
THE ANALYSIS OF ANGULAR CORRELATIONS OF 

RADIATIVE TRANSITIONS AND AN INVESTIGATION OF 

EXCITED STATES OF C111 

by 

Denny D. Watson . . . a. s., Univerelty of Kansas, J960 

Submitted to the department of 
Physics and Astronomy and the 
Faculty of the Graduate School 
of the University of Kansas in 
partial fulfillment of the require• 
manta for the degree of Doctor of 
Philosophy. 

Advisory Committee: 

Redacted Signature 
Cbairtnan 

Redacted Signature 

Redacted Signature 



TABLE OF CONTENTS 

SECTION l. Introduction to the Thesis 1 

SECTION 2. Angular Correlation Formalism 3 

2. l Introduction 3 

2. 2 The Population Parameter Representation 4 
2. 2. l Ordinary Triple Correlations 4 
2.2.2 Multiple Cascades 8 
2.2.3 Angular Distributions 8 

2.3 Relations Involving Population 11 
Parameters and Statistical Tensors 

2.4 Statistical Tensor Formalism 12 
2.4.l Ordinary Triple Correlations 12 
2.4.2 Multiple Cascades 13 
2.4.3 Angular Distributions 14 

2. 5 Definitions of Coefficients 14 

References for Section 2 16 

SECTION 3. Analysis of Angular Correlation Data 17 

3. 1 Introduction 17 

3.2 Angular Correlation Calculations 18 

3.3 General Considerations 19 

3.4 Normalization of Data 22 

3. 5 Single Parameter Method to Locate X2. 24 

3.6 Double Parameterization Method 26 
3. 6. 1 Grid Point Selection 26 
3.6.2 Display of the X2. Surface 27 
3.6.3 Constraints on Population Parameters 27 

3.7 Simultaneous Analysis of Data From Separate 28 
Experiments 

3.8 Analysis of Errors 32 
3. 8. 1 Analytic Error Determination 32 
3.8.2 Graphical Error Determination 34 

3.9 Discussion 37 

References for Section 3 38 



TABLE OF CONTENTS (Cont'd) 

SECTION 4. Introduction to the Expe~imental Work on S3 4 (p, y) 39 
Cl3 s 

4o 1 Review of Cl3 5 Properties and Comparison with 39 
Models 

4o 2 Target Preparation 41 

4o 3 Experimental Methods 42 

SECTION So 

References for Section 4 

The Resonances at 1214 keV and 1905 keV 
in the S3 4 (p, y )Cl 3 5 Reaction 

5. 1 Introduction 

5. 2 Decay Scheme of the 1214 keV Resonance 

5.3 Angular Correlation Results From the 1214 
keV Resonance 

5. 4 Polarization Measurement at the 1214 keV 
Resonance 

48 

49 

49 

50 

53 

59 

5. 5 Measurements at the 1905 keV Resonance 62 

5. 6 Additional Angular Correlation Measurements 71 
at the 1214 keV Resonance 

So 7 Discussion 7 5 

APPENDIX I 

APPENDIX II 

References for Section 5 

Analysis of Errors and the Least Squares Method 

Computer Program for Angular Correlation Data 
Analysis 

ACKNOWLEDGEMENTS 

81 

82 

89 

96 



SECTION 1 

Introduction to the Thesis 

The original intent of this thesis problem was the experimental 

study of the Cl3 5 nucleus by the measurement. and analysis of angular 

correlations and linear polarizations of gamma rays from the radiative 

capture of protons by S3 4 • The angular correlation data was originally 

analyzed using the numerical tables of Smith1 to calculate the theoretical 

correlations, and using a graphical technique to compare the experi-

mental results with the theoretical correlations. The complete analysis 

6£ this data by that system required the calculation of a number of addi-

tional coefficients which were not tabulated in Ref. 1. It also appeared 

that the graphical solutions, in one instance, were not sufficiently 

accurate to provide a unique spin assignment from the experimental 

data. 

At this time a new formalism for the description of gamma-ray 

angular correlations became available i. A complete set of numerical 

coefficients was necessary before this formalism could be utilized. The 

new formalism, however, appeared to have such a great potential for 

a solution of the existing data analysis problems that the task of calcula-

ting and tabulating an extended set of coefficients was undertaken. The 

tabulation is too lengthy to include in this thesis and is being publishe9-

under separate cover. Section 2 of the thesis· is a part of the introduction 

to the numerical tabulation and it is included here since it provides a 

review of the formulae which have been used in the analysis of the 

Cl3 5 data. 
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The new formalism was next incorporated into a much more com-

plete and precise data analysis system. The new data analysis techni-

ques are discussed in Section 3. The implementation of these data 

analysis techniques requires a lengthy computer program. Such a pro-

gram has been written and is discussed briefly in Appendix II. The 

length of the computer program prohibits the inclusion of a complete 

listing in the thesis and thus it, also, is being published in more detail 

under separate cover. 

Some results of the experimental work are discussed in Sections 4 

and 5. The applications of the formalism and the data analysis system 

are illustrated and the determination of some spins, parities, and mixing 

ratios from the S3 4 (p, y) work is reported. All of the experimental data 

has been analyzed independently by techniques which existed prior to 

the new developments discussed above. The results of both analyses 

are in good agreement. The results from the new system have been 

so much more accurate and easily communicated, however, that the 

original data analysis has not been discussed. 

The author is fortunate to be now employed at a laboratory where a 

further investigation of the properties of Cl3 5 is being carried on by him 

and others in a professional capacity. The work described in this thesis 

serves as a foundation for a more comprehensive study. 

1. P. B. Smith, in Nuclear Reactions, Vol II, edited by P. M. Endt and 
P. B. Smith, (North-Holland Publishing Company, Amsterdam, 
(1962)). · 

z. G. I. Harris, H.J. Hennecke, and D. D. Watson, "On the Analysis of 
Triple Correlation Measurements, " to be published. 
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SECTION 2. 

Angular Correlation Formalism 

2, 1 Introduction 

Excellent treatments of the theory of angular correlations between 

gamma-rays in successive radiative transitions from isolated aligned 

nuclear states have been provided by Biedenharn and Rose 1 , Rose 2 , 

Satchler3 , Devons and Goldfarb4 , Litherland and Ferguson 5 , and many 

others. The application of various forms of the theory to the numerical 

analysis of experimental data has been discussed by Ferguson and 

Rutledge 6 , Smith7 ' 8 , Ferguson9, and others. 

The formalism used by Ferguson and Rutledge involves both formation 

and decay parameters mixed into a single formula with no explicit 

reference to any magnetic substates. Litherland and Ferguson have 

developed the formalism beginning with an aligned but arbitrarily populated 

initial nuclear state. This replaces non-linear formation parameters by 

linear population or statistical tensor parameters and, in consequence, 

tends to simplify data analysis. Harris, Hennecke and Watson1 0, hereafter 

referred to as HHW, have developed a formalism in its "factored" form 

in which the initial state is specified by population or tensor parameters 

in product with a separate factor representing each gamma-radiation of a 

gamma-decay cascade. This formalism is extended in a natural way to 

cover multiple cascades where any number of gamma-radiations are 

unobserved. The intrinsic factorization property can be useful in the 
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numerical analysis of data. In addition, the attendant numerical 

coefficients are more compact and thus more easily extended to cover 

a greater variety of problems. These coefficients have been tabulated 

under separate cover 11 • 

The tabulated coefficients allow the calculation of angular correla-

tions of gamma-rays from a general n-step cascade where any one 

gamma-ray or any two gamma-rays in coincidence are observed. 

Coefficients for both the population parameter and statistical tensor 

formalism are tabulated. The gamma-ray multipolarities may be as 

high as octupole. 

The next three sections contain a list of formulae from HHW 

wµich are relevant to the calculation of angular correlations. The 

coefficients involved in these formulae will be defined in section 2.5. 

The notation used here is essentially the same as that used by 

HHW. Two exceptions must be noted. The ordering of quantum 

numbers J 1LL'J2 is used here in place of Jl 2LL' used in HHW, and 

also the small u and capital U have been interchanged. The latter 

change was adopted in order to provide notational symr.netry between 

the u and h coefficients. The capital U of HHW was chosen to agree 

with the notation of references 2 and 3. Within the context of this work 

and that of HHW, this seemed to be the least confusing choice of 

notations. The phase convention in HHW and in this paper is the same 

as that used by Smith 7 and also by Ferguson and Rutledge 6 in the 1962 

edition of their tables. 

2. 2 The Population Parameter Representation 

2. 2. 1 Ordinary Triple Correlations 
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The ordinary triple correlation formula for a double cascade as 

shown in Fig. 2. 1 is given by: 

W (ll.) = L Pm (J,) G,,,M ( S,, .a) HM (62 ) • 
mM 

(2-1) 

Pm is the population of the + m and-m magnetic sub states taken together. 

Q stands for some set of the three angles 01, 0 2 , cp which specify the 

angles of the first and second gamma-rays measured from the incoming 

beam axis and the aximuthal angle between the gamma-rays as shown 

inFig. 2. 2. The summation runs over all values of m and M for which 

the coefficients do not vanish. The other factors are given in terms of 

the tabulated coefficients as follows: 

(2-2) 

(2-3) 

where 

The quantities <\ and o2 are the ratios of reduced matrix elements for 

L' -pole to L-pole radiation. The exponents p1 and Pz take on the values 

O, 1, or 2 for pure L, mixed L, L', or pure L' radiation, respectively. 
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The factors QK and QM account for the finite size of the detectors. 

The E~M and hM coefficients are the coefficients which have been 

tabulated. They are defined in section 2. 5. 

2. 2. 2 Multiple Cascades 

If there are unobserved gamma-ray transitions between the two 

observed radiations as shown in Fig. 2. the extended formula is given 

by: 

The new factors are given by: 

UM (J4 LoJ1,) + s: UM (Jq L~ Jb) 
I+ 6 2 

4 

(2- 5) 

(2-6) 

The coefficients uM(J a LJb) are defined in section 2. 5 and are tabulated 

along with the hM and E~M coefficients. 

The first observed radiation does not necessarily have to be the first 

gamma-ray in the cascade. The angular correlation of the two observed 

gamma-rays from the cascade shown in Fig. 2. 4 could be described as: 

Wen)= L, <J.,•> G'"M cs"', n) u,.,, c &j> ... H"" <6~). (2-5a) 
mM 

If necessary, the populations of the state labeled J. can be expressed 
1 

in terms of the populations of the preceeding states according to 

formula (2-12) in section 2. 3. 

2. 2. 3 Angular Distributions 

The angular distribution of the primary gamma-ray is obtained by 

averaging the triple correlation formula over all directions of the 
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secondary gamma-ray. 

This provides: 

Wce,>=LPm(J,) GmM(&,,e,) 
rn 

(2-7) 

Similarly the angular distribution of a secondary gamma-radiation with un-

observed primaries is given by the same formula (2-5) except that only 

the K = 0 terms remain non-zero in the expansion of the GmM £unction. 

Thus: 

W<e2}= L ~(J,) GmM(6,,ez) UM(6z.)··· HM(6e) 
mM 

where 

The gamma-ray transition described by the GmM function will mix 

incoherently as it should £or an unobserved radiation because E:M(L L') = 0 

i£L-/:.L'. 

These formulas for angular distributions differ from the usual 

Legendre polynomial expansions only by a £actor J2K + 1 and J 2M + 1 

respectively. 

2. 3 Relations Involving Population Parameters and Statistical Tensors 

The statistical tensor is related to population parameters by the 

transformation: 

lfo (J,) = + ,L c-/•-rn (J,m J,-m I kO) Pn, (J,) 
tn 

(2-9) 
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The inverse transformation is then: 

f?_ ( ) ' J, - '" 
,,., J, = J2J +/ L... (-) (J, m J, -m I ko) .,o (J,) 

' k lko 
(2-10) 

These transformations satisfy the normalization condition 

/go= L = 1 • (2-11) 
m 

In the event that the first observed transition is preceded by one 

or more gamma transitions, it is useful to be able to relate the popula-

tion or tensor parameters of one state to its preceding state. The 

relationship for populations is: 

1;,,cJz) = ?-" L Pm, (J,) 
m, 

where n = c5 0 . -6 0 arises from the fact that P(m1) and P(m2 ) 
ml' mz, 

are the populations of both + and - substates taken together. Due to the 

complicated nature of the relationship between P(m)' s it is probably 

desirable to express the triple correlations in terms of the populations 

of the state from which the first observed radiation arises. The corres-

ponding relationship for statistical tensors is: 

(2-13) 

This simple one-to-one correspondence makes it easy to write 

correlations in terms of the initial nuclear state even though there may 

be several transitions preceding the first observed transition. 

2. 4 Statistical Tensor Formalism 

2. 4. 1 Ordinary Triple Correlations 

12 



The formalism for the analysis in terms of statistical tensor 

parameters is completely parallel to that for population parameters. 

The only difference is that some of the coefficients differ from each 

other by a linear transformation. The appropriate formulae will be 

stated below with the new coefficients for the sake of completeness. 

The ordinary triple correlation formula for the cascade shown in 

Fig. 2. 1 is: 

(2-14) 

where 

~"" (6'.,.n.) == LL , +-'6 ,. E:N<J,L,'-~J,.k) QK Q"" x:"" c.n.). 
N L, L', I 

(2-15) 

The coefficients E~M are defined and tabulated along with the E~M' 

hM and uM coefficients. 

2. 4. 2 Multiple Cascades 

The formula for multiple cascades in statistical tensor representa-

tion is: 

(2-16) 

The expression above is for a cascade of the type shown in Fig. 2. 3 

As with the population parameters, the statistical tensor parameters 

need not refer to the level from which the fir st gamma-ray of the cas,cade 

was emitted. The same formula would still be valid if unobserved gamma-

rays preceded the first observed radiation. With statistical tensors, it 

is also quite simple to write the angular correlation illustrated by Fig. 2. 4 
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in terms of the tensor parameters of the initial nuclear state. 

This becomes: 

(2-17) 

2. 4. 3 Angular Distributions 

An angular distribution will result when either a transition described 

by the link T KM or by the link HM is unobserved. The proper formula 

will result in the first case by restricting M = 0 and in the second case 

by restricting K = 0 just as in section 2. 2. 3 . One could just as well 

replace QM by oM, 0 or replace QK by oK, 0 depending on which angular 

distribution is desired. This result is obtained intuitively by imagining . . 
that a coincidence is still required between two detectors but with one 

detector subtending a solid angle of 2,r. 

2. 5 Definitions of Coefficients 

Four type of coefficients are tabulated. They can be defined as 

follows: 

E N ( t:+N+t ,., "z ~""'.,... 
.-<N J,L~Jzrn) =(-) 2 J, Jz L (Llt'-1 IKO) 

where 

J,-m lJ,. L J} )( L.., (-) ( J, m J, - m I l.. 0) ( k -N M N I k O) Ji L1 J 1 

le . M H 

-N E . (J 1 ) L'+N+-/ ,, A A A -" 
t< M • L t J '1 = (-J 2 J, J 1. L I.: ( L I J: - I I K o) 

. tJ2. L J,} 
X ( K -NM NI kO) J,. ,_,JI . 

M K lr 

14 
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The symbols 'J' = J2J + 1. The Kronecker deltas are not to be confused 

with multipolarity mixing ratios. The notation for Clebsch-Gordon, 

Racah, and 9-J coefficients is standard. 

Innumerable relationships exist between these coefficients and such 

coefficients as the C~M' D~M' Gy, W, Z, F, etc. The relationships 

are implicit in the definitions and will be mentioned no further except 

to point out that in some cases, notably for u and h, the coefficients 
A 

differ from other tabulated coefficients only by phase factors, "J" type 

factors, or factors of two, In spite of their close resembl31-nce to other 

coefficients, the u and h coefficients are included here for the sake of 

completeness and more importantly to prevent the introduction of error-

conducive phase factors, etc. into the numerical calculations of 

correlation functions. All such factors are included in the tabulated 

coefficients, 

Further discussion of the range, calculation, and preparation of 

the numerical tables is included with the actual numerical tabulations1 1 • 
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SECTION 3. 

Analysis of Angular Correlation Data 

3. 1 Introduction 

The analysis of data from angular correlation measurements on 

successive radiative transitions from aligned states is complicated by 

the non-linear dependence of the correlations on some of the parameters 

which must be determined from experimental data. It has been pointed 

out by Litherland and Ferguson1 and by Smith 2 that a description of the 

theoretical correlations in terms of population parameters or statistical 

tensor parameters has the advantage of replacing the non-linear forma-

tion parameters with linear population or tensor parameters. Then for 

fixed values of the remaining multipolarity mixing ratios, the population 

or tensor parameters may be obtained by a linear least squares fit to 

the experimental data. HHW3 have exploited the factorization properties 

of the angular correlation formalism. This factorization can be useful 

in applying the formalism to the analysis of data and is being used as 

the basis for the data analysis techniques discussed here. 

A number of data analysis techniques have been described by Ferguson4 • 

Specific techniques have been discussed in detail by Broude and Gove 5 , 

Smith 2, and many others. The present work describes a system which 

utilizes many of the features described by the authors mentioned above. 

The techniques discussed here also utilize the formalism of HHW and 

have been used primarily on problems involving two non-linear mixing 

parameters. 

17 



3. 2 Angular Correlation Calculations 

The angular correlations between two successively emitted gamma-

rays can be written as: 

(3-1) 

where G and H have been defined previously. The factors G and H each 

a+ bo + C 0 2 
involve mixing parameters in the functional form 

1 + 6 2 

The magnetic substates may not all be populated due to channel spin 

limitations and if the final spin is zero there will be only one mixing 

parameter involved. On the other hand, if there should be an inter-

mediate radiation unobserved, an additional factor U M(0i) must be 

introduced which produces an additional mixing parameter. Data 

analysis problems may be classified, therefore, as in table I below: 

Table I 

Number of mixing Number of population 
Type parameters parameters 

I 1 1 

II 1 several 

III 2 1 

IV 2 several 

V several 1 

VI several several 

Primary emphasis will be on problems of type III and IV and some 

discussion of types V and VI will be given. The unique determination 

of parameters, of course, becomes much more difficult as their number 

increases. 

18 



The techniques discussed here will generally apply equally well to 

statistical tensors or to population parameters. The latter description 

is chosen partly in order that one may be able to make definite references 

to one system or the other. In addition, however, it is of considerable 

value to include in the analysis the physical constraints P > 0 and, in m-

the case of channel-spin limited reactions, P = 0 for m > m • These m o 
constraints can be built into the analysis in terms of population parameters 

in a very simple manner. The sa.me constraints can, of course, be 

written in terms of statistical tensors as, 

and L C,,,1c P,c = 0 
I< 

for m >m0 1 

where Cmk are the transformation coefficients between population 

parameters and statistical tensors. The more complicated appearance 

of the constraints in the statistical tensor representation makes them 

more difficult, however, to include in the analysis. 

3. 3 General Considerations 

There are at present two major classifications of techniques for . 

solving the problem at hand: graphical techniques and "chi-squared" 

techniques. The graphical solutions are comprehensive, do not require 

large high speed computers and have been quite valuable generally. 

They tend to be, however, slow and cumbersome, difficult to communicate, 

19 



and relatively inaccurate in the determination of parameter values . 

. The "chi- squared" techniques are based on the following: 

Set 
2 2 

Q = w"'• cwc.iJ - w"'u, J , where : (3-2) 

w. is the stati~tical weight factor, which £or the normal case 
l 

of statistically uncorrelated input data is the reciprical of the 

variance (square of the standard deviation), 

W(i) is the experimental counting rate measured at the ith set 
i i i of angles 0 1, 0 2 , q,, and 

W,:,(i) is the theoretically calculated counting rate at the same 

angles as a function of o1, o2, • • •, Pm' m = 1, 2, • • •• 

The particular set of values o1, o2, •··,Pm is sought which minimizes 

Q 2 • The minimum value of Q 2 will be denoted by X 2 • Use will be made 

of the normalized curve 

with its minimum 

-2 _ _st_ 
Q - N 

where N is the number of degrees of freedom, equal to the number of 

experimental points minus the number of parameters adjusted in 

minimizing Q 2 • The normalized minimum "X. 2 will be near unity if the 

experimental data is in statistical agreement with the theoretical 

values for a particular set of parameters. Discussions of the statistical 

interpretation of 'X 2 are in the literature 6 • 

20 



A number of iterative techniques to find the set 

have been explored. These techniques usually involve expanding W;, 

in a Taylor series around an arbitrary starting point, looking at Q 2 in 

that neighborhood, and then moving toward a lower point on the Q 2 

surface and re-expanding until a minimum is reached. These techniques 

have, in practice, been frustrated by uncertain convergence due to 

saddle points and singularities, and the ever present possibility that a 

significant minimum will be missed entirely. Wherever possible, it 

seems advisable to parameterize the non-linear mixing ratios and use 

linear least squares analysis to solve for the remaining linear population 

parameters. Since all possible values of the mixing ratios must be 

investigated this process tends to require a fast computer even for two 

mixing ratios and computer requirements may be prohibitive for three 

or more. Most problems, however, involve only two non-linear 

parameters and even if there are three or more, the problem can be 

considered in "stages" as proposed in HHW and as discussed below, 

where each stage involves only one or two non-linear parameters. 

The theoretical correlations referred to in equation (3-1) are 

essentially expansions of the type 

distributions are represented as 

N N L AKM XKM( 01, 0 2, cf>). Angular 

depending upon which gamma-ray of the cascade is observed. Thus, 

angular distributions may be treated by the computer on an equal footi;ng 

with triple correlations. In practice the angular distributions are 

treated by the computer exactly as triple correlations except the factor 

OK or OM is introduced via the finite geometry correction factors. ,o ,o . 

The correlations are not re-expanded in Legendre Polynomials. Also, 
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as indicated in equation (3-2) the Q 2 values are based on a comparison 

of actual experimental values at each point on a sphere with the theoretical 

values instead of comparing experimental expansion coefficients with 

theoretical expansion coefficients. Use of the experimental points is the 

most direct approach, provides the maximum numbers of degrees of 

freedom and allows the use of statistically uncorrelated input data in the 

analysis. It also allows full use to be made of the additional information 

iJplicit in data which is already internally normalized • . In the event that 
/ 

~ triple correlation data is unnormalized between different "geometries"; 

or with the addition of angular distributions, which are almost certainly 

unnormalized with respect to the triple correlations, one must introduce 

normalization coefficients to be determined by least squares analysis 

as are the other parameters. 

3. 4 Normalization of Data 

The technique for normalizing data arises from the following considera-

tions: Let O .. be the ith set of angles from the jth geometry. 
lJ - -

where 1J • is the normalization constant required to consistently normalize 
J 

the data of the jth geometry. One now wishes to vary r, . so as to 
J 

. . . Qa( ) m1n1m1ze r, . • 
J 

Since Qa is positive definite and quadratic in the 

variables r, . , the minimum in Q a will be the solution of the equations · 
J 

0 for j = 1, 2, • • • • 

Thus one obtains: 
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1l . J 

* w-i·i w c.n..,j) w c..n,.J) 

'1;. w.;j W*(A.ij) Wc.O.;j) 
.c. (3-3} 

This is equivalent to replacing W(Q .. ) by N. W(Q.) and a(W(Q .. )) 
J 

by N.a(W(Q .. )) where 
J lJ 

I 
1lj 

(3-4) 

In practice it has turned out to be more convenient in the computer pro-

grams to use the factor N. to renormalize the experimental data and 
J 

the errors. 

Two techniques have been used successfully for the application of 

equation (3-3). The first is to perform a least squares curve fit of the 

entire set of correlation data to a set of X~M functions to find the best 

set of co~fficients A~M in the expansion 

)' N N 
W(A) = AKtl\ X KM (.n.) (3-4) 

The least squares fitted curve is then used to derive the points W*(Q .. ) lJ 
referred to in equation (3-3) and the data is renormalized. The whole 

process is then repeated until no improvement in the Xa of the least 

squares fitted curve is obtained by further iteration. The data, thus 

normalized, is then fed into the program which searches for mixing 

parameters and population parameters for various assumed spins. 

This technique has proven satisfactory where enough experimental 

points are available, but fails when insufficient data is available to 

render the set of functions X~M(Q) linearly independent. That is, 

when an insufficient subspace of the Q = 0 1, 0 2, <p space is sampled in 

the experiment, the expansion coefficients A~M will be indeterminate. 
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An alternative method which does not suffer from the above 

limitation is simply to find the best set o1, o2, ••·Pm for the unnorma-

lized data, then normalize it using equation (3-3) and repeat the process. 

The iteration converges rapidly and is certain but it requires a larger 

number of computer operations since the problem of finding the best set 

of these parameters involves more computer operations than does the 

curve fitting used in the above mentioned process. 

3. 5 Single Parameter Method to Locate 'X,2 

A general technique for the location of the minimum in the Q 2 surface 

has been suggested in HHW as follows: For an assumed spin sequence, 

Set so that 

of if .t stands for a unique set of mM, 

W(..o..) =;I.,~ (S, ,.o.) . (3- 5) 

Then from equation (3-3) above, Q 2 = Q 2 (I1, 12 , ···IL'<\) and for some 

fixed value of o1, the numbers 11, 12 , •••IL which minimize Q 2 can be 

found by ordinary linear least squares analysis. This minimum will 

. 2 - -be denoted by X (I, u1) where the vector I has the components r1, r2, ••·,IL. 

A plot of X 2 versus o1 can then be made after performing the calculation 

at several fixed values of l\. If no acceptable minimum is reached the 
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assumed spin combination can be ruled out without further analysis. If 

an acceptable minimum is reached at say <\ = of, then the first mixing 

parameter is determined and one may continue by comparing the corre-

sponding components I~ to the set Ji UM(o 2 ) for various values of o2 , 

where J.i = Pm U M(o 3 )• · • HM(o e ). The analysis may then, in principle, 

be extended through all mixing parameters stage by stage where each 

"stage" has been made linear in all but one parameter. The utility and 

validity of the technique rests on the result obtained in the following 

paragraph. -In using the least squares method to choose the vector I which 

minimizes Q 2 (i, l\) it is assumed implicitly that each component Ik is 

free to be determined independently. This is, in fact, not the case as 

the set 11, I 2 , ·••,IL may not be equal to the set P mUM(o1)UM(o 2)• • • HM(of) 

for any physically possible set of values o1, o 2, • • • l\, Pm' m = 1, 2· • •. 

However since T has been chosen to precisely mini~ize Q 2 it must be 

true that 

(3-6) 

for all possible values of o 2 , 03' · • · oe, Pm· Therefore the curve 

')(. 2 (i, o1) is in fact a lower bound to the curve 'X2 (o1, °62 , ···<Se, Pm) 

where the bars indicate those values which minimize Q 2 • Thus it is 

indeed true that wherever no solution exists for 'X 2 (I, o1), no solution 

will exist for any set of all other parameters o 2 , 03' ••·Pm· a-If'X (I,<\) ... . ... 
reaches an acceptable minimum for some values I = I 0 , o1 = o1 then 

the analysis can proceed to the investigation for possible solutions in 

the variable o2 etc. The extension of the analysis through all of the 

variables is, in principle, straight forward. In some . instances, 

however, the values I0 and o1 are not well defined in the primary stage 
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of analysis and the continuation of the analysis to succeeding stages 

becomes rather difficult. If there are only two mixing ratios involved, 

as is frequently the case, the more straightforward technique of 

parameterizing both non-linear mixing ratios has been found to be free 

of the complications which may arise in the single parameter technique. 

3. 6 Double Parameterization Method 

The problem of major concern here has two mixing parameters. 

Ideally one simply calculates the entire')(. 2 (c\, o2) surface where for 

each pair i\, o2, the value -X. 2 is obtained by choosing the best set of 

linear population parameters subject to the requirement that they all be 

positive or zero. This solution for both mixing parameters and the 

associated P values is obtained from the minimum in the -X. 2 surface. m 
This technique is presently being used on problems involving one or two 

mixing parameters. The surface must be calculated at a number of 

separate points for fixed o1, o2 • The choice of these "grid" points, the 

numerical output for visual display of the surface, and the constraints 

on P values are discussed individually below. m 
3. 6. 1 Grid Point Selection 

In the investigation of the mixing parameter, o, the substitution 

x = tan -i O is used. Then x ranges from -90° to + 90°, O ranges from 

- oo to + oo • It has been noted7 that this substitution renders the. 

theoretical correlation £actors sinusoidal is the variable x. This 

sinusoidal character is carried to the 'X.2 surface and effectively renders 

the width of the dips in the surface independent of their position on the 

surface. Thus, covering the surface from -90° to + 90° with a square 
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grid of say 5° intervals in the angular variables covers the entire range 

of mixing parameters from - ooto + oo and does so with the same degree 

of detail over the entire surface. In practice, grids of as fine as 2° have 

been used. The 2° grid results in just over 8000 grid points and is more 

than sufficient to define all dips in the surface. A program has been 

written for the IBM 7094 computer which can cover an 8000 point grid in 

less than one minute including the computation of the necessary E and H 

coefficients and xiiM functions. The computation of E and H coefficients 

is included in the program· so that the only input to the computer will be 

the experimental data and spin combinations. 

3. 6. 2 Display of the X.2 surface 

Rather than write out the.?( 2 value at every grid point the computer 

provides two curves which carry the significant information. For an 

NxN grid the first curve is 'X, 2 (P m,ot ,a;_) for i = 1, 2, 0 
• 

0
, N where Pm 

and "F2 indicate the choice among all possible values which renders -X. 2 

a minimum. The second curve is ?(. 2 (P m'Bl' 0~} for i = 1, 2, • 0 
•, N. 

These curves are simply the projections or "shadows" of the ')£ 2 surface 

on the o1 and o2 planes. This-technique removes any chance of missing 

a minimum and it provides a reasonable visual image of the entire surface 

as well as the minimum values of<\ and o2 while maintaining a tractable 

output. In addition, it will be pointed out in section 3. 8 that the projection 

technique accounts for correlation errors among the various parameters 

whereas a slice of the surfac·e would not. 

3. 6. 3 Constraints on Population Parameters 

In practice, it has been found that the inclusion of the physical 

constraints P > 0 into the calculation of the 'X. 2 surface is highly m-
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desirable. The~ 2 surface will then result from the choice of non-

negative population parameters which render 'X 2 (l\, o2, Pm) a minimum 

at each grid point (<\, o2 ). In order to find the proper set of P values, , m 

the calculation of 'X2. is first carried out with no restrictions on P • m 
If one or more values of P turn out to be negative, these values are m 
set equal to zero and the calculation is repeated using only the remaining 

non-zero P values. The elements of the normal matrix which are m 
required for the latter calculation are already in the computer memory 

from the fir st calculation and the increase in computer time is slight. 

This procedure actually provides the lowest?(. 2 value within the limita-

tion P > 0 due to the fact that the Q 2 surface is precisely quadratic in m- . 

the P variables and thus increases monotonically with P as P m . m m 
increases from the original minimum point. 

3. 7 Simultaneous Analysis of Data from Separate Experiments 

A final question to be considered is that of mixing the results of 

data obtained from two different cascades or from two or more resonances 

which involve a common spin or mixing parameters, in order to obtain a 

single resultant ?(.2 curve. The question is first considered for problems 

with only one population parameter (Type III) and is illustrated by 

example. 

Suppose the situation shown in Fig. 3.1 exists, where the level J 2 is 

populated by gamma-ray transitions from three different resonance levels 

of the same nucleus. It is presumed that for a given choice of J 2 and J 3 

one already has found JR/ ORi' JRz' oRz' JR3 oR
3 
which minimize the 

?(. 2 values for each of the three cascades separately. Then by the defini-

tion of the "shadow plots" the properly mixed plot for the common 
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variable O 2 is: 

(3-7) 

where N1, N 2, and N3 are the number of degrees of freedom of the 

individual experiments and as before the bars over ?(. 2 indicate that 

they are the normalized curves which are produced by the computer in 

the analysis of the separate experiments. A similar expression is 

obtained for the common spin J 2: 

N, X,a (J,.) + Nz -x: (Ji) + N :l X! (Ji) 
N, + N2 +N3 

(3-8) 

-2 - -2 where ?C. 1(J 2 ) is the lowest value of?( 1 obtainable for a particular 
· -2 -2 choice of J 2, and so on for?( 2 and ?( 3 • The process is extended in the 

same manner to cover other overlapping situations such as for . the spin 

J1 or the mixing parameter o1 as obtained from the various possible 

angular distributions and triple correlations which can be performed 

with the gamma rays indicated by Fig. 3 . 2. Since these mixed curves 

are all obtained simply by the weighted addition of separate II shadow" 

curves obtained in the individual analyses, the actual mixing of i~forma-

tion is rather trivial. 

If more than one magnetic substate is populated, then the mixing of 

overlapping P values can be, in principle, accomplished in the same . m 
way but becomes much more complicated in practice since the P m 
values are not parameterized as are the spins and mixing parameters. 

The mixing of magnetic substate values requires major complications 

in computation and is not considered practical at present. 
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l. 8 Analysis of Errors 

A few remarks are included here to indicate the method of error 

determination in the measured parameters. The determination must 

include the errors in the parameterized mixing ratios including the 

effects of correlation errors. First, a general analytic approach is 

outlined. It is shown in the next section that much of the error informa-

tion is already contained in the "shadow" plots and, in fact, they will 

suffice to determine the errors in the mixing ratios with no additional 

analysis. Although it is much less convenient, one could even deduce the 

correct correlated errors of the population parp.meter s from their values 

and uncorrelated errors over the region of the "error ellipse 11 • 

3. 8. 1 Analytic Error Determination 

The essential basis for the analytic determination of errors in the 

parameters is the linearization of the theoretical angular correlation 

functions, or equivalently, the quadratic approximation of the Q 2 surface 

in the region of the minimum. 
o ~o o o Suppose the sear ch program has found values o1 , v 2, • • ·, O e' Pm' 

m = 1, 2, • • • at the grid point nearest to the minimum in the Q 2 surface. 

Set 

Then 

0 E,=&,-o, 
E2= b, - &; . . . 
' • 

6e= &e- s; 
0 Ee .. ,: P, - P, . 

• • 

(3-9) 

so that 
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(3-10) 

The subscript O indicates that the quantity is to be evaluated at 
0 o l' 00 000 0 2' ,Pm. The corresponding normal matrix is 

c; ,(':: L WJ· 
... 

~Wt> ,/ QJ. oW C.A) - .L (3 .. 11) -
,l u E; i) ',I' 2 <)~_, E,1' 

and the variance-covariance or error matrix for the correction factors 

is the inverse of C, i.e., 

(3-12) 

But these are just the desired errors since the position of the minimum 

is now given by 

6 = (6°+ E) ! 0-(E) 

Thus: 

-4': /, Z, I• • • J e era( 6,·) = CTa( E.;) = E.,-,· 

r.r'(P..) = u-' ltd = E.,.A° J = e +1 , e-+ z., • • · 

Also, the correction factors are obtained from 

E; = r: E .. y. . • ,, J 
J ' 

where 
> 

as a _result of linear least squares analysis. 

33 

(3-13) 

(3-14) 



The matrix elements C1.,1' can be calculated in several ways. 
'ow: ·i/ Q2. 

Either of the derivatives 'o e.,1 or c>c,, d€,e' of equation (3-11) may 

be calculated analytically since the functional form of w~:, (and, hence, 

also of Q 2 ) is known. Alternatively the numerical second derivatives of 

Q 2 may be readily calculated using quantities which are available in the 

computer. 

In the case where several population parameters are involved, the 

errors in the normalized quantities 

R = m are de sired. If E .. is the error lJ 

matrix corresponding to the population parameters and S = E PK' 
K 

then the variance in the ratio can be expressed as: 

I:Er . • J 
,IJ - 2 s' 

I: Eim -~-s-J (3-15) 

This expression is derived from the error techniques discussed in 

Appendix I of this thesis. 

It should be kept in mind that the analytic technique will fail if the 

Q 2 surface becomes non-quadratic near its minimum and also that it 

provides only the internal or purely statistical errors in the measure-

ment. Thus, care must be exercised in interpreting results where doubt 

·exists about the relative importance of systematic errors and non-quadratic 

behavior. 

3. 8. 2 Graphical Error petermination 

Assume that the Q 2 surface depends on two independent variables and 

is quadratic in the region of the minimum so that, 

I 
(3-16) 
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where Qa is the value at the minimum and x and y are the coordinates of 
0 ' 

displacement from the minimum. A contour in the Qa surface at the 

value Qa = Qa + 1 would have the form of an ellipse. By a transforma-o 

tion to new coordinates whose axes coincide with the major and minor 

axes of the ellipse we have 

(3-17) 

From equation (3-11) the normal matrix corresponding to this form is: 

C = (: ~o) ' (3 -18} 

and the error matrix which will specify the errors in the x' and y' 

coordinates is therefore 

E' = ( ''"" 0 

Again consider the contour Q a 

this contour has the form 

• 

= Qa + 1. 
0 

a 1 cxx' +13y' = 1 

(3-19) 

In the new coordinate system 

(3-20) 

Comparing equations (3-20) and (3-19), one may observe that the 

squares of the semi-major and semi-minor axes of the ellipse are the 

variances, and thus the semi-major and semi-minor axes of this 

"error" ellipse are the values of one standard deviation. This discussion 

is illustrated in Fig. 3. 3. · The error matrix can now be transformed back 

into the x-y coordinates and becomes: 

(3-21) 
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where 0 is the angle of rotation of the ellipse. Geometrical considera-

tions reveal that the diagonal terms of the error matrix are just the 

squares of the projections of the outermost points of the ellipse onto 

the x and y axes as shown in Fig. 3. 3. This is exactly the result one 

would obtain by cutting off the "nose" of the shadow curves at Q 2 = Q 2 + l; 
0 

or Q 2 = Q 2 + 1/ N if the curves are normalized. 0 . 

Thus a remarkably simple prescription emerges: The half width of 

the shadow plot at Q 2 = Q 2 + 1/ N is one standard deviation in the variable 
0 

for which it is plotted and account is properly taken of the correlation 

error with the other variable. This result is most useful when the only 

variables involved are two mixing ratios but can be applied as well to 

problems involving population parameters. 

3. 9 Discussion 

It has been the purpose of this discussion to enumerate in a general 

way the principle techniques which are being currently employed in the 

analysis of angular correlation data. The techniques are hopefully 

oriented towards the evolution of a computer program which requires as 

input only the "raw" experimental data and which provides at the output 

a complete analysis of the data. At least for some cases of interest it 

now appears possible to come surprisingly close to this goal. The 

computer program which has been used for the analysis of the data from 

the S3 4 (p 1 y )Cl 3 5 reaction is discussed in Appendix II. A somewhat more 

generalized version of this program is also being used presently to 

analyze data from reactions with channel spin greater than one-half. The 

angular correlation problems which have so far been encountered have 

been adequately solved by the methods discussed above. 
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SECTION 4 

Introduction to the Experimental Work on S3 4 (p, y )Cl 3 5 

4. 1 Review of Cl3 5 Properties and Comparison with Models 

In shell model nomenclature, Cl3 5 would have a single ld3 / 2 

proton and a pair of ld3 / 2 neutrons beyond the filled 2s11 2 subshell. 

The experimental energy level structure of the low lying levels is 

shown in Fig. 4. 1 along with some theoretical calculations as follows: 

1. jj-coupling shell model by Pandya 1. 

2. jj-coupling shell model by Arima 3 • 

3. Nillson model by Bhatt3 • 

4. Asymmetric Core Rotator model by Chi and Davidson4 • 

5. Shell model calculations by Glaudemans 5 • 

The first three level schemes are based upon configurations of the 

d 3 / 2 nucleons. Bhatt3 has pointed out that in the region of deformations 

relevant to Cl3 5 ( ;:::::: -2), the last filled Nilsson orbit (No. 9) crosses 

the first unfilled orbit (No. 8). This results in the likelihood of low 

energy core excitations in which one of the 2s11 2 nucleons is elevated 

into the ld3 / 2 subshell. In such cases an extreme single particle model 

would fail. This could explain the poor agreement and particularly the . 

failure of these single particle models to predict the spin 1/ 2 first 

excited state in Cl 3 5 • The recent model by Glaude mans 5 allows for 

configuration mixing of all particles outside an inert Si as core. It is 

particularly noteworthy that the first excited state of the Glaudeman 

calculations turns out to be predominately an (s11 1) {d3 / ~) 
1/ 2 0 
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configuration rather than (s11 1) {d3 / ~) • This supports the 
0 1/ 2 

observations of Bhatt. Glaudeman' s calculations also indicate that 

the 3/ 2+ ground state of Cl35 is a reasonably pure single particle 

configuration and that the 5/ 2+ second excited state is a highly mixed 

configuration, again involving components in the S3 d 4 configuration. 

The absence of a sufficient number of experimentally known 

properties of Cl 3 5 is clearly a hinderance to the development of 

successful models with which to describe its structure. The remainder 

of this thesis concerns the experimental determination of some spins, 

parities, and gamma-ray mixing and branching ratios for the Cl3 5 

nucleus by a study of gamma-rays from the S3 4 (p, y )Cl 3 5 reaction. 

Much of the past work on Cl 3 5 . has been summarized by Endt and 

Van der Leun6 • The excitation energies· of several low lying levels 

have been measured by Endt et. al. 7 Approximately 70 s34 (p, y )Cl3 5 

resonances in the proton energy range from • 6 to 1. 2 MeV have been 

identified by Hyder8 • Decay schemes and branching ratios for several 

resonances between proton energies from O. 76 to 1. 2 MeV have been 

obtained by Hazewindus et. al. 9 • Yang Tan1 0 has investigated the 

decay schemes of several other resonances. Some of these resonances 

have been chosen for ·angular distribution, triple correlation; and 

polarization measurements. Two such resonances will be discussed in 

Section 5. A brief review of target making techniques and experime11;tal 

procedures will be presented below. 

4. 2 Target Preparation 

Targets were made from elemental sulfur enriched to 37% in S34 • 
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, Sulfur, in elemental form, is not a suitable target material since thin 

films of sulfur evaporate quite rapidly under high vacuum. Targets of 

CdS were prepared by evaporating a thin layer of cadmium metal on top 

of sulfur immediately after the sulfur had .been evaporated upon outgassed 

• 005 11 thick tantalum disks. The disks, so prepared, were then heated 

under vacuum to a nearly red heat until a color change occurred over the 

entire face of the target. The color change was taken to indicate the 

formation of CdS. These targets proved to be stable and could withstand 

relatively high temperatures in vacuum. The target disks were then 

attached to a 1/ 16 11 aluminum backing by a thin layer of low vapor pressure, 

high temperature epoxy resin. The epoxy cement apparently held the 

aluminum in good enough thermal contact with tantalum target backing to 

act as an effective heat sink. With this arrangement, a target dissipa-

tion of 20 watts could be maintained without target deterioration. 

4. 3 Experimental Methcx:l s 

The S3 4 (p, y )Cl3 % reaction was initiated by the proton beam from 

tht- University of Kansas 3 MeV electrostatic accelerator (H. V. E. C. 

model KN3000). Energy defining slits placed at the focal point of a 

25° analyzing magnet provided energy resolution of about 1 keV for 

a 1. 5 MeV beam. Energy measurements were made with a N. M. R. 

fluxmeter in the analyzing magnet. Energy calibration was referenced 

to the Al a7 (p, y )Si as resonance at 992 keV and the L. 7 (p, n) threshold 
l 

at 1881 keV. For the latter reaction, neutrons were detected at o0 to 

the beam axis by a Li I crystal with a plastic moderator. After an 
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initial energy measurement of the prominent S3 4 resonance at 1214 .±. 1 

keV, this resonance was used to check the energy calibration at 

frequent intervals. A three element electric quadrupole lens focussed 

the proton b~am through a defining aperature and an anti-scatter 

aperature before the beam struck the target. The target end of the 

beam tube was evacuated by a cold-trapped, silicon-oil diffusion pump. 

Another liquid nitrogen cold trap was in line with the beam tube prior 

to the target chamber. 

Most of th-e work was performed with two 511 x 511 Nal(T 1) crystals, 

having 9% to 9. 5% resolution on the 661 keV line from Cs137 , and with 

one 9 11 diameter by 4 11 thick Nal(Tl) cyrstal having 8. 5% to 9% 

resolution. Line shape calibrations of the crystals were obtained by 

observing monoergic gamma-rays from several well known reactions1 0• 

Gamma-induced pulses from the scintillation counters entered charge 

sensitive preamplifiers. Output pulses from the preamplifiers passed 

through terminated coaxial cables to the inputs of double delay line 

amplifiers. Pulse height stabilization was maintained by commercial 

gain-drift compensators w:hich were set to observe the 661-keV line from 

a radioactive Cs137 source kept near the crystals. A 400 channel pulse 

height analyzer was available which could be split into two groups of 200 

channels or four groups of 100 channels with separate input circuits. 

~n many cases 100 channel resolution will suffice for the coincident 

spectra of triple correlation measurements •. In such cases one can 

record 4 independent triple correlation geometries simultaneously. 

Figs. 4. 2 and 4. 3 show the general features of two electronic arrange-

ments which were used for this purpose. With the arrangement shown 
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in Fig. 4. 3 extreme caution must be exercised to prevent position 

dependent gain shifts in the movable crystal. In the other arrangement, 

gain shifts in the movable counter are recorded and compensation is 

possible. The circuits shown will have a coincidence resolution time 

of about 3 microseconds as determined by the multichannel pulse height 

analyzer. Although this is adequate for many (p, y) reactions, in some 

cases an additional fast time coincidence requirement was imposed on 

crossover pickoff pulses derived from the outputs of the double delay 

line amplifiers. In this case the gate pulse was provided to the multi-

channel analyzer only if prompt time coincidence between the crystal 

pairs was established. The position of the fast time coincidence units 

is indicated by the dashed lines in Fig. 4. 2. This allowed time resolu-

tion as fast as 10 ns. but the coincidence units were operated usually 

with a resolution of about 50 ns. in order to avoid the possible loss of 

rtrue coincident events due to either random or pulse height dependent 

time jitter of the crossover pulses. 

Anisotropies in the goniometer and target chamber were checked 

by the observation of the isotropic gamma-ray from the de-excitation 

of the spin 1/ 2 level in P 31 resulting from the capture of 620 keV 

protons by Si3 0• Accurate correlation measurements also depend on 

the proper normalization of individual measurements at each angular 

s·etting. This normalization was accomplished by monitoring a promi;t1ent 

gamma-ray of the reaction (such as from a ground state transition) in 

one or more fixed crystals. This method is satisfactory so long as any 

unavoidable background radiation is negligible in comparison with the 

reaction gamma-ray which is chosen for normalization purposes. 

46 



Otherwise, it may be necessary to monitor the coincidence counting 

rate between two reaction gamma-rays in cascade in order to properly 

determine the reaction yieldo 
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SECTION 5 

The Resonances at 1214 keV and 1905 keV in the 

S 3 4 (p, y )Cl 3 5 Reaction 

5. l Introduction 

The resonance in the S34 (p, y )Cl3 5 reaction at Ep = 1214 keV 

has provided considerable information concerning the properties of 

Cl3 5 • Work on this resonance has also been of value in the develop-

ment of techniques of measurement and data analysis. The data is 

ideally suited as a test for the data reduction·and analysis procedures 

developed thus far. Another resonance at Ep = 1905 keV decays 

through the same level at 3.16 MeV as does the 1214 keV resonance 

and the studies of both resonances are so closely related that they will 

be discussed together. The various measurements are discussed in 

the order they were performed in order to pre serve the logic in the 

sequence of the measurements. 

The 1214 keV resonance has been observed by a number of 

investigators 1 ' 2 ' 3 • It is the strongest resonance in the S3 4 (p, y )C13 5 

reaction in the proton energy range below 2 MeV. The resonance strength 

of the resonance is reported by Hazewindus1 as wy = 2 ev. The decay 

scheme is rather curious in that the resonance level decays almost 

entirely (> 95%) to only the one level at 3. 16 MeV excitation. The spins 

of both the resonance level and the 3. 16-MeV level have been reported 

by Antuvjev et. al. 2 to be 7 / 2. The spin of the 3. 16-MeV level was 
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reported by Oleksiuk et. al. 3 to be 3/ 2. More recently, measurements 

were performed at the lJtrecht laboratory by Hazewindus 1 who concluded 

that the spin of both the resonance level and the 3, 16 MeV level was 5/ 2, 

Hazewindus also performed polarization measurements and concluded 

that both levels were of positive parity. 

Angular distributions, triple correlations, and polarization measure-

ments have been performed in the present. work at the 1214 keV and 

1905 keV resonance levels. The experimental data, wherever comparisons 

can be made, is in excellent agreement with that reported by Hazewindus. 

It is observed, however, that if one considers the possibility of octupole 

gamma-ray mixing in the cascade through the 3, 16-MeV level of Cl3 5 , 

the spin assignment 5/ 2->5/ 2->3 / 2 is not unique. Spin and parity assign-

ments of 7 / 2:..7 / z:.-13 / 2+ will also agree with the same experimental 

data p,rovided one assumes an E3/ M2 mixing amplitude of -. 16 in the 

secondary transition. Additional angular correlation measurements 

which were designed specifically to differentiate between these 

alternative spin assignments have led to the conclusion that, in fact, 

the 7 / 2 spin assignment is correct. These measurements are 

described following a discussion of the original and more "standard" 

angular correlation and polarization measurements, 

5, 2 Decay Scheme of the 1214 keV Resonance 

Figure 5. 1 shows a spectrum taken at the 1214-keV resonance 

with a 9" x 4 11 NaI(Tl) crystal, the axis of which was oriented at 55° 

to the beam axis. The major components of the decay scheme are shown 

in Fig. 5, 2. A weak gamma ray is observed at 2. 34 MeV, This radia-

tion was observed by Hazewindus and attributed to a transition to the 
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5. 22-MeV level in Cl3 5 • The 2. 34-MeV gamma ray accounts for about 

1 % of the total radiation from the resonance level. There is also a 

very weak 1. 76-MeV gamma ray present. This could arise from a 

. Res.~1. 76 transition where the primary gamma ray is too weak (< 1. 5%) 

to be observed in the high energy portion of the spectrum. It is also 

possible that part of the lo 76 MeV gamma ray results from a 3. 16~1. 76 

transition. The very weak 1. 4 MeV gamma ray, which would result 

from such a transition, would be difficult to observe underneath the 1. 46-

MeV background peak from K40 contained in the room walls. The 15% 

_branching from the 3.16-MeV level to the 2. 64-MeV level agrees with 

that reported by Hazewindus. 

5. 3 Angular Correlation Results from the 1214 keV Resonance 

Angular distributions were measured for the primary transition 

(Res~3. 16)., and for the secondary transition (3. 16-i0), with the primary 

radiation unobserved. Triple correlations were measured in five 

geometries specified by the conventional 0 1~ 0 2, sequence of (var, 
0. 0 0 0 0 0 · 0 . 0 90 , 150 ), (90 , v~r, 180 ), (var, 90 , 90 ), (90 , var, 90 ), and 

(90°,. 90°, var). The va~iable angles were chosen to be o0
, 30°, 45°, 

60°, and 90° to cover uniform steps of. 25 in cos 2 (0var). In the 

analysis of the data, all spin combinations were tried which involved 

Jr from 1/ 2 through 9/ 2 and J 3 • 16 from 1/ 2 through 9/ 2 with the 

. restriction .6.J <2. The analysis was performed by a computer program 
2 . . . . which calculates values of the 'X (<\, o2 ) surface at up to 8000 points 

and determines the minimum point projection or "shadow" of the surface 

on to_ both the "X 2 -o1 plane and the ?( 2 -6 2 plane. These two curves then 

53 



provide the lowest point in the ?c2 surface, the best values for o1 and o2, 

and the proper corr_elated errors in o1 and o2 o 

_Three spin assignments were found to have reasonable minima in 

the corresponding ')( 2 surface. They are: 

5/ 24 5/ 2-'>3/ 2 for o1 = + o 05.±_. 02,0 2 = 
5/ 2-)7/ 2-+3/ 2 for 01 = +o49+ .02,02 = 
7 / 2-'>7/ 2-+1/ 2 for <\ = -t- o 09+ • 02, o2 = 

-.72+.02 

-.16+ .03 

-.14+.02 

The projection contours or "shadow plots" for these three spin assign-

ments are shown in Figso 5. 3, 5. 4 and 5. 5o The ?( 2 value for the spin 

assignment 5/ 2_,,7 / 2_,,3 / 2 actually is not within the statistically allowed 

range. This spin sequence must, therefore, be considered as quite 

doubtful, but it will be kept as a possibility to be considered in the light 

of further measurements o The experimental data points along with the 

theoretical correlations for the 5 / 2_,, 5 / 2-+3 / 2 and for the 7 / 2-+7 / 2-+3 / 2 

spin assignments are shown in Fig. 5. 6. It is to be noted that for the 

two cases where J 2 = 7 / 2, acceptable solutions will be obtained only 

with some quadrupole-octupole mixing in the secondary transition. If 

gamma-ray transitions of no higher order than quadrupole are considered, 

then the assignme_nt 5/2-'>5/2-+3/2 is unique (as reported in reference 1). 

· However, since the J 2 = 7 / 2 assignments come into quite goo~· agreement 

with the experimental data for only a small amount of octupole mixing,. 

these spin assignments are considered to merit further investigation. 

The nex:t phase of the investigation consisted of performing linear 

polarization measurements on the two gamma rays used for the above 
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directional correlation measurements. 

5. 4 Polarization Measurements at the 1214 keV Resonance 

The linear polarizations of the gamma rays of both the Res.-3.16 

and 3. 16-o transitions have been measured with a Compton polarimeter, · 

built by Dr. F. W. Prosser of this laboratory. Electronic summing of 

the coincident pulses between the scattering and absorbing crystals 

was incorporated so as to increase the energy resolution of the device. 

The polarization measurement yielded the intensity ratio of gamma rays 

scattered vertically to those scattered horizontally from a l II x l II NaI 

crystal set in the horizontal plane at 90° to the incident proton beam. 

This gamma.-ray intensity ratio is denoted by ' !:1.9. 
Nqo and can be 

calculated as a function of the spins, multipolarity mixing ratios, and 

parity of the gamma-radiations4 ' 5 • Since the mixing ratios for each 

possible spin assignment have already been determined by the directional 

correlations, the theoretical value of can be predicted uniquely 

for each assumed spin and parity. The experimental results were: 

Primary Transition: = • 76 + • 05 

Secondary Transtiion: = 1. 27 + . 1 

As stated earlier, three spin combinations are of interest: 5/ 2-5/ 2-3/ 2, 

5 /2-7 /2-3 /2, and 7 /2-7 /2-3 /2. In Figs. 5. 7 and 5. 8 the theoretical 

values for No are plotted versus arctan l\ for the primary 
N90 

fransition. The vertical bars are the measured values of o1 and the 

horizontal bar represents the measured value of 

obtained in the following cases: 
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J Radiation J3.16 Res. Type 

5/ 2 E2/ Ml 5/ 2 

5/ 2 M2/ El 7 / 2 

7 / 2 E2/ Ml 7 / 2 

The spin assignment 5/ 2-+7 / 2-+3/ 2 requires an M2/ El amplitude 

ratio of • 49. This amount of M2/El mixing, along with the observed 

resonance strength of wy 2eV, implies an M2 transition strength 

of 103 Weisskopf units. This M2 strength is too large for either 

theoretical explanation or experimental precendent. The 5 / 2-+7 / 2-+3 / 2 

spin assignment was also in poor agreement with the directional correla-

tion measurements and, ther~fore, it will now be ruled out as incorrect. 

The secondary gamma-ray polarization curves for the remaining two 

possible spin assignments are shown in Fig. 5. 9. These polarization 

curves are the same as the polarization curves for the primary 

transition except that these secondary polarization curves are calculated 

for the fixed measured value of the primary mixing parameter since 

the value of No , in this case, depends on both primary and 
Nqo 

secondary mixing parameters. The results of the polarization 

measurements are summarized below: 

J1T 
Res. 

5/ 2+ 

7 / z .. 

mixing 

Ml/ EZ =. 05 

Ml/ E2 = • 09 

Tl' 
J3.16 

5/ 2+ 

7 / 2-

5. 5 Measurements at the 1905 keV Resonance 

mixing 

Ml/ E2 = -. 72 -3/ 2+ 

M2/ E3 = -.14 -3/ 2+ 

The resonance at Ep = 1905 keV has been observed by Yang Tan". 

He noted that this resonance cascades strongly through the 
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3. 16 MeV level and has, in addition, a transition to the ground state. 

The spectrum at this resonance is shown in Figo 5. 10 and the decay 

scheme and branching ratios are shown in Fig. So 11 o The results of 

the analysis of the angular distribution of the ground state gamma 

transition are shown in Fig. So 12. Acceptable solutions can be obtained 

for both J = 3/ 2 with o = o 73 + • 03 or o = 2o 6 + o 15 and £or J = r r 

5/ 2 with O = o 05 +. 020 Then, since the spin of the 3o 16-MeV level 

has already been limited to either 5/ 2 or 7 / 2, the only remaining 

possibilities for the spin sequence of the Res--+3. 16--+0 cascade are: 

3/ 2--+5 /2--+3 /2, 3 /2--+7 /2--+3 /2, 5/ 2--+5/ 2--+3 /2, and 5 /2--+7 /2--+3 /2. 

Angular distribution and triple correlation data from the Res--+3o 16--+0 

cascade have been analyzed for the four possible spin sequences and 

the results are shown in Figs. 5. 13 and 5. 14. The data used in the 

analysis is shown in Figo 5. 15. Solutions are obtained for: 

J8.22 J3.16 J 01 02 0 

I. 3/ 2 5/ 2 3/ 2 -ol0 + .02 - • 7 0 + • 04 

2. 3/ 2 5/ 2 3/ 2 -.10+.02 -2.9 + .02 

3. 5/ 2 7 / 2 3/ 2 - 0 02 + • 02 -.15+.02 

The second solution for o2 = -2. 9 is ruled out by the experiments at the 

1214-keV resonance, but the other two solutions agree with the previous 

results of J 3 _ 16 = 5/ 2 with o2 = -,,7 or J 3016 = 7/ 2 with o2 = -.14 •. 

Thus, even though the two resonances have different spins and different 

decay modes, the same 5/ 2--+7 / 2 ambiguity of the spin of the 3.16-MeV 

level persists in both resonances. At the 1905-keV resonance, the 
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theoretical angular correlation functions for the two alternative spin 

assignments are so nearly identical that directional correlation 

measurements are inadequate to choose between the two possible assign-

ments. Neither will a linear polarization measurement provide the 

correct spins since the mixing parameters are such as to produce 

nearly the same scc1:ttering asymmetry ratio for either spin sequence. 

Fortunately the prospects for making additional measurements in order 

to learn the correct spin of the 3. 16 level, and consequently the spins 

of both resonance levels, appear brighter at the 1214-kErV resonance. 

5. 6 Additional Angular Correlatfon Measurements at the 1214 keV 

Resonance 

As can be seen in Fig. 5~ 6, the theoretical curves for the 5/ 2 spin 

assumption differ somewhat from the theoretical curves for the 7 / Z 

spin assumption over some of the sets of angles at which measurements 

were performed, but the curves are not significantly diffe.rent for other 

sets of angles. The possibility is indicated, therefore, of selecting a 

particular set of angles over which the difference between the spin 5/ Z 

and spin 7 / 2 correlations are sufficiently large so as to be distinguished 

by an accurate triple correlation measurement. A search for a good set 

of angles revealed that the (90°, var, 180°) configuration was close to 

optimum but that some additional difference between the 5/ 2 and 7 / 2 

correlations would be introduced via an X~2 term which contributes t~ 

the correlation £unction when the fixed angle 0 1 is moved somewhat 

away from 90°. These considerations, together with considerations 

of the mechanical symmetry of the experimental apparatus, lead to a 
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choice of the set (120°, var, 180°). Additional very important informa-

tion could be obtained if the absolute normalization of the data points 

could be measured. In order to establish a normalization, the angles 

chosen for the correlation measurement were extended to include a set 

over which the theoretical curves for 5/ 2 and 7 / 2 were nearly identical. 

Since the correlation measurements over this set of angles were independent 

of which spin is correct, they could be used to establish the normalization 

and to calibrate the experimental apparatus. This phase of the correla-

tion measurement covered the set (var, 90°, 180°) where the variable 

0 0 angle, 0 1, ran from 90 to 135 • The angles covered in the experiment 

are shown in Fig. 5. 16. Measurements were performed at angles 

. corresponding to steps of • 1 in cos 2 0 var except near the end point 

0 0 0 around (120 , 0 , 180 ) where the theoretical curves were changing 

rapidly and some steps of • 05 in cos 2 0 were included. The data var 

obtained, after having been corrected for gamma ray absorbtion by the 

target backing and target chamber, is shown in Fig. 5. 17. The data 

points shown are averages of from three to six individual measurements. 

A total of over 80 such measurements were performed for the single 

composite-geometry. The two curves shown in Fig. 5. 17 are the theoretical 

correlation curves for the 5/ 2--+5 /2--+3 /2 and for the 7 / 2--+7 / 2--+3 / 2 spin 

sequence calculated using values for the mixing parameters as determined 

from the previous correlation measurements. The _X2 values for the~e 

two curves are 3. 4 and • 93 r .espectively. For this last correlation 

measurement alone, a better fit can be obtained for the 5/ 2 assignment 

by allowing the primary mixing parameter to have the value o1 = - • 09 + • 02 
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rather than + • 05 +. 02 as previously measured. (The 2 value drops 

to 1. 7 in this case.) The extent to which this discrepancy is significant 

can be easily determined by including data from the previous correlation 

measurements along with this last measurements. The?( 2 curves from 

the computer analysis of the full set of data are shown in Figs. 5. 18 and 

5. 19. The theoretical correlations obtained from this analysis are 

shown in Fig. 5. 20 for (120°, var, 180°) configuration and also for the 

parimary angular distribution. The slightly negative primary mixing 

ratio which was required to obtain the best agreement in the (120°, var, 

180°) geometry for the spin 5/ 2 case, and the slightly positive value for 

the primary mixing necessary to produce agreement with the angular 

. distribution, cannot be satisfactorily compromised. The data is, 

however, all consistent with the hypothesis of 7 / 2-+7 / 2-+3/ 2, <\ = • 09 + 

.02, 02 = -.16 f .02. 

5. 7 Discussion 

We conclude the following: 

Levels Spin Mixing 
(Parity) Amplitude 

8. 22 - 0 5/ 2 - 3/ 2+ + • 05 + • 02 

8. 22 - 3. 16 5/ 2 - 7 / 2- - • 02 + • 02 

5. 45 - 3. 16 7/ 2-- 7/ 2- + • 07 + • 02 

3.16 ... 0 7 / 2-- 3/ 2+ -.16+:01 

In cases where more than on,e independent measurement of the mixing 

ratio was made, the above result in a weighted average. 
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In view of the assignment 7 (2- to the 7. 54 MeV ~nd 3. 16 MeV 

levels, the absence of a strong transition from either of these levels 

to the 5/ 2+ level at 1. 76 MeV is notable. Perhaps this El inhibition 

can result from the rather complex configuration which seems 

. necessary to explain the properties of the 5/ 2+ level. It is, of course, 

tempting to specul~te that these 7 / 2- levels are due to the f7 / 2 orbital 

which is available to an outer nucleon in Cl3 5 • The large resonance 

width (wy 2eV) of the 1214-keV resonance indicates that the strength 

of the Ml transition to the 3. 16 MeV level from the 7. 54 MeV level is 

about • 3 Weisskopf units. The measured E3/ M2 intensity ratio for the 

3.16--..o transition is 2. 9 x 10- 2 • Weisskopf estimates yield an E3/ M2 

. ratio of about 2 x 10- 3 • Thus, if one assumes an M2 strength of from 

• 1 to 1 Weisskopf units; one has a corresponding E3 strength of from 

1. 5 to 15 Weisskopf units. 

In connection with this discussion of the E3/ M2 transition in Cl3 5 , 

it is interesting to note a recent observation by P. Kossanyi-Demay et. 

al. 6 . Using high energy electron scattering, they observed an E3 

excitation of the 7 / 2- level at 4. 43 MeV in P 31 • The measured 

transition strength of the E3 excitation was 4. 2 Weisskopf units. An 

electric octupole excitation of the L 35-MeV level in F 1 9 has also been 

measured from coulomb scattering studies by Litherland et. al. 7 In 

this case, the transition strength is 12 Weisskopf units. A mixed El, 

M2, E3 transition in N1 4 has been reported by Blake et. al. 8 ; and in 

Si 28 a probable E3 transition has very recently been observed by 

Nordhagen9• Thus, it appears that enhanced E3 transitions are being 

established in this mass region. 

,'f.A few measurements in s-d shell nuclei have yielded M2 transition 
· strengths of this order; otherwise the choice is arbitrary and only for 
the sake of comparing the M2 and E3 mixing. 
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It is also interesting to compare the resonance at. 1214 keV in 

S34 (p,y)Cl35 with the resonance at 2187 keV in.Si30 (p,y)P31 observed 

by Harris et. al. 1 0 which feeds the above mentioned 4. 43 MeV level in 

P 31 • Both resonances are the strongest in the .energy range up to at 

least 2. 2 MeV; both resonances are 7 / 2-; and both decay almost entirely 

to 7 / 2- levels via an Ml transition with very slight positive E2 mixing. 

This data, along with the enhanced E3 transitions mentioned above, 

results in a striking similarity. 
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APPENDIX I 

Analysis of Errors and the Least Squares Method 

1. Introduction 

The successful analysis of angular correlation data has depended 

quite heavily upon the least squares determination of parameters and 

upon the proper manipulation of errors including the effects of statistical 

correlations. Although much of this is well known it seems advisable 

to review in a gene;ral way the least squares and error analysis 

techniques which may be called upon implicitly or explicitly in t_he 

discussion of data analysis and in the actual analysis of data. 

2. The Determination of Errors 

2. 1 Definition of Mean, Variance, Covariance, and Correlation 

Let a series of R measurements of a quantity X. yield the values 
. l 

X. (r ), r = 1, 2, • • • , R. The average value of X. is 
l l 

The variance of X. is 
1 

I R = - r: x, (t') 
R l'=I 

a.[ - a J varC><·)=U-· = (X·(r)-X·) 
' "' . -4 ' •w, 

I R i = - I: (X .. ·(r) - X· ) 
R ~=I ' ' 

( 1 ) 

(2) 

The variance is the square of the standard deviation. In the event that 

several quantities XI' x 2, • ··,Xi, • • are measured one can define the-

matrix 

z 
0-·• "J 

= ((X,<r)-X,;) (X·Ct')-X· )) 
J J ""' 

(3) 
• 
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The diagonal elements are the variances of the measured quantities 

and the off-diagonal elements are called the covariances: 

a ~'i Ecov(X;Xj) ·+or i-:f:j 

The correlation factor between X. and X. can be defined by: 
1 J 

(4) 

The correlation factor p .. can be shown to take on values only between lJ 
+ 1 and -1. If X. and X. are statistically independent variables then 1 J . 
p .. = 0 so the variance-covariance matrix defined in (3) is diagonal. lJ 
This matrix is also called the error matrix. 

2. 2 Errors in Functions of Several Measured Quantities 

2. 2. 1 Linear Functions 

Suppose the quantities x 1, x 2, • · ·, Xn have been measured and the 

matrix a.a. is known. lJ 
n 

IF L (X I X., · · · X } = I .,, J 11 l: 1·X· . ,( .., 
A:/ 

then 

varCL) 

As an example suppose n = 2 and ,l. = 1. Then 
1 

) 
, t 1. · a , 

V Q r C X 1 + )C z = <r. + O"a + 2 <r; a. = er, + er a + Z Al CJi O"'a 1., 

( 5) 

If p 12 = p 21 = 0 this reduces to the well known result that the 

variance of the sum is equal to the sum of the individual variances. 
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2. 2. 2 Non linear functions 

If F = cp (X1, x 2, • · •, Xn) is nonlinear, the error in F can in many 

cases by approximated by 

" a, var lF) 0 xA· 
"'' J 

a; , 
'--'X• er .. 
" J "J 

(6) 

The approximation assumes that the probability distribution of x 1, x 2, • • ·, Xn 
• 

is concentrated in a relatively small region about (X1, x 2, • • •, Xn) and 

that F can be represented by the linear terms of Taylor series in the 

neighborhood about (Xl' x2, • • •, Xn). 

One case of interest is the error in the ratio of two correlated 

quantities, say 

Then we have 

')( I 

Xi 
= R. 

{ 
o-' 'l a 

a. .....! + O"'a - 2 O"', " } varCR)=R x3, x' -
2 x, x'L 

(7) 

If p 12 = p 21 = 0 this reduces to the well known result that the fractional ~. standard deviation of - is the square root of the sum of fractional X.1, 
standard deviations of x1 and of x 2• 

3. The Least Squares Method 

3. 1 Uncorrelated Data 

Suppose one has measured a number of quantities W., i = 1, 2, • • • , N 
l 

and knows the variances a~. For example W. might be the counting rate 
l l 

at angle 0. and a~ determined by Pois son statistics. The functions F.1 ( 0.) 
l l l 

are known and the coefficients a1 are desired in the expansion 

4'. = · I , l , · · · , N . (8) 
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The best set a1 will be that which minimize the value of Q 2 (a./) where 

w . is a statistical weight factor given by: 
l 

Cu. ::: .., era,. Cw . .-) 

(9) 

This assumes that the data is statistically uncorrelated as would be the 

case with a number of simple counting rate determinations. To 

oQ" minimize the function Q 2 with respect to the parameters a'°' set - = o 
c)O.t 

for R = 1, 2, • · ·, L. This provides the L equations: 

These equations are to be solved for a1 • They are called the normal 

equations. Equations ( 1 O) are equivalent (after interchanging the order 

of the ,!"" and i summations) to the matrix equation 

( 11) 

... 
where "tis a co.lumn vector with elements a1 ; Y is a column vector 

with elements Y, = i: """' W~• l ( IJJ J ; and Mis a square L x L · 

' matrix with elements 

Therefore the desired solution is 

---a = (12) 
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The matrix M is called the normal matrix. It can be shown from the 

defining equation (3) that the elements of the inverse matrix M- 1 are: 

M,,j' = var ( a.1) 

M _, = COV' ( ":ti) 
,11 

( 13) 

The inverse of the normal matrix is therefore the error or variance-

covariance matrix and provides directly the desired errors in the 

expansion coefficients and their statistical correlations as well. As 

an example of the above it follows from equations (3) and ( 13) that 

the proper error in the ratio Qt'/ a
0 

is: 

a. ·r· M·' var ( ) : ( ) 
Go G\o Q a 

IC 

( 14) 

3. 2 The Least Squares Fitting of Correlated Data 

If the data W. is correlated and the associated error matrix is known 
1 

then a more general definition of Q 2 than that of eq. (9) is desired. The 

equation now becomes: 

The quantities w .. are the elements of the weight matrix which is the lJ 
inverse o+ the error matrix belonging to the correlated data points 

w.. If the data is uncorrelated the error matrix is diagonal so the 1 ' 

weight matrix is also diagonal and equation ( l 5) becomes identical with 

·equation (9), Equation (15) leads to the same solution: 
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.... a= 

where now ( y J.t = L w ,/j wi I; ( ~) ' 
-4.j 

M.11' = i w.ij < ~- J t;, < eJ , 
'J 

and 

3. 3 Functions of More than One Indepenq.ent Variable 

It is desirable to apply the least squares method thus far developed 

to an expansion of the form 

( 1 6) 

In order to do so one has only to replace 

ft ( 7';) J where 

I stands for a unique set KMN and X. stands for the ith set of angles 
1 -

0 l' 0 2, cp. Then one proceeds as before with 

~- = E A.(. {')(_.) 
..( 

One new and occasionally subtle feature is encountered in fitting 

functions of more than one independent variable. This feature is 

( 1 7) 

perhaps best illustrated by an example: Suppose S measurements are· 

d h · e 90° · 0 90° .-1i. o0 30°, 4 s0
, 60°, 90°. ma e at t e points 1 = , 2 = , 'f' = , 

We shall agree to call these 5 sets of angles x1, x 2 , X3' x 4 , XS in 

the order that they appear above. Suppose a fit with the 3 functions 
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X O XO XO d 
00

, 20 , 02 is esired. That is, the best set of coefficients A~M 

are required in the expansion 

:: A, F; C X.; J + A~ Fa C x .• J +- A 3 F; C x,.) • 

This expansion defines the functions F1 (Xi) mentioned in equation (17). 

However it is true that 

Thus the functions are not linearly independent over the set 

and no unique set of expansion coefficients can be found. This causes 

the normal matrix to be singular. Of course had a different set of 

angles which involved angles for 0 1 and 0 2 of other than 90° been 

chosen, the functions F 1, F 2, F 3 would have been independent and the 

curve fit would be possible. There are less obvious possibilities. For 

example the five functions X~
0

, X~0 , X~ 2, X~ 2, X~ 2 are not all linearly 

independent over the entire set of points spanned by the Ferguson-

Rutledge geometries I, II, VI, and VII. It is necessary to include data 

from either an angular distribution or triple correlation data from a 

"non-standard" geometry in order to obtain a successful curve fit. 
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APPENDIX II 

Computer Program for Angular Correlation Data Analysis 

A program is described here which was used for the analysi~ of 

the S3 4 (p, 'Y )Cl 3 5 angular correlations. The general techniques which 

the program employs are described in Section 3. The program assumes 

that only one magnetic substate of the resonance level is populated. 

Modified versions of the program which allow the population of more than 

one magnetic substate are in use and all of the programs will be discussed 

in more detail elsewhere1 • It would be simple enough to make one program 

to handle any number of magnetic substates but such a program would 

have resulted in a serious reduction in speed for the more simple pro-

blems. 

The program consists of one executive control program and fifteen 

subroutines. The overall program logic is shown in figure 1. The 

function of the subroutines is discussed below. 

1) READ .. reads and stores all of the input data. 

2) GRID - generates a set of angles running from -90° to + 90° in 
0 equal increments of 2 , or greater, and .calculates the tangents of these 

angles, oK' K = 1, • • ·, Ng. 

set. 

N is the total number of angles in the g 

3) ABCH - calculates the following functions: 
N N A.,..; = z: E~M CJ. L, L"J2) Q~ Q~ ){ l(M (.n..;) 

J<N 

. N 
c,,..,.- = E:/1/\ (J, L', L', J,.) Q" Q,,. X,0,11 (.n.;) 

HMk ::. hM (J2 L2 La J3) + b,c hf,I\ (Ja La L'2 J,) + b: hM ( J,.L~ L; J:,) J 
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Data 
Input 

SUBROUTINE 
LOGIC 

READ GRID 

ISMTRX 

S9J 

Fig.1 

CNTRL 

ABCH .----, DIPI PIKOUT NORM 

Output 

XKMN ECOEFF HCOEFF 

CG WFN - DELTA 

FACT 



where O. is the ith set of experimental points and i runs over the 
1 -

entire set of points. 

4) DIP 1 - calculates the valve of chi- squared for each point of an 

N x N grid. The theoretical value at the k.,J grid point is now g g 
given by the simple expression 

wrh (.ll.i J = P. .6 ( A"'.; + &1cBM,,. + s: c,,.,) H'""'-' • 
M . 

The single population parameter is obtained by least squares analysis 

as: 

P, = 
~c.vj W.11 ,,(.12 .i) Wr11 (.a;) 

[: W,i [ W.,,, (Jl_;) ] 2 

i 

5) PIKOUT - scans the chi-squared surface to produce the "shadow" 

lines and recalls DIPl to obtain the values of the theoretical points at 

the absolute minimum point in the chi-squared surface. The results 

are then written on the output device. 

6) NORM - renormalizes the experimental input data, if necessary, 

and branches back to DIPl to calculate a new chi-squared surface. 

7) ISMTRX - generates the maximum values of the K, Mand L 

indices subject to the various triangle conditions for the particular 

spin sequence under consideration and generates an index suppression 

scheme to suppress K, M, N into a single running index. 

8) XKMN - calculates the functions X~M( 01, 0 2 , q, ). 
9) ECOEFF - calculates E~M(J1L 1L1

1J 2) coefficients 

10) HCOEFF - calculates hM(J2L 2L 2
1J 3 ) coefficients 
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11) S9J - calculates the 9-J 'symbols necessary £or the E~M coefficients_ 

12) CG - calculates Clebsch-Gordon coefficients. 

13) WFN - calculates Racah coefficients. 

14) DELTA - calculates triangle coefficients which are necessary for 

WFN. 

15) FACT - is a factorial table. 

The arrays AMi' BMi; CMi' and HMK are calculated and stored by the 

subroutine ABCH in order to prevent redundant arithmetic operations 

in the calculation of the theoretical values at each grid point. For a 

grid of 2° intervals and for 50 data points, the computer must calculate 

over 400, 000 theoretical values. It is, therefore, crucial that each 

theoretical value be calculated with as few operations as possible. 

The input to the program is indicated below: 

Card Columns Input 
Numbers 

1 1-48 Identification 

2 1-3 Geometry Label (optional) 

4-5 Number of data cards in this 
geometry= Nl 

6-10 QM M= 0 

16-20 QK K= 0 

26-30 QM M= 2 

36-40 QK K= 2 

46-50 QM M= 4 

46-60 QK K= 4 
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Card 
Numbers 

N+2 
{integer spins) 

or 

Columns 

66-70 

76-80 

1-10 

11 ... 20 

21-30 

31-40 

41-50 

Input 

Q M = 6 M 

QK K = 6 

01 

02 

"' Experimental value at 01, 0 2, <p 

Standard deviation 

The card sequence 2-{N1 + 3) may be repeated to include 
angular distribution data and/ or separate triple 
correlation geometrieso Each such set of data will be 
separately normalized by the normalization routine. · 

1-3 

10 

20 

30 

35-40 

50-58 

The word END must be present to 
indicate that all of the data has been 
entered. 

Jl 

J2 

J3 

1st spin sequence 

to be tried 

Grid intervals in degrees 

The word NORMALIZE will cause 
various geometries to be normalized 
with respect to each other 

N+2 
f (half integer 10-12 Jl/ 2 

J2/ 2 

J3/ 2 

1st spin sequ~nce 

to be tried 
spins) 

20-22 

30-32 

35-40 

50-58 

Additional spin sequences may follow. 
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The output from the program is as follows: 

1. The experimental values used in the calculation and the 

theoretical values corresponding to the lowest point in the chi-

squared surface. 

2. If s0 intervals are used in arctan o, a solid block of three digit 

fixed point numbers is generated. These numbers are the 

truncated values of chi-squared over the entire surface. This 

output is suppressed if intervals of other than 5° are used. 

3. Finally, the projections of the chi-squared surface onto the 

o1 plane and the o2 plane are listed. 

All of the output is labelled and each page is headed by the identifying 

information contained on the . fir st input card. 
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