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Abstract 

The goal of this research was to use a data-driven approach to develop a regional scale 

grassland mapping protocol with the following objectives. First, identify and characterize the 

spatial distribution of grassland types and land use across Kansas as well as the static or dynamic 

nature of grasslands over time using multi-year U.S. Department of Agriculture (USDA) Farm 

Service Agency (FSA) 578 data. Second, evaluate the spectral separability of four hierarchies of 

grassland types and land use using FSA 578 data, multi-seasonal Landsat 8 spectral bands, 

Landsat 8 Normalized Difference Vegetation Index (NDVI) data, and Moderate Resolution 

Imaging Spectrometer (MODIS) NDVI time series. Third, determine the optimal data 

combination, and the appropriate thematic resolution, for mapping grassland type by evaluating 

the modeling performance of the Random Forest (RF) classifier. 

 A county-level analysis of the multi-year FSA 578 data found that the data were not all-

inclusive of total grasslands across Kansas, but were sufficient to illustrate regional trends in 

grassland type, land use, and field size. Eastern Kansas was found to be more diverse in 

grassland type, more variable in land use, and contained a high number of smaller fields. 

Conversely, western Kansas consisted of larger fields that were primarily grazed native 

grasslands and land enrolled in the Conservation Reserve Program (CRP). These results indicate 

a more complex grassland landscape to map in eastern Kansas, while also providing guidance for 

training sample distributions for image classification. 

 Jeffries-Matusita (JM) distance statistics were calculated for three-date multispectral 

Landsat 8, three-date Landsat 8 NDVI, and 23-period, 16-day composite Terra MODIS NDVI 

time series. The results indicate that combining the three datasets maximized the spectral 

separability of grassland types across all four grassland-type hierarchies. A comparison of the 
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three datasets showed that multispectral Landsat 8 data had the highest JM distance statistics 

(which indicates the most separability). JM distance statistics calculated by-band and by-period 

consistently showed that information from spring and fall was more important than summer for 

separating grassland types. The results showed lower separability for land-use classes within a 

grassland type versus between grassland types. The spectral separability of pairwise comparisons 

incorporating land use between grassland types varied, indicating that land use does affect 

spectral separability in some instances. On the other hand, JM distance statistics did not 

substantially drop when more refined grassland types were aggregated to coarser grassland type 

classes (e.g. Level-1: cool- and warm-season), indicating that land use does not negatively affect 

the spectral separability of functional grassland types. The results indicate low spectral 

separability between brome and fescue but moderate to high separability between native and 

CRP, suggesting the use of a Level-1 or Level-2 thematic classification scheme for the study 

area.  

 Finally, random forest models were constructed and evaluated using 2015 FSA 578 data 

and four datasets of remotely sensed data in two adjacent Landsat scenes (path/rows). Models 

were created for each of the four grassland hierarchies. The results showed that out-of-bag 

(OOB) error increased with grassland hierarchy complexity (the number of thematic classes) and 

OOB error was lowest for the combined remotely sensed dataset. Mapping CRP as a separate 

grassland type resulted in low producer’s accuracy levels, with CRP largely mapped as warm-

season grasslands, suggesting the Level-1 classification scheme was appropriate for regional 

mapping of grassland types. Path/rows 27/33 and 28/33 had OOB overall accuracy levels of 87% 

and 92%, respectively. User’s and producer’s accuracy levels indicate that cool-season 

grasslands were mapped more accurately in path/row 27/33 where that class is more dominant 
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than in 28/33. Using test data (withheld verification data) unexpectedly increased overall 

accuracy levels by 4% and 6% over OOB accuracies, which may have resulted from varying data 

proportions between OOB and test data, suggesting the need for further evaluation. 
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Introduction 

 Background and Problem Statement 

Grasslands cover 40.5% of the earth’s surface, more than either forest or cropland 

(Gibson, 2009). Grasslands provide habitat to support wildlife, forage for domestic livestock, 

serve as filters for water quality, provide venues for recreational interests, and serve as a major 

global carbon sink. While expansive, grasslands are potentially the most threatened biome due to 

land conversion and intensive land use (Samson et al., 2004). Globally, the conversion of 

grassland to cropland represents the leading cause of landscape fragmentation and lost grassland 

extent (Gibson, 2009). In addition, the quality of remaining native grassland has been modified 

or degraded by invading non-native species, fire suppression and overgrazing by domestic 

livestock (Weaver, 1954; Gibson, 2009; Risser, 1988).  

The tallgrass prairies of the Great Plains in North America, considered one of the more 

biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of 

grassland area with estimates of only 9.4% - 13% of the original tallgrass prairie remaining 

(Gibson, 2009; Samson et al., 2004). It has been estimated that the tallgrass prairie once 

occupied 167 million acres, stretching east into western Ohio, west to the eastern third of Kansas 

and Nebraska, north into southern Manitoba, Canada and south into portions of Texas 

(Robertson et al., 1997). Fragmentation of the tallgrass prairie in the eastern Great Plains began 

in the early 1800s when European settlers converted “the Great American Desert” into cropland 

and non-native grasslands for domestic livestock grazing (Samson et al., 2004). Tallgrass prairie 

remnants remain almost exclusively on rocky substrates that are unable to be plowed. 

Furthermore, most of the Great Plains and eastern tallgrass prairie remnants are privately owned 

and subjected to a variety of land management practices, including grazing and haying for 
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domestic livestock (Owensby, 1993). Reports indicate that 18% of tallgrass prairie remains in 

Kansas, the largest percent of any state. Furthermore Kansas has the largest contiguous tract of 

tallgrass prairie located in the hilly region in eastern Kansas known as the Flint Hills (Risser, 

1988). Meanwhile other states, including Indiana, Illinois, Iowa, Minnesota, Missouri, North 

Dakota ,and Missouri contain less than a half percent of their original tallgrass prairie (Risser, 

1988; Robertson & Schwartz, 1994b). Mapping and monitoring the extent, distribution, and 

condition of remaining tallgrass prairie are critical to ensure preservation and sustainability of 

these biologically diverse grasslands. 

Accurate and ongoing mapping of the landscape provides tools for understanding the 

changing landscape, including the environmental and socio-economic drivers, and provides tools 

for planning and conservation. For decades researchers have used remotely sensed data to map 

and monitor grasslands, including the tallgrass prairie. Studies have used remote sensing 

technology to monitor and model biophysical characteristics of grasslands, including functional 

distributions (i.e. C3 and C4 grasslands), productivity (biomass and cover) and grassland use that 

can alter grassland biophysical characteristics and quality. For example, several studies have 

used remotely sensed data to map or predict distributions and abundance of C3 and C4 

grasslands. Tieszen et al. (1997) used time series AVHRR Normalized Difference Vegetation 

Index (NDVI) data to characterize the spatial and temporal distribution of C3 and C4 grasslands 

in the Great Plains over a five-year period. Davidson and Csillag (2003) compared three 

approaches using AVHRR NDVI to predict the relative abundance of C4 cover in a Canadian 

mixed-grass prairie. They found a two-date ratio, early season NDVI to late season NDVI, best 

predicted C4 abundance (Davidson & Csillag, 2003). Meanwhile Foody and Dash (2007) used a 

30-week time series of MERIS Terrestrial Chlorophyll Index (MTCI) data to map high, medium 
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and low C3 cover in South Dakota with an overall accuracy of 77%. In addition, Gu and Wylie 

(2015) leveraged the spatial resolution of Landsat NDVI and the temporal resolution of MODIS 

NDVI in a rule-based piecewise regression to produce a 30-m grassland productivity map of the 

Greater Platte River Basin, Nebraska. Understanding productivity and the abundance of C3 and 

C4 grasslands is important as the two grassland types respond differently to environmental 

change due to grazing intensity, fire frequency, nutrient regimes, and climate change (Tieszen et 

al., 1997).  

Other studies have used remotely sensed data to map thematic grassland classes that are 

represented by either their dominant functional group or as native and non-native grassland 

types. Using multi-seasonal ASTER NDVI, Wang et al. (2010) mapped cool-season (non-native) 

and warm-season (native) grasslands in western Missouri with an accuracy of 80%. The authors 

found that spring and summer NDVI provided the highest separability between these two 

grassland types due to their asynchronous phenology, with maximum productivity reached in 

May and July for cool- versus warm-season grasslands, respectively. Another study showed 

discriminant analysis and MODIS NDVI time series spectrally separated native and non-native 

dry mixed-grass prairie in Alberta, Canada with an overall accuracy of 73% (McInnes et al., 

2015). Meanwhile a mapping effort by Peterson et al. (2008) found that multi-seasonal Landsat 

Thematic Mapper (TM) data better separated native (warm-season) and non-native (cool-season) 

grassland types in the Flint Hills ecoregion than coarser resolution MODIS NDVI time series.  

Many of these studies and mapping efforts rely on the asynchronous phenology of cool- and 

warm-season grasslands. However, grasslands are used and managed extensively and 

intensively. The type, combination, timing and intensity of land management practices within 

grassland types alter the biophysical properties of grasslands, including vegetation productivity 
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and composition, and soil structure and chemistry, which in turn results in altered spectral 

responses that complicate the ability to accurately map grassland types. Several studies have 

used remotely sensed data to characterize and monitor land management practices and land use 

intensity occurring within grasslands. For example, Guo et al. (2003) and Guo et al. (2000) used 

multi-seasonal field data and Landsat TM imagery to show that biophysical and spectral 

characteristics were significantly different among three common land management practices in 

cool-season (non-native) and warm-season (native) grasslands in Douglas County, Kansas. 

Discriminant analysis showed the two grassland types and the three treatments in the two 

grassland types could be separated with an accuracy of 90.1% and 70.4%, respectively (Price et 

al., 2002a). Peterson et al. (2002b) obtained similar results when using discriminant analysis to 

separate grazed cool- and warm-season grasslands in the same county. Another study by Lauver 

and Whistler (1993) found significant differences in the biophysical characteristics (species 

diversity, plant cover, and biomass) of high-quality (hayed) and low quality (overgrazed) 

tallgrass prairie remnants in Anderson County, Kansas that were mapped using single-date 

Landsat TM data and probability thresholding with moderate success (63% overall accuracy). 

Another study by Franke et al. (2012) found that multi-temporal RapidEye data and a decision 

tree classifier could map grassland land use intensity in a 500 km2 grassland area in Germany 

with accuracies up to 85.7%. A recent study Halabuk et al. (2015) used MODIS NDVI and EVI 

to detect haying events in prairie hay meadows in Slovakia with accuracy levels as high as 85%. 

While these studies provide examples of successful results for grassland mapping and 

monitoring, they primarily occur on a relatively small scale.  

However, there are land cover datasets that contain grassland information at larger scales. 

One national mapping effort was coordinated under the Multi-Resolution Land Characteristics 
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(MRLC) Consortium that began in the 1980s. Initially the MRLC was developed as a means to 

build and share a national Landsat imagery archive using agreed-upon image processing 

standards. Given that the cost of a single Landsat image in the mid-1990s was $3,000-$4,000, 

multi-temporal, regional scale mapping was too costly for federal or state agencies or academic 

institutions (Wulder et al., 2012). In 2008 a data policy change made Landsat data freely 

available. The MRLC consortium’s focus shifted from creating a national imagery archive to 

creating and maintaining a series of national land cover datasets produced collaboratively by 

members in the consortium (Wickham et al., 2014). The MRLC Consortium land cover products 

include the National Land Cover Dataset (NLCD), Coastal Change Analysis Program (C-CAP), 

Gap Analysis Program (GAP), and Landscape Fire and Resource Management Planning Tools 

(LANDFIRE) (Wickham et al., 2014). 

The NLCD is a national mapping effort led by USGS. National NLCD databases were 

produced in 1992, 2001, 2006, 2011 and 2016, switching from a ten-year to five-year update 

cycle (Wickham et al., 2014). The NLCD maps sixteen land cover classes at a 30m spatial 

resolution. “Grassland/Herbaceous” and “Pasture/Hay” are the two grassland classes in the 

NLCD, but the Pasture/Hay class can include native hay meadows or non-native grasslands, as 

well as alfalfa. The 2011 NLCD was produced using Landsat imagery and ancillary geospatial 

data and a decision tree classifier (DTC) (Homer et al., 2015) and had reported accuracy level of 

82% (Wickham et al., 2017). And previous national NLCD Level II (2001 and 2006) products 

have reported overall accuracy levels of ~85%; however, accuracy levels vary by region.  

In 1999 the United States Department of Agriculture (USDA) National Agricultural 

Statistics Service (NASS) began producing an annual Cropland Data Layer (CDL) for several 

states that has now grown into a national mapping product. As the name implies, the effort 
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focuses on mapping crop types. The spatial and temporal resolution of imagery used has varied 

over the years, but more recently NASS has used a combination of Landsat 8 and MODIS NDVI 

and ancillary data (soils, topography) in a decision tree classifier (DTC). The USDA Farm 

Service Agency’s (FSA) annotated Common Land Unit (CLU) database is used for image 

classification model development and accuracy assessment. Map accuracy levels vary by crop 

type, and for the 2015 CDL the overall accuracy level was reported at 85%. For non-cropland 

classes (grassland, woodland, etc.), however, the CDL uses the NLCD map for training and 

validation, with no accuracy levels reported for these classes. The two grassland classes are 

“Other Hay/Non-Alfalfa” and “Grassland/Pasture”. Another potential issue with using the CDL 

is that in some years the CDL grouped grassland enrolled in the Conservation Reserve Program 

with fallow/idle cropland but in other years grouped CRP with the pasture/grassland class. Given 

that the CDL does not focus on mapping non-cropland classes, NASS refers end-users to the 

NLCD for those classes. While both the NLCD and CDL contain aggregate grassland classes, the 

classes primarily represent land use and do not distinguish land cover in terms of their functional 

group or classification as native, non-native, and CRP.  

The land cover from the GAP was initially produced in the mid-to late-1990s with a 

mapping focus on natural vegetation using NatureServe’s Hierarchical Ecological System for 

classification. The national GAP mapping effort collaborated with states to develop their state-

wide map product. As a result, independent supervised classification approaches (which 

potentially varied by classifier, thematic resolution, minimum mapping unit, training data, etc.) 

were used, making it difficult to edge-match states. In Kansas, 40 alliance-level natural 

vegetation classes were mapped with varying success. The Kansas GAP map overall map had 

classification accuracies of 89%, 66%, and 52% for Anderson Level I, Formation Level, and 
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Alliance Level mapping, respectively. GAP has been updated by the USGS for several regions in 

the US, but not for the North Central Region where Kansas is located.  

While land cover maps containing grassland classes represent a snapshot in time, they 

can be used in a time series to help understand landscape changes and respective drivers of 

landscape change. For example, Drummond (2007) created five land cover maps between 1973 

and 2000 in two ecoregions in the Great Plains to create a time series of regional loss and 

expansion of grasslands. The author found distinct temporal trends in the conversions between 

cropland and grassland that were attributed to changes in socioeconomics and policy. A 

somewhat controversial study by Wright and Wimberly (2013) used the CDL from 2006 and 

2011 to quantify the large conversions of grassland to cropland that the authors claim to be the 

result of increased soy and corn production. However, a response (Cooper, 2015) expressed 

concerns with regard to how the thematic data were aggregated and handled in the change 

detection analysis.  

 Research Objectives 

While previous studies in eastern Kansas have evaluated the biophysical characteristics 

of grasslands and have used field and satellite-acquired spectral data to statistically discriminate 

between grassland types and land management practices, little research has focused on 

identifying an optimal classification approach using satellite imagery for mapping grassland 

types at a regional scale. The goal of this research was to determine an optimal classification 

approach, i.e., which combination of remotely sensed imagery and thematic classification 

scheme most accurately maps dominant grassland types (warm- and cool-season) across eastern 

Kansas. To achieve this research goal there were three main objectives. 
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1. Identify the dominant land use within the two grassland types (warm- and cool-season 

grasslands) using United States Department of Agriculture (USDA) Farm Service 

Agency (FSA) data and characterize the static or dynamic nature of land use in 

grassland types in eastern Kansas. 

2. Determine the spectral separability of grassland types and land use using multi-

seasonal Landsat 8 spectral bands, Landsat 8 NDVI, and Moderate Resolution 

Imaging Spectrometer (MODIS) NDVI time series.  

3. Determine the optimal combination of data for mapping and the appropriate thematic 

resolution for mapping grassland type by comparing modeling performance using a 

Random Forest (RF) modeling approach. 

These three objectives represent three research components in the dissertation. 

 Research Component 1: Characterizing County-Level Spatial and Temporal 

Distributions of Grassland Types and Land Use in Kansas  

The first research component identified dominant land use occurring in warm- and cool-

season grasslands in eastern Kansas over a six-year period (2004-2007, and 2015). Furthermore, 

the research evaluated whether land use within grasslands remains static or changes inter-

annually. USDA FSA data were analyzed at the county level and at the field level. Both native 

and non-native grasslands are managed landscapes where a combination of land management 

practices are utilized to maintain and maximize vegetation productivity. The timing, frequency 

and intensity of a land management practice and the combination of practices varies by grassland 

type and by land owner, which in turn complicates mapping grassland types using remotely 

sensed imagery. While previous research indicated that land management (or land use) 

complicates the mapping of warm- and cool-season grassland types, there is no documented 
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information on the prevalence of land use between and within grassland types in Kansas or on 

the static or dynamic nature of land use over time. Without an understanding of land use trends, 

it is difficult to fully understand the impact land use has on the ability to map warm- and cool-

season grassland types. Furthermore, testing the hypothesis that inter-annual grassland type and 

land use within grasslands are static can shed light on the efficacy of using out-of-year training 

data for image classification when within-year training data are unavailable. 

 Research Component 2: Exploring the Spectral Characteristics and Separability of Four 

Grassland Type Hierarchies Using Landsat 8 and MODIS NDVI 

This research component used Jeffries-Matusita (JM) distance statistics and spectral 

profiles to compare the spectral separability of four hierarchies of grassland types in northeastern 

Kansas. Three remotely sensed datasets from 2015 (three-date Landsat 8 multispectral, three-

date Landsat NDVI, and 23-period, 16-day composite MODIS NDVI time series) and 2015 

reference data from the USDA FSA were used in the analyses. The results will be used to 

determine the optimal dataset(s) for regional scale mapping of grassland types, the hierarchy of 

grassland types to be mapped, and whether land use affects the spectral separability of grassland 

types.  

 Research Component 3: Evaluating the Utility of Random Forest and Landsat 8 and 

MODIS NDVI Data for Mapping Grassland Types at a Regional Scale 

The third research component compared data combinations and thematic classification 

hierarchies for optimal mapping of grassland type across two Landsat 8 scenes (Landsat 

Worldwide Reference System (WRS) path/rows). Specifically, this objective compares model 

development and performance of Random Forest (RF) using multispectral Landsat 8, Landsat 8 

NDVI, and MODIS NDVI separately and then combined. Out-of-Bag (OOB) errors from the 
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models were used to identify the optimal thematic grassland hierarchy for mapping grasslands 

and the optimal data input for this study. Models were applied to the data to produce grassland 

type maps for both path/rows and both OOB and test data were used to assess accuracy levels for 

the maps produced. The results of this research will be used to formulate a methodology for 

mapping functional grassland types at a regional scale. 

 Research Design 

 Study Area: 

The general focus of the study area is on grasslands in the central Great Plains, but the 

study areas for the individual research components vary on data and topic. For the first research 

component Kansas was defined as the study area. For the second research component, the study 

area was defined as the area of Landsat path/row 27/33 that falls within Kansas (Figure 1). For 

the third research component, the study area consisted of the area within two adjacent Landsat 

path/rows (27/33 and 28/33) that fall in Kansas.  

Kansas exhibits an east-west precipitation gradient and a north-south temperature 

gradient, with higher precipitation occurring in the east and lower temperatures occurring in the 

north. Kansas grasslands follow the east-west precipitation gradient with tallgrass prairie in the 

relatively wet east, mixed prairie in central Kansas and shortgrass prairie in the dryer west.  

Haying and grazing are two of the common land uses for both grassland types. However, 

the timing, intensity and frequency of management practices within each grassland type vary by 

land owner and by climate conditions in a given year. In addition to grazing, prescribed burning 

is a commonly used management practice to maintain species diversity and prevent woody 

encroachment in native warm-season grasslands. 
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 Data Sources 

FSA Database. The United States Department of Agriculture (USDA) Farm Service 

Agency (FSA) maintains annual field-level records of acreage, land cover and intended land use 

for all fields participating in a USDA program. These data are known as FSA 578 data. In 

Kansas the FSA data are maintained by county FSA field offices where land owners or producers 

indicate land cover and land use for the upcoming year. In the 1990s, county field offices 

maintained the data as photocopies of aerial photos with land cover and land use information 

annotated on the photocopies. Depending on the county, these photocopies were made available 

to the public by request. In the mid-2000s counties began delineating and maintaining digital 

geospatial databases of field boundaries, called Common Land Units (CLUs). A common land 

unit is defined as the smallest land unit that has the same ownership, land cover, and land use. 

The extents of these units, which are subject to modification by FSA at any time, can be defined 

based on a change in any of these variables in addition to natural features such as waterways or 

forests or manmade features such as roads. 

The agricultural marketing firm, Farm Market iD, is a proponent of making FSA and 

CLU data publicly available, and following a legal battle, Farm Maket iD was successful in 

making the FSA and CLU database publically available in early 2008 until the enactment in May 

of The Food, Conservation and Energy Act (known as the Farm Bill) of 2008, which then 

revoked public access to both datasets. During the three month window when data were 

available, Farm Market iD acquired the FSA and CLU data. Farm Market iD now packages and 

sells these data along with additional proprietary data about agricultural land owners and 

producers. The Biofuels and Climate Change - Farmers’ Land Use Decisions (BACC–FLUD) 

project (supported by the National Science Foundation, Award Number EPS-0903806) 
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purchased the 2003-2007 FSA 578 data and CLU boundaries from 2007 from Farm Market iD. 

The 2007 Kansas CLU data layer contains more than 1.3 million geospatial features representing 

field (or management unit) boundaries. The 2003-2007 FSA 578 tabular data contain several key 

attributes that are relevant to this study. The attribute “Code” contains grassland type information 

that can be categorized into cool- or warm-season grassland types. The attribute “Intended Land 

Use Code” identifies the land use that the land owner intends to use the grassland for during that 

growing season or year. The Intended Land Use Codes for grasslands in Kansas include forage, 

grazing, and left standing (not grazed or hayed) (Table 1.). In addition to the 2000-2007 FSA 578 

and 2007 CLU boundaries, the 2015 CLU and FSA 578 data were recently acquired through a 

Memorandum of Use (MOU) with the Kansas FSA office as part of a state-funded land cover 

update. The CLU and FSA 578 data are rich datasets that are ideal for this study by providing the 

spatial resolution, attribute information, sample size, and a temporal span that would be 

prohibitive to collect through an independent field campaign.  

Satellite Imagery. Factors to consider when selecting appropriate data for mapping 

include cost, coverage, and resolution (spatial, spectral, radiometric, and temporal). One 

common theme in the previously described studies is the utility and importance of temporal 

resolution. Multi-temporal data capture variations in vegetation phenology and disturbances over 

a growing season. In terms of spatial resolution, several studies contend that higher spatial 

resolution data (e.g. RapidEye, 5m) are needed for effective grassland mapping and monitoring 

(Ali et al., 2016; Corbane et al., 2015; Schuster et al., 2015). However, many studies, including 

several previously discussed, illustrate the utility of moderate resolution Landsat (30m) and 

MODIS NDVI (250m) in regional mapping applications and studies (Brown et al., 2013; 
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Peterson et al., 2008; Wardlow et al., 2007). A critical advantage for using Landsat and MODIS 

are that these data are freely available.  

Landsat 8 imagery contains eight Operational Land Imager (OLI) multispectral bands (1-

7, 9; 30-m spatial resolution), one OLI panchromatic band (8; 15-m spatial resolution) and two 

Thermal Infrared Sensor (TIRS) bands (10 and 11; 30-m resampled spatial resolution). Terra 

MODIS NDVI provides a 250-m time series of 23 16-day NDVI composites per year.  

 Data Analysis 

Objective 1. Using intended use codes in the FSA tabular data from 2003-2007 and 2015, 

summary statistics were calculated by year to identify and characterize dominant land use 

stratified by county, year, and grassland type. Where field-level data exist for multiple years (i.e. 

County FIPS, Tract Number, Field Number, Farm Number and Acreage remains the same), the 

data in the FSA tables were subset to summarize temporal change in grassland type and land use 

in the study area. County level maps of land use dominance, land use stability (no change over 

time) and land use change by grassland type were created to identify spatial patterns and 

dynamics of grassland type and land use in the study area. 

Objective 2. Next, for each observation in the FSA 578 data and the CLU boundary 

shapefile, a unique identifier were created by concatenating the following attributes: State FIPS 

code, County FIPS code, Tract Number, and Farm Number (SCTF). Boundaries change, and 

tract and farm numbers can change. This unique identifier allows the CLU boundaries to be 

attributed with the FSA 578 data. Because there is a many-to-one relationship between tracts and 

CLU polygons (e.g. multiple crops were planted in a given field/CLU), only FSA and CLU data 

that have a one-to-one relationship were used for spectral profile analysis and image 

classification. A total of 18,707 data samples were used in the analysis. 
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  Landsat path/row 27/33 was defined as the study area for determining the spectral 

separability of four grassland hierarchies using three separate datasets of remotely sensed 

imagery. The datasets of remotely sensed imagery assembled for the study were multispectral 

Landsat 8 surface reflectance, Landsat 8 NDVI, and MODIS NDVI time series. Three Landsat 8 

surface reflectance images were ordered and acquired using USGS’s EarthExplorer (EE) tool 

https://earthexplorer.usgs.gov/ to represent the spring, summer and fall portions of the growing 

season. A biweekly time series of 231-meter Terra MODIS 16-day composite NDVI from the 

2015 growing season was downloaded from NASA’s EarthData online tool, 

https://earthdata.nasa.gov/. The MODIS time series dataset was reprojected from the native 

Sinusoidal projection to Albers Equal Area projection and clipped to the Landsat path/row 

extent. The MODIS NDVI time series dataset was then resampled to 30-meter pixels and 

snapped to the Landsat 8 footprint. The three datasets were stacked to create a 44-band imagery 

dataset. 

For each dataset separately and then combined, the Jeffries-Matusita (JM) distance 

statistic was calculated and evaluated for each pair of grassland classes (using grassland type and 

intended land use) to determine overall and seasonal separability using the full time series and 

individual time-periods, respectively. 

The JM distance measures the separability between two classes by considering the 

distance between class centers simultaneously with intra-class spread (variability) and has shown 

utility in remote sensing applications (Davis et al., 1978; Kastens et al., 2017; Masialeti et al., 

2010; Richards & Jia, 1999; Swain & King, 1973; Wardlow et al., 2007). Assuming multivariate 

normal distributions, the JM distance is calculated as:  

	௜௝ܯܬ ൌ 	2ሺ1 െ	݁ି஻ሻ where 
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 μj and μk correspond to class-specific, expected spectral values, and Σj and Σk are unbiased 

estimates for the class-specific covariance matrices. The JM distance ranges between zero and 

two. A JM distance approaching two suggests distinct distributions, or high separability, between 

two classes, while a JM distance closer to zero suggests overlapping distributions and little 

separability between two classes. The JM distance for each of the three datasets was plotted and 

statistics evaluated and described for all pairwise class comparisons.  

Objective 3. For the third objective, two adjacent Landsat path/rows, 27/33 and 28/33, 

were defined as the study area. A 44-band dataset comprised of Landsat 8, Landsat 8 NDVI and 

MODIS NDVI were constructed for both path/rows. Training data from the FSA 578 data were 

used to train Random Forest models that were then used to produce grassland maps for the study 

area. Because image dates used for creating multi-season Landsat imagery varied by path/row, 

models were developed for each path/row separately and results compared to determine the 

generality of the mapping approach.  

The number of training sites for cool and warm season grasslands were selected in an 

attempt to represent approximate proportions of the overall landscape within each path/row. A 

maximum of 10,000 training sites was selected using a random stratified design. For example, if 

70% of the grassland types in the path/row were estimated as warm-season, then 70% of the 

training sample sites were represented by warm-season grasslands. However, actual 

representations are unknown and estimates were obtained using the 2015 FSA and CLU data.  
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Next, supervised classifications were run separately for each dataset and then combined 

using the Random Forest classifier (Breiman, 1994) in MatLab. Ten forests were created for each 

run. Random Forest implicitly builds a classification ensemble—hundreds or thousands of trees. 

Each tree is built using a subset of training data known as a “bootstrap sample,” with the 

remaining third of the data providing Out-of-Bag (OOB) samples that were used to produce an 

unbiased estimate for the predictive error of the random forest model. To develop each 

component tree, a random subset of predictor variables (the size of which is typically the square 

root of the total number of predictors, or one half or twice the square root) was used. To apply a 

RF model, each tree or submodel in the forest or ensemble “votes” on the classification and the 

majority vote determines the final classification. For this study, one thousand trees were grown 

with predictor subset size determined by the square root of the total number of predictors. Out-

of-bag error were calculated and used to assess forest performance. In addition, a probabilistic 

independent validation (“test”) dataset was used to calculate traditional accuracy statistics in 

addition to quantity and spatial allocation errors (Pontius Jr & Millones, 2011). The classification 

maps within the overlap area between the two adjoining Landsat 8 path/rows were compared to 

assess the level of agreement in the mapped classes to indicate how the two RF models 

performed with different Landsat image dates and different proportions of grasslands.  

 Significance of Study 

Previous research indicates that human land use complicates mapping grassland types by 

altering the vegetation phenology through removal of vegetation (haying, mowing, grazing) or 

the non-removal of biomass from prior growing seasons (standing dead litter). Identifying the 

dominant land use in cool- and warm-season grasslands in eastern Kansas is necessary for 

understanding the potential implications land use has on mapping these two grassland types. 
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Additionally, little research has been done to identify an optimal classification approach in terms 

of thematic resolution and source data to map grassland types and land use at a regional scale. 

This study compared the spectral properties of four grassland hierarchies using three remotely 

sensed datasets: multispectral Landsat 8, Landsat 8 NDVI, and Terra MODIS NDVI. The results 

of the analysis were used to characterize and quantify the separability of grassland types and land 

use to help identify the thematic classification scheme and the optimal data for mapping. A 

random forest modeling approach was used to compare the mapping ability for each of the three 

datasets separately and combined for each grassland hierarchy for two path/rows. The results will 

be used to inform regional-scale mapping of grasslands in Kansas. 
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Table 1.0.1. The four grassland hierarchies used in the analyses. 

Level-1 Level-2 Level-3 Level-4 
Warm-Season (W) CRP (Crp) CRP (Crp) CRP (Crp) 

Native (N) Native (N) Native Forage (Nfg) 
Native Grazed (Ngz) 
Native Left Standing (Nls) 

Cool-Season (C)  Cool-Season (C) Fescue (F) Fescue Forage (Ffg) 
Fescue Grazed (Fgz) 
Fescue Left Standing (Fls) 

Brome (B) Brome Forage (Bfg) 
Brome Grazed (Bgz) 
Brome Left Standing (Bls) 

 
 
 

 
Table 1.0.2. The three types of intended land use occurring in Kansas grasslands and their associated 
definitions. 

Intended Land Use Definition 

Forage Intended for harvesting as food for livestock. Does not 
include crops grown for the intended purpose of grazing 
by livestock or grown for the intended purpose of grain 
which may be fed to livestock. 

Grazing Intended solely for pasture for livestock to roam and feed 
on. 

Left Standing Intended to be left in the field unharvested. Not intended 
to be mechanically or manually harvested for any 
purpose, grazed by domesticated livestock, or otherwise 
harvested in any manner. Typically used for erosion 
control and nutrient retention. 
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2 Chapter 2: Characterizing County-Level Spatial and Temporal Distributions of 

Grassland Types and Land Use in Kansas 

 Abstract 

This study characterizes grassland types and land use across Kansas and evaluates both 

the dynamic and static nature of grassland type and land use over time to inform a methodology 

for land cover mapping of grassland types. USDA Farm Service Agency (FSA) data from 2004-

2007 and 2015 and Common Land Unit (CLU) geospatial data from 2007 and 2015 were used as 

the primary data inputs for county summaries of grassland type and land use. The results show 

regional trends in grassland type in Kansas that are largely driven by climate and soils. During 

the study period, native warm-season grasslands were most common in the western two-thirds of 

the state while cool-season fescue and brome grasslands were most common in different portions 

of the eastern third of Kansas. Fescue were more common in southeastern Kansas where soils are 

more clay pan while brome were more common in northeastern Kansas and was prevalent in 

some central counties with well-drained soils. Field size also varied across the state and by 

grassland type. There were a large number of small fields (< 20 acres) of brome and fescue in 

eastern and central Kansas while western Kansas was composed of fewer but larger fields of 

native grassland and land enrolled in the Conservation Reserve Program (CRP). The results also 

show that the FSA 578 data did not represent all grasslands, especially in the early FSA 578 data 

(2007 and prior) where most of the Flint Hills area was not included. Meanwhile 2015 FSA 578 

data showed an increase across the state, largely in the Flint Hills, suggesting that the 

establishment and funding of two emergency response FSA programs in the 2014 farm bill 

increased participation in FSA programs. As anticipated, the change in land use was greater than 
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the change in grassland type in terms of acres and the number of fields. The results indicate 

mapping grassland types in eastern Kansas may be more complex than in the central and western 

parts of the state due to the larger number of grassland types and the more fragmented landscape.  

 Introduction 

The composition, spatial distributions, granularity, and the static and dynamic nature of 

the landscape are among the factors that influence and potentially impact mapping endeavors 

using remotely sensed data. This study characterizes grassland types, land use, and field size 

across Kansas in order to make informed decisions on developing a methodology for image 

classification to map grassland types in Kansas. Knowledge of the characteristics of grasslands in 

Kansas will aid in developing a mapping approach, including training sample allocation, 

thematic resolution of mapped classes, the source imagery used, and the efficacy of using out-of-

year training data for image classification.  

In Kansas both native and non-native grasslands are managed landscapes where 

combinations of land management practices are utilized to maintain and maximize vegetation 

productivity largely for grazing and livestock support. The timing, frequency, and intensity of 

land management practice, and the combination of practices, varies by grassland type and by 

land owner, which in turn complicates mapping grassland types using remotely sensed imagery. 

While previous research has shown that land use and management complicates the mapping of 

warm- and cool-season grassland types Guo et al., 2000), there is no documented information on 

the prevalence of grassland types and land use between and within grassland types in Kansas or 

on the static or dynamic nature of grassland type and land use over time. Without an 

understanding of these trends, it is difficult to fully understand the impact land management 

practices have on the ability to map warm- and cool-season grassland types. And without an 



 
 

26 
 

understanding of the spatial distributions of grassland types, it is difficult to develop a thematic 

classification system and proportioned training and validation data allocation for image 

classification. Furthermore, knowledge of the granularity or size of the features (i.e., parcels) to 

be mapped can be used to determine the required spatial resolution of the input source imagery 

as well as how training data will be identified and extracted. Lastly, testing the assumption that 

both inter-annual grassland type and land use within grasslands are static can shed light on the 

possible efficacy of using out-of-year training data for image classification when within-year 

training data are unavailable.  

The objectives of this research are three-fold: 1) to identify the dominant grassland types 

and land use in grasslands and characterize their spatial trends in Kansas; 2) characterize trends 

in field size within grassland types across the state; and 3) determine the dynamic characteristics 

of grassland type and land use over time. 

 Methods 

 Study Area 

Situated in the central Great Plains, Kansas exhibits both precipitation and temperature gradients. 

Precipitation has an west-east gradient where the western third of Kansas’s long-term mean 

(1895-2015) annual precipitation is 531mm, the central third is 660mm and the western third is 

945mm (Lin et al., 2017). The west-east gradient of annual precipitation in Kansas largely drives 

plant productivity (e.g. biomass and canopy height) and thus the west-east grassland gradient 

from shortgrass to mixed grass to tallgrass prairie, respectively. In addition, higher levels of 

precipitation in eastern Kansas support more forests and woodlands. Meanwhile temperature 

affects the distribution of functional grassland types with C3 dominating northern regions and C4 

the southern regions. Temperature is the main driving factor influencing the natural distributions 
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of C3 and C4 grasslands species in the Great Plains. Additionally, C3 and C4 grassland species 

each have competitive advantages under certain CO2 levels, soil types, frequency and intensity 

of precipitation events, and type, frequency and intensity of land management practices 

(including fire). With increasing CO2 levels and climate change, there are anticipated shifts in 

species distributions which in turn affect ecosystem functions, soil biochemistry and the global 

carbon cycle.  

The regional trends in native grasslands across Kansas largely follow the west-east 

precipitation gradient. However, temperature, soils, disturbance, and land use are additional 

factors that affect grassland community distribution, and thus the boundaries for these native 

grassland types shift inter-annually. Grasslands in the western fourth to third of the state consist 

of native warm-season shortgrass species such as sideoats grama (Bouteloua curtipendula), blue 

grama (Bouteloua gracilis), and buffalograss (Bouteloua dactyloides), and moister areas may 

include Schizachyrium scoparium. Several forb and shrub species are supported in these semiarid 

grasslands including soapweed yucca (Yucca glauca) and common ragweed (Ambrosia 

psilostachya). Cropland and land enrolled in the Conservation Reserve Program (CRP) are 

dominant across Kansas, with CRP representing the majority of grasslands in several western 

counties. Dominant Kansas agricultural crops include corn, soybeans, grain sorghum, alfalfa, and 

winter wheat. Central Kansas grasslands consist of a mix of species from the eastern tallgrass 

prairie and western shortgrass prairie. Dominant species include little bluestem (Schizachyrium 

scoparium), big bluestem (Andropogon gerardii), indiangrass (Sorghastrum nutans), sideoats 

grama, blue grama, and buffalograss, as well as native cool-season grass species such as western 

wheatgrass (Pascopyrum smithii).  
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In the eastern third of Kansas, grasslands consist both of native, warm-season grasslands, 

and non-native, cool-season grasslands. The warm-season grasslands are either native tallgrass 

prairie or have been reseeded using a native seed mixture. The tallgrass prairie is dominated by 

bunchgrasses including big bluestem), little bluestem), and indiangrass. In high-quality prairie 

remnants, dozens of native forb species can be present including leadplant (Amorpha canescens), 

butterfly milkweed (Asclepias tuberosa), and purple coneflower (Echinacea angustifolia). The 

dominant warm-season grassland species fix carbon using C4 photosynthesis. The typical 

phenology of warm-season grasslands is spring green-up, peak productivity in late spring to early 

summer when temperatures increase, followed by senescence in fall (Weaver, 1954). The Flint 

Hills region lies on the western edge of the tallgrass prairie and is the largest remaining tract of 

native tallgrass prairie in the world. Cool-season grasslands become more prevalent in the 

eastern part of the state. Cool-season grasslands are planted with non-native herbaceous species 

such as smooth brome (Bromus inermis) and tall fescue (Festuca arundinacea) that fix carbon 

using C3 photosynthesis. The typical phenology of cool-season grassland is early spring green-

up, peak productivity in late spring, a mid-summer semi-dormancy and, with sufficient 

precipitation, a second, smaller growth period in early fall (Weaver, 1954). Cropland, woodland, 

and forest primarily occupy the river lowlands and riparian areas in eastern Kansas.  

Haying (forage) and grazing are two of the common land uses for all grassland types 

across the Kansas. However, the timing, intensity and frequency of management practices within 

each grassland type vary by land owner and by climate conditions in a given year. In addition to 

haying and grazing, prescribed burning is a required management practice for maintaining 

diversity in native warm-season grasslands and preventing woody encroachment. Herbicide 
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applications and fertilization are among the other commonly used land management practices to 

optimize vegetation productivity in non-native, cool-season grasslands. 

 Data Sources 

The two primary datasets used for this study are United States Department of Agriculture 

Farm Service Agency (FSA) tabular data and FSA Common Land Unit (CLU) geospatial data. 

The FSA tabular and CLU data contain the attribute information, spatial representation, sample 

size, and temporal span to characterize spatial and temporal trends in grassland type and land use 

across Kansas.  

The FSA maintains annual field-level records of acreage, land cover, and intended land 

use for all fields enrolled in a USDA program. Kansas FSA 578 data are maintained by county 

FSA field offices where land owners or producers report land cover and land use by November 

15th for the upcoming year. Accurate reporting by land owners ensures program eligibility. The 

field boundaries, called CLUs, are defined as the smallest land unit that has the same ownership, 

land cover, and land use. The extents of these units, which are subject to modification by FSA at 

any time, can be defined based on a change in ownership or land use. 

The 2004-2007 FSA tabular and 2007 FSA CLU data were purchased by the Biofuels and 

Climate Change - Farmers’ Land Use Decisions (BACC–FLUD) project (supported by the 

National Science Foundation, Award Number EPS-0903806) from Farm Market iD, an 

agricultural database and analytics firm. The 2015 FSA 578 and CLU data were acquired 

through a Memorandum of Use with the Kansas FSA office as part of a statewide land cover 

mapping endeavor. The 2007 and 2015 Kansas CLU data layers each contained more than one 

million geospatial features representing polygonal field boundaries. The FSA 578 data contained 

several key attributes relevant to this study including reported acreage, grassland type 
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information that distinguished between cool- and warm-season, and land management practices 

that land owners intend to use the grassland for during the upcoming growing season or year. 

The intended land use codes for grasslands in Kansas included forage, grazing, and left standing 

(Table 1).  

 Data Processing 

The tabular data were delivered from Farm Market iD in comma separated value (csv) 

files. The data tables were imported into Microsoft SQL Server Management Studio 2008 R2 for 

data processing and analysis. Each entry or row in the tabular data was attributed with a state, 

county code, tract number, field number and sub-field identifier. These attributes were 

concatenated to create a unique identifier for each row named “SCTF”. This unique identifier 

was constructed for all of the 2004-2007, 2015 FSA 578 data and the 2007 and 2015 CLU 

geospatial layers.  

To ensure data quality, dominant grassland types (>1,000 samples) were inspected to 

verify that locations identified as grasslands were actually grasslands. Using ESRI ArcGIS, the 

SCTF identifier was used to join tabular data to the 2007 CLU polygon data layer. The CLU 

polygons from 2007 were then overlaid on the closest year of high-resolution FSA NAIP aerial 

imagery and existing land cover maps. Evaluating the classes identified two grassland types from 

the 2004 data that did not fall on grassland areas. More than 50% of the fields attributed as Side 

Oats Grama and Sand Bluestem from 2004 were located on cropland fields and excluded from 

the analysis. The cause for these errors is unknown, but illustrates rational for data quality 

checks. Common Bermuda was considered a crop for sod and was also excluded from the 

analysis.  
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The 119 grassland types listed in the FSA multi-year data were recoded into seven 

dominant grassland types that were then used in county and field-level analysis (Table 2).  

CRP fields were recoded using the conservation practice attribute (Table 2). Conservation 

practices indicating warm-season grassland were aggregated to a “CRP warm-season” class (e.g. 

Establishment of Permanent Native Grasses) whereas the conservation practice, Establishment of 

Introduced grasses and legumes, indicated cool-season grassland (Banks, 2012) and was recoded 

to a “CRP cool-season” class. Conservation practices that could represent grassland and/or 

woodland or wetland (e.g. Riparian Buffers) or that did not represent field-sized grasslands 

(grass waterways) were recoded to “CRP other.” The resulting seven classes were CRP warm-

season, CRP cool-season, CRP other, Native warm-season, Brome cool-season, Fescue cool-

season, and Grass other. While there were a large number of grassland types in the Grass other 

class, 69 of the 88 grassland types had fewer than 100 fields across all years of FSA 578 data. 

As a further check of data quality, a data completeness assessment was performed to 

evaluate the completeness and representativeness of the FSA 578 data. The FSA reported 

grassland and CRP acreages were calculated and compared to state and county-level grassland 

acreages calculated from two supplemental sources. For grassland acreage information, an 

annual land cover time series (Gao et al., 2017) was used as supplemental data and for CRP 

acreage information, the county-level USDA FSA cumulative annual reported acreages were 

used as supplemental data (Gao et al., 2017; USDA, 2017). While all land use/land cover maps 

contain misclassification errors Peterson et al. (2008) and Peterson et al. (2017) reported an 

overall map accuracy of 90% and 93% for 2005 and 2105 data, respectively. County level maps 

showing proportions of grassland type, land use, and data completeness for each year were 

created in ESRI ArcMap to identify dominant grassland types and lands use in the study area. 
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Understanding the distribution and proportions of grasslands is useful for determining training 

sample allocations for image classification.  

Another consideration for land cover mapping in addition to understanding regional 

variability of grassland type and land use is field size or spatial granularity. Two commonly used 

sensors for statewide mapping endeavors, Landsat and MODIS have spatial resolutions of 30 

meters and 231 meters, respectively. Characterizing the granularity of the field size in the study 

area informs several components of developing a land cover methodology. Granularity can 

determine the spatial resolution of the imagery required for mapping, dictate the minimum 

mapping unit for the mapped classes, and/or the method used for extracting pixel information 

(pure vs. mixed pixels) used for training the image classification. To characterize the field size of 

grasslands (including CRP) in Kansas, the nine agricultural statistic districts (ASDs) comprising 

the state were aggregated into eastern, central and western tiers that roughly correspond to the 

precipitation gradient (Figure 1). Frequency distributions of the count and acreage of field size 

were created using 10-acre incremental intervals of the 2015 FSA 578 data. 

To characterize the dynamic vs. static trends in grassland types and land use across 

Kansas, field-level data existing across three or more years where the unique identifier, SCTF, 

and reported acreage remained constant (within 5%) were extracted for analysis. Table 5 shows 

that 181,667 fields totaling 3.275 million acres met the criteria for change analysis of grassland 

type and 193,900 fields totaling 3.4 million acres met the criteria for change analysis of land use.  

Next, each change scenario trajectory was evaluated and labeled as “likely” or “unlikely.” 

For example, if the grassland trajectory was bromenativebromenative, the trajectory was 

labeled “unlikely,” whereas a trajectory of CRPCRPnativenative was labeled as “likely” 

since it is plausible that a CRP contract expired and the grassland subsequently labeled as native. 
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Land use change was independent of grassland type change. There were no “unlikely” land use 

trajectories since land owners can change land use from one year to the next based on climate, 

grazing systems, economic conditions, or government policy. Finally, the acres of change and no 

change were summarized at the county and state level.  

 Results and Discussion 

The completeness assessment of grasslands and CRP was a necessary data quality check 

since subsequent analysis and county level maps of grassland type and land use utilized these 

data. The comparison of the statewide grassland acreages from the annual land cover data and 

annual FSA 578 data showed the 2004-2007 FSA data from Farm Market iD were not inclusive 

of all grasslands across Kansas (Table 3). The comparison suggests that the FSA data 

represented on average 31% of the statewide grassland area, ranging between 30% in 2007 to 

34% in 2004. While the grassland acres mapped in annual land cover data remained relatively 

consistent, the 2015 FSA data showed a large increase (75%) in statewide representation of 

grasslands (Table 3). Figure 2 shows the county level change in acreage in the FSA data between 

2007 and 2015. Only Comanche and Mitchell counties showed decreases in FSA acres between 

2007 and 2015. Meanwhile there were large increases in FSA acres from 2007 to 2015 in 

multiple counties in the Flint Hills (e.g. Cowley, Butler, and Marion), Smoky Hills (Trego, Ellis 

and Russell) and Red Hills (Barber and Clark).  

During the 2004-2007 time-frame there were two grassland-related FSA programs 

available to land owners, operators, or producers. The Conservation Reserve Program (CRP) 

began in 1989 and offers voluntary enrollment to agricultural producers where “environmentally 

sensitive farmland” is taken out of production and planted with long-term grass or tree cover to 

reduce soil erosion, enhance wildlife habitat, and improve water quality. CRP contracts have an 
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option for a 10- or 15-year enrollment. CRP land can only be grazed or hayed under FSA 

authorization as emergency relief in response to natural disasters, primarily drought or fire. The 

Grassland Reserve Program (GRP) began in 1985 but was later repealed by the 2014 Farm Bill. 

However, GRP contracts established prior to February 2014 remained valid. The voluntary GRP 

offered 10, 15, or 20-year contracts that provided annual rental payments or conservation 

easements to land owners and operators to protect rangeland or pastureland from overuse or 

conversion to farmland or development (USDA, 2009). The FSA data obtained for this study do 

not indicate lands in the GRP program. It was difficult to discern whether FSA data were 

incomplete for non-CRP grasslands, or that a large proportion of grasslands were not enrolled in 

an FSA program in the 2004-2007 time-frame. There were however, three additional FSA 

disaster assistance programs established between 2007 and 2015 may have resulted in the 

observed increased grassland acreage in 2015 FSA data. 

In 2008 the Livestock Forage Program (LFP), Livestock Indemnity Program (LIP), and 

the Emergency Assistance for Livestock, Honey Bees, and Farm-Raised Fish Program (ELAP) 

were established, but were not authorized and funded until the 2014 Farm Bill (Agricultural Act 

of 2014; P.L. 113-79) (Stubbs, 2018). The LFP compensates land owners or producers who lost 

grazing opportunity due to natural disasters on native or established non-native grassland that is 

used specifically for grazing. The LIP compensates land owners or producers who lost 

considerable livestock from adverse weather, and the ELAP compensates land owners or 

producers for livestock losses resulting from disease, adverse weather or shortages of water or 

feed (Stubbs, 2018). These voluntary programs are freely available to land owners given 

eligibility requirements are met.  
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While the FSA data underrepresented grassland acres, the comparison of CRP in FSA 

data and county-level USDA reported CRP acres showed that the 2004-2007 and 2015 FSA data 

only slightly underrepresented CRP acres, with 2004 having the lowest percent representation of 

93.5% (Table 4). And while grassland acres in the FSA data increased from 2007 to 2015, CRP 

acres decreased in both the FSA data and the county-level USDA data. Expired CRP acres would 

explain a portion of the observed increase in grassland acres between 2007 and 2015 if land 

owners chose to use the conservation cover for forage or grazing. The 2010 National Resource 

Inventory (USDA, 2013a; USDA, 2013b) showed that between 2007 and 2010, CRP acres 

declined by almost 18%, with 55% of those acres converted to cropland and 41% used as pasture 

or rangeland.  

In addition to providing a completeness assessment, Figures 2 through 7 show annual, 

county-level proportions of total grassland and CRP acres obtained from the FSA and 

supplemental data. While small variations could be the result of changing land cover, the 

variability suggests some limitations of the data. For example, total grassland acres in Meade 

County (located in southwest Kansas on the southern boundary of the state) increased from 290 

thousand acres to 326 thousand acres between 2005 and 2006. These types of inter-annual 

fluctuations in total grassland acres may be due to errors or misclassification in the annual land 

cover data and/or expired CRP contracts. Even with some inter-annual variability, the data were 

sufficient to identify and characterize regional trends in grassland extents, grassland type and 

land use.  

Figures 2 – 7 show the southern Flint Hills and the Red Hills regions of Kansas had the 

greatest total acres of grasslands (FSA and non-FSA Data), which is primarily due to shallow 

soils preventing these regions from being plowed for agricultural crop production. Butler, 
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Greenwood, Cowley, and Chase Counties consistently had the largest grassland acres in the 

southern Flint Hills and Barber, Clark and Comanche had the largest reported acres in the Red 

Hills. Meanwhile there were many counties across the state with relatively small grassland acres 

remaining including in northeastern Kansas (e.g. Doniphan, Atchison, Wyandotte, and Johnson), 

in southwestern Kansas (e.g. Haskell, Gray, Grant) and in central Kansas (e.g. Rice, Harvey, 

Sumner, Pratt, and Edwards). According to land cover data and knowledge of the study area, 

these counties were dominated by cropland or are heavily urbanized (e.g. Wyandotte, Johnson, 

and Sedgwick) (Figure 1).  

As previously mentioned, the lack of warm-season native grassland in Flint Hills 

represented in the 2004-2007 FSA data was either the result of missing FSA data or more likely, 

the lack of participation by land owners in FSA programs. The 2015 map in Figure 7 illustrates 

the changes in the fractions that more closely match the expected quantity of grasslands in the 

Flint Hills and western Kansas shown in Figure 1. These differences highlight the importance of 

understanding the study area and assessing data quality for data produced by other entities. 

Without the completeness assessment, multi-year data, and prior knowledge of the study area, 

grassland type proportions obtained from the 2004-2007 FSA data would have incorrectly 

proportioned the sampling sites used for training data in image classification which in turn could 

potentially increase classification error in a derived land cover product. These results also 

underscore the importance of scrutinizing data and using multi-year information for data 

comparisons for quality assurance where possible.  

While there was inter-annual variability in total grassland acreage, Figures 8 – 12 show 

there were consistent regional trends in grassland types across the state. Native warm-season and 

CRP grasslands were more prevalent in the western two thirds of the Kansas, while cool-season 
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brome and fescue were more common in the eastern half to third of the state. The prevalence of 

of cool-season grasslands in eastern Kansas corresponded to the precipitation gradient across 

Kansas where eastern Kansas has adequate precipitation and soil types to support introduced 

cool-season grassland types like brome and fescue. The data also indicated finer scale variability 

in the dominance of brome versus fescue in Kansas driven by regional climate and soils. 

Southeastern Kansas had distributions of fescue where there is a longer growing season, higher 

average precipitation and slow draining claypan soils Shoup et al., 2010). Meanwhile, central 

and eastern Kansas had distributions of brome where there are deeper well-drained soils. The 

2004-2007 data showed small fractions of brome as far west as Ellis County in central Kansas 

and Haskell County in southwest Kansas, where brome is irrigated for livestock grazing 

(Lamond et al., 1992). 

Warm-season CRP was more prevalent over cool-season CRP across all years of data 

with the largest fractions of warm-season CRP in southwest Kansas. Eastern Kansas had a small 

number of counties containing cool-season CRP in the 2004-2007 FSA data, but not in 2015. It is 

possible that cool-season CRP were reported in counties where county extensions supported 

particular seeding varieties for CRP. Additionally, in 2004 several western counties (Thomas, 

Gove, Scott and Pratt) contained cool-season CRP as well, though in subsequent years no cool-

season CRP acres were reported. It was uncertain if this change was real or noise in the FSA 

data. Furthermore, the county-level fractions of CRP visually appear to be relatively stable from 

2004-2007 with a dramatic statewide decrease in CRP in 2015. While CRP reported acres 

declined in all counties (USDA, 2017), the reduced fraction of CRP shown in Figure 12 is 

exaggerated by the additional warm-season native grassland data in the 2015 FSA data. 
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Regarding land use, most of the grasslands across the state were either grazed or used for 

forage with very little grassland left standing (Figures 8-12). However, central Kansas had a few 

counties (Rice, McPherson, Reno, Kingman, Sedgwick, and Sumner) that contained notable left 

standing native grassland in all years of data. Northwestern Kansas (e.g. Cheyenne, Rawlins, 

Decatur, Norton) mostly consisted of grazed native grasslands, while southwestern and portions 

of central Kansas (e.g. Stafford, Reno, and Kingman) consisted of warm-season CRP, followed 

by grazed native grasslands.  

The 2015 FSA data indicate fescue was primarily used for grazing followed by forage, 

whereas the land use of brome in 2015 was more variable, where some counties showed a 

dominance for forage and others for grazing. Interestingly, the 2004-2007 data indicated there 

was more forage production of fescue and brome in Kansas than in 2015. Brome and fescue were 

introduced to Kansas in the late 1800s as supplemental forage for livestock operations. Native 

grassland is typically grazed in the spring and summer while brome and fescue provide 

opportunity to lengthen the spring and fall grazing and forage periods. The Kansas State 

University (KSU) extension office indicates that brome provides excellent spring and fall pasture 

as well as excellent forage, producing as much as 3-4 tons of forage per acre (Lamond et al., 

1992). And in southeast Kansas, fescue is commonly fertilized in late summer and allowed to 

grow until late fall to provide winter grazing. Incorporating these grassland types allows land 

owners and producers to maximize livestock production and profits. Such local and regional 

practices are largely supported by local entities such as Kansas State Research and Extension and 

the Kansas Livestock Association. For example, the Southeast Agricultural Research and 

Extension Center located in southeast Kansas conducts grazing research exclusively on 

introduced grass species, unlike other extension centers across Kansas that focus heavily on 
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native grasslands (KSU, 2018). Annual climate conditions likely factor into land owners’ 

decisions on how grasslands will be used in the upcoming year. For example, drought conditions 

could cause a shift from forage to grazing if summer grazing on native grasslands is less 

productive and requires supplemental summer grazing.  

Figure 13 shows the frequency distributions of field sizes for grassland types among the 

three tiers of ASDs across Kansas. Moving from west to east there was a decrease in the 

frequency and acreage of large fields (> 160 acres) (Figure 13), meaning fewer large fields in 

eastern Kansas. The western tier had 8,800 native grassland and CRP fields greater than 160 

acres, totaling 3.47 million acres or 54% of the total FSA grassland acreage. In the central tier 

there were 6,300 native grassland and CRP fields greater than 160 acres, totaling 2.18 million 

acres or 34% of the total FSA grassland acreage. Meanwhile the eastern tier had the smallest 

number (4,856) and total acreage (1.59 million acres) of large fields of grassland, 90% of which 

were native grassland. There were large fields of CRP in both the west and central tiers whereas 

brome and fescue were only present in the east tier.  

The frequency, acreage and composition for small fields varied among the tiers as well. 

For example, the western tier had 54,500 native grassland and CRP fields of less than 10 acres; 

however, the total acreage of the small fields represented only 3% of the grassland acres. Moving 

eastward there was a substantially higher number of smaller fields. The central tier had 175,106 

fields of less than 10 acres and 7.2% of the total grassland acreage, while the eastern tier had 

147,930 fields of less than 10 acres, accounting for 8.6% of the acres reported. The composition 

of small fields varied across tiers. In the west, smaller fields were primarily a mix of grassland 

and CRP, while moving east there was more variety of grassland types, with brome dominant in 

the central and eastern tiers and fescue in the eastern tier. The increased frequency and small 
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acreage of grassland types in the central and eastern tiers are indicative of a more fragmented 

landscape. Understanding the field-size and level of fragmentation among grassland types across 

Kansas can be used to help determine the minimum mapping unit and source imagery used for 

mapping. While MODIS NDVI with its coarser spatial resolution may be suitable for mapping 

the larger grassland extents in the west, there were many small fields of CRP (e.g. corners of 

center pivots, which typically are concave in shape and roughly eight acres in size) and native 

grassland in western Kansas that may not be mapped accurately using a 231m spatial resolution 

(or approximately 13.2 ac/pixel). Likewise, Landsat data may be more suitable in the east given 

the frequency of small fields; however, the limited temporal resolution of Landsat may not be 

adequate for separating the phenological differences among grassland types. 

Statewide, a higher percentage of fields and acres remained unchanged for grassland type 

than land use. Grassland type remained unchanged for 87% of grassland acres and 84% of fields 

while land use remained unchanged for 60% of grassland acres and 77% of fields (Table 6). 

Figures 14 and 15 show county-level percent of acres that changed in grassland type and land 

use, respectively. Generally speaking, counties in central and eastern Kansas exhibited more 

change than counties in western Kansas. The higher average precipitation levels in central and 

eastern Kansas support the variety of grassland types (native and non-native) that have been 

established and provide options to change from one land use to another, whereas in western 

Kansas, the shortgrass prairie provides yield for grazing but not additional vegetation for forage. 

Crops such as forage sorghum and alfalfa are typically used as supplemental forage in the semi-

arid west.  

 Conclusions 
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The assessment and analysis of multiple years of FSA data showed variability in degree 

of completeness, meaning that the 2004-2007 FSA data were not all-inclusive of total grassland 

acres in Kansas. Even so, the data were sufficient to identify several regional trends in grassland 

type, land use, and field size. Eastern Kansas was found to have more grassland types, with the 

inclusion of non-native brome and fescue, a larger number of small fields, and more variability 

in land use, which together creates a more fragmented and complex landscape for mapping 

grasslands in that region. Western Kansas had larger fields that primarily consisted of CRP and 

grazed native grassland, creating a comparatively simpler landscape for mapping grasslands. The 

inclusion of 2015 data provided a more complete representation of grassland type and land use in 

Kansas compared to 2004-2007 data, which possibly was the result of three new FSA programs 

that were implemented in the interim. These results will be used to inform a grassland mapping 

approach for Kansas, including training data allocation for image classification.  
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Figure 2.13. Frequency distributions of grassland field size stratified by grassland type in ten acre intervals for each 
tier in Kansas. 
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Table 2.1. The three types and definitions of intended land use of Kansas grasslands in the FSA data (USDA 2013). 

 
Intended Land Use 

 
Definition 

Forage Intended for harvesting as food for livestock. Does not include 
crops grown for the intended purpose of grazing by livestock 
or grown for the intended purpose of grain which may be fed 
to livestock. 

Grazing Intended solely for pasture for livestock to roam and feed on. 
Left Standing Intended to be left in the field unharvested. Not intended to be 

mechanically or manually harvested for any purpose, grazed 
by domesticated livestock, or otherwise harvested in any 
manner. Typically used for erosion control and nutrient 
retention. 

 

 
 
Table 2.2. The recoding scheme used to assign grassland types in the FSA data to one of seven grassland types used 
in the analysis. 

Grassland Type FSA Crop Type Name 
CRP Warm-Season Establishment of Permanent Native Grasses 

Rare and Declining Habitat 
CRP Cool-Season Establishment of Introduced grasses and legumes 
CRP Other Bottomland Hardwood Tree Establishment 

Cross Wind Trap Strip 
Diversion 
Duck Nesting Habitat 
Farmable Wetland - Buffer 
Farmable Wetland - Wetland 
Farmable Wetland Program - Aquaculture Wetland 
Farmable Wetland Program - Constructed Wetland 
Farmable Wetland Program - Flooded Prairie Wetland 
Field Windbreak Establishment 
Flood Control Structure 
Grass Contour Strip 
Grass Filter Strips 
Grass Waterway 
Hardwood Tree Planting 
Living Snow Fence 
Longleaf Pine Establishment 
Non-Floodplain Wetland Restoration 
Permanent Wildlife Habitat 
Riparian Buffers 
Salinity Reducing Vegetation Establishment 
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Sediment Retention 
Shallow Water Areas for Wildlife 
Shelterbelt Establishment 
State Acres for Wildlife Enhancement 
Tree Planting 
Trees Already Established 
Wetland Buffer (Marginal Pasture) 
Wetland Restoration (Floodplain) 
Wildlife Food Plot 
Wildlife Habitat Buffer  
Wildlife Habitat Corridors 

Native Warm-Season Big Blue 
Big Bluestem 
Buffalo Grass 
Native 
Prairie 

Fescue Cool-Season Arctared Fescue 
Chewing Fescue 
Kentucky Fescue 
Meadow Fescue 
Rough Fescue 
Red Fescue 
Tall Fescue 

Brome Cool-Season Creeping foxtail 
Mountain Brome 
Other Brome 
Polar Brome 
Regar Brome 
Smooth Brome 

Grass Other Aeschynomene 
American Mamegrass 
American Vetch 
Annual Ryegrass 
Bahalia 
Basin Wild Rye 
Blue Grama 
Bluegrass, Alpine 
BlueJoint Reedgrass 
Broadleaf Signal 
Buffel 
California (Para) 
Canadian Wild Ryegrass 
Canary 
Canby  
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Coastal Bermuda  
Crabgrass 
Crested Wheat  
Eastern Grama 
Garrison Creeping Fxtl 
Gordo Bluestem  
Grama, Blue Lovington 
Grama, Hairy  
Grama, Side Oats  
Green Panic  
Hybrid Bent 
Hybrid Bermuda 
Illinois Bundle Flower 
Indian  
Intermediate Ryegrass  
Intermediate Wheat 
Johnson 
Jose Tall Wheatgrass  
Kleberg Bluestem  
Leriope  
Little Bluestem  
Magnar  
Mason Sandhill Lovegrass  
Matua  
Maxmillian Sunflower 
Meadow 
Mission 
Mutton  
Napier  
Needle And Thread  
Old World Bluestem  
Oldworld Bluestem 
Orchard 
Other Bent  
Pampas  
Perennial Ryegrass  
Plains Blue Stems  
Prairie Dropseed  
Prarie Sandreed  
Pubescent Wheat  
Red Ratibita 
Redtop  
Reed Canary  
Russian Wild Ryegrass  
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Sainfoin 
Sand Bluestem 
Sand Lovegrass  
Secar Bluebunch  
Siberian Wheat  
Side Oats Grama 
Slender Hair  
Small Burnett 
Soft Stem Blurush  
Spike Muhley  
Sprigs Bermuda 
Sudan 
Sun 
Switch 
Thick Spike Wheatgrass  
Timothy  
Tufted Hairgrass 
Turf 
Virginia Wild Rye 
Virginia Wildrye 
Weeping Lovegrass  
Wheat , Slender  
Wheat , Tall  
Wheat Streambank  
White Prairie Clover 
Worm Grass 
Zoysia  

 

  



 
 

61 
 

Table 2.3. A comparison of statewide grassland acres in the FSA data and annual land cover data. 

 
 

Program 
Year 

 
Grassland 
Acres in 

FSA Data 

Count of 
Grassland 

Fields in FSA 
Data 

Grassland 
Acres from 

Annual Land 
Cover Data 

Percent 
Grassland 

Represented 
by FSA data 

2004 7,546,492 328,386 22,451,617 33.61% 

2005 7,054,722 360,225 22,379,843 31.52% 

2006 7,323,636 378,287 24,104,610 30.38% 

2007 7,655,929 388,135 25,540,048 29.98% 

2015 18,019,038 607,500 23,720,380 75.96% 

 

 

 

Table 2.4. A comparison of statewide acres of land enrolled in CRP in the FSA data and USDA FSA Program 
statistics 

 
 
 

Program 
Year 

 
 

CRP Acres 
in 

FSA Data 

 
 

Count of CRP 
Fields in 

FSA Data 

USDA 
Reported 

Acres 
Enrolled in 

CRP 

 
 

Percent 
CRP in 

FSA data 
2004 2,646,551 83,531 2,828,911  93.55% 

2005 2,833,861 91,358 2,878,784  98.44% 

2006 3,028,743 101,998 3,085,227  98.17% 

2007 3,208,741 110,411 3,258,989  98.46% 

2015 2,077,132 85,311 2,182,877  95.16% 
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Table 2.5. The number of fields and acres screened for use in evaluating change in grassland type and land use. 
Criteria were defined as having at least three years of data and reported acres remained nearly constant. 

Stratification Data Assessment Number of Fields Acres 

Grassland Type Excluded, criteria not met 36,353 1,031,566 

Included, criteria met 181,667 3,275,514 

Land Use Excluded, criteria not met  24,120 902,693 

Included, criteria met 193,900 3,404,388 

 

 

 

Table 2.6. The number of fields, acres and percent of change and no change in grassland type and land use in Kansas 
for fields meeting the criteria defined in Table 5. 

 
Trajectory 

Number of 
Fields 

Acres 
Percent 
Fields 

Percent 
Acres 

Grassland Type Unlikely Change 5,275 47,663 2.9% 1.5% 
Change 23,653 371,842 13.0% 11.4% 
No Change 152,739 2,856,008 84.1% 87.3% 

Intended Land Use Change 78,037 793,655 23.3% 40.3% 
No Change 115,863 2,610,733 76.6.% 59.8% 
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3 Chapter 3 Exploring the Spectral Characteristics and Separability of Four Grassland 

Type Hierarchies Using Landsat 8 and MODIS NDVI 

 Abstract 

This study used Jeffries-Matusita (JM) distance statistics and spectral profiles to compare 

the spectral separability of four hierarchies of grassland types in northeastern Kansas. Three 

remotely sensed datasets from 2015 (three-date multispectral Landsat 8, three-date Landsat 8 

NDVI, and 23-period, 16-day composite MODIS NDVI time series) and 2015 reference data 

from the USDA Farm Service Agency (FSA) were used in the analyses. The results will be used 

to determine the optimal dataset(s) for regional scale mapping of grassland types, the hierarchy 

of grassland types to be mapped, and whether land use affects the spectral separability of 

grassland types. The results show that combining the three datasets maximized the JM distance 

statistics, and thus the spectral separability of grassland types across all grassland type 

hierarchies. Individually, the three-date multispectral Landsat 8 dataset had the highest JM 

distance statistics, followed by MODIS NDVI time series, and three-date Landsat 8 NDVI. 

Spectral profiles and by-band and by-period JM distance statistics indicate that the spring and 

fall Landsat near-infrared (NIR) bands and spring and fall NDVI were more important than 

summer for spectral separability between grassland types. There was variability in JM distance 

statistics separability comparisons when incorporating land use, indicating that land use does 

affect spectral separability in some instances. However, the JM distance statistics were not 

dramatically reduced when land use types were aggregated to coarser grassland types (Level-1 

and Level-2), indicating that land use does not negatively affect the spectral separability of 

functional grassland types. There was moderate to high separability between land enrolled in the 
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conservation reserve program (CRP) and native grasslands and low separability between fescue 

and brome. The results suggest that brome and fescue should be combined into one class for 

grassland type mapping, and that it may be possible to map CRP and native grasslands either as 

one class or separately.  

 Introduction 

The tallgrass prairies of the Great Plains in North America, considered one of the more 

biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of 

grassland area with estimates of only 9.4% - 13% of the original tallgrass prairie remaining 

(Gibson, 2009; Samson et al., 2004). It has been estimated that the tallgrass prairie once 

occupied 167 million acres, stretching east into western Ohio, west to the eastern third of Kansas 

and Nebraska, north into southern Manitoba, and south into portions of Texas (Robertson et al., 

1997). Kansas has an estimated 18% of its original tallgrass prairie extent, the largest of any 

state, and the largest contiguous tract of tallgrass prairie in the region known as the Flint Hills. 

Meanwhile, many other states including Indiana, Illinois, Iowa, and Missouri contain less than a 

half percent of their original extent (Risser, 1988; Robertson & Schwartz, 1994a). Fragmentation 

of the tallgrass prairie in the eastern Great Plains began in the early 1800s when European 

settlers converted “the Great American Desert” into cropland and non-native grasslands for 

domestic livestock grazing (Samson et al., 2004). Most of the Great Plains and eastern tallgrass 

prairie remnants now are privately owned and subjected to a variety of land management 

practices, including grazing and haying for domestic livestock (Owensby, 1993).  

Mapping and monitoring the extent, distribution and condition of remaining tallgrass 

prairie are critical for ensuring preservation and sustainability of these biologically diverse 

grasslands under global demands for increased food production and biofuels as well as the 
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stresses of climate change. Such map products have and will continue to be used for conservation 

and research applications and initiatives for pollinators, upland and migratory birds, and other 

grassland species. In addition to tallgrass prairie, another grassland type that is of particular 

interest is land enrolled in the Conservation Reserve Program (CRP). CRP is a United States 

Department of Agriculture (USDA) Farm Service Agency (FSA) program that began in 1985 

and is the largest private-lands conservation program in the U.S. The CRP program offers a 10-

15 year contract to landowners where “environmentally sensitive farmland” is taken out of crop 

production and planted with long-term grass or tree cover in an effort to reduce soil erosion, 

improve water quality, or improve habitat for wildlife (Ribaudo et al., 1990; Wu & Weber, 

2012). Many studies have shown the benefits of CRP to wildlife by providing habitat and 

landscape connectivity (Hughes et al., 1999; Reynolds et al., 2001; Riffell et al., 2008; Van Pelt 

et al., 2013). Acreage enrolled in CRP peaked nationally and in Kansas in 2007, when Kansas 

had over 3 million acres of CRP USDA, 2017). The 2014 Farm Bill set a national cap of 24 

million CRP acres resulting in a competitive enrollment process among land owners (Hellerstein, 

2017). In 2017, CRP acreage in Kansas declined 37% since the 2007 peak. There are ongoing 

concerns about losing the environmental services CRP provides with the reduction of allowable 

enrollments and with commodity prices encouraging land owners to convert these marginal 

agricultural lands back into cropland production (Gelfand et al., 2011; Johnston, 2014; Wright & 

Wimberly, 2013).  

Accurate and ongoing mapping of the landscape provides tools to monitor the changing 

landscape, including environmental and socio-economic drivers, and provides the opportunity for 

conservation planning. Remotely sensed data have been used to map and monitor grasslands, 

including the tallgrass prairie and land enrolled in CRP. Studies have used remote sensing 
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technology to monitor and model biophysical characteristics of grasslands including functional 

distributions (i.e. C3 and C4 grasslands), productivity (biomass and cover) and grassland use that 

can alter grassland biophysical characteristics and quality. For example, several studies have 

used remotely sensed data to map or predict distributions and abundance of C3 and C4 

grasslands. Tieszen et al. (1997) used time series AVHRR Normalized Difference Vegetation 

Index (NDVI) data to characterize the spatial and temporal distribution of C3 and C4 grasslands 

in the Great Plains over a five-year period. Davidson and Csillag (2003) also used AVHRR 

NDVI to compare three approaches to predict the relative abundance of C4 cover in a Canadian 

mixed-grass prairie. They found a two-date ratio, early season NDVI to late season NDVI, best 

predicted C4 abundance (Davidson & Csillag, 2003). Meanwhile Foody and Dash (2007) used a 

30-week time series of MERIS Terrestrial Chlorophyll Index (MTCI) to map high, medium, and 

low C3 cover in South Dakota with an overall accuracy of 77%. In addition, Gu and Wylie 

(2015) leveraged the spatial resolution of Landsat 8 NDVI and the temporal resolution of 

MODIS NDVI in a rule-based piecewise regression to produce a 30-m grassland productivity 

map of the Greater Platte River Basin, Nebraska. Zha et al. (2003) found that percent vegetation 

cover in a semi-arid grassland in a western China could be mapped with an accuracy of 89% 

using calibrated Landsat TM NDVI. With growing interest in using CRP lands or marginal 

croplands for biofuel feedstock, Porter et al. (2014) used Landsat Thematic Mapper (TM) and 

Enhanced Thematic Mapper (ETM) multispectral Landsat 8 and NDVI data to estimate biomass 

in a CRP pasture to within 8% of the in situ measurements. Understanding the distribution, 

abundance, and productivity of C3 and C4 grasslands is important, as the two grassland types 

respond differently to environmental change due to grazing intensity, fire frequency, nutrient 

regimes, and climate change (Tieszen et al., 1997).  
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Other studies have used remotely sensed data to map thematic grassland classes that are 

represented by either their dominant functional group or as native and non-native grassland 

types. Using multi-seasonal ASTER NDVI, Wang et al. (2010) mapped cool-season (non-native) 

and warm-season (native) grasslands in western Missouri with an accuracy of 80%. The authors 

found that spring and summer NDVI provided the highest separability between these two 

grasslands types due to their asynchronous phenology, with maximum productivity reached in 

May and July for cool and warm-season grasslands, respectively. Another study used 

discriminant analysis and MODIS NDVI time series to spectrally separate native and non-native 

dry mixed-grass prairie in Alberta, Canada with an overall accuracy of 73% (McInnes et al., 

2015). Meanwhile, a pilot study by Peterson et al. (2008) found that multi-seasonal Landsat TM 

data better separated native (warm-season) and non-native (cool-season) grassland types in the 

Flint Hills ecoregion than coarser resolution MODIS NDVI time series.  

Many of these studies and mapping efforts rely on the asynchronous phenology of cool- 

and warm-season grasslands. However, grasslands are used and managed extensively and 

intensively. The type, combination, timing, and intensity of land management practices within 

grassland types alter the biophysical properties of grasslands, including vegetation productivity 

and composition and soil structure and chemistry, which in turn potentially alters spectral 

responses that can complicate the ability to accurately map grassland types. Several studies have 

used remotely sensed data to characterize and monitor land management practices and land use 

intensity occurring within grasslands. For example, Guo et al. (2003) and Guo et al. (2000) used 

multi-seasonal field data and Landsat TM imagery to show that biophysical and spectral 

characteristics were significantly different among three common land management practices in 

cool-season (non-native) and warm-season (native) grasslands in Douglas County, Kansas. 
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Discriminant analysis showed the two grassland types and the three treatments in the two 

grassland types could be separated with an accuracy of 90.1% and 70.4%, respectively (Price et 

al., 2002a). Peterson et al. (2002b) obtained similar results when using discriminant analysis to 

separate grazed cool- and warm-season grasslands in the same county. Another study by Lauver 

and Whistler (1993) found significant differences in the biophysical characteristics (species 

diversity, plant cover and biomass) of high-quality (hayed) and low quality (overgrazed) tallgrass 

prairie remnants in Anderson County, Kansas, that were mapped using single-date Landsat TM 

data and probability thresholding with moderate success (63% overall accuracy). Franke et al. 

(2012) found that multi-temporal RapidEye data and a decision tree classifier could map 

grassland land use intensity in a 500 km2 grassland area in Germany with accuracies up to 

85.7%. A study by Halabuk et al. (2015) used MODIS NDVI and enhanced vegetation index 

(EVI) to detect haying events in prairie hay meadows in Slovakia with accuracy levels as high as 

85%. While these studies provide examples of successful results for grassland mapping and 

monitoring, they primarily occur on a relatively small scale.  

With regard to mapping CRP land, a post-classification trajectory approach has been used 

to map CRP (Egbert et al., 1998). The trajectory logic identifies CRP when pixels are mapped as 

cropland in the first temporal period and mapped as grassland subsequently in the second 

temporal period. Song et al. (2005) used a combination of multi-temporal Landsat TM, including 

multiple indices, image texture, and terrain layers to map CRP land in Texas County, Oklahoma. 

The authors found that support vector machine (SVM) outperformed the decision tree classifier 

(DTC) by mapping CRP with an overall accuracy of 96%. A study in southwest Kansas used 203 

Landsat TM images from 1984 to 2010 to produce maximum NDVI composites to map land use 

conversion, specifically cropland to grassland, to identify CRP. The mapping results were 
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compared to the 2005 Kansas Land Cover Patterns map (KARS, 2008) as reference data and 

showed 91% agreement (Maxwell & Sylvester, 2012).  

While previous studies in eastern Kansas have evaluated the biophysical characteristics 

of grasslands and have used field and satellite-acquired spectral data to statistically discriminate 

between grassland types and land management practices, little research has focused on 

identifying an optimal thematic classification approach for mapping grassland types at a regional 

scale. Multiple factors must be considered when developing such a land cover classification 

approach. One key factor is determining what source data or combination thereof maximizes the 

ability to map the defined grassland types. Another is defining what grassland types will be or 

can be mapped, meaning the thematic classification scheme. A final factor (that is specific to this 

study but potentially extensible to others) is understanding the impacts of land management on 

the spectral separability of grassland types. While the timing and intensities of land management 

practices vary, there is uncertainty as to if and how land management practices affect the spectral 

characteristics within and between grassland types. The objective of this study is to use Landsat 

8 and MODIS NDVI time series data from 2015 to evaluate the spectral characteristics and 

separability of spectral profiles for a hierarchy of grassland types and land use in a highly 

fragmented landscape in northeastern Kansas. Comparison of the spectral and temporal 

resolutions of multispectral Landsat 8 data, Landsat 8 NDVI, and MODIS NDVI provides a 

framework for identifying optimal dataset(s) for image classification. In addition, using a 

hierarchy of grassland types enables identification of an appropriate thematic classification 

scheme and evaluates the effect of land management on spectral characteristics.  

 Methods 
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 Study Area 

Kansas exhibits an east-west precipitation gradient and a north-south temperature 

gradient, with higher precipitation occurring in the east and lower temperatures occurring in the 

north. Kansas grassland types largely follow the east-west precipitation gradient with tallgrass 

prairie in the relatively wet east, mixed prairie in central Kansas, and shortgrass prairie in the 

semi-arid west. The study area (shown in grey) falls within the Landsat path/row 27/33 (shown 

in red) in eastern Kansas where the landscape is dominated by a mosaic of agriculture, grasslands 

and urban areas (Figure 1). Areas falling outside of Kansas were not part of the defined study 

area. 

There is an inherent east-west land use/land cover gradient within the study area. The 

western edge of the study area is in the Flint Hills, which is the largest remaining tract of native 

tallgrass prairie in the world. In the Flint Hills, native grasslands dominate and non-native 

grasslands and croplands are scattered in the river lowlands. Moving eastward from the Flint 

Hills the landscape becomes highly fragmented and more complex. Cropland becomes prevalent 

and dominant crops planted include corn, soybeans, grain sorghum, alfalfa, and winter wheat. 

Grasslands east of the Flint Hills consist both of native, warm-season dominated grasslands and 

non-native, cool-season grasslands. Cropland, woodlands, and forests occupy the river lowlands 

and riparian areas.  

Warm-season grasslands are either native tallgrass prairie or have been reseeded using a 

native seed mixture. Warm-season grasslands fix carbon using C4 photosynthesis and are 

dominated by native bunchgrasses such as big bluestem (Andropogon gerardii), little bluestem 

(Schizachyrium scoparium), and  indiangrass (Sorghastrum nutans) and in high quality prairie 

native forbs such as leadplant (Amorpha canescens), butterfly weed (Asclepias tuberosa), and 
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purple coneflower (Echinacea angustifolia). The typical phenology of warm-season grasslands is 

spring green-up, peak productivity in late spring to early summer when temperatures increase, 

followed by senescence in fall (Weaver, 1954).  

In this study area, cool-season grasslands are defined as non-native grasslands. These 

grasslands are planted with non-native herbaceous species such as smooth brome (Bromus 

inermis) and tall fescue (Festuca arundinacea). Cool-season grasslands fix carbon using C3 

photosynthesis. The typical phenology of cool-season grassland is early spring green-up, peak 

productivity in late spring, a mid-summer semi-dormancy and, with sufficient precipitation, a 

second, smaller growth period in early fall (Weaver, 1954). Haying and grazing are two common 

land uses for both grassland types. However, the timing, intensity, and frequency of management 

practices within each grassland type vary by land owner and by climate conditions in a given 

year. In addition to grazing, prescribed burning is a common management practice for 

maintaining the diversity in native warm-season grasslands and preventing woody encroachment. 

 Data Sources 

The FSA maintains annual field-level records (referred to as FSA 578 data) of acreage, 

land cover, and intended land use for all fields participating in USDA program. In Kansas, 

county-level field offices maintain FSA data, where land owners or producers report land cover 

and land use information for eligibility for the upcoming USDA program year. Historically these 

data were maintained by county field offices using photocopies of aerial photos with land cover 

and land use information annotated on the hardcopy. Today these data are maintained as a 

geodatabase of field boundaries known as Common Land Units (CLUs), defined by FSA as the 

smallest land unit with the same ownership, land cover and land use, however some fields can be 

split into sub-fields. Each CLU is annotated with a number of attributes including crop type, land 
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use, reported acreage, county FIPS code, farm number, and tract number. In the past, these data 

have been made available to scientists to use for training and validating several land cover 

mapping efforts in Kansas (Kennedy, 1999; Mosiman, 2003; Peterson et al., 2005; Wardlow & 

Egbert, 2008). Through a Memorandum of Use (MOU) with the Kansas FSA office, 2015 CLU 

and FSA 578 data were acquired for a state-wide land cover mapping project. There are more 

than one million polygons in the 2015 CLU database with reported crop types and intended land 

use. Grassland type information is available in the database as a crop type. “Intended Land Use 

Code” identifies the land use that the land owner intends to use the grassland for during the 

upcoming year and includes the categories of forage, grazing, and left standing (not grazed or 

hayed for forage). For record in the FSA 578 data and each feature in the CLU polygon 

shapefile, a unique identifier was created by concatenating the following attributes: State FIPS 

code, County FIPS code, Tract Number, and Farm Number (SCTF).  

Three datasets of remotely sensed imagery were assembled for the study and include 

Landsat 8 surface reflectance, Landsat 8 NDVI, and Terra MODIS NDVI time series. Three 

Landsat 8 surface reflectance images were ordered and acquired using USGS’s EarthExplorer 

(EE) tool https://earthexplorer.usgs.gov/ to represent the spring, summer and fall portions of the 

growing season for path/row 27/33. The dates of the imagery obtained were 03/30/2015, 

06/12/2013, and 11/09/2015 – no cloud-free imagery was available for the summer of 2015, and 

while not ideal, it is uncommon for grasslands to change in type or use or to be converted to a 

different land cover from year to year, so this scene from 2013 provided a reasonable proxy. 

Monthly reports from the High Plains Regional Climate Center (HPRCC) show that both June 

2013 and July 2014 were substantially drier than June and July in 2015 (Umphlett, 2013)and thus 

represents a potential limitation in the summer Landsat data used in this study. Using ERDAS 
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Imagine, six multispectral bands (bands 2 – 7) were extracted from the three image dates and 

combined to produce an 18-band multi-seasonal Landsat 8 dataset. Using the same dates listed 

above, spring, summer, and fall surface reflectance NDVI images were acquired and stacked to 

create a three-date multi-seasonal Landsat 8 NDVI dataset. Lastly, a biweekly time series of 231-

meter Terra MODIS 16-day composite NDVI from the 2015 growing season was downloaded 

from NASA’s EarthData online tool, https://earthdata.nasa.gov/. The data were reprojected from 

the native Sinusoidal projection to Albers Equal Area projection and clipped to the Landsat WRS 

path/row (27/33) extent. The MODIS NDVI time series dataset was resampled to 30-meter pixels 

and snapped to the Landsat 8 pixel grid. The three datasets were stacked to create a 44-band 

dataset. 

Two qualifiers were used to identify MODIS pixels suitable for the spectral separability 

analysis. Using ESRI ArcGIS, a polygon file of the 231-m MODIS pixel footprints was used to 

calculate the percentage of grassland in each MODIS pixel using the 2015 Level-I Kansas Land 

Cover Patterns dataset (KARS, 2008). Next, the MODIS pixel footprints and the 2015 CLU 

boundaries were intersected to calculate the proportion of the pixel interior to a field. MODIS 

pixels containing greater than 60% grassland and 60% interior to a CLU were selected for the 

analysis. The centroids of the MODIS pixels were used to extract reflectance and NDVI values 

from the 44-band image stack. The centroid was intersected with the USGS’s high-resolution 

National Hydrography Dataset (NHD) waterbody feature layer to exclude point locations that fell 

within farm ponds that would affect the Landsat reflectance values. In addition, NDVI values 

profiles and values were inspected and pixels where the cumulative summer NDVI (periods 10 – 

14) were less than 2500 were flagged as outliers and were excluded from the analyses. While 

there were additional Landsat 8 pixels that could be used in the analysis, a one-to-one 
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correspondence was maintained between MODIS and Landsat data to allow for a direct data 

comparison. These data were exported to an Excel file and imported into MATLAB software for 

statistical analysis and plotting spectral profiles.  

 Data Analysis 

Four hierarchies of grassland classes were created to determine what level of grassland 

type exhibited spectral distinction among classes and to evaluate the impact land management 

has on the spectral separability of grasslands. Table 1 shows the four levels of grassland classes 

used in the analysis along with the associated sample sizes for the four levels of classes. Level-1 

corresponds to functional grassland types where CRP and native grasslands, dominated by 

warm-season grasses, were aggregated to a single class while fescue and brome, dominated by 

cool-season grasses, also were aggregated to a single class. Level-2 separates the grassland types 

into three classes, CRP, native, and cool-season grasslands. Separating CRP from native was 

based on knowledge of the potential user-base of the land cover product and growing interest 

regarding CRP land being converted back to cropland. Level-3 separates fescue and brome 

grassland types. Lastly, level-4 separates grassland types by land use (Forage, Grazed, and Left 

Standing). The small sample of fescue left standing lacked sufficient degrees of freedom for 

meaningful comparisons of Jeffries-Matusita (JM) distance for the three datasets with larger 

numbers of predictors (namely, multispectral Landsat 8, MODIS NDVI, and the combined 

datasets).  

Spectral plots were created for the pairwise comparisons using the median values and a 

70% data band, which is bound by the 15th and 85th percentiles. Pairwise JM distance statistics 

were calculated for grassland classes in the four hierarchies using the three remotely sensed 

datasets separately (multispectral Landsat 8 – 18 bands, Landsat 8 NDVI – 3 bands, and MODIS 
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NDVI – 23 bands) and the combined dataset (44 bands). In addition, JM distance statistics were 

calculated for individual bands to identify any spectral and/or seasonal influences in individual 

Landsat bands or image dates. JM distance measures the separability between two classes by 

considering the distance between class centers simultaneously with intra-class spread (variance) 

and has shown utility in remote sensing applications (Brown et al., 2013; Davis et al., 1978; 

Kastens et al., 2017; Lin et al., 2017; Masialeti et al., 2010; Richards & Jia, 1999; Swain & 

King, 1973; Wardlow et al., 2007). Assuming multivariate normal distributions, the JM distance 

is calculated as:  

	௜௝ܯܬ ൌ 	2ሺ1 െ	݁ି஻ሻ where 

21 1
ln

28 2
j k

j kB D
  

    
 

, 

   
1

2

2

T j k
j k j kD    

  
   

 
, and where 

 μj and μk correspond to class-specific mean spectral profiles, and Σj and Σk are unbiased 

estimates for the class-specific covariance matrices. The JM distance ranges between zero and 

two. A JM distance approaching two suggests highly distinct spectral distributions, or high 

separability, between two classes, while a JM distance close to zero suggests highly overlapping 

spectral distributions, or low separability. The JM distances were calculated for each dataset 

(multispectral Landsat, Landsat 8 NDVI, and MODIS NDVI) separately and then for all three 

combined. Additionally, using the level-3 hierarchy, the JM distance statistics were calculated 

for each band in each dataset to identify the spectral bands or temporal periods exhibiting high 

separability for the pairwise comparisons.  
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K-means clustering, a commonly used iterative non-parametric unsupervised 

classification algorithm, was used to evaluate the spectral clustering of the grassland hierarchies 

using the best dataset determined by JM distance statistics (Brown et al., 2013). K-means 

clustering was performed using MATLAB software. Thirty replicates were specified and the 

number of clusters were based on the grassland hierarchies (e.g. two clusters for Level-2 and ten 

clusters for Level-4). K-means randomly selects observations as initial cluster centroids, 

calculates the distance from each observation to the initial centroid, observations to the cluster 

with the lowest distance and recalculates the cluster centroid. This process iterates until the 

clusters become completely stable. Of the thirty replicates, the replicate with the lowest sum of 

total distances was selected for the analysis.  

 Results and Discussion 

 Dataset Comparison of Spectral Separability 

Figure 2 shows pairwise JM distance statistics for all grassland class hierarchies and for 

the three datasets individually and combined. The x-axis is shown in ascending order of JM 

distance using the three datasets combined (44 bands). As previously stated, the small sample 

size for Fescue left standing (Fls) lacked sufficient degrees of freedom for meaningful JM 

distance calculations besides the Landsat NDVI dataset (JM distance is prone to overfitting in 

instances where the number of observations from a class is somewhat close to the number of 

bands being considered in the separability calculations, which imparts a favorable bias to the 

result; when number of bands exceeds the number of observations, JM distance cannot even be 

calculated). The results show that JM distance statistics were consistently higher for pairwise 

comparisons when combining the three datasets (multispectral Landsat, Landsat 8 NDVI and 

MODIS NDVI) versus individual datasets or two datasets combined (Figure 2).  
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When comparing the three individual datasets, pairwise JM distance statistics were higher 

using the multi-temporal, multispectral Landsat dataset versus either of the NDVI datasets. This 

comparison of JM distance statistics suggests the multispectral data bands provide useful 

information for separating grassland types versus NDVI alone. The multispectral reflectance data 

include spectral information from the visible and short-wave infrared (SWIR) bands that can 

provide additional biophysical information about the vegetation including moisture conditions, 

biophysical stress, and cell structure. Other studies have shown similar results where 

multispectral Landsat bands outperformed Landsat TM NDVI in cropland mapping in Kansas 

(Kennedy, 1999; Mosiman, 2003).  

Comparing JM distance statistics between Landsat 8 NDVI and MODIS NDVI suggests 

that the higher temporal resolution of MODIS NDVI provides more spectral separability of 

grassland types than the three-date, higher spatial resolution of Landsat 8 NDVI. This result 

could be influenced by the two qualifiers used for extracting MODIS pixels by seeking to avoid 

pixels “contaminated” by other land cover types. Including all MODIS pixels would have 

allowed more mixed pixels to be included in the analysis and likely could have produced a 

different result than shown here. 

 Seasonal Spectral Separability of Grassland Types 

 Figure 3 shows the JM distance statistics calculated for each of the eighteen 

multispectral Landsat bands, the three dates of Landsat 8 NDVI and 23-periods in the MODIS 

NDVI using the Level-3 hierarchy. As expected, JM distance statistics by band or period were 

relatively low for all datasets; however, there were specific spectral bands and temporal periods 

that were more spectrally distinct than others when comparing between grassland types. The 18-

band Landsat dataset shows the JM statistic was higher in the fall near-infrared (NIR) band 
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(Fa5), followed by the spring NIR band (Sp5) and the fall red band (Fa3; Figure 3). Grassland 

types were more separable in the spring followed by fall for both Landsat 8 NDVI and MODIS 

NDVI. More specifically for MODIS NDVI, biweekly periods 6-8 (Mar 22–Apr 6, Apr 7–Apr 

22, Apr 23–May 8) were higher, followed by periods 20-23 (Nov 1–Nov 16, Nov 17–Dec 2, Dec 

3–Dec 18, Dec 19–Dec 31). JM statistics were near zero for the summer periods or image dates. 

The MODIS temporal statistics of JM distance could be used to target additional image 

acquisition dates of Landsat imagery. Also, given that summer data provided the least separation 

among grassland types, increasing the number of Landsat dates in the spring and fall may 

provide a better mapping approach versus the spring/summer/fall Landsat 8 image triplicate used 

in this study.  

The spectral profiles in Figure 4 illustrate seasonal differences between functional 

grassland types (warm- and cool-season grasslands) in the study area. In the spring, warm-season 

grasslands have lower reflectance in the Landsat NIR band (Sp5) and NDVI for Landsat 8 data. 

The spectral plot of MODIS NDVI shows that the onset of the growing season occurred 

approximately one period earlier for cool-season than warm-season grasslands. Summer NDVI 

was slightly lower for warm-season grasslands, but there was significant overlap in the summer 

NDVI distributions. In the fall, cool-season NDVI remained higher than warm-season, with the 

typical late-season flush for cool-season grasses. These results support the seasonality of cool- 

and warm-season grasslands shown by previous research (Foody & Dash, 2007; Guo et al., 

2003; Peterson et al., 2002a; Wang et al., 2010).  

 Spectral Separability and Grassland Hierarchies 

There were multiple trends in the JM distance statistics across the grassland hierarchies. 

Generally speaking, pairwise comparisons incorporating land use (level-4 hierarchy) had higher 
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JM statistics between grassland types than within grassland types (Figure 2). Within grassland 

type and across the three datasets, there was consistently low separability between forage and 

grazing land use (e.g. pairwise comparison of Ffg (fescue forage) and Fgz (fescue grazed); 

Figure 3). Grasslands that were used for forage and grazing in 2015 had low separability, 

potentially due to the variability in land owner decisions on the timing, frequency, and intensity 

of use. Market prices and current or prior year climate conditions are among the dynamic 

variables that factor into land owner decisions. Interestingly, Landsat 8 and MODIS NDVI JM 

distance was higher between left standing and grazed and left standing and forage for both brome 

and native grasslands.  

Spectral profile statistics (median and 70% data band) of land use within grassland type 

for native, fescue and brome for the three datasets are shown in Figures 6-8, respectively. The 

profile distributions show substantial overlap between land use within the grassland types. There 

were slight seasonal variations in left standing with lower NIR and NDVI in the spring that may 

result from increased dead vegetation matter remaining from the previous year, and generally 

higher late summer NDVI that likely result from biomass accumulation over the growing season 

and lower fall NDVI values during late senescence (periods 19-23) as shown by MODIS 

profiles. 

Since CRP and native grasslands are both dominated by warm-season grasslands, it was 

anticipated that JM distance would be lower for these comparisons. The statistics, shown in 

Figure 9, were fairly consistent across the grassland hierarchies and datasets. JM distance was 

consistently low (less than one) using either the Landsat 8 or MODIS NDVI dataset and was 

surprisingly consistently high (greater than 1.6) using multispectral Landsat 8 and the combined 

datasets. The spectral profiles in the top row of Figure 10 show that the distributions of CRP and 
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native grasses largely overlap across the datasets. For the multispectral Landsat 8 dataset the 

largest differences occurred in the fall image. Native grasslands had slightly higher spectral 

reflectance across the six fall bands. By-band statistics show the Landsat fall green (Fa2) and 

NIR (Fa4) bands were higher than other fall multispectral bands. CRP land is released for 

grazing or haying under severe drought conditions. The last known time CRP land were released 

for grazing and haying in the study area was July 2012 (USDA, 2012). Therefore, two-three 

years of accumulated senesced vegetation were on CRP lands from the 2014 and 2015 growing 

season that could result in lower NIR spectral reflectance. The higher separability between CRP 

and native grasslands using Landsat 8 indicates there is utility in the variety of information found 

in the multispectral bands of Landsat 8 and in using a fall image date. Additionally, given the 

consistency in the JM distance across CRP and native land use, the results indicate that land use 

within native grasslands do not largely impact the spectral separability of these two grassland 

types.  

JM distance for CRP and hierarchies of cool-season grassland types are shown in Figure 

11. The statistics for multispectral Landsat 8 and the combined datasets were consistently high 

between CRP and across the hierarchies of cool-season grassland types. CRP land is typically 

planted using a few dominant warm-season grass species and are largely left unmanaged. Only in 

severe drought conditions are land owners permitted to graze or hay CRP land. Given the often 

multi-year accumulation of senesced vegetation residue from grasses in CRP, vegetation 

structure in CRP is visually distinct and may be a factor in the spectral separability from cool-

season grasslands. This result indicates that grazing and forage land use in cool-season 

grasslands does not suppress the phenological differences between the two functional grassland 

types and/or that the unique vegetation structure of CRP land influences the separability. As 
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figure 11 shows, CRP and left standing had relatively lower JM-distance statistics when using 

Landsat 8 NDVI. The spectral profiles in Figure 10 show that CRP has higher spring and fall red 

spectral reflectance (Sp4, Fa4) and lower spring and fall NIR spectral reflectance (Sp5, Fa5) and 

lower Landsat and MODIS NDVI values than brome and fescue, highlighting the asynchronous 

phenology of warm-season and cool-season grasslands.  

Comparisons between the different hierarchies of native and fescue and native and brome 

are shown in Figures 12 and 13, respectively. There was variability in the statistics with the 

lowest JM distance between native grazed versus fescue grazed and native grazed versus brome 

grazed when using the multispectral Landsat 8 or combined dataset. There was more variability 

in the statistics derived using the NDVI datasets. For Landsat 8 NDVI, values were lowest for 

the left standing land use. As mentioned previously, left standing may suppress the NDVI values 

and potentially lessen the spectral separability between these classes. When aggregated to level-

3, Native-Fescue (NF) or Native-Brome (NB), level-2 hierarchy Native-Cool, or a level-1 

hierarchy, Warm-Cool (NC), the JM values using the combined dataset remained relatively high 

(>1.75), suggesting that these classes were spectrally separable even under different land use. 

This again supports the notion that phenological differences remain distinct between the 

functional grassland types regardless of land use.  

Lastly, the results indicate relatively low separability between brome and fescue across 

the datasets (Figure 14, bottom row). As the spectral profile plots illustrate, the spectral 

reflectance and temporal response were very similar between brome and fescue which, given that 

both grassland types are cool-season, was not surprising. These results suggest that when using 

these datasets, fescue and brome should be grouped into one class for grassland type mapping 

and that JM distance statistics indicate the grouping does not affect their spectral separability 
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from CRP or native grassland. It is possible that other remotely sensed data, such as 

hyperspectral could better separate brome and fescue grassland types.  

K-Means clustering was used to examine the potential of the four hierarchies to be 

reflected in unsupervised spectral clustering. Tables 2 and 3 show the results from K-means 

along with the percentage of the samples represented in each cluster for two grassland 

hierarchies. At a Level-1 hierarchy, there was more separation of the class types. Class 1 

primarily represented cool-season grasslands and Class 2, warm-season. The classes for potential 

Level-2 to Level-4 hierarchies were not as well separated. For example, Table 3 shows the 

confusion in class two for the Level-2 hierarchy. Results from K-means runs with more than 

three classes (potentially resembling Level-3 and Level-4 class schemes) are not interesting, and 

thus are not shown. 

 Conclusions 

This study used a data-driven approach to identify the optimal datasets for separating the 

spectral characteristics of grassland types, determined whether land management practices 

impact spectral separability of grassland types, and identified what grassland hierarchy should be 

used for the thematic classification scheme of mapping grassland types. While these findings are 

limited to the study area and the datasets available, it is anticipated the results will be applicable 

to similar grassland landscapes in the Great Plains.  

The results show that combining the multispectral Landsat 8, Landsat 8 NDVI, and 

MODIS NDVI datasets resulted in the highest JM distance statistics across all grassland class 

hierarchies. While the formulations underlying JM distance guarantee improved separability 

upon addition of more bands, the gains observed with the combined dataset were generally 

substantial and thus believed to be meaningful. Individually, the three-date multispectral data had 
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higher JM distance statistics than either NDVI dataset. When including land use, JM distance 

statistics were lower within grassland types than among grassland types, with the exception of 

left standing. While JM distance was high for many level-4 pairwise comparisons, it remained 

relatively high in comparison for functional grassland types (i.e. lower classification levels), 

indicating land use does not have a highly negative impact on the spectral separability of level-1 

and level-2 grassland classes.  

The results indicate that brome and fescue were not spectrally distinct and, at least when 

using inputs like those examined here, should be aggregated as a single class for thematic 

classification. Meanwhile, CRP and native grasslands had moderately high separability statistics, 

even though the spectral profiles appeared to largely overlap. These results suggest CRP may be 

able to be mapped separately or could be aggregated with native grassland into a single warm-

season grassland type. However, the three-class K-means clustering did not separate CRP as a 

separate class. The temporal JM distance statistics indicate the spring and fall were more 

important for separating cool- and warm-season grasslands than summer when the distributions 

overlapped more. Future research could leverage the temporal JM distance statistics gained from 

the 23-period MODIS NDVI time series to increase the density of Landsat imagery during times 

where spectral separability of functional grassland types is highest.  
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Figure 3.3. JM distance statistics for level three grassland classes using individual bands from the three-date 
multispectral Landsat 8 bands (top); individual dates of Landsat 8 NDVI (middle), and individual periods from 
MODIS NDVI 16-day composites (bottom). Spring and fall provided more separability than summer.  
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Figure 3.4. Spectral profiles for warm- and cool-season grassland types in the study area using three-date 
multispectral Landsat 8 bands (left), three-date Landsat 8 NDVI (center), and 23-period MODIS NDVI time series 
from 2015. Spectral differences were highest in the spring Landsat 8 NIR band (B5) and spring and both fall 
NDVI’s.  
 

 

 

Figure 3.5. The JM distance statistics within the three grassland types: fescue (F), brome (B) and native (N) between 
three land use: forage (fg), grazed (gz) and left standing (ls). Pairwise comparisons containing left standing 
consistently had higher JM distance statistics while comparisons of forage and grazing had consistently lower JM 
distance statistics. Class Fls (fescue left standing) was excluded from three dataset comparisons due to the small 
sample size and resulting in inadequate degrees of freedom. 
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Figure 3.6. Spectral profiles comparing, pairwise, three land use categories within native grasslands using three-date 
multispectral Landsat 8 bands (left), three-date Landsat 8 NDVI (center), and 23-period MODIS NDVI time series 
from 2015. Nfg = Native forage; Ng z = Native grazed; Nls = Native left standing. 
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Figure 3.7. Spectral profiles comparing, pairwise, three land use categories within fescue grasslands using three-date 
multispectral Landsat 8 bands (left), three-date Landsat 8 NDVI (center), and 23-period MODIS NDVI time series 
from 2015. Ffg = Fescue forage; Fg z = Fescue grazed; Fls = Fescue left standing.  
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Figure 3.8. Spectral profiles comparing three land use within brome grasslands using three-date multispectral 
Landsat 8 bands (left), three-date Landsat 8 NDVI (center), and 23-period MODIS NDVI time series from 2015. 
Bfg = Brome forage; Bgz = Brome grazed; Bls = Brome left standing.  
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Figure 3.9. The pairwise JM distance statistics between CRP (Crp) and native (N) and between CRP and the three 
land use in native grasslands separately (N). JM distance statistics were fairly consistent across the three land use 
and when land use was aggregated as shown far right.  
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Figure 3.10. Median spectral profiles and the 70% data band comparing level three grassland classes, CRP and 
native (top), CRP and fescue (middle), and CRP and brome (bottom). Three-date multispectral Landsat 8 is in the 
first column, three-date Landsat 8 NDVI in the second, and 23 16-day composites of MODIS NDVI in the third 
column. Visually the distributions between CRP and brome and CRP and fescue were more separable than CRP and 
native. Spring and fall NIR bands (Band 5) and spring and fall NDVI showed the least overlap in the spectral and 
temporal distributions with cool-season, fescue, and brome having higher reflectance in the NIR bands and higher 
NDVI than warm-season native and CRP. 
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Figure 3.11. Pairwise JM distance statistics between CRP (Crp) and different land management levels of fescue (F) 
brome (B). Ffg = three land use separately. JM distance statistics fluctuated using NDVI datasets, and JM distances 
were maintained when fescue and brome were aggregated to level-two and level-one hierarchies. Ffg = Fescue 
forage; Fgz = Fescue grazed; Fls = Fescue left standing; Bfg = Brome forage; Bgz = Brome grazed; Bls = Brome 
left standing; C = cool-season (fescue and brome combined).  

 

Figure 3.12. Pairwise JM distance statistics between native (N) and fescue (F) using three grassland type hierarchies. 
JM distance statistics fluctuated more when using NDVI data. For Landsat 8 and the combined dataset, JM distance 
remained relatively high when native and fescue were aggregated to level-two and level-one hierarchies. Ffg = 
Fescue forage; Fgz = Fescue grazed; Fls = Fescue left standing; C = cool-season (fescue and brome combined). 
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Figure 3.13. Pairwise JM distance statistics between native (N) and brome (B) using three grassland type 
hierarchies. JM distance statistics fluctuated more when using NDVI data. For Landsat 8 and the combined dataset, 
JM distance remained relatively high when native and brome were aggregated to level-two and level-one 
hierarchies. Bfg = Brome forage; Bgz = Brome grazed; Bls = Brome left standing; C = cool-season (fescue and 
brome combined). 
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Figure 3.14. Median spectral profiles and the 70% data band comparing level three grassland classes, native and 
fescue (top), native and brome (middle), and fescue and brome (bottom). Three-date multispectral Landsat 8 is in the 
first column, three-date Landsat 8 NDVI in the second, and 23-date, 16-day composites of MODIS NDVI in the 
third column. Visually the distributions between native and brome and native and fescue were more separable than 
brome and fescue, which illustrates differences in phenology characteristics between functional grasslands types. 
Spring and fall NIR and SWIR Landsat bands (Bands 5 and 6) and spring and fall NDVI showed the least overlap in 
the spectral and temporal distributions between native and the two cool-season grasses, fescue and brome. There 
was little distinction between the distributions for brome and fescue spectral plots.  
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Figure 3.15. Pairwise JM distance statistics between fescue (F) and brome (B) using two grassland type hierarchies. 
JM distance statistics were relatively low and fluctuated compared to other grassland type comparisons. There were 
several moderate to high JM values at the level-four hierarchy. When aggregated, the JM distance dropped to 1.1, 
indicating that land use has a larger impact on separating these two cool-season grassland types.  
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Table 3.1. The four levels of grassland type hierarchies used to test spectral separability using JM distance for three 
remotely sensed datasets.  Level one separates functional grassland types while level four separates land use within a 
grassland type.   
 

Level-1 Level-2 Level-3 Level-4 
Sample 

Size 

Warm-Season  (W) CRP (Crp) CRP (Crp) CRP (Crp) 746 

Native (N) Native (N) Native Forage (Nfg) 1,414 

Native Grazed (Ngz) 6,739 

Native Left Standing (Nls) 301 

Cool-Season (C)  Cool-Season (C) Fescue (F) Fescue Forage (Ffg) 265 

Fescue Grazed (Fgz) 2,349 

Fescue Left Standing 

(Fls)** 
24 

Brome (B) Brome Forage (Bfg) 2,948 

Brome Grazed (Bgz) 3,805 

Brome Left Standing (Bls) 103 

Total Sample Size 18,694 

 

 

 

Table 3.2. K-means clustering using two classes for the Level-1 grassland type hierarchy. Class one was dominated 
by cool-season grasslands while class two was dominated by warm-season grasslands. 

Level-1 Hierarchy Class 1 Class 2 

Warm-season Grassland 730 (16%) 4,134 (79%) 

Cool-season Grassland 3,818 (84%) 1,119 (21%) 
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Table 3.3. K-means clustering using three classes for the Level-2 grassland type hierarchy. Class one was dominated 
by cool-season grasslands, class two was a mix of cool- and warm-season and class three was dominated by warm-
season grasslands. 

Level-2 Hierarchy Class 1 Class 2 Class 3 

CRP 3 (<1%) 67 (2%) 145 (4%) 

Warm-season Grassland 241 (8%) 1,487 (46%) 2,921 (82%) 

Cool-season Grassland 2,766 (92%) 1,684 (52%) 487 (14%) 
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4 Chapter 4: Random Forest and Landsat 8 and MODIS NDVI Data for Mapping 

Grassland Types at a Regional Scale 

 Abstract 

This study evaluates random forest (RF) models using four classification hierarchies of 

grasslands and four datasets in two adjacent Landsat scenes (path/rows). The data-driven results 

will be used to inform classification methodology (data and thematic classification scheme) for 

regional-scale mapping of grasslands in Kansas. Random forest models were built using multi-

spectral Landsat 8, Landsat 8 NDVI, and MODIS NDVI time series, both separately and 

combined. Training and test data samples were obtained from the Farm Service Agency (FSA) 

578 data. For the Level-1 grassland hierarchy that maps the two functional grassland types, cool- 

and warm-season grassland, out-of-bag (OOB) error (12.5%) indicated that using the combined 

dataset was the optimal classification scheme. The Level-2 hierarchy that separates land enrolled 

in the Conservation Reserve Program (CRP) as a thematic class had overall OOB error estimates 

ranging from 14-18%; CRP had low producer’s accuracy levels and was largely mapped as 

warm-season grasslands. Path/rows 27/33 and 28/33 had OOB overall accuracy levels of 87% 

and 92%, respectively. User’s and producer’s accuracy levels indicate that cool-season 

grasslands were mapped more accurately in path/row 27/33 where that class is more dominant 

than in 28/33. Using test data (withheld verification data) unexpectedly increased overall 

accuracy levels by 4% and 6% over OOB accuracies, which may have resulted from varying data 

proportions between OOB and test data and warrants a more detailed evaluation of the RF 

structure.  
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 Introduction 

Grasslands cover 40.5% of the earth’s surface, more than either forest or cropland (Gibson, 

2009). While expansive, grasslands are considered the most threatened biome due to land 

conversion and intensive land use (Samson et al., 2004). Globally, the conversion of grassland to 

cropland represents the leading cause of landscape fragmentation and lost grassland extent 

(Gibson, 2009). In addition, the quality of remaining native grassland has been modified or 

degraded by invading non-native species, fire suppression, and overgrazing by domestic 

livestock (Weaver, 1954; Gibson, 2009; Risser, 1988).  

The tallgrass prairies of the Great Plains in North America, considered one of the more 

biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of 

grassland area with estimates of only 9.4% - 13% of the original estimated 167 million acres 

remaining (Gibson, 2009; Samson et al., 2004). The majority of the original tallgrass prairie was 

converted to cropland and non-native forage for livestock during European settlement. While 

many states have less than a half percent of the original extent of tallgrass prairie, Kansas has the 

largest percent of any state and the largest contiguous tract of remnant tallgrass prairie, known as 

the Flint Hills (Risser, 1988; Robertson & Schwartz, 1994b). The Flint Hills tallgrass prairie has 

persisted due to the shallow rocky substrate that prevented conversion to cropland. Today, the 

majority of tallgrass prairie remnants are privately owned and are managed using a variety of 

practices to maximize vegetation productivity for grazing and forage for livestock.  

In addition to tallgrass prairie, land enrolled in the Conservation Reserve Program (CRP) is a 

grassland type that is of particular interest. CRP is a United States Department of Agriculture 

(USDA) Farm Service Agency (FSA) program that began in 1985 and is the largest private-lands 

conservation program in the U.S. Typically 10-15 year contracts are offered to landowners where 
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marginal agricultural land is taken out of crop production and planted with grass or tree cover in 

an effort to provide enhanced wildlife habitat, improved water quality and reduced soil erosion 

(Ribaudo et al., 1990; Wu & Weber, 2012). In 2007 Kansas CRP acreage peaked at 3 million 

acres, while in 2017, Kansas only had a reported 1.1 million acres. Due to recent national 

enrollment limits of 27 million acres set by the 2018 Farm Bill, crop commodity prices and 

ongoing interests in biofuel production, research has shown that CRP land frequently has been 

converted back into cropland production (Hendricks & Er, 2018; Johnston, 2014; Wright & 

Wimberly, 2013). There are ongoing concerns about further CRP land conversion to cropland 

and the loss of environmental services CRP land provides.  

Accurate and ongoing land use/land cover mapping provides tools to monitor the 

changing landscape, including environmental and socio-economic drivers, and provides the 

opportunity for conservation planning. Remotely sensed data have been used for decades to map 

and monitor grasslands, including tallgrass prairie and land enrolled in CRP. Studies have used 

remote sensing technology to monitor and model biophysical characteristics of grasslands 

including the distributions and abundance of functional grasslands (i.e. C3 and C4) (Davidson & 

Csillag, 2003; Foody & Dash, 2007; Peterson et al., 2002b; Tieszen et al., 1997), grassland 

productivity (biomass and cover) (Gu & Wylie, 2015; Porter et al., 2014; Zha et al., 2003) and 

grassland use and condition that can alter grassland biophysical characteristics and quality.  

Many of these studies and mapping efforts rely on the asynchronous phenology of cool- and 

warm-season grasslands. However, grasslands are used and managed extensively and 

intensively, largely to support livestock production. The type, combination, timing, and intensity 

of land management practices within grassland types alter the biophysical properties of 

grasslands, including vegetation productivity and composition and soil structure and chemistry, 
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which in turn potentially alter spectral responses that can complicate the ability to accurately 

map grassland types. Several studies have used remotely sensed data to characterize and monitor 

land management practices and land use intensity occurring within grasslands (Franke et al., 

2012; Guo et al., 2003; Guo et al., 2000; Halabuk et al., 2015; Lauver & Whistler, 1993; 

Peterson et al., 2002c; Price et al., 2002b). And with regard to CRP land, several approaches 

have been used identify CRP land including a post-classification trajectory approach (Egbert et 

al., 1998; Maxwell & Sylvester, 2012; Song et al., 2005).  

While previous studies have evaluated the biophysical characteristics of grasslands and 

have used field and satellite-acquired spectral data to statistically discriminate between grassland 

types and land management practices, little research has focused on identifying an optimal 

thematic classification approach for mapping grassland types at a regional scale. Multiple factors 

must be considered when developing such a land cover classification approach; one key factor is 

determining what source data or combination thereof maximizes the ability to map the defined 

grassland types. Another is defining what grassland types can be mapped, meaning the thematic 

classification scheme. Many times the thematic classification scheme is developed a priori, 

without knowing if the classes are spectrally distinct for accurate mapping results. The objective 

of this study is to implement a data-driven approach using Landsat 8, Landsat 8 NDVI and 

MODIS NDVI time series data from 2015 to determine both the optimal source imagery and the 

optimal thematic classification scheme for mapping grasslands in northeastern Kansas. A 

comparison of the spectral and temporal resolutions of Landsat 8 multispectral data, Landsat 8 

NDVI, and MODIS NDVI provides a framework for identifying relative strengths and 

weaknesses of these datasets for grassland classification. In addition, using a hierarchy of 
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grassland types enables identification of an appropriate thematic classification scheme and 

evaluation of the effect of land management on spectral characteristics.  

 Study Area and Data Sources 

 Study Area 

There is an inherent east-west land use/land cover gradient within the study area (Figure 

1). The study area encompasses the Flint Hills, which, as previously mentioned, is the largest 

remaining tract of native tallgrass prairie in the world. Native grasslands dominate the Flint Hills 

with some non-native grasslands and croplands scattered in the river lowlands. Moving eastward 

from the Flint Hills the landscape is more fragmented where cropland becomes prevalent and 

grasslands consist of both native, warm-season grasslands, and non-native, cool-season 

grasslands.  

Warm-season grasslands are either native tallgrass prairie or have been reseeded using a 

native seed mixture. Warm-season grasslands fix carbon using C4 photosynthesis and are 

dominated by native bunchgrasses such as big bluestem (Andropogon gerardii), little bluestem 

(Schizachyrium scoparium), and indiangrass (Sorghastrum nutans) and native forbs such as 

leadplant (Amorpha canescens), butterfly weed (Asclepias tuberosa), and purple coneflower 

(Echinacea angustifolia). The typical phenology of warm-season grasslands is spring green-up, 

peak productivity in late spring to early summer when temperatures increase, followed by 

senescence in fall (Weaver, 1954).  

Cool-season grasslands in the study area are defined as non-native grasslands that are 

predominately planted with either smooth brome (Bromus inermis) or tall fescue (Festuca 

arundinacea). Cool-season grasslands fix carbon using C3 photosynthesis and have a typical 

phenology of early spring green-up, peak productivity in late spring, a mid-summer semi-
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dormancy and, with sufficient precipitation, a second, smaller growth period in early fall 

(Weaver, 1954). Haying for forage and grazing are two of the common land uses for both 

grassland types. However, given that most of the land is privately owned, the timing, intensity, 

and frequency of management practices within each grassland type vary by land owner and by 

economic and climate conditions in a given year. In addition to grazing, prescribed burning is a 

commonly used management practice to maintain species diversity in native grasslands as well 

as prevent woody encroachment. 

 Data Sources 

The USDA-FSA maintains annual field-level records of acreage, land cover, and 

intended land use for all fields participating in USDA programs, referred to as FSA 578 data. In 

Kansas, county-level field offices maintain FSA 578 data, where land owners or producers report 

land cover and land use information for eligibility for the upcoming USDA program year. 

Historically these data were maintained by county field offices using photocopies of aerial 

photos with land cover and land use information annotated on the hardcopy. Today these data are 

maintained as a geodatabase of field boundaries known as Common Land Units (CLUs), which 

typically represent the smallest land unit with the same ownership, land cover, and land use. 

(Some fields have been observed to be subdivided into smaller sub-CLU units, however.) Each 

CLU is attributed with information including crop type, land use, reported acreage, county FIPS 

code, farm number, and tract number. In the past, these data have been made available to 

scientists to use for training and validating several land cover mapping efforts in Kansas 

(Kennedy, 1999; Mosiman, 2003; Peterson et al., 2005; Wardlow & Egbert, 2008). Through a 

Memorandum of Use (MOU) with the Kansas FSA office, 2015 CLU and FSA 578 data were 

acquired for a state-wide land cover mapping project. There are over a million polygons in the 
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2015 Kansas CLU database with reported crop types and intended land use. Grassland type 

information is included in the database as a crop type. “Intended Land Use Code” identifies the 

land use that the land owner intends to use the grassland for during the upcoming year and 

includes the categories of forage, grazing, and left standing (not grazed or hayed). For each 

feature in the CLU database, a unique identifier was created by concatenating the following 

attributes: State FIPS code, County FIPS code, Tract Number, and Farm Number (SCTF).  

Three datasets of remotely sensed imagery were assembled for the study and include 

Landsat 8 surface reflectance, Landsat 8 NDVI, and Terra MODIS NDVI time series. Two 

Landsat path/row areas from the Landsat Worldwide Reference System (WRS), 27/33 and 28/33, 

were used in the analysis to determine the generality of the mapping approach. Three Landsat 8 

surface reflectance images for each path/row were ordered and acquired using USGS’s 

EarthExplorer (EE) tool https://earthexplorer.usgs.gov/ to represent the spring, summer and fall 

portions of the growing season for both path/rows. The dates of the imagery obtained for 27/33 

were 03/30/2015, 06/12/2013, and 11/09/2015. The dates of imagery obtained for 28/33 were 

03/21/2015, 07/24/2014, and 10/15/2015. The fall image for path/row 28/33 contained 12% 

cloud cover in the northwest portion of the image. Only the cloud-free portions of the study area 

were included in the analyses. Near cloud-free imagery were unavailable for the summer of 2015 

for either path/row; however, it is uncommon for grasslands to change structure or composition 

from year to year, and the out-of-year summer dates represented the best available data. Monthly 

reports from the High Plains Regional Climate Center (HPRCC) show that both June 2013 and 

July 2014 were substantially drier than June and July in 2015 (Umphlett, 2013, 2014, 2015a, 

2015b), suggesting a potential limitation of the anachronistic summer Landsat data used in this 

study. Using ERDAS Imagine, six multispectral bands (bands 2–7) were extracted from the three 
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image dates and combined to produce an 18-band multi-seasonal Landsat 8 dataset for each 

path/row. Using the same dates listed above, spring, summer, and fall surface reflectance 

Normalized Difference Vegetation Index (NDVI) images were acquired and stacked to create a 

three-date multi-seasonal Landsat 8 NDVI dataset. Lastly, a biweekly time series of 231-meter 

Terra MODIS 16-day composite NDVI from the 2015 growing season was downloaded from 

NASA’s EarthData online tool, https://earthdata.nasa.gov/. The MODIS time series dataset was 

reprojected from the native Sinusoidal projection to the Albers Equal Area projection and 

clipped to the two Landsat WRS path/row (27/33 and 28/33) extents. The MODIS NDVI time 

series dataset was then resampled to 30-meter pixels using bilinear interpolation and snapped to 

the Landsat 8 footprint. The three datasets were stacked to create a 44-band imagery dataset. 

Since the large size of MODIS pixels increases the chances of mixed pixels (which are 

comprised by a mixture of two or more land cover types), two qualifiers were used as a measure 

of pixel purity to identify MODIS pixels suitable for image classification training. First using 

ESRI ArcGIS, a polygon file of the original 231-m MODIS pixel footprint was used to calculate 

the percent of grassland in each MODIS pixel using the 30-m 2015 Level I Kansas Land Cover 

Patterns dataset (KARS, 2017). Second, the MODIS pixel footprint and the 2015 CLU boundary 

were intersected to calculate the percent of each pixel that fell within a field boundary. MODIS 

pixels containing 60% or more grassland that were 60% or more inside a CLU boundary were 

extracted and used in the analysis. The centroids of the MODIS pixels were used to extract 

reflectance and NDVI values from the 44-band image stack. The centroid was intersected with 

the USGS’s high-resolution National Hydrography Dataset (NHD) waterbody feature layer to 

exclude point locations that fell within farm ponds that would affect the Landsat reflectance 

values. In addition, NDVI data values for all points were screened for negative values and those 



 
 

109 
 

point locations were excluded from the analyses. While there were additional Landsat 8 pixels 

that met the purity criteria and could have been used in the analysis, a one-to-one correspondence 

was maintained between MODIS and Landsat data to allow for a direct data comparison. These 

data were exported to an Excel file and imported into MATLAB software for statistical analysis 

and plotting spectral profiles. 

Four hierarchies of grassland classes were created using the FSA 578 to determine what 

level of grassland type could be mapped. Table 1 shows the four levels of grassland classes used 

in the analysis along with the abbreviations used for the classes. Level-1 corresponds to 

functional grassland types where CRP and native grasslands, dominated by warm-season grasses, 

were aggregated to a single class while fescue and brome, dominated by cool-season grasses, 

also were aggregated to a single class. Level-2 separates the grassland types into three classes, 

CRP, native, and cool-season grasslands. Separating CRP from native was based on knowledge 

of the needs of the potential user-base of the land cover product in light of growing interest 

regarding CRP land being converted back to cropland. Level-3 separates fescue and brome 

grassland types. And lastly, Level-4 separates grassland types by land use (Forage, Grazed, and 

Left Standing).  

The number of training sites for cool and warm season grasslands were selected in an 

attempt to represent approximate proportions of acres and counts of features (i.e. fields) in the 

landscape within each path/row. Tables 2 and 3 show the proportion of field counts (column 3) 

and the proportion of area (column 4) stratified by Level-4 grassland types for path/row 27/33 

and 28/33, respectively. These two proportions were averaged (column five) to determine the 

number of training sites used in the random forest (RF) classification for each path/row. For 

example, the average proportion of native grazed (Ngz) was 36.8% in path/row 27/33, so 36.8% 
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of the total training sample sites were Ngz. This strategy was used in an attempt to incorporate 

the high frequency of small fields in fragmented landscapes. These proportions were based on 

fields represented in the 2015 FSA and CLU datasets, which represent 76% of the grassland 

acres in Kansas as shown in Chapter 1. As the table shows, the proportions vary between 

path/rows. Path/row 27/33 had a roughly 50-50% split between cool- and warm-season grassland 

types while path/row 28/33 had a 16%-84% split.  

 Data Analysis 

Once the training data were extracted, supervised classifications using the RF classifier 

(Breiman et al., 1984) were run using the training dataset for each grassland type hierarchy and 

for each of the four predictor datasets for each path/row. The “treebagger” function in MATLAB 

was used to develop ten forests (unique RF models) for each run. Each RF model contained a 

classification ensemble consisting of one thousand constructed decision trees. Each tree was built 

using a bootstrap sample containing 63.2% of the training data. The remaining 36.8% of the 

training data, referred to as “out-of-bag” (OOB) samples, were used to calculate unbiased 

estimates for predictive error and predictor importance of that tree. The default for the number of 

predictors used at each split were used (the square root of the total number of predictors). The 

OOB errors for the ten forests were calculated and plotted to assess model performance and 

stability as a function of the number of trees grown (maximum of 1000 trees). Predictor 

importance was estimated using the OOB permutated predictor delta error where for each 

predictor variable, data values were permutated while other predictors remained unchanged. The 

forest ensemble was retrained and the change in model OOB accuracy (delta error) was 

calculated and averaged across the trees (sub-models) and normalized by dividing by the 

standard deviation, which is referred to as Mean Decrease in Accuracy (MDA). A small change 
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in MDA indicates low importance ranking while a large increase in MDA indicates high 

predictor importance ranking. 

The mean OOB errors from RF were also compared across the four grassland hierarchies 

and four datasets for each path/row to determine to evaluate the performance of each dataset for 

each grassland type hierarchy. Once the optimal dataset and grassland hierarchy were selected, 

the models for each path/row were applied to the image data to produce maps. OOB samples and 

independent validation data samples were used to assess model performance and accuracy. Using 

the OOB error and independent validation data, traditional map accuracy values were calculated 

and compared, including overall, user’s and producer’s accuracy levels, and the Kappa statistic. 

In addition, probabilistic mapping disagreements (i.e. quantity, allocation, and total 

disagreement) were assessed by rescaling the OOB and validation contingency tables to reflect 

map proportions (Kastens et al., 2017; Pontius Jr & Millones, 2011).  

The two Landsat path/rows in the study area were adjacent and provided an 

approximately 54 by 158 kilometer overlap (see overlap area in Figure 1). Validation samples 

from the overlap area were used to compare mapped proportions and model performance 

between the independently processed path/rows. 

 Results 

 OOB Error and Grassland Hierarchies 

The OOB error across ten RF models for the four datasets consistently showed that using a forest 

of 1,000 trees was more than adequate for model stability. Figure 2 shows an example of OOB 

error as a function of the number of trees grown for Level-2 mapping in path/row 27/33. The 

results suggest that for this study the number of trees could be substantially reduced to improve 

data processing efficiency.  
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As expected, OOB error estimates consistently increased from Level-1 to Level-4 

grassland hierarchies across all datasets and for both path/rows, meaning that the Level-1 

grassland hierarchy had the lowest OOB error and Level-4 had the highest OOB error. The 

combined dataset consistently had the lowest OOB error versus the other independent datasets. 

The results from Chapter 2 support this result where the highest spectral separabilities using 

Jeffries-Matusita (JM) distance to compare different class pairs from the various grassland 

hierarchies was obtained using the combined dataset. Comparing the three independent datasets 

(multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI), the multispectral Landsat dataset 

had the lowest OOB error for both path/rows. This result may indicate that the spectral resolution 

of the multispectral Landsat data provides significant information for separating grassland types 

beyond NDVI. Other portions of the electromagnetic spectrum (EMS) represented in Landsat 8 

bands correspond to several biophysical properties of vegetation. Jensen (1983) illustrated the 

correspondence of the vegetation spectral reflectance curve and the associated biophysical 

characteristics across the EMS, and the USGS (2018) lists the mapping utility for each Landsat 

band as it corresponds to various vegetation properties. Table 5 combines Jenson’s and USGS 

information to show that Landsat bands 2-4 in the visible portion of the EMS correspond to leaf 

pigments with two chlorophyll absorption regions; Landsat band 5 in the NIR region corresponds 

to cell structure, with higher reflectance corresponding to more vegetation biomass; and Landsat 

8 bands 6-7 in the shortwave-infrared region correspond to vegetation water content, where 

shortwave radiation is absorbed with increasing water content. 

Table 6 shows OOB error estimates for Level-2 grassland mapping. Overall accuracy 

levels for both path/rows were above 85%; however, the low producer’s accuracy indicates that 

CRP has high omission error. The error matrix for path/row 27/33 shows 78% of CRP samples 
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were mapped as warm-season grasslands (Table 7), and similar results were obtained for 

path/row 28/33. Given that CRP was a relatively small class and that JM distance statistics were 

low between CRP and native warm-season grassland (Chapter 2, Figure 3), the misclassification 

of CRP as warm-season grasslands was not surprising. So, while mapping CRP is of special 

interest to end-users, the high omission error indicates CRP mapping would provide inadequate 

representation for general use. However, the user’s accuracy levels (85% and 78%) indicate 

confidence in what was mapped as CRP, which could have utility for specific uses, such as 

finding CRP samples for targeted field campaigns or other research.  

 Level-1 Mapping Results 

Figures 3 and 4 show the RF results using the combined dataset and Level-1 grassland hierarchy 

along with corresponding mapped pixel counts, acres, and areal proportions and CLU reported 

proportions and acres. The regional distribution of grassland types was as expected, with large 

tracts of warm-season grassland in the Flint Hills region, a larger dominance of cool-season 

grassland in the eastern half of 27/33, and small interlaced fields of cool-season grassland in the 

river lowlands in 28/33. For path/row 27/33, 56% percent of the area was mapped as warm-

season and 44% as cool-season. This differs from the 62% and 38% indicated by CLU data. 

Meanwhile, for path/row 28/33 (Figure 4) the mapped proportions correspond well with the CLU 

area proportions. However, it should be noted that the CLU represents only an estimated 58% of 

the total grassland area in 28/33 and 47% in 27/33. Interestingly, the 27/33 mapped proportions 

correspond with the average proportion that are accounted for by a high frequency of small 

fields, whereas the 28/33 mapped proportions correspond with CLU area proportions.  
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 Predictor Importance 

The estimated predictor importance shown in Figures 5 and 6 show that some predictors 

in the combined dataset ranked higher than others and that predictor importance varies by 

path/row. For 27/33 these estimates of predictor importance correspond to the by-predictor (band 

or date) JM statistics shown in Figure 3 of Chapter 2. They correspond since both are using a 

single predictor versus the JM distance where all bands are combined and distributions are 

evaluated in multidimensional space. For MODIS NDVI, periods 6-8 and 20-23 had the highest 

predictor importance and JM distance. For multispectral Landsat, the spring and fall NIR bands 

had the highest predictor importance and JM distance.  

For path/row 28/33, spring MODIS NDVI periods (6-8) ranked high for estimated 

predictor importance, but not periods 20-23 (November 1st-December 18th). Also, the spring 

Landsat NDVI ranked high along with the Landsat Fall NIR band. Spring Landsat 8 dates were 

of similar importance between the two path/rows; however 27/33 had a fall date that was roughly 

a month later than that for path/row 28/33. Even so, predictor importance for fall/winter periods 

for MODIS NDVI did not rank high for 28/33. The different rankings between path/rows could 

correspond to the proportion of the two functional grassland types being mapped within each 

path/row. The higher proportion of cool-season grasslands in 27/33 could result in higher 

predictor importance rankings for fall dates. And while some of the important predictors in each 

path/row may provide redundant information (e.g. Landsat near-infrared (NIR) (B4) and Landsat 

NDVI), at each binary split in the RF, a single predictor variable from the random subset of 

predictors is used versus the multidimensional data vector, and therefore RF is not severely 

impacted by correlated predictors or the inclusion of weak predictors (Cánovas-García & 

Alonso-Sarría, 2015).  
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 Accuracy Assessment 

The OOB estimates of producer’s accuracy levels were 86% and 98% for warm-season 

grasslands for the two path/rows. Producer’s accuracy levels differed more substantially for cool-

season grasslands between 27/33 (89%) and 28/33 (69%). For 28/33, 25% of the cool-season 

OOB error samples were classified as warm-season grasslands (results not shown). The 

increased omission error in mapping cool-season grasslands in 28/33 could be due to its more 

lopsided class proportion compared to 27/33, with a smaller class typically being more 

challenging to model (and map) effectively. Comparatively, cool-season grassland was a small 

class in 28/33, but a dominant class in 27/33. The lower user’s accuracy for cool-season 

grasslands in 28/33 could also result from the sampling design used for allocating training 

samples. Using the average of the proportion of acres and count of fields roughly doubled the 

proportion of cool-season training sites in the training sample (15.8%) versus using a solely area-

based sample allocation (7.1%) (Table 3). The proportions in path/row 27/33 went from a 60-40 

split using an area proportion to a 50-50 split for warm- and cool-season grasslands using the 

averaged proportion. This shift in proportions did not appear to affect the user’s and producer’s 

accuracy levels in 27/33. In a review of RF in remote sensing applications, Belgiu and Drăguţ 

(2016) highlight research showing that a proportionally allocated training sample scheme 

provides optimal classification results and that RF is sensitive to the proportions of training 

samples used (Colditz, 2015; Millard & Richardson, 2015). However, Jin et al. (2014) showed 

that proportionally allocated training samples increased user’s accuracy of an under-represented 

class while equally allocated training samples increased producer’s accuracy of an under-

represented class. Other research has shown that imbalanced training data maximizes class 

accuracy levels for the majority class, but at the expense of the minority class and that balanced 
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training can be used to reduce errors in minority classes (Chen et al., 2004; Mellor et al., 2015). 

For this study the intention was to balance between high frequency small fields and lower 

frequency large fields.  

Comparing overall accuracy levels between OOB estimates and test data, the test data 

showed unexpected 6% and 4% increases in accuracy for 27/33 and 28/33, respectively. The 

increased overall accuracy with using test data could relate to differences between training and 

test data proportions. For example, for 28/33 there was an increase in the proportion of Native 

grazed (Ngz) in the testing data (82%) versus the proportion used in the training data (69%) and 

a decrease in all Level-4 cool-season proportions, with 4.4% cool-season grasslands represented 

in the test data compared to 14.8% used in the training data. The proportions used for training 

and test data for 27/33 were more closely aligned, with three small classes not represented in the 

test data. 

According to Breiman (1996), the OOB error estimate is an unbiased estimate of the 

classification error and provides as good a measure of error as if using independent test data of 

the same sample size as the RF training data. Other research has shown OOB error to 

overestimate error in RF based on several interacting factors, including sample size, sample 

proportions (balanced vs. imbalanced), subsample proportions. number of predictors, and 

correlations between predictors (Janitza & Hornung, 2018). For example, Janitza and Hornung 

showed that for small, imbalanced sample sizes, OOB error bias increased due to the extreme 

imbalance of bootstrap subsamples used to build trees that were preferential to the dominant 

class. And that the number of predictors can affect the bias of the OOB error depending upon 

sample size and whether the samples were balanced or imbalanced. Others argue that OOB error 

can be overestimated due to differences in the distribution of the bootstrap sample (63.2% of the 
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training data) used to build the tree versus the OOB samples (36.8% of the training data) uses for 

testing (Efron & Tibshirani, 1994). It could be argued that the test error is more accurate since 

the entire forest is used versus the OOB error estimate that uses a subsample of trees for OOB 

prediction of each training sample. There are several potential explanations as to why the test 

error was lower than the OOB error, there appear to be several potential explanations including 

complex interactions among forest parameters and nuances between training and test data that 

warrant require further exploration. 

The OOB quantity disagreement was higher for path/row 28/33 (6.2%) than 27/33 (0.8%) 

while the allocation disagreement was higher for 27/33 (11.7%) than for 28/33 (1.6%) (Table 8). 

The differences between OOB and test data disagreement result from the different class 

proportions in the training and test data sets used as reference data for calculating allocation and 

quantity disagreement against proportions mapped. As previously mentioned, the proportions for 

warm-season grassland increased from 69% in the training to 82% in the test data. Total 

disagreement for OOB and test data were lower for 28/33 which was likely influenced by the 

dominance of warm-season grasslands in 28/33. 

 Path/row Model Comparison 

Table 9 shows the acreage and proportion of agreement and disagreement in mapping the 

two Level-1 classes in the overlap area between the two adjacent path/rows. The results show 

there was 94% agreement in the mapping overall, while there was 5% disagreement (73,249 

acres) where grasslands that were mapped as warm-season in path/row 28/33 were mapped as 

cool-season in path/row 27/33. Overall accuracy levels and Kappa were higher for path/row 

27/33 than 28/33 (Table 10). Additionally, user’s and producer’s accuracy levels for cool-season 

grasslands were higher for 27/33 (89% and 88%, respectively) than in path/row 28/33 (73% and 
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63%) (Table 10). And the total disagreement (quantity + allocation disagreement) was lower in 

27/33 (4.6%) than in 28/33 (7.0%). These values indicate that the model from path/row 27/33 

mapped cool-season grassland more accurately than 28/33, where cool-season grasslands 

constituted a small class. 

 Conclusions 

The RF results indicate that a Level-1 classification using the combined dataset of 

multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI produced the lowest OOB error of 

all the datasets. The OOB error for Level-2 classification was only 1-2% higher; however, the 

CRP class had high omission error and was largely mapped as native warm-season grassland, 

further supporting using the two-class Level-1 classification scheme. Predictor importance 

rankings for the Level-1 classification varied by path/row, and were likely influenced by the 

proportions of cool-season grassland class in each path/row. The spatial distributions of the 

mapped classes appeared reasonable, e.g. cool-season occupying river lowlands and large tracts 

of warm-season in the Flint Hills. Overall accuracy levels were greater than 87% using OOB and 

test data. However, path/row 28/33 had lower user’s and producer’s accuracy levels for cool-

season grasslands and a lower Kappa statistic. In evaluating the overlap area, there was 94% map 

agreement between the two path/rows, but again the cool-season class in 28/33 had lower user’s 

and producer’s accuracy levels, which was expected due to the small proportion of cool-season 

grassland represented in the path/row. These results will be used to formulate a methodology for 

mapping functional grassland types at a regional scale. Future work could evaluate whether 

smaller classes could be mapped more accurately by increasing the density of spring and fall 

Landsat dates, adding additional training data from Landsat (that were restricted by MODIS in 



 
 

119 
 

this study), and by combining path/rows that may provide additional training data samples for 

under-represented classes, like cool-season grasslands in path/row 28/33.  
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Figure 4.4.1. OOB error as function of the number of trees grown for Level-2 mapping in path/row 27/33. Models 
were consistently stable with respect to OOB error when forest size reached about 200-500 trees. 
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Figure 4.4.2. Level-1 map for path/row 27/33 using the RF classifier and the combined dataset. 
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Figure 4.4.3. Level-1 map for path/row 28/33 using the RF classifier and the combined dataset. 
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Figure 4.4.4. Predictor importance estimates for path/row 27/33. Spring and fall MODIS and Landsat NDVI and 
spring Landsat NIR band ranked highest. 

 

 

 

Figure 4.4.5. Predictor importance estimates for path/row 28/33. Spring MODIS and Landsat NDVI and fall Landsat 
NIR band ranked highest. 
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Table 4.4.1 The four levels of grassland type hierarchies and abbreviations used to evaluate OOB error using the four 
remotely sensed datasets. Level-1 separates functional grassland types, Level-2 separates the warm-season grasslands 
into two classes, Level-3 separates the cool-season grasslands into two classes and Level-4 separates land use within 
Level-3 grassland types.  

 

Level-1 Level-2 Level-3 Level-4 

Warm-Season (W) CRP (Crp) CRP (Crp) CRP (Crp) 

Native (N) Native (N) Native Forage (Nfg) 

Native Grazed (Ngz) 

Native Left Standing (Nls) 

Cool-Season (C)  Cool-Season (C) Fescue (F) Fescue Forage (Ffg) 

Fescue Grazed (Fgz) 

Fescue Left Standing (Fls) 

Brome (B) Brome Forage (Bfg) 

Brome Grazed (Bgz) 

Brome Left Standing (Bls) 

 

 
 
 
 

Table 4.4.2. For path/row 27/33, the proportions of the number of fields, acres, and the average proportion. 
The last two columns show the training sample allocation using the average proportion and the testing data 
sample count. 

Level-1 
Grassland 

Type 

Level-4 
Grassland 

Type 

Proportion 
of Fields 
(Count) 

Proportion 
Area 

(Acres) 

Proportion 
Average 

Training 
Data 

Points 

Test 
Data 

Points 
Warm CRP 2.4% 1.9% 2.2% 215 522 

Nfg 8.0% 5.6% 6.8% 665 743 
Ngz 21.8% 51.8% 36.8% 3,682 3,047 
Nls 4.7% 2.6% 3.7% 302 0 

Cool Ffg 2.1% 0.9% 1.5% 147 119 
Fgz 11.9% 10.0% 11.0% 1,098 1,265 
Fls 0.8% 0.4% 0.6% 32 0 
Bfg 25.3% 10.1% 17.7% 1,770 1,174 
Bgz 19.9% 15.8% 17.9% 1,787 1,999 
Bls 3.1% 0.9% 2.0% 103 0 

Total 9,801 8,869 
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Table 4.4.3. For path/row 28/33, the proportions of the number of fields, acres and the average proportion. 
The last two columns show the training sample allocation using the average proportion and the testing data 
sample count. 

Level-1 
Grassland 

Type 

Level-4 
Grassland 

Type 

Proportion 
of Fields 
(Count) 

Proportion 
Area 

(Acres) 

Proportion 
Average 

Training 
Data 

Points 

Test 
Data 

Points 
Warm CRP 2.3% 1.5% 1.9% 189 138 

Nfg 11.9% 5.3% 8.6% 813 1,151 
Ngz 55.2% 84.4% 69.8% 6,603 9,113 
Nls 5.9% 1.7% 3.8% 360 191 

Cool Ffg 0.1% 0.0% 0.0% 0 1 
Fgz 0.4% 0.2% 0.3% 30 15 
Fls 0.0% 0.0% 0.0% 1 0 
Bfg 15.5% 3.8% 9.7% 918 260 
Bgz 6.9% 2.8% 4.8% 454 219 
Bls 1.7% 0.3% 1.0% 95 0 

Total 9,460 11,088 
 
 
 
 
 
 
 

Table 4.4.4. The OOB error for each path/row for each grassland hierarchy and each predictor dataset. 
OOB error increased with grassland hierarchy, and the combined dataset had the lowest OOB error. 

Path/Row 
Grassland 
Hierarchy Combined Landsat 8 Landsat NDVI MODIS 

27/33 

Level-1 12.5% 13.6% 15.8% 15.8% 
Level-2 14.3% 15.5% 17.8% 17.6% 
Level-3 22.4% 24.0% 29.7% 26.7% 
Level-4 35.6% 37.1% 47.4% 43.7% 

28/33 

Level-1 8.3% 8.8% 11.4% 14.6% 
Level-2 13.1% 13.6% 17.5% 20.1% 
Level-3 13.3% 13.8% 17.7% 20.3% 
Level-4 23.9% 24.2% 30.8% 32.3% 
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Table 4.4.5. Landsat 8 bands used in this study and the associated wavelengths, with suggested mapping 
utility and vegetation biophysical characteristics (Source: Jensen, 1983; USGS, 2018). 

Landsat 8  
Bands 

Wavelength 
Mapping Utility 

USGS (2018) 

Vegetation 
Characteristics  
Jensen (1983) 

Band 2 – Blue 0.452 - 0.512 
Bathymetric mapping, distinguishing soil 
from vegetation, and deciduous from 
coniferous vegetation. 

Leaf Pigments; 
chlorophyll absorption 

Band 3 - Green 0.533 - 0.590 
Emphasizes peak vegetation, which is useful 
for assessing plant vigor. 

Leaf Pigments 

Band 4 - Red 0.636 - 0.673 Discriminates vegetation slopes 
Leaf Pigments; 
chlorophyll absorption 

Band 5 - Near 
Infrared (NIR) 

0.851 - 0.879 Emphasizes biomass content and shorelines. 
Cell structure 

Band 6 - Short-
wave Infrared 

(SWIR) 1 
1.566 - 1.651 

Discriminates moisture content of soil and 
vegetation; penetrates thin clouds. 

Water content;  
Water absorption 

Band 7 - Short-
wave Infrared 

(SWIR) 2 
2.107 - 2.294 

Improved moisture content of soil and 
vegetation and thin cloud penetration. 

Water content;  
Water absorption 

 

 
 
 
 

Table 4.4.6. Accuracy levels for the three grassland classes in the Level-2 hierarchy. The CRP class had 
low producer’s accuracy levels and was mostly mapped as warm-season grassland. 

 
Path/Row 

 
Accuracy Levels 

OOB Estimates 
CRP Warm-season Cool-season 

27/33 User’s Accuracy 85% 85% 86% 
Producer’s Accuracy 13% 86% 89% 
Overall Accuracy 85.8% 
Kappa 0.72 

28/33 User’s Accuracy 78% 87% 87% 
Producer’s Accuracy 20% 97% 70% 
Overall Accuracy 86.8% 
Kappa 0.64 
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Table 4.4.7. The error matrix for the Level-2 hierarchy for 27/33 illustrates that CRP was largely mapped 
as warm-season grassland. 

 Reference Class  
CRP Warm-

season 
Cool-season Total 

Predicted 
Class 

CRP 28 2 3 33 
Warm-season 168 3,976 527 4,671 
Cool-season 19 671 4,407 5,097 
Total 215 4,649 4,937 9801 

 

 
 
 
 

Table 4.4.8. Accuracy levels for both path/rows calculated using both OOB estimates and test data. 

 
Path/Row 

 
Accuracy Levels 

OOB Estimates Test Samples 
  Cool Warm Cool Warm 

 
 
 
27/33 

User’s 87% 88% 91% 94% 
Producer’s 89% 86% 95% 90% 
Overall 87% 93% 
Kappa 0.75 0.85 
Proportion Correct 87.5% 92.8% 
Quantity Disagreement 0.8% 0.6% 
Allocation Disagreement 11.7% 6.6% 
Total Disagreement 12.5% 7.2% 

 
 
 
28/33 

User’s 88% 92% 56% 99% 
Producer’s 69% 98% 70% 97% 
Overall 92% 96% 
Kappa 0.73 0.60 
Proportion Correct 92.1% 95.6% 
Quantity Disagreement 6.2% 1.7% 
Allocation Disagreement 1.6% 2.7% 
Total Disagreement 7.9% 4.4% 
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Table 4.4.9.Co-occurrence matrix showing acres and percentages of mapped classes in the overlap area. 

 28/33 
 
27/33 

Warm-season 
Acres (%) 

Cool-season 
Acres (%) 

Warm-season 1,212,152 (84%) 15,559 (1%) 
Cool-season 73,249 (5%) 137,931 (10%) 
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5 Conclusions  

The goal of this research was to use a data-driven approach to develop a classification approach, 

i.e., which combination of remotely sensed imagery and thematic classification scheme, to most 

accurately map dominant grassland types at a regional scale. To achieve this research goal there 

were three main objectives. 

1. Identify the dominant land use within the two grassland types (warm- and cool-season 

grasslands) using United States Department of Agriculture (USDA) Farm Service 

Agency (FSA) 578 data and characterize the static or dynamic nature of land use in 

grassland types in Kansas. 

2. Determine the spectral separability of four hierarchies of grassland types and land use 

using multi-seasonal Landsat 8 spectral bands, Landsat 8 Normalized Difference 

Vegetation Index (NDVI), and Moderate Resolution Imaging Spectrometer (MODIS) 

NDVI time series.  

3. Determine the optimal combination of data, and the appropriate thematic resolution, 

for mapping grassland type by comparing modeling performance using a Random 

Forest (RF) modeling approach. 

 Major Conclusions and Findings 

 Objective 1.  

The research in Chapter 2 used multiple years of FSA 578 data to characterize grassland 

types and land use across Kansas and to evaluate both the dynamic and static nature of grassland 

type and land use over time to inform a methodology for land cover mapping of grassland types. 

The assessment and analysis of multiple years of FSA 578 data showed variability in degree of 
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data completeness, meaning that the 2004-2007 FSA 578 data were not all-inclusive of total 

grassland acres in Kansas. Even so, the data were sufficient to identify several regional trends in 

grassland type, land use, and field size. Eastern Kansas was found to have more grassland types, 

with the inclusion of non-native brome and fescue, a larger number of small fields, and more 

variability in land use, which together creates a more fragmented and complex landscape that 

could impact mapping grasslands in that region. Western Kansas had larger fields that primarily 

consisted of grazed native grassland and land enrolled in the Conservation Reserve Program 

(CRP), creating a comparatively simpler landscape for mapping grasslands. The inclusion of 

2015 data provided a more complete representation of grassland type and land use in Kansas 

compared to 2004-2007 data, which possibly was the result of three new FSA programs that 

were implemented in the interim. These data and results will be used to inform a grassland 

mapping approach for Kansas, including training data allocation for image classification.  

 Objective 2.  

The research in Chapter 3 identified the evaluated remote sensing datasets (among those 

tested) for separating the spectral characteristics of grassland types, determined whether land 

management practices impact spectral separability of grassland types, and identified what 

grassland hierarchy should be used for the thematic classification scheme of mapping grassland 

types. While these findings are limited to the study area, it is anticipated the results will be 

applicable to similar grassland landscapes in the Great Plains. The results show that combining 

the Landsat 8 multispectral, Landsat 8 NDVI, and MODIS NDVI datasets resulted in the highest 

JM distance statistics across all grassland class hierarchies. While the formulations underlying 

JM distance guarantee improved separability upon addition of more bands, the gains observed 

with the combined dataset were generally substantial and thus are believed to be meaningful. 
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Individually, the three-date Landsat multispectral data had higher JM distance statistics than 

either NDVI dataset. When including land use, JM distance statistics were lower within 

grassland types than among grassland types, with the exception of the ‘left standing’ category. 

While JM distance was high for many Level-4 pairwise comparisons, it remained relatively high 

in comparison for functional grassland types (i.e. lower classification levels), indicating land use 

does not have a highly negative impact on the spectral separability of Level-1 and Level-2 

grassland classes. The results indicate that brome and fescue, both of which are non-native cool-

season grasses, were not spectrally distinct and, at least when using inputs like those examined 

here, should be aggregated as a single class for thematic classification. Meanwhile, CRP and 

native grasslands demonstrated moderately high separability even though the spectral profiles 

appeared to largely overlap. These results suggest it may be possible to map CRP separately, or 

CRP could be aggregated with native grassland into a single warm-season grassland type. The 

temporal JM distance statistics indicate that spring and fall were more important for separating 

cool- and warm-season grasslands than summer where the distributions overlapped more. 

 Objective 3. 

The research in Chapter 4 evaluated random forest (RF) models using four classification 

hierarchies of grasslands and four datasets in two adjacent Landsat scenes (path/rows 27/33 and 

28/33) in eastern Kansas. The RF results indicate that a Level-1 classification using the 

combined dataset of multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI produced the 

lowest Out-of-bag (OOB) error of all the datasets. The OOB error for Level-2 classification was 

only 1-2% higher; however, the CRP class had high omission error and was largely mapped as 

native warm-season grassland, further supporting using the two-class Level-1 classification 

scheme. Predictor importance rankings for the Level-1 classification varied by path/row, and 
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were likely influenced by the proportion of the cool-season grassland class in each path/row. The 

spatial distributions of the mapped classes were qualitatively as expected, and overall accuracy 

levels were greater than 87% using OOB and independent test data. However, path/row 28/33 

had lower user’s and producer’s accuracy levels for cool-season grasslands and a lower Kappa 

statistic. In evaluating the overlap area, there was 94% agreement between the two path/rows, 

but again the cool-season class in path/row 28/33 had lower user’s (73%) and producer’s 

accuracy levels (63%), which may be expected due to the small proportion of cool-season 

grasslands represented in that path/row. These results will be used to formulate a methodology 

for mapping functional grassland types at a regional scale.  

 Future Research Directions 

As with all research of this nature, in-depth analysis of available datasets and processing 

methods exposes paths for future research; foremost among these for this research is the need for 

further refinement of grassland mapping protocols. The results obtained in this research 

demonstrate the utility of Landsat 8 and MODIS data to map grassland types using remotely 

sensed data; however, further exploratory analyses could provide refinements to the mapping 

protocol in an effort to increase the accuracy levels and/or the ability to map higher grassland 

hierarchies (e.g. Level-2). Future research thrusts could include the following. 

1. This dissertation research indicated that the best classification approach was obtained 

using the combined dataset of multispectral Landsat 8, Landsat 8 NDVI, and MODIS 

NDVI to map a Level-1 grassland hierarchy; however, more research is needed that 

would maximize the utility of multispectral Landsat 8 and Landsat 8 NDVI data. 

Future research should test whether increasing the number of spring and fall Landsat 

8 dates would improve the spectral separability and mapping accuracy levels for 
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Level-1 and Level-2 grassland hierarchies. Chapter 3 showed JM distance 

separability statistics were higher for the multispectral Landsat 8 data than MODIS 

time series NDVI. Furthermore, the temporal JM distance statistics indicated higher 

separability for several individual Landsat 8 bands and NDVI compared to individual 

periods of MODIS NDVI, and predictor importance estimates from Chapter 4 

confirmed that similar Landsat 8 bands and Landsat NDVI dates ranked high in the 

RF models. The temporal (by-period) JM-distance statistics for MODIS also could be 

used to identify optimal acquisition dates for Landsat 8 data. 

2. As described in Chapter 4, single corresponding MODIS and Landsat pixels were 

used for training and test data in this research so as to provide a one-to-one 

comparison of MODIS and Landsat 8 data. The relatively coarse spatial resolution of 

MODIS NDVI restricted the number of sufficiently pure pixels that could be used for 

training and testing the RF modeling and thus restricted the number of Landsat 8 

pixels as well. Future research would evaluate the utility of a data fusion approach as 

used in this research versus using all available pixels from multispectral Landsat 8 

and Landsat NDVI. It is possible that the inclusion of additional thousands of Landsat 

pixels could improve the RF OOB errors for Level-1 and Level-2 hierarchies by 

increasing the quantity of information available for RF training and testing, including 

increasing samples for minority classes and from smaller fields.  

3. The results showed that in path/row 28/33 the minority class, cool-season grasslands, 

had relatively low user’s and producer’s accuracy levels. The goal of RF modeling is 

to minimize the overall error rate. However, when there is a large majority class, the 

prediction focuses more on the accuracy of the majority class at the expense of 
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minority class (Chen et al., 2004; Mellor et al., 2015). Other studies have used 

methods to improve the accuracy of mapping a minority class, including balanced 

training data, where the majority class is down-sampled or a balanced random forest 

is employed where a stratified bootstrap training set forces the inclusion of samples 

from minority classes (Chen et al., 2004; Jin et al., 2014). Exploring options to 

handle minority classes could improve the mapping accuracies for those classes 

without severely diminishing accuracies for larger classes. 

4. The RF models for mapping grassland types shown in Chapter 4 models were 

developed by path/row. Future research could determine if combining path/rows for 

grassland mapping provided gains in accuracy levels and/or mapping efficiencies. 

This approach would require different image dates of Landsat 8 imagery by path/row 

that may or may not affect the mapping of grassland types. The Cropland Data Layer 

(CDL) and the National Land Cover Database (NLCD) map, both national mapping 

programs, utilize Landsat data and regional mapping zones that encompass multiple 

Landsat path/rows. The research would compare the mapping results and accuracy 

levels of the combined path/row RF models with individual path/row results shown in 

Chapter 4. 

5. Inventorying, downloading, and preprocessing of remotely sensed imagery, especially 

when using a data fusion approach (i.e. Landsat and MODIS), is a time-consuming 

process. Furthermore, depending upon hardware capabilities, significant processing 

time is required to create and apply RF models by path/row in MATLAB. Google 

Earth Engine (GEE) is a cloud-based platform that utilizes an application 

programming interface (API) and a web-based interactive development environment 
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that allows access to a large catalog of imagery data and rapid cloud processing 

(Gorelick et al., 2017). Users can utilize their own data and/or access the GEE’s large 

catalogue of preprocessed geospatial data including remotely sensed imagery from a 

variety of sensors as well as environmental and climate data. Parallel processing 

allows large volumes of data to be analyzed rapidly. These efficiencies provide 

opportunity for numerous exploratory or data mining exercises, including the research 

topics listed above, and also provide opportunity to map larger spatial extents more 

rapidly. Several unsupervised and supervised image classification algorithms are 

available through GEE including K-means, Support Vector Machine, Decision Tree 

Classifier, and Random Forest (Gorelick et al., 2017), and numerous studies have 

used GEE for land cover mapping and land cover change applications (Huang et al., 

2017; Patel et al., 2015; Shelestov et al., 2017; Simonetti et al., 2015). Future work 

could evaluate the efficiencies gained using GEE versus the approach used in this 

research.  

  



 
 

144 
 

 

References 

 

Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data. 
University of California, Berkeley, 110, 1-12.  

 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 
Environment, 202, 18-27.  

 
Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., . . . Zheng, Y. (2017). Mapping 

major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. 
Remote Sensing of Environment, 202, 166-176.  

 
Jin, H., Stehman, S. V., & Mountrakis, G. (2014). Assessing the impact of training sample 

selection on accuracy of an urban classification: a case study in Denver, Colorado. 
International Journal of Remote Sensing, 35(6), 2067-2081.  

 
Mellor, A., Boukir, S., Haywood, A., & Jones, S. (2015). Exploring issues of training data 

imbalance and mislabelling on random forest performance for large area land cover 
classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote 
Sensing, 105, 155-168.  

 
Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., . . . Trianni, G. 

(2015). Multitemporal settlement and population mapping from Landsat using Google 
Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 
35, 199-208.  

 
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google 

earth engine platform for Big Data Processing: Classification of multi-temporal satellite 
imagery for crop mapping. Frontiers in Earth Science, 5, 17.  

 
Simonetti, D., Simonetti, E., Szantoi, Z., Lupi, A., & Eva, H. (2015). First results from the 

phenology-based synthesis classifier using Landsat 8 imagery. IEEE Geoscience and 
remote sensing letters, 12(7), 1496-1500.  

 
 

 

 

 



 
 

145 
 

6 Acronyms and Definitions 

ASD: Agricultural Statistics District 

BACC–FLUD: Biofuels and Climate Change - Farmers’ Land Use Decisions 

C-CAP: Coastal Change Analysis Program 

CDL: Cropland Data Layer 

CLU: A Common Land Unit is the smallest unit of land that has a permanent, contiguous 

boundary, a common land cover and land management, a common owner and a common 

producer in agricultural land associated with USDA farm programs. CLU boundaries typically 

are delineated from relatively permanent features such as fence lines, roads, and/or waterways. 

CRP: Conservation Reserve Program 

DTC: decision tree classifier 

EE: EarthExplorer 

ELAP: Farm-Raised Fish Program 

ESRI: Environmental Systems Research Institute 

ETM: Enhanced Thematic Mapper 

EVI: Enhanced Vegetation Index 

GEE: Google Earth Engine 

FIPS: Federal Information Processing Standard – uniquely identifies states and counties in the 

United States with a two and three digit code, respectively. 

FSA: Farm Service Agency 

GAP: Gap Analysis Program 

GRP: Grassland Reserve Program 

JM: Jeffries-Matusita 



 
 

146 
 

KARS: Kansas Applied Remote Sensing Program 

KSU: Kansas State University 

LFP: Livestock Forage Program 

LIP: Livestock Indemnity Program 

MDA: Mean decrease in accuracy  

MODIS: Moderate-Resolution Imaging Spectroradiometer 

MOU: Memorandum of Use 

MRLC: Multi-Resolution Land Characteristics 

NASS: National Agricultural Statistics Service 

NDVI: Normalized Difference Vegetation Index 

NIR: Near-infrared 

NLCD: National Land Cover Dataset 

OLI: Operational Land Imager 

OOB: Out-of-bag 

RF: Random Forest 

SCTF: A concatenation of State, County, Tract and Field attributes from the FSA and CLU data 

to create a unique identifier for linking field-level data. 

SVM: Support vector machine 

SWIR: Short-wave infrared 

TM: Thematic Mapper 

Tract Number: A tract of land is generally a single field or multiple fields connected in the 

same section of a township with common ownership. One tract of land could have any number of 

fields. Identifies a tract that belongs to a farm number. 
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USDA: United States Department of Agriculture 

USGS: United States Geological Survey 

WRS: Worldwide Reference System 
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