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Abstract 

The study in this thesis systemically investigated the application of core/shell technique 

to improve powder compactability. A 28-run Design-of-Experiment (DoE) was conducted to 

evaluate the effects of the type of core and shell materials and their concentrations on tensile 

strength and brittleness index. Six machine learning algorithms were used to model the 

relationships of product profile outputs and raw material attribute inputs: response surface 

methodology (RSM), support vector machine (SVM), and four different types of artificial neural 

networks (ANN), namely, Backpropagation Neural Network (BPNN), Genetic Algorithm Based 

BPNN (GA-BPNN), Mind Evolutionary Algorithm Based BPNN (MEA-BPNN), and Extreme 

Learning Machine (ELM). Their predictive and generalization performance were compared with 

the training dataset as well as an external dataset. The results indicated that the core/shell 

technique significantly improved powder compactability over the physical mixture. All machine 

learning algorithms being evaluated provided acceptable predictability and capability of 

generalization; furthermore, the ANN algorithms were shown to be more capable of handling 

convoluted and non-linear patterns of dataset (i.e. the DoE dataset in this study). Using these 

models, the relationship of product profile outputs and raw material attribute inputs were 

disclosed and visualized.  
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Chapter 1: Introduction 

1.1.Powder Compactability Improvement: Core/Shell Technique vs. Other Techniques 

Tablets are the most preferred dosage forms for oral route of administration. However, 

many active pharmaceutical ingredients (API) possess poor compaction properties, making them 

difficult to compress into strong tablets. One way to alleviate this issue is to add a compressible 

excipient such as microcrystalline cellulose (MCC) to the tablet formulation. However, large 

amounts of excipients in the formulation limit drug loading, which may present a challenge for 

formulation scientists, particularly if a high drug loading is required to make a reasonably sized, 

high dose strength tablet for patients.  Alternatively, at the molecular level, powder 

compactability may be improved by modifying the solid state properties of the API.  Approaches 

reported in the literature include forming polymorphs, co-crystals, amorphates, salts, 

(an)hydrates, etc [1,2,3,4]. Unfortunately, these approaches may not be feasible due to (1) the 

inability to identify a new form with acceptable compactability; (2) physical instability and 

sensitivity to moisture, heat, and force during processing conditions, (3) it is highly dependent on 

the physicochemical properties of the drug, making its application relatively narrow.  Powder 

surface coating (core/shell structure) has been reported to be another strategy with wider 

potential applicability to improve the compactability of powders [5,6,7,8].  In theory, tablet 

compaction can be equated to a process of bonding individual particles to a coherent compact 

under pressure.  From a microscopic view, the formation of bonding relies on three main 

mechanisms: distance forces (i.e., van der Waals forces, hydrogen bonding, electrostatic forces), 

solid bridges, and mechanical interlocking [9].  A coating layer (shell) may change the powder 

surface as well as bonding mechanisms.  Shi et al. coated polyvinylpyrrolidone (PVP) on fine 

silicone dioxide particles to convert the compaction behavior from elastic to plastic and 
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consequently prevent tablet lamination and capping [5].  Furthermore, they coated 

hydroxypropyl cellulose (HPC) on acetaminophen to improve tabletability [6]. Moreover, by 

coating polymers on pellets, Yeboah et al. enabled the compression of tablets containing a 

multiple unit pellet system (MUPS) at low compaction pressures so that the functional coating 

layer of the pellets was kept intact during the tablet compaction process [8]. 

1.2.Machine Learning and Its Potential Application in Powder Compactability Study 

Despite multiple advantages of the core/shell technique, to our knowledge, the current 

literature is mainly focused on demonstrating the feasibility of powder compactability 

enhancement. However, we are not aware of published accounts of systemic evaluations for this 

technique in terms of its critical material attributes (i.e., type/amount of core/shell material) as 

well as manufacturability/scalability.  Applying a “Quality-by-Design” (QbD) concept can 

contribute to a systemic, science-driven, and risk-based manner [10] to better understand the 

core/shell technique and its application in product development.  One of the major benefits of 

“Design-of-Experiment” (DoE) is that it uses less experiments to explore the joint influence of 

multidimensional inputs (e.g., material attributes, process parameters) on outputs (e.g., product 

attributes) as compared to univariate experimental design.  

Additionally, predictive models can be developed in attempt to accurately describe the 

relationship of inputs and outputs in the design space. Response surface methodology (RSM) is 

currently the most widely-employed model for formulation/process development and listed in 

ICH Q8 guidance [10].  RSM models can (1) be derived by fitting experimental data into a 

polynomial function containing quadratic terms and (2) provide predicted values using the 

obtained equations. With improvements in computing speed and new concepts proposed in the 

field of machine learning, additional algorithms have been developed to handle larger and more 
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complicated datasets and provide more accurate predictions. One example is Support Vector 

Machine (SVM), an algorithm based on transforming data into a hyperplane and is currently 

being applied in drug design and molecular assessment [11,12,13].  Another example is Artificial 

Neural Network (ANN), a digitized model emulating the human brain’s neurological behavior, 

which displays superhuman performance in some fields [14]. Specifically, in the pharmaceutical 

field, ANN has been attempted to be used in drug design, molecular modeling, formulation 

development, quality assessment, and process validation [15,16,17,18,19]. In contrast to 

traditional statistical models such as RSM, ANN is more powerful in terms of (1) handling large, 

convoluted, multi-dimensional, and non-linear patterns of databases; (2) performing multi-

objective optimization; (3) continuously improving predictability with more training datasets 

[18.19]. Many types of ANN using various topologies and algorithms have been developed but 

their applications in pharmaceutical research have not been widely explored.     

1.3.Specific Objective of This Thesis 

In this study, first, a scalable powder coating (core/shell) manufacture route (spray 

drying) was developed to improve powder compactability. Two brittle excipients, ForemostTM 

Lactose 313 and Emcompress® Calcium Phosphate Premium powder [20], were selected as 

surrogates of many brittle APIs. Next, critical material parameters (CMP) were thoroughly 

investigated by a 4-factor 28-run DoE study. Furthermore, based on the DoE data as the training 

dataset, predictive models were developed by using various established algorithms, including 

Response Surface Methodology (RSM), Support Vector Regression (SVR), and four types of 

Artificial Neural Network (ANN) algorithms: Backpropagation Neural Network (BPNN), 

Genetic Algorithm Based BPNN (GA-BPNN), Mind Evolutionary Algorithm Based BPNN 

(MEA-BPNN), and Extreme Learning Machine (ELM).  All these obtained models helped to 
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understand the effect of critical material parameters of core/shell technique on powder 

compactability and explore the utility of such algorithms in a pharmaceutical formulation and 

processing environment. 
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Chapter 2: Materials and Methods 

2.1.Materials 

 Lactose 313 was purchased from Foremost Farms USA (WI, USA). Kollidon® K30 

(PVP) and Kollidon® VA64 (VA64) were kindly donated by BASF (NY, USA). Emcompress® 

Premium Powder (Dibasic Calcium Phosphate) was kindly donated by JRS Pharma (NY, USA). 

Anhydrous ethanol was purchased from Fisher Scientific (MZ, USA).  

2.2.Preparation of Physical Mixtures (PM) 

 To prepare lactose/PVP and lactose/VA64 physical mixtures (PM), all powders were first 

manually screened through 30-mesh sieves. Subsequently preset amount of sieved powders was 

precisely weighed and then blended for 5 minutes using a Turbula mixer (Glenn Mills Inc, NJ, 

USA).  

2.3.Preparation of Core/Shell powders 

 Core/Shell powders were prepared via spray drying. Briefly, according to quantity listed 

on Tables 1 and 2, preset amount of PVP or VA64 was solubilized in ethanol. Subsequently, 

lactose or calcium phosphate were added to form a suspension, followed by continued stirring 

with a magnetic stir bar for at least one hour. The obtained suspension was then spray dried using 

a mini-spray dryer B-290 (Buchi, Flawil, Switzerland). Spray drying parameters were set as 

following: drying nitrogen gas 0.55 kg/min, aspirator 90%, inlet temperature 95°C, nozzle gas 

7.5 slpm, nozzle cooling temperature 20°C. Typical batch sizes were from 12-25 grams sprayed 

over 45-90 minutes.  
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2.4.Particle Size Measurement 

 Particle size was characterized using a HELOS laser diffractor (Sympatec, Clausthal-

Zellerfeld, Germany) under RODOS models (dry dispersion state). Particle size distribution 

(PSD) was numerically expressed by D10, D50, D90, and volume median diameter (VMD). 

2.5.Tablet Compression 

The harvested powders (PM or Core/Shell powders) were compressed into tablets using a 

Carver hydraulic press (Carver Inc, IN, USA) with a split die and round 10-mm diameter flat 

face tooling. Prior to compression, the die and punch were treated with external lubrication using 

a suspension of magnesium stearate in ethanol (5% w/v). Tablet weight was controlled within a 

range of 500±20 mg. The compaction force was set to 3000 LB, which was equivalent to 170 

MPa of compaction pressure. Tablets were relaxed in sealed bags at room temperature for at least 

24 h prior to further characterization.  

2.6.Measurements of Tablet Tensile Strength and Tablet Brittleness Index 

 Tablet tensile strength and brittleness index were measured by a Texture analyzer 

(Texture Technologies Corp., NY, USA). Only tablets with tensile failure breaking from the 

central vertical line were chosen for measurements. Testing speed was set at 0.02 mm/s and data 

collection was initiated by trigger force at 20 g. TS and BI were calculated according to Eq.1 and 

Eq.2 [21], respectively.  

HD

F
TS




=


2                           (Eq.1) 

MEDL

D
BI =            (Eq.2) 

Where F is the breaking force, D is the tablet diameter, H is the tablet thickness, and MEDL is 

the maximum elastic deformation length. To obtain MEDL, a first derivative method [21] was 

employed to determine the linear segment of the force-displacement curve.   
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2.7.Morphology 

Samples for SEM analysis were prepared by laying a monolayer of sample on a Carbon 

double sided adhesive tape attached to an Aluminum stub.  The sample was sputter-coated with 

Gold/Palladium (Au/Pd) target using the Cressington 108auto/SE (Cressington Scientific 

Instruments, Watford, UK). Electron micrographs were taken using the Zeiss EVO-15 system 

(Carl Zeiss, Oberkochen, Germany) with a LaB6 source. 

2.8.Experimental Design 

2.8.1. Preliminary Experimental Design  

 Preliminary studies were performed to compare the compactability using a core/shell 

strategy vs. binary physical mixture strategy. Compactability was evaluated at different wt/wt% 

of (1) physical mixtures consisted of lactose and PVP (or VA64); and (2) core/shell powders 

consisted of lactose (core material) and PVP (shell material). 

2.8.2. Design of Experiment (DoE) 

 Categorical factors (shell material type and core material type) and continuous factors 

(shell material concentration and core material concentration) were evaluated with their 

influence on tablet tensile strength and brittleness index (responses) throughout a 28-run DoE 

study, as shown in Table 1. PVP and VA64 were selected as two types of shell materials. Lactose 

and Calcium Phosphate were selected as two types of core materials. Out of 28 runs, the first 24 

runs contained two categorical factors (2 levels) and two continuous factors (3 levels) designed 

using Custom Design following the D-optimality criterion by JMP (SAS Institute Inc., NC, 

USA). Runs 25-28 were added to cover four more axial points, where Runs 25-26 were already 

performed in the preliminary study and Runs 27-28 contained the levels complimentary to Runs 
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25-26. For each run, tensile strength and brittleness index values were measured for at least five 

tablets and all the data were inputted for establishing the model as described in Section 2.8.  

Table 1 

Design-of-Experiment for four factors including two continuous factors and two 

categorical factors.  

DoE 

Run 

# 

Conc. of Material for 

Shell (% wt/v) 

Conc. of Material for 

Core (% wt/v) 

Type of 

Material for 

Shell 

Type of Material 

for Core 

1 0.1 10 S1 C1 
2 0.1 10 S2 C2 
3 0.1 15 S1 C2 
4 0.1 15 S2 C1 
5 0.1 20 S1 C1 
6 0.1 20 S1 C2 
7 0.1 20 S2 C1 
8 0.1 20 S2 C2 
9 1.05 10 S1 C2 

10 1.05 10 S2 C1 
11 1.05 15 S1 C1 
12 1.05 15 S1 C2 
13 1.05 15 S2 C1 
14 1.05 15 S2 C2 
15 1.05 20 S1 C1 
16 1.05 20 S2 C2 
17 2.0 10 S1 C1 
18 2.0 10 S1 C2 
19 2.0 10 S2 C1 
20 2.0 10 S2 C2 
21 2.0 15 S1 C1 
22 2.0 15 S2 C2 
23 2.0 20 S1 C2 
24 2.0 20 S2 C1 
25 0.5 20 S1 C2 
26 0.5 20 S2 C2 
27 1.5 10 S1 C1 
28 1.5 10 S2 C1 
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S1: Kollidon® 30 

S2: Kollidon® VA64 

C1: ForemostTM Lactose 313 

C2: Emcompress®  Calcium Phosphate Premium Powder 

 

2.8.3. Model Validation Points 

 Four validation points within the design space, as shown in Table 2, were selected to 

validate the robustness of the obtained models from DoE studies and adjust the hyperparameters 

if needed. For each run, tensile strength and brittleness index values were measured for at least 

five tablets.  

 

 

Table 2 

Dataset for model validation.  

Validation 

Run # 

Conc. of Material 

for Shell (% wt/v) 

Conc. of Material 

for Core (% wt/v) 

Type of 

Material for 

Shell 

Type of 

Material for 

Core 

1 0.5 17.5 S1 C2 
2 1.5 12.5 S2 C2 
3 0.5 12.5 S2 C1 
4 1.5 17.5 S1 C1 

S1: Kollidon® 30 

S2: Kollidon® VA64 

C1: ForemostTM Lactose 313 

C2: Emcompress®  Calcium Phosphate Premium Powder 



10 

 

2.9.Predictive Modeling and Learning Algorithms 

2.9.1. Response Surface Methodology 

Response surface methodology (RSM) generally employs a second-order polynomial 

regression equation to describe the relationship between factors and responses. In this study, 

eight quadratic equations were developed, in which every combination of one core material 

(lactose or Calcium Phosphate), one type of shell material (PVP or VA64), and one type of 

response (tensile strength or brittleness index) correlated to one quadratic equation.  One 

quadratic equation contains two independent variables: shell material concentration and core 

material concentration for each type of response, and takes the form of Eq.3: 

2
2

2
12121 eXdXXcXbXaXkY +++++=          (Eq.3) 

where Y is the response, X1 is the concentration of shell material, and X2 is the concentration of 

core material.  

2.9.2. Support Vector Regression 

 The algorithm for support vector regression (SVR) intends to find a function that 

predicted a response value that deviated from their corresponding observed value by a range up 

to ε and simultaneously this function needs to be as flat as possible [22]. In this study, nonlinear 

SVR algorithm was utilized to find the flattest function in a feature space and the function could 

then be restated as to minimize L(α) shown in Eq.4.  

( )  
= =



= =

 −−++−−=

N

i

N

i

iiiii

N

i

N

j

jijjii yxxGL

1 11 1

)()(,))((
2

1
)(        (Eq.4) 

subject to the constraints 
=

 =−

N

i

ii

1

0)(   and i , 
i within [0, C] 

where L(α) is the Lagrange dual function, i , 
i , j , 

j  are Lagrange multipliers, C is a constant 

determining the trade-off between the function flatness and the tolerance of largest deviation to ε,

( )ji xxG , is the Kernel function to map the training dataset from an input space to a high-
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dimensional feature space. Amongst different Kernel functions, the Gaussian radial base function 

(RBF) (Eq.5) was selected for our SVR model.  

)
2

||||
exp(),(

2

2



ji
ji

xx
xxG

−
−=           (Eq.5) 

where xi and xj are two feature vectors, and 
22

1


(Ƴ) is the inverse of the standard deviation.  

Parameters C and Ƴ were optimized through a grid search algorithm and set at 50000 and 0.006, 

respectively.  

2.9.3. Backpropagation Neural Network 

The backpropagation algorithm is a type of multilayer feedforward neural network. In 

this study, two three-layer BPNNs were developed for tensile strength and brittleness index 

respectively using a training dataset containing 165 samples and the structure was shown in 

Figure 1. The outputs of hidden layer and output layer were computed according to Eq. 6. 

 += −

k

l
j

l
k

l
jk

l
j bawa )( 1           (Eq.6) 

where l
jk

w is the weight interconnecting the kth node in (l-1)th layer and the jth node in lth layer, l
jb

is the threshold of the jth node at l layer, 1−l
k

a is the output of the kth node in (l-1)th layer, l
ja is the 

output of the jth node in lth layer, and σ is the transfer function.  
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Fig.1. Structure of a three-layer neural network. 

 

To determine the desired number of nodes at hidden layer, Eq.7 was employed: 

1

/

++

−
=

outputinput

outputsample
hidden

NN

NN
N


         (Eq.7) 

since β (the degree of determination of the network) was recommended to be greater than 1 for 

the prevention of overfitting [19], maximal hiddenN  was set to 27 and a screening was conducted 

from 10 to 27. Eventually 19 nodes were selected for the hidden layer. In addition, a sigmoid 

function was selected for the transfer function between input layer and hidden layer and a linear 

function was selected for the transfer function between the hidden layer and output layer. The 

performance of BPNN was measured by an error function, which is the mean squared error 

between predicted values and observed values. Throughout N iterative learning steps (N=50000 

for our programming), all weight and threshold values were adjusted after each step to make 

predicted values proximal to actual values. To prevent overfitting, a cross-validation was carried 

out by dropping out 10% of the data from the training set for each loop.   
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2.9.4. Genetic Algorithm Based Backpropagation Neural Network 

In general, for BPNN algorithm, the weights and thresholds were initialized randomly. 

Whereas, using GA-BPNN for this study, the initial weights and thresholds were given through a 

selection process based on Genetic Algorithm (GA), whose flow was represented in Figure 2. 

For our programming, all weights and thresholds were encoded to a chromosome which 

contained 115 strings and 50 chromosomes were randomly generated as the initial population. 

According to the smallest adaptive value (i.e., the mean square error between predicted value and 

the actual value) as the criteria, the best chromosome of one generation was selected. Next, a 

new population of 50 chromosomes were generated by inheriting the well-adapted chromosomes 

from the old population, followed by certain probability of crossover (0.2) and mutation (0.05) 

operations at some random points in the chromosomes. Again, a new best adaptive value would 

be found from this generation and the old one would be replaced if this new one was more 

adaptive. Overall ten generations were iterated in our programming.  Eventually, the optimized 

chromosomes were selected and subsequently utilized for the initialization of BPNN training. 

Noteworthy, regarding BPNN topology, log-sigmoid function was selected as the transfer 

function between input layer and hidden layer and other neural network structural parameters 

were selected the same as those of BPNN.   
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Fig.2. The flow diagram of Genetic Algorithm. 

 

2.9.5. Mind Evolutionary Algorithm Based Backpropagation Neural Network 

Mind evolutionary algorithm based backpropagation neural network (MEA-BPNN) was 

developed with the same purpose as GA-BPNN in order to give initialized weights and 

thresholds. In terms of algorithm, MEA-BPNN simulated human being’s mind evolution and 

utilized similar-taxis and dissimilation operations [23,24] to substitute crossover and mutation of 

GA-BPNN. A flow of MEA-based algorithm was represented in Figure 3. One individual, 

similar as chromosome of GA-BPNN, contained the information of one set of weights and 

thresholds. For our algorithm, briefly, 5 superior groups and 5 temporary groups were initialized 
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randomly with 20 individuals in each group. Next, local competition was carried out through 

similar-taxis operation and global competition was carried out through dissimilation operation. 

With the continual generation of new groups and discard of old groups, the above-mentioned 

operations were iterated for 10 times. In the end, the winner superior group with the highest 

score (i.e., the inverse of the mean square error between predicted value and the actual value) 

was updated to global billboard as the global optimum. The optimized individual was utilized for 

the initialization of BPNN training. Noteworthy, regarding BPNN topology, log-sigmoid 

function was selected as the transfer function between input layer and hidden layer. Additionally, 

14 nodes were used for hidden layer for tensile strength modeling and 16 nodes were used for 

hidden layer for brittleness index modeling. Other neural network structural parameters were 

selected the same as those of BPNN.   

 
Fig.3. The flow diagram of Mind Evolutionary Algorithm. 
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2.9.6. Extreme Learning Machine 

 In this study, extreme learning machine (ELM) was built with the similar structure as 

BPNN (i.e., three layers, four features in input layer, one feature in output layer, sigmoid 

function as the transfer function between input and hidden layers, as well as linear function as 

the transfer function between hidden and output layers). However, unlike iterative steps of 

adjusting weights and thresholds for BPNN learning, the algorithm of ELM assigned hidden 

nodes randomly and only needed to calculate the hidden layer output matrix H with one learning 

step [25]. This difference in algorithm lead to more nodes in hidden layer for ELM. As deciding 

the node number Ñ (Ñ ≤ sample number N) in hidden layer, the learning target for zero error was 

followed [25], with 0||||

~

1

=−
=

j

N

j

j to  (oj: observed output; tj: predicted output), which can also be 

written as Hβ =T (H: hidden layer output matrix; β: weight vector; T: predicted output vector) 

[25]. For our algorithm, Ñ was optimized from 15 to 50 and eventually 31 was selected.  

2.9.7. Statistical Analysis 

 To evaluate the difference between observed values and predicted values, coefficient of 

variance of the root mean square error “CV(RMSE)” were applied.  

In addition, Akaike information criterion “AIC” was employed to evaluate the optimality 

and relative quality of all neural network models, according to Eq.8.  

ws nSSnAIC += 2)ln(           (Eq.8) 

where ns is the number of datasets, nw is the number of weights and nodes, and SS is the residual 

sum of squares between observed and predicted values.  
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Chapter 3: Results and Discussion 

3.1.Core/Shell Powder vs. Physical Mixture  

As the compactability of core/shell powder was compared to the compactability of 

physical mixture, the tensile strength of the lactose/polymer compacts was plotted against the 

weight percentage of the compactible polymer (Figure 4). For the physical mixture, increasing 

PVP did not show any improvement of the tensile strength until it reached 50% (wt/wt).  The 

maximal tensile strength (5.05 MPa) was observed at around 90% (wt/wt) of PVP in the physical 

mixture.  Mixing VA64 with lactose reduced the amount of polymer required to initiate the 

compactibility improvement to 17% (wt/wt) of polymer in the physical mixture. Maximum 

tensile strength for the lactose/VA64 physical mixture was again observed at 90% (wt/wt) of 

polymer, with a tensile strength of 7.26 MPa achieved, almost doubling the increase provided by 

that of the PVP, indicating VA64 powders improved compactability of physical mixture more 

significantly.  

In Figure 4, the core/shell technique not only reduced the quantity of the PVP needed to 

initiate the tensile strength increase, but also improved tensile strength at a much greater rate 

compared to the physical mixture. As seen, a tensile strength of 3.52 MPa was achieved with a 

PVP weight percentage of 2.5% (wt/wt) using the core/shell technique. By contrast, 

approximately 60% (wt/wt) of PVP was required to achieve the same level of tensile strength 

physically mixing PVP with lactose.  To further increase the tensile strength from 3.52 MPa to 

4.33 MPa, only 6.5% (wt/wt) additional PVP (total 9% PVP) was needed using the core/shell 

technique whereas approximately 10% (wt/wt) additional PVP (total ~70% PVP) was needed for 

the physical mixture.  
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Fig.4. Effect of polymer weight percentage on tensile strength.  

Symbol °: physical mixture of lactose/PVP 

Symbol ˣ: physical mixture of lactose/VA64 

Symbol ▲: core/shell of lactose/PVP 

 

In addition to the tensile strength at a given compaction pressure, brittleness index of a 

material is another indicator of its compactibility, as it is generally accepted that less brittle 

materials are more compactible. Figure 5 show a general trend of decreasing brittleness index 

with increasing amount of PVP. The core/shell technique significantly reduced the amount of 

PVP required compared to the physical mixture. Both the tensile strength and brittleness index 

results demonstrated that the core/shell technique is a better approach to improve compactibility 
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of a poorly compactible API for stronger and less defect prone tablets while maximizing 

potential drug load in a tablet.  

 

Fig.5. (a) Effect of polymer weight percentage on brittleness index.  

Symbol °: physical mixture of lactose/PVP 

Symbol ˣ: physical mixture of lactose/VA64 

Symbol ▲: core/shell of lactose/PVP 

 

  In this study, core/shell powders were prepared using a continuous and scalable spray 

drying process. To evaluate this process, particle size distribution (PSD) was monitored before 

and after spray drying to assure that PSD of the powders for core was maintained during the 

spray-drying process, and thus consistent with and comparable to the lactose PSD in the physical 
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mixtures.  Table 3 showed that using the given process parameters, there was no significant PSD 

change observed after spray drying, indicating that no agglomeration or granulation occurred 

during the core/shell preparation process.  The slight decrease in PSD of the core/shell powders 

may be hypothesized to be attributed to fines of the free polymer (i.e. PVP), which is not 

absorbed onto the surface of the lactose particles, generated by spray drying.  

Table 3 

Particle size distribution of core/shell powders prepared by spray drying. 

Material D10 (µm) D50 (µm) D90 (µm) VMD (µm) 

Lactose  9.3 37.6 62.7 38.6 

Spray-dried lactose from 

EtOH 

9.2 36.9 60.8 36.3 

Spray-dried lactose/PVP 

(20%/0.1%)  

8.7 34.5 52.0 32.5 

Spray-dried lactose/PVP 

(20%/0.5%) 

8.2 31.8 56.5 32.8 

Spray-dried 

lactose/VA64 

(20%/0.5%) 

8.5 33.5 57.5 33.9 

Spray-dried 

lactose/VA64 (20%/2%) 

8.0 31.0 53.0 31.1 

Spray-dried 

lactose/VA64 (10%/2%) 

7.5 28.4 53.2 29.3 

%: wt/v in EtOH 
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3.2.Design-of-Experiment 

 The experimental results of the Design-of-Experiment (DoE) study were presented in 

Tables 5 and 6. Among the factor levels explored, a wide range of tensile strength and brittleness 

index values were observed, i.e., the lowest tensile strength values were 2.18 MPa (Run 2) and 

2.14 MPa (Run 8) whereas the highest tensile strength were 7.58 MPa (Run 21) and 7.63 MPa 

(Run 27). In addition, powders with a low tensile strength were more brittle and those with high 

tensile strength were more plastic. In Figure 6, the relationship of tensile strength and brittleness 

index could approximately be fit to a power law function 1
0

C
TSCBI = , where C0 and C1 were 

constants, BI was brittleness index, and TS was tensile strength. This observation was consistent 

with the findings from Gong et al [27]. Another interesting result was that when the same weight 

ratio of dispersed core material to solubilized shell material was used for spray drying, tensile 

strength and brittleness index values might not be the same and was dependent on the polymer 

type and concentration. For example, with the same weight ratio at around 10 to 1, regarding 

lactose/PVP combination, Run 9 (5.30 MPa) and Run 23 (4.33 MPa) were different, whereas 

regarding calcium phosphate/VA64 combination, Run 10 (4.85 MPa) were similar as Run 24 

(4.68 MPa). This observation was speculated to be related to the polymer (shell material) 

molecular structure and its ability of adsorbing at the solid-liquid interface. From another 

perspective, core material solubility in shell solution can influence compressibility. For example, 

Sugimori et al. found that high drug solubility in binder solution lowered compressibility of 

granules coated with binder [28]. Nevertheless, in this study, the factor of core material solubility 

is not considered as a profound factor since both lactose and calcium phosphate are insoluble in 

ethanol. Overall, these results showed the chosen parameters as well as their levels within the 

DoE design space significantly influenced responses. In addition, this observation provided an 
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insight that core/shell technique could achieve different purposes depending on the properties of 

shell materials, e.g., our study demonstrated the improvement of compactability with PVP and 

VA 64, whereas coating with materials such as Magnesium Stearate or Silica could improve 

flowability [29, 30]. 

 

  



23 

 

Table 5 

Observed tensile strength values from experiments and predicted tensile strength values from 

models. 

Do

E 

Run 

# 

Tensile Strength (MPa) 

Actual Predicted 

(RSM) 

Predicted 

(SVM) 

Predicted 

(ELM) 

Predicted 

(BPNN) 

Predicted 

(GA-

BPNN) 

Predicted 

(EMA-

BPNN) 

1 2.45±0.31 2.54 2.48 2.45 2.45 2.74 2.41 

2 2.18±0.07 2.19 2.18 2.18 2.18 2.18 2.24 

3 2.42±0.14 2.32 2.50 2.42 2.42 2.55 2.42 

4 2.43±0.22 2.41 2.60 2.43 2.43 2.42 2.50 

5 2.51±0.23 2.34 2.66 2.51 2.51 2.60 2.46 

6 2.28±0.12 2.48 2.32 2.28 2.32 2.31 2.25 

7 2.42±0.19 2.42 2.44 2.42 2.43 2.42 2.34 

8 2.14±0.15 2.05 2.08 2.14 2.13 2.10 2.12 

9 5.30±0.65 5.35 5.26 5.30 5.30 5.44 5.37 

10 4.85±0.57 4.92 5.06 4.85 4.64 4.88 4.97 

11 5.67±0.97 6.02 5.90 5.67 5.67 5.72 5.67 

12 4.26±0.16 4.36 4.74 4.26 4.26 4.26 4.19 

13 5.87±0.53 5.89 5.20 5.87 5.87 5.89 6.03 

14 3.63±0.23 3.60 3.77 3.63 3.67 3.63 3.49 
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15 5.38±0.60 5.55 5.42 5.39 5.39 5.54 5.53 

16 3.27±0.12 3.18 3.17 3.27 3.28 3.22 3.23 

17 6.83±0.41 7.41 7.49 6.84 6.83 6.87 6.81 

18 6.65±0.62 6.60 6.19 6.65 6.44 6.41 6.65 

19 6.04±0.46 6.08 6.06 6.04 6.14 6.20 5.98 

20 4.02±0.21 4.01 4.21 4.02 3.98 3.92 3.97 

21 7.58±0.42 7.23 7.28 7.58 7.58 7.58 7.57 

22 4.29±0.11 4.32 4.07 4.29 4.30 4.29 4.31 

23 4.33±0.19 4.35 4.41 4.33 4.33 4.36 4.36 

24 4.68±0.54 4.68 4.83 4.68 4.68 4.75 4.79 

25 3.52±0.17 3.30 3.21 3.52 3.57 3.50 3.52 

26 2.39±0.17 2.57 2.68 2.39 2.40 2.42 2.34 

27 7.63±0.73 6.96 6.92 7.63 7.63 7.59 8.01 

28 5.97±0.74 5.86 5.76 5.97 5.97 5.83 5.81 

  CV(RMS

E): 4.9% 

CV(RMS

E): 

6.8% 

CV(RMS

E): 

0% 

CV(RMS

E): 

1.4% 

CV(RMSE

): 

2.3% 

CV(RMSE)

: 

2.4% 

    AIC: 230 AIC: 162 AIC: 174 AIC: 115 

RSM: Response Surface Methodology 

SVM: Support Vector Machine 

BPNN: Backpropagation Neural Network 

GenBPNN: Backpropagation Neural Network based on Genetic Algorithm 
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EvoBPNN: Backpropagation Neural Network based on Evolutionary Algorithm 

ELM: Extreme Learning Machine 

CV(RMSE): Coefficient of Variance of the Root Mean Squared Error 

AIC: Akaike Information Criterion 
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Table 6 

Observed brittleness index values from experiments and predicted brittleness index values 

from models. 

DoE 

Run 

# 

Brittleness Index 

Actual Predicted 

(RSM) 

Predicted 

(SVM) 

Predicted 

(ELM) 

Predicted 

(BPNN) 

Predicted 

(GA-

BPNN) 

Predicted 

(EMA-

BPNN) 

1 111.6±11.2 89.1 108.1 111.6 111.6 98.01 110.4 

2 106.2±5.3 106.1 109.6 106.2 108.5 100.32 110.0 

3 95.1±7.4 96.8 94.2 95.1 95.1 96.26 98.1 

4 119.2±14.9 118.9 110.1 119.2 119.2 121.80 124.0 

5 108.1±11.1 108.5 103.5 108.1 108.1 103.09 102.0 

6 99.7±5.9 96.2 93.5 99.7 98.1 98.30 99.2 

7 115.5±8.7 115.6 111.9 115.5 116.6 116.44 113.7 

8 104.4±6.7 105.7 109.1 104.4 104.4 110.34 104.3 

9 47.9±5.9 47.1 47.4 47.9 46.3 52.20 47.3 

10 55.3±4.0 56.6 54.6 55.3 56.7 52.17 55.2 

11 52.2±4.6 51.4 49.6 52.2 52.2 52.71 52.8 

12 55.3±5.4 53.6 51 55.3 55.3 57.51 56.7 

13 49.2±4.5 49.5 55.9 49.2 49.2 46.58 51.2 

14 66.4±1.9 66.8 64.9 66.4 66.7 65.40 65.6 

15 51.1±7.0 50.7 53.2 51.1 51.9 49.49 51.8 
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16 73.6±4.3 74.9 71.8 73.6 73.6 78.06 71.8 

17 38.1±1.7 36.8 37.1 38.1 38.1 31.18 38.6 

18 38.3±5.8 39.1 40.5 38.3 39.8 40.10 37.9 

19 43.3±3.8 44.1 40.8 43.3 42.7 42.23 42.7 

20 54.0±4.5 54.1 51.5 54.1 56.0 54.19 54.9 

21 39.2±5.3 40.0 40.4 39.2 39.2 35.83 40.3 

22 56.1±1.6 55.7 58.3 56.2 56.3 48.78 55.7 

23 58.3±5.4 57.9 57.1 58.3 58.3 57.69 59.3 

24 61.0±4.4 60.9 58.5 61.0 60.9 55.04 63.6 

25 71.2±5.0 75.0 73 71.2 71.2 74.47 71.2 

26 92.4±6.4 89.9 89.1 92.4 93.0 91.90 92.3 

27 36.2±2.0 37.7 37.6 36.1 36.2 30.91 37.1 

28 44.5±5.2 42.4 42.4 44.5 44.5 42.77 45.0 

  CV(RMS

E): 6.5% 

CV(RMS

E): 5.0% 

CV(RMS

E): 0% 

CV(RMS

E): 1.3% 

CV(RMS

E): 6.4% 

CV(RMSE): 

2.9% 

 Avg. of 

TS&BI 

5.7% 5.9% 0% 1.3% 4.4% 2.6% 

    AIC: 

289 

AIC: 

227 

AIC: 

266 

AIC: 

187 

 Avg. of 

TS&BI 

  259 194 220 151 

RSM: Response Surface Methodology 
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SVM: Support Vector Machine 

BPNN: Backpropagation Neural Network 

GenBPNN: Backpropagation Neural Network based on Genetic Algorithm 

EvoBPNN: Backpropagation Neural Network based on Evolutionary Algorithm 

ELM: Extreme Learning Machine 

CV(RMSE): Coefficient of Variance of the Root Mean Squared Error 

AIC: Akaike Information Criterion 

TS: tensile strength 

BI: brittleness index 
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Fig.6. Relationship between brittleness index and tensile strength for the data obtained from DoE 

studies. 

 

 The SEM pictures enabled us to observe the particle surfaces with and without shell. 

Figure 7(a) and (d) displayed the morphologies of lactose and Calcium Phosphate particles. As 

seen in Figure 7(b) and (e), for the ratio of Core to Shell at 20/0.1 (% wt/wt), Core/Shell particles 

exhibited similar morphologies as raw core particles, which meant the core particles were not 

covered by the shell materials. Conversely, when more shell materials were added in the formula 

such as the ratio of Core to Shell at 10/2 (% wt/wt), it could be observed from Figure 7(c) and (f) 

that core powders were mostly or completely coated with one or multiple layers of shell 

materials and overall the particles’ shape was changed. 
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Fig.7. SEM imaginings of samples: (a) Lactose 313; (b) Core/Shell Lactose/VA64 (20/0.1 

%wt/wt); (c) Core/Shell Lactose/VA64 (10/2 %wt/wt); (d) Calcium Phosphate Premium Powder; 

(e) Core/Shell Calcium Phosphate/PVP (20/0.1 %wt/wt); (f) Core/Shell Calcium Phosphate/PVP 

(10/2 %wt/wt). 

 

3.3.Predictive Modeling and Learning Algorithms 

 A total of six learning algorithms were used for modeling, including RSM, SVR, BPNN, 

GA-BPNN, MEA-BPNN, and ELM. As a statistical model, RSM provided a total of 8 equations 

(shown in Table 4) to account for different combinations of core/shell materials to predict tensile 

strength or brittleness index values. All models were trained by the dataset from the DoE study 

and their corresponding predicted results from these models were presented in Tables 5 and 6.  

All models showed acceptable fitness between observed and predicted values. According to 

CV(RMSE) values, RSM and SVM models provided the same predictive power.  On the other 

hand, neural networks provided relatively better predictions as indicated by smaller values of 



31 

 

CV(RMSE).  Noteworthy, ELM had a CV(RMSE) value of almost 0%, which was in accordance 

with its algorithm with learning target zero error based on Theorem 1 and 2 proposed by Huang 

et al [25]. However, we should be extremely cautious to conclude that this ELM model had the 

best performance, given the likelihood that the model was overfitted with poor generalization 

performance. In addition, similar AIC values indicated that all the neural networks had similar 

relative quality. 
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Type of 

Material 

for Shell 

Type of 

Material 

for Core 

Tensile Strength (MPa) (1st equation) 

Brittleness Index (2nd equation) 

S1 C1 2
2

2
12121 0086.01882.10307.02421.03651.54888.0 XXXXXXY −−−++=

2
2

2
12121 04.069.2638.094.012.9947.115 XXXXXXY −+++−=  

S1 C2 2
2

2
12121 0136.06991.00996.04329.04444.44709.5 XXXXXXY +−−−+=

2
2

2
12121 06.091.2190.079.111.8457.86 XXXXXXY −+++−=  

S2 C1 2
2

2
12121 0351.07225.11679.02475.11591.89535.8 XXXXXXY −−−++−=

2
2

2
12121 26.051.3690.178.947.14329.219 XXXXXXY +++−−=  

S2 C2 2
2

2
12121 0144.02226.00017.04189.04114.16993.0 XXXXXXY −−+++−=

2
2

2
12121 20.076.1271.001.624.6185.151 XXXXXXY +++−−=  

  

The trained models were validated using an external dataset. Figures 8 and 9 showed that 

all points deviated only slightly from dotted line, indicating that the developed models had good 

generalization performance and validated that the external dataset was well predicted. The tensile 

strength was better predicted than brittleness index, which may be due to less variation in the 

tensile strength dataset compared to the brittleness index dataset. Neural networks provided 

better predictability than RSM and SVR, i.e., for tensile strength, the lowest CV(RMSE): 2.4% 

from GA-BPNN vs. the highest CV(RMSE): 16.9% from RSM; for brittleness index, the lowest 

CV(RMSE): 10.4% from MEA-BPNN vs. the highest CV(RMSE): 17.6% from RSM. Also, in 

principle, neural network algorithms would be expected to continue learning and improving as 

the dataset becomes larger.  
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Fig.8. Relationship between observed tensile strength data and predicted tensile strength data 

from machine learning algorithms as following: RSM, SVR, BPNN, GA-BPNN, MEA-BPNN, 

and ELM.  
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Fig.9. Relationship between observed brittleness index data and predicted brittleness index data 

from machine learning algorithms as following: RSM, SVR, BPNN, GA-BPNN, MEA-BPNN, 

and ELM.  

 

 Three-dimensional surface plotting showed the relationship of tensile strength or 

brittleness index and concentrations of core materials and shell materials. To further alleviate any 

potential outliers created by one model, the mean of the predicted values from BPNN, GA-

BPNN, MEA-BPNN, and ELM were calculated and plotted in Figures 10 and 11.  Both core 

material concentration and shell material concentration showed nonlinear effects on tensile 

strength or brittleness index. Moreover, it was seen that interactions existed between core 

materials and shell materials and the interaction patterns were different depending on core/shell 

material types. Overall, PVP served as a better shell material compared to VA64 in terms of 

improving tensile strength and decreasing brittleness. Also, the compactability of Calcium 
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Phosphate had more potential to be improved compared to lactose using core/shell technique. 

Importantly, these plots helped to understand formulation parameters and provide a cost- and 

time-effective methodology for formulation development and target profile control.  

 

Fig.10. Response surface plot which correlates tensile strength to core/shell material 

concentrations with different combinations as following: PVP & Calcium Phosphate, PVP & 

Lactose, VA64 & Calcium Phosphate, VA64 & Lactose.  
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Fig.11. Response surface plot which relates brittleness index to core/shell material 

concentrations with different combinations as following: PVP & Calcium Phosphate, PVP & 

Lactose, VA64 & Calcium Phosphate, VA64 & Lactose. 
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Chapter 4: Conclusion 

This study demonstrated that core/shell technique profoundly improved the 

compactability of poorly compressible powders. This technique and its critical factors were 

systemically evaluated by a DoE study and the complex relationship between raw material 

parameters and product properties were modeled using six machine learning algorithms, 

including RSM, SVR, BPNN, GA-BPNN, MEA-BPNN, and ELM. Overall, these models 

provided acceptable predictability and capability of generalization and particularly four ANN 

models were more capable than RSM and SVR. This study provided some insights about how to 

apply machine learning in pre-formulation and formulation development.   
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