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Abstract

Everyday observation indicates that speakers can naturally and spontaneously 

adopt a speaking style that allows them to be understood more easily when 

confronted with difficult communicative situations. Previous studies have 

demonstrated that the resulting speaking style, known as clear speech, is more 

intelligible than casual, conversational speech for a variety of listener populations. 

However, few studies have examined the acoustic properties of clearly produced 

fricatives in detail. In addition, it is unknown whether clear speech improves the 

intelligibility of fricative consonants, or how its effects on fricative perception might 

differ depending on listener population. Since fricatives are the cause of a large 

number of recognition errors both for normal-hearing listeners in adverse conditions 

and for hearing-impaired listeners, it is of interest to explore these issues in detail 

focusing on fricatives. The current study attempts to characterize the type and 

magnitude of adaptations in the clear production of English fricatives and determine 

whether clear speech enhances fricative intelligibility for normal-hearing listeners and 

listeners with simulated impairment. 

In an acoustic experiment (Experiment I), ten female and ten male talkers 

produced nonsense syllables containing the fricatives /f, θ, s, ʃ, v, δ, z, and ʒ/ in VCV 

contexts, in both a conversational style and a clear style that was elicited by means of 

simulated recognition errors in feedback received from an interactive computer 

program. Acoustic measurements were taken for spectral, amplitudinal, and temporal 

properties known to influence fricative recognition. Results illustrate that (1) there 
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were consistent overall clear speech effects, several of which (consonant duration, 

spectral peak location, spectral moments) were consistent with previous findings and 

a few (notably consonant-to-vowel intensity ratio) which were not, (2) 'contrastive' 

differences related to acoustic inventory and eliciting prompts were observed in key 

comparisons, and (3) talkers differed widely in the types and magnitude of acoustic 

modifications. 

 Two perception experiments using these same productions as stimuli 

(Experiments II and III) were conducted to address three major questions: (1) whether 

clearly produced fricatives are more intelligible than conversational fricatives, (2) 

what specific acoustic modifications are related to clear speech intelligibility 

advantages, and (3) how sloping, recruiting hearing impairment interacts with clear 

speech strategies. Both perception experiments used an adaptive procedure to 

estimate the signal to (multi-talker babble) noise ratio (SNR) threshold at which 

minimal pair fricative categorizations could be made with 75% accuracy. Data from 

fourteen normal-hearing listeners (Experiment II) and fourteen listeners with 

simulated sloping elevated thresholds and loudness recruitment (Experiment III) 

indicate that clear fricatives were more intelligible overall for both listener groups. 

However, for listeners with simulated hearing impairment, a reliable clear speech 

intelligibility advantage was not found for non-sibilant pairs. Correlation analyses 

comparing acoustic and perceptual style-related differences across the 20 speakers 

encountered in the experiments indicated that a shift of energy concentration toward 

higher frequency regions and greater source strength was a primary contributor to the 
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“clear fricative effect” for normal-hearing listeners but not for listeners with 

simulated loss, for whom information in higher frequency regions was less audible.  
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Chapter I  

Introduction 

 

1.1 Introduction 

 In everyday conversation, talkers speak casually and freely, often 

coarticulating heavily and without much concern for their enunciation or for the 

possibility that they might be misunderstood. However, talkers can naturally and 

spontaneously adopt intelligibility-enhancing articulatory strategies when they are 

aware of or experience communicative difficulties on the part of a listener. On the 

basis of experimental data, Lindblom and colleagues have stipulated that speakers 

make moment-by-moment estimates of listeners’ needs for explicit signal information, 

and continuously adapt their speech production to address perceived listener demands 

while minimizing articulatory effort (Lindblom, 1990, 1996; Lindblom et al., 1992). 

According to this theory (e.g., Lindblom, 1990), speech production is adaptively 

organized along a continuum of context-/knowledge-dependent variability from 

system-oriented, relaxed, conversational hypo-speech to output-oriented, energetic, 

clarified hyper-speech. Speakers, then, operate on the principle of yielding sufficient 

discriminatory information for a listener to recover their intended message while at 

the same time striving for low-cost form of articulatory performance. When speakers 

perceive or experiences no particular threat to their listeners’ ability to identify speech 

sounds and reconstruct their intended meaning, the motor control system attempts to 

minimize the physical cost. When a speaker perceives or experiences listener’s 
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difficulty in comprehension, due to, e.g., background noise, reverberation, hearing 

impairment, or lack of linguistic/world knowledge, speakers will adapt their speech to 

deliver more explicit signal information and increase the perceptual distance.  

 In line with these theoretical notions, there is evidence from a variety of 

studies in laboratory settings that, when speakers are instructed to speak as though 

talking to listeners with hearing impairment, aged listeners, or non-native listeners, 

their productions do in fact become more intelligible (e.g., Bradlow and Bent, 2002; 

Bradlow et al., 2003; Ferguson and Kewley-Port, 2002; Gagné et al., 1994, 1995, 

2002; Helfer, 1997, 1998; Iverson and Bradlow, 2002; Krause and Braida, 2002; Liu 

et al., 2004; Payton et al., 1994; Picheny et al., 1985; Schum, 1996; Uchanski et al., 

1996). The intelligibility advantage of clear speech over conversational speech 

averaged across talkers, listeners, stimulus types, and experimental conditions such as 

speech-to-noise ratio has ranged from 3 to 38 percentage points across experiments.  

 A fair amount of previous research has been dedicated to the acoustic 

properties of clear speech, as well. In general, most studies have focused on either 

global (sentence-level) measurements or phonetic modifications of vowel sounds. 

There have been very few studies that investigated acoustic changes found in the fine 

acoustic-phonetic components of consonant sounds in detail. Phonetic modifications 

of consonant sounds reported so far have been mostly limited to temporal 

characteristics such as larger distinction of the voice-onset-time (VOT) between 

voiced and voiceless stops and longer duration of plosives, fricatives, nasals, and 

semi-vowels, and amplitudinal characteristics such as increased consonant-to-vowel 
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ratio (CVR). Similarly, clear speech intelligibility benefits were reported for sentence 

(e.g. Bradlow and Bent, 2002; Bradlow et al., 2003; Helfer, 1997, 1998; Liu et al., 

2004), CV/VCV-syllable (e.g. Chen, 1980; Gagné et al., 2002) and vowel stimuli (e.g. 

Ferguson and Kewley-Port, 2002), but few previous studies have investigated 

whether and to what extent clear speech enhances the intelligibility of specific 

consonants, e.g. fricatives and plosives. In addition, it is not clear yet which acoustic-

phonetic changes made by speakers in clear speech may be responsible for the 

intelligibility advantage, since previous studies either used few speakers (Bradlow et 

al., 2003; Chen, 1980) or presented limited acoustic data (Gagné et al, 1994, 1995, 

2002; Schum, 1996; cf. Ferguson, 2002), especially for consonants. Considering that 

one of the most common perceptual errors in noisy environments or reduced 

presentation levels (Dubno and Levitte, 1981; Miller and Nicely, 1955; Singh and 

Black, 1966; Soli and Arabie, 1979; Wang and Bilger, 1973) and by hearing-impaired 

listeners (Bilger and Wang, 1976; Dubno et al., 1982) involves place of consonant 

articulation, it is important to describe which acoustical modifications occur when 

speakers try to make consonant sounds more intelligible and how these changes affect 

listeners’ perception, especially in adverse situations. 

 The present study was designed to determine whether and which systematic 

changes in the production of English fricatives talkers tend to make as a result of 

online feedback indicating comprehension difficulty, and to assess the range of 

effects that these strategies actually have on the intelligibility of their productions. 

Fricative consonants were selected for analysis since previous studies on consonant 
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recognition and confusion have reported that fricative sounds, especially non-sibilants, 

are less distinguishable for normal-hearing listeners in noise. Likewise, listeners with 

sensorineural hearing loss often have difficulty perceiving place of articulation for 

fricatives with a preponderance of high-frequency energy (Boothroyd, 1984; Dubno 

et al., 1982; Owens, 1978; Owens et al., 1972; Sher and Owens, 1974; Hedrick, 1997; 

Zeng and Turner, 1990).  

 The research described here introduces a new technique for eliciting 

conversational and clear productions of fricative sounds, in order to examine more 

carefully than has been possible in previous studies the different types of adaptations 

that might be made in specific situations. The method replicates and extends the one 

described by Ohala (1994), in which talkers produce and then repeat a target stimulus 

after receiving pseudo-response feedback indicating that it has been misidentified as a 

similar, confusable sound. Given the claims of hyper-hypo speech (H&H) theory, it 

seems likely that talkers might make effort not only to improve the intelligibility of 

the target stimulus but also to make it sound more unlike the sound it was mistaken 

for.  

The following two chapters outline three experiments that were designed with 

the major goals of: (1) delineating the types and magnitudes of linguistic adaptations 

in the clear speech of consonants sounds, focusing on English fricatives, and (2) 

assessing the range of effects that speakers’ strategies actually have on the 

intelligibility of their productions. Chapter 2 describes Experiment 1, which addresses 

three questions regarding the fine-grained acoustic-phonetic properties of clearly 
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produced English fricatives: (1) what (if any) systematic changes are made in clear 

fricative productions, (2) whether clear-speech modifications are dependent on 

inventory-level and/or more local context provided by “listener” feedback, and (3) in 

what ways talkers vary in the production of clear fricatives. Using a novel elicitation 

method, a database of some 8,800 clear and conversational fricative productions by 

20 speakers was collected and examined along 53 potentially informative dimensions 

in order to determine the types of adaptations that might be made in specific 

situations. Chapter 3 describes Experiments 2-3, which address (1) whether (and 

which) clearly produced fricatives are more intelligible than conversational fricatives 

for listeners with normal hearing in degraded conditions, (2) what acoustic 

modifications observed in Experiment 1 are related to any style-related intelligibility 

differences, and (3) how clear-speech intelligibility differences and identifiable 

acoustic correlates differ based on listener population, specifically for listeners with 

(simulated) sloping, recruiting hearing loss. Chapter 4 summarizes the results 

obtained from these experiments, and discusses likely immediate future directions for 

related research.  
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Chapter 2 

Acoustic characteristics of clear fricatives 

  

1. INTRODUCTION 

 

1.1 Introduction 

 Language users can alter their speech productions in order to speak more or 

less ‘clearly’ in response to the communicative needs of different listeners in different 

situations. Deliberately clarified speech has been seen to yield intelligibility 

advantages of 3 to 38 percentage points relative to ‘normal’, conversational speech 

for hearing-impaired listeners in quiet (Picheny et al., 1985; Uchanski et al., 1988) 

and in noise or reverberation (Payton et al., 1994; Schum, 1996), normal-hearing 

listeners in noise or reverberation (Ferguson, 2002; Ferguson and Kewley-Port, 2002; 

Helfer, 1997; Krause and Braida, 2004; Payton et al., 1994) or with simulated hearing 

loss or cochlear implants (Gagné et al., 1994; Iverson and Bradlow, 2002; Liu et al., 

2004), elderly listeners with or without hearing loss (Helfer, 1998; Schum, 1996), 

cochlear-implant users (Iverson and Bradlow, 2002; Liu et al., 2004), children with or 

without learning disabilities (Bradlow et al., 2003) and (to a lesser extent) nonnative 

listeners (Bradlow and Bent, 2002).  

 Acoustic descriptions of clear speech have generally been dominated by 

global (sentence-level) patterns; reduced speaking rate, more and longer pauses, 

increased mean and range of fundamental frequency (f0), a shift in energy to higher 
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frequency regions in long-term spectra, and deeper temporal amplitude modulations 

have been observed in clear speech (Bradlow et al., 2003; Krause and Braida, 2004; 

Liu et al., 2004; Picheny et al., 1986; Smiljanić and Bradlow, 2005). At a 

phonological level, clear speech seems to involve less frequent vowel reduction, burst 

elimination, and alveolar flapping; and more frequent schwa insertion (Bradlow et al., 

2003; Krause and Braida, 2004; Picheny et al., 1986). Previous study on fine-grained 

acoustic-phonetic characteristics of clear speech has mainly considered vowels, 

noting increases in vowel durations, expanded F1 × F2 space area, tighter within-

category clustering, and more dynamic formant movements (Bradlow et al., 2003; 

Chen, 1980; Ferguson, 2002; Ferguson and Kewley-Port, 2002; Johnson et al., 1993; 

Moon and Lindblom, 1994; Picheny et al., 1986; Smiljanić and Bradlow, 2005). 

Since clear speech is by definition produced in order to increase intelligibility, and 

since a vast majority of perceptual errors result from consonant confusions (e.g. 

Miller and Nicely, 1955) it is curious that clearly produced consonants have not been 

examined as thoroughly. Previous analyses have been limited to a few temporal and 

amplitudinal parameters including segmental duration, voice-onset-time (VOT), and 

consonant-to-vowel amplitude ratio (CVR) (Bradlow et al., 2003; Chen, 1980; 

Krause and Braida, 2004; Picheny et al., 1986). Chen (1980) and Picheny et al. 

(1986) found overall longer plosive, fricative, nasal and semivowel durations; longer 

VOT for voiceless plosives; and increased CVR for plosives and some fricatives. 

Larger word-initial CVR was also reported by Bradlow et al. (2003). Picheny  et al. 

(1986) reported increased peak frequency and overall intensity at higher frequencies 
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in /t/ and /s/ productions, although these changes were not consistently found for 

consonants produced clearly at faster rates (Krause and Braida, 2004). 

 This study attempts to identify the types and magnitude of adaptations in the 

clear productions of a class of consonant sounds, namely English fricatives, in order 

to characterize the strategies that speakers use when attempting to produce these 

sounds clearly and to provide a basis for determining what effect these strategies have 

on the intelligibility of their productions. Fricatives were selected for analysis since 

previous consonant confusion analyses have reported that fricatives, especially non-

sibilants, are a large source of errors for hearing-impaired listeners and for normal-

hearing listeners in noise (e.g. Bilger and Wang, 1976; Miller and Nicely, 1955; 

Wang and Bilger, 1973). To our knowledge, there have been no systematic 

investigations of acoustic-phonetic alternations related to clearly-produced fricatives. 

A few studies have considered vocal effort and rate modifications and 

hyperarticulation in describing fricative acoustics (Shadle and Mair, 1996; Jesus and 

Shadle, 2002; Perkell et al., 2004) and perception (Feijoo et al., 1998), but clear 

production was not the primary focus of these studies, which were therefore 

inconclusive with respect to specific clear-speech alternations.  

 

1.2 Acoustic properties of English fricative sounds  

 Several studies have attempted to delineate stable acoustic correlates of 

fricative place of articulation and voicing. Parameters that seem to influence 

identification include gross spectral shapes and peak locations (Behrens and 
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Blumstein, 1988; Hughes and Halle, 1956; Jongman et al., 2000a; Strevens, 1960), 

the first four moments of the spectral energy distribution (Forrest et al., 1988; 

Jongman et al., 2000a; Nissen and Fox, 2005; Nittrouer, 1995; Nittrouer et al., 1989; 

Shadle and Mair, 1996), the slopes of lines fit to spectra in lower and higher 

frequency regions (Evers et al., 1988; Jesus and Shadle, 2002), formant transition 

information (Jongman et al., 2000a; McGowan and Nittrouer, 1988; Nittrouer et al., 

1989; Soli, 1981), overall amplitude (Behrens and Blumstein, 1988; Jongman et al., 

2000a; Stevens, 1971; Strevens, 1960), amplitude relative to the neighboring vowel in 

specific frequency regions ( Hedrick and Ohde, 1993; Jongman et al., 2000a; Stevens, 

1985), and duration (Baum and Blumstein, 1987; Crystal and House, 1988; Jongman, 

1989; Jongman et al., 2000a). Briefly, alveolar fricatives are characterized by spectral 

energy and major peaks at higher frequencies compared to palato-alveolars, which 

display larger overall relative amplitudes. Dental and labio-dental fricatives show 

relatively flat spectra below 10 kHz with no dominating peaks, while alveolar and 

palato-alveolar fricative have well-defined peaks. Nonsibilants show higher standard 

deviations, lower overall amplitudes, and shorter durations than sibilants. Thus, these 

parameters clearly distinguish sibilants from nonsibilants and from each other, but are 

less effective at determining place of articulation for nonsibilants. Fewer studies have 

reported on the voicing distinction in fricatives (Baum and Blumstein, 1987; Crystal 

and House, 1988; Jesus and Shadle, 2002; Jongman et al. 2000a). These studies 

suggest that voiceless fricatives are characterized by higher spectral mean and peak 
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values, more defined peaks, less variance, negative skewness, larger overall 

amplitude and longer duration than their voiced counterparts. 

 

1.3 Contrastive effects of clear speech 

 Most previous studies characterizing clear speech have been fairly broad in 

terms of the sounds and contexts across which measurements were made. A 

secondary question of this study was whether talkers exhibit more specific context-

dependent, segmental contrast-enhancing changes. It has been suggested that clear 

speech modifications are inventory-dependent and effectively increase the auditory 

distance between neighboring categories. For example, VOT for voiceless stops 

increases in clear speech but is unchanged for voiced stops (Chen, 1980; Krause and 

Braida, 2004; Ohala, 1994; Picheny et al., 1986). Similarly, English tense vowels are 

lengthened to a greater extent than lax vowels to maximize the inherent duration 

difference between the two vowel categories (Ferguson and Kewley-Port, 2002; 

Picheny et al., 1986; Uchanski et al., 1996). Talkers also enlarge the distance between 

vowels in F1 × F2 space, producing more extreme, distinct categories (Bradlow et al., 

2003; Chen, 1980; Ferguson, 2002; Ferguson and Kewley-Port, 2002; Johnson et al., 

1993; Moon and Lindblom, 1994; Picheny et al., 1986; Smiljanić and Bradlow, 2005). 

Thus, clear speech may reflect knowledge of the contrasts in an inventory and a 

general effort to maintain these contrasts. It is less clear whether talkers may attempt 

to preserve contrast at a more local level, adapting in response to perception errors 

that are likely to occur in specific contexts. According to Lindblom’s H & H Theory 

 10



(e.g., 1990, 1996), speakers constantly assess listeners’ needs for explicit signal 

information and modulate their speech along a continuum from hypo- to hyper-

speech in response to communicative constraints. Along these lines, a speaker’s task 

and goals during clear speech production are quite variable depending on the 

information needs associated with perhaps each individual segment (depending on 

cues from the listener, knowledge of the language, etc.). Explicit feedback from the 

listener in particular might affect clear speech acoustics under these assumptions. For 

example, when a talker repeats a sequence containing some speech sound after it has 

been misapprehended for another, similar sound, is the talker likely to make specific 

adjustments that are not predictable based on general clear speech patterns or 

inventory-level contrast-enhancing manipulations? A few previous studies have 

touched on this issue. Ohala (1994) employed an elicitation method in which speakers 

received pseudo-misrecognitions as feedback to their productions and were asked to 

repeat target stimuli as clearly as possible. This method was designed to test whether 

speakers make effort not only to improve the intelligibility of the target stimulus but 

also to make it sound more unlike the sound it was mistaken for. Contrary to 

expectations, there were no differences in VOT, vowel duration, or the first three 

formants of vowels as a function of this feedback. There was no evidence of locally 

‘contrastive’ variation in speech, so it was suggested that clear speech is ‘stable’ and 

guided more by general principles reflecting the phoneme inventory of a language, 

than by microscopic context information like anticipation of specific errors. Some 

caution is warranted, however, in interpreting Ohala’s null result. Most notably, while 
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the study considered some 70,000 measurements, this data set was used to account for 

a very large number of vowel and consonant contrasts and was therefore 

underpowered with respect to many of the critical comparisons. The present study 

replicates and extends Ohala’s elicitation method for a much more targeted analysis 

of nearly 500,000 measurements relating to fricative voicing and place of articulation 

in a single vowel context. 

 

1.4 Talker differences in clear speech production 

 Studies have shown that different talkers employ different techniques during 

clear speech production (Bradlow et al., 2003; Chen, 1980; Ferguson, 2002; Krause 

and Braida, 2004; Liu, et al., 2004; Picheny et al. 1986). For example, one speaker in 

Picheny et al.’s corpus increased VOTs for both voiceless and voiced plosives in clear 

speech while the other two increased VOT only for the voiceless one. This speaker 

also decreased intensity for fricatives in clear speech while the other two speakers 

showed the opposite pattern. The female talker from the Bradlow et al. (2003) study 

decreased her speaking rate in clear speech to a far greater degree than the male talker. 

These two talkers also differed noticeably in the pitch, vowel space, and CVR 

differences between clear and conversational speech. The female talker from Liu et al. 

(2004)’s database also increased the mean and variability of overall sentence 

durations more than the male talker. Chen’s (1980) three talkers varied in complex 

ways in the degree to which the syllable, VOT, vowel, and formant transition 

durations changed. The speakers also differed in terms of within-vowel F1 ×F2 space 
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variability and the magnitude of the increase in f0 mean in clear speech. Changes in 

f0 were also inconsistent across two talkers in the study by Krause and Braida (2004). 

 In short, the acoustics of clear speech are highly talker-dependent. However, 

most of the research that examined talker differences in acoustic modifications 

recorded small numbers of talkers (n = 2 for Bradlow et al., 2003, Krause and Braida, 

2004 and Liu et al., 2004; n = 3 for Chen, 1980 and Picheny et al., 1986); cf n=12 for 

Ferguson (2002)). With data only from a few speakers, it is unclear whether the 

patterns of variability observed across speakers and gender would maintain more 

generally, or if still other strategies would emerge. This study examined the 

productions of 20 speakers (10 female and 10 male) to address these questions more 

conclusively. 

 

1.5 Hypotheses 

 This study was designed to answer three questions concerning the production 

of clear fricatives. First, what (if any) systematic changes are made in clear fricative 

productions? Based on previous findings, we hypothesized that clear fricatives would 

be (1) longer, (2) amplified relative to neighboring vowels, (3) higher in spectral 

content, including peak locations, spectral mean values, and related measures. Second, 

are clear-speech modifications dependent on inventory-level and/or more local 

context provided by “listener” feedback? We expected that, in general, clear 

productions would be influenced by the perceived likelihood of different 

misapprehension patterns. More specifically, we predicted that on average (1) 
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fricative categories would differ more from minimally contrastive categories in clear 

than in conversational speech, and (2) fricatives repeated after misapprehension for 

similar sounds would be most different from the sounds they were mistaken for. For 

example, /s/, characterized by a high spectral peak frequency, was expected to 

increase overall in this value in clear speech, while /ʒ/, characterized by a very low 

peak, was expected to increase less or decrease. Likewise, /ʃ/ was expected to 

decrease in peak frequency after misapprehension as /s/, since this would increase the 

difference between the two sounds along this dimension, while it was expected to 

increase in frequency after misapprehension as /ʒ/, for the same reason. Finally, in 

what ways do talkers vary in the production of clear fricatives? We hypothesized that 

cross-talker differences would be seen both in the types of modifications that are 

made and in the extent of these changes. 

 

2. Experiment 1: Acoustic data collection 
 
 
2.1 Method 
 
 
2.1.1 Participants 
 
 20 talkers (10 F, 10 M) aged between 19 and 34 were recruited from the 

University of California, Berkeley, and the University of Kansas, Lawrence, 

communities. Participants were native speakers of American English, without 

noticeable regional dialects. Talkers reported normal hearing and no history of speech 

or language disorders. Talkers had no professional speaking experience and their 
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experience with linguistics/phonetics varied. They volunteered for the experiment 

without monetary compensation. 

 

2.1.2 Materials 

 The eight English fricatives /f, v, θ, ð, s, z, ʃ, ʒ/ and the vowel /ɑ/ were 

combined to form vowel-consonant-vowel (VCV) syllables. Production of each VCV 

token was recorded in isolation in conversational and clear speaking styles. 

 

2.1.3 Procedures and apparatus 

 Participants' speech was recorded digitally at a 44.1 kHz sampling rate (16 bit 

resolution) in a sound-attenuating booth in the Phonology Lab, UC Berkeley, using a 

Marantz PMD670 recorder and Shure SM-10 A headset microphone. The microphone 

was placed 1 inch away from the corner of the talker’s mouth at a 45-degree angle. 

Participants were seated at a comfortable distance from a visual display of prompt, 

instruction, and feedback on a computer screen. Before recording began, participants 

were provided with a list explaining the pronunciation of each sound. Items were 

written: ‘afa’, ‘atha’, ‘asa’, ‘asha’, ‘ava’, ‘adha’, ‘aza’, and ‘azha’. Participants first 

read these syllables aloud a few times to become familiar with awkwardly-spelled 

syllables. A pronunciation key was available for reference throughout the session. 

 The recording session was divided into two parts: warm-up and experiment. 

Programs to provide prompts and feedback were designed using MATLAB 7.0.0.1 

(The Mathworks, Inc., 2000). During warm-up, talkers produced five repetitions of 
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each VCV in response to prompts appearing on the screen. At first, talkers read VCV 

syllables in a manner approximating the way they spoke in everyday conversation; 

later, they were instructed to speak more carefully, as if talking to a hearing-impaired 

or elderly person. This warm-up served to familiarize talkers with the interface and 

materials, allow them to rehearse the two styles, and provide ‘baseline’ recording of 

speech produced before talkers became aware of the rate and types of misperceptions 

that would be encountered during the experiment.  

 The elicitation method for the experimental session resembled the one used by 

Ohala (1994). Before the session, a subject was told that he/she would produce 

speech as part of an interaction with a computer program that would be recorded. 

They were instructed to speak first as naturally as possible, as if in casual 

conversation, when prompted by a VCV stimulus on the screen. This original input 

served as ‘conversational speech’ in acoustic analyses. Participants were told that the 

program would ‘guess’ which syllables were spoken and indicate its guess on the 

screen, and that it would frequently misperceive sounds, simulating a hearing-

impaired listener. If a participant indicated that a guess was correct (by clicking a box 

on the screen), the trial terminated and the program moved on to the next stimulus. If 

a guess was marked incorrect, the speaker was given a chance to repeat the target 

stimulus, doing his or her best to deliver the stimulus as intelligibly as possible. 

“Hyperarticulate speech” was observed in the machine-human interaction in which 

speakers made global acoustic changes, after receiving the recognition error feedback 

from the computer program (Oviatt et al., 1998a and b). These repeated productions 
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served as ‘clear speech’ in acoustic analyses. ‘Guesses’ were unrelated to the 

speaker’s production pattern, and represented either: (1) the correct response, (2) 

voicing-matched but place-unmatched incorrect responses (e.g. /θ/, /s/, or /ʃ/ for /f/), 

(3) voicing-unmatched, place-matched incorrect responses (e.g. /v/ for /f/), and (4) 

‘???’ (“don’t know”) responses. Each response occurred 5 times for each VCV during 

the experiment. Thus, there were 30 conversational and 25 (three place errors, one 

voicing error, one ??? × 5) clear productions of each fricative by each talker. The 

order of prompts was randomized separately for each talker, as was the pattern of 

pseudo-responses. After the second production, a second guess was displayed, which 

was correct 75% of the time and random otherwise; the participant scored this guess 

before continuing to the next trial. Recording sessions lasted 60-70 minutes, including 

the warm-up and a 10 minute break halfway through the main experiment. 

 

2.1.4 Data processing and acoustic measurements 

 Recordings were hand-annotated into VCV segments using the PRAAT 

speech analysis software (Boersma and Weenink, 2000) and further segmented and 

analyzed using PRAAT and Matlab. Semi-automatic fricative segmentation was 

achieved following previous studies (Behrens and Blumstein, 1988; Jongman et al., 

2000a; Yeni-Komshian and Soli, 1981), in which the fricative was defined as a region 

of elevated zero-crossings due to the turbulent source, in the following manner. Each 

production was high-pass filtered at 300 Hz using a 2nd order Butterworth filter, to 

remove voicing and other low-frequency perturbations that might obscure zero 
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crossings resulting from the turbulent source. The production was then converted into 

a time series in which each sample was labeled as either differing in sign from the 

previous sample [1] or not [0], and a zero-crossing envelope was created by low-pass 

filtering this series at 30 Hz. We found that good identification was achieved by 

taking the continuous region closest to the center of the production for which the log 

of this envelope was above half of its maximum value as corresponding to the 

fricative. Upon hand checking the segmentation based on visual inspection of the 

spectrogram and waveform, it was found that 91% of fricatives were accurately 

labeled; the remaining 9% were labeled by hand. 

 Acoustic analysis considered a 14 parameters that may work in combination 

to distinguish fricative voicing and place of articulation: spectral peak location (1), 

the first four spectral moments (2-5), F2 onset transitions (6), spectral slopes below 

(7) and above (8) peak locations, f0 of adjacent vowels (9), overall RMS amplitude 

(10), relative amplitude i.e., a change in amplitude of the frication relative to the 

vowel in F3 region for sibilants and F5 region for non-sibilants (11), harmonic-to-

noise ratio (HNR; 12), energy below 500 Hz (13) and fricative duration (14). Except 

where noted, all analyses considered 40-ms Hamming windowed segments at five 

locations, centered over the fricative onset, 25, 50, and 75% points, and offset. 

Spectral peaks were defined as the frequency with the highest absolute magnitude in 

the FFT of a windowed segment. Moments 1-4 were also calculated from the absolute 

FFT spectrum. F2 values were calculated using the Burg algorithm as implemented in 

PRAAT, derived at fricative onset and offset and each vowel midpoint from an 
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analysis that found at most five formants below 5000Hz (male speakers) or 5500Hz 

(females). Spectral slopes were computed following the procedures described by 

Evers et al. (1998) and Jesus and Shadle (2002) Lines were fit to FFT power spectra 

across two regions defined by the average peak frequency (across talkers and 

productions) for a fricative. Low-frequency slope (dB/kHz) was derived from the 

spectral values below this peak, and high-frequency slope from the peak to 22.05 kHz.  

 Fundamental frequency was derived using an autocorrelation-based algorithm 

(Boersma, 1993). F0 was averaged across the vowels preceding and following the 

target. Normalized amplitude was taken as the difference (dB) in RMS amplitude 

between the same five windowed fricative segments described above, and the 

averaged of the surrounding vowels. (The use of both vowels for F0 and amplitude 

analysis was necessary because some speakers tended to place emphasis on the first 

vowel and some on the second.). Relative amplitude was measured as described in 

Hedrick and Ohde (1993) and Jongman et al. (2000a). FFTs were taken of one 23.3-

ms Hamming window centered on the fricative midpoint, and one with the left 

window skirt positioned at the onset of following vowel periodicity. For sibilants the 

peak in the region corresponding to F3 of the frication noise were compared to the 

peak of the vowel onset in the same frequency region; for non-sibilants the peak at F5 

was used. Relative amplitude was then expressed as the difference (dB) between 

fricative and vowel amplitude. Mean HNR across the fricative was obtained using a 

cross-correlation algorithm. Intensity below 500 Hz was obtained similarly to 

normalized amplitude, except that the VCV was first low-pass filtered at 500 Hz. 
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2.1.5 Statistical analysis 

 For each metric at each window, hypotheses (1) and (2; inventory-based 

contrastive effects) were tested using a four-way (2 × 4 × 2 × 2), mixed-model 

analysis of variance (ANOVA) with speaking Style (clear vs. conversational), Place 

of articulation, and Voicing as within-subjects factors; and Gender as a between-

subjects factor. Post-hoc pairwise comparisons for significant within-subject factors 

were done using Bonferroni corrected 95% confidence intervals. A stepwise linear 

discriminant analysis was conducted to test whether clear fricatives are more 

discriminable (in terms of place and voicing) than conversational fricatives. For peak 

location, moments, spectral slopes, normalized amplitude and energy below 500 Hz, 

5 window locations served as predictors, and for F2, 4 window locations served as 

predictors, resulting in 53 total predictors. Classification scores developed by a “jack-

knife” cross-validation procedure were compared between speaking styles. 

Hypothesis (2) was addressed further using a two-way repeated measures ANOVA 

for clear speech measurements with Misperception and Fricative as factors, to 

determine whether feedback affected production. A one-way repeated measures 

ANOVA was also conducted to examine whether differences in acoustic values 

between minimal pairs were larger in contrastive contexts (where a sound was 

produced after being misperceived as the other) than in non-contrastive. Again, a 

stepwise linear discriminant analysis was performed for all 16 +/- [voicing], [place] 

pairs and classification scores were compared to those obtained for conversational 

and non-contrastive clear speech. Hypothesis (3) was addressed using a two-way 
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mixed-model ANOVA with Style as within-subject factor and Talker as between-

subject factor.  

 

2.2 Results  

 

2.2.1 General clear speech alternations and talker differences 

 Complete results of the Style × Place × Voicing × Gender ANOVA for each 

measure are summarized in Table 2-1; specific findings are summarized below.  
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Table 2-1: Summary of repeated measures analyses of variance (ANOVA) for each 
acoustic measurement, with within-subject factors of Style (S: 2 levels), Place (P: 4 
levels), Voicing (V: 2 levels), Fricative (F: 8 levels) and Misperception (M: 2 levels), 
and between-subject factors of Gender (G: 2levels) and Talker (T: 20 levels), 
(S=Style, P=Place, V=Voicing, F=Fricative, M=Misperception, G=Gender, T=Talker, 
***p<.001, **p<.01, *p<.05, ·p<.1, -p>.1). 
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2.2.1.1 Spectral peak locations.  

 Figure 2-1 shows mean peak location as a function of fricative, style and 

window location. Style effects were obtained at 4 locations, with peaks averaging 824 

Hz higher in clear speech. Main effects of Place were observed at all 5 locations; 

Pairwise comparisons at the 3 central locations showed that alveolar fricatives had the 

highest peaks and palato-alveolars the lowest. Peak location differed significantly 

between all place pairs except for the dental - 

labiodental contrast. The Voicing effect was found at all 5 locations, with higher 

values for voiceless fricatives. A Style × Place interaction was found at 4 locations; 

Bonferroni post hoc tests revealed that peak locations increased significantly in clear 

speech for all fricatives except palato-alveolars. A Style × Voicing interaction was 

observed at 3 locations, with a bigger increase in clear speech for voiced fricatives 

(p<.001). A Gender effect was found at window W1 [F(1, 18)=6.386, p<.05]; female 

speakers had higher peak frequencies (2859 Hz) than male speakers (2290 Hz). No 

interactions involving Gender and Style were observed (F<1). There was no 

significant Talker effect; the Style × Talker interaction was seen only at W1 [F(19, 

140)=2.672, p=.001]. 
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Figure 2-1: Mean FFT peak frequency (Hz) for each fricative at 5 window locations 
as a function of style 
 

2.2.1.2 Spectral moments   

 Figures 2-2 to 2-5 summarize data for moments 1-4. For spectral mean (M1), 

the Style effect was seen at most locations, with clear speech means on average 1.16 

times higher than conversational. The Place effect was significant at all locations. 

Pairwise comparisons showed higher values for alveolars and the lowest values for 

palato-alveolars, with no significant differences between the two non-sibilants. A 

Voicing effect was found at the 3 central locations; voiceless fricatives had higher M1 

values. Style × Place interactions at all 5 locations, and post hoc tests, showed that 

labio-dentals, dentals, and alveolars increased in M1 in clear speech, while palato-
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alveolar fricatives did not. Style × Voicing interactions were found at 3 locations; M1 

increased more for voiced fricatives at W1 and more for voiceless fricatives at W2, 

and decreased more for voiceless clear fricatives than voiced at W5. Main effects of 

Gender at all locations revealed that female speakers had higher mean frequencies 

than males. No Style × Gender interactions were seen, indicating that female speakers 

and male speakers did not differ in the extent to which they modified mean frequency 

values in clear speech. However, main effects of Talker were seen at 2 locations and 

Style × Talker interactions at all locations.  

 

Figure 2-2: Mean moment 1 values (mean frequency; Hz) for each fricative at 5 
window locations as a function of style 
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 Main effects of Style for M2 (standard deviation) were found at two window 

locations, with (on average 1.4 times) higher values in clear speech. Main effects of 

Place were found at all locations; pairwise comparisons showed that non-sibilants had 

higher M2 than sibilants, and that palato-alveolars had the lowest overall values. M2 

did not differ based on Voicing. Style × Place interactions at all 5 windows and post 

hoc tests showed that non-sibilants increased, and sibilants decreased slightly, in clear 

speech. Style × Voicing interactions were also seen at all 5 locations; M2 increased 

for voiced fricatives and decreased slightly for their voiceless counterparts. Style × 

Place × Voicing interactions were found at all 5 locations, deriving from these same 

two patterns. Female speakers showed higher standard deviation values than males at 

W1 [F(1, 18) = 14.446, p =.001] and tended higher at all locations. No Style × Gender 

interactions were observed. Talker effects and the Talker × Style interaction were 

seen at W1 and W5.  
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Figure 2-3: Mean moment 2 values (standard deviation; Hz) for each fricative at 5 
window locations as a function of style 
 

 A main effect of Style for M3 (skewness) was seen at all 5 locations, with 

lower values in clear speech (mean 0.36 × conversational). This indicates that energy 

concentration was universally shifted to higher frequency regions in clear speech. The 

Place effect was also significant at all locations. Pairwise comparisons showed lowest 

values for alveolar fricatives, highest for palato-alveolars, and no differences between 

non-sibilants. There were effects of Voicing at all locations with lower skewness for 

voiceless fricatives. Style × Place interactions at all locations and post hoc 

comparisons revealed significant decreases for all places except palato-alveolars. 

Palato-alveolars either increased (n.s.) in skewness (at the central window locations) 
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or did not decrease (in peripheral locations) as much as other fricatives. Style × 

Voicing interactions indicated larger decreases for voiced fricatives. Female speakers 

showed lower skewness values than males at 4 locations, indicating more energy 

concentration in higher frequency regions for females; no interactions involving 

Gender and Style were significant. The Talker effect was significant at the two 

peripheral locations, and the Talker × Style interaction was significant only at 

fricative onset. 

 

 

Figure 2-4: Mean moment 3 values (skewness) for each fricative at 5 window 
locations as a function of style 
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 M4 (kurtosis) decreased in clear speech at all 5 locations (mean 0.7 × 

conversational value). Place effects at all locations were mainly derived from lower 

values for alveolar fricatives and highest values for palato-alveolars. Non-sibilants 

did not differ from each other except at W5. Voiced fricatives had significantly higher 

kurtosis than voiceless. Style × Place interactions at 5 locations and post hoc tests 

indicated that the decrease in M4 in clear speech was mostly due to non-sibililants; 

Style × Place × Voicing interactions indicated that voiceless alveolars and palato-

alveolars increased in clear speech at central locations. Style × Voicing interactions at 

all locations showed that peakedness decreased for voiced fricatives while voiceless 

fricatives either (n.s.) increased or did not decrease in kurtosis as much as their voiced 

counterparts. Except for a main effect at W1 (higher for male speakers), there were no 

effects involving Gender. Talker effects were found at the transitional locations, and 

the Style × Talker interaction was found at W1. 
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Figure 2-5: Mean moment 4 values (kurtosis) for each fricative at 5 window locations 
as a function of style 
 

2.2.1.3 F2  

 Figure 2-6 summarizes F2 data. A Main effect of Style was found at 3 

locations, with slightly higher values in clear speech at fricative onset and offset 

positions (1. 04 × conversational value) and lower values at the midpoint of the 

following vowel (0.97 × conversational). A Place effect at all 4 locations and pairwise 

comparisons revealed that (1) dentals showed higher F2 values than labio-dentals at 

both vowel midpoints, and (2) palato-alveolars had the highest overall values. A main 

effect of Voicing at the transition locations showed that voiceless fricatives had (1.07 

times) higher F2 values. A Style × Place interaction at 2 locations resulted from 
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increases in F2 for dental and palato-alveolar fricatives at W3, and decreases for 

dental, alveolar, and palato-alveolar fricatives at W4 in clear speech. A Style × 

Voicing interaction at 2 locations showed a decrease for voiceless fricatives in clear 

speech at W1, and a significant increase for voiced fricatives at W3. A main effect of 

Gender showed higher F2 values for female speakers at 4 locations; no Style × 

Gender interaction was seen. The Talker effect and Talker × Style interaction were 

seen at all locations.  

 

Figure 2-6: Mean F2 values (Hz) for each fricative at 4 window locations as a 
function of style 
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2.2.1.4 Spectral slopes  

 Figure 2-7 and 2-8 show spectral slopes before and after peak locations. For 

slope before the peak, the Syle effect was significant at all locations, with clear 

speech 0.751 dB/kHz steeper than conversational. The Place effect obtained at all 5 

locations and pairwise comparisons showed that (1) sibilants had higher before-peak 

slopes than non-sibilants, (2) within sibilants, slopes were highest for palato-alveolars, 

and (3) non-sibilants did not significantly differ from each other except at W1 (higher 

for dentals). An effect of Voicing at 4 locations showed higher values for voiceless 

fricatives, in accordance with previous findings (Jesus and Shadle, 2002). Style × 

Place interactions were seen at 4 locations. Style × Voicing interactions were 

significant at 4 locations, showing that although both voiceless and voiced fricatives 

increased in clear speech, the increase was much larger for voiced fricatives. The 

Gender effect was found only at W1 with female speakers having higher values than 

male speakers. There were no Style × Gender interactions at any locations. A main 

effect of Talker was found at W1. Style × Talker interactions were significant at all 5 

locations, indicating that talkers varied in the extent (and sometimes the direction) to 

which they modulated slope in clear speech. 
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Figure 2-7: Mean slope values before the peak locations (dB/kHz) for each fricative 
at 5 window locations as a function of style 
 

 Slope after peak locations showed similar results. A main effect of style was 

seen at all 5 locations, with clear speech slopes on average 0.302 dB/kHz lower 

(steeper) than conversational. A main effect of Place at all locations and pairwise 

comparisons demonstrated greatest negative slopes for alveolars, followed by the 

palato-alveolars. Non-sibilants did not differ from each other. The Voicing effect was 

significant at the 3 central locations, with larger negative values for voiceless 

fricatives. Style × Place interactions were found at 4 locations; post hoc tests revealed 

that although all places of articulation decreased in clear speech, non-sibilants 

decreased to a much larger degree than sibilants. Style × Voicing interactions at 4 
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locations indicated voiced fricatives decreased more than voiceless. No effects or 

interactions involving Gender were observed. Talker main effects were found at the 

peripheral locations, and Style × Talker interactions were seen at three locations. 

 

Figure 2-8: Mean spectral slope values after the peak locations (dB/kHz) for each 
fricative at 5 window locations as a function of style 
 

2.2.1.5 Normalized RMS amplitude   

 Figure 2-9 shows normalized RMS amplitude for each fricative as a function 

of style. A main effect of Style was found at all 5 locations, with clear fricatives 

significantly lower in amplitude at the first four windows (mean 1.04 dB difference) 

and higher (0.565 dB) at fricative offset. The Place effect was seen at all locations, 

due to higher amplitude for sibilants than non-sibilants. At all locations, amplitude 
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increased in the order of labio-dentals, dentals, alveolars, and palato-alveolars. 

Alveolar fricatives and palato-alveolar fricatives significantly differed from each 

other at 4 locations but labio-dentals and dentals significantly differed only at W5. A 

main effect of Voicing was found at W4, with lower amplitude for voiceless fricatives. 

Style × Place interactions were seen at all locations. A decrease in normalized 

amplitude was obtained only for non-sibilants at central locations. There were 

significant Style × Voicing interactions at 3 locations, due to a larger decrease for 

voiced fricatives at W1 and 4, and a significant increase for voiceless fricatives at W5. 

There was no Gender main effect or Style × Gender interaction. Talker effects and 

Style × Talker interactions were seen at all 5 locations. Post hoc tests indicated that 

talkers significantly differed in both the extent and direction of changes; some talkers 

actually showed increased relative amplitude in clear speech. 
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Figure 2-9: Mean normalized rms amplitude (dB) for each fricative at 5 window 
locations as a function of style 
 

2.2.1.6 Relative amplitude   

 Figure 2-10 shows relative amplitude for each fricative and style. There was 

no overall effect of Style (F<1). A main effect of Place [F(3, 27.067)=102.650, 

p<.001] and post-hoc comparisons indicated that palato-alveolars had by far the 

highest relative amplitudes, followed by labio-dentals. There was a main effect of 

voicing, [F(1, 18)=69.543, p<.001], with greater values for voiceless fricatives. A 

Style × Place interaction [F(3, 54)=15.352, p<.001] resulted from a significant 

decrease for alveolar fricatives and a significant increase for palato-alveolar fricatives. 

Interactions involving Voicing were not significant, nor were the Gender effect or 
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Style × Gender interaction. A main effect of Talker [F(19, 140)=2.525, p=.001] and a 

Style × Talker interaction [F(19, 140)=3.582, p<.001] indicated talker variance in the 

extent and direction of production and modifications in relative amplitude. 

 

Figure 2-10: Mean normalized relative amplitude values (dB) as a function of 
fricative and style 
 

2.2.1.7 Energy below 500 Hz  

 

 Figure 2-11 shows intensity below 500 Hz data. Clear speech significantly 

decreased in energy below 500 Hz (mean 1.49 dB difference) at the first 4 locations 

but significantly increased at fricative offset (1.019 dB). Main effects of Place were 

found only at peripheral locations, with higher values for sibilants; the Voicing effect 

 37



was found at the 3 central locations, with greater values for voiced fricatives. Style × 

Place interactions were seen at all locations, derived from a smaller decrease for 

palato-alveolars than for other sounds. Style × Voicing interactions at all locations 

showed that voiced fricatives decreased less than voiceless fricatives, even increasing 

(n.s.) at the 3 central locations. There were no main effects of Gender or Style × 

Gender interactions (F<1). The main effect of Talker and the Style × Talker 

interaction were significant at all locations. 

 

 

 

Figure 2-11: Mean normalized intensity below 500 Hz (dB) for each fricative at 5 
window locations as a function of style 
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2.2.1.8 Noise duration   

 Figure 2-12 shows duration as a function of fricative and speaking style. A 

significant main effect of Style was seen [F(1, 18)=57.397, p<.001], with clear 

fricatives on average 2.9 times longer than conversational. Main effects of Place and 

Voicing were also seen [F(3, 46.622)=17.255, p<.001; F(1, 18)=190.859, p<.001]; 

sibilants and voiceless fricatives were longer than non-sibilants and voiced fricatives, 

consistent with previous studies (e.g. Jongman et al., 2000a). The Style × Place 

interaction was not significant. A Style × Voicing [F(1, 18)=39.563, p < .001] 

interaction revealed that voiceless fricative durations increased more in clear speech. 

No effects or interactions involving Gender were observed (F<1; cf Bradlow et al., 

(2003), Liu et al., (2004)). The Talker effect and the Style× Talker interaction were 

both significant, [F(19, 140)=15.206, p<.001] and [F(19, 140)=48.590, p<.001], 

indicating that talkers differed in the extent of their modulation of fricative duration 

in clear speech.  
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Figure 2-12: Mean noise duration (sec) as a function of fricative and style 

 

2.2.1.9 HNR   

 Figure 2-13 shows HNR as a function of fricative and style. There was no 

overall effect of Style on HNR. A main effect of Place [F(3, 54)=57.692, p<.001] and 

pairwise comparisons indicated lower HNR for sibilants than non-sibilants, and 

palato-alveolars than alveolars. A Main effect of Voicing [F(1, 18)=185.729, p<.001] 

showed higher HNR for voiced fricatives. The Style × Place interaction was not 

significant, but Style × Voicing and Style × Place × Voicing interactions ([F(1, 

18)=24.754, p<.001] and [F(3, 2.866)=15.196, p<.001], respectively) revealed that 

HNR significantly increased in clear speech for voiced fricatives and significantly 
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decreased for the voiceless fricatives. AGender effect was found [F(1, 18)=6.424, 

p<.05] but not the Style × Gender interaction. Neither the Talker main effect nor the 

Style × Talker interaction was significant.  

 

Figure 2-13: Mean HNR averaged across speakers as a function of fricative and style 

 

2.2.1.10 F0  

  Figure 2-14 summarizes f0 results. No effect of Style or Place was found, 

with slightly higher fundamental frequency in clear speech (153 Hz for clear speech 

and 148 Hz for conversational speech); there was a marginal main effect of Voicing 

[F(1, 18)=4.248, p=.054], with higher f0 near voiceless fricatives (3 Hz higher). No 

Style × Place interaction was found, but there was a Style × Voicing interaction [F(1, 
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18)=4.454, p<.05], indicating a significant increase in fundamental frequency only for 

clear voiceless fricatives. The main effect of Gender [F(1, 18)=62.051, p<.001] 

resulted from significantly higher f0 values for female; however, there were no 

interactions involving Style and Gender. The Talker effect and the Style × Talker 

interaction were significant ([F(19, 140)=488.007, p<.001] and [F(19, 140)=15.482, 

p<.001], respectively). 

 

Figure 2-14: Mean f0 values (Hz) as a function of fricative and style 

 

2.2.1.11 Discriminant analysis  

 As shown in Table 2-2, 84% of conversational fricative productions were 

classified correctly in terms of place of articulation by the discriminant analysis. 
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Classification accuracy was higher for sibilants than non-sibilants, and errors rarely 

involved the sibilant/non-sibilant distinction. Accuracy was slightly higher for clear 

productions. Specifically, (see Table 2-2), classification scores were higher for clear 

speech fricatives for 10 of 14 measures considered independently. Those measures 

that did not give better scores for clear speech included duration, intensity below 500 

Hz, f0, and slope after the peak location, most of which are not generally considered 

to contribute to place of articulation identification.  

 For voicing, 94.1% of conversational and 96% of clear productions were 

classified correctly. As Table 2-2 shows, voicing classification was better for clear 

tokens for 9 of 14 independent measures. Measures that did not result in better 

performance for clear fricatives were in complimentary distribution with those that 

favored conversational productions for the place distinction, and are not generally 

considered to contribute to voicing identification. 
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Table 2-2: Classification scores (%) in terms of place of articulation (first two rows) 
and voicing (second two rows) distinction for each acoustic measures as a function of 
style (CL=clear, CO=conversational; Bold, higher score) 
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Table 2-4: Classification scores (%) in terms of minimal pair distinction as a function 
of context (CO=conversational, NON=noncontrastive clear, CTR=contrastive clear; 
Bold, highest score) 
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 2.2.2 Contrastive effects 

 

2.2.2.1 Overall feedback effects  

  First, to assess overall effect of ‘listener’ feedback on production of each 

fricative, a 9 × 8 repeated measures ANOVA with Misapprehension and Fricative as 

within-subject factors was conducted for each acoustic parameter at each window 

location in clear speech. Results are summarized in the rightmost columns of Table 2-

1. There were main effects of Fricative for many. Both Misapprehension effects and 

Misapprehension × Fricative were seen in several places, suggesting not only that the 

types of misperception influenced production in repeated clear speech but also that 

acoustic values for certain sounds were differentially affected by different types of 

misperception. In interpreting these results, the next step was to determine whether 

the difference between acoustic values for sounds in instances where one sound was 

just confused for the other, i.e. “contrastive” contexts is larger than non-contrastive 

contexts. For example, is the /s|ʃ/ (/s/ produced after misapprehension as /ʃ/) - /ʃ|s/ 

peak location difference larger than the /s|~ʃ/ (/s/ produced after misapprehended as 

/f/, /θ/, /v/, and ‘???’) - /ʃ|~s/ difference? Larger differences in “contrastive” contexts 

would suggest that speakers attempted to produce a fricative more unlike the sound 

for which it was just mistaken, by increasing the acoustic distance between these two 

similar sounds. A one-way repeated measures ANOVA with one within-subject factor 

(Context, i.e. contrastive vs. non-contrastive) and difference in acoustic values 

between two sounds (e.g. |peaks - peakʃ|) in a minimal pair as the dependent variable 
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was performed for each pair (n =16) for each acoustic measurement at all 

locations(n=53). The results of this comparison are summarized in Fig. 2-15; as seen 

in the figure, differences were greater much more often in contrastive contexts, 

reaching significance in a fair number of cases despite the relatively low power of this 

comparison. Critically, examination of individual results revealed that (1) acoustic 

parameters that showed significantly larger differences in contrastive context for 

place-of-articulation pairs were those considered to contribute to these distinctions 

(e.g. FFT peak location, all moments, RMS amplitude, relative amplitude and spectral 

slopes), and parameters that had larger differences in contrastive context for voicing 

pairs are associated with the voicing distinction (e.g. energy below 500 Hz, HNR, 

pitch, and less consistently F2, FFT peak location, moment 1 and 3), and (2) the 

difference was generally found to be larger for the pairs where the misapprehension 

differed from the target in only place or voicing and not by +/- sibilant.  

 For example, mean M1 values at W2 for /s/ and /ʃ/ in conversational speech 

were 6837 Hz and 4566 Hz, respectively. In /s|ʃ/ and /ʃ|s/ contexts, the value 

increased for /s/ (7611 Hz) but decreased for /ʃ/ (4540 Hz) while in /s|~ʃ/ and /ʃ|~s/ 

contexts, the value not only increased less for /s/ (7544 Hz) relative to the contrastive 

context but also instead of decreasing for /ʃ/, it increased (4644 Hz) compared to that 

value in conversational speech. In particular, M1 at W2 for /ʃ/ increased in /ʃ|ʒ/ 

context (4665 Hz) relative to that value in conversational speech to enhance the 
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voicing distinction. Relative amplitude for /s/ and /ʃ/ in conversational speech were -

6.561  
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Figure 3-15: Frequency of occurrence (%) of differences in acoustic values between 
two sounds in a minimal pair as a function of pair type and context 
 

dB and 8.585 dB, respectively. Again, the value decreased to a larger extent for /s/ (-

9.533 dB) and increased more for /ʃ/ (11.072 dB) in /s|ʃ/ and /ʃ|s/ contexts, relative to 

decrease for /s/ (-8.554 dB) and increase for /ʃ/ (10.353 dB) in /s|~ʃ/ and /ʃ|~s/ 

contexts. The same changes were found for the voiced pairs /z/ and /ʒ/. In addition, 

the decrease in relative amplitude for /s/ was smaller after misapprehension as /z/ (-

8.275 dB) compared to the decrease for the same sound after misperception as /ʃ/. 

Similarly, intensity below 500 Hz for /f/ and /v/ in conversational speech were -
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7.5185 dB and -3.644 dB, respectively. The value decreased for /f/ much more in /f|v/ 

context (-10.074 dB) than in /f|~v/ context (-9.45 dB) while the value for /v/ did not 

decrease in /v|f/ context (-3.6644 dB) as much as in /v|~f/ context (-4.4806 dB). 

Similar results were also found in many cases including /s/-/ʃ/ duration; /v/- /δ/ F2; 

FFT peaks for /f/-/θ/, /s/-/ʃ/, /v/-/δ/, /f/-/v/ and /s/-/z/; HNR for /θ/ and /δ/ and /s/-/z/; 

moment 1 for /f/-/θ/, /f/-/v/, and /ʃ/-/ʒ/ and moment 3 for /s/-/ʃ/, /z/-/ʒ/ and /f/-/v/ 

pairs. Summarization was found in Table 2-3. 

 

2.2.2.2 Discriminant analysis  

 As Table 2-4 shows, for 14 of 16 +/- [voicing], [place] pairs, classification 

scores in contrastive contexts were higher on average than other clear productions. In 

line with overall clear speech results (Table 2-2), classification scores were highest in 

contrastive contexts for most place pairs in parameters including F2, FFT peak 

location, spectral moments, amplitude, and spectral slope; classification scores were 

highest in contrastive contexts for voicing distinctions primarily in HNR, intensity 

below 500 Hz, f0, M1 and M3.  
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Table 2-3: Summary of results from the one-way repeated measures ANOVA with 
one within-subject factor (Context, i.e. contrastive vs. non-contrastive) and difference 
in acoustic values between two sounds as a dependent variable for each of 53 acoustic 
predictors, ***p<.001, **p<.01, *p<.05, ·p<.1, N p>.1, shaded = acoustic distance is 
larger in the ‘contrastive’ pair than in the ‘non-contrastive’ pair) 
 

  Durs F2W1 F2W2 F2W3 F2W4 FFTPksW1 FFTPksW2 FFTPksW3 FFTPksW4 FFTPksW5 HNR Int500W1 Int500W2 Int500W3 Int500W4 Int500W5 

FF/TH .  N  N  N  N *  ***  ***  N  N  N  .  .  N  N  N  
SS/SH **  **  N  N  .  N  *  *  N N  N  N  N  N  N  N  
FF/SS *  N N N *  .  *  N N  N  N  N  N  *  N  *  
FF/SH N  N  .  N N  N  N  N  N N N N  N  N N  N 
TH/SS *  N **  N  N  N N  N  N  N  N  N  N  . * N  
TH/SH N N  N  N  *  N  N N N  N  N *  *  N  *  N 
VV/DH .  N  *  *  N  N  .  .  **  N  N  N  N  **  N  N  
ZZ/ZH N  N N N N  .  N  N  N  *  N N N  N  N  N  
VV/ZZ N  N  N  .  N  N  N N .  .  N N N  *  .  N  
VV/ZH N  N  N  N  N N  N  N  N  N N  *  **  *  *  N  
DH/ZZ N N *  N N  N N  .  *  N .  N  N  N  N  N 
DH/ZH *  N  N  N  N  N N  .  N  N  N N  N  N * *  
FF/VV N N  N **  **  N  .  .  **  N  N  N N **  **  N  
TH/DH N  N  N  .  **  N  N  N N  N  *  N  .  *  N N  
SS/ZZ N N  N  N  N  **  N  *  ***  N **  N  N  N  *  N  
SH/ZH N  N  N N  **  N  N  N  .  N  N  **  N  N  *  N  

  

 M1W1 M1W2 M1W3 M1W4 M1W5 M2W1 M2W2 M2W3 M2W4 M2W5 M3W1 M3W2 M3W3 M3W4 M3W5 M4W1 M4W2 M4W3 M4W4 M4W5 

FF/TH .  **  .  .  N  .  N  N  N  N  **  **  *  .  N  *  N  N  .  N 
SS/SH N **  *  *  N . N  N  N  N N **  **  **  N N *  ***  **  N 
FF/SS .  N  N  N  N  N  N N  N  N  N  N  *  *  N N  *  N  N N 
FF/SH N  N N  N  N  N N N N  * N  N  N N  N  N  N  N  N  N 
TH/SS N  . N N N N N  N  .  N N  * N N N N  *  N  *  N 
TH/SH N  N  N  N  N N N  N  N N N N  N  N  N  *  N  N  N N 
VV/DH N  N  N  N N  *  *  N  N  N  N N  N  N N  N N N . N 
ZZ/ZH N  N  *  N  N  N  N  N  N  N  N  N  N  *  N  N  N  N  .  N 
VV/ZZ *  N  N  N  N  N  N N  N  N  N *  N  N  N  N  *  N N N 
VV/ZH N N  N  N  N N  N  N N  N  N  N  .  *  N .  *  N  N  N 
DH/ZZ N  N  .  N  N  N  N  N  N  *  N  N  .  .  N  N  N  N  N  *  
DH/ZH N  N  N  N  N  N  N N  N  .  N  N  N  N  N N  N  N  N  N 
FF/VV N N  *  .  N  .  .  N  .  N  N  .  .  **  N  N  N  N  *  N 
TH/DH *  N  N  N *  **  *  N  N  N  .  N  N  N .  *  N  N  N  N 
SS/ZZ N N  N  N  N N N * N  N N N  N N N N N N N  N 
SH/ZH N *  *  .  N N N  N  N  N  N N  .  .  N N N  **  .  N 
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 F0 RelAmps RMSW1 RMSW2 RMSW3 RMSW4 RMSW5 SlpAftW1 AftW2 AftW3 AftW4 AftW5 SlpBefW1 BefW2 BefW3 BefW4 BefW5 

FF/TH N  N  *  N  N  N  N  N  N  N  N  N  N  .  *  N  N 
SS/SH N  *** N  N  N  N  N N  N  *  N  N  .  N  N N N 
FF/SS **  N  N  N . * *  N  N  N N  N N  N N  *  N  
FF/SH .  N N  N N N  N  N N  N  N  *  N N N N N 
TH/SS N  N  N  N N N  N  N  N N  .  N N . N N N 
TH/SH .  N N  N N  N  N  N N *  N N  N  N N N N 
VV/DH N  N N  *  **  N  N  N  N  .  N  N  N  *  *  N  N  
ZZ/ZH N  *  .  *  N  .  N  .  N  N  N N  N  N  N  N  N 
VV/ZZ .  N  N  N  N  N  N  N N  N  N  N  N N  N  N  N  
VV/ZH N N  .  N  N  N  N N  N  N *  N  N  N  N N N  
DH/ZZ N  N  N  N  N  N  N N  N  N  N  N  N  N  .  N  N  
DH/ZH N  N  N  N  N  N N  N N N  N N  N N N  N N  
FF/VV .  N  N  N N N  N  N  N  N  N  N  N  N  N  N  N  
TH/DH .  N  *  N  N  N  N  N N N N N  .  N N  N N 
SS/ZZ N  N  N  N  N  N  N  N  N *  N  .  N  N  N  N N  
SH/ZH .  N  ***  N  N  .  *  .  N N  *  N  N  .  N  N  .  
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3. DISCUSSION 

 

3.1 Overall clear speech modifications 

 The results of this study indicate that systematic modifications occur during 

the production of clear fricatives. Across speakers and fricatives, frication duration 

significantly increased, and spectral measures including peak location, mean and 

skewness of the energy distribution, and F2 frequency showed energy concentration 

in higher frequency regions, in clear speech. These results are in agreement with 

previous studies (e.g. Chen, 1980; Picheny et al., 1986). Steeper spectral slopes also 

resulted in more defined peakedness and more positive before-peak slopes indicated 

greater noise source strength, consistent with reports on fricatives produced at 

elevated voice levels (Jesus and Shadle, 2002). Neighboring vowel F0 was variable 

but also tended higher in clear speech. Lower amplitude measures compared to 

neighboring vowels were somewhat unexpected considering numerous reports of 

increased CVR in clear speech (e.g. Bradlow et al., 2003; Chen, 1980), but not 

completely surprising. Previous studies have not concentrated on fricatives, and in 

general have shown that changes in CVR are stimulus-, context-, and talker-

dependent; decreases have even been seen for some fricatives (mostly non-sibilants) 

for some speakers (Picheny et al. 1986; Krause and Braida, 2004). The present results 

are probably best explained in terms of articulatory effort. Since the volume velocity 

required to increase the level of fricative sounds—particularly non-sibilants—is much 

greater than that required to increase vowel intensity by a similar amount, it is not 
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surprising that, for a similar increase in effort across a word (or even slightly more 

effort on a fricative), intensity would increase more for vowels than for fricatives 

(especially non-sibilants). 

 

3.2 Inventory-level contrastive patterns 

 Style × Place and Style × Voicing interactions for several measures were 

consistent with efforts to maintain contrasts within the fricative inventory. Inherently 

longer voiceless fricatives increased more in duration in clear speech than voiced 

fricatives, effectively increasing the distance between the two classes of sounds in 

terms of duration. Enhanced voicing contrasts were also seen: increased M2 values in 

voiced fricatives and decreased values in voiceless, a larger decrease in intensity 

below 500 Hz for voiceless fricatives, an increase in HNR for voiced fricatives and 

decrease for voiceless, and an increase in f0 only for voiceless fricatives.  

 Place of articulation contrasts were also enhanced in clear speech. For 

example, palato-alveolars are defined by energy concentration at low frequencies; 

FFT peaks and M1 for palato-alveolars increased much less or decreased in clear 

speech, and skewness increased or did not decrease as much as for other fricatives. 

Differences between sibilants and non-sibilants were also emphasized in clear speech. 

Non-sibilants with inherently more diffuse spectra increased in M2 while sibilants 

decreased in M2 in clear speech. Non-sibilants also decreased in kurtosis whereas 

voiceless sibilants increased in clear speech. Acoustic distance between sibilants and 

non-sibilants also increased in terms of amplitude; a significant decrease in 
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normalized RMS amplitude in clear speech was seen only from non-sibilant fricatives. 

F2 increased most for palato-alveolars (with inherently higher F2 than alveolars), and 

dentals (with inherently higher F2 than labio-dentals); in fact, F2 was the only 

measure in which labio-dentals and dentals significantly differed in conversational 

speech, so this difference was important in contributing to the distinction. Distance 

between alveolar fricatives and palato-alveolars was also larger in terms of relative 

amplitude in clear speech; palato-alveolars increased and alveolars decreased. Thus, 

while it cannot be shown that changes were a direct result of knowledge of the 

fricative inventory and its critical contrasts, and while the actual effect of these 

modifications on the effectiveness of the contrasts must be evaluated through 

perceptual study, the pattern of results seen was consistent with the notion that clear 

speech acts to maximize contrast within a language (e.g. Bradlow et al., 2003; Chen, 

1980; Krause and Braida, 2004; Ohala, 1994; Picheny et al., 1986; Smiljanić and 

Bradlow, 2005). 

 

3.3 Local contrastive effects 

 Effects of Misapprehension and Misapprehension × Fricative interactions for 

several measures indicated that speakers were influenced by the online feedback 

provided by the interactive elicitation method. Moreover, comparison of acoustic 

distances between clear fricative pairs across measures and misapprehension patterns 

revealed that speakers tended to repeat sounds such that they differed maximally from 

the sounds for which they were initially mistaken. For example, after /ʃ/ was 
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mistaken for /s/ it was repeated on average with a lower mean frequency and peak 

location; when it was mistaken for /ʒ/, however, it was repeated with a higher mean 

frequency and peak location, effectively enhancing the use of this dimension in 

signaling place of articulation and voicing, respectively. It should be noted that many 

of these effects were small in magnitude compared to the general and fricative-level 

clear speech modifications on which they were superimposed (see sections in 2.2 and 

table 2-1). They are important, however, in demonstrating the range of levels at which 

talkers are sensitive to the communicative demands of a speaking situation, and are 

consistent with the notion that talkers are able to adjust the details of productions 

based on relatively local, fine-grained information. 

 

 

3.4 Discriminant analysis 

 Disriminant analyses showed that clearly produced fricatives resulted in 

higher classification accuracy in terms of both place of articulation and voicing 

distinctions. 10 out of 14 acoustic measures showed higher scores in clear speech for 

place distinctions, including all of those generally considered to contribute primarily 

to place identification (e.g. peak location, spectral moments, F2, slope before the 

peak). Likewise, 9 of 14 measures increased in clear speech for the voicing 

distinction, primarily those considered to contribute to voicing (e.g. duration, 

intensity below 500 Hz, HNR, f0). Again, this indicates that, on average, clear speech 

resulted in a more distinct, better separated inventory of fricative categories 

 55



(Hypothesis 2). Moreover, within the clear speech data set, minimal pair classification 

was better for every pair except two, i.e., /f/-/s/ and /δ/-/z/, in the contrastive context 

than in other contexts, indicating again that talkers were sensitive to local 

communicative demands. 

 

3.5 Talker Effects 

           Style × Talker effects for most measures indicate that talkers varied 

significantly in the magnitude and sometimes direction of acoustic modifications in 

clear speech. For example, some speakers lengthened clear fricatives 4.5 – 5 times 

relative to conversational productions, while the smallest increase found was about 

1.7 times. For relative amplitude, some speakers decreased precipitously in clear 

speech, while others increased substantially. Mean frequency (M1), F2, and slopes 

also showed high talker variance across styles. 

 

 

 

3.6 Conclusions 

 This study demonstrates that there are systematic acoustic-phonetic 

modifications in the production of clear fricatives. Some overall clear speech effects 

were straightforwardly predictable based on previous findings (e.g. longer duration, 

energy at higher frequencies), and some were more surprising (esp. lower relative 

amplitude). Across a variety of measures, the acoustic distances between minimally 
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contrasting sounds was enlarged in clear speech, indicating that talkers attempt to 

maintain contrast between category distributions across the inventory of English 

fricatives. In addition, talkers were sensitive to local listener feedback, adjusting 

repeated productions to be more unlike sounds that they had been misapprehended for. 

Individual talkers varied widely in the magnitude and sometimes direction of these 

changes; these differences were not related to talker gender. Questions left to future 

research include (1) whether  ‘repeated’ clear fricatives are actually more, (2) whether 

differences in perception can be attributed to different acoustic strategies employed 

by talkers, and (3) how different listener populations including listeners with hearing 

loss, cochlear implant users, and nonnative listeners, perceive clear fricatives. 
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Chapter 3 

Perception of clear fricatives by normal-hearing and simulated hearing-

impaired listeners 

 

1. INTRODUCTION 

Previous research on consonant recognition and confusion indicates that 

fricative consonants, especially non-sibilants, present considerable identification 

difficulty for hearing-impaired listeners and for normal listeners under adverse 

conditions (Boothroyd, 1984; Dubno and Levitte, 1981; Dubno et al., 1982; Miller 

and Nicely, 1955; Owens, 1978; Owens et al., 1972; Sher and Owens, 1974; Singh 

and Black, 1966; Soli and Arabie, 1979; Wang and Bilger, 1973). This study was 

designed to measure whether, and how, speakers may be able to alleviate this 

difficulty by deliberately producing fricatives more clearly.  

 

1.1. Clear speech intelligibility advantage 

Lindblom (1990) maintains that speakers can adapt the phonetic details of 

their speech in response to on-line social and communicative demands of a speech 

situation, adopting an intelligibility-enhancing speaking style when they anticipate or 

sense perceptual difficulty or comprehension failure on the part of a listener (due to, 

e.g., background noise, reverberation, hearing impairment, lack of linguistic/world 

knowledge). “Clear speech” has been elicited in laboratory settings (e.g., Bradlow 

and Bent, 2002; Bradlow et al., 2003; Ferguson and Kewley-Port, 2002; Gagné et al., 
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1994, 1995, 2002; Helfer, 1997, 1998; Iverson and Bradlow, 2002; Krause and Braida, 

2002; Liu et al., 2004; Payton et al., 1994; Picheny et al., 1985; Schum, 1996; 

Uchanski et al., 1996), and the intelligibility advantage seen for clear speech with 

sentence stimuli relative to “conversational” speech has ranged from 7 to 38 

percentage points. Clearly spoken sentences have been shown to benefit young 

normal-hearing listeners in noise and/or reverberation (Bradlow and Bent, 2002; 

Gagné et al., 1995; Krause and Braida, 2002; Payton et al., 1994; Uchanski et al., 

1996) and with simulated hearing loss or cochlear implants (Iverson and Bradlow, 

2002; Liu et al., 2004), hearing-impaired listeners in quiet (Picheny et al., 1985; 

Uchanski et al., 1996) and in noise or reverberation (Payton et al., 1994; Schum, 

1996), elderly listeners with or without hearing loss (Helfer, 1998; Schum, 1996), 

cochlear-implant users (Iverson and Bradlow, 2002; Liu et al., 2004), children with or 

without learning disabilities (Bradlow et al., 2003) and (to a lesser extent) nonnative 

listeners (Bradlow and Bent, 2002). It has been suggested that clear speech 

intellibility benefits are roughly independent of presentation level, frequency-gain 

characteristics, and type of degradation, and may increase with increasingly adverse 

conditions (Bradlow and Bent, 2002; Iverson and Bradlow, 2002; Payton et al.,1994). 

 Recent results from Ferguson and Kewley-Port (2002) call into question the 

robustness of the “clear speech effect” and suggest that hyperarticulation strategies 

may interact in more complicated ways with specific types of signal degradation. 

While Ferguson and Kewley-Port saw intelligibility benefits for clearly produced 

vowels for young, normal-hearing listeners, they actually observed negative clear-
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speech intelligibility benefits (i.e., better recognition of conversational tokens) in 

elderly hearing-impaired listeners for the productions of one male talker. This pattern 

was mostly due to front vowels, for F2 frequency was a primary cue for the elderly 

listeners. A hallmark of clear speech is a greater concentration of energy in higher 

frequencies, in terms of both overall spectral distributions and individual formant 

frequencies (e.g. Krause and Braida, 2004; Picheny et al., 1986); in this case, since 

the average F2 values for front vowels fell in a frequency region where these listeners 

had sloping hearing loss (above 2000 Hz), clear vowels’ higher F2 resonances, on 

average, fell in regions of greater impairment than those of conversational vowels. 

It is of course unclear whether the patterns observed for this talker are unique 

to him or whether they are typical of the production, and perception by hearing-

impaired or older listeners, of clear front vowels. It is also unclear whether the 

absence of a clear speech advantage for elderly hearing-impaired listeners would hold 

for other sounds by even this same talker, since his sentence stimuli (and back 

vowels) did show a clear speech advantage. The present study was designed to 

determine whether clear speech advantages occur for another class of sounds with a 

preponderance of high-frequency energy (fricatives) over a wide range of talkers and 

for both normal young listeners and listeners with simulated hearing loss. 

 

1.2 Talker-related acoustic correlates of clear speech intelligibility 

 A secondary goal of this study was to determine which aspects of clear 

fricative production influence intelligibility. Previous investigations of the 
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intelligibility of clear and conversational speech that have included more than a single 

talker have revealed interactions between talker and speaking style; that is, there were 

significant differences in the magnitude of the clear speech effect across talkers (e.g. 

Bradlow et al., 2003; Chen, 1980; Ferguson, 2002, 2004; Gagné et al., 1994, 1995; 

Schum, 1996). For example, the intelligibility benefit for sentences produced by the 

female talker in Bradlow et al. (2003) was significantly greater than for sentences 

produced by the male talker. Consonants and vowels produced by two speakers in 

Chen’s (1980) study showed similar clear speech advantages, while the intelligibility 

of a third speaker’s productions was about the same in both styles. Similar variability 

was seen in several multi-talker studies by Gagné et al. (1994, 1995, 2002), using 

sentence, CV, and VCV stimuli; in one case, clear-speech benefits ranged from -17% 

to 39%.  

 A few studies have attempted to identify talker-specific acoustic-phonetic 

parameters that may be responsible for the enhanced speech perception, relating 

intelligibility differences to acoustic differences in clear and conversational speech. 

The female talker in Bradlow et al. (2003), who showed the greater intelligibility 

advantage for clear speech, substantially decreased her speaking rate with increased 

frequency and duration of pauses. This pattern led the investigators to infer that 

modifications to the temporal characteristics of the signal contributed most to 

intelligibility enhancement, although it is not clear whether the pattern would hold for 

more than two speakers. Ferguson (2002) attempted to relate intelligibility differences 

in clear speech to acoustic-phonetic differences on a larger scale. Ferguson compared 
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ten vowel measurements (five steady-state metrics, four dynamic metrics, and 

duration) between the six speakers (of a total of 41) showing the largest clear-speech 

benefit in perception by normal-hearing listeners, and the six showing the smallest 

benefit, to determine which acoustic modifications contributed most to intelligibility 

enhancement. The amount of increased vowel duration and formant movement were 

similar for both groups while the “big benefit” talkers showed considerably greater 

increases in front vowel F2, F1 range, and the overall size of the vowel space. This 

suggests that increasing vowel duration and making vowels more dynamic were less 

important to improved vowel intelligibility, but that raised F2 for front vowels, 

expanded overall vowel space and F1 range led to effective enhancement.  

While the primary goal of this study was to determine the overall effects of 

clear speech on the intelligibility of fricative contrasts in different conditions, an 

analysis along the lines of Ferguson’s (2002) study was also employed. Productions 

from twenty talkers were used, for which 59 spectral, temporal, and amplitudinal 

measurements were previously reported (Maniwa et al., submitted). Correlation 

analysis of acoustic and intelligibility differences across talkers was performed to 

assess the contributions of acoustic modifications to intelligibility. 

 

1.3 Perception of English fricative sounds 

 Acoustic components that have been reported by previous studies to affect 

perception of English fricative place of articulation for listeners with normal hearing 

include  frication duration (Hughes and Halle, 1956; Hedrick, 1997; Hedrick and 

 62



Carney, 1997; Hedrick and Younger, 2003; Jongman, 1989; Whalen, 1991), frication 

spectrum (Heinz and Stevens, 1961; Harris, 1958; Hedrick and Ohde, 1993; Hughes 

and Halle, 1956; Nittrouer, 1992; Nittrouer and Miller, 1997 a and b; Nittrouer, 2002; 

Zeng and Turner, 1990), and overall frication amplitude normalized to the 

neighboring vowel (Guerlekian, 1981; Heintz and Stevens, 1961; McCasland, 1979 a 

and b). Properties of or in combination with neighboring vowels that have been 

thought to influence perception of place of articulation include formant transitions 

(Harris, 1958; Hedrick, 1997; Hedrick and Carney, 1997; Hedrick and Younger, 

2003; Heintz and Stevens, 1961; McCasland, 1978; LaRiviere et al., 1975; Mann and 

Repp, 1980; Nittrouer, 1992, 2002; Zeng and Turner, 1990; Whalen, 1981), 

frequency-specific relative amplitude (Hedrick, 1997; Hedrick and Carney, 1997; 

Hedrick and Ohde, 1993; Hedrick and Younger, 2003; Stevens, 1985), and vowel 

quality (Harris, 1958; Mann and Repp, 1980; Mann and Soli, 1991; Yeni-Komshian 

and Soli, 1981, Whalen, 1981). Briefly, experiments using natural (Harris, 1958; 

Zeng and Turner, 1990), synthetic (Heintz and Stevens, 1961; Zeng and Turner, 

1990), and hybrid (Nittrouer, 1992, 2002; Nittrouer and Miller, 1997 a and b) speech 

suggest that spectral cues are important for distinguishing sibilants, and seem to 

override transition cues for these sounds. On the other hand, formant transition cues 

may help to distinguish nonsibilants (Harris, 1958; Heintz and Stevens, 1961; 

Nittrouer, 2002) and take on more weight when spectral cues are ambiguous (Hedrick, 

1997; Hedrick and Carney, 1997; Hedrick and Ohde, 1993; Hedrick and Younger, 

2003; Whalen, 1981). Overall noise duration and amplitude seem to have less 
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perceptual significance (Behrens and Blumstein, 1988; Hedrick, 1997; Hedrick and 

Carney, 1997; Hedrick and Ohde, 1993; Hughes and Halle, 1956; Jongman, 1989; cf. 

Guerlekiean, 1981; McCasland, 1979a and b); on the other hand, manipulation of 

frication amplitude relative to vowel amplitude in a particular frequency region does 

influence listeners’ perception of place of articulation for /s/-/ʃ/ and /s/-/θ/ contrasts 

(Hedrick, 1997; Hedrick and Carney, 1997; Hedrick and Ohde, 1993; Hedrick and 

Younger, 2002; Stevens, 1985).   

 Somewhat fewer studies have investigated which acoustic components serve 

to distinguish voiced and voiceless fricatives, and most of them have concentrated on 

duration of noise in syllable-initial fricatives (Cole and Cooper, 1975) and preceding 

vowel duration for syllable-final fricatives (e.g. Denes, 1955; Raphael, 1972; Soli, 

1982) as a cue. Stevens et al. (1992) showed that noise duration, the amplitude and 

duration of glottal vibration at the edge of the fricative, and the extent of F1 

transitions appear to interact in determining listener judgments of voicing for 

intervocalic fricatives.  

 

1.4 Perceptual cue weighting and fricative perception by normal and hearing 

impaired listeners 

 It seems that listeners do not process acoustic cues independently, but 

integrate information obtained from several dimensions in identifying fricatives. 

Furthermore, the perceptual weights assigned to acoustic properties may differ 

depending on contexts and listeners (Best and Strange, 1992; Christiansen and Humes, 
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1996, 1997; Crowther and Mann, 1992, 1994; Fledge, et al., 1996; Hazan and Rosen, 

1991; Nittrouer, 1992; Nittrouer and Miller, 1997a and b). Adult listeners with 

normal-hearing seem to make more use of spectral characteristics for place of 

articulation information (Heinz and Stevens, 1961; Harris, 1958; Hedrick and Ohde, 

1993; Hughes and Halle, 1956; Nittrouer, 1992; Nittrouer and Miller, 1997 a and b; 

Nittrouer, 2002; Zeng and Turner, 1990), and temporal information for the voicing 

distinction (Cole and Cooper, 1975; Raphael, 1972; Soli, 1982). Hearing-impaired 

listeners may have difficulty integrating amplitude and spectral cues, and may 

generally place less weight on formant transitions than do listeners with normal 

hearing for labeling fricative place of articulation perception, even when formant 

transition information should be audible to them (Hedrick, 1997; Hedrick and 

Younger, 2003; Zeng and Turner, 1990). In addition, duration may play a more 

important role for hearing-impaired listeners; they may need a longer time period to 

process acoustic information. These issues are of course in addition to, and may apply 

differentially depending on, the effects of frequency-dependent hearing level. In 

particular, listeners with sloping hearing loss commonly have elevated thresholds, and 

reduced dynamic range, in regions relevant to fricative perception (e.g., Dubno et al., 

1982; Owens et al., 1972; Sher and Owens, 1974). To further address these issues, 

this study examined the perception of clear and conversational fricatives both by 

normal-hearing listeners (Experiment 2) and listeners with simulated hearing 

impairment (Experiment 3). Of particular interest was whether effects of speaking 
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style, and identifiable acoustic correlates, would differ depending on listener 

population. 

 

1.5 Hypotheses 

 Two experiments were performed to address three questions. First, are clearly 

produced fricatives more intelligible than conversational fricatives for listeners with 

normal hearing in degraded conditions? Based on previous findings, we hypothesized 

that they would, although the effects might vary depending on fricatives (e.g. 

Ferguson and Kewley-Port, 2002). Second, what acoustic modifications are related to 

intelligibility?  It was hypothesized that not all strategies employed by talkers serve to 

improve fricative identification. Third, do clear-speech intelligibility differences 

differ based on listener population, in particular for listeners with sloping hearing 

losses? We expected that hearing loss might interact with clear-speech strategies, 

perhaps resulting in reduced benefit where high-frequency information was critical.   

 

2. Experiment 2: Effects of clear speech for fricative recognition by listeners 
with normal hearing 
 
 
2.1 Method 

 

2.1.1 Participants 

 Fourteen normal-hearing listeners (8 F, 6 M) aged between 19 and 32 were 

recruited from the University of California, Berkeley community. Participants were 
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native speakers of American English, without noticeable regional dialects. 

Participants reported normal hearing and no history of speech or language disorders. 

Listeners were paid for their participation in the experiment.  

 

2.1,2 Materials 

 Fricative intelligibility in clear and conversational speech was assessed using 

a database of 8800 VCV ([a]-fricative-[a]) stimuli produced by 20 speakers (10 F, 10 

M) as part of a previous acoustic study of clearly produced fricatives (Maniwa et al., 

submitted). Briefly, conversational and clear tokens were elicited using an interactive 

program that ostensibly attempted to identify the sequence of fricatives produced by a 

speaker. The program made frequent, systematic errors involving voicing and place 

alternations, after which the speaker repeated a sound more clearly, as if trying to 

disambiguate the production for an elderly or hearing-impaired listener. To eliminate 

amplitude differences among talkers and between the two speaking styles, all stimuli 

were normalized to the same long-term (word-level) RMS amplitude and presented at 

60dB SPL using MATLAB (The Math Works, Inc., 2000). Test stimuli were 

delivered in a background of 12-talker (6 F, 6 M) babble recorded at a sampling rate 

of 44.1 kHz. A total of 60 s of babble was created for the purposes of the experiment; 

for each stimulus, a segment of babble was selected from a random location within 

this 60-s sample. The duration of this segment exceeded that of the test item by a total 

of 600 ms, with the test stimulus centered temporally in the babble. There were 5-ms 

and 100-ms linear on-off ramps for the target stimulus and the noise, respectively.  
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 The goal of each test was to determine the signal-to-noise ratio (SNR) 

threshold at which a distinction can be made with 75% accuracy. An adaptive 

procedure was used to estimate this threshold and choose SNR values for the trials.  

 

2.1.3 Procedures and apparatus 

 The perception test employed a two-alternative forced-choice identification 

task. The 8 fricatives were divided into 8 minimal pairs, depending on place of 

articulation and voicing: /f/-/θ/, /v/-/δ/, /s/-/ʃ/, /z/-/ʒ/, /f/-/v/, /θ/-/δ/, /s/-/z/, and /ʃ/-/ʒ/. 

Each pair was tested separately for clear and conversational styles, for a total of 16 

sub-tests. Subjects listened to the stimuli presented via Koss headphones in sound-

attenuated rooms, seated in front of a computer monitor and mouse. On each trial, a 

test syllable (VCV) and a segment of babble noise were selected at random from the 

appropriate production condition and the pre-recorded babble sample. The two 

waveforms were scaled based on the selected SNR and the constant target stimulus 

level, combined additively, and presented binaurally to the subjects, who were 

prompted to identify the fricative of the VCV stimulus from a minimal pair by using 

the mouse to click one of 2 letter combinations on the computer screen. Two response 

alternatives were displayed on the computer and written: “ff”, “th”, “ss”, “sh”, “vv”, 

“dh”, “zz”, and “zh”.  

  The experiment consisted of a 1-hour session, involving 16 tests (8 place or 

voicing pair × 2 styles). Test order was randomized across subjects. Each test 

included 80 stimuli, picked randomly from the productions of the 20 speakers. 
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Tokens were selected randomly across participants, so that individual productions 

would, on average, occur with equal frequency. First, listeners were oriented to the 

spelling of response alternatives on the screen with the written instruction. Each 

participant was familiarized with the test procedure prior to beginning the 

experimental conditions. For familiarization, a 10-trial block of fricative tokens at a 

high SNR (+10dB) was run with feedback before each test. Within experimental 

blocks, two 40-trial adaptive tracks were initiated at +3dB and -3dB and interleaved 

at random over the 80-trial block. SNR values for each track were selected using a 

Bayesian adaptive algorithm (ZEST; e.g., King-Smith et al., 1994). The final 

threshold estimate was simply taken as the average (in dB) of the SNR values for 

each track on the final (40th) trial. While this approach may have resulted in less 

precise measurements of thresholds that were further from the initial guesses (since 

termination was not based on confidence criteria) it was considered more important 

that participants were exposed to equal numbers of stimuli from each contrast pair. 

+/-20dB were chosen as absolute maximum and minimum allowable SNR values. 

 

2.1.4 Data analysis 

 Clear speech intelligibility effect was tested using a repeated measures 

analysis of variance (ANOVA) with two within-subject factors (Style; 2 levels, Pair; 

8 levels) and threshold (dB SNR) as the dependent variable. In order to assess the 

effect of pair type more thoroughly, another repeated measures ANOVA was 

calculated with three within-subject factors. One of the factors was Style. The second 
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factor was labeled depending on whether the pair consisted of sibilant fricatives or 

non-sibilant fricatives (e.g. /s/-/ʃ/ and /f/-/θ/, respectively). The third factor was 

labeled depending on whether the pair involved a place or voicing distinction. 

Pairwise comparisons for significant within-subject factors were done using 

Bonferroni corrected 95% confidence intervals. 

 In addition, as a first step in determining which acoustic modifications were 

related to intelligibility, correlation analyses were carried out across the 20 speakers 

included in the experiment, relating differences in their production strategies to 

differences in their clear-speech benefit. First, for each speaker, a single clear-minus-

conversational difference value, averaged over all fricatives and productions, was 

calculated for each of the 59 acoustic measures reported in the Maniwa et al. 

(submitted) study. In the acoustic study, 14 parameters were measured: FFT spectral 

peak location (1), the first four spectral moments moments (2-5), F2 onset transitions 

(6), spectral slopes below (7) and above (8) typical peak locations, pitch of adjacent 

vowels (9), overall RMS amplitude (10), relative amplitude i.e., a change in 

amplitude of the frication relative to the vowel in F3 region for sibilants and F5 

region for non-sibilants (11), harmonic-to-noise ratio (HNR; 12) energy below 500 

Hz (13), and fricative duration (14). For (1)-(5), (7)-(8), (10) and (13), analyses 

considered 40-ms Hamming windowed segments at five locations, centered over the 

fricative onset, 25, 50, and 75% points, and offset (window (W) 1-5). For (6), 

acoustic values were derived at fricative onset and offset and each vowel midpoint 

from an analysis (W1-4). For (9), f0 was averaged across the vowels preceding and 
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following the target. For (11), (12) and (14), the values were obtained over the entire 

fricative. In the present correlation analyses, LPC peaks (at the same 5 locations) 

were included as well, and f0 was considered separately preceding and following the 

fricative. Thus, the total number of acoustic values in the correlation analyses was 59.  

 Next, a similar overall clear-minus-conversational intelligibility difference had 

to be estimated for each speaker; this was of course less straightforward given the 

adaptive procedure used in the experiment. First, we verified that over the 32 total 

adaptive tracks that each listener in Experiment 1 heard, tokens from different 

speakers occurred, on average, with equal frequency and at equal signal-to-noise 

ratios. Then we simply took the clear-minus-conversational difference in accuracy (% 

correct), averaged across listeners, sub-tests, and SNR values, for each speaker as that 

speaker’s approximate clear speech intelligibility advantage. While listener, sub-test, 

and SNR certainly all contributed to mean accuracy, we assumed that these 

contributions would essentially amount to random variability across speakers, making 

our measure of intelligibility advantage more conservative, and therefore no 

corrections were made based on these variables.  

 It is important to note here that this comparison was limited in the types of 

acoustic-perceptual relationships it could detect. As reported by Maniwa et al. 

(submitted), clear fricatives were characterized not only by overall differences in the 

59 acoustic measures depending on speaking style, but by numerous and complex 

Style × Fricative interactions. Since correlation analysis capable of capturing these 

higher-order acoustic differences was not feasible given the constraints of the 
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perception experiments described here (individual speakers were not represented well 

enough within subtests to ensure equalized average SNR), we did not consider these 

patterns in the present study. 

 

2.2 Results and discussion 
 
 
2.2.1 Fricative intelligibility for listeners with normal hearing 
 
 Figure 3-1 shows mean speech-to-noise ratio (SNR, dB) thresholds as a 

function of fricative pair and speaking style. The Style × Pair ANOVA showed an 

effect of Style [F(1,13)=149.551, p<.001], with lower thresholds for clear speech than 

for conversational speech. The Pair effect was also significant [F(7,91)=113.830, 

p<.001]; across speaking styles, thresholds were lowest for the voiceless sibilant 

place of articulation contrast /s/-/ʃ/, followed by /s/-/z/ and /ʃ/-/ʒ/. Non-sibilant place 

of articulation pairs /f/-/θ/ and /v/-/δ/ were the most difficult, in accordance with 

previous studies (e.g. Jongman, et al., 2000b; Miller and Nicely, 1955; Wang and 

Bilger, 1973).. The Style × Pair interaction was marginally significant [F(7, 

91)=2.107, p=.051], probably due to pairs /v/-/δ/ and /f/-/v/. Post-hoc comparisons 

revealed that the “clear speech effect” did not reach significance for these two pairs; 

all other pairs showed significant clear speech advantages. 
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Figure 3-1: Speech-to-noise (SNR) thresholds (dB) as a function of style and fricative 
pair in Experiment 2 
 

 The Style × Sibilance × Distinction type ANOVA revealed a main effect of 

Sibilance [F(1, 27)=370.960, p<.001] with lower thresholds for sibilants than for non-

sibilants. The main effect of Distinction was also significant [F(1, 27)=103.711, 

p<.001] with lower thresholds for voicing distinctions relative to place of articulation 

distinctions. A Style × Sibilance interaction [F(1, 27)=10.331, p<.01] showed that 

while both sibilants and non-sibilants were more intelligible in clear speech, the effect 

was larger for sibilant pairs. The Style × Distinction interaction was not significant 

[F<1]; clear speech resulted in similar benefits for place and voicing distinctions.  
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2.2.2 Talker-related acoustic-phonetic correlates of clear intelligibility advantage 

 On average, individual talkers appeared in 336 (std. 18.8) clear and 336 

(20.01) conversational trials. Partly due to the adaptive procedure and the initial 

threshold guesses of +/- 3dB across styles and pairs, talkers appeared at -4.91 dB (std. 

0.28) and -2.61 dB (0.22) SNR values, and were responded to with 81.9% (std. 4.58) 

and 77.3% (5.0) accuracy in clear and conversational conditions, respectively. 

Averaged across listeners, contrasts, and SNR values, the clear-minus-conversational 

difference in accuracy (% correct) varied considerably across speakers, from -4% to 

+11% (mean 4.6%, std. 3.9%), at least partly as a result of differences in the clear 

speech strategies that these talkers employed (i.e., this difference did not correlate 

well [p=0.34] with clear-minus-conversational SNR differences). As described above, 

then, individual speakers’ previously reported average style-related differences in 

production were compared with their style-related intelligibility differences in an 

effort to relate clear speech benefits to specific acoustic modifications. Results from 

Pearson’s correlations are summarized in Table 3-1. Overall, spectral measures at 

central window locations (window (W) 2, 3 and 4) appear to be the important 

predictors for improved intelligibility. Positive significant (or marginally significant) 

correlations were obtained between intelligibility advantages and acoustic 

modifications in FFT peak location at W2 and 3, LPC peak location at W2-4 , 

Spectral moment 1 (M1) at W2-4, and slope before peak location at W1-4; negative 

correlations were found for M3 at W2 and W5, and spectral slope after peak location 

at W1. These results suggest that a shift of spectral energy to higher frequency 
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regions and greater source strength (Jesus and Shadle, 2002) in clear fricatives are 

most closely related to the overall intelligibility enhancement.  
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Table 3-1: Correlation coefficients (Pearson’s r) showing the relation between the 
clear-minus-conversational differences in acoustic measures and the clear-minus-
conversational differences in the intelligibility (percent identification correctness) for 
the overall effect (General), place-of-articulation distinction (Place), and voicing 
distinction (Voicing) in Exp.1. Significant values, p<0.001, p<0.01 and p<0.05 are 
starred as ***, **, and *, respectively. Moderate values, p<0.1 are marked as ., and 
no effect was given N. Negative correlation was marked as ξ.  
 
 

Measures General p values r values Place p values r values Voicing p values r values 
Durs N 0.19 0.3 N 0.66 0.11 N 0.29 0.25 
F2W 1 Nξ 0.29 -0.25 Nξ 0.37 -0.21 Nξ 0.63 -0.12 
F2W 2 N 0.15 0.34 * 0.04 0.45 N 0.77 0.07 
F2W 3 N 0.49 0.16 N 0.66 0.1 N 0.52 0.15 
F2W 4 N 0.31 0.24 Nξ 0.74 -0.08 N 0.14 0.34 
FFTPksW 1 N 0.3 0.24 N 0.32 0.23 N 0.62 0.12 
FFTPksW 2 * 0.02 0.53 * 0.01 0.55 N 0.37 0.21 
FFTPksW 3 * 0.04 0.47 ** 0.01 0.56 N 0.65 0.11 
FFTPksW 4 N 0.1 0.38 ** 0 0.64 Nξ 0.8 -0.06 
FFTPksW 5 Nξ 0.62 -0.12 Nξ 0.11 -0.37 N 0.49 0.16 
HNR Nξ 0.86 -0.04 Nξ 0.42 -0.19 N 0.75 0.08 
Int500W 1 N 0.95 0.01 Nξ 0.25 0.27 N 0.36 0.22 
Int500W 2 Nξ 0.17 -0.32 Nξ 0.11 -0.37 Nξ 0.77 -0.07 
Int500W 3 Nξ 0.17 -0.32 .ξ 0.07 -0.42 Nξ 0.92 -0.02 
Int500W 4 Nξ 0.13 -0.35 .ξ 0.09 -0.39 Nξ 0.72 -0.09 
Int500W 5 N 0.28 0.26 N 0.18 0.32 N 0.79 0.06 
M1W 1 N 0.17 0.32 N 0.1 0.38 N 0.67 0.1 
M1W 2 * 0.02 0.51 . 0.07 0.41 N 0.22 0.29 
M1W 3 . 0.06 0.43 . 0.09 0.39 N 0.38 0.21 
M1W 4 . 0.08 0.41 * 0.04 0.46 N 0.6 0.12 
M1W 5 N 0.46 0.17 Nξ 0.92 -0.03 N 0.3 0.24 
M2W 1 N 0.12 0.36 * 0.02 0.52 N 0.86 0.04 
M2W 2 N 0.3 0.25 N 0.28 0.26 N 0.66 0.1 
M2W 3 N 0.4 0.2 N 0.49 0.16 N 0.6 0.12 
M2W 4 N 0.55 0.14 N 0.39 0.2 N 0.93 0.02 
M2W 5 N 0.42 0.19 Nξ 0.63 -0.12 N 0.15 0.34 
M3W 1 Nξ 0.11 -0.36 **ξ 0.01 -0.56 Nξ 0.97 -0.01 
M3W 2 *ξ 0.04 -0.46 *ξ 0.01 -0.56 Nξ 0.65 -0.11 
M3W 3 Nξ 0.12 -0.36 *ξ 0.03 -0.48 Nξ 0.85 -0.04 
M3W 4 Nξ 0.23 -0.28 *ξ 0.01 -0.54 N 0.69 0.09 
M3W 5 .ξ 0.1 -0.38 Nξ 0.28 -0.26 Nξ 0.27 -0.26 
M4W 1 Nξ 0.19 -0.31 **ξ 0.01 -0.6 Nξ 0.72 -0.09 
M4W 2 Nξ 0.19 -0.31 *ξ 0.01 -0.56 Nξ 0.77 -0.07 
M4W 3 Nξ 0.32 -0.24 *ξ 0.04 -0.47 Nξ 0.7 -0.09 
M4W 4 Nξ 0.48 -0.17 *ξ 0.03 -0.49 Nξ 0.43 -0.19 
M4W 5 .ξ 0.09 -0.39 Nξ 0.24 -0.28 Nξ 0.29 -0.25 
follPitch N 0.32 0.24 ** 0 0.66 Nξ 0.33 -0.23 
prevPitch Nξ 0.52 -0.15 Nξ 0.68 -0.1 Nξ 0.58 -0.13 
RelAmps N 0.88 0.04 Nξ 0.92 -0.02 N 0.68 0.1 
RMSAmpsW 1 N 1 0 Nξ 0.14 -0.34 N 0.23 0.28 
RMSAmpsW 2 Nξ 0.61 -0.12 Nξ 0.15 -0.33 N 0.52 0.15 
RMSAmpsW 3 Nξ 0.98 -0.06 Nξ 0.29 -0.25 N 0.32 0.23 
RMSAmpsW 4 Nξ 0.83 -0.05 Nξ 0.31 -0.24 N 0.47 0.17 
RMSAmpsW 5 N 0.14 0.34 N 0.15 0.34 N 0.5 0.16 
SlpAftW 1 .ξ 0.06 -0.42 Nξ 0.62 -0.12 .ξ 0.08 -0.4 
SlpAftW 2 Nξ 0.22 -0.29 Nξ 0.12 -0.36 Nξ 0.88 -0.04 
SlpAftW 3 Nξ 0.49 -0.16 Nξ 0.15 -0.33 N 0.7 0.09 
SlpAftW 4 Nξ 0.94 -0.02 Nξ 0.31 -0.24 N 0.4 0.2 
SlpAftW 5 Nξ 0.54 -0.15 Nξ 0.22 -0.29 N 0.72 0.09 
SlpBefW 1 . 0.06 0.42 * 0.01 0.54 N 0.66 0.11 
SlpBefW 2 . 0.09 0.39 * 0.01 0.54 N 0.86 0.04 
SlpBefW 3 . 0.09 0.39 ** 0 0.62 Nξ 0.96 -0.01 
SlpBefW 4 * 0.05 0.45 ** 0 0.62 N 0.81 0.06 
SlpBefW 5 N 0.21 0.29 * 0.05 0.45 Nξ 0.98 -0.01 
LPCPeakW 1 N 0.2 0.3 N 0.14 0.35 N 0.64 0.11 
LPCPeakW 2 ** 0.01 0.57 ** 0 0.65 N 0.49 0.16 
LPCPeakW 3 * 0.03 0.49 * 0.01 0.54 N 0.52 0.15 
LPCPeakW 4 * 0.05 0.44 ** 0 0.63 N 0.92 0.03 
LPCPeakW 5 Nξ 0.93 -0.02 Nξ 0.47 -0.17 N 0.59 0.13 
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 Since perception of place and voicing distinctions probably involve different 

acoustic cues, this analysis was repeated separately for the four place distinction 

subtests and the four voicing subtests in the experiment. Comparison of these 

analyses suggested that most of the effects mentioned above were due to place of 

articulation distinctions. As shown in Table I, considering only place distinctions, 

strong positive correlations between the intelligibility advantage of clear speech and 

clear-minus-conversational difference in acoustic measures were found for FFT peaks, 

LPC peaks, and M1 at central window locations, F2 at W2, and slope before the peak 

at all window locations whereas negative correlations were seen for M3 at W1-4, M4 

at W1-4, and intensity below 500 Hz at W3 and 4. These results clearly suggest that 

shifts toward higher frequency regions, and greater source strength are likely to 

contribute to the better recognition of place of articulation for fricatives. In contrast, 

no strong correlations were obtained between any acoustic measures and 

intelligibility benefits for voicing distinctions. 

 An independent samples t-test showed no main effect of talker gender (t=-

.720, p=.490); female and male talkers did not differ in the amount of intelligibility 

improvement in clear speech relative to conversational speech (cf. Bradlow et al., 

2003). 

 

2.2.3 Discussion 

 Results show that clearly produced fricatives are more intelligible than 

casually produced fricatives for listeners with normal hearing in degraded listening 
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conditions. In accordance with previous findings (e.g. Jongman, et al., 2000b; Miller 

and Nicely, 1955; Wang and Bilger, 1973), sibilant pairs and voicing distinction pairs 

were easier to identify relative to non-sibilant and place of articulation pairs, 

respectively, regardless of speaking style. Clear speech effects were seen qualitatively 

for all minimal pairs tested, and reached significance for all pairs except /v/-/δ/ and 

/f/-/v/. 

 The 20 talkers included in the experiment varied considerably in the averaged 

clear-minus-conversational difference in the accuracy (% correct) to which they were 

responded. Correlation analyses suggested that in general, spectral peak location, 

mean frequency and spectral slope before the peak are positively correlated with 

improved intelligibility in clear speech while skewness is negatively correlated to 

intelligibility enhancement. For place of articulation distinctions, F2 and kurtosis also 

appear to influence clear speech intelligibility advantage. Overall, a shift of energy 

concentration toward higher frequency regions and greater energy source seem to 

contribute to the clear speech effect in fricatives, especially for place of articulation 

distinctions.  
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3. Experiment 3: Effects of clear speech for fricative recognition by listeners 
with simulated hearing impairment 
 
 
3.1 Simulation method 

 

3.1.1 Rationale 

 Experiment 2 results suggest that a clear speaking style can improve fricative 

intelligibility for listeners with normal hearing in background noise. It was also found 

that intelligibility advantages for place-of-articulation distinctions seemed to relate to 

spectral changes in clear speech; higher peak locations, higher mean frequency, lower 

skewness, and steeper spectral slopes before peak locations contributed to the higher 

correct identification scores in clear speech relative to conversational speech. Given 

these apparent relationships, it is important to ask whether the clear fricative 

advantages would hold for impaired listeners, particularly those who have poor 

hearing at higher frequencies. Listeners with sloping hearing losses have considerable 

difficulty recognizing sounds that have important acoustic information in higher 

frequency regions, such as fricatives (Dubno et al., 1982; Owens et al., 1972; Sher 

and Owens, 1974). These difficulties may be at least partially derived from 

suprathreshold abnormalities in the perceptual analysis of the speech signal, including 

reduced dynamic range (abnormal loudness recruitment), reduced frequency 

selectivity, and impaired temporal resolution. It has proven difficult to determine 

which changes in auditory abilities in individuals with hearing impairment are most 

important and relevant for altered perception of speech, since the elevation of 
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absolute thresholds is usually intercorrelated with a variety of suprathreshold changes 

and thus the effects of these are difficult to separate from each other. A common 

strategy to control the confounding factors is to process sounds so as to simulate the 

effects of one specific aspect of hearing impairment, and to allow listeners with 

normal hearing to experience selected perceptual effects of hearing impairments. In 

this experiment, we were particularly interested in the influence of threshold elevation 

on recognition of fricative sounds, since important fricative information occurs at 

frequencies where many impaired listeners have elevated thresholds, and since 

Experiment 2 suggests that this may be increasingly so for clear fricatives. It is 

possible that listeners with sloping hearing loss cannot make use of the enhanced 

acoustic-phonetic information since it is less audible to them. To assess how this 

specific aspect of hearing impairment would affect the perception of clear fricative 

sounds, we repeated the perception experiment using stimuli processed to simulate 

sloping, recruiting hearing loss. 

 

3.1.2 Implementation 
 
 Sloping, recruiting hearing loss was simulated in a manner similar to that 

described by Moore and Glasberg (1993), with some modifications due to a higher 

sampling rate (44.1 kHz) and the fact that all processing was done on-line during the 

experiment. Following the combination of signal and noise components (described 

below), stimuli were separated into 24 ERB-spaced bands, from 100 Hz to 22.05 kHz, 

using 4th order gammatone filters (Slaney, 1998). For each band, a smoothed 
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envelope (E) was derived by low-pass filtering the full-wave rectified waveform at 

100 Hz (4th order Butterworth filter, implemented in both forward and reverse 

directions to minimize phase distortions). The temporal fine structure for the band 

was then extracted by dividing the original waveform by this envelope. Loss 

simulation was accomplished by raising the envelope to a power related to the slope 

of the loudness growth function: 

Ep = EN 

where N is frequency-dependent. Following Moore and Glasberg (1993), N was a 

constant 1.5 at bands up to 900 Hz, increased linearly to 3.0 at 4500 Hz, and remained 

at this value for all higher bands. Finally, the modified stimulus was obtained by 

multiplying Ep by the fine structure and summing the resulting band-limited 

waveforms. All processing was performed in Matlab. Processing on average took ~2s 

using the Intel® Pentium 4 processor used in testing; this resulted in an inter-trial 

interval that a few participants found slightly annoying but generally not distracting. 

 

3.2 Experiment method 
 
 
3.2.1 Participants 
 
 Fourteen normal-hearing listeners (9F, 5M) aged between 19 and 33 were 

recruited from the University of California, Berkeley community. Participants were 

native speakers of American English, without noticeable regional dialects. 

Participants reported normal hearing and no history of speech or language disorders. 

Listeners were paid for their participation in the experiment. 
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3.2.2 Materials 

 Test stimuli were identical to those of Experiment 2 except that (1) speech/ 

babble stimuli were processed as described above, and that (2) only the four place-of-

articulation pairs /f/-/θ/, /v/-/δ/, /s/-/ʃ/, and /z/-/ʒ/ were tested. The same twelve-talker 

babble masker used in Experiment 2 was added to the speech stimuli prior to the 

simulation processing.  

 

3.2.3 Procedures and apparatus 

 The procedure, task, presentation method, and adaptive procedure were 

identical to those of Experiment 2, except that since only four pairs were tested there 

was no mandatory break after the 8th sub-test. Testing took about 50 minutes. 

 

3.2.4 Data analysis 

 As in Experiment 2, a repeated measure analysis of variance (ANOVA) with 

two within-subject factors (Style; 2 levels, Pair; 4 levels) and thresholds (dB SNR) as 

dependent variable was again performed. Pairwise comparisons for significant within-

subject factors were done using Bonferroni corrected 95% confidence intervals.  

 

3.3 Results and discussion 
 
 
3.3.1 Fricative intelligibility for listeners with simulated hearing loss 

 Figure 3-2 shows average SNR thresholds as a function of pair type for clear 

and conversational fricative identification. For all place pairs except /f/-/θ/, clear 
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speech showed lower SNR thresholds relative to conversational speech. The Style × 

Pair ANOVA showed an effect of Style [F(1,13)=13.892, p<.01] with 2.52 dB lower 

thresholds for clear speech . There was also a Pair effect [F(3,39)=149.551, p<.001], 

mostly derived from lower thresholds for sibilant pairs relative to non-sibilant pairs. 

The Style × Pair interaction was also significant [F(3,39)=5.989, p<.01]. Pairwise 

comparisons showed significant differences in thresholds as a function of style for /s/-

/ʃ/ and /z/-/ʒ/ pairs, but not for non-sibilant pairs. In fact, for /f/-/θ/, clear speech 

resulted in higher (n.s.) thresholds compared to conversational speech. These results 

differed from Experiment 2 results in that (1) thresholds were on average much 

higher in simulated loss conditions, (2) there was an anti-clear speech effect for /f/-/θ/, 

while in Experiment 2 thresholds significantly decreased in clear speech for this pair, 

and (3) the /z/-/ʒ/ pair showed the biggest clear speech effect, followed by /s/-/ʃ/, /v/-

/δ/,and /f/-/θ/, while in Experiment 2 the order was /z/-/ʒ/, /f/-/θ/, /s/-/ʃ/ and /v/-/δ/. 

On the other hand, the relative difficulty of fricative pairs was similar to Exp. 2; 

across speaking styles, the pair /s/-/ʃ/ resulted in the lowest thresholds, followed by 

/z/-/ʒ/, /v/-/δ/, and /f/-/θ/.  
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Figure 3-2: Speech-to-noise (SNR) thresholds (dB) as a function of style and fricative 
pair in Experiment 3 
 

 To determine how the loss simulation influenced the perception of fricatives 

in interaction with speaking style and contrastive pair, a three-way mixed model 

repeated measures of ANOVA was performed with two within-subject factors (Style, 

Pair) and listener group as a between-subject factor (2 levels; Exp. 2 and Exp. 3). 

Since the 4 voicing distinction pairs were not included in Experiment 3, only the 4 

place-of-articulation distinction pairs from Experiment 2 were considered. This 

analysis showed a main effect of Group [F(1,26)=26.392, p<.001] with considerably 

(4.47 dB) higher thresholds for listeners with simulated hearing . A main effect of 

Style [F(1,26)=48.958, p<.001] indicated, again, an overall clear speech advantage 
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across listener groups. There was no Style × Group interaction, suggesting that, on 

average, listeners with normal hearing and listeners with simulated impairment 

significantly benefited similarly from clear speech. The main effect of Pair was 

significant [F(3,78)=212.756, p<.001] but not the Pair × Group interaction, reflecting 

the common difficulty hierarchy mentioned above. Again, pairwise comparisons 

indicated that all 4 pairs were significantly different from each other, and that the 

effect was most notably derived from differences between sibilant and non-sibilant 

pairs. A Style × Pair interaction [F(3,78)=212.756, p<.01] indicated that, across 

listener groups, thresholds significantly decreased in clear speech for all fricative 

pairs except for /f/-/θ/. The Style × Pair × Group interaction was significant 

[F(3,78)=2.9000, p<.05]; post-hoc tests suggested that the interaction was related to 

an increase in the magnitude of the clear effect for sibilants, and a decrease for non-

sibilants, in the simulated impairment condition. This finding is illustrated in figure 3-

3, which shows the clear speech effect as a function of pair and listening condition. 
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Figure 3-3: Clear speech intelligibility advantage (clear-minus-conversational 
thresholds) in dB SNR by listeners with normal hearing and listeners with simulated 
hearing impairment as a function of fricative pair 
 

3.3.2 Acoustic correlates of intelligibility benefit for listeners with simulated hearing 

impairment  

 In Experiment 3, individual talkers appeared on average in 168 (std. 12.4) 

clear and 168 (11.63) conversational trials. Again, averaged across listeners, contrasts, 

and SNR values, the clear-minus-conversational difference in accuracy (% correct) 

varied considerably across speakers, from -6% to +18% (mean 3.9%, std. 6.6%), at 

least partly as a result of differences in the clear speech strategies that these talkers 

employed. As discussed in Experiment 2, individual speakers’ previously reported 

average style-related differences in production were compared with their style-related 
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intelligibility differences in a first effort to relate clear speech benefits to specific 

acoustic modifications. 

 The results of this comparison are shown in Table 3-2. Overall, correlations 

were much less consistent than for Experiment 2; in particular, conspicuously absent 

are the positive correlations with several spectral measures indicating shifts to higher 

frequency regions that were seen for place contrasts in Exp. 2. Since the perception of 

sibilant and non-sibilant pairs seemed to be affected differentially by the impairment, 

a final set of correlation analyses compared intelligibility differences across speakers 

with acoustic differences separately for each class of sounds. While this comparison 

was considerably less well powered than the others described above, the results were 

potentially interesting and are also included in Table II. For sibilant pairs, positive 

correlations were seen between intelligibility advantages and intensity below 500 Hz 

at W5 (p<.1), M3 at W4 (p<.1), M4 at W4 (p<.05), and RMS amplitude at W5 (p<.1), 

and negative correlations for FFT peaks at W3 and 4 (p<.1), LPC peaks at W3 and 4 

(p<.05), M1 at W5 (p<.1), M2 at W4 (p<.05) and W5 (p<.1). For non-sibilant pairs, 

correlations were weaker and less straightforward, with only one significant positive 

correlate for f0 following the fricative (p<.05) and marginal correlate for M1 at W3 

(p<.1), and negative correlates for F2 at W3 (p<.1), intensity below 500 Hz at W5 

(p<.1), RMS amplitude at W3 (p<.1), slope after the peak locations at W5 (p<.1), and 

LPC peak at W4 (p<.1). 
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Table 3-2: Correlation coefficients (Pearson’s r) showing the relation between the 
clear-minus-conversational differences in acoustic measures and the clear-minus-
conversational differences in the intelligibility (percent identification correctness) for 
the overall effect (General), sibilant pair distinction (Sib), and non-sibilant pair 
distinction (NonSib). Significant values, p<0.001, p<0.01 and p<0.05 are starred as 
***, **, and *, respectively. Moderate values, p<0.1 are marked as ., and no effect 
was given N. Negative correlation was marked as ξ 
 
 

M eas ures  G eneral p values r values S ib p values r values N opS ib p values r values 
D urs Nξ  0.69 -0.09 Nξ  0.92 -0.02 Nξ  0.56 -0.14 
F2W 1 N 0.16 0.32 N 0.29 0.25 N 0.56 0.14 
F2W 2 Nξ  0.24 -0.28 Nξ  0.39 -0.2 Nξ  0.43 -0.19 
F2W 3 Nξ  0.15 -0.33 Nξ  0.55 -0.14 .ξ  0.06 -0.43 
F2W 4 N 0.82 0.05 Nξ  0.66 -0.1 N 0.67 0.1 
FFT PksW 1 N 0.44 0.18 Nξ  0.64 -0.11 N 0.29 0.25 
FFT PksW 2 N 0.69 0.1 Nξ  0.18 -0.31 N 0.27 0.26 
FFT PksW 3 Nξ  0.9 -0.03 .ξ  0.08 -0.39 N 0.22 0.29 
FFT PksW 4 Nξ  0.92 -0.03 .ξ  0.06 -0.43 N 0.13 0.35 
FFT PksW 5 Nξ  0.73 -0.08 Nξ  0.46 -0.17 Nξ  0.79 -0.06 
H N R  Nξ  0.37 -0.21 N 0.56 0.14 Nξ  0.2 -0.3 
Int500W 1 Nξ  0.93 -0.02 N 0.61 0.12 Nξ  0.55 -0.14 
Int500W 2 N 0.96 -0.01 Nξ  0.78 -0.07 Nξ  0.74 -0.08 
Int500W 3 Nξ  0.49 -0.16 Nξ  0.69 -0.09 Nξ  0.2 -0.3 
Int500W 4 Nξ  0.5 -0.16 Nξ  0.61 -0.12 Nξ  0.28 -0.25 
Int500W 5 . 0.06 0.43 . 0.07 0.41 .ξ  0.05 0.44 
M 1W 1 N 0.51 0.16 Nξ  0.6 -0.13 N 0.31 0.24 
M 1W 2 N 0.48 0.17 N 0.77 0.07 N 0.25 0.27 
M 1W 3 N 0.34 0.22 Nξ  0.84 -0.05 . 0.09 0.39 
M 1W 4 N 0.56 0.14 Nξ  0.58 -0.13 N 0.15 0.33 
M 1W 5 Nξ  0.96 -0.01 .ξ  0.05 -0.44 Nξ  0.94 -0.02 
M 2W 1 N 0.94 0.02 Nξ  0.61 -0.12 N 0.75 0.08 
M 2W 2 N 0.81 0.06 Nξ  0.15 -0.34 N 0.49 -0.16 
M 2W 3 Nξ  0.81 -0.06 Nξ  0.14 -0.34 N 0.71 0.09 
M 2W 4 Nξ  0.33 -0.23 *ξ  0.02 -0.51 N 0.96 0.01 
M 2W 5 Nξ  0.42 -0.19 .ξ  0.06 -0.43 Nξ  0.29 -0.25 
M 3W 1 Nξ  0.52 -0.15 Nξ  0.96 -0.01 Nξ  0.51 -0.16 
M 3W 2 Nξ  0.62 -0.12 N 0.68 0.1 Nξ  0.55 -0.14 
M 3W 3 Nξ  0.7 -0.09 N 0.14 0.34 Nξ  0.39 -0.21 
M 3W 4 N 0.86 0.04 . 0.05 0.44 Nξ  0.56 -0.14 
M 3W 5 Nξ  0.54 -0.14 N 0.32 0.24 Nξ  0.74 -0.08 
M 4W 1 Nξ  0.65 -0.11 Nξ  0.83 -0.05 Nξ  0.8 -0.06 
M 4W 2 Nξ  0.98 -0.01 N 0.3 0.24 N 0.94 0.02 
M 4W 3 N 0.72 0.08 N 0.15 0.33 N 0.94 0.02 
M 4W 4 N 0.38 0.21 * 0.01 0.55 N 0.78 0.07 
M 4W 5 Nξ  0.65 -0.11 N 0.26 0.26 Nξ  0.93 -0.02 
follP itc h . 0.09 0.39 N 0.53 0.15 * 0.03 0.49 
prevP itch Nξ  0.65 -0.11 Nξ  0.59 -0.13 N 0.44 0.18 
R elA m ps Nξ  0.71 -0.09 Nξ  0.9 -0.03 N 0.65 0.11 
R MSA m psW 1 Nξ  0.46 -0.18 N 0.69 0.1 Nξ  0.14 -0.34 
R MSA m psW 2 Nξ  0.6 -0.13 N 0.58 0.13 Nξ  0.24 -0.27 
R MSA m psW 3 Nξ  0.37 -0.21 N 0.55 0.14 .ξ  0.07 -0.41 
R MSA m psW 4 Nξ  0.65 -0.11 N 0.25 0.27 Nξ  0.17 -0.32 
R MSA m psW 5 N 0.15 0.33 . 0.07 0.42 N 0.27 0.26 
S lpA ftW 1 Nξ  0.37 -0.21 Nξ  0.89 -0.03 Nξ  0.29 -0.25 
S lpA ftW 2 Nξ  0.63 -0.12 Nξ  0.69 -0.09 Nξ  0.51 -0.16 
S lpA ftW 3 Nξ  0.98 -0.01 N 0.36 0.22 Nξ  0.6 -0.13 
S lpA ftW 4 Nξ  0.67 -0.1 N 0.25 0.27 Nξ  0.39 -0.2 
S lpA ftW 5 Nξ  0.02 -0.27 Nξ  0.66 -0.11 .ξ  0.06 -0.42 
S lpB efW 1 Nξ  0.7 0.09 Nξ  0.83 0.05 Nξ  0.79 -0.06 
S lpB efW 2 Nξ  0.99 0 N 0.48 0.17 Nξ  0.61 -0.12 
S lpB efW 3 N 0.98 0.01 N 0.24 0.28 Nξ  0.3 -0.24 
S lpB efW 4 N 0.94 0.02 N 0.34 0.23 Nξ  0.52 -0.15 
S lpB efW 5 N 0.62 0.12 N 0.14 0.34 Nξ  0.56 -0.14 
LPC P eakW 1 N 0.52 0.15 N 0.98 0.01 N 0.47 0.17 
LPC P eakW 2 N 0.51 0.16 Nξ  0.14 -0.34 N 0.18 0.31 
LPC P eakW 3 N 0.7 0.09 *ξ  0.04 -0.45 N 0.11 0.37 
LPC P eakW 4 N 0.8 0.02 *ξ  0.01 -0.46 .ξ  0.07 0.41 
LPC P eakW 5 Nξ  0.45 -0.18 Nξ  0.44 -0.18 N 0.83 0.05 
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3.3.3 Discussion 

 On average, clear speech may benefit listeners with hearing impairment, as 

evidenced by the overall Style effect and lack of a Style × Group interaction seen here. 

The clear speech effect did not reach significance for non-sibilant pairs, and was 

actually in a negative direction for the voiceless non-sibilant pair; on the other hand, 

sibilant sounds showed robust clear speech advantages. It is not clear what caused this 

pattern (and the Style × Group × Pair interaction indicating that Experiment 3 

listeners benefited less from clear speech for non-sibilants), but it seems likely that, 

since both voiceless non-sibilants are characterized by the highest peak values and F2 

with diffuse spread of energy below 10 kHz, important spectral cues are less 

audible/available to listeners with sloping hearing loss the higher they are transposed. 

Sibilants, on the other hand, had both higher inherent consonant-to-vowel ratios 

(CVRs) and more potential cues (esp. palato-alveolar peak frequencies) involving 

energy in lower regions. These cues were generally better-preserved in stimuli with 

simulated sloping, recruiting losses, perhaps especially when clear speech involved 

more energy at lower frequencies.  

 Talkers varied considerably in estimated clear speech intelligibility benefit, 

although it was harder to relate this variability to overall differences in production 

than in the absence of loss simulation (Exp. 2). Again, there was no Style × Gender 

interaction (t=1.577, p=.149), indicating that female and male talkers did not differ in 

their clear speech intelligibility effect. 
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4. Discussion  

 

4.1 Overall clear fricative intelligibility  

Across two experiments, lower SNR identification thresholds for place of 

articulation identification were seen for clear relative to conversational fricatives, 

indicating that, on average, clearly produced fricatives are more intelligible for both 

young normal-hearing listeners and listeners with simulated sloping, recruiting 

hearing impairment. In addition, clear speech was beneficial to normal-hearing 

listeners in terms of the voicing distinction. However, these effects were not as 

uniform and robust across fricatives and listener groups as might have been expected. 

In Experiment 2, sibilant fricatives were easier to identify than non-sibilants for 

normal-hearing listeners overall, and clear speech provided slightly greater 

intelligibility benefits for sibilants than non-sibilants. Experiment 3 showed that these 

trends were exaggerated for simulated hearing-impaired listeners. In particular, a 

clear speech effect was seen only for sibilants, and clear speech may have even hurt 

intelligibility for voiceless non-sibilants, the worst-recognized sounds. These results 

are consistent with the notion (e.g. Ferguson and Kewly-Port, 2002) that the 

perceptual effects of clear speech acoustic modifications may be population-

dependent, and may interact in complex ways with different types of hearing 

impairment. As discussed below, they probably derive from differences in the 

audibility and weighting of acoustic cues across fricatives and listening conditions. 
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4.2 Acoustic and talker-related correlates of clear speech intelligibility effect 

Comparison of individual speakers’ estimated clear-speech intelligibility 

advantages with their previously reported (Maniwa et al., submitted) clear-speech 

acoustic modifications revealed correlations that may be informative as to the 

acoustic sources of the “clear speech effect” in fricatives. Specifically, for place-of-

articulation distinctions, strong positive correlations were found between acoustic and 

perceptual clear-vs.-conversational differences for spectral measures, especially at 

central locations, including peak locations, M1, and spectral slope before peak 

locations. In addition, there were negative correlations between intelligibility 

improvement and increases in M3 and M4 at all locations, and for intensity below 

500 Hz at central locations. These results indicate that, overall, a shift of important 

spectral information toward higher frequency regions and higher source strength 

(produced by higher volume velocity) in clear speech contributed to the intelligibility 

enhancement for place distinctions. Of course, it is more likely that these “global” 

changes in conjunction with higher-order patterns specific to individual fricatives and 

contexts actually led to the intelligibility effects that were seen. The experiments 

described here could not address this possibility, since within individual subtests SNR 

values were not sufficiently equalized across speakers to make more specific 

comparisons. Probably for this reason, no strong correlations were seen relating 

acoustic measures and voicing intelligibility. In particular, acoustic results suggested 

that phonetic distance in terms of the voicing distinction was often “enhanced” in 

clear speech by increasing (or decreasing to a lesser degree) values for one class of 
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fricatives while decreasing (or increasing to a lesser degree) values for the class. For 

example, intensity below 500 Hz decreased much less, and HNR significantly 

increased, for voiced fricatives whereas these values significantly decreased for 

voiceless fricatives. Similarly, noise duration and f0 increased for both voiceless and 

voiced fricatives in clear speech, but to a much greater extent for voiceless fricatives. 

These differences in clear speech manipulations, and their perceptual effects, would 

have mostly been obscured by the analysis described here.  

Previous study (Maniwa et al., submitted) indicates that voiceless non-

sibilants have, in addition to very low amplitudes, very high peak frequencies (higher 

than /s/), mean frequency, and F2, across speaking styles, and that these values are 

even higher in clear speech. This is very likely a cause of the lack of clear speech 

benefits for (especially voiceless) non-sibilants, since the simulated impairment 

targeted higher frequencies (and low amplitudes). Sibilants, on the other hand, were 

characterized by more and lower energy, in some cases (esp. palato-alveolars) even 

more so in clear speech, so more potential cues for these sounds were preserved in the 

loss simulation. As a result of these differences, for listeners with simulated hearing 

impairment few overall correlations between acoustic and intelligibility differences in 

clear speech were apparent in Experiment 3. For identification of sibilant pairs 

specifically, contrary to Experiment 2 results, there were some negative correlations 

between acoustic changes in peak frequencies and enhanced intelligibility (and 

marginal positive correlation between M3 and intelligibility advantage). This suggests 

that the lower the spectral information moved for palato-alveolar fricatives in clear 
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speech, the more intelligible these sounds were, because this information was better 

preserved in the impairment simulation. Fewer and less consistent patterns could be 

seen to relate non-sibilant acoustic modifications to intelligibility. In other words, 

elevated thresholds and loudness recruitment influenced listeners’ cue weighting for 

the perception of fricative sounds. 

 There were no Style × Gender interactions in either experiment, indicating 

that female and male talkers did not differ in terms of the effectiveness of their clear 

speech acoustic modifications for intelligibility (cf. Bradlow et al., 2003).  

 

4.3 Conclusion  

This study showed that clear speech enhanced the intelligibility of fricatives 

for both listeners with normal hearing and listeners with simulated hearing 

impairment. However, the effect was fricative- and population-dependent; notably, 

compared to normal-hearing listeners, impaired listeners showed reduced clear speech 

effects for non-sibilant place of articulation distinctions. Likewise, apparent acoustic 

correlates of the clear speech benefit differed across populations. For normal-hearing 

listeners, intelligibility benefits seemed to correlate with moves toward higher 

frequency regions for important cues; these patterns were generally not seen for 

impaired listeners, and may even have been reversed for some sounds. These results 

are straightforwardly explained based on audibility of cues at different levels and 

frequencies. We leave for future study a more thorough investigation of potential 

higher-order acoustic correlates of the clear speech effect in fricatives; this could be 
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accomplished straightforwardly by using the results of the adaptive design described 

here to inform blocked-design experiments that are optimally controlled (and 

powered) for the distribution of fricatives, styles, and SNR values across speakers and 

tokens.  
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Chapter 4 

General discussion/conclusions 

4.1 Summary of findings 

 The goal of this research was to extend our understanding of the acoustic and 

perceptual characteristics of speech that is produced when speakers attempt to 

enhance their intelligibility under adverse communicative conditions. Three 

experiments described here were designed to address this objective, focusing 

specifically on English fricatives. The first experiment aimed primarily at specifying 

reliable fine-grained acoustic-phonetic changes in fricative production related to 

speaking style. A secondary issue in this experiment involved measuring talkers’ 

efforts at maintaining contrasts between similar fricative sounds in response to 

specific recognition errors by their communication partner(s). The second experiment 

was designed to determine whether talkers’ strategies to alter the phonetic properties 

of fricatives are effective at enhancing the intelligibility of these sounds under noisy 

conditions; the goalof the third experiment was to examine how robust the “clear 

speech effect” would be for listeners with sloping, recruiting hearing losses, who have 

less audibility in higher frequency regions. A secondary goal of Experiments 2 and 3 

was to get a preliminary indication of the relative contributions of different clear-

versus-conversational acoustic changes in determining the clear speech intelligibility 

advantage for these two listener groups. 

Acoustic results indicated that there are indeed systematic acoustic-phonetic 

modifications in the production of clear fricatives. Some overall clear speech effects 
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were straightforwardly predictable based on previous findings (e.g. longer duration, 

energy at higher frequencies), and some were more surprising (esp. lower relative 

amplitude). For several important measures, the acoustic distance between minimally 

contrasting sounds was enlarged in clear speech, indicating that talkers attempt to 

maintain contrast between category distributions across the inventory of English 

fricatives. In addition, talkers were sensitive to more local listener feedback, adjusting 

repeated productions to be more unlike the specific sounds that they had just been 

misapprehended for. Individual talkers varied widely in the magnitude and sometimes 

direction of these changes; these differences were not related to talker gender. 

Perception experiments suggested that clear speech enhanced the overall 

intelligibility of fricatives for both listeners with normal hearing and listeners with 

simulated hearing impairment. However, the effect was fricative- and population-

dependent. Compared to normal-hearing listeners, impaired listeners showed greatly 

reduced clear speech effects for non-sibilant place of articulation distinctions. 

Likewise, apparent acoustic correlates of the clear speech benefit differed across 

populations. For normal-hearing listeners, intelligibility benefits seemed to correlate 

with moves toward higher frequency regions for important cues; these patterns were 

generally not seen for impaired listeners, and may even have been reversed for some 

sounds. These results are straightforwardly explained based on audibility of cues at 

different levels and frequencies. Advantages that might have been derived from the 

transposition of acoustic information to higher frequency regions were confounded by 

increasing loss at these frequencies.  
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4.2 Theoretical implications 

 Experiment 1 results suggest that speakers tend to maintain important acoustic 

contrasts within the fricative inventory in attempting to make their productions more 

intelligible after receiving error feedback and recognizing a communicative difficulty. 

Speakers were even sensitive to trial-by-trial differences in the relevance of specific 

contrasts, adapting their speech patterns in response to specific perception errors 

provided on-line by the interactive program. These results lend considerable support 

and empirical evidence for H & H Theory (e.g., Lindblom, 1990) which argues that 

language users consistently assess listener’s needs for explicit signal information and 

modify their speaking style by maximizing contrasts according to the demands of 

online communicative situations. The effects observed in Experiment 1 are important 

in demonstrating the range of levels at which talkers are sensitive to the 

communicative demands of a speaking situation; to the author’s knowledge, no 

previous study has addressed the influence of listener demands on the production of a 

class of sounds in such a comprehensive way. 

  

4.3 Practical implications 

 While this study was mostly empirical in nature, the results reported may have 

some immediate practical value with respect to clinical and technological applications.  

 

4.3.1 Training speakers to communicate effectively with different listener populations 
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 One potential clinical application is in training talkers to produce more 

intelligible speech when they interact with different listener populations, based on 

observed acoustic-phonetic correlates of speech intelligibility for these listeners. This 

and previous studies have demonstrated that clear speech is helpful for normal-

hearing listeners in noisy hard-to-hear conditions, listeners with hearing impairment, 

aged listeners with or without hearing loss, and cochlear implant users. Schum (1996) 

found that, with instructions, both younger and older adults can be trained to alter 

their speaking habits to produce speech that is significantly easier for older adults to 

understand. It seems that some talkers may benefit from training on how to produce 

clear speech patterns that improve speech intelligibility, since not all individuals can 

instinctively produce clear speech that is highly intelligible. In order to make an 

effective training program, it is essential to understand what acoustic modifications 

are actually related to speech intelligibility benefits for the targeted listeners. 

Although intervention programs have been proposed to train communication partners 

of hearing-impaired listeners to use clear speech in order to optimize speech 

perception performance (Gagné and Jennings, 2000; Schum, 1997; Tye-Murray and 

Schum, 1994), no specific instructions/guidelines for speech patterns that improve 

fricative intelligibility have been provided. Since fricatives are hard to identify due to 

having significant information predominantly in higher frequency regions, and since 

the clear speech of untrained speakers seems to involve even higher-frequency cues, 

and since this transposition seems to make some sounds even harder to identify for 

these speakers, one obvious take-away from the present research is that some 
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advantage may be gained from clear speech which involves increased CVR more than 

shifts to higher frequency regions.  

 

4.3.2 Implications for digital signal-processing technique: prosthetic hearing devices   

 Analysis of naturally occurring acoustic-phonetic enhancements that are 

beneficial in speech perception could inform automatic signal-processing techniques 

that aim to enhance the intelligibility of (some aspect of) a speech signal for some 

listener population. Thus, one motivation for studying differences between 

conversational and clear speech is to design more intelligent algorithms for hearing 

aid devices that “transform the (incoming signal of ) conversational speech into clear 

speech” (Helfer, 1998). Since the fricatives have considerable acoustic information in 

higher frequency regions where listeners with sloping loss have reduced audibility, it 

is important to consider how these problematic sounds might be best enhanced. 

Considering that frequency-dependent gain and dynamic amplitude compression 

techniques are common in prosthetic devices today, one conclusion that might be 

drawn from the present research is that, as far as processing limitations and 

recognition accuracy permit, classification of segments as specific fricatives or 

fricative classes, so that they can be processed differently depending on their identity, 

might provide considerable additional benefit (cf Hazan and Simpson, 1998, 2000). 

 

4.3.3. Implications for digital signal-processing technique; auditory training program 
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 Knowledge of the perceptual benefits associated with clear speech strategies 

can also inform processing techniques used in plasticity-based auditory training tasks. 

Research with language-impaired children and second-language learners (e.g. 

McClelland et al., 2002; McCandlis et al. 2002; Merzenich et al., 1996; Nagarajan et 

al, 1998; Tallal, et al., 1996) suggests that perceptual learners might benefit most 

from exposure first to highly-differentiated, salient exemplars of phonetic categories 

that are likely to be robustly represented neurophysiologically, and then gradually, 

systematically introduced to more subtly differing tokens so as to drive the system to 

represent the relevant contrasts most efficiently. Since such training might simply 

involve categorization of sounds in minimal pairs, knowledge of Style × Fricative and 

Fricative × Misperception influences on production and perception like those 

described here can readily be incorporated into adaptive training procedures that are 

best suited for a listener or population.  

 

 

4.3.3 Implications for human-computer error resolution 

 Research has demonstrated that when talking to interactive systems and 

encountering recognition errors, language users tend to adopt a clarified style of 

speech, as they do in inter-personal speech (Oviatt et al., 1996, 1998a and b). 

Unfortunately, clear speech introduces new sources of variability into the task of 

spoken language processing that can degrade the recognition performance since it 

differs from the productions used to train the recognizer, and it has been associated 
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with elevated rates of system recognition failure (Shriberg et al., 1992). Since the 

elicitation method introduced in the current project involved a human-machine 

interactive program that simulated recognition errors in order to elicit clear speech, 

knowledge of which acoustic modifications speakers made when attempting to 

resolve the errors in the present study may be useful in developing dynamic, adaptive, 

and user-centered approaches to speech recognition. Oviatt and her colleagues 

investigated changes in speech after recognition errors, but analyses were focused on 

very limited aspects of productions, i.e., duration, amplitude, and fundamental 

frequency, phonological alterations, and prosodic changes. The present results 

suggest that it may be necessary to take into account fine-grained acoustic-phonetic 

changes of individual phonemes or phoneme classes in order to resolve these issues.  

 

5.4 Directions for further research 

 The present research focused primarily on (1) documenting the global, 

fricative-dependent, and feedback-dependent acoustic changes that occur in /a/-C-/a/ 

sequences containing clearly produced English fricatives and (2) evaluating the 

effects of these alternations on perception of these sounds in noisy conditions by 

normal and (simulated) hearing-impaired listeners. We leave to future study: (1) a 

more thorough investigation of potential higher-order acoustic correlates of the clear 

speech effect in fricatives. This could be accomplished straightforwardly by using the 

results of the adaptive design described here to inform blocked-design experiments 

that are better controlled (and powered) for the distribution of fricatives, styles, and 
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SNR values across speakers and tokens. (2) Examination of the extent to which the 

clear fricative effects observed here hold for other listener groups. Specifically, it will 

be of interest to determine whether clearly produced fricatives enhance the 

intelligibility for non-native listeners who have different fricative phonemes in their 

language, aged listeners who have been reported to have difficulties understanding 

consonants that cannot completely be accounted for by audibility concerns, and 

cochlear implant users, for whom the incoming signal is distorted. (3) The effects of 

clear production on memory of fricative sounds. Previous studies (e.g. Rabbitt, 1968, 

1990; Surprenant, 1999, 2005) have suggested that signal salience influences auditory 

memory: for example, signal distortion, background noise, and hearing impairment 

could interfere with memory for speech sounds even when those sounds are 

identifiable. To the author’s knowledge, there are no detailed studies that determine 

whether clear speech is easier to memorize and less susceptible to (more resistant to) 

memory decay than conversational speech.  
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