discussed in Chapter 2 and
demonstrated to work well for various applications; e.g. see [37, 38, 39]. It is emphasized
that this method is developed directly on surface meshes, making no use of any information
on surface parameterization.

The development starts with revealing the relation between the area of a surface element
in the Euclidean or Riemannian metric and the the Jacobian matrix of the corresponding
affine mapping. From this, we formulate two conditions that completely characterize a
uniform mesh, the equidistribution and alignment conditions. These two conditions are
then combined to establish a single meshing energy functional for which minimizing this
functional will result in a mesh that closely satisfies these two conditions. In order to
minimize the energy functional, we define the surface MMPDE equation as the gradient
system of the energy functional in which the nodal mesh velocities are projected onto the
underlying surface. Just as in the bulk mesh case, we obtain a compact, matrix form of the
analytical expression for the mesh velocities making the implementation easy and robust.

A number of theoretical properties can then be proven. In particular, if the elements of
the mesh trajectory of the surface MMPDE have positive areas initially then they will have

positive areas for all time. This implies that there is no mesh tangling or closing. It is noted
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that this MMPDE method utilizes surface normal vectors to ensure that the mesh vertices
remain on the surface while moving. Thus, this new method can apply to general surfaces
with or without explicit parameterization since the surface normal vectors can be computed
even when the surface only has a numerical representation. A number of two- and three-
dimensional examples are presented to verify the theoretical findings as well demonstrate

the effectiveness of the method.

3.1 Equidistribution and alignment conditions for surface meshes

3.1.1 Area and affine mappings for surface elements

Let S be a bounded surface in R? (d > 2). Assume that we have a mesh 7;, = {K} on S and
let N and N, be the number of its elements and vertices, respectively. The elements K are
surface simplexes in R?, i.e., they are (d— 1)-dimensional simplexes in a d-dimensional space.
Notice that their area in d dimensions is equivalent to their volume in (d — 1) dimensions.
Assume that the reference element K has been chosen to be a (d—1)-dimensional equilateral
and unitary simplex in a (d — 1)-dimensional space. For K and any element K € 7y, let
Fx : K c R! — K c R? be the affine mapping between them and Fj be its Jacobian
matrix. Denote the vertices of K by X € RY, j = 1,...,d and the vertices of K by

J

§; € R j=1,...,d. Then

From this, we have

or

[:I:f—:c{{,,azf—m{{] :F;([€2_€17'--7£d_£1]7
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which gives F} = EKEA’*l, where Ex and E are the edge matrices for K and f(, ie.,

Ex= [zl -2l 2 -], E=[¢-¢€,....6-&].

Notice that E is a (d — 1) x (d — 1) square matrix and its inverse exists since K is not
degenerate. However, unlike the bulk mesh case, matrices Ex, Fi, € R¥(4=1 are not square.
This makes the formulation of adaptive mesh methods more difficult for surface than bulk
meshes. Nevertheless, the approach is similar for both situations, as will be seen below.

In the following we can see that the area of the physical element K € T, can be determined

using Fj or Ef.

Lemma 3.1.1. For any surface simplex K, there holds
K 1/2
EY ((F;f FK> , (3.1)

where |K| and ]K! denote the area and the volume of the simplezes K and K , respectively,

and det(-) denotes the determinant of a matriz.
Proof. From F). = ExE~", we have

1/2
det ((FK) ) :det( TEKEKE>
1/ N 1/2
— det (£~ ) det (Bf Erc) " det (£7)
1/2

= det(E) ™" det (ExEK)

= ;A det (E};EK) 12 s

(@~ DIE]
where we have used |K| = @ 1 ~det(E). Let the QR-decomposition of Ex € R¥>@1) he
given by
Rk
Ex = Qxk ;
0
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(d—1)x(d-1)

where Qx € R™? is a unitary matrix, Rx € R is an upper triangular matrix, and

0 € R™@=D is a row vector of zeros. This decomposition indicates that K is formed by

rotating the convex hull with edges formed by the column vectors of "l Thus, we have
0

RK RK

|K| = area(Ex) = area | Qg = area ,

0 0

where we have used the fact that rotation, (), does not change the area. Since the convex

d—1

hull formed by the column vectors of " lies on the M — ... — g@-1 _ plane, its area

0

is equal to the (d — 1)-dimensional volume of the convex hull formed by the column vectors

of Rk in (d — 1)-dimensions. Then,

1 1
|K| = Volume(d_l)(RK) = m det(RK) = m det(RgRK)l/z
On the other hand, we have
T
R R
det (ELEx) =det | || Q%Qw | || =det { R o] I | = det (RLR)
0 0 0
Therefore,
1/2 1 1/2 1 12 _ |K]
det ((Fp)" Fje) " = ——————det (ELE = ——————det (RLR =
(30" i) = Gy 2 )™ = (g 2 () ™ =

O

We now formulate the area of a surface element in a Riemannian metric using Fj or
Ek. The formula is similar to (3.1) and needed later in the development of algorithms for

mesh adaptation. For this formulation we first consider a symmetric, uniformly positive
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definite metric tensor M defined in (2.3). Recall (2.4) and the discussion thereafter, i.e.,
the geometric properties of K in the metric M can be obtained from those of M}(HK in the

Euclidean metric. This leads to the following lemma.

Lemma 3.1.2. For any surface simplex K, there holds
- 1/2
2 det () M Fk ) (3.2)

where | K |y, denotes the area of K in the metric M.

}(/QK is given by

Proof. The Jacobian matrix of the affine mapping from K toM
Fliox = (M}(/2EK> Bl =MY2F.

From the discussion following (2.4), we know that the area of K in the metric M is equal

to the area of M%zK in the Euclidean metric. Thus, from Lemma 3.1.1 we have

K _ MK

d t <(F/ )T F/ )1/2
~ 23 = de
|K| |K| Mg, K Mg, K

1/2 1/2

T
— det <(M}§2F;<) M}(/QF}() — det ((FI’()TMKF}{>

[]

The following lemma gives a lower bound for the area of K with respect to the metric

M in terms of the minimum altitude of K with respect to M.

Lemma 3.1.3. Let ax v, denote the minimum altitude of K with respect to Mg . Then,

1
Ko, > — at b . 3.3
Kl > o i (3.3)
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Proof. From Lemma 3.1.2 and F}, = ExE', we have

N 1/2
[KJuaye = K| det ((Ff)" MucF, )

K| T
= Bl et (BIMgE
det(E) (EiMicEx)

_ ﬁ det ((M}(/ZEK)T <M}</2EK>) "

Let the () R-decomposition of M%QEK be denoted as

1/2

R
MY Ex = Qx| |,

0

where Qi € R¥? is a unitary matrix, Rx € R419~! is an upper triangular matrix, and 0

is a (d — 1)-dimensional row vector of zeros. This gives

1 1/2 T 12 12
‘K‘MK = mdet (MK EK> <MK EK>

1/2
1 Rk
RO det | [Ri 0T]QQx
) 0
= det(RE R
T (d-1) KO
d—1
1
= H Si,
(d—1)
where s;, ¢ =1,...,d—1 denote the singular values of Rx. By [3, Lemma 5.12| we have that

ARy

d—1

8; >

)

where ag, denotes the minimum altitude of the simplex formed by the columns of Rg.



Combining these, we get

1
K > — ak !
R 2 =

Since Dk is a rotational matrix, the minimum altitude of K with respect to the metric Mg
is the same as the minimum altitude of the convex hull formed by the columns of R i.e.,

ax M, = GRry- Thus, we have obtained (3.3). O

The relationship given in the above lemma between the area and minimum height will be
used in the proof of the nonsingularity for surface meshes in Section 3.4. It is instructional
to note that in two dimensions (d = 2), K is a line segement and both |K |y, and ax
represent the length of K in the metric Mg and are equal. In this case, the inequality (3.3)
reduces to

|K|MK Z QK Mg >

which is very sharp. For d = 3, (3.3) becomes
’K’MK 2 Z a%(,MK’

which is not as sharp as in two dimensions. Indeed, when K is equilateral with respect to

M, we have [20]
1

| K |y = 7 A% e

3.1.2 [Equidistribution and alignment conditions for surface meshes

We can now define the equidistribution and alignment conditions characterizing a general
nonuniform, simplicial surface mesh. As in the bulk mesh case, notice that any nonuniform
mesh can be viewed as a uniform one in some metric tensor. Specifically, a mesh is uniform
in some metric if all of the elements in the mesh have the same size and are similar to a
reference element with respect to that metric. In this point of view, the equidistribution

condition requires that all of the elements in the mesh have the same size. Mathematically,
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this can be expressed as

Kl = 5 VK €T (3.4)

where, as before, | - [y, denotes the area of the surface with respect to the metric Mg and

on =Y ket | K|my. Using Lemma 3.1.2 and recalling |K| = 1, we have

1/2 1/2
Ko, = det (F) " MxFg ) on= > det ((Fp)" MicFy)
KeTy

Thus, the equidistribution condition (3.4) becomes
s \T , 1/2 Op
det ((FK) MKFK> =2 VK eTh (3.5)

The alignment condition, on the other hand, requires that all of the elements K € 7T}, be
similar to the reference element K. Notice that any element K is similar to K if and only
if Fe : K = K is composed by dilation, rotation, and translation, or equivalently, F} is

composed by dilation and rotation. Mathematically, F}. can therefore be expressed as
Fj. =aU |7 (3.6)

where « is a constant representing dilation and U € R%*¢ and V' € R@D*(@=1) are orthogonal

matrices representing rotation. This gives

I
(FI) Flo = oV [1 OT} Utu VI =l
0

One can readily verify that

(?)4! = det ((F;()T FK> (3.7)
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which gives
(d—1)a2 = tr ((F;()T FI;) (3.8)

and therefore

det ((F;f FK> T ﬁtr ((F;f FK) . (3.9)

Consider now M. From (3.6) we have

I
M2 Flo=aM/U| | VT
0

and thus, from (3.9) and the discussion following (2.4), we have

1

—tr <(F}()T I\\/JIKF;(> — det ((F}{)T 1\41}(11;{)ﬁ . VK eT, (3.10)

which is referred to as the alignment condition. Together, (3.5) and (3.10) completely char-

acterize a uniform surface mesh with respect to the metric M.

3.2 Surface energy functional

With these two conditions, we can now formulate a meshing functional similar to (2.15) in
the bulk mesh case which averages (3.5) and (3.10). To do so, we first consider the alignment

condition (3.10) and note that an equivalent condition is

1] d-1

} — det [((F[’()T MKF;(> ) ]

——tr [((F;f MicFy )

Notice that the left- and right-hand sides are the arithmetic mean and the geometric mean

of the eigenvalues of the matrix ((Fj)"MgF, I’<)_l, respectively. The inequality of arithmetic
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and geometric means gives

1
d—1

! tr{((F}()TMKF}(>1] > det {((F;()TMKF;()I} , (3.11)

d—1

with equality if and only if all of the eigenvalues are equal. From (3.11), for any general

mesh which does not necessarily satisfy (3.10), we have
d—1

tr {((F}()T MKF}(>_1] > (d — 1) det ((F}()T MKF;()_I,

and therefore

p(d—1)
2 p(d—1)

tr[((F}()TMKF}(>_1] —(d—1)"F det ((F}()TMKF}(> >0,

_p
2

where p > 0 is a dimensionless parameter which has been added to agree with the equidis-

tribution energy functional below. Then, we define the alignment energy functional as

p(d—1)
1 —1 2
"t {((F;()TMKFI’{> ]

1-p

3 K] det ((F}()T MKE;)T , (3.12)
KeTy,

Tui = Y 1K det ((Fp)" My F )
KeTy

p(d—1)
2

—(d-1)

whose minimization will result in a mesh that closely satisfies the alignment condition (3.10).
1

One may notice that |K|det <(F[’()T MKFI’(> - | K |m,. has been added as a weight.
Similarly, we consider the equidistribution condition (3.5). From Holder’s inequality, for

any p > 1 we have

B =

Z K by 1 < Z Kbt 1 (3.13)
1/2 — /2 ) .
ke T det ((Fi)" McFy ) Kt M det ((F)" MgcF )"
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with equality if and only if
T ~1/2
det ((FI'() MKF}(> = constant, VK eTh.

That is, minimizing the difference between the left-hand side and the right-hand side of
~1/2
(3.13) tends to make det ((F;()T MKFI’() constant for all K € 7,. Noticing that the

left-hand side of (3.13) is simply N/oy,, we can rewrite this inequality as

N\’ . 2"
(_) on< Y K] det ((F)T M) T

o
h KeT,

We can consider oy, constant since oy, & / det(M(z))"2da and hence it only weakly depends
S

on the mesh. Therefore, we define the equidistribution energy functional as

1-p

S K] det ((F}()TMKF}(> . (3.14)
KeTy

p(d—1)
2

Ieg = (d_ 1)

whose minimization will result in a mesh that closely satisfies the equidistribution condition.

We now have two functionals, one for each of equidistribution and alignment. Our goal
is to formulate a single meshing functional for which minimizing will result in a mesh that
closely satisfies both conditions. One way to ensure this is to average (3.12) and (3.14), that
is, define I, = 01,; + (1 — )1, for 6 € [0,1]. This leads to

p(d—1)
2

L=0 |K]det ((F[;)T I\\/JIKF}{)g tr {((F;Q)T MKF;{>_1}
KeTy, —-p

p( 2

+(1—=20)(d—1)"7" S |K]det ((F;()TMKF;() , (3.15)
KeTy,

where p > 1 and 6 € [0,1] are dimensionless parameters, with the latter balancing the
equidistribution and alignment conditions for which full alignment is achieved when 6 = 1

and full equidistribution is achieved when 6 = 0.
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It should be noted that we can also formulate a functional similar to (2.17) in the surface

mesh case, i.e.,

1

L= |K|det ((F,’()TMKF;(Y
KeTy,

((F,;)T MKF,’(>_1 - (%)”‘ I (3.16)

F

In the bulk mesh case the associated functionals to (3.15) and (3.16) are proven to be theoret-
ically and numerically comparable hence, for simplicity, we only consider (3.15) in numerical
examples. For details on the formulation and properties of (3.16) see Appendix A.3.

We can write (3.15) as

L ~
Iy =7 K| det ((Ff)" MxFy ) G, (3.17)
KeTy

where

p(d—1)
2 (d—1)

Gr =0t [((F}{)T MKF}(> _1} 4 (1—20)(d — 15 det ((F}()T MKFI’()_ . (3.18)

[S4S]

We remark that for 0 < 0 < % and p > 1, G is coercive, i.e.,

G (J,det (J), ) > a (tr {((F}()T MKF}(>1} )q — 8, Vzes (3.19)

where ¢ > (d —1)/2, @« > 0, and 8 > 0 are constants. More specifically, for the surface
functional (3.18) we have « = 6, f = 0, and ¢ = @. As we will see in Section 3.4,
coercivity is an important property when proving mesh nonsingularity. It is also instructional
to point out that the functional (3.15) is very similar to a Riemann sum of the meshing
functional (2.15) for bulk meshes based on equidistribution and alignment. One of the main
differences is that <(F ") Mg F I’<> cannot be simplified in (3.15) since it is not a square
matrix as it is in the bulk mesh case. Additionally, the constant terms and exponents that

contain d are (d — 1) in (3.15) instead of d in the bulk mesh case functional (2.15). The
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functional (2.15) has been proven to work well for a variety of problems [38].

3.3 Surface moving mesh PDE

3.3.1 Gradient of meshing energy

Motivated by the functional (3.15), we consider meshing functionals in a general form (3.17),
ie.,

L= |K|det ((F;()TMKF}(>§@K =Y Gk i), (3.20)

KeTy, KeTy,

where G is a given smooth function of

-1
T = ((F)" MxFy) i = det ((F) Mg Fy)
that is, Gx = G(Jk,7x), and

Gk, rx) = |K|r2Gk. (3.21)

Indeed, a special example is (3.18) but G can be chosen differently. Moreover, both Jx
and rx depend on the coordinates of the vertices of the physical element K and hence G is

a function of them, i.e., G (Jx,rx) can be expressed as
G(JK,TK) :GK (w{(,,:vff) s (322)

where X € R for i = 1,...,d are the coordinations of the vertices of K. As a consequence,

the sum in (3.20) is a function of the coordinates of all vertices of the physical mesh T, i.e.,

Ih (wlu s 7wNv) = Z GK (mfv . 7wfl() ) (323>
KeTy
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where z; € R? for i = 1,..., N, are the coordinates of the vertices of the mesh with global

indices. One of the underlying keys to our approach is to find the derivatives of I, with

respect to the physical coordinates @1, ..., xy, which requires elementwise derivatives of G g
with respect to 2, ... xX. That is,
ol oG oG
ah:Z aK: a—;{{, izl,...7Nv (324)
Ti gen 9T kew 9%k

where ix denotes the local index of vertex x; in K and wj; is the element patch associated
with x;.

Recall the properties of scalar-by-matrix differentiation in Section 2.2.2

otr (A) oA™Y J0A | Odet(4) _,0A
IA =1, 5 =—A (915A , 5 =det(A) tr [ A T (3.25)

where A is a square matrix. Using (3.25), we can find the expressions for % and % which

are needed to compute (3.24). For the functional (3.15), the first derivatives of G are given

by
(oG Opld—1), ., p(d—1)—2
a7 —T|K|r tr(J) I
(3.26)
oG 0 . s pa-ny  p—1 pld=1)  ~ p-3
L5 ——§|K\r tr(J) +T(1—29)(d—1) |K|r

See Appendix A.4 for details.

3.3.2 Derivatives of the meshing functional with respect to the

physical coordinates

From (3.24), we can see that we will need Gy /dxf to compute dI,/0x;. The former

can be obtained once we know the derivatives of G with respect to the coordinates of all
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vertices of K, i.e.,

e
oxk
oGk |
Ozl ek ... xk :
| Oz |
To do so, let t be an entry of [z, X ... xX]. Using the chain rule we have

Gk o <8GK QEK) i (8GK (‘9MK>

ot \0Ekx Ot OMy Ot

Denote

0Gk 0G i OFk

—)=tr | =———— 2

T r(@EK 825)’ (3.27)

0Gr, . [0Gx Mg
Now consider (3.27). When ¢ is an entry of [F,... ], recalling that Ex = [z& —
izl — 2K we have

Gk . . (0GkO=k, . .. k]
ot (D_tr(aEK ot ’

which implies
0G () = 0Gk
8[:85,,:1:5(] N 8EK

(1 (

Moreover, for t = (m{( ) the first component of &), we have

-1 -1 - —1

T (D=t | == =— )
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We can obtain similar expressions for (m{( )(j) for j =2,...,d. This gives

0Gk . ,0Gk
(9:13{( ([) - ° 8EK

where e’ = [1,...,1] € R~ For (3.28), we assume that M = M(x) is a piecewise linear
d

function defined on the current mesh, i.e., M = ZM]-, K¢JK , Where ¢JK is the linear basis
j=1
function associated with the vertex zc]K for all j = 1,...,d and M; x = M(xX). Denote

J
the ¢th components of & and xx by ¥ and azﬁ?, respectively. Then, for any entry t of

[z, 2l ... xk], we have
0G K Gk <~ OM \ 0z
TR = .
g 1D tr(aMK;(?w(”> ot
G K o 065 \ 0z
_tr(aMK;H Wik oew | "o

where we notice that 0¢; x/0x and Jxk /Ot are a row and a column vector, respectively,

and thus
0¢j k 0z
ox Ot

is a dot product. From this and the identity xx = (2 +--- + xf)/d, we get

00, K

oG 1 oG O

K _ 4 K :
ot a0 =3 (G i) »
— .

ox

and

Gk 1< 0G 0¢; i
_II):EZU(—M%K) a]w .
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Summarizing the above results, we have

0j, K
ox
0Gx Gk 1y (aGK > .
_ - Co| (3.29
Ok, .. xk] i g oo )
J,
ox
0Gx __ r0Gxk 1 . (9Ck ) 9k
ozk € 9E; T d Zt ( > O (3:30)
Notice that (3.30) can thus be rewritten as
8GK GGK aGK a¢] K
— = — tr —. 31
oxk K Z ( ) oz (3:31)
Next, we establish the relations between
0Gkx  0Gk and 0Gkx  0Gk
OEK’ GMK 8J ’ or '
First recall that Fj = ExE~", thus
1 \T 1\ r; T =1 4
J= ((FK) MKFK) — b (EXMyEy) BT (3.32)

Let Ex = Ek(t). Then we have

-1 -1

oG _ [ ocx 0 ((Fr)" M Fy ) | 06 L Odet ((Fl) M Fy )

ot ol ot or ot

0Gy 0 det (EEM E) ™

or ot

(3.33)

. [0Gk 0 (EkMkEK)
_tr< o1 "

1
ET> + det(E)?
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Consider the first term of (3.33). Using the properties of matrix derivatives (3.25) we get

0G0 (BEMgER) ™ .,

tr( B

_1 0 (EfMkEx)
ot

OET, OE o
5 MicEx + EQMyc E)tK) (EEM Exc) 1ET>.

oG
= —tr ( aJKE (EX My Ex)

(EEMEg) ™ ET>

oG
= —tr ( aJKE(E[T(MKEK) (

Since agf , Mg, and (E}CMKEK)_l are all symmetric, it follows that

-1
b (aGKEa (EiMic E) ET>

aJ ot
= —2tr <(E§MKEK)‘1 ET%E (EXMyEx) ' ELM a§K> .
Consider now the second term of (3.33),
,0Gy 9 det (EEMgEg) ™
det(E)* =5 at
det(E)2  8Gk T 0 (BEMxBx) ™"
_ ETMyE
dot (ETMEx) or (PicMicEi) ot
det(E)?2 Gk [0 (EEMkEx) , !
det (ELMkFEx) or tr( ot (BicMicEie)
det(E)?  9Gk OEL o OFk\ , p 1
- MyEx + EEMpg—X ) (ELMyE
det (EEMyEx) Or tr{ \ T MucBx+ BiMuc=a% ) (BicMicExc)
B det(E)? 0Gx 1y OEg
__2det(ElT(MKEK) ar ((EKMKEK) ExMx=5 )
Therefore
oG 1 ~p0G
ﬁ = —2 (EEMg Ex) ETTJKE(EKMKEK) LET M
det(E)? _
WE) 90K (prng, By) " ELM. (3.34)

det (E};MKEK) or

57



Combining this with (3.30) we obtain

Llers
oxk

. . T -1 TaGK T -1 T

: 2(EKI\\/JIKEK) E o] E(EKMKEK) Er Mg
0G g
| Oz} |

det(E)?  9Gk
det (E};MKEK) or

(EEMgEx) ™ EEM

00; K
1 G ox
K )

32_: ((MK ) s (3.35)
- 3¢j,1(
ox

We can compute gﬁﬂ’{ in a similar fashion. Let Mg = Mg(¢) and consider (3.33). Then,

for the first term we have

0G0 (EEMyER) ™ .,
tr( 3] E BT E

~1 0 (EfMkEx)

= —tr (aGKE (ExMkEK) (EEMyEx) ™ ET>

)

oJ ot
= —tr (%E (ExMkEg) EKalzﬂKE (E};MKEK)—l

0Gk
oJ

7 OM

— —tr (EK (EEMcEx) " ETZE B (EEMy By )™ EE—X o
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The second term of (3.33) is then

,0Gx Odet (EEMk Ex) ™
or ot

~ det(B)? Gk
~ det (ELMgEg) Or
B det(E)?  9Gyx . [0 (EEMkExk) , L
" det (ETMkEk) or tr( ot (BicMicFe)

A

det(E)2 8GK tr (ET 8MK

det(E)

T _1
tr ((E[T(MKEK) O (EiMicEr) >

ot

Ex (E[T{MKEK)_1>

T det (EEMkEg) Or K 5t
B det(E)?  9Gxk . M
~ det (ELMgEK) Or tr | Ex (ExMkEk) EKW _

Therefore

oG 1 270G - _
ity — ~ P (ERM ) BT BB Bi) B
det(E)?2  0G -
et(E) X Bx (ERMxEx) ' R, (3.36)

B det (E};MKEK) or

which we can use in the last term of (3.35).

Finally, we derive the relations between

99,k

pr 1=1,..4d and Fkg.

First, note that the basis functions satisfy

d d
E Oix =1 and E 931K¢>1K =x.
i=1 i=1

Eliminating 2 yields

x—x) = Z(mf — 1 )ik

=2
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Then differentiating with respect to *) gives

(@ — 1) Y ; : Obi K
€k = aw(k)l = 9z® (Z(mf —ay )ik | = Z(@‘f(—w{()aw(k)’

=2

where ey, is the k" unit vector in R?. Hence we have

092, i
ox
0P, K
ox
which gives
g i
ox
EfEx : = Ex
0Pa,x
ox
and thus
092, K
ox d
) _ 0P, 09;,
| = (BLE)'EE, 8:{ == a;:K (3.37)
0dq K =2
ox
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Summarizing the above we have

FOG T
dxk .
t | = —2(ELMgEK) 1ETT.HKE(E,7;MKEK)’1EKMK
0G
L0z |
det(E)? 0Gk , 1 1
— E Mg E E M
det (ETMgEg) Or (PicMicBre) — BicMi
99j K
d Oox
1 0G
L N LS Y : .
K
ox
el 8GK (0K o ) 0k
il S tr ’ ,
Pk =+ Z ( e (3.39)
where ag—f and aG—TK are given in (3.26), 0¢; x/O0x for j = 1,...,d are given in (3.37), and
aaGfo is given in (3.36). Having computed 0Gg/dx) (j = 1,...,d) for all elements using

(3.38) and (3.39), we can obtain 01}, /0x; from (3.24).

3.3.3 Surface moving mesh equations

As mentioned above, we employ the MMPDE method to minimize the meshing functional
(3.15) or a more general form (3.20). An MMPDE is a mesh equation that involves mesh
speed. There are various formulations of MMPDEs; we focus here on the approach where
the surface MMPDE is defined as a modified gradient system of the meshing functional. A
distinct feature for surface meshes, other than bulk meshes, is that the nodes need to stay

on the surface during movement. By Section 3.3.2 we may assume that we have the matrix

ol
8:131- ’

i=1,--+,N,.
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Let ®(x) = 0 denote the surface, where ® can be defined through an analytical expression

or a numerical representation such as by spline functions. Then for the vertices to stay on

the surface we should have ®(x;) =0 for all i = 1,..., N, or at least
dwi
-Vo(x;) =0 3.40
o Ve (3.40)

where da;/dt is the nodal mesh velocity. Following the MMPDE approach, we would define

the mesh equation as the gradient system of Iy, i.e.,

da; P (o, \"
C‘Z:_? (8;) . i=1,..,N, (3.41)

where P; is a positive scalar function used to make the equation have desired invariance
properties and 7 > 0 is a constant parameter used for adjusting the time scale of mesh
movement. Obviously, this does not satisfy (3.40). Here we propose to project the velocities

in (3.41) onto the surface and define the surface moving mesh equation as

T T
(gfh> — <(g[h) n> n] . i=1,..,N, (3.42)
xr; €Zr;

where n; = V&(x;)/||V®(x;)| is the unit normal to the surface at x; and the difference inside

de; B

dat 7

the square bracket is the projection of the vector d1I},/0x; onto the tangential plane of the
surface at ;. Notice that this surface MMPDE inherently ensures that (3.40) be satisfied or,
in words, the nodes stay on the surface during the mesh movement. Moreover, it is important
to note that (3.42) only utilizes the unit normal vectors of the surface whose computation does
not require explicit parameterization or analytical expression of the surface. As mentioned,
for surfaces without an analytical expression, spline functions may be used to approximate

the gradient for (3.42). It should be noted that (3.40) is a weak imposition. A stabilized
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version is given by

dx; P

at 7

o, \* on\" P
(awi) _<(6wi) e ™ (3.43)

where 6 > 0, and the last term, in a sense, determines the projection method of the nodes.
That is, when § = 0 then ®(x;(t)) = 0 and hence, the nodes are directly projected to the
surface. On the other hand, when § = oo, (3.43) is equivalent to (3.42) and so the nodes
are projected onto the tangential plane. For a direct formulation of (3.42) using Lagrange
multipliers and a more detailed discussion of (3.43), see Appendix A.5.

Using (3.24) we can rewrite the above equation in a compact form as

dwi Pz K .
dt = 7 Z viK? L= 17 '-'7Nv (344)

Kew;

where v{f{ € R? is the local mesh velocities contributed by K to a:ff{ and has the expressions

oGk \ " oGk \ "
o= (5r ) +<(ax—f§) ") e (349)

and 0G /0x_ is given in (3.38) and (3.39).
The surface MMPDE (3.44) must be modified properly for boundary vertices when S has
a boundary. For fixed boundary vertices, the corresponding equation is replaced by

da:i

7 =0.

The velocities for other boundary vertices should be modified such that they slide on the
boundary which is defined on a case-by-case basis.

With proper modification of the boundary vertices, the system (3.44) can be integrated
in time. To do so, one first starts by calculating the edge matrices Fx for all elements

and E for the reference element. One can then readily calculate (3.26) which is needed for
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(3.38) and (3.39). Then one can integrate (3.44) in time. For this work we use Matlab’s ODE
solvers ode45 and odel5s. The explicit scheme, ode45, implements a 4(5)-order Runge-Kutta
method with a variable time step. The implicit scheme, odel5s, is a variable time step and
variable-order solver based on the numerical differentiation formulas of orders 1 to 5. All of
the numerical examples in this paper use ode45 although both ode45 and odelbs have been

tested and proven to work very well in computation.

3.4 Theoretical Properties

3.4.1 Equivalent measure of minimum height

-1
We begin the theoretical analysis by establishing the relation between ((F [’()T Mg F' I’<>

and the minimum altitude of K with respect to M.

Lemma 3.4.1. There holds

02 | (d—1)%2
L < () < (3.46)
A My O Mg

where a is the altitude of K and ag M, 45 the minimum altitude of K with respect to the

metric M.

Proof. First of all, we have

-1 ~ ~ -1 A 1 a
(e )| = ()| = | o) |

Now, consider the QR decomposition of Fx

Rk
EK = QK )
0

(d—1)x(d-1)

where Qi € R™? is a unitary matrix, Rx € R is an upper triangular matrix, and
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0 is a (d — 1)-dimensional row vector of zeros. With this we have

-1

: L i R i
| (k) 7] = |2 | 0 ok || |

0
= ER;}R;(TETH

= (k) (i)

By [33, Lemma 4.1] we have

% < H (RKE—1>1 (RKE—l)T W=D ;%1)2&2,
" «

where ap, is the minimum altitude of the simplex formed by the columns of Rx. Since Qx
is a rotation matrix, ag, is the same as ax, the minimum altitude of K with respect to the
Euclidean metric. Combining the above results, we get

(d —1)2a2

< "
K

The inequality (3.46) follows from this and the observation that the geometric properties
of K with respect to the metric My are the same as those of M%2K with respect to the
Euclidean metric. O

Lemma 3.4.1 indicates that if K is chosen to satisfy | K| = O(1) then
1 \T / -t -2
((FK) MKFK> ~ (3.47)

3.4.2 Mesh nonsingularity and existence of limiting meshes

We now consider the MMPDE (3.44). Recall that the velocities for the boundary vertices

need to be modified in order for them to stay on the boundary. However, the analysis is
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similar with or without modifications. Hence, for simplicity we do not consider modifications
in the analysis. We also note that for theoretical purposes, we assume that K is taken to
satisfy |K | = % instead of being unitary as we have been considering thus far. This change
does not affect the actual computation. However, since typically we expect |K| = O(1/N),
the assumption |K| = + will likely lead to Fj, = O(1) and thus [,,(7,(0)) (the value of I,
on the initial mesh 7(0)) stays O(1). On the other hand, if |K| = 1 (unitary), we have
Fj, = O(1/N) and I,(7,(0)) will depend strongly on N.

In the following analysis, the mesh at time ¢ is denoted by Tp,(¢) = (z1(t), ..., xN,(1)).

Theorem 3.4.1. Assume that the meshing functional in the form (3.20) satisfies the

coercivity condition as given in (3.19), i.e.,
~ -17\ ¢
G (J,det (), z) > a (tr{((F}{)TMKF}(> D — B8, VxzeS (3.48)

where ¢ > (d—1)/2, @ > 0, and § > 0 are constants. We also assume that K is equilateral

and |K| = ~. Then if the elements of the mesh trajectory of the MMPDE (3.44) have

positive areas initially, they will have positive areas for all time. Moreover, their minimum

altitudes in the metric Mg and their areas in the Fuclidean metric are bounded below by

1 q
AR Mg > Cl []h('];l(o)) + 6md/2|5” 2¢—d+1 N_(d—l)(gq—d+1)7 (3‘49)

__d-1 2q d
K| > Cy [L(Ti(0)) + fm®?|S[] 57 N~ =t m 4 (3.50)

where
= (d— 1T Tt ot
C, = it : Cy = - : (3.51)
(d—1)"—=2 (d—1)7=z (d—1)!
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Proof. From (3.42) we have
dIh Z oIy dx; P oI, | (01, o \" N\
Ox; dt —~ 7 ox; |\ Ox; ox; v

| —<<zz:> >

<0.

o1y,
8932»

This implies I, (7Tn(t)) < I, (Tn(0)) for all t. From coercivity (3.19) and Lemma 3.4.1, we get

L) 2 0 Y (K det (£ MeFy) (tr {((F}()T MKF;()l})q — pm?|s|

KeTy,
. 1/2 1|4
> o Y IR (R0 i) | (o aere) |- mis
KeTy,
. 1/2 {24
>a Y K| det <(FI’<)TMKFI’<> S Bms).
KeT, AR My
By L 3.8, |K|det ( (F.)T MyF! 1/2—[( > 1 d-1  th
y Lemma 3.8, |[K[det ( (Ff)" MgFg ) = \MK_mCLK,MK’ us
Iy (To(t)) + Bm?|S| > 0™ > ! (3.52)
h h m el — — ) .
(d—1)5F (d—1)! 45 axdun
and therefore
2 > o6 (I (Th(0)) + BmY2|S]) . (3.53)
’ (d—1)% (d—1)!

Moreover, from the assumption that K is equilateral and \K | = % it follows that

1
_ 1t
ao YD (3.54)

Vd—1d7@D

Combining (3.53) and (3.54) we get

axy > C1 [In(Th(0)) + pm®2[S|] 2= N~ @G (3.55)
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where

o =& 45 (d— 1)1 T
' (d—1)%"

which gives (3.49).

Furthermore, we have

Ut gl = K] o ((F)" Mk F )1/2
=) = = €
(d—1)F(d—1) e KRR

N 1/2
< Y| K| det ((F}()T FK> —m YK

Then (3.50) follows from the above inequality and (3.49).

Finally, from (3.38) and (3.39) it is not difficult to see that the magnitude of the mesh
velocities is bounded from above when |K| is bounded from below. As a consequence, the
mesh vertices will move continuously with time and |K| cannot jump over the bound to

become negative. Hence, | K| will stay positive if so initially. O

From the proof we have seen that the key points are the energy decreasing property and
the coercivity of the meshing functional. The former is satisfied by the MMPDE (3.44) by
design while the latter is an assumption for the meshing functional. We emphasize that the
result holds for any functional satisfying the coercivity condition (3.19).

On the other hand, the condition (3.19) is satisfied by the meshing functional (3.15) for
0<6<1iandp>1 (withg=(d—1)p/2 and # = 0 in Theorem 3.4.1). It is interesting
to point out that the role of the parameter p can be explained from (3.49). Indeed, for this

case the inequality (3.49) becomes
NP S— P 1
agme > C1 [In(Th(0)) + Bm®?|S|] @00 N"@De0 — ¢y N™a1, p—o00. (3.56)

Since N™a1 represents the average diameter of the elements, the above inequality implies

that the mesh becomes more uniform as p gets larger. In numerical computation, we take
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p = 3/2, which has been found to work well for all examples we have tested.

Theorem 3.4.2. Under the assumptions of Theorem 3.4.1, for any nonsingular initial

mesh, the mesh trajectory {Tn(t),t > 0} of MMPDE (3.44) has the following properties.

1. I(Tu(t)) has a limit as t — oo, i.e.,

lim 7y, (Tx(t)) = L. (3.57)

2. The mesh trajectory has limiting meshes, all of which are nonsingular and satisfy (3.49)
and (3.50).

3. The limiting meshes are critical points of Iy, i.e., they satisfy

ol
=0, i=1,...,N,. 3.58
8wl ) Z b ) ( )
Proof. The proof is very much the same as that for [32, Theorem 4.3| for the bulk mesh
case. The key ideas to the proof are the monotonicity and boundedness of I;,(7,(t)) and the
compactness of S. With these holding for the surface mesh case, one can readily prove the

three properties. [

It is remarked that the above two theorems have been obtained for the MMPDE (3.44)
which is semi-discrete in the sense that it is discrete in space and continuous in time. A
fully discrete scheme can be obtained by applying a time-marching scheme to (3.44). More
specifically, consider the time integration of (3.44) and denote the time instants by t, for
n=0,1,... where we assume that ¢, — 0o as n — co. For integrating the MMPDE (3.44),

we are interested in methods of the form

T =U(TY), n=0,1,... (3.59)
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for which integrating from ¢, to ¢,.1 can be carried out in more than one step. One of the
key points to the proof of Theorem 3.4.1 is the monotonically decreasing property of the
energy functional. Therefore, for the fully discrete case we must assume that the scheme
satisfies

[h(,];ln+1) S [h< hn)’ n = 0, 1, e (360)

It should be noted that many schemes satisfy (3.60) including the forward and backward
Euler schemes, and algebraically stable Runge-Kutta schemes (such as Gauss and Radau

ITA schemes) under a time-step restriction involving a local Lipschitz bound of the Hessian

matrix of I, (e.g., [29, 54]).

Theorem 3.4.3. Assume the assumptions of Theorem 3.4.1 are satisfied and that a
numerical scheme in the form (3.59) is applied to the MMPDE (3.44). Furthermore, assume
that the resulting mesh sequence {T}'}5°, satisfies the energy decreasing property given by
(3.60). If the time step is sufficiently small but not diminishing and the elements of the
mesh trajectory have positive areas initially then they will have positive areas for all t, > 0.
Moreover, the minimum altitudes in the metric M and the element areas are bounded away

form zero by (3.49) and (3.50), respectively.

Proof. We only need to show that the volumes of the elements will stay positive if the time
step is sufficiently small but not diminishing after which the proof is similar to Theorem 3.4.1
for the semi-discrete case. To this end, assume G has continuous derivatives up to the third
order. Similar to the discussion in the last paragraph of Theorem 3.4.1, when the mesh
satisfies (3.49) and (3.50) we can show that the right-hand side of (3.44) as well as its
gradient and Hessian are bounded by bounds independent of time and individual elements.

After which, it can be shown that there exists 6ty > 0 that only depends on the bounds

mentioned above and thus is not diminishing such that if ¢, 1 — ¢, < 6to then || — 27|
for y = 1,..., N, do not exceed a fixed fraction of the minimal altitude and, in the case

an implicit scheme is used for (3.59), Newton’s (or some other) iteration for the resulting
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nonlinear algebraic equations converges. This then guarantees that the elements of the mesh
trajectory will remain nonsingular during the current time step. The same argument can be
repeated for each time step since the new mesh satisfies (3.49) and (3.50) and therefore, the

volumes of the elements stay positive for ¢, > 0. [

Extending Theorem 3.4.2 to the fully discrete case we are able to prove the following.

Theorem 3.4.4. Under the assumptions of Theorem 3.4.3, for any nonsingular initial
mesh, the mesh trajectory {T,",n = 0,1,...} of the scheme (3.59) applied to the MMPDE

(8.44) has the following properties.

1. I(T.") has a limit as n — oo, i.e.,

lim I,(7;") = L. (3.61)

n—oo

2. The mesh trajectory has limiting meshes, all of which are nonsingular and satisfy (3.49)
and (3.50).

3. If we further assume that the scheme satisfies a stronger property of monotonically

decreasing energy,

[h(,];szrl SI]AE”), n:(),l,...,
(3.62)

L(T < L(TR),  if T ds not a critical point,

then the limiting meshes are critical points of I, i.e., they satisfy (3.58).
Proof. The proofs are very similar to those in Theorem 3.4.2. See [32] for more details. [

Notice Theorem 3.4.2 and Theorem 3.4.4 state that the values of the functional for the
mesh trajectory converge which, as mentioned previously, can be used as a stopping criteria in

computations. However, in general there is no guarantee that the mesh trajectory converges.
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In order to guarantee convergence, a stronger requirement on the decent in the functional

value or on the meshing functional is needed. For a more detailed discussion, see [32].

3.5 Numerical experiments

3.5.1 Definition of curvature for curves and surfaces

In the numerical results we will consider a metric tensor M based on curvature. In order
to define such an M we must first derive the definition of curvature for both a curve in
two-dimensions and a surface in three-dimensions. We will begin by deriving the curvature
of a curve in three-dimensions then extending this to a surface in three-dimensions. To this
end, let the curve in space be defined by v = v(t) : I — R3 where I C R. The curvature of
~ measures the rate at which « is turning. This can be described by the position and size of

~" relative to 4" given by

7" x "]l

The term ||7/]|* in the denominator is used to ensure the value of the curvature does not
change under reparametrization. One can use dimensional analysis to see this or, more

rigorously, denote the reparametrization by 5(t) = v(4(¢)). Then

B(t) = ¢'(t)y'(6(1)) (3.64)
and
B'(t) = ¢" (L)' (6(1) + ¢' ()" (6(1)) (3.65)
which gives
B'(t) x B"(t) = ¢/ (t)*y (6(1)) x 7"(e(1)). (3.66)
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Therefore

18" % 8”1l _ [#@FIN60) x /" (@Dl _ [7(6(1) x ()l _ I x 7]
A FOHRCOIE FCOIE RAE

(3.67)

and thus the curvature is independent of reparametrization.

From (3.63) one can readily see that the curvature x for a curve is measured as the
change in the tangential direction. The tangential direction is used because the tangent of
a curve is a unique vector whereas the normal of a curve is a plane hence it is natural to
define the curvature in terms of the unique vector. In the numerical results we only consider
curves in R? however, k preserves definition (3.63) where z = 0 as we will see in the following

examples.

Example 3.5.1. In our first example we consider a line given by
Y(t) = (¢, ct +,0)

where ¢ and b are constants. From (3.63) we have

//H

|7 x
(t) = =
71|12
1(1,¢,0) x (0,0,0)]|
1(1,¢,0)|

=0.

Thus a line has 0 curvature which is consistent with the definition of curvature, i.e., curvature

measures the rate at which a curve is turning. O

Example 3.5.2. In our second example we consider a circle with radius r and a coun-

terclockwise parametrization given by

v(t) = (rcos(t), rsin(t),0).
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By (3.63) we have

//H

Y x
W=
_ ||(=rsin(t), r cos(t),0) x (—rcos(t), —rsin(t),0)||
||(—7sin(t), r cos(t),0) ||

1
o

Thus a circle has constant curvature x(t) = +. O

Example 3.5.3. In the last example we consider an ellipse given by
v(t) = (acos(t),bsin(t),0)

where a,b > 0. From (3.63) we have

//H

[
="
_ |[(=asin(t), bcos(t),0) x (—acos(t), —bsin(t),0)||
||(—asin(t),bcos(t),0)|
B ab
(a2 sin®(t) + b2 cos?(t))3/2’

and therefore
ab
(a2 sin®(t) + b2 cos?(t))3/2

r(t) =

Notice that when a > b,  attains its maximal value ;5 when sin(t) = 0, i.e., the denominator
is minimal. Furthermore, x attains its minimal value a% when cos(t) = 0, i.e., where the

denominator is maximal.

x minimal

4

/z \/ nzmaximal
N | S
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This is consistent with the fact that the curvature of a line is 0 (Example 3.5.1) and hence
the regions of the ellipse that are more linear will have smaller values of x compared to those

regions of the ellipse that have more curve, i.e., less linear. ]

We would like to extend (3.63) from a space curve to a surface in R3. In order to do
so, the definition must now be formulated in terms of the normal of the surface due to
its uniqueness (in the same way that we used the tangent for the curve). To this end, let
o : U — R3 denote the surface, p = (ug,v9) € U C R? a point, and T,p the tangent space of

o at the point p. Then it follows that the unit normal vector at p is

Oy X Oy

N (3.68)

N o X Uqu’

where o, = o,(p) and o, = o,(p). It is important to notice that |N|| = NTN = 1 and

therefore

T T
2 (3_N> N=0 and 2 <8—N) N =0.
ou ov

From this we know that N,, N, are orthogonal to N and thus N,, N, € T,p.

As mentioned above, to define the curvature s of a surface we want to measure the
change in N however, N = N(u,v) thus we must consider both N, and N,. This could be
done by using the Jacobian matrix for N however, this derivation does not remain the same
under reparametrization. To ensure that reparametrization does not affect the curvature,

we consider the mapping W : T,p — T,p defined by
W(oy,) = =N, = ao, + bo, and W(o,) = =N, = co, + do,,. (3.69)

where a,b,c,d € R and it should be noted that span{c,,o,} = 7,0 and —N,, —N, € T,0.
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By (3.69) we see that W has the following matrix representation

thus we can write (3.69) as

This gives
ol -
oy
and therefore i
a c
b d

Thus the shape operator W defined by (3.69) where

w=|" 7| eree
b d
a c
|:Uu O-v:| = |:_Nu _Nv:|
b d
a c 05
|:0u O-v:| = |:_Nu _Nv:|
b d ol
-1
HUUHQ Ugav —UfNu _UENU
_ (3.70)
oyou ol ~oy N, =o' N,
—1
oull? Ugav JEWUU U?;WO'U
ol (@) oIW(o) .
03% HUUH2 UZW(Uu) JEW(UU)

As discussed earlier, we use W rather than the Jacobian to ensure that the curvature is

unchanged under reparameterization. The idea behind using W is that a reparametrization

will change N, and N, but will also change o, and o,. It turns out that these changes are

directly related and so the map remains essentially the same. This implies that the shape

operator is more directly related to a geometric property of the surface than the vectors N,

and N,.

Theorem 3.5.1. The shape operator W is unchanged under reparametrization which pre-

serve orientation and it changes to —W under reparametrization which reverse orientation.
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Proof. : See [53] for details.

]

With the shape operator W, we can now define the principal curvatures. The principal

curvatures, denote as k1 and ks, are the eigenvalues of the shape operator W. It follows

by Theorem 3.5.1 that under reparameterization the principal curvatures are unchanged in

absolute value. The principal curvatures lead to the definition of the Gaussian curvature

Rg = K1 * K2

and the mean curvature

l€1+:‘<&2
Ry = .

2

To see the difference between (3.72) and (3.73) we consider the following examples.

Example 3.5.4. Consider a cylinder defined by

o(u,v) = (cos(v),sin(v), u).

Then we have

o, = (0,0,1), o, = (—sin(v), cos(v), 0), N = (= cos(v), sin(v), 0),

and hence

N, =(0,0,0) and N, = (—sin(v), — cos(v), 0).

By (3.70) it follows that

-1

(3.72)

(3.73)

One can readily see that the eigenvalues of W are k1 = 0 and ko = 1. This is consistent
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with the fact that the normal direction associated to x; is vertical and hence the principal
curvature is 0. Moreover, the normal direction associated to ks is that of a planar circle with
radius 1 and hence the principal curvature is 1 by Example 3.5.2. The Gaussian (3.72) and
mean (3.73) curvatures are thus
1
kg =0 and Ky = 3
O

Notice that (3.63), (3.72), and (3.73) are defined for curves and surfaces that are parame-
terized parametrically. The naturally question that arises is how can we define curvature for
a curve or surface with a Cartesian representation. For planar curves the following theorem

holds true.

Theorem 3.5.2. Consider the planar curve, ®(xz,y) = 0. Then

(~®,,D,) - Hess(®) - (~®,,D,)"
VP

K =

(3.74)

where K is the curvature of ® at the point (x,y), V is the gradient, and Hess is the Hessian.
Proof. See [24] for details. O
We can examine (3.74) by using Example 3.5.2 as follows.

Example 3.5.5. Consider a circle of radius r given by

O(z,y) = 2° +9° — 12

Then

20
(—2,,®,) = (—2y,2z), V& =(2z,2y) and Hess(®) =

0 2

78



Therefore, (3.74) gives

2 0
(—2y,2z) - - (—2y,22)T
K= _ _ 1
(2, 2y)|3 (422 + 4y2)3/2 (22 +y2)V/2 o’
which is consistent with the calculation in Example 3.5.2. =

The results for Example 3.5.3 are similar.
For surfaces in R?® with Cartesian representation, the Gaussian and mean curvature are

defined as in the following theorem.

Theorem 3.5.3. Let ®(x,y,z) =0 define an implicit surface. Then

V& Hess" (@) - VO
Vel

el y (375)

and

V- Hess(D) - VO — |VO|? tr(Hess(®))

, 3.76
2|V (3.76)

RM

where tr(-) is the trace, V is the gradient, Hess is the Hessian, and Hess" is the adjoint of

the Hessian.

Proof. See |24] for details. O
We can examine (3.74) in Example 3.5.4 as follows.

Example 3.5.6. Consider a cylinder defined by

O(z,y,2) = 2* +19° — 1.
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Then
2 00

Vo = (2x,2y,0) and Hess(®)= |0 2 0],
0 00

which gives that tr(Hess(®)) = 4 and Hess(®)* is the zero matrix. Then it readily follows

that kg = 0 and

2.0 0
(22,2y,0)- |0 2 ol - (2z,2y,0)T —4|(22, 2y, 0)|?

000 43 — dy? 1

Ky = = —
v 2|(2z, 2y, 0)[ (422 +4¢?32 2

Notice that the mean curvature here is negative but V® = (2x, 2y, 0) is the outward pointing
Kpm
[Ve|
. The magnitude of the curvature is consistent with

normal. Thus, as one would expect, the mean curvature vector defined as V& points

1

into the cylinder and has magnitude 3

Example 3.5.4. 0

3.5.2 Numerical results

As mentioned in Chapter 1, mesh adaptation has been proven to be an extremely useful
tool due to its ability to concentrate elements in specific regions of the domain or, now with
the method described above, the surface. One of the main advantages to using an adaptive
mesh rather than a uniform mesh is that fewer elements are required to accurately represent
a curve or a surface. To see this we compare an adaptive mesh with a curvature based metric

tensor to a uniform mesh for the ellipse defined by

2

X
‘I’(aﬁ,y)=6—4+y2—1-
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More specifically, Figure 3.1(a) and (e) show the adaptive mesh for the ellipse using a total of
N = 100 elements. Indeed, the concentration of elements is higher in the regions with larger
curvature and smaller in the more linear regions of the curve which is consistent with the
curvature based metric tensor used. With this concentration, the adaptive mesh represents
the geometry of the curve well with only 100 total elements. However, when a uniform mesh
is used, significantly more elements are required to attain a similar concentration of elements
in the curved regions (Figure 3.1(e)).

From Figure 3.1(b) and (f), one can readily see that curve is not well represented when
a uniform mesh with a total of 100 elements is used. The elements are equidistant along the
curve making the regions with larger curvature poorly represented. When we increase the
number of elements to 300, although better than N = 100, the uniform mesh can still be
seen to be a less than ideal representation of the curve, specifically in the regions with large
curvature. Finally, when N = 500, we can see a similar concentration in the curved regions to
that of the adaptive mesh. The concentration of elements at + = —8 and 8 (Figure 3.1(h)) is
similar to the concentration with the adaptive mesh (Figure 3.1(e)). There are more elements
in the linear regions of the curve when using the uniform mesh with N = 500 compared to
the adaptive mesh however, this is not necessary since these more linear regions can be well
represented with few elements. Thus, the curve has a similar representation when using
an adaptive mesh with 100 total elements or a uniform mesh with 500 total elements. For
computational purposes, one can see that it is a significant advantage to use the adaptive
mesh method compared to a uniform mesh as shown in Figure 3.1.

With this in mind, we present numerical results for a selection of two- and three-
dimensional examples to demonstrate the performance of the surface moving mesh method
described in the previous sections. The main focus will be on showing how our method
can be used for mesh smoothing and concentration. To assess the quality of the generated

meshes, we compare the equidistribution (Q.,) and alignment (()y;) mesh quality measures
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(a) N = 100 adaptive. (b) N = 100 uniform. (c¢) N = 300 uniform. (d) N = 500 uniform.

5 15
1 1

05 05
o 0

05 05

1 4

1 15

(e) Zoomed in (a). (f) Zoomed in (b). (g) Zoomed in (c). (h) Zoomed in (d).

Figure 3.1: Adaptive and uniform meshes for the ellipse with N = 100 for the adaptive mesh
and N = 100, 300, and 500 for the uniform meshes.

which are defined as

[NIES

det ((Fj)"™MgF)

Qeq = Irglea% i , (3.77)
and )
tr | ((Fro) Mk F) |

Qa1 = max (3.78)

K€M (d — 1) det ((Fly) "M Fl) a1
These measures are indications of how closely the mesh satisfies the equidistribution condi-
tion (3.5) and the alignment condition (3.10), respectively. The closer these quality measures
are to 1, the closer they are to a uniform mesh with respect to the metric M. It should
be noted that the alignment condition does not apply to the two-dimensional case where a
“surface” is actually a curve. Mathematically, when d = 2, (Fi)" MgFJ is a number and
hence (3.10) is always satisfied.
For all computations we use p = 3/2 and 6 = 1/3 in the meshing functional (3.15). This
choice has been known to work well in bulk mesh applications. Interestingly, we have found

that it also works well for all surface mesh examples we have tested. We take 7 = 0.01,
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dt = 0.01, and

P, = det (M(z,))" 2
The latter is to ensure that the MMPDE (3.44) be invariant under scaling transformations
of M. For all of the results, we run to a final time of 1.0.
We choose two forms of Mg. The first is Mg = I, which will ensure the mesh moves
to become as uniform as possible with respect to the Euclidean norm. The second is a
curvature-based metric tensor defined as a scalar matrix Mg = (kg + €) I, where kg is the
mean curvature and e is machine epsilon. The mean curvature is defined [24| for a curve

®(x,y) = 0 in R? as (3.74) given by

B, B2 — 20,,0,0, + B2D,,

k= 3
(92 + @2)2

and for a surface ®(x,y,2) = 0 in R? as (3.76) given by

k:

Dy + Dy + D3 — Dy
2 (02 + B2 4 2)*/7|

where

Dl = (I)w ((qu)xz + (I)yq)xy + (I)zq)xz) )
Dy = B, (B, D,, + B, ®,, + B.D,.),
D3 - (I)z ((I):E(I)xz + q)yq)yz + (I)zq)zz> )

Dy = (05 4 02+ ©?) (Pyp + Dy + D..) .

We would like to explore more metric tensors in future work but will focus on these two for
the numerical results in this thesis.
Not all of the examples have an analytic expression for ® thus, in these cases, the normal

vectors must approximated using spline functions. The initial mesh for all of the examples
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provided is taken to be fine enough so that this approximation does not affect the mesh
movement however, if the initial mesh is too coarse, the nodes can move from the surface

during adaptation. To see this consider the cardioid defined by
O(z,y) = (22 +4°)° + da(2® + ?) — 4y, (3.79)

We adapt the mesh on the curve for both N = 10 and N = 40. Here, we consider the
metric tensor associated to the Euclidean metric (Figure 3.2(a) - (f)). For the curvature
based metric tensor, see Figure 3.16. In this example, we fix the node x; = (0,0). Figure 3.2
compares the final meshes using normal vectors calculated explicitly to the final meshes using
normal vectors approximated via spline functions for the Euclidean metric.

From Figure 3.2 we see that the mesh adapts from a very nonuniform initial mesh (Fig-
ure 3.2(a) and (d)) to a uniform final mesh (Figure 3.2(b),(c),(e), and (f)) which is consis-
tent with the fact that the metric tensor corresponds to the Euclidean metric. However, for
N = 10, we see the nodes move off of the curve when the normal vectors are approximated
(Figure 3.2(c)) whereas when the normal vectors are calculated explicitly, the nodes remain
on the curve (Figure 3.2(b)). For N = 40, the nodes remain on the curve when the normal
vectors are approximated and calculated explicitly as shown in Figure 3.2(e) and (f).

This example shows that the initial mesh must be fine enough in order for the nodes to
remain on the surface during movement when the normal vectors are approximated. When
the initial mesh is fine, however, the final meshes when using approximate normal vectors
and analytical normal vectors are identical. When a Cartesian representation is available,
we will note whether the normal vectors are approximated or calculated explicitly however,
the initial meshes are fine enough that there is no difference in the final mesh between the

approximate and explicit normal vectors.
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) Initial Mesh.
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(d) Initial Mesh. (e) Final Mesh, explicit n. (f) Final Mesh, approximate n.

Figure 3.2: Meshes of N = 10 and N = 40 for the cardioid using analytical and approximate
normal vector with the Fuclidean metric tensor.
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Example 3.5.7. For the first example, we generate adaptive meshes for the unit circle
in two dimensions,

O(x,y) = 2* +9° — 1.

We take N = 80 and fix the node x; = (1,0). The normal vectors are calculated explicitly
in this example.

Figure 3.3 shows the meshes for this example. Studying the figures we see that the
initial mesh Figure 3.3(a) is very nonuniform but the final meshes Figure 3.3(b) and (c) have
adapted to be equidistant along the curve. Moreover, the final meshes for both Mgy = I
(Figure 3.3 (b)) and Mg = (kg + €)I (Figure 3.3(c)) adapt the mesh in the same manner.
This is consistent with the fact that the curvature of a circle is constant thus the nodes do
not concentrate in one particular region of the curve. The final meshes in both cases provide
good size adaptation and are more uniformly distributed along the curve when compared
with the initial mesh. This can be further supported assessing the mesh quality measure for
which ., improves from 7.509604 to 1.000004 for both cases of M. The fact that Q., ~ 1
indicates that the mesh is close to satisfying the equidistribution condition (3.5) and hence
the mesh is almost uniform with respect to the metric tensor Mig. It can also be seen that
the nodes remain on the curve ®, which is an inherent feature of the new surface moving

mesh method and indeed an important one when adapting a mesh on a curve. O

05 1

(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kg +€)I

Figure 3.3: Example 3.5.7. Meshes of N = 80 are obtained for ®(x,y) = z* + y* — 1.
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Example 3.5.8. The second two-dimensional example is the ellipse defined by

2

i
Pla,y) =7 Ty - 1L

In this example we take N = 60 and fix the node x; = (8,0). The normal vectors in this
example are approximated via spline functions.

The initial nodes (Figure 3.4(a)) are randomly distributed along the curve. However, for
Mg = I, the final mesh (Figure 3.4(b)) is equidistant along the ellipse providing a much
more uniform mesh. This can also be seen in ()., which improves from 5.497002 initially to
1.026912 in the final mesh.

Now considering the curvature-based metric tensor (Figure 3.4(c)), we can see a high
concentration of elements near the regions of the ellipse with large curvature. This is con-
sistent with the equidistribution principle which requires higher concentration in the regions
with larger determinant of the metric tensor (larger mean curvature in the current situation).
The mean curvature is large in the regions of the ellipse close to x = —8,8 and almost 0
for € (—2,2). From Figure 3.4(c) we can see that the adaptation with Mg = (kx + €)/
provides a mesh that represents the shape of the curve much better than other two meshes.
The improvement of ()¢, from 5.126216 to 1.015848 indicates that the final mesh is almost

uniform with respect to the curvature-based metric tensor. [

Example 3.5.9. For the next two-dimensional example, we generate adaptive meshes

for the sine curve defined by

O(x,y) = 4sin(x) — y.

In this example we take N = 60 and fix the end nodes x; = (0,0) and xg = (27,0). We
calculate the normal vectors explicitly in this example.
Figure 3.5 shows the meshes for this example. From Figure 3.5(a) and (b) we see that

for M = I, the mesh becomes much more uniform. This is consistent with the fact that for
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(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kx +€)I

2

Figure 3.4: Example 3.5.8. Meshes of N = 60 are obtained for ®(z,y) = g—4 +% -1

M = I, the minimization of the meshing functional will make the mesh more uniform with
respect to the Euclidean norm. The observation can be further supported by assessing the
mesh quality measures for which ()., measure improves from 4.183312 to 1.002906 indicating
that the final mesh satisfies the equidistribution condition (3.5) closely.

Now studying Figure 3.5(c) where My = (kg + €)I is used, we see that there is a high
concentration of mesh elements in regions with large curvature, i.e., the hill at y = 4 and cup
at y = —4, which is consistent with the use of the curvature-based metric tensor. Moreover,
the equidistribution measure )., improves from 6.254755 to 1.007493. This indicates that
although the mesh may seem nonuniform in the Euclidean metric, it is almost uniform in
the metric M.

As discussed in Section 3.4, theoretically we know that the value of I, is decreasing and
|K| is bounded below. To see these numerically, we plot I, and |K|y, as functions of ¢
in Figure 3.6, where |K|y, denotes the minimum area of K over all elements in 7. The
numerical results are shown to be consistent with the theoretical predictions. Specifically, for
My = I, Figure 3.6(a) shows that I}, is decreasing and bounded below by 9.535. Additionally,
Figure 3.6(b) suggests that | K|, is bounded below by 0.235 which is the value of | K|y, of
the initial mesh. As we see, | K|y, first increases and then converges to about 0.285 = %

The reason is because in the final mesh, the elements are close to being uniform with respect
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(a) Initial Mesh (b) Final Mesh, My =1 (c) Final Mesh, My = (kg + €)1

Figure 3.5: Example 3.5.9. Meshes of N = 60 are obtained for ®(z,y) = 4sin(z) — y.

to the Euclidean metric and thus |K| ~ |—f,| for all K. Since the initial mesh is nonuniform,
we expect an increase in |K|ni, as the mesh is becoming more uniform. Moreover, as the
mesh reaches the limiting mesh trajectory around ¢ = 0.05, we see that |K |y, converges as
shown in Figure 3.6(b).

For the case with Mg = (kg + €)I, the numerical results are again consistent with the
theoretical predictions. Figure 3.6(c) shows that Ij, is decreasing for all time and bounded
below by 15.5. This figure also shows that at around ¢ = 0.15, I}, begins to converge. In
Figure 3.6 (d), |K|mmn has similar properties to Figure 3.6(b). That is, we see an initial
increase in |K|nn after which, the value converges to 0.11 starting at around ¢ = 0.15.
Furthermore, Figure 3.6(d) suggests that |K|npy, is bounded below by the initial value of
0.045. O]

Example 3.5.10. As the final two-dimensional example, we generate adaptive meshes

for the lemniscate defined by
O(z,y) = (2% +y°)* — 4(a* — y°).

In this example we adapt the mesh on the curve for both N = 60 and N = 120. In both

situations, we fix the node ; = (2,0). The normal vectors are calculated explicitly.
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From Figure 3.7 we see that for NV = 60 the mesh adapts from a very nonuniform initial
mesh (Figure 3.7(a)) to a uniform final mesh (Figure 3.7(b)) when considering the metric ten-
sor corresponding to the Fuclidean metric. The nodes are equidistant apart while remaining
on the curve. This improvement in uniformity can be further supported by the equidistribu-
tion quality measure which improves from 2.083287 for the initial mesh to 1.002549 for the
final mesh.

We see a similar result when the curvature-based metric tensor is used (Figure 3.7(c)).
A higher concentration of nodes occurs in the circular regions with larger curvature com-
pared to the cross section which has smaller curvature (i.e., the linear regions). It is not a
significant difference in concentration but this is consistent with the fact that the curvature
of the lemniscate is close to but not exactly constant. The equidistribution quality measure
improves from 3.364232 to 1.001011 indicating that the final mesh is much more uniform

with respect to the curvature-based M than the initial mesh.

1sF T T T T T T T 1 15F T T T T T T T 3 15T

1 4 1 1 1

(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kg +€)I

Figure 3.7: Example 3.5.10. Meshes of N = 60 are obtained for the lemniscate ®(z,y) =
(a% +9%)" = 4(a? —y?).

For N = 120, Figure 3.8 shows similar findings. When considering the Euclidean metric,
we see the mesh, Figure 3.8(a), is very nonuniform initially and adapts to a equidistant
spacing of the nodes along the curve. This is further supported in the quality measures for
which the equidistribution measure improves from 2.552134 to 1.002167 indicating that the

final mesh is close to satisfying the equidistribution condition.

91



(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kx +€)I

Figure 3.8: Example 3.5.10. Meshes of N = 120 are obtained for the lemniscate ®(x,y) =
(2% +y°)* — 4(z* — y?).

The curvature-based metric tensor results in a similar adaptation as before. Figure 3.8(c)
shows the final mesh has adapted in such a way where there is a higher concentration of nodes
in those regions of the curve with larger curvature, i.e., circular regions. Comparatively,
there are fewer nodes in the cross section which has smaller curvature. The difference in
concentration can be clearly seen in Figure 3.8(c) with N = 120 nodes. The adaptation is
consistent with the curvature of the lemniscate, which is close to but not exactly constant.
This improvement in uniformity can be further supported by the equidistribution quality

measure which improves from 8.023253 for the initial mesh to 1.001855 for the final mesh. [

Example 3.5.11. Let us now consider surfaces in R?. In this first example, we consider

adaptive meshes for the torus defined by

2
O(x,y,2) = <2— Va2 +y2> + 22 -1,

where z,y € [-3,3], and z € [—1,1]. We take N = 3200. The normal vectors are approxi-
mated using spline functions in this example.
Figure 3.9 shows the meshes for this example in two different views. Studying Fig-

ure 3.9(a), the initial mesh, and Figure 3.9(b), the final mesh with M = I, we can see that
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Example 3.5.12. The second three-dimensional example is the cylinder defined by

q)(xvyaz) = "L‘Q +92 - 1a

where z € [—2,2]. For this example we take N = 3200. In this example, the normal vectors
are calculated explicitly. Two boundary nodes were fixed, ; = (0,1, —2) and x; = (0, 1,2),
but the remaining boundary nodes were allowed to slide along the boundary. Although the
cylinder has constant curvature like Example 3.5.11, this example shows the adaptation on
a surface with a boundary.

Figure 3.10 shows the adaptive meshes for the cylinder in two different views. For both
My = I and Mg = (kg + €)1, the mesh becomes much more uniform and identical. This
is consistent with the constant curvature of the cylinder hence the nodes do not concentrate
in any specific region of the surface. The equidistribution quality measure improves from
19.07656 to 1.054857 and the alignment quality measure from 23.35403 to 1.192268. The
fact that the final quality measures for both conditions are close to 1 indicates that the final

meshes are close to satisfying conditions (3.5) and (3.10). O

Example 3.5.13. Our next example is the sine surface in three dimensions defined by

(I)({E,y,Z) = sin(x + y) - %

where z € [-2,2], y € [£,%], and z € [—1,1]. For this example we take N = 3200 and fix
the boundary nodes. The normal vectors are approximated using spline functions.

Figure 3.11 shows the adaptive meshes for this examples in two different views. It is clear
in Figure 3.11, when Mg = I, the mesh becomes more uniform in the Euclidean metric from
the initial mesh Figure 3.11(a) to the final mesh Figure 3.11(b). The top view of the surface,
Figure 3.11(d) and (e), further confirm this. It is also supported by the improvement of the
quality measures from )., = 4.234781 to 1.669880 and @),; = 6.643755 to 1.702617.
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2.586702. The final quality measure for the equidistribution

= 1/3 has been used in the computation. Further computations

ice 0

6.527829 to Qu

and vice versa. This suggests that a perfectly uniform mesh cannot be obtained by

When M is curvature-based, we see a similar result to Example 3.5.9. That is, Fig-
ty,

measures with respect to the metric tensor improve from @), = 21.696868 to (), = 1.634091

and Qali
condition is close to 1 hence indicating that the final mesh is close to satisfying (3.5). The

tion condition. Recall that 6 in the meshing functional (3.15) balances equidistribution and
show that increasing 6 will improve the alignment quality but worsen the equidistribution

final quality measure for the alignment condition is not as close to 1 as the equidistribu-

ure 3.11(c) and (f) show that the elements are more concentrated in those regions of the
surface with larger curvature, i.e., the dip when z = —1 and the hill when z = 1. The quality

minimizing (3.15) for the curvature-based metric tensor for this example.
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Finally, we would like to take a look at the changes of I;, and |K|, along the mesh
trajectory. As we recall from Section 3.4, |K| is bounded from below and I, is decreasing.
These can be seen numerically for Mg = I in Figure 3.12(a) and Figure 3.12(b). Similar
to what we saw in Example 3.5.9, Figure 3.12(a) shows that I}, is always decreasing and at
around ¢ = 0.10 begins to converge. In Figure 3.12(b) we see an initial increase in the | K |min
value and then it begins to converge to 4.64x1073 ~ % at ¢ = 0.10. This initial increase, as
discussed above, is due to the nonuniformity of the initial mesh. That is, the initial mesh is
very nonuniform and therefore | K|y, can be very small whereas when the mesh is adapted,
the mesh becomes more uniform and hence the values of |K| ~ % become almost identical.
This implies that the value of | K |y, is likely to increase as the mesh adapts.

For the case with Mg = (kg + €)I, Figure 3.12(c) and (d) show similar findings. In
Figure 3.12(c) we see that I, is decreasing for all time and converging beginning at around
t = 0.15. Figure 3.12(d) shows |K |y, initially increases then begins to converge to about
2.0x107%. Furthermore, | K|y, is bounded below by the initial | K|y, value of 0.90 x 107

These numerical results for the curvature based metric tensor further support the theoretical

predictions. L

Example 3.5.14. Our final example explores the sphere and ellipsoid defined by an

icosahedral initial mesh (see [58] for more details). We begin with the sphere
O(z,y,2) =2® +9° + 22 — 1.

For this example we take N = 1280. The normal vectors are calculated explicitly for all
surfaces in this example.

As we see from Figure 3.13(a), the initial mesh is close to being uniform however, there
is a very slight difference in the final mesh Figure 3.13(b) when My = I. Indeed, this slight
adaptation can be seen in the quality measures which change from ., = 1.068461 and

Qai = 1.025691 for the initial mesh to Q., = 1.289843 and Qq; = 1.025972 for the final
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mesh. The difference in the quality measures indicates that the initial icosahedral mesh is
almost uniform and so the moving mesh method does not affect the mesh significantly.

We further this example to consider adaptive meshes for the ellipsoid defined by

2

@(az,y,z)z:ﬁ—i—]ﬁ—i—%—l.

We move the mesh on the surface for both N = 1280 and N = 5120.

First considering N = 1280, Figure 3.14 shows the meshes for this example in two different
views. Studying Figure 3.14(a) and Figure 3.14(d), the initial mesh, and Figure 3.14(b) and
Figure 3.14 (e), the final mesh with Mg = I, we can see that the final mesh adapts to provide
a higher concentration of elements in the middle region of the ellipsoid and fewer elements
near the tips. The quality measures improve from Q., = 1.724289 and Qu; = 1.453207
for the initial mesh to @, = 1.571401 and @y; = 1.102655 for the final mesh. Although
the initial mesh is close to uniform, the final mesh adapts in such a way to satisfy the
equidistribution and alignment condition on the surface. However, this is not an accurate
representation of the shape thus we consider a curvature-based metric tensor.

In our numerical experiments, when Mg = (kx +€)I is used, we saw the mesh adapt in a
similar way as with the Euclidean metric. This is because the curvature of the ellipsoid does
not change significantly at the tips thus not many nodes move there. With this in mind, we
altered the curvature-based metric tensor to concentrate more mesh elements at the tips of

the ellipsoid by redefining Mix as

. 1 1
My = My + (\/<2K e + N TR 6) I (3.80)

Figure 3.14(c) and Figure 3.14(f) show the final mesh using this altered metric tensor. As we
can see, the mesh elements have concentrated at the tips of the ellipsoid thus better repre-
senting the shape of the surface. The equidistribution quality measure changes from 1.374300

initially to 1.967482 whereas the alignment quality measure from 1.453207 to 1.262156. Simi-
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lar results are seen with a finer mesh in Figure 3.15 for both the Euclidean metric and altered

curvature-based metric.
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Example 3.5.14. Meshes of N = 5120 are plotted for ®(z,y, 2)

) top view of (a)

(d
Figure 3.15



For completeness, we include additional 2D and 3D examples (see Figure 3.16 through
Figure 3.29). For all of the two-dimensional examples, unless otherwise specified, we use a
total of N = 100 elements and take dt = 0.01 and 7 = 0.001. For all of the 3-dimensional
examples, unless otherwise specified, we take N = 3872 total elements with dt = 0.01 and
7 = 0.001. We run to a final time of 1.0 in both cases. As mentioned above, many of
the following examples do not have an explicit Cartesian representation, i.e., ®(x,y) = 0
or ®(x,y,z) = 0. In these cases we use spline functions to approximate the normal vector
required for the MMPDE method and approximate the curvature for the curve [49] and the
surface [14] via open source codes. All of the meshes show an accurate adaptation based on

the metric tensor used, similar to the examples discussed above.

-1 0 1 -5 -4 -3 -2 -1 [ 1

(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kx +€)I

Figure 3.16: Meshes for the cardioid (3.79) with N = 70.
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(a) Initial Mesh

(b) Final Mesh, Mg =1

(c) Final Mesh, My = (kx +¢)/

Figure 3.17: Meshes for the spiral defined by x(6) = 0 cos(f), y(6) = 0sin() for 6 € [0, 10].

(a) Initial Mesh

B 05 0 05 1

(b) Final Mesh, My =T

(c) Final Mesh, Mg = (kx +¢€)I

Figure 3.18: Meshes for four-petal rose defined by () = cos(26) cos(6), y(8) = cos(20) sin(0)
for 6 € [0, 27].
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(a) Initial Mesh

-1 08 06 -04 -02 0 02 04 06 08 1

(b) Final Mesh, Mg =T

1 08 -06 -04 -02 0 02 04 06 08 1

(c) Final Mesh, My = (kx + €)1l

Figure 3.19: Meshes for the flower defined by x(6) = cos (£) cos(6), y(6) = cos (£) sin(6)

for 6 € [0, 8] with N = 220.
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(a) Initial Mesh (b) Final Mesh, My =1 (c) Final Mesh, My = (kg + €)1

>

Figure 3.20: Meshes for the rose defined by z(6) = cos (22) cos(6), y(6) = cos (2£) sin(6)
for 0 € [0,87] with N = 260.
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(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kx +€)I

Figure 3.21: Meshes for the ribbon defined by z(0) = —10 — 36%, y(0) = 0z(0)
for # € [—-0.85,0.85].
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(a) Initial Mesh (b) Final Mesh, My =1 (c) Final Mesh, My = (kg + €)1

Figure 3.22: Meshes for the nephroid defined by z(0) = 3 cos(#) — cos(30),
y(0) = 3sin(0) — sin(30) for 6 € [0, 27].
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(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, My = (kg +€)I

Figure 3.23: Meshes for limagon defined by z(6) = (—1 + 2 cos(6)) cos(h),
y(0) = (—1 + 2cos(0)) sin(0) for 6 € [0, 27].

(a) Initial Mesh (b) Final Mesh, Mg =1 (c) Final Mesh, Mg = (kx +€)I

Figure 3.24: Meshes for the dip defined by ®(z,y) = 2% + 3z — y* with N = 60.
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Figure 3.25: Meshes for the paraboloid defined by ®(z,y, z) = 22 + y* — 2.
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3.6 Conclusions for surface mesh adaptation

In this chapter, we have proposed a direct approach for surface mesh movement and adapta-
tion that can be applied to a general surface with or without analytical expressions. We did
so by first proving the relation (3.2) between the area of a surface element in a Riemannian
metric and the Jacobian matrix of the affine mapping between the reference element and
any simplicial surface element. From this we formulated the equidistribution and alignment
conditions as given in (3.5) and (3.10), respectively. These two conditions enabled us to
formulate a surface meshing functional that is similar to a discrete version of Huang’s func-
tional (2.15) for bulk meshes [30]. The surface functional satisfies the coercivity condition
(3.19) for 6 € (0,1/2] and p > 1.

We defined the surface MMPDE (3.42) as the gradient system of the meshing functional,
which utilizes surface normal vectors to inherently ensure that the mesh vertices remain on
the surface during movement. Equations (3.38) and (3.39) give explicit, compact formulas
for the mesh velocities making the time integration of the surface MMPDE (3.44) relatively
easy to implement. Moreover, we showed that this surface MMPDE satisfies the energy
decreasing property, which is one of the keys to proving Theorem 3.4.1. This theorem is an
important theoretical result as it states that the surface mesh remains nonsingular for all
time if it is so initially. We then proved Theorem 3.4.2 that states the mesh has limiting
meshes, all of which are nonsingular. Finally, both Theorem 3.4.1 and Theorem 3.4.2 were
proven for the fully discrete case in Theorem 3.4.3 and Theorem 3.4.4.

A point of emphasis is that the new method is developed directly on surface meshes thus,
making no use of any information on surface parameterization. As mentioned, the MMPDE
(3.42) only depends on surface normal vectors which can be computed even when the surface
has a numerical representation. This allows the new method to be applied to general surfaces
with or without explicit parameterization.

The numerical results presented in this work demonstrated that this new approach to

surface mesh movement is successful. In all of the examples, the final mesh was seen to be
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much more uniform with respect to both cases of the metric tensor My = I and Mg =
(kx + €)1 which was supported by the mesh quality measures. Moreover, the theoretical
properties were numerically verified in Example 3.5.9 and Example 3.5.13 as we showed that

I, is decreasing and | K| is bounded below.
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Chapter 4

Conclusions

4.1 Conclusions

Variational mesh adaptation has proven to be an extremely useful tool however, Huang’s
functional (2.15), which is known to work well in a variety of problems, involves two di-
mensionless parameters. Although the parameters do not seem to affect the success of the
method, the optimal values are still unknown. To overcome this, in Chapter 2 we introduced
a new functional based on the equidistribution and alignment conditions. The formulation
of the new functional directly combines the equidistribution and alignment conditions into
a single condition with only one parameter. In particular, (2.17) does not contain the pa-
rameter 6 from (2.15) which requires one to try to effectively balance the equidistribution
and alignment conditions. Various theoretical results for the new functional that are similar
to those of an existing functional were proven. More specifically, the new functional was
shown to be coercive (Theorem 2.3.1). With coercivity we could then prove Corollary 2.3.1
which states that the element altitude and volumes of the mesh trajectory of the discrete
MMPDE associated with the new functional are bounded away from zero. Moreover, if the
initial mesh is nonsingular then the mesh trajectory remains nonsingular for all time. Fur-
thermore, Corollary 2.26 showed the existence of limiting meshes that are critical points of
the meshing functional and all nonsingular.

Numerical results in Section 2.4 demonstrated that the new functional is comparable to
that of the existing functional. The new functional produces correct mesh concentration

and adaptation. In addition, the theoretical findings for the new functional were validated
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through numerical results. More specifically, it was shown that the meshing functional was
monotonically decreasing and the minimum volume of the mesh element was bounded below
as functions of time. From these results, we conclude that the new functional is similar to
the existing functional in both numerical performance and theoretical properties.

After studying mesh adaptation for bulk meshes, the natural question that arises is if
these methods apply to surfaces. There are a number of mesh adaptation methods for
surfaces that have been proposed, all of which have strict requirements. In Chapter 3, we
proposed a direct approach for surface mesh movement and adaptation that can be applied
to a general surface with or without analytical expressions. We did so by first establishing
the relation (3.2) between the area of a surface element in a Riemannian metric and the
Jacobian matrix of the affine mapping between the reference element and any simplicial
surface element. With (3.2) and the concept of a uniform mesh we were then able to derive
the equidistribution and alignment conditions as given in (3.5) and (3.10), respectively. We
then combined these two conditions into a single surface meshing functional that is similar to
Huang’s functional (2.15) for bulk meshes. This surface meshing functional was then shown
to satisfy the coercivity condition (3.19) for 6 € (0,1/2] and p > 1.

In order to minimize this meshing functional, we defined the surface MMPDE (3.42) as
a modified gradient system of the meshing functional. This MMPDE utilizes surface normal
vectors to project the nodes onto the tangential space and hence ensure that the mesh vertices
remain on the surface during movement. We then derived explicit, compact formulas for the
mesh velocities given by (3.38) and (3.39). This makes implementation and time integration
of the surface MMPDE (3.44) relatively easy. Furthermore, we showed that this surface
MMPDE satisfies the energy decreasing property, a key property to proving Theorem 3.4.1
which states that if the surface mesh is initially nonsingular then it will remain nonsingular
for all time. We then proved Theorem 3.4.2 stating the existence of a limiting meshes, all of
which are nonsingular. Finally, we extended these two theorems to the fully discrete case as

given in Theorem 3.4.3 and Theorem 3.4.4.
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A point of emphasis is that the new method makes no use of any information on surface
parameterization since it is developed directly on surface meshes. As mentioned, the MM-
PDE (3.42) only depends on surface normal vectors which can be computed even when the
surface has a numerical representation. This allows the new method to be applied to general
surfaces with or without explicit parameterization.

The numerical results presented in Section 3.5 demonstrated that this new approach to
surface mesh movement is successful. In all of the examples, the final mesh was seen to be
much more uniform with respect to both cases of the metric tensor Mg = I and Mg =
(kx + €)I which was supported by the mesh quality measures. Moreover, the theoretical
properties were numerically verified in Example 3.5.9 and Example 3.5.13 as we showed that
Ij, is decreasing and |K| is bounded below. It was also shown that, assuming the initial
mesh is fine enough, spline functions can be used successfully to approximate the normal
vector required in computation. This proves the theoretical assumption that meshes without
explicit parameterization work well with our method without any additional assumptions or
requirements. Finally, throughout various examples in two-dimensions we have also showed

that the proposed method successfully adapts meshes with crossings.

4.2 Future Research

In order to better understand the performance of the new functional, more work and a variety
of examples are necessary. Specifically, one of the main disadvantages of the new functional
is that it is not convex whereas the existing functional is known to be polyconvex and can
be made convex with the special choice of the parameter § (§ = 1/2). With this in mind,
it is hard to say how the non-convexity of the new functional affects the numerics. For the
examples we tested, we did not experience any difficulty with computation or CPU time but
this may be a topic for further investigations.

The future research for the surface mesh method is a natural continuation of the work

described above. The first goal is to implement more numerical examples with various
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intricate curves and surfaces. Moreover, most of the numerical examples thus far are limited
to having fixed boundary points. It would be useful to provide more interesting examples for
which the points are allowed to move along the boundary. The monitor functions we used in
the examples are limited to simple scalar metric tensors. It will be interesting to see how an
anisotropic metric tensor, such as one based on the shape map, affects mesh movement and
quality. It is then necessary to develop the method to include adapting the nodes to improve
the solutions of PDEs defined on surfaces. This would require concentrating mesh elements
to account for the curvature of the surface as well as the solution of the PDE. The final step
in this research is to expand the method to moving surfaces which will be extremely useful

for a variety of applications.
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Appendix A

Appendix

A.1 Proof of Corollary 2.2.1
Corollary A.1.1. Assume M is independent of A. Then

Otr( AMAT)

= 2MAT
9A !
=T —1 4-—1
Otn(A aﬁﬂ AT L opiaTyiat,

Moreover, assume A is independent of M. Then

Otr( AMAT)

= ATA
oM ’
Otr(AM~1AT) 1 AT Anm—
= M 'ATAM .
oM

Proof. Let t be an entry of A. Then using Lemma 2.2.1 and Lemma 2.2.2, we have

Or(AMAT) _( Otr(AMAT) J(AMAT) _ [ J(AMAT)
ot _r<8(AMAT) ot >_r< ot )

T T
= tr (%MAT + AM%) = tr (%MAT) +tr (AM%)

ot ot ot ot
0A 0A 0A
_ 7oA oA T\ _ 7oA
= tr (MA 815) +tr(8t MA ) tr <2MA 815) .

Applying the chain rule (2.24) gives (A.1).
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Alternatively, using Lemma 2.2.1 and Lemma 2.2.4, we have

Or(ATMIATY) (8tr(A‘TM‘1A—1)8A—T>
= 1r

ot 0A-T ot
-T T
=tr(2MtA™! o4 =tr(2M*tA"! —Ail%A*T
ot ot
=tr —214*1%zéflAfTI\\/JI*1 =tr | —247'ATM A" 194
ot ot

which gives (A.2).

In a similar fashion, using Lemma 2.2.1 and Lemma 2.2.2, we have

O(AMAT) _ (Otr(AMAT) JAMAT) _( O(AMAT)
ot _r<8(AMAT) ot )_r( ot )

M .\ » (OM
(a2 e (a2,

which gives (A.3).

Finally, using Lemma 2.2.1, Lemma 2.2.2, and Lemma 2.2.4, we have

dtr (AM~'AT) [ dtr (AM'AT) 9 (AM1 A7)
at — "\ 9 (AM1AT) at

1
A@M )

o
(o
ol

which gives (A.4).
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A.2 Derivatives of existing functional for bulk mesh

Consider (2.19) for the existing functional (2.15), i.e

I, = ) |K|G (J,det(J),M),

KeTy

where

G = 0det(M)? (r(IMI7)) ¥ + (1 - 20)a% det(M) 2 det(T)”.

To find ?T? consider

dG 8G ol
B &]I ot
; tr (JM~ IJT) ol
(0 | K| det(M o] yn
dp ) 1o 225t Otr (IM~1J7T) 8]
( 0 | K| det(M)ztr (JM~'J7) i 5
dp9 | K| det(M)z tr (JM~ 1JT) Mg ai])
where we used Corollary 2.2.1. Similarly, to find d t(J) consider

dG _(_0G_9det(d)
dt —  \9det(]) ot

— tr ((1 —20)|K|d? det(M) =" %if;t(g adgtt<J)>

= o (31~ 2014 der(o)' 7 e 2 )

Finally, to find % consider the first term of G, denoted as Gy, i.e.,

Gy = 0det(M)? (tr(JM1J7))
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o O
—tr <9K| (%( r(JM™ 1JT)) +det(M)§ (t (Jl\aﬂMJ )) ) (981\;[[)

(1 1 0det(M) L 22 OM
—tr(20|K|det(M) o (tr(JM'J )) ¥
ey Otr(JMJ7) (9M>

oM ot

Totr (%Q]K]det( ) (tr(JM1J7)) 2

Then by Lemma 2.2.3 and Corollary 2.2.1 we have

e

dt ot

—tr (%pmm det(M)? (tr(JM—IJT))d? M IM ! aM) .

=tr <%9]K| det(M)% (tr(JMfle))d?p MlaM)
ot

Considering now the second term of G, denoted as Gs,i.e.,
Go = (1 —20)d? det(M) =" det(J)P,

we have

4G,
dt

0G4y OM
OM Ot

(1-— 26)|K|d * det(J)P

8 det(M) 2" oM
oM ot

—_
’E

dp 1-p_; 0det(M) OM
— 2 p g 1 VT
——(1—=20)|K|d=z det(J)? det(M) SV )

ot

/\/\/\/\

=P 20)|K|d¥ det(I)? det(M) T M~ 18M)

Thus with % = % + %GQ we obtain the derivative gg,ﬂ

Therefore the first derivatives of G are as given in (2.29), i.e.,
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( dp
oG — dpf+\/det(M) (tr(JM1JT)) 2~ M7,

o]
oG N
= — 2 2 p—1
Fac) P 20)d det(M)7=det(T)r,
gﬁ = 2\ /Got(M) (br(IMJ7)) * T M T M (A.5)

+ 4/det(M) (tr(JM‘lqﬂT))%p M-t

p
+—“‘2")(;‘md% det(M) _det(d)_ M-
det(M

\

A.3 Formulation and coercivity of the new meshing functional for
surface meshes

To formulate the surface energy functional similar to (2.17) for bulk meshes, consider the

alignment condition (3.10) and note that this implies all of the eigenvalues of (Fj )" Mg Fj

are equal, i.e.,

(F3,)" Mg Fje = 01,
where A denotes the eigenvalue. This gives

d—1

det ((FIQ)T MKF[’{> —0,7 . (A.6)

Comparing (A.6) to the equidistribution condition (3.5) we get

2

Op\ d—1
0= ()"
N
and therefore
(FL) My Fl = (%) T (A7)
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This gives rise to the energy functional

I=Y |K|det ((ﬂ;)TMKFJ;()§

KeTy,

as given in (3.16).

As with (3.15), we can write (A.8) as (3.20), i.e

L=Y GU.r) =

KeTy

To find the expressions for &

1 T _1 o 7% 2p
(P vicFy) = (52) T (A8)
N F
~ 1 op % 2
SIREE1- (%) T (A.9)
KeTh F
and %2 which are needed to compute (3.44), we use the

scalar-by-matrix properties given in (3.25). First, let us consider 29 and let

Then

%
ot

o
AAAA

a1

DATA Ot
10| Al 0AT A

Kl g s o

1) Otr (ATA) 9AT A
DATA Ot

2p_1) OATA
o )

oG 8ATA)

v pIE 2 Al

plK |2 || A7
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Now using the definition of A we obtain the following

=it (- (5) )| .
(o)
[ 2p R (J_%)—ﬁl ]) oy <J_<%)—dfl 1)8@ <g) I)
F
S (| (- () ) - G ) g

Similarly, let us consider %—f. That is

oG _ ., (9Gor

a "\ or ot

N Tl AN
_tr<|K|HJ (N) IF or ot

1 - 3 Op *% 2pa7’
—tr [ —Z|K|r? —(—) 1l 2.
r( Kl | 3=J F8t>

Therefore, for the functional (A.8), the derivatives of G are given by

% o=z 8r>

(%? = 2p|K|r2 ((F;()TMKF;()_l_(%yﬁI 2:’—1)
()™= () 1). (A10)
%—G =5l ((F;{FMKF;()L(%VI ]j’
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A.4 First derivatives of surface meshing functional

Consider (3.20) for the surface energy functional (3.15), i.e.,

KeTy,

]h = Z G(J;T) = Z 0|K|T‘_%tr (J)@ + (1 o 20)(d . 1)@|K|T%
KEeT;,
Using the scalar-by-matrix properties (3.25) we can find %
E = tr a_G@
dt —\aJ ot

p(d—1)
_ (9 Rl 95 = (g} @)

ot
. <9p(d2— 1) |f(|r;<% o (J)p<d—21>—2 otr (J) &]])

and 2¢. To find 25 consider
or ol

oI ot
Op(d—1) -, -1 pa-n-2  OJ
= tr (% |K|rp2 tr (D) 2 I E) :

Similarly, to find %—f consider

G _, (9Gor
a "\ or o

= tr ([9 |fq tr (J)p(dz_l) 8;;2 + (1= 20)(d— 1)@ .~ Or =z

or

2 K -

K] or ] 825)

:tr({—g \f(\ 7”gtr(J)”i‘”+p;1(1_29)(d_1)1”(d2”’f(’r"53] ar)'

Therefore the first derivatives of G are as given in (3.26), i.e.,

(0G

_Op(d—1) ~ 1 pld=—1)—2
]~ 2 |[K[r~2tr(]) I,
(A.11)
oG 0 . _s pa-ny  p—1 et . ps
|5, = RlKlr @)+ (1 - 20)(d - )7 K
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A.5 Formulation of surface MMPDE

The surface MMPDE (3.42) is intuitively derived from the MMPDE approach for bulk
meshes with a slight alternation which ensures that the nodes remain on the surface during
movement by projecting the velocities onto the tangential space. However, it should be noted
that (3.42) can also be formulated directly using Lagrange multipliers. That is, for a given

1 forie=1,...,N,, we want to solve the minimization problem given by

min I (x;) s.t. O(x;) = 0. (A.12)

7

By the method of Lagrange multipliers, we define

and hence we obtain the system of equations given by

or,\ " B
((’9%) FAVO(x;) =0

(A.14)
(I)(IB,L):O, izl,...,Nv.

Employing a modified gradient decent method to (A.14) we obtain

de; P, ((oL,\"
= ((awi) +W<1>> (A.15)

such that ®(x;) = 0. Since x; = x;(t), instead of requiring ®(x;) = 0, we impose a weaker

condition to (A.15) given by
dwi

)
v dt

=0. (A.16)
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Applying (A.16) to the MMPDE (A.15) we obtain

dx; P; anL\" 2
=V = VD d Al
0=V === <v ((%:i) + AV ||) (A.17)
which gives
Vo ah>T
A= — . . A18
Vo <awz- (A-18)

Inserting A into (A.15) we obtain (3.42), i.e.,

dx; P, o\ " oL\ "
dt T (8531) ( (awi n; | n ( )
where n; = % is the outward normal vector to the surface ® at the point x;.

As previously mentioned, we imposed a weak condition (A.16) to obtain (3.42) however,

we can impose a stronger condition to obtain a stabilized MMPDE. That is, we impose

O (x;(t +07)) =0 (A.20)

to (A.15) where 6 > 0 is a constant. In this, we are not requiring that the nodes be directly
projected onto the surface at time ¢, i.e., ®(a;) = 0, but instead be projected onto the surface
at some time ¢ 4 o7. This is called a delayed projection which is a stronger imposition than

(A.16). By Taylor’s Expansion on «; in (A.20) we have

da:
0=(x;(t+07)) =D (wz(t) + 01 dmtl + (’)(((57’)2)> . (A.21)
Moreover, by Taylor’s Expansion on ¢ we get
dmi

0= B(z(t)) + 67V - (A.22)

dt
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Combining (A.22) with (A.15) we obtain

da; d(x;) P, on\" )
o —L = = (Va- o A2
Ve o7 T (V (8:@) FAlve| (A.23)
which then gives
D a)—va- () ajvel? (A.24)
Ps Z; D, = . .

Therefore, by (A.15) we have

on,\" o5\ " o
() ‘<(am,-) B A T R

as before. The role of the last term can be seen through the different values

dt T

where n; = %

of §. That is, from (A.25) we can see that if 6 = 0 then ®(x;(t)) = 0 and hence we project the
nodes directly onto the surface. If § = co then (A.25) gives (3.42), i.e., we project the nodes
onto the tangential space. For all values 0 < § < oo, (A.25) uses a delayed projection of the
nodes onto the surface. It should be noted that we use d7 as the delay parameter so that
dimension of 7 in all of the terms in (A.25) agree. Furthermore, an explicit parameterization
of the curve is required for the delayed projection method and cannot be approximated for
obvious reasons.

To see the effectiveness of the delayed projection method, consider Figure A.1, i.e.,

O (z,y) = 2sin(z) — y.

In this, the initial mesh shows the nodes off of the surface however, when (A.25) is employed,
the nodes are projected directly onto the surface and the method continues as the examples
in Section 3.5.2. Here we use N = 20, dt = 0.01, 7 = 0.01, and § = 0.001. It should be
noted, however, that 6 depends on N and the initial mesh. That is, if the initial mesh is
fine (i.e., N is large) and the nodes are close in distance, § must be chosen to be sufficiently

small otherwise the delayed projection will result in a singular mesh.
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(a) Initial Mesh. (b) Final Mesh, Mg = I. (c) Final Mesh, Mg = (kg +€)I.

Figure A.1: Meshes for ®(z,y) = 2sin(z) = y with N = 20 using the delayed projection
MMPDE.
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