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Abstract

The goal of this research was to use a data-driven approach to develop a regional scale
grassland mapping protocol with the following objectives. First, identify and characterize the
spatial distribution of grassland types and land use across Kansas as well as the static or dynamic
nature of grasslands over time using multi-year U.S. Department of Agriculture (USDA) Farm
Service Agency (FSA) 578 data. Second, evaluate the spectral separability of four hierarchies of
grassland types and land use using FSA 578 data, multi-seasonal Landsat 8 spectral bands,
Landsat 8 Normalized Difference Vegetation Index (NDVI) data, and Moderate Resolution
Imaging Spectrometer (MODIS) NDVI time series. Third, determine the optimal data
combination, and the appropriate thematic resolution, for mapping grassland type by evaluating
the modeling performance of the Random Forest (RF) classifier.

A county-level analysis of the multi-year FSA 578 data found that the data were not all-
inclusive of total grasslands across Kansas, but were sufficient to illustrate regional trends in
grassland type, land use, and field size. Eastern Kansas was found to be more diverse in
grassland type, more variable in land use, and contained a high number of smaller fields.
Conversely, western Kansas consisted of larger fields that were primarily grazed native
grasslands and land enrolled in the Conservation Reserve Program (CRP). These results indicate
a more complex grassland landscape to map in eastern Kansas, while also providing guidance for
training sample distributions for image classification.

Jeffries-Matusita (JM) distance statistics were calculated for three-date multispectral
Landsat 8, three-date Landsat 8 NDVI, and 23-period, 16-day composite Terra MODIS NDVI
time series. The results indicate that combining the three datasets maximized the spectral

separability of grassland types across all four grassland-type hierarchies. A comparison of the
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three datasets showed that multispectral Landsat 8 data had the highest JM distance statistics
(which indicates the most separability). JM distance statistics calculated by-band and by-period
consistently showed that information from spring and fall was more important than summer for
separating grassland types. The results showed lower separability for land-use classes within a
grassland type versus between grassland types. The spectral separability of pairwise comparisons
incorporating land use between grassland types varied, indicating that land use does affect
spectral separability in some instances. On the other hand, JM distance statistics did not
substantially drop when more refined grassland types were aggregated to coarser grassland type
classes (e.g. Level-1: cool- and warm-season), indicating that land use does not negatively affect
the spectral separability of functional grassland types. The results indicate low spectral
separability between brome and fescue but moderate to high separability between native and
CRP, suggesting the use of a Level-1 or Level-2 thematic classification scheme for the study
area.

Finally, random forest models were constructed and evaluated using 2015 FSA 578 data
and four datasets of remotely sensed data in two adjacent Landsat scenes (path/rows). Models
were created for each of the four grassland hierarchies. The results showed that out-of-bag
(OOB) error increased with grassland hierarchy complexity (the number of thematic classes) and
OOB error was lowest for the combined remotely sensed dataset. Mapping CRP as a separate
grassland type resulted in low producer’s accuracy levels, with CRP largely mapped as warm-
season grasslands, suggesting the Level-1 classification scheme was appropriate for regional
mapping of grassland types. Path/rows 27/33 and 28/33 had OOB overall accuracy levels of 87%
and 92%, respectively. User’s and producer’s accuracy levels indicate that cool-season

grasslands were mapped more accurately in path/row 27/33 where that class is more dominant
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than in 28/33. Using test data (withheld verification data) unexpectedly increased overall
accuracy levels by 4% and 6% over OOB accuracies, which may have resulted from varying data

proportions between OOB and test data, suggesting the need for further evaluation.
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Introduction
1.1 Background and Problem Statement

Grasslands cover 40.5% of the earth’s surface, more than either forest or cropland
(Gibson, 2009). Grasslands provide habitat to support wildlife, forage for domestic livestock,
serve as filters for water quality, provide venues for recreational interests, and serve as a major
global carbon sink. While expansive, grasslands are potentially the most threatened biome due to
land conversion and intensive land use (Samson et al., 2004). Globally, the conversion of
grassland to cropland represents the leading cause of landscape fragmentation and lost grassland
extent (Gibson, 2009). In addition, the quality of remaining native grassland has been modified
or degraded by invading non-native species, fire suppression and overgrazing by domestic
livestock (Weaver, 1954; Gibson, 2009; Risser, 1988).

The tallgrass prairies of the Great Plains in North America, considered one of the more
biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of
grassland area with estimates of only 9.4% - 13% of the original tallgrass prairie remaining
(Gibson, 2009; Samson et al., 2004). It has been estimated that the tallgrass prairie once
occupied 167 million acres, stretching east into western Ohio, west to the eastern third of Kansas
and Nebraska, north into southern Manitoba, Canada and south into portions of Texas
(Robertson et al., 1997). Fragmentation of the tallgrass prairie in the eastern Great Plains began
in the early 1800s when European settlers converted “the Great American Desert” into cropland
and non-native grasslands for domestic livestock grazing (Samson et al., 2004). Tallgrass prairie
remnants remain almost exclusively on rocky substrates that are unable to be plowed.
Furthermore, most of the Great Plains and eastern tallgrass prairie remnants are privately owned

and subjected to a variety of land management practices, including grazing and haying for



domestic livestock (Owensby, 1993). Reports indicate that 18% of tallgrass prairie remains in
Kansas, the largest percent of any state. Furthermore Kansas has the largest contiguous tract of
tallgrass prairie located in the hilly region in eastern Kansas known as the Flint Hills (Risser,
1988). Meanwhile other states, including Indiana, Illinois, lowa, Minnesota, Missouri, North
Dakota ,and Missouri contain less than a half percent of their original tallgrass prairie (Risser,
1988; Robertson & Schwartz, 1994b). Mapping and monitoring the extent, distribution, and
condition of remaining tallgrass prairie are critical to ensure preservation and sustainability of
these biologically diverse grasslands.

Accurate and ongoing mapping of the landscape provides tools for understanding the
changing landscape, including the environmental and socio-economic drivers, and provides tools
for planning and conservation. For decades researchers have used remotely sensed data to map
and monitor grasslands, including the tallgrass prairie. Studies have used remote sensing
technology to monitor and model biophysical characteristics of grasslands, including functional
distributions (i.e. C3 and C4 grasslands), productivity (biomass and cover) and grassland use that
can alter grassland biophysical characteristics and quality. For example, several studies have
used remotely sensed data to map or predict distributions and abundance of C3 and C4
grasslands. Tieszen et al. (1997) used time series AVHRR Normalized Difference Vegetation
Index (NDVI) data to characterize the spatial and temporal distribution of C3 and C4 grasslands
in the Great Plains over a five-year period. Davidson and Csillag (2003) compared three
approaches using AVHRR NDVI to predict the relative abundance of C4 cover in a Canadian
mixed-grass prairie. They found a two-date ratio, early season NDVI to late season NDVI, best
predicted C4 abundance (Davidson & Csillag, 2003). Meanwhile Foody and Dash (2007) used a

30-week time series of MERIS Terrestrial Chlorophyll Index (MTCI) data to map high, medium



and low C3 cover in South Dakota with an overall accuracy of 77%. In addition, Gu and Wylie
(2015) leveraged the spatial resolution of Landsat NDVI and the temporal resolution of MODIS
NDVI in a rule-based piecewise regression to produce a 30-m grassland productivity map of the
Greater Platte River Basin, Nebraska. Understanding productivity and the abundance of C3 and
C4 grasslands is important as the two grassland types respond differently to environmental
change due to grazing intensity, fire frequency, nutrient regimes, and climate change (Tieszen et
al., 1997).

Other studies have used remotely sensed data to map thematic grassland classes that are
represented by either their dominant functional group or as native and non-native grassland
types. Using multi-seasonal ASTER NDVI, Wang et al. (2010) mapped cool-season (non-native)
and warm-season (native) grasslands in western Missouri with an accuracy of 80%. The authors
found that spring and summer NDVI provided the highest separability between these two
grassland types due to their asynchronous phenology, with maximum productivity reached in
May and July for cool- versus warm-season grasslands, respectively. Another study showed
discriminant analysis and MODIS NDVI time series spectrally separated native and non-native
dry mixed-grass prairie in Alberta, Canada with an overall accuracy of 73% (Mclnnes et al.,
2015). Meanwhile a mapping effort by Peterson ef al. (2008) found that multi-seasonal Landsat
Thematic Mapper (TM) data better separated native (warm-season) and non-native (cool-season)
grassland types in the Flint Hills ecoregion than coarser resolution MODIS NDVI time series.
Many of these studies and mapping efforts rely on the asynchronous phenology of cool- and
warm-season grasslands. However, grasslands are used and managed extensively and
intensively. The type, combination, timing and intensity of land management practices within

grassland types alter the biophysical properties of grasslands, including vegetation productivity



and composition, and soil structure and chemistry, which in turn results in altered spectral
responses that complicate the ability to accurately map grassland types. Several studies have
used remotely sensed data to characterize and monitor land management practices and land use
intensity occurring within grasslands. For example, Guo et al. (2003) and Guo et al. (2000) used
multi-seasonal field data and Landsat TM imagery to show that biophysical and spectral
characteristics were significantly different among three common land management practices in
cool-season (non-native) and warm-season (native) grasslands in Douglas County, Kansas.
Discriminant analysis showed the two grassland types and the three treatments in the two
grassland types could be separated with an accuracy of 90.1% and 70.4%, respectively (Price et
al., 2002a). Peterson et al. (2002b) obtained similar results when using discriminant analysis to
separate grazed cool- and warm-season grasslands in the same county. Another study by Lauver
and Whistler (1993) found significant differences in the biophysical characteristics (species
diversity, plant cover, and biomass) of high-quality (hayed) and low quality (overgrazed)
tallgrass prairie remnants in Anderson County, Kansas that were mapped using single-date
Landsat TM data and probability thresholding with moderate success (63% overall accuracy).
Another study by Franke ef al. (2012) found that multi-temporal RapidEye data and a decision
tree classifier could map grassland land use intensity in a 500 km? grassland area in Germany
with accuracies up to 85.7%. A recent study Halabuk ef al. (2015) used MODIS NDVI and EVI
to detect haying events in prairie hay meadows in Slovakia with accuracy levels as high as 85%.
While these studies provide examples of successful results for grassland mapping and
monitoring, they primarily occur on a relatively small scale.

However, there are land cover datasets that contain grassland information at larger scales.

One national mapping effort was coordinated under the Multi-Resolution Land Characteristics



(MRLC) Consortium that began in the 1980s. Initially the MRLC was developed as a means to
build and share a national Landsat imagery archive using agreed-upon image processing
standards. Given that the cost of a single Landsat image in the mid-1990s was $3,000-$4,000,
multi-temporal, regional scale mapping was too costly for federal or state agencies or academic
institutions (Wulder ef al., 2012). In 2008 a data policy change made Landsat data freely
available. The MRLC consortium’s focus shifted from creating a national imagery archive to
creating and maintaining a series of national land cover datasets produced collaboratively by
members in the consortium (Wickham et al., 2014). The MRLC Consortium land cover products
include the National Land Cover Dataset (NLCD), Coastal Change Analysis Program (C-CAP),
Gap Analysis Program (GAP), and Landscape Fire and Resource Management Planning Tools
(LANDFIRE) (Wickham et al., 2014).

The NLCD is a national mapping effort led by USGS. National NLCD databases were
produced in 1992, 2001, 2006, 2011 and 2016, switching from a ten-year to five-year update
cycle (Wickham et al., 2014). The NLCD maps sixteen land cover classes at a 30m spatial
resolution. “Grassland/Herbaceous” and “Pasture/Hay” are the two grassland classes in the
NLCD, but the Pasture/Hay class can include native hay meadows or non-native grasslands, as
well as alfalfa. The 2011 NLCD was produced using Landsat imagery and ancillary geospatial
data and a decision tree classifier (DTC) (Homer et al., 2015) and had reported accuracy level of
82% (Wickham et al., 2017). And previous national NLCD Level II (2001 and 2006) products
have reported overall accuracy levels of ~85%; however, accuracy levels vary by region.

In 1999 the United States Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS) began producing an annual Cropland Data Layer (CDL) for several

states that has now grown into a national mapping product. As the name implies, the effort



focuses on mapping crop types. The spatial and temporal resolution of imagery used has varied
over the years, but more recently NASS has used a combination of Landsat 8 and MODIS NDVI
and ancillary data (soils, topography) in a decision tree classifier (DTC). The USDA Farm
Service Agency’s (FSA) annotated Common Land Unit (CLU) database is used for image
classification model development and accuracy assessment. Map accuracy levels vary by crop
type, and for the 2015 CDL the overall accuracy level was reported at 85%. For non-cropland
classes (grassland, woodland, etc.), however, the CDL uses the NLCD map for training and
validation, with no accuracy levels reported for these classes. The two grassland classes are
“Other Hay/Non-Alfalfa” and “Grassland/Pasture”. Another potential issue with using the CDL
is that in some years the CDL grouped grassland enrolled in the Conservation Reserve Program
with fallow/idle cropland but in other years grouped CRP with the pasture/grassland class. Given
that the CDL does not focus on mapping non-cropland classes, NASS refers end-users to the
NLCD for those classes. While both the NLCD and CDL contain aggregate grassland classes, the
classes primarily represent land use and do not distinguish land cover in terms of their functional
group or classification as native, non-native, and CRP.

The land cover from the GAP was initially produced in the mid-to late-1990s with a
mapping focus on natural vegetation using NatureServe’s Hierarchical Ecological System for
classification. The national GAP mapping effort collaborated with states to develop their state-
wide map product. As a result, independent supervised classification approaches (which
potentially varied by classifier, thematic resolution, minimum mapping unit, training data, etc.)
were used, making it difficult to edge-match states. In Kansas, 40 alliance-level natural
vegetation classes were mapped with varying success. The Kansas GAP map overall map had

classification accuracies of 89%, 66%, and 52% for Anderson Level I, Formation Level, and



Alliance Level mapping, respectively. GAP has been updated by the USGS for several regions in
the US, but not for the North Central Region where Kansas is located.

While land cover maps containing grassland classes represent a snapshot in time, they
can be used in a time series to help understand landscape changes and respective drivers of
landscape change. For example, Drummond (2007) created five land cover maps between 1973
and 2000 in two ecoregions in the Great Plains to create a time series of regional loss and
expansion of grasslands. The author found distinct temporal trends in the conversions between
cropland and grassland that were attributed to changes in socioeconomics and policy. A
somewhat controversial study by Wright and Wimberly (2013) used the CDL from 2006 and
2011 to quantify the large conversions of grassland to cropland that the authors claim to be the
result of increased soy and corn production. However, a response (Cooper, 2015) expressed
concerns with regard to how the thematic data were aggregated and handled in the change
detection analysis.

1.2 Research Objectives

While previous studies in eastern Kansas have evaluated the biophysical characteristics
of grasslands and have used field and satellite-acquired spectral data to statistically discriminate
between grassland types and land management practices, little research has focused on
identifying an optimal classification approach using satellite imagery for mapping grassland
types at a regional scale. The goal of this research was to determine an optimal classification
approach, i.e., which combination of remotely sensed imagery and thematic classification
scheme most accurately maps dominant grassland types (warm- and cool-season) across eastern

Kansas. To achieve this research goal there were three main objectives.



1. Identify the dominant land use within the two grassland types (warm- and cool-season
grasslands) using United States Department of Agriculture (USDA) Farm Service
Agency (FSA) data and characterize the static or dynamic nature of land use in
grassland types in eastern Kansas.

2. Determine the spectral separability of grassland types and land use using multi-
seasonal Landsat 8 spectral bands, Landsat 8 NDVI, and Moderate Resolution
Imaging Spectrometer (MODIS) NDVI time series.

3. Determine the optimal combination of data for mapping and the appropriate thematic
resolution for mapping grassland type by comparing modeling performance using a

Random Forest (RF) modeling approach.

These three objectives represent three research components in the dissertation.

1.2.1 Research Component 1: Characterizing County-Level Spatial and Temporal

Distributions of Grassland Types and Land Use in Kansas

The first research component identified dominant land use occurring in warm- and cool-
season grasslands in eastern Kansas over a six-year period (2004-2007, and 2015). Furthermore,
the research evaluated whether land use within grasslands remains static or changes inter-
annually. USDA FSA data were analyzed at the county level and at the field level. Both native
and non-native grasslands are managed landscapes where a combination of land management
practices are utilized to maintain and maximize vegetation productivity. The timing, frequency
and intensity of a land management practice and the combination of practices varies by grassland
type and by land owner, which in turn complicates mapping grassland types using remotely
sensed imagery. While previous research indicated that land management (or land use)

complicates the mapping of warm- and cool-season grassland types, there is no documented



information on the prevalence of land use between and within grassland types in Kansas or on
the static or dynamic nature of land use over time. Without an understanding of land use trends,
it is difficult to fully understand the impact land use has on the ability to map warm- and cool-
season grassland types. Furthermore, testing the hypothesis that inter-annual grassland type and
land use within grasslands are static can shed light on the efficacy of using out-of-year training
data for image classification when within-year training data are unavailable.
1.2.2  Research Component 2: Exploring the Spectral Characteristics and Separability of Four

Grassland Type Hierarchies Using Landsat 8§ and MODIS NDVI

This research component used Jeffries-Matusita (JM) distance statistics and spectral
profiles to compare the spectral separability of four hierarchies of grassland types in northeastern
Kansas. Three remotely sensed datasets from 2015 (three-date Landsat 8 multispectral, three-
date Landsat NDVI, and 23-period, 16-day composite MODIS NDVI time series) and 2015
reference data from the USDA FSA were used in the analyses. The results will be used to
determine the optimal dataset(s) for regional scale mapping of grassland types, the hierarchy of
grassland types to be mapped, and whether land use affects the spectral separability of grassland
types.
1.2.3 Research Component 3: Evaluating the Utility of Random Forest and Landsat 8 and

MODIS NDVI Data for Mapping Grassland Types at a Regional Scale

The third research component compared data combinations and thematic classification
hierarchies for optimal mapping of grassland type across two Landsat 8 scenes (Landsat
Worldwide Reference System (WRS) path/rows). Specifically, this objective compares model
development and performance of Random Forest (RF) using multispectral Landsat 8, Landsat 8

NDVI, and MODIS NDVI separately and then combined. Out-of-Bag (OOB) errors from the



models were used to identify the optimal thematic grassland hierarchy for mapping grasslands
and the optimal data input for this study. Models were applied to the data to produce grassland
type maps for both path/rows and both OOB and test data were used to assess accuracy levels for
the maps produced. The results of this research will be used to formulate a methodology for
mapping functional grassland types at a regional scale.

1.3 Research Design

1.3.1 Study Area:

The general focus of the study area is on grasslands in the central Great Plains, but the
study areas for the individual research components vary on data and topic. For the first research
component Kansas was defined as the study area. For the second research component, the study
area was defined as the area of Landsat path/row 27/33 that falls within Kansas (Figure 1). For
the third research component, the study area consisted of the area within two adjacent Landsat
path/rows (27/33 and 28/33) that fall in Kansas.

Kansas exhibits an east-west precipitation gradient and a north-south temperature
gradient, with higher precipitation occurring in the east and lower temperatures occurring in the
north. Kansas grasslands follow the east-west precipitation gradient with tallgrass prairie in the
relatively wet east, mixed prairie in central Kansas and shortgrass prairie in the dryer west.

Haying and grazing are two of the common land uses for both grassland types. However,
the timing, intensity and frequency of management practices within each grassland type vary by
land owner and by climate conditions in a given year. In addition to grazing, prescribed burning
is a commonly used management practice to maintain species diversity and prevent woody

encroachment in native warm-season grasslands.
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1.3.2  Data Sources

FSA Database. The United States Department of Agriculture (USDA) Farm Service
Agency (FSA) maintains annual field-level records of acreage, land cover and intended land use
for all fields participating in a USDA program. These data are known as FSA 578 data. In
Kansas the FSA data are maintained by county FSA field offices where land owners or producers
indicate land cover and land use for the upcoming year. In the 1990s, county field offices
maintained the data as photocopies of aerial photos with land cover and land use information
annotated on the photocopies. Depending on the county, these photocopies were made available
to the public by request. In the mid-2000s counties began delineating and maintaining digital
geospatial databases of field boundaries, called Common Land Units (CLUs). A common land
unit is defined as the smallest land unit that has the same ownership, land cover, and land use.
The extents of these units, which are subject to modification by FSA at any time, can be defined
based on a change in any of these variables in addition to natural features such as waterways or
forests or manmade features such as roads.

The agricultural marketing firm, Farm Market iD, is a proponent of making FSA and
CLU data publicly available, and following a legal battle, Farm Maket iD was successful in
making the FSA and CLU database publically available in early 2008 until the enactment in May
of The Food, Conservation and Energy Act (known as the Farm Bill) of 2008, which then
revoked public access to both datasets. During the three month window when data were
available, Farm Market iD acquired the FSA and CLU data. Farm Market iD now packages and
sells these data along with additional proprietary data about agricultural land owners and
producers. The Biofuels and Climate Change - Farmers’ Land Use Decisions (BACC-FLUD)

project (supported by the National Science Foundation, Award Number EPS-0903806)
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purchased the 2003-2007 FSA 578 data and CLU boundaries from 2007 from Farm Market iD.
The 2007 Kansas CLU data layer contains more than 1.3 million geospatial features representing
field (or management unit) boundaries. The 2003-2007 FSA 578 tabular data contain several key
attributes that are relevant to this study. The attribute “Code” contains grassland type information
that can be categorized into cool- or warm-season grassland types. The attribute “Intended Land
Use Code” identifies the land use that the land owner intends to use the grassland for during that
growing season or year. The Intended Land Use Codes for grasslands in Kansas include forage,
grazing, and left standing (not grazed or hayed) (Table 1.). In addition to the 2000-2007 FSA 578
and 2007 CLU boundaries, the 2015 CLU and FSA 578 data were recently acquired through a
Memorandum of Use (MOU) with the Kansas FSA office as part of a state-funded land cover
update. The CLU and FSA 578 data are rich datasets that are ideal for this study by providing the
spatial resolution, attribute information, sample size, and a temporal span that would be
prohibitive to collect through an independent field campaign.

Satellite Imagery. Factors to consider when selecting appropriate data for mapping
include cost, coverage, and resolution (spatial, spectral, radiometric, and temporal). One
common theme in the previously described studies is the utility and importance of temporal
resolution. Multi-temporal data capture variations in vegetation phenology and disturbances over
a growing season. In terms of spatial resolution, several studies contend that higher spatial
resolution data (e.g. RapidEye, 5m) are needed for effective grassland mapping and monitoring
(Ali et al., 2016; Corbane et al., 2015; Schuster et al., 2015). However, many studies, including
several previously discussed, illustrate the utility of moderate resolution Landsat (30m) and

MODIS NDVI (250m) in regional mapping applications and studies (Brown et al., 2013;
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Peterson et al., 2008; Wardlow et al., 2007). A critical advantage for using Landsat and MODIS
are that these data are freely available.

Landsat 8 imagery contains eight Operational Land Imager (OLI) multispectral bands (1-
7, 9; 30-m spatial resolution), one OLI panchromatic band (8; 15-m spatial resolution) and two
Thermal Infrared Sensor (TIRS) bands (10 and 11; 30-m resampled spatial resolution). Terra
MODIS NDVI provides a 250-m time series of 23 16-day NDVI composites per year.

1.3.3  Data Analysis

Objective 1. Using intended use codes in the FSA tabular data from 2003-2007 and 2015,
summary statistics were calculated by year to identify and characterize dominant land use
stratified by county, year, and grassland type. Where field-level data exist for multiple years (i.e.
County FIPS, Tract Number, Field Number, Farm Number and Acreage remains the same), the
data in the FSA tables were subset to summarize temporal change in grassland type and land use
in the study area. County level maps of land use dominance, land use stability (no change over
time) and land use change by grassland type were created to identify spatial patterns and
dynamics of grassland type and land use in the study area.

Objective 2. Next, for each observation in the FSA 578 data and the CLU boundary
shapefile, a unique identifier were created by concatenating the following attributes: State FIPS
code, County FIPS code, Tract Number, and Farm Number (SCTF). Boundaries change, and
tract and farm numbers can change. This unique identifier allows the CLU boundaries to be
attributed with the FSA 578 data. Because there is a many-to-one relationship between tracts and
CLU polygons (e.g. multiple crops were planted in a given field/CLU), only FSA and CLU data
that have a one-to-one relationship were used for spectral profile analysis and image

classification. A total of 18,707 data samples were used in the analysis.
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Landsat path/row 27/33 was defined as the study area for determining the spectral
separability of four grassland hierarchies using three separate datasets of remotely sensed
imagery. The datasets of remotely sensed imagery assembled for the study were multispectral
Landsat 8 surface reflectance, Landsat 8 NDVI, and MODIS NDVI time series. Three Landsat 8
surface reflectance images were ordered and acquired using USGS’s EarthExplorer (EE) tool

https://earthexplorer.usgs.gov/ to represent the spring, summer and fall portions of the growing

season. A biweekly time series of 23 1-meter Terra MODIS 16-day composite NDVI from the
2015 growing season was downloaded from NASA’s EarthData online tool,

https://earthdata.nasa.gov/. The MODIS time series dataset was reprojected from the native

Sinusoidal projection to Albers Equal Area projection and clipped to the Landsat path/row
extent. The MODIS NDVI time series dataset was then resampled to 30-meter pixels and
snapped to the Landsat 8 footprint. The three datasets were stacked to create a 44-band imagery
dataset.

For each dataset separately and then combined, the Jeffries-Matusita (JM) distance
statistic was calculated and evaluated for each pair of grassland classes (using grassland type and
intended land use) to determine overall and seasonal separability using the full time series and
individual time-periods, respectively.

The JM distance measures the separability between two classes by considering the
distance between class centers simultaneously with intra-class spread (variability) and has shown
utility in remote sensing applications (Davis ef al., 1978; Kastens et al., 2017; Masialeti et al.,
2010; Richards & Jia, 1999; Swain & King, 1973; Wardlow et al., 2007). Assuming multivariate
normal distributions, the JM distance is calculated as:

JM;; = 2(1 — e~P) where
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i and i correspond to class-specific, expected spectral values, and %; and Xk are unbiased
estimates for the class-specific covariance matrices. The JM distance ranges between zero and
two. A JM distance approaching two suggests distinct distributions, or high separability, between
two classes, while a JM distance closer to zero suggests overlapping distributions and little
separability between two classes. The JM distance for each of the three datasets was plotted and
statistics evaluated and described for all pairwise class comparisons.

Objective 3. For the third objective, two adjacent Landsat path/rows, 27/33 and 28/33,
were defined as the study area. A 44-band dataset comprised of Landsat 8, Landsat 8 NDVI and
MODIS NDVI were constructed for both path/rows. Training data from the FSA 578 data were
used to train Random Forest models that were then used to produce grassland maps for the study
area. Because image dates used for creating multi-season Landsat imagery varied by path/row,
models were developed for each path/row separately and results compared to determine the
generality of the mapping approach.

The number of training sites for cool and warm season grasslands were selected in an
attempt to represent approximate proportions of the overall landscape within each path/row. A
maximum of 10,000 training sites was selected using a random stratified design. For example, if
70% of the grassland types in the path/row were estimated as warm-season, then 70% of the
training sample sites were represented by warm-season grasslands. However, actual

representations are unknown and estimates were obtained using the 2015 FSA and CLU data.
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Next, supervised classifications were run separately for each dataset and then combined
using the Random Forest classifier (Breiman, 1994) in MatLab. Ten forests were created for each
run. Random Forest implicitly builds a classification ensemble—hundreds or thousands of trees.
Each tree is built using a subset of training data known as a “bootstrap sample,” with the
remaining third of the data providing Out-of-Bag (OOB) samples that were used to produce an
unbiased estimate for the predictive error of the random forest model. To develop each
component tree, a random subset of predictor variables (the size of which is typically the square
root of the total number of predictors, or one half or twice the square root) was used. To apply a
RF model, each tree or submodel in the forest or ensemble “votes” on the classification and the
majority vote determines the final classification. For this study, one thousand trees were grown
with predictor subset size determined by the square root of the total number of predictors. Out-
of-bag error were calculated and used to assess forest performance. In addition, a probabilistic
independent validation (“test”) dataset was used to calculate traditional accuracy statistics in
addition to quantity and spatial allocation errors (Pontius Jr & Millones, 2011). The classification
maps within the overlap area between the two adjoining Landsat 8 path/rows were compared to
assess the level of agreement in the mapped classes to indicate how the two RF models
performed with different Landsat image dates and different proportions of grasslands.

1.4  Significance of Study

Previous research indicates that human land use complicates mapping grassland types by
altering the vegetation phenology through removal of vegetation (haying, mowing, grazing) or
the non-removal of biomass from prior growing seasons (standing dead litter). Identifying the
dominant land use in cool- and warm-season grasslands in eastern Kansas is necessary for

understanding the potential implications land use has on mapping these two grassland types.
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Additionally, little research has been done to identify an optimal classification approach in terms
of thematic resolution and source data to map grassland types and land use at a regional scale.
This study compared the spectral properties of four grassland hierarchies using three remotely
sensed datasets: multispectral Landsat 8, Landsat 8 NDVI, and Terra MODIS NDVI. The results
of the analysis were used to characterize and quantify the separability of grassland types and land
use to help identify the thematic classification scheme and the optimal data for mapping. A
random forest modeling approach was used to compare the mapping ability for each of the three
datasets separately and combined for each grassland hierarchy for two path/rows. The results will

be used to inform regional-scale mapping of grasslands in Kansas.
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1.5 Figures and Tables
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Table 1.0.1. The four grassland hierarchies used in the analyses.

Level-1 Level-2 Level-3 Level-4
Warm-Season (W) | CRP (Crp) CRP (Crp) | CRP (Crp)
Native (N) Native (N) | Native Forage (Nfg)
Native Grazed (Ngz)

Native Left Standing (Nls)

Cool-Season (C) Cool-Season (C) | Fescue (F) | Fescue Forage (Ffg)
Fescue Grazed (Fgz)
Fescue Left Standing (Fls)
Brome (B) | Brome Forage (Bfg)
Brome Grazed (Bgz)
Brome Left Standing (Bls)

Table 1.0.2. The three types of intended land use occurring in Kansas grasslands and their associated
definitions.

Intended Land Use Definition

Forage Intended for harvesting as food for livestock. Does not
include crops grown for the intended purpose of grazing
by livestock or grown for the intended purpose of grain
which may be fed to livestock.

Grazing Intended solely for pasture for livestock to roam and feed
on.
Left Standing Intended to be left in the field unharvested. Not intended

to be mechanically or manually harvested for any
purpose, grazed by domesticated livestock, or otherwise
harvested in any manner. Typically used for erosion
control and nutrient retention.
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2 Chapter 2: Characterizing County-Level Spatial and Temporal Distributions of
Grassland Types and Land Use in Kansas

2.1 Abstract

This study characterizes grassland types and land use across Kansas and evaluates both
the dynamic and static nature of grassland type and land use over time to inform a methodology
for land cover mapping of grassland types. USDA Farm Service Agency (FSA) data from 2004-
2007 and 2015 and Common Land Unit (CLU) geospatial data from 2007 and 2015 were used as
the primary data inputs for county summaries of grassland type and land use. The results show
regional trends in grassland type in Kansas that are largely driven by climate and soils. During
the study period, native warm-season grasslands were most common in the western two-thirds of
the state while cool-season fescue and brome grasslands were most common in different portions
of the eastern third of Kansas. Fescue were more common in southeastern Kansas where soils are
more clay pan while brome were more common in northeastern Kansas and was prevalent in
some central counties with well-drained soils. Field size also varied across the state and by
grassland type. There were a large number of small fields (< 20 acres) of brome and fescue in
eastern and central Kansas while western Kansas was composed of fewer but larger fields of
native grassland and land enrolled in the Conservation Reserve Program (CRP). The results also
show that the FSA 578 data did not represent all grasslands, especially in the early FSA 578 data
(2007 and prior) where most of the Flint Hills area was not included. Meanwhile 2015 FSA 578
data showed an increase across the state, largely in the Flint Hills, suggesting that the
establishment and funding of two emergency response FSA programs in the 2014 farm bill

increased participation in FSA programs. As anticipated, the change in land use was greater than
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the change in grassland type in terms of acres and the number of fields. The results indicate
mapping grassland types in eastern Kansas may be more complex than in the central and western

parts of the state due to the larger number of grassland types and the more fragmented landscape.

2.2 Introduction

The composition, spatial distributions, granularity, and the static and dynamic nature of
the landscape are among the factors that influence and potentially impact mapping endeavors
using remotely sensed data. This study characterizes grassland types, land use, and field size
across Kansas in order to make informed decisions on developing a methodology for image
classification to map grassland types in Kansas. Knowledge of the characteristics of grasslands in
Kansas will aid in developing a mapping approach, including training sample allocation,
thematic resolution of mapped classes, the source imagery used, and the efficacy of using out-of-
year training data for image classification.

In Kansas both native and non-native grasslands are managed landscapes where
combinations of land management practices are utilized to maintain and maximize vegetation
productivity largely for grazing and livestock support. The timing, frequency, and intensity of
land management practice, and the combination of practices, varies by grassland type and by
land owner, which in turn complicates mapping grassland types using remotely sensed imagery.
While previous research has shown that land use and management complicates the mapping of
warm- and cool-season grassland types Guo et al., 2000), there is no documented information on
the prevalence of grassland types and land use between and within grassland types in Kansas or
on the static or dynamic nature of grassland type and land use over time. Without an
understanding of these trends, it is difficult to fully understand the impact land management

practices have on the ability to map warm- and cool-season grassland types. And without an
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understanding of the spatial distributions of grassland types, it is difficult to develop a thematic
classification system and proportioned training and validation data allocation for image
classification. Furthermore, knowledge of the granularity or size of the features (i.e., parcels) to
be mapped can be used to determine the required spatial resolution of the input source imagery
as well as how training data will be identified and extracted. Lastly, testing the assumption that
both inter-annual grassland type and land use within grasslands are static can shed light on the
possible efficacy of using out-of-year training data for image classification when within-year
training data are unavailable.

The objectives of this research are three-fold: 1) to identify the dominant grassland types
and land use in grasslands and characterize their spatial trends in Kansas; 2) characterize trends
in field size within grassland types across the state; and 3) determine the dynamic characteristics
of grassland type and land use over time.

2.3 Methods

2.3.1 Study Area

Situated in the central Great Plains, Kansas exhibits both precipitation and temperature gradients.
Precipitation has an west-east gradient where the western third of Kansas’s long-term mean
(1895-2015) annual precipitation is 53 1mm, the central third is 660mm and the western third is
945mm (Lin et al., 2017). The west-east gradient of annual precipitation in Kansas largely drives
plant productivity (e.g. biomass and canopy height) and thus the west-east grassland gradient
from shortgrass to mixed grass to tallgrass prairie, respectively. In addition, higher levels of
precipitation in eastern Kansas support more forests and woodlands. Meanwhile temperature
affects the distribution of functional grassland types with C3 dominating northern regions and C4

the southern regions. Temperature is the main driving factor influencing the natural distributions
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of C3 and C4 grasslands species in the Great Plains. Additionally, C3 and C4 grassland species
each have competitive advantages under certain CO2 levels, soil types, frequency and intensity
of precipitation events, and type, frequency and intensity of land management practices
(including fire). With increasing CO2 levels and climate change, there are anticipated shifts in
species distributions which in turn affect ecosystem functions, soil biochemistry and the global
carbon cycle.

The regional trends in native grasslands across Kansas largely follow the west-east
precipitation gradient. However, temperature, soils, disturbance, and land use are additional
factors that affect grassland community distribution, and thus the boundaries for these native
grassland types shift inter-annually. Grasslands in the western fourth to third of the state consist
of native warm-season shortgrass species such as sideoats grama (Bouteloua curtipendula), blue
grama (Bouteloua gracilis), and buffalograss (Bouteloua dactyloides), and moister areas may
include Schizachyrium scoparium. Several forb and shrub species are supported in these semiarid
grasslands including soapweed yucca (Yucca glauca) and common ragweed (Ambrosia
psilostachya). Cropland and land enrolled in the Conservation Reserve Program (CRP) are
dominant across Kansas, with CRP representing the majority of grasslands in several western
counties. Dominant Kansas agricultural crops include corn, soybeans, grain sorghum, alfalfa, and
winter wheat. Central Kansas grasslands consist of a mix of species from the eastern tallgrass
prairie and western shortgrass prairie. Dominant species include little bluestem (Schizachyrium
scoparium), big bluestem (Andropogon gerardii), indiangrass (Sorghastrum nutans), sideoats
grama, blue grama, and buffalograss, as well as native cool-season grass species such as western

wheatgrass (Pascopyrum smithii).
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In the eastern third of Kansas, grasslands consist both of native, warm-season grasslands,
and non-native, cool-season grasslands. The warm-season grasslands are either native tallgrass
prairie or have been reseeded using a native seed mixture. The tallgrass prairie is dominated by
bunchgrasses including big bluestem), little bluestem), and indiangrass. In high-quality prairie
remnants, dozens of native forb species can be present including leadplant (4dmorpha canescens),
butterfly milkweed (4Asclepias tuberosa), and purple coneflower (Echinacea angustifolia). The
dominant warm-season grassland species fix carbon using C4 photosynthesis. The typical
phenology of warm-season grasslands is spring green-up, peak productivity in late spring to early
summer when temperatures increase, followed by senescence in fall (Weaver, 1954). The Flint
Hills region lies on the western edge of the tallgrass prairie and is the largest remaining tract of
native tallgrass prairie in the world. Cool-season grasslands become more prevalent in the
eastern part of the state. Cool-season grasslands are planted with non-native herbaceous species
such as smooth brome (Bromus inermis) and tall fescue (Festuca arundinacea) that fix carbon
using C3 photosynthesis. The typical phenology of cool-season grassland is early spring green-
up, peak productivity in late spring, a mid-summer semi-dormancy and, with sufficient
precipitation, a second, smaller growth period in early fall (Weaver, 1954). Cropland, woodland,
and forest primarily occupy the river lowlands and riparian areas in eastern Kansas.

Haying (forage) and grazing are two of the common land uses for all grassland types
across the Kansas. However, the timing, intensity and frequency of management practices within
each grassland type vary by land owner and by climate conditions in a given year. In addition to
haying and grazing, prescribed burning is a required management practice for maintaining

diversity in native warm-season grasslands and preventing woody encroachment. Herbicide
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applications and fertilization are among the other commonly used land management practices to
optimize vegetation productivity in non-native, cool-season grasslands.
2.3.2  Data Sources

The two primary datasets used for this study are United States Department of Agriculture
Farm Service Agency (FSA) tabular data and FSA Common Land Unit (CLU) geospatial data.
The FSA tabular and CLU data contain the attribute information, spatial representation, sample
size, and temporal span to characterize spatial and temporal trends in grassland type and land use
across Kansas.

The FSA maintains annual field-level records of acreage, land cover, and intended land
use for all fields enrolled in a USDA program. Kansas FSA 578 data are maintained by county
FSA field offices where land owners or producers report land cover and land use by November
15th for the upcoming year. Accurate reporting by land owners ensures program eligibility. The
field boundaries, called CLUs, are defined as the smallest land unit that has the same ownership,
land cover, and land use. The extents of these units, which are subject to modification by FSA at
any time, can be defined based on a change in ownership or land use.

The 2004-2007 FSA tabular and 2007 FSA CLU data were purchased by the Biofuels and
Climate Change - Farmers’ Land Use Decisions (BACC-FLUD) project (supported by the
National Science Foundation, Award Number EPS-0903806) from Farm Market iD, an
agricultural database and analytics firm. The 2015 FSA 578 and CLU data were acquired
through a Memorandum of Use with the Kansas FSA office as part of a statewide land cover
mapping endeavor. The 2007 and 2015 Kansas CLU data layers each contained more than one
million geospatial features representing polygonal field boundaries. The FSA 578 data contained

several key attributes relevant to this study including reported acreage, grassland type
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information that distinguished between cool- and warm-season, and land management practices
that land owners intend to use the grassland for during the upcoming growing season or year.
The intended land use codes for grasslands in Kansas included forage, grazing, and left standing
(Table 1).

2.3.3 Data Processing

The tabular data were delivered from Farm Market iD in comma separated value (csv)
files. The data tables were imported into Microsoft SQL Server Management Studio 2008 R2 for
data processing and analysis. Each entry or row in the tabular data was attributed with a state,
county code, tract number, field number and sub-field identifier. These attributes were
concatenated to create a unique identifier for each row named “SCTF”. This unique identifier
was constructed for all of the 2004-2007, 2015 FSA 578 data and the 2007 and 2015 CLU
geospatial layers.

To ensure data quality, dominant grassland types (>1,000 samples) were inspected to
verify that locations identified as grasslands were actually grasslands. Using ESRI ArcGIS, the
SCTF identifier was used to join tabular data to the 2007 CLU polygon data layer. The CLU
polygons from 2007 were then overlaid on the closest year of high-resolution FSA NAIP aerial
imagery and existing land cover maps. Evaluating the classes identified two grassland types from
the 2004 data that did not fall on grassland areas. More than 50% of the fields attributed as Side
Oats Grama and Sand Bluestem from 2004 were located on cropland fields and excluded from
the analysis. The cause for these errors is unknown, but illustrates rational for data quality
checks. Common Bermuda was considered a crop for sod and was also excluded from the

analysis.
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The 119 grassland types listed in the FSA multi-year data were recoded into seven
dominant grassland types that were then used in county and field-level analysis (Table 2).
CRP fields were recoded using the conservation practice attribute (Table 2). Conservation
practices indicating warm-season grassland were aggregated to a “CRP warm-season” class (e.g.
Establishment of Permanent Native Grasses) whereas the conservation practice, Establishment of
Introduced grasses and legumes, indicated cool-season grassland (Banks, 2012) and was recoded
to a “CRP cool-season” class. Conservation practices that could represent grassland and/or
woodland or wetland (e.g. Riparian Buffers) or that did not represent field-sized grasslands
(grass waterways) were recoded to “CRP other.” The resulting seven classes were CRP warm-
season, CRP cool-season, CRP other, Native warm-season, Brome cool-season, Fescue cool-
season, and Grass other. While there were a large number of grassland types in the Grass other
class, 69 of the 88 grassland types had fewer than 100 fields across all years of FSA 578 data.

As a further check of data quality, a data completeness assessment was performed to
evaluate the completeness and representativeness of the FSA 578 data. The FSA reported
grassland and CRP acreages were calculated and compared to state and county-level grassland
acreages calculated from two supplemental sources. For grassland acreage information, an
annual land cover time series (Gao ef al., 2017) was used as supplemental data and for CRP
acreage information, the county-level USDA FSA cumulative annual reported acreages were
used as supplemental data (Gao ef al., 2017; USDA, 2017). While all land use/land cover maps
contain misclassification errors Peterson et al. (2008) and Peterson ef al. (2017) reported an
overall map accuracy of 90% and 93% for 2005 and 2105 data, respectively. County level maps
showing proportions of grassland type, land use, and data completeness for each year were

created in ESRI ArcMap to identify dominant grassland types and lands use in the study area.
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Understanding the distribution and proportions of grasslands is useful for determining training
sample allocations for image classification.

Another consideration for land cover mapping in addition to understanding regional
variability of grassland type and land use is field size or spatial granularity. Two commonly used
sensors for statewide mapping endeavors, Landsat and MODIS have spatial resolutions of 30
meters and 231 meters, respectively. Characterizing the granularity of the field size in the study
area informs several components of developing a land cover methodology. Granularity can
determine the spatial resolution of the imagery required for mapping, dictate the minimum
mapping unit for the mapped classes, and/or the method used for extracting pixel information
(pure vs. mixed pixels) used for training the image classification. To characterize the field size of
grasslands (including CRP) in Kansas, the nine agricultural statistic districts (ASDs) comprising
the state were aggregated into eastern, central and western tiers that roughly correspond to the
precipitation gradient (Figure 1). Frequency distributions of the count and acreage of field size
were created using 10-acre incremental intervals of the 2015 FSA 578 data.

To characterize the dynamic vs. static trends in grassland types and land use across
Kansas, field-level data existing across three or more years where the unique identifier, SCTF,
and reported acreage remained constant (within 5%) were extracted for analysis. Table 5 shows
that 181,667 fields totaling 3.275 million acres met the criteria for change analysis of grassland
type and 193,900 fields totaling 3.4 million acres met the criteria for change analysis of land use.

Next, each change scenario trajectory was evaluated and labeled as “likely” or “unlikely.”
For example, if the grassland trajectory was brome->native=>brome->native, the trajectory was
labeled “unlikely,” whereas a trajectory of CRP>CRP->native—>native was labeled as “likely”

since it is plausible that a CRP contract expired and the grassland subsequently labeled as native.
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Land use change was independent of grassland type change. There were no “unlikely” land use
trajectories since land owners can change land use from one year to the next based on climate,
grazing systems, economic conditions, or government policy. Finally, the acres of change and no
change were summarized at the county and state level.

2.4 Results and Discussion

The completeness assessment of grasslands and CRP was a necessary data quality check
since subsequent analysis and county level maps of grassland type and land use utilized these
data. The comparison of the statewide grassland acreages from the annual land cover data and
annual FSA 578 data showed the 2004-2007 FSA data from Farm Market iD were not inclusive
of all grasslands across Kansas (Table 3). The comparison suggests that the FSA data
represented on average 31% of the statewide grassland area, ranging between 30% in 2007 to
34% in 2004. While the grassland acres mapped in annual land cover data remained relatively
consistent, the 2015 FSA data showed a large increase (75%) in statewide representation of
grasslands (Table 3). Figure 2 shows the county level change in acreage in the FSA data between
2007 and 2015. Only Comanche and Mitchell counties showed decreases in FSA acres between
2007 and 2015. Meanwhile there were large increases in FSA acres from 2007 to 2015 in
multiple counties in the Flint Hills (e.g. Cowley, Butler, and Marion), Smoky Hills (Trego, Ellis
and Russell) and Red Hills (Barber and Clark).

During the 2004-2007 time-frame there were two grassland-related FSA programs
available to land owners, operators, or producers. The Conservation Reserve Program (CRP)
began in 1989 and offers voluntary enrollment to agricultural producers where “environmentally
sensitive farmland” is taken out of production and planted with long-term grass or tree cover to

reduce soil erosion, enhance wildlife habitat, and improve water quality. CRP contracts have an
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option for a 10- or 15-year enrollment. CRP land can only be grazed or hayed under FSA
authorization as emergency relief in response to natural disasters, primarily drought or fire. The
Grassland Reserve Program (GRP) began in 1985 but was later repealed by the 2014 Farm Bill.
However, GRP contracts established prior to February 2014 remained valid. The voluntary GRP
offered 10, 15, or 20-year contracts that provided annual rental payments or conservation
easements to land owners and operators to protect rangeland or pastureland from overuse or
conversion to farmland or development (USDA, 2009). The FSA data obtained for this study do
not indicate lands in the GRP program. It was difficult to discern whether FSA data were
incomplete for non-CRP grasslands, or that a large proportion of grasslands were not enrolled in
an FSA program in the 2004-2007 time-frame. There were however, three additional FSA
disaster assistance programs established between 2007 and 2015 may have resulted in the
observed increased grassland acreage in 2015 FSA data.

In 2008 the Livestock Forage Program (LFP), Livestock Indemnity Program (LIP), and
the Emergency Assistance for Livestock, Honey Bees, and Farm-Raised Fish Program (ELAP)
were established, but were not authorized and funded until the 2014 Farm Bill (Agricultural Act
of 2014; P.L. 113-79) (Stubbs, 2018). The LFP compensates land owners or producers who lost
grazing opportunity due to natural disasters on native or established non-native grassland that is
used specifically for grazing. The LIP compensates land owners or producers who lost
considerable livestock from adverse weather, and the ELAP compensates land owners or
producers for livestock losses resulting from disease, adverse weather or shortages of water or
feed (Stubbs, 2018). These voluntary programs are freely available to land owners given

eligibility requirements are met.
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While the FSA data underrepresented grassland acres, the comparison of CRP in FSA
data and county-level USDA reported CRP acres showed that the 2004-2007 and 2015 FSA data
only slightly underrepresented CRP acres, with 2004 having the lowest percent representation of
93.5% (Table 4). And while grassland acres in the FSA data increased from 2007 to 2015, CRP
acres decreased in both the FSA data and the county-level USDA data. Expired CRP acres would
explain a portion of the observed increase in grassland acres between 2007 and 2015 if land
owners chose to use the conservation cover for forage or grazing. The 2010 National Resource
Inventory (USDA, 2013a; USDA, 2013b) showed that between 2007 and 2010, CRP acres
declined by almost 18%, with 55% of those acres converted to cropland and 41% used as pasture
or rangeland.

In addition to providing a completeness assessment, Figures 2 through 7 show annual,
county-level proportions of total grassland and CRP acres obtained from the FSA and
supplemental data. While small variations could be the result of changing land cover, the
variability suggests some limitations of the data. For example, total grassland acres in Meade
County (located in southwest Kansas on the southern boundary of the state) increased from 290
thousand acres to 326 thousand acres between 2005 and 2006. These types of inter-annual
fluctuations in total grassland acres may be due to errors or misclassification in the annual land
cover data and/or expired CRP contracts. Even with some inter-annual variability, the data were
sufficient to identify and characterize regional trends in grassland extents, grassland type and
land use.

Figures 2 — 7 show the southern Flint Hills and the Red Hills regions of Kansas had the
greatest total acres of grasslands (FSA and non-FSA Data), which is primarily due to shallow

soils preventing these regions from being plowed for agricultural crop production. Butler,
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Greenwood, Cowley, and Chase Counties consistently had the largest grassland acres in the
southern Flint Hills and Barber, Clark and Comanche had the largest reported acres in the Red
Hills. Meanwhile there were many counties across the state with relatively small grassland acres
remaining including in northeastern Kansas (e.g. Doniphan, Atchison, Wyandotte, and Johnson),
in southwestern Kansas (e.g. Haskell, Gray, Grant) and in central Kansas (e.g. Rice, Harvey,
Sumner, Pratt, and Edwards). According to land cover data and knowledge of the study area,
these counties were dominated by cropland or are heavily urbanized (e.g. Wyandotte, Johnson,
and Sedgwick) (Figure 1).

As previously mentioned, the lack of warm-season native grassland in Flint Hills
represented in the 2004-2007 FSA data was either the result of missing FSA data or more likely,
the lack of participation by land owners in FSA programs. The 2015 map in Figure 7 illustrates
the changes in the fractions that more closely match the expected quantity of grasslands in the
Flint Hills and western Kansas shown in Figure 1. These differences highlight the importance of
understanding the study area and assessing data quality for data produced by other entities.
Without the completeness assessment, multi-year data, and prior knowledge of the study area,
grassland type proportions obtained from the 2004-2007 FSA data would have incorrectly
proportioned the sampling sites used for training data in image classification which in turn could
potentially increase classification error in a derived land cover product. These results also
underscore the importance of scrutinizing data and using multi-year information for data
comparisons for quality assurance where possible.

While there was inter-annual variability in total grassland acreage, Figures 8 — 12 show
there were consistent regional trends in grassland types across the state. Native warm-season and

CRP grasslands were more prevalent in the western two thirds of the Kansas, while cool-season
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brome and fescue were more common in the eastern half to third of the state. The prevalence of
of cool-season grasslands in eastern Kansas corresponded to the precipitation gradient across
Kansas where eastern Kansas has adequate precipitation and soil types to support introduced
cool-season grassland types like brome and fescue. The data also indicated finer scale variability
in the dominance of brome versus fescue in Kansas driven by regional climate and soils.
Southeastern Kansas had distributions of fescue where there is a longer growing season, higher
average precipitation and slow draining claypan soils Shoup et al., 2010). Meanwhile, central
and eastern Kansas had distributions of brome where there are deeper well-drained soils. The
2004-2007 data showed small fractions of brome as far west as Ellis County in central Kansas
and Haskell County in southwest Kansas, where brome is irrigated for livestock grazing
(Lamond et al., 1992).

Warm-season CRP was more prevalent over cool-season CRP across all years of data
with the largest fractions of warm-season CRP in southwest Kansas. Eastern Kansas had a small
number of counties containing cool-season CRP in the 2004-2007 FSA data, but not in 2015. It is
possible that cool-season CRP were reported in counties where county extensions supported
particular seeding varieties for CRP. Additionally, in 2004 several western counties (Thomas,
Gove, Scott and Pratt) contained cool-season CRP as well, though in subsequent years no cool-
season CRP acres were reported. It was uncertain if this change was real or noise in the FSA
data. Furthermore, the county-level fractions of CRP visually appear to be relatively stable from
2004-2007 with a dramatic statewide decrease in CRP in 2015. While CRP reported acres
declined in all counties (USDA, 2017), the reduced fraction of CRP shown in Figure 12 is

exaggerated by the additional warm-season native grassland data in the 2015 FSA data.
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Regarding land use, most of the grasslands across the state were either grazed or used for
forage with very little grassland left standing (Figures 8-12). However, central Kansas had a few
counties (Rice, McPherson, Reno, Kingman, Sedgwick, and Sumner) that contained notable left
standing native grassland in all years of data. Northwestern Kansas (e.g. Cheyenne, Rawlins,
Decatur, Norton) mostly consisted of grazed native grasslands, while southwestern and portions
of central Kansas (e.g. Stafford, Reno, and Kingman) consisted of warm-season CRP, followed
by grazed native grasslands.

The 2015 FSA data indicate fescue was primarily used for grazing followed by forage,
whereas the land use of brome in 2015 was more variable, where some counties showed a
dominance for forage and others for grazing. Interestingly, the 2004-2007 data indicated there
was more forage production of fescue and brome in Kansas than in 2015. Brome and fescue were
introduced to Kansas in the late 1800s as supplemental forage for livestock operations. Native
grassland is typically grazed in the spring and summer while brome and fescue provide
opportunity to lengthen the spring and fall grazing and forage periods. The Kansas State
University (KSU) extension office indicates that brome provides excellent spring and fall pasture
as well as excellent forage, producing as much as 3-4 tons of forage per acre (Lamond et al.,
1992). And in southeast Kansas, fescue is commonly fertilized in late summer and allowed to
grow until late fall to provide winter grazing. Incorporating these grassland types allows land
owners and producers to maximize livestock production and profits. Such local and regional
practices are largely supported by local entities such as Kansas State Research and Extension and
the Kansas Livestock Association. For example, the Southeast Agricultural Research and
Extension Center located in southeast Kansas conducts grazing research exclusively on

introduced grass species, unlike other extension centers across Kansas that focus heavily on
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native grasslands (KSU, 2018). Annual climate conditions likely factor into land owners’
decisions on how grasslands will be used in the upcoming year. For example, drought conditions
could cause a shift from forage to grazing if summer grazing on native grasslands is less
productive and requires supplemental summer grazing.

Figure 13 shows the frequency distributions of field sizes for grassland types among the
three tiers of ASDs across Kansas. Moving from west to east there was a decrease in the
frequency and acreage of large fields (> 160 acres) (Figure 13), meaning fewer large fields in
eastern Kansas. The western tier had 8,800 native grassland and CRP fields greater than 160
acres, totaling 3.47 million acres or 54% of the total FSA grassland acreage. In the central tier
there were 6,300 native grassland and CRP fields greater than 160 acres, totaling 2.18 million
acres or 34% of the total FSA grassland acreage. Meanwhile the eastern tier had the smallest
number (4,856) and total acreage (1.59 million acres) of large fields of grassland, 90% of which
were native grassland. There were large fields of CRP in both the west and central tiers whereas
brome and fescue were only present in the east tier.

The frequency, acreage and composition for small fields varied among the tiers as well.
For example, the western tier had 54,500 native grassland and CRP fields of less than 10 acres;
however, the total acreage of the small fields represented only 3% of the grassland acres. Moving
eastward there was a substantially higher number of smaller fields. The central tier had 175,106
fields of less than 10 acres and 7.2% of the total grassland acreage, while the eastern tier had
147,930 fields of less than 10 acres, accounting for 8.6% of the acres reported. The composition
of small fields varied across tiers. In the west, smaller fields were primarily a mix of grassland
and CRP, while moving east there was more variety of grassland types, with brome dominant in

the central and eastern tiers and fescue in the eastern tier. The increased frequency and small
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acreage of grassland types in the central and eastern tiers are indicative of a more fragmented
landscape. Understanding the field-size and level of fragmentation among grassland types across
Kansas can be used to help determine the minimum mapping unit and source imagery used for
mapping. While MODIS NDVI with its coarser spatial resolution may be suitable for mapping
the larger grassland extents in the west, there were many small fields of CRP (e.g. corners of
center pivots, which typically are concave in shape and roughly eight acres in size) and native
grassland in western Kansas that may not be mapped accurately using a 23 Im spatial resolution
(or approximately 13.2 ac/pixel). Likewise, Landsat data may be more suitable in the east given
the frequency of small fields; however, the limited temporal resolution of Landsat may not be
adequate for separating the phenological differences among grassland types.

Statewide, a higher percentage of fields and acres remained unchanged for grassland type
than land use. Grassland type remained unchanged for 87% of grassland acres and 84% of fields
while land use remained unchanged for 60% of grassland acres and 77% of fields (Table 6).
Figures 14 and 15 show county-level percent of acres that changed in grassland type and land
use, respectively. Generally speaking, counties in central and eastern Kansas exhibited more
change than counties in western Kansas. The higher average precipitation levels in central and
eastern Kansas support the variety of grassland types (native and non-native) that have been
established and provide options to change from one land use to another, whereas in western
Kansas, the shortgrass prairie provides yield for grazing but not additional vegetation for forage.
Crops such as forage sorghum and alfalfa are typically used as supplemental forage in the semi-
arid west.

2.5 Conclusions
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The assessment and analysis of multiple years of FSA data showed variability in degree
of completeness, meaning that the 2004-2007 FSA data were not all-inclusive of total grassland
acres in Kansas. Even so, the data were sufficient to identify several regional trends in grassland
type, land use, and field size. Eastern Kansas was found to have more grassland types, with the
inclusion of non-native brome and fescue, a larger number of small fields, and more variability
in land use, which together creates a more fragmented and complex landscape for mapping
grasslands in that region. Western Kansas had larger fields that primarily consisted of CRP and
grazed native grassland, creating a comparatively simpler landscape for mapping grasslands. The
inclusion of 2015 data provided a more complete representation of grassland type and land use in
Kansas compared to 2004-2007 data, which possibly was the result of three new FSA programs
that were implemented in the interim. These results will be used to inform a grassland mapping

approach for Kansas, including training data allocation for image classification.

41
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Figure 2.13. Frequency distributions of grassland field size stratified by grassland type in ten acre intervals for each

tier in Kansas.
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Table 2.1. The three types and definitions of intended land use of Kansas grasslands in the FSA data (USDA 2013).

Intended Land Use Definition
Forage Intended for harvesting as food for livestock. Does not include
crops grown for the intended purpose of grazing by livestock
or grown for the intended purpose of grain which may be fed
to livestock.
Grazing Intended solely for pasture for livestock to roam and feed on.

Left Standing

Intended to be left in the field unharvested. Not intended to be
mechanically or manually harvested for any purpose, grazed
by domesticated livestock, or otherwise harvested in any
manner. Typically used for erosion control and nutrient
retention.

Table 2.2. The recoding scheme used to assign grassland types in the FSA data to one of seven grassland types used

in the analysis.

Grassland Type

FSA Crop Type Name

CRP Warm-Season

Establishment of Permanent Native Grasses
Rare and Declining Habitat

CRP Cool-Season

Establishment of Introduced grasses and legumes

CRP Other

Bottomland Hardwood Tree Establishment

Cross Wind Trap Strip

Diversion

Duck Nesting Habitat

Farmable Wetland - Buffer

Farmable Wetland - Wetland

Farmable Wetland Program - Aquaculture Wetland
Farmable Wetland Program - Constructed Wetland
Farmable Wetland Program - Flooded Prairie Wetland
Field Windbreak Establishment

Flood Control Structure

Grass Contour Strip

Grass Filter Strips

Grass Waterway

Hardwood Tree Planting

Living Snow Fence

Longleaf Pine Establishment

Non-Floodplain Wetland Restoration

Permanent Wildlife Habitat

Riparian Buffers

Salinity Reducing Vegetation Establishment
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Sediment Retention

Shallow Water Areas for Wildlife

Shelterbelt Establishment

State Acres for Wildlife Enhancement

Tree Planting

Trees Already Established

Wetland Buffer (Marginal Pasture)

Wetland Restoration (Floodplain)

Wildlife Food Plot

Wildlife Habitat Buffer

Wildlife Habitat Corridors

Native Warm-Season

Big Blue

Big Bluestem

Buffalo Grass

Native

Prairie

Fescue Cool-Season

Arctared Fescue

Chewing Fescue

Kentucky Fescue

Meadow Fescue

Rough Fescue

Red Fescue

Tall Fescue

Brome Cool-Season

Creeping foxtail

Mountain Brome

Other Brome

Polar Brome

Regar Brome

Smooth Brome

Grass Other

Aeschynomene

American Mamegrass

American Vetch

Annual Ryegrass

Bahalia

Basin Wild Rye

Blue Grama

Bluegrass, Alpine

BlueJoint Reedgrass

Broadleaf Signal

Buffel

California (Para)

Canadian Wild Ryegrass

Canary

Canby
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Coastal Bermuda

Crabgrass

Crested Wheat

Eastern Grama

Garrison Creeping Fxtl

Gordo Bluestem

Grama, Blue Lovington

Grama, Hairy

Grama, Side Oats

Green Panic

Hybrid Bent

Hybrid Bermuda

Illinois Bundle Flower

Indian

Intermediate Ryegrass

Intermediate Wheat

Johnson

Jose Tall Wheatgrass

Kleberg Bluestem

Leriope

Little Bluestem

Magnar

Mason Sandhill Lovegrass

Matua

Maxmillian Sunflower

Meadow

Mission

Mutton

Napier

Needle And Thread

Old World Bluestem

Oldworld Bluestem

Orchard

Other Bent

Pampas

Perennial Ryegrass

Plains Blue Stems

Prairie Dropseed

Prarie Sandreed

Pubescent Wheat

Red Ratibita

Redtop

Reed Canary

Russian Wild Ryegrass
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Sainfoin

Sand Bluestem

Sand Lovegrass

Secar Bluebunch

Siberian Wheat

Side Oats Grama

Slender Hair

Small Burnett

Soft Stem Blurush

Spike Muhley

Sprigs Bermuda

Sudan

Sun

Switch

Thick Spike Wheatgrass

Timothy

Tufted Hairgrass

Turf

Virginia Wild Rye

Virginia Wildrye

Weeping Lovegrass

Wheat , Slender

Wheat , Tall

Wheat Streambank

White Prairie Clover

Worm Grass

Zoysia
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Table 2.3. A comparison of statewide grassland acres in the FSA data and annual land cover data.

Table 2.4. A comparison of statewide acres of land enrolled in CRP in the FSA data and USDA FSA Program

statistics

Count of Grassland Percent
Grassland Grassland Acres from Grassland

Program Acres in Fields in FSA | Annual Land | Represented

Year FSA Data Data Cover Data | by FSA data
2004 7,546,492 328,386 22,451,617 33.61%
2005 7,054,722 360,225 22,379,843 31.52%
2006 7,323,636 378,287 24,104,610 30.38%
2007 7,655,929 388,135 25,540,048 29.98%
2015 18,019,038 607,500 23,720,380 75.96%

USDA
Reported
CRP Acres | Count of CRP Acres Percent
Program in Fields in Enrolled in CRP in
Year FSA Data FSA Data CRP FSA data
2004 2,646,551 83,531 2,828.911 93.55%
2005 2,833,861 91,358 2,878,784 98.44%
2006 3,028,743 101,998 3,085,227 98.17%
2007 3,208,741 110,411 3,258,989 98.46%
2015 2,077,132 85,311 2,182,877 95.16%
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Table 2.5. The number of fields and acres screened for use in evaluating change in grassland type and land use.
Criteria were defined as having at least three years of data and reported acres remained nearly constant.

Stratification Data Assessment Number of Fields Acres

Grassland Type Excluded, criteria not met 36,353 1,031,566
Included, criteria met 181,667 3,275,514

Land Use Excluded, criteria not met 24,120 902,693
Included, criteria met 193,900 3,404,388

Table 2.6. The number of fields, acres and percent of change and no change in grassland type and land use in Kansas
for fields meeting the criteria defined in Table 5.

Trajectory Number of Acres Percent Percent
Fields Fields Acres
Grassland Type Unlikely Change 5,275 47,663 2.9% 1.5%
Change 23,653 371,842 13.0% 11.4%
No Change 152,739 | 2,856,008 84.1% 87.3%
Intended Land Use | Change 78,037 793,655 23.3% 40.3%
No Change 115,863 | 2,610,733 76.6.% 59.8%
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3 Chapter 3 Exploring the Spectral Characteristics and Separability of Four Grassland

Type Hierarchies Using Landsat 8 and MODIS NDVI
3.1 Abstract

This study used Jeffries-Matusita (JM) distance statistics and spectral profiles to compare

the spectral separability of four hierarchies of grassland types in northeastern Kansas. Three
remotely sensed datasets from 2015 (three-date multispectral Landsat 8, three-date Landsat 8
NDVI, and 23-period, 16-day composite MODIS NDVI time series) and 2015 reference data
from the USDA Farm Service Agency (FSA) were used in the analyses. The results will be used
to determine the optimal dataset(s) for regional scale mapping of grassland types, the hierarchy
of grassland types to be mapped, and whether land use affects the spectral separability of
grassland types. The results show that combining the three datasets maximized the JM distance
statistics, and thus the spectral separability of grassland types across all grassland type
hierarchies. Individually, the three-date multispectral Landsat 8 dataset had the highest JM
distance statistics, followed by MODIS NDVI time series, and three-date Landsat 8 NDVI.
Spectral profiles and by-band and by-period JM distance statistics indicate that the spring and
fall Landsat near-infrared (NIR) bands and spring and fall NDVI were more important than
summer for spectral separability between grassland types. There was variability in JM distance
statistics separability comparisons when incorporating land use, indicating that land use does
affect spectral separability in some instances. However, the JM distance statistics were not
dramatically reduced when land use types were aggregated to coarser grassland types (Level-1
and Level-2), indicating that land use does not negatively affect the spectral separability of

functional grassland types. There was moderate to high separability between land enrolled in the
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conservation reserve program (CRP) and native grasslands and low separability between fescue
and brome. The results suggest that brome and fescue should be combined into one class for
grassland type mapping, and that it may be possible to map CRP and native grasslands either as
one class or separately.
3.2 Introduction

The tallgrass prairies of the Great Plains in North America, considered one of the more
biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of
grassland area with estimates of only 9.4% - 13% of the original tallgrass prairie remaining
(Gibson, 2009; Samson et al., 2004). It has been estimated that the tallgrass prairie once
occupied 167 million acres, stretching east into western Ohio, west to the eastern third of Kansas
and Nebraska, north into southern Manitoba, and south into portions of Texas (Robertson et al.,
1997). Kansas has an estimated 18% of its original tallgrass prairie extent, the largest of any
state, and the largest contiguous tract of tallgrass prairie in the region known as the Flint Hills.
Meanwhile, many other states including Indiana, Illinois, [owa, and Missouri contain less than a
half percent of their original extent (Risser, 1988; Robertson & Schwartz, 1994a). Fragmentation
of the tallgrass prairie in the eastern Great Plains began in the early 1800s when European
settlers converted “the Great American Desert” into cropland and non-native grasslands for
domestic livestock grazing (Samson et al., 2004). Most of the Great Plains and eastern tallgrass
prairie remnants now are privately owned and subjected to a variety of land management
practices, including grazing and haying for domestic livestock (Owensby, 1993).

Mapping and monitoring the extent, distribution and condition of remaining tallgrass
prairie are critical for ensuring preservation and sustainability of these biologically diverse

grasslands under global demands for increased food production and biofuels as well as the
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stresses of climate change. Such map products have and will continue to be used for conservation
and research applications and initiatives for pollinators, upland and migratory birds, and other
grassland species. In addition to tallgrass prairie, another grassland type that is of particular
interest is land enrolled in the Conservation Reserve Program (CRP). CRP is a United States
Department of Agriculture (USDA) Farm Service Agency (FSA) program that began in 1985
and is the largest private-lands conservation program in the U.S. The CRP program offers a 10-
15 year contract to landowners where “environmentally sensitive farmland” is taken out of crop
production and planted with long-term grass or tree cover in an effort to reduce soil erosion,
improve water quality, or improve habitat for wildlife (Ribaudo et al., 1990; Wu & Weber,
2012). Many studies have shown the benefits of CRP to wildlife by providing habitat and
landscape connectivity (Hughes et al., 1999; Reynolds et al., 2001; Riffell ef al., 2008; Van Pelt
et al., 2013). Acreage enrolled in CRP peaked nationally and in Kansas in 2007, when Kansas
had over 3 million acres of CRP USDA, 2017). The 2014 Farm Bill set a national cap of 24
million CRP acres resulting in a competitive enrollment process among land owners (Hellerstein,
2017). In 2017, CRP acreage in Kansas declined 37% since the 2007 peak. There are ongoing
concerns about losing the environmental services CRP provides with the reduction of allowable
enrollments and with commodity prices encouraging land owners to convert these marginal
agricultural lands back into cropland production (Gelfand ef al., 2011; Johnston, 2014; Wright &
Wimberly, 2013).

Accurate and ongoing mapping of the landscape provides tools to monitor the changing
landscape, including environmental and socio-economic drivers, and provides the opportunity for
conservation planning. Remotely sensed data have been used to map and monitor grasslands,

including the tallgrass prairie and land enrolled in CRP. Studies have used remote sensing
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technology to monitor and model biophysical characteristics of grasslands including functional
distributions (i.e. C3 and C4 grasslands), productivity (biomass and cover) and grassland use that
can alter grassland biophysical characteristics and quality. For example, several studies have
used remotely sensed data to map or predict distributions and abundance of C3 and C4
grasslands. Tieszen et al. (1997) used time series AVHRR Normalized Difference Vegetation
Index (NDVI) data to characterize the spatial and temporal distribution of C3 and C4 grasslands
in the Great Plains over a five-year period. Davidson and Csillag (2003) also used AVHRR
NDVI to compare three approaches to predict the relative abundance of C4 cover in a Canadian
mixed-grass prairie. They found a two-date ratio, early season NDVI to late season NDVI, best
predicted C4 abundance (Davidson & Csillag, 2003). Meanwhile Foody and Dash (2007) used a
30-week time series of MERIS Terrestrial Chlorophyll Index (MTCI) to map high, medium, and
low C3 cover in South Dakota with an overall accuracy of 77%. In addition, Gu and Wylie
(2015) leveraged the spatial resolution of Landsat 8 NDVI and the temporal resolution of
MODIS NDVI in a rule-based piecewise regression to produce a 30-m grassland productivity
map of the Greater Platte River Basin, Nebraska. Zha et al. (2003) found that percent vegetation
cover in a semi-arid grassland in a western China could be mapped with an accuracy of 89%
using calibrated Landsat TM NDVI. With growing interest in using CRP lands or marginal
croplands for biofuel feedstock, Porter ef al. (2014) used Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper (ETM) multispectral Landsat 8§ and NDVI data to estimate biomass
in a CRP pasture to within 8% of the in sifu measurements. Understanding the distribution,
abundance, and productivity of C3 and C4 grasslands is important, as the two grassland types
respond differently to environmental change due to grazing intensity, fire frequency, nutrient

regimes, and climate change (Tieszen et al., 1997).
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Other studies have used remotely sensed data to map thematic grassland classes that are
represented by either their dominant functional group or as native and non-native grassland
types. Using multi-seasonal ASTER NDVI, Wang et al. (2010) mapped cool-season (non-native)
and warm-season (native) grasslands in western Missouri with an accuracy of 80%. The authors
found that spring and summer NDVI provided the highest separability between these two
grasslands types due to their asynchronous phenology, with maximum productivity reached in
May and July for cool and warm-season grasslands, respectively. Another study used
discriminant analysis and MODIS NDVI time series to spectrally separate native and non-native
dry mixed-grass prairie in Alberta, Canada with an overall accuracy of 73% (Mclnnes et al.,
2015). Meanwhile, a pilot study by Peterson et al. (2008) found that multi-seasonal Landsat TM
data better separated native (warm-season) and non-native (cool-season) grassland types in the
Flint Hills ecoregion than coarser resolution MODIS NDVI time series.

Many of these studies and mapping efforts rely on the asynchronous phenology of cool-
and warm-season grasslands. However, grasslands are used and managed extensively and
intensively. The type, combination, timing, and intensity of land management practices within
grassland types alter the biophysical properties of grasslands, including vegetation productivity
and composition and soil structure and chemistry, which in turn potentially alters spectral
responses that can complicate the ability to accurately map grassland types. Several studies have
used remotely sensed data to characterize and monitor land management practices and land use
intensity occurring within grasslands. For example, Guo ef al. (2003) and Guo et al. (2000) used
multi-seasonal field data and Landsat TM imagery to show that biophysical and spectral
characteristics were significantly different among three common land management practices in

cool-season (non-native) and warm-season (native) grasslands in Douglas County, Kansas.
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Discriminant analysis showed the two grassland types and the three treatments in the two
grassland types could be separated with an accuracy of 90.1% and 70.4%, respectively (Price et
al., 2002a). Peterson et al. (2002b) obtained similar results when using discriminant analysis to
separate grazed cool- and warm-season grasslands in the same county. Another study by Lauver
and Whistler (1993) found significant differences in the biophysical characteristics (species
diversity, plant cover and biomass) of high-quality (hayed) and low quality (overgrazed) tallgrass
prairie remnants in Anderson County, Kansas, that were mapped using single-date Landsat TM
data and probability thresholding with moderate success (63% overall accuracy). Franke et al.
(2012) found that multi-temporal RapidEye data and a decision tree classifier could map
grassland land use intensity in a 500 km? grassland area in Germany with accuracies up to
85.7%. A study by Halabuk et al. (2015) used MODIS NDVI and enhanced vegetation index
(EVI) to detect haying events in prairie hay meadows in Slovakia with accuracy levels as high as
85%. While these studies provide examples of successful results for grassland mapping and
monitoring, they primarily occur on a relatively small scale.

With regard to mapping CRP land, a post-classification trajectory approach has been used
to map CRP (Egbert et al., 1998). The trajectory logic identifies CRP when pixels are mapped as
cropland in the first temporal period and mapped as grassland subsequently in the second
temporal period. Song ef al. (2005) used a combination of multi-temporal Landsat TM, including
multiple indices, image texture, and terrain layers to map CRP land in Texas County, Oklahoma.
The authors found that support vector machine (SVM) outperformed the decision tree classifier
(DTC) by mapping CRP with an overall accuracy of 96%. A study in southwest Kansas used 203
Landsat TM images from 1984 to 2010 to produce maximum NDVI composites to map land use

conversion, specifically cropland to grassland, to identify CRP. The mapping results were
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compared to the 2005 Kansas Land Cover Patterns map (KARS, 2008) as reference data and
showed 91% agreement (Maxwell & Sylvester, 2012).

While previous studies in eastern Kansas have evaluated the biophysical characteristics
of grasslands and have used field and satellite-acquired spectral data to statistically discriminate
between grassland types and land management practices, little research has focused on
identifying an optimal thematic classification approach for mapping grassland types at a regional
scale. Multiple factors must be considered when developing such a land cover classification
approach. One key factor is determining what source data or combination thereof maximizes the
ability to map the defined grassland types. Another is defining what grassland types will be or
can be mapped, meaning the thematic classification scheme. A final factor (that is specific to this
study but potentially extensible to others) is understanding the impacts of land management on
the spectral separability of grassland types. While the timing and intensities of land management
practices vary, there is uncertainty as to if and how land management practices affect the spectral
characteristics within and between grassland types. The objective of this study is to use Landsat
8 and MODIS NDVI time series data from 2015 to evaluate the spectral characteristics and
separability of spectral profiles for a hierarchy of grassland types and land use in a highly
fragmented landscape in northeastern Kansas. Comparison of the spectral and temporal
resolutions of multispectral Landsat 8 data, Landsat 8 NDVI, and MODIS NDVI provides a
framework for identifying optimal dataset(s) for image classification. In addition, using a
hierarchy of grassland types enables identification of an appropriate thematic classification
scheme and evaluates the effect of land management on spectral characteristics.

3.3  Methods
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3.3.1 Study Area

Kansas exhibits an east-west precipitation gradient and a north-south temperature
gradient, with higher precipitation occurring in the east and lower temperatures occurring in the
north. Kansas grassland types largely follow the east-west precipitation gradient with tallgrass
prairie in the relatively wet east, mixed prairie in central Kansas, and shortgrass prairie in the
semi-arid west. The study area (shown in grey) falls within the Landsat path/row 27/33 (shown
in red) in eastern Kansas where the landscape is dominated by a mosaic of agriculture, grasslands
and urban areas (Figure 1). Areas falling outside of Kansas were not part of the defined study
area.

There is an inherent east-west land use/land cover gradient within the study area. The
western edge of the study area is in the Flint Hills, which is the largest remaining tract of native
tallgrass prairie in the world. In the Flint Hills, native grasslands dominate and non-native
grasslands and croplands are scattered in the river lowlands. Moving eastward from the Flint
Hills the landscape becomes highly fragmented and more complex. Cropland becomes prevalent
and dominant crops planted include corn, soybeans, grain sorghum, alfalfa, and winter wheat.
Grasslands east of the Flint Hills consist both of native, warm-season dominated grasslands and
non-native, cool-season grasslands. Cropland, woodlands, and forests occupy the river lowlands
and riparian areas.

Warm-season grasslands are either native tallgrass prairie or have been reseeded using a
native seed mixture. Warm-season grasslands fix carbon using C4 photosynthesis and are
dominated by native bunchgrasses such as big bluestem (4ndropogon gerardii), little bluestem
(Schizachyrium scoparium), and indiangrass (Sorghastrum nutans) and in high quality prairie

native forbs such as leadplant (Amorpha canescens), butterfly weed (Asclepias tuberosa), and
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purple coneflower (Echinacea angustifolia). The typical phenology of warm-season grasslands is
spring green-up, peak productivity in late spring to early summer when temperatures increase,
followed by senescence in fall (Weaver, 1954).

In this study area, cool-season grasslands are defined as non-native grasslands. These
grasslands are planted with non-native herbaceous species such as smooth brome (Bromus
inermis) and tall fescue (Festuca arundinacea). Cool-season grasslands fix carbon using C3
photosynthesis. The typical phenology of cool-season grassland is early spring green-up, peak
productivity in late spring, a mid-summer semi-dormancy and, with sufficient precipitation, a
second, smaller growth period in early fall (Weaver, 1954). Haying and grazing are two common
land uses for both grassland types. However, the timing, intensity, and frequency of management
practices within each grassland type vary by land owner and by climate conditions in a given
year. In addition to grazing, prescribed burning is a common management practice for
maintaining the diversity in native warm-season grasslands and preventing woody encroachment.
3.3.2  Data Sources

The FSA maintains annual field-level records (referred to as FSA 578 data) of acreage,
land cover, and intended land use for all fields participating in USDA program. In Kansas,
county-level field offices maintain FSA data, where land owners or producers report land cover
and land use information for eligibility for the upcoming USDA program year. Historically these
data were maintained by county field offices using photocopies of aerial photos with land cover
and land use information annotated on the hardcopy. Today these data are maintained as a
geodatabase of field boundaries known as Common Land Units (CLUs), defined by FSA as the
smallest land unit with the same ownership, land cover and land use, however some fields can be

split into sub-fields. Each CLU is annotated with a number of attributes including crop type, land
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use, reported acreage, county FIPS code, farm number, and tract number. In the past, these data
have been made available to scientists to use for training and validating several land cover
mapping efforts in Kansas (Kennedy, 1999; Mosiman, 2003; Peterson ef al., 2005; Wardlow &
Egbert, 2008). Through a Memorandum of Use (MOU) with the Kansas FSA office, 2015 CLU
and FSA 578 data were acquired for a state-wide land cover mapping project. There are more
than one million polygons in the 2015 CLU database with reported crop types and intended land
use. Grassland type information is available in the database as a crop type. “Intended Land Use
Code” identifies the land use that the land owner intends to use the grassland for during the
upcoming year and includes the categories of forage, grazing, and left standing (not grazed or
hayed for forage). For record in the FSA 578 data and each feature in the CLU polygon
shapefile, a unique identifier was created by concatenating the following attributes: State FIPS
code, County FIPS code, Tract Number, and Farm Number (SCTF).

Three datasets of remotely sensed imagery were assembled for the study and include
Landsat 8 surface reflectance, Landsat 8 NDVI, and Terra MODIS NDVI time series. Three

Landsat 8 surface reflectance images were ordered and acquired using USGS’s EarthExplorer

(EE) tool https://earthexplorer.usgs.gov/ to represent the spring, summer and fall portions of the
growing season for path/row 27/33. The dates of the imagery obtained were 03/30/2015,
06/12/2013, and 11/09/2015 — no cloud-free imagery was available for the summer of 2015, and
while not ideal, it is uncommon for grasslands to change in type or use or to be converted to a
different land cover from year to year, so this scene from 2013 provided a reasonable proxy.
Monthly reports from the High Plains Regional Climate Center (HPRCC) show that both June
2013 and July 2014 were substantially drier than June and July in 2015 (Umphlett, 2013)and thus

represents a potential limitation in the summer Landsat data used in this study. Using ERDAS
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Imagine, six multispectral bands (bands 2 — 7) were extracted from the three image dates and
combined to produce an 18-band multi-seasonal Landsat 8 dataset. Using the same dates listed
above, spring, summer, and fall surface reflectance NDVI images were acquired and stacked to
create a three-date multi-seasonal Landsat 8 NDVI dataset. Lastly, a biweekly time series of 231-
meter Terra MODIS 16-day composite NDVI from the 2015 growing season was downloaded

from NASA’s EarthData online tool, https://earthdata.nasa.gov/. The data were reprojected from

the native Sinusoidal projection to Albers Equal Area projection and clipped to the Landsat WRS
path/row (27/33) extent. The MODIS NDVI time series dataset was resampled to 30-meter pixels
and snapped to the Landsat 8 pixel grid. The three datasets were stacked to create a 44-band
dataset.

Two qualifiers were used to identify MODIS pixels suitable for the spectral separability
analysis. Using ESRI ArcGIS, a polygon file of the 231-m MODIS pixel footprints was used to
calculate the percentage of grassland in each MODIS pixel using the 2015 Level-I Kansas Land
Cover Patterns dataset (KARS, 2008). Next, the MODIS pixel footprints and the 2015 CLU
boundaries were intersected to calculate the proportion of the pixel interior to a field. MODIS
pixels containing greater than 60% grassland and 60% interior to a CLU were selected for the
analysis. The centroids of the MODIS pixels were used to extract reflectance and NDVI values
from the 44-band image stack. The centroid was intersected with the USGS’s high-resolution
National Hydrography Dataset (NHD) waterbody feature layer to exclude point locations that fell
within farm ponds that would affect the Landsat reflectance values. In addition, NDVI values
profiles and values were inspected and pixels where the cumulative summer NDVI (periods 10 —
14) were less than 2500 were flagged as outliers and were excluded from the analyses. While

there were additional Landsat 8 pixels that could be used in the analysis, a one-to-one
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correspondence was maintained between MODIS and Landsat data to allow for a direct data
comparison. These data were exported to an Excel file and imported into MATLAB software for
statistical analysis and plotting spectral profiles.
3.3.3 Data Analysis

Four hierarchies of grassland classes were created to determine what level of grassland
type exhibited spectral distinction among classes and to evaluate the impact land management
has on the spectral separability of grasslands. Table 1 shows the four levels of grassland classes
used in the analysis along with the associated sample sizes for the four levels of classes. Level-1
corresponds to functional grassland types where CRP and native grasslands, dominated by
warm-season grasses, were aggregated to a single class while fescue and brome, dominated by
cool-season grasses, also were aggregated to a single class. Level-2 separates the grassland types
into three classes, CRP, native, and cool-season grasslands. Separating CRP from native was
based on knowledge of the potential user-base of the land cover product and growing interest
regarding CRP land being converted back to cropland. Level-3 separates fescue and brome
grassland types. Lastly, level-4 separates grassland types by land use (Forage, Grazed, and Left
Standing). The small sample of fescue left standing lacked sufficient degrees of freedom for
meaningful comparisons of Jeffries-Matusita (JM) distance for the three datasets with larger
numbers of predictors (namely, multispectral Landsat 8, MODIS NDVI, and the combined
datasets).

Spectral plots were created for the pairwise comparisons using the median values and a
70% data band, which is bound by the 15" and 85™ percentiles. Pairwise JM distance statistics
were calculated for grassland classes in the four hierarchies using the three remotely sensed

datasets separately (multispectral Landsat 8 — 18 bands, Landsat 8 NDVI — 3 bands, and MODIS
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NDVI — 23 bands) and the combined dataset (44 bands). In addition, JM distance statistics were
calculated for individual bands to identify any spectral and/or seasonal influences in individual
Landsat bands or image dates. JM distance measures the separability between two classes by
considering the distance between class centers simultaneously with intra-class spread (variance)
and has shown utility in remote sensing applications (Brown et al., 2013; Davis et al., 1978;
Kastens et al., 2017; Lin et al., 2017; Masialeti et al., 2010; Richards & Jia, 1999; Swain &
King, 1973; Wardlow et al., 2007). Assuming multivariate normal distributions, the JM distance
is calculated as:

JM;; = 2(1 — e~B) where

o)

X +2
2

B=1D2+lln
8 2

1
D? :(,uj —yk)r[zj;zkj (,uj —,uk), and where

i and wk correspond to class-specific mean spectral profiles, and %; and ¢ are unbiased
estimates for the class-specific covariance matrices. The JM distance ranges between zero and
two. A JM distance approaching two suggests highly distinct spectral distributions, or high
separability, between two classes, while a JM distance close to zero suggests highly overlapping
spectral distributions, or low separability. The JM distances were calculated for each dataset
(multispectral Landsat, Landsat 8 NDVI, and MODIS NDVI) separately and then for all three
combined. Additionally, using the level-3 hierarchy, the JM distance statistics were calculated
for each band in each dataset to identify the spectral bands or temporal periods exhibiting high

separability for the pairwise comparisons.
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K-means clustering, a commonly used iterative non-parametric unsupervised
classification algorithm, was used to evaluate the spectral clustering of the grassland hierarchies
using the best dataset determined by JM distance statistics (Brown et al., 2013). K-means
clustering was performed using MATLAB software. Thirty replicates were specified and the
number of clusters were based on the grassland hierarchies (e.g. two clusters for Level-2 and ten
clusters for Level-4). K-means randomly selects observations as initial cluster centroids,
calculates the distance from each observation to the initial centroid, observations to the cluster
with the lowest distance and recalculates the cluster centroid. This process iterates until the
clusters become completely stable. Of the thirty replicates, the replicate with the lowest sum of
total distances was selected for the analysis.

3.4 Results and Discussion
3.4.1 Dataset Comparison of Spectral Separability

Figure 2 shows pairwise JM distance statistics for all grassland class hierarchies and for
the three datasets individually and combined. The x-axis is shown in ascending order of JM
distance using the three datasets combined (44 bands). As previously stated, the small sample
size for Fescue left standing (Fls) lacked sufficient degrees of freedom for meaningful JIM
distance calculations besides the Landsat NDVI dataset (JM distance is prone to overfitting in
instances where the number of observations from a class is somewhat close to the number of
bands being considered in the separability calculations, which imparts a favorable bias to the
result; when number of bands exceeds the number of observations, JM distance cannot even be
calculated). The results show that JM distance statistics were consistently higher for pairwise
comparisons when combining the three datasets (multispectral Landsat, Landsat 8 NDVI and

MODIS NDVI) versus individual datasets or two datasets combined (Figure 2).
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When comparing the three individual datasets, pairwise JM distance statistics were higher
using the multi-temporal, multispectral Landsat dataset versus either of the NDVI datasets. This
comparison of JM distance statistics suggests the multispectral data bands provide useful
information for separating grassland types versus NDVI alone. The multispectral reflectance data
include spectral information from the visible and short-wave infrared (SWIR) bands that can
provide additional biophysical information about the vegetation including moisture conditions,
biophysical stress, and cell structure. Other studies have shown similar results where
multispectral Landsat bands outperformed Landsat TM NDVI in cropland mapping in Kansas
(Kennedy, 1999; Mosiman, 2003).

Comparing JM distance statistics between Landsat 8 NDVI and MODIS NDVI suggests
that the higher temporal resolution of MODIS NDVI provides more spectral separability of
grassland types than the three-date, higher spatial resolution of Landsat 8§ NDVI. This result
could be influenced by the two qualifiers used for extracting MODIS pixels by seeking to avoid
pixels “contaminated” by other land cover types. Including all MODIS pixels would have
allowed more mixed pixels to be included in the analysis and likely could have produced a
different result than shown here.

3.4.2 Seasonal Spectral Separability of Grassland Types

Figure 3 shows the JM distance statistics calculated for each of the eighteen
multispectral Landsat bands, the three dates of Landsat 8 NDVI and 23-periods in the MODIS
NDVI using the Level-3 hierarchy. As expected, JM distance statistics by band or period were
relatively low for all datasets; however, there were specific spectral bands and temporal periods
that were more spectrally distinct than others when comparing between grassland types. The 18-

band Landsat dataset shows the JM statistic was higher in the fall near-infrared (NIR) band
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(Fa5), followed by the spring NIR band (Sp5) and the fall red band (Fa3; Figure 3). Grassland
types were more separable in the spring followed by fall for both Landsat § NDVI and MODIS
NDVI. More specifically for MODIS NDVI, biweekly periods 6-8 (Mar 22—Apr 6, Apr 7-Apr
22, Apr 23—May 8) were higher, followed by periods 20-23 (Nov 1-Nov 16, Nov 17-Dec 2, Dec
3-Dec 18, Dec 19-Dec 31). JM statistics were near zero for the summer periods or image dates.
The MODIS temporal statistics of JM distance could be used to target additional image
acquisition dates of Landsat imagery. Also, given that summer data provided the least separation
among grassland types, increasing the number of Landsat dates in the spring and fall may
provide a better mapping approach versus the spring/summer/fall Landsat 8 image triplicate used
in this study.

The spectral profiles in Figure 4 illustrate seasonal differences between functional
grassland types (warm- and cool-season grasslands) in the study area. In the spring, warm-season
grasslands have lower reflectance in the Landsat NIR band (Sp5) and NDVI for Landsat 8 data.
The spectral plot of MODIS NDVI shows that the onset of the growing season occurred
approximately one period earlier for cool-season than warm-season grasslands. Summer NDVI
was slightly lower for warm-season grasslands, but there was significant overlap in the summer
NDVI distributions. In the fall, cool-season NDVI remained higher than warm-season, with the
typical late-season flush for cool-season grasses. These results support the seasonality of cool-
and warm-season grasslands shown by previous research (Foody & Dash, 2007; Guo et al.,
2003; Peterson et al., 2002a; Wang et al., 2010).

3.4.3 Spectral Separability and Grassland Hierarchies
There were multiple trends in the JM distance statistics across the grassland hierarchies.

Generally speaking, pairwise comparisons incorporating land use (level-4 hierarchy) had higher
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JM statistics between grassland types than within grassland types (Figure 2). Within grassland
type and across the three datasets, there was consistently low separability between forage and
grazing land use (e.g. pairwise comparison of Ffg (fescue forage) and Fgz (fescue grazed);
Figure 3). Grasslands that were used for forage and grazing in 2015 had low separability,
potentially due to the variability in land owner decisions on the timing, frequency, and intensity
of use. Market prices and current or prior year climate conditions are among the dynamic
variables that factor into land owner decisions. Interestingly, Landsat 8 and MODIS NDVI JM
distance was higher between left standing and grazed and left standing and forage for both brome
and native grasslands.

Spectral profile statistics (median and 70% data band) of land use within grassland type
for native, fescue and brome for the three datasets are shown in Figures 6-8, respectively. The
profile distributions show substantial overlap between land use within the grassland types. There
were slight seasonal variations in left standing with lower NIR and NDVI in the spring that may
result from increased dead vegetation matter remaining from the previous year, and generally
higher late summer NDVI that likely result from biomass accumulation over the growing season
and lower fall NDVI values during late senescence (periods 19-23) as shown by MODIS
profiles.

Since CRP and native grasslands are both dominated by warm-season grasslands, it was
anticipated that JM distance would be lower for these comparisons. The statistics, shown in
Figure 9, were fairly consistent across the grassland hierarchies and datasets. JM distance was
consistently low (less than one) using either the Landsat 8 or MODIS NDVI dataset and was
surprisingly consistently high (greater than 1.6) using multispectral Landsat 8 and the combined

datasets. The spectral profiles in the top row of Figure 10 show that the distributions of CRP and
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native grasses largely overlap across the datasets. For the multispectral Landsat 8 dataset the
largest differences occurred in the fall image. Native grasslands had slightly higher spectral
reflectance across the six fall bands. By-band statistics show the Landsat fall green (Fa2) and
NIR (Fa4) bands were higher than other fall multispectral bands. CRP land is released for
grazing or haying under severe drought conditions. The last known time CRP land were released
for grazing and haying in the study area was July 2012 (USDA, 2012). Therefore, two-three
years of accumulated senesced vegetation were on CRP lands from the 2014 and 2015 growing
season that could result in lower NIR spectral reflectance. The higher separability between CRP
and native grasslands using Landsat 8 indicates there is utility in the variety of information found
in the multispectral bands of Landsat 8 and in using a fall image date. Additionally, given the
consistency in the JM distance across CRP and native land use, the results indicate that land use
within native grasslands do not largely impact the spectral separability of these two grassland
types.

JM distance for CRP and hierarchies of cool-season grassland types are shown in Figure
11. The statistics for multispectral Landsat 8 and the combined datasets were consistently high
between CRP and across the hierarchies of cool-season grassland types. CRP land is typically
planted using a few dominant warm-season grass species and are largely left unmanaged. Only in
severe drought conditions are land owners permitted to graze or hay CRP land. Given the often
multi-year accumulation of senesced vegetation residue from grasses in CRP, vegetation
structure in CRP is visually distinct and may be a factor in the spectral separability from cool-
season grasslands. This result indicates that grazing and forage land use in cool-season
grasslands does not suppress the phenological differences between the two functional grassland

types and/or that the unique vegetation structure of CRP land influences the separability. As
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figure 11 shows, CRP and left standing had relatively lower JM-distance statistics when using
Landsat 8 NDVI. The spectral profiles in Figure 10 show that CRP has higher spring and fall red
spectral reflectance (Sp4, Fa4) and lower spring and fall NIR spectral reflectance (Sp5, Fa5) and
lower Landsat and MODIS NDVI values than brome and fescue, highlighting the asynchronous
phenology of warm-season and cool-season grasslands.

Comparisons between the different hierarchies of native and fescue and native and brome
are shown in Figures 12 and 13, respectively. There was variability in the statistics with the
lowest JM distance between native grazed versus fescue grazed and native grazed versus brome
grazed when using the multispectral Landsat 8 or combined dataset. There was more variability
in the statistics derived using the NDVI datasets. For Landsat 8 NDVI, values were lowest for
the left standing land use. As mentioned previously, left standing may suppress the NDVI values
and potentially lessen the spectral separability between these classes. When aggregated to level-
3, Native-Fescue (NF) or Native-Brome (NB), level-2 hierarchy Native-Cool, or a level-1
hierarchy, Warm-Cool (NC), the JM values using the combined dataset remained relatively high
(>1.75), suggesting that these classes were spectrally separable even under different land use.
This again supports the notion that phenological differences remain distinct between the
functional grassland types regardless of land use.

Lastly, the results indicate relatively low separability between brome and fescue across
the datasets (Figure 14, bottom row). As the spectral profile plots illustrate, the spectral
reflectance and temporal response were very similar between brome and fescue which, given that
both grassland types are cool-season, was not surprising. These results suggest that when using
these datasets, fescue and brome should be grouped into one class for grassland type mapping

and that JM distance statistics indicate the grouping does not affect their spectral separability
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from CRP or native grassland. It is possible that other remotely sensed data, such as
hyperspectral could better separate brome and fescue grassland types.

K-Means clustering was used to examine the potential of the four hierarchies to be
reflected in unsupervised spectral clustering. Tables 2 and 3 show the results from K-means
along with the percentage of the samples represented in each cluster for two grassland
hierarchies. At a Level-1 hierarchy, there was more separation of the class types. Class 1
primarily represented cool-season grasslands and Class 2, warm-season. The classes for potential
Level-2 to Level-4 hierarchies were not as well separated. For example, Table 3 shows the
confusion in class two for the Level-2 hierarchy. Results from K-means runs with more than
three classes (potentially resembling Level-3 and Level-4 class schemes) are not interesting, and
thus are not shown.

3.5 Conclusions

This study used a data-driven approach to identify the optimal datasets for separating the
spectral characteristics of grassland types, determined whether land management practices
impact spectral separability of grassland types, and identified what grassland hierarchy should be
used for the thematic classification scheme of mapping grassland types. While these findings are
limited to the study area and the datasets available, it is anticipated the results will be applicable
to similar grassland landscapes in the Great Plains.

The results show that combining the multispectral Landsat 8, Landsat 8 NDVI, and
MODIS NDVI datasets resulted in the highest JM distance statistics across all grassland class
hierarchies. While the formulations underlying JM distance guarantee improved separability
upon addition of more bands, the gains observed with the combined dataset were generally

substantial and thus believed to be meaningful. Individually, the three-date multispectral data had
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higher JM distance statistics than either NDVI dataset. When including land use, JM distance
statistics were lower within grassland types than among grassland types, with the exception of
left standing. While JM distance was high for many level-4 pairwise comparisons, it remained
relatively high in comparison for functional grassland types (i.e. lower classification levels),
indicating land use does not have a highly negative impact on the spectral separability of level-1
and level-2 grassland classes.

The results indicate that brome and fescue were not spectrally distinct and, at least when
using inputs like those examined here, should be aggregated as a single class for thematic
classification. Meanwhile, CRP and native grasslands had moderately high separability statistics,
even though the spectral profiles appeared to largely overlap. These results suggest CRP may be
able to be mapped separately or could be aggregated with native grassland into a single warm-
season grassland type. However, the three-class K-means clustering did not separate CRP as a
separate class. The temporal JM distance statistics indicate the spring and fall were more
important for separating cool- and warm-season grasslands than summer when the distributions
overlapped more. Future research could leverage the temporal JM distance statistics gained from
the 23-period MODIS NDVI time series to increase the density of Landsat imagery during times

where spectral separability of functional grassland types is highest.
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3.6  Figures and Tables
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Figure 3.5. The JM distance statistics within the three grassland types: fescue (F), brome (B) and native (N) between
three land use: forage (fg), grazed (gz) and left standing (ls). Pairwise comparisons containing left standing

consistently had higher JM distance statistics while comparisons of forage and grazing had consistently lower JM
distance statistics. Class Fls (fescue left standing) was excluded from three dataset comparisons due to the small

sample size and resulting in inadequate degrees of freedom.

&9



045 09
04 0.8
2 0% 07
= -
£ 03 Bos 2
< 2
025 E 05 w
] 2 8
8 o2 Boal 4 2
2 -
:I)I.'I 03
0.1 02 —— Nig medan
70% data band
005 01 —— Naz mesian
70% data band
o o 0z
BRSBTS ey O TGN AL R (B a e o Spring Summer Fall 123456789 1011121314151617181920212223
Spring Bl Fal JFM AMJ JAS OND
05 1 00
045 09
g
-
3
0.2 Nig median
70% data band
01 s Nis median
70% data band
o 0 2
B2 B3 B4 85 B6 B7 B2 B3 B4 B5 86 B7 B2 B3 84 BS 86 B7 Spring S Fall 12345678 91011121314151617181920212223
Sprng Summer Fall JFM AMJ Iy OND
1
09
08
g . 07
3 0 =
H gos 2
< =
§ 205 @
@ 3 g
g Eo g
! e
03
02 —— Nz mesian
T70% data band
01 = Nis median
70% dala band
o o .
B2 BI B4 BS B6 B7 B2 B3 B4 @S 86 B7 B2 B) B4 85 86 B7 Spring F— Fall 123456789101 121314151617181920212223
Spring Summer Fall JFM AMJ JAS OND
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Figure 3.9. The pairwise JM distance statistics between CRP (Crp) and native (N) and between CRP and the three
land use in native grasslands separately (N). JM distance statistics were fairly consistent across the three land use
and when land use was aggregated as shown far right.
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Figure 3.10. Median spectral profiles and the 70% data band comparing level three grassland classes, CRP and
native (top), CRP and fescue (middle), and CRP and brome (bottom). Three-date multispectral Landsat 8 is in the
first column, three-date Landsat 8 NDVI in the second, and 23 16-day composites of MODIS NDVI in the third
column. Visually the distributions between CRP and brome and CRP and fescue were more separable than CRP and
native. Spring and fall NIR bands (Band 5) and spring and fall NDVI showed the least overlap in the spectral and
temporal distributions with cool-season, fescue, and brome having higher reflectance in the NIR bands and higher
NDVI than warm-season native and CRP.
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Figure 3.11. Pairwise JM distance statistics between CRP (Crp) and different land management levels of fescue (F)
brome (B). Ffg = three land use separately. JM distance statistics fluctuated using NDVI datasets, and JM distances
were maintained when fescue and brome were aggregated to level-two and level-one hierarchies. Ffg = Fescue
forage; Fgz = Fescue grazed; Fls = Fescue left standing; Bfg = Brome forage; Bgz = Brome grazed; Bls = Brome
left standing; C = cool-season (fescue and brome combined).
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Figure 3.12. Pairwise JM distance statistics between native (N) and fescue (F) using three grassland type hierarchies.
JM distance statistics fluctuated more when using NDVI data. For Landsat 8 and the combined dataset, JM distance
remained relatively high when native and fescue were aggregated to level-two and level-one hierarchies. Ffg =
Fescue forage; Fgz = Fescue grazed; Fls = Fescue left standing; C = cool-season (fescue and brome combined).
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Figure 3.13. Pairwise JM distance statistics between native (N) and brome (B) using three grassland type
hierarchies. JM distance statistics fluctuated more when using NDVI data. For Landsat 8 and the combined dataset,
JM distance remained relatively high when native and brome were aggregated to level-two and level-one
hierarchies. Bfg = Brome forage; Bgz = Brome grazed; Bls = Brome left standing; C = cool-season (fescue and
brome combined).
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Figure 3.14. Median spectral profiles and the 70% data band comparing level three grassland classes, native and
fescue (top), native and brome (middle), and fescue and brome (bottom). Three-date multispectral Landsat 8 is in the
first column, three-date Landsat 8 NDVI in the second, and 23-date, 16-day composites of MODIS NDVI in the
third column. Visually the distributions between native and brome and native and fescue were more separable than
brome and fescue, which illustrates differences in phenology characteristics between functional grasslands types.
Spring and fall NIR and SWIR Landsat bands (Bands 5 and 6) and spring and fall NDVI showed the least overlap in
the spectral and temporal distributions between native and the two cool-season grasses, fescue and brome. There
was little distinction between the distributions for brome and fescue spectral plots.
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Figure 3.15. Pairwise JM distance statistics between fescue (F) and brome (B) using two grassland type hierarchies.
JM distance statistics were relatively low and fluctuated compared to other grassland type comparisons. There were

several moderate to high JM values at the level-four hierarchy. When aggregated, the JM distance dropped to 1.1,

indicating that land use has a larger impact on separating these two cool-season grassland types.
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Table 3.1. The four levels of grassland type hierarchies used to test spectral separability using JM distance for three
remotely sensed datasets. Level one separates functional grassland types while level four separates land use within a

grassland type.
Level-1 Level-2 Level-3 Level-4 Sample
Size
Warm-Season (W) | CRP (Crp) CRP (Crp) | CRP (Crp) 746
Native (N) Native (N) | Native Forage (Nfg) 1,414
Native Grazed (Ngz) 6,739
Native Left Standing (Nls) 301
Cool-Season (C) Cool-Season (C) | Fescue (F) | Fescue Forage (Ffg) 265
Fescue Grazed (Fgz) 2,349
Fescue Left Standing v
(Fls)**
Brome (B) | Brome Forage (Bfg) 2,948
Brome Grazed (Bgz) 3,805
Brome Left Standing (Bls) 103
Total Sample Size 18,694

Table 3.2. K-means clustering using two classes for the Level-1 grassland type hierarchy. Class one was dominated
by cool-season grasslands while class two was dominated by warm-season grasslands.

Level-1 Hierarchy

Class 1 Class 2

Warm-season Grassland

730 (16%)

4,134 (79%)

Cool-season Grassland

3,818 (84%)

1,119 (21%)
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Table 3.3. K-means clustering using three classes for the Level-2 grassland type hierarchy. Class one was dominated
by cool-season grasslands, class two was a mix of cool- and warm-season and class three was dominated by warm-

season grasslands.

Level-2 Hierarchy Class 1 Class 2 Class 3

CRP 3 (<1%) 67 (2%) 145 (4%)
Warm-season Grassland 241 (8%) 1,487 (46%) 2,921 (82%)
Cool-season Grassland 2,766 (92%) 1,684 (52%) 487 (14%)
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4 Chapter 4: Random Forest and Landsat 8 and MODIS NDVI Data for Mapping
Grassland Types at a Regional Scale

4.1 Abstract

This study evaluates random forest (RF) models using four classification hierarchies of
grasslands and four datasets in two adjacent Landsat scenes (path/rows). The data-driven results
will be used to inform classification methodology (data and thematic classification scheme) for
regional-scale mapping of grasslands in Kansas. Random forest models were built using multi-
spectral Landsat 8, Landsat 8 NDVI, and MODIS NDVI time series, both separately and
combined. Training and test data samples were obtained from the Farm Service Agency (FSA)
578 data. For the Level-1 grassland hierarchy that maps the two functional grassland types, cool-
and warm-season grassland, out-of-bag (OOB) error (12.5%) indicated that using the combined
dataset was the optimal classification scheme. The Level-2 hierarchy that separates land enrolled
in the Conservation Reserve Program (CRP) as a thematic class had overall OOB error estimates
ranging from 14-18%; CRP had low producer’s accuracy levels and was largely mapped as
warm-season grasslands. Path/rows 27/33 and 28/33 had OOB overall accuracy levels of 87%
and 92%, respectively. User’s and producer’s accuracy levels indicate that cool-season
grasslands were mapped more accurately in path/row 27/33 where that class is more dominant
than in 28/33. Using test data (withheld verification data) unexpectedly increased overall
accuracy levels by 4% and 6% over OOB accuracies, which may have resulted from varying data
proportions between OOB and test data and warrants a more detailed evaluation of the RF

structure.
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4.2 Introduction

Grasslands cover 40.5% of the earth’s surface, more than either forest or cropland (Gibson,
2009). While expansive, grasslands are considered the most threatened biome due to land
conversion and intensive land use (Samson et al., 2004). Globally, the conversion of grassland to
cropland represents the leading cause of landscape fragmentation and lost grassland extent
(Gibson, 2009). In addition, the quality of remaining native grassland has been modified or
degraded by invading non-native species, fire suppression, and overgrazing by domestic
livestock (Weaver, 1954; Gibson, 2009; Risser, 1988).

The tallgrass prairies of the Great Plains in North America, considered one of the more
biologically diverse grasslands in the world (Risser, 1988), have the greatest reported loss of
grassland area with estimates of only 9.4% - 13% of the original estimated 167 million acres
remaining (Gibson, 2009; Samson et al., 2004). The majority of the original tallgrass prairie was
converted to cropland and non-native forage for livestock during European settlement. While
many states have less than a half percent of the original extent of tallgrass prairie, Kansas has the
largest percent of any state and the largest contiguous tract of remnant tallgrass prairie, known as
the Flint Hills (Risser, 1988; Robertson & Schwartz, 1994b). The Flint Hills tallgrass prairie has
persisted due to the shallow rocky substrate that prevented conversion to cropland. Today, the
majority of tallgrass prairie remnants are privately owned and are managed using a variety of
practices to maximize vegetation productivity for grazing and forage for livestock.

In addition to tallgrass prairie, land enrolled in the Conservation Reserve Program (CRP) is a
grassland type that is of particular interest. CRP is a United States Department of Agriculture
(USDA) Farm Service Agency (FSA) program that began in 1985 and is the largest private-lands

conservation program in the U.S. Typically 10-15 year contracts are offered to landowners where
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marginal agricultural land is taken out of crop production and planted with grass or tree cover in
an effort to provide enhanced wildlife habitat, improved water quality and reduced soil erosion
(Ribaudo et al., 1990; Wu & Weber, 2012). In 2007 Kansas CRP acreage peaked at 3 million
acres, while in 2017, Kansas only had a reported 1.1 million acres. Due to recent national
enrollment limits of 27 million acres set by the 2018 Farm Bill, crop commodity prices and
ongoing interests in biofuel production, research has shown that CRP land frequently has been
converted back into cropland production (Hendricks & Er, 2018; Johnston, 2014; Wright &
Wimberly, 2013). There are ongoing concerns about further CRP land conversion to cropland
and the loss of environmental services CRP land provides.

Accurate and ongoing land use/land cover mapping provides tools to monitor the
changing landscape, including environmental and socio-economic drivers, and provides the
opportunity for conservation planning. Remotely sensed data have been used for decades to map
and monitor grasslands, including tallgrass prairie and land enrolled in CRP. Studies have used
remote sensing technology to monitor and model biophysical characteristics of grasslands
including the distributions and abundance of functional grasslands (i.e. C3 and C4) (Davidson &
Csillag, 2003; Foody & Dash, 2007; Peterson et al., 2002b; Tieszen et al., 1997), grassland
productivity (biomass and cover) (Gu & Wylie, 2015; Porter et al., 2014; Zha et al., 2003) and
grassland use and condition that can alter grassland biophysical characteristics and quality.
Many of these studies and mapping efforts rely on the asynchronous phenology of cool- and
warm-season grasslands. However, grasslands are used and managed extensively and
intensively, largely to support livestock production. The type, combination, timing, and intensity
of land management practices within grassland types alter the biophysical properties of

grasslands, including vegetation productivity and composition and soil structure and chemistry,
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which in turn potentially alter spectral responses that can complicate the ability to accurately
map grassland types. Several studies have used remotely sensed data to characterize and monitor
land management practices and land use intensity occurring within grasslands (Franke ef al.,
2012; Guo et al., 2003; Guo et al., 2000; Halabuk et al., 2015; Lauver & Whistler, 1993;
Peterson et al., 2002c; Price et al., 2002b). And with regard to CRP land, several approaches
have been used identify CRP land including a post-classification trajectory approach (Egbert et
al., 1998; Maxwell & Sylvester, 2012; Song et al., 2005).

While previous studies have evaluated the biophysical characteristics of grasslands and
have used field and satellite-acquired spectral data to statistically discriminate between grassland
types and land management practices, little research has focused on identifying an optimal
thematic classification approach for mapping grassland types at a regional scale. Multiple factors
must be considered when developing such a land cover classification approach; one key factor is
determining what source data or combination thereof maximizes the ability to map the defined
grassland types. Another is defining what grassland types can be mapped, meaning the thematic
classification scheme. Many times the thematic classification scheme is developed a priori,
without knowing if the classes are spectrally distinct for accurate mapping results. The objective
of this study is to implement a data-driven approach using Landsat 8, Landsat 8 NDVI and
MODIS NDVI time series data from 2015 to determine both the optimal source imagery and the
optimal thematic classification scheme for mapping grasslands in northeastern Kansas. A
comparison of the spectral and temporal resolutions of Landsat 8 multispectral data, Landsat 8
NDVI, and MODIS NDVI provides a framework for identifying relative strengths and

weaknesses of these datasets for grassland classification. In addition, using a hierarchy of
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grassland types enables identification of an appropriate thematic classification scheme and
evaluation of the effect of land management on spectral characteristics.

4.3 Study Area and Data Sources

4.3.1 Study Area

There is an inherent east-west land use/land cover gradient within the study area (Figure
1). The study area encompasses the Flint Hills, which, as previously mentioned, is the largest
remaining tract of native tallgrass prairie in the world. Native grasslands dominate the Flint Hills
with some non-native grasslands and croplands scattered in the river lowlands. Moving eastward
from the Flint Hills the landscape is more fragmented where cropland becomes prevalent and
grasslands consist of both native, warm-season grasslands, and non-native, cool-season
grasslands.

Warm-season grasslands are either native tallgrass prairie or have been reseeded using a
native seed mixture. Warm-season grasslands fix carbon using C4 photosynthesis and are
dominated by native bunchgrasses such as big bluestem (4ndropogon gerardii), little bluestem
(Schizachyrium scoparium), and indiangrass (Sorghastrum nutans) and native forbs such as
leadplant (Amorpha canescens), butterfly weed (4sclepias tuberosa), and purple coneflower
(Echinacea angustifolia). The typical phenology of warm-season grasslands is spring green-up,
peak productivity in late spring to early summer when temperatures increase, followed by
senescence in fall (Weaver, 1954).

Cool-season grasslands in the study area are defined as non-native grasslands that are
predominately planted with either smooth brome (Bromus inermis) or tall fescue (Festuca
arundinacea). Cool-season grasslands fix carbon using C3 photosynthesis and have a typical

phenology of early spring green-up, peak productivity in late spring, a mid-summer semi-
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dormancy and, with sufficient precipitation, a second, smaller growth period in early fall
(Weaver, 1954). Haying for forage and grazing are two of the common land uses for both
grassland types. However, given that most of the land is privately owned, the timing, intensity,
and frequency of management practices within each grassland type vary by land owner and by
economic and climate conditions in a given year. In addition to grazing, prescribed burning is a
commonly used management practice to maintain species diversity in native grasslands as well
as prevent woody encroachment.
4.3.2 Data Sources

The USDA-FSA maintains annual field-level records of acreage, land cover, and
intended land use for all fields participating in USDA programs, referred to as FSA 578 data. In
Kansas, county-level field offices maintain FSA 578 data, where land owners or producers report
land cover and land use information for eligibility for the upcoming USDA program year.
Historically these data were maintained by county field offices using photocopies of aerial
photos with land cover and land use information annotated on the hardcopy. Today these data are
maintained as a geodatabase of field boundaries known as Common Land Units (CLUs), which
typically represent the smallest land unit with the same ownership, land cover, and land use.
(Some fields have been observed to be subdivided into smaller sub-CLU units, however.) Each
CLU is attributed with information including crop type, land use, reported acreage, county FIPS
code, farm number, and tract number. In the past, these data have been made available to
scientists to use for training and validating several land cover mapping efforts in Kansas
(Kennedy, 1999; Mosiman, 2003; Peterson ef al., 2005; Wardlow & Egbert, 2008). Through a
Memorandum of Use (MOU) with the Kansas FSA office, 2015 CLU and FSA 578 data were

acquired for a state-wide land cover mapping project. There are over a million polygons in the
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2015 Kansas CLU database with reported crop types and intended land use. Grassland type
information is included in the database as a crop type. “Intended Land Use Code” identifies the
land use that the land owner intends to use the grassland for during the upcoming year and
includes the categories of forage, grazing, and left standing (not grazed or hayed). For each
feature in the CLU database, a unique identifier was created by concatenating the following
attributes: State FIPS code, County FIPS code, Tract Number, and Farm Number (SCTF).

Three datasets of remotely sensed imagery were assembled for the study and include
Landsat 8 surface reflectance, Landsat 8 NDVI, and Terra MODIS NDVI time series. Two
Landsat path/row areas from the Landsat Worldwide Reference System (WRS), 27/33 and 28/33,
were used in the analysis to determine the generality of the mapping approach. Three Landsat 8

surface reflectance images for each path/row were ordered and acquired using USGS’s

EarthExplorer (EE) tool https://earthexplorer.usgs.gov/ to represent the spring, summer and fall
portions of the growing season for both path/rows. The dates of the imagery obtained for 27/33
were 03/30/2015, 06/12/2013, and 11/09/2015. The dates of imagery obtained for 28/33 were
03/21/2015, 07/24/2014, and 10/15/2015. The fall image for path/row 28/33 contained 12%
cloud cover in the northwest portion of the image. Only the cloud-free portions of the study area
were included in the analyses. Near cloud-free imagery were unavailable for the summer of 2015
for either path/row; however, it is uncommon for grasslands to change structure or composition
from year to year, and the out-of-year summer dates represented the best available data. Monthly
reports from the High Plains Regional Climate Center (HPRCC) show that both June 2013 and
July 2014 were substantially drier than June and July in 2015 (Umphlett, 2013, 2014, 2015a,
2015b), suggesting a potential limitation of the anachronistic summer Landsat data used in this

study. Using ERDAS Imagine, six multispectral bands (bands 2—7) were extracted from the three
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image dates and combined to produce an 18-band multi-seasonal Landsat 8 dataset for each
path/row. Using the same dates listed above, spring, summer, and fall surface reflectance
Normalized Difference Vegetation Index (NDVI) images were acquired and stacked to create a
three-date multi-seasonal Landsat 8 NDVI dataset. Lastly, a biweekly time series of 231-meter
Terra MODIS 16-day composite NDVI from the 2015 growing season was downloaded from

NASA'’s EarthData online tool, https://earthdata.nasa.gov/. The MODIS time series dataset was

reprojected from the native Sinusoidal projection to the Albers Equal Area projection and
clipped to the two Landsat WRS path/row (27/33 and 28/33) extents. The MODIS NDVI time
series dataset was then resampled to 30-meter pixels using bilinear interpolation and snapped to
the Landsat 8 footprint. The three datasets were stacked to create a 44-band imagery dataset.
Since the large size of MODIS pixels increases the chances of mixed pixels (which are
comprised by a mixture of two or more land cover types), two qualifiers were used as a measure
of pixel purity to identify MODIS pixels suitable for image classification training. First using
ESRI ArcGIS, a polygon file of the original 231-m MODIS pixel footprint was used to calculate
the percent of grassland in each MODIS pixel using the 30-m 2015 Level I Kansas Land Cover
Patterns dataset (KARS, 2017). Second, the MODIS pixel footprint and the 2015 CLU boundary
were intersected to calculate the percent of each pixel that fell within a field boundary. MODIS
pixels containing 60% or more grassland that were 60% or more inside a CLU boundary were
extracted and used in the analysis. The centroids of the MODIS pixels were used to extract
reflectance and NDVI values from the 44-band image stack. The centroid was intersected with
the USGS’s high-resolution National Hydrography Dataset (NHD) waterbody feature layer to
exclude point locations that fell within farm ponds that would affect the Landsat reflectance

values. In addition, NDVI data values for all points were screened for negative values and those
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point locations were excluded from the analyses. While there were additional Landsat 8 pixels
that met the purity criteria and could have been used in the analysis, a one-to-one correspondence
was maintained between MODIS and Landsat data to allow for a direct data comparison. These
data were exported to an Excel file and imported into MATLAB software for statistical analysis
and plotting spectral profiles.

Four hierarchies of grassland classes were created using the FSA 578 to determine what
level of grassland type could be mapped. Table 1 shows the four levels of grassland classes used
in the analysis along with the abbreviations used for the classes. Level-1 corresponds to
functional grassland types where CRP and native grasslands, dominated by warm-season grasses,
were aggregated to a single class while fescue and brome, dominated by cool-season grasses,
also were aggregated to a single class. Level-2 separates the grassland types into three classes,
CRP, native, and cool-season grasslands. Separating CRP from native was based on knowledge
of the needs of the potential user-base of the land cover product in light of growing interest
regarding CRP land being converted back to cropland. Level-3 separates fescue and brome
grassland types. And lastly, Level-4 separates grassland types by land use (Forage, Grazed, and
Left Standing).

The number of training sites for cool and warm season grasslands were selected in an
attempt to represent approximate proportions of acres and counts of features (i.e. fields) in the
landscape within each path/row. Tables 2 and 3 show the proportion of field counts (column 3)
and the proportion of area (column 4) stratified by Level-4 grassland types for path/row 27/33
and 28/33, respectively. These two proportions were averaged (column five) to determine the
number of training sites used in the random forest (RF) classification for each path/row. For

example, the average proportion of native grazed (Ngz) was 36.8% in path/row 27/33, so 36.8%
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of the total training sample sites were Ngz. This strategy was used in an attempt to incorporate
the high frequency of small fields in fragmented landscapes. These proportions were based on
fields represented in the 2015 FSA and CLU datasets, which represent 76% of the grassland
acres in Kansas as shown in Chapter 1. As the table shows, the proportions vary between
path/rows. Path/row 27/33 had a roughly 50-50% split between cool- and warm-season grassland
types while path/row 28/33 had a 16%-84% split.
4.3.3 Data Analysis

Once the training data were extracted, supervised classifications using the RF classifier
(Breiman et al., 1984) were run using the training dataset for each grassland type hierarchy and
for each of the four predictor datasets for each path/row. The “treebagger” function in MATLAB
was used to develop ten forests (unique RF models) for each run. Each RF model contained a
classification ensemble consisting of one thousand constructed decision trees. Each tree was built
using a bootstrap sample containing 63.2% of the training data. The remaining 36.8% of the
training data, referred to as “out-of-bag” (OOB) samples, were used to calculate unbiased
estimates for predictive error and predictor importance of that tree. The default for the number of
predictors used at each split were used (the square root of the total number of predictors). The
OOB errors for the ten forests were calculated and plotted to assess model performance and
stability as a function of the number of trees grown (maximum of 1000 trees). Predictor
importance was estimated using the OOB permutated predictor delta error where for each
predictor variable, data values were permutated while other predictors remained unchanged. The
forest ensemble was retrained and the change in model OOB accuracy (delta error) was
calculated and averaged across the trees (sub-models) and normalized by dividing by the

standard deviation, which is referred to as Mean Decrease in Accuracy (MDA). A small change
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in MDA indicates low importance ranking while a large increase in MDA indicates high
predictor importance ranking.

The mean OOB errors from RF were also compared across the four grassland hierarchies
and four datasets for each path/row to determine to evaluate the performance of each dataset for
each grassland type hierarchy. Once the optimal dataset and grassland hierarchy were selected,
the models for each path/row were applied to the image data to produce maps. OOB samples and
independent validation data samples were used to assess model performance and accuracy. Using
the OOB error and independent validation data, traditional map accuracy values were calculated
and compared, including overall, user’s and producer’s accuracy levels, and the Kappa statistic.
In addition, probabilistic mapping disagreements (i.e. quantity, allocation, and total
disagreement) were assessed by rescaling the OOB and validation contingency tables to reflect
map proportions (Kastens et al., 2017; Pontius Jr & Millones, 2011).

The two Landsat path/rows in the study area were adjacent and provided an
approximately 54 by 158 kilometer overlap (see overlap area in Figure 1). Validation samples
from the overlap area were used to compare mapped proportions and model performance
between the independently processed path/rows.

4.4  Results

4.4.1 OOB Error and Grassland Hierarchies

The OOB error across ten RF models for the four datasets consistently showed that using a forest
of 1,000 trees was more than adequate for model stability. Figure 2 shows an example of OOB
error as a function of the number of trees grown for Level-2 mapping in path/row 27/33. The
results suggest that for this study the number of trees could be substantially reduced to improve

data processing efficiency.
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As expected, OOB error estimates consistently increased from Level-1 to Level-4
grassland hierarchies across all datasets and for both path/rows, meaning that the Level-1
grassland hierarchy had the lowest OOB error and Level-4 had the highest OOB error. The
combined dataset consistently had the lowest OOB error versus the other independent datasets.
The results from Chapter 2 support this result where the highest spectral separabilities using
Jeffries-Matusita (JM) distance to compare different class pairs from the various grassland
hierarchies was obtained using the combined dataset. Comparing the three independent datasets
(multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI), the multispectral Landsat dataset
had the lowest OOB error for both path/rows. This result may indicate that the spectral resolution
of the multispectral Landsat data provides significant information for separating grassland types
beyond NDVI. Other portions of the electromagnetic spectrum (EMS) represented in Landsat 8
bands correspond to several biophysical properties of vegetation. Jensen (1983) illustrated the
correspondence of the vegetation spectral reflectance curve and the associated biophysical
characteristics across the EMS, and the USGS (2018) lists the mapping utility for each Landsat
band as it corresponds to various vegetation properties. Table 5 combines Jenson’s and USGS
information to show that Landsat bands 2-4 in the visible portion of the EMS correspond to leaf
pigments with two chlorophyll absorption regions; Landsat band 5 in the NIR region corresponds
to cell structure, with higher reflectance corresponding to more vegetation biomass; and Landsat
8 bands 6-7 in the shortwave-infrared region correspond to vegetation water content, where
shortwave radiation is absorbed with increasing water content.

Table 6 shows OOB error estimates for Level-2 grassland mapping. Overall accuracy
levels for both path/rows were above 85%; however, the low producer’s accuracy indicates that

CRP has high omission error. The error matrix for path/row 27/33 shows 78% of CRP samples
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were mapped as warm-season grasslands (Table 7), and similar results were obtained for
path/row 28/33. Given that CRP was a relatively small class and that JM distance statistics were
low between CRP and native warm-season grassland (Chapter 2, Figure 3), the misclassification
of CRP as warm-season grasslands was not surprising. So, while mapping CRP is of special
interest to end-users, the high omission error indicates CRP mapping would provide inadequate
representation for general use. However, the user’s accuracy levels (85% and 78%) indicate
confidence in what was mapped as CRP, which could have utility for specific uses, such as
finding CRP samples for targeted field campaigns or other research.

4.42 Level-1 Mapping Results

Figures 3 and 4 show the RF results using the combined dataset and Level-1 grassland hierarchy
along with corresponding mapped pixel counts, acres, and areal proportions and CLU reported
proportions and acres. The regional distribution of grassland types was as expected, with large
tracts of warm-season grassland in the Flint Hills region, a larger dominance of cool-season
grassland in the eastern half of 27/33, and small interlaced fields of cool-season grassland in the
river lowlands in 28/33. For path/row 27/33, 56% percent of the area was mapped as warm-
season and 44% as cool-season. This differs from the 62% and 38% indicated by CLU data.
Meanwhile, for path/row 28/33 (Figure 4) the mapped proportions correspond well with the CLU
area proportions. However, it should be noted that the CLU represents only an estimated 58% of
the total grassland area in 28/33 and 47% in 27/33. Interestingly, the 27/33 mapped proportions
correspond with the average proportion that are accounted for by a high frequency of small

fields, whereas the 28/33 mapped proportions correspond with CLU area proportions.
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4.4.3 Predictor Importance

The estimated predictor importance shown in Figures 5 and 6 show that some predictors
in the combined dataset ranked higher than others and that predictor importance varies by
path/row. For 27/33 these estimates of predictor importance correspond to the by-predictor (band
or date) JM statistics shown in Figure 3 of Chapter 2. They correspond since both are using a
single predictor versus the JM distance where all bands are combined and distributions are
evaluated in multidimensional space. For MODIS NDVI, periods 6-8 and 20-23 had the highest
predictor importance and JM distance. For multispectral Landsat, the spring and fall NIR bands
had the highest predictor importance and JM distance.

For path/row 28/33, spring MODIS NDVI periods (6-8) ranked high for estimated
predictor importance, but not periods 20-23 (November 1%-December 18"). Also, the spring
Landsat NDVI ranked high along with the Landsat Fall NIR band. Spring Landsat 8 dates were
of similar importance between the two path/rows; however 27/33 had a fall date that was roughly
a month later than that for path/row 28/33. Even so, predictor importance for fall/winter periods
for MODIS NDVI did not rank high for 28/33. The different rankings between path/rows could
correspond to the proportion of the two functional grassland types being mapped within each
path/row. The higher proportion of cool-season grasslands in 27/33 could result in higher
predictor importance rankings for fall dates. And while some of the important predictors in each
path/row may provide redundant information (e.g. Landsat near-infrared (NIR) (B4) and Landsat
NDVI), at each binary split in the RF, a single predictor variable from the random subset of
predictors is used versus the multidimensional data vector, and therefore RF is not severely
impacted by correlated predictors or the inclusion of weak predictors (Canovas-Garcia &

Alonso-Sarria, 2015).
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4.44 Accuracy Assessment

The OOB estimates of producer’s accuracy levels were 86% and 98% for warm-season
grasslands for the two path/rows. Producer’s accuracy levels differed more substantially for cool-
season grasslands between 27/33 (89%) and 28/33 (69%). For 28/33, 25% of the cool-season
OOB error samples were classified as warm-season grasslands (results not shown). The
increased omission error in mapping cool-season grasslands in 28/33 could be due to its more
lopsided class proportion compared to 27/33, with a smaller class typically being more
challenging to model (and map) effectively. Comparatively, cool-season grassland was a small
class in 28/33, but a dominant class in 27/33. The lower user’s accuracy for cool-season
grasslands in 28/33 could also result from the sampling design used for allocating training
samples. Using the average of the proportion of acres and count of fields roughly doubled the
proportion of cool-season training sites in the training sample (15.8%) versus using a solely area-
based sample allocation (7.1%) (Table 3). The proportions in path/row 27/33 went from a 60-40
split using an area proportion to a 50-50 split for warm- and cool-season grasslands using the
averaged proportion. This shift in proportions did not appear to affect the user’s and producer’s
accuracy levels in 27/33. In a review of RF in remote sensing applications, Belgiu and Dragut
(2016) highlight research showing that a proportionally allocated training sample scheme
provides optimal classification results and that RF is sensitive to the proportions of training
samples used (Colditz, 2015; Millard & Richardson, 2015). However, Jin ef al. (2014) showed
that proportionally allocated training samples increased user’s accuracy of an under-represented
class while equally allocated training samples increased producer’s accuracy of an under-
represented class. Other research has shown that imbalanced training data maximizes class

accuracy levels for the majority class, but at the expense of the minority class and that balanced
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training can be used to reduce errors in minority classes (Chen et al., 2004; Mellor et al., 2015).
For this study the intention was to balance between high frequency small fields and lower
frequency large fields.

Comparing overall accuracy levels between OOB estimates and test data, the test data
showed unexpected 6% and 4% increases in accuracy for 27/33 and 28/33, respectively. The
increased overall accuracy with using test data could relate to differences between training and
test data proportions. For example, for 28/33 there was an increase in the proportion of Native
grazed (Ngz) in the testing data (82%) versus the proportion used in the training data (69%) and
a decrease in all Level-4 cool-season proportions, with 4.4% cool-season grasslands represented
in the test data compared to 14.8% used in the training data. The proportions used for training
and test data for 27/33 were more closely aligned, with three small classes not represented in the
test data.

According to Breiman (1996), the OOB error estimate is an unbiased estimate of the
classification error and provides as good a measure of error as if using independent test data of
the same sample size as the RF training data. Other research has shown OOB error to
overestimate error in RF based on several interacting factors, including sample size, sample
proportions (balanced vs. imbalanced), subsample proportions. number of predictors, and
correlations between predictors (Janitza & Hornung, 2018). For example, Janitza and Hornung
showed that for small, imbalanced sample sizes, OOB error bias increased due to the extreme
imbalance of bootstrap subsamples used to build trees that were preferential to the dominant
class. And that the number of predictors can affect the bias of the OOB error depending upon
sample size and whether the samples were balanced or imbalanced. Others argue that OOB error

can be overestimated due to differences in the distribution of the bootstrap sample (63.2% of the
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training data) used to build the tree versus the OOB samples (36.8% of the training data) uses for
testing (Efron & Tibshirani, 1994). It could be argued that the test error is more accurate since
the entire forest is used versus the OOB error estimate that uses a subsample of trees for OOB
prediction of each training sample. There are several potential explanations as to why the test
error was lower than the OOB error, there appear to be several potential explanations including
complex interactions among forest parameters and nuances between training and test data that
warrant require further exploration.

The OOB quantity disagreement was higher for path/row 28/33 (6.2%) than 27/33 (0.8%)
while the allocation disagreement was higher for 27/33 (11.7%) than for 28/33 (1.6%) (Table 8).
The differences between OOB and test data disagreement result from the different class
proportions in the training and test data sets used as reference data for calculating allocation and
quantity disagreement against proportions mapped. As previously mentioned, the proportions for
warm-season grassland increased from 69% in the training to 82% in the test data. Total
disagreement for OOB and test data were lower for 28/33 which was likely influenced by the
dominance of warm-season grasslands in 28/33.
4.4.5 Path/row Model Comparison

Table 9 shows the acreage and proportion of agreement and disagreement in mapping the
two Level-1 classes in the overlap area between the two adjacent path/rows. The results show
there was 94% agreement in the mapping overall, while there was 5% disagreement (73,249
acres) where grasslands that were mapped as warm-season in path/row 28/33 were mapped as
cool-season in path/row 27/33. Overall accuracy levels and Kappa were higher for path/row
27/33 than 28/33 (Table 10). Additionally, user’s and producer’s accuracy levels for cool-season

grasslands were higher for 27/33 (89% and 88%, respectively) than in path/row 28/33 (73% and
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63%) (Table 10). And the total disagreement (quantity + allocation disagreement) was lower in
27/33 (4.6%) than in 28/33 (7.0%). These values indicate that the model from path/row 27/33
mapped cool-season grassland more accurately than 28/33, where cool-season grasslands
constituted a small class.
4.5 Conclusions

The RF results indicate that a Level-1 classification using the combined dataset of
multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI produced the lowest OOB error of
all the datasets. The OOB error for Level-2 classification was only 1-2% higher; however, the
CRP class had high omission error and was largely mapped as native warm-season grassland,
further supporting using the two-class Level-1 classification scheme. Predictor importance
rankings for the Level-1 classification varied by path/row, and were likely influenced by the
proportions of cool-season grassland class in each path/row. The spatial distributions of the
mapped classes appeared reasonable, e.g. cool-season occupying river lowlands and large tracts
of warm-season in the Flint Hills. Overall accuracy levels were greater than 87% using OOB and
test data. However, path/row 28/33 had lower user’s and producer’s accuracy levels for cool-
season grasslands and a lower Kappa statistic. In evaluating the overlap area, there was 94% map
agreement between the two path/rows, but again the cool-season class in 28/33 had lower user’s
and producer’s accuracy levels, which was expected due to the small proportion of cool-season
grassland represented in the path/row. These results will be used to formulate a methodology for
mapping functional grassland types at a regional scale. Future work could evaluate whether
smaller classes could be mapped more accurately by increasing the density of spring and fall

Landsat dates, adding additional training data from Landsat (that were restricted by MODIS in

118



this study), and by combining path/rows that may provide additional training data samples for

under-represented classes, like cool-season grasslands in path/row 28/33.

4.6 Figures and Tables
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Figure 4.4.1. OOB error as function of the number of trees grown for Level-2 mapping in path/row 27/33. Models
were consistently stable with respect to OOB error when forest size reached about 200-500 trees.
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E County Boundary - Warm-season Grassland - Cool-season Grassland

Pixel Count Area Mapped CLU Area CLU Area
(30-meter) (Acres) Proportions Proportions (Acres)
Warm-season 9,180,099 2,041,604 55.8% 61.9% 1,081,137
Cool-season 7,276,736 1,618,306 44.2% 38.1% 665,648
Total 16,456,835 3,659,910 1,746,785

Figure 4.4.2. Level-1 map for path/row 27/33 using the RF classifier and the combined dataset.
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E County Boundary - Warm-season Grassland - Cool-season Grassland

Pixel Count Area Mapped CLU Area CLU Area
(30-meter) (Acres) Proportions | Proportions (Acres)
Warm-season 19,371,392 4,308,091 93.2% 92.9% 2,483,241
Cool-season 1,417,297 315,199 6.8% 7.1% 189,965
Total 20,788,689 4,623,290 2,673,206

Figure 4.4.3. Level-1 map for path/row 28/33 using the RF classifier and the combined dataset.
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Figure 4.4.4. Predictor importance estimates for path/row 27/33. Spring and fall MODIS and Landsat NDVI and
spring Landsat NIR band ranked highest.
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Figure 4.4.5. Predictor importance estimates for path/row 28/33. Spring MODIS and Landsat NDVTI and fall Landsat
NIR band ranked highest.
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Table 4.4.1 The four levels of grassland type hierarchies and abbreviations used to evaluate OOB error using the four
remotely sensed datasets. Level-1 separates functional grassland types, Level-2 separates the warm-season grasslands
into two classes, Level-3 separates the cool-season grasslands into two classes and Level-4 separates land use within

Level-3 grassland types.

Level-1 Level-2 Level-3 Level-4
Warm-Season (W) CRP (Crp) CRP (Crp) CRP (Crp)
Native (N) Native (N) Native Forage (Nfg)
Native Grazed (Ngz)
Native Left Standing (Nls)
Cool-Season (C) Cool-Season (C) Fescue (F) Fescue Forage (Ffg)
Fescue Grazed (Fgz)
Fescue Left Standing (Fls)
Brome (B) Brome Forage (Bfg)
Brome Grazed (Bgz)
Brome Left Standing (Bls)

Table 4.4.2. For path/row 27/33, the proportions of the number of fields, acres, and the average proportion.
The last two columns show the training sample allocation using the average proportion and the testing data

sample count.

Level-1 Level-4 Proportion | Proportion | Proportion Training Test
Grassland | Grassland of Fields Area Average Data Data
Type Type (Count) (Acres) Points Points
Warm CRP 24% 1.9% 2.2% 215 522
Nfg 8.0% 5.6% 6.8% 665 743
Ngz 21.8% 51.8% 36.8% 3,682 3,047
Nls 4.7% 2.6% 3.7% 302 0
Cool Ffg 2.1% 0.9% 1.5% 147 119
Fgz 11.9% 10.0% 11.0% 1,098 1,265
Fls 0.8% 0.4% 0.6% 32 0
Bfg 25.3% 10.1% 17.7% 1,770 1,174
Bgz 19.9% 15.8% 17.9% 1,787 1,999
Bls 3.1% 0.9% 2.0% 103 0
Total 9,801 8,869
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Table 4.4.3. For path/row 28/33, the proportions of the number of fields, acres and the average proportion.
The last two columns show the training sample allocation using the average proportion and the testing data

sample count.

Level-1 Level-4 Proportion | Proportion | Proportion | Training Test
Grassland | Grassland of Fields Area Average Data Data
Type Type (Count) (Acres) Points Points

Warm CRP 2.3% 1.5% 1.9% 189 138

Nfg 11.9% 5.3% 8.6% 813 1,151

Ngz 55.2% 84.4% 69.8% 6,603 9,113

Nls 5.9% 1.7% 3.8% 360 191

Cool Ffg 0.1% 0.0% 0.0% 0 1

Fgz 0.4% 0.2% 0.3% 30 15

Fls 0.0% 0.0% 0.0% 1 0

Bfg 15.5% 3.8% 9.7% 918 260

Bgz 6.9% 2.8% 4.8% 454 219

Bls 1.7% 0.3% 1.0% 95 0

Total 9,460 11,088

Table 4.4.4. The OOB error for each path/row for each grassland hierarchy and each predictor dataset.

OOB error increased with grassland hierarchy, and the combined dataset had the lowest OOB error.

Grassland

Path/Row Hierarchy Combined Landsat 8 Landsat NDVI MODIS
Level-1 12.5% 13.6% 15.8% 15.8%

97/33 Level-2 14.3% 15.5% 17.8% 17.6%
Level-3 22.4% 24.0% 29.7% 26.7%

Level-4 35.6% 37.1% 47.4% 43.7%

Level-1 8.3% 8.8% 11.4% 14.6%

28/33 Level-2 13.1% 13.6% 17.5% 20.1%
Level-3 13.3% 13.8% 17.7% 20.3%

Level-4 23.9% 24.2% 30.8% 32.3%
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Table 4.4.5. Landsat 8 bands used in this study and the associated wavelengths, with suggested mapping
utility and vegetation biophysical characteristics (Source: Jensen, 1983; USGS, 2018).

Vegetation
Characteristics
Jensen (1983)

Landsat 8 Mapping Utility
Bands Wavelength USGS (2018)

Bathymetric mapping, distinguishing soil Leaf Pigments;
Band 2 — Blue 0.452 -0.512 [from vegetation, and deciduous from chlorophyll absorption
coniferous vegetation.

Emphasizes peak vegetation, which is useful [Leaf Pigments

Band 3 - Green | 0.533-0.590 . -
for assessing plant vigor.

Band 4 - Red 0.636 - 0.673 [Discriminates vegetation slopes Leaf Pigments; .
chlorophyll absorption

Band 5 - Near . . . Cell structure

Infrared (NTR) 0.851 -0.879 [Emphasizes biomass content and shorelines.

Band 6 - Short- . . . Water content;
Discriminates moisture content of soil and .

wave Infrared 1.566 - 1.651 veoctation: penctrates thin clouds 'Water absorption

(SWIR) 1 & P '
Band 7 - Short- Improved moisture content of soil and Water content,
wave Infrared 2.107 -2.294 p Water absorption

vegetation and thin cloud penetration.

(SWIR) 2

Table 4.4.6. Accuracy levels for the three grassland classes in the Level-2 hierarchy. The CRP class had
low producer’s accuracy levels and was mostly mapped as warm-season grassland.

OOB Estimates
Path/Row Accuracy Levels CRP Warm-season  Cool-season
27/33 User’s Accuracy 85% 85% 86%
Producer’s Accuracy 13% 86% 89%
Overall Accuracy 85.8%
Kappa 0.72
28/33 User’s Accuracy 78% 87% 87%
Producer’s Accuracy 20% 97% 70%
Overall Accuracy 86.8%
Kappa 0.64
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Table 4.4.7. The error matrix for the Level-2 hierarchy for 27/33 illustrates that CRP was largely mapped
as warm-season grassland.

Reference Class
CRP Warm- Cool-season Total
season
Predicted CRP 28 2 3 33
Class Warm-season 168 3,976 527 4,671
Cool-season 19 671 4,407 5,097
Total 215 4,649 4,937 9801

Table 4.4.8. Accuracy levels for both path/rows calculated using both OOB estimates and test data.

OOB Estimates

Test Samples

Path/Row Accuracy Levels Cool Warm Cool Warm
User’s 87% 88% 91% 94%
Producer’s 89% 86% 95% 90%
Overall 87% 93%

27133 Kappa 0.75 0.85
Proportion Correct 87.5% 92.8%
Quantity Disagreement 0.8% 0.6%
Allocation Disagreement 11.7% 6.6%
Total Disagreement 12.5% 7.2%
User’s 88% 92% 56% 99%
Producer’s 69% 98% 70% 97%
Overall 92% 96%

28/33 Kappa 0.73 0.60
Proportion Correct 92.1% 95.6%
Quantity Disagreement 6.2% 1.7%
Allocation Disagreement 1.6% 2.7%
Total Disagreement 7.9% 4.4%
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Table 4.4.9.Co-occurrence matrix showing acres and percentages of mapped classes in the overlap area.

28/33
Warm-season Cool-season
27/33 Acres (%) Acres (%)
Warm-season 1,212,152 (84%) 15,559 (1%)
Cool-season 73,249 (5%) 137,931 (10%)
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S Conclusions

The goal of this research was to use a data-driven approach to develop a classification approach,
i.e., which combination of remotely sensed imagery and thematic classification scheme, to most
accurately map dominant grassland types at a regional scale. To achieve this research goal there
were three main objectives.

1. Identify the dominant land use within the two grassland types (warm- and cool-season
grasslands) using United States Department of Agriculture (USDA) Farm Service
Agency (FSA) 578 data and characterize the static or dynamic nature of land use in
grassland types in Kansas.

2. Determine the spectral separability of four hierarchies of grassland types and land use
using multi-seasonal Landsat 8§ spectral bands, Landsat 8§ Normalized Difference
Vegetation Index (NDVI), and Moderate Resolution Imaging Spectrometer (MODIS)
NDVI time series.

3. Determine the optimal combination of data, and the appropriate thematic resolution,
for mapping grassland type by comparing modeling performance using a Random

Forest (RF) modeling approach.

5.1 Major Conclusions and Findings
5.1.1 Objective 1.

The research in Chapter 2 used multiple years of FSA 578 data to characterize grassland
types and land use across Kansas and to evaluate both the dynamic and static nature of grassland
type and land use over time to inform a methodology for land cover mapping of grassland types.

The assessment and analysis of multiple years of FSA 578 data showed variability in degree of
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data completeness, meaning that the 2004-2007 FSA 578 data were not all-inclusive of total
grassland acres in Kansas. Even so, the data were sufficient to identify several regional trends in
grassland type, land use, and field size. Eastern Kansas was found to have more grassland types,
with the inclusion of non-native brome and fescue, a larger number of small fields, and more
variability in land use, which together creates a more fragmented and complex landscape that
could impact mapping grasslands in that region. Western Kansas had larger fields that primarily
consisted of grazed native grassland and land enrolled in the Conservation Reserve Program
(CRP), creating a comparatively simpler landscape for mapping grasslands. The inclusion of
2015 data provided a more complete representation of grassland type and land use in Kansas
compared to 2004-2007 data, which possibly was the result of three new FSA programs that
were implemented in the interim. These data and results will be used to inform a grassland
mapping approach for Kansas, including training data allocation for image classification.

5.1.2  Objective 2.

The research in Chapter 3 identified the evaluated remote sensing datasets (among those
tested) for separating the spectral characteristics of grassland types, determined whether land
management practices impact spectral separability of grassland types, and identified what
grassland hierarchy should be used for the thematic classification scheme of mapping grassland
types. While these findings are limited to the study area, it is anticipated the results will be
applicable to similar grassland landscapes in the Great Plains. The results show that combining
the Landsat 8 multispectral, Landsat § NDVI, and MODIS NDVI datasets resulted in the highest
JM distance statistics across all grassland class hierarchies. While the formulations underlying
JM distance guarantee improved separability upon addition of more bands, the gains observed

with the combined dataset were generally substantial and thus are believed to be meaningful.
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Individually, the three-date Landsat multispectral data had higher JM distance statistics than
either NDVI dataset. When including land use, JM distance statistics were lower within
grassland types than among grassland types, with the exception of the ‘left standing’ category.
While JM distance was high for many Level-4 pairwise comparisons, it remained relatively high
in comparison for functional grassland types (i.e. lower classification levels), indicating land use
does not have a highly negative impact on the spectral separability of Level-1 and Level-2
grassland classes. The results indicate that brome and fescue, both of which are non-native cool-
season grasses, were not spectrally distinct and, at least when using inputs like those examined
here, should be aggregated as a single class for thematic classification. Meanwhile, CRP and
native grasslands demonstrated moderately high separability even though the spectral profiles
appeared to largely overlap. These results suggest it may be possible to map CRP separately, or
CRP could be aggregated with native grassland into a single warm-season grassland type. The
temporal JM distance statistics indicate that spring and fall were more important for separating
cool- and warm-season grasslands than summer where the distributions overlapped more.

5.1.3 Objective 3.

The research in Chapter 4 evaluated random forest (RF) models using four classification
hierarchies of grasslands and four datasets in two adjacent Landsat scenes (path/rows 27/33 and
28/33) in eastern Kansas. The RF results indicate that a Level-1 classification using the
combined dataset of multispectral Landsat 8, Landsat 8 NDVI and MODIS NDVI produced the
lowest Out-of-bag (OOB) error of all the datasets. The OOB error for Level-2 classification was
only 1-2% higher; however, the CRP class had high omission error and was largely mapped as
native warm-season grassland, further supporting using the two-class Level-1 classification

scheme. Predictor importance rankings for the Level-1 classification varied by path/row, and
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were likely influenced by the proportion of the cool-season grassland class in each path/row. The
spatial distributions of the mapped classes were qualitatively as expected, and overall accuracy
levels were greater than 87% using OOB and independent test data. However, path/row 28/33
had lower user’s and producer’s accuracy levels for cool-season grasslands and a lower Kappa
statistic. In evaluating the overlap area, there was 94% agreement between the two path/rows,
but again the cool-season class in path/row 28/33 had lower user’s (73%) and producer’s
accuracy levels (63%), which may be expected due to the small proportion of cool-season
grasslands represented in that path/row. These results will be used to formulate a methodology
for mapping functional grassland types at a regional scale.
5.2 Future Research Directions
As with all research of this nature, in-depth analysis of available datasets and processing
methods exposes paths for future research; foremost among these for this research is the need for
further refinement of grassland mapping protocols. The results obtained in this research
demonstrate the utility of Landsat 8 and MODIS data to map grassland types using remotely
sensed data; however, further exploratory analyses could provide refinements to the mapping
protocol in an effort to increase the accuracy levels and/or the ability to map higher grassland
hierarchies (e.g. Level-2). Future research thrusts could include the following.
1. This dissertation research indicated that the best classification approach was obtained
using the combined dataset of multispectral Landsat 8, Landsat 8 NDVI, and MODIS
NDVI to map a Level-1 grassland hierarchy; however, more research is needed that
would maximize the utility of multispectral Landsat 8 and Landsat 8 NDVI data.
Future research should test whether increasing the number of spring and fall Landsat

8 dates would improve the spectral separability and mapping accuracy levels for
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Level-1 and Level-2 grassland hierarchies. Chapter 3 showed JM distance
separability statistics were higher for the multispectral Landsat 8 data than MODIS
time series NDVI. Furthermore, the temporal JM distance statistics indicated higher
separability for several individual Landsat 8 bands and NDVI compared to individual
periods of MODIS NDVI, and predictor importance estimates from Chapter 4
confirmed that similar Landsat 8 bands and Landsat NDVI dates ranked high in the
RF models. The temporal (by-period) JM-distance statistics for MODIS also could be
used to identify optimal acquisition dates for Landsat 8 data.

. As described in Chapter 4, single corresponding MODIS and Landsat pixels were
used for training and test data in this research so as to provide a one-to-one
comparison of MODIS and Landsat 8 data. The relatively coarse spatial resolution of
MODIS NDVI restricted the number of sufficiently pure pixels that could be used for
training and testing the RF modeling and thus restricted the number of Landsat 8
pixels as well. Future research would evaluate the utility of a data fusion approach as
used in this research versus using all available pixels from multispectral Landsat 8
and Landsat NDVI. It is possible that the inclusion of additional thousands of Landsat
pixels could improve the RF OOB errors for Level-1 and Level-2 hierarchies by
increasing the quantity of information available for RF training and testing, including
increasing samples for minority classes and from smaller fields.

The results showed that in path/row 28/33 the minority class, cool-season grasslands,
had relatively low user’s and producer’s accuracy levels. The goal of RF modeling is
to minimize the overall error rate. However, when there is a large majority class, the

prediction focuses more on the accuracy of the majority class at the expense of
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minority class (Chen et al., 2004; Mellor et al., 2015). Other studies have used
methods to improve the accuracy of mapping a minority class, including balanced
training data, where the majority class is down-sampled or a balanced random forest
is employed where a stratified bootstrap training set forces the inclusion of samples
from minority classes (Chen et al., 2004; Jin et al., 2014). Exploring options to
handle minority classes could improve the mapping accuracies for those classes
without severely diminishing accuracies for larger classes.

The RF models for mapping grassland types shown in Chapter 4 models were
developed by path/row. Future research could determine if combining path/rows for
grassland mapping provided gains in accuracy levels and/or mapping efficiencies.
This approach would require different image dates of Landsat 8 imagery by path/row
that may or may not affect the mapping of grassland types. The Cropland Data Layer
(CDL) and the National Land Cover Database (NLCD) map, both national mapping
programs, utilize Landsat data and regional mapping zones that encompass multiple
Landsat path/rows. The research would compare the mapping results and accuracy
levels of the combined path/row RF models with individual path/row results shown in
Chapter 4.

. Inventorying, downloading, and preprocessing of remotely sensed imagery, especially
when using a data fusion approach (i.e. Landsat and MODIS), is a time-consuming
process. Furthermore, depending upon hardware capabilities, significant processing
time is required to create and apply RF models by path/row in MATLAB. Google
Earth Engine (GEE) is a cloud-based platform that utilizes an application

programming interface (API) and a web-based interactive development environment
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that allows access to a large catalog of imagery data and rapid cloud processing
(Gorelick et al., 2017). Users can utilize their own data and/or access the GEE’s large
catalogue of preprocessed geospatial data including remotely sensed imagery from a
variety of sensors as well as environmental and climate data. Parallel processing
allows large volumes of data to be analyzed rapidly. These efficiencies provide
opportunity for numerous exploratory or data mining exercises, including the research
topics listed above, and also provide opportunity to map larger spatial extents more
rapidly. Several unsupervised and supervised image classification algorithms are
available through GEE including K-means, Support Vector Machine, Decision Tree
Classifier, and Random Forest (Gorelick ef al., 2017), and numerous studies have
used GEE for land cover mapping and land cover change applications (Huang et al.,
2017; Patel et al., 2015; Shelestov et al., 2017; Simonetti ef al., 2015). Future work
could evaluate the efficiencies gained using GEE versus the approach used in this

research.
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6 Acronyms and Definitions

ASD: Agricultural Statistics District

BACC-FLUD: Biofuels and Climate Change - Farmers’ Land Use Decisions

C-CAP: Coastal Change Analysis Program

CDL: Cropland Data Layer

CLU: A Common Land Unit is the smallest unit of land that has a permanent, contiguous
boundary, a common land cover and land management, a common owner and a common
producer in agricultural land associated with USDA farm programs. CLU boundaries typically
are delineated from relatively permanent features such as fence lines, roads, and/or waterways.
CRP: Conservation Reserve Program

DTC: decision tree classifier

EE: EarthExplorer

ELAP: Farm-Raised Fish Program

ESRI: Environmental Systems Research Institute

ETM: Enhanced Thematic Mapper

EVI: Enhanced Vegetation Index

GEE: Google Earth Engine

FIPS: Federal Information Processing Standard — uniquely identifies states and counties in the
United States with a two and three digit code, respectively.

FSA: Farm Service Agency

GAP: Gap Analysis Program

GRP: Grassland Reserve Program

JM: Jeffries-Matusita
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KARS: Kansas Applied Remote Sensing Program

KSU: Kansas State University

LFP: Livestock Forage Program

LIP: Livestock Indemnity Program

MDA: Mean decrease in accuracy

MODIS: Moderate-Resolution Imaging Spectroradiometer

MOU: Memorandum of Use

MRLC: Multi-Resolution Land Characteristics

NASS: National Agricultural Statistics Service

NDVI: Normalized Difference Vegetation Index

NIR: Near-infrared

NLCD: National Land Cover Dataset

OLI: Operational Land Imager

OOB: Out-of-bag

RF: Random Forest

SCTF: A concatenation of State, County, Tract and Field attributes from the FSA and CLU data
to create a unique identifier for linking field-level data.

SVM: Support vector machine

SWIR: Short-wave infrared

TM: Thematic Mapper

Tract Number: A tract of land is generally a single field or multiple fields connected in the
same section of a township with common ownership. One tract of land could have any number of

fields. Identifies a tract that belongs to a farm number.
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USDA: United States Department of Agriculture
USGS: United States Geological Survey

WRS: Worldwide Reference System
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