
 
 

Analytical characterization and formulation development of a trivalent 
subunit rotavirus vaccine for the developing world 

 

By 

© 2019 
Sanjeev Agarwal 

M.S. Pharmaceutical Chemistry, 2016, The University of Kansas, Lawrence, KS 
B.Pharm. (Honors), 2013, Birla Institute of Technology & Science, Pilani, India 

 

Submitted to the graduate degree program in Pharmaceutical Chemistry and the Graduate 
Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy. 

 

________________________________        

    Chairperson: David B. Volkin, Ph.D      

   

________________________________        

William D. Picking, Ph.D 

 

________________________________        

Teruna J. Siahaan, Ph.D 

 

________________________________        

Thomas J. Tolbert, Ph.D 

 

________________________________  

Prajnaparamita Dhar, Ph.D 

 

Date Defended: June 18, 2019 



ii 
 

 

 

 

 

The Dissertation Committee for Sanjeev Agarwal certifies that this is the approved version of the 
following dissertation: 

 

 

 

Analytical characterization and formulation development of a trivalent 
subunit rotavirus vaccine for the developing world 

 

 

 

 

 

 

      ________________________________ 

 Chairperson: David B. Volkin, Ph.D  

 

 

 

 

       

 

Date Approved: June 18, 2019 



iii 
 

Abstract 

 

Although live attenuated, orally delivered rotavirus (RV) vaccines are available globally 

to provide protection against enteric RV disease, efficacy is substantially lower in low to middle 

income settings leading to interest in the development of alternate RV vaccines. Moreover, the 

high cost and limited supply of current RV vaccines are prohibitive to their successful introduction 

in the developing countries where the need for RV vaccines is most. One promising new RV 

vaccine candidate is a trivalent non-replicating rotavirus vaccine (NRRV), comprised of three 

recombinant fusion proteins (truncated rotavirus VP8 subunit proteins fused to the P2 CD4+ T cell 

epitope from tetanus toxoid).  The three NRRV antigens are referred to as P2-VP8-P[4], P2-VP8-

P[6], and P2-VP8-P[8]. A monovalent P2-VP8-P[8] adsorbed to Alhydrogel adjuvant was found 

to be safe and immunogenic in the early phase clinical trials in infants and toddlers in South Africa. 

Consequently, the trivalent vaccine consisting of all three P2-VP8-P[x] antigens adsorbed to 

Alhydrogel is currently being evaluated in Phase I/II clinical trials in South Africa.  

Successful development and eventual commercialization of this recombinant subunit RV 

vaccine candidate will not only depend on clinical safety and efficacy results, but also the ability 

to produce the NRRV vaccine at low cost and abundant supply for use in the developing world. 

This dissertation work contributes towards developing analytical tools and formulation strategies 

(for both bulk drug substance and adjuvanted final drug product) to support the pharmaceutical 

development of this subunit RV vaccine candidate. A stable formulation should maintain the 

structural integrity, physicochemical stability, and ultimately the safety and efficacy of this vaccine 

throughout its shelf-life. 
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First, a wide variety of analytical techniques were employed to compare the 

physicochemical properties of the three NRRV recombinant fusion proteins. Various 

environmental stresses were used to evaluate antigen stability and elucidate their degradation 

pathways. The P2-VP8-P[4] and P2-VP8-P[6] antigens displayed similar conformational stability 

profiles while P2-VP8-P[8] was more stable. Forced degradation studies with each NRRV antigen 

revealed Met1 was most susceptible to oxidation, the single Cys residue (at position 172 in P[8] 

and 173 in P[4] and P[6]) formed inter-molecular disulfide bonds (P2-VP8-P[6] was most 

susceptible), and Asn7 showed the highest increased levels of deamidation. These results are 

visualized in a structural model of the NRRV antigens. Although the potential impact of 

physicochemical structural alterations on immunogenicity is unknown at this time, the stability-

indicating analytical tools developed and the structural knowledge gained in this work will be 

useful to (1) set critical manufacturing process parameters to ensure consistency, (2) monitor key 

structural attributes during comparability assessments, and (3) develop stable formulations for the 

bulk drug substance and adjuvanted final drug product. 

Second, we focused on the aggregation propensity of the three NRRV antigens and 

developed stable formulations for long-term storage of frozen liquid bulks of each antigen in a 

common formulation buffer. The P2-VP8-P[8] antigen was most susceptible to shaking and freeze-

thaw-induced aggregation. Each NRRV antigen formed aggregates with structurally altered 

protein (with exposed apolar regions and inter-molecular β-sheet) and dimers containing a non-

native disulfide bond. From excipient screening studies with P2-VP8-P[8], sugars/polyols (e.g., 

sucrose, trehalose, mannitol, sorbitol) and various detergents (e.g., Pluronic F-68, polysorbate 20 

and 80, PEG-3350) were identified as stabilizers against aggregation. By combining promising 
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excipients, candidate bulk formulations were optimized to not only minimize agitation-induced 

aggregation, but also particle formation due to freeze-thaw stress. 

Third, we explored the use of an aluminum adjuvant and two preservatives to develop an 

adjuvanted multi-dose formulation with goal to further reduce the NRRV vaccine cost. The 

compatibility and stability of monovalent P2-VP8-P[8] antigen with Alhydrogel, with and without 

the vaccine preservative thimerosal, was examined using a wide variety of physicochemical and 

immunochemical methods. Antigen structural integrity was intact upon Alhydrogel binding as 

measured by ELISA, fluorescence spectroscopy, differential scanning calorimetry (DSC) and 

SDS-PAGE combined with LC-MS peptide mapping. An immediate destabilizing effect of 

thimerosal was observed upon heating by DSC. Over three months of storage, the aluminum 

adsorbed P2-VP8-P[8] antigen was stable at 4°C, while instability was observed at 25°C and 37°C 

which was greatly accelerated by thimerosal addition. Compatibility of aluminum-adsorbed P2-

VP8-P[8] antigen with an alternative preservative (2-phenoxyethanol) was also evaluated and 

similar incompatibility was observed. Due to limited availability of P2-VP8-P[4] and P2-VP8-P[6] 

antigens, key assays from P2-VP8-P[8] studies were performed with these monovalent aluminum-

adsorbed antigens. Varying levels of preservative incompatibility were observed depending on the 

antigen, temperature, and analytical method. In summary, these results demonstrate good overall 

stability of the monovalent aluminum-adsorbed NRRV antigens at 4°C for three months in the 

absence of preservative. However, additional formulation development efforts are required to 

produce a stable multi-dose formulation of the NRRV vaccine. 
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1.0 Motivation and Overview 

Rotavirus (RV) is a major cause of childhood morbidity and mortality by causing a 

diarrheal disease. Prior to the RV vaccine introduction in 2006, it was projected that every child 

will get this infection before reaching 5 years of age. This would have led to 1 in 5 infected children 

needing medical attention, 1 in 65 getting hospitalized, and 1 in 293 dying, around the world 2. 

Fortunately, two RV vaccines were approved in 2006 and this dire scenario was averted and instead 

the number of deaths associated with RV has declined, from 440,000 annually in pre-vaccine era 

to 128,500 in 2016 1. However, one fact that has not changed over the decades is that more than 

80% of these deaths occur in the developing regions of the world. The most disheartening part is 

that the full potential of the currently approved vaccines has not yet been achieved which could 

have averted another 83,200 deaths in the year 2016 1. In spite of WHO recommending the use of 

RV vaccines in the national immunization programs in all parts of the world in 2009, the global 

coverage of RV vaccines was only about 28% by the end of 2017 3. The two major reasons for the 

poor coverage or use of the current vaccines are high cost and inadequate supply in the developing 

countries where the burden of RV disease is highest 4. The focus of this work is to develop 

analytical tools and stable formulations for a recombinant subunit trivalent RV vaccine candidate 

which is currently in clinical trials. The goal is to produce this vaccine at an affordable cost and 

ensure a more sustainable supply to meet the demands of the poor and populous countries. 

The first section of this introduction chapter will describe the basic biology and pathology 

of the RV from a vaccine development perspective. Emphasis will be given on the deficiencies of 

the current RV vaccines and the need for new generation vaccines. The trivalent subunit or non-

replicating rotavirus (NRRV) vaccine candidate, the focus of this work, will be defined and 

discussed. The second section will focus on various types of analytical tools used to characterize 

and test recombinant protein subunit antigens which facilitate their development as well-defined 
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macromolecular vaccines, both physically and chemically. The last section of this introduction 

will discuss the challenges and opportunities involved with the formulation development of 

subunit vaccines for use in developing countries. 

1.1 Rotavirus 

1.1.1 Structure and strain classification 

 RVs are non-enveloped icosahedral viruses belonging to Reoviridae family. Structurally, 

the virus is composed of six viral proteins (VPs) and contains a segmented genome with 11 double 

stranded RNA segments (Figure 1.1). The viral genome is surrounded by the internal layer 

composed of VP1, VP2 and VP3 proteins. VP6 is the major structural protein and constitutes the 

middle layer of the RV. The outer layer/capsid is made of two surface proteins VP4 and VP7. 

Upon infection, six non-structural proteins (NSPs) are produced, NSP1 – NSP6. These structural 

and non-structural proteins serve a variety of roles during viral infection and replication 5. 

Based on the antigenicity of the VP6 protein, RVs are divided into Groups A – H, Group A RVs 

are mostly involved in human infections. Serotype classification is based on the surface proteins; 

VP4 is a protease sensitive protein, called P type, and VP7 is a glycoprotein, called G type. These 

two proteins contain neutralizing epitopes and immune responses against either can provide 

protection 6. Matthijnssens et al. proposed the genotype-based classification system using the 11 

RNA segments that code for the six structural and 6 NSPs. In this classification system, VP7-VP4-

VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 proteins are coded by Gx-P[x]- Ix-Rx-Cx-

Mx-Ax-Nx-Tx-Ex-Hx genes, respectively 7. Wa-like (G1/3/4‐P[8]‐I1‐R1‐C1‐M1‐A1‐N1‐T1‐E1‐

H1) and DS-1-like (G2‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2) are two major genotype 

constellations for human strains 8. 
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1.1.2 Burden and epidemiology 

 In 2016, RV infection was associated with an estimated 258 million diarrheal episodes 

resulting in 18.8 million clinical visits, 1.5 million hospitalizations, and 128,500 deaths around the 

world, among children below 5 years of age 1. Regions with poor sanitation and personal hygiene, 

lack of healthcare infrastructure and safe drinking water are most susceptible to this illness due to 

high rate of transmission (see next section) and fecal-oral route of transmission. As a result, poor 

and developing countries bear the brunt of unhygienic conditions and over 80% of these deaths 

occurred in sub-Saharan Africa and another 13% occurred in South and Southeast Asia 1,9. To date, 

36 G and 51 P genotypes have been recorded around the world 10. Since the RV genome has 

segmented nature there are higher chances of strain reassortment during co-infections. Global 

distribution of RV strains detected in humans from 2007 to 2012 suggest G1P[8] as the most 

prevalent strain, and P[8] is the most common P genotype followed by P[4] (Figure 1.2A). In 

addition, P[6] genotype is of significant relevance in the African and Southeast Asian region with 

approximately 25% and 17% of the strains containing this genotype, respectively (Figure 1.2B, 

1.2C) 11. Hence it is essential to include P[6] genotype in the newer generation vaccines (for the 

developing countries) if homotypic protection is required against P[6] type. 

1.1.3 Transmission and replication 

 RV is mainly transmitted through the fecal-oral route. An infected person sheds about 1010 

viral particles per gram of fecal material. Only 10 particles are needed to infect another person 

which, in addition to its stable nature even under harsh environmental conditions, makes the virus 

highly contagious. Other domestic hygiene conditions such as contaminated drinking water, food, 

hands, or surfaces can also contribute to the viral transmission. Upon infection, the first step is the 

attachment of virus to the enterocytes of villi in the small intestine. This is mediated by the VP8* 
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protein (proteolytic cleavage product of VP4, VP4  VP5* + VP8*) that binds to sialic acid 

receptors or Histo blood group antigens (HBGA). Virus then enters the cell through endocytosis 

(or potentially other unknown mechanisms). Upon entry, outer capsid is removed, and a double 

layer particle is formed in the inclusion bodies called viroplasms and NSP2, NSP5 and NSP6 are 

involved in this step. Then transcription of the genetic material takes place in the viroplasms using 

VP1 (RNA dependent RNA polymerase) and VP3 (a methlytraferase). The newly synthesized 

RNA acts as a template for further replication and translation into structural VPs. Last step is the 

virion assembly using the new VPs and genetic material, and release of the newly produced 

infectious RVs from the cells via lysis. Since VP4 is involved in the first step of cell attachment, 

P genotype plays an important role in epidemiology. Similarly, host genetic differences could also 

play a role since HBGA expression can also affect RV cell attachment 6,8. Some studies have 

shown that RV infection is not just limited to intestines but has some extra-intestinal presence as 

well 12. Both viremia and antigenemia have been recorded in infected children and RV infection 

has been associated with neurological illness, biliary atresia, and diabetes mellitus 6,12. These 

findings require further research to better understand in the future, especially to explore the 

potential protective role of RV vaccines in this regard. 

1.1.4 Symptoms and immunity 

 Upon infection, RV has an incubation period of 2 – 4 days. After this, symptoms include 

fever, vomiting, dry mouth, dizziness, decreased urination, and abdominal pain, followed by 

watery diarrhea for 3 – 8 days. This could result in severe dehydration and acute gastroenteritis 

ultimately leading to death. RV shedding continues for about 1 – 3 weeks in most children 

following a severe RV episode 13. Mechanism of RV immunity is not completely understood but 

both natural infection and vaccines can elicit protection against future infections. With each 
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repeated infection the severity of disease decreases, and a complete protection could be achieved 

after three natural infections. Serum IgA, IgG and neutralizing antibodies along with fecal IgA 

have been detected in infected children but so far there is no satisfactory correlate of protection 

against RV disease. In addition, secretory IgA and IgG could play a protective role since intestinal 

antibodies specific to VP4 and VP7 may be required to prevent viral attachment and entry into the 

cell. Intestinal or mucosal immunity is considered important because small intestines are the local 

site of infection and viral replication causing gastrointestinal illness 13-18. 

1.1.5 Treatment options 

 Oral rehydration solution (ORS) is the recommended treatment option by WHO to regain 

electrolyte balance and hydration. This has been successfully used to treat dehydration in most 

children, and under severe circumstances, intravenous fluids can be used. In addition, zinc 

supplementation, adequate food intake, breastfeeding and probiotics can also help under specific 

circumstances. There is no fully developed antiviral therapy for RV but a few drugs including 

nitazoxanide, racecadotril, smectite and anti-emetics have shown promising results in some studies 

in this regard 6. 

1.1.6 Rotavirus Vaccines 

 As mentioned above, natural RV infection is known to reduce the disease severity with 

every subsequent infection and complete protection can be achieved after three infections 19. 

However, improvements in personal hygiene, domestic sanitation and quality of drinking water 

has not eliminated the risk of infection due to the highly contagious nature of RV. This situation 

has laid the foundational motivation for developing vaccines against this infectious pathogen. 
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1.1.6.1 First generation 

Rotashield was the first RV vaccine approved by the US FDA in 1998 and licensed to 

Wyeth Lederle. It was an orally delivered, live attenuated, 3-dose, quadrivalent human-rhesus 

reassortant vaccine resulting from reassortment of G1, G2 or G4 gene from human RVs with 10 

genes from a naturally attenuated rhesus RV-MMU G3 strain. The vaccine showed an estimated 

efficacy of 85% and 51% in the developed and developing regions, respectively, in the clinical 

trials. However, post-licensure, a vaccine associated adverse event, intussusception, was recorded 

in 1 in 10,000 vaccinated children (an elevated risk of 30-fold compared to the estimated natural 

intussusception occurrence). Consequently, Rotashield was withdrawn from the market within a 

year of its approval 20-22. 

1.1.6.2 Second (Current) generation 

Two orally delivered, live attenuated RV vaccines, RotaTeq (RV5) and Rotarix (RV1), 

were approved in 2006 and 2008, respectively, by the FDA, and since their introduction, RV 

associated mortality rate has significantly reduced worldwide as depicted in Figure 1.3. These 

vaccines were initially approved in developed nations but soon became a global success story. 

There has been a significant reduction in both morbidity and mortality in all the countries using 

these vaccines. In 2009, WHO recommended the addition of these two RV vaccines worldwide in 

the national immunization programs and currently they are available in over 100 countries to 

reduce the burden of RV infection. As noted in Figure 1.3, majority (>93%) of RV related deaths 

in the post-vaccine era occur in the developing regions of Sub-Saharan Africa, and South and 

Southeast Asia. Post-licensure data from 2006 – 2016 from 24 countries have estimated a vaccine 

effectiveness of 84% for RV1 and 90% for RV5 in the countries with low mortality. The vaccine 

effectiveness is, however, only about 57% for RV1 and 45% for RV5 in the countries with high 
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mortality 23. These results highlight that the current RV vaccines have lower efficacy in the poor 

and developing regions of the world where the need for these vaccines is most urgent. Furthermore, 

due to the history of intussusception with Rotashield, RV1 and RV5 underwent large-scale clinical 

trials involving over sixty thousand infants to confirm no significant increase in the risk of 

intussusception. Post-marketing surveillance studies have estimated a risk of 1 to 6 excess cases 

per 100,000 vaccinated children 24. Nonetheless, the clinical and societal benefits of these vaccines 

far outweigh their low risks 25. 

In addition to these two global RV vaccines, there are four indigenously developed RV 

vaccines (Rotavac, Rotasil, Lanzhou Lamb Rotavirus, Rotavin-M1) approved for use in selected 

countries in the developing world. Recently, in 2018, Rotavac and Rotasil received WHO pre-

qualification and will also be more widely available for procurement by UN and GAVI in the 

future. Table 1.1 provides a brief comparison of these six RV vaccines in terms of the 

manufacturer, year of approval, price per vaccination course, virus strains present, formulation 

presentation, vaccine vial monitor, storage requirements, route of administration, number of doses 

and dosing schedule, and licensure and availability status. All the approved RV vaccines are 

administered orally in 2-3 dose schedule and contain live, attenuated viruses. Oral administration 

has several advantages such as induction of both mucosal and systemic immunity, herd immunity 

due to reduced virus shedding and transmission, needle-free delivery (ease of administration), 

reduced medical waste and logistic requirements 26. However, oral vaccines tend to have an 

impaired efficacy in the developing countries as observed with the two global RV vaccines. Similar 

observations have been made with the oral cholera and oral polio vaccines 27. The reasons for 

reduced efficacy of the oral RV vaccines are not well understood but seems to be multi-factorial 

and inter-twined as shown in the schematic in Figure 1.4. A brief summary of how these factors 
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could impair the immune response or reduce the viral titer and the proposed solutions is provided 

in Table 1.2. It is important to note that for the majority of the listed factors, if not all, there are 

some contradicting studies showing lack of correlation with the vaccine efficacy 15,28-35. 

Interestingly, some studies have shown that breastfeeding can provide protection against natural 

infection due to acquired RV specific IgA 32,36. 

1.1.6.3 Third (Future) generation 

Based on the evidence for the lower efficacy of currently RV vaccines in the poor and 

developing countries, where the burden of RV illness is highest, there is an urgent need to develop 

new generation vaccines to minimize the RV associated childhood morbidity and mortality in the 

developing countries. In addition to the enhanced efficacy, the following attributes are desired of 

the future generation RV vaccines in low-resource settings to successfully improve vaccine 

coverage and availability. 

1.1.6.3.1 Recombinant subunit vaccine with parenteral administration 

 Oral administration of the current RV vaccines is linked with their poor efficacy in the 

developing countries (as described above, Table 1.2).  In addition, live, attenuated RV vaccines 

have been associated with the rare adverse event, intussusception. Intussusception is a medical 

condition in which a part of intestine slides into its adjacent part like shutting a telescope. This 

leads to obstruction of bowel movement, intense abdominal pain and reduced blood supply to that 

segment of the intestine. Replication of live viruses in the oral vaccines can trigger intussusception 

and thus there is some low associated risk with the current RV vaccines 6. In addition, there is 

always a risk of attenuated viruses reverting to the virulent form, especially in 

immunocompromised and prematurely born children 37. Also, multiple live virus strains can 

potentially undergo reassortment with wild type strains in a common host and form new virulent 
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strains leading to an antigenic shift 38,39. Thus, based on these limitations of orally delivered, live 

attenuated RV vaccines, a recombinant subunit, parenterally administered RV vaccine would be 

an attractive alternative if it is able to provide comparable efficacy irrespective of the 

socioeconomic background of the child while devoid of any increased risk of intussusception or 

reversion 14,29,40. 

1.1.6.3.2 Affordability and accessibility 

 The price of the two internationally available RV vaccines (oral, live attenuated) is very 

high (approximately 200 USD per course, CDC price list 2019) for resource limited countries to 

introduce them in their national immunization programs. Therefore, without the support from 

international organizations (such as Global Alliance for Vaccines and Immunization, GAVI), it is 

impossible for these countries to afford such expensive vaccines. Also, so far, GAVI support is 

available to low-income countries and not to lower-middle and middle-income countries which 

also face challenges in introducing RV vaccines. GAVI-eligible countries could get the vaccines 

at subsidized co-pay price of 0.40 – 10.5 USD per course 41. This heavily subsidized price reflects 

the true price low-income countries can afford to accept these vaccines. Therefore, the new 

generation RV vaccines need to be produced at low cost so that they are available at affordable 

price to the developing countries which need them the most. 

Rotasiil and Rotavac (recently WHO-prequalified) vaccines (oral, live attenuated) are 

priced at much lower cost (6.0 and 2.5 USD per course, respectively) and thus would be a valuable 

addition to the international market. These vaccines would provide relief to the GAVI-ineligible 

countries and countries about to graduate out of GAVI. In addition to the lower price, sustainable 

global supply of the childhood vaccines is a must to meet the demands of the countries with large 

birth cohorts. Some countries tend to hesitate from introducing new vaccines until supplies are 
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sufficiently abundant or a local manufacturer is available 4. Rotavac is a great example of an 

indigenously developed vaccine supplied at a more affordable cost in India (India is ineligible for 

RV vaccine support from GAVI). Successful introduction of this vaccine in the national 

immunization program of India is estimated to save 34,000 deaths annually and will also lead to 

significant decline in outpatient visits (21%) and hospitalizations (28%) due to RV 42. In addition, 

a thermostable vaccine, such as Rotasiil, can enhance the accessibility to more remote parts of the 

low resource countries since no extensive vaccine cold chain is required for storage and 

distribution. 

1.1.6.3.3 Increased vaccine coverage 

 RV vaccines have been introduced in 91 countries (2017) including 41 countries supported 

by GAVI. Global RV vaccine coverage, however, is only about 28%. Troeger et al. estimated that 

full vaccine coverage could have averted 83,200 deaths due to RV in 2016 1. Apart from reducing 

the cost and maintaining consistent supply, vaccine coverage can be boosted by adding a 

compatible RV antigen to the current childhood combination vaccines. Combination vaccines have 

been in use for ~70 years and provide numerous benefits and value to society and the public 

healthcare system as described in Figure 1.5. Historically, DTaP and DTwcP vaccines have been 

the cornerstone of combination vaccines, and recently a hexavalent vaccine, DTaP5-IPV-Hib-

HepB, was approved in the US 43. A pentavalent DTwcP-Hib-HepB vaccine is available in the 

developing world. In the future, a recombinant protein-based RV vaccine could potentially be 

added with these types of combination vaccines to boost the RV vaccine coverage. Currently, there 

are numerous RV vaccine candidates in different stages of development with alternate routes of 

administration (oral, intramuscular, intradermal) and vaccine type (live attenuated, subunit 
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antigen, VLP) as listed in Table 1.3. Successful incorporation of these candidates in the 

immunization programs of developing countries will depend on the above-mentioned qualities. 

 Among all the promising new RV vaccine candidates in the pipeline, a trivalent subunit 

vaccine based on truncated VP8 proteins of P[4], P[6] and P[8] genotypes is the most advanced 

candidate offering alternate administration route (intramuscular) and vaccine type (non-replicating 

rotavirus vaccine, NRRV). The analytical characterization and formulation development of this 

trivalent non-replicating rotavirus vaccine (NRRV) candidate is the focus of this PhD dissertation 

work. 

1.1.7 Trivalent non-replicating rotavirus (NRRV) vaccine candidate 

 This parenteral trivalent NRRV vaccine candidate was discovered at the NIH and is 

currently being developed by PATH and is being tested in clinical trials. The next few sections 

will describe the composition and nomenclature of the three antigens present in this candidate 

vaccine. Also, the key results from the pre-clinical work at NIH is highlighted along with the 

results from early stage clinical trials conducted by PATH. Finally, a perspective on the need for 

stable formulation development for this candidate vaccine is provided. 

1.1.7.1 Composition and nomenclature 

Each of the three antigens in this candidate vaccine is a fusion protein derived from the 

VP4, outer capsid protein of RV. As described above, viral infectivity is dependent on the cleavage 

of VP4 protein in the intestinal lumen into VP5* and VP8* proteins. VP8* protein is involved in 

the attachment of the virus to host cells and an immune response generating neutralizing antibodies 

against this protein antigen should provide protection. Wen et al. at NIH attempted to 

recombinantly express the individual VP5* and VP8* proteins in E. coli but were unsuccessful 

due to their insoluble nature. A truncated soluble version of VP8* with key epitopes intact was 
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successfully expressed and named as ΔVP8* 44. Further, a CD4+ T cell epitope (P2) from tetanus 

toxoid was fused at the N-terminus of ΔVP8* via a GSGSG linker to create a fusion protein as 

shown in the schematic in Figure 1.6 45. The three recombinant antigens were named as P2-VP8-

P[4], P2-VP8-P[6] and P2-VP8-P[8] where P2 is the carrier protein from tetanus toxoid, VP8 

represents the ΔVP8* segment of the VP8*, and P[4], P[6], P[8] denote the three genotypes from 

RV strains DS-1-like (G2P[4]), 1076-like (G2P[6]), Wa-like (G1P[8]), respectively. 

1.1.7.2 Pre-clinical studies (NIH) 

 In the first study 44, guinea pigs hyperimmunized IM with each monovalent ΔVP8* variant 

(250 µg) elicited high levels of homotypic neutralizing antibodies (NAbs), and heterotypic NAb 

titers varied between the three antigens. ΔVP8-P[8] antigen elicited high levels of NAbs against 

P[4] and low levels against P[6] and P[10] genotypes. ΔVP8-P[4] elicited high levels of NAbs 

against P[8], and moderate to low levels against P[6] and P[10], respectively. ΔVP8-P[6] elicited 

low levels of NAbs against both P[8] and P[10] genotypes. In a dose-escalation (10–40 

µg/injection) study, guinea pigs immunized with ΔVP8-P[8] induced high levels of homotypic 

NAbs after 3 doses (NAbs levels were below detection after 2 doses). Aluminum based adjuvants 

were also tested with the ΔVP8-P[8] and no immunopotentiation effect was observed. ΔVP8-P[4] 

was also administered to mice mimicking the clinically relevant schedule and dose, high titers of 

homotypic IgG and NAbs were developed along with low levels of heterotypic IgG against P[8]. 

 In the second study 45, Wen et al. showed that inclusion of a CD4+ T cell epitope (P2) at 

the N-terminus of the ΔVP8-P[8] and ΔVP8-P[6] antigens enhanced their immunogenicity in 

guinea pigs (IM immunization). Addition of an aluminum-based Adjuphos® (AP) adjuvant 

increased the immunogenicity of the P2-VP8-P[8/6] antigens. Also, in an oral challenge study with 

Wa-like G1P[8] RV strain, guinea pigs immunized with P2-VP8-P[8] vaccine containing AP 
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showed protection by delaying the onset and reducing the duration of diarrhea. Furthermore, P2-

VP8-P[8] vaccine induced high levels of virus NAbs in serum pre and post challenge, and RV 

specific serum IgA post challenge. Increasing trend in P[8] specific IgG titer was also observed 

post vaccination and post challenge. Increased levels of systemic and intestinal RV specific IFN-

γ producing T cells (CD4+ and CD8+) were also observed post challenge. 

1.1.7.3 Clinical studies (PATH) 

 PATH has conducted two clinical studies so far using the monovalent P2-VP8-P[8] antigen 

adsorbed to aluminum hydroxide (Alhydrogel, AH) adjuvant in South Africa. Phase I clinical trial 

(NCT01764256) was conducted in healthy adults and the vaccine was well tolerated with no 

adverse events. Increased (at least 4-fold) P2-VP8 specific IgA and IgG titers were observed in the 

serum. NAb response was found to be genotype specific as strong response was observed against 

P[8] strains compared to moderate and weak responses against P[4] and P[6], respectively. This 

result indicated that a multivalent vaccine containing all three antigens may be needed to provide 

broad serotype coverage. Intestinal mucosal immune response was also evaluated by measuring 

IgA and IgG titers in lymphocyte supernatant and a dose dependent increase in IgA was observed 

46. 

 As the next trial, a Phase I/II descending age, dose-escalation study (NCT02109484) was 

conducted in infants and toddlers using AH bound monovalent P2-VP8-P[8] vaccine. Three dose 

levels of 10, 30 and 60 µg were tested. Overall, the vaccine was well tolerated at all dose levels 

without notable adverse reactions. At each dose level, anti P2-VP8-P[8] IgG titers were high and 

IgA response was also recorded in most infants. Strong NAb response was observed against the 

P[8] type RV strains whereas moderate to no response was observed against P[4] and P[6] types, 

respectively. This is consistent with the findings of the Phase I trial and supports the rational of 
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having all three P type antigens in the subunit NRRV vaccine. Reduced shedding of the Rotarix 

vaccine in feces was also observed which is indicative of some level of mucosal immunity. Based 

on the findings of this study, a Phase I/II descending age, dose-escalation study to test the safety 

and immunogenicity of the trivalent vaccine in adults, toddlers and infants in underway at three 

sites in South Africa 47. 

1.1.7.4 Need for vaccine formulation development 

 Apart from the clinical safety and efficacy of a vaccine candidate, pharmaceutical stability 

is equally important for its successful development and eventual commercialization. The goal of 

this dissertation work is to develop stable formulations for both the bulk drug substance and the 

final drug product of the NRRV vaccine candidate. In this work, drug substance refers to the three 

P2-VP8-P[4/6/8] NRRV proteins which will be stored as frozen monovalent bulk antigens, and 

drug product refers to the monovalent NRRV antigens individually bound to aluminum adjuvant 

(Alhydrogel) and stored as a liquid presentation at 2–8°C. The clinical presentation of the NRRV 

vaccine will be a trivalent, Alhydrogel-adjuvanted formulation containing all three of the P2-VP8-

P[4/6/8] protein antigens in one vial, and this presentation was not evaluated in this work. 

Successful formulation development of a recombinant protein subunit vaccine containing 

adjuvant typically involves the following five steps: (1) development of analytical tools to 

characterize key structural attributes of the antigen, (2) elucidation of the physicochemical 

degradation pathways of the antigen, (3) designing formulation composition to minimize 

degradation of the bulk drug substance during storage, (4) understanding the effect of adjuvant and 

other excipient(s) on the structural integrity and physicochemical stability of the antigen, and (5) 

evaluating the long-term storage stability of the vaccine drug product. The next section of this 
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introductory chapter will discuss various analytical tools to characterize and develop protein-based 

adjuvanted subunit vaccines. 

1.2 Analytical tools to characterize and develop subunit vaccines 

Vaccines are complex biological preparations with multiple components, and in the case 

of recombinant subunit vaccines, includes both antigens and adjuvants. Maintaining vaccine 

stability and quality (drug substance and drug product) during various stages of development (pre-

clinical studies, clinical trials), and post approval (manufacturing and distribution) is challenging 

and requires a robust set of analytical tools to monitor the key structural attributes of a vaccine 48-

50. This analytical toolbox can, in general, be divided into two groups, potency assays to monitor 

antigenicity/immunogenicity and physicochemical assays to monitor structural integrity and 

adjuvant interactions as described in Table 1.4. It is important to appreciate that each subunit 

vaccine drug product (antigen, adjuvant, excipients) is unique and thus the list of analytical tools 

in Table 1.4 is not comprehensive and not all assays are applicable to every subunit vaccine 

candidate. These tools serve a variety of purposes as discussed below to ensure the safety and 

efficacy of a vaccine throughout its product development and post licensure life-cycle. 

1.2.1 Potency assays 

 Potency is defined as “the measure of the biological activity using a suitably quantitative 

biological assay (also called potency assay or bioassay), based on the attribute of the product which 

is linked to the relevant biological properties” 51. Potency assays are product specific release and 

stability tests that are also used to ensure batch to batch consistency in the manufacturing process 

52. However, it is important to point out that potency assay is not a measure of vaccine efficacy in 

humans, and thus potency assay results are not necessarily reflective of the protective mechanism 

of the vaccine. A potency assay can be either in-vitro and/or in-vivo with the following desirable 
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properties (1) can measure biological activity, (2) can provide quantitative comparison with a 

reference standard, (3) can be validated during development i.e. assay is “developable”, and (4) 

can be integrated in the quality control 53,54. Selection of a potency assay depends on the knowledge 

regarding the mechanism of action of the vaccine and how well the assay can be correlated to the 

efficacy while adhering to the principles of the 3R rule to minimize testing in animal models 

(Replace, Reduce, and Refine) 55,56. 

1.2.1.1 In-vivo assays 

Generally, the mechanism(s) of immune protection of a new vaccine candidate is not 

completely understood during early development and in-vivo animal studies are conducted to 

identify the correlate(s) of protection. Historically, these tests have also been used to assess the 

potency of a vaccine during lot release to ensure the consistency in the manufacturing process 57. 

In contrast to biological drugs such as antibodies or enzymes (which bind antigens and catalyze 

chemical reactions, respectively), many vaccine antigens lack an identifiable biological activity 

other than its ability to elicit an immune response, a property historically assessed in animal 

models. Among all the analytical tools available to study and characterize vaccines, in-vivo 

functional and immunogenicity assays are presumably most representative of the observed efficacy 

in humans as depicted in the Figure 1.7 58. 

In-vivo potency assays can themselves be broadly categorized into two general groups, 

immunization-challenge studies and serological analyses. In an immunization-challenge study, the 

animal subjects are first immunized with the vaccine and then challenged with the relevant virulent 

strain of the pathogen. Potency of the vaccine is determined by comparing the relative number of 

immunized and non-immunized animals surviving the challenge 59. Among the currently licensed 

vaccines in the US, lethal immunization-challenge tests are used for potency determination of 
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rabies and anthrax vaccines. There is an ongoing push towards refinement of such tests to include 

other endpoints such as body weight, body temperature and biological marker levels instead of the 

crude endpoint of death to minimize animal pain and distress. To this end, serological analyses 

can serve as excellent alternatives to immunization-challenge tests and help in refinement of the 

use of animals in in-vivo potency assays. These assays measure different aspects of the immune 

response such as specific antibody titers, T cell counts, cytokine levels or other biological markers 

relevant to the potency of the vaccine 57. A variety of high throughput assay formats such as 

ELISA, multiplex assays, and flow cytometry are available to carry out serological analyses, 

however, they do require a detailed understanding of the mechanism of action of the vaccine. 

Several US-licensed vaccines such as inactivated polio, acellular pertussis, diphtheria, and tetanus 

vaccines employ serological analyses as potency assays 55,57,60. 

Although animal studies are most relevant to the mechanism of action of a vaccine, they 

tend to be highly variable, time consuming (1-2 months), expensive, laborious, raise ethical 

questions, and pose risks to laboratory staff working with virulent strains. In-vivo tests were 

heavily used in the past because analytical technologies were not available or fully developed to 

perform a comprehensive characterization of the vaccine itself. Also, vaccines can be more 

complex in terms of their composition and often times protective antigen(s) in the vaccine are not 

well-defined (for example whole cell inactivated pertussis vaccine). With the advent of 

recombinant DNA technology, the recombinant protein vaccines against hepatitis B and human 

papilloma viruses were developed and produced as well-defined protein antigens (virus-like 

particles) with a better understanding of their antigenic composition. Hence many of the critical 

quality attributes (e.g., protective epitopes, structural integrity, size) are known and can be assessed 

by modern in-vitro potency assays and physicochemical analyses 58,60. 
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1.2.1.2 In-vitro assays 

There is always a goal to replace in-vivo potency assays with in-vitro potency assays for 

both currently used vaccines and new vaccine candidates in pipeline due to above mentioned 

reasons. Apart from not requiring the use of animals, in-vitro potency assays tend to be more 

consistent, higher throughput, more cost-effective and more robust. However, they may correlate 

less strongly with the biological activity compared to the in-vivo assays (e.g., ability to generate a 

specific immune response). Also, development of successful in-vitro potency assays requires a 

good understanding of the correlate(s) of protection of a vaccine, for example, in vivo antibody 

response vs. a known neutralizing epitope 56. Commonly used in-vitro potency assays for testing 

of subunit vaccine antigens can be grouped into two general categories: cell-based assays and 

immunochemical binding assays. 

1.2.1.2.1 Cell-based assays 

Cell-based in vitro potency assays are often employed to monitor the ability to generate a 

particular phase of an immune response and a specific biological marker(s). For example, these 

assays can be used to measure the frequency and functions of cellular responses (B cell and/or T 

cell) to a particular stimulus. Enzyme-linked immunospot (ELISpot), T cell proliferation, 

multiplex array techniques, flow cytometry, cytotoxic potential, tetramer staining are examples of 

various cell-based assay formats employed alone or in combination to study the immune response 

to antigens during subunit vaccine development 61-65. In particular, ELISpot assays can be used to 

measure antigen-specific B cells. The vaccine antigen is coated to a plate and B cells are added 

which upon antigen recognition would secrete antibody. The secreted antibody is detected by a 

secondary antibody which upon reaction with a substrate leads to visible precipitation as spots. 

ELISpot can also be used to measure frequency of T cells secreting a particular cytokine upon 
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antigen stimulation. T cell proliferation assay is another example of a cell-based assay which 

measures division of T cells upon activation by an antigen. A fluorescent dye or radioisotope can 

be introduced into the cell and loss in signal can be monitored which is indicative of cell division 

63. Historically, cell-based potency assays have been more difficult to implement in regulatory 

fillings since extensive analytical validation is needed. Successful development of cell-based 

potency assays also requires thorough understanding of the disease pathology and correlate(s) of 

protection. Since such information is not always readily available during the early stages of vaccine 

development, these methods have to date found little application to vaccine quality control and are 

more often used as supportive analytical characterization assays 59. 

1.2.1.2.2 Binding assays (immunochemical assays) 

Enzyme linked immunosorbent assays (ELISA) are a commonly used in-vitro 

immunochemical method to measure either the identity, concentration, potency, antigenicity, or 

conformational integrity of the recombinant protein antigens, depending on the nature of the 

antibody used (e.g., specific vs. non-specific, neutralizing vs. non-neutralizing, linear vs. 

conformational epitopes). Affinity and avidity of the antibody reagent towards the target antigen 

determine the sensitivity and selectivity of the assay. Depending upon the size and nature of the 

antigen and available immunochemical reagents, different formats of this assay are used such as 

sandwich (direct or indirect) and inhibition/competition ELISA 66. An ELISA-based assay is used 

as an in-vitro potency test to quantify protective antigens in the approved subunit vaccines for 

hepatitis B and human papilloma viruses 60. 

Single radial immune diffusion assay is another example of an in-vitro immunochemical 

method used to assess the potency (native antigen content) of influenza vaccines since 1978 67. 

The assay is based on the principle of diffusion of an antigen through antigen-specific antibody 
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present in an agarose gel plate. The size of the ring formed, due to an immunoprecipitation reaction 

when the antibody-antigen complex reaches a critical ratio during the antigen’s migration through 

the gel, is proportional to the amount of antigen in the sample by comparison to standards of known 

antigen concentration. This is a relatively straightforward and user-friendly assay but comes with 

disadvantages of time consuming, low through-put and having a small linear range of quantitation 

68. 

Bio-layer interferometry (BLI) and surface plasmon resonance (SPR) are emerging label-

free techniques which also work on the principle of formation of antibody-antigen complexes by 

binding reactions. In addition to their specificity and sensitivity, a key advantage of these methods 

lie in capturing the real-time binding kinetics of both association and dissociation steps, thus, 

enabling the determination of dissociation rate constant of binding (kd). Lower kd is reflective of 

higher avidity of the antibody and vice versa 69. These methods have short run times and are highly 

automated to provide higher throughput as compared to traditional ELISA assays. Also, the higher 

degree of reproducibility and ease of use make them suitable for in-vitro testing in vaccine research 

and development settings. BLI and SPR techniques have been used in numerous basic research 

studies involving multiple vaccine candidates and will soon likely enter the routine quality control 

laboratories 70,71. 

1.2.2 Physicochemical Assays 

As a complement to potency analysis of vaccines, modern physicochemical assays can 

define key structural attributes and stability parameters which in turn can potentially be linked to 

immune protection in-vivo 72. Also, as part of routine vaccine release/stability QC tests, it is 

desirable to implement in-vitro physicochemical assays, to complement potency assays, due to 

practical advantages such as higher throughput, lower cost, better reproducibility and accuracy 
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(Figure 1.7). Many recombinant subunit protein vaccines are comprised of purified antigens which 

can be better characterized (both physically and chemically) as compared to many of the older 

generation vaccines containing intact viruses (e.g., live attenuated, inactivated). Thus, apart from 

maintaining consistent potency, regulatory expectations are high in terms of batch to batch 

monitoring of identity, purity, structural integrity of subunit vaccines 49. A battery of 

physicochemical assays are often used to define critical quality attributes (CQAs, i.e., key aspects 

of structural integrity, stability, and immunological potency) of a protein-based antigen. The 

analytical testing of CQAs are then performed to ensure product quality and consistency during 

manufacturing. 

During vaccine process and product development, analytical tools are employed to perform 

physicochemical characterization of the vaccine antigen(s) and forced degradation studies are 

conducted to deduce the degradation routes for each antigen. These analytical results are used as 

part of comparability studies that ensure product quality during process changes during 

development. Since only limited material is typically available during early development, it is 

important to identify the right set of analytical tools which are the most informative yet also 

consume minimal material. Further, stability-indicating methods are identified from forced 

degradation studies to perform formulation development for both vaccine bulk drug substance and 

final drug product (described in the next section). A large toolbox of physicochemical methods is 

available to facilitate characterization, pre-formulation evaluation, formulation development, 

comparability assessments and storage stability evaluations of subunit antigens (Table 1.4). The 

utility of these methods is described below in the context of drug substance and drug product 

vaccine development. It is important to note that only a subset of methods in Table 1.4 are 

employed (at each stage or during routine lot release testing) based on the information needed and 
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sensitivity, specificity, precision, transferability, robustness and throughput of the assay. In 

addition, regulatory requirements and cGMP compliance are also taken into consideration 57,73. 

1.2.2.1 Testing of bulk drug substance (DS) 

 For a protein-based subunit vaccine, bulk drug substance refers to the monovalent protein 

antigen(s) formulated in an optimized formulation buffer to ensure stability during long-term 

storage prior to subsequent formulation into a final vaccine drug product. Bulk protein antigens 

are typically stored frozen to minimize physical and/or chemical degradation due to environmental 

and mechanical stresses. Subsequently, the DS is thawed, formulated with excipients and 

adjuvants, diluted to the appropriate dose and then fill-finish is conducted under aseptic conditions 

to produce the final, sterile vaccine drug product in the appropriate container for clinical or 

commercial use. A variety of physicochemical techniques are used to characterize and compare 

the primary and higher-order structures, post-translational modifications, conformational stability 

and aggregation propensity of the antigen as shown in Table 1.4. In addition, forced degradation 

studies are performed to elucidate degradation pathways of chemically labile residues or “weak 

spots” and analytical tools are developed to monitor/quantify degradative changes and degradation 

products. The most informative physicochemical assays are applied to the formulation 

development of DS (and DP, see below) to ensure structural integrity and physicochemical 

stability of the vaccine throughout its manufacturing and during long term storage (shelf life). 

 In terms of the regulatory requirements, physicochemical tools are needed to ensure lot to 

lot consistency in terms of identity, purity, potency and quantity of the DS 51. Peptide mapping 

using mass spectrometry coupled with liquid chromatography (LC-MS) is the method of choice 

for not only identifying the protein antigens, but for monitoring primary structure and post 

translational modifications. Identity tests can be a combination of physicochemical and 
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immunochemical methods and can also be qualitative in nature. In terms of impurities, the nature 

and levels depend on the analytical methods used. Therefore, multiple orthogonal methods are 

used to assess the presence of product related impurities such as charge, mass, size, and other 

variants (Table 1.4). Process-related impurities such as host-cell DNA, host-cell proteins are also 

monitored and quantified using appropriate techniques. Finally, potency testing of the DS may or 

may not be routinely performed (depending if a potency assay is available for DP) and the quantity 

of DS is evaluated using total protein mass assays. In addition to the above attributes, it is also 

expected to demonstrate the overall structural integrity and stability of the bulk drug substance 

protein antigens during storage 51. 

1.2.2.2 Testing of drug product (DP) 

For a subunit vaccine, DP is defined as the pharmaceutical product in the appropriate final 

container which contains DS diluted to the appropriate dose, along with addition of adjuvant(s) 

and a formulation buffer containing suitable excipients (e.g., surfactant, preservatives).  For an 

adjuvanted vaccine DP, it is very important to understand the antigen-adjuvant interactions and 

their effect on the antigen structure and physicochemical stability to ensure optimal vaccine safety 

and efficacy. Aluminum-based salts, for example aluminum oxyhydroxide (Alhydrogel®) and 

aluminum phosphate (AdjuPhos®), are the most commonly used adjuvants in commercially 

available vaccines. A key challenge in the analysis of DP is to develop analytical methods to assess 

the structural integrity and physicochemical stability of the antigen (typically at low protein mass 

levels) bound onto the surface of the aluminum adjuvant. There is a growing need to expand the 

repertoire of assays that can work with the antigen bound to the surface of aluminum since antigen 

desorption process can induce artifacts (see forced-desorbed antigen section below). As shown in 

Table 1.4, a combination of analytical tools is employed to assess some quality attributes of the 
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antigen in the bound state and some attributes are studied after forced desorption of the antigen 

from the aluminum surface. 

1.2.2.2.1 Testing of protein antigen bound to aluminum adjuvant 

Analysis of protein bound to aluminum adjuvant is challenging due to low doses of antigen 

present, the irreversibility of adsorption, and the turbid nature of aluminum adjuvant containing 

formulations 74. The extent of antigen binding and the strength of interaction between antigen and 

aluminum adjuvant are important parameters for storage stability as well as optimum immune 

response. This concept has more recently been shown to be antigen-adjuvant pair specific and thus 

needs to be evaluated during part of early vaccine development 75. Langmuir binding isotherms 

can be used to determine the adsorptive capacity (maximum amount of a protein that can bind as 

a monolayer on the surface of the adjuvant) and adsorptive strength (strength of interaction 

between an antigen and an adjuvant) of the aluminum adjuvant for an antigen in a particular 

formulation. Quantity of antigen (both bound to adjuvant and potentially free in solution) and in 

vitro potency of the formulated vaccine can be demonstrated using immunochemical methods as 

listed in Table 1.4. Structural integrity and conformational stability of the antigen in bound state 

can be determined by selected biophysical tools amenable to turbid samples (e.g., DSC). 

Moreover, characterization of adjuvant itself and its stability is also important in terms of particle 

size, surface charge, morphology and chemical composition. These adjuvant properties are also 

evaluated using the same physicochemical tools as mentioned above as part of the DP studies. 

1.2.2.2.2 Forced-desorption studies to remove antigen from adjuvant 

 Many of the analytical methods used for characterizing protein antigens in solution are 

incompatible with the aluminum adjuvanted subunit vaccines as described above. Therefore, to 

employ such methods, antigen is forced-desorbed from the aluminum adjuvant surface and then 
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assayed. Forced desorption can be achieved by surface charge neutralization of the adjuvant (e.g., 

adding phosphate salts to aluminum oxyhydroxide) or by dissolving aluminum (using α-

hydroxycarboxylic acids such as citric acid, lactic acid, and malic acid) 76,77. However, potential 

problems with forced desorption include, (1) harsh components of the desorption buffer could still 

interfere with the analytical method, (2) desorption process could perturb the antigen structural 

integrity and induce artifacts, and (3) poor recovery after desorption might lead to 

misrepresentation of the analyte species. If successfully desorbed, the antigen can be analyzed 

using LC-MS peptide mapping (similar to DS) to monitor and quantify post translation 

modifications. Further, purity and heterogeneity can be assessed using a combination of 

spectroscopic and electrophoretic methods as listed in Table 1.4. Depending on the success of the 

desorption method, both at time zero and during storage (desorption can become more difficult 

over time due additional interactions between the antigen and adjuvant), a wide variety of 

analytical methods used for physicochemical characterization of proteins should be applicable as 

long as there is no matrix effect from the desorption procedure. 

1.3 Formulation development of subunit vaccine candidates for developing countries 

 Apart from being safe and efficacious, a vaccine should be affordable and readily available 

to achieve success especially in the low-resource settings of developing countries. Development 

and progression of a vaccine from the concept to clinical trials to regulatory approval and large-

scale immunization programs is a complex, long and multi-step process. Formulation is a key step 

in the development process which ensures the potency, structural integrity and stability of the DS 

during manufacturing and storage, and the DP during fill-finish, long term storage, transportation 

and administration 78-83. The focus of this section will be formulation development strategies 

(including bulk antigen and drug product manufacturing) for subunit vaccines with the aim to 
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minimize their cost. Also, the importance of establishing an interface between DS and DP 

formulation development efforts will be highlighted. 

1.3.1 Vaccine bulk antigen (DS) manufacturing 

 Producing bulk drug substance antigen (DS) is the first step of producing a subunit vaccine 

followed by final drug product manufacturing (formulation, fill-finish, packaging), QC release 

testing, and distribution steps 84. Bulk antigen production is often the most complex, time 

consuming and expensive part of the overall vaccine manufacturing process. Depending upon the 

number of antigens present in a vaccine, especially for multi-valent vaccines, multiple bulk 

preparations could be needed to produce each required antigen separately. Historically, the 

process/method, equipment and facility used is antigen-specific and thus needs to be custom built 

in most cases. This leads to the high costs of bulk antigen production and thus overall high cost of 

the vaccine. So, in order to keep the cost of vaccine lower, it is imperative to choose the right 

manufacturing process, equipment and facility for bulk antigen production. 

 The antigen manufacturing process, e.g., the expression system, can have a profound 

impact on the facility and infrastructure requirements, cost of product and the ease of regulatory 

approval 84. The most commonly employed expression hosts for subunit vaccine antigen 

production are bacteria, yeast, insect, or mammalian cell culture-based systems. Each of these 

methods have their advantages and disadvantages in terms of production speed, yield, cost, post-

translational modification ability and ease of regulatory approval as listed in Table 1.4 84. From a 

developing country standpoint, low cost is key while still ensuring quality. The overall cost per 

dose also needs to be evaluated by taking into account the yield, speed, complexity, scalability and 

flexibility of the process used at the required scale 84,85. Complex manufacturing processes for 

multivalent antigens (such as for acellular pertussis, human papilloma virus, meningococcus, 
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pneumococcus) tend to increase the cost and lower the production capabilities of a facility which 

in turn can disrupt the global supply of a vaccine 86. Therefore, the production process needs to be 

simple and robust to consistently produce the bulk antigen(s) at a large scale with acceptable 

quality and affordable cost. 

Due to the high demand for affordable vaccines in the developing countries, setting up 

local manufacturing sites can help to reduce the cost and provide sustainable supply. Local 

manufacturing facilities gain from lower cost associated with real estate, construction, labor, 

maintenance, and transportation 85. This is supported by the fact that majority of low cost vaccines 

acquired and distributed by UNICEF are now manufactured in developing countries 87. However, 

setting up a new facility in low-resource settings is challenging as it requires a large initial 

investment, high cost of operation, need for technology transfer and training from established 

manufacturers, and a considerable lead time before any revenue is generated. In addition, if the 

facility is located in a remote place, it could become difficult to acquire raw materials, secure 

reliable sources of water and electricity, get technical support and/or identify/train skilled workers. 

Furthermore, a single facility cannot produce all vaccines due to differences in fermentation and 

purification methods, formulation requirements, and safety considerations. Thus, multiple 

facilities are needed. Overall, the goal of a vaccine-specific local manufacturing facility is to 

produce optimal number of doses per year to keep the operational costs low and meet the local 

vaccine demand 84. 

1.3.2 Interface between DS and DP formulation development to improve efficiency 

 The DS formulation is ideally rationally designed after a series of studies in the early 

development phase including physicochemical characterization (to identify key structural 

attributes), pre-formulation characterization (forced degradation studies to identify residues and 
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epitopes susceptible to degradation), excipient screening (to identify additives to minimize 

degradation and maintain bulk antigen structural integrity and physicochemical stability), and 

freeze-thaw evaluations (to ensure stability during freeze-thaw) 72,74. The goal of DS formulation 

is to provide optimum stability to the bulk antigens during storage and subsequent fill-finish 

operations. The purified bulk antigen is usually stored as a frozen liquid and this is useful since 

often times bulk manufacturing facilities can only handle one antigen at a time. This provides the 

operational flexibility to produce multiple batches of each antigen when manufacturing multiple 

antigens for multivalent vaccines. 

 The frozen bulk antigens are transported to a separate fill-finish facility where they are 

thawed, diluted to the appropriate dose while formulated with adjuvant and other excipients (e.g., 

preservative if making a multi-dose presentation). For subunit vaccines, aluminum-based salts are 

the most commonly used adjuvant (as described in the next section) 75. It is important to 

characterize the physicochemical stability of the antigen in the presence of adjuvant as well as 

antigen-adjuvant interactions for optimal vaccine performance 74,75. Thus, the formulation 

parameters (such as buffer type, salt, pH, ionic strength) often require some re-optimization when 

the adjuvant is introduced into the DP. This may lead to another buffer exchange step for the DS 

(after thawing) into a formulation buffer which is compatible with the adjuvant. This additional 

step can cause timeline delays, extra expenses, and compromise the integrity or stability of the 

bulk antigen. To avoid such a scenario and make more efficient utilization of time and resources, 

it is imperative that there is good communication between the DS and DP formulation teams. 

Therefore, the DS formulation should be designed keeping in mind the compatibility of the antigen 

with the additional components which will be introduced during DP formulation (e.g., adjuvants 

and preservatives). 
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1.3.3 Vaccine drug product (DP) formulation 

 A subunit vaccine DP formulation contains antigen(s) and adjuvant(s) at the appropriate 

dose levels, a preservative (if making multi-dose presentation), as well as the DS formulation 

components. Since cost is a major hurdle while introducing new vaccines in the developing 

countries, the next few sections will briefly describe three formulation strategies to either reduce 

the cost of a subunit vaccine (and/or increase the vaccine coverage), and the associated formulation 

development challenges with each strategy. 

1.3.3.1 Low-cost aluminum adjuvants 

 Adjuvants are often added to subunit vaccines to enhance their immunogenicity (cellular 

and/or humoral) and provide a more robust protection. There are a variety of adjuvants available 

to use such as aluminum-based (e.g., Alhydrogel, AdjuPhos, AS04), emulsions (e.g., MF59, AS03, 

AF03), liposomes (e.g., ISCOMS, CAF01, AS01E, AS01B, AS15), polymeric particles (PLG 

microparticles), and immunostimulatory compounds (MPL, QS-2, CpG) as well as combinations 

of these adjuvants. Apart from immunopotentiation effect, adjuvants can lead to dose sparing, 

reduction in the number of booster shots, enhancement of immunogenicity in 

immunocompromised populations, improvement in antigen stability and delivery 88. These 

adjuvant systems differ in terms of their effect on antigen stability and location of antigen w.r.t. 

the adjuvant, and poses a variety of advantages and challenges 80.  

Aluminum adjuvants have been used in human vaccines for over nine decades and have a 

long record of safety and immunopotentiation. The adjuvant property of aluminum containing 

compound was first realized in 1926 when diphtheria and tetanus toxoids were precipitated in the 

presence of alum (aluminum potassium sulfate) and improved immunogenicity was recorded 

compared to soluble toxoids 89. Antigen co-precipitation with alum salts has been replaced with 
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antigen adsorption to physically and chemically well-defined, preformed aluminum based 

adjuvants (Alhydrogel®, aluminum oxyhydroxide and Adju-Phos®, aluminum phosphate) 75. The 

scientific community has recently gained a better understanding of these adjuvants in terms of their 

mechanism of action, physicochemical properties, storage requirements, stability challenges and 

interaction with antigens 75. Most importantly, these adjuvants are readily available worldwide and 

are inexpensive compared to other adjuvant types, and therefore, make a suitable candidate for 

incorporation into subunit vaccines for developing countries 80. 

From a vaccine stability and efficacy perspective, it is very important to optimize the 

aluminum adjuvant containing DP formulation to obtain optimal results. This includes 

optimization of antigen-adjuvant interactions (extent and strength of adsorption), characterization 

of the physicochemical integrity and stability of the antigen on the surface of aluminum and 

correlation of these factors to the potency of the vaccine 74,75. One major stability challenge with 

the use of aluminum adjuvants is their sensitivity to freeze-thaw which causes agglomeration of 

the aluminum particles leading to the loss of vaccine potency and potential safety risks 90,91. 

Consequently, commercially available aluminum adjuvanted vaccines are stored at 2-8°C and 

accidental exposure to subzero temperatures can be identified by using temperature sensitive 

vaccine vial monitors and/or by conducting a ‘shake test’ in the field 78,92. Also, some studies have 

demonstrated the use of various excipients (such as freezing point depressants, carbohydrates, etc.) 

can help to prevent aluminum adjuvant agglomeration upon freezing 92. 

1.3.3.2 Multi-dose presentation 

 Using multi-dose presentation is an effective strategy to reduce the cost of vaccine per 

dose. Multi-dose vials offer numerous economic advantages over single dose formats; (1) lower 

overall vaccine cost which comprises of production, packaging and overfill adjustment, (2) lesser 
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cold-chain volume requirement in terms of storage and transport, and (3) the medical waste volume 

generated is lower 93,94. However, this strategy is not suited for all vaccination campaigns and 

economic benefits depend on the intrinsic cost of the vaccine, frequency of patients arriving for 

vaccination (i.e., vaccine demand) and vaccine wastage. Therefore, the number of doses that go 

into an individual vial needs to be carefully assessed to minimize the overall cost of the 

immunization program and could vary from one vaccine to another 95. In general, multi-dose 

formats would be cost-effective for mass vaccination campaigns which are popular in the 

developing countries. Since there is a risk of microbial contamination during withdrawal of 

multiple doses from the same vial, multi-dose drug product requires the addition of a preservative 

or an anti-microbial agent to prevent contamination 96. 

Addition of a preservative to a subunit vaccine, however, is challenging as it can affect the 

physicochemical stability and/or potency of the vaccine. Addition of thimerosal, a commonly used 

preservative in vaccines in developing countries, is known to reduce the potency of HPV and IPV 

vaccines over time as measured by in vitro binding assays and in vivo immunogenicity studies 97,98. 

Furthermore, deleterious effects of thimerosal have been recorded with foot-and-mouth disease 

virus-like particles (dissociation of VLP) and hepatitis B vaccine (reduced immunogenicity) 99,100. 

Therefore, it is very important to assess the compatibility and stability of the vaccine antigens with 

various preservatives. 

1.3.3.3 Combination vaccines 

 Another strategy to reduce the overall cost of immunization programs is to combine 

multiple vaccines into a single dose. Impact of combination vaccines can be divided into three 

groups, (1) societal and public health value, (2) economic value, and (3) value of innovation. 

Societal value includes benefits for children, parents, and healthcare providers. Increased 
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compliance and timeliness of vaccination provide better protection to children, and reduced 

number of shots cause less pain and discomfort. Fewer number of vaccination visits lead to better 

acceptance among parents and health care providers benefit from lower risk of needle stick 

injuries. Public health is improved with combination vaccines due to increased vaccine coverage, 

reduced risk of missed or delayed vaccination, and better opportunity for introduction of new 

vaccines in the childhood immunization schedules. Economic benefits of the combination vaccines 

include reduced cost of vaccine packaging, storage, handling and transportation 101-103. However, 

formulating multiple vaccine antigens together in a single dose can be an immensely challenging 

task. 

 It is required in a combination vaccine that there are no deleterious physical/chemical 

interactions between the different antigens (or between any two formulation components) which 

reduce the safety or immunogenicity of any individual antigen/vaccine. More extensive laboratory 

testing and clinical trials are needed to ensure the safety and efficacy of the combination vaccines. 

Therefore, it takes a very long time before combination vaccines are developed, evaluated and 

approved by the national and international regulatory authorities 102. Nonetheless, due to their 

enormous societal and cost benefits, combination vaccines have evolved from initial trivalent 

DTwcP (whole cell inactivated pertussis) vaccine to recently approved hexavalent acellular 

pertussis containing vaccine DTaP-IPV-Hib-HepB 43. The long-term goal of NRRV vaccine 

development is to introduce the NRRV vaccine antigens into the current childhood combination 

vaccines to enhance patient compliance, lower the immunization costs, and increase the RV 

vaccine coverage. 
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1.4 Tables 

Table 1.1. Comparison of currently available RV vaccines. (Adapted and modified with permission 
from Ref. 4 4) 

 

 

 

 

 

 

 

 

 

 

 WHO Prequalified  
Licensed for national markets 

Name Rotarix RotaTeq Rotavac Rotasiil  LLR Rotavin-M1 

Manufacturer, 
country 

GlaxoSmithKline 
Biologicals, Belgium Merck, USA 

Bharat Biotech 
International 
Limited, India 

Serum Institute of 
India Limited, India 

 Lanzhou Institute 
of Biological 
Products, China 

Center for Research and 
Production of Vaccines, 
Vietnam 

Year of Approval 2006 2006 2014 2017  2000 2007 

Price per 
vaccination course 

From approximately US$0.50 in GAVI-eligible 
countries up to US$185–$226 in the USA1 US$ 2.50 US$ 6.00 

maximum  US$ 72.00 US$ 17.60 

Strain(s) present in 
vaccine 

Attenuated human 
G1P[8] strain 

Human-bovine 
reassortant strain 
with G1, G2, G3, 
G4, and P[8] 
proteins 

Human G9, P[11] 
strain 

Human-bovine 
reassortant 
pentavalent (G1-
G4, G9) strain 

 

Lamb G10P[12] 
strain Human G1P[8] strain 

Formulation 
Presentation 

1. Liquid vaccine in 
single-dose applicator 
or squeezable, 
polyethylene tube 
2. Lyophilized vaccine, 
reconstituted with 
calcium carbonate 
buffer 

Liquid vaccine in 
squeezable tube 

Liquid vaccine in 
single- and multi-
dose vial. Liquid 
antacid buffer 
given before the 
vaccine 

Lyophilized 
vaccine, 
reconstituted with 
calcium carbonate 
buffer 

 

Liquid vaccine 
with buffer 

Liquid vaccine in single-
dose vial 

Vaccine vial monitor 
(VVM) on label Yes, VVM 14 None Yes, VVM 2 Yes, VVM 30  None None 

Storage 
requirements 

2 to 8º C, not frozen 
and protected from 
light 

2 to 8º C, not 
frozen and 
protected from 
light 

Frozen at −20ºC 
± 5ºC 

Stable at 37°C for 
two years and 
40°C for six 
months 

 

2 to 8°C Frozen at −20ºC ± 5ºC 

Route of 
administration Oral Oral Oral Oral  Oral Oral 

Number of doses 
and dosing schedule 

Two doses, given on 
same schedule as DPT 
vaccine 

Three doses, given 
on same schedule 
as DPT vaccine 

Three doses, four 
weeks apart, 
beginning at 
6 weeks of age 

Three doses, four 
weeks apart, 
beginning at 6–
8 weeks of age 

 One dose every 
year for three 
years between 2 
and 35 months of 
age 

The first dose from 6 weeks 
of age. The second dose 
after 1–2 months. Should 
be given before 6 months 
of age. 

Licensure and 
Availability 

Internationally licensed, available in > 100 
countries 

Licensed in India, will soon be available 
for procurement by UN and GAVI  

 
Licensed in China Licensed in Vietnam 

1Price varies depending on the country 
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Table 1.2. Potential factors for the reduced efficacy of orally administered, live attenuated viral 
RV vaccines in developing countries. 

Factor Interference Proposed solution 

Breast milk 
composition and 
feeding 15,28-30 

RV specific IgA can reduce vaccine viral titer 
and glucoconjugates in milk can mimic the 
RV receptor in small intestines 

1. Higher vaccine dose 

2. Withholding breastfeeding 
for some time before and after 
vaccine administration 

Maternal 
immunity 29,31,32,104 

Transplacental acquired RV specific IgG can 
lower seroconversion 

1. Delay immunization till 
antibodies wane off 

2. Add another booster shot 

3. Increase vaccine dose 

Co-vaccination 

29,105 
Oral polio vaccine can reduce RV vaccine 
effectiveness 

1. Different immunization 
schedule 

Co-infections 

15,29,32,106 

High pathogen or co-infections (HIV, 
tuberculosis, malaria) burden can lead to 
diminished induction of mucosal immunity 

1. Maintaining community 
hygiene and environmental 
sanitation 

Malnutrition 15,107-

109 

Certain micronutrients have been found to 
be key regulators in gut immunity essential 
for both innate and adaptive responses 

1. Zinc supplementation 

2. Vitamin A and D 
supplementation 

Gut microbiota 

31,106,109,110 

May directly or indirectly affect vaccine 
efficacy and the development of effective 
and durable mucosal immune responses  

1. Probiotic supplementation 
with individual and 
combinations of species, to 
alter the composition of gut 
microbiota 

Environmental 
enteropathy 30 

Functional and anatomical alterations of the 
small intestines of the children living in poor 
settings with lack of hygiene and basic 
sanitary facilities 

1. Domestic sanitation 

2. Personal hygiene 

Others (Host 
genetic make-up, 
RV strains) 32 

1. Expression levels of RV receptors 
(HBGAs) depend on genetic make-up  

2. Prevalent RV strains could differ from 
ones present in the vaccines 

1. Personalized vaccine 
approach similar to Hep B 
vaccine for people of specific 
HLA haplotypes 

2. New generation vaccines 
with broader/relevant serotype 
coverage 

HBGAs – Histo blood group antigens 
HLA - Human leukocyte antigen 
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Table 1.3. RV vaccines currently in development with alternate routes of administration and 
vaccine types. (Reproduced with permission, from Ref. 29 29) 
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Table 1.4. Summary of analytical tools available to characterize recombinant protein subunit 
vaccines and to apply to their formulation development. 
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Table 1.5. Comparison of expression systems used for production of vaccine bulk antigens. 
(Reproduced from Ref. 84 84) 
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1.5 Figures 

 

 

Figure 1.1. Schematic representation of a rotavirus virion highlighting the structural proteins. (Adapted with 
permission from Ref. 5 5) 
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Figure 1.2. Distribution of medically important RV strains from 2007 - 2012. (A) Global distribution, and 
distribution in (B) African, and (C) Southeast Asia region. (Ref. 11 11) 
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Figure 1.3. Change in RV associated mortality rate from 1990 to 2016. (Reproduced with permission from 
Ref. 1 1) 



42 
 

 

 

 

Figure 1.4. Potential factors for reduced efficacy of commercially available, orally delivered, live 
attenuated viral RV vaccines in developing countries. (Adapted with permission from Ref. 107 107) 
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Figure 1.5. Societal and public health benefits of combination vaccines. (Reproduced with permission from 
Ref. 101 101) 
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Figure 1.6. Composition and nomenclature of the three recombinant fusion protein antigens that comprise 
the NRRV candidate vaccine. 
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Figure 1.7. Analytical tools and their strengths vs. weaknesses in terms of assay properties vs. 
relevance to vaccine clinical performance. (Reproduced with permission from Ref. 60 60) 
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Chapter 2 

 

Recombinant subunit rotavirus trivalent vaccine candidate: physicochemical 
comparisons and stability evaluations of three protein antigens 
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2.0 Introduction 

Rotavirus (RV) is a leading cause of acute diarrhea and gastroenteritis among infants and 

young children across the world and approximately 128,500 children under five years of age died 

from RV infection in the year 2016 1. The majority of deaths occur in developing countries. 

Furthermore, millions of children worldwide require home care, ER visits, and hospitalization, 

which contribute significantly to the disease burden 2. Improvements in sanitation, personal 

hygiene or food quality reduce but do not eliminate the risk of this infection 111,112. Therefore, 

vaccination is the most cost-effective strategy to control the burden of RV-related illness. 

Currently, four WHO pre-qualified, live attenuated oral RV vaccines (RotaTeq®, 

Rotarix®, Rotavac®, Rotasil®) are commercially available and combined cover more than 100 

countries. In general, widely used RV vaccines (RotaTeq® and Rotarix®) show good efficacy 

(>85%) in developed countries, however, efficacy is reduced (40-60%) in the low-income 

countries where the need is most 13,23,29,30 109,113. While the causes for their reduced efficacy are 

unknown, and are an active area of investigation, contributing factors possibly include lower viral 

titer (transplacentally acquired RV antibodies, components of breast milk and stomach acid) and/or 

impaired immune response (malnutrition, interfering microbes and other co-infections) 20,35,106. 

From limited available data, lower efficacy in certain sub-populations of the developing world of 

other live, attenuated oral vaccines has also been observed against enteric pathogens such as 

Poliovirus and Vibrio cholerae 114. Thus, there is interest in developing recombinant subunit 

protein, injectable RV vaccine candidates to address some of the current deficiencies of live 

attenuated oral vaccination 115. 

To this end, a candidate recombinant protein-based, parenterally administered rotavirus 

vaccine is under development (non-replicating rotavirus vaccine, NRRV). In a Phase 1 clinical 

trial conducted in infants and toddlers in South Africa, a monovalent NRRV vaccine was shown 
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to be well-tolerated and immunogenic, thus demonstrating a promising new approach to develop 

vaccine against RV 46,47. Moreover, a trivalent version of the NRRV vaccine has also been shown 

to be well-tolerated and immunogenic in infants and toddlers in early stage clinical trials in South 

Africa 46,47. The NRRV vaccine is composed of three recombinant protein antigens designed to 

protect against the most prevalent rotavirus strains in the developing world (P[4], P[6], and P[8]). 

Each of these three antigens is a recombinant fusion protein based on the RV surface 

protein VP4. Upon host infection, VP4 is cleaved by proteases in the intestinal lumen into VP5* 

and VP8* leading to production of neutralizing antibodies 116. Wen et al. at the NIH successfully 

expressed ΔVP8*, a truncated, soluble version of the VP8* protein, in E. coli while preserving its 

key epitopes. The tetanus toxoid CD4+ T cell epitope (P2) was added on the N-terminus via a 

GSGSG linker to create a fusion protein which enhanced the immunogenicity of ΔVP8* as 

demonstrated in guinea pigs 45. In terms of nomenclature, the three recombinant protein antigens 

are P2-VP8-P[4], P2-VP8-P[6], and P2-VP8-P[8] where P2 stands for the carrier protein, VP8 

refers to the ΔVP8* part of VP8* protein, and P[4], P[6], P[8] represent the RV strain DS-1 

(G2P[4]), 1076 (G2P[6]), Wa (G1P[8]), respectively 44. For simplicity, the protein antigens are 

referred to as P[4], P[6], or P[8], respectively, in this chapter. 

Successful development and eventual commercialization of this recombinant subunit RV 

vaccine candidate will not only depend on clinical safety and efficacy results, but also the ability 

to produce the vaccine at low cost for use in the developing world. To this end, demonstrating a 

product candidate retains its critical quality attributes (CQAs, i.e., key aspects of structural 

integrity, stability, and immunological potency) as the manufacturing process is changed and 

scaled-up to ensure low cost production is a key aspect to its development. To ensure CQAs are 

retained pre- versus post- process change, it is important to develop analytical assays that are robust 
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and sensitive to detect changes in the physicochemical and immunological properties of the protein 

antigen. Thus, it is essential to develop a battery of analytical assays capable of monitoring 

structural and functional equivalence during comparability assessments 117-119. In addition, these 

analytical characterization methods can be applied to the formulation development to ensure 

vaccine potency (and physicochemical stability) of the three NRRV antigens across the vaccine’s 

shelf life 50,72,78. 

In this work, a wide variety of physicochemical characterization techniques were employed 

to characterize and compare the primary and higher-order structures, post-translational 

modifications, conformational stability and aggregation propensity of each of the three NRRV 

antigens. In addition, forced degradation studies were performed to elucidate degradation 

pathways of chemically labile residues or “weak spots” and analytical tools were developed to 

monitor/quantify degradative changes. The most informative assays for each structural attribute 

were then applied to the development of candidate formulations to minimize protein aggregation 

during frozen storage of these NRRV antigens as a bulk drug substance (see chapter 3). 

 

2.1 Materials and Methods 

The P[4] and P[6] antigens were produced and purified from E. coli at Walter Reed Army 

Institute of Research, MD and provided in 0.5 mM sodium phosphate, 150 mM NaCl, pH 7.2. The 

P[8] antigen was produced and purified from E. coli by Blue Sky BioServices, MA and provided 

in 600 mM ammonium sulfate, 50 mM Tris, pH 7.5 buffer. Unless otherwise noted, each of the 

antigens was dialyzed overnight at 4ºC in 10 mM sodium phosphate, 150 mM NaCl, pH 7.2 buffer 

which is referred as formulation buffer in the text hereafter. Sodium phosphate dibasic 

heptahydrate, and sodium chloride were purchased from Thermo Fisher Scientific (Waltham, 
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MA). All other buffer reagents and chemicals including sodium phosphate monobasic 

monohydrate, citric acid, and ammonium bicarbonate were purchased from Sigma-Aldrich (St. 

Louis, MO) and were of analytical grade or higher unless noted otherwise. The extinction 

coefficient of each NRRV antigen was calculated from the primary sequence using online ExPASy 

tool (Swiss Institute of Bioinformatics), resulting in values of 1.653 mg/ml-1 cm-1, 1.708 mg/ml-1 

cm-1, and 1.733 mg/ml-1 cm-1 for P[4], P[6], and P[8] antigen, respectively, to determine protein 

concentration. It should be pointed out that the protein samples used in this study are bulk and by 

inference do not represent the aluminum adjuvanted drug product vaccine. 

2.1.1 Intact Protein Mass Spectroscopy 

Prior to intact mass analysis in formulation buffer, the NRRV samples were treated with 

either water or 100 mM dithiothreitol (DTT) and incubated for 60 min at 37ºC. The intact masses 

of each sample (in duplicate) were measured using a Synapt G2 mass spectrometer (Waters, 

Milford, MA) and with the assistance of the Mass Spectrometry and Analytical Proteomics 

Laboratory at the University of Kansas. 

For the high pH and temperature stress studies, the NRRV samples were treated with either 

100 mM DTT or water. The samples with DTT were heated for 30 min at 37°C. All samples were 

then diluted 1/100 with water + 0.1% formic acid. Twenty pmol of each NRRV sample were 

subjected to intact mass analysis using a 1220 LC system (Agilent Technologies) connected in-

line to a G6230B time-of-flight mass spectrometer (Agilent Technologies). The sample was 

desalted using a ZORBAX 300SB C3 column (Agilent Technologies, 820950-924). The LC 

gradient consisted of 20-70% B (A: water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid) 

over 1 min at a flow rate of 1.5 ml/min. The electrospray ionization parameters consisted of: 290C 

gas temperature, 4000V Vcap, and 275V fragmentor. Mass spectra were collected from 700-2800 
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m/z at 1 spectra/sec. Mass spectra were processed using MassHunter (Agilent Technologies) and 

the deconvolution range consisted of 5-50 kDa, with 1 Da mass steps. 

2.1.2 LC-MS Peptide Mapping 

 For proteolysis under reducing conditions, the NRRV samples were incubated with 15 mM 

DTT for 30 min at 80ºC, and then alkylated with 30 mM Iodoacetamide for 30 min at room 

temperature. Alkylation was quenched by 15 mM DTT. The samples were incubated for 2 hr at 

37ºC with 2.5 μg of chymotrypsin. Trifluoroacetic acid (0.05%) was added to quench the 

proteolysis and 15 µg of digested protein was subjected to LC-MS.  

The peptides from the digested protein solution were separated by a liquid chromatography 

system (Thermo Scientific, Waltham, MA) prior to analysis. Peptides were injected onto a C18 

column (1.7µm, 2.1 x 150 mm, Waters) and a 60 min 0-30% B gradient (A: H2O and 0.05% 

trifluoroacetic acid; B: acetonitrile and 0.05% trifluoroacetic acid; 200 μl/min flow rate) for 

separation. MS was performed using a LTQ-XL ion trap (Thermo Scientific) and the Xcalibur 2.0 

software (Thermo Scientific). The instrument was also tuned using a standard calibration peptide 

(Angiotensin II, Sigma) for maximal sensitivity before running any experiments. The mass spectra 

were acquired in the LTQ over a mass range of m/z 300-1900. The ion selection threshold was 

12,000 counts and the dynamic exclusion duration was 5 sec. The raw data files were processed 

using PepFinder 2.0 software (Thermo Scientific). Potential Cys carbamidomethylation, Asn 

deamidation, and Met oxidation were included during the analysis.  

2.1.3 Fourier-Transform Infrared (FTIR) Spectroscopy 

FTIR spectroscopy were performed (in triplicate) of the filtered protein samples at their 

stock concentrations (1.29 mg/mL for P[4], 0.82 mg/mL for P[6], and 1.5 mg/mL for P[8]) using 

a Bruker Tensor-27 FTIR spectrometer (Bruker Optics, Billerica, MA) equipped with a KBr beam 
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splitter. The MCT detector was cooled with liquid N2 for at least 30 min prior to use and the 

interferometer was constantly purged with N2 gas. Two hundred fifty-six scans were recorded from 

4000 to 600 cm-1 with a 4 cm-1 resolution using a Bio-ATR cell. Sample spectra were corrected 

for the background signal, followed by atmospheric and baseline corrections using OPUS V6.5 

(Bruker Optics, Billerica, MA) software. Fourier self-deconvolution was initiated using a 50% 

Lorentzian and 50% Gaussian function, with a deconvolution factor of 2 and the noise reduction 

filter was set to 0.5. Following the deconvolution, five peaks were fitted to the absorbance 

spectrum in the Amide I region (1700-1600 cm-1) for P[4], similarly, six peaks were fitted each 

for P[6] and P[8] antigens. The areas of the peaks were used to calculate the relative percentage of 

secondary structure components in each protein sample. 

2.1.4 Far-UV Circular Dichroism (CD) Spectroscopy 

Far-UV CD spectra of the NRRV antigens were recorded at 0.2 mg/mL in quartz cuvettes 

(0.1 cm path length) sealed with a Teflon stopper (Starna Cells Inc., Atascadero, CA) using a 

Chirascan-plus CD spectrometer (Applied Photophysics Ltd, Leatherhead, UK) equipped with a 

6-cuvette sample holder and a Peltier temperature controller (Quantum Northwest, Liberty Lake, 

WA) and a high performance solid-state detector.  The lamp (150 W air-cooled Xe arc) housing, 

monochromator and sample compartment were continuously purged with N2 gas. The wavelength 

range was 280-200 nm for data collection using 1 nm step size and a 0.5 s sampling time, 

temperature was ramped at 1ºC/min from 10 to 90ºC in 2.5ºC intervals with 2 min equilibration at 

each temperature point. All data were corrected for the background signal from the formulation 

buffer, followed by a 3-point Savitzky-Golay smoothing filter using the Chirascan software 

(Applied Photophysics). 
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2.1.5 Intrinsic Tryptophan Fluorescence Spectroscopy and Static Light Scattering (SLS) 

The emission spectra of 0.2 mg/mL antigen were collected in 1cm path length quartz 

cuvettes from 310 to 410 nm with step size of 1 nm and integration time of 1 s using an excitation 

wavelength of 295 nm. Data were collected from 10 to 90ºC in 2.5ºC intervals with 2 min 

equilibration at each temperature point using a dual emission PTI QM-40 Spectrofluorometer 

(Photon Technology International (PTI), Inc., Birmingham, NJ) equipped with a 4-position cell 

holder, Peltier temperature control device, a high power continuous 75 W short-arc Xe lamp 

(Ushio), and a Hamamatsu R1527 photomultiplier tube. Aggregation propensity was monitored as 

a function of increasing temperature by collecting scattered light intensity at 295 nm concurrently 

with the fluorescence spectra by employing a second detector (90° to the incident light and 180° 

to the fluorescence detector). The excitation and emission slits were both set such that the initial 

signal at 10°C had an emission maximum of ~800,000 counts per second for fluorescence spectra 

and an emission maximum of ~5,000 counts per second for light scattering spectra. Peak intensity 

was determined at each temperature using a mean spectral center of mass (MSM) method applied 

using in-house software (MiddaughSuite), after correcting for formulation buffer, this analysis 

algorithm increases the signal to noise ratio. The Tonset values were estimated by monitoring 

baseline deviation from linearity and the Tm were calculated by first derivative analysis of the 

thermal melt curve using Origin software (Northampton, MA). 

2.1.6 SDS-PAGE 

For the reduced samples, 10 µg of the protein stock were mixed with 4X LDS loading dye 

(Life Technologies, Grand Island, NY), 20 mM iodoacetamide (Life Technologies), and 

formulation buffer and incubated in dark for 10 min at room temperature. Then the samples were 

boiled at 90ºC for 10 min to cause protein unfolding and lithium dodecyl sulfate (LDS) binding. 
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Samples were then reduced by adding 10 mM DTT and incubating at 37ºC for 10 min. The reduced 

samples were separated by electrophoresis using NuPAGE 4-12% Bis-Tris (Life Technologies) 

gels and a MES running buffer (Life Technologies). A similar procedure was followed for non-

reduced protein samples except the reduction step using DTT. The NuPAGE gels were run for 60 

min at 150V and protein bands were visualized by staining with coomassie blue R250 (Teknova, 

Hollister, CA) and destained with a mixture of 40% methanol, 10% acetic acid, and 50% ultrapure 

water. Gels were digitized using an Alphaimager (Protein Simple, Santa Clara, CA) gel imaging 

system. 

2.1.7 Size Exclusion Chromatography (SEC) 

SEC analysis of the NRRV antigens was performed using a TSK-Gel BioAssist G2SWxl 

column (7.8 x 300 mm, TOSOH Biosciences, King of Prussia, PA) on a Shimadzu Prominence 

UFLC HPLC system equipped with a diode array detector (with absorbance detection at 214 nm). 

Prior to sample injection, the column was equilibrated with at least 10 column volumes of mobile 

phase (formulation buffer) and then 30 µg of protein was injected at a flow rate of 0.7 mL/minute. 

Both the analysis and the corresponding guard column (TOSOH Biosciences) were operated at 

ambient temperature and the run time was 30 minutes. To ensure column and HPLC system 

integrity, a suitable gel filtration standard (Bio-Rad, Hercules, CA) was run and analyzed at the 

beginning and after every three sample runs. In addition, the samples were subjected to SEC 

without the guard and main columns attached to better determine if insoluble aggregates are 

present in the samples or if the sample binds to the column (i.e., sample recovery). Data analysis 

was completed using LC solutions software (Shimadzu, Kyoto, Japan). 
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2.1.8 Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC) 

Sedimentation velocity profiles of the NRRV antigens were obtained on a Proteome Lab 

XL-I (Beckman Coulter, Fullerton, CA) Analytical Ultracentrifuge using ultraviolet-visible optical 

detection system. Rotor was equilibrated for ≥1 h to ensure that it has reached the set temperature 

of 20°C, then the protein samples at 0.5 mg/mL were subjected to centrifugal force at a rotor speed 

of 40,000 RPM and the species undergoing sedimentation were detected at 280 nm. Beckman 

charcoal-epon two sector cells with a 12 mm centerpiece (either sapphire or quartz windows) were 

used for loading protein samples and the formulation buffer. 

The partial specific volume of 0.73 mL/g was used for each antigen and the buffer density 

(1.0058 g/mL) and viscosity (1.0195 cPoise) were calculated using Sednterp (Professor Thomas 

Laue, University of New Hampshire and BITC). A continuous c(s) distribution was used in the 

Sedfit (Dr. Peter Schuck, NIH) program to monitor the size related species in the protein samples. 

Sedimentation data of 200 scans were used with a range of 0 to 15 Svedbergs, resolution and 

confidence level were 300 and 0.95, respectively during data analysis. Meniscus and the bottom 

positions were set manually by careful observation and the baseline, radial independent noise, and 

time independent noise were floated. The c(s) distributions were imported into Origin (OriginLab, 

Northampton, MA) and peaks were integrated to get percent distribution of multiple species in the 

samples. 

2.1.9 Reversed-Phase Ultra High Performance Liquid Chromatography (RP-UHPLC) 

NRRV antigens in formulation buffer were subjected to RP-UHPLC (in triplicate) using a 

Ultimate 3000 UHPLC system (Thermo Scientific) and a 2.6 µm, 2.1 x 150 mm C-4 column 

(Thermo Scientific). The flow rate was set at 0.2 ml/min and the column and auto-sampler 

temperatures were set at 60ºC and 5ºC, respectively. The elution of proteins was monitored using 
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the absorbance at 214 nm and mobile phase (A) consisted of water with 0.1% trifluoroacetic acid 

(TFA) and mobile phase (B) consisted of acetonitrile with 0.1% TFA. A mobile phase gradient of 

10% B (0-5 min), 10→99% B (5-15 min), 99% B (15-20 min), 99→10% B (20-22 min), and 10% 

B (22-27 min) was used. In addition, the samples were run without the guard and main columns 

attached to better determine if insoluble aggregates are present in the samples or if the proteins 

bind to the column (i.e., sample recovery). Data were analyzed using Chromeleon software 

(Thermo Scientific). 

For the high pH and temperature stress, a 1.7 μm, 1 μm x 50 mm C-4 column (Waters 

Corporation) was used with the Ultimate 3000 UHPLC system. One microgram of each antigen 

sample (in triplicate) were subjected to RP-UHPLC analysis. Protein elution was monitored by 

absorbance at 214 nm. The column temperature was set at 60°C and the flow rate was 0.2 ml/min. 

The mobile phase A was water with 0.05% trifluoroacetic acid (TFA) and mobile phase B was 

acetonitrile with 0.05% TFA. The gradient consisted of 0% B (5 min), 0-25%B (3 min), 25-45% 

B (50 min), 45-60%B (2 min), 60% B (3 min), 60-0% B (2 min), and 0%B (5 min). From 8-58 

min, the elution from the RP-UHPLC column was directed into a LTQ-XL ion trap (Thermo 

Scientific). Mass spectra were acquired in the LTQ over a mass range of m/z 600-1800. MS1 peaks 

corresponding to NRRV protein were deconvoluted manually. 

2.1.10 Hydrophobic Interaction Chromatography (HIC) 

HIC was performed on a Shimadzu Prominence UFLC HPLC system equipped with a 

diode array detector (detection at 214 nm) using a TSKgel BioAssist Phenyl-5PW (7.8 mm X 5 

cm, 10 µm) column (TOSOH Biosciences). Thirty µg of each antigen was injected onto the column 

for each run, mobile phase A was composed of 2M ammonium sulfate, 0.5 mM sodium phosphate, 

pH 6.8 and mobile phase B was 0.5 mM sodium phosphate, pH 6.8.  The flow rate was 0.5 mL/min 
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and the gradient consisted of 50% B (0-5min), 50→100% B (5-15 min), 100% B (15-20 min), 

100→50% (20-22 min), and 50% B (22-30 min). Sample recovery and insoluble aggregates were 

also tested similar to SEC and RP-UHPLC methods. 

2.1.11 Differential Scanning Calorimetry (DSC) 

DSC thermograms were obtained for each sample in formulation buffer at 0.4 mg/mL in 

triplicate using an Auto-VP capillary differential scanning calorimeter (MicroCal/GE Health 

Sciences, Pittsburgh, PA)) equipped with Tantalum sample and reference cells. Scan were 

recorded from 10 to 90ºC at 60ºC/h scanning rate, 15 min pre-equilibration time, and cleaning was 

done after every scan. Formulation buffer scan was subtracted from the sample scan and data were 

normalized for the protein concentration and baseline correction were performed using Origin 

software (OriginLab, Northampton, MA). 

2.1.12 Extrinsic ANS Fluorescence Spectroscopy 

Extrinsic ANS fluorescence measurements were performed using Photon Technology 

International (PTI) spectrofluorometer (Lawrenceville, NJ) equipped with a turreted four-position 

Peltier-controlled cell holder and a xenon lamp. Samples contained 0.2 mg/ml protein in a total 

sample volume of 700 µl in quartz cuvettes. Stock solution of ANS (1-Anilinonaphthalene-8-

sulfonic acid) dye purchased from Sigma, Inc. (St. Louis, MO) was made at 25 mM in DMSO. 

Finally, a ratio of 25:1 (dye: protein) was maintained during fluorescence measurements. An 

excitation wavelength of 372 nm was used, and emission spectra were collected from 400-600 nm 

with a step size of 1 nm and an integration time of 1 s. Temperature was increased from 10 to 90˚C 

at 2.5˚C intervals with a 2 min equilibration time at each temperature. The data analysis was 

performed using Middaugh Suite developed in-house at KU. The emission peak position and peak 

intensity were determined using a mean spectral center of mass method (MSM) executed in 
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Middaugh Suite after correcting for the buffer alone signal. The Tm values were determined by a 

first derivative method using Origin software (v. 8.0) and the Tonset values were determined by 

identifying the point at which the baseline deviated from linearity. 

2.1.13 OD350 (turbidity) analysis 

Turbidity measurements were performed using a Cary 100 UV-Visible spectrophotometer 

(Varian medical Systems, Inc., Palo Alto, California) equipped with a 12-cell holder with a Peltier 

type temperature controller. A total sample volume of 225 µL in 1 cm path length quartz cells was 

used during the experiments. Optical density at 350 nm (OD350) was monitored as the temperature 

was raised in increments of 2.5˚C from 10 to 90˚C with a heating rate of 60˚C/h and equilibration 

of 2 min at each temperature. Protein samples were run in triplicate and corresponding buffer 

blanks were run and subtracted from each sample. The OD350 value was plotted vs temperature 

using Origin and Tm were determined using first derivative analysis. 

2.1.14 Physical stability profile comparisons using data visualization tools 

Each of the three antigens were dialyzed into 20 mM citrate phosphate buffer containing 

150 mM NaCl at pH 3, 4, 5, 6, 7, and 8 using Slide-A-Lyzer mini dialysis device (ThermoFisher) 

overnight at 4ºC. Biophysical stability data sets were collected in triplicate at each pH condition 

at 0.2 mg/mL protein concentration from 10 to 90ºC every 1.25ºC intervals using Far-UV CD 

spectroscopy, Intrinsic Tryptophan Fluorescence spectroscopy, SLS, and extrinsic ANS 

fluorescence as described above. For simplified visual representation and to facilitate comparison 

of the large biophysical data sets collected for the three antigens, Radar Charts were constructed 

using in-house developed Middaugh Suite program as described in detail elsewhere 120 Mean 

residue ellipticity at 216 nm from CD experiments, intrinsic tryptophan fluorescence peak position 

and peak intensity, static light scattering signal at 295 nm, and extrinsic ANS fluorescence peak 
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intensity data sets as a function of pH and temperature were used in the construction of the Radar 

Charts. 

2.1.15 Chemical stability profile comparisons at elevated temperature and solution pH and 
in presence of H2O2 

For elevated temperatures and pH, each of the three NRRV proteins were dialyzed into two 

different buffers overnight at 4˚C: (a) 10 mM sodium phosphate, 150 mM NaCl, pH 7.2, and (b) 

25 mM ammonium bicarbonate, 150 mM NaCl, pH 9.0. The protein samples at 0.70 mg/mL were 

incubated in triplicate at pH 7.2 and pH 9.0 at 4˚C and at pH 9.0 25˚C for 4 days in the two buffers. 

Samples were then subjected to intact mass analysis, peptide mapping, SDS-PAGE, and RP-HPLC 

analysis as per the methods described above. 

For the forced oxidation studies, each of the NRRV antigens in formulation buffer, was 

incubated in triplicate for one hour at ambient temperature at the following H2O2 concentrations: 

0%, 0.01%, 0.025%, 0.05%, 0.1%, 0.25% and 0.5% v/v. Reactions were quenched with D-Met 

and all samples were subjected to intact mass analysis, peptide mapping, and RP-UHPLC as per 

the methods described above. 

2.1.16 Modeling of NRRV antigen structure 

 I-TASSER algorithm was used to predict the structure of the three NRRV antigens which 

are recombinant fusion proteins. For a detailed description of how I-TASSER generates protein 

structure prediction from amino acid sequence, readers are advised to refer to the published 

literature and Zhang group’s web page 121-123. Briefly, first the structure templates are identified 

from the protein data bank (PDB) library by using a threading approach. Second, the identified 

continuous fragments from templates are combined into full length models using Monte Carlo 

simulations and ab initio modelling. A clustering program is then used to cluster all the models 

and up to five models are reported which correspond to the lowest free energy state of the protein. 
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In this work, out of the five predicted models for each antigen, model with the highest confidence 

score (i.e., better quality) was adopted to highlight the location of amino acids (using PyMOL) 

which are most susceptible to degradation. It is important to point out that the crystal structures of 

VP8-P[8] (PDB ID: 2AEN) and VP8-P[4] (PDB ID: 2DWR) proteins were employed as templates 

during structure prediction of the NRRV antigens by the I-TASSER program. 

 

2.2 Results 

2.2.1 Physicochemical characterization and comparisons of the three NRRV antigens 

The primary structure of the three fusion proteins was initially assessed by intact mass 

analysis. As shown in Figure 2.1, panels A, B, C, predominantly a single peak was observed for 

each antigen and the average molecular weight results (20517.6 ± 0, 20732.0 ± 0, 20433.7 ± 0.1 

Da for P[4], P[6] and P[8], respectively, n = 3) correspond to the expected native protein mass 

based on the amino acid sequence plus an additional +132 Da (similar results were obtained for 

non-reduced samples, see Supplemental Fig. S2.1A). As confirmed by LC-MS peptide mapping 

results described below, an additional Met residue is present on the N-terminus of these antigens, 

as would be expected for a foreign protein expressed in E. coli. 

LC-MS peptide map analysis was conducted to confirm each antigen’s primary sequence 

and identify any post translational modifications. Each antigen displayed a unique peptide elution 

profile as shown in Figure 2.1 panels D, E, F, demonstrating the ability to distinguish the three 

proteins as a potential identity test. Using intact (MS1) and fragmentation (MS2) mass analysis, 44 

peptides were identified in the [P4] digest, 50 peptides in P[6], and 37 peptides in P[8], which 

covered 100% of each of the protein’s primary sequence (Supplemental Fig. S2.1B). Moreover, 

the peptide mapping results suggested deamidation at several Asn residues in P[4] and P[8], and 
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at one Asn residue in P[6]. For P[4], Asn7, Asn47 and Asn179 were ~3-4% deamidated. For P[6], 

Asn7 was ~2-3% deamidated. For P[8], Asn7 was ~20%, Asn46 ~6% and Asn178 ~3% deamidated. 

Thus, the peptide mapping method was shown to be useful not only as an overall fingerprint 

analysis for the structural integrity and identity of each NRRV antigen, but also as charge 

heterogeneity test for Asn deamidation (also see chemical stability section below). 

 The overall higher-order structure (HOS) of the three proteins was assessed by a 

combination of different biophysical tools. The secondary structure composition was measured by 

FTIR by monitoring the absorbance in the amide I region (1600 - 1700 cm-1). All three antigens 

were primarily β-sheet in structure with main peak at ~1642, ~1639, and ~1640 cm-1 for P[4], P[6], 

and P[8], respectively as shown in Figure 2.2, panels A, B, C. The secondary structure composition 

by Fourier self-deconvolution (see Figure 2.2D) correlated very well with the secondary structure 

assignments from X-ray crystal structures of P[4] and P[8] antigens in the literature 124,125.  Far UV 

circular dichroism spectroscopy was employed to confirm the findings from FTIR analysis and a 

peak minimum around 215-216 nm was observed for each antigen indicating β-sheet structure in 

solution (Figure 2.2E). The overall tertiary structure was compared using intrinsic tryptophan 

fluorescence emission spectrum from 305 – 405 nm. Peak position or λmax for P[4], P[6], and P[8] 

was 334 ± 0, 333.7 ± 0.6, and  335.3 ± 0.6, respectively (Figure 2.2F). This result suggests the 

average Trp residue for each of the three antigens is located in a similar environment (each NRRV 

antigen has 4 Trp residues).  

 A combination of SV-AUC and SE-HPLC were used to probe the size of the three protein 

antigens and to assess the presence of soluble aggregates (monomer, dimer, etc.). Each antigen 

had monomeric composition ≥ 99% and about 1% higher molecular weight (HMW) species based 

on the peak areas from sedimentation coefficient (s) distribution (Figure 2.3A). Similar s value of 
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2.09 ± 0.01 were recorded for P[4] and P[8], whereas for P[6], s value was 2.03 ± 0.01 suggesting 

smaller hydrodynamic size for P[6] compared to P[4] and P[8] (which show similar size). These 

observations were supported by SE-HPLC as an orthogonal tool. The retention time for P[4] and 

P[8] was 16.28 ± 0.01 and 16.24 ± 0.01 min respectively, whereas P[6] eluted at 17.08 ± 0.06 min 

consistent with a smaller hydrodynamic size for P[6] (Figure 2.3B). As expected based on the size 

results from intact mass analysis (see above), P[6] antigen band migrated at a somewhat higher 

molecular weight on SDS-PAGE gels as compared to P[4] and P[8] (which were at similar mass 

level, Figure 2.3C).  

 From hydrophobic interaction chromatography (HIC) analysis (Figure 2.3D), all three 

antigens appeared heterogeneous when eluted from phenyl column with the major species 

accounting for >92% for each protein. Out of the three antigens, P[4] was most homogeneous at 

98.3 ± 0.3% followed by P[8] at 92.8 ± 0.4% and P[6] at 92.3 ± 0.3% (n= 3). P[6] was most 

hydrophobic of the three antigens as it eluted at a relatively later retention time as compared to 

P[4] or P[8] (Figure 2.3D). Similarly, through reversed-phase high pressure chromatography 

analysis (RP-HPLC), the major peak accounted for >93% of each protein. Out of the three 

antigens, P[4] was most homogeneous at ~100 ± 0% followed by P[6] at 96.5 ± 0.2% and P[8] at 

93.4 ± 0.1% (n= 3). P[6] eluted later than P[4] or P[8] as shown in Figure 2.3E. These RP-HPLC 

results are consistent with the HIC results (Figure 2.3D). No difference in the total area was 

observed with and without the column in HIC and RP-HPLC assays indicating excellent recovery 

(i.e., no notable levels of protein were lost due to column adsorption).  

2.2.2 Physical stability profiles and comparisons of the three NRRV antigens as a function 
of temperature and pH 

The HOS and conformational stability of each NRRV antigen was measured and compared 

as a function of temperature (10-90oC) in the formulation buffer. Secondary and tertiary structure 
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stability was evaluated by monitoring CD molar ellipticity at 216 nm and intrinsic Trp fluorescence 

emission peak intensity, respectively. As shown in Figures 2.4A and 2.4B, a single transition event 

was noted for each antigen and P[8] showed highest onset (Tonset) and apparent melting temperature 

(Tm) as shown in the bar graphs on right. This result suggests that the HOS of the P[8] antigen is 

the most stable of the three antigens against thermal stress. Similar rank order of conformational 

stability was observed between the three antigens with P[8] being most stable (and P[4] was 

slightly more stable than P[6]) as measured by DSC and DSF (Figures 2.4C and 2.4D), 

respectively.   

Two light scattering methods (SLS and OD350) were used to assess thermally-induced 

aggregation. Results indicate P[8] is most stable (highest Tonset value) as shown in the bar graphs 

on right panels of Figures 2.4E and 2.4F. The P[4] and P[6] antigens showed similar thermal 

induced aggregation profiles. It is interesting to note the substantially lower Tonset values (by 

~20oC) by SLS as compared to OD350 method for each of the three antigens. These differences in 

SLS vs. OD350 results likely reflects the higher sensitivity of SLS towards formation of smaller 

aggregates compared to OD350 method which is likely more sensitive to the formation of larger 

aggregates/particles in solution. 

Physical stability of each antigen as a function of both solution pH (from 3.0 to 8.0) and 

temperature (from 10 to 90oC) was then monitored to measure changes in secondary structure, 

tertiary structure, and aggregation behavior. Overall, a pH-dependent destabilization was observed 

in secondary structure for each antigen (Supplemental Figure S2.2, A – C). For tertiary structure 

analysis, intrinsic Trp fluorescence MSM peak position showed some subtle changes in the thermal 

melt profiles, but in general, was not sensitive enough to monitor any potential differences between 

the antigens (Supplemental Figure S2.2, D – I). In contrast, DSF showed a clear pH-dependent 



64 
 

 

destabilization with lower pH being less stable as the temperature was increased (Supplemental 

Figure S2.2, J – L). Aggregation propensity vs solution pH was assessed by monitoring the 

intensity of total scattered light at 295 nm at 90 degrees. P[8] showed highest intensity values at 

pH 6.0 and pH 7.0 before precipitation occurred (Supplemental Figure 2.2O). In summary, all 

three antigens showed a pH dependent destabilization at lower pH values (with P[6] being least 

stable at pH 4.0 and pH 5.0). 

To better visualize and compare the entire biophysical stability data sets of each antigen as 

a function of pH and temperature, a radar chart, data visualization analysis 120 was utilized (Figure 

2.5).  Each radar chart has 5 axes corresponding to the five biophysical measurements and the data 

are mapped to a pentagon such that smaller area of polygon indicate native-like state of protein 

and relatively larger area represents structural alterations. For each antigen, four distinct regions 

were observed (Regions I, II, III/IV, V). Region I correspond to a native-like structure of the 

antigen, Region II represent partially structurally altered state, Region III denote low pH 

structurally altered state, Region IV shows an aggregation prone region identified specifically for 

P[8] antigen, and Region V represent more extensively aggregated and structurally altered state. 

Data for each technique can be read in the radar charts by following a particular axis. For instance, 

SLS signal is mapped to axis ‘a’ (Figure 2.5, radar chart key) and if we follow axis ‘a’ for P[8] 

antigen in radar charts I to V; I – low signal indicate native-like or monomeric state, II – low to 

medium signal indicate low levels of aggregation, IV – high signal i.e. significant aggregation, V 

– low signal due to precipitation of aggregated protein. If the total relative area of native-like state 

(i.e., Region I) of each antigen is compared; P[8] was most stable with an area of 39%, followed 

by P[4] with 33%, and P[6] was least stable (27%). Also, a specific aggregation prone region 

(Region IV) was identified for P[8] suggesting it might be prone to aggregation in that range of 
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pH and temperature (note that P[4] and P[6] are also structurally altered and/or aggregated in 

Region IV). 

2.2.3 Chemical stability profiles and comparisons of the three NRRV antigens  

After subjecting the three NRRV antigens to elevated pH and temperature stress (pH 9.0, 

25oC for 6 days), an increasing trend in molecular mass was observed for each protein by intact 

mass analysis compared to pH 7.2, 4oC control samples (Figure 2.6A). Peptide mapping analysis 

was conducted to further probe the nature of the mass increase. Representative data for P[4] is 

shown in Figure 2.6B and similar data for P[6] and P[8] antigens are shown in Supplemental 

Figures S2.3A and S2.3B, respectively. Under no stress conditions (pH 7.2, 4oC), deamidation was 

observed at Asn7 in each antigen and at each of the Asn-Gly (NG) sites (P[4] and P[8] antigens 

have two NG sites, whereas, P[6] has none). Upon incubation at pH 9.0 25oC for 6 days, P[4] 

antigen showed increased levels of deamidation at Asn7 and Asn-Gly residues (Asn47 and Asn179) 

as shown in Figure 2.6C. For P[6] antigen, Asn7 showed increased levels of deamidation under the 

same stress conditions. The P[8] antigen also showed increased levels of Asn7 deamidation and an 

increasing trend of deamidation was observed for the Asn-Gly residues (Asn46 and Asn178) under 

similar stress, although it was not statistically significant under these conditions (more notable 

levels of Asn46 and Asn178 deamidation were observed in P[8] when subjected to more aggressive 

stress condition of pH 9.0 40oC for 6 days, however, P[4] and P[6] antigens could not be tested for 

deamidation under this condition due to aggregation (data not shown). Overall, forced deamidation 

studies demonstrated the susceptibility of Asn7, Asn47, Asn179 in P[4], Asn7 in P[6], and Asn7, 

Asn46, Asn178 in P[8] towards deamidation under basic conditions at elevated temperature with the 

Asn7 residue being the most labile across all three antigens. 
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SDS-PAGE analysis (under non-reducing conditions) of the same elevated pH and 

temperature stressed P[6] samples showed an additional band corresponding to dimeric species 

which was absent/less abundant under reducing condition as shown in Figure 2.7A. This result 

suggests the dimeric species were linked with inter-molecular disulfide bond since each NRRV 

antigen has single Cys residue. A faint dimeric band was also present under non-reducing condition 

for P[6] pH 9.0, 4oC stressed samples. RP-UHPLC analysis showed an additional peak (~34.5 min) 

eluting at later retention time than the monomer peak (~30 min) as shown in Figure 2.7C. This 

additional peak was identified as P[6] dimer species by MS1 analysis (right panel, Figure 2.7C) 

which correlates with SDS-PAGE results. However, the dimeric species were not observed by 

intact mass analysis presumably due to their low abundance and a single peak corresponding to 

monomeric protein was observed in control and stressed samples (Figure 2.7B). For the P[4] 

antigen, a very faint HMW smear was observed at pH 9.0, 25oC (but not at pH 9.0, 4oC) under 

non-reducing conditions in SDS-PAGE analysis as shown in Supplemental Figure S2.4A. The P[4] 

dimer species also eluted at later retention time on reversed-phase chromatography as confirmed 

by the MS1 analysis of the eluting peaks (see Supplemental Figure S2.4C). For the P[8] antigen, 

no additional HMW species was observed under the tested conditions suggesting higher stability 

of this antigen to non-native disulfide formation as compared to P[4] and P[6] (see Supplemental 

Figure S2.5). Overall, the chemical stability profile demonstrates that P[6] is more susceptible to 

this non-native disulfide bond reaction compared to P[4] and P[8] antigens. 

In terms of oxidative stress reactions, the three NRRV antigens were subjected to different 

amounts of H2O2. Figures 2.8A and 2.8B show representative data for P[6] antigen, a prominent 

peak for native species and low level of oxidized species were observed in the control sample 

(without H2O2) as measured by intact mass spectrometry and LC-MS peptide mapping, 
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respectively. With the increasing amount of H2O2 the relative abundance of native species 

decreased, and the number and abundance of oxidized species increased. Peptide mapping analysis 

was conducted to identify the amino acids undergoing oxidation and also to quantify the oxidation 

relative to the control sample. As shown in Figure 2.8C, for P[6] antigen which has two Met 

residues, Met1 was most susceptible to oxidation followed by Met100. Similar observations were 

made for the two Met residues in P[8] antigen (Met1 more susceptible than Met99), as shown in 

Figure 2.8C and Supplemental Figure S2.8. The P[4] antigen has three Met residues and their 

susceptibility to oxidation can be rank ordered as Met1 > Met100 > Met124 (Figure 2.8C). Oxidized 

Met100 in P[4], P[6], and Met99 in P[8] were only detectable when samples were incubated with ≥ 

0.1% H2O2 (≥ 1000 ppm) as described in Figure 2.8C. Similarly, Met124 in P[4] was oxidized only 

when exposed to ≥ 0.25% H2O2 (data not shown). No detectable change in the elution profile of 

digested peptides was observed until exposure to 0.1% H2O2, at which point the elution profile 

was altered and sequence coverage was reduced from 100% to ~80% for all three antigens 

(Supplemental Figure S2.6 – S2.8). In addition, the elution profiles of each sample (stressed or 

control) of a particular antigen were similar on a reversed-phase column, in which the primary 

peak eluted at ~9.5 min (P[4]), ~9.7 min (P[6]), and ~9.5 min (P[8]) as shown in Figure 2.8D and 

Supplemental Figure S2.9. Also, the area of the peak corresponding to native species did not 

change substantially between samples (Figure 2.8D) indicating no measurable loss of protein. In 

summary, intact protein mass measurement and peptide mapping by LC-MS methods are assays 

of choice to detect and monitor oxidation. The Met1 residue in each NRRV protein antigen was 

most susceptible to H2O2 induced oxidation, and oxidation was also observed at other Met residues 

under more aggressive stress conditions (≥ 1000 ppm H2O2). 
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2.2.4 Structural modeling and comparisons of the three NRRV antigens  

As a first step to facilitate the analysis of the physicochemical data generated in this work, 

a schematic is provided in Figure 2.9A which describes the composition and nomenclature of the 

three NRRV antigens studied in this work (refer to Introduction section for more details). The X-

ray crystal structures for VP8-P[4] (i.e., ΔVP8* from DS-1 (G2P[4]) strain) and VP8-P[8] (i.e., 

ΔVP8* from Wa (G1P[8]) strain) have been determined. These proteins bind to carbohydrates on 

target epithelial cell receptors and are involved in host cell recognition and attachment during RV 

infection 124,125. We used I-TASSER modelling to model the 3-D structure of the complete NRRV 

antigen, i.e. including the P2 epitope, by using the available crystal structures of the ΔVP8* protein 

from DS-1 and Wa strains of human rotavirus as template. As described in the methods section, I-

TASSER modelling predicted five structures with the lowest energy state for each antigen and the 

major difference between the five predicted structures is the unstructured/random orientation of 

the P2 epitope indicating its flexible nature. Figure 2.9B shows the predicted 3-D structure of each 

NRRV antigen including the three key structural elements: the P2 epitope (black), GSGSG linker 

(cyan) and ΔVP8* protein (grey). The chemically labile residues or “weak spots” identified for 

each antigen in this work are highlighted on the structural models (Met – magenta, Asn – green, 

Cys - red) in Figure 2.9B.  

 

2.3 Discussion 

In this work, the primary and higher-order structures, post-translational modifications, and 

product-based impurities (e.g., charge heterogeneity, aggregates) of the three recombinant NRRV 

protein antigens were measured and compared using a wide variety of physicochemical 

characterization tools. In addition, degradation pathways of each of these proteins were elucidated 
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via forced degradation studies to identify “weak spots” in terms of physical and chemical stability 

profiles. Although the potential impact of physicochemical structural alterations on 

immunogenicity is unknown at this time, developing such stability-indicating analytical tools and 

applying the structural knowledge gained in this work will be useful to (1) set critical 

manufacturing process parameters to ensure consistency, (2) monitor key structural attributes 

during comparability assessments, and (3) develop stable formulations for the bulk drug substance 

and adjuvanted final drug product. The pharmaceutical stability profiles encountered during 

manufacturing and storage are not only dependent on such intrinsic properties (e.g., primary 

sequence/post-translational modifications 126, conformational stability 127, solubility 128), but also 

extrinsic stress factors (e.g., storage temperature, freeze-thaw, agitation) 81,129. 

Primary structure, post-translational modifications and chemical stability profile 

An additional Met residue identified at N-terminus of each antigen was not unexpected 

since these antigens were expressed in E. coli and the efficiency of methionine aminopeptidase 

(MetAP), enzyme responsible for excision of N-terminal methionine during translation, is about 

30–60% depending on the host 130. Residue next to the N-terminal Met for each NRRV antigen is 

Glu with a bulky side chain which could also hinder the efficiency of MetAP by steric effects as 

noted in the literature 131,132. Peptides generated after chymotrypsin digestion during peptide 

mapping analysis of each antigen showed distinct and very reproducible elution profile on a RP 

column which could be used as an identity test during future development of these antigens. 

Oxidation via reactive oxygen species is a commonly observed chemical degradation 

pathway for protein biotherapeutics/vaccine antigens which can affect product quality, stability, 

and raises immunogenicity concerns 133,134. Peroxides are an example of reactive oxygen species 

which can come in contact with vaccine drug products through various means such as the use of 
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vaporized H2O2 as a sterilizing agent, as contaminants in formulation excipients like polysorbates, 

and potentially even as trace quantities present in water depending upon its source 135-138. Under 

forced degradation conditions (100 – 5000 ppm H2O2), the Met1 residue was most sensitive to 

oxidation in each of the three NRRV antigens. Interestingly, the Met100 or Met99 residue in each 

antigen, and Met124 in P[4] antigen were less prone to H2O2 induced oxidation compared to Met1 

(which could be due to their reduced solvent accessibility within the 3D structure of the protein; 

see below).  

Forced deamidation studies confirmed that Asn7 in each NRRV antigen is susceptible to 

deamidation under conditions of basic pH and elevated temperature. Asn7 in these proteins is 

followed by Ser residue which is the second most susceptible sequence for deamidation after NG 

sequence 81. The P[4] and P[8] antigens each have two NG sites (P[6] has none) in their primary 

sequence, and the Asn residues at these sites also showed increasing trend in deamidation levels 

for stressed samples (Figure 2.7C). It is known that Asn deamidation in proteins and peptides 

depends on  a combination of factors including their primary sequence, three dimensional (3D) 

structure (i.e., flexibility and solvent accessibility of these sites) and solution conditions (i.e., pH, 

buffer type, temperature) 139,140. Overall, the peptide mapping method was able to detect and 

quantify the Asn deamidation in each NRRV antigen and thus will be a valuable tool during future 

formulation development and analytical comparability assessments. 

The labile Met1 and Asn7 residues are both located in the P2 epitope region of these 

antigens which is highly flexible and unstructured as predicted by I-TASSER modelling (Figure 

2.9B) and some preliminary hydrogen deuterium exchange mass spectrometry studies (data not 

shown). Higher flexibility of this P2 region would explain the higher propensity of Met1 to 
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oxidation and Asn7 to deamidation due to their relatively higher solvent accessibility compared to 

other Met and Asn residues which could be buried inside the protein structure. 

In addition, the one free Cys residue in each NRRV antigen is also a “weak spot” in each 

antigen. Under stressed conditions of elevated pH and temperature, we observed reducible 

dimeric/multimeric species which were linked with intermolecular disulfide bonds. The P[6] 

antigen showed the highest susceptibility to this degradative reaction, followed by P[4], while 

dimeric/multimeric species were not observed for P[8] under the tested conditions. This result is 

in agreement with the physical stability data which showed higher conformational stability of P[8] 

antigen suggesting some sort of conformational alteration is needed for the Cys residue to get more 

solvent exposed allowing it to form non-native intermolecular disulfide bonds.  Susceptibility of 

Cys173 in P[4] and P[6] to non-native disulfide formation could be due to lower conformational 

stability of the helical domain containing this Cys residue, thus exposing the free Cys to solvent 

and promoting the degradative reaction. Although the P[8] antigen was more stable to this 

degradative reaction under these conditions, disulfide linked covalent aggregates were formed with 

all three NRRV antigens when subjected to agitation stress (see chapter 3). 

Size, higher-order structure (HOS), and physical stability profile 

Each antigen was primarily monomeric in size and P[6] eluted at later retention times on a 

SEC column compared to P[4] and P[8]. The smaller overall size of P[6] was in agreement with 

the sedimentation coefficient values. These results are consistent with P[6] being more globular or 

compact in its overall conformation. In addition, GRAVY analysis indicated P[6] is most 

hydrophobic out of the three antigens with a GRAVY score of -0.466, as compared to P[4] and 

P[8] with scores of -0.573 and -0.569, respectively. This could also explain in part its relatively 
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more compact three-dimensional structure. The more hydrophobic nature of P[6] was also 

confirmed by the observed longer retention times on HIC and RP columns to P[4] and P[8].  

The HOS of each NRRV antigen was primarily β-sheet in composition as suggested by 

available crystallographic information on ΔVP8* (PDB ID: 2AEN, 2DWR) and predicted by I-

TASSER modelling (Figure 2.9B). The FTIR and far-UV CD spectroscopic results in this work 

are consistent with this secondary structure composition. Some minor differences in environment 

around Trp residues were observed between the three antigens; the average Trp residues appeared 

to be more buried for P[4] and P[6] antigens compared to P[8].  

Differences in structural integrity and physical stability of the three NRRV antigens (with 

66 – 80% sequence homology) highlight the importance of differences in the primary and HOS 

structures of otherwise “similar” antigens that can govern their pharmaceutical stability profiles 

and developability as a vaccine candidate. Solution pH plays an important in controlling the 

ionization state of different residues which keep the molecule in its marginally stable HOS, native 

conformation 141,142. Each NRRV antigen underwent structural alterations at pH 3.0. The P[6] 

antigen was least stable at pH 4.0 and 5.0 followed by P[4] and P[8]. Radar chart analysis is a data 

visualization tool that has been employed to summarize and compare large biophysical data sets 

to study the effect of various stresses (e.g., pH, temperature) on physical stability of a wide variety 

of macromolecules including vaccine and protein drug candidates 127,143-149. Radar chart analysis 

in this work showed that the structural integrity and conformational stability of three NRRV 

antigens as a function of pH and temperature. P[8] was the most stable, followed by P[4], and P[6] 

was least stable. In addition, non-native dimer formation was observed for P[6] and P[4] antigens, 

no dimeric species was recorded for P[8]. Interestingly, the P[8] antigen showed relatively lowest 
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stability against shaking (i.e., colloidal stability) and freeze-thaw stresses resulting in the highest 

levels of particle formation when comparing the three NRRV antigens (see chapter 3). 

Ongoing and Future Work 

 In terms of ongoing and future work, both physical and chemical degradation processes 

elucidated in this work (leading to structural alterations, chemical changes and/or aggregate 

formation) could be detrimental to the development of NRRV antigens as a candidate vaccine 

without appropriate formulation development. The analytical characterization tools developed in 

this work were applied to the development of candidate formulations to minimize protein 

aggregation during frozen storage of these NRRV antigens as bulk drug substance (see chapter 3). 

These assays can also be adopted and modified to characterize and assess the physicochemical 

stability of the final drug product which will be formulated with an aluminum-based adjuvant to 

further enhance the immunogenicity of this vaccine (see chapter 4). However, it is essential as part 

of future work to better correlate these physicochemical changes with in vitro potency using 

immunochemical (binding) assays (e.g., ELISA, bio-layer interferometry, or surface plasmon 

resonance) utilizing antibody reagents which are specific to each antigen and bind to neutralizing 

epitope(s). Eventually the results from physicochemical and in vitro potency assays need to be 

correlated with in vivo immunogenicity (animal studies) in order to determine their true impact on 

biological potency of the vaccine. Finally, the physicochemical analytical tools described in this 

work can be used during future comparability assessments of different lots of each of the NRRV 

antigens made from scaled-up manufacturing processes. It is not uncommon to introduce changes 

in the manufacturing processes during scale-up or switching to a different manufacturing site to 

keep the cost of vaccine production low, which is a key focus for the success of this subunit 

rotavirus vaccine candidate for use in the developing world. 
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2.4 Figures 

 

Figure 2.1. Primary structure analysis of the three NRRV antigens. Representative deconvoluted mass 
spectra for analysis of intact proteins under reducing condition for (A) P[4], (B) P[6], and (C) P[8]. 
Representative UV214nm chromatogram from peptide map analysis of reduced, alkylated, and 
chymotrypsin digested proteins for (D) P[4], (E) P[6], and (F) P[8]. See Supplemental Figure S2.1 
for intact mass analysis data under non-reducing condition and sequence coverage (100% for both 
reducing and non-reducing conditions) from peptide map analysis. 
 

 

 

 



75 
 

 

 

Figure 2.2. Higher order structure (HOS) analysis of each of the three NRRV protein antigens at 10oC 
in 10 mM PBS, pH 7.2. Representative FTIR absorbance spectrum of the amide I region and 
Fourier self-deconvoluted peaks for (A) P[4], (B) P[6], (C) P[8] antigens, and (D) secondary 
structure composition of each antigen obtained from Fourier self-deconvolution of FTIR spectrum. 
(E) Far-UV CD spectra, and (E) intrinsic Tryptophan fluorescence emission spectra overlay for 
the three antigens. Error bars denote 1SD from triplicate measurements. 
 

 

 

 

 

 

 



76 
 

 

 

Figure 2.3. Size, aggregation, and heterogeneity analysis of each of the three NRRV antigens in 10 mM 
PBS, pH 7.2. (A) Representative SV-AUC sedimentation coefficient distribution profiles from 0 
to 14 Svedbergs, inset shows c(s) distribution from 4 to 14 Svedbergs for better visualization of 
aggregate species peak(s). (B) Representative SE-HPLC chromatograms for three antigens with 
inset showing the peaks corresponding to fragments and/or aggregate species. (C) SDS-PAGE 
analysis under non-reducing and reducing (+ DTT) conditions. (D) Representative HIC 
chromatograms, and (E) representative RP-HPLC chromatograms of the three antigens overlay 
with inset showing the minor peaks for better visualization. DTT, dithiothreitol. 
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Figure 2.4. Higher-order structure (HOS) stability and aggregation propensity of the NRRV antigens in 
formulation buffer at pH 7.2 as a function of thermal stress (10oC to 90oC). (A) Far-UV CD 
normalized mean residue ellipticity at 216 nm, (B) intrinsic tryptophan fluorescence normalized 
MSM peak intensity, (C) representative DSC thermograms of each antigen, (D) extrinsic ANS 
fluorescence MSM peak intensity, (E) static light scattering intensity at 295 nm, and (F) OD350 
values for P[4] (black), P[6] (red), and P[8] (blue) antigens. Bar graphs on the right side of each 
panel show thermal onset and melting temperature values for each antigen. Error bars represent 1 
SD from triplicate measurements. 
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Figure 2.5. Biophysical stability profile from radar chart analysis of each NRRV antigen versus 
temperature across the pH range of 3.0 to 8.0. Sample buffer is 20 mM citrate phosphate buffer 
containing 150 mM NaCl at indicated pH value. Panel (A) P[4], (B) P[6], and (C) P[8] show radar 
charts generated from multivariate stability data sets shown in Supplemental Figure 2.2. Radar 
chart key is provided in the bottom panel (see text for further explanation). 
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Figure 2.6. Forced degradation (Asn deamidation) studies of each antigen after incubation at pH 9.0 
25oC for 6 days. (A) Monomer species mass from intact mass analysis of reduced (red) and non-
reduced (black) samples for each antigen. (B) Representative total ion chromatogram from peptide 
map analysis of reduced, alkylated, and chymotrypsin digested P[4] samples, pH 7.2 4oC (top) and 
pH 9.0 25oC (bottom), native Asn peaks are pointed by red arrows and deamidated Asn peaks are 
pointed out by blue arrows (see Supplemental Figure S2.3 for peptide map data with P[6] and P[8] 
antigens). (C) Percent deamidation of different Asn residues in each antigen obtained from the 
peptide mapping analysis under reducing conditions. Error bars represent 1SD from triplicate vials. 
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Figure 2.7. Forced degradation (non-native disulfide formation) studies with P[6] antigen after incubation 
at pH 9.0 25oC for 6 days. (A) SDS-PAGE analysis, (B) intact mass analysis, and, (C) RP-UHPLC 
analysis of the stressed and control samples, further, MS1 spectra confirming the molecular masses 
of the eluting peaks to the P[6] monomer and dimer species are shown. Refer to Supplemental 
Figures S2.4 and S2.5 for similar data with P[4] and P[8] antigens, respectively. 
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Figure 2.8. Forced oxidation studies as a function of hydrogen peroxide concentration. Representative (A) 
deconvoluted mass spectra for intact mass analysis, and (B) peptide map analysis of P[6] antigen 
under reducing (+DTT) condition. See Supplemental Figures S2.6 – S2.9 for the complete data 
sets of the three antigens. (C) Hydrogen peroxide effect on the relative percent oxidation of 2 out 
of 2 methionine residues for P[6], P[8], and 2 out of 3 methionine residues for P[4]. (D) % total 
area and retention time of main peak in RP-HPLC chromatograms of each antigen, see 
Supplemental Figure S2.9 for individual chromatograms. Error bars represent 1SD from triplicate 
measurements. 
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Figure 2.9. Structural modeling of the three NRRV protein antigens. (A) Schematic description of the 
protein composition and nomenclature of each NRRV antigen, and (B) 3-D structure prediction of 
each NRRV antigen using I-TASSER modelling; ΔVP8* protein is shown in grey, GSGSG linker 
in cyan, and P2 epitope in black. Residues susceptible to chemical degradation under stressed 
conditions are highlighted (Cys - red, Asn - green, Met - magenta). 
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2.5 Supplemental Figures 

 

Supplemental Figure S2.1. Primary structure analysis of the NRRV antigens. (A) Representative 
deconvoluted mass spectra for analysis of intact proteins under non-reducing condition, and (B) 
sequence coverage of each antigen from peptide map analysis of reduced, alkylated, and 
chymotrypsin digested proteins. 
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Supplemental Figure S2.2. Biophysical stability profile and data for radar chart analysis of the 
three NRRV antigens versus temperature across the pH range of 3.0 to 8.0 in 20 mM citrate 
phosphate buffer containing 150 mM NaCl. Biophysical measurements include (a – c) far-UV CD 
normalized mean residue ellipticity at 216nm, (d – f) intrinsic tryptophan fluorescence MSM peak 
intensity, (g – i) intrinsic tryptophan fluorescence MSM peak position, (j – l) extrinsic ANS 
fluorescence MSM peak intensity, and (m – o) static light scattering intensity at 295 nm for each 
of the three antigens. Error bars represent 1SD from triplicate measurements. 
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Supplemental Figure S2.3. Forced degradation (Asn deamidation) studies as a function of pH 
and temperature. Representative UV214nm chromatogram from peptide map analysis of reduced, 
alkylated, and chymotrypsin digested (A) P[6], and (B) P[8] samples at pH 7.2 4oC (top) and pH 
9.0 25oC (bottom). Native Asn peaks are pointed out by red arrows and deamidated Asn peaks are 
pointed out by blue arrows. Refer to Figure 6 in main text for % deamidation quantitation. 
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Supplemental Figure S2.4. Forced degradation (non-native disulfide formation) studies with P[4] 
after incubation at pH 9.0 25oC for 6 days. (A) SDS-PAGE analysis, (B) intact mass analysis, and, 
(C) RP-UHPLC analysis of the stressed and control samples, further, MS1 spectra confirming the 
molecular masses of the eluting peaks to the P[4] monomer and dimer species are shown. 
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Supplemental Figure S2.5. Forced degradation (non-native disulfide formation) studies with P[8] 
antigen after incubation at pH 9.0 25oC for 6 days. (A) SDS-PAGE analysis, (B) intact mass 
analysis, and, (C) RP-UHPLC analysis of the stressed and control samples, further, MS1 spectra 
confirming the molecular masses of the eluting peaks to the P[8] monomer species are shown. 
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Supplemental Figure S2.6. Forced oxidation studies of P[4] antigen as a function of hydrogen 
peroxide concentration. (A) Deconvoluted mass spectra for intact mass analysis, and (B) peptide 
map analysis under reducing (+DTT) condition. 
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Supplemental Figure S2.7. Forced oxidation studies of P[6] antigen as a function of hydrogen 
peroxide concentration. (A) Deconvoluted mass spectra for intact mass analysis, and (B) peptide 
map analysis under reducing (+DTT) condition. Part of this data is also shown in Figure 2.9 of the 
main text as representative data for this antigen. 
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Supplemental Figure S2.8. Forced oxidation studies of P[8] antigen as a function of hydrogen 
peroxide concentration. (A) Deconvoluted mass spectra for intact mass analysis, and (B) peptide 
map analysis under reducing (+DTT) condition. 
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Supplemental Figure S2.9. Forced oxidation studies of the three NRRV antigens as a function of 
hydrogen peroxide concentration. Representative RP-HPLC chromatograms of (A) P[4], (B) P[6], 
and (C) P[8] at different hydrogen peroxide concentrations. 
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Chapter 3 

 

Developing stable frozen liquid bulk formulations to minimize aggregation 
and particle formation of three recombinant protein vaccine antigens for use 

in a trivalent rotavirus vaccine candidate 
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3.0 Introduction 

Essentially every child before reaching 5 years of age gets infected by Rotavirus (RV) 

which can cause gastroenteritis and diarrhea 29. There are currently four WHO pre-qualified RV 

vaccines (RotaTeq®, Rotarix®, Rotavac® and Rotasil®) which combined cover over 100 

countries to reduce the burden of this viral infection 4. In addition, there are several other live, 

attenuated oral RV vaccines approved for local use and approximately five more candidates are in 

clinical trials 150. Vaccine efficacy of live, orally administered RV vaccines varies considerably, 

however, between developing (~40-60%) vs. developed countries (~80–90%) 31,35,106,151. Thus, 

there is growing interest in a recombinant protein subunit vaccine with parenteral administration 

capabilities to address these differences and provide similar efficacy irrespective of the socio-

economic background of a child 40,115. Success or failure of a vaccine also relies on its global 

coverage, and unfortunately, global coverage of rotavirus vaccines is currently only about 28% 152.  

Development of a recombinant subunit RV vaccine will hopefully also improve affordability, 

allow for a more a constant vaccine supply, and improve coverage by addition to widely used 

pediatric combination vaccines. For example, a subunit RV vaccine could eventually be combined 

with the current childhood combination vaccines such as hexavalent DTaP-IPV-HepB-Hib or the 

pentavalent DTwcP-HepB-Hib vaccines to improve compliance with the immunization schedule 

and encourage wider vaccination coverage 115. 

Although vaccine effectiveness is mainly guided by its composition (e.g., antigen and 

adjuvant), development of a stable vaccine formulation is equally important to ensure the safety 

and efficacy during manufacturing, long term storage, transport and administration 72,153. Live, 

attenuated viral vaccines contain weakened versions of the pathogens and are often sensitive to 

elevated temperatures and thus vulnerable to potency loss due to cold chain break down, especially 

in the developing world 78. In contrast, recombinant protein subunit vaccines are in general 
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considered safer and more stable (although often require adjuvants to enhance immune responses) 

154. Considerable efforts have been employed towards development of subunit RV vaccine 

candidates (e.g., soluble antigens, virus-like particles) that are being evaluated in pre-clinical and 

early clinical studies 155-159. One such candidate (referred to NRRV) containing a trivalent mixture 

of recombinant truncated VP8* fusion proteins is in Phase 1/2 clinical trials. Previously, one of 

the three antigens (P2-VP8-P[8]) was shown to be safe in healthy adults as well as to be well 

tolerated and immunogenic in infants and toddlers thus establishing the proof of concept 46,47. See 

companion paper for detailed structural composition of the three NRRV antigens 160. Briefly, each 

antigen is composed of a universal tetanus toxoid CD4+ T cell epitope, P2, fused with a truncated 

ΔVP8* protein using a GSGSS linker. ΔVP8* is a soluble truncated version of the VP8* protein 

which is a proteolytically cleaved product of RV surface protein VP4. The three NRRV antigens 

are produced recombinantly in E. coli as fusion proteins and are named as P2-VP8-P[4], P2-VP8-

P[6] and P2-VP8-P[8] where P2 refers to the tetanus toxoid epitope and VP8-P[x] represents the 

ΔVP8* protein derived from human RV strain DS-1 (G2P[4]), 1076 (G2P[6]) or Wa (G1P[8]) 44,45. 

The three antigens are abbreviated as P[4], P[6] and P[8], respectively, in this chapter. 

For successful formulation development of a new recombinant protein antigen, the 

following steps including (1) analytical characterization of key structural attributes, (2) 

understanding of the physicochemical degradation mechanisms, and (3) rational design of 

formulation composition to minimize degradation are performed to maintain a vaccine antigen’s 

potency during storage over the intended period of use 78. Since protein molecules are only 

marginally stable in their native folded conformation, it is necessary to identify optimal solution 

conditions (e.g., buffer, pH, ionic strength, excipients, etc.) to ensure their integrity and stability 

at every step of the manufacturing process as well as during long term storage 82,161.  The vaccine 
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formulation development effort becomes even more challenging when multiple protein antigens 

are combined into a multivalent vaccine candidate 50,78. 

During the course of manufacturing protein antigens for multivalent vaccines, it is 

convenient and often necessary for the manufacturer to separate the manufacturing of the purified 

antigen (Bulk Drug Substance) from subsequent formulation and fill-finish operations (Vaccine 

Drug Product). This is very useful and often necessary in a more limited manufacturing 

environment (such as in some developing countries) when the production and purification are 

carried out in a setting which can handle only one product at a time. In particular for multivalent 

vaccines it is therefore advantageous to campaign each antigen and store the purified drug 

substance, typically in a frozen state. The purpose of this work described herein, is to develop 

stable frozen liquid formulations for bulk storage of the three NRRV antigens. The aggregation 

propensity (i.e., colloidal instability) of the antigens was identified as a major degradation 

mechanism, especially during thawing of the frozen bulk drug substance at large scale (data not 

shown). Thus, a better understanding of the conditions leading to physical instability of the three 

protein antigens was pursued and candidate frozen liquid formulations were developed. Since the 

NRRV antigens are already in clinical trials, the selection of final formulation components was 

constrained such that minimal changes are needed to the current formulation. Also, the new 

candidate formulations must be compatible with subsequent formulation steps with aluminum 

adjuvants. 

 

3.1 Materials and Methods 

The P[4] and P[6] used for colloidal stressed stability studies were produced and purified 

from E. coli at Walter Reed Army Institute of Research, MD and formulated in 0.5 mM sodium 
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phosphate, 150 mM NaCl, pH 7.2. The P[4] and P[6] used for the bulk formulation studies, and 

P[8] used for all the studies in this work, were produced and purified from E. coli by Blue Sky 

BioServices, MA and provided in 600 mM ammonium sulfate, 50 mM Tris buffer at pH 7.5. 

Sodium phosphate dibasic heptahydrate, and sodium chloride were purchased from Thermo Fisher 

Scientific (Waltham, MA). All other buffer reagents and chemicals including sodium phosphate 

monobasic monohydrate, citric acid, and ammonium bicarbonate were purchased from Sigma-

Aldrich (St. Louis, MO) and were of analytical grade or higher unless noted otherwise. Protein 

concentration for each antigen was determined using extinction coefficient as described in the 

chapter 2. 

3.1.1 Colloidal Stability Studies Using Agitation Stress 

Each of the three NRRV recombinant protein antigens was dialyzed overnight at 4ºC in 10 

mM sodium phosphate, 150 mM NaCl, pH 7.2 buffer, which is referred as “base buffer” in the text 

hereafter. The buffer-exchanged proteins samples in base buffer were subjected to shaking stress 

in 2 ml Fiolax clear, Schott (Lebanon, PA) glass vials with rubber stoppers (West Pharmaceutical, 

PA). The vials were filled with 0.4 ml of 0.15 mg/ml protein sample and were shaken sideways at 

250 RPM for 6 hr. at RT. Stressed samples (6 hr.) in triplicate for each antigen and control samples 

(unstressed, 0 hr.) were assessed for the presence of aggregate/particles by OD350 value and the 

total number of sub-visible particles were counted by Micro-flow imaging (MFI) as described 

below. 

For characterization studies of aggregates/particles, the samples were generated in the base 

buffer for each of the three NRRV antigens similar to colloidal stressed stability study described 

above. The vials were filled with 0.6 ml of 0.2 mg/ml protein sample and were shaken sideways 

at 250 RPM for 90 min at RT. These parameters were optimized to attain similar level of 
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degradation in each antigen. The generated aggregates/particles were analyzed for their size, 

appearance, secondary structure, tertiary structure, and chemical composition by various analytical 

tools mentioned below. 

3.1.2 Visual Appearance and Turbidity 

 Samples were visually assessed for visible particles under Adelphi Apollo II liquid viewer 

(Adelphi Co., UK). Turbidity measurements were performed in triplicate using a Hach 2100 AN 

Laboratory Turbidimeter. Instrument calibration was achieved using standards in the range of <0.1 

to 2,000 Nephlometric Turbidity Unit (NTU), and the turbidity values of the samples were 

corrected for the turbidity of the empty tube and base buffer. 

3.1.3 UV-Visible spectroscopy 

 The UV-Visible absorption spectra of the NRRV samples were recorded before and after 

centrifugation (13,000 X g for 5 min) from 190-1100 nm using a 0.5 s integration time and 1 cm 

path length quartz cuvettes using an HP-8453 photodiode array detector (Agilent Technologies, 

Santa Clara, CA) equipped with Deuterium (D2) and Tungsten (W) lamps. The Beer-Lambert law 

was used to calculate the protein concentration using the extinction coefficient of a 0.1% solution 

of each antigen. Light scattering correction was applied to all the collected absorbance spectra 

using the manufacturer’s data analysis software (Chemstation UV-Vis analysis software, Agilent 

Technologies). The optical density value at 350 nm (OD350) was recorded from the uncorrected 

spectra. 

3.1.4 Micro-Flow Imaging (MFI) 

 Sub-visible particles (1-100 µm) were measured and quantified using DPA-4200 flow 

microscope (Protein Simple, Santa Clara, CA) system equipped with a 100 µm silane coated flow 

cell. The instrument was calibrated using 10 µm polystyrene particle standards (Thermo Scientific) 
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prior to analysis. The samples were carefully drawn up in a low protein binding, filter-tip pipette 

(Neptune Scientific, San Diego, CA) and analyzed using a flow rate of 0.17 ml/min.  The purge 

volume for each measurement was 0.2 ml and measurements were made at ambient room 

temperature. Particle free water was used to optimize illumination prior to each measurement. 

3.1.5 Resonance Mass Measurement (RMM) 

 Archimedes particle metrology system (Affinity Biosensors, Santa Barbara, CA), equipped 

with Hi-Q microsensor was used to assess the total number and distribution of sub-micron particles 

(200 nm to 1 µm) in the samples. Prior to each sample run, clean baseline was obtained by cleaning 

the flow cell and sensor with 20% Contrad 20 and then flushing with particle free water. The 

accuracy of the sensor was determined by analysis of 1 µm polystyrene beads (Thermo-Scientific). 

Particle density of 1.37 g/ml was used, limit of detection was set to 0.03 Hz and measurements 

were made at ambient room temperature. Samples were run for either 10 min or till the total particle 

count reached 300. 

3.1.6 Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC) 

 SV-AUC experiments were performed on the unstressed and stressed samples as per the 

method described in chapter 2. 

3.1.7 Size Exclusion Chromatography (SEC) 

 Stressed and unstressed samples were subjected to SEC analysis as per the method 

described in chapter 2. 

3.1.8 Fourier Transform Infrared Spectroscopy (FTIR) 

 FTIR spectra were collected for each of the stressed and unstressed sample as per the 

previous method in chapter 2. Qualitative comparisons (number or peaks and their position) were 
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made between the in-solution protein FTIR spectra vs the FTIR spectra of filtered particles from 

same sample obtained using FTIR microscopy technique (described below). 

3.1.9 Fourier Transform Infrared Microscopy 

 The samples were filtered using 3 μm gold filters (Pall Corporation) which were pre-

equilibrated by washing with 0.1 M NaOH. After filtration, samples were washed with ultrapure 

water, and dried overnight. A Bruker Hyperion FTIR Microscope with a 15X objective was used 

to image individual particles. Two-hundred-fifty-six scans were recorded from 600-4000 cm-1 

with a viewing area of about 100 μm × 100 μm. OPUS (V6.5) software was used for baseline and 

atmospheric correction. The second derivative spectra were obtained using OPUS software and 

applying a nine-point Savitzky-Golay smoothing function. 

3.1.10 Extrinsic (ANS) Fluorescence Spectroscopy 

Samples were centrifuged at 13,000g for 5 min to separate the soluble and insoluble 

fractions. The pellet was re-suspended in base buffer. The final protein concentration in each of 

these supernatant and pellet components was 0.15 mg/ml. 8-Anilino-1-naphthalene sulfonate 

(ANS) was used as an extrinsic fluorescence probe with the A PTI QM-1 spectrofluorometer 

(Brunswick, NJ) equipped with a turreted four-position Peltier-controlled cell holder and a xenon 

lamp. The stock solution of ANS (1-Anilinonaphthalene-8-sulfonic acid) dye purchased from 

Sigma, Inc. (St. Louis, MO) was made at 25 mM in DMSO. Finally, a ratio of 25:1 (dye:protein) 

was maintained in the protein samples during fluorescence measurements. An excitation 

wavelength of 372 nm was used and emission spectra was collected from 400-600 nm at a 1 nm/s 

collection rate in 0.2 cm path length cuvette. Spectra for all the samples (supernatant and pellet of 

stressed and unstressed samples) of a particular antigen were collected by keeping the light 

intensity constant and this constant intensity was set using the supernatant of the unstressed sample 
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at RT. The obtained emission spectra were corrected for the buffer blank and data were plotted 

using Origin (v 7.0) software. 

3.1.11 SDS-PAGE 

 Prior to SDS-PAGE analysis, samples were centrifuged for 5 min at 13,000 X g, and the 

resulting supernatant and pellet were separated. Approximately, 2.5 µg of protein (supernatant or 

pellet) (+/-shaking) was mixed with 4X NuPAGE LDS sample buffer (Life Technologies). 

Nonreduced samples were incubated in dark for 10 min with 20 mM iodoacetamide and then boiled 

at 95°C for 10 min. For reducing conditions, 10 mM dithiothreitol (DTT) was added followed by 

incubation at 37ºC for 10 min. The samples were then separated using NuPAGE 12% Bis-Tris gel 

(Life Technologies) and MES running buffer by running at 150 V for 60 min. Staining of protein 

bands was done using Coomassie blue R250 (Teknova, Hollister, CA), followed by destaining 

with a mixture of 40% methanol, 10% acetic acid, and 50% ultrapure water. Gels were digitized 

using an Alphaimager (Protein Simple, Santa Clara, CA) gel imaging system. 

3.1.12 Ammonium Sulfate (AS) Precipitation Assay 

 AS precipitation assay was performed for each antigen in base buffer at RT. Stock solution 

of 3.5 M AS was prepared in the same buffer and pH was adjusted to 7.2. Samples were prepared 

in a 96-well plate to a final protein concentration of 0.18 mg/mL by mixing appropriate amounts 

of protein stock solution, AS stock solution and buffer to a final volume of 125 µL. Samples were 

mixed and incubated at RT for 10 min before filtering through a 0.2 µm polystyrene filter plate 

(Corning #3504; Corning Life Sciences, NY) by centrifugation at 3000 RPM for 10 min. 

Thereafter, 80 µL of the filtrate was transferred to a 384-well UV Star microplate (Greiner 

#781801; Greiner Bio-one, NC) and absorbance was measured at 280 nm on a SpectraMax M5 

UV-Visible plate reader. Protein concentration (mg/mL) versus AS molar concentration (M) data 
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were fit to a Boltzmann sigmoidal curve function as described by Yamniuk et al using Origin 2017 

to obtain AS mid-point value (ASmidpt) for each antigen 162. 

3.1.13 Excipient Screening for NRRV Antigens under Agitation, Thermal and Freeze-thaw 
Stresses 

Excipient screening studies using both thermal and agitation/shaking stresses - Frozen P[8] 

protein samples were thawed and buffer exchanged in base buffer. Stock solutions (2x) of 35 

pharmaceutical excipients were prepared in base buffer, and a stock solution of NaCl (salt) (10x) 

was also prepared which consisted of 10 mM sodium phosphate, 1.5 M NaCl, pH 7.2 buffer. For 

each sample for excipient screening, an excipient of interest, protein stock solution, salt stock 

solution, and base buffer were combined to achieve the desired concentration of each excipient. A 

final protein concentration of 0.15 and 0.10 mg/mL was used for shaking and thermal stress, 

respectively. Assays were then performed on these samples in triplicate. For shake stress studies, 

2 mL Fiolax clear, Schott (Lebanon, PA) glass vials were filled with 0.4 mL of 0.15 mg/mL protein 

and stoppered with sterile and coated stoppers (Part# 19700302, West Pharmaceutical, PA). The 

vials were then shaken sideways at 300 RPM for 6 hr. at room-temperature. Additionally, control 

vials were filled with 0.4 mL of each base buffer without protein and shaken under similar 

conditions. The following techniques were used in excipient screening experiments: (a) OD350 as 

a function of temperature (Thermal stress), (b) UV-Visible Spectroscopy (Shaking stress), and (c) 

Micro-flow imaging (MFI) (Shaking stress).  The OD350 method is described in chapter 2 and 

methods for (b) and (c) are described above. The excipients that showed stabilizing effect on P[8] 

antigen either during thermal or shaking stress were tested for their effect on P[4] and P[6] 

antigens. Not all of the excipients could be tested with P[4] and P[6] antigens due to limited 

material available for these antigens. 
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Concentration optimization of lead excipients for their stabilizing effect: concentration of the 

identified lead excipients (Thermal stress - Sucrose, Trehalose, Mannitol, Sorbitol, Pluronic F-68 

(Figure 3.6A); Shaking stress – PS-80, 2-OH propyl β-CD, Pluronic F-68 (Figure 3.6B)) was 

optimized using P[8] antigen under thermal and shaking stress, using OD350 and MFI assays, 

respectively, as described above. 

Salt and candidate excipient(s) combination optimization: increasing concentrations of salt (NaCl) 

from 0 to 150 mM were screened with different combinations of lead excipients for their stabilizing 

effect on the P[8] antigen. Different combinations (C1 – C14) selected for the lead excipients at 

their optimized concentration are mentioned in table below Figures 6C and 6D, OD350 and MFI 

assays were used to assess the stability against thermal and shaking stress, respectively in each 

combination. 

pH and buffer optimization studies: selected combination of excipients (0.025% PS80 + 10% 

Sucrose) was further tested in different buffers (1 mM sodium phosphate, 10 mM sodium 

phosphate, 10 mM histidine, and 10 mM HEPES) at different pH conditions 6.5, 6.8, 7.2, and 7.5 

to study their effect on P[8] under thermal and shaking stress. Based on the effect of these buffer 

conditions on P[8] antigen, a subset of conditions (1 mM sodium phosphate pH 6.5 and 7.2, 10 

mM sodium phosphate pH 6.5 and 7.2, 10 mM HEPES pH 6.5 and 7.2, and 10 mM sodium 

phosphate with 150 mM NaCl pH 7.2) were down selected to test with P[4] and P[6] antigens. 

Thermal, shaking, and freeze-thaw (FT) stress studies of candidate bulk formulations: based on 

the information gained from the above studies, 8 candidate bulk formulations were designed (Sup. 

Table S3.3) and tested for the stability of the three antigens under forced thermal, shaking, and FT 

stress conditions. Thermal and shaking studies were conducted as previously described here. For 

FT study, stress consisted of five cycles of freezing each sample at -80˚C and thawing at room-
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temperature. 200 µL of protein samples at 0.15 mg/mL in 1.5 mL Eppendorf tubes were used in 

this study and protein loss after five FT cycles was determined by measuring absorbance at 280 

nm. 

Further optimization of PS80 concentration: based on the protein loss data during FT study with 

8 candidate bulk formulations, three different concentrations of PS80; 0.025%, 0.05% and 0.1% 

were further tested against FT stress (5 cycles) at protein concentration of 0.15 and 0.40 mg/mL 

for each of the three antigens in 1mM sodium phosphate 150 mM NaCl pH 7.2 buffer (current 

formulation buffer). We also evaluated these different PS80 concentrations (0.025%, 0.05% and 

0.1%) against shaking stress for each antigen in current formulation buffer with the same method 

as described above. 

Additional FT studies with candidate bulk formulations for the three NRRV antigens: each of the 

three NRRV antigens in the current formulation and two candidate formulations (1 mM sodium 

phosphate 150 mM NaCl 0.05% PS80 pH 7.2, 10 mM histidine 150 mM NaCl 0.05% PS80 pH 

6.8) were subjected to 1 and 5 FT cycles in Eppendorf tubes at ~1 mg/mL concentration. Samples 

were subjected to visual inspection, SEC, UV-Visible spectroscopy, MFI, and DSC. 

 

3.2 Results 

3.2.1 Colloidal stability assessments and characterization of aggregates and particles 

As shown in Figure 3.1A, as a result of shake/agitation stress, high OD350 value of ~0.45 

was observed for P[8] antigen which indicates substantial protein aggregation compared to P[4] 

and P[6]. The P[6] protein appeared to be least susceptible to aggregation when subjected to 

shaking stress under the tested conditions (with OD350 value below 0.01). Since all three antigens 

showed similar turbidity values after shake stress (7.8-12.9 NTU; see Supplemental Table S3.1), 
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this result is likely a reflection of the formation of larger aggregates and particulates. Consistent 

with this, the total number of sub-visible particles in the stressed samples was highest for P[8] and 

lowest for P[6] antigen as measured by MFI (Figure 3.1B). Visible particles were observed by 

visual assessment in some of the stressed samples, and A280 values after centrifugation and light 

scattering correction decreased by ~30% for P[4] and P[8], and ~35% for P[6] antigen indicating 

notable loss in protein mass. No detectable soluble aggregates were recorded by SEC and SV-

AUC for each antigen; however, substantial monomer loss was observed (consistent with UV-

visible spectroscopy results), suggesting the formation of larger, insoluble aggregates 

(Supplementary Table S3.1). Figure 3.1C-3.1F show representative aggregate and particle size 

distribution data for P[8] antigen; no soluble aggregates were detected and only a major peak 

corresponding to monomer was observed by both SEC chromatograms and SV-AUC c(s) 

distribution analysis (Figures 3.1C and 3.1D). Substantial increases in the larger subvisible 

particles in size ranges 1.3 – 1.8 µm and 2 – 40 µm were observed, however, in stressed P[8] 

samples by RMM (Figure 3.1E) and MFI (Figure 3.1F) measurements, respectively. 

The aggregates/particles generated from shake stress were then further evaluated in terms 

of morphology, higher-order structure (FTIR analysis and hydrophobic exposure by ANS 

fluorescence), and chemical composition (non-native disulfide formation).  The results for P[8] 

antigen are described in Figure 3.2 and similar results were obtained for P[4] and P[6] antigens 

with some minor differences as shown in Sup. Figure S3.1. First, analysis of the MFI images 

revealed that the micron size particles formed were opaque and fibrillar in morphology (Figure 

3.2A). The optical microscope was used to visualize the isolated particle (Figure 3.2B). FTIR 

analysis was then utilized to examine the overall secondary structure content of the unstressed 

sample in solution and FTIR microscopic analysis was used to examine the secondary structure of 
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protein within the isolated particles generated by shake-stress. Second derivative of amide I FTIR 

spectra were notably different for isolated P[8] particles vs. control protein in solution (Figure 

3.2C). Many of the peaks in the control sample FTIR spectra were not retained in the stressed 

sample spectra suggesting loss of native structure. In addition, an additional primary peak (~1625 

cm-1) for protein within the isolated particles indicated the formation of inter-molecular β-sheet 

sheets (i.e., aggregates). Alterations in higher-order structural integrity of the P[8] protein present 

in the isolated particles (vs control protein in solution) was assessed by measuring the fluorescence 

of ANS dye binding. As shown in Figure 3.2D, substantial increase in the fluorescence intensity 

of ANS was recorded for the pellet of the agitation stressed samples as compared to the supernatant 

of stressed samples as well as compared to the supernatant/pellet of control protein samples. The 

higher fluorescence intensity of the protein derived from the pellet suggested increased 

hydrophobic surfaces, due to structural alterations and/or aggregated formation due to shaking 

stress. SDS-PAGE analysis of the protein from the pellet generated after shaking indicated the 

presence of oligomeric species ranging from 38 to 68 kDa in addition to the monomeric protein 

under non-reducing conditions (Figure 3.2E). The oligomeric species were not present in the 

reducing gel (Figure 3.2F) suggesting they were linked through non-native inter-molecular 

disulfide bonds (each NRRV antigen has single Cys residue). Single monomeric band was 

observed by SDS-PAGE for the control samples and for supernatant of the stressed samples under 

non-reduced and reduced conditions. Overall, the particles or aggregates generated for each NRRV 

antigen were opaque and fibrillar in morphology, showed increased inter-molecular β-sheet 

content and hydrophobic exposure, and were partially crossed linked with inter-molecular 

disulfide bonds. 
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To assess if these agitation stress results, in terms of relative aggregate/particle formation 

of each antigen, are correlated with their relative solubility, the relative apparent solubility of each 

antigen was determined using an ammonium sulfate (AS) precipitation assay.  Decreases in protein 

concentration were observed with the increasing amounts of AS added to the solution presumably 

due to the known salting-out mechanism of kosmotropic salts (Figure 3.2G). The ASmidpt value was 

calculated for each antigen which is a measure of relative solubility by comparing the amount of 

AS needed to precipitate 50% of the protein out of solution. A similar ASmidpt value of 1.35 ± 0.01 

M was observed for P[4] and P[8], whereas ASmidpt was 1.29 ± 0.01 M for P[6] suggesting an 

overall similar, albeit somewhat lower relative solubility of P[6]. This result is consistent with the 

relatively more hydrophobic nature of P[6] compared to the other two NRRV antigens (refer to 

chapter 2). The more notable agitation induced aggregate/particle formation of the P[8] antigen is 

thus not consistent with rank ordering of relative apparent solubility (compared to the P[4] and 

P[6] antigens as measured by ASmidpt values), and is likely therefore due to other causes (e.g., 

differences in  colloidal or interfacial properties; see discussion). 

3.2.2 Screening stabilizing excipients to minimize shaking and thermal induced aggregation 
of NRRV antigens 

Due to the susceptibility of NRRV antigens toward aggregation by shaking stress (see 

above) and thermal stress (see chapter 2), these two stress conditions were used to screen 35 

pharmaceutical excipients. Figure 3.3A shows total sub-visible particles by MFI analysis (2 – 100 

µm after 6 h of shaking minus time zero results per milliliter of 10x diluted sample) for P[8] in 

base buffer ± excipients. Many of the tested excipients mitigated particle formation during shaking 

stress (to varying extents) while the remaining excipients had no effect or were perhaps mildly 

destabilizing (Figure 3.3A).  Figure 3.3B shows the OD350 values (6h – 0h) in an increasing order 

obtained from the spectra of P[8] antigen in the base buffer ± excipients. Overall, both the MFI 
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and OD350 methods showed that many detergents (e.g., Triton X-100, Pluronic F-68, Brij-35, PS-

20, and PS-80) were able to mitigate shaking induced aggregation of P[8] antigen. In addition, 2-

OH propyl β-CD, PEG-3500, and MgCl2 also showed stabilizing effects. Due to limited 

availability of P[4] and P[6] antigens, a subset of excipients that showed stabilizing effect on P[8] 

were tested with P[4] and P[6]. Of this subset, each of the tested excipients had stabilizing effect 

on P[4] antigen, and with 2-OH propyl β-CD and PS-80 having the most positive effect (Sup. 

Figures S3.2A and S3.2B). With P[6] antigen, the goal was to probe the compatibility of these 

excipients and look for significant detrimental effects since P[6] antigen (without any excipient) 

showed minimal aggregation under the tested shaking stress condition. As shown in Sup. Figures 

S3.2D and S3.2E, addition of the six excipients did not show any dramatic destabilization of P[6] 

antigen. Thus, 2-OH propyl β cyclodextrin, Pluronic F-68, and PS-80 were chosen for further 

optimization of their concentration with P[8] antigen under shaking stress. 

For excipient screening to stabilize NRRV antigens in the liquid state when exposed to 

thermal stress, OD350 was measured as a function of temperature and the same set of 35 

pharmaceutical excipients was screened with P[8]. Figure 3.4 inset shows representative OD350 vs 

temperature plot for P[8] antigen alone and in the presence of a stabilizing and destabilizing 

excipient. The Tonset value for aggregation was defined as the temperature to reach OD350 value of 

0.1, and ΔT @ OD350 of 0.1 value was defined as the difference between Tonset value for P[8] 

antigen with vs without excipient (thus, a positive ΔT shows a stabilizing effect of the excipient 

and a negative ΔT shows destabilization). As expected, carbohydrates and polyols showed 

stabilizing effect against thermal stress, and Pluronic F-68 showed dramatic stabilization of the 

P[8] antigen (Figure 3.4). Similar to shaking stress, a subset of most stabilizing excipients were 

tested with P[4] and P[6] (Sup. Figures S3.2C and S3.2F). Each of the tested excipients showed a 
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similar stabilizing effect with the exception of 0.1 M aspartic acid (which did not stabilize P[4] or 

P[6]). Based on these results, sucrose, trehalose, mannitol, sorbitol, and Pluronic F-68 were 

selected for their concentration optimization with P[8] antigen under thermal stress. 

3.2.3 Optimizing lead stabilizers to further minimize shaking and thermal induced 
aggregation of NRRV antigens 

 First, the concentration of each of the lead excipients was titrated down from the maximum 

concentration used in the screening study to find the minimal effective concentration. As shown 

in Figure 3.5A, reducing the concentration of carbohydrates or polyols reduced their effectiveness 

in inhibiting P[8] aggregation with 10% (w/v) showing the maximum thermal stability. 

Conversely, 0.025% (w/v) Pluronic F-68 showed higher thermal stability or delayed onset of 

aggregation as compared to 0.05% and 0.01% levels. For shaking stress study, each of the selected 

excipients at lower concentrations were also able to mitigate protein aggregation (Figure 3.5B). 

PS-80 was found to be most effective at 0.025% level out of the three tested concentrations. For 

2-OH propyl β-CD and Pluronic F-68, all concentrations examined were equally effective. 

 As the next step, three stabilizing excipients against thermal and shaking induced 

aggregation of P[8] were selected for additional studies. Sucrose at 10% w/v was preferred over 

trehalose, mannitol and sorbitol (even though all three showed similar or slightly better thermal 

stability profiles compared to sucrose) because of cost or the known tendency of these additives to 

crystallize out during freezing and thawing 163-165. Also, equal amounts (% w/v) of the two polyols 

(vs. sucrose or trehalose) impart higher solution osmolality which is less desirable for parenteral 

administration due to their hypertonic nature 166,167. Pluronic F-68 at 0.025% was also selected 

since it was excellent in minimizing P[8] antigen aggregation due to thermal and shaking stresses. 

PS-80 is well known to reduce protein aggregation due to interfacial interactions as this non-ionic 

detergent can outcompete protein molecules for the interfaces when added above their critical 
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micelle concentration 168. In this study, 0.025% PS-80 concentration was found to be effective in 

minimizing shaking induced aggregation of P[8] antigen. Finally, the effect of different amounts 

of salt (sodium chloride) was also evaluated in this study. Different combinations of above selected 

excipients were studied to probe for synergistic effects in stabilizing the P[8] antigen. As shown 

in Figures 3.5C and 3.5D, all the tested combinations outperformed the base formulation (C-14 in 

the figure which shows the highest P[8] aggregation propensity). It can be seen that each 

combination of selected excipients was effective in limiting thermal induced aggregation of P[8] 

in the absence of salt (C1 – C8 in Figure 3.5C). The effect of sucrose on thermal stability was also 

evaluated at different salt concentrations (50, 100, 150 mM) and lower salt resulted in better 

stability profile (Figure 3.5C; samples C-9, C-11, C-13). The higher aggregation propensity of P[8] 

by addition of 50 mM NaCl could be due to surface charge screening resulting in neutralization of 

short-range protein-protein repulsive electrostatic interactions 169,170. Agitation stress results 

suggested that addition of 0.025% non-ionic detergent either alone or in combination with 10% 

sucrose were able to mitigate aggregation (Figure 3.5D; C-1 – C-4, C8). Interestingly, detectable 

aggregates were observed in the stressed P[8] samples containing all three excipients (C-6). As 

expected, sucrose alone or in combination with different amounts of salt (C-13, C-11, C-9) was 

not able to minimize shaking induced aggregation of P[8]. 

3.2.4 Optimizing buffering agent and solution pH to minimize shaking and thermal 
induced aggregation of NRRV antigens 

 Three different buffering agents (sodium phosphate, Histidine, and HEPES) were 

evaluated at four pH values (6.5, 6.8, 7.2, and 7.5) for their effect(s) with the P[8] antigen in the 

C-2 formulation (10% Sucrose, 0.025% PS-80) during both thermal and agitation induced 

aggregation. As shown in Figure 3.6A, phosphate and HEPES buffers had similar effects and were 

better than histidine (10 mM phosphate was marginally better than 1 mM phosphate buffer) after 
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shaking stress. No apparent effect of pH was observed. In thermal stress study (Figure 6B), a clear 

pH-dependent trend was observed as higher pH was more stabilizing (7.5 > 7.2 > 6.8 > 6.5) and 

different buffers could be rank ordered as Phosphate > HEPES > Histidine. Phosphate buffer at 1 

mM was most effective in limiting aggregation at all tested pH conditions with or without 

excipients. 

Based on the results described above with P[8] antigen, pH conditions and buffer systems 

were down-selected to test with P[4] and P[6] antigens (due to their limited availability). 

Surprisingly, for the majority of conditions tested, OD350 value after shaking for 6 hr. elevated 

(was above 0.01) even in the presence of 0.025% PS-80 suggesting some undesirable level of 

aggregation (Sup. Figures S3.3A and D3.3D). However, when the same set of conditions were 

tested in the presence of 150 mM NaCl and 10% sucrose + 0.025% PS-80, aggregation was 

significantly reduced in all the samples containing P[4] antigen (Sup. Figure S3.3B). Due to limited 

availability of P[6] antigen, only one condition (10 mM PBS pH 7.2) could be tested for the effect 

of salt and results were comparable to P[4] (Sup. Fig. S3.3D). Overall, these results demonstrated 

that addition of salt in formulation (containing PS-80) might be necessary for the bulk storage of 

these antigens to mitigate shaking or agitation induced aggregation. Similar results were obtained 

for thermal stress study with P[4] and P[6] antigens as seen with P[8] antigen (Su. Fig. S3.3C and 

S3.3E). In summary, P[4] and P[6] samples at pH 7.2 were more stable than pH 6.5, and Phosphate 

was better than HEPES in the presence of excipients in terms of NRRV antigen stability. In 

addition, thermal induced aggregation was lowest in 1 mM phosphate (vs 10 mM phosphate) which 

is consistent with the P[8] data. 
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3.2.5 Evaluation of candidate formulations for frozen liquid bulk drug substance of three 
NRRV antigens 

Eight candidate formulations (F2 – F9) listed in Table 3.1 were designed based on the 

above results. The osmolality values for each formulation were within an acceptable range, and 

low concentration buffer conditions (1 or 5 mM) were selected due to improved thermal stability 

profiles for each of the antigens (see Figure 3.7A; F2 vs. F4, F6 vs. F7). The candidate formulations 

(F2 – F9) were then tested along with the current formulation (F1) for their ability to mitigate 

aggregation due to thermal, shaking, and freeze-thaw (FT) stress as shown in Figure 3.7. Each 

candidate formulation containing sucrose showed better thermal stability as compared to the 

current formulation F1 (Figure 3.7A). For shaking stress study, 0.025% PS80 was able to reduce 

particle/aggregate formation for P[8] antigen but was not so effective for the other two antigens 

and warranted further examination (Figure 3.7B). Addition of PS-80 to the candidate formulations 

was able to mitigate protein loss for each antigen due to FT stress (albeit to a lesser extent with 

F9) as shown in Figure 3.7C. 

Different PS-80 concentrations (0.025, 0.05, and 0.1%) were examined at 0.15 mg/mL 

protein concentrations for each NRRV antigen to optimize the final PS-80 amount. As shown in 

Figure 3.8A, addition of 0.025% PS-80 was able to significantly reduce aggregation for P[4] and 

P[8] antigens (P[6] antigen was already least prone to aggregation). No notable increase in OD350 

was observed with 0.05 or 0.1% PS-80 for each NRRV antigen. FT stress of 5 cycles caused low 

levels but measurable protein loss for each antigen at 0.15 mg/mL even in the presence of 0.1% 

PS-80 in the formulation (Figure 3.8B). Since part of this loss could potentially be attributed to 

protein adsorption to the plastic tubes used in the study, we repeated the FT study at a higher 

protein concentration (0.4 mg/mL). A notable reduction in the percent protein loss was observed 

at 0.4 mg/mL in the control (without PS-80) as well as PS-80 containing samples (Figure 3.8C). 
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For example, 0.05% PS-80 was most effective in mitigating protein loss for P[6] and P[8] antigens, 

and minimized loss for P[4] antigen. Thus, 0.05% PS-80 was added to candidate drug substance 

formulations. 

The next goal was to test the selected candidate formulations to minimize/mitigate particle 

formation during FT stress under conditions which are more likely to occur during manufacturing 

and storage of the bulk drug substance materials. Figure 3.8 (D-F) shows sub-visible particle 

distribution for P[8] antigen after 0, 1, or 5 FT cycle(s) in the current formulation (Figure 3.8D) 

and two candidate formulations (Figure 3.8E – current formulation + 0.05% PS-80, Figure 3.8F – 

10 mM Histidine 150 mM NaCl 0.05% PS-80 pH 6.8). Majority of the subvisible particles formed 

were in the size range 2 - 5µm and as expected the number of particles increased from 0 to 5 FT 

cycle. The two candidate formulations containing PS-80 helped in reducing subvisible particle 

formation by about 10 – 30-fold. Similar observations were made for P[4] and P[6] antigens and 

least number of particles were observed for P[4] out of the three antigen in the current formulation 

(Sup. Figure S3.4). Visual assessment of FT stressed and control P[8] samples in the current and 

candidate formulations revealed no visible particle formation in these small scale experiments 

(data not shown). Finally, minimal to no changes were observed between the three formulations 

of each NRRV antigen upon FT stress with regards to mass loss, soluble aggregate distribution 

(from SEC analysis), overall conformational stability, or chemical modifications (data not shown). 

 

3.3 Discussion 

The major goal of this work was to mitigate aggregation and particle formation of the three 

NRRV protein antigens during freeze-thaw (FT) and agitation, and to develop stable frozen liquid 

bulk formulations for long term storage (prior to formulation and fill-finish to manufacture the 
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final vaccine drug product in vials). Formation of visible particles leading to precipitation was a 

concern associated with these antigens during early process development, especially during FT in 

larger volumes (data not shown). Since these antigens are already in clinical trials a major 

constraint during formulation development was to minimize the change to current formulation to 

ensure the NRRV program’s progress is not hindered while ensuring optimal protein stability. 

Aggregates are widely studied as product-related impurities in biopharmaceutical drug candidates 

since they can be associated with potential immunogenic characteristics known to reduce the 

efficacy, for example, by generating anti-drug antibody (ADA) responses 171-174. In the case of 

vaccine protein antigens, aggregates or particles can lead to protein loss during process 

development (e.g., during filtration) thus affecting the productivity and cost of vaccine production. 

The P[8] antigen was found to be most prone to aggregation under shaking/agitation stress. 

This result was consistent with physical stability studies as a function of pH and temperature in 

the pH range 6 – 7 where aggregation was observed (see chapter 2). It is interesting to note that 

although the P[8] antigen showed highest conformational stability (compared to P[4] and P[6]), it 

is also the most susceptible of the three antigens to shaking or agitation induced aggregation. This 

is likely due to lower colloidal stability of the P[8] antigen. It is possible that the thermal stress vs. 

shaking stress (i.e., exposure to air-liquid interface, bubble entrapment, etc.) generate different 

types of partially unfolded protein states. For example, species generated under shaking stress 

could potentially have higher levels of exposed hydrophobic residues or regions with a greater 

tendency to interact and form multimers. 

As noted above, it was interesting to compare the higher colloidal stability of P[4] and P[6] 

vs. the P[8] antigen, although they share 66 – 80% sequence homology. This result highlights the 

potential use of point mutations and protein engineering to improve pharmaceutical properties and 
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developability of candidates without compromising their biological activity 175. Comparative 

second virial coefficient (B22) measurements can be made in the future, when sufficient material 

is available of each antigen, which would potentially be a good qualitative indicator of the 

differences in colloidal stability of these protein antigens 176,177. With limited material, however, 

we were able to compare the relative solubility ranking of the three antigens using ASmidpt values 

from the AS precipitation assay. The PEG precipitation assay (using a macromolecular crowding 

agent polyethylene glycol), which is widely used to screen monoclonal antibody candidates to 

assess their relative solubility under different formulation conditions 128,178, did not lead to notable 

precipitation with these three protein antigens (likely due to interaction between the protein and 

PEG, data not shown). We observed salting-out of each antigen in similar range of AS and 

interestingly lowest ASmidpt was observed for P[6] which is also most hydrophobic among the three 

antigens (see chapter 2). Similar ASmidpt values were observed for P[4] and P[8] antigens. The 

relative rank ordering of solubility obtained from AS precipitation assay reflects the propensity of 

native state of a protein to self-associate. Thus, for these three protein antigens, the 

aggregate/particle formation pathway (during FT, thermal or shaking-induced stresses) is likely 

governed by formation of structurally altered/partially unfolded protein states of the protein and 

not by protein-protein interactions in the native state (i.e., as described above in the AS 

precipitation assay) 179. 

To this end, we then characterized the nature and composition of the NRRV protein within 

aggregates/particles. We utilized a limited shake stress test to evaluate the aggregates/particles 

when they just started to form, but majority of the protein was still in native-like state. This enabled 

us to capture the initial formation of protein aggregates/particles for each antigen. The results 

showed overall similar characteristics for the three antigens in isolated aggregates/particles. For 
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example, most aggregates were fibrillar in morphology with opaque nature, showed increased 

levels inter-molecular β-sheet content, and some loss of native secondary structure content was 

recorded. Increased exposure of apolar regions was observed by ANS fluorescence studies and 

formation of aggregates containing non-native disulfide bonds (which were reducible in nature) 

were seen by SDS-PAGE analysis. Interestingly, the physicochemical characteristics of protein 

within the isolated aggregate/particle were similar in nature to the protein within aggregates 

generated for an IgG under different stress conditions as reported previously in our laboratories 

180. These results further support the aggregation pathway of the NRRV antigens proceeds via 

formation of structurally altered protein intermediates (as described above by a combination of 

FTIR, ANS fluorescence and SDS-PAGE analyses). 

During excipient screening and optimization studies with P[8], 0.025% PS-80 or Pluronic 

F-68 were effective in preventing shaking induced aggregation either alone or in combination with 

sucrose and no NaCl containing formulations (Figure 3.5D). Non-ionic surfactants such as PS-80 

and Pluronic F-68 are known to out-compete protein molecules for air-liquid, liquid-solid 

interfaces thus preventing protein structural alterations due to surface adsorption leading to non-

native aggregate formation 181. Sucrose, on the other hand, is known to stabilize proteins against 

thermal stress by the well-known mechanism of preferential exclusion; the sugar molecules 

increase the free energy of the unfolded state (as compared to the native state of the protein), and 

thus, the native state of the protein is favored 182. Due to limited material, only a subset of the 

stabilizing excipients identified with P[8] were tested with P[4] and P[6]. This challenge is not 

uncommon during early formulation development when only a few milligrams of material is 

available. Since P[8] was available in larger quantities, and since the three bulk antigens will be 
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co-formulated with aluminum adjuvant as a trivalent vaccine drug product, it was a reasonable and 

efficient approach to avoid screening each excipient with each of the three antigens. 

Buffering agents can be regarded as a key excipient added to protein-based formulations, 

apart from maintaining the desired solution pH, they can affect the physical stability and solubility 

of proteins by variety of mechanisms 129. Higher physical stability against thermal induced 

aggregation was observed at higher pH (7.5 > 7.2 > 6.8 > 6.5) in each of the buffer systems studied 

(Phosphate, Histidine, HEPES) for each antigen. This result is consistent with the calculated 

theoretical pI of each antigen, 6.3 for P[4], and 5.9 for P[6] and P[8]. Since the net charge on a 

protein molecule will be closer to zero at pH condition near its pI, the aggregation propensity is 

expected to be higher due to poor colloidal stability. 

Eight candidate frozen liquid bulk formulations (Table 3.1) were designed for the NRRV 

antigens ranging from minimal changes (such as addition of PS-80 to the current formulation, F1) 

to more major changes (such as changing the buffering and tonicifying agents). Each of these new 

formulations improved NRRV antigen stability against thermal, shaking and FT stresses (Figure 

7). Formulations F3, F5 and F8 showed notable improvements in thermal stability in the liquid 

state for each antigen. We further optimized the concentration of PS-80 and found 0.05% to be 

optimum concentration for each NRRV antigen to minimize shaking-induced aggregation and 

protein loss due to FT stress (Figure 3.8).  Notable levels of aggregation were observed for P[4] 

and P[6] antigens after shaking stress as well as significant protein loss was observed for each of 

these two NRRV antigens after 5 FT cycles (Figure 3.7). It is important to note that the antigens 

were subjected to accelerated conditions (5 FT cycles) versus what they would normally encounter 

(1-2 FT cycles) during routine preparations. Also, some protein loss during FT can be attributed 

to protein adsorption to plastic tubes used in the study (and % loss appears higher since the study 
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was conducted at only 0.15 mg/mL protein concentration to conserve material). Lower percent 

levels of protein loss were observed at higher protein antigen concentrations (> 0.4 mg/mL) that 

will be targeted for future batches of the protein antigens. 

Liquid formulations of bulk drug substance can be kept frozen (-80oC) during long term 

storage to avoid degradation by reducing the mobility of molecules and mitigating transportation 

stress (shaking/agitation stress), for example, between the vaccine bulk and drug product 

manufacturing sites. Thus, stabilization of the three antigens against FT stress is critical since such 

treatments expose proteins to ice-water interfaces, cryo-concentrations (concentration gradients of 

protein and excipients across the container), pH shifts, and temperature fluctuations, which could 

lead to both physical and chemical degradation of the protein antigens 183-186.  Addition of 0.05% 

PS-80 to the current formulation was able to mitigate sub-visible particle formation till 5 FT cycles 

for each antigen. Formation of visible particles and precipitation upon thawing of frozen NRRV 

antigen bulk solutions were observed in larger volumes in a suboptimal buffering system (data not 

shown). This was the major concern with the current formulation for bulk storage of these NRRV 

antigens since bulk drug substance typically undergoes one FT cycle before formulation steps (e.g., 

dilution, mixing with other antigens and adsorption to aluminum adjuvant to prepare the trivalent 

vaccine) and subsequent fill-finish into vials to produce a final vaccine drug product. No visible 

particles were observed for P[8] antigen in our scaled-down study in glass vials which might not 

be the most accurate representation of FT process in larger volume containers where freezing and 

thawing rates, surface-area to volume ratio, container type, head space, etc. can be substantially 

different 187-189. 

It is important to note that the studies presented in this work were aimed at developing 

candidate frozen liquid formulations for bulk storage of drug substance (i.e., monovalent antigens). 
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The formulated final vaccine drug product, however, will be a trivalent vaccine drug product 

containing an adjuvant (Alhydrogel®) to enhance the immune response and potentially a 

preservative to enable multi-dose presentations. Chapter 4 of this dissertation focuses on the 

assessment of interaction of the NRRV antigens with adjuvant, physicochemical and 

immunochemical stability profiles of the antigens bound to adjuvant, and compatibility with 

antimicrobial agents. Thus, a key additional consideration for final selection of the frozen liquid 

bulk drug substance formulation during development will be compatibility with the drug product, 

both in terms of manufacturing and long-term stability of the trivalent, aluminum adjuvanted 

vaccine candidate at various antigen doses. 

 

 

 

 

 

 

 

 

 

 

 

 



119 
 

 

3.4 Tables 

Table 3.1. Composition and osmolality values of 8 candidate frozen liquid formulations for each 
NRRV antigen for their individual bulk storage. Osmolality values are from triplicate 
measurements and error bars represent 1 SD. 

F # Formulation Components (pH 7.2) Osmolality 
(mOsm) 

1 1mM Sodium Phosphate + 150mM NaCl (Current Bulk Formulation) 270 ± 1 
 

2 1mM Sodium Phosphate + 150mM NaCl + 0.025% PS-80 268 ± 1  
 

3 1mM Sodium Phosphate + 10% w/v Sucrose + 0.025% PS-80 328 ± 2 
 

4 5mM Sodium Phosphate + 150mM NaCl + 0.025% PS-80 297 ± 4 
 

5 5mM Sodium Phosphate + 10% w/v Sucrose + 0.025% PS-80 330 ± 8 
 

6 1mM Sodium Phosphate + 7.5% w/v Sucrose + 50mM NaCl + 0.025% 
PS-80 

343 ± 4 
 

7 5mM Sodium Phosphate + 7.5% w/v Sucrose + 50mM NaCl + 0.025% 
PS-80 

308 ± 4 
 

8 5mM HEPES + 10% w/v Sucrose + 0.025% PS-80 308 ± 4 
 

9 5mM HEPES + 7.5% w/v Sucrose + 50mM NaCl + 0.025% PS-80 331 ± 2 
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3.5 Figures 

 

Figure 3.1. Colloidal stability assessment and comparison of the three NRRV antigens after shake stressed 
for 6 h. (A) light scattering as measured by OD350 values, and (B) total sub-visible particles (2 – 
100 μm) per mL by MFI. Results from unstressed samples (0 h) are subtracted from stressed 
samples (6 h). Size-distribution analysis of shake stressed P[8] antigen in base formulation (10 
mM PBS pH 7.2) were then monitored as soluble aggregates/fragments and protein loss 
quantification by (C) SEC, and (D) SV-AUC analysis. Sub-micron and sub-visible particle 
analysis by (E) resonant mass measurement, and (F) micro-flow imaging microscopy, respectively. 
Error bars represent 1 SD from three separate measurements. Refer to Supplemental Table S1 for 
data of similar studies with P[4] and P[6] antigens. 
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Figure 3.2. Morphology and structural analysis of protein within aggregates/particles formed for P[8] 
antigen after shake stress in base formulation. (A) Representative particle images recorded by 
micro-flow imaging microscopy, (B) optical microscopic image of an isolated protein 
particle/aggregate, (C) secondary structure analysis of protein in isolated insoluble protein 
particles/aggregates by FTIR microscopy, (D) higher order structure integrity analysis of 
unstressed  and stressed protein in the supernatant (S) and pellet (P) fractions  by ANS fluorescence 
spectroscopy, and chemical modification analysis of unstressed and stressed protein in S and P 
fractions by (E) non-reduced and (F) reduced SDS-PAGE (Lane 1 – S unstressed, lanes 2,3,4 – S 
stressed, lane 5 – MW marker, lane 6 – P unstressed, and lanes 7,8,9 – P stressed). Refer to 
Supplemental Figure S1 for data sets of similar studies with P[4] and P[6] antigens. (G) Relative 
solubility assessment of three NRRV antigens using ammonium sulfate precipitation assay, error 
bars represent 1SD from triplicate experiments. 
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Figure 3.3. Excipient screening against agitation stress of P[8] protein antigen. (A) Total sub-visible 
particles, and (B) OD350 values of 0.15 mg/mL P[8] solution after shake stressed for 6 h in base 
buffer (10 mM PBS pH 7.2; black bar, highlighted in box) and in base buffer containing different 
excipients. Excipients are rank ordered from lowest to highest total sub-visible particles or OD350 
value suggesting highest to lowest stability. Excipients in green, orange, grey, and red resulted in 
large increase, moderate increase, no effect, and decrease in stability, respectively. Error bars 
represent 1 SD from triplicate experiments. Refer to Supplemental Figure S2 for similar studies 
with down-selected excipients for P[4] and P[6] antigens. 
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Figure 3.4. Excipient screening against thermal stress of P[8] protein antigen. OD350 studies of 0.1 
mg/mL P[8] solution subjected to thermal stress from 10 to 90oC in base buffer (10 mM PBS pH 
7.2) and in base buffer containing different excipients. Average delta temperature (ΔT) value at 
which OD350 reaches 0.1 absorbance unit is shown and error bars represent 1SD from triplicate 
experiments. Excipients are rank ordered from lowest to highest ΔT value suggesting lowest to 
highest stability. Excipients in green, orange, grey, and red resulted in large increase, moderate 
increase, no effect, and decrease in stability, respectively. The inset shows OD350 vs. temperature 
plots of a representative stabilizing (green line) and destabilizing (red line) excipient as compared 
to P[8] alone (black line) in base buffer. Refer to Supplemental Figure S3 for similar studies with 
down-selected excipients for P[4] and P[6] antigens. 
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Figure 3.5. Effect of excipient concentrations and combinations on thermal and shaking induced aggregation 
propensity of P[8] in base buffer (10 mM PBS pH 7.2). (A) ΔT to reach OD350 = 0.1, and (C) 
temperature to reach OD350 = 0.1 during thermal stress studies. OD350 value of P[8] samples 
stressed for 6 h minus time zero samples with different (B) excipients concentrations, and (D) 
excipients combination studies. Error bars represent 1 SD from triplicate experiments. Tables 
below panels C and D indicate which excipients were present in each combination. 
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Figure 3.6. Effect of different buffer types and pH conditions on (A) thermal induced, and (B) shaking 
induced aggregation propensity of P[8]. In panel A, solution conditions are rank ordered from highest 
to lowest stabilizing effect, and, in panel B, buffer types are grouped together for easier data 
interpretation. Error bars represent 1 SD from triplicate experiments. Refer to Supplemental Figure 
3.S4 for similar studies with down-selected conditions for P[4] and P[6] antigens. 
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Figure 3.7. Comparison of candidate bulk formulations (F2 – F9) versus current formulation (F1), of 
individual NRRV antigens against (A) thermal stress, (B) shaking stress, and (C) freeze-thaw 
stress. Error bars represent 1 SD from triplicate experiments. Refer to Table 3.1 for the composition 
and osmolality of each candidate formulation. 
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Figure 3.8. Effects of PS-80 concentration during freeze-thaw and shaking stresses on physical stability of 
NRRV antigens in current formulation. (A) OD350 value after shaking each antigen for 6 hours at 
0.15 mg/mL protein concentration. Percent protein loss after 5 FT cycles at (B) 0.15 mg/mL and 
(C) 0.4 mg/mL protein concentration. Sub-visible particle distribution analysis of P[8] antigen 
after 0, 1, and 5 FT cycles in (D) current (1mM sodium phosphate 150 mM NaCl pH 7.2) 
formulation and two candidate formulations, (E) 1mM sodium phosphate 150 mM NaCl 0.05% 
PS80 pH 7.2, and (F) 10 mM histidine 150 mM NaCl 0.05% PS80 pH 6.8. Error bars represent 1 
SD from triplicate experiments. 

 

 

 

 

 

 



128 
 

 

3.6 Supplementary Tables 

Supplementary Table S3.1. Comparison of aggregate and particle formation in different size 
ranges for the three NRRV antigens. Stressed samples were generated under forced degradation 
conditions of shaking stress for 1.5 hr. at 250 RPM at room temperature in base formulation (see 
main text). Error bars represent 1 SD from triplicate measurements. (‘-’ particles not observed. ‘+’ 
particles observed) 
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3.7 Supplementary Figures 

 

Supplementary Figure S3.1. Morphology, higher order structure and chemical composition of 
aggregates/particles formed for P[4] (top panel) and P[6] (bottom panel) antigens after shake stress 
in base formulation. (A, G) Representative particle images recorded by micro-flow imaging 
microscopy, (B, H) representative optical microscopic image of an isolated protein particle, (C, I) 
secondary structure analysis of unstressed protein in solution (control) and isolated particle from 
stressed sample by FTIR microscopy, (D, J) higher order structure integrity analysis of unstressed 
and stressed protein in the supernatant (S) and pellet (P) fractions by ANS fluorescence 
spectroscopy. Chemical modification analysis of unstressed and stressed protein in S and P 
fractions by (E, K) non-reduced and (F, L) reduced SDS-PAGE (Lane 1 – S unstressed, lanes 2,3,4 
– S stressed, lane 5 – MW marker, lane 6 – P unstressed, and lanes 7,8,9 – P stressed). 
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Supplementary Figure S3.2. (A, D) Total sub-visible particles, and (B, E) OD350 value of 0.15 
mg/mL P[4] and P[6] solutions after shake stressed for 6 h. (C, F) Average ΔT value at which 
OD350 reaches 0.1 absorbance unit of 0.1 mg/mL solution subjected to thermal stress from 10 to 
90oC. Studies were conducted in base buffer (black bar, highlighted in box) and in base buffer 
containing different excipients. Excipients are rank ordered from lowest to highest total sub-visible 
particles or OD350 value suggesting highest to lowest stability. For OD350 melt data, higher ΔT 
suggests higher stability. Excipients in green, orange, and red resulted in large increase, no effect, 
and decrease in stability, respectively. Top row shows data for P[4] and bottom row for P[6] 
antigen, error bars represent 1 SD from triplicate measurements. 
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Supplementary Figure S3.3. Effects of down-selected buffer types and pH conditions on (A, B, 
D) shaking induced, and (C, E) thermal induced aggregation propensity of P[4] and P[6] antigens. 
Top panel shows data for P[4] and bottom for P[6] antigen. Error bars represent 1 SD from 
triplicate experiments. 
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Supplementary Figure S3.4. Sub-visible particle distribution analysis of P[4] and P[6] antigens 
after 0, 1, and 5 FT cycles as measured by MFI. Samples in (A, D) current formulation (1mM 
sodium phosphate 150 mM NaCl pH 7.2) and two candidate formulations, (B, E) 1mM sodium 
phosphate 150 mM NaCl 0.05% PS80 pH 7.2, and (C, F) 10 mM histidine 150 mM NaCl 0.05% 
PS80 pH 6.8. Top row shows data for P[4] and bottom for P[6] antigen. Error bars represent 1 SD 
from triplicate experiments. 
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Chapter 4 

 

Effect of aluminum adjuvant and preservatives on structural integrity and 
physicochemical stability profiles of three recombinant subunit rotavirus 

vaccine antigens 

 

 

 

 

 

 

 

 

 

 

 



134 
 

 

4.0 Introduction 

Rotavirus (RV) is a leading cause of childhood gastroenteritis and severe diarrhea 

worldwide with ~128,500 deaths (children below 5 years of age) in 2016 1.  Majority of RV-related 

mortality occurs in developing countries where rehydration therapy is more difficult to obtain and 

efficacy of currently available live-attenuated, oral RV vaccines is lower compared to the 

developed world 29. Reasons behind the lower efficacy are multi-factorial and not well understood 

109. There is thus a great need for a new generation RV vaccine with enhanced efficacy for the 

developing world at affordable costs with consistent supply to improve vaccine coverage 4. A 

trivalent subunit RV vaccine (non-replicating rotavirus vaccine, NRRV) contains three 

recombinant protein antigens (belonging to rotavirus genotypes P[4], P[6] and P[8]; see below) 

and is currently in clinical trials in South Africa 12. These three antigens not only provide broad 

worldwide serotype coverage to RV infections, but the P[6] genotype is much more prevalent in 

the African and Southeast Asian regions 11. Previously a monovalent NRRV vaccine adsorbed to 

Alhydrogel® was shown to be safe and immunogenic in infants and toddlers in early stage clinical 

trials 47. 

Each of the three NRRV protein antigens is a recombinant fusion of the truncated VP8* 

protein (a cleavage product of the RV outer capsid protein VP4) linked to CD4+ T cell epitope (P2) 

from tetanus toxoid using a GSGSG linker 44,45. The three antigens are named P2-VP8-P[4], P2-

VP8-P[6] and P2-VP8-P[8] where P2 is the tetanus toxoid epitope, VP8 the truncated VP8* 

protein, and P[x] denotes the P genotype from the human RV strains DS-1-like (G2P[4]), 1076-

like (G2P[6]) and Wa-like (G1P[8]). The three NRRV antigens are referred to as P[4], P[6] and 

P[8] in this work.  Wen et al. showed that addition of an aluminum-based adjuvant to P2-VP8-

P[6/8] containing monovalent vaccines increased the neutralizing antibody titers against RV in 

guinea pigs, however, the binding of antigens to adjuvant (aluminum phosphate) was not taken 
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into consideration 45. The clinical NRRV vaccine is formulated with aluminum hydroxide 

(Alhydrogel) to keep the NRRV antigens bound to adjuvant 46,47. 

Affordability and accessibility are major hurdles during successful incorporation of a new 

vaccine in the national immunization programs of developing countries 4. Using multi-dose 

formulations is an effective strategy to reduce the cost of vaccine per dose in terms of 

manufacturing, packaging, storage, transport, and medical waste 93. However, the suitability of a 

multi-dose formulation strategy is vaccine-specific depending on inherent cost, patient demand 

and vaccine wastage 95. Since there is potential risk of microbial contamination due to multiple 

withdrawals from the same vial, a multi-dose vaccine drug product requires the addition of a 

preservative 96.  Combining multiple vaccines into a single vial (combination vaccines) also 

provides many economic benefits such as fewer vaccination visits and reduced manufacturing 

costs (fewer doses, less packaging, and streamlined storage and handling). In addition, societal 

benefits of combination vaccines include improved vaccine coverage, fewer missed or delayed 

vaccinations as well as fewer needle stick injuries 101,102. 

The long-term goal of NRRV vaccine development is to introduce the NRRV vaccine into 

the pentavalent childhood combination vaccine (e.g., pentavalent diphtheria, tetanus, wc-pertussis, 

Hib and HepB) to lower costs, enhance patient compliance and improve RV vaccine coverage. 

Pediatric combination vaccines in the developing world typically contain whole cell pertussis 

(wcP) and thimerosal, used both as a preservative and inactivating agent during wcP production 

190. Therefore, it is important to assess the compatibility and stability of NRRV antigens with 

thimerosal, an ethyl mercury containing compound that has been used in multi-dose injectable 

vaccines since 1930s to protect against potential microbial contamination. The addition of 
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thimerosal to certain vaccines, e.g., HPV and IPV, is known however to reduce their in vitro 

potency and in vivo immunogenicity 97,98. 

In this work, we determined the adsorptive capacity and strength of the P[8] antigen to 

aluminum adjuvant (Alhydrogel, AH) as well as the protein’s structural integrity, physicochemical 

stability and antibody binding during stability studies (+/- the preservatives thimerosal and 2-

phenoxyethanol). The physicochemical stability of the NRRV antigens on the surface of the 

Alhydrogel were examined by immunochemical (ELISA), biochemical (SDS-PAGE combined 

with LC-MS peptide mapping) and biophysical (DSC, fluorescence spectroscopy) methods. Due 

to limited availability of P[4] and P[6] antigens, a subset of key results obtained with P[8] were 

assessed with these two aluminum-adsorbed NRRV antigens. These results are discussed in the 

context of future formulation development efforts to be undertaken to develop a more stable multi-

dose formulation of the trivalent NRRV vaccine. 

 

4.1 Materials and Methods 

The NRRV antigens (P[4], P[6], and P[8]) were produced and purified from E. coli at Blue 

Sky BioServices, MA and provided frozen in 600 mM ammonium sulfate, 50 mM Tris buffer at 

pH 7.5. Alhydrogel® (aluminum hydroxide adjuvant) was purchased from Accurate Chemical 

Scientific Corporation (Westbury, NY). Sodium chloride and sodium phosphate dibasic 

heptahydrate, were purchased from Thermo Fisher Scientific (Waltham, MA). Sodium phosphate 

monobasic monohydrate, Histidine, HEPES, Tris and all other reagents and chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO) and were of analytical grade or higher. Extinction 

coefficient used for concentration determination of each antigen have been reported previously 160. 
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4.1.1 Measuring Zeta Potential 

 Zeta potential of AH was measured in different buffers using ZetaPALS Zeta Potential 

Analyzer (Brookhaven Instruments Corporation, NY). AH samples were prepared at 1.5 mg/mL 

of aluminum at varying concentrations of the buffering agent (0, 0.5, 1.0, 2.5, 5.0, 10, 20, 50, 100 

mM), 150 mM NaCl and 0.025% PS-80. The different buffering agents tested were sodium 

phosphate, HEPES and Tris at pH 7.2, and Histidine at pH 6.5, 6.8 and 7.2. Sample were incubated 

overnight at RT and 1.5 mL of the diluted AH sample was used for the measurement in a disposable 

plastic cuvette and appropriate electrode. Each buffer condition was measured in duplicate and for 

each measurement 10 runs were collected with 10 cycles per run. All measurements were 

conducted at 25˚C and parameters such as viscosity, refractive index and dielectric constant were 

chosen for water. Electrophoretic mobility was used by the instrument software to calculate zeta 

potential using Smoluchowski approximation. Finally, the average and 1SD of the 20 runs were 

reported for each buffer condition as the measured Zeta potential value of AH. 

For the preservative containing samples, AH samples were prepared at 1.5 mg/mL of 

aluminum in formulations F1, F3 and F5 (see Table 1 in main text for formulation composition) 

with increasing amounts of thimerosal (0, 0.002, 0.005, 0.01, 0.02, 0.05% w/v). Samples were 

incubated overnight at room temperature and analyzed the following day is similar way as 

described above. 

4.1.2 Antigen-Adjuvant Binding Study 

Binding of NRRV antigens to AH was studied at their clinical concentration (i.e., 60 µg of 

antigen and 560 µg aluminum as AH per 0.5 mL) in different buffering agents in the presence of 

150 mM NaCl and 0.025% PS-80. Each protein sample at 2X concentration was mixed 1:1 with 

2.24 mg/mL AH (in 150 mM NaCl) to achieve the final desired concentration of protein, aluminum 
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and buffer in the final formulation. After mixing, the antigen adsorbed samples were incubated 

overnight at 4˚C and then centrifuged at 5,000 X g for 10 min. The amount of unbound protein in 

the supernatant was measured by UV-Visual spectroscopy using an Agilent 8453 UV-Visible 

Spectrophotometer (Palo Alto, CA). 

4.1.3 Langmuir Binding Isotherms 

 Appropriate volume of antigen stock, PS-80 stock and buffer were mixed in an Eppendorf 

tube to a final volume of 250 µL containing 0, 20, 50, 75, 100, 150, or 200 µg of antigen and 

0.05% PS-80. These protein solutions were mixed 1:1 with AH solution (0.2 mg/mL aluminum in 

saline) to get the desired amount of antigen (i.e. 0, 10, 25, 37, 50, 75, or 100 µg), buffering agent, 

and PS-80. Samples were incubated overnight at 4˚C and then centrifuged at 5,000 X g for 10 min 

to pellet the adjuvant and bound antigen fraction. UV-visible spectroscopy was used to measure 

the concentration of free/unbound antigen in the supernatant. 

Once the concentration of free antigen (Ce) had been determined for each total added 

amount of antigen (Co) in the antigen-adjuvant mixture, the amount of bound antigen could be 

calculated (Co - Ce). Then the amount of bound P[8] per mg of aluminum (Qe) can be calculated 

by dividing Co - Ce  by the amount of aluminum used (i.e., 50µg). Finally, Langmuir isotherm was 

generated by plotting Qe vs Ce and linear form of the isotherm can be obtained by plotting Ce/Qe 

vs Ce. Linear form of the Langmuir isotherm was further analyzed to obtain the adsorptive capacity 

(Qm) from the slope and adsorptive/Langmuir coefficient (KL) from the y intercept of the fitted 

straight line. For the studies in the presence of thimerosal, 0.01% w/v thimerosal was added after 

binding the antigen to adjuvant, and samples were incubated overnight at 4˚C prior to the 

generation of isotherms. Micro-BCA assay (ThermoFisher Scientific, MA) was used to measure 
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the concentration of free/unbound antigen due to interference from thimerosal absorbance in the 

UV region. 

4.1.4 Steady State Intrinsic Tryptophan Fluorescence 

The intrinsic tryptophan fluorescence of NRRV antigens was measured in solution and on 

AH using a Photon Technology International (PTI) spectrofluorometer (Lawrenceville, NJ) 

equipped with a turreted four-position Peltier-controlled cell holder and a xenon lamp. For in 

solution samples, spectra could be collected in a conventional way by pouring 0.7 mL of sample 

in 1 X 1 cm path length quartz cuvette. However, for adjuvant bound samples, 0.2 mg/mL of 

antigen stock was mixed 1:1 with 4 mg/mL of aluminum. Two milliliters of this sample were added 

to the 1 X 1 cm quartz cuvette and then the samples were allowed to settle overnight at 4˚C (or 

centrifuged at 100 X g for 1 min to pellet the adjuvant bound protein). Following day, the 

fluorescence emission spectra were recorded as a function of temperature (10 – 90˚C) as described 

previously 160. For studies in the presence of preservative, 0.01% thimerosal was added after 

binding the antigen to adjuvant and samples were incubated overnight at 4˚C. 

4.1.5 Differential Scanning Calorimetry (DSC) 

DSC was performed for the NRRV antigens at 0.12 mg/mL in solution and on AH using 

an Auto-VP capillary differential scanning calorimeter (MicroCal/GE Health Sciences, Pittsburgh, 

PA) as described before 160. 

4.1.6 Time-resolved Intrinsic Tryptophan Fluorescence 

Intrinsic tryptophan fluorescence lifetime for NRRV antigens bound to AH ± 0.01% w/v 

thimerosal was obtained using a fluorescence plate-reader (Fluorescence Innovations, 

Minneapolis, MN) equipped with a tunable pulsed dye laser, a high-speed digitizer and a 

temperature controlled 384-well sample holder (Torrey Pines Scientific, Carlsbad, CA). This 
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fluorometer has two detectors: a charge coupled device (CCD) spectrometer and a photomultiplier 

tube (PMT), permitting recording of steady-state fluorescence and time-resolved intrinsic 

fluorescence, respectively. The emission signal was collected at 180° (front face geometry) and 

then sent through a 300 nm long pass filter (Thorlabs Inc., Newton, NJ). For time-resolved 

fluorescence recording, the signal was further passed through a 360 nm (± 23 nm) band-pass filter 

before reaching the PMT. Samples were loaded (10 µL) into a 364 well plate (Hard-Shell 384-well 

PCR plates) and 2 µL silicon oil (ThermoFisher Scientific) was added on top to avoid sample 

evaporation. Excitation wavelength of 295 nm was used and temperature ramp was set from 10-

90˚C with step size of 1.25˚C and 2 min equilibration at each temperature. Time-resolved intrinsic 

fluorescence was performed by recording the fluorescence lifetime decay waveforms within a time 

scale of 100 ns. Life-time moment (ns) was obtained from the fluorescence lifetime decay 

waveform which is defined as the center of the waveform which vertically divides the peak area 

in two halves. Moment is similar to mean spectral mass in steady state intrinsic Trp fluorescence 

experiments. The lifetime moment represents the intensity-averaged lifetime of the waveform plot 

and its mathematical definition has been previously described 191. 

4.1.7 SDS-PAGE Analysis + LC-MS Peptide Mapping, of desorbed protein 

Antigen-adjuvant sample (500 µL, 60 µg antigen + 560 µg aluminum) was centrifuged at 

4,000 X g for 5 min to pellet the adsorbed antigen and adjuvant. Then 460 µL the supernatant was 

removed, and the pellet was re-suspended in a mixture of 0.2M sodium phosphate + LDS buffer 

(Life Technologies) + 20 mM Iodoacetamide (Thermo Scientific), and incubated in dark for 15 

min at RT. Then the samples were heated at 90˚C for 10 min, followed by centrifugation at 4,000 

X g for 5 min. Supernatant was recovered and divided in two parts to prepare non-reduced and 

reduced samples for SDS-PAGE analysis. For reduced samples, supernatant was mixed with 10 
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mM DTT (Thermo Scientific) and, for non-reduced samples, equal volume of ultra-pure water was 

added and then the samples were incubated at 37˚C for 15 min. Finally, the reduced/non-reduced 

samples were separated by SDS-PAGE gel electrophoresis using NuPAGE 4-12% Bis-Tris (Life 

Technologies) gels and a MES running buffer (Life Technologies). A theoretically equivalent 

amount of protein was also loaded on the gel as in-solution control (i.e., protein that was never 

exposed to adjuvant). The purpose of running in-solution control was to quantify % desorption 

under forced desorption condition of phosphate + LDS sample buffer + boiling at 90°C for 10 min 

by comparing the band intensities between in-solution control and desorbed samples by ImageJ 

(NIH, US) analysis. Gels were run for first 10 min at 120V followed by 50 min at 150V. Protein 

bands were visualized by staining with coomassie blue R250 (Teknova, Hollister, CA) for 1 hr and 

destained with a mixture of 40% methanol, 10% acetic acid, and 50% ultrapure water. Gels were 

digitized using an Alphaimager (Protein Simple, Santa Clara, CA) gel imaging system. 

For LC-MS peptide mapping, each monomer band and selected dimeric bands were excised 

from the SDS-PAGE gel and cut into small pieces. The Coomassie stain in the gel pieces was 

removed through two 45 min washes at 37˚C with 0.2 M ammonium bicarbonate pH 7.5 + 50% 

acetonitrile. The gel pieces were then dehydrated using a SpeedVac (Eppendorf, Hamburg, 

Germany) for ~30 min at 30˚C and then rehydrated with 50 mM ammonium bicarbonate pH 7.5. 

Chymotrypsin (3.5 µg, Promega, Madison, WI) was added and the samples were incubated 

overnight at 37˚C. The following day the solution in each sample was removed and 0.05% 

trifluoroacetic acid was added to inactivate proteolysis. The samples were then subjected to LC-

MS peptide mapping. 

The peptides from each digested protein solution were separated by a liquid 

chromatography system (Thermo Scientific, Waltham, MA) prior to analysis. Peptides were 
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injected onto a C18 column (1.7µm, 2.1 x 150 mm, Waters) and a 55 min 5-50% B gradient (A: 

H2O and 0.04% trifluoroacetic acid; B: ACN and 0.04% trifluoroacetic acid; 200 μl/min flow rate) 

for separation. MS was performed using a LTQ-XL ion trap (Thermo Scientific) and the Xcalibur 

2.0 software (Thermo Scientific). The instrument was also tuned using a standard calibration 

peptide (Angiotensin II, Sigma) for maximal sensitivity before running any experiments. The mass 

spectra were acquired in the LTQ over a mass range of m/z 350-1900. The ion selection threshold 

was 10,000 counts and the dynamic exclusion duration was 8 sec. 

Raw experimental files were initially evaluated manually to determine if the ion counts and 

fragmentation of each peptide were sufficient for further analysis. The raw data files were then 

processed using PepFinder 2.0 software (Thermo Scientific). The database used for this 

experiment consisted of the [P8] and chymotrypsin primary sequences. Potential post-translational 

modifications (Asn deamidation and Met oxidation) were included during the analysis. Peptide 

assignments of MS/MS spectra were validated using a confidence score of ≥ 95%. 

4.1.8 Inhibition ELISA 

 The details of the inhibition ELISA assay used in this work, including the antibodies used 

and the nature of their interaction with NRRV antigens, is described elsewhere (McAdams et al., 

manuscript in preparation). Briefly, the AH bound NRRV antigen samples were first incubated 

with a blocking buffer, then serial dilutions were made and incubated with a fixed amount of 

NRRV P[x] antigen specific antibody (primary antibody) overnight. Samples were centrifuged and 

the supernatant containing free antibody was transferred to a 96 well plate coated with the NRRV 

P[x] antigen standard. The plate was incubated at room temperature for two hours and then the 

amount of primary antibody bound on the plate was determined with a horseradish peroxidase 

labeled secondary antibody using a tetramethylbenzidine substrate. OD450 values were recorded 
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using a SpectraMax® plate reader (Molecular Devices). The NRRV P[x] antigen levels in the test 

samples were calculated by comparing results to OD450 values of a NRRV P[x] antigen reference 

standard using multi-parameter fitting of the standard curve. 

4.1.9 Accelerated/Real Time Storage Stability Study 

 Monovalent NRRV vaccines were prepared in five formulations for P[8] with and without 

0.01% thimerosal as illustrated in the schematic shown in Sup. Figure S4.1. Total ten formulations 

(F1 – F5, ± 0.01% w/v thimerosal) were tested with P8 antigen bound to AH and details of 

formulation composition is provided in Table 4.1 in main text. Due to limited availability of P[4] 

and P[6], four formulations (F1, F2, ± 0.01% w/v thimerosal) were tested with these antigens. 

Adsorption was achieved by adding the 2X antigen stock (sterile filtered through a 0.22 µm filter) 

to the 2X AH stock with gentle mixing and final concentrations of protein and aluminum were 

0.12 mg/mL and 1.12 mg/mL, respectively. Two milliliter aliquots of vaccine were dispensed into 

3 mL Fiolax Clear glass vials (West Pharmaceutical Services, PA) and rubber stoppered 

(NovaPure®, West Pharmaceutical Services, PA). Vaccine vials were sealed with flip off caps and 

were incubated at 4ºC and 25ºC storage temperatures for 4 and 12 weeks, and at 37ºC for 2, 4, and 

12 weeks. At each time point, samples were pulled from the incubator and assayed for different 

physicochemical characteristics. As shown in the schematic in Sup. Figure S4.1, HOS integrity, 

conformational stability and antibody binding were studied with antigen in the bound state, 

whereas, chemical stability, monomer quantitation and desorption quantitation analysis were 

carried out after forced desorption of the antigen. For the storage stability assessment of 

monovalent P[8] vaccine in the presence of 1.0% w/v 2-Phenoxyethanol, vaccine vials were stored 

at 4ºC and 37ºC for 1, 7, 14 and 84 days. 
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4.2 Results 

4.2.1 P[8] Antigen-Alhydrogel Adjuvant Interactions 

The pretreatment of aluminum hydroxide (Alhydrogel, AH) with phosphate ions lowers 

the net surface charge due to replacement of hydroxyl groups on AH with phosphate ions 77. As 

expected, pretreatment of AH with increasing concentrations of phosphate buffer at pH 7.2 altered 

the zeta potential (ZP) values from +30 mV (0 mM phosphate) to –30 mV (100 mM phosphate). 

The ZP of AH did not change substantially (positive ZP >20mV) when incubated with 100 mM 

HEPES, Tris, or histidine buffers at pH 7.2 (Figure 4.1A). Similar results were obtained with AH 

and 100 mM histidine at pH 6.5 or 6.8 (data not shown). At pH 7.2, the P[8] antigen (pI ~5.9) is 

negatively charged resulting in net attractive electrostatic forces for binding to AH (100% P[8] 

bound in histidine, Tris or HEPES buffer). At low phosphate buffer (0.5 mM), P[8] was 100% 

bound to AH (Figure 4.1B), but the levels of AH-bound P[8] decreased with increasing 

concentrations of phosphate buffer (e.g., ~40% of P[8] bound at 10 mM). 

Langmuir binding isotherms were generated in six different formulations (see Table 4.1 

for composition), at pH 7.2 or 6.8, to determine the adsorptive strength and capacity values of 

P[8]-AH interactions. As shown in Figure 4.2A and Table 4.1, the adsorptive strength values of 

P[8]-AH interactions were substantially lower in phosphate formulations (F1, F3) vs. non-

phosphate containing formulations (F5, F6, F7, F8). The adsorptive capacity in each formulation, 

however, was still substantially higher than the targeted clinical doses (i.e., up to 60 µg of each 

NRRV antigen per 0.56 mg of aluminum). 

 The structural integrity of solution vs AH-bound P[8] was assessed by intrinsic Trp 

fluorescence spectroscopy and DSC. As shown in Figure 4.2B, the intrinsic Trp fluorescence 

emission spectra of P[8] at 10°C in F1 are overall similar, demonstrating overall similar 
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microenvironments for the average Trp residues of P[8] upon binding to AH (albeit a small red 

shift of ~1 – 2 nm in the lambda-max peak position for P[8] was noted bound to AH compared to 

solution, potentially indicating very subtle structural differences). Upon heating, solution vs. AH-

bound P[8] showed similar thermal onset values, albeit the subsequent thermal transitions differed 

in terms of extent and direction of intensity changes, likely due to the P[8] protein aggregating in 

solution vs. on the AH surface (Sup. Figure S4.2-A2), across various formulations (no effect of 

buffer type or 0.025% PS-80). The conformational stability of solution vs. AH-bound P[8] showed 

similar thermal melting values (Tm) and apparent enthalpy (ΔH’) of unfolding values by DSC 

(Figure 4.2C), although the Tonset value decreased by ~1.5°C, the Tm value was ~1°C higher and 

the apparent enthalpy (ΔH’) was ~30% higher in the bound state (Sup. Table S4.1), likely 

indicating subtle differences in aggregation of solution vs AH-bound P[8] during heating. 

4.2.2 P[8] Antigen-Alhydrogel Adjuvant-Thimerosal Interactions 

 The ZP of AH in three formulation buffers (F1, F3, F5) after pretreatment with 0.002 – 

0.05% (w/v) thimerosal did not change (values of +22 to + 28 mV) indicating no interaction of 

AH with thimerosal (data not shown). P[8] was 100% bound to AH in the presence of 0.01% 

thimerosal at the clinical concentration (i.e., 60 µg antigen and 560 µg adjuvant per 0.5 mL dose) 

in each of the three formulations. Langmuir binding isotherms showed no significant changes in 

the adsorptive or capacity values of AH-P[8] interactions due to thimerosal addition (Table 4.1). 

However, 0.01% w/v thimerosal dramatically reduced the conformational stability of the bound 

P[8] as measured by DSC where the Tonset and Tm values decreased ~10°C and apparent enthalpy 

decreased by ~20% (Figure 4.3A and Sup. Table S4.1 for formulation F1 and Figure 34.B for 

formulations F3, F5). Similar to DSC results, a reduction of ~ 9°C in Tm values and ~ 12°C in 
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Tonset values was observed by thimerosal addition for aluminum-adsorbed P[8] as measured by 

time-resolved fluorescence (Figure 4.3C and 4.3D). 

4.2.3 Storage stability of monovalent P[8]-Alhydrogel drug product 

 The effect of thimerosal was evaluated during a 12-week stability study with monovalent 

P[8] antigen bound to AH at different storage temperatures (4°C, 25°C, 37°C) in different 

formulations (see Table 4.1 for composition). A schematic describing the vaccine preparation 

work-flow and physicochemical attributes evaluated is provided in Sup. Figure S4.1. Overall, ten 

formulations were tested for their effects on antigen-adjuvant interactions as well as P[8] 

physicochemical stability and antigen binding capacity during storage. As described below, 

although clear destabilizing effects of thimerosal were observed, the different buffering agents 

(phosphate or histidine) or surfactant concentration (0.025% or 0.006% w/v polysorbate-80) had 

no notable effects on the stability of aluminum-adjuvant bound P[8]. The results from all ten P[8] 

formulations are presented, nonetheless, to demonstrate the reproducibility of the destabilizing 

effects of temperature and thimerosal. 

 Inhibition ELISA was used to measure the ability of aluminum-bound P[8] to bind a 

specific antibody. Figure 4.4A shows representative data for P[8] antigen (formulation 

F1+thimerosal) after 12 weeks storage at different temperature. A clear shift in the OD450 curve 

is observed which is indicative of reduced antibody binding. During 4ºC storage, no notable 

differences were observed between P[8] formulations and time points with good antibody binding 

observed (Figure 4.4B). At 25ºC, the stability of P[8] formulated without thimerosal was similar 

to T0, . In contrast, a decreasing trend in antibody binding was observed in P[8] formulations 

containing thimerosal (Figure 4.4C). At 37ºC, P[8] rapidly lost the ability to bind antibody in the 
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presence of thimerosal with a slower but notable decreasing trend in P[8] formulations without 

thimerosal (Figure 4.4D). 

To better understand thimerosal-induced loss of ELISA activity, the structural integrity of 

the P[8] antigen on the surface of AH was monitored by time-resolved fluorescence and DSC. As 

shown in Figure 4.5A, a faster decay of Trp fluorescence was observed in P[8]-AH samples stored 

at higher temperatures in the presence of thimerosal. Mean spectral mass peak position of the 

waveform (i.e., lifetime moment) was calculated and monitored over time. During storage at 4ºC, 

25ºC and 37ºC (Figure 4.5B), Alhydrogel-bound P[8] undergoes structural alterations at elevated 

storage temperatures which is accelerated by thimerosal. Overall, good stability was observed at 

4ºC in all formulations. For DSC analysis of the same samples, the total area of the thermogram 

(i.e., the apparent enthalpy of unfolding, ΔH’) reduced at T0 in the presence of thimerosal (Figure 

4.5C), however, no further notable losses were recorded during storage at 4ºC (Figure 4.5D). At 

25˚C and 37˚C, P[8] formulations with thimerosal were much less stable with a decreasing trend 

in ΔH’ values over time (Figure 4.5D). Overall, an excellent correlation was observed between 

P[8] stability trends comparing the ELISA antibody binding data with the biophysical 

measurements. 

The interaction of P[8] antigen with the AH adjuvant over time was monitored by reduced 

SDS-PAGE with densitometry (Figure 4.5E). Desorption of the AH-bound P[8] was carried out 

by adding  SDS-PAGE sample buffer (with 0.2M phosphate and dithiothreitol (DTT) added), 

heating the sample at 90°C for 10 minutes, and subjecting the supernatant to SDS-PAGE. 

Essentially complete P[8] desorption from AH (~80-100%) was achieved throughout 12 weeks of 

incubation at 4ºC or 25ºC in all formulations (Figure 4.5F and see Sup Figure S4.3 for gels). At 

37ºC, however, a decreasing trend in % desorption was observed in thimerosal containing 
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formulations over time (Figure 4.5F, dashed traces) indicating strong binding of P[8] to AH. To 

better understand this observation, non-reduced SDS-PAGE analysis coupled to peptide mapping 

was also performed and the formation of multimeric P[8] species during storage of the aluminum 

adsorbed antigen was observed (Figure 4.6A and 4.6B). Overall, multimer formation was 

temperature dependent and the rate/extent is increased in the presence of thimerosal (see Figure 

4.6C and Sup. Figure S4.3 for all gels). The multimer species were not observed under reducing 

conditions indicating disulfide bond crosslinking between the P[8] monomers (see Sup. Figure 

S4.3), and this was confirmed peptide mapping analysis (described below). 

Non reduced SDS-PAGE analysis coupled with in-gel chymotrypsin digestion and LC-MS 

peptide mapping identified two chemical changes in the AH-bound P[8] antigen during storage 

(non-native disulfide bond formation at Cys172 and deamidation at Asn7).  First, the P[8] 

monomeric vs multimeric bands were analyzed (Figure 4.6B). At 37˚C, 2 weeks, the chymotrypsin 

peptide chromatograms were overall similar to the chromatograms of non-stressed (control without 

thimerosal) except for peptides containing IAM-labeled Cys172 (observed in the unstressed control 

and the monomer band of the F1+TH P[8], but lacking in F1+TH P[8] multimer band). These 

results show the observed P[8] multimer band on non-reduced SDS-PAGE was formed through a 

disulfide bond between single Cys172 of two P[8] monomers. Second, the levels of other PTMs in 

the P[8] monomer bands were evaluated at Asn7 and Met99 (Figure 4.6D and Sup. Figure S4.4).  

Although some degradation of Asn7 and Met99 in P[8] occurred during SDS-PAGE and in-gel 

digestion analysis rather than during storage (data not shown), a stability trend for Asn7 

deamidation was noted over 12 weeks of storage with highest levels in the samples stored at 37˚C 

(~80%), intermediate in the 25˚C samples (~60%), and lowest in 4˚C samples (40-50%). 



149 
 

 

4.2.4 P[4] and P[6] Antigen-Alhydrogel-Thimerosal interactions  

Due to limited availability, only three formulations (F1, F3, F5; see composition in Table 

4.1) were selected to examine the stability of the monovalent Alhydrogel-bound P[4] and P[6] 

antigens. Similar to P[8]-AH interaction results, the strength of adsorption was significantly higher 

in histidine formulations for P[4] and P[6] antigens compared to the phosphate containing 

formulations (Table 4.1). The adsorptive capacity of AH was similar for P[4] in the three 

formulations, whereas, some differences were observed for P[6] antigen (Table 4.1). Similar to 

P[8] results, P[4] and P[6] antigens also showed overall similar tertiary structures in solution or 

bound to AH by intrinsic fluorescence spectroscopy (Figures 4.7A and 4.8A). From DSC analysis 

(Figures 4.7B and 4.8B, and Sup. Table S4.1), the Tm values of solution vs aluminum bound P[4] 

and P[6] were comparable, while Tonset values were ~5˚C lower when bound to adjuvant. The 

addition of 0.01% thimerosal significantly reduced the conformational stability of P[4] and P[6] 

antigens. 

During 12 weeks of storage (see Figures 4.7 and 4.8, and Sup Figures S4.5-S4.9), the 

stability of aluminum adsorbed monovalent P[4] and P[6] antigens were monitored by DSC, 

ELISA and SDS-PAGE coupled to LC-MS peptide mapping. Similar to P[8] results above, P[4] 

and P[6] showed good stability in the absence of thimerosal at 4ºC up to 12 weeks as measured by 

conformational stability (Figures 4.7C and 4.8C), ELISA antibody binding (Figures 4.7E and 4.8E) 

and chemical stability (Figures 4.7G and 4.8G). In the presence of thimerosal, notable 

destabilization of the P[4] and P[6] antigens was observed overall, albeit with differences between 

antigens noted depending on the method, temperature and time-point (see Figures 4.7 and 4.8). 

For example with P[4]-AH samples, thimerosal and temperature induced loss of ELISA antibody 

binding showed an excellent correlation with loss of conformational stability data from DSC 

(Figure 4.7C-F, and Sup. Fig.S4.5A). In contrast, no apparent effect of thimerosal was observed 
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on P[6] antibody binding and the ELISA results did not correlate well with the DSC data. 

Polysorbate containing formulations showed better antibody recognition compared to no 

polysorbate formulations, see Figure 4.8C-F and Sup. Figure S4.5B). Finally, as observed with 

P[8] antigen, non-native disulfide linked multimeric species were observed for aluminum adsorbed 

P[4] and P[6] antigens (see Sup. Figures S4.6 and S4.7 gels), and the abundance of monomer 

species decreased as a function of storage temperature as shown in Figures 4.7G, 4.8G and Sup. 

Figure S4.8. Overall, the P[6] antigen was most prone to this degradation pathway. Finally, 

increased levels of Asn7 deamidation in aluminum-adsorbed P[4] and P[6], and Asn90 deamidation 

in P[6], were recorded under accelerated storage temperatures (Figures 4.7H, 4.8H and Sup. 

Figures S4.8, S4.9). 

4.2.5 Comparison of Thimerosal vs. 2-Phenoxyethanol on P[8]-AH storage stability 

Since thimerosal showed a detrimental effect on the storage stability of the three AH-bound 

monovalent NRRV antigens, the compatibility of another commonly used vaccine (preservative 

2-Phenoxyethanol (2-PE)) was examined with AH-bound P[8]. During storage at 4ºC (Figure 4.9A 

and 4.9C), no notable changes were observed in P[8] stability as measured by conformational 

stability (DSC) or antibody binding (by ELISA), except P[8]-AH-thimerosal sample at 12 weeks 

which displayed some conformational instability by DSC. During storage at 37ºC, a notable 

instability trend was observed for each of the P[8]-AH formulations, and the rate of degradation 

was fastest in the presence of thimerosal, followed by addition of 2-PE and then the no preservative 

control formulation (Figure 4.9B and 4.9D). The DSC and ELISA results showed good agreement 

consistent with structural destabilization of AH-bound P[8] correlating with loss of antibody 

binding to the P[8] antigen. 
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4.3 Discussion 

In this work, the compatibility and stability of three recombinant fusion protein antigens 

(NRRV antigens P[4], P[6], P[8]; see introduction) were assessed with two key components of a 

multi-dose subunit vaccine formulation, an aluminum adjuvant (Alhydrogel, AH) and two 

antimicrobial agents (thimerosal and 2-phenoxyethanol). The effect of formulation 

excipients/buffers on antigen-adjuvant interactions, antigen-preservative interactions and storage 

stability of AH-bound NRRV antigens were also examined. The aim was to determine the 

feasibility of developing a multi-dose formulation of the NRRV vaccine candidate, and it was 

demonstrated that there are significant formulation and stability challenges for the NRRV antigens 

formulated with commonly used vaccine preservatives. 

NRRV antigen-aluminum adjuvant (Alhydrogel) interactions 

Adjuvants enhance vaccine immunogenicity and effectiveness by boosting components of 

the immune response (i.e., cellular and/or humoral) against the pathogen. Adjuvants can also 

facilitate dose sparing and reduce the number of shots 88. Aluminum based adjuvants have been 

widely used in human vaccines for over 90 years and have a long record of safety and 

immunopotentiation 89. Antigen co-precipitation with formation of aluminum salts has been 

replaced with antigen adsorption to preformed aluminum adjuvant 75, and Alhydrogel® (aluminum 

oxyhydroxide, AH) and Adju-Phos® (aluminum phosphate, AP) are the two most commonly used 

aluminum adjuvants 192. NRRV antigens have isoelectric point of ~6.0 and AH has point of zero 

charge (PZC) ~11.4. Thus, at physiological pH, AH is positively charged and the NRRV antigens 

are negatively charged. The interaction between P[8] antigen and AH was shown to be mediated 

by noncovalent electrostatic attractions as the amount bound decreased upon pretreatment of AH 

with phosphate (which altered the net surface charge of AH from positive to negative; Figure 

4.1A). The current clinical NRRV vaccine formulation contains 0.5 mM phosphate ensuring 
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antigen binding to AH 46,47. Since 0.5 mM phosphate provides only a low buffering capacity, we 

evaluated other buffering agents (histidine, HEPES, Tris) at higher concentration (10 mM) and 

demonstrated 100% antigen binding (Figure 1B). Lower binding strength was also observed for 

each NRRV antigen in phosphate buffer compared to histidine buffer (Table 4.1). 

 The binding of antigen to aluminum adjuvant has historically been considered important 

for generating immune responses, although that has more recently been shown to be antigen 

specific. Studies with poxvirus L1-protein antigen in our laboratories demonstrated AH binding is 

important for immunopotentiation 193, and others have reported similar observations with 

pneumococcal protein antigens 194. The WHO recommends greater than 80% of the diphtheria and 

tetanus toxoids to be adsorbed to aluminum adjuvants. Since many vaccine antigens require low 

microgram doses, unbound antigens can adsorb to various interfaces during fill-finish 

manufacturing 75, so aluminum adjuvant binding can circumvent this and thus help reduce the cost 

of vaccine manufacturing. On the other hand, Hem et al. have shown that antigens formulated as 

unbound to aluminum adjuvant can elicit equal or better immune response compared to adjuvant-

bound antigens 195-197. Hem and colleagues have shown that several model proteins that bind AH 

due to electrostatic attractions elute readily upon contact with interstitial fluid 198, a potentially 

better parameter to predict immune responses 199. Finally, the strength of antigen adsorption to AH 

is another important parameter for immune responses. For example, inverse relationships have 

been reported for Hepatitis B surface antigen 200,201, HIV gp140 antigen 202, and anthrax 

recombinant protective antigen 203. Using a model protein, alpha casein, it has been shown that 

tighter aluminum adjuvant binding can diminish both T cell and B cell activation, by impairing 

antigen processing in dendritic cells and reducing antigen availability for B cell recognition, 

respectively 204. It will be of interest as part of future work to better characterize the effect of extent 
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and strength of adsorption of NRRV antigens to AH in terms of immune response in animal 

models. 

 Analytical challenges to evaluate NRRV antigen stability bound to Alhydrogel 

Historically, animal based immunogenicity tests have been used to assess the potency and 

stability of aluminum-adsorbed, inactivated/recombinant based vaccines 58,78. There is great 

interest in replacing these in vivo assays with surrogate in vitro assays to monitor antigenicity and 

stability of vaccines. ELISA is a commonly used in-vitro immunochemical method to measure 

either the concentration, antigenicity or conformational integrity of protein antigens, depending on 

the nature of the antibody used (e.g., neutralizing vs. non-neutralizing, linear vs. conformational 

epitopes, etc.). In this work, a competitive ELISA format was employed to measure the antibody 

binding ability of the aluminum adsorbed NRRV antigens (each of the three antibodies are antigen-

specific but likely non-neutralizing in nature; data not shown). The correlation of ELISA antibody 

binding results with NRRV antigen structural integrity is discussed below. 

The use of physicochemical methods to monitor the structural integrity and stability of 

protein antigens in bound state to aluminum adjuvant is challenging due to low antigen doses, 

irreversibility of adsorption, and the turbid nature of the formulations. Examples of decreased 

205,206, no effect 207,208 or even enhanced structural stability 209,210 of various model proteins and 

recombinant vaccine antigens upon adsorption to aluminum adjuvant have been reported. We have 

previously reported the development of a wide variety of analytical tools to monitor key structural 

attributes of the three NRRV antigens in solution and applied these methods to identify key 

degradation pathways 160,211. This work established that only a subset of these analytical methods 

could be applied to NRRV antigens bound to Alhydrogel (AH), and only a subset of possible 

degradation pathways are observed in the bound state. The chemical stability of AH-bound NRRV 
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antigens was monitored by SDS-PAGE coupled with LC-MS peptide mapping. We noted that 

formation of non-native, intermolecular disulfide bond at Cys (at position 173 – P[4], P[6] and 172 

– P[8]) and deamidation of Asn7 are the two major chemical alterations for the NRRV antigens 

when bound to AH. The degree of Asn deamidation in protein antigens could potentially be 

enhanced on the surface of AH due to higher pH of the microenvironment 212-214 including Asn 

deamidation induced loss of potency with a recombinant protective antigen vaccine. Estey et al. 

have reported for three recombinant botulinum protein antigens elevated levels of oxidation and 

deamidation in the adjuvant bound vs. solution state 215. 

The higher-order structure (HOS) of the three NRRV antigens bound to Alhydrogel was 

evaluated by a combination of fluorescence spectroscopy and DSC. Although NRRV antigens 

unfold and aggregate upon heating in solution, when adsorbed to the surface of Alhydrogel, the 

NRRV antigens undergo structural alterations but do not aggregate (due to spatial distances 

between the surface-bound protein molecules and inability to colloidally associate). Interestingly, 

this resulted in the apparent enthalpy of unfolding values for the NRRV antigens being higher on 

AH with a broader transition as well as a loss in the apparent enthalpy of unfolding (reduced area 

of thermograms) during storage (see below). The AH- bound P[6] was most unstable of the three 

NRRV antigens, and this result aligns with the previous in solution characterization work with the 

three NRRV antigens 160. The addition of thimerosal showed a clear destabilizing effect (8–14°C) 

on the conformational stability of each NRRV antigen as measured by DSC and fluorescence 

spectroscopy. To better understand the effect of preservatives on the stability of aluminum 

adsorbed NRRV antigens, a stability study was setup as described below. 

Formulation and stability challenges with NRRV antigens in the presence of preservatives 



155 
 

 

These studies are a first step in the longer-term goal of NRRV vaccine development to 

combine it with pentavalent childhood combination vaccines (e.g., diphtheria, tetanus, and 

pertussis, Hep B, Hib) to enhance RV vaccine coverage and further lower costs. The most 

commonly used pediatric combination vaccine in the developing world contains both whole cell 

pertussis (wcP) and thimerosal, used both as a preservative and inactivating agent during wcP 

production 190. A 12-week accelerated, and real-time stability study was performed with each 

monovalent NRRV antigen bound to AH as evaluated by ELISA and physicochemical assays (see 

above). Overall, no notable effect of buffer type or surfactant concentration was observed on 

NRRV antigen stability while thimerosal (and 2-phenoxy ethanol) demonstrated a temperature 

dependent detrimental effects on the stability of each aluminum adsorbed NRRV antigen. 

One measure of the prominent destabilizing effect of thimerosal on the conformational 

stability of AH adsorbed NRRV antigens was measured by DSC with a dramatic reduction in ΔH’ 

of unfolding values during storage at elevated temperatures. This result implies some population 

of the AH bound protein remains in native state, while others lose structural integrity thus forming 

conformationally heterogeneous populations over time. Similar loss in DSC signal or ΔH’ of 

unfolding have been reported for recombinant botulinum neurotoxin adsorbed to AH after storage 

at 30°C for 9 weeks 216. Further, protein structural changes on the surface of aluminum could lead 

to stronger adsorption over time, which in fact was observed for the thimerosal containing P[8]-

AH samples stored at 37°C for 12 weeks. For AH-bound P[8] and P[4] antigens, an overall good 

correlation was observed between the ELISA antibody binding and DSC results, suggesting the 

conformational nature of the antibody binding epitopes. In the case of aluminum-adsorbed P[6] 

antigen, such a correlation is less convincing and additional work is in progress to better understand 
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the conformational vs linear nature of this antibody binding epitope (McAdams et al., manuscript 

in preparation). 

Chemical stability assessment by SDS-PAGE and LC-MS peptide mapping analyses 

revealed the susceptibility of each AH-bound NRRV antigen to non-native intermolecular 

disulfide formation via a single Cys residue. The extent/rate of this degradation was temperature 

dependent (37°C > 25°C > 4°C) and P[6] was most susceptible. Addition of thimerosal clearly 

exacerbated disulfide formation for the P[8] antigen, whereas, for P[4] and P[6], disulfide 

formation was unaffected or perhaps somewhat prevented by addition of thimerosal. Thimerosal 

is an organometallic compound which degrades in aqueous solution into thiosalicylic acid and 

ethyl mercury 217. Ethyl mercury can bind to free Cys in proteins which leads to ethyl mercury 

adduct formation 218,219. Ethyl mercury adducts were observed for NRRV antigens in the presence 

of thimerosal by preliminary intact mass analysis (data not shown). We hypothesize that the 

interaction between free Cys and ethyl mercury leads to structural/conformational perturbation of 

the surrounding domains in the protein which ultimately leads to protein structural alterations. 

Also, the degree of adduct formation could depend on the accessibility of the free Cys with each 

NRRV antigen’s three-dimensional structure, which in turn could increase at elevated storage 

temperatures due to increase protein dynamics. In contrast, no effect of thimerosal was seen on the 

extent of Asn7 deamidation in each antigen which could be due to the spatial distance of this 

residue from the thimerosal affected Cys containing domain of the protein. As expected, the extent 

of Asn deamidation increased at higher storage temperatures in each antigen. 

Finally, we also tested the compatibility of a second commonly used vaccine preservative 

2-PE with the P[8] antigen and unfortunately we observed similar destabilizing trends as seen with 

thimerosal as measured by ELISA and DSC. This result implies the inactivation of NRRV antigens 
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by preservatives is more complex mechanistically than direct interaction with the free Cys residue 

of the NRRV antigen (since 2-PE lacks the sulfhydryl chemistry described above for thimerosal). 

Ongoing work in our laboratories is focused on elucidating the molecular mechanism of thimerosal 

induced destabilization of the NRRV antigens, evaluating other preservatives, and reengineering 

the NRRV antigens through point mutations to produce NRRV antigens that are more compatible 

with preservatives. The goal is to facilitate development of multi-dose formulations of NRRV 

vaccine, ideally as part of currently available pediatric combination vaccines, to produce a lower 

cost RV vaccine with wider vaccine coverage for use in the developing world. 
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4.4 Tables 

Table 4.1. Summary of NRRV antigen (P[8], P[6], and P[4]) and aluminum adjuvant (Alhydrogel, 
AH) binding parameters in different formulations. Data were fitted to linear form of Langmuir 
adsorption equation as described in Methods. See Figure 4.2A for representative binding isotherms 
with P[8].  Values represent Mean ± Range from two measurements. Second part of the table 
describes the composition of the different formulations (F1-F8) described in this work. 

 
 Formulation Adsorptive 

Strength (mL/mg) 
Adsorptive 

Capacity (µg/mg) R2 

P[8] 

F1 13 ± 5 1000 ± 0 0.97 
F3 14 ± 4 774 ± 119 0.98 
F5 112 ± 77 718 ± 103 0.99 
F6 338 ± 96 572 ± 33 0.99 
F7 105 ± 89 607 ± 37 0.99 
F8 87 ± 87 750 ± 167 0.99 

F1 + TH 10 ± 2 839 ± 140 0.97 
F3 + TH 54 ± 23 670 ± 89 0.95 
F5 + TH 81 ± 67 611 ± 111 0.96 

P[6] 
F1 7 ± 5 940 ± 342 0.97 
F3 10 ± 2 646 ± 42 0.90 
F5 66 ±55 917 ±167 0.97 

P[4] 
F1 11 ± 7 749 ± 321 0.94 
F3 10 ± 0 742 ± 55 0.92 
F5 346 ± 120 750 ± 167 0.99 

Formulation Composition 

Formulation # Buffer Salt (NaCl) PS-80 (w/v) pH 
F1 0.5 mM Sodium Phosphate                                0.15 M -- 7.2 
F2 0.5 mM Sodium Phosphate   0.15 M 0.006% 7.2 
F3 0.5 mM Sodium Phosphate   0.15 M 0.025% 7.2 
F4 5 mM Histidine                     0.15 M 0.006% 6.8 
F5 5 mM Histidine 0.15 M 0.025% 6.8 
F6 5 mM Histidine 0.15 M 0.025% 7.2 
F7 5 mM HEPES 0.15 M 0.025% 7.2 
F8 5 mM Tris  0.15 M 0.025% 7.2 

TH – 0.01% Thimerosal 
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4.5 Figures 

 

 

Figure 4.1. Surface charge and percent P[8] antigen binding to Alhydrogel (AH) in different buffers. (A) 
Zeta potential of AH at pH 7.2 after pretreatment with increasing concentrations of different 
buffering agents. (B) Percent P[8] bound to AH at pH 7.2 in different buffering agents (60 µg P[8] 
antigen added to 0.56 mg of aluminum as AH in the presence of 0.15 M NaCl at pH 7.2). Error 
bars represent the range from duplicate measurements. 
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Figure 4.2. P[8] antigen interactions with the aluminum adjuvant Alhydrogel (AH) in different 
formulations. (A) Langmuir binding isotherms of P[8] antigen with AH in formulations F3 and 
F6. (B) Tertiary structure integrity analysis using intrinsic tryptophan fluorescence emission 
spectra at 10°C in solution (black) and bound to AH (blue) in F1 (see Sup. Figure S4.2 for data in 
F3 and F5 formulations). (C) Conformational stability analysis with representative DSC 
thermograms of P[8] in solution (black) and bound to AH (blue) in formulation F1 (see Sup. Table 
S4.1 for Tonset. Tm and ΔH’ values). See Table 4.1 for composition of the different formulations. 
Error bars represent 1SD from triplicate measurements. 
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Figure 4.3. Effect of thimerosal on the conformational stability of Alhydrogel-bound P[8] antigen. (A)  
Representative DSC thermograms for P[8]-AH samples in formulation F1 with (blue) and without 
(black) thimerosal. (C) Time-resolved intrinsic fluorescence spectroscopy vs. temperature of P[8]-
AH samples in formulation F1 with (blue) and without (black) thimerosal. Thermal onset (Tonset) 
and melting (Tm) temperatures of (B) conformational stability (DSC) and (D) tertiary structure 
(intrinsic fluorescence) in formulations F1, F3 and F5. Error bars represent 1 SD from triplicate 
measurements. See Table 4.1 for composition of the different formulations. 
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Figure 4.4. ELISA antibody binding for AH-bound P[8] antigen during storage stability studies at different 
temperatures in ten different formulations. (A) Schematic description of the inhibition ELISA 
assay. (B) Representative OD450 inhibition ELISA curves for P[8]-AH samples in F1+TH 
formulation after 12 weeks at different storage temperatures, (C-D) Aluminum adsorbed P[8] 
binding to antibody as determined from the inhibition ELISA assay over 12 weeks of storage. 
Error bars represent 1 SD from triplicate vials. See Table 4.1 for composition of the different 
formulations. TH – 0.01% thimerosal. 
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Figure 4.5. Physical stability profiles of AH-bound P[8] antigen during storage stability studies at different 
temperatures in ten different formulations. Overall tertiary structure stability of P[8]-AH as 
measured by time-resolved fluorescence spectroscopy: (A) Representative fluorescence decay 
waveform data for P[8]-AH samples in formulation F1+TH after 12 weeks,(B) fluorescence 
lifetime MSM peak position or moment values for P[8]-AH samples stored in different 
formulations and at different temperatures. Conformational stability of P[8]-AH as measured by 
DSC: (C) Representative DSC thermograms for P[8]-AH sample in formulation F1+TH, (D) 
apparent enthalpy of unfolding (ΔH’) values (or area under thermograms) over 12 weeks of 
storage. Ability to desorb P[8] from AH as measured by SDS-PAGE: (E) Representative SDS-
PAGE gel under reducing condition for P[8]-AH sample in formulation F1 at time zero, % 
desorption was calculated by comparing the intensity of desorbed P[8] band to control band by 
densitometry analysis, (F) % P[8] desorbed under forced desorption conditions. Error bars 
represent 1 SD from triplicate vials. See Table 4.1 for composition of the different formulations. 
TH – 0.01% w/v thimerosal.  
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Figure 4.6. Non-native disulfide formation at Cys172 and deamidation at Asn7 of the AH-bound P[8] antigen 
during 12 weeks of storage at different temperatures in ten different formulations. (A) 
Representative SDS-PAGE gel under non-reducing condition for P[8]-AH sample in formulation 
F1+TH after storage for 2 weeks at 37°C, % monomer/native-like was calculated by comparing 
the intensity of desorbed P[8] monomer band to control band by densitometry analysis. (B) 
Representative peptide mapping chromatogram comparison of chymotrypsin-digested P[8] 
monomer and multimer bands from non-reduced SDS-PAGE gels for for P[8]-AH sample in 
formulations F1 (control) and F1+TH, 2 week 37°C sample. The green and blue stars indicate 
UV214 peaks composed of two peptides containing IAM-labeled Cys172. (C) Percent 
monomer/native-like species from non-reduced SDS-PAGE analysis, and (D) relative deamidation 
of Asn7 over 12 weeks of storage. See Table 4.1 for composition of the different formulations. 
Error bars represent 1 SD from triplicate vials. TH – 0.01% w/v thimerosal. 
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Figure 4.7. Effect of adjuvant (Alhydrogel, AH) and preservative (thimerosal) on physicochemical stability 
of P[4] antigen. (A) Tertiary structure integrity analysis using intrinsic tryptophan fluorescence 
emission spectra at 10°C in solution (black) and on AH (blue) in formulation F1 (see Sup. Figure 
S4.2C for data in formulations F3 and F5). (B) Conformational stability analysis with 
representative DSC thermograms of P[4] in solution (black) and bound to AH (blue) in F1 (see 
Sup. Table S4.1 for Tonset, Tm and ΔH’ values). Apparent enthalpy of unfolding (ΔH’) values of 
P[4]-AH from DSC at (C) 4°C and (D) 25°C storage temperatures over 12 weeks (see Sup. Figure 
S4.5-A1 for 37°C data). Aluminum adsorbed P[4] binding to antibody as determined from the 
inhibition ELISA assay over 12 weeks of storage at (E) 4°C and (F) 25°C (see Sup. Figure S4.5-
A2 for 37°C data). (G) Percent monomer/native-like P[4] species from non-reduced SDS-PAGE 
analysis (see Sup. Figure S4.6 for gels), and (H) relative deamidation of Asn7 from peptide 
mapping analysis, over 12 weeks of storage at different temperatures in F1 and F1+TH (see Sup. 
Figure S4.8A for data in formulations F2 and F2+TH). Error bars represent 1 SD from triplicate 
vials. See Table 4.1 for composition of the different formulations. TH – 0.01% w/v thimerosal. 
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Figure 4.8. Effect of adjuvant (Alhydrogel, AH) and preservative (thimerosal) on physicochemical stability 
of P[6] antigen. (A) Tertiary structure integrity analysis using intrinsic tryptophan fluorescence 
emission spectra at 10°C in solution (black) and on AH (blue) in formulation F1 (see Sup. Figure 
S4.2B for data in formulations F3 and F5). (B) Conformational stability analysis with 
representative DSC thermograms of P[6] in solution (black) and bound to AH (blue) in F1 (see 
Sup. Table S4.1 for Tonset, Tm and ΔH’ values). Apparent enthalpy of unfolding (ΔH’) values of 
P[6]-AH from DSC at (C) 4°C and (D) 25°C storage temperatures over 12 weeks (see Sup. Figure 
S4.5-B1 for 37°C data). Aluminum adsorbed P[6] binding to antibody as determined from the 
inhibition ELISA assay over 12 weeks of storage at (E) 4°C and (F) 25°C (see Sup. Figure S4.5-
B2 for 37°C data). (G) Percent monomer/native-like P[6] species from non-reduced SDS-PAGE 
analysis (see Sup. Figure S4.7 for gels), and (H) relative deamidation of Asn7 from peptide 
mapping analysis, over 12 weeks of storage at different temperatures in F1 and F1+TH (see Sup. 
Figure S4.8B for data in formulations F2 and F2+TH, and see Sup. Figure S4.9 for data showing 
deamidation of Asn90). See Table 4.1 for composition of the different formulations. TH – 0.01% 
w/v thimerosal. 
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Figure 4.9. Destabilizing effect of in-use concentrations of thimerosal (0.01% w/v) vs. 2-phenoxyethanol (1.0 
%) on conformational stability and antibody binding ability of AH-bound P[8] antigen. Stability 
study was over 12 weeks of storage at different temperatures in formulation F1. Apparent enthalpy 
of unfolding (ΔH’) from DSC at (A) 4°C and (B) 37°C storage temperatures. Aluminum adsorbed 
P[8] binding to antibody as determined from the inhibition ELISA assay over 12 weeks of storage 
at (C) 4°C and (D) 37°C. Error bars represent 1 SD from triplicate vials. See Table 4.1 for 
composition of F1. TH – 0.01% w/v thimerosal, 2-PE-1.05 2-phenoxyethanol. 
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4.6 Supplementary Tables 

Supplementary Table S4.1. Summary of onset temperature (T
onset

), melting temperature (T
m

) and 
apparent enthalpy of unfolding (ΔH’) from conformational stability analysis by DSC for the three 
NRRV antigens in solution and when bound to Alhydrogel adjuvant (AH) in the presence and 
absence of 0.01% w/v thimerosal. Data shown is for F1 formulation, 0.5 mM Sodium Phosphate 
0.15 M NaCl, pH 7.2. Error bars represent 1 SD from triplicate measurements. 

  In Solution On Adjuvant 

  No 
Preservative 

0.01% 
Thimerosal 

No 
Preservative 

0.01% 
Thimerosal 

T
onset

 
(°C) 

P[4] 49.8 ± 0.3 39.2 ± 1.1 44.6 ± 1.1 35.8 ± 1.1 

P[6] 49.9 ± 0.1 38.3 ± 0.3 45.4 ± 0.8 36.8 ± 0.1 

P[8] 54.2 ± 0.4 46.5 ± 0.1 52.9 ± 0.1 42.9 ± 0.1 

T
m

 
(°C) 

P[4] 57.0 ± 0.0 47.8 ± 0.1 56.9 ± 0.1 45.1 ± 0.1 

P[6] 57.9 ± 0.1 47.7 ± 0.0 58.3 ± 0.3 43.9 ± 0.2 

P[8] 63.9 ± 0.1 56.2 ± 0.1 65.5 ± 0.1 56.4 ± 0.1 

ΔH’ 
(kcal/mole) 

P[4] 51.5 ± 0.6 33.8 ± 1.7 75.0 ± 1.3 29.6 ± 9.4 

P[6] 36.6 ± 2.2 18.9 ± 0.6 45.5 ± 6.9 10.4 ± 0.8 

P[8] 66.4 ± 0.4 51.7 ± 3.5 86.0 ± 0.6 71.0 ± 5.5 
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4.7 Supplementary Figures 

 

 

Supplementary Figure S4.1. Schematic description of the vaccine sample preparation work-flow 
in ten formulations with and without 0.01% w/v thimerosal for 12-week storage stability study. 
Different analytical methods used for structural integrity and physicochemical stability assessment 
with either antigen bound to aluminum adjuvant or after forced desorption. Refer to Table 4.1 in 
the main text for the composition of each formulation.  

 

 

 

 

 



170 
 

 

 

Supplementary Figure S4.2. Tertiary structure integrity and stability analyses of NRRV antigens 
bound to aluminum adjuvant Alhydrogel, AH (○) compared to in solution controls (●) in three 
different formulations. Intrinsic Trp fluorescence (A1, B1, C1) emission spectra at 10°C, and (A2, 
B2, C2) MSM peak intensity, and (A2, B2, C2) MSM peak position vs. temperature for the three 
antigens. Error bars represent 1 SD from triplicate measurements. Refer to Table 4.1 in the main 
text for the composition of each formulation. 
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Supplementary Figure S4.3. SDS-PAGE analysis of P[8] antigen under non-reducing and 
reducing conditions after forced desorption from Alhydrogel adjuvant at different time points 
during 12 week storage at different temperatures. TH – 0.01% w/v thimerosal. Refer to Table 4.1 
in the main text for the composition of each formulation. 
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Supplementary Figure S4.4. Oxidation propensity of Met99 of the P[8] antigen bound to 
Alhydrogel adjuvant during 12 weeks of storage at different temperatures in ten different 
formulations. Relative oxidation values from peptide mapping analysis. Error bars represent 1 SD 
from triplicate vials. Refer to Table 4.1 in the main text for the composition of each formulation. 
TH – 0.01% w/v thimerosal. 
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Supplementary Figure S4.5. Conformational stability and antibody binding of monovalent P[4] 
and P[6] antigens bound to Alhydrogel adjuvant during 12 weeks of storage at 37°C. (A1, B1) 
Apparent enthalpy of unfolding (ΔH’) from DSC, and (A2, B2) antigen binding to antibody as 
determined from the inhibition ELISA assay. Refer to Table 4.1 in the main text for the 
composition of each formulation. TH – 0.01% w/v thimerosal. 
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Supplementary Figure S4.6. SDS-PAGE analysis of P[4] antigen under non-reducing and 
reducing conditions after forced desorption from Alhydrogel adjuvant at different time points 
during 12 week storage at different temperatures. TH – 0.01% w/v thimerosal. Refer to Table 4.1 
in the main text for the composition of each formulation 
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Supplementary Figure S4.7. SDS-PAGE analysis of P[6] antigen under non-reducing and 
reducing conditions after forced desorption from Alhydrogel adjuvant at different time points 
during 12 week storage at different temperatures. Refer to Table 4.1 in the main text for the 
composition of each formulation. TH – 0.01% w/v thimerosal. 

 

 



178 
 

 

 

Supplementary Figure S4.8. Non-native disulfide formation at Cys172 and deamidation at Asn7 
of the monovalent P[4] and P[6] antigens bound to Alhydrogel adjuvant during 12 weeks of storage 
at different temperatures in four different formulations. (A1, B1) Percent monomer/native-like 
species from non-reduced SDS-PAGE analysis, and (A2, B2) relative deamidation of Asn7 over 
12 weeks of storage in formulations F2 and F2+TH. Error bars represent 1 SD from triplicate and 
duplicate vials for P[4] and P[6], respectively. Refer to Table 4.1 in the main text for the 
composition of F2. TH – 0.01% w/v thimerosal. 
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Supplementary Figure S4.9. Deamidation analysis of Asn90 of the P[6] antigen bound to 
aluminum adjuvant Alhydrogel during 12 weeks of storage at different temperatures in four 
different formulations. Error bars represent 1 SD from duplicate vials. Refer to Table 4.1 in the 
main text for the composition of each formulation. TH – 0.01% w/v thimerosal. 
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Chapter summaries and future directions 
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5.0 Overview 

Rotavirus is a major cause of childhood diarrhea and acute gastroenteritis. About 128,500 

children died from RV related illness worldwide in the year 2016 and the majority of these deaths 

occurred in the developing regions of the sub-Saharan Africa, South Asia and Southeast Asia 1. 

Reasons for lower efficacy of the current live attenuated, orally administered RV vaccines in these 

settings are multi-factorial and are not completely understood 109. There is an urgent need for new 

generation vaccines that can provide similar level of protection irrespective of the socioeconomic 

background of the child. A trivalent non-replicating rotavirus (NRRV) vaccine comprising of P2-

VP8-P[4], P2-VP8-P[6] and P2-VP8-P[4] antigens adsorbed to Alhydrogel adjuvant is an 

emerging candidate. The three subunit antigens are truncated VP8 proteins from RV surface 

protein VP4 fused to the CD4+ T cell epitope P2 from tetanus toxoid (P2-VP8-P[4/6/8]) 44,45. In 

early phase clinical trials, a monovalent P2-VP8-P[8] NRRV vaccine was found to be safe and 

immunogenic in infants and toddlers 46,47. Apart from the clinical safety and efficacy, successful 

development and commercialization of this vaccine candidate will depend on the ability to produce 

this vaccine at affordable cost and ability to meet the demands of the developing countries. 

Affordable cost and ease of accessibility will also help in increasing the global RV vaccine 

coverage. Note that the three NRRV antigens are abbreviated as P[4], P[6] and P[8] in this 

dissertation. 

For the successful development of the trivalent RV vaccine, it will be important to address 

and conquer the analytical challenges and formulation hurdles to maintain the safety and efficacy 

of the vaccine throughout its shelf-life. Presence of Alhydrogel as an adjuvant and the need to add 

a preservative in the final drug product (to make multi-dose presentation) further complicates the 

analytics and formulation development. This dissertation work accomplished the following major 
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goals as part of the analytical and formulation development efforts with the NRRV vaccine 

candidate: (1) robust analytical characterization tools were developed to complement standard 

quality control (QC) tests and to support formulation development, comparability assessments, 

storage stability analyses, and process validation studies during technology transfer (chapter 2), 

(2) physicochemical degradation pathways were elucidated for each NRRV antigen under various 

environmental stresses which could be detrimental to the development of this vaccine (chapter 2), 

(3) formulations were developed for long-term storage of the frozen liquid bulks of each NRRV 

antigen in a common formulation buffer to ensure antigen stability during storage and operational 

flexibility during fill finish (chapter 3), (4) compatibility of the monovalent NRRV antigens with 

aluminum-based adjuvant (Alhydrogel) and commonly used preservatives (thimerosal and 2-

phenoxyethanol) was assessed to evaluate overall drug product stability (chapter 4). 

5.1 Chapter 2 

We started with physicochemical comparisons and stability evaluations of the three NRRV 

protein antigens. A wide variety of analytical techniques (> 25) were employed to characterize and 

evaluate their physicochemical properties (e.g., primary and higher-order structures, post-

translational modifications, conformational stability, and purity including presence of aggregates). 

Each protein contained an extra Met residue at the N-terminus based on the primary sequences 

provided by the collaborators at PATH. Higher order structure (HOS) was overall similar for each 

antigen and P[6] was the most hydrophobic of the three antigens. Physical stability analyses under 

thermal stress conditions revealed that P[8] antigen is most stable conformationally (and P[4] is 

slightly more stable than P[6]). A pH dependent destabilization was observed for each antigen at 

lower pH values (with P[6] being least stable at pH 4.0 and pH 5.0). In addition, forced degradation 

studies were performed to elucidate degradation pathways of chemically labile amino acid residues 
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or “weak spots”. Analytical tools were also developed to monitor/quantify degradative changes. 

Forced chemical degradation studies revealed, for each antigen, (1) Met1 is most susceptible to 

oxidation followed by other Met residues, and intact protein mass measurement and peptide 

mapping by LC-MS methods are assays of choice to detect and monitor this degradation, (2) single 

Cys residue (at position 173/172) is susceptible to non-native disulfide bond formation leading to 

dimer formation, P[6] is more susceptible compared to P[4] and P[8] antigens, and non-reducing 

SDS-PAGE method can be used to assess this reaction, and (3) Asn7 residue is most labile to 

deamidation, and LC-MS peptide mapping method is able to detect and quantify the degradation 

products. Both chemical and physical degradation pathways elucidated in this work could be 

detrimental to the development of NRRV vaccine without optimal formulation development. The 

analytical tools developed were used to develop stable frozen liquid bulk formulations to minimize 

aggregation and particle formation as described in chapter 3. In addition, these tools were modified 

and adapted to characterize the interaction of these antigens with aluminum adjuvant and to assess 

the compatibility with two commonly used preservatives in chapter 4. Also, a down-selected subset 

of the physicochemical tools developed are currently being used in our laboratories to perform 

analytical comparability assessments of different lots of each antigen produced by a manufacturing 

partner. 

In the future, it will be important to correlate the physicochemical changes observed in this 

work under stressed conditions with in vitro potency assays such as ELISA, bio-layer 

interferometry or surface plasmon resonance using antigen-specific neutralizing antibodies. 

Further, such in vitro results could be correlated with in vivo studies in animal models to establish 

a link between physicochemical changes and biological activity of the vaccine. Also, it will be 

interesting to assess the impact of point mutations on the pharmaceutical stability of the three 
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different NRRV antigens by replacing the three most degradation prone residues in each antigen 

(i.e., Met1, Asn7 and Cys172/173). However, these mutations could also impair the structural stability 

and biological activity of the antigens and thus need to be evaluated using suitable 

physicochemical and potency assays. 

5.2 Chapter 3 

 Visible particles and precipitation were observed during thawing of frozen NRRV antigen 

bulk solutions at a large scale in suboptimal formulations (data not shown). This chapter focuses 

on better understanding the aggregation propensity of the three NRRV antigens when subjected to 

freeze-thaw and shaking/agitation stresses. The goal was to develop stable candidate formulations 

for storage of frozen liquid bulks of each antigen in a common formulation buffer. Since the final 

NRRV drug product will be a trivalent aluminum adjuvanted vaccine in a common formulation 

buffer, it was important to develop a common formulation buffer for storage of bulk antigens so 

that a buffer exchange step is not required after the bulk antigens are thawed for fill finish. The 

P[8] antigen is most prone to shaking/agitation induced aggregation and particle formation, 

however, it is also most stable against thermal induced structural alteration (see chapter 2). This is 

presumably due to lower colloidal stability of the P[8] compared with the other two antigens. The 

nature and composition of the aggregates generated were studied using a combination of 

physicochemical tools. Aggregates were opaque and fibrillar in morphology, higher inter-

molecular β-sheet content was recorded with loss of native secondary structure, and tertiary 

structure was altered with increased exposure of apolar regions. Also, aggregates were linked with 

non-native inter-molecular disulfide bonds of reducible nature. The observed physicochemical 

characteristics of aggregates is similar to that of an IgG mAb previously studied in our laboratories 

180. Polysorbate 80 at 0.05% w/v was optimum at preventing NRRV protein loss due to aggregation 
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during freeze-thaw. Eight candidate frozen liquid bulk formulations were designed to prevent 

particle formation due to freeze-thaw stress and to minimize shaking induced aggregation. 

 An interesting avenue to explore in future work will be to better understand the differences 

in the colloidal stability profiles of the three NRRV antigens. This can be achieved by measuring 

protein-protein interactions using second virial coefficient (B22) or diffusion interaction parameter 

(Kd) 176,177. It is interesting to see P[8] antigen exhibiting lowest colloidal stability despite being 

most conformationally stable. Correlations between the protein’s isoelectric point, solubility and 

physical stability under different formulation conditions could help to better understand these 

observations. It will also be essential to evaluate the longer-term storage stability of the three 

NRRV antigens stored as bulk in the frozen state at different storage temperatures such as -80°C 

and -20°C. This will help guide the storage conditions and the time period for which each 

monovalent bulk antigen can be stored before thawing and fill finish. Due to limited material 

availability, the excipient screening studies were conducted at dilute protein concentrations with 

assays optimized for low protein consumption and stability indicating nature, however, in the 

future, excipient screening can be performed against freeze thaw stress at higher protein 

concentrations at which the bulk drug substance is stored. 

5.3 Chapter 4 

 Adjuvants are often added to subunit vaccine antigens to enhance immune responses. An 

aluminum based adjuvant was added to the NRRV vaccine candidate since it enhanced the 

neutralizing antibody titers against RV in guinea pigs 45. Adjuvants can also help reduce the overall 

cost of vaccination by dose sparing and reducing the number of shots required. Another strategy 

to reduce the cost is to develop a multi-dose presentation. However, such formulations need a 

preservative to prevent microbial contamination during multiple withdrawals from same vial. The 
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focus of this last chapter of the dissertation is the NRRV drug product stability including evaluation 

of the effects of aluminum adjuvant and preservatives on the structural integrity and 

physicochemical stability of the three antigens. The extent and strength of binding between antigen 

and aluminum adjuvant is considered important for optimum immune response 193,194,200-203. 

Addition of increasing amounts of phosphate buffer reduced the extent of NRRV antigen binding 

suggesting that the primary binding force is in the form of non-covalent electrostatic interactions. 

The antigen-adjuvant binding is also known to affect the structural stability of the antigen. Several 

groups have reported an enhanced, decreased or no effect of antigen-adjuvant binding on the 

stability of various recombinant vaccine antigens and model proteins 205,207,209. The structural 

integrity of NRRV antigens is not perturbed in the presence of aluminum adjuvant as measured by 

immunochemical, biophysical and biochemical assays. Non-native intermolecular disulfide bond 

formation at the single Cys residue and deamidation of Asn7 are the major chemical modifications 

that can occur in these antigens in the bound state. These modifications were also observed with 

NRRV antigens in the solution state as described in chapter 2. Addition of thimerosal resulted in 

an instantaneous destabilizing effect on the thermal stability of each antigen. Over three months 

of storage, varying levels of incompatibility with thimerosal was observed depending on the 

antigen, storage temperature, and analytical assay. In general, the P[8] antigen is the most stable 

followed by P[4] and P[6] in the bound state, similar results to the stability of these antigens in 

solution. As expected, storage stability was better at lower temperature conditions both in the 

presence and absence of thimerosal. Conformational stability analysis by DSC and antibody 

binding using ELISA were the most informative assays. A very good correlation was observed 

between antibody binding ability and apparent enthalpy of unfolding for P[8] and P[4] antigens. 

Thimerosal destabilization effect appears to be mediated by the ethyl mercury adduct formation 
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with the free Cys in each protein, however, another preservative (2-phenoxyethanol) which is 

devoid of the sulfhydryl chemistry also resulted in similar destabilization. Overall, all three 

monovalent aluminum bound antigens are stable at 4°C up to three months in the absence of 

preservative. 

 An exciting opportunity in the future will be to assess the compatibility of other 

preservatives used in vaccines and biopharmaceutical products with the NRRV vaccine candidate 

to develop a multi-dose formulation. Apart from testing the available preservatives alone at their 

current in-use concentrations, it is also possible to evaluate their combinations at lower than current 

in-use concentrations to keep the vaccine antigens stable, and at the same time, potentially impart 

a synergistic anti-microbial effectiveness. This will require significant research efforts since the 

novel combinations of preservatives will require analyses of their anti-microbial effectiveness as 

per regulatory guidelines apart from their compatibility with the antigens during long term storage. 

Since long-term goal of this NRRV subunit vaccine candidate is to combine it with the current 

childhood combination vaccines in the developing countries, which contain thimerosal, it will be 

beneficial to deduce the molecular mechanism of thimerosal induced destabilization. This can be 

achieved by using a combination of intact mass analysis and high-resolution hydrogen deuterium 

exchange mass spectrometry technique to localize the interaction sites of thimerosal and its effects 

on the protein dynamics and conformation. Further, protein engineering can be used to generate 

Cys mutants which could potentially be more compatible with thimerosal, however, this approach 

would require extensive testing of the mutants to ensure their biological activity. Another avenue 

worth exploring would be to further correlate the loss in apparent enthalpy of unfolding (DSC) and 

decreased antibody binding (ELISA) with in-vivo potency in animal models. This would help 

develop a robust, high throughput and inexpensive in-vitro potency assays for the routine lot 
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release testing to assess batch to batch consistency. Finally, the extent and strength of interaction 

between NRRV antigens and aluminum adjuvant could be optimized in the future to attain optimal 

immunopotentiation effect of the adjuvant. This can be accomplished by monitoring the elution 

profile of the antigen from the aluminum adjuvant upon contact with interstitial fluid and 

correlating it with the observed immune response in animal models. 
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