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Abstract 

 Current therapies for autoimmune diseases lack specificity for the offending immune cell 

population resulting in a wide range of side effects and weakening of the immune system.  This 

presents a clear need for antigen-specific immunotherapies (ASITs) capable of selectively 

modulating autoreactive immune cells while maintaining the patient’s ability to respond to 

foreign pathogens.  Lymphocyte activation is dependent on receiving two signals in tandem: 

interaction with the antigen of interest and co-stimulatory signals.  Disruption of this two-signal 

model for lymphocyte activation in the context of the autoantigen is key to developing successful 

ASITs.  Antigen-drug conjugates represent a novel class of therapeutics for the induction of 

immune tolerance designed to direct the effects of small molecule immunosuppressants through 

conjugation to the autoantigen of interest (Chapter 2).  This strategy has proven successful in 

ameliorating paralytic symptoms in a murine model of multiple sclerosis (MS) known as 

experimental autoimmune encephalomyelitis (EAE).  This was achieved through conjugation of 

the corticosteroid dexamethasone (DEX) to the peptide autoantigen proteolipid protein (PLP139-

151).  Further studies into the disruption of co-stimulatory signals in EAE revealed a protective 

role for the programmed cell death 1 (PD-1) pathway, and antagonism of natural receptor 

engagement resulted in cellular exhaustion, alleviating inflammatory markers (Chapter 3).  

Ultimately, antigen-only ASITs represent possibly the safest form of immune modulation in 

autoimmune diseases and may be achieved through multivalent displays of autoantigen.   For 

example, a tetravalent display of PLP139-151 (4-arm PLP139-151) completely ameliorated EAE 

symptoms through depletion of PLP-responsive B cells and induction of a tolerogenic shift in co-

stimulatory markers (Chapter 4).  These results support the advancement of multiple avenues of 

approach in the development of ASIT for treating autoimmunity. 
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1. Designing Autoimmune Therapies 

Autoimmune diseases impact countless lives worldwide, representing a major burden in 

modern healthcare and severely impacting patient quality of life.  Our ability to maintain patient 

health following diagnosis with an autoimmune disease has greatly improved over the past few 

decades but correcting the underlying condition and reversing damage has been an elusive target.  

Current treatments generally consist of long-term immunosuppression, a strategy which may 

alleviate symptoms and slow damage to affected tissue but fails to tolerize the immune system 

toward self-antigens.  Typical immune suppression may be achieved through small molecule 

drugs such as corticosteroids or numerous biologics capable of inhibiting a variety of co-

stimulatory pathways, preventing activation of auto-reactive lymphocytes.  Unfortunately, these 

treatment regimens are indefinite, requiring regular administration throughout the patient’s 

lifetime in an attempt to retain any remaining tissue function.  Furthermore, immunosuppressive 

strategies often result in a wide range of off-target effects and may leave patients open to severe 

opportunistic infections.  Although our ability to manage autoimmune diseases may have 

improved, there is a clear unmet need for therapies capable of antigen-specific correction of 

autoimmune responses. 

This dissertation outlines research surrounding the development of more effective antigen-

specific immunotherapies (ASITs) for the treatment of autoimmune diseases.  This chapter shall 

serve as an introduction to the currently approved disease modifying treatments, the cellular 

mechanisms associated with autoimmunity, and how these mechanisms may be exploited to 

reintroduce immunological tolerance toward autoantigens. Ultimately, the goal of these works is 

to facilitate the development of ASITs which may be capable of treating or curing autoimmune 
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diseases in a specific manner, reducing off target immunosuppressive effects and maintaining a 

healthy immune system following treatment. 

2. Introduction to Autoimmune Diseases 

Although many autoimmune conditions are considered to be rare diseases, the NIH 

recognizes more than 80 diseases classified by autoimmunity and, collectively, these diseases 

affect millions of Americans.1  Some of the more common autoimmune diseases include 

rheumatoid arthritis (RA), type 1 diabetes (T1D), multiple sclerosis (MS), celiac disease, and 

inflammatory bowel disease.  Furthermore, the prevalence of some of these diseases such as T1D 

and celiac disease are increasing, resulting in a greater impact on human life and healthcare.1  

These trends in disease development demand a greater understanding of autoimmune 

pathogenesis as well as the discovery of more effective treatments.  ASIT represents a key area 

of research designed to induce immune tolerance toward a designated antigen while maintaining 

the patient’s immune responsiveness toward pathogens.  In order to implement ASIT in the 

treatment of autoimmunity, however, it is necessary to first identify the disease-causing 

autoantigens.  In tissue-restricted autoimmune diseases such as T1D, RA, and MS many potential 

antigens responsible for disease have been identified, but for systemic autoimmune diseases such 

as systemic lupus erythematosus (SLE) there may be multiple antigens responsible for disease, 

complicating the design of ASITs for systemic indications. 

Research into disease-causing autoantigens responsible for T1D have focused primarily on 

glutamic acid decarboxylase (GAD65) as well as various forms of insulin.2  Disease progression 

is believed to be a direct result of an inflammatory response against insulin-producing pancreatic 

β cells resulting in the inability to regulate blood glucose levels.3  Current therapies revolve 

around maintaining the remainder of the patient’s ability to secrete insulin and supplementing 
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this low baseline secretion with exogenous insulin.  This results in a clear long-term financial 

and physical burden on the patient and may not be sufficient to prevent a number of disease-

associated complications.2  Fortunately, in recent years the research into tolerance induction 

against β cell antigens has grown and mouse models such as the non-obese diabetic (NOD) 

model have facilitated a greater understanding for disease pathology.4 

Another autoimmune disease of keen interest to researchers is RA due to its high prevalence 

and the severe disability associated with late stage disease.  Disease onset is typically 

characterized by T-cell infiltration of synovial tissue resulting in inflammation and damage to 

cartilage, bones, and further systemic consequences.5 Current therapies focus on aggressive 

immunosuppressant therapy to limit disease progression, but patient response to treatment is 

highly variable.  Two major RA patient subsets have been identified based on the presence or 

absence of antibodies specific for anti-citrullinated proteins (ACPA) indicating a currently 

incomplete understanding of disease pathology and the need for further identification of disease-

causing autoantigens.6-7 

MS disease progression is characterized by central nervous system (CNS) inflammation 

resulting in degradation of neuron myelin and progressive disability.8  MS manifests in several 

disease forms, but the most common is relapsing-remitting MS (RRMS) which is defined by 

symptomatic relapses in which patient symptoms rapidly increase in severity followed by 

remission in which symptom severity is reduced.8  The pathological differences between the 

various forms of MS are poorly understood, however treatment strategies are typically similar 

and involve global immune suppression to limit relapses and slow progression.9 A few potential 

CNS autoantigens responsible for disease have been identified including proteolipid protein 

(PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin basic protein (MBP).10  
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Furthermore, researchers have developed a well-established model of MS in mice known as 

experimental autoimmune encephalomyelitis (EAE) capable of emulating the various MS 

pathologies witnessed in humans, aiding in the discovery of potential new therapeutic 

strategies.11 

2.1. Immunology of Autoimmunity 

Many mechanisms of peripheral and central tolerance exist which may limit aberrant immune 

cell activation, however, self-reactive T-cells and B cells may still overcome these checkpoints 

and mount an inflammatory response against native proteins of the human body.  Development 

of these autoimmune responses is poorly understood but is believed to be a result of both genetic 

and environmental factors.12  Namely, environmental factors such as infections have long been 

associated with loss of tolerance toward native antigens due to phenomena such as epitope 

spreading and bystander activation.  Nevertheless, the exact mechanisms involved in the onset of 

autoimmune responses are poorly understood as these phenomena are difficult to replicate in 

animal models and even more difficult to observe in patients.12  To further our understanding of 

how to reintroduce immunological tolerance and correct autoimmunity, it is first important to 

review the mechanisms by which the body naturally maintains self-tolerance. 

2.2. Self-Recognition and Immune Tolerance 

The function of the adaptive immune system is based on the recognition of antigenic targets 

associated with foreign pathogens.  This distinction between foreign antigens and self-antigens 

represents a major hurdle, one which the immune system overcomes through functional non-

responsiveness to native antigens known as self-tolerance.  Self-tolerance is maintained through 

a series of checkpoints which can be classified as either central tolerance or peripheral tolerance.  

Simply put, central tolerance involves the deletion of autoreactive T-cells and B cells in the 
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thymus and bone marrow, respectively, prior to their release into systemic circulation.  This is 

accomplished through a process known as negative selection, in which naïve lymphocytes are 

subjected to a plethora of self-antigens and those cells which bind strongly to these antigens are 

signaled for apoptosis.13  Nevertheless, self-reactive lymphocytes do escape the mechanisms of 

central tolerance and reach systemic circulation, however, further checkpoints to lymphocyte 

activation limit their responsiveness.   

There are many checkpoint mechanisms associated with peripheral tolerance of escaped self-

reactive lymphocytes, the simplest of which is physical separation of the self-reactive cells and 

their cognate antigen.  Typically, naïve T-cells which have yet to encounter cognate antigen are 

limited to systemic circulation, secondary lymphoid organs, and the lymphatic system.14  As 

such, naïve, self-reactive T-cells are unlikely to encounter high concentrations of MHC-bound 

native antigen as these antigens are tissue-restricted under non-inflammatory conditions.15 

A second mechanism of maintaining peripheral tolerance is dependent on the development of 

regulatory T-cell (Treg) populations, capable of secreting anti-inflammatory cytokines and 

altering the function of professional antigen-presenting cells (pAPCs).16  The development of 

Treg cells is not fully understood, however it has been demonstrated that these cells act in an 

antigen-specific manner, similar to conventional T-cells.17-18  Regulatory T-cells function 

through multiple mechanisms including contact-independent and contact-dependent pathways.  

The primary mechanism for contact-independent Treg suppression is through cytokine 

production.  Tregs have been found to generate IL-10 and TGF-β, which can suppress immune 

responses, however, the role of the cytokines in Treg function is not fully understood.16, 19-20  The 

contact-dependent mechanisms include expression of co-inhibitory markers such as CTLA-4 

capable of altering pAPC function following antigen-MHC recognition.16  This may be 
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accomplished through the downregulation of T-cell activation markers on pAPCs following 

interactions with Tregs, limiting the pAPC’s effectiveness in activating T-cells and mounting an 

inflammatory response.21  Additionally, it has been found that Tregs can alter dendritic cell (DC) 

metabolism through upregulation of indoleamine 2,3-dioxygenase (IDO).22  This results in the 

catabolism of tryptophan into metabolites, which suppress T-cells in the local environment.   

Finally, peripheral tolerance to native antigens is also maintained through a two-signal model 

of T-cell activation.  This model states that T-cells require two signals simultaneously to mount 

an effective immune response.  The first signal is antigen-MHC complex ligation with the T-cell 

receptor (TCR) as has been discussed thus far.  The second signal consists of binding of co-

stimulatory ligands expressed on pAPCs to their respective co-stimulatory receptors on the T-cell 

surface.  This interaction is known as the immunological synapse, in which binding between 

MHC-antigen and TCR (signal 1) and binding of co-stimulatory markers (signal 2) occur 

simultaneously to activate T-cells.  The B7 pathway is one such co-stimulatory system, in which 

CD28 on T-cells interacts with ligands CD80/CD86 on pAPCs such as DCs and B cells.  

Importantly, antigen-receptor engagement in the absence of secondary co-stimulatory signals 

will induce an immunological state of unresponsiveness known as anergy, in which the cell may 

no longer mount an effective inflammatory response against cognate antigen.  This two-signal 

model acts as a key barrier in T-cell-mediated immunity, helping to mitigate activation of self-

reactive T-cells in the absence of additional inflammatory signals. Additionally, T-cells express 

co-inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and 

programmed cell death protein 1 (PD-1), both of which negatively regulate T-cell inflammation 

through the induction of anergy. 

3. Current Therapeutics for Autoimmunity 
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Numerous therapeutic strategies for managing autoimmune diseases have been developed, 

however, most of the currently approved strategies focus on increasing patient quality of life 

through symptom suppression and prevention of further autoimmune progression without 

addressing the underlying causes of the symptoms (Table 1).  This is typically achieved through 

some form of immunosuppression, in which the patient’s immune system is globally altered to 

reduce inflammation (Figure 1).23  Although this treatment strategy may suppress autoimmune 

symptoms, it imparts new concerns for the patient’s wellbeing as their immune system is often 

less capable of responding to foreign pathogens. 

3.1. Immunosuppressants 

Corticosteroids have been used to manage severe inflammatory diseases such as MS, RA, 

and SLE for many years.23  This class of synthetic, small molecule drugs is designed to mimic 

natural human steroids through binding to the nuclear receptor known as the glucocorticoid 

receptor (GR).24-25  Due to the natural abundance of GR in nearly all cell types, corticosteroid 

treatment alters gene transcription in many ways, including the suppression of inflammatory 

immune responses.  This suppression is achieved through both repression of inflammatory gene 

expression as well as induction of anti-inflammatory pathways.24-25  Most importantly, due to the 

widespread effects of corticosteroids on gene expression, this class of drugs is capable of 

inhibiting both the innate and adaptive immune responses, leading to their use in many 

autoimmune and inflammatory disease indications.  Namely, corticosteroid treatment leads to 

immune suppressive effects on macrophages, T-cells, and B cells through blocking key 

inflammatory transcription factors such as NF-κB.26  The result is an overall reduction of 

stimulatory cytokines responsible for immune cell proliferation and survival, including 

granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), and tumor 
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necrosis factor alpha (TNF-α).24  Clinically, the result of these mechanisms is the widespread 

suppression of the patient’s immune system which is necessary in cases of severe relapses in 

RRMS and severe indications of SLE.  Nevertheless, the expression of GR on nearly all cells in 

the human body leads to a long list of potential side effects, and the lack of specificity for over-

reactive lymphocytes results in global immune suppression and the risk for opportunistic 

infection.27-28 

 Another small molecule immunosuppressant, dimethyl fumarate (DMF), has recently 

been approved for use in MS patients in 2013.29-31  The mechanism of DMF on suppressing 

inflammatory responses is not completely understood, however, it has been shown to bind heme 

oxygenase-1, an antioxidant.31  As a result, DMF treatment reduces the expression of 

inflammatory cytokines such as IL-12, TNF-α, and IL-6 while stimulating Tregs.31  Interestingly, 

DMF treatment appears to decrease lymphocyte counts with a bias toward reducing T-helper Th1 

and Th17 subsets, with less of an impact on Th2 subsets.32  This is a key consideration when 

treating MS, in which increased Th2 subsets are associated with positive disease outcomes.33  

Despite the benefits of DMF treatment, it does not correct the underlying autoimmune condition 

and has been associated with the onset of a rare and deadly CNS infection known as progressive 

multifocal leukoencephalopathy (PML).34 

Immune suppression in autoimmune diseases has also been achieved using cytokine 

modifying treatments which act to disrupt cellular interactions with soluble stimulatory factors 

such as interferon gamma (IFN-γ), IL-6, and TNF-α. Perhaps the most common disease 

modifying treatment in MS is interferon-β (IFN-β).  Subcutaneous injection of IFN-β can reduce 

relapse rates in RRMS patients by approximately one third over a 2-3-year period and represents 

possibly the most well tolerized treatment option for MS patients.35  Nevertheless, the effects of 
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IFN-β treatments act globally on the immune system with the potential for some adverse 

events.35 

Tocilizumab, a humanized monoclonal antibody directed against the IL-6 receptor (IL-6R), 

has been approved for use in rheumatoid arthritis.  Early attempts at IL-6 blockade treatments 

resulted in increased half-life of the cytokine, however, focus has shifted toward designing 

antibodies directed against the IL-6R in both the soluble form and transmembrane form.36  IL-6R 

blockade with tocilizumab results in fast and effective reduction in joint pain when given as a 

monotherapy or in combination with other drugs and has been proven to reduce symptoms in RA 

patients who are non-responsive to other frontline treatment options.36  One such frontline 

treatment often employed in both RA and psoriasis is etanercept, designed to block the action of 

the inflammatory cytokine TNF-α. 37 Etanercept is a dimeric fusion protein comprised of the 

TNF-α receptor fused with human IgG, allowing for effective binding to TNF-α preventing 

interaction with cellular receptors.  This treatment option has proven effective in moderate and 

severe cases of RA, modifying disease progression both short-term and long-term.37   

Despite the successes of these cytokine modifying treatments in RA, methotrexate, a 

chemotherapeutic agent, remains one of the most widely used drugs for limiting the progression 

of RA.  The efficacy associated with methotrexate treatments in RA is tied to the numerous anti-

inflammatory effects of the drug stemming from its ability to inhibit cell proliferation and induce 

apoptosis in immune cells.38  Furthermore, methotrexate treatment results in a reduction of 

proinflammatory cytokines in the synovial membrane of RA patients.39  Not all RA patients 

respond to low dose methotrexate, however, and the potent effects of this drug may result in 

some severe adverse events.40 

3.2. Immune Cell Depletion Therapies 
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More recently, the development of new forms of immunosuppression for autoimmunity has 

shifted toward immune cell depletion therapies.41-42  These treatment options focus on the 

deletion of specific immune cell populations, namely B cells, in order to prevent inflammation.  

Overall, B cell depletion is a very effective strategy for eliminating autoimmune responses, 

however, it severely limits the patient’s ability to maintain a functioning immune system capable 

of responding to infections.43  Treatment with monoclonal antibodies capable of depleting B cells 

is often reserved for the most severe and unresponsive autoimmune cases.  Rituximab, an anti-

CD20 monoclonal antibody, has been approved in the U.S. for severe cases of RA in which the 

patient does not respond to anti-TNF-α therapies.44  Additionally, rituximab has been used in 

some off-label applications for other autoimmune diseases such as MS, SLE, vasculitis, and 

others.45  Without properly controlled clinical studies the overall tolerability and efficacy of 

rituximab in these applications is poorly understood, but recently the FDA approved another 

anti-CD20 monoclonal antibody, known as ocrelizumab, for application in MS.42, 46  This class of 

antibodies is believed to inhibit inflammatory responses through the elimination of antigen-

presentation associated with B cells as well as antibody mediated responses.  Notably, the 

deletion of mature B cells which may act as antigen-presenting cells also imparts a downstream 

immunosuppressive effect on T-cell populations, limiting the overall activation of peripheral T-

cells.47  As mentioned previously, CD20 B cell depletion is an effective strategy for treating 

autoimmunity however the lack of specificity for antigens of interest limits their application 

following careful risk/benefit analysis per patient. 

3.3. Modifying Immune Cell Transport 

Immune cell transport inhibitors have also been explored in the treatment of autoimmune 

diseases, particularly in MS.  Natalizumab, a monoclonal antibody against α4-integrin, limits 
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immune cell trafficking across the blood-brain barrier, preventing autoreactive T-cells and B 

cells from reaching the CNS.48  This represents a selective treatment option for MS, exploiting 

the physical barriers between the CNS and systemic circulation to maintain tolerance against 

myelin antigens.  Natalizumab has proven efficacious in improving annual relapse rates in 

RRMS patients, however, its use in association with IFN-β has resulted in a rise in the number of 

PML cases in RRMS patients.48-49  Nevertheless, FDA approval of natalizumab for indications in 

treating RRMS has been maintained under the stipulation that it should be administered as a 

mono-therapy in IFN-β non-responders. 

Similarly, efalizumab is a monoclonal antibody designed to limit lymphocyte trafficking 

through blood vessels into peripheral tissue.  This antibody is directed against lymphocyte 

function-associated antigen 1 (LFA-1) and inhibits T-cell adhesion to endothelium.50  For a short 

time efalizumab was approved for the treatment of psoriasis, but the drug was removed from the 

market in 2009 due to the high risk for PML associated fatalities.49  Ultimately, the risks for 

PML observed across numerous immunosuppressant therapies have led to the development of 

PML risk-management plans by regulatory agencies in both the U.S. and Europe. 

Alternatively, a small molecule drug known as fingolimod has been developed to sequester 

lymphocytes in lymph nodes, rather than limit immune cells to systemic circulation.  Fingolimod 

binds to sphingosine-1-phosphate receptor and prevents the migration of T-cells and B cells to 

the site of inflammation.51  Interestingly, the effects of fingolimod favor the sequestration of 

naïve and central memory T-cells and B cells, but with less influence on effector memory T-

cells.52  Furthermore, patient serum levels of IL-17, a potent inflammatory cytokine associated 

with MS, are reduced when on fingolimod, likely contributing to patient relapse rate 

improvement.53  Treatment of severe RRMS patients with fingolimod has resulted in reduction of 
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relapses by approximately one-half over a 2-year period, and has assisted patients who have 

proven less responsive to frontline treatments such as IFN-β.51  Due to the globally 

immunosuppressive effects of fingolimod the risk for opportunistic infection is increased, with 

some severe cases in patients following drug approval.51 

3.4.  Antigen-Specific Immunotherapies 

The development of therapies capable of modulating immune responses in an antigen-

specific manner has long been of keen interest to researchers.  Perhaps the most successful 

example of antigen-specific immunotherapies (ASITs) in the clinic is that of vaccines, designed 

to induce protective immunity against foreign pathogens through administration of key antigen 

targets associated with the disease.  Alternatively, ASITs have also been applied toward inducing 

tolerance of antigenic targets in the form of hyposensitization therapy.  Commonly referred to as 

“allergy shots”, hyposensitization therapies have proven successful in the clinic at tolerizing a 

patient against allergens without hampering their immune system. 

3.4.1. Antigen-Only Therapies 

Hyposensitization therapy was discovered in the early 1900s when Noon and Freeman 

inoculated patients subcutaneously with grass pollen resulting in improved hay fever 

symptoms.54-55 The dosing regimen implemented by both Noon and Freeman involved short-term 

up-dosing followed by long-term maintenance doses, establishing a therapeutic strategy for 

allergen desensitization that is still in use today.  Nevertheless, numerous studies over the years 

have established greater control in formulation of allergens as well as exploration of various 

routes of administration including sublingual.56  Overall, adverse events associated with 

hyposensitization therapies are reduced when administered via the sublingual route, however, the 

greatest limitation to allergen desensitization remains: the multi-year duration of dosing.   
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In recent years, investigations into the success of hyposensitization have revealed a key role 

of regulatory T-cells (Tregs) in positive clinical outcomes, resulting in widespread suppression 

of allergen responsive immune cells.57  Similar to hyposensitization therapies, initial 

developments of antigen-specific immunotherapies for the treatment of autoimmunity focused on 

administration of the autoantigen in various forms including whole antigen, peptide antigen, or 

altered peptide ligands (APLs).58  Unfortunately, adapting antigen-only therapies for the 

induction of tolerance in autoimmune diseases has generally been met with limited success.  

Multiple studies have attempted to administer insulin via various routes to induce tolerance 

toward pancreatic β cells with no clear change in disease progression.59-62  Additionally, other 

T1D antigens such as GAD65 have produced mixed results in inducing tolerance when 

administered with adjuvant via subcutaneous injection in children.63-64  In MS patients, the oral 

administration of MBP for tolerance induction yielded little to no improvement in relapses.65  

These trials indicate that simple administration of antigen in its native form is insufficient to 

tolerize the immune system in cases of autoimmunity, leading to the design of APLs and antigen 

mimics. 

3.4.2. Altered Peptide Ligands and Antigen Mimicry 

Typically, APLs are designed through key substitutions of amino acids in disease-causing 

antigen with the intent to disrupt T-cell activation through TCR-MHC interactions.  Attempts at 

inducing tolerance through APLs have shown promise in animal models of autoimmunity, 

however translation to human disease has been met with limited success.66-67  Numerous clinical 

studies on the administration of altered peptide ligands (APLs) of disease associated autoantigens 

in multiple sclerosis (MS), rheumatoid arthritis (RA), and type 1 diabetes (T1D) have shown 

limited efficacy and the potential for symptom exacerbation.68-70  Studies into the intranasal 
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administration of an MBP derived APL in a murine model of MS have indicated that this 

molecular mechanism of TCR-MHC disruption may be capable of inducing bystander 

suppression of autoreactive lymphocytes through the generation if IL-10 secreting Tregs.71  

Alternatively, enhancements to MHC binding through the introduction of a thiol-disulfide 

oxidoreductase motif (CXXS) has been shown to induce cytolytic T-cell activity directed against 

pAPCs and subsequent protection from diabetes onset in mice.72-73  Unfortunately, attempts at 

implementing APLs in treating human disease have resulted in hypersensitivity and exacerbation 

of symptoms.  Although APL treatments have not successfully translated to humans, these 

studies provide valuable insight into the association between MHC-antigen-TCR binding 

strength and tolerance induction. 

Despite the limited success of many antigen-only therapies outlined above, the strategy of 

antigen mimics has demonstrated some success in treating autoimmune diseases.  The first, 

possibly most successful, example of antigen mimicry is that of glatiramer acetate (GA) for the 

treatment of RRMS.  Comprising of a heterogeneous mixture of copolymers designed to mimic 

MBP, GA can reduce relapse rates by approximately 30%.74  GA copolymer mixtures are 

synthesized with four amino acids in the approximate molar ratios in which they occur in MBP 

with a molecular weight ranging from 2,500 to 20,000 Da.75  The discovery of GA’s ability to 

modulate immune responses in MS patients was serendipitous, and as such the mechanisms 

behind its efficacy are still poorly understood.76  Various studies have indicated that GA is 

capable of binding to MHC class II on pAPCs and inhibit proper presentation of myelin 

antigens.77  Alternatively, others have demonstrated that GA treatment is associated with a shift 

to a Th2 T-cell response which is considered anti-inflammatory in MS pathology, however, how 

this is achieved has not been fully elucidated.78  Finally, it is possible that this copolymer mixture 
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is retained at the injection site acting as an immunogenic decoy, a theory which is supported by 

common injection site reactions and very limited systemic bioavailability.75  Further 

understanding of the underlying mechanisms responsible for GA’s efficacy could guide future 

ASIT design for autoimmune indications.  

4. Modulating the Immunological Synapse 

The underlying mechanisms behind many of the currently approved autoimmune therapeutics 

stem from disruption of signal 2 of the immunological synapse, altering the expression of co-

stimulatory signals necessary for activation of lymphocytes.  Furthermore, the results of APL 

research in a pre-clinical setting demonstrate the potential tolerizing effects which can be 

achieved through modulation of signal 1 of the immunological synapse by altering TCR-MHC 

binding to antigen.  As such, future ASIT designs have two primary avenues of inducing long 

lasting tolerance toward native antigens. 

4.1. Altering Co-Stimulation 

The first avenue of approach for the design of ASIT involves directing the action of current 

therapeutic options against autoreactive lymphocytes to selectively modulate co-stimulation in 

those which recognize self-antigens.  The advantages of this strategy are the high potency of 

many current immunosuppressants and their ability to induce bystander suppression, reducing 

inflammation in response to other autoantigens not directly addressed by the ASIT.  Bystander 

suppression is necessary to correct autoimmune inflammation in cases where more than one 

native antigen may be recognized by the immune system, but this bystander suppression must be 

confined to the tissue space in which inflammation is occurring (e.g. the CNS in MS or pancreas 

in T1D). 
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4.1.1. Small Molecule Immunosuppressants 

As discussed previously, corticosteroids are capable of effectively promoting anti-

inflammatory responses while suppressing inflammation with high potency.  This class of drugs 

has been used in severe cases of autoimmune inflammation for many years but the prevalence of 

GRs on nearly all human cell types results in numerous off-target effects, and the global immune 

suppression following corticosteroid treatment impacts patient health and quality of life.  

Previous research into co-administration of OVA peptide and a corticosteroid, dexamethasone 

(DEX), in OVA-sensitive mice by Kang et al. demonstrates that the immunosuppressant action 

of DEX may be directed against an antigen of interest in murine models of inflammation.79  

Taking these works one step further, Peine et al. used acetalated dextran particles to co-deliver 

DEX and MOG in EAE mice, maintaining the spatial and temporal delivery of the drug 

alongside autoantigen.80  Ultimately, co-delivery of DEX and MOG was more effective at 

reducing clinical scores and lowering inflammatory cytokines than simple co-administration of 

these components.80  In chapter 2, we will focus on designing a novel class of compounds known 

as antigen-drug conjugates (AgDCs) to simply and effectively co-deliver potent 

immunosuppressants, such as DEX, to autoreactive lymphocytes in EAE mice. AgDCs are 

inspired by the recent interest in the development of antibody-drug conjugates (ADCs) for cancer 

therapies and seek to utilize the same antibody-antigen interactions to increase the tolerability for 

highly potent small molecule drugs. 

4.1.2. Co-stimulation Antagonists 

Further attempts at modulating c-stimulatory signals in autoimmune disease have resulted 

in the development of antagonists against co-stimulatory ligands.  Fusion proteins such as 

abatacept consist of the Fc region of IgG1 fused with the extracellular domain of CTLA-4, a co-
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inhibitory receptor.81  The goal of this biologic is to bind to the co-stimulatory ligands 

CD80/CD86 expressed on pAPCs and prevent ligation to CD28 on T-cells.81  As a result, T-cells 

will bind MHC class II presenting cognate antigen (signal 1) but will not receive co-stimulation 

(signal 2) and will become anergic.  The success of abatacept in treating patients with severe RA 

suggests that biologics capable of antagonizing co-stimulatory pathways are an effective means 

to induce tolerance, however, these effects are not directed against autoreactive lymphocytes 

exclusively.  In chapter 3, we explore the role of a co-inhibitory pathway in the progression of 

EAE through the use of peptide antagonists.  These studies are designed to elucidate the 

protective mechanisms of the programmed cell death 1 (PD-1) pathway in autoimmunity and 

justify the future design of peptide agonists/antagonists for co-delivery alongside disease causing 

autoantigen. 

4.2. Modifying Antigen Interactions to Induce Anergy 

The second avenue of approach for ASIT development is that of antigen-only therapies, such 

as APLs or multivalent antigen arrays.  The design of APLs offers the distinct advantage of 

targeting only a specific lineage of lymphocytes, as the only lymphocytes capable of responding 

to treatment are those that recognize the antigen from which the APL is derived.  Unfortunately, 

the mechanisms behind tolerance induction through APL administration are not well understood 

and they lack potency in humans. As we gain a greater understanding for modulating signal 1 of 

the immunological synapse, we unlock the potential to reverse autoimmunity in a highly 

specified manner.  One strategy that has emerged with regards to antigen-only therapies is that of 

multivalent antigen arrays.  Typically, these compounds are comprised of a polymer backbone or 

particle which multivalently displays antigen with highly controlled characteristics including 

molecular weight and valency. 
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4.2.1. Multivalent Antigen Display 

The potential for multivalent arrays of autoantigen to induce tolerance has been known for 

years.  Early work by Dintzis and colleagues demonstrate tolerance induction through 

administration of soluble, low molecular weight multivalent antigen arrays.82  They postulated 

that these antigen arrays gathered within germinal centers of the animals and suppressed antigen-

specific antibody secretion through interactions with antigen-specific B cells.82  Further studies 

regarding these low molecular weight antigen arrays indicated their ability to irreversibly 

suppress high-affinity antigen-specific B cells regardless of the presence of T-cell stimulatory 

signals.83  Following these promising results, our lab has previously devised a strategy for 

displaying multivalent antigen in association with peptide antagonists against cellular adhesion 

molecules to elucidate the role of cell-cell interactions in multivalent antigen array tolerization.  

These soluble antigen arrays (SAgAs) have been shown to cluster B cell receptors and reduce 

symptom severity in EAE mice.84-85  Furthermore, SAgAs designed for applications in T1D have 

been shown to induce an anergic state in insulin-reactive B cells.86  In chapter 4, we will discuss 

the design a new soluble multivalent antigen array of low molecular weight comprised of only 

the autoantigen of interest, PLP139-151, on a tetravalent polyethylene glycol (PEG) backbone.  

These well-defined tetravalent antigen arrays have been tested in the EAE model of MS with 

promising results in tolerizing autoreactive B cell populations. 

5. Conclusions 

Current therapies for treating autoimmunity have proven effective at managing symptoms 

and offer some improvement to patient quality of life, but they have yet to correct the underlying 

condition.  Many approved therapeutics lack specificity for the lymphocytes of interest, resulting 

in widespread off-target effects and global immune suppression.  ASITs offer the potential to 
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correct autoimmunity in a targeted manner, however, commonly employed ASIT techniques 

such as allergy shots have failed to translate into the treatment of autoimmunity.  Outlined here 

are a few potential strategies by which ASIT may be developed for the treatment of autoimmune 

diseases, but current knowledge of immune tolerance induction is lacking.  Future work for ASIT 

development should focus on selectively modulating the immunological synapse of autoreactive 

lymphocytes.  Currently, highly potent small molecule corticosteroids alter the expression of co-

stimulatory molecules but lack the specificity for disease causing autoantigen.  Introducing a 

targeted mechanism for administration of these compounds to offending, autoreactive 

lymphocytes represents a key first step in improving autoimmune therapies.  Ultimately, 

exploiting peripheral tolerance mechanisms through antigen-only therapies has enormous 

potential for curing the underlying autoimmune condition while eliminating off-target effects, 

but these strategies will require a greater understanding for immune cell-antigen interactions 

before reaching the clinic. 
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Table 1. Numerous approved therapeutics for autoimmune indications. 

Category Drug 
Autoimmune Applications: 

MS T1D RA SLE 

Immunosuppressants 

Dexamethasone ✔   ✔ ✔ 
Dimethyl 
Fumarate ✔       

Interferon Beta ✔       

Etanercept     ✔   

Tocilizumab     ✔   

Methotrexate     ✔ ✔ 

B-cell Depletion 
Rituximab     ✔ ✔ 

Ocrelizumab ✔       

Immune Cell Transport 
Inhibitors 

Natalizumab ✔       

Efalizumab         

Fingolimod ✔       

Antigen Mimic 
Glatiramer 

Acetate ✔       

Co-Stimulation 
Antagonists 

Abatacept     ✔   

Belatacept         

 

 

Figure 1. Depiction of the various stages of immune cell activation, proliferation, and trafficking 

and numerous therapeutics targeting these pathways. 
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1. Introduction 

The adaptive immune response is dependent on recognition of target antigens, and 

autoimmune diseases occur when the body fails to maintain tolerance toward self-antigens.1  

These self-antigens can be present in a number of host tissues in various organs, leading to many 

types of autoimmune diseases including multiple sclerosis (MS).2  MS is the most common cause 

of neurological disability in young adults, affecting approximately 2.5 million patients 

worldwide3, and symptoms of the disease are highly variable4  While the mechanisms of disease 

induction have not been fully elucidated, a prevailing hypothesis is that loss of immune tolerance 

towards proteins composing the myelin sheath, such as proteolipid protein (PLP) and myelin 

basic protein (MBP), triggers recruitment of offending myelin-specific CD4+ T-cells, resulting in 

demyelination within the central nervous system.5  Current therapies include monoclonal 

antibodies and corticosteroids, however, the treatment landscape for MS is expanding as our 

understanding of disease pathogenesis continues to evolve.6  Corticosteroids have been a 

cornerstone for MS therapy, but the lack of specificity results in a wide range of side effects. 

Attempts have been made to develop antigen-specific immune therapies (ASITs) to reduce side 

effects and selectively re-tolerize the immune system to myelin sheath proteins.  Despite being 

relatively safe, ASITs have yet to reduce the severity of MS.7-9  Here, we present antigen-drug 

conjugates (AgDCs) as a combination of these approaches with the potential to boost the efficacy 

of ASIT while mitigating the detrimental side effects of current immunosuppressant therapies. 

AgDCs merge two general approaches to combat autoimmunity: immunomodulatory 

agents and ASIT.  ASIT provides the specificity necessary to reverse an immune response 

toward a particular antigen. ASIT has been effective for inducing tolerance towards allergens, 

but has yet to emerge as an effective autoimmune therapy.7-9  Immunomodulatory agents can 
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effectively treat autoimmune diseases, but suffer from systemic exposure and subsequent global 

immunosuppression, which can be problematic in immunocompromised patient populations by 

increasing vulnerability to opportunistic infections.  By chemically conjugating the antigen and 

immunomodulator, the antigen may target the immunomodulator to diseased cell populations, 

potentially limiting off-target side effects.  The concept of AgDCs is similar to antibody-drug 

conjugates (ADCs), however AgDCs likely achieve high affinity specificity by targeting 

endogenous autoantibodies or cognate B cell receptors, thus essentially flipping the mechanism 

of ADCs.  

The design of AgDCs requires selection of an appropriate antigen or epitope, an immune 

modulator, and a linking scheme.  With this in mind, a murine experimental autoimmune 

encephalomyelitis (EAE) model exhibiting clinical and histopathological similarities to 

relapsing-remitting multiple sclerosis (RRMS) in humans2 was selected to probe the proposed 

AgDC concept.  The model is induced by administering an adjuvanted ‘vaccine’ containing the 

antigenic epitope PLP139-151.  This particular EAE model is CD4+ T-cell-mediated disease with B 

cell involvement, leading to primary demyelination of the axonal tracks in the CNS and 

subsequent progressive paralysis of the hind-limbs.10-11  Most importantly, this particular EAE 

model provided a simplified system for testing the efficacy of AgDCs wherein the disease may 

be induced with a specific peptide, PLP139-151, and subsequently treated with an AgDC utilizing 

the same PLP139-151 epitope.  

Dexamethasone (DEX) was selected as the immune modulator for testing the AgDC 

concept.  Our lab previously screened multiple immune modulators in combination with PLP139-

151 by using splenocytes derived from EAE mice.12 DEX emerged as one of the most potent 

suppressors of proinflammatory cytokines when rechallenging EAE splenocytes with PLP139-151 
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and also showed evidence of inducing markers of immune tolerance (e.g. upregulation of IL-10).  

DEX possesses the necessary potency required (pMol-nMol range)13-14, since the dose typically 

used for antigen-specific immunotherapy is on the order of milligrams of antigen per injection.15  

Finally, we rationalized DEX must be released in order to escape the typical binding and 

internalization pathway associated with antigen recognition and processing.  Thus, we designed 

an ester linker capable of releasing DEX from PLP139-151 via hydrolysis with accelerated release 

under acidic conditions.  

In this article, we outline the synthetic strategy, characterization, and biological screening 

of an AgDC containing PLP139-151 and DEX.  These two components were conjugated utilizing 

copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry and this linkage was 

characterized by HPLC and mass spectrometry.  Additionally, AgDC linker stability was 

monitored over a short time frame to confirm the desired release of DEX.  Finally, the efficacy 

of this AgDC was demonstrated first in vitro through the use of EAE splenocytes induced against 

PLP139-151 and subsequently in vivo through subcutaneous administration to EAE mice.  

2. Materials and Methods 

DEX, tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), and sodium ascorbate 

(NaAsc) were purchased from Sigma-Aldrich (St. Louis, MO). Copper(II) sulfate pentahydrate 

(CuSO4 • 5H2O) was purchased from Acros Organics (Geel, Belgium). 2,5-dioxopyrrolidin-1-yl 

2-azidoacetate, DBCO-PEG4-Maleimide, DBCO-NH2, and MMAE-DBCO were purchased from 

Click Chemistry Tools, LLC (Scottsdale, AZ).  Doxorubicin hydrochloride was purchased from 

LC Laboratories (Woburn, MA). Mertansine (DM1) was purchased from Carbosynth Limited 

(Berkshire, UK).  All other chemicals and reagents were analytical grade and were used as 

received without further purification. 
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The peptides PLP139-151-Alk (N-terminal 4-pentynoic acid PLP139-151) and PLP139-151-N3 

(N-terminal 3(2-(2-(2-azidoethoxy)ethoxy)ethoxy)propanoic acid PLP139-151) have been 

synthesized in our laboratory via solid phase peptide synthesis on a Wang resin, but larger 

quantities of each peptide were obtained from Biomatik Corporation (Wilmington, DE).  In each 

case, the linker 3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)propanoic acid was purchased from 

PurePEG, LLC (San Diego, CA) and 4-pentynoic acid was purchased from Sigma-Aldrich (St. 

Louis, MO). 

2.1. Synthesis of azide-functionalized DEX (DEX-N3) 

DEX (842 µmol) was added to a flame dried 250 mL round bottom flask with a stir bar 

and septa.  Anhydrous MeCN (100 mL) was added under nitrogen, followed by DIPEA (919 

µmol, 1.09 eq.) via glass syringe.  The flask was stirred for 10 min before azidoacetic acid NHS 

ester (908 µmol, 1.08 eq.) was added as a powder.  The reaction mixture was stirred overnight at 

room temperature before being analyzed by HPLC.  Additional equimolar aliquots of azidoacetic 

acid NHS ester were added, followed by stirring for 2 hours at room temperature and analyzing 

by HPLC, until no additional benefit was observed.  The crude reaction mixture was evaporated 

under reduced pressure, then dissolved in 4:6 MeCN:H2O and purified by prep HPLC.  The 

resulting column fractions were evaporated under reduced pressure to yield the final product as a 

white powder. 1H NMR (500 MHz, DMSO-d6) δ 7.30 (d, J = 10.2 Hz, 1H), 6.23 (dd, J = 10.1, 

1.9 Hz, 1H), 6.01 (t, J = 1.7 Hz, 1H), 5.45 (dd, J = 5.0, 1.4 Hz, 1H), 5.23 (s, 1H), 5.17 (d, J = 

17.5 Hz, 1H), 4.90 (d, J = 17.6 Hz, 1H), 4.32 – 4.19 (m, 2H), 4.19 – 4.11 (m, 1H), 2.88 (dqd, J = 

11.5, 7.2, 4.1 Hz, 1H), 2.62 (tdd, J = 13.6, 6.0, 1.7 Hz, 1H), 2.44 – 2.32 (m, 1H), 2.35 – 2.28 (m, 

1H), 2.22 – 2.05 (m, 3H), 1.77 (dt, J = 11.2, 5.2 Hz, 1H), 1.70 – 1.58 (m, 1H), 1.56 (dd, J = 13.8, 

2.0 Hz, 1H), 1.49 (s, 3H), 1.35 (qd, J = 12.9, 5.0 Hz, 1H), 1.08 (ddd, J = 12.1, 8.2, 4.1 Hz, 1H), 



33 

 

0.89 (s, 3H), 0.80 (d, J = 7.2 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 204.36, 185.30, 168.28, 

167.10, 152.77, 129.03, 124.12, 102.00, 100.61, 90.52, 70.63, 70.34, 69.00, 49.34, 48.09, 48.05, 

47.87, 43.33, 35.69, 35.53, 33.67, 33.51, 31.92, 30.28, 27.32, 23.03, 22.98, 16.31, 15.15, 

1.19.Expected [M+H]+ = 476.2191 Da, Observed [M+H]+ = 476.2067 Da. 

2.2. Synthesis of PLP139-151-DEX 

To a solution of PLP139-151-Alk (93.6 μmol) in 120 mL deionized H2O was added DEX-

N3 (189.4 μmol, 2.02 eq.) in 12 mL EtOH.  5.7 mL of a premixed solution of CuSO4•5H2O (38.1 

μmol) and THPTA (189.8 μmol) in deionized H2O was added to the reaction mixture, followed 

by 7.2 mL of NaAsc (726.9 μmol) in deionized H2O.  The reaction was allowed to stir at room 

temperature for 1 hour before an aliquot was removed for analytical HPLC to monitor reaction 

progress.  After 3 hours, the reaction mixture was concentrated under reduced pressure, and 

purified by preparative HPLC on a Waters XBridge BEH C18, 5 μm, 130 Å, 19x250 mm column 

using a gradient of MeCN in H2O (constant 0.05% TFA).  The isolated fractions were evaporated 

under reduced pressure to remove residual MeCN, then frozen at -20°C and lyophilized to yield a 

white powder.  Expected [M+2H]2+ = 1039.5224 Da, [M+3H]3+ = 693.3507 Da; Observed 

[M+2H]2+ = 1039.5145 Da, [M+3H]3+ = 693.3478 Da. 

2.3. Analytical characterization 

All HPLC chromatographic analysis was conducted on a Waters Alliance HPLC system 

equipped with either a diode array detector or dual wavelength UV/Vis detector. For RP-HPLC, 

general chromatographic conditions employed a linear elution gradient from 5-95% acetonitrile 

in water (constant 0.05% trifluoroacetic acid) over 50 min, on a Waters XBridge BEH C18, 3.5 

μm, 130 Å stationary phase (4.6 x 150 mm), with a 1.0 mL/min flow rate and a 35°C column 

temperature. For semi-preparative HPLC, a linear elution gradient of acetonitrile in water 
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(constant 0.05% trifluoroacetic acid) over 20 min, on a Waters XBridge BEH C18, 5 μm, 130 Å 

stationary phase (19 x 250 mm), with a 14.0 mL/min flow rate was utilized.  Gradients were 

optimized for each run using the identical stationary phase in a 4.6 x 250 mm configuration. 

LC/MS sample analysis was completed on a Waters Xevo G2, employing linear elution 

gradients of 15-100% acetonitrile in water (constant 0.1% formic acid) over 45 min, on a Waters 

XBridge BEH C18, 1.7 μm, 130 Å stationary phase (0.075 x 250 mm), with a 0.5 μL/min flow 

rate and 50°C column temperature. Electrospray ionization, operating in the positive mode 

(ESI+), was used as the ionization source with a QTOF mass analyzer used for detection.   

NMR spectra were collected on a Bruker Avance AVIII 500 MHz spectrometer equipped 

with a dual carbon/proton cryoprobe, and all samples were dissolved in 650 μL of D2O or 

DMSO-d6. Data processing was completed using MestReNova 11.0 (Santiago de Compostela, 

Spain). 

2.4. Drug release and stability studies 

 Release and stability studies were conducted via HPLC with UV detection by dissolving 

the compound of interest in various buffers (typically pH 7.0 phosphate, pH 5.5 acetate, 

deionized H2O, etc.) and evaluating the release at temperatures and times relevant to the 

particular study.  Peak integration is used for quantification, accounting for initial purity of the 

PLP139-151-DEX at T = 0. 

2.5. Induction of EAE 

 In vitro and in vivo studies were performed through the use of 4-6 week old SJL/J (H-2) 

female mice purchased from Envigo Laboratories (Indianapolis, IN).  All experiments were 

approved through the University’s Institutional Animal Care and Use Committee with animal 
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housing in pathogen-free conditions.  An emulsion containing 200 μg PLP139-151 in Complete 

Freund’s Adjuvant (CFA) was prepared by combining IFA and heat-killed M. Tuberculosis 

strain H37RA at a final concentration of 4 mg/mL with subsequent emulsification between CFA 

and PBS containing 200 μg PLP139-151.  This PLP139-151 in CFA emulsion was administered to 

mice on day 0 by four subcutaneous injections of 50 μL each located above each shoulder and 

hind flank for a total of 0.2 mL.  Additionally, intraperitoneal injections of pertussis toxin (100 

ng in 100 μL PBS) were administered on day 0 and day 2.  Disease severity was recorded using 

the following clinical scoring system: 0, no clinical disease symptoms; 1, weakness or limpness 

of the tail; 2, weakness or partial paralysis of one or two hind limbs (paraparesis); 3, full 

paralysis of both hind limbs (paraplegia); 4, paraplegia plus weakness or paralysis of forelimbs; 

5, moribund (euthanasia necessary).  Mouse body weight was also recorded daily throughout the 

duration of the studies. 

2.6. In Vivo Efficacy in EAE Mice 

In vivo studies were performed with 9 mice per treatment group.  Five mice were 

euthanized on day 14 (peak-of-disease) while the remaining mice were euthanized on day 25.  

Treatments were administered to mice through subcutaneous injection of 100 μL at the base of 

the neck on the back of the mouse on days 4, 7, and 10 following EAE induction.  All treatments 

were dosed at a 200 nmol DEX basis in 40 mg/mL mannitol as vehicle.  Mice were weighed 

daily from day 0 and scored daily from day 7 until the end of the study at day 25. 

2.7. Splenocyte Isolation 

  Spleens were harvested from EAE and healthy control mice on peak-of-disease or day 25 

for in vitro and in vivo studies, respectively.  Spleens were placed in 5 mL of RPMI 1640 

containing L-glutamine and 1% Penicillin-Streptomycin and placed on ice for transportation.  
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The spleens were pressed through sterile wire mesh with the use of a rubber 1 mL syringe 

plunger and the cellular extract was collected and centrifuged at 1100 xg for 5 minutes.  In order 

to lyse red blood cells, the cell pellet was resuspended in 5 mL of Gey’s lysis solution for 5 

minutes on ice.  Quenching of the lysis solution was performed by adding 10 mL of RPMI 1640 

supplemented with L-glutamine, 1% Penicillin-Streptomycin, and 10% fetal bovine serum (FBS) 

(complete RPMI, cRPMI).  Cells were centrifuged at 1100 xg for 5 minutes and resuspended in 

cRPMI prior to counting in 0.04% trypan blue.  Cultures with in vitro treatments or PLP139-151 

rechallenge were kept at 37°C and 5% CO2. 

2.8. Cell Metabolic Assay 

Cellular metabolism was determined through the use of resazurin.  Splenocytes were 

incubated with 75 μmol/L resazurin for 3 hours.  Change in fluorescence (ex 560/em 590) 

provides a measurement of metabolic reductive capacity.  Results for in vitro treated samples 

were normalized against untreated controls and background fluorescence was subtracted from all 

samples through fluorescence measurements on cRPMI containing resazurin.  These readings 

were performed using a Spectramax M5 (Molecular Devices) plate reader. 

2.9. Cytokine Response 

Following the day 14 and day 25 splenocyte harvests from in vivo studies, in vitro 

splenocyte supernatants were collected after 96 hours incubation with PLP139-151.  Incubation was 

performed at 1x106 cells/well in 96 well plates in the presence or absence of 25 μM PLP139-151.  

The secretion of GM-CSF, IFN-γ, TNF-α IL-2, IL-6, IL-10, IL-15, IL-17, IL-21, and IL-23 was 

measured using a U-Plex kit following manufacturer instructions (Meso Scale Discovery). 

Statistical Analysis 
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 Statistical analysis of data was performed using two-way analysis of variance (ANOVA) 

and Tukey multiple comparison tests.  IC50 studies were analyzed using a 4PL-sigmoidal 

function. Criteria for significance are as follows: * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001.  For Figure 7 and Figure 9 significant differences between the PLP139-151 and DEX 

mixture and mannitol vehicle control are denoted by # p<0.05. All statistical analysis was 

performed using GraphPad Software (GraphPad Software Inc.). 

3. Results 

3.1. Analytical characterization of chemical entities 

The constituent and conjugate molecules can be characterized by traditional chemical 

methods, including NMR, HPLC, LC/MS, and other spectroscopic means to confirm the 

structure of the entity.  HPLC analysis of PLP139-151-DEX with UV/Vis detection provides typical 

purity values in excess of 93% following preparative HPLC purification (Figure 2).  A similar 

analysis by LC-MS corroborates these results, showing a mass shift in the final conjugate 

indicative of attachment of DEX to PLP139-151 (Figure 3).  From an NMR perspective, an added 

benefit to installing the alkyne linker on PLP139-151 is the presence of a distinct resonance in 

1H/13C heteronuclear single quantum coherence (HSQC) experiment, corresponding to the 

terminal alkyne correlation (δ(1H) ≈ 2.3ppm, δ(13C) ≈ 70 ppm) which is present in a unique 

chemical environment and well separated from other signals (Figures 4 and S1).  After 

conjugation, this resonance undergoes a significant downfield shift (δ(1H) ≈ 7.8ppm) as it is 

incorporated as part of the conjugated triazole ring system (Figure 4).  One additional advantage 

of conjugating hydrophobic drug molecules to hydrophilic peptides is the impact on aqueous 

solubility.  The PLP139-151 peptide is soluble in excess of 60 mg/mL, providing a significant 

enhancement in drug solubility in the resulting amphiphilic conjugates.   



38 

 

3.2. Conjugate stability and drug release kinetics  

PLP139-151-DEX contains an acid-labile ester linkage capable of releasing the 

unadulterated parent drug in acidic microenvironments present inside cells.  A study of the 

release kinetics (Figure 5) indicated DEX is released over greater than 100 hours in unbuffered 

solutions and is released completely over approximately 50 hours when in acidic conditions (pH 

5.5).  Interestingly, complete hydrolysis of the linker occurs in a few hours when in phosphate 

buffered solutions, indicating that phosphate anions catalyze the release of DEX from PLP139-151, 

likely through nucleophilic attack on the ester bond.  Due to this finding, in vivo administration 

of PLP139-151-DEX was carried out in 40 mg/mL mannitol to prevent hydrolysis prior to injection.  

3.3. IC50 determination of conjugates and payload 

In order to determine the impact of the CuAAC chemical linkage on the activity of 

esterified DEX, EAE splenocytes harvested at peak of disease (Day 12) were isolated and treated 

with DEX or PLP139-151-DEX over a range of concentrations.  After 120 hours, a resazurin assay 

was performed to assess cellular metabolism and these data were normalized to untreated EAE 

splenocytes (Figure 6).  These data provide calculated IC50s for DEX and PLP139-151-DEX of 

6.84 +/- 4.18 nM and 7.55 +/- 2.80 nM, respectively.  This result indicates that DEX maintains 

activity after release from the AgDC and demonstrates the rapid release of DEX from the acid-

labile ester linkage in an in vitro setting, as evidenced by the similar IC50 values obtained for the 

free drug and the AgDC. 

3.4. In vivo screening of conjugates 

 In vivo efficacy of PLP139-151-DEX in the treatment of EAE was determined through 

subcutaneous administration of the conjugate as well as component treatments at a dose 
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equivalent to 200 nmol DEX.  Treatments were administered in 40 mg/mL mannitol on days 4, 

7, and 10 with n=9 prior to day 14 and n=4 after day 14.  Five mice in each treatment group were 

chosen at random and euthanized at peak of disease in order to assess splenocyte response to 25 

μM PLP139-151 rechallenge.  This in vivo schedule allows for determination of the effectiveness of 

AgDCs in ameliorating EAE clinical symptoms as well as mechanistic insight into changes in 

cellular expression after treatment. 

 In vivo clinical score data indicates the importance of conjugation of DEX to the antigen 

of interest (Figure 7).  EAE mice treated with the AgDC demonstrated no clinical symptoms 

throughout the 25-day study (Figure 7B).  This represents a vast improvement over the free drug, 

DEX (Figure 7A), which appears to have no clinical effect in the EAE model at a 200 nmol dose.  

Similar to the AgDC, administration of a combination of the components, PLP139-151 and DEX, 

ameliorates symptoms and appears to delay the onset of paralysis in EAE mice (Figure 7B); 

however, this co-administration is less effective than co-delivery through direct conjugation.  

Additionally, co-administration of PLP139-151 and DEX as a mixture resulted in delayed symptom 

onset in those mice which developed disease (Table 1).  Treatment with individual components, 

PLP139-151 or DEX, had no significant effect in reducing EAE symptoms (Figure 7A).  Similar 

trends are observed in animal weight data (Figure 9), in which weight gain is associated with a 

healthy mouse and weight loss correlates to symptom severity.  In combination therapies (Figure 

9B), continuous weight gain is observed throughout the duration of the study.  Conversely, mice 

treated with individual components as well as mannitol (Figure 9A) displayed significant weight 

loss leading up to disease remission. 

 As previously stated, 5 mice were euthanized on day 14 in order to assess cellular 

differences due to the various in vivo treatments (Figures 10 and S2-S8).  Of note, at day 14 a 
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small but significant reduction in GM-CSF (Figure 10A), an inflammatory cytokine, was 

observed for combination therapies.  Additionally, detection of IL-2 (Figure 10B), a cytokine 

associated with T-cell proliferation, was greatly diminished in combination therapies as well as 

the PLP139-151 control.  These results demonstrate the early immunosuppressive effects of 

combination treatments containing DEX.  Comparisons of GM-CSF and IL-2 between the 

mixture of PLP139-151 and DEX and the AgDC revealed no significant differences between co-

administration and co-delivery at this stage of treatment.  One notable difference between these 

treatment groups in cytokine expression was observed in IL-10 (Figure 10C), in which the 

mixture treatment group experienced a significant reduction in IL-10 expression compared to 

control.  This result was not observed in the conjugate treatment group and may account for the 

differences in efficacy observed in vivo by maintaining an anti-inflammatory effector cell 

population.  Numerous other cytokines were analyzed; however, no significant changes 

associated with treatment efficacy were observed in the expression of these cytokines (Figures 

S2-S8).   

4. Discussion 

Clinical researchers attempting to treat autoimmune diseases such as MS have 

historically focused on either administering drugs to suppress and/or modulate the immune 

response (e.g. classic immunosuppression) or, more recently, ASIT (e.g. long treatment regimens 

of low doses of antigen or altered antigen analogs).16  Currently, potent immunomodulatory 

drugs represent the core treatment options for MS patients, but these drugs act in a non-specific 

manner and may eliminate or suppress healthy immune cell populations.  Conversely, although 

ASIT is relatively safe, this approach has not yielded sufficient efficacy to suppress 

autoimmunity.7-9  Through direct conjugation of potent immunomodulators to self-antigens, 
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targeted immunosuppression of self-reactive populations may boost the efficacy of ASIT and 

diminish the side effects associated with immunosuppressants.   

The encephalitogenic peptide selected as the targeting moiety is a portion of the 

intracellular loop17 of the full-length transmembrane protein, PLP139-151.  Previous studies have 

shown the impact of PLP139-151 sequence variability on TCR binding affinity18, highlighting the 

influence of side chain interactions in the major histocompatibility class 2 binding pocket.  

Therefore, disrupting interactions through traditional synthetic methods targeting side chain 

residues of the native sequence were hypothesized to alter conjugate binding and/or uptake.  To 

circumvent these potential deleterious effects, all modifications to the targeting antigen occurred 

through the N-terminal amino acid and were installed via heterobifunctional linkers as the final 

step of solid-phase peptide synthesis, prior to cleavage from the resin.  Linker length, flexibility, 

and stability were key AgDC design considerations.  The overarching strategy utilizing CuAAC 

enabled rapid and efficient synthesis of PLP139-151-DEX (Figure 2) and related conjugates.   

Data reported here supports a growing base of literature highlighting the benefits of 

delivering autoantigen alongside immunomodulators.  Although historically categorized as an 

immunosuppressant, DEX  is now known to skew cellular responses towards immune tolerance 

via multiple mechanisms.19-22    For example, DEX was shown to enhance CTLA-4 expression 

during T-cell activation, thus countering the typical B7/CD28 pro-inflammatory co-stimulatory 

signal.22  DEX also inhibited IL-12 secretion by dendritic cells and increased FoxP3 expression 

in naïve T lymphocyte co-cultures.20  DEX was reported to induce expression of indoleamine 2-3 

dioxygenase (IDO), an enzyme implicated in T-cell tolerance21 that has been used to create 

‘tolerogenic dendritic cells’ (defined as high TLR-2, CXCR4, and CCR7 expression levels) from 

healthy donors.19   
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Because of these pluripotent mechanisms, some have tested DEX as an adjuvant that can be co-

administered along with antigen as a means to induce antigen-specific immune tolerance.20, 23-24  

Previously, Kang and colleagues demonstrated desensitization specific to OVA323-339 peptide 

after co-administration of this peptide alongside DEX.25  Additionally, applying this strategy of 

co-administration to the NOD autoimmune diabetes model protected nearly all mice from disease 

induction throughout the study period, suggesting these therapies may be adapted for application 

to numerous autoimmune diseases with known autoantigens.25  Further development of this 

treatment strategy by Peine et al. utilized acetalated dextran particles as a co-delivery vehicle for 

a myelin oligodendrocyte glycoprotein (MOG) peptide and DEX in EAE, and administration of 

these microparticles to EAE mice after disease onset resulted in significant reduction in disease 

severity when both components were present.26  With such striking differences in vivo between 

combination therapies and free DEX, our findings highlight the advantages associated with 

delivery of an immunosuppressive drug in the context of the autoantigens of interest.  

Furthermore, conjugation of DEX to PLP139-151 may maximize co-delivery of autoantigen and 

immunomodulator in larger organisms, enhancing drug potency as demonstrated and potentially 

limiting off-target effects. 

5. Conclusions 

Antigen-drug conjugates represent a novel class of therapeutics with broad applicability to a 

variety of antigen-specific autoimmune disorders.  By combining the benefits of two traditional 

treatment approaches, ASIT and immunomodulatory therapy, AgDCs employ a synergistic 

approach by conjugating the antigen to the immunomodulatory agent.  The enhanced specificity 

associated with therapeutics of this class may help to minimize global immunosuppression often 

observed with immunomodulatory small molecule treatments.  This publication serves as an 
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introduction to the modular synthetic design achieved in our lab and demonstrates both efficacy 

and safety of in vivo AgDC treatment in a mouse model of MS in which the autoreactive antigen 

is identified.  The EAE model provides a valuable system for the initial testing of AgDCs as 

induction and treatment of the disease can be achieved utilizing a single antigen epitope, in this 

case PLP139-151.  Subcutaneous treatment with free DEX at a 200 nmol dose appears to have little 

effect compared to control on modifying the disease course. EAE mice treated in vivo with 

PLP139-151-DEX; however, demonstrated no onset of disease over a 25-day period and appeared 

healthy throughout the study, which demonstrates the efficacy achievable with co-delivery of the 

antigen and immunomodulator.  The modular fashion of this AgDC approach, coupled with the 

consistency and specificity of the chemistries employed, make AgDCs a potential disease-

specific therapeutic class for autoimmune disorders. 
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Figures 

 

 

 

Figure 1. (A) Reaction scheme for the synthesis of DEX-N3.  (B) Reaction scheme for the synthesis of 

PLP139-151-DEX.  (C) Degradation of PLP139-151-DEX to release parent drug, DEX. 
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Figure 2. Representative analytical HPLC chromatogram showing the starting materials, PLP139-151-Alk, 

and DEX-N3, along with the purified reaction product, PLP139-151-DEX. 

 

 

Figure 3. Representative mass spectral characterization showing multiple charge states of the starting 

peptide and the antigen-drug conjugate, PLP139-151-DEX. 

PLP-DEX 

PLP-DEX 

DEX-N3 
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Figure 4. 1H/13C HSQC NMR data for PLP139-151-Alk (top) and PLP139-151-DEX (bottom). 
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Figure 5. Release of DEX from PLP139-151-DEX as a function of time and buffer, at 37°C.  Starting 

peptide concentration was 1 mg/mL, corrected for potency, and quantified via linear calibration curve. 

 

Figure 6. Resorufin fluorescence of EAE splenocytes treated with free DEX or PLP139-151-DEX for 120 

hours (n=6).  These data are normalized to untreated EAE splenocytes.  Calculated IC50s for these 

treatments are 6.84 +/- 4.18 nM and 7.55 +/- 2.80 nM for DEX and PLP139-151-DEX, respectively. 

Reported values are with standard error.  

 

 



48 

 

 

Figure 7. Clinical score data for EAE mice treated in vivo with (A) free DEX and free PLP139-151 as well 

as (B) a mixture of free DEX and PLP139-151 and the PLP139-151-DEX conjugate.  Treatments were 

administered subcutaneously on days 4, 7, and 10 at doses of 200 nmol DEX basis. N=9 until day 14 and 

n=4 after day 14. Five mice were chosen at random from each group on day 14 for euthanasia in order to 

assess splenocyte differences in treatment groups around peak of disease. Data provided is mean ± SD. 

*p<0.05 for Mannitol vs PLP139-151-DEX and # p<0.05 for Mannitol vs PLP139-151 and DEX Mix.  

 

Figure 8. Percent disease incidence for all treatment groups where disease onset is characterized by a c.s. 

≥ 1. N=9 until day 14 and n=4 after day 14. Five mice were chosen at random from each group on day 14 

for euthanasia in order to assess splenocyte differences in treatment groups around peak of disease. 
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Figure 9. Mouse weight data for EAE mice treated in vivo with (A) free DEX and free PLP139-151 as well 

as (B) a mixture of free DEX and PLP139-151 and the PLP139-151-DEX conjugate.  Data are normalized to 

the individual mouse weight at day 8 (symptom onset).  Treatments were administered subcutaneously on 

days 4, 7, and 10 at doses of 200 nmol DEX basis. N=9 until day 14 and n=4 after day 14. Five mice were 

chosen at random from each group on day 14 for euthanasia in order to assess splenocyte differences in 

treatment groups around peak of disease. *p<0.05 for Mannitol vs PLP139-151-DEX and # p<0.05 for 

Mannitol vs PLP139-151 and DEX Mix.   

 

Table 1. Disease incidence rate and mean day of disease onset ± SD for each treatment group.  Incidence 

rate is represented as a fraction of total mice per treatment group with clinical score ≥ 1.  Mean day of 

onset is calculated only for symptomatic animals. 

  

Mannitol DEX PLP139-151 
PLP139-151 and 
DEX mix 

PLP139-151-
Dex 

Incidence 
Rate 
(Fraction) 

9/9 9/9 5/9 2/9 0/9 

Mean Day of 
Onset ± SD 

10.8 ± 1.1 12.6 ± 1.3 11.4 ± 1.5 15.5 ± 2.1 - 
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Figure 10. Levels of (A) GM-CSF (B) IL-2 and (C) IL-10 were observed at peak of disease (day 14) after 

isolated splenocytes from in vivo treated mice were incubated for 96 hours with 25 μM PLP139-151. N=5, * 

p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

 

A 
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Chapter 3: Modulation of Regulatory Pathways through Co-

administration of Cognate Antigen and PD-1 Antagonists
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1. Introduction 

 In recent years, interest in modulating immune inhibitory pathways has grown immensely.  

The development of immune checkpoint inhibitors against targets such as programmed death-1 

(PD-1) has highlighted the delicate balance between tolerance and immunity and has helped shed 

light on the role of this pathway in both autoimmunity and chronic inflammation. The PD-1 

pathway is primarily responsible for regulating T-cell responses through inhibitory signaling, 

which helps maintain immune tolerance and return immune homeostasis.  The receptor protein, 

PD-1, is expressed predominantly on T-cells and B cells and is up-regulated during chronic 

inflammation1  Expression of one of the ligands, PD-L1, is quite broad, with the ligand being found 

on both hematopoietic cells and non-hematopoietic cells.1  Conversely, PD-L2 is primarily 

expressed on APCs and may be induced in inflammatory environments.1 Attempts at modulating 

the interactions between PD-1 and its ligands have provided new insights into the profound role 

of inhibitory pathways in maintaining immune homeostasis.   

Research into the antagonism of the PD-1 pathway has manifested in the clinic in the form 

of checkpoint inhibitors, capable of inducing anti-tumor immune responses in specific patient 

populations.  The US Food and Drug Administration has approved numerous monoclonal 

antibodies for this purpose, including pembrolizumab (anti-PD-1), nivolumab (anti-PD-1), 

avelumab (anti-PD-L1), durvalumab (anti-PD-L1), and atezolizumab (anti-PD-L1).  These 

antagonistic antibodies can disrupt the inhibitory immune pathways leveraged by cancer cells to 

evade deletion, thereby re-activating silenced, tumor-specific cytotoxic T-lymphocytes (CTLs).  

The success of checkpoint inhibitors in oncology highlights the importance of the PD-1 pathway 

in immune regulation, but many patients have experienced immune-related adverse events 

(IRAEs) from checkpoint inhibitor therapies.2 Unsurprisingly, disruption of the PD-1 inhibitory 
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pathway has been shown to exacerbate disease in animal models of autoimmunity including type 

1 diabetes, inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis.3  

Nevertheless, genetic knockout of the PD-1 pathway in a model of chronic inflammation has also 

been shown to overstimulate T-cells and induce a terminal state of immune cell exhaustion. 

Initially, lymphocyte proliferation in the acute phase of infection was enhanced but the lack of PD-

1 expression resulted in a failure to mount an effective inflammatory response in later, chronic 

stages on infection.4  This would suggest that during chronic inflammation the ligation of PD-1 

protects lymphocytes from overstimulation and, ultimately, depletion. 

In these works, we explore the effects of PD-1 blockade on EAE splenocytes using PD-1 

antagonistic peptides derived from ligands of this pathway.  These peptides are believed to block 

ligation and prevent downstream activation of the PD-1 pathway in a similar manner to anti-PD-1 

products on the market.  Studies of cellular changes following PD-1 blockade were carried out 

using splenocytes isolated from EAE mice at peak of disease and cultured in vitro.  This design 

allows for in-depth study of the effects of PD-1 blockade in EAE splenocytes in the presence of 

cognate antigen, providing insight into changes in cell phenotype and cytokine secretion following 

co-administration of these components.   

2. Materials and Methods 

2.1. Peptide Materials 

 Peptides designed to antagonize the PD-1 pathway were provided by Leidos Inc. with 

confidential sequences.  These peptides have been labeled as LD01, LD02, LD10, and LD12 for 

reference in this publication. 
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2.2. Induction of EAE 

In vitro studies were carried out using 4-6-week-old SJL/J (H-2) female mice purchased 

from Envigo Laboratories (Indianapolis, IN).  All experiments were approved through the 

University’s Institutional Animal Care and Use Committee with animal housing in pathogen-free 

conditions.  First, an emulsion containing 200 μg PLP139-151 in Complete Freund’s Adjuvant (CFA) 

was prepared by combining IFA and heat-killed M. Tuberculosis strain H37RA at a final 

concentration of 4 mg/mL with subsequent emulsification between CFA and PBS containing 200 

μg PLP139-151.  On day 0, this PLP in CFA emulsion was administered to the mice through four 

subcutaneous injections of 50 µL above each shoulder and hind flank.  Additionally, 

intraperitoneal injections of pertussis toxin (100 ng in 100 μL PBS) were administered on day 0 

and day 2.  These mice were monitored for disease severity and weight loss leading up to peak of 

disease at day 12. 

2.3. Splenocyte Isolation 

Spleens harvested from EAE and healthy control mice at peak-of-disease (day 12) were 

placed in 5 mL of RPMI 1640 containing L-glutamine and 1% Penicillin-Streptomycin.  Using a 

sterile wire mesh and a 1 mL syringe plunger the spleen tissue was disrupted, and the cellular 

extract was collected and centrifuged at 1100 xg for 5 minutes.  The cell extract was resuspended 

in 5 mL of Gey’s lysis solution for 5 minutes on ice to lyse red blood cells.  The red blood cell 

lysis process was halted by adding 10 mL of RPMI 1640 supplemented with L-glutamine, 1% 

Penicillin-Streptomycin, and 10% fetal bovine serum (FBS).  Cells were centrifuged at 1100 xg 

for 5 minutes and resuspended in cRPMI prior to counting in 0.04% trypan blue.   

Following splenocyte harvest at peak-of-disease, the cells were cultured with 25 µM 

peptide treatments with groups consisting of: LD01 only, LD02 only, a combination of LD01 and 
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LD02 each at 25 µM, LD10 only, LD12 only, and media controls.  Leidos peptides were 

solubilized using DMSO with a final cell incubation concentration of 0.1% DMSO.  These 

conditions were also met in one of the media control groups to identify any cellular changes due 

to the inclusion of DMSO.  Additionally, these treatment groups were expanded through the 

inclusion or exclusion of 25 µM PLP to assess PD-1 peptide effects on splenocytes in the presence 

of cognate antigen.  These cell cultures were incubated with treatment at 37°C and 5% CO2 for 72 

hours. 

2.4. Cytokine Response 

Splenocytes were cultured at 5 x 106 cells/mL (1 x 106 cells/well) for 72 hours as outlined 

above and sample supernatants were removed and frozen at -80 °C for storage until the assay could 

be performed.  Cytokine concentrations were determined in cell supernatants using a U-Plex kit 

following manufacturer instructions (Meso Scale Discovery, Rockville, MD).  The following 

cytokines were assessed in the U-Plex plate: GM-CSF, IFN-γ, IL-10, IL-15, IL-17A, IL-2, IL-21, 

IL-23, IL-6, and TNF-α. 

2.5. Cell Phenotyping via Flow Cytometry 

In vitro splenocytes were cultured at 5 x 106 cells/mL (5 x 106 cells/well) with the treatment 

groups outlined previously for 72 hours prior to cell scraping and collection.  These treated 

splenocytes were washed with RPMI containing 5% FBS and blocked for 15 minutes with 

TruStain fcX (antimouse CD16/32 antibody, Biolegend) at 10 µg/mL in wash buffer.  Antibodies 

used in immunostaining included: BV421 conjugated anti-mouse CD3, AlexaFluor647 conjugated 

anti-mouse CD4, AlexaFluor488 conjugated anti-mouse CD8, and PE/Dazzle conjugated anti-

mouse PD-1 (Biolegend, San Diego, CA).  Staining of splenocytes was performed following 

manufacturer guidelines and splenocytes were washed three times before resuspension in serum-
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free RPMI.  Following staining, live cell population statistics were assessed by flow cytometry 

(BD FACSFusion, BD Biosciences, San Jose, CA). 

2.6. LD01 Titration 

In vitro splenocytes were cultured at 5 x 106 cells/mL with LD01 treatment at increasing 

concentrations of 1 µM, 5 µM, 10 µM, and 25 µM for 72 hours prior to cell scraping and collection.  

Treated splenocytes were then washed with RPMI containing 5% FBS and blocked for 15 minutes 

with TruStain fcX (antimouse CD16/32 antibody, Biolegend) at 10 µg/mL.  Splenocytes were then 

stained for PD-1 expression using PE/Dazzle conjugated anti-mouse PD-1 (Biolegend, San Diego) 

and assessed by flow cytometry (BD FACSFusion, BD Biosciences, San Jose, CA). 

3. Results 

3.1.  PD-1 Peptides Reduce Cytokine Secretion in the Presence of Cognate Antigen 

  EAE splenocyte responses to treatment with PD-1-derived peptides were studied 

through the collection of cytokines at two timepoints post-treatment.  Treatment groups included 

each peptide individually at 25 µM, as well as a combination group of LD01 and LD02, each with 

and without PLP re-challenge.  Splenocytes were cultured with treatments for 72 hours prior to 

cytokine analysis. 

 The treatment groups containing PLP provided the most robust cellular response at 72 

hours, with LD01 treatment significantly reducing levels of many pro-inflammatory cytokines 

including GM-CSF, IFN-γ, IL-23, IL-6, and TNF-α (Figure 1).  Additionally, a reduction in the 

levels of IL-10, an anti-inflammatory cytokine, was observed with LD01 treatment (Figure 1C).  

Similarly, splenocytes treated with LD02 displayed reduced secretion of IFN-γ, TNF-α, and IL-

10, albeit with lower significance than LD01 treated samples.  Combination treatment with both 
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LD01 and LD02 closely resembled the changes observed in LD01 treatment with a few notable 

differences.  Interestingly, the combination of LD01 and LD02 greatly reduced the levels of IL-

17A in EAE splenocytes when treated in the presence of PLP (Figure 1E).  This effect was not 

observed for the individual peptide treatments.  Furthermore, the effects of these peptides on IL-

10 secretion appear to be additive, with the combination treatment displaying significantly lower 

levels of IL-10 than either LD01 or LD02 individually (Figure 1C).  Treatments with LD10 and 

LD12 also displayed reduced levels of pro-inflammatory cytokines, albeit with less significance.  

Notably, LD12 substantially reduced IL-17A secretion in the presence of antigen. 

3.2.  PD-1 peptides reduce proportion of major T-cell populations 

  Population changes of T-cells following 72 hours of treatment with PD-1 peptides 

were observed through flow cytometry (Figures 2-6).  Cellular markers for T-cell phenotyping 

included CD3 for general T-cell populations (Figure 3), CD4 for T-helper cell populations (Figure 

4), and CD8 for cytotoxic T-cell populations (Figure 5). 

 The most notable changes in T-cell populations were observed in splenocytes treated 

with LD01, LD02, or a combination of these peptides.  LD01 reduced the proportion of all T-cells, 

with this loss being shared across both T-helper cells and cytotoxic T-cells (Figures 4 and 5).  

Furthermore, this effect of LD01 on T-cell populations persists in the presence of PLP.  LD02 also 

appears to reduce T-cell populations, however this effect is only observed in splenocytes which 

are not treated with PLP and applies primarily to cytotoxic T-cells (CD8+hi).  Similar to the results 

seen with the cytokine profiles, the effects of LD02 on cytotoxic T-cell populations may be 

additive with those of LD01 in combination treatment (Figure 5B).  Once again, however, the 

added effects of LD02 in the combination treatment do not persist in the presence of cognate 

antigen. 
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 Lastly, general PD-1 expression on all splenocytes was also investigated post-treatment 

(Figure 6).  Of note, LD01 greatly enhanced the expression of PD-1 on EAE splenocytes, both in 

the presence and absence of PLP.  LD02 also increased PD-1 expression on EAE splenocytes, 

however this effect is only observed in the absence of PLP. 

3.3. Titration of LD01 reveals dose dependency of PD-1 expression 

To further evaluate the effects of LD01 treatment on splenocyte phenotypic changes, an 

LD01 titration study was designed with increasing doses of LD01 treatment from 1 µM to 25 µM.  

Total splenocyte expression of PD-1 was then evaluated via flow cytometry, revealing a dose 

dependent expression of PD-1 in response to LD01 when rechallenged with PLP139-151 (Figure 7).  

These results may suggest varying levels of cellular exhaustion in response to LD01 treatment in 

the presence of cognate antigen, however, this study does not reveal saturation of PD-1 expression 

in these exhausted splenocytes. 

4. Discussion  

 The PD-1 pathway’s importance stems from its multifunctional role in lymphocyte 

inhibition.  PD-1 ligation is responsible for resolving inflammation and maintaining immune 

tolerance and represents one of the last lines of defense against autoreactive cells which have 

escaped central tolerance.  Loss of PD-1 function, whether by knockout or immune checkpoint 

blockade therapy, results in exacerbated autoimmune symptoms in mouse models of type 1 

diabetes and multiple sclerosis.5-6  These studies highlight the role of PD-1 in maintaining immune 

tolerance and limiting autoreactive inflammatory responses, but more work must be done to 

investigate the cellular changes associated with antagonism of the PD-1 pathway in the presence 

of cognate antigen. 
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 Chronic inflammation due to repeated exposure of T-cells to cognate antigen may result in 

development of an exhausted phenotype.7  Exhausted T-cells are characterized by a loss of immune 

function, and in the most severe cases T-cell exhaustion may result in clonal deletion.7  This effect 

has been observed in both CD8+ T-cells and CD4+ T-cells and has commonly been observed in 

numerous viral infections including lymphocytic choriomeningitis virus (LCMV), HIV, and 

hepatitis C, among other diseases.7-10  Exhausted T-cells have been observed to upregulate 

expression of many inhibitory receptors, including PD-1.7  A study in mice with LCMV infection 

found that the PD-1 pathway is not required for the induction of an exhausted T-cell phenotype, 

but rather is a mechanism by which T-cells are protected from reaching a terminal state of 

exhaustion.4  In the study, PD-1 knockout mice were infected with LCMV and although T-cell 

cytotoxic activity increased during the acute phase of infection, the long-term absence of PD-1 

resulted in a higher degree of terminally differentiated exhausted T-cells.4 

 In order to explore the relationship between PD-1 and cellular exhaustion in the context of 

autoimmunity, we cultured EAE splenocytes with peptide antagonists to the PD-1 pathway.  Initial 

studies focused on elucidating effector cell function under these conditions through quantification 

of cytokines.  In the presence of cognate antigen, PLP139-151, the splenocytes treated with LD01 

demonstrated significantly reduced cytokine expression.  Notably, inflammatory cytokines such 

as GM-CSF, IFN-γ, and TNF-α saw substantial reduction when treated with LD01 and in 

combination treatments containing LD01 and LD02 together in the presence of PLP.  Additionally, 

the combination treatment of LD01 and LD02 saw a reduction in IL-17, a major inflammatory 

cytokine associated with EAE.  These data support loss of effector cell function when treated with 

antagonistic PD-1 peptides in combination with PLP, despite the normally anti-inflammatory 
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nature of the PD-1 pathway.  Furthermore, the changes observed in IL-17 hint at a cooperative 

effect between LD01 and LD02, further altering the cellular response when treated in combination. 

 After observing the reduction of cytokine expression through treatment with antagonistic 

PD-1 peptides, changes in basic T-cell phenotypes were investigated.  This was accomplished by 

staining for the following surface proteins: CD3, CD4, CD8, and PD-1.  After treatment with PD-

1 peptides, total T-cell populations (CD3+) decreased significantly, a change which was observed 

in both T-helper cells (CD4+) and cytotoxic T-cells (CD8+).  Interestingly, two populations of 

CD8+ T-cells were observed, CD8+hi and CD8+lo, and the PD-1 peptides most strongly impacted 

the CD8+hi population, regardless of the presence of antigen.  These effects in reducing 

CD8+hi- populations were also enhanced in the combination treatment group of both LD01 and 

LD02, once again suggesting that these peptides work cooperatively to alter cellular response.  

Lastly, through treatment with the PD-1 antagonistic peptides, the expression of the receptor PD-

1 was greatly enhanced.  This result in combination with the reduced expression of IFN-γ may 

suggest that T-cells are exhibiting an exhausted phenotype, incapable of mounting a robust 

inflammatory response, especially when stimulated with cognate antigen in combination with PD-

1 antagonist peptides. 

6. Conclusions  

Modulation of immune inhibitory pathways such as PD-1 has grown in interest with the advent 

of immune checkpoint inhibitors, however, the effects of antagonism of the PD-1 pathway have 

not fully been explored in the presence of cognate antigen.  Here, we have demonstrated the 

efficacy of newly derived PD-1 peptide antagonists resulting in immune cell exhaustion when 

treated alongside high doses of PLP139-151 antigen.  Overall secretion of inflammatory cytokines, 

including GM-CSF and IFN-γ, was reduced following treatment with LD01 + PLP139-151 and the 
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resulting overexpression of PD-1 was shown to be dose dependent on LD01.  These results 

coincide with literature sources to further evidence the protective role of PD-1 in preventing 

cellular exhaustion, a phenomenon which severely impacts immune responsiveness. 
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Figure 1. Cytokines from EAE splenocytes harvested at peak of disease (day 12) after 72 hours of 

treatment with Leidos peptides +/- 25 µM PLP.  Displayed are significances between media + 

DMSO vehicle control and peptide treatments.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 
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Figure 2.  Representative flow cytometric plots of the gating schemes used in cell phenotyping.  

Staining was performed on EAE splenocytes harvested at peak of disease (day 12) following 72 

hours peptide treatment in vitro.  The following antibody stains were used in cell phenotyping:  

anti-CD3-BV421, anti-CD4-AF647, anti-CD8-AF488, and anti-PD-1-PE-Texas Red. 
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Figure 3. Percent CD3+ T-cell of EAE splenocytes harvested at peak of disease (day 12) following 

72 hours treatment with Leidos peptides +/- 25 µM PLP.  * represents significant difference from 

Media + 0.1% DMSO vehicle control.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 

 

Figure 4. Percent CD4+ T-helper cells of EAE splenocytes harvested at peak of disease (day 12) 

following 72 hours treatment with Leidos peptides +/- 25 µM PLP.  * represents significant 

difference from Media + 0.1% DMSO vehicle control.  * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001 
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Figure 5. Percent CD8+ cytotoxic T-cells of EAE splenocytes harvested at peak of disease (day 

12) following 72 hours treatment with Leidos peptides +/- 25 µM PLP.  Two populations were 

observed, (A) CD8+lo population and (B) CD8+hi population.  * represents significant difference 

from Media + 0.1% DMSO vehicle control.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 

 

A 

B 
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Figure 6. Percent PD-1+ cells of EAE splenocytes harvested at peak of disease (day 12) following 

72 hours treatment with Leidos peptides +/- 25 µM PLP.  * represents significant difference from 

Media + 0.1% DMSO vehicle control.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 

 

 

Figure 7.  Effects of increasing concentration of LD01 on PD-1+ expression in EAE splenocytes 

harvested at peak of disease (day 12) following 72 hours treatment with Leidos peptides +/- 25 

µM PLP.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 
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Chapter 4: Silencing Autoreactive B Cell Populations 

Through Tetravalent Antigen Presentation
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1. Introduction 

 Autoimmunity is characterized by a loss of immune tolerance toward self-antigens 

resulting in aberrant inflammatory events.  Typical treatments for autoimmune diseases lack 

specificity for the offending, autoreactive T-cells and B cells, resulting in limited efficacy and a 

wide range of adverse side effects.1-2 In addition to these side effects, many autoimmune 

therapies induce global immune suppression, hindering the immune system’s ability to eliminate 

pathogens.3  This immune suppression may relieve autoimmune symptoms, but it also leaves the 

patient open to opportunistic infection.  With such severe limitations in existing autoimmune 

therapies, there is a crucial need for antigen-specific immunotherapies (ASITs) capable of 

inducing immune tolerance toward an autoantigen without compromising immune function. 

 In multiple sclerosis (MS), loss of immune tolerance toward myelin sheath autoantigens 

results in abnormal inflammatory responses in the central nervous system facilitated by both 

autoreactive T-cells and B cells.4-5  The result of this inflammation is demyelination and 

neuronal degradation leading to neurological dysfunction.6  The role of B cells in MS pathology 

is still unclear, however, the success of B cell depletion in clinical studies utilizing Rituximab, an 

anti-CD20 mAb, suggests that autoreactive B cells function beyond autoantibody secretion.7-10  

MS patients who received Rituximab see rapid improvement in disease progression, but they 

maintain high serum levels of autoantibodies against myelin antigens.  These results suggest 

antibody-independent mechanisms for B cell involvement in MS, including loss of antigen 

presentation to T-cells and reduced B cell cytokine and chemokine production.7  Despite their 

success, B cell depletion therapies result in severe global immune suppression and the demand 

for safer, more effective antigen-specific strategies remains. 
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The successes of B cell depletion therapies in MS patients implicate B cells as an 

excellent target for tolerance reintroduction through ASITs.  Due to their antibody-independent 

roles in MS, autoreactive B cells of interest may be targetable through their high-affinity 

membrane bound B cell receptor (BCR) specific for MS autoantigens.  Prior work by Dintzis 

demonstrates the potential for low molecular weight antigen arrays to eliminate high affinity B 

cells specific for the antigen of interest.11  Tolerance induction through administration of antigen 

arrays in B cells has been shown to be dependent on a multivalent interaction with antigen-

specific B cells.12  Furthermore, studies in a mouse model of MS known as experimental 

autoimmune encephalomyelitis (EAE) have demonstrated the potential efficacy of soluble 

antigen arrays (SAgAs).13  These SAgAs, defined as a multivalent array of MS autoantigen 

proteolipid protein (PLP139-151) and cell adhesion inhibitor peptide (LABL), were shown to act in 

an antigen-specific manner and facilitate receptor clustering in B cells.14  These studies 

demonstrate the potential efficacy associated with multivalent antigen displays in the treatment 

of MS. 

Herein, we outline the synthesis and characterization of a novel multivalent display of 

PLP139-151 for use in the EAE model of MS.  This multivalent antigen array, referred to as 4-arm 

PLP139-151, consists of a tetravalent PEG backbone with PLP139-151 peptide conjugated to each 

terminus.  The efficacy of 4-arm PLP139-151 was demonstrated in vivo through a 25-day EAE 

study.  Additionally, the mechanisms associated with 4-arm PLP139-151 treatment in splenocytes 

were explored through cell phenotyping using flow cytometry.  Co-stimulatory marker 

expression was also investigated in these treatment groups, and downstream effector cell 

responses were gauged by quantification of inflammatory cytokine expression following 

treatment. 
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2. Experimental Section 

2.1. Materials 

20 kDa 4-arm PEG-azide was purchased from JenKem Technology USA (Beijing, 

China). Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) and sodium ascorbate (NaAsc) 

were purchased from Sigma-Aldrich (St. Louis, MO). Copper (II) sulfate pentahydrate (CuSO4 • 

5 H2O) was purchased from Acros Organics (Geel, Belgium). Alkyne functionalized peptide 

bearing an N-terminal 4-pentynoic acid (homopropargyl, hp) modification, hpPLP139-151 (hp-

HSLGKWLGHPDKF-OH), was obtained from Biomatik, USA, LLC (Wilmington, DE). All 

reagents were used as received without further purification.  For in vitro cell assays and in vivo 

studies, female 4-6-week-old SJL/J (H-2) mice were purchased from Envigo Laboratories 

(Indianapolis, IN). For EAE induction, incomplete Freund’s adjuvant (IFA) and heat-killed 

mycobacterium tuberculosis H37RA were purchased from Difco (Sparks, MD). Additionally, 

pertussis toxin was purchased from List Biological Laboratories (Campbell, CA). For use in flow 

cytometry, TruStain fcX (anti-mouse CD16/32), R-phycoerythrin (PE)/Cy7-conjugated anti-

mouse CD3, PE-conjugated anti-mouse CD86, FITC-conjugated anti-mouse CD80, 

AlexaFluor647-conjugated anti-mouse CD19, and BV421-conjugated anti-mouse CD11c were 

purchased from BioLegend (San Diego, CA). 

2.2. Synthesis of 4-arm PLP139-151 

4-arm PLP139-151 was synthesized by copper-catalyzed azide-alkyne cycloaddition 

(CuAAC) chemistry, as shown in Scheme 1. First, hpPLP139-151 (43 µmol) was added to a 20 mL 

scintillation vial with a stir bar. The powder was then dissolved in 5 mL of 50 mM phosphate 
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buffer (pH 7.4) at room temperature. A 10 mM solution of 20 kDa 4-arm PEG-azide (10 µmol) 

in DMSO was then added to the solution, followed by a 120 mM solution of CuSO4• 5H2O (120 

µmol) in 50 mM phosphate buffer (pH 7.4). Then, THPTA (600 umol) was added as a 600 mM 

solution in 50 mM phosphate buffer (pH 7.4). A 100 µL aliquot was removed for HPLC analysis 

before the addition of a 1 M solution of NaAsc (2.4 mmol) in 50 mM phosphate buffer (pH 7.4). 

The reaction was stirred at room temperature and the extent of conjugation was monitored by 

HPLC at various times. Upon completion of the reaction at 24 hrs, the solution was purified by 

semi-preparative HPLC utilizing a linear elution gradient of acetonitrile in water (constant 0.05% 

trifluoroacetic acid) over 20 min, with a Waters XBridge BEH C18, 5µm, 130 Å stationary phase 

(19 × 250 mm), with a 14.0 mL/min flow rate. The purified fraction was then concentrated under 

vacuum, transferred to vials, frozen, and lyophilized. 

2.3. Analytical Characterization of 4-arm PLP139-151 

RP-HPLC analysis was conducted using a Waters Alliance HPLC system equipped with 

a dual wavelength UV/vis detector. Chromatographic conditions utilized a linear gradient from 

5-95% acetonitrile in water (constant 0.05% trifluoroacetic acid) over 20 min, with a Waters 

XBridge C18, 5um, 130 Å stationary phase (4.6 × 250 mm) with a 1.0 mL/min flow rate and 

detection at 214 nm. The followed equation was used to quantitate conjugation of PLP139-151 

Ncon = [(
𝑛PLP139−151

𝑛4−arm PEG−azide
) (

Vpre − Vsam

Vpre
)] (1 −

PAt

PAstart
) 

where Ncon = number of conjugated PLP139-151 molecules per backbone, nPLP139-151 = moles of 

PLP139-151 used in the reaction, n4-arm PEG-azide = number of moles of 20 kDa 4-arm PEG-azide used 

in the reaction, Vpre = total reaction volume before NaAsc is added, Vsam = volume of “pre-



77 

 

NaAsc” aliquot removed from the reaction mixture, PAt = the measure peak area of PLP139-151 at 

time t, and PAstart = the measure peak area of PLP139-151 before NaAsc is added to the reaction.  

 NMR spectra were collected on a Bruker Avance AVIII 500 MHz spectrometer equipped 

with a dual carbon/proton cryoprobe, and all samples were dissolved in 600 µL D2O for analysis. 

MestReNova 12.0 was used for NMR data analysis. 

2.4. Induction of EAE 

 In vivo efficacy and in vitro cell assays were performed through induction of EAE in 

female 4-6-week-old SJL/J (H-2) mice.  All protocols were approved through the University’s 

Institutional Animal Care and Use Committee with animals housed in pathogen-free conditions.  

Induction of EAE was carried out using an emulsion of 200 µg free PLP139-151 in PBS emulsified 

with Complete Freund’s Adjuvant (CFA) containing 4 mg/mL heat-killed M. Tuberculosis strain 

H37RA.  This emulsion was administered subcutaneously to mice on day 0 in 50 µL injections 

above each shoulder and hind flank for a total injection volume of 200 µL per mouse.  At this 

time, 100 µL intraperitoneal injections of pertussis toxin at 100 ng/mL in PBS were administered 

to the mice.  The administration of pertussis toxin was also repeated on day 2.  Beginning on day 

7, severity of disease symptoms was recorded daily using the following clinical scoring system: 

0, no clinical disease symptoms; 1, weakness or limpness of the tail; 2, weakness or partial 

paralysis of one or two hind limbs (paraparesis); 3, full paralysis of both hind limbs (paraplegia); 

4, paraplegia plus weakness or paralysis of forelimbs; 5, moribund (euthanasia necessary).  

Mouse body weight was recorded daily throughout the entire study. 

2.5. Competitive PLP139-151 ELISA 
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 Competitive binding of 4-arm PLP139-151 to EAE serum antibodies was detected using an 

indirect ELISA.  Initially, 100 µL of 1 mg/mL free PLP139-151 at pH 9.5 (50 mM sodium 

bicarbonate buffer) was incubated overnight in an Immulon 2HB plate at 4°C.  Wash buffer 

consisting of 1x Phosphate Buffered Saline (PBS) with 0.5% Tween 20 was used to wash the 

plate 3 times with 300 µL/well.  Block buffer was prepared using 0.2 µm filtered PBS containing 

1% Bovine Serum Albumin (BSA).  The plate was blocked with 250 µL of block buffer 

incubated at 37°C for 1 hour. Serum samples obtained from EAE mice at peak of disease 

severity were thawed and pre-incubated with one of the following treatments: 4-arm PLP139-151, 

20 kDa 4-arm PEG-azide, free PLP139-151, or PBS.  These treatments were maintained at 25 µM 

PLP139-151 basis and were incubated with the serum for 1 hour. Once again, the plate was washed 

3 times with wash buffer, as described previously.  Treated serum samples were added to the 

plate and serially diluted in reagent diluent consisting of 1% BSA and 0.5% Tween 20 in 1x 

PBS.  Samples were incubated in the plate for 1 hour at 37°C.  The plate was washed 3 times 

with wash buffer, as described previously.  Secondary antibody solution was prepared using anti-

mouse IgG diluted in reagent diluent. Each well was incubated with 100 µL of secondary 

antibody solution for 1 hour at 37°C.  The plate was washed 3 times with wash buffer and 100 

µL of TMB solution was added to each well.  The plate was shaken at 200 rpm for 15 minutes 

prior to the addition of 100 µL/well of 2N sulfuric acid to quench the reaction.  Lastly, the 

absorbance at 450/540 nm was read on a Spectramax M5 (Molecular Devices) plate reader. 

2.6. In Vivo Efficacy 

 Treatment efficacy in vivo was determined using 6 mice per group.  All mice were 

euthanized after 25 days.  Treatments were subcutaneously administered on the back of the neck 

in 100 µL of 40 mg/mL.  Each group was dosed on a 200 nmol PLP139-151 basis, with doses 
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administered on days 4, 7, and 10 following EAE induction.  Mouse weights were recorded daily 

beginning on day 0 and clinical scores were recorded daily beginning on day 7. 

2.7. Splenocyte Isolation 

Spleens were isolated from EAE mice at peak of disease for in vitro studies.  Spleens 

were placed on ice in 5 mL of RPMI 1640 containing L-glutamine and 1% Penicillin-

Streptomycin.  Cellular extract was collected by pressing the spleens into a wire mesh using the 

plunger of a 1 mL syringe.  The extract was centrifuged at 1100 xg for 5 minutes and 

resuspended in red blood cell lysis solution at room temperature for 5 minutes. The lysis solution 

was quenched through the addition of cold RPMI 1640 supplemented with L-glutamine, 1% 

Penicillin-Streptomycin, and 10% fetal bovine serum (FBS) (complete RPMI, cRPMI).  The 

cells were then centrifuged at 1100 xg for 5 minutes and resuspended in cRPMI for counting in 

0.04% trypan blue. Cells were counted using a Nexcelom Bioscience Cellometer Auto T4. In 

vitro cell incubation was carried out at 37°C and 5% CO2 for 72 hours following addition of 

treatment. 

2.8. Cell Staining for Flow Cytometry 

 EAE splenocytes were incubated at 5 x 106 cells/well in a 24 well plate at a final volume 

of 1 mL. Treatments were added on a 25 µM PLP139-151 basis, and PLP139-151 rechallenge 

consisted of the addition of 25 µM free PLP139-151 to the well.  Following 72 hours incubation 

with treatment, a portion of cell supernatant was removed for future processing and the 

remaining cells were washed with RPMI + 5% FBS and centrifuged.  Cells were resuspended in 

50 µL of 20 µg/mL TruStain fcX and placed on ice for 30 minutes.  Next, 50 µL of antibody 

solution was added, according to manufacturer recommendations, and the solution was kept on 

ice for 1 hour.  Antibody stains included: R-phycoerythrin (PE)/Cy7-conjugated anti-mouse 
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CD3, PE-conjugated anti-mouse CD86, FITC-conjugated anti-mouse CD80, AlexaFluor647-

conjugated anti-mouse CD19, and BV421-conjugated anti-mouse CD11c.  Sample data was 

collected using a BD FACSFusion Cytometer with 30,000 events per sample.  Sample data was 

analyzed using Kaluza and GraphPad Prism. 

2.9. Cytokine Measurement 

 Prior to sample processing for flow cytometry, cell supernatant was removed from the 

samples.  This supernatant was frozen at -80°C until cytokine analysis could be carried out.  The 

secretion of IFN-γ, TNF-α, GM-CSF, IL-2, IL-6, IL-10, IL-12p70, IL-15, IL-17A, and IL-23 was 

detected using a U-Plex kit while following manufacturer instructions (Meso Scale Discovery). 

Statistical Analysis 

 Statistical analysis in all assays was carried out using two-way analysis of variance 

(ANOVA) and Tukey multiple comparisons tests.  Criteria for significance in cytokine analysis 

are as follows: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  For cytometry samples * 

represents significance (p<0.05 or better) from the 4-arm PLP139-151 treatment group with 25 µM 

PLP139-151 rechallenge.  Additionally, for flow cytometry samples # represents significance 

(p<0.05 or better) from the 4-arm PLP139-151 treatment group with no PLP139-151 rechallenge.  All 

statistical analysis was performed using GraphPad Prism. 

3. Results 

3.1. Synthesis and Analytical Characterization of 4-arm PLP139-151 

The 4-arm PLP139-151, with an average of 3.3 PLP139-151 molecules per backbone, was 

synthesized by conjugating multiple modified autoantigen (hpPLP139-151) molecules to 20 kDa 4-

arm PEG-azide. Both qualitative and quantitative analytical techniques were used to characterize 
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4-arm PLP139-151 and its components. Peptide conjugation was determined through gradient RP-

HPLC. Total hpPLP139-151 in solution was determined by taking an aliquot from the reaction 

before NaAsc was added. 

1H/13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectroscopy was used 

to qualitatively confirm the absence of the unique resonance signal for the homopropargyl linker 

on hpPLP139-151 (δ(1H) ≈ 2.6 ppm, δ(13C) ≈ 70 ppm) in the 4-arm PLP139-151 spectrum (Figure 

2C); thus, confirming the final products contained only the conjugated protein. Further, the 

incorporation of both components into the final product can be observed by comparing the 

individual resonances from 20 kDa 4-arm PEG-azide (Figure 2A) and hpPLP139-151 (Figure 2B), 

to the HSQC spectrum of 4-arm PLP139-151. 

3.2. Competitive ELISA Demonstrating PLP139-151 Specificity 

 Serum from EAE mice was pre-incubated with 4-arm PLP139-151, 20 kDa 4-arm PEG-

azide, or free PLP139-151 prior to addition to a PLP139-151-coated ELISA plate.  The result of this 

pre-incubation is the loss of signal due to PLP139-151-specific antibodies binding during pre-

incubation.  As seen in Figure 3, pre-incubation with 4-arm PLP139-151 greatly reduces the signal 

in the competitive ELISA assay compared to pre-incubation with PBS, indicating that PLP139-151-

specific antibody binding sites are occupied following 4-arm PLP139-151 pre-incubation. This 

result indicates that 4-arm PLP139-151 is more effective at occupying the binding sites of PLP139-

151-specific antibodies in EAE serum, compared to equimolar concentrations of free PLP139-151.  

Additionally, pre-incubation with 20 kDa 4-arm PEG-azide reduces ELISA signal, suggesting 

that free azides may introduce some degree of non-specific binding to serum antibodies (Figure 

S1). 

3.3. In Vivo Efficacy of 4-arm PLP139-151 



82 

 

 In vivo screening of 4-arm PLP139-151 in the EAE mouse model was studied through 

subcutaneous injection of treatments in 40 mg/mL mannitol at equimolar PLP139-151 

concentrations of 200 nmol.  Treatments were administered on days 4, 7, and 10 with mice being 

observed for 25 days.  Clinical scores are assigned based on disease severity, with higher scores 

representing more severe symptoms.  Treatment with 4-arm PLP139-151 proved to be most 

effective at eliminating EAE symptoms, as mice treated with 4-arm PLP139-151 displayed no signs 

of paralysis (Figure 4).  This result represents a drastic change from the control treatments which 

both developed symptoms of paralysis.  Furthermore, the mouse weight data (Figure 5) parallels 

the clinical score data, with the 4-arm PLP139-151 treated mice maintaining a healthy and stable 

weight throughout the study.  This contrasts with the control groups, which displayed a rapid loss 

of weight beginning at approximately day 10. 

3.4. Analysis of Key Immune Cell Populations 

 In vitro treatment of EAE splenocytes harvested at peak of disease with 4-arm PLP139-151 

was assessed through flow cytometric analysis of key immune cell populations.  These 

populations include CD11c+ antigen-presenting cells, CD19+ B cells, and CD3+ T-cells.  

Additionally, the expression of two co-stimulatory markers, CD80 and CD86, was analyzed in 

these splenocytes.  Treatment groups included media, 25 µM free PLP139-151, 4-arm PLP139-151, 

and a combination 4-arm PLP139-151 + 25 µM free PLP139-151.  This strategy provides insight into 

the ability of these treatment options to suppress PLP139-151-specific cell expansion in the 

presence of free, cognate antigen.  Additionally, 20 kDa 4-arm PEG-azide and 20 kDa 4-arm 

PEG-azide + 25 µM free PLP139-151 treatments were explored and these data are included in the 

supplement.   
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CD11c+ cells represent the smallest population observed in this study, and with the 

inclusion of 25 µM PLP139-151 rechallenge, the presence of this population was further reduced 

through treatment with 4-arm PLP139-151 (Figure 6).  This reduction in CD11c+ cells was not 

observed in the presence of 20 kDa 4-arm PEG-azide without conjugation of PLP139-151.  T-cell 

populations remained relatively constant across all treatment options except for a small reduction 

in T-cells when treated with 4-arm PLP139-151 alone, compared to media alone (Figure 6).  Two 

populations of CD19+ B cells were observed throughout this study.  The first population, labeled 

CD19+lo represents a lower expression of CD19 on the cell surface (Figure S5). This population 

remained mostly constant across all treatment groups with the exception of a slight increase in 

CD19+lo cells in splenocytes treated with 4-arm PLP139-151 + 25 µM free PLP139-151 (Figure 6).  

Most interestingly, the CD19+hi B cell population appears to be highly responsive to PLP139-151-

rechallenge, as the inclusion of 25 µM free PLP139-151 results in marked expansion of this cell 

population (Figure 6).  Furthermore, treatment with 4-arm PLP139-151 nearly completely 

eliminates CD19+hi B cells from these splenocytes, both in the presence of 25 µM free PLP139-151 

and without rechallenge (Figure 6). 

 Co-stimulatory markers CD80 and CD86 were observed broadly across all splenocytes, 

and treatment with 4-arm PLP139-151 also had striking results on the expression of these co-

stimulatory molecules.  CD80 expression was broadly increased following treatment with 4-arm 

PLP139-151, a result that was maintained both with and without PLP139-151 rechallenge (Figure 7A).  

In contrast, the expression of CD86 was significantly reduced in splenocytes treated with 4-arm 

PLP139-151 (Figure 7B).  The expression of CD86 was upregulated in the presence of 25 µM free 

PLP139-151 in the control treatment groups, but the inclusion of 4-arm PLP139-151 prevented this 

upregulation despite the presence of PLP139-151 rechallenge (Figure 7B). 
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3.5. Cytokine Expression 

 In addition to investigating changes in key immune cell population statistics, the treated 

samples were also tested for differences in cytokine expression.  Cytokines investigated in this 

assay include: IFN-γ, TNF-α, GM-CSF, IL-2, IL-6, IL-10, IL-12p70, IL-15, IL-17A, and IL-23.  

Samples were designed for analysis in triplicate, however, GM-CSF, IL-12p70, IL-15, and IL-23 

each resulted in fewer than 3 samples within detectable range.  Of the remaining cytokines, the 

effects of 4-arm PLP139-151 are clear.  General inflammatory cytokines such as IFN-γ (Figure 8A) 

and TNF-α (Figure 8B) are highly expressed in the presence of 25 µM free PLP139-151 for control 

treatment groups.  Despite this increase due to the presence of free PLP139-151, 4-arm PLP139-151 

treatment prevents the increased secretion of IFN-γ (Figure 8A) and TNF-α (Figure 8B) in the 

presence of PLP139-151 rechallenge.  It should be noted that treatment with 20 kDa 4-arm PEG-

azide in the presence of 25 µM free PLP139-151 significantly increases the secretion of TNF-α, 

possibly due to the presence of free azides (Figure S4B). The anti-inflammatory effects of 4-arm 

PLP139-151 are also observed in expression of IL-2 (Figure 8C), as the cellular response to PLP139-

151 rechallenge is significantly reduced.  IL-17A (Figure 8D) and IL-6 (Figure 8E) expression is 

also increased in the presence of free PLP139-151, but treatment with 4-arm PLP139-151 significantly 

reduces the secretion of both cytokines in response to PLP139-151 rechallenge.  Lastly, expression 

of IL-10 (Figure 8F) appears to remain unchanged in response to the treatment groups explored 

in this study. 

4. Discussion  

 Soluble multivalent antigen displays have the potential to selectively tolerize self-reactive 

B cells at various stages of B cell maturity due to their high affinity interactions with the BCR.11-

12, 15  Of note, early works in the development of multivalent arrays for tolerance induction 
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indicated that low molecular weight antigen arrays were most effective at eliminating circulating 

IgGs.16 In studies reported here, low molecular weight tetravalent antigen arrays were explored.  

To implement this strategy for the treatment of autoimmunity in EAE, we aimed to develop an 

easily characterizable and soluble multivalent antigen array with high functional affinity for 

PLP139-151-specific BCRs.   

As seen in Figure 3, pre-incubation with 4-arm PLP139-151 resulted in the greatest 

reduction of absorbance in the competitive ELISA assay.  In fact, the reduction in absorbance 

associated with 4-arm PLP139-151 when pre-incubated at a 25 µM PLP139-151 basis is significantly 

larger than that of pre-incubation with equimolar concentrations of free PLP139-151.  This result 

suggests that the multivalent nature of 4-arm PLP139-151 is more effective at occupying the 

binding site of PLP139-151-specific antibodies in solution due to higher avidity; a feature likely 

resulting from the molecular design of 4-arm PLP139-151. Notably, the average length of the 5 kDa 

PEG arms in 20 kDa 4-arm PEG-azide is approximately 6 nm.  As such, the greatest distance 

between two PLP139-151 moieties in 4-arm PLP139-151 would be approximately 12 nm, which is 

nearly identical to the average spacing between the two arms of an IgG class antibody.17  

Furthermore, high avidity interactions between antigen and respective BCRs in the absence of 

secondary co-stimulatory signals are often associated with induction of B cell anergy, a state of 

immunological unresponsiveness.18-20  Prior work by the Cambier group demonstrated that B cell 

anergy was only maintained through constant antigen receptor occupancy.19  We hypothesize 

that the molecular design of 4-arm PLP139-151 exploits this B cell pathway in order to induce 

tolerance against autoantigens. 

 Indeed, in vivo treatment of EAE mice through subcutaneous injection of 4-arm PLP139-

151 prevented symptom onset in “at-risk” animals.  As seen in Figure 4, subcutaneous 
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administration of 4-arm PLP139-151 at a 200 nmol PLP139-151 basis was capable of completely 

ameliorating EAE symptoms in mice, with none of the treated mice showing signs of paralysis 

throughout the 25-day study.  This is in contrast to mice treated with mannitol and with free 

PLP139-151, both of which experienced symptoms of paralysis.  Additionally, mice treated with 4-

arm PLP139-151 also maintained a healthy weight throughout the study (Figure 5), further 

supporting the efficacy associated with multivalent display of antigen.  Investigations into the 

phenotypic changes associated with the amelioration of EAE symptoms at peak of disease 

further support the role of B cell interactions in the efficacy of 4-arm PLP139-151 treatment.  Most 

notably, 72-hour in vitro treatment with 4-arm PLP139-151 resulted in nearly complete depletion of 

CD19+hi cells (Figure 6), a B cell population which appears to be highly responsive to treatment 

with 25 µM free PLP139-151.  We postulate that these CD19+hi B cells are associated with EAE 

disease onset due to their rapid expansion when treated with 25 µM free PLP139-151.  This is 

supported by literature indicating overexpression of CD19 in transgenic mice results in a 

breakdown of peripheral tolerance, allowing autoreactive B cells to overcome anergy.21  

Therefore, depletion of CD19+hi B cells is likely a key mechanism by which 4-arm PLP139-151 is 

capable of ameliorating EAE symptoms. 

 In addition to the depletion of seemingly autoreactive B cells, 4-arm PLP139-151 treatment 

also alters the expression of co-stimulatory markers CD80 and CD86.  CD80 expression 

significantly increased following treatment with 4-arm PLP139-151 both with and without the 

addition of 25 µM free PLP139-151 (Figure 7A).  Conversely, the expression of CD86 was 

significantly reduced when treated with 4-arm PLP139-151 + 25 µM free PLP139-151, in comparison 

to 25 µM free PLP139-151 alone (Figure 7B).  In order to interpret these results, it is important to 

first understand the role these co-stimulatory markers play in regard to T-cell activation.  As 



87 

 

demonstrated by Manzotti et al., the functions of these two ligands are distinct and opposing.22  

Manzotti and colleagues found that ligation of cytotoxic T lymphocyte-associated antigen 4 

(CTLA-4) with CD86 was associated with T-cell proliferation, whereas ligation of CTLA-4 with 

CD80 resulted primarily in inhibition of T-cell activation.22  Therefore, treatment with 4-arm 

PLP139-151 results in a shift toward T-cell inhibition, in addition to direct depletion of autoreactive 

B cells. 

 Despite the minor change in CD3+ cell counts associated with 4-arm PLP139-151 treatment 

(Figure 6), downstream T-cell activity appears to be greatly inhibited through multivalent 

antigen treatment.  To assess the effects of 4-arm PLP139-151 treatment on effector T-cells, 

cytokine levels in splenocytes were analyzed following treatment. Generally, only samples 

which included 25 µM free PLP139-151 resulted in significant changes in cytokines (Figure 8).  

EAE splenocytes treated with 25 µM free PLP139-151 alone resulted in increased secretion of 

inflammatory cytokines such as IFN-γ, TNF-α, IL-2, IL-17A, and IL-6.  Interestingly, 

splenocytes treated with 4-arm PLP139-151 + 25 µM free PLP139-151 expressed significantly lower 

levels of each of these inflammatory cytokines despite the inclusion of free, cognate antigen.  

This result suggests that the depletion in CD19+hi B cells as well as the increased expression of 

CD80 may be inhibiting effector T-cell activation.   

5. Conclusions  

 In summary, we have outlined the synthesis and characterization of a low molecular 

weight, soluble tetravalent antigen display system for the induction of antigen-specific tolerance.  

The distinct molecular properties of 4-arm PLP139-151 provide high avidity interactions with 

PLP139-151-specific antibodies, which imparts its therapeutic efficacy in vivo.  In vitro culture of 

4-arm PLP139-151 with EAE mouse splenocytes demonstrates that the therapeutic efficacy 
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observed in vivo is likely the result of depletion of PLP139-151-responsive CD19+hi B cells.  

Furthermore, these effects are maintained in cultures containing equimolar, free PLP139-151, 

indicating that the presence of cognate antigen does not inhibit tolerance induction.  

Additionally, the overall expression of CD80, associated with preferential inhibition of T-cells, is 

increased, while the expression of CD86, associated with T-cell proliferation, is decreased.  This 

indicates a shift toward inhibition of PLP139-151-specific inflammatory responses and reduced 

activation of effector T-cells.  A reduction in numerous inflammatory cytokines in response to 

free PLP139-151 further corroborates this trend.  Future investigations will focus on direct 

observations of interactions between 4-arm PLP139-151 and B cells, as well as demonstrating the 

effects of tolerance induction during relapse in vivo.  
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Figures and Schemes 

 

Figure 1. Schematic of how high avidity interactions between 4-arm PLP139-151 and PLP139-151-specific B 

cell receptors may induce tolerance in autoreactive B cells. 

 

Scheme 1. Reaction scheme for the synthesis of 4-arm PLP139-151. 



90 

 

 

Figure 2. HSQC NMR spectra of 20 kDa 4-arm PEG-azide (A), hpPLP139-151 (B), and 4-arm PLP139-151 

(C). hpPLP139-151 (B) shows a unique resonance from the alkyne peak. 4-arm PLP139-151 (C) does not show 

the resonance from the alkyne peak, indicating that no residual unconjugated PLP139-151 is present in the 

final product. 

 

A B 

C 
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Figure 3. PLP139-151-specific IgG antibody titers in EAE mouse serum detected by ELISA following one-

hour serum incubation with (A) PBS vehicle control (B) Free PLP139-151 and (C) 4-arm PLP139-151. 

 

 

Figure 4. Clinical scores of EAE mice treated in vivo with (A) free PLP139-151 and (B) 4-arm PLP139-151.  

Treatments were administered subcutaneously on days 4, 7, and 10 with 40 mg/mL mannitol as vehicle.  

All doses were based on 200 nmol PLP139-151 basis. N=6 for all groups. Data is presented as mean ± SD. 
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Figure 5. Animal weight data of EAE mice treated in vivo with (A) free PLP139-151 and (B) 4-arm PLP139-

151.  Treatments were administered subcutaneously on days 4, 7, and 10 with 40 mg/mL mannitol as 

vehicle.  All doses were based on 200 nmol PLP139-151 basis.  N=6 for all groups. Data is presented as 

mean ± SD of % change in weight normalized to mouse weight at day 8.  
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Figure 6.  Percent of total singlet splenocytes expressing CD11c, CD3, CD19lo, and CD19hi following in 

vitro incubation for 72 hours with media, 25 µM free PLP139-151, 4-arm PLP139-151, and 4-arm PLP139-151 + 

25 µM free PLP139-151. Data is presented as mean ± SD. N=3, * represents significance from 25 µM free 

PLP139-151.  # represents significance from Media. 
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Figure 7.  Percent of total singlet splenocytes expressing (A) CD80 and (B) CD86 following in vitro 

incubation for 72 hours with (I) media (II) 25 µM free PLP139-151 (III) 4-arm PLP139-151 and (IV) 4-arm 

PLP139-151 + 25 µM free PLP139-151. Data is presented as mean ± SD.  N=3, * represents significance from 

4-arm PLP139-151 + 25 µM free PLP139-151.  # represents significance from 4-arm PLP139-151.  

A B 
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Figure 8. Concentrations of (A) IFN-γ (B) TNF-α (C) IL-2 (D) IL-17A (E) IL-6 and (F) IL-10 
following 72 hr in vitro incubation with (I) media (II) 25 µM free PLP139-151 (III) 4-arm PLP139-151 and 

(IV) 4-arm PLP139-151 + 25 µM free PLP139-151. Data is presented as mean ± SD. N=3, * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001. 

A B 

D C 
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Supplementary Figures 

 

Figure S1. PLP139-151-specific IgG antibody titers in EAE mouse serum detected by ELISA 

following one-hour incubation with (A) PBS (B) Free PLP139-151 (C) 4-arm PLP139-151 and (D) 20 

kDa 4-arm PEG-N3.  
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Figure S2.  Percent of total singlet splenocytes expressing (A) CD11c (B) CD3 (C) CD19lo and 

(D) CD19hi following in vitro incubation for 72 hours with (I) media (II) 25 µM free PLP139-151 

(III) 20 kDa 4-arm PEG-N3 (IV) 20 kDA 4-arm PEG-N3 + 25 µM free PLP139-151 (V) 4-arm PLP139-

151 and (VI) 4-arm PLP139-151 + 25 µM free PLP139-151. Data is presented as mean ± SD. N=3, * 

represents significance from 4-arm PLP139-151 + 25 µM free PLP139-151.  # represents significance 

from 4-arm PLP139-151. 

 

A B 

D C 
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Figure S3.  Percent of total singlet splenocytes expressing (A) CD80 and (B) CD86 following in 

vitro incubation for 72 hours with (I) media (II) 25 µM free PLP139-151 (III) 20 kDa 4-arm PEG-N3 

(IV) 20 kDA 4-arm PEG-N3 + 25 µM free PLP139-151 (V) 4-arm PLP139-151 and (VI) 4-arm PLP139-

151 + 25 µM free PLP139-151. Data is presented as mean ± SD. N=3, * represents significance from 

4-arm PLP139-151 + 25 µM free PLP139-151.  # represents significance from 4-arm PLP139-151. 

 

A B 
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Figure S4. Concentrations of (A) IFN-γ (B) TNF-α (C) IL-2 (D) IL-17A (E) IL-6 and (F) IL-10 

following 72 hr in vitro incubation with (I) media (II) 25 µM free PLP139-151 (III) 20 kDa 4-arm 

PEG-N3 (IV) 20 kDA 4-arm PEG-N3 + 25 µM free PLP139-151 (V) 4-arm PLP139-151 and (VI) 4-arm 

PLP139-151 + 25 µM free PLP139-151.  Data is presented as mean ± SD. N=3, * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001. 
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Figure S5.  Representative flow cytometric analysis of a Media treated sample displaying the 

gating scheme for each fluorescent channel. 
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Chapter 5: Conclusions and Future Directions



105 

 

1. Conclusions 

Modulating the immune system through the use of antigen-specific immunotherapies 

(ASITs) has had a major impact on human health and quality of life.  Vaccines represent the 

greatest breakthrough in our ability to direct human immune responses through administration of 

the antigen of interest alongside an adjuvant.  Additionally, as described in chapter 1, ASIT has 

also proven effective in tolerizing the immune system against antigens of interest, namely in the 

form of hyposensitization therapies.  Nevertheless, adaptation of ASIT strategies for the 

treatment of human autoimmunity has proven unsuccessful thus far, with numerous clinical trials 

of antigen-only therapies failing to demonstrate efficacy.  Despite the limited success of antigen-

only therapies, the promising pre-clinical results of ASIT for autoimmunity drive further 

development of therapies capable of modulating aberrant immune responses through disruption 

of the two-signal model of immune cell activation. 

Dexamethasone, a potent corticosteroid used in the treatment of autoimmune diseases, has 

been shown to potentially induce long-term tolerization against an antigen through the 

development of regulatory T-cells.  In chapter 2, a novel class of immunotherapeutic drugs was 

developed through direct conjugation of dexamethasone to an MS disease causing antigen 

PLP139-151 utilizing click chemistry.  This antigen-drug conjugate (AgDC) completely 

ameliorated clinical symptoms in EAE mice and significantly reduced effector helper T-cell 

responses.  Simple co-administration of these components also displayed some promise in 

alleviating clinical symptoms, however efficacy was reduced in this delivery format.  The 

enhanced specificity of AgDC in delivering potent immunosuppressants to disease-causing 

immune cell populations has the potential to greatly reduce off-target drug effects and enhance 

the safety and tolerability of otherwise globally immunosuppressive treatments.  Due to their 
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efficacy and modular nature, AgDCs represent a promising class of immunotherapeutic drugs for 

the treatment of numerous autoimmune diseases. 

In chapter 3, we explored the role of a major co-inhibitory pathway, programmed cell death 1 

(PD-1), in the EAE model of autoimmunity.  The PD-1 pathway is of great interest due to its role 

in downregulating immune responses, and numerous strategies to antagonize this pathway have 

been explored for applications such as cancer.  Antagonizing the PD-1 pathway in adaptive 

immune responses alongside the antigen of interest, PLP139-151, resulted in severely impaired 

immune cell function rather than enhanced inflammation.  This result indicates that long-term 

disruption of the PD-1 pathway may induce irreversible exhaustion in inflammatory cell 

populations, thereby limiting future immune responses against the antigen of interest. 

Antigen-only immunotherapies represent perhaps the safest means of tolerizing the immune 

system against an antigen, however, such strategies have typically lacked efficacy in human 

clinical trials of autoimmunity.  In chapter 4, we discuss the design of a multivalent display of 

PLP139-151 capable of tolerizing PLP139-151-specific B cells.  This low molecular weight antigen 

display is comprised of a tetravalent PEG backbone with PLP139-151 conjugated to each terminus, 

imparting enhanced avidity for PLP139-151-specific B cells.  4-arm PLP139-151 ameliorated clinical 

EAE symptoms through depletion of PLP-responsive CD19+hi B cells, even in the presence of 

equimolar free PLP139-151.  Expression of the key co-stimulatory markers CD80 and CD86 shifted 

toward a tolerogenic phenotype following treatment with 4-arm PLP139-151, thereby limiting the 

ability of PLP139-151-B cells to act as antigen-presenting cells.  Furthermore, immune tolerizing 

effects were witnessed in downstream effector helper T-cell populations through a significant 

reduction in numerous inflammatory cytokines in the presence of free PLP. 
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2. Future Directions 

This dissertation has outlined multiple approaches for ASIT development in a preclinical 

setting, however there is still more work to be done to understand the underlying mechanisms for 

tolerance induction.  Chapter 2 focused on the molecular design of AgDCs to direct the action of 

an immunosuppressant corticosteroid to offending immune cell populations, but we have yet to 

demonstrate the longevity of the tolerance induced by this novel class of drugs.  Future in vivo 

studies on the efficacy of AgDCs should observe symptom severity over a longer time-frame to 

assess relapses in these mice.  This would indicate if administration of PLP139-151-DEX prior to 

disease onset results in protection from induction of EAE or simply enhanced, long-term 

symptom suppression.  Indeed, the focus of our work with AgDCs thus far has been on 

demonstrating the efficacy associated with this immunomodulatory strategy, however, we have 

only scratched the surface with regards to the underlying immune mechanisms associated with 

this efficacy.  Namely, these works should focus on identifying and observing any changes in 

PLP-specific B cells as well as investigating the development of regulatory T-cells associated 

with DEX treatment.   Probing the cell phenotypic changes responsible for in vivo efficacy may 

also provide insight into the longevity of tolerance induction and may direct the screening of 

other immunosuppressive drug molecules, which may be adapted for use in AgDCs in place of 

dexamethasone. 

The work contained in chapter 3 supports the importance of the PD-1 pathway in 

autoimmune regulation, but there is much more work to be done to understand the role of PD-1.  

We have demonstrated that peptide antagonists of PD-1 are capable of reducing inflammation in 

the presence of cognate antigen, but further demonstration of T-cell exhaustion is required.  

Future studies should focus on observing changes in both cytokines and receptor expression in T-
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cells at various timepoints throughout treatment to characterize the exhausted phenotype and 

assess the durability of this exhaustion. 

The development of a tetravalent antigen display system outlined in chapter 4 demonstrates 

the efficacy of multivalent antigen arrays in inducing tolerance in a specific manner.  The 4-arm 

PLP139-151 has shown great success in eliminating offending B cell populations in EAE, however, 

future work should focus on exploring the potential for bystander suppression following 

treatment.  In our model, disease is induced and treated with the same peptide epitope, PLP139-151, 

but MS in humans is not usually confined to a single responsible epitope.  In MS, epitope 

spreading following destruction of the myelin sheath results in the development of autoreactive 

lymphocytes directed against numerous epitopes.  In order to develop effective immunotherapies 

for MS the immunotherapy must either encompass multiple CNS antigens or induce bystander 

suppression.  Although we have demonstrated the depletion of PLP139-151-reactive B cells and 

suppression of effector helper T-cells, we have yet to investigate the induction of regulatory T-

cells capable of bystander suppression.  Identification of regulatory T-cells induced in vivo 

following 4-arm PLP139-151 treatment would demonstrate the potential for bystander suppression 

and would further support the development of an already very promising class of 

immunomodulator. 

Lastly, the strategies implemented in the development of AgDCs and tetravalent antigen 

displays are not unique to MS.  These immunomodulatory therapies could be applied to a variety 

of autoimmune diseases with known autoantigens, such as T1D and RA, and may show even 

greater success in these indications.  Adaptation of these therapeutic strategies for other 

autoimmune indications would deepen our understanding of immune modulation and tolerance 

induction and may eventually lead to a cure for debilitating autoimmune diseases. 


