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INTRODUCTION

In 194k, J. Dieudonné, in his paper "Une Généralisation
des Espaces Compacts,' introduced the concept of paracompact=-
ness as a generallzation of the topological property of com=-
pactness. In this paper, J. Dieudonne proved that in the
result "a compact Hausdorff space is normal" one can replace
compactness with hls generalized property, paracompactness,
-and while he left open the question as to whether the topolog-
ical product of two paracompact spaces is paracompact, he did
prove that the product of a paracompact space and a compact
space 1s paracompact. Since that time a substantial amount
of work has been done integrating this comparatively new
topological property, and its subsequent generalization "coun-
table paracompactness," with other already established pro-
perties; in particular, normality.

It is the purpose of this paper to set forth a number of
theorems connecting normality, paracompactness, and countable
paracompactness, and to present the known theorems concern-
ing the topological product of a space enjoying a general=-
ized compact property and a compact space. The main theme,
obtained by utilizing the theorems described above, is the
following result: The topological product of a normal space
X and the closed unit interval is normal if and only if X
is countably paracompact. Chapter I is devoted to the necessary

definitions and theorems involving normelity, paracompactness,
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and countable paracompactness; we show, for example, that a
gpace is fully normal if and only if it is normal and para-
compact. In Chapter II we prove that a number of topological
properties are productive and, on the other hand, that the
product of two normal spaces need not be normal; and in
Chapter III we present the central theorem and also discuss
the topological product of a compact space with a space that
possesses a generalized compact property.

The author wishes to take this opportunity to express
his appreciation for the guidance and assistance given him
by his advisor, Dr., Charles Himmelberg.

Albert F. Joseph



CHAPTER I
SOME DEFINITIONS AND THEOREMS INVOLVING NORMAL SPACES

DEFINITION 1.,1: A familipof subsets of a set X is said
to be a topology for X, and the pair (X,T) is said to be a
topological space (or X is simply referred to as a space), if
and only if
(1) X and‘ﬁ (the empty set) belong to T,
(i1) the union of any subfamily of T belongs to T, and
(1iii) the intersection of any two members of T is again
a member of T,
The members of T are referred to as open sets and their com-
plements are called closed sets. If N is any subset of X
containing some member x in X and if xeUCN for some U in T
then N is called a neighborhood of x. Similarly, a neighbor-
hood of a set A is a set that is a neighborhood of every point
of A,
DEFINITION 1.2: A subfamily B of T is called
(i) a base for the topology T if and only if for each
xeX and each neighborhood N of x there is a member
U of B such that xe¢UCN, and
(i1) a subbase for the topology T if and only if the
family of finite intersections of members of B is
a base for T.
DEFINITION 1.3: A topological space X is called

(i) a T,-space if and only if for each xeX, &Q is closed,

1

1.
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(11) a T,-space (Hausdorff space) if and only if distinct
points of X have disjoint neighborhoods,

(i11) regular if and only if for each xeX and each neighbor-
hood N of x there is a closed neighborhood M of x
such that MCN,

(iv) a T3;space if and only if it is regular and Ty,

(v) normal if and only if disjoint closed sets have dis-

joint neighborhoods, and

(vi) a waspace if and only if it is normel and T,.

D'EFINITI'ON l.4: A family¥of subsets of a space X is
cal;ed,a covering of X if X=L){U:U671%. A coveringf(of a space
X is called

(1) open if every member of U is open,

(11) countable if U is countable,

(111) locally finite if for each x€X there exists a
neighborhood N of x such that N meets (intersects)
only finitely many members of U, and

(iv) point finite if for each xeX, x belongs to only

finitely many members of U.

A covering?of X is called a refinement of T if and only if
every member of V- is contained in some member onZ; a star
refinement if and only if for each x€X the union of the members
of ¥ containing x is contained in some member of ‘¥ .

DEFINITION 1.5: A space X is called

(1) compact if and only if every open covering has a

finite subfamily that covers X,



3.

(i1) LindelOf if and only if every open covering has a
countable subfamily that covers X,
(1i1) countably compact if and only if every countable open
covering has g?gzbfamily that covers X,
(iv) paracompact if and only if every open covering has
a locally finite open refinement,
(v) countably paracompact if and only if every countable
open covering has a locally finite open refinement, and
(vi) fully normal if and only if every open covering has
an open star refinement.
DEFINITION 1.6: A metric space is a pair (X,d) where
d is a metric for the set X. That is, d is a function on the
Cartesian product XXX to the non-negative reals such that
for points x,y, and z of X
(1) d(x,y) = d(y,x),
(11) d(x,z) € da(x,y) + d(y,z), and
(iii) d(x,y) = 0 if and only if x = y.
A base for the metric topology is the family of all open
r-spheres (r>0) in X. (See [3]™ for a discussion of metric
spaces.)
LEMMA 1.1: Let X be a normal space and let [Ua:aeA} be
a point finite open covering of X. Then there exists an open
refinement {Va:aeA} such that {V;} is a point finite open
covering of X and for all ac<A, VaCZI V;c:'Ua[fu].

3%+ Numbers in square brackets refer to the bibliography at the
end of this paper. '
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Proof: If Ua.=X‘" for any a, the theorem is trivial. So assume
U #X for all a€A. Now let ¢ be a function on A such that
(1) @(a) =Ty, or @(a) = V, where V;C.'"Ua_i, and
(11) {Cp(a) : aeA} 1s an open covering of X.
Let M be the family of all such ¢ and order n as follows:
?sqfwhenever cp'(a)= q)(a) if @(a) = V, Clearly the
pair ("Q +<) is a partially ordered system. For let CP,(F,'Q):IG'Q
be such that <p$¢’ and q>'4cp”. Then if q?(a) = Vy we have
<P'(a) = CP(a). Therefore Cp”(a) = 'CP'(a) = Va. and conse-
quently (Pscg”. Thus € partially orders ‘q Now let Tl' be a
chain inTz and let (F “(a) = [) {CP(a):CpeT{} for acA.
We now show that Cp”"é'rl . Pirst, q)*(a.) is an open set for
a€A. For suppose q)'(a) =T, for all Cp'é Tl’. Then (p*(a) =
U, for all Cpe'l’l Then (p“(a) U, which is open. If for
some cpeTl q> “(a) = V 4+ then for q>€7] such that (,0<CP q>
(p(a) and for cpe'r( such that tp sqz, (P (a) = Cp(a).
Consequently (p*(a) = Q'l(a) which is open. Secondly,
f(p*(a):aeA} covers X. For let xeX. Since {Ua::aeA} is a
point finite covering of X there exist only finitely many
aéA, say aq,°**,a,, su§h that xéUai for 1¢i<n. Also for some
(P”ev'l' , (P”(ai) = @'(ai) for all i and all q:'«'€77' such that
(P”‘S(P' « Thus CP"(ai) . Cp*(ai) for 1¢i€n and since
{CP”(a)°aeA? covers X we have xfl cp/’(a) for a;‘a and X in
q}(ai) for at least one i (1€i%n). Consequently fcp (a)} covers
X and therefore @ EW]
Now let cpé)'l . If CP’(a) = V, for some a€A and CP”éT(
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’ * ’
is such that cpﬂa(p' then (pﬂ(a)f- = P(a). Consequently @(a)=@(a)
and therefore <PI$(P1f Thus cp* is an upper bound in Y| for’ the
chain )‘(’ and by Zorn's lemma there adxists a maximal member
(Pl in Tlo

We now complete the proof of this lemma by showing that
¢l(a) =V, for all a€A. To show this we assume that for some
b&A, <Pl(b) = Ub' Set F = X- U{cpl(a):ai&; and a;‘b}. Clearly F
is a closed gset. If F is empty then {cpl(aa):aeA and a#‘b} covers
X. Therefore define <P2 as follows: for a€A such that a#b
set ?2(3) =(Pl(a.) and (Pz(b) =¢(the empty set). Then

. 'Y
{@2(a).aeA} covers X, @l‘ (Pz, and CPl# (P2 which contradicts
the maximality of (Pl. Thus F must be non-empty. But if F

is non-empty then F and X-U,  are non-empty, closed and dis-

b
joint subsets of the normal space X. Hence there exists dis-

joint open sets Vb and V; such that FCVb and X'UbCV;j' We

have therefore VbCV;CX-V;CUb. Now define ?2 as follows:
for aeA such that a#b set (Pa)(a) = Cpl(a) and set CPZ(b)= v
Since F = X-U{(pl(a):a A and a;ﬁb}CVb, {q:'z(a):aeA} covers
X and since q72(a) = CPl(a,) for a#b and q72(b) = Vb while
(P (b) = U, we have q)ac-q, ¢1\ Cpg, and @, # (Pe. Again we

have contradicted the maximality of (Pl. Thus .’;(Pl(a) =

b.

a
for all a€A and this completes the proof. We will also have

need of the following result:
LEMMA 1.2: Let {U1:i=1,2,"' be a countable open cover-
ing of a topological space X, Then if {U{} has an open local-

ly finite refinement there exists an open locally finite re-



finement {V} or {v,] with v,CU,.

Proof: Let W be an open locally finite refinement of a coun-
table open covering {U{} of a space X, For each W in let
i(W) be the first integer such that WC:Ui(ﬁs and let V. =
{w:i(W)=E}. Then{Vg}is an open covering of X with V, CU,.

We shall now show that{V&}is locally finite.

SinceWis locally finite, for each x in X there is an
open neighborhood N of x that meets but finitely many members
Wl,'~',Wn of W . Moreover, N meets Vk =L){W:1(W)=k}if and
only if there exists W such that 1i(W)=k and N meets W, This

means that w=wj and hence that k=i(W,) for some j=1,2,°°°,n.

Since there are at most n such integgrs k, {VQ} is locally
finite,

Our first theorem gives us a large class of topological
spaces that are fully riormal.

THEOREM 1l.1l: Every metric space is fully normal]}d].
Proof: Let X be a metric space and 1et'Z(={ﬁa:a€A} be an
open covering of X. For each x€X there is some a(x)eA such
that nga(x) and therefore there is a real number e(x) such

that 0<e(x)<l and N(x,he(x))cU ) where N(x,e(x))=

a(x
{y:d(x,y)<.e(xﬂ}. Let'ﬁ(é{N(x,e(x)):xEX}. Obviously'aféovers
X, refines and we need only show that ulis a star refinement
of U.

Let XeX and consider the set H ={x:x%N(x,e(x))}. Now
%x€H so H is not void. Choose x*¢H such that e(x*)72/3 sup.

{e(x):xeﬁ}. Thus if x¢H we have N(x,e(x))c:N(x',Ze(x)).
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For let yeN(x,e(x)) then d(y,x)<e(x) and consequently
d(y,x’)<d(y,x)+d(x,x’)<2e(x). So yeN(x’,2e(x)) and there-
fore'N(x,e(x)X:N(x',2e(x)). Also by the choice of x¥,
N(x”,2e(x))CN(x",3e(x”)). Finally N(x’,3e(x*))CN(x*,ue(x%)).
For let yeN(x’,3e(x*)). Then d(y,x’ )<3e(x*) and since x €H
a(x’,x*)<e(x*). Hence d(y,x*)<ue(x*) and therefore N(x’,3e(x*))C
N(x¥,4e(x¥)). Thus N(x,e(x))CN(x’,2e(x))N(x ,3e(x"))C
N(x*,le(x¥)) for any x such that x€N(x,e(x)); hence the
U'-star of x is contained in N(x*,he(x*))CUa(x%). Since x’
was arbitrary we have shown thati%’is a star refinement of 144
and the proof is complete.

THEOREM 1.2: Every fully normal space is normal and
paracompact [9] .
Proof: Let X be a fully normal space, We will first show
that X is normal, Let A and B be two disjoint closed sub-
sets of X and let % be an open star refinement of the open
covering fX-A,X-ﬁi. Let U be the union of the members of
U that meet A and V be the union of the members on( that
meet B, Clearly the open sets U and V cover A and B res-
pectively. Moreover they are disjoint. For suppose xeUV;
then the star of x of the coveringlz'meets both A and B,
and thereforeiz is not a star refinement of fX-A,X-B}. Thus
U and V are disjoint and therefore X is normal.

The space X 1s also paracompact, for let U ={Uaﬁﬂ€Ag

be an open covering of X, Then there are open coverings Z{l=

{Ul}, "LL2= {02}’...’11{1’1: {Unz,"' such that ul is an open
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star refinement of Z( and unﬂ is an open star refinement
of _un (n=1,2,+*+). For any subset Q of X and for any posi-
tive integer n let

(1) (Q,n) be the union of all sets U of Z(¢" that meet

Q, and ‘

(i1) (Q,-n) = X-(X-Q,n).

Since the set (X-Q,n) is obviously open, the set (Q,-n) is
closed. Moreover, wé have

(1) (a,-n) = {x:({xhm)cq}.

For let x€(Q,-n). Then xg/(X-Q,n_) and consequently every mem=-
ber of un containing x is contained in Qe Conversely, if
every member of ‘L(n containing x is contained in Q then
x{(X-Q,n)’ and therefore x€(Q,-n). An immediate consequence
of (1) is

(2) ((Q,-n),n)CQ.

Now let y€((Q,n+l),n+l), Then there exists Un+l in 7AP*L
such that y€Un+1 and Un+1 meets (Q,n+l). Let ern+1ﬂ(Q,,n+l)
Then y¢( {x},nﬂ) and slnce un+l is an open star refinement
of TAL™ there exists U in U" such that ([x?,n+1)CUn. Hence
yGUn and since Un meets Q, UnC.(Q,n). Thus we have

(3) ((Q,n+1),n+1)=(Q,n).

The following will also be useful:

(L) QCP implies (Q,n)C(P,n),

(5) m2n implies (Q,m)C(Q,n),

(6) C(Q,n), and

(7) ye({x3,n) if and only if x&({y},n).

The obvious proofs are omitted.
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n-1

a sn)

We now define, for each a€Ai, V:=(Ua,-1) and V2=(V

for n22., Clearly V;' CV?C‘_’H*CVEC',"-, and Vg is opeﬁ if

nz22. Notice that
(1) (vi,1)=((Ug,-1),1)C U, by (2), and that

(11) if (vEl,k-1) o, then (VE, k) = ((vE"Lk),0)

k-1
(Va :k"l)CUa by (3)0

Thus (V%,k)c::Ua for all k and therefore for any k22
Vg:(vg-lsk)C(Vlac,k)CUa by (ll,). Thus
(8) o
k=1
. 1 u

Futhermore, since U 1is & star refinement of U, if xeX
then ({x},1)CU, for some a and therefore xe(Ua,-l)—Vatilva
by (1). Thus

(9) X?L){Va:aeA}.

Also for any xeV,, there exists nz2 such that xevg’l

and
therefore
n
(10) ({x},m) VvV,
We now well order the set A and define a transfinite

sequence of closed sets H,, by setting Hn14yl,-n) and

Hpa=(Vg- U Hpp,-n) for each n (the sets are closed by the
b<a

remark preceding (1)). We now have:

(11) If a#b, no U" in U™ can meet both Hog and H .

For we can suppose a<b. Then if U™ meets Hn let x€X be

b
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such that x€U MH_, . Then xe(V,- \J fipg,-n) and by (1)
xe{x ({x¢,n ) (V- aL<Jb Hna)} Thus U V.- U H , and
a<hb

consequently ' N Hna is void. Moreover
(12) U H_=X.
n,a Dha

For let x¢X. By (9) there exists a first aéA such that era,
and from (10) there exists n? 0 such that ([x},n)CVa. We
assert that x¢H . For suppose not. From (L) 5. =

na

{x'({x} »m)C(V, - UH b and therefore ({x},n) contains a
b<a D

point y in Hnb for some b<a. But then X€(Hnb,n)C((Vb,-n),n)C
vy (from (L) and (2)) and this contradicts our choice of a.

Thus x€H  and therefore | J H =X,
na n,a na

Now write E =(H ,n+3) and G =(H ,n+Z). Then E =
na  na na na na

(E ,n+3)C((H  ,n+3),n+3)C(E ,n+2)= G__ by (6) and (3).
na na na na

Thus
F C .
(13) Hnarc Ena=C: naC Gna
Also
. , n+2 n+2
(1) if a#b, no U in Y can meet both G and G ..
na
+
For suppose Un 2 meets both G and G Then for some x€X,

nb’
ern+2ﬂ Gna' Hence for some Un *2 in ynt2 containing x,

n+2 +
U, meets H . Thus Un+2'ﬂUS_ 2 and consequently ( {xf,n+2)

meets both H'na and G Since un+2 is a star refinement of

nb*



I1.

n+l

U

0™ neets both E  and G
na n

+
for some UnﬂL in ‘L(n+l, (fx},n+2)C':Un 1 and consequently

b But (%nb =(Hnb,n+2)C(Hn.b,n+l)

by (5). Thus gt meets Hna and (Hnb,n+l). Let y€ X be

+1

such that yGUn+1 M (Hnb,n+l). Then for some U- — in

AT
3

. L
( n*l containing y, U, = meets Hn Thus ({y},n+l) meets

b.

both Hna and Hn and since L(_n+l is a star refinement of

b

UM for some U in %" we have that U meets both B, end H .
By (11) this is not possible. Hence (1lL) follows.

Now write F. = (JE__. Then F 1is closed, For let
n~ % “na n

Xé€ F";, then every neighborhood N(x) of x meets some .E—na’ hence

n+2 +
some Ena' In particular some U in ‘an 2 containing x meets

n+2
some Ena and by (14) U can meet only one Ena' Thus for
some a € A, x€E CF .
na n

=i W - g X
Finally we set W, =G, and W =G (F,UF,U... UFn 1)

for n>1l; thus the sets wna are open. We shall show that they

form the desired refinement. In the first place ) Wn =X.

For let x€X, then we have x in some Hna by (12) and there=-
fore in some E;a. Let m be the smallest integer for which
x is in some E;a' Then for some a, x¢G_ and x#Fl,'“,Fm-l;
hence xewma. Thus l(wna} is an open covering of X. Next,

using (5), (2), and (8) we have wnaCGn =(Hna,n+2)C:

a
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= = - - . Th
(Hnas’n) ((Va bL/Ja Hnb’ n),n)CVaj o B, CV, CU, us

{{/Jng refines U . We now show that{wmg is locally finite.
Let x¢X; as before, xiHna for some n and some a so ({k},n+3)C:

Ena C F,. Thus (fx?,n+3) does not meet any ka if k7n.

+
Further, for a given k¢n, we have ({x?,n+3)C_Un 2 for some

+2

+ + n +
Un 2 in '6(“ 2 and U is contained in some Uk 2 in uk+2.

By (1l) 0¥*2 can meet G, for at most one value of b. Thus
the neighborhood.(fx},n+3) of x meets at most n of the sets
ka; hence X is paracompact.

THEOREM 1.3: Every metric space 1s paracompact and normal.
Proof: Theorems 1.1l and 1l.2.

In Theorem 1.2, we showed that a fully normal space is
normal. The following theorem gives a necessary and sufficient
condition for a normal space to be fully normal.

THEOREM 1l.l: A space X is fully normal if and only if
it is normal and paracompactfqlv
Proof: By Theorem 1.2 if X is fully normal then X is normal
and paracompact. On the other hand, suppose X is a paracom-
pact normal space and leti(={Ua} be a locally finite open
covering of X, Since a locally finite covering is a point
finite covering (definition 1l.4) and since X is normal, by
Lemma 1.1 there exists open sets {Va} such that Va‘CZV;C Uy

for all a and LHV§fX. By hypothesis, each x€¢X has an open



13,

neighborhood G(x) that meets Ua for only finitely many a's,
say for agA(x). Let B(x) be those members of A(x) for which
x€U,, and let C(x) be those members of A(x) for which xch_a;.
Clearly B(x) U C(x)= A(x). Let W(x)=a(x)M (] {Ua:aeB(x)} N
(N {x-T: aec(x)}), and Let W= {W(x);xe x}. Clearly
x € W(x) and by the finiteness of the sets B(x) and C(x),
W(x) is open. Thus # is an open covering of X. We shall
show that # star-refines U . Let yeX and let b be such
that erb. Then if y'belongs-to W(x), W(x) meets V; and so
b€A(x) and b¢C(x). Thus be B(x), which implies that
w(x)CZUb by construction. Thus the union of the members of

W containing y is contained in U and this completes the proof.

b
The following theorem, which is due to J. Dieudonné,
is a generalization of the result: A compact Hausdorff space
is normal.
THEOREM 1.5: Every paracompact Hausdorff space 1is
normal {1] .
Proof: Let X be a paracompact Hausdorff space. First
we shall show that X is regular. Let F. be a closed subset
of X and let a€X be such that aiF. Then for each x&F
there are disjoint open neighborhoods W(x) and V(x) of a
and x respectively. Let U be the open covering of X con-
sisting of all such V(x) for each xéF, and the complement
of F; and let U be a locslly finite refinement of T{ .
Then there exists an open neighborhood W of a that does not

¢

‘meet F and that meets only finitely many members Ul,"°,U;’of



L.

Z(: Let V be the union of the members of Zthhat meet F and
let x,€F be such that UjCV(x,) for 1<i4n. Then
U=0nW (xy ) W (x,) oo s N(x )

is an open neighborhood of a that does not meet V. Hence U
and V are disjoint open neighborhoods of a and F respectively
and theérefore X is regular.

Now let A and B be disjoint closed subsets of X, Since
X is regular, for each xeA there are open neighborhoods V(x)
of x and W(x) of B that are disjoint. Consider the open cover=-
ing Uor X consisting of the sets V(x) for each x€A and the
complement of A, and 1et12!be a locally finite refinement of
U that covers X. The union V of the members of izlthat meet
A is clearly an open neighborhood of A and for each y€B there
is an open-neighborhood N(y) of y that does not meet A and
é,“',U; of Zl:
Let xfEA be such that Ué:V(xi) for 1l¢i<n, and set W(y)=

that meets only finitely many members U;, U

N(y)fTW(xl)r]"‘f]W(xn). Clearly W(y) does not.meet V, hence
U= Lﬁfw(y):yeﬁ} does not meet V. Hence V and U are open
neighborhoods of A and B respectively that are disjoint and
the proof is complste.

COROLLARY: For Hausdorff spaces, paracompactness and
full normality are equivalent.
Proof: Theorems 1l.lL and 1.5.

Using the fact that every normal Hausdorff space with a
countable base is metrizable (see[j]) and theorem 1.3 (every

metric space is paracompact) we have the following: Every
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normal Hausdorff space with a countable base 1is paracompact.
We refer you to the appendix for an example, due to M. E. Rudin,
of a separable* normal Hausdorff space that is not paracompact.
Theorem 1l.l, which is due to A. H. Stone, is, in a
certain sense, a justification of the concept of para-
compactness. In like manner, C. H. Dowker, has justified
the concept of countable paracompactness which is presented
as Theorem 3.6 in Chapter III of this paper. The following
theorem, which is also due to Dowker, exhibits a number
of conditions on a normal space that are equivalent to
countable paracompactness,
THEOREM 1.6: The following properties of a normal space
X are equivalent:
(i) The space X is countably paracompact.
(ii) Every countable open covering of X has a point-
finite open refinement.
(1ii) Every countable open covering{U{}has an open re-
fineme’nt{vi}with Ti'c_ U, -
(iv) Given a decreasing sequencefFB'of closed sets
with vacuous intersection, there is a sequence
{G% of open sets with vacuous intersection such
that FiC: Gi'
(v) Given a decreasing sequence fF;} of closed sets

with vacuous intersection, there 1s a sequence

% A space X 1s separable. if there exists a countable subset
A of X such that & = X.
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{A{§ of closed G;-sets* with wvacuous intersection
such that F. C A . ’
. i i
In the proof of the above theorem we will need the following
lemma:

LEMMA 1.3: Any open Fr--set in a normal space can be
written as the countable union of closed sets Fi (i=1,2,°°")
such that for all 1 F1 is contained in the interior of Fiil‘
Proof: Let B be an open Fyr-set in a normal space X and

o0
let B= \U B, where each B, is closed. Set B, =F; .
4=1 1 i v
BiéB then the proof is complete. So suppose Bl#B and we have
constructed closed sets F

If

1,“‘,Fn such that F_ # B, Fy is

contained in the interior of Fi+l for 1%i¢n, and B1C:FfCIB
for 12i<n., Then there is a least integer jzn+l such that
ngéFn. Therefore since X is normal and leJ Fn is a closed
set contained in the open set B there 1s an open set Vn+1
Then

such that Bj &) Fn Cvn+l C:Vn-i-lc B. Set Fn+l=Vn+1.
B CF
n

41 C B and F, is clearly contained in the interior

of F
n

+1

Thus if F_,,=B the proof is complete. If Fn+1fB

+1° 1
for any n then by the above induction we can construct the
desired closed sets and since BnC:ZFnc::B we have gan=B.
Proof of Theorem 1.6: (i)—> (ii). This is clear
since a locally finite covering 1s obviously a point finite

covering.

% A set A i1s called a Gy -set 1f it is the intersection of some
countable collection of open sets, and is called an E, -set
iIf it is the union of some countable collection of closed sets.



17.

(11)—> (111). Let{Ui} be any countable open covering
of X. Then by (ii) {Ui} has a point finite open refinement
WN. For each W in Wilet 1(W) be the first integer such that
W Ui(W) and let G, be the union of those W in W for which
i(W)=i. Clearly {Gi} is a point finite refinement of fUi}
such that, for each i, GiCUi (see proof of Lemma 1l.2).
Since X is normal, there is a point-finite open refinement
{V].} of fGi} such that, for each i, Vi(:.V;C‘IGi (by Lemma 1.1).
Hence V{C_’:Ui and (iii) follows.

(iii)—>(iv). Let {F:} be a decreasing sequence of
closed sets such that ﬁ Fi is void. Set Ui=X'Fi for all

i=1
w0 ) o0
i. Then U_ is open and U U1=LJ(X-F,)= X-n Fi = X, There-
1 i=1 i=1 1 i=1

fore {Ui} is a countable open covering of X. By (iii) there
is an open refinement {Vi} of {Ui} that covers X with the
property that Vi C Uy for all i. Set G4= X-V’;. Then G

i
is open and since Ui:)v-; we have
oC = oo
Moreover ) G.= ﬂ (X-ﬂ) = X- UV’Z= X-X. Thus F1CG' for
i=1 ' i=1 1=1 1

@x
all i and OG is void.
1=1 *

(iv)—>(v). Let {F;} be a decreasing sequence of
©

closed sets such that ﬂFi is void. Then, by (iv), there is
i=1

a sequence of open sets {Gi} with vacuous intersection such

that F; C Gy for each i. Hence, for each i, X-G; and Fi are
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disjoint closed sets of the normal space X and by Urysohn's
Lemma (see [3]) there is a continuous function f; from X.to

the closed unit interval [O,l] such that f;(x)=0 if xeF1 and

fi(x)=l if x€X-G, .For all integers 1 and j set
Gy 5= {xeX:fi(xKl/J};
and for all integers 1 set

ﬂeiJ {xex:2;(x)=0}.

Since f, is continuous G,. is open and A;is a closed G -set.

1j i
Moreover, by the defim.tion of f., F. CAiC‘Gi’ and since

nGi is empty, ﬂ Ay is empty.
i=1 i=1

(v) —(1i). Let {U } be a countable open covering of X

and let Fi X= UUk' Then {Fi} 1s a decreasing sequence of
' kel

closed sets and since UU- = X, ﬂ F is empty. Then by (v),
=1 i=1

there is a sequence {A? of closed Gy -sets with F CA and

nA void. Set BJ—X Aj. Then BJ is an open Fa_-set and by
i=1

oS

Lemma 1.3 we may assume Bj = L:’Bi where each B?.]: is closed
i+l i+l
and each BJIS contained in the interior HJ of Bj . Since

for all i, B. CH“%:B“l, we have B,= U J— X-4, and

BECIBJ- X-43CX-F 3= UTy.
k<]

Now let V; = Uj;- UB then V, is open. If j<i, then
J(i

B C U U, . Hence UB CUU « Therefore
Ukck‘ijik 31 9 ey K
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Ui-]}J.Uk C Uz~ %B% = V4. So let x¢X. Then there exists 1
1 J

such that eri and X 7{ Uk for k¢i: hence xeV,6 . Consequently
{Vi} covers X and clearly {Vi} is an open refinement of {Ui} .
Moreover, for each x¢X there is some Aj such that xg’Aj

L -3
(ﬂ A, is void). But if x;/A , then xeX-A =B, and conse-
i=1 * - 3

k k
quently for some k, erj. Thus if i>j and i>k HjCBi. and
J

Hl; N (v,- l)Bjj) is void. But V

s k
=7 -{JBl. Thus x€H ., an open
j<i J

1 7% ¢

set, that can intersect V, only if i{max.'{j,k}. Hence {Vi}

i
is a locally finite open refinement of {U{} amd consequently
X is countably paracompact. This completes the proof of the
theorem.

COROLLARY: Every perfectly normal space 1s countably
paracompact.

Proof: A perfectly normal space 1s a normal space X in
which every closed set is a (G -set. Hence if {F;} is a
decreasing sequence of closed sets with vacuous intersection
then it is also a decreasing sequence of closed Gg-sets with
vacuous intersection and by (v) of the foregoing theorem X
is countably paracompact.

It is not true that every normal space is countably
paracompact as the following example shows. Let X be the
set of real numbers and let the empty set, X, and sets
of the form {xeX:x<a} (where aeX) be open. Then it is
clear that we have defined a topology for X and since



20.

X has no pairwise disjoint closed sets, X must be trivially
normal. But {Gi}, where Gi=-{xeX:x<i}, is a countable cover
for X which has no locally finite refinement. Consequently
X is not countably paracompact.

Note that the above space X is not Hausdorff. To the
best of the author's knowledge it is not known whether there
exists a normal Hausdorff space that is not countably para-
compact.,. The question of the existence of such a space is
known as Dowker's Problem. M. E. Rudin {?], however, has
shown that if a Souslin space® exists then Dowker's Question
is answered in the affirmative, i.e., there exists a normal
Hausdorff space which is not countably paracompact. We

omit the construction of Rudin's exampls.

% A space S 1s a Souslin space if S is a gapless linearly
ordered space (with the order topology) such that
1.) S is not separable, and
2.) Every collection of disjoint segments (each containing
at least two elements) in S is countable.



CHAPTER II
PRODUCTS OF SPACES ENJOYING A COMMON TOPOLOGICAL PROPERTY

Let "p" be a given topological property. One naturally
asks if "p" is productive, i.e., if given a family of spaces
having "p", does the product of these same spaces also have
"p"., This subject is the substance of this chapter and we
begin with a few definitions.

DEFINITION 2.1: Let{xa:aeA}be a family of topological

spaces. The Cartesian product TT'Xa of {Xa} 1s defined to
a€h

be the set of all functions f on A such that T(a)exa for each

a€A. The function P, : ] X,— X, defined by P (x)= x

2
aeh &

where x, is the "a-th" coordinate of x, is called the pro-

jection map of T Xa onto Xa. The topology on the set
ach

X= ’ﬂ;Xa, called the product topology, is motivated by the
ae€

requirement that the projection maps be confinuous and con-

sequently the defining subbase for this topology is the

family of all sets of the form P;l[U] where U is open in X_.
We now present a short sequence of theorems exhibiting

a number of topological properties that are productive.
THEOREM 2.1: The product of an arbitrary family of

Tl-spaces is a Tl-space.

Proof: Let {x;} be an arbitrary family of Tl-spaces and let

X€X='TTXE¢ We shall show that X-fx} is open. Suppose yGX-fi}.
a:

2l.
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Then for some a, xa#ya. Hence Iq belongs to the open set
Xg={xg} =U and P;l[U] is a nelghborhood of y which is con-
tained in X-{x}. Thus X-{x} is a neighborhood of each of its
points and is, therefore, an open set.

THEOREM 2.2: The product of an arbitrary family of
Ta-spaces is a Ta-space.

Proof: Let {X;} be an arbitrary family of T _-spaces and

2
let X and y be distince points in the product. Then for
some a, xa#ya and so there are open neighborhoods U and V
of x5 and y, respectively that are disjoint. Consequently
Pgl[Uﬂ and Pgl[V] are disjoint neighborhoods of x and y in
the product.

THEOREM 2.3: The product of an arbitrary family of
regular spaces 1s regular,
Proof': Let {Xa:aeA? be an arbitrary family of regular spaces
and let X=71’Xa be the prbduct space. Suppose x€X and W is
an open ne?;ﬁborhood of x. Let U be a member of the defining
base such that xeUCW. Then

U= ﬂ{Pgl[Ua-] :a e}’}

where ¥ is a finite subset of A and Ua is an open set
containing x, in Xa’ Since each Xa is regular there exists
for each a an open set Vg with xaeVac:ZV;R::Ua. Therefore
x€V=[]{f;l{vz]:aeﬁgcerzjW and V is a closed neighborhood
of x. Thus X is regular,

DEFINITION 2.2: A space X is called completely regular

if and only if for each member x of X and each neighborhood
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U of x there is a continuous function f on X to the closed
unit interval [b,l] such that £(x)=0 and f(y)=l for all y

in X-U. A completely regular T,-space is called a Tychonoff

1
space.

THEROEM 2.l : The product of an arbitrary family of
completely regular spaces is completely regular {i];

Proof: Let X = TT'Xa be the product of an arbitrary family
ach

of completely regular spaces, let x€X, and let U be a neigh-
borhood of x. Then there exists a finite subset ¥ of A and

a family of open sets {Ua:aex} such that x¢ (j P;ltU;]c:fU.
aEy

But each Xa is completely regular; hence for each a&¥, there
exists a continuous function fa:Xa~—+[b,i] such that fa(xa)=0
and fa[Xa-U;]=fi}. Then faoPa is a continuous function from
X to [0,1] such that fgePy(x)=0 and f,op [X-p;'[uj]] =fi3.
Define f:X—[0,1] by £(t)= max. {f oP (t): aex}’, for teX.
The function f is the maximum of finitely many:continuous
functions on X and hence is a continuous function. More-
over f(x)=0 and f[X-—U]Cf[X-aC]YP;l[Ua]\}cf[gx(X-Pgl [U;]ﬂ ={l}.
Thus X is completely regular.

COROLLARY: The product of an arbitrary family of
Tychonoff spaces is a Tychonoff space.
Proof: Theorems 2.1 and 2.l.

A natural candidate, as a productive topological property,
for the next theorem in this sequence 1is normality. But the
product of an arbitrary family of normal spaces is not neces-

sarily normal, and, as mentioned in the introduction, it is
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the purpose of this paper to show, to some extent, how
drastically normality fails to be productive. We shall
content ourselves, in this chapter, to show that the product
of two normal spaces is not necessarily normal. However,
the example we shall use to show this, which is due to

R. H. Sorgenfrey, also shows that a number of other topolo=-
gical properties are not productive. Before we present

the example, we now give the following definitions and a
useful theorem,

DEFINITION 2.3: A sequence XysXgseeesXpeee of points
of a metric space is called a Cauchy sequence if for any
real number e>0 there exists an integer n(e) such that for
all n,m)» n(e), d(xn,xm) < e. A metric space X is said to be
complete if every Cauchy sequence in X converges to a point
of X,

DEFINITION 2.4: A subset A of a space X is said to be
nowhere dense if the interior of the closure ( i.) of A
is void. A space X is sald to be of the first category if
X is a countable union of nowhere dense sets., If X is not
of the first category, X is said to be of the second category.

LEMMA 2.1: The finite union of nowhere dense sets is
nowhere dense.

Proof: It will suffice to show that if A and B are two
closed sets such that both X and ﬁ are void, then Af%ﬁ is
void. Suppose A and B are two closed sets with vacuous

interior. Then B-A is open in AUB and contained in B;
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6

hence (B-A) N ALJB is open in AUB and therefore absolutely
open. Thus (B-A) N AUB CB=#. Therefore KUBCA but
E: # and consequently A/f)“B= ¢.

THEOREM 2.5: If X is a complete metric space then X
is of the second category Eﬂ

Proof: Let A= (VIA s wWwhere each Ai
i=1

is nowhere dense, be a
subset of a complete metric space X. We shall show A# X.
We proceed inductively, first noting that since the union
of a finite number of nowhere dense sets 1ls nowhere dense

we may suppose AiCA .

i+l
Now for some xl in X we have Xy in X-Al, or else A1= X,
contradicting the fact that Al is nowhere dense. Moreover,

there 1s a neighborhood N(xl,e1)= {x:d(x,xl)<ei} of xl
such that N(xl,elj does not meet Al. Now suppose we have
found, for 1€i¢n, points X4 and neighborhoods N(xi,ei) of x4
such that
(1) 0<ei\ei_l/2,
(11) N(xi,ei5 does not meet Ai’ and
(111) W(x ,e; )CTN(x, ;.e5.4).

Then N(xn,en)qt An+l since An+l is nowhere dense and conse-

quently there is a point x in N(xn,e )-A +1 and a real

n+l
number e 041 e /2 such that N(x +l,en+1)c::N(x se.) and
N(x +1,en+1) does not meet An+l' Therefore the above condi-

tions are satisfied for k=n+l and by induction we have ob-

tained a decreasing sequence {N(xi,eii} of non-empty closed

sets whose diameter approaches zero. It is clear that fxi}
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is a Cauchy sequence eventually in each N(xi,ei). Thus,
since X is a complete metric space, {xi} converges to a
point X in X belonging to all sets ﬁTE;:E;T. Therefore
x ¢ A and A#K.

We now give the previously mentioned example as

THEOREM 2.6: There is a paracompact Hausdorff space X
with the Lindelof property such that XXX is not normal and
does not have the Lindelof property [6] .

Proof: Let X be the set of all non-negative resl numbers
with the half-open interval topology, i.e., a base for

the topology is the family of all half-open intervals [é,b)
for a and b in X.

(1) The space X is Hausdorff. For let x,yeX, say x<y.
Then there is a point zeX such that x<z<y and therefore [0,z)
and [},y+1) are disjoint open neighborhoods of x and y respec--
tively.

(2) The space X 1is paracompact. Let U be an open cover-
ing of X and let U be a refinement of'i(whose members are
sets of the form [é,b) where a,beéX, Let E be the set of all
points q of X which satisfy the relation a<g<b for no neigh-
borhood [a,b)eZ(ﬂ We shall now show that E is closed rela-
tive to the natural topology of the real numbers. Let zeX-E,
then there is a set [a,b) €74 such that a{z<b, and since
the open interval (a,b) contains no points of E, z does not
belong to the closure of E, Thus E 1s closed relative to the

natural topology of the real numbers and consequently the
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complement of E is the union of a countable number of dis-
joint open intervals I;,I,,***. Clearly for each n the left
endpoint of In is a point of E and conversely every point of
E is a left end point of some interval In' Hence if In is the

interval (qn,fn) it follows that E= U{q_n} and hence that
n
X=Lnj({ql;g UIn). For each n there is a member Yq_n,wn)=Dn of

ﬂ/(where wn<fn), so let Yn be fhe collection of all open
intervals (a,b) such that [a,b) belongs to % and [a,b)C.'[qn,fn).
Now suppose zé[wn,fn). Then, since z does not belong to E,
there exists [t,h) in such that ze(t,h) and since f €E,
fn¢[t,h). Thus (t,h) belongs to ) and so Y, is an open cover-
ing of [_wn,f‘n). Now under the natural topology of the real
numbers [wn,fn) is a metric space and therefore paracompact
by Theorems 1.1 and 1.2. It follows that there is a locally
finite open refinement Sn of b/n that covers [wn’fn)‘ Let €'n
be the collection of intersections of members of 'Sn with
[wn,fn). The members of €n are open in the topology for X
since each member of En is a union of sets of the form [a,b)
or (a,b). Moreover, each member of En is a subset of a mem-
ber of leand therefore a subset of a member of Z{ . Thus if

MNn 1s the collection obtained by adding the open set Dn to
En,’)'(n is a locally finite open covering of {qn}UIn whose
members are subsets of U, Therefore Tl= U";?n is an open refine-
ment of T that covers X.j'{ is a locallynfinite covering of X,

for let x€X. Then there exists exactly one n such that x
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belongs to [qn,fn)=DnU [wn,fn). If xeD_ then, by the con-
struction., Dn is an open neighborhood of x and no other
member of 7] meets Dn; and if xe[wn,fn) then some neighborhood
U of X meets only finitely many sets ofT(n, and hence the
neighborhood U N [wn,fn) meets only finitely many members
of 'T( « Thus X is paracompact.

(3) The space X is also Lindelof. First, notice that
X is fully normal. For by (1) and (2) X is a Hausdorff and
paracompact space and therefore normal by Theorem 1.5 and
consequently fully normal by Theorem l.l,. Now let U be
an open covering of X, ‘L(/ be an open star refinement of L
(we may suppose the sets of ‘(/(,are of the form [a,b)), 7 be
a family of disjoint sets of L{l, and 7 ¥ be the family of
all such 7. Partially ordering ‘7* by set inclusion, it is
easy to see that every chain in Y ¥* has an upper bound and
consequently, by Zorn's Lemma, ‘T% has a maximal member 7.
‘7 is certainly countable, so let 7 = {[ai,bi)} and for

each i let Ui and V, be some members of U containing the

i
stars of a, and b, respectively. Then the family of all

i i
such Ui and Vi is countable and, moreover, covers X. For let
x€X. If x belongs to Eai,bi), for some i, then x€TU,.
So suppose x does not belong to tai,bi) for any integer 1.
Then for some [a,b) in 2(, x¢[a,b), and since 7 is maximal,
Ya,b) meets fai,bi) for some integer 1. Therefore x belongs

to Ui or Vi’ Thus X is Lindelgf.

(44t) The product space XXX is not normal., Let Y=
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{(x,y) € XXX:x+y=l}, A be the set of all points of Y whose
first coordinate is irrational, and let B= Y-A. Clearly A
and B are disjoint. They are also closed. For suppose (X,Y)
does not belong to A. If X, + Jo>1 , then for any positive
number e, the neighborhood [x, ,Xq +e)><_[y° 3Jo +8) of (Xo 5% )
does not meet A; and if x, +y,< 1, the neighborhood {ko 1Xe *e)X
[¥% »% +e) of (xs ,y, ) does not meet 4 if e=y2 d, where 2d
is the distance from the point (Xe ,yJo ) to the segment x+y=l.,
Thus A, and similarly B, is closed.

Suppose U and V are open sets of XXX that cover A and
B respectively. Let Q(x)={e:[k,x+e)><[;-x,l~x+e)c:jU} for x
such that (x,1-x)€ A. Now define a function f on A as follows:
f(x)=1 if 1€ Q(x) and f(x)= sup. Q(x) if 1¢Q(x). Then f 1is
defined on the set of irrational numbers T in the closed unit
interval I= [b,l] and f is never zero. Moreover, T= Cj Tn’
where T, = {x:f(x) 31/n} and I = TUI'where I'is the rgg}.onal
numbers of I. We assert that: for some rational number r in
I, and for some integer n, r belongs to the Euclidean closure

Q
of T . Suppose not. Then, for all integers n, T_ does not

n

contain any rational numbers of I, and consequently iz is void,
i.e., Tn is nowhere dense for all n., But Ilis countable and
consequently I=[b,1] is of the first category. Since I= [O,i]
is a complete metric space, we have contradicted Theorem 2.5
and therefore our assertion is true. Thus there is a rational

number r belonging to the closure of Tn’ for some n. Now let

r’ . -
\ ==[r,r+e))([i-r,l-r+e) be a neighborhood of (r,l-r) that
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is contained in V and let q»0 be such that 2q<min. {e,l/h:?.
By the above, there is an irrational number x such that |r-x|<q
and x¢T, = {x:f(x)zrl/n} . We shall now show that (r+ag;lL-r)
belongs to UfJV. Clearly (r+q,l1-r) belongs to V. If x)r,
then 0<(r+q)-x = r-x+q<29<1l/n, so
x¢r+q<x+1l/n and
(1-r)-(1-x) = X~-r<q<l/n, so
1-x<l-r<l-x+1/n.
Hence (r+q,1-r)e-[?,x+1/h)>([?-x,l-x+l/h)c:U. If x¢r, a
similar demonstration will achieve the same result. Thus
U and V cannot be disjoint and therefore XXX is not normal.
(5) The product space XXX is not Lindeldf. Define the
set Y as before and let U be the open covering consisting of
XX X =Y and open sets of the form [k,x-l))([i-x,l-x+l) for
(x,1-x) in Y. Then the covering U is not countable and no
countable subfamily of U can cover XX X. Thus XXX is not
Lindeldr.
We have, therefore, obtained (by Theorems l.l, 1.5, 2.2,
and 2.6) the following:
(1)The topological product of two Lindel®f spaces need
not be Lindelbf .
(11i) The topological product of two normal spaces need
not be normal.
(1iii) The topological product of two paracompact (and Haus-
dorff) spaces need not be paracompact (or even normal).
(iv) The topological product of two fully normal (and Haus-

dorff) spaces need not be fully normal (or even normal).



CHAPTER TIII
PRODUCTS OF A GIVEN SPACE WITH A COMPACT SPACE

The first part of this chapter will be devoted to theorems
involving the topological product of a compact space and a
space enjoying a generalized compact property. The second
part will deal with normality of product spaces.

The first theorem will be the classical theorem of
Tychonoff on the product of compact spaces. We will need
the following definition.

DEFINITION 3.1%. : A family {{ of sets has the finite
intersection property if and only if the intersection of the
members of each finite subfamily of & 1is non=-void.

THEOREM 3.1 : The topoiogical product of an arbitrary
family of compact spaces is compact [3] .

Proof: Let X = "]TX.a be a product of compact spaces and let
F be a family o?‘eglosed subsets of X having the finite inter-
section property. Set

F¥= [£:H 1is a family of subsets of X having the finite}
intersection property and such that FC A .

Partially ordering F* by set inclusion, it is easily seen that
every chain in F* has an upper bound in F* and therefore by
Zorn's lemma F* has a maximal member 3. Thus? is the largest
family with the finite intersection pr‘operty containing F.
Since a space is compact if and only if every family of closed

sets having the finite intersection property has a non-void

31.
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intersection, it suffices to show that ﬂ{ﬁ:Bé?}#yf.
It is easy to see that the family % has the following
properties:
(1) BER and COB— ceB.
(11) Bl,Baeﬁ—eBlnBEeﬁ .
(111) C NB#Q for all BEF—>CE€B, and
(iv) P&['B] = {Pa: [B] :BeB} has the finite intersection
property. (Since @ # Pg [Bl N Bé|c:Pel [Bﬂn P, [Ba:p.
Since Xg is compact, X, has the finite intersection property

and therefore, by (iv) for each aA there exists x, in Xj

a
such that x_ ¢ {Pa [ B]:BEB}. Hence U (] P [B] # @ for each
neighborhood U of x, and consequently P;l [U] nB#'(pfor each
neighborhood U of x, and each BEB . Therefore every basic
neighborhood of x is in 7B and so x€B for all BE€ B . Thus

X is compact.

In Chapter II we saw that the product of two paracompact
spaces need not be paracompact. However, we do have the follow-
ingsz

THEOREM 3.2 : The topological product of a compact space
and a paracompact space is paracompact {1] o
Proof: Let X be a compact space, Y a paracompact space, and
let UL be an open covering of X>Y., For each (x,y) in XXY
there exist open sets ny,wxy in X and Y respectively such
that (x,y) is in nyxwXy and Vmp(wjCy is contained in some
set of W . The resulting family {nyxwxy:(x,y) GXXY} is

an open refinement of 7 covering XXY. Now since X is compact,
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there exists, for each y€Y, a finite subset A, of X such that

y
{ixyixeA} covers X. Let Wy={i, :xeag}. The family{iy:yev}

y
covers Y and therefore has an open locally finite refinement
{Np :ﬁeB} that covers Y. For eachpgeB, choose yﬁeY such that
Npcwyﬂ . Finally, let‘(/L":{nyF)(Np :@eB and xeAﬁ .'f/(/refinef'.
U since ny’)( NgC nysx W.yPCnyPXnyp , if geB, and xeAyp U is
a locally finite cover of XXY, for let (x,y) belong to XXY.
Then there exists geB such that yeNp and there exists ,ZGAyP
such that xevzyp. Hence (x,y) belongs szFXN!g s 1.6., covers
XXY. On the other hand, there is an open set W containing y
such that W meets only finitely many N‘g, and for each such ‘6’,
X meets only finitely many szﬁ with zeAy‘g . Hence XXW meets
only finitely many sets of U’'. Thus XXY is paracompact.

Replacing paracompactness by countable paracompactness,
we now have the following analogous result.

THEOREM 3.3: The topological product of a countably
paracompact space and a compact space is countably para-
compact [2] .

Proof: Let X be a countably paracompact space, Y be a com-
pact space, and letiUi:i=1,2,'“'"} be a countable covering of
XXY. For each positive integer 1, let Vi be the set of all
xe€X such that {x}XYC \“_}in. If eri, then for every point
(x,y) of {x}xY there are sets M and N such that M is open
in X, N is open in Y, and (x,y)eM XN C UUj. Now since Y
1s compact a finite number of these setgsli\i cover Y; let Mx

be the intersection of the corresponding finite number of the

sets M. Then xeM_, M_ is open and M_XY C U U,; hence
x? 'x b d jei J
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MxC:Vi' Therefore Vi is open for all integers i. Also,
for any xeX, {x}XY is compact and therefore (since {Ui}'covers
{x}XY) {z}X Y is contained in some finite subfamily of {Ui}.
It follows that xtVi, for some i, and therefore {Vi} is a
covering of X. Since {Vi}.is countable and X is countably
paracompact, gVﬁ has an open locally finite refinement {Gi}
such that G;CV; (by lemma 1.2).

For each i and for each j such that j<i, let Gij=
(GiX Y)ﬂUj. Then Grij is an open covering, ‘of XXY. For let
(x,y) belong to X XY, then for some i, x€G, , hence (x,¥)
belongs to Gy XY and since G4CV,, (x,y)e xIXYC jL)Ui. There-

fore, for some jgi, (Xx,y)eU. and it follows that (x,y)EG

J i
Moreover, since GijCUj’ {Gij} is a refinement of {Ui}. jlso,
if (x,y) belongs to X XY, x belongs to some open set H which
meets only a finite number of the sets of {Gj}. Then HXY

is an open set containing (x?y) which can meet Gij only if

H meets Gi’ But, for each i, there are only a finlte number

of the sets G Hence HXY meets only a finite number of

140
sets of {Gij} ‘j hence {Gij} is locelly finite. Thus XXY is
countably paracompact.

The techniques of the above proof are useful in proving
the corresponding theorem for countable compactness.

THEOREM 3.l4: The topological product of a countably
compact space and a compact space 1s countably compact.

Proof: Let X be a countably compact space, Y be a compact

‘'space, and let iU1:i=1,2,-'~} be a countable open covering



35.

of XXY. For each positive integer i let vy be the set of all
x€X such that {x}xy 'L<)'Uj' Proceeding exactly as in the
preceeding theorem, {Vi{;s a countable open covering of X.
Since X is countably compact, finitely many members Vi 9°°°,

1
Vin of {Vi} cover X. Let

U = {U;:%N= max. {1,701,
7 is a finite subfamily of {Ui} that covers XXY, for let
(x,5)e XX Y. Then x belongs to one of the sets Vil,“',Vin,
say to V; , and therefore (x,y)efx}xY U.UjC‘_.LJUj.
1 jey <N

We now turn directly to the question of the normality of
product spaces. As we saw in Chapter II the product of two
normal Hausdorff spaces need not be normal, We shall subse-
quently show that the product of a normal space and the closed
unit interval need not be normal, First, we have the follow-
ing lemmasz

Lemma 3.1l: There is a countable base for the open'sets
of a compact metric space.
Proof: For each positive integer n, L{n={1\l(x,l/n):xe}(} is
an open covering of a compact metric space X and for each
n, there exists a finite subfamily of ‘L(n that covers X. The
union U of these finite subfamilies is a countable covering
of X and we shall show that U is the desired base. Let U be
an open set containing some point x in X. Then d(x,X-U)=
inf, <)'d(x,z:.) :,ZEX’-U} =q>0, and there exists a positive integer
n and a member N(z,1/n) of U{ such that xeN(z,1/n) and 2/n<q.
Hence d(w,x) € d(w,z)+d(z,x) < 1/n+1/n<q if weN(z,1/n) and
therefore xeN(z,1/n) C U.
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We now give a sufficient condition for a product space
to be normal.

THEOREM 3.5: The topological product of a countably
paracompact normal space and a compact metric space is
normal [2].

Proof: Let X be a countably paracompact normal space, let Y
be a compact metric space, and ‘let A and B be two disjoint
closed sets in the product space XXY. By the above lemma
there is a countable base{Gi} for the open sets of Y. Let
lEZ-'YGi, where Y is any finite set of positive integers
and for each xeX, let Ax and B, be the sets defined by:
{3 XA =(f=XxY) (14 and {x}XB =({x}X¥) [1B. Since [x}XY
is homeormorphic to ¥, Ax and Bx are closed (and disjoint).

Let Ur={x:AXCHYCﬁ;CY-Bx}. U, is open, for let x.€X
be such that AX..-,C%" Then, for each ye¥Y-E,, (x, »7)¢ A and,
since A is closed, there are open sets M In X and N in ¥ such
that (x,,y) belongs to MXN and MXN does not meet A. Since
Y-H,is closed in Y, 1t is compact and therefore a finite
number of the sets N cover Y-Hy. If M_ is the intersection

Xq
of the corresponding finite number of the sets M, then M

O

is open and M X(Y—Hr) does not meet A. Hence 1f xeM nd

y€A, then (x,y)e A, Therefore (x,y)#M X(Y-Hr) and c:)nse-
quently AxCHY‘ Thus A CHrfor all xeMy and therefore the
set {x:AxCH},} is open. Now let x,be a point of X for which
HyCY-B_ . Then for each yeH., (x,,y) B and, since B is

o

closed, there are open sets M in X and N in Y such that (x.,y)
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belongs to MX N and MXN does not meet B. Since 'H_y is closed
in Y, it is compact, and so a finite number of the sets N
covers E. If Mxois the intersection of the corresponding
finite number of the sets M, then Mx.,is open and MKZ(H_,; does
not meet B. Now let xechand yeBy. Then (x,y)eB; hence
(x,y) does not belong to Mxoxﬁ';, and y¢H;, so that Hy CY-B..
Thus E i1s contained in X-Bx for all xeN\xeand therefore the
set {x:H_x'CY-BX} is open. Since Uyis the intersection of the
latter set and the set {x:AxCHY'}, Uymust be open.

Now let xeX; then for each y in Ax’ nyx since A and
B are dis joint. Moreover, since Y is a metric space, Y is
normal (Theorems 1.1 and 1l.4) and since B, is closed there
is a G; such that yeG;CG CY-By. Since Y is compact, a
finite number of these sets Gi covers the closed set Ax’ i.e.,
for some finite set Y of positive integers Axcité{( G;=Hy end
Hy = j% G;CY-B_. Hence x belongs to Uy. Thus the open
sets Uy cover X. Since there are only a countable number
of finite subsets ¥ of the positive integers, the covering
gUY} of X is countable. . Since X is countably paracompact,
by Lemma 1.2, {UY} has a. locally finite refinement {Wy} that
covers X with W,CUy. Moreover, by (iii) of Theorem 1.6,
{w,? has a refinement {v,_,} (still locally finite).that covers
X with YCV /CW,CUy. Let U be the open set \J((VYXHY).
For any point (x,y) of A, and for some V%, xeVyCUp. Then
yeA:xCHY and therefore (x,y)€ V., XHy . Thus ACU. More-

over, since ny} is a locally finite covering of X, every
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member X of X is contained in an open set G(x) which meets
only finitely many of the sets Vy; and hence the neighbor-
hood G(x)X Y of (x,y) meets only finitely many of the sets

Vy X Hy . Hence (x,y) belongs to the closure of some V}XH@gi.e.,
U= yV;Y-I-I_;. But Vy X Hy = VyXH,. Therefore U = L{’ (T XH,) C
U(U,XE;). But if (x,y)eg‘)(Ur')('ﬁ;) then (x,y)elyXHy for some
; and consequently B, CY-B,. Thus (x,y)ﬁ‘B. Hence the open
set U contains A and its closure does not meet B. There-

fore XXY is normal.

In conclusion, we noﬁ give a necessary and sufficient
condition on a normal space X for the topological product
of X and the closed unit interval to be normal. The follow-
ing theorem, which is also due to C. H. Dowker, justifies
the concept of countable paracompactness.
THEOREM 3.6: The following three properties of a
topological space X are equivalent:
(i) The space X is countably paracompact and normal,
(i1) If g is a lower semicontinuous real function on
X and h is an upper semicontinuous real function
on X and 1if h(x) < g(x) for all xeX, then there
exists a continuous real function f such that
h(x) < £(x) < g(x) for all xeX.
(iii) The topological product X X I of X with the closed
unit interval I= [0,1] is normal.
Proof: (i)—=>(ii). Let X be a countable paracompact normal

space and let g and h be lower and upper semicontinuous real
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functions with h(x)< g(x) for all xeX. For each rational

number r let G,= {x:h(x) < r‘<g(x)}. Since g is lower semi-
continuous, {x:g(x)j>r} is open, and, since h is upper semi-
continuous, fx:h(x)<ﬁr} is open. Thus Gr is open for all r.

For each xeX we have h(x)< g(x) and so there is a rational
number r such that h(x)<r<g(x); hence xeGr. Thus {Gr} is
a.countable open covering of X, Hence, since X is countably
paracompact and normal, there is, by Lemma 1.2 and Theorem 1.6
a locally finite open covering {ﬁ;} of X with U, <Gy, and also
a locally finite open covering {Vr} of X such that V;’c:Ui"

By Urysohn's Lemma, there is, for each r, a continuous
function f - from X to [0 ,r] where [-%,r] has the usual
topology and f (x)= -®1if x ¢ U, f (x)=r 1f xeV,. Let f(x)
be the least upper bound of the extended real numbers fr(x).
Each point x, of X is contained in an open set N(x, ) which
meets only a finite number of the sets U.. Hence, in N(x, )
for all but a finite number of values of r, fr(x)= -©,

Thus in the neighborhood N(xs ), f(x) is the least upper
bound of a finite number of continuous functions, hence f
is continuous on N(x, ). But x5 is arbitrary. Hence f is
continuous on X. In Ur’ fo(x) £ <g(x) and in X-Ur, fr(x)=
-<g(x). Thus fr(x)<g(x) for each r and, for each x, f(x)
is the least upper bound of a finite number of fr(x), each
less than g(x). Thus f(x)< g(x). Each x is in some v,

and for this r, fr(x)= r; hence f(x) ?’fr(x)= r » h(x).

Thus f(x) > h(x). Therefore h(x) < f(x) < g(x).
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(1ii) —> (1) Let X be a space satisfying condition (ii)
and let A and B be two disjoint closed subsets of X. Define
functions h and g on X as follows:

h(x)= 1 if xeA, h(x)= 0 if x ¢ A, and

g(x)=1 if xeB, g(x)= 2 if x¢B.
Clearly g 1s lower semicontinuous, h is upper semicontinuous
and h(x) < g(x) for all xeX., Hence there is a continuous
real function £ on X with h(x) ¢ f(x) ¢ g(x). Let U=
{x:f(x))l} and V= {x:f_(x)(l}. Then U and V are disjoint
open sets; if x €A we have 1l=h(x) < £f(x), hence x ¢U, and
if x¢ B we have 1=g(x) >f(x), hence xeV, Thus AC U and
BV and therefore X is normal,

Now let {F1::i=l,2,"‘} be a decreasing sequence of
closed sets with vacuous intersection. Define functions h
and g on X as follows, h(x)= 0 for all xeX and g(x)= 1/i+l
for xeF;-F, ., for (i=0,1,2,°"") where F_ means the whole
space X. The function h is continuous, hence upper semi-
continuous. To show that g i1s lower semicontinuous let the
real number g be given. For g1, {x:g(X) Sq@ = X; for q£0,
{x:g(x)s q} is voidjand if 0<q<1l then for some positive
integer i, 1/1+1§ q<1/i hence {x : g(x) sq} = Fi' Thus,
in any case, {x:g(x)ﬁq} is closed and therefore g is lower
semicontinuous. Hence there is a continuous real function
£ on X with 0<f(x)<g(x) for xeX. Let G,= {x:f(x)< 1/i+1f.
Then G, is open, F,CZG, and, since f(x) >0 for all x,

i

0
N G1 is void. Thus by Theorem 1.6, X is countably paracompact.
i=1
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(1)—>(1ii1). This follows immediately from Theorem 3.5
and the fact that the closed unit interval is a compact fﬁetric
space.

(111) —>(1). Let X be a space for which XXI is normal.
Then X is homeomorphic to the closed subset XX{0} of the
normal space X XTI and therefore X is normal. Let {F1:1=1,2,---}
be a decreasing sequence of closed sets in X with vacuous
intersection. Then, since the half open interwal [0,1/1) is
open in I=D,T] W= (X-Fi)>< [0,1/1) is open in X X I. Let

=0
A be the closed set X X I-UW

x If x € X, then, for some
i=1

1, xeX-F_ and (x,0)€ wi
i

A and B are closed disjoint subsets of the normal space ®XI.

and hence (x,0)¢ A. Hence if B = XX{0%,

Therefore there are disjoint open sets U and V such that
AC U and BC V. Set Gi=fx:(x,1/i)eU}; then Gi is open. For
each x€X, (x,0)€B and hence for sufficiently large i, (x,1/1)
belongs to V. For V is an open neighborhood of (x,0) and
therefore the sequencs {(x,l/i):‘i=1,2,-“} is eventually in
V. Thus for some i, (x,1/i)eV and so (x,1/1)¢U. Thus ﬁlc}i

is void., Moreover for xeFi, if j<i, FiCFj and x#X-Fj; and
if i, 1/14[0,1/j). Hence, in any case, (x,l/i)glwj for
j=1,2,+++. Hence (x,1/1)¢ACU and xeG,. Therefore Fy . Gy
and by Theorem 1.6, X is countably paracompact. This completes
the proof of the theorem.

REMARK: Since a normal space need not be countably para-

compact (see the example given at the end of Chapter I) the
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topological product of a normal space and the closed unit
interval need not be normal., It is not known, to this author's
knowledge, whether there exists a normal Hausdorff space X
such that XXI is not normal. But by the above theorem and

the example due to M. E. Rudin mentioned at the end of

Chapter I, there exists such a normal Hausdorff space if

there exists a Souslin space.



APPENDIX

THEOREM A: There is a separable normal Hausdorff
space X which is not paracompact and does not have the
Lindeldf property [6] .

Proof: To construct the desired space we shall need the
following lemma:
For each ordinal « in the set ),

1
there is a function fx defined on the set W

of all countable Qrdinals
o of positive

integers, with values in wo, such that: 1if «x<f, there
exists an integer m(o(,f )= B,%X) such that fi (i)<f‘@ (1)
whenever i>m(0(,ﬁ ).

Proof of the lemma is by transfinite induction. Define
fo”'od_) W, by fo(i)=1 for all 1e.wo. Let'eewl and suppose
for each 0(<f? that fx 1s defined in such a way that, when-
ever °(l< 0(2< {S’ s there exists m(#4, &) for which

The set {&:o((ﬁ} is countable and hence can be reordered as

a sequence 0(1’ °(2,"‘, A

s "'+ Define f‘g :wo-—>cu93, by

i

feo (1)= 1+ £. (1) for i€ w,.

£ j§1 4J 0
Then for each D(n<le s, let m( D(n,p )= n and observe that

1
Dn— g (1)=1+ 3 fi. (L)Y £x _(1).
ﬂ j=l J n

The lemma now follows by induction.

In the proof of this theorem Greek letters will always

denote countable ordinals; and the letters i, j,k, and n

L3.



will stand for positive integers.

(1) Construction of the space X. Let A denote the set
of all ordered pairs (m,n) and B the set of all countable
ordinals., Set X= AU B. We shall now use the set {f“ :dehﬁ}
of functions constructed in the above lemma to define a
topology for X,

The set N will be a neighborhood if and only if it be-
longs to one of the following classes.

(1) Every point of A is a neighborhood of itself.

(ii) If X is not a limit ordinal, then corresponding
to each n there is a neighborhood of £ which con-
sists of & itself, and all pairs (k,fo (k)) with k) n,
(iii) If % is a limit ordinal, choose an ordinal f<%,
and a positive integer n(¥Y ) for each Y such that
ﬁ<7§% For each such collection of choices there
is a neighborhood of & which consists of (a) all ¥
such @<¥¢x, and (b) all pairs (k,fy (k)) with
kyn(Y) and @g<¥sA,
Now, for x€A, let T{(x) be the family of all sets containing
x; for 4¢B such that ® is not a limit ordinal let Z{(x) be
the family of all sets containing a neighborhood of & as
defined in (ii); and for «A¢B such that ® is a 1limit ordinal
let U(X) be the family of all sets containing a neighborhood
of kK as defined in (iii). It is easily seen that U(x) for xeX
is a neighborhood system of x relative to a topology for X.

Moreover the neighborhoods as defined in (i), (ii), and (iii)



are open with respect to the generated topology.

This completes the construction of the space X. We
sha;l.l now show that X has the desired properties.

(2) The space X is separable. Since every neighborhood
of any point of B meets the countable set A, A=X. Thus X is
separable.

(3) The space X is Hausdorff. Let x and y be distinct
points of X, If x and y both belong to A the fx} and {y}
are disjoint neighborhoods of x and y respectively. If
x= (m,n) and y=%, where X is not a limit ordinal, choose
the integer n{(®) such that n(®)>m. By the constructions (i)
and (ii) of (1) x and y have disjoint neighborhoods. If
x=(m,n) and y=%, where ® is a limit ordinal choose f* and in-
tegers n(¥)>m for all ¥ such that f<¥$X, By the constructions
(1) and (iii) of (1), x and y have disjoint neighborhoods.
If x=« and y=ﬁ’, where % and ‘13 are not limit ordinals choosse
n=k= m(«,f). By the construction (ii) of (1) the neighbor-
hoods of x and y corresponding to the choices of n and k,
respectively, are disjoint., If x=Aand y=F, where « is not
a limit ordinal and § is, choose <} if <% and x<KEif f>X,
Then choose n(¥)=m(X,¥) for all ¥ such that 7<¥{f. By the
constructions (ii) and (iii) of (1) the intersection of
the basic neighborhood of y=ﬁ (corresponding to the choice
of T and the cholce of n(¥) for all T<Y$f) and any basic
neighborhood of x=%1is void. Finally, if x=%and y=/9 »
where X and § are both limit ordinals (say «<g) choose T< X
and choose § such that «*<8§<f, For all ¥ such that 7<I<X
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choose n(¥)=m(Y,«); choose n(X)=m(x,¥) for some ¥ such
that T<{¥X«A; and for all A such that J<7~€fchoose n(A)=m(A,%) .
Now let N be the neighborhood of % corresponding to the choices
of T and n(¥) for all ¥ such that 7<¥<¥, and let N be the
neighborhood ofF corresponding to the choices of § and n()
for all A such that &A<¢f. Then N and N are disjoint neigh-
borhoods of X and p respectively., For by the choice of § s
N and N’ have no ordinals in common and by the choices of
T,§, n(¥), and n(A), if ¥ is such that 7<¥«and A is such
that J<7L$F, then fy (k)¢ fx(k)< £5(k) whenever (k,fy(k)) be-
longs to N and (k,fy (k)) belongs to N . Thus N and N’ have
no members of A in common. Hence N and N’ are dilsjoint and
we have now proved that X is Hausdorff.

(L) The space X is normal. Let H and K be closed dis~-

joint subsets of X. If both H and K are uncountable, then
HN B and KN B are both uncountable and there exists se-
quences f1, Boy*; ‘gn’“. and X, X5,¢00, «p,-++ such that
for each n, B, belongs to H, ¥, belongs to K, and B <% <I€n+1'
Let T be the common limit ordinal of these two sequences.
By the construction (iii) of (1) every neighborhood of T in-
tersects both H and K and since these sets are closed 7¢H NK,
Thus H N K is not void. This contradiction shows that either
H or X, say H, is countable. Since H is countable there

exists a countable ordinal‘xo such that if XeH, 0<<"<0.e:-

% The existence of such a countable ordinal follows from a
well known theorem of ordinal numbers. See [3] .



L.

The construction of disjoint open sets covering H and K will
be carried out with the aid of the integers n(X) now to be
defined for each K,

(1) For °(>°‘0, choose n(x)>m(x,xq).

(ii) Order the ordinals which do not exceed®X, in a
simple countable sequence 0(0, o(l,---- Kpsvees Take
n(0(0)= 1. Then having chosen n(O(O),...,n(O(i_;l),
choose n(d1)>m(0(i,0(j) where 0¢£j<i.

Suppose thataeK. Since X is a countable ordinal and since
H is a closed set there exists an ordinal ﬁ which is maximal
with respect to the two properties: 6 is in H, and §<O_(.
(It is assumed here that H contains ordinals less than«j;
in the contrary case take f=1.) If X is a limit ordinal
construct the neighborhood v’ (X) of X in accordance with
(i11) of (1) using the @ above and the integers n(Y) des-
cribed above in (i) and (ii). If X is not a limit ordinal
construct the neighborhood U'(o() of # in accordance with
(ii) of (1), taking n=n(X). In either case U'(X) does not
intersect H) B. By noting that the neighborhoods described
in (1) are open and that X-H is open it is easily seen that
there exists an open neighborhood U(*) of & contained in U,(°<)
that does not intersect Hfl A and therefore that does not
intersect H.

If X¢H, carry out the same construction interchanging
H and K to obtain an open neighborhood V(x) of « that does
not intersect K. Now let U and V be the sum of all the
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neighborhoods U(«) and V() for o in K and H, respectively.
Clearly both U and V are open, and U and V contain no
ordinals in common (by the choices of F ). Moreover, U and
V contain no points of A in common. For suppose (k,fx(k))eU
and (k,fy(k)€V. Then Y#&<¥ and fo(k)<fy(k) by (i) and (ii),
if ¥7%, and by (11) if ¥<«,,

Finally, set U'= UU(KNA) and V'= VU(HMA). Since all
sets are open and since KNBCU and HNBCV, U' and V! are
open disjoint subsets of X that cover K and H respectively.
Thus X is normal,

(5) The space X is not paracompact. LetUbe the cover-
ing of X consisting of all neighborhoods described in (1).
Then Y is an open covering and every member of Uis a
countable set. If alis any open refinement on(, then the
members of u,are also countable. Suppose every point of
A has a neighborhood that intersects only finitely many
members of 'CCI. This is equivalent to the statement: Every
member of A is contained in but finitely many members of u,.
However, since A is countable and since all open sets meet
A, the union of the members of ulis countable., But the set
B of all countable ordinals is not countable. Thus ‘a,cannot
cover X. This contradiction shows that some member of A must
be contained in infinitely many members of i(/. Consequently
no refinement of U can be locally finite. Thus X is not para-

compact.

(6) The space X is not Lindelof. For let U be the open
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covering of X described in the proof of (5). It is clear
from the proof of (5) that no countable subcover of X can

cover X, Thus X is not Lindelof and the proof of the theorem

is complets,
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