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ABSTRACT 

 

Digital rock physics involves the modern microscopic imaging of geomaterials, 

digitalization of the microstructure, and numerical simulation of physical properties of rocks. 

This physics-based approach can give important insight into understanding properties of 

reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic 

geophysical responses. Our focus is the simulation of the complex conductivity of carbonate 

reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro 

computed tomography (micro-CT). Carbonate core samples with varying lithofacies and pore 

structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-

Kansas City Group in Kansas were used in this study. The wide variations in pore geometry and 

connectivity of these samples were imaged using micro-CT. A two-phase segmentation method 

was used to reconstruct a digital rock of solid particles and pores. We then calculated the 

effective electrical conductivity of the digital rock volume using a pore-scale numerical 

approach. The complex conductivity of geomaterials is influenced by the electrical properties 

and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double 

layer that forms between the solid and fluid phases can also affect the effective conductivity of 

the material. In the numerical modeling, the influence of the electrical double layer is quantified 

by a complex surface conductance and converted to an apparent volumetric complex 

conductivity of either solid particles or pore fluid. The effective complex conductivity resulting 

from numerical simulations were compared to results from laboratory experiments on equivalent 

rock samples. In general, simulated 𝜎𝑒𝑓𝑓
′  values were below laboratory measurements, while 

numerical 𝜎𝑒𝑓𝑓
′′  values were within reasonable range. The imaging and digital segmentation 
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technique, fundamental rock characteristics, and model assumptions all play an important role in 

the simulation process.  
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INTRODUCTION 

 

Macroscopic geophysical measurements are governed by pore-scale rock properties. 

Understanding pore-scale structures and processes of rocks is necessary to fully interpret 

laboratory and field geophysical observations. Current geophysical interpretations rely on 

models that attempt to connect geophysical measurements with geological properties of interest. 

These models assume a simplified microstructure; however, real rocks are intrinsically 

heterogeneous and complex, especially shales and carbonates. Carbonate rocks contain a 

significant amount of hydrocarbon resources and form many important water-bearing zones. Our 

goal is to explore how pore-scale geometry of these complicated rocks control the complex 

electrical conductivity, which can be used to reveal pore structure as well as fluid-rock 

interactions in carbonate rocks in order to help us better understand various geological processes. 

We achieve this goal by using emerging digital rock physics techniques and previously defined 

electrochemical models that explain complex conductivity in porous media. 

Digital rock physics involves high-resolution 3D imaging of a real samples, digitization 

of the microstructure, and computation of macroscopic properties (Andrä et al. 2013a, b). The 

use of digital rock physics as a research tool has grown over the past few decades with the 

increase in computing power. A wide range of studies exist for sandstones, shales, carbonates, 

and unconsolidated material. Most of these studies focus on fluid transport and acoustic 

attenuation (Knackstedt et al. 2009, Vanorio and Mavko 2011, Quintal et al. 2011) with a sizable 

amount of studies on electrical conductivity (or resistivity) and formation factor (Yan et al. 2016, 

Sengupta, Kittridge, and Blangy 2017) and even fewer incorporating the effects of the electrical 

double layer and surface conductance (Shabro et al. 2014). In the nomenclature of geophysics, 
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digital rock physics takes the forward modeling approach to understand scientifically and 

societally important topics such as contaminant transport, CO2 sequestration, and reservoir 

characterization.  

Our study entails the computation of the effective (bulk) complex conductivity of digital 

carbonate reservoir rock volumes and a comparison to laboratory measurements. The complex 

electrical response of geomaterials can be measured by the induced polarization (IP) method in 

the field and laboratory (Kemna et al. 2012) and is influenced by the electrical properties of the 

solid and fluid phases, the geometry of the microstructure, and the electrical double layer that 

forms at the solid-fluid interface (Revil, Florsch, and Camerlynck 2014). The IP method is 

especially sensitive to internal surface area, connectivity, and fluid chemistry. The interpretation 

of laboratory or field data can lead to the estimation of pore size distributions (Florsch, Revil, 

and Camerlynck 2014), contaminant plume mapping (Sogade et al. 2006), and microbial activity 

monitoring (Davis et al. 2006). Our study specifically explores how pore-scale rock parameters 

(i.e., surface charge density 𝑄 and dynamic pore radius 𝛬), pore size distributions based on 

extracted pore network models, and micro-CT imaging resolutions can affect the simulated bulk 

conductivity response of our digital rocks. We then compare the simulated values to spectral 

induced polarization (SIP) laboratory results measured on the same samples. 

 

METHODS 

 

Workflow and Sample Selection 
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The workflow for this study is depicted in Figure 1. Our process involved micro-CT 

scanning, processing and 3D reconstruction, solid and fluid phase segmentation, connectivity 

analysis, pore network extraction, the application of induced polarization in the electrical double 

layer to the digital microstructure, and finally the effective conductivity calculation of the bulk 

volume. Twelve samples were scanned in this study. The core plugs were predominantly 

carbonate in mineralogy and obtained from various formations in Kansas. Eight grainstones, 

mostly oomoldic, were from the Lansing-Kansas City Group (Upper Pennsylvanian in age); two 

packstones and two mudstones were from the Arbuckle Group (Cambro-Ordovician in age). 

Helium porosities and Klinkenberg-corrected air permeabilities were previously measured 

through routine core analysis by a commercial laboratory. Our samples were chosen over a wide 

range of porosities (~ 3% – 33%) and permeabilities (~ 0.01 mD – 200 mD). Detailed sample 

information is listed in Table 1.  

 

CT Scanning and Reconstruction 

 

Our study used X-ray micro-computed tomography (micro-CT) scanning technology to 

obtain three-dimensional digital rock volumes. X-rays travel through the sample and refract 

according to Snell’s law. The resulting image intensity is high (bright) in areas where x-rays are 

converging, and vice-versa for low intensity (darker) areas. The detector measures the phase 

contrast. In effect, brighter regions indicate harder rock parts, and darker regions indicate softer 

rock parts and pores. This brightness contrast is the basis for identifying solid versus pore 

regions during the segmentation process. We cut the core plugs into thin sticks (roughly 1.5 mm 

– 3.5 mm thick) to prepare for micro-CT scanning. We used microscope lenses with two 
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different optical magnifications, 10X and 4X, to explore different resolutions over the samples 

using the phase contrast micro-CT Xradia MicroXCT-400 microscope at the University of 

Kansas Institute for Bioengineering Research (IBER). Magnification levels and resolutions are 

included in Table 1. There is a trade-off between the magnification level and the effective 

volume that can be scanned; higher resolution scans cover a smaller 3D sample volume. The 

microscope software outputs the raw data images as a sequence of 2D slices in grayscale. The 

intensity value of each pixel ranges from 0 (darkest) to 255 (lightest). Roughly 1000 image slices 

with dimensions of 1000 × 1000 pixels were acquired for each sample. A 600 × 600 pixel area, 

centered on the axis of the sample, was then cropped out of each slice, and the 600 middle slices 

were then compiled together sequentially to form a 6003 digital array using a MATLAB script 

that we created. 

The reconstructed digital volumes from micro-CT scanning revealed the varying levels of 

diagenesis, different pore structures, and connectivity characteristics of our samples. Certain 

cementation and harder material, most likely metallic minerals such as pyrite, were visible in 

some of the samples. For example, sample G2 contained larger shell fragments and fossils. 

Sample G6, a skeletal grainstone from Upper-Pennsylvanian Lansing-Kansas, was characterized 

by intergranular porosity and contained pellets, some of which were partly dissolved. There 

appeared to be good connectivity surrounding the pellets and between some of the larger grains. 

Most of our grainstones were oomoldic in nature and contained many large dissolved pores, but 

some samples also contained a small amount of only partly dissolved ooids. The large spherical 

pore spaces sometimes overlapped or connected via smaller cracks.  

 

Phase Segmentation 
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A two-phase thresholding method was used to segment the image cubes into solid and 

pore regions. To do this, a grayscale value was chosen for each sample that distinguished a solid 

voxel from a pore voxel. Because each sample has different hardness, density, and cementation 

characteristics, there are slight differences in the micro-CT scanning results and therefore the 

threshold was tailored for each sample. To help choose the ideal threshold, an intensity 

histogram, generated from a MATLAB script that we created, was analyzed for each sample to 

identify the darker regions (pores) from brighter regions (solid). The first and second peaks 

indicate clusters of pore and solid intensity values, and a threshold value is chosen between these 

peaks to partition the two phases. For quality control, a raw CT slice is compared to a segmented 

slice to visually check that the solid-pore boundary is maintained with the chosen threshold 

value. This value ranged from 105 to 145 for our samples. 

 

Post-Processing 

 

Following segmentation, we then compressed, or re-gridded, each 6003 digital cube into a 

2003 cube in order to reduce computer demand and computation times but maintain the same 

effective sample volume. To do this, each original cube was partitioned into smaller cubes of 27 

voxels. Within each smaller cube, we looked to see how many pore voxels were present out of 

27. If this value was above a user-given criterion number, then we defined a new single pore 

voxel. If there weren’t enough pore voxels within the smaller cube, then we defined a new single 

solid voxel. In effect, we decreased the total number of voxels to process for each image cube 

from 6003 voxels to 2003 voxels to expedite our later calculation for electric current flow. Ideally, 
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the compression criterion number is chosen so that the final porosity of the digital structure is 

comparable to the helium porosity. A minimum compression criterion value of 3, which could be 

interpreted as a straight path across each smaller partitioned cube, can be used to represent the 

most relaxed option for this processing step. Higher numbers require more pores to be present 

within each partitioned cube in order to re-grid to a single pore voxel. To investigate how our 

data compression method affected sample porosity, connectivity, and electrical conductivity, we 

generated multiple microstructures with different compression criterions for each sample ranging 

from 10 to 3. A summary of the compression criterion numbers used for each trial in this study is 

included in Table 2.  

 

Connectivity Analysis 

 

Once the final digital structure has been compiled, we then tested if the fluid phase 

percolates through the microstructure of each image cube. A digital sample is connected if a 

given phase percolates through microstructure, from one cube face to the opposite face. A 

connected sample has at least one pathway that begins with a cell on the cube edge and connects 

to the other edge through cells of the same phase. Because the pore fluid and the pore-solid 

boundary are the conducting regions, we checked to see if the pore phase was connected in our 

samples in all three directions. To do this, we used a burning algorithm developed by the 

National Institute of Standards and Technology (Garboczi 1998) (available at 

https://ciks.cbt.nist.gov/garbocz/manual/node59.html). Only five out of the original twelve 

samples were tested as well connected, having the pore phase percolating through the sample in 

at least two axis directions. We continued our investigation of these five samples only. Their 
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micro-CT reconstructions are shown in Figures 2 – 6. These images show the original micro-CT 

reconstructions with 600 stacked images on each sample and a cube edge of ~ 2.6 mm. 

 

Pore Network Extraction 

 

We generated pore network models using an algorithm developed by the Imperial 

College London to extract information on the pore size distribution and obtain pore network 

models of our microstructures. This maximal ball algorithm works by filling the pore space with 

spheres inscribed within the solid-pore boundary. Large spheres near the center of pore regions 

become nodes. Chains of smaller spheres that connect larger nodes become cylindrical tubes 

(Dong and Blunt 2009). The extracted sphere and tube models were plotted to visualize the pore 

space and connectivity of each sample. From this simplified pore network, we were able to 

extract information on pore radii and pore throats and their volumes. Pore sizes were binned into 

30 groups and pore size distributions were plotted alongside their pore network models for each 

sample in Figures 7 – 11. 

The heterogeneity and complexity of our samples became more apparent after generating 

these models. As expected, sample M2, the mudstone had the smallest node and tube radii 

compared to the other samples. Sample G6, the skeletal grainstone, exhibited slightly larger node 

radii than the mudstone, but similar tube radii. It also consisted of the highest number of tubes 

and therefore had the highest degree of connectivity of all the samples. Samples G4, G2, and G1, 

the oomoldic grainstones, were comprised of mostly vary large node sizes and large to small 

tubes. For all samples, there were entire regions where there were no nodes or tubes generated. 

These are areas with high solid concentrations which hinder connectivity across the sample. 
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There were also regions where the algorithm generated very dense clusters of small nodes and 

tubes compared to the rest of the sample. These clusters appear in areas with only partly 

dissolved ooids or a high concentration of pellets. 

 

Application of the Electrical Double Layer Model and Induced Polarization Response 

 

After constructing our digital rock volumes and obtaining pore size information, we then 

moved to the next step in the simulation workflow. The set-up to the numerical bulk conductivity 

calculation first begins by assigning local conductivity values for the solid and fluid voxels. To 

do this, we adopted a “pore upscaling” method (Niu and Zhang 2017) to account for electrical 

conduction and polarization effects, which converts the complex surface conductance to an 

apparent volumetric conductivity in the fluid phase. 

Geomaterials exhibit a complex conductivity when subjected to an electric field in which 

the real part describes energy loss and the imaginary part describes energy storage: 

𝜎∗ = 𝜎′ + 𝑖𝜎′′ = 𝜎′ + 𝑖𝜀𝑟𝜀0𝜔 (1) 

where 𝜎∗ represents the complex conductivity of the material, 𝜎′ and 𝜎′′ are the real and 

imaginary components, 𝑖 is the imaginary unit, 𝜀𝑟 is the relative permittivity of the medium, 𝜀0 is 

the permittivity of free space, and 𝜔 = 2𝜋𝑓 is the angular frequency. In addition to electrical 

conduction in the bulk solution, geomaterials experience conduction and polarization in the 

electrical double layer at the solid-fluid interface. To account for these effects, conductivity 

values are assigned to the two phases in the following manner: 

𝜎𝑤
∗ = 𝜎𝑤

′ + 𝑖𝜀𝑤𝜀0𝜔 + 𝛥𝜎𝑤
∗  (2) 

𝜎𝑠
∗ = 𝜎𝑠

′ + 𝑖𝜀𝑠𝜀0𝜔 (3) 
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where 𝜎𝑤
∗  and 𝜎𝑠

∗ are the apparent complex conductivity of the fluid and solid phase, and 𝛥𝜎𝑤
∗  is 

the additional complex conductivity gained to the fluid phase due to the effects of the electrical 

double layer. This value is defined as: 

𝛥𝜎𝑤
∗ =

2

𝛬
∙ 𝐶𝑆

∗ =
2

𝛬
∙ (𝐶𝑆

0 + 𝐶𝑆
𝑠) (4) 

where 𝐶𝑆
∗ is the electrical double layer-induced complex surface conductance, and 𝛬 is the 

dynamic pore radius (Johnson, Koplik, and Schwartz 1986). 𝐶𝑆
∗ is the combined influence from 

the diffuse layer 𝐶𝑆
0 and Stern layer 𝐶𝑆

𝑠. For the diffuse layer: 

𝐶𝑆
0 = 𝛽 ∙ 𝑄 (5) 

where 𝛽 and 𝑄 are the ion mobility and surface charge density related to the diffuse layer. The 

Stern layer exhibits simple Debye relaxation, a special case of Cole-Cole relaxation (Schwarz 

1962):  

𝐶𝑆
𝑠 = ∑ 𝑓𝑖

𝑛

𝑖=1

𝑖𝜔𝜏𝑖

1 + 𝑖𝜔𝜏𝑖
 𝛽 ∙ 𝑄 (6) 

where 𝛽 and 𝑄 are the ion mobility and surface charge density related to the Stern layer, 𝑤𝑖 is a 

weighting function, 𝜏𝑖 is the relaxation time. For geomaterials comprised of different pore sizes, 

each pore size has a contribution to the complex conductivity response (Leroy et al. 2008). The 

weighting function and relaxation time are a function of pore size 𝑟𝑖 obtained from the binned 

pore size distribution data. Each pore size has a volume 𝑣𝑖 that is weighted from the total pore 

space volume, and each weight sums to 1: 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =  ∑ 𝑣𝑖

𝑛

𝑖=1
 (7) 

∑
𝑣𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝑛

𝑖=1
= ∑ 𝑓𝑖

𝑛

𝑖=1
= 1 (8) 
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where 𝑛 is the number of pore sizes. The relaxation time 𝜏𝑖 is related to the curvature of the 

electrical double layer: 

𝜏𝑖 =
𝑟𝑖

2

2𝐷
 (9) 

where 𝐷 is the diffusion coefficient in the Stern layer. The radius of the electrical double layer is 

equivalent to the pore radius (Schwarz 1962). Note that it was assumed that the surface charge 

densities 𝑄 associated with the diffuse and Stern layer are equal (Niu and Zhang 2017). 

For inputs to our numerical simulations, we chose 𝜎𝑤
′ = 0.12 S/m to match our 

laboratory fluid conductivity. Other parameters followed previously reported values (Niu, Revil, 

and Saidian 2016, Niu et al. 2016): fluid permittivity 𝜀𝑤 = 80; 𝜎𝑠
′ = 0 (no conduction in the 

solid phase); permittivity of calcite 𝜀𝑠 = 8; permittivity of free space 𝜀0 = 8.854×10−12 F/m; 

ion mobility of Na+ in the diffuse and Stern layers 𝛽 = 5.2×10−12 m2/sV; diffusion coefficient 

𝐷 = 𝑘𝑏𝑇𝛽𝑠/𝑒 with Boltzmann constant 𝑘𝑏 = 1.3806×10−23 J/K, room temperature 𝑇 =

293.15 K, and elementary charge 𝑒 = 1.602×10−19 C. For simulation purposes, the 𝛬 parameter 

was altered from 20 – 100 nm (Oyewole, Saneifar, and Heidari 2016, Duan et al. 2018) and the 

𝑄 parameter was altered from 3×10−4  – 8×10−4  C m2⁄  (Niu, Revil, and Saidian 2016) which 

are acceptable ranges for carbonate rocks. We performed the simulation over the 1 mHz − 1 kHz 

range. 

Our definitions above allowed us to account for the complex conductivity of the solid and 

fluid phases and the additional complex surface conductance due to the effects of the electrical 

double layer, are based on pore sizes obtained from digital reconstructions of real carbonate 

rocks, and are frequency-dependent. Table 2 provides a summary of the simulation trials in this 

study and the specific values chosen for the 𝛬 and 𝑄 parameters during the set-up to the effective 

conductivity calculation. 
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Numerical Calculation of 𝝈𝒆𝒇𝒇
∗  

 

Each voxel at position 𝒙 = (𝑥, 𝑦, 𝑧) where 𝑥, 𝑦, and 𝑧 are the coordinates is defined by its 

phase state (solid or fluid) and its local complex conductivity 𝜎∗(𝒙) according to the above 

section’s definitions. We then simulated current flow 𝐼 through the digital sample resulting in 

potential difference ∆𝑃 across it. We calculated the average electric field 〈𝑬〉 and current density 

〈𝑱〉 to determine the effective complex conductivity of the bulk sample 𝜎𝑒𝑓𝑓
∗ : 

𝜎𝑒𝑓𝑓
∗ =

〈𝑱〉

〈𝑬〉
. (10) 

〈𝑬〉 and 〈𝑱〉 are functions of position 𝒙 and are defined by (Mendelson 1975, Cheng and Torquato 

1997): 

〈𝑬〉 = −
1

𝑉
∫ ∇𝛹(𝒙)

𝑉

𝑑𝑉 (11) 

〈𝑱〉 =
1

𝑉
∫ 𝑱(𝒙)

𝑉

𝑑𝑉 (12) 

where 𝑉 is the sample volume, 𝑱(𝒙) is the local current density, and 𝛹(𝒙) is potential. Local 

current density and potential were solved by the Laplace equation: 

∇𝑱(𝒙) = 0 (13) 

−∇[𝜎∗(𝒙)∇𝛹(𝒙)] = 0. (14) 

These calculations were performed numerically using code developed by the National Institute of 

Standards and Technology (available at https://ciks.cbt.nist.gov/garbocz/manual/node57.html). 

For more information on the algorithm, see Garboczi (1998). The code solves the finite 

difference representation of the Laplace equation with the conjugate gradient method.  
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RESULTS AND DISCUSSION 

 

An analysis of our simulation results and a discussion on the methods follows. After 

performing the effective conductivity simulations, results were compared to laboratory SIP 

measurements previously made on the original core plugs. We demonstrate several key factors 

that impact the complex conductivity simulation in carbonate rocks. We will discuss the 

limitations of micro-CT scanning, which is a common issue with image-based analysis methods; 

the impact of using the maximal ball pore network models and the parameters derived from 

them, such as the curvature of the electrical double layer 𝑟𝑖, relaxation time 𝜏𝑖, and the complex 

conductance of the Stern layer 𝐶𝑆
𝑠; and the user-chosen inputs for other pore-scale parameters – 

the dynamic pore radius 𝛬 and surface charge density 𝑄. 

 The simulated 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′  values for each trial, along with laboratory data, is included 

Figures 12 – 16. In general, the simulated 𝜎𝑒𝑓𝑓
′  underestimated laboratory measurements, but the 

simulated 𝜎𝑒𝑓𝑓
′′  were a decent match in the lower- to mid-frequencies. In addition, formation 

factor 𝐹 and cementation exponent 𝑚 values derived from the simulation results were 

overestimated when compared to the SIP laboratory-derived values. The effects of the pore-scale 

parameters 𝛬 and 𝑄, and our compression criterion used during the image processing, can be 

seen in the shifts to the simulated 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′  curves between trails. A more detailed analysis 

of these parameters follows in their respective sections. 

 A notable difference between the 𝜎𝑒𝑓𝑓
′′  simulation versus measured curves is the overall 

shape of the spectra. In general, the laboratory measurements exhibit a flat curve without a 

characteristic frequency, whereas the simulation results have peaks in the lower frequencies. 
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Previous studies have argued that a flat spectrum could be due to a rough grain surface (Leroy et 

al. 2008). Therefore, it is possible due to the limitations in scanning resolution and post-

processing re-gridding that the rough quality of the grain surface was smoothed out on the digital 

structures. The peak in our simulation results is due to the electrical double layer polarization 

mechanism that we assumed in our model. However, there may be other polarization models or 

physical explanations reflected in the laboratory measurements that we did not address in our 

simulation. For example, membrane polarization is another polarization mechanism that explains 

polarization effects due to variable pore throat sizes (Marshall and Madden 1959, Bücker and 

Hördt 2013). Maxwell-Wagner effect (dielectric polarization) could exist in porous media at 

higher frequencies (Leroy et al. 2008, Chen and Or 2006). It is possible that a model 

incorporating membrane polarization effects combined with electrical double layer polarization 

at the grain-fluid boundary may better predict the IP response in complicated rocks like 

carbonates.  

 

EFFECTS OF IMAGE RESOLUTION AND PROCESSING 

 

 Digital rock physics entails a collection of various methods and issues arising from the 

chosen techniques. Choosing a simple intensity threshold may not be the best method, as 

variations in mineral density and scanning resolution complicate intensity histograms. A kriging 

segmentation method has been shown to be superior to simple thresholding (Sakellariou et al. 

2003, Lindquist et al. 2000). A watershed segmentation method may also be used on high-

resolution images to better discern the solid-pore boundary (Saenger and Madonna 2011). 

Simple intensity thresholding tends to cause separate grains to appear as one connected mass; 
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this could explain why more than half of the digital microstructures from our initial sample 

group were not connected in any direction. Maintaining pore space between grains from imaging 

techniques has clear implications on discerning pore throats and electrical conductivity 

simulations. Alternative methods in machine learning and statistical reconstructions from 2D 

images have also been employed in the realm of digital rock physics (Tang and Spikes 2017, Al-

Kharusi and Blunt 2008, Karimpouli and Tahmasebi 2016).  

In addition to segmentation considerations, the scanning resolution and grid spacing must 

correctly represent the properties of the real rock microstructure (Keehm and Mukerji 2004, 

Bazaikin et al. 2017). This is known as the representative elementary volume (REV) concept – 

that a digital or simulated rock property must be statistically representative of the bulk sample. 

Simulations are affected by variables like scanning resolution and grid spacing, and it is possible 

that a model based on digital microstructures over- or under-estimates a physical process or pore-

scale geometry. Although there is a trade-off between resolution and effective volume scanned, 

higher resolution images are preferred but difficult to obtain in practice. This is especially true 

for carbonates in particular because these rocks exhibit a wide variation in pore networks and 

pore types at different scales. Studies show that more pore space is resolved at higher 

resolutions, but porosities based on imaging methods will fall short of measured helium 

porosities (Sakellariou et al. 2003). Our results indicated this as well, and overall, our 

numerically calculated 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′  values under-estimated laboratory measurements, with the 

greatest discrepancy arising from the mudstone. We can assume that the fine-grained nature and 

pore space of this rock type was more difficult to capture than the grainstones at our resolution 

(4.30 µm). Any nanoporosity in the mudstone sample was missed by the micro-CT scanning, as 

these pore sizes were outside of the detection range. It may not be possible for micro-CT 
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imaging to resolve the porosity of some fine-grained carbonate rocks, but approximation 

methods can be devised that are calibrated with micro-CT measurements that utilize more than 

two phases during segmentation, for example, an intermediate phase (Saenger et al. 2014). 

Injection of a high-salinity brine before micro-CT scanning can also detect sub-resolution 

porosity in carbonate cores (Lin et al. 2016). Furthermore, there are higher resolution imaging 

techniques such as SEM, FIB-SEM, and BIB-SEM that can identify nanoscale pores. However, 

the issue of whether or not these higher resolution techniques can produce a proper REV for fine-

grained rocks still remains (Kelly et al. 2016). 

 In our workflow, we re-gridded the digital samples from 6003 voxels to 2003 voxels. 

Decreasing the number of voxels to process from 6003 to 2003 exponentially cut down on 

processing times. The compression criterion number, which controls how strict the algorithm is 

when re-gridding the solid and pore regions, can be tailored to produce a final digital 

microstructure with a porosity that is agreeable to laboratory helium porosities. In a way, this 

enables us to “make up” for lost porosity due to micro-CT and segmentation limitations. 

However, there are some concerns if this step maintains an REV or not. Again, under-estimation 

of porosity due to micro-CT methods is a common problem (Sakellariou et al. 2003), but our 

approach is one attempt at circumventing the issue. 

The compression criterion number for samples M2, G6, and G4 were altered in our study. 

Results for trial M2-A and M2-B illustrate how changing only this value can impact porosity, 

𝜎𝑒𝑓𝑓
′ , and 𝜎𝑒𝑓𝑓

′′ . A strict compression criterion number of 10 for M2-A generated a microstructure 

with a lower porosity (11.7%) than a more lenient compression criterion number of 3 for M2-B 

(15.6%). More pore space, a higher total surface area, and a higher number of pathways are 

maintained within the final processed microstructure by lowering this criterion number. 
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Therefore, 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′  are higher at all frequencies. Similar results can be seen when 

comparing trials G6-B to G6-A. However, in trial G6-C, increasing 𝑄 had a more influential 

impact than the compression criterion number on 𝜎𝑒𝑓𝑓
′′  and did not considerably affect 𝜎𝑒𝑓𝑓

′ . 

Similarly, results for trials G4-A and G4-B showed that increasing 𝛬 had a greater impact on 

𝜎𝑒𝑓𝑓
′′  (and did not affect 𝜎𝑒𝑓𝑓

′ ).  

 

EFFECTS OF PORE-SCALE SIMULATION PARAMETERS  

 

In the simulation, a number of variables are used as inputs to model pore-scale rock 

properties and the effects of the electrical double layer at fluid-rock interfaces. Some of these 

parameters are difficult to measure experimentally and can only be perceived conceptually. 

Determining these parameters is important because it helps us understand the macro-scale 

electrical behavior of rocks and the issues with upscaling. In our study, we explored determining 

pore size distributions using pore network models. We focused on the effects of the dynamic 

pore radius 𝛬 and surface charge density 𝑄. The value of these parameters can significantly 

impact simulation results. 

 

Pore Network Modeling 

 

The pore network models in our study were generated using the maximal ball algorithm 

discussed in the “pore network extraction” section (Dong and Blunt 2009). This algorithm 

generated the sizes and locations of pore nodes (spheres) and pore throats (tubes) encompassed 

within the pore phase of the digital microstructure. The extracted network represents a simplified 
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model of the imaged pore space. Pore-scale flow simulations based on these maximal ball 

models (Mahabadi et al. 2016) are typically performed instead of direct calculations on the 

digital pore space as they are computationally faster. These simulations are able to predict 

permeability and capillary pressure well, but can underestimate other features that were directly 

calculated on the pore space (Dong and Blunt 2009). There is also some concern of whether or 

not these maximal ball networks oversimplify the real structure by losing some details, 

particularly the smaller-sized connectivity compared to the rest of the network (Blunt et al. 

2013), which is particularly present in more complex samples such as carbonates. 

In our study, the pore networks generated from the maximal ball approach helped to 

quantify a pore size distribution for our samples. Pore size distributions are important to pore-

scale rock characterization and can be measured using laboratory methods such as mercury 

injection capillary pressure (MICP) (Scott and Barker 2003, Niu and Revil 2015), SIP, and 

nuclear magnetic resonance (NMR) (Niu and Zhang 2018). The pore size distribution data 

extracted from our pore network models was used to mathematically define pore sizes 𝑟𝑖 and 

their respective weights 𝑓𝑖. This information was carried through in the electrical double layer 

and induced polarization modeling by affecting values for the radius of the curvature of the 

electrical double layer (equated to 𝑟𝑖), the relaxation time 𝜏𝑖, and the influence of the complex 

surface conductance induced in the Stern layer 𝐶𝑆
𝑠. It is important to note our separate use of the 

pore size distribution 𝑟𝑖 and the dynamic pore radius 𝛬. There are studies that do in fact equate 

these two values (Revil, Florsch, and Camerlynck 2014, Niu and Revil 2015) and others that use 

a grain size parameter when defining relaxation times (Revil, Koch, and Holliger 2012). Many of 

these studies assume spherical grains, which may not be realistic for our more complex 

carbonate samples. For our study, we wanted to obtain a representation of the pore size based on 
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image analysis, so we decided to extract this information from the maximal ball pore networks 

and equate it to 𝑟𝑖. This allowed us to characterize the general shape of the pore size distribution, 

but as discussed earlier, much of the sub-resolution porosity is lost during the imaging process. 

Therefore, we kept the 𝛬 parameter (discussed below) as a user-defined value in the simulation. 

It could prove beneficial to supplement pore size estimates based on image analysis alone with 

laboratory MICP measurements to more accurately represent the full distribution and hopefully 

lead to a better prediction of the induced polarization effects. Pore network extractions on digital 

carbonates rocks can be poorly connected due to the resolution issue (Dong and Blunt 2009), and 

as discussed earlier, image-based methods will underestimate porosity (Sakellariou et al. 2003). 

Therefore, we assume there is some degree of inaccuracy in representing these real values due to 

resolution and processing limitations. This could explain why the simulated behavior of the 

mudstone sample showed the greatest deviation from laboratory measurements, as there may be 

considerable pore space below our resolution limits. 

 

Dynamic Pore Radius 𝜦 

 

The parameter 𝛬 is sometimes referred to as the “characteristic” pore size – it is linked to 

the pore-scale geometry of the medium and to the conducting regions at the grain-fluid interface. 

Studies on fluid flow in porous materials commonly make use of a hydraulic pore radius, defined 

as 𝑉𝑝 𝑆⁄ , in Kozeny-Carmen equations. 𝛬 can be defined as weighted version of the hydraulic 

pore radius, weighted by the norm of the electric field in the pore space before the formation of 

the electrical double layer (Revil, Koch, and Holliger 2012). It represents the radius of 

interconnected pores that control fluid and electrical transport phenomena in porous media. 
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Transport is dominant in large, connected pore throats. 𝛬 is inversely related to the formation 

factor 𝐹 and surface area-to-pore volume ratio 𝑆 𝑉𝑝⁄  (Johnson, Koplik, and Schwartz 1986). In 

the modeling, 𝛬 is included in the denominator of our definition of the complex conductivity of 

the pore fluid, 𝛥𝜎𝑤
∗ . Therefore, a smaller 𝛬 will translate to a larger induced complex 

conductivity. This inverse relationship exists because smaller pores represent samples with a 

rougher texture and a higher surface area (Revil, Florsch, and Camerlynck 2014) leading to more 

surface sites where charge build up can occur. Therefore, rocks comprised of smaller pores will 

exhibit more significant polarization than those with larger pores and of the same lithology. This 

is especially helpful in characterizing the differences in complex rocks such as carbonates.  

As mentioned earlier, the 𝛬 parameter can be obtained experimentally from MICP 

measurements. We do not have MICP data, however for simulation purposes we substituted 

values within a range previously measured for carbonate reservoir rocks (Oyewole, Saneifar, and 

Heidari 2016, Duan et al. 2018). Only 𝛬 was altered for trials G2-A (𝛬 = 100 nm), G2-B (𝛬 = 50 

nm), and G2-C (𝛬 = 20 nm). Results showed that 𝜎𝑒𝑓𝑓
′  was not significantly affected by this 

value, but 𝜎𝑒𝑓𝑓
′′  increased as 𝛬 decreased. Similar results were shown when 𝛬 was altered for 

trials G4-A (𝛬 = 20 nm) and G4-B (𝛬 = 100 nm). As expected, a smaller 𝛬 input in our 

simulations led to a more significant polarization effect (Figure 14, Figure 15). As mentioned 

earlier, it might be possible to append the image-generated pore size data with MICP 

measurements in order to more accurately predict the induced polarization response. 

It is important to note that there is some disagreement on whether a pore size or grain size 

parameter controls induced polarization behavior and relaxation times (Revil, Koch, and Holliger 

2012, Revil 2013). Our study utilized pore size parameters in the simulations, but it is entirely 

possible to devise a workflow based on image analysis and using grain size input variables.  
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Surface Charge Density 𝑸 

 

The surface charge density 𝑄 is a physical concept that describes the amount of charge 

buildup at the solid-fluid interface. It is affected by the mineralogy of the grain, the electrolyte 

concentration, and the pH. It can be measured in the laboratory by potentiometric titrations and 

confirmed by streaming zeta potential experiments (Revil and Glover 1997, Revil, Pezard, and 

Glover 1999, Walker and Glover 2018). A higher 𝑄 implies a greater number of surface charge 

sites, which enhances electrochemical interactions at the solid-fluid interface and strengthens the 

polarization effect (Niu, Revil, and Saidian 2016, Niu and Revil 2015). In the modeling, a higher 

𝑄 leads to an increased complex conductance in the diffuse layer 𝐶𝑆
0 and Stern layer 𝐶𝑆

𝑠, 

ultimately producing a higher complex conductivity in the fluid phase voxels 𝛥𝜎𝑤
∗ . In our 

modeling, we assumed that the charge densities associated with Stern and diffuse layers were 

equivalent. To maintain electrical neutrality, the sum of 𝑄 from the Stern and diffuse layers 

represents the total charge density on the mineral grain (Leroy et al. 2008). Details on the how 𝑄 

relates to the sodium sorption can be found in the Appendix B of Niu, Revil, and Saidian 2016. 

Only 𝑄 was altered between trials G1-A (𝑄 = 3×10−4  C m2⁄ ) and G1-B (𝑄 =

8×10−4  C m2⁄ ). Increasing 𝑄 resulted in higher values for both 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′ , but a greater 

impact is seen to 𝜎𝑒𝑓𝑓
′′  (Figure 16). As expected, a higher 𝑄 represents more charge buildup and 

led to a more significant polarization effect. Similar results can be seen when comparing trials 

G6-B (𝑄 = 3×10−4  C m2⁄ ) and G6-C (𝑄 = 6×10−4  C m2⁄ ) (Figure 13). The values chosen for 

𝑄 in these trials were within acceptable range for calcite, and it should be noted that 𝑄 values for 

clay and quartz are much higher than calcite (Niu, Revil, and Saidian 2016). Therefore, it is 
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possible that samples G1 and G6 contained slightly more clay content than assumed, as 

simulation trials performed using higher 𝑄 values (G1-B, G6-B) resulted in a better match to 

laboratory measurements. Our numerical simulations indicated that an increase in 𝑄, albeit small, 

can have a large impact on polarization behavior and predicted 𝜎𝑒𝑓𝑓
′′  values. 

 

CONCLUSION 

 

Our study showed how bulk electrical conductivity simulations based on digital rock imaging 

techniques and pore-scale complex conductivity modeling compared to laboratory measurements 

on carbonate reservoir rocks. For nearly all simulation trials, numerical 𝜎𝑒𝑓𝑓
′  values were below 

laboratory measurements, while numerical 𝜎𝑒𝑓𝑓
′′  values were a closer match. The mudstone 

showed the most disagreement in both  𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′ , while the skeletal grainstone, with the 

highest degree of connectivity, showed the best match to laboratory 𝜎𝑒𝑓𝑓
′ . At least one trial from 

all grainstone samples generated a numerical 𝜎𝑒𝑓𝑓
′′  within laboratory range. It should be noted 

that modern electrochemical pore-scale models assume spherical grains or pores, which might 

not be suitable for forward modeling on more complex, three-dimensional structures. In addition, 

there could be other polarization effects, e.g., membrane polarization, contributing to laboratory 

measurements that were not accounted for in this study. Nonetheless, some of the 𝜎𝑒𝑓𝑓
′  and 𝜎𝑒𝑓𝑓

′′  

values calculated in our study were a good match to laboratory results, and our input parameters 

were realistic. From our simulations, we learned that 1) the imaging and digital segmentation 

technique is important to consider, as it remains a challenge to capture interconnected 

microporosity due to the limits in micro-CT scanning resolutions and to build a digital 

microstructure that is representative of the real rock volume; 2) fundamental rock characteristics 
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such as carbonate petrology, porosity, and most importantly connectivity play a large role in the 

complex conductivity predictions; and 3) despite their heterogeneity, complex conductivity 

predictions through numerical simulations are feasible using previously established pore-scale 

electrical polarization models on digitally reconstructed carbonate rocks. Our results led us to a 

better understanding of the link between pore-scale geometrical properties and the complex 

conductivity response of carbonate rocks. The combined use of image-based simulation methods 

and laboratory MICP, SIP, and NMR inversion can help devise a more holistic approach to rock 

characterization (Oyewole, Saneifar, and Heidari 2016, Knackstedt et al. 2009, Bultreys, Van 

Hoorebeke, and Cnudde 2015, Zahid et al. 2017). This approach is more comprehensive and is 

especially useful in understanding more complex rocks such as carbonates. Ultimately, this can 

lead to improved petrophysical characterization of carbonate rocks for any reservoir or aquifer 

characterization project. 
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Figure 1. The workflow begins with micro-CT imaging, includes the application of our electrical 

double layer and induced polarization model, and ends with the bulk conductivity calculations. 
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Table 1. Sample data and micro-CT scanning information. 
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Table 2. Summary of simulation trials and the input parameters chosen for each trial. These 

values were used in the set-up to the final effective conductivity calculation of each sample. 
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Figure 2. CT reconstruction of mudstone sample M2. 600 image stack with a cube edge of ~ 2.6 

mm. 
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Figure 3. CT reconstruction of skeletal grainstone sample G6. 600 image stack with a cube edge 

of ~ 2.6 mm. 
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Figure 4. CT reconstruction of oomoldic grainstone sample G4. 600 image stack with a cube 

edge of ~ 2.6 mm. 
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Figure 5. CT reconstruction of oomoldic grainstone sample G2. 600 image stack with a cube 

edge of ~ 2.6 mm. 
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Figure 6. CT reconstruction of oomoldic grainstone sample G1. 600 image stack with a cube 

edge of ~ 2.6 mm. 
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Figure 7. M2 pore network model (top) and pore size distribution (bottom). Data shown for trial 

M2-B with 5825 tubes and 4271 nodes. 
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Figure 8. G6 pore network model (top) and pore size distribution (bottom). Data shown for trial 

G6-A with 10265 tubes and 6052 nodes. 
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Figure 9. G4 pore network model (top) and pore size distribution (bottom). Data shown for trial 

G4-A with 2242 tubes and 1364 nodes. 
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Figure 10. G2 pore network model (top) and pore size distribution (bottom). Data shown for trial 

G2-A with 1176 tubes and 790 nodes. 
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Figure 11. G1 pore network model (top) and pore size distribution (bottom). Data shown for trial 

G1-A with 1363 tubes and 803 nodes. 
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Figure 12. M2 real (top) and imaginary (bottom) conductivity curves. 
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Figure 13. G6 real (top) and imaginary (bottom) conductivity curves. 
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Figure 14. G4 real (top) and imaginary (bottom) conductivity curves. 
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Figure 15. G2 real (top) and imaginary (bottom) conductivity curves. 
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Figure 16. G1 real (top) and imaginary (bottom) conductivity curves. 

 


