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i. 

INTRODUCTION 

In 1944, J. Dieudonn~, in his paper "Une G~neralisation 

des Espaces Compacts;' introduced the concept of paracompact-

ness as a generalization of the topological property of com-

pactness. In this paper, J. Dieudonne proved that in the 

result 11a compact Hausdorff space is normal" one can replace 

compactness with his generalized property, paracompactness, 

and while he left open the question as to whether the topolog-

ical product of two paracompact spaces is paracompact, he did 

prove that the product of a paracompact space and a compact 

space is paracompact. Since that time a substantial amount 

of work has been done integrating this comparatively new 

topological property, and its subsequent generalization "coun-

table paracompactness, 11 with other already established pro-

perties; in particular, normality. 

It is the purpose of this paper to set forth a number of 

theorems connecting normality, paracompactness, and countable 

paracompactness, and to present the known theorems concern-

ing the topological product of a space enjoying a general-

ized compact property and a compact space. The main theme, 

obtained by utilizing the theorems described above, is the 

following result: The topological product of a normal space 

X and the closed unit interval is normal if and only if X 

is countably paracompact. Chapter I is devoted to the necessary 

definitions and theorems involving normality, paracompactness, 
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and countable paracompactness; we show, for example, that a 

space is fully normal if and only if it is normal and para-

compact. In Chapter II we prove that a number of topological 

properties are productive and, on the other hand, that the 

product of two normal spaces need not be normal; and in 

Chapter III we present the central theorem and also discuss 

the topological product of a compact space with a space that 

possesses a generali~ed compact property. 

The author wishes to take this opportunity to express 

his appreciation for the guidance and assistance given him 

by ~is advisor, Dr. Charles Himmelberg. 

Albert F. Joseph 



CHAPTER I 

SOME DEFINITIONS AND THEOREMS INVOLVING NORMAL SPACES 

DEFINITION 1.1: A familyTof subsets of a set Xis said 

to be a topology fnr X, and the pair (X,T) is said to be a 

topological space (or Xis simply referred to as a space), if 

and only if 

(i) X and f (the empty set) belong to T, 

(ii) the union of any subfamily of T belongs to T, and 

(111) the intersection of any two members of Tis again 

a member of T. 

The members of Tare referred to as open sets and their com-

plements are called closed sets. If N is any subset of X 

containing some member x in X and if XEUCN for some U in T 

then N is called a neighborhood of x. Similarl.J ,· a neighbor-

hood of a set A is a set that is a neighborhood of every point 

of A. 

DEFINITION 1.2: A subfamily B of Tis called 

(i) a base for the topology T if and only if for each 

XEX and each neighborhood N of x there is a member 

U of B such that x~UCN, and. 

(ii) a subbase for the topology T if and only if the 

family of finite intersections of members of Bis 

a base for T. 

DEFINITION l.J: A topological space Xis called 

( i) a T1 -space if and only if for each xEX, {x) is closed, 

1 .• 
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(ii) a T2_-space (Hausdorff space) if and only if distinct 

points of X have disjoint neighborhoods, 

(iii) regular if and only if for each xEX and each neighbor-

hood N of x there is a closed neighborhood M of x 

such that MCN, 

(iv) a TJi-space if and only if it is regular and T1 , 

(v) normal if and only if disjoint closed sets have dis-

joint neighborhoods, and 

(vi) a T~-space if and only if it is normal and T1 • 

DEFINITION 1.4: A family fl of subsets of a space X is 

cal~ed a covering of X if X=U{u:uetiJ. A coveringtlof a space 

Xis called 

( 1) open if every member of tf. is open, 

(ii) countable if ti. is countable, 

(iii) locally finite if for each xEX there exists a 

neighborhood N of x such that N me.eta ( intersec_ts) 

only finitely many members ofU, and 

(iv) point finite if for each XEX, x belongs to only 

finitely many members of 'U.w 
A covering'l/'of X is called a refinement of ti. if and only if 

every member of ·l)- is contained in some member oftl.; a star 

refinement if and only if for each .xeX the union of the members 

of'V- containing x is contained in some member of -ti.. 

DEFINITION 1.5: A space Xis called 

(i) compact if and only if every open covering has a 

finite subfamily that covers X, 



(ii) Lindelgf if and only if every open covering has a 

countable subfamily that covers X, 

(iii) countably compact if and only if every countable open 
f-,}11'/;z 

covering has a~subfamily that covers X, 

(iv) paracompact if and only if every open covering has 

a locally finite open refinement, 

(v) countably paracompact if and only if every countable 

open covering has a locally finite open refinement, and 

(vi) fully normal if and only if every open covering has 

an open star refinement. 

DEFINITION 1.6: A metric space is a pair (X,d) where 

dis a metric for the set X. That is, dis a function on the 

Cartesian product XX X to the non-negative reals such that 

for points x,y, and z of X 

( i) d(x,y) = d(y,x), 

(11) d(x,z) ~. d(x,y) + d(y,z), and 

(iii) d(x,y) = 0 if and only if X = y. 

A base for the metric topology is t re family of all open 

r-spheres (r>O) in X. (See (3]i} for a discussion of metric 

spaces.) 

LEl.\TI~A 1.1: Let X be a normal space and let {ua:aEAJ be 

a point finite open covering of X. Then there exists an open 

refinement {v8 :atAJ such that {v8J is a point finite open 

covering of X and for all a(A., V8 C. v;cu8 [4J• 

~} Numbers in square brackets refer to the bibliography at the 
end of this paper. 
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Proof: If Ua,=:X: for any a, the theorem is trivial.. So assume 

U fx· for all aE:A. Now let cp be a function on A such that a. 
( i) cp (a) = U a, or <p (a) = Va: where V 8 c· U a.' and 

(ii) f cp (a) : aEA} is an open covering of X. 

Let 1l be the family of all such q.> m d order yt as follows: 
I I <f'~'P whenever (f)(a)= <p (a) if cp (a) = Va Clearly the 

' II pair (17 ,,, ) is a partially ordered system. For let <J',q>,<p,E'tl_ 
be such that cp~q>' and <p',qf'. Then if cp(a) = Va we have 

I II I 
<p(a) = q,(a). Therefore cp(a) = cp(a) = Va and conse-

quently q>~<t. Thus~ partially orders 7l • Now let 11' be a 

chain in 11 and let a) = n f <p'( a): q,' E 11' J for a,E-A. 

We now show that • First, a.) is an open set for 
I , I ,;• 

aEA. For suppose cp( a) = Ua for all cp € 'tt . Then <p "(a) --

U a for all q>'e-,( . Then = Ua which is open. If for 
II I r1 ·- ,· t I I II Ii 

some <J>El!, q, (a) = Va, then for cp€1'f such that cpslf] ,q>(a) 
I I I i/ 1 I I/ 

Cq>(a) and for (pE11 such that <p S_<p, cp (a) = cp (a). 

C tl a) of' ( ) 1 onsequen y T = T a which is open. Second y, 

f :aeAJ covers x. For let x1:X. Since {u8 ,:aeA} is a 

point finite covering of X there exist only finitely many 

aeA, say a 1 , ·••,.an, such that x~U8 for lfi~n. Also for some 
Q • i , , 

<p"E1( , cp (ai) = (p (ai) for all i and all cp e77 such that 
II~ cp' I/ ( ) (f) .,,._( ) cp • Thus q:> ai = T " ai for l!:i~n and since 

fcp'(a):aeAf covers X we have xtj cp11 (a) for a~a1 and x i:h 

,P~ a 1 ) for at least o:e i (lH~n). Consequently f cp *<a>} covers 

X and therefore q, ">•e '} • 
Now let m',,:;l11 • If tn1 (a) = V .por some a"'A and m''En -r"·l T a J. '" T "l 



is such that 

and therefore 

/JI It I -If I cp~tp then rp (al = cp(ai). Consequently cp(a)= q>(a) 
I cp cp. Thus cp is an upper bound in 'rt for· the 

chain J'{' and by Zorn's lemma there exists a maximal member 

<p1 in 1l • 
We now complete the proof of this lemma by showing that 

f1 (a) .= Va, for all aEA. To show this we assume that for some 

b~A, cp1 (b) = ub. Set F =x-Ufq,1 (a):a~A.\,and a;ib}. Clearly F 

is a closed set. If Fis empty then \cp1 {~):aEA and alb} cover~ 

X. Therefore define <p2 as follows: for aeA such that a;ib 

set -r2 (a) = <p1 (a.) and <p/b) =~(the empty set). Then 

{ tp.2 ( a) :aEAJ covers X, '('1 cp2, and q>1;i cp2 which contradicts 

the maximality of <p1 • Thus F must be non-empty. But if F 

is non-empty then F and X-Ub are non-empty, closed and dis-

joint subsets of the normal space X. Hence there exists dis-

joint open sets Vb and V~ such that FCVb and X-UbC V~. We 
I 

have therefore VbC~CX-VfUb. Now define cp 2 as follows: 

for aeA such that a#b set <p 2 ( a) = cp1 (a) and set cp2( b )= Vb~ 

Since F = x-LJ{q,1 (a) :a A and a#b}cvb, f q,2 (a) :aEAf covers 

X and since q> 2 (a) = cp1 (a.) for a;ib and <f>2 (b) = Vb while 

<p1 ( b) = Ub we have cp2El(, q,1 q,2 , and <P1;i q> 2 • Again we 

have contradicted the maximality of (])1 • Thus /f\ (a) = Va 

for all a~A and this completes the proof. We will also have 

need of the following result: 

LEMMA 1.2: Let {ui:i=l.,2,···} be a countable open cover-

i:ng of a topological space X. Then if \ ua has an open local-

ly finite refinement there exists an open locally finite re-
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finement Jvi1 of fuij with ViCUi. 

Proof: Let 'W"be an open locally finite refinement of a coun-

table open covering f Ui1 of a space X. For each W in ?Y let 

i(W) be the first integer such that wc::ui(W) and let Vk =U 

{w:i(W)=k}. Thenfvk1is an open covering of X with VkCUk. 

We shall now show that [vJ is locally finite. 

Since'Wis locally finite, for each x in X there is an 

open neighborhood N of x that meets but finitely many members 

w1 , .... ,wn of -W. Moreover, N meets Vk =Uf W:i(W)=kJ if and 

only if there exists W such that i(W)=k and N meets w. This 

means that W=Wj and hence that k=i(Wj) for some j=l,2,•••,n. 

Since there are at most n such integers k, fvk1 is locally 

finite. 

Our first theorem gives us a large class of topological 

spaces that are fully normal. 

THEOREM 1.1: Every metric space is fully normal (101 • 
Proof: Let X be a metric space and let -U. =fua :a~A} be an 

open covering of x. For each xEX there is some a(x)eA such 

that XE.Us( x) and 

that O<e(x)<l and 

{y:d(x,y)< .. e(x)j. 

therefore there is a real number e(x) such 

N(x,4e(x) )cua,(x) where N(x,,e(x) )= 

Let U ={N(x,.e (x)): xt:Xf. Obviously il,,,covers 

X, refinestl and we 
I 

need only show that'U is a star refinement 

of U. 
Let xtX and consider the set H ={x:x~N(x,e(x))}. Now 

xE:H so H is not void. Choose x-i~H such that e(x-il-))'2/3 sup. 

{e(x) :x~HJ. Thus if x(H we have N(x,e(x) )CN(x' ,2e(x)). 



For let y~N(x,e(x)) then d(y,x)<e(x) and consequently 

d(y,x' )<d(y,x)+d(x,x' )<2e(x). So yE"N(x' ,.2e(x)) and there-

fore N(x,e(x))cN(x' ,2e(x)). Also by the choice of xii-,_ 

N( x", 2e (x) )CN( x' ,3e (xi!-)). Finally N( x' ,3e (xi!-) )CN( x-ll- .,4e (xi!-)). 

For let yEN(x',3e(xi!-)). Then d(y,x")<3e(xil-) and since xi~H 

d(x' ,xi!-)<e(xil-). Hence d(y,xil-)<4e(xil-) and therefore N(x'.,3e(xi!-))C 

Thus N(x,e(x) )CN(x' ,2e(x) )CN(x" ,3e(xi!-) )C. 

N(xi\4e(xi!-)) for any x such that xeN(x,e(x)); hence the 

il'-star of x' is contained in N(xil-,4e(xil-))CUa(x-ii-). Since x' 

was arbitrary we have shown that U1 is a star refinement of tl 
and the proof is complete. 

THEOREM 1.2: Every fully normal space is normal and 

paracompact (9) •. 
Proof: Let X be a fully normal space. We will first show 

that Xis normal. Let A and B be two disjoint closed sub-

sets of X and let 'tl. be an open star refinement of the open 

covering f X-A,X-Bj • 

-U. that meet A and 

Let Ube the union of the members of 

V be the union of the members of U that 

meet B. Clearly the open sets U and V cover A and B res-

pectively. Moreover they are disjoint. For suppose xEU n V;. 

then the star of x of the coveringu' meets both A and B, 

and therefore i(_ is not a star refinement of fx-A,X-B}. Thus 

U and V are disjoint and therefore Xis normal~ 

The space X is also paracompact, for let ti. =fu0i:aeAJ 

be an open covering of X. Then there are open coverings -U, 1= 

{ul}, tt2={u2J,···,Un={un],··· such thatUl is an open 
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star refinement oft/. and 1,,,1..n+l is an open star refinement 
n 

of -U.. (n=l,2, •·• •). For any subset Q of X and for any posi-

tive integer n let 

(i) (Q,n) be the union of all sets Un of t(.n that meet 

Q.,, and 

(ii) (Q,-n) = X-(X-Q,n). 

Since the set (X-Q,n) is obviously open, the set (Q,-n) is 

closed. Moreover, we have 

( 1) { Q,-n) = f x: (fxJ,n°)C QJ .. 
For let x~(~,-n). Then Xf(X-Q,nJ and consequently every mem-

n 
ber of ti.. containing xis contained in ,Q,. Conversely, if 

. n every member of V. containing xis contained in Q then 

x{(X-Q,n) and therefore Xf( Q, -n) .. An immediate consequence 

of ( 1} is 

(2) {{Q,-n),n)CQ. 

Now let y€((Q,n+l),n+l). Then there exists Un+l in tln+l 

such that yEUn+l and Un+l meets (Q,n+l). Let xEUn+l(l(Q,n+l) 
o,-,n+l Then YE( fxl,n+l) and since v<., is an open star refinement 

of tin there exists Un in Un such that ( fx],n+l)CUn. Hence 
n n n yEU and since U meets Q, U C(Q,n). Thus we have 

(3) ((Q,n+l),n+l)C:(Q,n). 

The following will also be useful: 

(4) QCP implies (Q,n)C(P,n), 

(5) m~n implies (Q,m)C(Q,n), 

( 6) QC( Q, n) , and 

(7) yE(fx],n) if and only if x~(fyJ,n). 

The obvious proofs are omitted. 



1 n-1 
We now define, for each aEA, V8 =(U8 ,-l) and V~=(Va ,n) 

' 1 2 nc vn if f'or n~2. Clearly V 8 CV 8 C: • • • C: Va • • •, and a is open 

n~2. Notice that 

(i) (v!,l)=((Ua,-1),l)C:Ua by (2), and that 

(ii) if (v~-1 ,k-l) CUa then (V~,k) ((v~-1 ,k),k) C. 

k-1 
(Va ,k-1) C: Ua by (3). 

Thus (V~,k) C: Ua for all k and theref'ore for any k?2 

V~=(V~-1 ,k)C(V~,k)CUa by (4). Thus 

(8) a() 

Va= LJ V~CUa. 
k=l 

Futhermore, since -U..1 is a star refinement of U, if xEX 

then ( {x1 ,l)CU8 for some a and therefore x((Ua,-l)=V! C.Va 

by (1). Thus 

(9) x=Ufva:a~AJ. 
Also for any xEV8 , there exists nJ2 such that x,v~-l and 

therefore 

( 1 O) ( f x1 , n ) C V~ C Va • 

We now well order the set A and define a transfinite 

sequence of closed sets Hna by setting Hn1=lv1 ,-n) and 

Hna=(Va- UHnb,-n) for each n (the sets are closed by the 
b<a 

remark preceding (1)). We now have: 

(11) If a#b, no Un in u._n can meet both Hna and Hnb• 

For we can suppose a<b. Then if un meets Hnb let xtX be 
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Thus Un C Vb- LJ H and 
a<b na 

consequently Un n H is void, Moreover 
na 

(12) U H =X. 
n.,a na 

For let xEX. By (9) there exists a first aEA such that XEV., a 
and from (10) there exists n>0 such that (fx}.,n)CVa. We 

assert that xEHna• For suppose not. From (1) Hna = 

{ x: ( fxJ ,n)C(V - UH b) and theref'ore ( fxJ ,n) contains a 
a b<a n 

pointy in Hnb f'or some b<a, But then xE(Hnb'n)C((Vb,-n),n)C 

Vb (f'rom (4) and (2)) and this contradicts our choice of a. 

Thus x~H and therefore U H =X, 
na n.,a nai 

Now.write E =(H ,n+3) and G =(H .,n+2). Then 'ir = na na na na na, 

(H ,n+))C:( (H ,n+3) .,n+3) C (H ,n+2)= G by (6) and (3). 
na na na na: 

Thus 

(13) H CE Cir CG • n~ na na na 
Also 

. n+2 n+2 
( 14} if a;'b, no U in -U.. can meet both G and Gnb. 

n+2 na 
For suppose U meets both G and G b" Then for some xEX., na n 
xt:Un+2no . Hence f'or some U~+Z in 'tln+2 containing x., 

na 

u:+c meets Hna. Thus un+2· n u:+2 and consequently ( [x] ,n+2} 

meets both H and G b' Since u.n+2. is a star refinement of na n 
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--1, n+l n+Jl. n+l _n+l 
L.-t. for some U in ti_ , ( fxJ ,n+2) C: u and consequently 

n+l 
U meets both H and G b" na n But G =(H ,n+2)C{H .b,ri+l) nb nb n 

by (5). n+l Thus U meets H and (H ,n+l). Let ye- X be na nb · 

such that ye u . n (Hnb'n+l)., Then for some u i} in 

l t · i ··un+l t H U n+ con a 1.n ng y; • i} me e s nb. Thus (fy},n+l) meets 

both H and H b d . ll un+l i a star refinement of an s,nce s na n 

un for un in Yi.n we have that n and Hnb" some U meets both H na1 
By (11) this is not possible. Hence (14) follows. 

Now write Fn= U~a• Then F is closed. For let 
a, n 

xE F, then every neighborhood N{x) of x meets some E , hence n na 

some E • na 
n+2: n+2 In particular some U in -l.t. containing x meets 

n+2 some E and by (14) U can meet only one E na na 
some a e: A, xE'E CF • na n 

• Thus for 

Finally we set W18=G18 and W =G -(F1 U F2, U. ~. U F ) na na · '. n -1 

for n>l; thus the sets W are open. We shall show that they na 
form the desired refinement. In the first place U W =X. 

n,a na 

For let xE:X, then we have x in some H by (12) and there-
na 

fore in some T. Let m be the smallest integer for which 
na 

x is in some ~a. Then for some a, xEGma and xr/F1 , • • • ,Fm-1; 

hence xEWma· Thus fwnaf is an open covering of X. Next, 

using (5), (2), and (8) we have WnaCG =(H ,n+2)C. na na 
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(H ,n)= ((V - UH ,-n),n)CV - U H b CV C.. U • Thus na; a b{a nb m b< a n a, a 

fwnJ refines ti . We .now show that( wnJ is locally f'ini te. 

Let x~X; as before, x(H for some n and some a so ({xJ,n+J)C na, 

Ena C Fn. Thus ({x/,n+3) does not meet any Wkb if k)n. 

( 1 n+2 Further, for a given k~n, we have ( x ,n+3) C:: U for some 

n+2 .,, n+2 n+2 k+2 k+2 U in~ and U is contained in some U in tl . 
k+2 By (14) U can meet Gkb for at most one value of b. Thus 

the neighborhood.(fx},n+3) of x meets at most n of the sets 

Wkb; hence Xis paracompact. 

THEOREM 1.3: Every metric space is paracompact and normal. 

Proof: Theorems 1.1 and 1.2. 

In Theorem 1.2, we showed that a fully normal space is 

normal. The following theorem gives a necessary and suff'icient 

condition for a normal space to be fully normal. 

THEOREM 1.4: A space Xis fully normal if and only if 

it is normal and paracompactf9] ., 

Proof: By Theorem 1.2 if Xis fully normal then Xis normal 

and paracompact. On the other hand, suppose Xis a paracom-

pact normal space and let t(= {u aJ be a locally finite open 

covering of x. Since a locally finite covering is a point 

finite covering (definition 1.4) and since Xis normal, by 

Lemma l.I. there exists open setsfv2 Jsuch that V8f-v-;cu8 : 

for all a and LJfv ~=X. By hypothesis, each xE'X has an open . a 
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neighborhood G(x) that meets U for only finitely many a's, 
a 

say for aEA(x). Let B(x) be those members of A(x) for which 

x ua:., and let C(x) be those members of A(x) for which x f V81 • 

Clearly B(x) U C(x)= A(x). Let W(x)= G(x) n ( n {ua :a~B(x)j >n 
( n {X-Vai: a E C(x)}), and let'W"= f W(x) ;xe XJ• Clearly 

x f W(x) and by the finiteness of the sets B(x) and C (x), 

W(x) is open. Thus ?Vis an open covering of X. We shall 

show that If/' star-refines t,( . Let yt:X and let b be such 

that yEVb. Then if y belongs to W(x), W(x) meets v;;- and so 

beA(x) and bfC(x). Thus b~B(x), which implies that 

W{x)CUb by construction. Thus the union of the members of 

W containing y is contained in Ub and this completes the proof. 
,. 

The following theorem, which ls due to J. Dieudonne, 

is a generalization of the result: A compact Hausdorff space 

is normal. 

THEOREM 1.5: Every paracompact Hausdorff space is 

normal (iJ. 
Proof: Let X be a paracompact Hausdorff space. First 

we shall show that X is regular. Let F. -be a closed subset 

of X and let aEX be such that a(F. Then for each .xeF 

there are disjoint open neighborhoods W(x) and V(x) of a 

and x respectively. Letti be the open covering of X con-

sisting of all such V{x) for each xeF, and the complement 

of F; and let lt.1 be a locally finite refinement of ll. 
Then there exists an open neighborhood W of a that does not 

I I meet F and that meets only finitely many members u1 ,··•,un,of 



~". V\. Let V be the union of the members of (.-( that meet F and 
, 

such that u1cv(xi) for l~i~n. Then 

U=Wf}W(xl) nw(x:2) n • • • Ow(xn) 

is an open neighborhood of a that does not meet V. Hence U 

and V are disjoint open neighborhoocsof a and F respectively 

and therefore Xis regular. 

Now let A and B be disjoint closed subsets of X. Since 

Xis regular., for each xeA there are open neighborhoods V(x) 

of x and W(x) of B that are disjoint. Consider the open cover-

ing tJ. of X consisting of the sets V( x) for each XEA and the 
, 

complement of A, and let ti. be a locally finite refinement of 
I 

U that covers X. The union V of the members of it. that meet 

A is clearly an open neighborhood of A and for each yE'B there 

is an open<,neighborhood N{ y) of y that does not meet A and 
r I I I 

that meets only finitely many members u1 ., U •·•• U of U Z.' ., n • 
Let xieA be such that U~CV(xi) for l~i~n, and set W{y)= 

N(y)n W(x1)n ••• nw(xn). Clearly W(y) does not.meet V., hence 

U= LJfW(y):yEB) does not meet V. Hence V and U are open 

neighborhoods of A and B respectively that are disjoint and 

the proof is complete. 

COROLLARY:: For Hausdorff spaces., paracompactness and 

full. normality are equivalent. 

Proof: Theorems 1.4 and 1.5. 
Using the fact that every normal Hausdorff space with a 

countable base is metrizable (see [3J) and theorem 1.3 (every 

metric space is paracompact) we have the following: Every 



normal Hausdorff space with a countable base is paracompact. 

We refer you to the appendix for an example, due to M. E~ Rudin, 

of a separable{!- normal Hausdorff space that is not paracompact. 

Theorem 1.4, which is due to A.H. Stone, is, in a 

certain sense, a justification of the concept of para-

compactness. In like manner, c. H. Dowker, has justified 

the concept of countable paracompactness which is presented 

as Theorem 3.6 in Chapter III of this paper. The following 

theorem, which is also due to Dowker, exhibits a number 

of conditions on a normal space that are equivalent to 

cou_ntable paracompactness. 

THEOREM 1.6: The following properties of a normal space 

X are equivalent: 

{i) The space Xis countably paracompact. 

(ii) Every countable open covering of X has a point-

finite open refinement. 

(iii) Every countable open covering\Uithas an open re-

finement~VJwith v1cu1 . 

(iv) Given a decreasing sequence(FJ of closed sets 

with vacuous intersection, there is a sequence 

fGJ of open sets with vacuous intersection such 

that F iC: Gi. 

(v) Given a decreasing sequence fF J of closed sets 

with vacuous intersection, there is a sequence 

* A space Xis separable1 if there exists a countable subset 
A of X such that A = X .. 
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f AJ of closed Gt -set/'" with vacuous intersection 

such that F CA. 
i i 

In the proof of the above theorem we will need the following 

lemma: 

LEMMA 1.3: Any open Fr-set in a normal space can be 

written as the countable union of closed sets Fi (i=l.,2.,•••) 

such that for all i Fi is contained in the interior of Fi+i• 

Proof: Let B be an open Fir-set in a normal space X and 
111,Q 

let B=· U Bi where each Bi is closed. Set B1 =F1 • If 
i=l 

Bi=B then the proof is complete. So suppose B1fB and we have 

const;r.ucted closed sets F 1 ., • • • .,Fn such that F n f B., F1 is 

contained in the interior of Fi+l. for 1-!;i-Sn, and B1CFiCB 

for l~i~n. Then there is a least integer j~n+l such that 

Bj¢.Fn. Therefore since X is normal and Bj U Fn is a closed 

set contained in the open set B there is an open set Vn+] 

such that BJ· U F C.. V l C::V 1c:: B. n n+ n+ Set Fn+l=Vn+l• Then 
B CF +l C::. B and Fn is clearly contained in the interior n+l n 
of Fn+l" Thus if Fn+l=B the proof is complete. If Fn+lfB 

for any n then by the above induction we can construct the 

desired closed sets and since B CF C. B we have UF =B. n n n 
Proof of Theoreml.6: (i)---,.(11). This is clear 

since a locally finite covering is obviously a point finite 

covering. 

il- A set A 1.s called a °' -set if it is the intersection of some 
countable collection of open sets., and is called an F~-set 
if it is the union of some countable collection of closed sets. 
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(ii)--?" (iii). LetfuiJ be any countable open covering 

of X. Then by (ii) fuil has a point finite open refinement 

'J,t/. For each W in "Wlet i(W) be the first integer such that 

W C. U i( W) and let G i be the union of those W in "W' for which 

i(W)=i. Clearly fGi} is a point finite refinement of {uiJ 

such that, for each i, Gi C::. U i ( see proof of Lemma 1.2). 

Since Xis normal, there is a point-finite open refinement 

fvJ of fGiJ such that, for each i, ViC::~CGi (by Lemma 1.1). 

Hence CUi and ( iii) follows. 

(iii)---,.(iv). Let{Fa be a decreasing sequence of 
00 

closed sets such that n F is void. Set U. =X-F. for all 
i=l i 1 1 

"° 00 c:,O 

Then U is open and U Ui= LJ (X-F )= X- n Fi = X. 
i i=l i=l i i=l 

There-

fore ( u 1) is a countable open 

is an open refinement fvJ of 

property that Vi" C Ui for all 

covering of X. By (iii) there 

{u1} that covers X with the 

i. Set Gi= X-V.. Then G l. i 
is open and since ui::>vi we have 

"" Moreover n 
i=l 

00 

Gi=X-Vi ::JX-Ui= X-(X-Fi)=Fi. 
c:,O "° 

G. = n (X-V) = X- u V = x-x. Thus FiCGl.. for 
1 i=l i i=l i 

all i and () Gi is void. 
i=l 

(iv)~( v). Let [F1) be a decrea.sing sequence of ., 
closed sets such that n Fi is void. Then., by (iv)., there is 

i=l 

a sequence of open sets {Gi} with vacuous intersection such 

that Fi C G1 for each i. Hence, for each i, X-Gi and F 1 are 
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disjoint closed sets of the normal space X and by Urysohn's 

Lemma ( see [3]) there is a continuous function f i from X · to 

the closed unit interval [o,JJ such that fi(x)=O if xeFi and 

fi(x)=l if x~X-Gi.For all integers i and j set 

Gij= {xEX:f1 (x)<l/j); 
and for all integers i set 

eO 

Ai= IlGij= {xfX:fi(x)=o}. 

Since fi is continuous Gij is open and A1is a closed G6 -set. 

Moreover, by the definition of fi' F1c:AiCGi' and since 
""" oO n Gi is empty·, n Ai is empty. 

i=l i=l 

(v)~(i). Let {ui} be a countable open covering of X 

and let Fi= X- Uuk. Then (p11 is a decreasing seciuence of 
k< 1 l 

00 

closed sets and since U Ui = X, n Fi is empty. Then by (v), 
i l i=l 

there is a seciuence fA1f of closed G1 -sets with FiCAi and 
00 

iQ1A1 void. Set Bj=X-Aj. Then Bj is an open Fo--set and by 

Lemma 1.3 we may assume Bj 
i 

and each Bjis contained in 

06 

= UB; where each B; is closed 
i=lJ J 

i+l i+l the interior Hj o~ Bj • Since 

for all i, Bi.CH~+e:B~+l, we have B = LJ H~= X-A. and 
J J J j i=l J J 

B; c B •= x-A -cx-F •= Uuk. J J J J k( j 

Now let v. = U-- UB~; then Vi is open. If j<i, then 
]. 1 j<i J 

B~ C LJUkC LJ Uk. Hence U B~ CU Uk. Therefore 
kcj k<i j<i k<i 
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i Ui-U_UkCU1-~Bj = v1• So let xfX. Then there exists i 
ko. J<i 

such that xE.Ui and x '/ Uk for k<i: hence xe.V i. Consequen~ly 

(v 1} covers X and clearly l V 1) is an open refinement of f U 1J . 
M~eover, for each x~X there is some Aj such that XfAj 

( rJ1Ai is void). But if x ( A , then xeX-Aj=Bj and conse-
i- j 

qµently for some k, xEHkJ .• Thus if' i:>- j and i~k Hk C: Bi and 
j j 

H~ n (Ui- UBij) is void. But Vi= u_ - u B~. Thus xEH~, an. open 
J j<i ]. j<i J 

set, that can intersect Vi only if i~max.•{j,kj. Hence fv1} 

is a locally finite open refinement of tu1} and consequently 

Xis countably paracompact. This completes the proof of the 

theorem. 

COROLLARY: Every perfectly normal space is countably 

para compact. 

Proof: A perfectly normal space is a normal space X in 

which every c~osed set is a Go-set. Hence if {F1} is a 

decreasing sequence of closed sets with vacuous intersection 

then it is also a decreasing sequence of closed Gi-sets with 

vacuous intersection and by (v) of the foregoing theorem X 

is countably paracompact. 

It is not true that every normal space is countably 

paracompact as the following example shows. Let X be the 

set of real numbers and let the empty set, X, and sets 

of the form {x~X:x<af {where aEX) be open. Then· it is 

clear that we have defined a topology for X and since 
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X has no pairwise disjoint closed sets, X must be trivially 

normal. But {GJ,, where G 1 = f xEX:x<i}, is a countable cover 

for X which has no locally finite refinement. Consequently 

Xis not countably paracompact. 

Note that the above space X. is not Hausdorff. To the 

best of the author's knowledge it is not known whether there 

exists a normal Hausdorff space that is not countably para-

compact. The question of the existence of such a space is 

known as Dowker 1 s Problem. M. E. Rudin f1J, however, has 

shown that if a Souslin spacei~ exists then Dowker' s Question 

is answered in the affirmative, i.e., there exists a normal 

Hausdorff space which is not countably paracompact. We 

omit the construction of Rudin 1 s example. 

* A space Sis a Souslin space if Sis a gapless linearly 
ordered space (with the order topology) such that 
1.) Sis not separable, and 
2.) Every collection of disjoint segments (each containing 

at least two elements) in Sis countable. 



CHAPTER II 

PRODUCTS OF SPACES ENJOYING A COMMON TOPOLOGICAL PROPERTY 

Let "p" be a given topological property. One naturally 

asks if 11p 11 is productive., i.e • ., if given a family of spaces 

having "p"., does the product of these same spaces also have 
11p 11 • This subject is the substance of this chapter and we 

begin with a few definitions. 

DEFINITION 2.1: Let fx~:a€ A} be a family of topological 

spaces. The Cartesian product 7f X of {x} is defined to 
aE"A a a 

be .the set of all functions f on A such that I'(a )EXa for each 

aEA. The function P : 1T X:.a~ Xa: defined by Pa:(x)= x ., 
8 afA . a 

where xa is· the 11 a-th 11 coordinate of x., is called the pro-

jection map of -rf X onto X. The topology on the set 
afA a a 

X= -rf Xa, called the product topology., is motivated by the 
aEA 

requirement that the projection maps be continuous and con-

sequently the defining subbase for this topology is the 

family of all sets of the form P;1 [uJ where U is open in Xa• 

We now present a short sequence of theorems exhibiting 

a number of topological properties that are productive. 

THEOREM 2.1: The product of an arbitrary family of 

T1-spaces is a T1-space. 

Proof: Let \XaJ be an arbitrary family of T1-spaces and let 

xEX= tfXa!" We shall show that X-fxJ is open. Suppose y£X- fxt. 
a: 

21. 
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Then for some a, xa/y8 • Hence Ya belongs to the open set 

Xa-{xa1 =U and P;,1 [u] is a neighborhood of y which is con-

tained in X-{x). Thus X-{x} is a neighborhood of each of its 

points and is, therefore, an open set. 

THEOREM 2.2: The product of an arbitrary family of 

T2-spaces is a T2-space. 

Proof: Let (xa} be an arbitrary family of T2:-spaces and 

let x and y be distince points in the product. Then for 

some a, xal-Ya and so there are open neighborhoods U and V 

of Xa and Ya respectively that are disjoint. Consequently 

P;1[u] and P;1[v] are disjoint neighborhoods of x and yin 

the product. 

THEOREM 2.): The product of an arbitrary family of 

regular spaces is regular. 

Proof: Let fxa:aEAf be an arbitrary family of regular spaces 

and let X=Tf X8 be the product space. Suppose xE'X and W is 
af·A 

an open neighborhood of x. Let Ube a member of the defining 

base such that xeucw. Then 

U= nfp;l[ual :a~¥] 
where¥ is a finite subset of A and U is an open set 

a 
containing x8 in Xa• Since each Xa is regular there exists 

for ea ch a an open set Va with xaeV a C v; c. Ua. Therefore 

xfV= n f P;1[ Va] :aEY]cu CW and V is a closed neighborhood 

of x. Thus Xis regular. 

DEFINITION 2.2: A space Xis called completely regular 

if and only if for each member x of X and each neighborhood 
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U of x there is a continuous function f on X to the closed 

unit interval (0.,1] such that f(x}=O and f(y)=l for all ,.Y 

in X-U. A completely regular T1-space is called a Tychonoff 

space. 

THEROEM 2.4: The product of an arbitrary family of 

completely regular spaces is completely regular f3]~ 
Proof: Let X = 1T Xa be the product of an arbitrary family 

aE=A 

of completely regular spaces., let xEX., and let Ube a neigh-

borhood of x. Then there exists a finite subset Y of A and 

a family of open sets {ua:aeYf such that xe (lP;1 [u8]cu. 
aET 

But each Xa is completely regular; hence for each aEY., there 

exists a continuous function fa:Xa-----t[o.,1] such that fa(xa}=O 

and ra(xa-uaJ=f1]. Then faoPa is a continuous function from 

X to [0.,1] such that faoPa(x)=O and faoPa[x-P;1 [uJ] =fl}. 

Define f:X~(0.,1] by f(t)= :max. ffaoPa(t): a~r]., for tEX. 

The function f is the maximum of finitely many,: continuous 

functions on X and hence is a continuous function. More-

over f(x)=O and f[x-u] Cf rx- n P;1fua]llcf1 u (X-P-1 [uJ~ ={11. l" afY IJ la~¥ a j 
Thus Xis completely regular. 

COROLLARY: The product of an arbitrary family of 

Tychonoff spaces is a Tychonoff space. 

Proof: Theorems 2.1 and 2.4. 

A natural candidate., as a productive topological property., 

for the next theorem in this sequence is normality. But the 

product of an arbitrary family of normal spaces is not neces-

sarily normal., and., as mentioned in the introduction., it is 



the purpose of this paper to show, to some extent, how 

drastically normality fails to be productive. We shall 

content ourselves, in this chapter, to show that the product 

of two normal spaces is not necessarily normal. However, 

the example we shall use to show this, which is due to 

R.H. Sorgenfrey, also shows that a number of other topolo-

gical properties are not productive. Before we present 

the example, we now give the following definitions and a 

useful theorem. 

DEFINITION 2.3: A sequence Xi,x2, ••• ,xn••• of points 

of a metric space is called a Cauchy sequence if for any 

real number e>O there exists an integer n(e) such that for 

all n,m>n(e), d(xn,-¾i) < e. A metric space Xis said to be 

complete if every Cauchy sequence in X converges to a point 

of X. 

DEFINITION 2.4: A subset A of a space Xis said to be 
0 

nowhere dense if the interior of the closure (A.) of A 

is void. A space Xis said to be of the first category if 

Xis a countable union of nowhere dense s~ts. If Xis not 

of the first category, Xis said to be of the second category. 

LEMMA 2.1: The finite union of nowhere dense sets is 

nowhere dense. 

Proof: It will suffice to show that if A and Bare two 
0 0 ....£._ 

closed sets such that both A and B are· void, then A VB is 

void. Suppose A and Bare two closed sets with vacuous 

interior. Then B-A is open in AUB and contained in B; 
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hence (B-A) n AUB is open in AVB 
0 

open. Thus ( B-A) n AVB CB= rf. 
o C 

A=¢ and consequently AVB= ¢. 

and therefore absolutely 
0 .....---.. '11herefore AV BCA but 

THEOREM 2.5: If Xis a complete metric space then X 

is of the second category fj,J • 
..0 

Proof: Let A= U A., where each Ai is nowhere dense, be a 
i=l i 

subset of a complete metric space X. We shall show A/ X. 

We proceed inductively, first noting that since the union 

of a finite number of nowhere dense sets is nowhere dense 

we may suppose A1C Ai+l • 

Now for some~ in X we have x1 in X-A1 , or else A1= X, 

contradicting the fact that A1 is nowhere dense. Moreover, 

there is a _neighborhood N(x1 ,e1 )= \x:d(x,x1 )<e1} of x1 
such that N(x1 ,e1 ) does not meet A1 • Now suppose we have 

found, for l~i~n, points xi and neighborhoods N(xi,ei) of xi 

such that 

(i) O<ei~e1_1/2, 

(ii) N(x1,ei) does not meet Ai, and 

(iii) N{x.,e.)C:.N(x. 1 ,ei. 1· ). 
J. J. 1- -

Then N(xn,en)cj::. An+l since An+l is nowhere dense and conse-

quently there is a point xn+l in N(xn,en)-An+l and a real 

number e 1 e /2 such that N(x 1 ,e +l) C N(x ,e ) and n+ n n+ n n n 
N(xn+l'en+l) does not meet An+l" Therefore the above condi-

tions are satisfied for k=n+l and by induction we have ob-

tained a decreasing sequence {N(xi,e1 )} of non-empty closed 

sets whose diameter approaches zero. It is clear that fx.1 
1 



is a Cauchy sequence eventually in each N(x ,e ). Thus, 
i i 

since X is a complete metric space, f xi} converges to a 

point x in X belonging to all sets N(x.,e ). Therefore 
1 i 

x f A and A/,X. 

26. 

We now give the previously mentioned example as 

THEOREM 2.6: There is a paracompact Hausdorff space X 

with the Lindel~f property such that X XX is not normal and 

does not have the Lindel~f property [8] • 
Proof: Let X be the set of all non-negative real numbers 

with the half-open interval topology, i.e., a base for 

the topology is the family of all half-open intervals [a,b) 

for a and bin X. 

(1) The space Xis Hausdorff. For let x,yEX, say x<y. 

Then there is a point ztX such that X<z<y and therefore [O,z) 

and [z,y+l) are disjoint open neighborhoods of x and y respec-•-

tively. 

( 2) The space Xis paracompact. Let-Ube an open cover-

ing of X and let be a refinement oft( whose members are 

sets of the form [a,b) where a,bEX. Let Ebe the set of all 

points q of X which satisfy the relation a<q<b for no neigh-

borhood We shall now show that Eis closed rela-

tive to the natural topology of the real numbers. Let zEX-E, 

then there is a set [a,b) f::U 1 such that a<z<b, and since 

the open interval (a,b) contains no points of E, z does not 

belong to the closure of E. Thus Eis closed relative to the 

natural topology of the real numbers and consequently the 



27. 

complement of Eis the union of a countable number of dis-

joint open intervals I 1 ,I2,•••• Clearly for each n the left 

endpoint of In is a point of E and conversely every point of 

Eis a left end point of some interval I • Hence if I is the n n 
interval (qn,fn) it follows that E= LJ(~1 and hence that 

n 

X=U ( f q] UI ) • For each n there is a member f4n.,wn)=Dn of n n n [ 

--i('(where wn<fn}, so let Yn be the collection of all open 

intervals (a,b) such that (a,b) belongs to tt'and [a,b)C[qn,fn)• 

Now suppose zE[wn,fn). Then, 

there exists [t., h) in U1 such 

fn¢[t.,h). Thus ( t,h) .· belongs 

since z does not belong to E, 

that z1:[t,h) and since f EE., n 
to On and so Yn is an open cover~ 

ing of [wn,fn). Now under the natural topology of the real 

numbers [wn,fn} is a metric space and therefore paracompact 

by Theorems 1.1 and 1.2. It follows that there is a locally 

finite open refinement $n of Yn that covers [wn.,fn)• Let €-n 

be the collection of intersections of members of ~n with 

[wn.,fn)• The members of €.n are open in the topology for X 

since each member of en is a union of sets of the form [a.,b) 

or (a,b). Moreover, each member of En is a subset of a mem-

ber of tl and therefore a subset of a member of -U • Thus if 

'2n is the collection obtained by adding the open set Dn to 

€ n' i{ n is a locally finite open covering of f 4n] U In whose 

members are subsets of 1.t. Therefore 11= Uv is an open refine-
n n 

ment oft(. that covers X. ">? is a locally finite covering of X, 

for let x~X. Then there exists exactly one n such that x 
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If xcD then, by the con-n 
struction,. , Dn is an open neighborhood of X and no other 

member of i/. meets D; and if xE{w ,f) then some neighborhood n n n 
U of x meets only finitely many sets of T{ n' and hence the 

neighborhood U n [w, ,f ) meets. only finitely many members n n 
of '7.. Thus Xis paracompact. 

(3) The space Xis also Lindel~f. First, notice that 

Xis fully normal. For by (1) and (2) Xis a Hausdorff and 

paracompact space and therefore normal by Theorem 1.5 and 

consequently fully normal by Theorem 1.4. Now let t.l. be 

an .open covering of X, U 1 be an open star refinement of ti 
I 

( we may suppose the. sets of -U are of the form (a., b)), 7 be 
I 

a family of disjoint sets oft(, and 7 * be the family of 

all such 7. Partially ordering y* by set inclusion, it is 

easy to see that every chain in .'ri} has an upper bound and 

consequently, by Zorn's Lemma., has a maximal member '1. 
r is certainly countable, so let '1 = {[a1 , bi)} and for 

each i let Ui and v1 be some members of U containing the 

stars of a1 and bi respectively. Then the family of all 

such Ui and Vi is countable and, moreover, covers X. For let 

x£X. If x belongs to [ai'bi), for some 1, then xeu1 • 

So suppose x does not belong to [a1 .,bi) for any integer i. 

Then for some [a.,b) in 't/, xE[a,b), and since '-f is maximal, 

[a,b) meets [ai,bi) for some integer i. Therefore x belongs 
• II to Ui or v1 • Thus Xis Lindelof. 

(4) The product space X'x'.X is not normal. Let Y= 
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{(x,y) E XX X:x+y=lJ, A be the set of all points of Y whose 

first coordinate is irrational, and let B= Y-A. Clearly A 

and Bare disjoint. They are also closed. For suppose (x.,t) 

does not belong to A. If x 0 + y0 1 , then for any positive 

number e, the neighborhood [Xe ,x0 +e)X(y 0 ,Yo +e) of (xo ,Ye,) 

does not meet A; and if x 0 +y0 < 1, the neighborhood l x0 .,x0 +e )X 
[Yo .,y0 +e) of (x6 .,y0 ) does not meet A if e=~2 d, where 2d 

is the distance from the point (xo ,Yo ) to the segment x+y=l. 

Thus A, and simila·rly B., is closed. 

Suppose U and V are open sets of XX X that cover A and 

B respectively. Let Q( x)=f e: [x.,x+e) X [1-x.,l-x+e) C. uJ for x 

such that (x.,1-x)EA. Now define a function f on A as follows: 

f(x)=l if 1 E Q(x) and f(x)= sup. Q.(x) if l f{Q(x). Then f is 

defined on the set of irrational numbers Tin the closed unit 
00 

interval I= [0,1] and f is never zero. Moreover., T= UT , 
n=l n 

where Tn={x:f(x) ~1/n} and I= TUI1 where I 1 is the rational 

numbers of I. We assert that: for some rational number r in 

I, and for some integer n., r belongs to the Euclidean closure 
0 

of Tn. Suppose not. Then, for all integers n., Tn does not 
0 

contain any rational numbers of I, and consequently r is void, 
n 

I 
i.e., T is nowhere dense for all n. But I is countable and n 
consequently I= [o, 1] is of the first category. Since I= [0,1] 
is a complete metric space, we have contradicted Theorem 2.5 
and therefore our assertion is true. Thus there is a rational 

number r belonging to the closure of T, for some n. Now let n 
v' = [r.,r+e)X[l-r.,1-r+e) be a neighborhood of (r,1-r) that 
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is contained in V and let q)O be such that 2q<min. [e.,1/n]. 

By the above., there is an irrational number x such that \r-xf < q 

and x11:Tn = {x:f(x} ~1/nJ • We shall now show that (r+CJ:il.-r) 

belongs to U n V. Clearly ( r+q., 1-r) belongs to V. If x > r., 

then O<(r+q)-x = r-x+q(2q<l/n., so 

x<r+q<.x+l/n and 

(l-r)-(1-x) = x-r<q<l/n., so 

1-x<l-r<l-x+l/n. 

Hence (r+q.,1-r)E- (x.,x+l/n)X[l-x.,1-x+l/n)cu. If x(r., a 

similar demonstration will achieve the same result. Thus 

U and V cannot be disjoint and therefore XX'X is not normal. 

(5) The product space XXX is not Lindel~f. Define the 

set Y as before and let t( be the open covering consisting of 

XX X -Y and open sets of the form [x.,x-1) X r1-x., 1-x+l) for 

(x.,1-x) in Y. Then the coveringtA..is not countable and no 

countable subfamily of t/. can cover XX X. Thus XX X is not 
. II Lindelof. 

We have., therefore., obtained (by Theorems 1.4., 1.5., 2.2., 

and 2.6) the following: 

(i)The topological product of two Linde1ir spaces need 
II not be Lindelof • 

(ii) The topological product of two normal spaces need 

not be normal. 

(iii) The topological product of two paracompact (and Haus-

dorff) spaces need not be paracompact (or even normal). 

(iv) The topological product of two fully normal (and Haus-

dorff) spaces need not be fully normal (or even normal). 



CHAPTER III 

PRODUCTS OF A GIVEN SPACE WITH A COMPACT SPACE 

The first part of this chapter will be devoted to theorems 

involving the topological product of a compact space and a 

space enjoying a generalized compact property. The second 

part will deal with normality of product spaces. 

The first theorem will be the classical theorem of 

Tychonoff on the product of compact spaces. We will need 

the following definition. 

DEFINITION 3 •. l.1 : A family (,I,, of sets has the finite 

intersection property if and only if the intersection of the 

members of each finite subfamily of -U is non-void. 

THEOREM 3.1 : The topological product of an arbitrary 

family of compact spaces is compact [3]. 
Proof: Let X. = 1T Xa be a product of compact spaces and let 

a€A 
F be a family of closed subsets of X having the finite inter-

section property. Set 

F;~={1J:'13is a family of subsets of X having the finite} 
intersection property and such that FC8 .. 

Partially ordering F* by set inclusion, it is easily seen that 

every cha in in F;~ has an upper bound in F* and therefore by 

Zorn's lemma F* has a maximal member Ji. Thus"B is the largest 

family with the finite intersection property containing F •. 

Since a space is compact if and only if every family of closed 

sets having the finite intersection property has a non-void 

31. 
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intersection, it suffices to show that n{a:BE°8)ff. 
It is easy to see that the family -15 has the following 

properties: 

( i) BE-S and C::, B CE$. 

(ii) B1,B2Ej?---? B1() B2E'J?. 
(iii) C nafcp for all BEf5~C€f3, and 

(iv) Paf'S] = {Pa: LB] :BE$} has the finite intersection 

property. ( Since cp f Pa, [B1 n Bg{cP a [Bi] n P 8 [ B2J· 

Since Xai is compact, X8: has the finite intersection property 

and therefore, by ( iv) for each Sc.A. there exists xa in X81 

such that xa, E" {Pai [ B] :BE t3}• Hence Un P a[B] # cp for each· 

neighborhood U of Xm and consequently P;1 [u] na;¢•cp for each 

neighborhood U of xa and each BE.13. Therefore every basic 

neighborhood of x is in 1J and so x:E B for all BE 13. Thus 

Xis compact. 

In Chapter II we saw that the product of two paracompact 

spaces need not be paracompact. However, we do have the follow-

ing: 

THEOREM 3.2 : The topological product of a compact space 

and a para compact space is paracompact (1] ,::: 
Proof: Let X be a compact space, Ya paracompact space, and 

let U be an open covering of X><Y. For each (x,y) in XXY 

there exist open sets Vxy,Wxy in X and Y respectively such 

that (x,y) is in VxyXWxy and VxrWxy is contained in some 

set of U. The resulting family {vxyXWxy:bn,y) EX>< Y} is 

an open refinement of 1l, covering Xx Y. Now since X is compact, 
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there exists, for each y~Y, a finite subset Ay of X. such that 

{vxy:xEAy} covers X. Let Wy=n{wxy:x~AyJ• The famil_y{W1:yeYJ 

covers Y and therefore has an open locally finite refinement 

{N,a :,SE-B} that covers Y. For eacht9eB, choose YpE Y such that 

N,4CWyf9. Finally, let-u.' ={vx~'XN' =fEB and XEA~ • t-(refines 

t( since vxv)(N,qCVxv.XW CVxvXW~ , if peB, and XEAV .t(1 is 'J! • J,g Yf .tp Yp .,, 
a locally finite cover of XXY, for let (x,y) belong to XXY. 

Then 

such 

XXY. 
such 

there exists ,e B such that yENp and there exists '8.EAY, 
I rp 

that ¥EV ,..v • Hence ( x, y) belongs V X N11 ,_, i.e. ;t{ covers •.tp zy/1 r 
On the other hand, there is an open set W containing y 

that W meets only finitely many Np, and 

X meets only finitely many V v z.,, 
only finitely many sets of -U.'. 

with ZEA • 
Yp 

for each suchf, 

Hence X'XW meets 

paracompact. Thus XXY is 

Replacing paracompactness by countable paracompactness,. 

we now. have the following analogous result. 

THEOREM 3.3: The topological product of a countably 

paracompact space and a compact space is countably para-

compact [2] • 

Proof: Let X be a countably paracompact space, Y be a com-

pact space, and let\U1 :i=l,2,:~.•}be a countable covering of 

XXY. For each positive integer i, let Vi be the set of all 

xeX: such that {x}XYC. Uuj. If xeV i, then for every point 
ji;i 

(x,y) of {x1XY there are sets M and N such that M is open 

in X, N is open in Y, and (x, y)cM XN C U U j. Now since Y 
j~i 

is compact a finite number of these sets N cover Y; let Mx 

be the intersection of the corresponding finite number of the 

sets M. Then xEMx' M is open and M X Y C U Uj; hence 
X X j~i 
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MxC.Vi. Therefore Vi is open for all integers i. Also, 

for any xeX, {xJXY is compact and therefore (since {u1l· covers 

{x}XY) {x:})( Y is contained in some finite subfamily of {uJ. 

It follows that xtVi, for some i, and therefore ~vi} is a 

covering of X. Since {vi} is countable and Xis countably 

paracompact, fv~ has an open locally finite refinement {G1J 
such that GiCVi (by lemma 1.2). 

For each i and for each j such that j~i, let G1 j= 

(GiXY) nuj. Then Gij is an open covering 'of XXY. For let 

(x,y) belong to XXY, then for some 1, xeG1 , hence (x,y) 

belongs to Gi X.Y and since G iCV 1 , ( x, y )E {x} )( Y C U U i. There-
j~i 

fore, for some j~i, (x,y)EUj and it follows that (x,y)EG1 j. 

Moreover, since Gijcuj, {Gij} is a refinement of fui1• Also, 
if (x,y) belongs to X XY, x belongs to some open set H which 

meets only a fini ta number of the sets of f Ga. Then H X Y 

is an open set containing (x,y) which can meet Gij only if 

H meets Gi. But, for each i, there are only a finite number 

of the sets Gij" Hence HXY meets only a finite number of 

sets of f Gij1 ; hence f Gij} is locally fini ta. Thus XXY is 

countably paracompact. 

The techniques of the above proof are useful in proving 

the corresponding theorem for countable compactness. 

THEOREM 3.4: The topological product of a countably 

compact space and a compact space is countably compact. 

Proof: Let X be a countably compact space, Y be a compact 

space, and let fu1 :i=l,2,•••J be a countable open covering 



of XXY. For each positive integer i let Vi be the set of all 

xeX such that {x}XY C:. U U .• Proceeding exactly as in the 
j~i J 

preceeding theorem, {VJ is a countable open covering of X. 

Since Xis countably compact, finitely many members V ••• 11' ,, 
Vi of {v.} cover x. Let 

n l. 

tJ. = {uj:j~N= max. {i1 ,·••,in'\J• 
-()_ is a fini ta subfamily of f U 1} that covers XX Y, for let 

(x,y)E XX.Y. Then x belongs to one of the sets Vi , • • • ,v1 , 
i1 n 

say to Vi, and therefore (x,y)efx}XYC: UUjC LJUj• 
1 J~.i1 j~N 

We now turn directly to the question of the normality of 

product spaces. As we saw in Chapter II the product of two 

normal Hausdorff spaces need not be normal. We shall subse-. 

quently show that the product of a normal space and the closed 

unit interval need not be normal. First, we have the follow-

ing lemma:: 

Lemma 3.1: There is a countable base for the open sets 

of a compact metric space. 

Proof: For each positive integer n, Z'.,(n={N(x,l/n):xEX} is 

an open covering of a compact metric space X and for each 

n, there exists a finite subfamily of -Un that covers X. The 

union -U of these finite subfamilies is a countable covering 

of X and we shall show that -U. is the desired base. Let Ube 

an open set containing some point x in X. Then d(x,X-U)= 

inf. { d(x, z:) :.zfX-u] =q>O, and there exists a positive integer 

n and a member N(z,1/n) of tJ. such that XEN(z,1/n) and 2/n<q. 

Hence d(w,x) d(w,z)+d( z,x) < 1/n+l/n < q if WE'N(z,1/n) and 

therefore XE'N( z, 1/n) C U. 
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We now give a sufficient condition for a product space 

to be normal. 

THEOREM 3.5: The topological product of a countably 

paracompact normal space and a compact metric space is 

normal [2]. 

Proof: Let X be a countably paracompact normal space, let Y 

be a compact metric space, and let A and B be two disjoint 

closed sets in the product space XXY.. By the above lemma 

there is a countable base~Gtl for the open sets of Y. Let 

Hy= U Gi, where 'f:·is any finite set of positive integers 
iG-l' 

and, for each XEX, let Ax and Bx be the sets defined by: 

{x}XAx=( fx}XY) n A ahd fx}X Bx=( fx}X Y) n B. Since fx} XY 

is homeormorphic to Y, A and B are closed (and disjoint)~ · X X 

Let Uy=fx:AXC:HyC::Hl'cY-BJ. Uy is open, for let XoEX 

be such that AXo C Iy Then, for each yeY-Hy, (x0 ,,y)f. A and, 

since A is closed, there are open sets Min X and Nin Y such 

that (x0 ,y) belongs to MXN .and MXN does not meet A. Since 

Y-Hy is closed in Y, it is compact and therefore a finite 

number of the sets N cover Y-Hy• If MXois the intersection 

of the corresponding finite number of the sets M., then Mx 
0 

is open and M X( Y-Hy) does not meet A. Hence if XEMx and 
0 

yEAx then (x.,y)E' A. Therefore (x,y){ Mx X(Y-Hy) and conse-
o 

quently AxCHy• Thus AxCHyfor all x~Mx0 and therefore the 

set {x:AxCH~J is open. Now let x. be a point of X for which 

HrCY-B • Then for each y-=:Hr, (x0 ,y) fB and, since B is 
Xo 

closed, there are open sets Min X and Nin Y such that (x0 .,y) 
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belongs to MXN and MXN does not meet B. Since Hy is closed 

in Y, it is compact, and so a finite number of the sets ·N 
covers Hy. If MXois the intersection of the corresponding 

finite number of the sets M, then Mv _ is open and M ')(Hy does 
ao Xci 

not meet B. Now let xEMXc, and yeBx. Then (x, y)EB; hence 

(x,y) does not belong to M;x:<Hy, and: y4H •. , so that Hy CY-Bx. 

Thus Hy is contained in J-Bx for all xE~Xo and therefore the 

set {x:H-r C:Y-B.J is open. Since Ur is the intersection of the 

la·tter set and the set {x:AxCHy1, Urmust be open. 

Now let x~X; then for each y in A , y,,,/B since A and 
X 7 X 

Bare disjoint. Moreove~, since Y is a metric space, Y is 

normal (Theorems 1.1 and 1.4) and since B is closed there 
X 

is a Gi such that yE:G1CGiCY-Bx• Since Y is compact, a 

finite number of these sets Gi covers the closed set Ax, i.e., 

for some finite set Y or· positive integers A CU Gi=Hy and 
X iEY 

Ry = U CY-B • Hence x belongs to Uy. Thus the open 
iEY X 

sets Uy cover X. Since there are only a countable number 

of finite subsets ( of the positive integers, the covering 

{u~J of Xis countable. Sine~ Xis countably paracompact, 

by Lemma 1.2, {uy] has a locally finite refinement fwy] that 

covers X with W~C:Uy. Moreover, by (iii) of Theorem l.~, 

{Wr{ has a refinement 

x with v"cv;:-cw>cu1 • 

fv~J (still locally finite).that covers 

Let U be the open set U(Vy'XH-y). y 
For any point (x,y) of A, and for some Vr, xeV~CUy. Then 

yEAx C Hy and therefore (x, y) E V>-X.Hlr' • Thus AC.U. More-

over, since fv,..J is a locally finite covering of X, every 
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member x of Xis contained in an open set G(x) which meets 

only finitely many of the sets Vy; and hence the neighbor-

hood G(x)XY of (x,y) meets only finitely many of the sets 

v,.. X Hy. Hence ( x, y) belongs to the closure of some VyXHy, i • e •, 

U= V VyX Hy• But Vy.X Hy = Vy"Xliy• Therefore U = \J (VyXHy) C. 
U(u XHv)o But if {x,y)€U{urxn;> then {x,y)EUyXHy for some 

y # 

y and consequently "H;""C:Y-Bx• Thus {x,y}f B. Hence the open 

set u contains A and its closure does not meet B. There-

fore XXY is normal. 

In conclusion, we now give a necessary and sufficient 

condition on a normal space X for the topological product 

of X and the closed unit interval to be normal. The follow-

ing theorem, which is also due to c. H. Dowker, justifies 

the concept of countable paracompactness. 

THEOREM 3.6: The following three properties of a 

topological space X are equivalent: 

(1) The space Xis countably paracompact and normal, 

{ii} If g is a lower semicontinuous real function on 

x· and his an upper semicontinuous real function 

on X and if h(x} < g(x} for all XE-X, then there 

exists a continuous real function f such that 

h(x) < f{x) < g(x} for all xEX. 

(iii} The topological product XX I of X with the closed 

unit interval I= [0,1] is normal. 

Proof: {i}~ (ii}. Let X be a countable paracompact normal 

space and let g and h be lower and upper semicontinuous real 



39. 

functions with h{x) < g{x-) for all x(X. For each ra.tional 

number r let Gr= {x:h{x) < r·<g(x)). Since g is lower semi-

continuous, {x:g(x) > r} is open, and, since h is upper semi-

continuous, f x:h(x) < r} is open. Thus Gr is open for all r. 

For each xeX we have h(x)< g(x) and so there is a rational 

number r such that h(x) < r < g(x); hence x E: Gr. Thus (Grf is 

a.countable open covering of X·. Hence, since Xis countably 

paracompact and normal, there is, by Lemma 1.2 and Theorem 1.6 

a locally finite open covering fuJ of X with Ur CGr and also 

a locally finite open covering {vr} of X such that Vr CUr• 

By Urysohn 1 s Lemma, there is, for each r, a continuous 

function f 1/,f.rom· X to [-Qt> ,r] where [-oo,r] has the usual 

topology and fr(x)= -ci0 if x ¢ Ur' fr{x)= r if x<:Vr• Let f(x) 

be the least upper bound of the extended real numbers fr(x). 

Each point Xo of X is contained _in an open set N(x0 ) which 

meets only a finite number of th~ sets Ur. Hence, in N(x0 ) 

for all but a finite number of values of r, f (x)= -oo. r 
Thus in the neighborhood N(x0 ), f(x) is the least upper 

bound of a finite number of continuous functions, hence f 

is continuous on N(x0 ) • But x0 . is arbitrary. Hence f is 

continuous on X. In Ur, fr(x) r<g(x) and in X-Ur, fr(x)= 

-oo<g(x). Thus fr(x) < g(x) for each r and, for each x, f(x) 

is the least upper bound of a finite number off (x), each r 
less than g(x). Thus f{x)< g(x). Each x is in some V;ti., 

and for this r, f (x)= r; hence f(x) f (x)= r '7 h(x). r r 
Thus f(x) > h(x). Therefore h(x) < f(x) < g(x). 
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(ii) --)(i) Let_X be a space satisfying condition {ii) 

and let A and B be two disjoint closed subsets of X. Define 

functions hand g on X as follows: 

h(x)= l if xeA, h(x)= 0 if x 1 A, and 

g(x)=l if XEB., g(x)= 2 if x 1, B. 

Clearly g is lower semicontinuous., his upper semicontinuous 

and h(x) < g(x) for all xfX. Hence there is a continuous 

real function f on X with h(x) < f(x) < g(x). Let U= 

fx:f(x))lf and V= f x:f(x·)<l]. Then U and V are disjoint 

open sets; if x~A we have l=h(x) < f(x), hence x eu, and 

if x ( B we have l=g(x) > f(x), hence x EV. Thus .AC U and 

B C V and therefore X is normal. 

Now let {Fi ::i=l,2, • • •} be a decreasing sequence of 

closed ~ets with ~acuous intersection. Define functions h 

and g on X as follows, h(x)= 0 for all x f X and g{x)= 1/i+l 

for xtF1-Fi+l for (i=0.,1.,2., •••) where F0 means the whole 

space X. The function his continuous., hence upper semi-

continuous. To show that g is lower semicontinuous let the 

real number 4 be given. For q_~i, {x:g(x) ~q_g = X; for q~O, 

f x:g(x) q} is void;and if O < q < 1 then for some positive 

integer 1., 1/1+1~ q <1/i hence fx : g(x) ~q] = F1 • Thus, 

in any case., {x:g(x)~qJ is closed and therefore g is lower 

s·emicontinuous. Hence there is a continuous real function 

f on X with O < f(x) < g(x) for x~X. Let Gi= f x:f{x) < 1/i+lj. 

Then Gi is open, FiCGi and, since f(x))'O for all x., 
c,() n Gi is void. Thus by Theorem 1.6., Xis countably paracompact. 

i=l 
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(i)---,.(iii). This follows immediately from Theorem 3.5 
and the fact that the closed unit interval is a compact metric 

space. 

(iii) ( i). Let X be a space for which XX. I is normal. 

Then X is homeomorphic to the closed subset X XfoJ of the 

normal space XX'l and therefore Xis normal. Let fii\:i=l,2,•••} 

be a decreasing sequence of closed sets in X with vacuous 

intersection. Then, since the half open interwal t0,1/i) is 

open 

A be 

in I={O,~ ,Wi= (X-F.) X [0,1/1) is open in XX I. Let 
l. to<) 

the closed set X X I- U Wi. If x E x·, then, for some 
i=l 

i., xE'X-F i and (x,O) E Wi and hence (x,O) ¢ A. Hence if B = xxfo}, 
A and B are closed dis joint subsets of the normal space i: XI. 

Therefore there are disjoint open sets U and V such that 

AC U and BCV. Set G1=fx:(x.,l/i)~u]; then Gi is open. For 

each xEX, (x.,O)eB and hence for sufficiently large 1, (x,1/i) 

belongs to v. For Vis an open neighborhood of (x,O) and 

therefore the sequence t( x, 1/i) :·i=l, 2, ••·]is eventually in 
00 

V. Thus for some i, (x,1/i)EV and so (x,1/i)fU. Thus n Gi 
i=l 

is void. Moreover for xeF1 , if j~i, F 1CF j and x¢ X-F j; and 

if j>i, 1/1 </- [0,1/j). Hence, in any case, (x,1/i) ¢wj for 

j=l.,2., • • •. Hence (x.,1/i)~ACU and XE:G1 • Therefore Fi C G1 
and by Theorem 1.6., Xis countably paracompact. This completes 

the proof of the theorem. 

REMARK: Since a normal space need not be countably para-

compact (see the example given at the end of Chapter I) the 
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topological product of a normal space and the closed unit 

interval need not be normal. It is not known, to this author's 

knowledge, whether there exists a normal Hausdorff space X 

such that XXI is not normal. But by the above theorem and 

the example due to M. E. Rudin mentioned at the end of 

Chapter I, there exists such a normal Hausdorff space if 

there exists a Souslin space. 



APPENDIX 

THEOREM ~-= There is a separable normal Hausdorff 

space X which is not paracompact and does not have the 

Lindel½f property [6] • 
Proof: To construct the desired space we shall need the 

fallowing lem..>na : 

For each ordinal « in the set w1 of all countable ordinals 

there is a function fo< defined on the set W0 of positive 

integers., with values in w0 ., such that: if o<.<f, there 

exists an integer m(o<,f )= m( (3,c<) such that fo< (i)(f,e (i) 

whenever i>m(~.,, ). 

Proof of the lemma is by transfinite induction. Define 

f 0 :W0--->W0 by f 0 (i)= 1 for all i€-W0 • Letf€W1 and suppose 

for each ~<f that f~ is defined in such a way that, when-

ever o<1 ( c< 2 < (3 ,, there exists m(o{,, «-z) for which 

i>m(tx1 ,'-l'2 }~foc'l.(i) < fo< 2 (i). 

The set fci.: o<< fl is countable and hence can be reordered as 

a sequence o<1 ., o( 2 , • • •, OCn ,, .. • •. Define ff : W 0) by 

i 
r 11 (i)= l+ !. rot. {i) for i E w 0 • 
r j=l J 

Then for each o(n<f, let m( C(n,f? )= n and observe that 

i 
i> n f A ( i) =1 + !, foe • ( i ) > f ( i ) • 

, j=l J n 

The lemma now follows by induction. 

In the proof of this theorem Greek letters will always 

denote countable ordinals; and the letters i,j,k., and n 

43. 
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will stand for positive integers. 

(1) Construction of the space X. Let A denote the §et 

of all ordered pairs (m,n) and B the set of all countable 

ordinals. Set X= A U B. We shall now use the set f foe : o{E-W1f 
of functions constructed in the above lemma to define a 

topology for x. 
The set N will be a neighborhood if and only if it be-

longs to one of the following classes. 

(i) Every point of A is a neighborhood of itself. 

(ii) If o( is not a limit ordinal·, then corresponding 

to each n there is a neighborhood of o< which con-

sists of o< itself, and all pairs (k,fO((k)) withk)n. 

(iii) If o< is a limit ordinal, choose an ordinal f<~, 
and a positive integer n( Y) for each Y such that 

f<t~. F1or each such collection of choices there 

is a neighborhood of~ which consists of (a) all¥ 

such f<.Y~O(, and (b) all pairs (k,fr (k)) with 

k>n(Y) and f<Y~l(. 

Now, for x~A, let ti(x) be the family of all sets containing 

x; for «EB such that is not a limit ordinal let tl (c<) be 

the family of all sets containing a neighborhood of~ as 

defined in (ii); and for ~lB such that~ is a limit ordinal 

lettl(~) be the family of all sets containing a neighborhood 

ofo(.as defined in (iii). It is easily seen thattl(x) for x~X 

is a neighborhood. system of x relative to a topology for X •. 

Moreover the neighborhoods as defined in (i), (ii), and (iii) 



are open with respect to the generated topology. 

This completes the construction of the space X. We 

shall now show that X has the desired properties. 

(2) The space Xis separable. Since every neighborhood 

of any point of B meets the countable set A, A=X. Thus Xis 

separable. 

(3) The space Xis Hausdorff. Let x and y be distinct 

points of X. If x and y both belong to A the fxJ and fy] 

are disjoint neighborhoods of x and y respectively. If 

x= (m.,n) and y=~, where~ is not a limit ordinal., choose 

the integer n(ol) such that n («) > m. By the constructions ( i) 

and (ii) of (1) x and y have disjoint neighborhoods. If 

x=(m.,n) and y=o<., where « is a limit ordinal choose f<tl(. and in-

tegers n(r)>m for all Y such that~<¥~~. By the constructions 

(i) and (iii) of (1)., x and y have disjoint neighborhoods. 

If x=o< and y=f., where °' and f are not limit ordinals choose 

n=k= m(<t.,p). By the construction (ii) of (1) the neighbor-

hoods of x and y corresponding to the choices of n and k, 

respectively., are disjoint. If x= o< and y=f, where c;( is not 

a limit ordinal and f is, choose '1< r if f<"'- and. oe<rf<fJif f>o<. 
Then choose n('ll') =m(G\' .,'K) for all ¥' such that 't<'l(ff. By the 

constructions (ii) and (iii) of (1) the intersection of 

the basic neighborhood of y= f ( corresponding to the choice 

of rr and the choice of n(t)'for all 1'<Y,p) and any basic 

neighborhood of x= o< is void. Finally., if x= oe and y=p ,: 

where o< and (1 are both limit ordinals (say ri<p) choose r((of. 

and ·choose b such that o<.<,<P. For all }' such that ,r< r< 0( 
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choose n()')=m("(,0(); choose n(o<. )=m(o<,Y) for some ¥ such 

that '1'0'<o<; and for all 7i.. such that d<A~fchoose n(j\,,)=m(A.,i). 

Now let N be the neighborhood of« corresponding to the choices 
I 

off and n(¥) for all'( such that 1<t~", and let N be the 

neighborhood off corresponding to the choices of band n(A) 
I 

for all~ such that cf(~~p. Then N and N are disjoint neigh-

borhoods of~ and p respectively. For by the choice of & , 
I N and N have no ordinals in common and by the choices of 

r,~, n(i), and n(A}, if Y is such that '7'<'t~~and?,. is such 

that J<'A-~,f, then fr(k)~ fo(,(k)< f-,..{k) whenever (k,fr(k)) be-

lorigs to N and (k,f:t(k)) belongs to N'. I Thus N and N ha~e 

no members of A in common. Hence N and N1 are disjoint and 

we have now proved that Xis Hausdorff. 

(4) The space Xis normal. Let Hand K be closed dis-

joint subsets of X. If both Hand Kare uncountable, then 

H n B and Kn B are both uncountable and there exists se-

quences p1 , f 2,•••; Pn,••• and oc 1 , ii< 2, ••• , °'n,·•• such that 

for each n, fln belongs to H, O(n belongs to K, and fn<c(n <fn+l• 

Let 7' be the common limit ordinal of these two sequences. 

By the construction (iii) of (1) every neighborhood of 'Tin-

tersects both H and K and since these sets are closed 7'EH n K. 

Thus H n K is not void. This contradiction shows that either 

Hor K, say H, is countable. Since His countable there 

exists a countable ordinal o(O such that if OCEH, o<<Cl(0 .-!r 

% The existence of such a countable ordinal follows from a 
well known theorem of ordinal numbers. See [3] • 



The construction of disjoint open sets covering Hand K will 

be carried out with the aid of the integers n(~) now to be 

defined for each~. 

(i) For O()oh, choose n{o<)>m{o<,«o). 

{ii) Order the ordinals which do not exceed 0( 0 in a 

simple countable sequence <X 0 , o<1 , •·• • tXn, ... •. Take 

n(CX 0 )= 1. Then having chosen n{o< 0 ), ••• ,n(o<i.;..l), 

choose n(oc 1 ))m{c<i,O(j) where O~j<i. 

Suppose that~EK. Since~ is a countable ordinal and since 

His a closed set there exists an ordinal p which is maximal 

with respect to the two properties:~ is in H, and~<~. 

(It is assumed here that H contains ordinals less than~; 

in the contrary case take p=l.) If o<. is a limit ordinal 
I construct the neighborhood U {~)of~ in accordance with 

{iii) of {l) using the~ above and the integers n(l) des-

cribed above in {i) and (ii). If~ is not a limit ordinal 

construct the neighborhood u'(~) of~ in accordance with 

{ii) of (1), taking n=n(i,(). In ei.:ther case U1 (o<) does not 

intersect H n B. By noting that the neighborhoods described 

in (1) are open and that X-H is open it is easily seen that 
( ) U I (o() there exists an open neighborhood U of~ contained in 

that does not intersect HnA and therefore that does not 

intersect H. 

If ~EH, carry out the same construction interchanging 

Hand K to obtain an open neighborhood V{~) of~ that does 

not intersect K. Now let U and V be the sum of all the 
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neighborhoods U{~) and V{~) for~ in Kand H, respectively. 

Clearly both U and V are open, and U and V contain no 

ordinals in common {by the choices off). Moreover, U and 

V contain no points of A in connnon. For suppose {k,f~(k))EU 

and (k,fy{k)EV. Then Yi~1) and f~(k)<ft{k) by {i) and (ii), 

if ¥,~0 and by {ii) if Y<~0 • 

Finally, set U '= U U (KOA) arid V' = VU(HnA). Since all 

sets are open and since KOBCU and HflBCV, U1 and V' are 

open disjoint subsets of X that cover Kand H respectively. 

Thus Xis normal. 

(.5) .The space X is not paracompact. Let-Ube the cover-

ing of X consisting of all neighborhoods described in ( 1). 

Then t{ is an open cover:li.ng and every member of ti. is a 
I 

of ti., then countable set. If ti.. is any open refinement the 
I 

members of tl are also countable. Suppose every point of 

A has a neighborhood that intersects only finitely many 
I 

members of U. This is equivalent to the statement: Every 
I 

member of A is contained in but finitely many members of U. 
However, since A is countable and since all open sets meet 

I 

A, the union of the members of U is countable. But the set 
I 

B of all countable ordinals is not countable. Thus 'ii. cannot 

cover X. This contradiction shows that some member of A must 
Of ~/'. be contained in infinitely many members Consequently 

no refinement oft/. can be locally finite. Thus Xis not para-

compact. 
,, ti. (6) ~he space Xis not Lindelof. For let be the open 



covering of X described in the proof of (5). It is clear 

from the proof of (5) that no countable subcover of U can 

cover X. Thus Xis not Lindelif and the proof of the theorem 

ls complete. 
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