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Abstract

The aim of this work is to garner a deeper understanding of the relationship

between depth of a ring and connectivity properties of the spectrum of that

ring. We examine with particular interest the case where our ring is a Stanley-

Reisner ring. In this circumstance, we consider the simplicial complex that cor-

responds to the spectrum of R. We examine properties of simplicial complexes

whose Stanley-Reisner rings satisfy depth conditions such as Cohen-Macaulay

and Serre’s condition (S`). We leverage these properties to use algebraic tools

to examine combinatorial problems. For example, the gluing lemma in (Hol18)

allows us to construct bounds on the diameter of a class of graphs acting as a

generalization of the 1-skeleton of polytopes.

Throughout, we give special consideration to Serre’s condition (S`). We create a

generalized Serre’s condition (Sj` ) and prove equivalent homological, topological,

and combinatorial properties for this condition. We generalize many well-known

results pertaining to (S`) to apply to (Sj` ). This work also explores a generaliza-

tion of the nerve complex and considers the correlation between the homologies

of the nerve complex of a Stanley-Reisner ring and depth properties of that ring.

Finally we explore rank selection theorems for simplicial complexes. We prove

many results on depth properties of simplicial complexes. In particular, we prove

that rank selected subcomplexes of balanced (S`) simplicial complexes retain

(S`). The primary focus of this work is on Stanley-Reisner rings, however, other

commutative, Noetherian rings are also considered.
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Chapter 1

Introduction

The fields of Combinatorics and Commutative Algebra are closely related by the correspon-

dence between simplicial complexes and square-free monomial ideals. This correspondence

allows classification of simplicial complexes to be accomplished through the classification

of Stanley-Reisner rings. This thesis explores the relationship between depth properties of

Stanley-Reisner rings and the connectedness properties of their associated simplicial com-

plexes. In particular, this document examines the properties of complexes with Stanley-

Reisner rings that satisfy Cohen-Macaulay, Serre’s condition (S`), or a new generalization of

Serre’s condition (Sj` ).

1.1 Overview

In this section, we will explore the main topics of this thesis and introduce the main results.

For a more detailed account of these topics, see each chapter.

In Chapter 3, I use Serre’s condition and Alexander duality to explore a new perspec-

tive on the polynomial Hirsch conjecture. The polynomial Hirsch conjecture states that a

d-dimensional polyhedron with n facets has diameter bounded above by a polynomial expres-

1



sion in n−d. This conjecture is a natural weakening of the now disproven Hirsch conjecture.

A common approach to this problem is to work with generalizations of polyhedra. We con-

sider generalizations of polyhedra whose 1-skeletons G have vertices that are subsets of size

d of {1, 2, ..., n}, such that G has the following properties (see Section 1 of (EHRR10)):

1. For each u, v ∈ V (G) ∃ a path connecting u and v whose intermediate vertices all

contain u ∩ v.

2. The edge (u, v) is present if and only if |u ∩ v| = d− 1.

A graph having properties (1) and (2) is equivalent to that graph being the dual graph

of a Stanley-Reisner ring satisfying Serre’s condition (S2). Using this relationship, we are

able to build graphs with properties (1) and (2) of maximal diameter for small values of n

and d. We are also able to construct graphs for higher n and d that serve as lower bounds

for the diameter. The following table provides a lower bound on the maximal diameter of

graphs with properties (1) and (2) with small values of n and d.

Table 1.1: Bounds for small n and d
d = 2 d = 3 d = 4

n = 6 4 4 2
n = 7 5 5 3
n = 8 6 6 6
n = 9 7 7 7
n ≥ 10 n− 2 n− 1 n− 2

The first four rows of the table contain sharp bounds.

Using local duality and cohomology, we are able to prove an algebraic analogue of a

gluing lemma from (HK98). This gluing lemma allows us to glue (S2) complexes together to

make larger diametered (S2) complexes. With these new complexes, we create lower bounds

for larger n and d.
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Theorem 1.1.1. Let ∆ and ∆′ be (d−1)-dimensional complexes on n vertices whose Stanley-

Reisner rings each satisfy (S`). The Stanley-Reisner ring of ∆ ∪∆′ satisfies (S`) if the two

complexes are glued along a pure complex of dimension at least d− 2 whose Stanley-Reisner

ring satisfies (S`−1).

We are also able to demonstrate upper bounds on the diameter for quite general n and d.

This is achieved by using blocks and layers as delineated in (EHRR10). We take advantage

of the properties a dual graph must have if its Stanley-Reisner ring satisfies (S2).

In Chapter 4, I present a condition (Sj` ). The class of rings satisfying (Sj` ) is larger than

the class of rings that satisfy (S`) but retains many of the good properties possessed by

(S`) rings. A ring R satisfies (Sj` ) if for all P ∈ SpecR, depthRP ≥ min{`, dimRP − j}.

A multitude is known about Serre’s condition; in this chapter, we examine many of these

properties and how they change as (S`) is relaxed to (Sj` ).

We begin by proving a functorial condition equivalent to (Sj` ). This equivalence unlocks

the use of homological methods in examining the (Sj` ) condition and is used in many of the

proofs of this Chapter’s theorems. To introduce this equivalence, we define the following

notation. Given a ring R = S/I, let QI be a minimal prime of I of smallest height. Given

a prime p which contains I, let Qp be a minimal prime of I contained in p with smallest

height. Let αp = htQp − htQI . We note that αp = 0 for all p when R is equidimensional.

Theorem 1.1.2. Let S be an n-dimensional polynomial ring with maximal homogeneous

ideal m and let I be a homogeneous ideal or let S be an n-dimensional complete regular

local ring with maximal ideal m and let I be an ideal of S. Let R = S/I. Then R satisfies

(Sj` ) if and only if for all P ∈ SpecS containing I with htP < n − i + `, we have that

P /∈ Supp Extn−iS (R, S) for all i = 0, ..., d− j − 1− αP .

In case that the ring is pure, but all other assumptions hold, this simplifies to:
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Theorem 1.1.3. R satisfies (Sj` ) if and only if dim Extn−iS (R, S) ≤ i− ` for all i = 0, ..., d−

j − 1.

We prove a bound on cohomological dimension, which also provides information about

regularity of the Alexander dual and about projective dimension of the quotient ring.

Theorem 1.1.4. Let S be an n-dimensional regular local ring containing a field and let

a ⊂ S be a pure ideal of height c.

(1) If S/a satisfies Serre’s condition (Sj2) and dimS/a ≥ 1 + j, then

cd(S, a) ≤ n− 1− bn−2−j
c
c

(2) Suppose that S is essentially of finite type over a field. If S/a satisfies Serre’s condi-

tion (Sj3) and dimS/a ≥ 2 + j, then

cd(S, a) ≤ n− 2− bn−3−j
c
c

We generalize the result presented in Chapter 3 about dual graphs. We consider a

generalization of the dual graph described independently in (NBSW17).

Definition 1.1.5. Let Gj(R) be the graph with V (Gj(R)) = {vi = Pi} where the Pi are

the minimal primes of R, E(Gj(R)) = {(vj, vk)|1 ≤ ht(Pj + Pk) ≤ j}. We note G1(R) is the

dual graph of R.

We say a ring is j-locally connected if for any P ∈ SpecR, Gj(RP ) is connected. We

prove that a Stanley-Reisner ring satisfies (Sj2) if and only if it is j + 1-locally connected.

Yanagawa related (S2) to resolutions of the Alexander dual in (Yan00). We further

generalize his result.

Definition 1.1.6. Let R = S/I be an equidimensional Stanley-Reisner ring. We say that

I∨ satisfies (N j
c,`) if

[Torγ(I
∨,K)]β = 0 for all γ < ` and for all c+ j + γ < β ≤ n.
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Theorem 1.1.7. Let R = S/I be a d-dimensional, equidimensional Stanley-Reisner ring

with codimension c. Then the following are equivalent for ` ≥ 2:

(i) R satisfies (Sj` ).

(ii) I∨ satisfies (N j
c,`).

We generalize Reisner’s criterion which relates the Cohen-Macaulayness of a Stanley-

Reisner ring to its homologies of links.

Theorem 1.1.8. Let K be a field and ∆ be a pure simplicial complex of dimension d − 1.

Then ∆ satisfies (Sj` ) over K if and only if for every F ∈ ∆ (including F = ∅) with

|F | ≤ d− i− j − 2 and for every −1 ≤ i ≤ `− 2, H̃i(lk∆(F );K) = 0 holds true.

Finally, we explore monomial ideals. We show that (Sj` ) preserves localization and po-

larization. We show that S/I satisfying (Sj` ) implies that S/
√

(I) satisfies (Sj` ).

In Chapter 5, we define a generalization of the nerve complex. These “higher nerves”

retain connectivity information from the original family of sets. We explore in particular,

the higher nerves of simplicial complexes and discover how the higher nerves can be used to

recover properties of the initial simplicial complex. We demonstrate how to recover the the

depth of a simplicial complex and its f-vector from the homologies of these higher nerves.

We then define the jth LCM complex and relate the homologies of these complexes to the

Castelnuovo-Mumford regularity of a monomial ideal. These constructions and theorems

came from joint work with Hailong Dao, Joseph Doolittle, Ken Duna, Bennet Goekner, and

Justin Lyle.

Definition 1.1.9. Let A = {A1, A2, ..., An} be a family of sets. Consider

N(A) := {F ⊆ [r] : ∩i∈F Ai 6= ∅}.

This simplicial complex is the nerve complex of A.

5



We restrict our consideration to the case where A is the set of facets of a simplicial

complex. We note that the definition we are about to introduce can be crafted for much

more general A.

Definition 1.1.10.

Ni(∆) := {F ⊆ [r] : | ∩j∈F Aj| ≥ i}.

We call this simplicial complex the ith nerve complex of ∆ and we refer to the Ni(∆) as the

higher nerve complexes of ∆.

With these higher nerves we prove a generalization of Borsuk’s nerve theorem (Bor48).

To see this result, we must first introduce some notation.

Definition 1.1.11. Let F>k(∆) denote the face poset of ∆ restricted to faces of ∆ with

cardinality strictly greater than k.

Definition 1.1.12. The order complex of a poset P , denoted O(P ), is the simplicial complex

whose faces are all chains in P .

We will often use the following shorthand:[∆]>k = O(F>k(∆)). We prove the following

theorem:

Proposition 1.1.13 (Generalized Nerve Theorem). [∆]>j is homotopy equivalent to Nj+1(∆).

Using this Generalized Nerve Theorem and some technical lemmas we are able to prove

the following theorem, which relates both depth and the f-vector of a simplicial complex to

the homologies of its higher nerves.

Theorem 1.1.14. Let ∆ be a simplicial complex and k[∆] be its Stanley-Reisner ring. Then:

1. H̃i(Nj(∆)) = 0 for i+ j > d and 1 ≤ j ≤ d.

2. depth(k[∆]) = inf{i+ j : H̃i(Nj(∆)) 6= 0}.
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3. For i ≥ 0, fi(∆) =
d∑

j=i+1

(
j − 1

i

)
χ(Nj(∆)).

In Chapter 6, we explore rank selection theorems for balanced simplicial complexes.

Definition 1.1.15. A balanced simplicial complex is a pair (∆, π) satisfying:

1. ∆ is d− 1 dimensional simplicial complex on a vertex set V .

2. π = (V1, . . . , Vd) is an ordered partition of V .

3. For every facet F ∈ ∆ and every i ∈ [d], |F ∩ Vi| ≤ 1.

Definition 1.1.16. The S-rank selected subcomplex of ∆ is the subcomplex of ∆ induced

on
⋃
i∈S Vi.

In (Sta79), Stanley introduced the above definition and proved:

Theorem 1.1.17. Let (∆, π) be a balanced simplicial complex of dimension d − 1, where

π = (V1, . . . , Vd) and, for any S ⊆ [d], let ∆S denote the S-rank selected subcomplex of ∆.

If k[∆] satisfies Cohen-Macaulay, then k[∆S] satisfies Cohen-Macaulay for any S ⊆ [d].

Using the same hypothesis, we prove:

Theorem 1.1.18. If k[∆] satisfies (S`), then k[∆S] satisfies (S`) for any S ⊆ [d].

In answering this question, we take a broader approach remniscient of (Hib91) in which

Hibi introduces excellent sets of faces.

We say that J ⊆ V (∆) is an independent set for ∆ if {a, b} /∈ ∆ for any a, b ∈ J with

a 6= b. We say that J ⊆ V (∆) is an excellent set for ∆ if J is an independent set for ∆ and

J ∩ F 6= ∅ for every facet F ∈ ∆.

All balanced complexes are balanced between excellent sets of vertices, and therefore if

we prove a fact true for excellent sets of vertices, the fact follows as a corollary for balanced

complexes.
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Definition 1.1.19. Let T be a face of the simplicial complex ∆, then astar∆ T := {G ∈ ∆ |

T ∩G = ∅} = ∆|V−T

For a simplicial complex ∆ and an excellent set of vertices J , we define ∆̃ to be the antistar

of J over ∆. We prove the following from which Theorem 1.1.18 follows as a corollary.

Lemma 1.1.20. Suppose k[∆] satisfies (S`). Then k[∆̃] satisfies (S`).

Using similar techniques as used to prove the above results, we are able to prove the pair

of theorems:

Theorem 1.1.21. If P is a finite poset satisfying (S`), then H̃i−1(O(P>j)) = 0 whenever

i + j < d and 0 ≤ i < `. In particular, if ∆ is a simplicial complex satisfying (S`), then

H̃i−1([∆]>j) = 0 whenever i+ j < d and 0 ≤ i < `.

Theorem 1.1.22. If H̃i−1([∆]>j) = 0 whenever i + j < d and 0 ≤ i ≤ `, then ∆ satisfies

(S`).

Since, by the generalized nerve theorem 5.3.7, H̃i−1([∆]>j) ∼= H̃i−1(Nj+1(∆)) for any i

and j, Theorems 6.3.3 and 6.3.4 also serve as a version of Theorem 1.1.14 (2) for (S`).

We extend a result of Hibi and Munkres (Hib91; Mun84) to prove the following depth

formula for balanced simplicial complexes:

Theorem 1.1.23. If (∆, π) is a balanced simplicial complex with π = (V1, . . . , Vd), then

depth ∆ = min{i+ |S| | H̃i−1(∆[d]−S) 6= 0}.

Finally, we prove an analogous result for complexes satisfying Gorenstein∗ by first proving

an extension to Theorem 1.1.14(3).

Definition 1.1.24. core ∆ := ∆|coreV (∆).
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Definition 1.1.25. We say that ∆ is Gorenstein if the ring k[∆] is Gorenstein; if, in addition,

core ∆ = ∆, we say that ∆ is Gorenstein∗.

Definition 1.1.26. Let T be a face of the simplicial complex ∆, then lk∆ T := {G ∈ ∆ |

T ∪G ∈ ∆ and T ∩G = ∅}

Theorem 1.1.27. Suppose ∆ is pure. Let χ denote the Euler characteristic and χ̃ denote

the reduced Euler characteristic. Then

∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ(Nk+1(∆))− χ(Nk(∆))

This theorem leads to:

Corollary 1.1.28. Suppose ∆ is Gorenstein∗. Then

dimk H̃i−1([∆]>j) =


dimk H̃j−1(∆(j−1)) if i = d− j

0 if i 6= d− j.

The converse holds if lk∆(T ) is non-acyclic for each T ∈ ∆.

9



Chapter 2

Background

2.1 Historical Note

The study of Commutative Algebra began in the late nineteenth century as a means to

better understand algebraic geometry. Algebraic geometry is deeply concerned with the

natural endeavor of finding the vanishing loci of polynomials. Given k a field, and an ideal

I ⊆ k[x1, ..., xn], let V (I) denote the vanishing locus of I. In 1893, Hilbert proved his

Nullstellensatz, which showed that for k an algebraically closed field, the points of V (I)

are in bijection with the maximal ideals containing I. Thus the study of V (I) could be

done by examining k[x1, .., xn]/I. This study of quotient rings broadened to the study of

commutative Noetherian rings and began to develop into a field itself.

In 1928, Wolfgang Krull defined what would come to be called the Krull dimension of

a commutative Noetherian ring (Sch08). For polynomial rings, this concept operated as an

analogue of geometric dimension, while also being well-defined for more general commutative

rings. Krull proved his famous principal ideal theorem using this construction of dimension.

Through the rest of this document, when speaking of dimension, we shall be speaking of

this Krull dimension. Commutative Algebra flourished as Krull introduced the tools of

10



localization and completion.

In (Ree57), Rees introduces the grade of an ideal I ⊂ R over an R-module M . When

the I is the unique maximal ideal of R and M is R itself, we refer to the grade of the I

over M as the depth of R. Depth and dimension are foundational attributes of rings, and

much of the work in the field of commutative algebra has centered on the study of depth and

dimension. Depth is always bounded above by dimension, and it is an area of great interest

to study rings with the property depthR = dimR. Rings possessing this property are called

Cohen-Macaulay rings after the work of Francis Sowerby Macaulay and Irvin Cohen.

Serre crafted what is now known as Serre condition (S`) as a method for checking the

normality of a ring. A Cohen-Macaulay ring satisfies (S`) for all ` ≤ d. Serre condition (S`)

is a natural weakening of Cohen-Macaulay and rings satisfying Serre condition have become

an area of fervent study (DHV16; HTYZN11; MT09; PSFTY14; Ter07; Yan00).

Although commutative algebra has historically been intimately tied to algebraic geom-

etry, the field developed a strong relationship with the field of combinatorics beginning in

the 1970s. This relationship was born of a correspondence between simplicial complexes

and square-free monomial ideals. This correspondence led to the association of rings and

simplicial complexes. These rings were named Stanley-Reisner rings after Richard Stanley

and Gerald Reisner and provided the opportunity to examine combinatorial problems from

an algebraic vantage point. The intersection of the two fields blossomed as the techniques of

homological algebra and combinatorics were now applicable to solve problems in both fields.

With these developments, classifying complexes by the algebraic properties of their Stanley-

Reisner rings became a priority for many researchers. For example, a simplicial complex is

said to be Cohen-Macaulay if its Stanley-Reisner ring is Cohen-Macaulay. In (Rei76), Gerald

Reisner presented the following criterion for a simplicial complex to be Cohen-Macaulay.

Theorem 2.1.1 (Reisner’s Criterion). The following are equivalent:

11



1. k[x1, ..., xn]/I∆ is Cohen Macaulay

2. For each F ∈ ∆ the reduced homology of lkF with coefficients in k vanishes in all

dimensions except possibly the dimension of lkF .

Though proved by different methods, Reisner’s result can be derived from the later re-

leased but unpublished Hochster formula, which established a relationship between multi-

graded Betti numbers of square-free monomial ideals and simplicial homology.

Theorem 2.1.2. (Hochster) (BH98)[Hochster’s Formula (unpublished)] Let ∆ be a simpli-

cial complex. Then the Hilbert series of the local cohomology modules of S/I∆ with respect

to the fine grading is given by:

HilbHi
m(S/I∆)(t) =

∑
T∈∆

dimk H̃i−|T |−1(lk∆ T )
∏
vj∈T

t−1
j

1− t−1
j

.

Reisner’s result can be presented more generally so that it relates the homology of links

of a simplicial complex to the depth of the Stanley-Reisner ring.

Theorem 2.1.3. Let ∆ be a simplicial complex. Then depthS/I∆ ≥ t if and only if

H̃i−1(lk∆ T ) = 0 for all T ∈ ∆ with i+ |T | < t.

In 1975, Richard Stanley proved the upper bound conjecture using Reisner’s criterion

(Sta75). The results of Stanley, Hochster, and Reisner have proved instrumental in the de-

velopment of algebraic combinatorics and will be used regularlry throughout this document.

2.2 Algebraic Combinatorics

Combinatorics is the study of finite sets of elements and their relationship with each other.

This wide field spans counting, graphs, polytopes, simplicial complexes and many other

12



topics. This thesis focuses on algebraic combinatorics, in particular the study of simplicial

complexes and their associated Stanley-Reisner rings.

Fix n ≥ 0 and consider the set X = {x1, ..., xn}. A simplicial complex on the vertex set

X is a collection of subsets S of X with the property: if A ∈ S and B ⊆ A then B ∈ S.

We call these subsets faces of ∆. Faces which are maximal with respect to containment

are called facets. The dimension of the complex is one smaller than the cardinality of the

largest facet.

A major focus of Algebraic Combinatorics is the study of the reduced homologies of sim-

plicial complexes and their subcomplexes. These reduced homologies correspond to topo-

logical connectivity conditions. For a complex ∆, H̃−1(∆) = 0 if and only if the complex

is non-empty. The zeroth homology counts connected components; dim H̃0(∆) is one fewer

than the number of connected components of ∆. As will be seen, these reduced homologies

are instrumental in understanding depth properties of the complex’s associated ring.

2.3 Commutative Algebra

Commutative Algebra is the study of commutative rings, ideals of commutative rings, and

modules over commutative rings. We will be particularly interested in quotients of the ring

S = k[x1, ..., xn], where k is a field. A monomial of S is an element which factors as a product

of the xi’s. A monomial is square-free if no variable is repeated in the factorization. An

ideal I is a square-free monomial ideal if its minimal generators are square-free monomials.

A quotient ring of the form S/I where I is a square-free monomial ideal is a Stanley-Reisner

ring.

By the Stanley-Reisner correspondence, Stanley-Reisner rings have a bijective relation-

ship with simplicial complexes. To generate a Stanley-Reisner ring from a simplicial complex,

we begin by taking a polynomial ring over n variables, where n is the number of vertices in
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the simplicial complex. We then consider the facets of the simplicial complex. For each facet,

we construct a prime ideal which is generated by all the variables, which are not represented

by vertices of the facet. Intersecting these prime ideals generates the quotient ideal for our

Stanley-Reisner ring. The polynomial ring modulo this quotient ring produces the simplicial

complex’s associated Stanley-Reisner ring.

A major area of interest in Commutative Algebra is depth and depth conditions. For R

a commutative Noetherian local ring with maximal ideal m, the depth is the length of all

maximal regular sequences of R. Depth is naturally bounded above by the dimension of the

ring. A not necessarily local ring R is said to satisfy the Cohen-Macaulay property if for

each prime ideal P in the spectrum of R, depthRP = dimRP . Serre’s condition operates

as a measure of how close a ring is to satisfying Cohen-Macaulay. A ring R satisfies Serre’s

condition (S`) if for all prime ideals P in the spectrum of R, depthRP ≥ min{`, dimRP}.
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Chapter 3

On the Diameter of Dual Graphs of

(S2) Stanley-Reisner Rings

3.1 Introduction

In this section, we use the (S2) property to aid in constructing bounds on the diameter of

polyhedra. The (S2) property simplifies the process of constructing large diameter examples

for small dimensional polyhedra with small number of facets and allows us to prove a gluing

theorem, which grants us the ability to make examples of arbitrarily large diametered poly-

hedra with large numbers of facets. We also construct upper bounds in a manner inspired

by (EHRR10).

The polynomial Hirsch conjecture states that a d-dimensional polyhedron with n facets

has diameter bounded above by a polynomial expression in n− d. The diameter of a poly-

hedron is the diameter of its 1-skeleton. The polynomial Hirsch conjecture is a weakening

of the Hirsch conjecture, which was disproved by Klee and Walkup (KW67) in the general

case and Santos (San11) in the bounded case. For a history of the Hirsch and polynomial

Hirsch conjectures, see (San13). In this paper we construct bounds which improve on bounds
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from existing literature (Lar70; Bar74; EHRR10), but are not polynomial. Our bounds are

sharp for small n and d. Many authors have examined the diameters of generalizations of

polyhedra (e.g.(AD74; CS16; EHRR10; Kal92)). We consider generalizations of polyhedra

whose 1-skeletons G have vertices that are subsets of size d of {1, 2, ..., n}, such that G has

the following properties (see Section 1 of (EHRR10)):

1. For each u, v ∈ V (G) there exists a path connecting u and v whose intermediate vertices

all contain u ∩ v.

2. The edge (u, v) is present if and only if |u ∩ v| = d− 1.

Condition (2) is equivalent to the statement: G is the adjacency graph of a pure simplicial

complex. Satisfying condition (1) in addition to condition (2) says G is the adjacency graph

of a pure simplicial complex satisfying the “normal” condition as defined in Definition 3.1

in (San13). (See Remark 3.2.13 for more details). Generalized polyhedra of this type have

been considered in section 4.1 of (Kal92).

Dual graphs are an object of wide interest in commutative algebra and algebraic geometry

(e.g. (Har62; BBV17; BV15; BMS18; NBSW17)). From our setting, we shall consider the

dual graph to have vertices corresponding to the minimal primes of a ring, however, the

dual graph can be constructed in a more general setting with vertices corresponding to the

irreducible components of a scheme. It is a famous result of Hartshorne (Har62) that if X is

a connected projective scheme such that OX,x satisfies Serre’s condition (S2) for all x ∈ X,

then the dual graph of X is connected. This result is commonly known in its less general

form to say arithmetically Cohen–Macaulay projective schemes have connected dual graphs.

Stanley-Reisner rings satisfying (S2) have recently attracted much attention (MT09;

HTYZN11; PSFTY14; DHV16). It is known that a graph having properties (1) and (2)

is equivalent to that graph being the dual graph of a Stanley-Reisner ring satisfying Serre’s
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condition (S2). We shall combine techniques from commutative algebra and combinatorics

to prove bounds on the diameter of these graphs.

We define µ(d, n) to be the largest diameter of a dual graph of an (S2) Stanley-Reisner

ring of dimension d and codimension n − d. One of the main results of this paper is the

determination of the precise values of µ(d, n) for small n and d (see Table 1).

To that end we first construct upper bounds for quite general n and d. For instance,

Theorem 3.3.2 shows µ(3, n) ≤ max(2n − 10, n − 2). In Theorem 3.3.5, we prove µ(d, n) ≤

2d−2(n − d), which improves on the bound of (EHRR10) (See Remark 3.3.6). In Theorem

3.3.9, we prove µ(d, n) ≤ 3 · 2n−d−5
2 (n − d). This result is derived using our bound from

Theorem 3.3.5. Combining these results with manually generated constructions (Section

3.6), we can produce the following table of exact values of µ(d, n):

Table 3.1: µ(d, n) for small n and d
d=2 d=3 d=4

n=6 4 4 2
n=7 5 5 3
n=8 6 6 6
n=9 7 7 7
n=10+ n− 2 ≥ n− 1 ≥ n− 2

In Section 6 of (San11), Santos builds arbitrarily large complexes whose diameters exceed

the Hirsch bound by a fixed fraction. This is achieved by using a gluing lemma from (HK98),

which states that two d-dimensional polytopes, P1, P2, can be glued together yielding a new

polytope P with diamP ≥ diamP1 + diamP2 − 1. We present Theorem 3.4.2, an algebraic

analogue to the gluing lemma. This theorem tells us that two d− 1-dimensional complexes

with (S`) rings (we shall call these (S`) complexes) glued together along a pure, (S`−1)

subcomplex of dimension at least d− 2 yield an (S`) complex. The proof of Theorem 3.4.2

is achieved using local cohomology and local duality.

Applying Theorem 3.4.2, we are able to construct complexes whose Stanley-Reisner rings
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have dual graphs with arbitrarily large diameter which (with proper labeling) have properties

(1) and (2). For appropriate complexes ∆ and ∆′,

diamG(k[∆]) + diamG(k[∆′]) = diamG(k[∆ ∪∆′]).

Gluing multiple copies of examples from the small n and d cases together, we construct

graphs with properties (1) and (2) in dimensions 3 and 4 with diameters 5
4
(n − d) and

3
2
(n− d) respectively (see Theorem 3.5.3, Theorem 3.5.1). We show graphs with properties

(1) and (2) and diameter 3
2
(n− d) can be constructed for all d ≥ 4 (see Remark 3.5.6).

Introduction of terms is covered in Section 3.2.1. In Section 3.2.2, we demonstrate that

a graph having properties (1) and (2) is equivalent to that graph being the dual graph of

a Stanley-Reisner ring satisfying Serre’s condition (S2). In Section 3.3, we prove the upper

bounds introduced earlier in this section. Details of the process of gluing to preserve (S2) are

discussed in Section 3.4, and constructions of glued complexes are discussed in Section 3.5

with examples displayed in Figures 3.1 and 3.2. In Section 3.6, we show the constructions

needed which justify Table 3.1 and investigate the relationship between (S2) and Buchsbaum.

3.2 Background and Notation

3.2.1 Introduction of Terms

Definition 3.2.1. A d-dimensional polyhedron is a non-empty intersection of finitely many

closed half spaces of Rd.

Definition 3.2.2. A facet of a d-dimensional polytope is a d − 1-dimensional face of the

polytope.

Definition 3.2.3. The 1-skeleton of a polyhedron is the set of vertices and edges of the
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polyhedron.

A polyhedron is called non-degenerate if each vertex is the intersection of d facets. Any

polyhedron can be transformed into a non-degenerate polyhedron by perturbation with-

out decreasing its diameter (EHRR10). Therefore, we may restrict our attention to non-

degenerate polyhedra.

Definition 3.2.4. A facet of a simplicial complex ∆ is a simplex of ∆ which is not properly

contained in another simplex of ∆.

Definition 3.2.5. A pure simplicial complex is a simplicial complex whose facets all have

the same dimension.

We remind the reader that a (d− 1)-dimensional simplicial complex has a d-dimensional

Stanley-Reisner ring. We will use as notation ∆R to be the simplicial complex with Stanley-

Reisner ring R. We shall use ∆ when the ring is either unspecified or clear from context.

Let k be a field and S = k[x1, ..., xn]. Let ∆ be a pure, (d − 1)-dimensional simplicial

complex with Stanley-Reisner ring R = S/I, where I is the intersection of the minimal prime

ideals Pi of R. For each Pi there exists a facet of ∆, call it Fi such that Pi is generated by

{xj|xj /∈ Fi} (see e.g., the survey (FMS14) for proof). Thus purity of ∆ is equivalent to each

Pi being generated by n− d distinct variables.

Definition 3.2.6. Let G(R) be the graph with V (G(R)) = {vi = Πxj} where the xj’s

generate Pi, E(G(R)) = {(vj, vk)| ht(Pj + Pk) = 1}. Then G(R) is the dual graph of R.

This type of graph is often constructed in a more general setting applying to schemes

(e.g. (BBV17)). This definition follows the definition of Hochster and Huneke (HH94) and

is equivalent to other definitions, (e.g. (BBV17)). In this paper we consider dual graphs

of Stanley-Reisner rings. It should be noted that not every graph is a dual graph of a

Stanley-Reisner ring (BV15)).
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Definition 3.2.7. Let ∆ be a simplicial complex on {1, 2, · · · , n}. The Alexander dual of

∆ is

∆∨ = {F ⊆ {1, 2, · · · , n}|{1, 2, · · · , n}\F /∈ ∆}.

Let S/I be the Stanley-Reisner ring of ∆, S/I∨ be the Stanley-Reisner ring of ∆∨. We

refer to I∨ as the Alexander dual of I. The Alexander dual of I is generated by the product

of the generators of each minimal prime ideal of I (see e.g. the survey (FMS14) for proof).

Example 3.2.8. Let S = k[x1, x2, x3, x4, x5, x6] and

I = 〈x1x3x5, x1x3x6, x1x4x5, x1x4x6, x2x3x5, x2x3x6, x2x4x5, x2x4x6〉 =

〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉.

Then I∨ = 〈x1x2, x3x4, x5x6〉.

Remark 3.2.9. We notice that the vertices of G(S/I) are in one to one correspondence with

the generators of I∨. Also, when S/I is an equidimensional d-dimensional ring, each vertex

of G(S/I) is comprised of n−d variables. Finally, notice that by definition every dual graph

of an equidimensional ring has property (2).

Definition 3.2.10. Define Ḡ(R), to be isomorphic to G(R) but each vertex labeled by a

square-free monomial µ is now labeled by the complementary square-free monomial.

The graph Ḡ(R) is a relabeling of G(R). We construct this labeling so that our graphs

fit the setting of (EHRR10), and so that we can determine if our graphs have properties (1)

and (2).

Remark 3.2.11. We note Ḡ(R) is the facet-ridge graph of the complex with Stanley-Reisner

ring R.
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Definition 3.2.12. A ring R is locally connected if for any two vertices v̄i, v̄j ∈ Ḡ(R), there

exists a path between them such that each vertex in the path contains v̄i ∩ v̄j.

Locally connected is also referred to as ultra connected in (Kal92).

Remark 3.2.13. Locally connected graphs are referred to as normal graphs in certain

combinatorial circles (San13). Normality of a graph is a notion unrelated to normality of

a ring. To avoid this confusion, we use the name “locally connected.” This name has been

motivated by Theorem 3.2.17, which connects this property of Ḡ(R) to localization of the

ring R.

3.2.2 Serre’s Condition

We have shown graphs with properties (1) and (2) from (EHRR10) are an abstraction of 1-

skeletons of non-degenerate polyhedra. Ensuring a graph satisfies property (2) is not difficult.

Using Serre’s condition and syzygy matrices, we demonstrate a simple method to ensure a

dual graph of an (S2) Stanley-Reisner ring satisfies property (1).

Definition 3.2.14. A ring satisfies Serre’s condition (S`) if for all P in SpecR,

depthRP ≥ min{`, dimRP}.

Definition 3.2.15. Let M be an R module with minimal generating set {z1, z2, ..., zk}. A

first syzygy of M is a non-zero vector (a1, ..., ak) ∈ Rk such that a1z1 + ... + akzk = 0. A

first syzygy matrix of a module is a matrix whose columns span all the first syzygies of that

module.

Theorem 3.2.16 (Yanagawa). The Stanley-Reisner ring R = S/I satisfies (S2) if and only

if R is equidimensional and I∨ has a first syzygy matrix with only linear entries.
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This theorem is true by Corollary 3.7 in (Yan00). Since checking the linearity of a first

syzygy matrix can be easily done computationally, this theorem provides us with a simple way

to demonstrate if a Stanley-Reisner ring satisfies (S2). Now we connect (S2) to our locally

connected condition. We will use local duality, the Ext module, and local cohomology. For

background on these topics, see a Homological Algebra text (e.g. (Wei94)).

Theorem 3.2.17. Let R be an equidimensional Stanley-Reisner ring. The following are

equivalent:

1. R satisfies (S2).

2. For any prime ideal P generated by variables, G(RP ) is connected.

3. Ḡ(R) is locally connected.

Proof. (2) ⇔ (3): Let S be a subset of {x1, ...xn}. Let Ḡ(R)S be the induced subgraph of

Ḡ(R) with

V (Ḡ(R)S) = {v ∈ V (Ḡ(R))|xi ∈ v for all xi ∈ S}.

Ḡ(R) is locally connected if and only if Ḡ(R)S is connected for any choice of S. By the

definition of Ḡ(R), Ḡ(R)S is a relabeling of a subgraph of G(R) whose vertices are the minimal

prime ideals of R contained in P , the prime generated by {xj|xj /∈ S}. This subgraph is

G(RP ). Therefore G(RP ) connected for all primes generated by variables is equivalent to

Ḡ(R) being locally connected.

(1) ⇒ (2): Suppose G(RP ) is not connected for some nonempty set of primes generated

by variables in SpecR. Note that every prime in this set must have height at least 2. Let

us choose any prime P maximal in this set. If G(RP ) is not connected then Ḡ(RP ) is not

connected. Suppose Ḡ(RP ) contains two distinct components, each of which contain xi ∈

SuppRP . Then Ḡ(RP ) can be localized at S = xi to yield a disconnected graph, contradicting

the maximality of P . Therefore, each connected component of Ḡ(RP ) is composed of disjoint
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sets of variables. The vertices of Ḡ(RP ), however, represent the facets of the simplicial

complex ∆RP
. Therefore, we have that ∆RP

is not connected, which implies H1
PRP

(RP ) 6= 0.

Thus depthRP ≤ 1; however, htP ≥ 2, and thus dimRP ≥ 2. Therefore, R is not (S2).

(1)⇐ (2): Using local duality, we have a ring R satisfies (S2) if and only if

dim Extn−iS (R,ωS) ≤ i − 2 for all i < d (see Lemma 3.4.1). From (Yan00), since R is a

Stanley-Reisner ring, Extn−iS (R,ωS) is a square-free module. Thus Extn−iS (R,ωS) is uniquely

determined by its primes generated by variables. The dimension of Extn−iS (R,ωS) determines

if R satisfies (S2). Therefore, we only need consider primes generated by variables when

showing that R satisfies (S2).

If G(RP ) is connected for all primes generated by variables in SpecR, then ∆RP
is con-

nected for all primes generated by variables with height at least 2 in SpecR. When htP ≥ 2,

∆RP
is connected if and only if H1

PRP
(RP ) = 0. Further, H0

PRP
(RP ) = 0 for all P ∈ SpecR,

since R is a Stanley-Reisner ring. Thus depthRP ≥ 2 for all primes generated by variables

with height at least 2, and depthRP ≥ 1 for all primes generated by variables with height

1. Thus R satisfies (S2).

Definition 3.2.18. Given a graph G with each vertex labeled with the same number of

variables the following are equivalent:

1. G has properties (1) and (2) from (EHRR10).

2. G is Ḡ(R) with R an equidimensional Stanley-Reisner ring, and G has local connected-

ness.

3. G is Ḡ(R) with R an (S2) Stanley-Reisner ring.

4. G is Ḡ(R) with R = S/I an equidimensional Stanley-Reisner ring such that the Alexan-

der dual of I, I∨, has first syzygy matrix with all linear entries.
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Proof. (1)⇒ (2): Let each vertex label of G be a facet of a pure simplicial complex ∆. Let

the Stanley-Reisner ring of ∆ be R. Then G has the same vertex set as Ḡ(R). Property (2)

implies that G has the same edge set as the dual graph of R. Property (1) is equivalent to

locally connected.

(1) ⇐ (2): Property (2) is required by the definition of a dual graph. Property (1) is

precisely the same as local connectedness.

(2)⇔ (3): A ring with property (S2) is equidimensional. Thus, by Theorem 3.2.17, Ḡ(R)

is locally connected if and only if R satisfies (S2).

(3)⇔ (4): See Theorem 3.2.16.

3.3 Upper Bounds

In this section we prove upper bounds for the diameters of dual graphs of (S2) Stanley-Reisner

rings. This is achieved by working with Ḡ(R) (see Section 3.2.1).

Definition 3.3.1. A strictly increasing path is a path such that the kth vertex has distance

k from the starting vertex.

Theorem 3.3.2. For n ≥ 3, µ(3, n) ≤ max(2n− 10, n− 2).

Proof. We construct this upper bound in a manner inspired by (EHRR10). Let R be an (S2)

Stanley-Reisner ring, such that Ḡ(R) has vertices named ABC,DEF with maximum distance

in the graph. Let us assign to each vertex v the integer dist(ABC, v), where dist(ABC, v)

denotes the length of the shortest path from ABC to v. We define layers Li = {v ∈

V (Ḡ(R))| dist(ABC, v) = i}.

Define a block of layers to be a set of layers {Li|a ≤ i ≤ b} for some integers a, b. Let c

be the largest integer such that Lc contains A,B, or C. Let B1 = {Li|0 ≤ i ≤ c}. Let n0

be the number of variables in B1. Without loss of generality, A is contained in Lc. By local
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connectedness, there exists a path consisting of vertices which all contain A from L0 to Lc.

This path can have maximum length n0 − 3 (see the d = 2, n = n0 − 1 case in Section 3.6).

Next, we construct a second block. Let d be the largest integer such that Ld contains

a variable of Lc; call this variable a1. Let B2 = {Li|c < i ≤ d}. Let n1 be the number of

variables in B2 but not in B1. The diameter of this layer will be bounded by the maximum

length of a path in which each vertex contains a1. This path will have maximum length of

n1 +n0− 3− 3 (the second −3 is to account for the fact that A,B,C cannot be in the layers

of this block).

Construct the third block B3 in the same way. Its longest path will have maximal length

n2 + n1 − 3 − 3. By construction, B3 cannot have any elements in common with B1. Also,

B3 does not contain any variables in the c+ 1 layer (there are at least 3 such variables).

Continue in this manner.

We sum the lengths of the blocks and add 1 for each path between blocks to obtain:

2n0 + 2n1 + · · ·+ 2nk−2 + nk−1 − 5(k − 2)− 8 where k is the number of blocks.

k ≥ 3 implies diam Ḡ(R) ≤ 2n− 13.

k = 1 implies n0 = n and diam Ḡ(R) ≤ n− 3.

Let k = 2. If ADE, ADF , or AEF is a vertex, then our path containing A has length at

most n−3, and some vertex in that path is adjacent to DEF . Therefore, diam Ḡ(R) ≤ n−2.

Let Lj be the largest layer containing the vertex xi. Define Lxi = j. Let LA ≥ LB ≥ LC .

Let i∗ = min{i | AD ⊆ v ∈ Li} ≤ min{i | AE ⊆ v ∈ Li} ≤ min{i | AF ⊆ v ∈ Li}. Denote

the vertex containing AD in Li∗ to be v∗ (if more than one exists choose any such one).

Consider the case LA = n− 3. To maximize i∗, we must have a path with tail:

AxiD,AxjD,AxjE,AxkE,AxkF.

Thus the path from ABC to v∗ must have length at most n− 7. The maximum length from
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v∗ to DEF is n− 3. Thus, LD ≤ 2n− 10.

Consider the case where LA = n − 4. Take v ∈ Ln−4 such that A ∈ v and construct a

path from ABC to v. If the path contains AD,AE, and AF , then the path from ABC to

v∗ must have length at most n− 7. If this path does not contain one of those, say AF , then

i∗ ≤ n − 6. If i∗ = n − 6, then LA ≥ LB ≥ LC implies any strictly increasing path from v∗

to DEF of vertices all containing D cannot have both a vertex containing B and a vertex

containing C. Thus LD ≤ i∗ + n− 4 = 2n− 10. Consider i∗ < n− 6. Any path from v∗ to

DEF will be at most length n− 3. Thus LD ≤ 2n− 10.

Now suppose LA ≤ n − 5. Then i∗ ≤ n − 5. Further, B,C /∈ Lj for all j > n − 5.

Thus any path from LA to DEF in which each vertex contains D, will have maximal length

n− 3− 2. Thus LD ≤ 2n− 10.

Definition 3.3.3. µ(4, 8) ≤ 6.

Proof. Let us consider v1, v2 ∈ Ḡ(R). If v1 ∩ v2 6= ∅ then we can reduce to the n = 7,

d = 3 case, and thus dist(v1, v2) ≤ 5. Thus assume v1 ∩ v2 = ∅. Connectivity implies there

exists v3 adjacent to v1. The vertex v3 must have a non-trivial intersection with v2, thus

dist(v2, v3) ≤ 5. Therefore, dist(v1, v2) ≤ 6.

Definition 3.3.4. For d ≥ 4, µ(d, d+ 4) = 6.

Proof. Let R be a codimension-four, (S2) Stanley-Reisner ring of dimension at least 4. Take

v1, v2 ∈ V (Ḡ(R)). Then, v1, v2 will each contain n− 4 variables, and v1 ∩ v2 will contain at

least n− 8 variables. Thus there must be a path from v1 to v2 in which each vertex in that

path contains those n − 8 shared variables. Thus µ(d, d + 4) ≤ µ(4, 8). Furthermore, we

may take the graph in Figure 3.8 (see Section 3.6) and add the same d− 4 variables to each

vertex to show µ(d, d+ 4) ≥ 6.
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Let us now construct bounds for more general values of n and d.

Theorem 3.3.5. µ(d, n) ≤ 2d−2(n− d), for all d ≥ 2 and all n ≥ d.

Proof. Applying Theorem 3.3.2, µ(3, n) ≤ 2n− 6 for all n ≥ d. Thus the d = 3 case holds.

We begin induction on d. Let us partition the vertices of Ḡ(R) into layers and blocks, as in

the proof of Theorem 3.3.2.

If Ḡ(R) has 1 block, then there is a variable which is contained in each layer of the graph.

Thus diam Ḡ(R) ≤ µ(d−1, n−1). But by induction µ(d−1, n−1) ≤ 2d−3(n−d) ≤ 2d−2(n−d).

Now suppose we have multiple blocks. Then the first block will be bounded in diameter

by µ(d− 1, n0 − 1), where n0 is the number of variables in the block. The second block will

be bounded in diameter by µ(d − 1, n0 + n1 − d − 1). The third block will be bounded by

µ(d−1, n1 +n2−d−1), and so on. Using k for the number of blocks and using the induction

hypothesis, we get:

µ(d, n) ≤ 2d−3(n0−d)+1+2d−3(n1 +n0−d−1−(d−1))+1+2d−3(n2 +n1−d−1−(d−1))+1

+ · · ·+ 2d−3(nk−1 + nk−2 − d− 1− (d− 1)) ≤ 2d−2n− 2d−3(d+ 2d(k − 1)) + k − 1 ≤

2d−2n− 2d−3(3d) + 1 ≤ 2d−2(n− d).

Remark 3.3.6. In (EHRR10), Eisenbrand et al. proved Larman’s (Lar70) bound 2d−1n

holds for graphs with property (1). Theorem 3.3.5 shows a stronger bound holds for graphs

with properties (1) and (2). In (Lar70), Larman showed that 2d−3n is an upper bound for the

diameter of polytopes of dimension at least 3. In (Bar74), Barnette strengthened Larman’s

bound to 1
3
2d−3(n− d + 5

2
). Our bound is slightly weaker than the bounds of Barnette and
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Larman; however, in Section 3.5 we will show by construction that the bounds of Barnette

and Larman do not hold in our generality (see Theorem 3.5.1 and 3.5.3).

From Proposition 2.10 of (KW67), it follows that µ(d, n) ≤ µ(n − d, 2(n − d)). This

fact gives rise to the d-step conjecture, which states µ(d, 2d) ≤ d for all d. We may rewrite

this conjecture as µ(n − d, 2(n − d)) ≤ n − d. Thus, the d-step conjecture is equivalent to

the Hirsch conjecture. A natural generalization of the d-step conjecture is µ(d, 2d) ≤ p(d)

where p(d) is a polynomial in d. Again d = n− d, and thus we have that this conjecture is

equivalent to the polynomial Hirsch conjecture.

We examine upper bounds on µ(d, d+ k). We note µ(d, d+ k) = µ(k, 2k) by (KW67).

Theorem 3.3.7. µ(d, d+ 5) ≤ 8.

Proof. Choose any v1, v2 ∈ Ḡ(R). From (KW67), we have µ(d, n) ≤ µ(n− d, 2n− 2d). Thus

we may reduce to the d = 5 case. Let v1 = ABCDE. We will consider cases based on v2 to

deduce the bound on diameter.

If v2 = FGHIJ , then without loss of generality, we will have BCDEF and CDEFG

in V (Ḡ(R)). The vertices CDEFG and FGHIJ will have distance bounded by µ(3, 8) (see

Table 3.1). Thus dist(CDEFG,FGHIJ) ≤ 6. Thus dist(v1, v2) ≤ 8.

If v2 = EFGHI, then either Ḡ(R) contains ABCEF or Ḡ(R) contains ABCEJ and

ABEFJ . For both scenarios, the graph will be bounded by two more than the d = 3, n = 8

case. Thus dist(v1, v2) ≤ 8.

If degree(v1 ∩ v2) ≥ 2, then dist(v1, v2) is bounded by the d = 3, n = 8 case and is at

most 6.

Theorem 3.3.8. µ(d, d+ 6) ≤ 14.

Proof. Choose any v1, v2 ∈ Ḡ(R). As before, we can reduce to the d = n − d case. Let

v1 = ABCDEF .

28



If degree(v1 ∩ v2) ≥ 3, then diam Ḡ(R) is bounded by 7 (the d = 3 n = 9 case, see Table

3.1).

Now suppose degree(v1∩v2) ≤ 2. There must exist a vertex v3 such that degree(v3∩v1) ≥

3 and degree(v3 ∩ v2) ≥ 3.

But then dist(v1, v3) ≤ 7, and dist(v3, v2) ≤ 7. Thus dist(v1, v2) ≤ 14.

Theorem 3.3.9. For d ≥ 2:

µ(d, d+ k) ≤ 3 · 2
n−d−5

2 (n− d).

Proof. We only need to consider the case (n− d, 2(n− d)).

We will first consider the case n− d is even. In this case,

µ(n− d, 2(n− d)) ≤ 2µ

(
1

2
(n− d),

3

2
(n− d)

)
≤ 2(2

n−d
2
−2(n− d))

= 2
n−d−2

2 (n− d) ≤ 3 · 2
n−d−5

2 (n− d).

Next we consider the case n− d is odd. Then

µ(n− d, 2(n− d))

≤ µ

(⌊
n− d

2

⌋
, 2(n− d)−

⌈
n− d

2

⌉)
+ µ

(⌈
n− d

2

⌉
, 2(n− d)−

⌊
n− d

2

⌋)

≤ 2b
n−d

2 c−2(n− d) + 2d
n−d

2 e−2(n− d) = 3 · 2
n−d−5

2 (n− d).
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3.4 Gluing

In (San11), Santos uses a gluing lemma to construct polyhedra with arbitrarily many facets

whose diameters exceed n − d by a fixed fraction. We will construct an algebraic analogue

to this gluing lemma, which will allow us to construct (S`) complexes with arbitrarily many

facets whose diameters exceed n− d by a fixed fraction.

The facet-ridge graph of an (S`) complex is Ḡ(R), where R = S/I is that complex’s

Stanley-Reisner ring. Thus by making these (S2) complexes, we are making dual graphs of

Stanley-Reisner rings satisfying (S2) with arbitrarily large n whose diameters exceed n − d

by a fixed fraction.

In this section, we will make use of the ext module ExtiS(R, S) and the cohomology

module H i
PRP

(RP ). For background on these modules, see a text on Homological Algebra

(e.g. (Wei94)). We can describe (S`) in terms of the dimension of the Ext module. This

fact is key to the proof that proper gluing will maintain (S`). The following lemma appears

without proof in (Vas05, Proposition 3.1).

Lemma 3.4.1. Let ∆ be a pure complex with Stanley-Reisner ring R. R satisfies (S`) if and

only if

dim Extn−iS (R,ωS) ≤ i− ` for all i = 0, · · · d− 1.

Proof. We reconstruct the proof from (DHV16).

Suppose R satisfies (S`). If i < ` ≤ depthR then Extn−iS (R, S) = 0. Thus,

dim Extn−iS (R, S) = −∞,

and we are finished. Otherwise, let us take P a prime ideal of S containing I. Let h be the

height of P . If h < n− i+ `, then h− n+ i < `. Further dimRP = h− n+ d > h− n+ i.
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Thus depthRP > h− n+ i. Therefore,

0 = H
(h−n+i)
PSP

(RP ) ∼= Extn−iSP
(RP , SP ) ∼= Extn−iS (R, S)P for all i = 0, ..., d− 1.

So P /∈ Supp Extn−iS (R, S) whenever htP < n− (i− `). Thus dim Extn−iS (R, S) ≤ i− `.

Suppose dim Extn−iS (R, S) ≤ i− ` for all i = 0, ..., d− 1. Let ht I = c. Let Vh be the set

of prime ideals of S of height h containing I for h = c, ..., n. Then we have the following

equivalences:

R satisfies (S`) ⇔

depthRP ≥ min{`, h− c} =: b for all h = c, ..., n, for all P ∈ Vh ⇔

H i
PSP

(RP ) = 0 for all h = c, ..., n, for all P ∈ Vh, for all i < b ⇔

Exth−iSP
(RP , SP ) = 0 for all h = c, ..., n, for all P ∈ Vh, for all i < b ⇔

dim Exth−iSP
(RP , SP ) < n− h for all h = c, ..., n, for all P ∈ Vh, for all i < b.

When i < b ≤ h− c, n− h+ i < n− c = d. For all i < d, dim Extn−iS (R, S) ≤ i− `. Thus

dim Exth−iS (R, S) = dim Ext
n−(n−h+i)
S (R, S) ≤ n− h+ i− ` < n− h

for all h = c, · · · , n, for all i < b.

Theorem 3.4.2. Let ∆ and ∆′ be (d−1)-dimensional complexes on n vertices whose Stanley-

Reisner rings each satisfy (S`). The Stanley-Reisner ring of ∆ ∪∆′ satisfies (S`) if the two

complexes are glued along a pure complex of dimension at least d− 2 whose Stanley-Reisner
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ring satisfies (S`−1).

Proof. Let us use the notation R∆ to refer to the Stanley-Reisner ring of ∆.

If ` = 1, any gluing will preserve the (S1) property, since every simplicial complex satisfies

(S1).

Thus let us consider ` ≥ 2, noting every (S2) complex is pure (Yan00).

Take the short exact sequence

0→ R∆∪∆′ → R∆ ⊕R∆′ → R∆∩∆′ → 0.

Then take the long exact sequence in Ext:

· · · → Extn−iS (R∆ ⊕R∆′ , ωS)→ Extn−iS (R∆∪∆′ , ωS)→ Ext
n−(i−1)
S (R∆∩∆′ , ωS)→ · · · .

Since Ext is an additive functor:

Extn−iS (R∆ ⊕R∆′ , ωS) ∼= Extn−iS (R∆, ωS)⊕ Extn−iS (R∆′ , ωS).

Since R∆ and R∆′ are (S`), Lemma 3.4.1 gives

dim Extn−iS (R∆, ωS) ≤ i− `

and

dim Extn−iS (R∆′ , ωS) ≤ i− `.

Therefore

dim Extn−iS (R∆, ωS)⊕ Extn−iS (R∆′ , ωS) ≤ i− ` for all i < d.
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Suppose R∆∩∆′ is an equidimensional, (S`−1) ring of dimension at least d − 1. Then we

also have

dim Ext
n−(i−1)
S (R∆∩∆′ , ωS) ≤ (i− 1)− (`− 1) = i− ` for all i < d.

Therefore,

dim Extn−iS (R∆∪∆′ , ωS) ≤ i− ` for all i < d.

Thus, gluing any two (S2) complexes along a pure subcomplex of dimension at least d−2

yields an (S2) complex. In particular, gluing two (S2) complexes along a facet yields an (S2)

complex.

3.5 Complexes Built by Gluing

In this section, we create lower bounds for large n and d by taking copies of the graphs

in Section 3.6 and gluing them along a shared vertex. The graphs from Section 3.6 are

facet-ridge graphs of (S2) complexes. Thus, gluing along a vertex is equivalent to gluing

the complexes along a facet. Therefore, by Theorem 3.4.2, gluing along a vertex yields a

facet-ridge graph of an (S2) complex.

Theorem 3.5.1. µ(4, 4k + 4) ≥ 6k.

Proof. We construct a graph composed of k copies of the graph in Figure 3.8 by gluing the

vertex ABCD to the vertex EFGH. Each copy adds 6 to the diameter, since all adjacent

vertices lie in the same copy of Figure 3.8. The new graph retains local connectedness by

Theorem 3.4.2.
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The complex in Figure 3.1 is an example when k = 2.

Thus, we have a lower bound of 3
2
(n− d) when n = 4k + 4 and d = 4.

Definition 3.5.2. µ(4, 4k + 4 + j) ≥ 6k + j.

Proof. Start with the graph made of k copies of Figure 3.8. Then append the vertex

x6k−3x6k−2x6k−1x6k+1. If j ≥ 2 then append x6k−2x6k−1x6k+1x6k+2. If j = 3 then append

x6k−1x6k+1x6k+2x6k+3.

For the d = 3 case, we will consider three graphs: The graph G0 from Figure 3.6, the

graph G1 from Figure 3.7, and the graph G2, which is the graph G1 with {I, J,K} appended

to the end.

Theorem 3.5.3. µ(3, 8k + 2) ≥ 10k − 1.

Proof. Construct a graph composed of k−1 copies of G2 by gluing ABC to IJK. Then glue

a copy of G1 to the end. Each copy of G2 adds 10 to diameter, since all adjacent vertices

lie in the same copy of G2. Gluing G1 adds 9 to the diameter. The new graph retains local

connectedness by Theorem 3.4.2.

This yields a lower bound of 5
4
(n− d) when n = 8k + 2, d = 3.

Definition 3.5.4. µ(3, 8k + 3 + j) ≥ 10k + j when j ≥ 0.

Proof. Take the graph constructed in Theorem 3.5.3. Append the vertices {n − 2 + i, n −

1 + i, n+ i} for i = 1...j + 1. This will be a locally connected graph of diameter 10k+ j.

Theorem 3.5.5. µ(3, 8k + 3 + j) ≥ 10k + j + 1 when j ≥ 4.

Proof. Glue G0 to k − 1 copies of G2. Then glue one copy of G1. If j ≥ 5 then append

{n − 6 + i, n − 5 + i, n − 4 + i} for i = 5...j. This graph has diameter 10k + j + 1 and is

locally connected by Theorem 3.4.2.
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Figure 3.2 depicts the case where d = 3, n− d = 12.

Remark 3.5.6. To construct a graph with d ≥ 4, codim = 4k, and diameter 3
2
(4k), begin

with the construction for d = 4, n = 4k + 4 given above. This construction has the desired

diameter 3
2
(4k). Add the new variables xn+1, ..., xn+(d−4) to each vertex of this graph to

generate the desired graph.

ABEGBDEG ACEG
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BDGH

CDFH BDFH

CDGH

ACFH

CDEF

BCDE

ABCD ABGH

ABCH

ABEF

BEFH

CEGH

EFGH

FGHI

EFGL

GHIJ

FGIK

EGIJ EFIJ

FIJLEFIK EGIK

EGJL GHJL FHJL GIKL

IJKLEFKL FHKL GHKL

Figure 3.1

DJN
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FJM

DJM

FJO

EJNEIN

FIO

DIM

EFI

DFI

DEF

DKN

FKM

EKO EKM

FKN

DKO

ELM

FLN

DLO

LMO

LMN

MNODEHAEHAEGADGABDABC

CDHCDGCEGBCE

Figure 3.2

3.6 Constructing Graphs to Identify Lower Bounds

In this section, for d and n fixed, we construct lower bounds for the maximum diameters

of dual graphs of equidimensional Stanley-Reisner rings satisfying (S2). We achieve this by

constructing graphs with properties (1) and (2). Recall, µ(d, n) is the largest diameter of a

dual graph of an equidimensional, (S2) Stanley-Reisner ring of dimension d and codimension

n− d.
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Theorem 3.6.1. Table 1 (see Section 3.1) presents µ(d, n) for small values of d and n.

This theorem is proved by the propositions of this section.

Proposition 3.6.2. For n ≥ 2, µ(2, n) = n− 2.

Proof. R satisfies (S2) if and only if Ḡ(R) is locally connected. In the d = 2 case, locally

connected is equivalent to connected. Thus we construct a connected graph. Create a vertex

v1 = x1x2. We wish to create another vertex v2 adjacent to v1. Without loss of generality,

v2 = x1x3. Any vertex not adjacent to v1 but adjacent to v2 must be of the form x3xi

(i 6= 1, 2, 3). Thus we may choose v3 = x3x4. Continuing this process, we see that µ(2, n) is

bounded above by the number of variables in R that are not contained in v1. We also see

that this construction yields a graph of diameter n − 2. Thus µ(2, n) = n − 2. Figure 3.3

shows a graph with properties (1) and (2) of diameter 3 when n = 5, d = 2.

BCAB CD DE

Figure 3.3

Proposition 3.6.3. µ(3, 6) = 3.

Proof. Let us consider any distinct pair of vertices v1, v2 ∈ Ḡ(R). If deg(v1 ∩ v2) = 2 then

v1, v2 are adjacent. If deg(v1 ∩ v2) = 1, then local connectedness of the graph requires that

there exists a path from v1 to v2 such that each vertex in the path contains v1 ∩ v2. Thus

applying Proposition 3.6.2, the distance between these two vertices is bounded above by

µ(2, 5) = 3. If deg(v1 ∩ v2) = 0, then every vertex is either adjacent to v1 or adjacent to v2.

Therefore µ(3, 6) ≤ 3. Adding F to every vertex label in Figure 3.3 produces a diameter-3

graph with properties (1) and (2) with d = 3, n = 6. Therefore µ(3, 6) = 3.

Definition 3.6.4. For d ≥ 2, µ(d, d+ 3) = 3.
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Proof. Let R be a codimension-3, (S2) Stanley-Reisner ring. Take v1, v2 ∈ V (Ḡ(R)). Then,

v1, v2 will each contain n− 3 variables, and v1∩ v2 will contain at least n− 6 variables. Thus

there must be a path from v1 to v2 in which each vertex in that path contains those n − 6

shared variables. Thus µ(d, d + 3) ≤ µ(3, 6). Furthermore, we may take the graph with

vertex set {ABC,BCD,CDE,DEF} and add the same d − 3 variables to each vertex to

show µ(d, d+ 3) ≥ 3.

Proposition 3.6.5. µ(3, 7) = 5.

Proof. Figure 3.4 is an example of a diameter-5 graph with properties (1) and (2) with d = 3,

n = 7. Thus µ(3, 7) ≥ 5. In Theorem 3.3.2, we proved µ(3, 7) ≤ 5.

CDG

AEG

CEG

ADGABD

BCE

ABC AEF

CDF

DEF

Figure 3.4

To see that Ḡ(R) is locally connected, we take any subset of variables S and check that the

vertices containing S form a connected subgraph. Below, we color the variables containing

E red.

CDG

AEG

CEG

ADGABD

BCE

ABC AEF

CDF

DEF

Figure 3.5

Proposition 3.6.6. µ(3, 8) = 6.
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Proof. Figure 3.6 is an example of a diameter-6 graph with properties (1) and (2) with d = 3,

n = 8. Thus µ(3, 8) ≥ 6. In Theorem 3.3.2, we proved µ(3, 8) ≤ 6.

CDG

AEG

CEG

ADGABD

BCE

ABC AEF

CDF

DEF DEH

Figure 3.6

Proposition 3.6.7. µ(3, 9) = 7.

Proof. By 3.3.2, µ(3, 9) ≤ 8. We will exhaustively prove that a graph with properties (1)

and (2) and with diameter 8 cannot be constructed when n = 9, d = 3. We will use the

names A,B,C,D,E, F,G,H, I to represent our variables.

Suppose there exists a diameter-8 graph G with properties (1) and (2). Then G contains

at least two vertices which are connected by paths of length no less than 8. Without loss

of generality, let one of these vertices be ABC, name the other v2. If v2 ∪ ABC 6= ∅ then

the shortest path from v2 to ABC is at most µ(8, 2) = 6. Thus without loss of generality

v2 = GHI.

The graph G being connected implies V (G) contains either ABD or ABG (without loss

of generality). If ABG ∈ V (G), the shortest path from ABG to GHI will be at most

µ(8, 2) = 6, and thus the diameter of the graph will be at most 7. Thus, we cannot have

a vertex containing G,H, or I adjacent to ABC. By symmetry, we note we cannot have a

vertex containing A,B, or C adjacent to GHI.

Thus, ABD ∈ V (G).

Suppose a vertex containing G,H, or I has shortest path 2 to ABC in V (G). Then

without loss of generality, ADG ∈ V (G). Then G must have a path of length 6 from ADG
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to GHI containing G in each vertex. BC cannot be contained in any vertex of this path

or else the graph will not have diameter 8, since any vertex containing BC is adjacent to

ABC. But a path of length 6 with each vertex containing G must contain all 8 variables,

since µ(7, 2) < 6. Furthermore, we have that B and C cannot be in a vertex adjacent to

GHI. Therefore, we have that the vertex following ADG in the path must contain B or C.

Either way this vertex may not contain A since ABC would then be adjacent to this vertex,

and the graph would no longer have diameter 8. If this vertex contains BD we also would

have an adjacnecy which would shoten the diameter of the graph. Thus our next vertex in

the path must be CDG. Without loss of generality, our next vertex must be CEG. Our

path must finish BEG,BFG,FGH,GHI.

Thus, ABD ∈ V (G) implies V (G) contains

ABC,ABD,ADG,CDG,CEG,BEG,BFG,FGH,GHI.

The locally connected property of G implies the vertices containing B must form con-

nected subgraph. To not shorten the diameter of the graph, we need a path connecting ABC

to BFG of length 6 and every vertex must contain B. Since µ(7, 3) < 6 we must use every

variable in this path. There must be a vertex in the path adjacent to ABD that does not

contain AB,BC,BE,BF,BG, or HI. Thus we must have BDH or BDI. There also must

be a vertex in the path adjacent to BDH/BDI that does not contain AB,BC,BE,BF,BG,

or HI. This however is impossible.

Therefore, we cannot have a vertex containing G,H, or I with shortest path to ABC

less than 3. By symmetry, a vertex containing A,B, or C cannot have shortest path to GHI

less than 3.

Without loss of generality, our graph contains the vertices ABC,ABD, ADE, and GHI.

Suppose we have a vertex containing G,H, or I that has shortest path 3 to ABC. Without
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loss of generality, V (G) contains AEG or DEG.

First suppose DEG ∈ V (G). The vertices DEG and GHI must be connected by a path

with length at least 5 in which each vertex contains G. As noted above, we cannot have a

vertex containing A,B, or C with shortest path 2 or fewer to GHI. There must be a vertex

adjacent to GHI containing G. This vertex, however, cannot contain A,B,C,D,E or else

it will shorten the diameter of the graph to less than 8. The desired vertex must be FGH

(without loss of generality). There also must be a vertex adjacent to FGH which contains

G and does not contain H, I,A,B,C,D,E. This is impossible. Thus DEG /∈ V (G).

Suppose AEG ∈ V (G). The path connecting AEG and GHI must have a length of at

least 5 in which each vertex contains G. There must be a vertex adjacent to GHI containing

G and not containing A,B,C,E. Thus the desired vertex must be FGH or DGH. There

also must be a vertex adjacent to FGH/DGH which contains G and does not contain

H, I,A,B,C,E. The desired vertex must be DFG.

Continuing, we get V (G) must contain one of:

GHI,DGH,DFG,BFG,BEG,AEG,ADE,ABD,ABC,

GHI,DGH,DFG,CFG,CEG,AEG,ADE,ABD,ABC,

GHI, FGH,DFG,CDG,CEG,AEG,ADE,ABD,ABC.

Let us consider these cases individually. If V (G) contains

GHI,DGH,DFG,BFG,BEG,AEG,ADE,ABD,ABC

then there must be a connected subgraph of vertices containing D. This subgraph must have
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diameter at least 6 or G does not have diameter 8. The subgraph must either be

ABD,ADE,CDE,CDI,DFI,DFG,DGH

or

ABD,ADE,DEI,CDI,CDF,DFG,DGH.

Suppose V (G) contains ABD,ADE,CDE,CDI,DFI,DFG,DGH. Then V (G) con-

tains

ABC,ABD,ADE,AEG,BEG,BFG,DFG,DGH,GHI,CDE,CDI,DFI.

This graph must also have the property that the vertices containing C form a connected

subgraph. Let us construct a path connecting ABC to CDE. The vertex adjacent to

ABC must not contain G,H, I,D,E, or BF , so it must be ACF . The vertex adjacent to

ACF must not contain G,H, I,D,B,A so it must be CEF . This graph must also have the

property that the vertices containing I form a connected subgraph. The vertex adjacent to

GHI must not contain A,B,C,D, F or GE, so it must be EHI. The vertex adjacent to

EHI, must not contain A,B,C,G,H or DF,DE,EF . This is impossible. Thus V (G) does

not contain

ABD,ADE,CDE,CDI,DFI,DFG,DGH

.

Suppose V (G) contains ABD,ADE,DEI,CDI,CDF,DFG,DGH. Then V (G) con-

tains

ABC,ABD,ADE,AEG,BEG,BFG,DFG,DGH,GHI,DEI,CDI,CDF.
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Let us attempt to construct a path to connect the vertices containing C. The vertex adjacent

to ABC cannot contain D,F,G,H, I, so it must be BCE or ACE. The vertex adjacent

to ACE/BCE must not contain A,B,D, F,G,H, I, thus no such vertex exists. Thus V (G)

does not contain

GHI,DGH,DFG,BFG,BEG,AEG,ADE,ABD,ABC.

Suppose V (G) contains

GHI,DGH,DFG,CFG,CEG,AEG,ADE,ABD,ABC.

We attempt to construct a path to connect the vertices containing C. The vertex adjacent

to ABC cannot contain E,F,G,H, I, so it must be ACD or BCD. The vertex adjacent to

ACD/BCD must not contain A,B,E, F,G,H, I. No such vertex exists. Thus V (G) does

not contain

GHI,DGH,DFG,CFG,CEG,AEG,ADE,ABD,ABC.

Suppose V (G) contains

GHI, FGH,DFG,CDG,CEG,AEG,ADE,ABD,ABC.

We attempt to construct a path to connect the vertices containing C. The vertex adjacent

to ABC cannot contain D,E,G,H, I, so it must be ACF or BCF . The vertex adjacent to

ACF/BCF must not contain A,B,D,E,G,H, I. No such vertex exists. Thus V (G) does

not contain

GHI, FGH,DFG,CDG,CEG,AEG,ADE,ABD,ABC.

Thus, V (G) does not contain a vertex containing G,H, or I with shortest path to ABC
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of length three or fewer.

Suppose G has a vertex containing G whose shortest path to ABC is length four. Without

loss of generality, the graph contains ABC,ABD,ADE. Let us consider vertices adjacent to

ADE, which do not contain G,H, I and are not adjacent to ABC or ABD. Our possibilities

are CDE, DEF , and AEF .

No vertex of G with path length to ABC smaller than 4 contains G,H, I, and µ(6, 3) = 3.

These two facts imply any vertex of G with path length to ABC equal to 4 contains G,H,

or I.

If our graph contains ABC,ABD,ADE,CDE, then it must contain CDG or CEG (or

it must contain more vertices with shortest path length to ABC less than 4. Those cases

will either be considered ahead or are symmetric to this case).

Suppose CDG ∈ V (G). Let us construct a path between CDG and GHI in which each

vertex contains G. The vertex adjacent to GHI must not contain A,B,C,D so it must be

EGH or FGH. The next vertex in the path cannot contain A,B,C,D,H, I, so it must be

EFG. The next vertex cannot contain A,B,C,H, I, and it cannot contain DE, so it must

be DFG. This implies the vertex adjacent to GHI is not FGH.

Thus V (G) contains: ABC,ABD,ADE,CDE,CDG,DFG,EFG,EGH,GHI. A path

connects the vertices containing C. Thus either ACF or BCF is in V (G). The graph must

contain a vertex adjacent to ACF/BCF that does not contain A,B,D,G,H, I or EF , but

this is impossible. Thus CDG /∈ V (G).

Suppose CEG ∈ V (G). Let us construct a path between CEG and GHI in which each

vertex contains G. The vertex adjacent to GHI must not contain A,B,C,E so it must be

DGH or FGH. The next vertex in the path cannot contain A,B,C,E,H, I, so it must be

DFG. The next vertex cannot contain A,B,C,H, I, and it cannot contain DE, so it must

be EFG. This implies the vertex adjacent to GHI is not FGH.

Thus we have the vertices: ABC,ABD,ADE,CDE,CEG,GEF,GDF,GHD,GHI. The
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vertices containing C must be connected. The vertex set V (G) contains either ACF or

BCF , and V (G) must also contain a vertex adjacent to ACF/BCF that does not contain

A,B,E,G,H, I or DF . This is impossible. Thus CEG /∈ V (G). Thus CDE /∈ V (G).

If V (G) contains ABC,ABD,ADE,DEF then it must contain DFG or EFG. Let us

construct a path between GHI and DFG/EFG in which each vertex contains G. First

suppose DFG ∈ V (G). The vertex adjacent to GHI cannot contain A,B,C,D, F , so it

must be EGH. The vertex adjacent to EGH cannot contain A,B,C,D, F,H, I, but no such

vertex exists. Thus DFG /∈ V (G).

Now suppose EFG ∈ V (G). The vertex adjacent to GHI cannot contain A,B,C,E, F ,

so it must be DGH. The vertex adjacent to DGH cannot contain A,B,C,E, F,H, I, but

no such vertex exists. Thus EFG /∈ V (G). Thus DEF /∈ V (G).

If our graph contains ABC,ABD,ADE,AEF then it must contain AFG or EFG. Let

us constrcut a path between GHI and AFG/EFG in which each vertex contains G. First

suppose AFG ∈ V (G). The vertex adjacent to GHI cannot contain A,B,C, F , so it must

be EGH or DGH. The vertex adjacent to DGH/EGH cannot contain A,B,C, F,H, I or

DE, but no such vertex exists. Thus AFG /∈ V (G).

Now suppose EFG ∈ V (G). The vertex adjacent to GHI cannot contain A,B,C,E, F ,

so it must be DGH. The vertex adjacent to DGH cannot contain A,B,C,E, F,H, I, but

no such vertex exists. Thus EFG /∈ V (G). Thus AEF /∈ V (G).

Thus, we have shown G does not contain a vertex containing G with shortest path length

to ABC less than four. However, µ(6, 3) = 3 tells us that every graph will either have such

a vertex or will have diameter at most 3. Therefore, we have proven that G does not exist,

and thus µ(9, 3) ≤ 7. We have µ(9, 3) = 7, since

ABC,ABD,ADG,AEG,AEF,DEF,DEH,EHI,BCE,CEG,CDG,CDF
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is an example of a diameter 7 graph with properties (1) and (2) when n = 9, d = 3.

Proposition 3.6.7 gives a bound only one better than the general upper bound given in

Theorem 3.3.2.

Proposition 3.6.8. µ(3, 10) ≥ 9.

Proof. Figure 3.7 is an example of a diameter-9 graph with properties (1) and (2) with d = 3,

n = 10.

Proposition 3.6.8 gives a bound only one better than the bound of Theorem 3.3.2.
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GHJ

GHI

HIJ

Figure 3.7

Proposition 3.6.9. µ(3, n) ≥ n− d+ 2 for all n ≥ 10.

Proof. We can construct an example of a diameter-(n−d+ 2) graph with properties (1) and

(2) with d = 3, n = 10 + j by taking the graph in Figure 3.7 and appending the vertices:

IJx1, Jx1x2, x1x2x3, · · · , xj−2xj−1xj.
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Buchsbaum complexes have long been studied in combinatorial algebra (Hib96; Ter96;

Han01; TY06). It is of interest that all of the complexes we have examined thus far are

Buchsbaum. The following is likely known to experts, but we include a proof here.

Proposition 3.6.10. Let R = S/I be an equidimensional Stanley-Reisner ring of dimension

3. Then R is connected and Buchsbaum if and only if R satisfies (S2).

Proof. Let ∆ be a complex with Stanley-Reisner ring R = S/I. Let m be the unique maximal

homogeneous ideal of S. Using local duality (see Lemma 3.4.1), we have that a 3-dimensional

equidimensional Stanley-Reisner ring R satisfies (S2) if and only if

dim Extn−iS (R,ωS) ≤ i− 2 for all i < 3.

Thus, R satisfies (S2) if and only if H0
m(R) = H1

m(R) = 0 and H2
m(R) is finitely generated.

Suppose R is Buchsbaum and connected. Connectivity implies H0
m(R) = H1

m(R) = 0.

If R is Buchsbaum, then R is Generalized Cohen-Macaulay, which implies that H i
m(R) is

finitely generated for all i < d. Thus for R an equidimensional Stanley-Reisner ring of

dimension 3, Buchsbaum and connected imply (S2).

Suppose now thatR satisfies (S2). We will use the combinatorial definition of Buchsbaum,

which says a complex is Buchsbaum if it is pure and has the property that the link of any

non-empty face has zero reduced homology except possibly in top dimension.

We first note the Stanley-Reisner ring of ∆ satisfying (S2) implies ∆ is pure and con-

nected. Next we note that every link of a non-empty face of ∆ has Stanley-Reisner ring RP ,

where P is a prime ideal and dimRP < dimR. Thus R being a 3-dimensional, (S2) ring im-

plies RP is Cohen-Macaulay for all P such that dimRP < dimR. Thus RP has zero reduced

homology except possibly in top dimension. Thus R is Buchsbaum and connected.

Note that this theorem does not apply in the higher dimension cases. In fact, most of
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our examples in higher dimension, including Figure 3.8 below, are not Buchsbaum.

Proposition 3.6.11. µ(4, 8) = 6.

Proof. Figure 3.8 is an example of a diameter-6 graph with propeties (1) and (2) with d = 4,

n = 8. In Corollary 3.3.3, we will prove µ(4, 8) ≤ 6.

ABEGBDEG ACEG

ACEF

BDGH

CDFH BDFH

CDGH

ACFH

CDEF

BCDE

ABCD ABGH

ABCH

ABEF BEFH

CEGH

EFGH

Figure 3.8

Proposition 3.6.12. µ(4, 9) = 7.

Proof. Let G be a graph with properties (1) and (2) and diameter at least 8. First let us

consider two vertices with maximum distance in G. If the intersection of these vertices is

non-trivial, their distance is bounded above by µ(3, 8) = 6. Thus, the vertices of maximal

distance in G must have trivial intersection. Call them ABCD and FGHI. Suppose there

exists a v ∈ V (G) such that v is adjacent to ABCD, and v contains F,G,H or I. The

shortest path from v to FGHI will be bounded above by µ(3, 8) = 6, and thus G will have

diameter at most 7. Thus no such vertex is contained in G. Simillarly no vertex containing

A,B,C or D adjacent to FGHI is contained in G.

Connectivity of G requires G have at least one vertex adjacent to ABCD and at least

one vertex adjacent to FGHI. These vertices must both contain the only variable which is

not in ABCD or FGHI, call this variable E. Since G is locally connected, G must contain
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a connected subgraph composed only of the vertices containing E. Every vertex containing

E will also contain two variables from either ABCD or FGHI. Take such a vertex, ABEF .

Then G must have a connected subgraph made up of only the vertices containing AB.

However, we already have that any vertex adjacent to ABCD must contain E. Thus ABEF

must have shortest path length 2 to ABCD. Any vertex containing E is distance at most 2

from ABCD or FGHI. Thus G is at most diameter 5. Thus we have a contradiction. Thus

no diameter-8 graph with properties (1) and (2) exists.

To construct a diameter-7 graph with properties (1) and (2), take the graph in Figure

3.8 and append the vertex EFGI.

Proposition 3.6.13. µ(4, n) ≥ n− d+ 2 for all n ≥ 8.

Proof. We can construct an example of a diameter-(n− d+ 2) graph with propeties (1) and

(2) with d = 4, n = 8 + j by taking the graph in Figure 3.8 and appending the vertices

EFGx1, FGx1x2, · · ·xj−3xj−2xj−1xj.

3.7 Final Remarks

These results raise several questions for further study. Primarily, is µ(d, n) bounded above

by a polynomial in the codimension? A positive answer to this question would affirm the

polynomial Hirsch conjecture. Our work still leaves the possibility that µ(d, n) is bounded

by a linear function.

Another interesting question is the following: Do the bounds of Larman (Lar70) and

Barnette (Bar74) hold for larger values of d? We have seen that the bounds of Larman and

Barnette do not hold for our d = 3 case. Figure 3.1 shows the bound of Barnette does not
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hold for d = 4, and we can cone over this complex to show the bound of Barnette does not

hold for d = 5; however, we do not have counterexamples in any higher dimensions.

We have found graphs of maximal diameter for (S2) Stanley-Reisner rings with d = 3, 4

and small n. We then used those graphs in conjunction with gluing to make graphs with

large diameters with respect to codimension. It would be valuable to know what the largest

diameter would be for graphs of (S2) Stanley-Reisner rings with d = 5, 6 and small n,

specifically, d = 5, n = 10 and d = 6, n = 12. Answers to these questions could lead to

new asymptotic lower bounds and could give insight on how these bounds would grow with

respect to d.
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Chapter 4

A Generalized Serre Condition

4.1 Introduction

In this chapter, we produce a generalization of Serre’s condition (S`), which we call (Sj` ).

We will prove (Sj` ) analogues to many (S`) theorems, and we shall prove that a variety of

criterion are equivalent to satisfying (Sj` )

Let R be a commutative Noetherian ring. Recall Serre’s condition (S`).

Definition 4.1.1. A ring R satisfies Serre’s condition (S`) if for all p ∈ SpecR,

depthRp ≥ min{`, dimRp}.

For a d-dimensional ring, being Cohen-Macaulay is equivalent to satisfying (Sd). A

multitude of authors have examined Serre’s condition, and the popularity of the topic has

continued to grow (cf. (DHV16; HTYZN11; MT09; PSFTY14; Ter07; Yan00)). Serre’s condi-

tion, like the Cohen-Macaulay condition, ties homological properties to geometric properties.

We define a generalization of Serre’s condition, which also links homological properties to

geometric properties.
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Definition 4.1.2. A ring R satisfies (Sj` ) property if for all p ∈ SpecR,

depthRp ≥ min{`, dimRp − j}.

In this chapter, we examine results about (S`) from a variety of sources in the literature.

We prove generalizations for the (Sj` ) property. The following will be used implicitly in the

chapter when appropriate.

Proposition 4.1.3. Let φ : R → S be a faithfully flat homomorphism of Noetherian rings.

Then if S satisfies (Sj` ) then so does R.

Proof. Let p ∈ SpecR. Since φ is faithfully flat, there exists q ∈ SpecS such that p = q∩R.

From (BH98), dimRp = dimSq and depthRp = depthSq. Thus depthRp = depthSq ≥

min{n, dimSq − j} = min{n, dimRp − j}. Thus R satisfies (Sj` ).

Remark 4.1.4. We shall also make use of the fact that for a Stanley-Reisner ring R and its

associated simplicial complex ∆, localizing R at a prime p generated by variables yields the

same ring as the following process. Localize ∆ at a face F generated by the variables which

are not generators of p. Then localize the Stanley-Reisner ring of lk∆ F at its unique maximal

homogeneous ideal. Throughout the chapter, we shall use Rp and the Stanley-Reisner ring

of lk∆ F interchangeably for convenience and brevity.

We now describe the organization of the chapter.

In Section 2, we prove an equivalence between rings satisfying (Sj` ) and the support of Ext

functors. In this section we consider rings of the form R = S/I where S is an n-dimensional

polynomial ring and I is a homogeneous ideal or S is an n-dimensional complete regular

local ring and I is an ideal of S.

In Section 3, we examine theorems from the literature which bound cohomological dimen-

sion when R satisfies (S2) or (S3). We prove generalizations of these bounds that apply when
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R is equidimensional and satisfies (Sj2) or (Sj3). Using these bounds, we bound projective

dimension of R when a is a pure square-free monomial ideal and R satisfies (Sj2) or (Sj3). In

this section, we will consider S to be an n-dimensional regular local ring containing a field,

a to be an ideal of S of pure height and our ring to be R = S/a.

In Section 4, we consider the Hochster-Huneke graph of R (denoted by G(R)) where R

is a local ring or a quotient of a polynomial ring and a homogeneous ideal. It is known

that a Stanley-Reisner ring satisfies (S2) if and only if every localization of R at a prime

has a connected Hochster-Huneke graph (Kum08; Hol18). We create a generalization of the

Hochster-Huneke graph. We show that every localization of R at a prime has a connected

generalized Hochster-Huneke graph if and only if R satisfies (Sj2).

In Section 5, we expand upon a result of Yanagawa (Yan00) which states that a Stanley-

Reisner ring S/I satisfies (S`) if and only if the Alexander dual of I satisfies a specific

homological condition. We combine this result with Theorem 3.4 to prove a bound on

regularity of pure square-free monomial ideals.

Given a Stanley-Reisner ring R with simplicial complex ∆, Reisner’s criterion provides a

method to check the Cohen-Macaulayness of R by examining the reduced homology groups

of ∆ (Rei76). Terai made an analogous theorem for describing whether R satisfies (S`)

(Ter07). In Section 6, we generalize Terai’s result by giving an equivalent condition for (Sj` )

using homology of links in the equidimensional case.

In Section 7, we examine monomial ideals of polynomial rings over a field. Herzog,

Takayama, and Terai (HTT05) proved for a monomial ideal I and a polynomial ring S, S/I

being Cohen-Macaulay implies S/
√
I is Cohen-Macaulay. We present an analogous theorem

showing S/I satisfying (Sj` ) implies S/
√
I satisfies (Sj` ).

In section 8, we prove a theorem relating i-skeletons of simplicial complexes and the (Sj` )

property. We discuss i-skeletons’ importance with respect to depth.

Unless otherwise stated, k will be a field, S = k[x1, x2, ..., xn], and I will be an ideal of
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S.

4.2 An Equivalent Functorial Condition

In this section, we characterize the generalized Serre’s condition as a homological condition.

This is an extension of Lemma 3.4.1.

A catenary noetherian local ring satisfying (S2) is equidimensional by (Har62, Remark

2.4.1). This is not true for (Sj` ) even for large values of ` and small, positive values of j.

Example 4.2.1. Consider the ring:

k[x1, x2, ..., x11]/〈x1x11, x2x11〉

This ideal has two minimal primes 〈x1, x2〉 and 〈x11〉. This ideal is clearly non-equidimensional

but satisfies (S1
` ) for any choice of `.

Thus we will need the following notation.

Given a ring R = S/I, let QI be a minimal prime of I of smallest height. Given a prime

p which contains I, let Qp be a minimal prime of I contained in p with smallest height. Let

αp = htQp − htQI . We note that αp = 0 for all p when R is equidimensional.

Theorem 4.2.2. Let S be an n-dimensional polynomial ring with maximal homogeneous

ideal m and let I be a homogeneous ideal or let S be an n-dimensional complete regular local

ring with maximal ideal m and let I be an ideal of S. Let R = S/I and let d = dimR. Then

R satisfies (Sj` ) if and only if for all p ∈ SpecS containing I with ht p < n− i+ `, we have

that p /∈ Supp Extn−iS (R, S) for all i = 0, ..., d− j − 1− αp.

Proof. Suppose R satisfies (Sj` ). If i < ` ≤ depthR then H i
m(R) = 0 = Extn−iS (R, S) , and

we are finished. Otherwise, let us take p ∈ SpecS such that I ⊆ p. Let h be the height of
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p. If h < n− i+ `, then

Extn−iS (R, S)p ∼= Extn−iSp
(Rp, Sp) = 0 for all i = 0, ..., d− j − 1− αp.

This is true because n− i = h− (h−n+ i) and dimRp− j = h−n+ d− j−αp > h−n+ i.

So p /∈ Supp Extn−iS (R, S) for i = 0, ..., d− j − 1− αp whenever ht p < n− (i− `).

Suppose p /∈ Supp Extn−iS (R, S) for i = 0, ..., d−j−1−αp whenever ht p < n−(i−`). Let

Vh be the set of prime ideals of S of height h containing I for h = n− d, ..., n. Henceforth,

let us use c to denote n− d.

Then we have the following equivalences:

R satisfies (Sj` ) ⇔

depthRp ≥ min{`, h− c− j − αp} =: b for all h = c, ..., n for all p ∈ Vh ⇔

H i
pSp

(Rp) = 0 for all h = c, ..., n for all p ∈ Vh, for all i < b ⇔

Exth−iSp
(Rp, Sp) = 0 for all h = c, ..., n for all p ∈ Vh, for all i < b ⇔

p /∈ Supp Exth−iS (R, S) for all h = c, ..., n for all p ∈ Vh, for all i < b.

When i < b ≤ h− c− j − αp, n− h+ i < n− c− j − αp = d− j − αp.

From the assumption, for all n−h+i < d−j−αp, p /∈ Supp Ext
n−(n−h+i)
S (R, S) whenever

h ≤ n− (n− h+ i− `); thus,

p /∈ Supp Exth−iS (R, S) = Supp Ext
n−(n−h+i)
S (R, S) for all i < b.

The result can be stated in a cleaner way when the ring in question is equidimensional.
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In the equidimensional case, the above proof can be adjusted to give:

Corollary 4.2.3. Let S be an n-dimensional polynomial ring with maximal homogenous

ideal m and let I be a homogeneous ideal or let S be an n-dimensional complete regular local

ring with maximal ideal m and let I be an ideal of S. Let R = S/I be an equidimensional

ring. Then R satisfies (Sj` ) if and only if dim Extn−iS (R, S) ≤ i− ` for all i = 0, ..., d− j− 1.

4.3 Bounds on Cohomological Dimension

Local cohomology is widely important in the fields of commutative algebra and algebraic ge-

ometry. One measure of this vanishing is the cohomological dimension. Let S be a Noetherian

local ring and a be an ideal of S. The cohomological dimension of a in S is:

cd(S, a) = sup{i ∈ Z≥0|H i
a(M) 6= 0 for some S-module M}.

The cohomological dimension has been a topic garnering wide interest (cf. (Har68; Ogu73;

PS73; HL90; Lyu93; Var13; DT16)). It is known that cd(S, a) is less than or equal to

dimS. We desire to improve this bound for special cases. We will take advantage of various

existing results to aid in this endeavor. If depthS/a ≥ 1, then cd(S, a) ≤ n − 1, which

is an immediate consequence of the Hartshorne-Lichtenbaum vanishing theorem ((Har68,

Theorem 3.1)). From the work of Ogus, we have depthS/a ≥ 2, then cd(S, a) ≤ n − 2

(Remark below Corollary 2.11 (Ogu73)).

In (HL90), Huneke and Lyubeznik prodce a theorem which helps construct more of these

bounds. In (DT16), the theorem is reinterpreted for convenience of application.

Theorem 4.3.1 (Huneke-Lyubeznik, see (DT16, Theorem 3.7)). Let (S,m) be a d-dimensional

regular local ring containing a field and let a ⊂ S be an ideal of pure height c. Let f : N→ N

be a non-decreasing function. Assume there exist integers `′ ≥ ` ≥ c such that:
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(1) f(`) ≥ c,

(2) cd(Sp, ap) ≤ f(`′ + 1)− c+ 1 for all prime ideals p ⊃ a with ht p ≤ `− 1,

(3) cd(Sp, ap) ≤ f(ht p) for all prime ideals p ⊃ a with ` ≤ ht p ≤ `′,

(4) f(r − s− 1) ≤ f(r)− s for every r ≥ `′ + 1 and every c− 1 ≥ s ≥ 1.

Then cd(S, a) ≤ f(d) if d ≥ `.

In (DT16), Dao and Takagi proved the following corollary:

Corollary 4.3.2 (Dao-Takagi). Let (S,m) be an n-dimensional regular local ring essentially

of finite type over a field. If a is an ideal of S such that depthS/a ≥ 3, then cd(S, a) ≤ n−3.

Dao and Takagi then used this corollary in conjuction with Theorem 3.1 to prove:

Theorem 4.3.3 (Dao-Takagi). Let S be an n-dimensional regular local ring containing a

field and let a ⊂ S be an ideal of height c.

(1) If S/a satisfies Serre’s condition (S2) and dimS/a ≥ 1, then

cd(S, a) ≤ n− 1− bn−2
c
c

(2) Suppose that S is essentially of finite type over a field. If S/a satisfies Serre’s condi-

tion (S3) and dimS/a ≥ 2, then

cd(S, a) ≤ n− 2− bn−3
c
c

In this chapter, we generalize this theorem to consider (Sj2) and (Sj3) for any j.

Theorem 4.3.4. Let S be an n-dimensional regular local ring containing a field and let

a ⊂ S be a pure ideal of height c.

(1) If S/a satisfies Serre’s condition (Sj2) and dimS/a ≥ 1 + j, then

cd(S, a) ≤ n− 1− bn−2−j
c
c
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(2) Suppose that S is essentially of finite type over a field. If S/a satisfies Serre’s condi-

tion (Sj3) and dimS/a ≥ 2 + j, then

cd(S, a) ≤ n− 2− bn−3−j
c
c

Proof. For (1) we apply Theorem 4.3.1 with f(m) = m − 1 − bm−2−j
c
c, ` = c + 1 + j, and

`′ = 2c+ 1 + j. Condition (2) of Theorem 4.3.1 becomes cd(Sp, ap) ≤ c+ j for all primes of

height at most c+ j. This follows since cd(Sp, ap) ≤ ht p ≤ c+ j. Condition (3) of Theorem

4.3.1 breaks into two cases. If ht p = ` then we get cd(Sp, ap) ≤ ht p− 1. This is true, since

depthSp/aSp ≥ min{2, c + j + 1− c− j} = 1. If ht p > ` then we get cd(Sp, ap) ≤ ht p− 2.

This is true, since depthSp/aSp ≥ 2.

For (2) we apply Theorem 4.3.1 with f(m) = m − 2 − bm−3−j
c
c, ` = c + 2 + j, and

`′ = 2c + 2 + j. Condition (2) of Theorem 4.3.1 breaks into two cases. If ht p = ` − 1,

then cd(Sp, ap) ≤ ht p − 1. This is true since depthSp/aSp ≥ 1. Otherwise, (2) becomes

cd(Sp, ap) ≤ ht p, which is true. Demonstrating condition (3) of Theorem 4.3.1 has two parts.

If ht p = ` = c+2+ j, then depthS/a ≥ 2, and thus we have cd(S, a) ≤ ht p−2 = f(ht p). If

c+ 3 + j ≤ ht p ≤ 2c+ 2 + j, then f(ht p) = ht p− 3. However, depthSp/aSp ≥ 3. Therefore,

Corollary 4.3.2 implies cd(Sp, ap) ≤ ht p− 3.

Corollary 4.3.5. Let S be an n-dimensional regular local ring containing a field and let

a ⊂ S be a pure, square-free monomial ideal of height c.

(1) If S/a satisfies Serre’s condition (Sj2) and dimS/a ≥ 1 + j, then

pdS/a ≤ n− 1− bn−2−j
c
c

(2) Suppose that S is essentially of finite type over a field. If S/a satisfies Serre’s condi-

tion (Sj3) and dimS/a ≥ 2 + j, then

pdS/a ≤ n− 2− bn−3−j
c
c

57



Proof. When a is a square-free monomial ideal, cd(S, a) = pdS/a (Lyu84). Therefore,

applying Theorem 4.3.4 we get the desired bounds.

4.4 A Generalized Hochster-Huneke Graph

For this section we consider two kinds of rings, local rings and rings which are a quotient of

a polynomial ring and a homogeneous ideal. When we say ring, we shall mean these types

of rings unless otherwise noted.

The Hochster-Huneke graph is a graphical representation of the minimal prime ideals of

a ring R. This graph is sometimes called the dual graph of SpecR and has been examined

from many perspectives throughout the literature (cf (HH94; BBV17; BV15; Hol18)). The

connectivity of the Hochster-Huneke graph and its localizations provides information about

algebraic properties of R. We will consider a generalization of the Hochster-Huneke graph.

Definition 4.4.1 ((HH94)). Let G(R) be the graph with V (G(R)) = {vi = Pi} where the

Pi are the minimal primes of R, E(G(R)) = {(vk, v`)| ht(pk + p`) = 1}. Then G(R) is the

Hochster-Huneke graph of R.

We note the following definition is equivalent to Definition 3.2.12.

Definition 4.4.2. A ring is locally connected if for any p ∈ SpecR, G(Rp) is connected.

Theorem 4.4.3 ((Kum08, Theorem 6.1.5), Theorem 3.2.17). Let R be a Stanley-Reisner

ring. Then R satisfies (S2) if and only if R is locally connected.

We desire to make a generalized Hochster-Huneke graph in order to make an analogue of

the previous theorem for rings satisfying (Sj2). We note that our generalization is the same

generalization given in (NBSW17).
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Definition 4.4.4. Let Gj(R) be the graph with V (Gj(R)) = {vi = Pi} where the pi are

the minimal primes of R, E(Gj(R)) = {(vk, v`)|1 ≤ ht(pk + p`) ≤ j}. We note G1(R) is the

Hochster-Huneke graph of R.

Definition 4.4.5. A ring is j-locally connected if for any p ∈ SpecR, Gj(Rp) is connected.

Theorem 4.4.6. Let R be a Stanley-Reisner ring. Then, R satisfies (Sj2) if and only if R

is j + 1-locally connected.

Proof. By Theorem 4.2.2, we have R satisfying (Sj2) can be viewed as a condition on

Supp Extn−iS (R, S). From [Ya00], we have that R is a Stanley-Reisner ring implies that

Extn−iS (R, S) is a square-free module. Thus, Extn−iS (R, S) is uniquely determined by its

prime ideals generated by variables. Therefore, we only need to consider primes generated

by variables when showing R satisfies (Sj2).

Assume R is (j + 1)-locally connected and dimR = d. If j ≥ d− 1, then 1 ≥ d− j. All

Stanley-Reisner rings are (S1), thus this case is trivially true.

Now we suppose j < d − 1. When d > j + 1, Gj+1(R) being connected implies ∆R is

connected. Thus, for all localizations of R such that dimRp > j + 1 we have that ∆Rp is

connected. Therefore, we have that depthRp ≥ 2, for all p ∈ SpecR with dimRp ≥ 2 + j.

This combined with the fact that all Stanley-Reisner rings satisfy (S1) gives that R satisfies

(Sj2).

Now suppose R satisfies (Sj2). By Corollary 2.3 of (Har62), we have that R is locally

connected in codimension 1 + j. Thus Gj+1(Rp) is connected for all p ∈ SpecR.
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4.5 Resolution of the Alexander Dual

Let us use notation from (FMS14) to introduce Alexander Duality. Let k be a field and

S = k[x1, ..., xn]. Let m be a monomial in S, and let pm = (xi : xi|m).

A prime ideal p is an associated prime of a square free monomial ideal I if p ⊇ I and p is

minimal among primes ideals that contain I. The set of all associated primes of I is written

Ass(I).

Definition 4.5.1. Let I be a square-free monomial ideal. The Alexander dual of I is

I∨ = (m : pm ∈ Ass(I)).

In (ER98), Eagon and Reiner proved that a Stanley-Reisner ring R/I is Cohen-Macaulay

if and only if I∨ has linear resolution. In (Yan00), Yanagawa generalized their result to say a

Stanley-Reisner ring R = S/I satisfies (S`) if and only if I∨ has syzygy matrices with linear

entries up to homological degree ` − 1 (Yan00). We further generalize these statements for

equidimensional Stanley-Reisner rings satisfying (Sj` ).

Definition 4.5.2. Let R = S/I be an equidimensional Stanley-Reisner ring. We say that

I∨ satisfies (N j
c,`) if

[Torγ(I
∨, k)]β = 0 for all γ < ` and for all c+ j + γ < β ≤ n.

Theorem 4.5.3. Let R = S/I be a d-dimensional, equidimensional Stanley-Reisner ring

with codimension c. Then the following are equivalent for ` ≥ 2:

(i) R satisfies (Sj` ).

(ii) I∨ satisfies (N j
c,`).
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Proof. By Corollary 4.2.3, R satisfies (Sj` ) if and only if

dim Extn−iS (R, S) ≤ i− ` for all i = 0, ..., d− j − 1.

We rewrite for convenience:

dim ExtαS(R, S) ≤ n− α− ` for all c+ j < α ≤ n.

The above is true if and only if for any prime p with height h < α + ` and support F we

have:

(ExtαS(R, S))F = 0 for c+ j < α ≤ n.

By Theorem 3.4 of [Ya00], this is true if and only if

[Torh−α(I∨, k)]F c = 0 for c+ j < α ≤ n.

By rewriting, we recover our definition of (N j
c,`).

Remark 4.5.4. From this result, we have R satisfies (Sj2) if and only if all entries of the

first syzygy matrix of R have degree at most j + 1. Furthermore, R satisfies (Sj` ) if the sum

of the highest degrees of the first `− 1 syzygy matrices is less than j + `− 1.

Corollary 4.5.5. Let a be a pure, square-free monomial ideal of an n-dimensional polynomial

ring over a field.

(1) If a satisfies (N j
c,2) and c ≤ n− 1, then

reg a ≤ n− 1− bn−2−j
c
c

(2) If a satisfies (N j
c,3) and c ≤ n− 2, then
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reg a ≤ n− 2− bn−3−j
c
c

Proof. From Theorem 4.5.3 we get that S/a∨ satisfies (Sj2), and cd(S, a∨) = reg a. Therefore,

applying Theorem 4.3.4 we get the desired bounds.

4.6 A Generalization of Reisner’s criterion

Reisner’s criterion is a method for checking the Cohen-Macaulayness of a Stanley-Reisner

ring by considering the reduced homology groups of the ring’s associated complex. The ith

reduced homology group of ∆ is H̃i(∆; k). The following theorem is from (Rei76).

Theorem 4.6.1 (Reisner’s Criterion). Let k be a field and ∆ be a simplicial complex of

dimension d− 1. Then ∆ is Cohen-Macaulay over k if and only if for every F ∈ ∆ and for

every i < dim(lk∆(F )), H̃i(lk∆(F ); k) = 0 holds true.

Terai has formulated an analogue of this theorem for Stanley-Reisner rings satisfying (S`)

(` ≥ 2).

Theorem 4.6.2 ((Ter07) described after Theorem 1.4). Let k be a field and ∆ be a simplicial

complex of dimension d − 1. Then ∆ satisfies (S`) over k if and only if for every F ∈ ∆

(including F = ∅) with |F | ≤ d − i − 2 and for every −1 ≤ i ≤ ` − 2, H̃i(lk∆(F ); k) = 0

holds true.

Now we present a lemma, which serves as an analogue to one direction of Reisner’s

criterion for rings satisfying (Sj` ). Following this Lemma, we prove a full analogue of Reisner’s

criterion for equidimensional rings satisfying (Sj` ). For the rest of this section, R shall be

the Stanley-Reisner ring of ∆ and m shall be the unique maximal homogeneous ideal of R.

Lemma 4.6.3. Let k be a field and ∆ be a simplicial complex of dimension d − 1. For a

face F let dF denote the cardinality of the largest facet containing F . Then ∆ satisfying (Sj` )
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(` ≥ 2) over k implies for every F ∈ ∆ (including F = ∅) with |F | ≤ dF − i− j − 2 and for

every −1 ≤ i ≤ `− 2, H̃i(lk∆(F ); k) = 0.

Proof. Consider H̃i(lk∆(F ); k) with −1 ≤ i ≤ ` − 2 and |F | ≤ dF − i − j − 2. Let us

localize R at a prime p generated by the variables contained in F . Let dimRp = dp. Then

(Sj` ) condition implies Hβ
pRp

(Rp) = 0 for all β < min(`, dp − j) := bp. Hochster’s for-

mula, then, implies H̃β−|F ′|−1(lklkF (F ′); k) = 0 for all F ′ and all β < bp. In particular,

H̃β−1(lklkF (∅); k) = H̃β−1(lk∆(F ); k) = 0 for all β < bp. If we can show i + 1 < bp, then we

will have H̃i(lk∆(F ); k) = 0 as desired. We have i ≤ `− 2 which implies i + 1 < `. We also

have |F | ≤ dF − j− i−2, which implies that i < dF − j−1−|F |. Thus, i+ 1 < dF −|F |− j,

and dF − |F | = dp. Thus, i+ 1 < bp.

Theorem 4.6.4. Let k be a field and ∆ be a pure simplicial complex of dimension d−1. Then

∆ satisfies (Sj` ) over k if and only if for every F ∈ ∆ (including F = ∅) with |F | ≤ d−i−j−2

and for every −1 ≤ i ≤ `− 2, H̃i(lk∆(F ); k) = 0 holds true.

Proof. Suppose ∆ satisfies (Sj` ). Then the result follows from Lemma 4.6.3.

Suppose for every F ∈ ∆ with |F | ≤ d − i − j − 2 and for every −1 ≤ i ≤ ` − 2,

H̃i(lk∆(F ); k) = 0.

Then let us consider H̃α−|F |−1(lk∆(F ); k). Let us examine the case where α < b :=

min{`, d−j}. We have |F | > d− i−j−2 = d−α+ |F |+1−j−2 = d−α−1+ |F |−j if and

only if α+ 1 > d− j which implies α ≥ d− j ≥ b. Thus, H̃α−|F |−1(lk∆(F ); k) = 0 for any F

so long as α < b. We also note that α < b implies α < ` which implies α− |F | − 1 ≤ `− 2.

Thus, if we have α < b, we have H̃α−|F |−1(lk∆(F ); k) = 0 for all F . Applying Hochster’s

formula, we get that H i
m(R) = 0 for all i < b. Therefore, we have depthR ≥ b.

We must prove that for any localization Rp with dimension dp, we have depthRp ≥

bp := min{`, dp − j}. From (Yan00), we have that R is a Stanley-Reisner ring implies

that Extn−iS (R, S) is a square-free module. Thus, Extn−iS (R, S) is uniquely determined by
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its primes generated by variables. Support of Extn−iS (R, S) determines if R satisfies (Sj` ).

Therefore, we only need consider primes generated by variables when showing R satisfies

(Sj` ). To examine Rp we consider the simplicial complex lk∆ F , where F is generated by the

variables which are not generators of R (see Remark 4.1.4).

We then have H̃i(lklkF (F ′); k) = H̃i(lk∆(F ∪F ′); k) which is 0 when |F ∪F ′| ≤ d−i−j−2

and when i ≤ `− 2. Thus, we have H̃i(lklkF (F ′); k) = 0 when |F |+ |F ′| ≤ d− i− j − 2 and

i ≤ `−2, and thus H̃i(lklkF (F ′); k) = 0 when |F ′| ≤ d−|F |− i−j−2. We have d−|F | ≥ dp.

Thus, H̃i(lklkF (F ′); k) = 0 when |F ′| ≤ dp − i − j − 2 and i ≤ ` − 2. Thus, by the above

argument, we have depthRp ≥ min{`, dp − j}. Thus, we have R satisfies (Sj` ).

Corollary 4.6.5. Let k be a field and ∆ be a pure simplicial complex. Then the Stanley-

Reisner ring of ∆, R, satisfies (Sj2) over k if and only if for every face F ∈ ∆ with

dim(lk∆(F )) ≥ 1 + j, lk∆(F ) is connected. Note (Sj2) is independent of the base field.

Proof. Suppose ∆ satisfies (Sj2). Then for any prime ideal p with dimRp ≥ 2 + j we have

depthRp ≥ min{2, dimRp − j} = 2. Now we take any face F of our complex such that

dim lk∆ F ≥ 1 + j. The Stanley-Reisner ring of lk∆ F is Rp̃ where p̃ is the prime ideal

generated by the variables not contained in F . Thus, dimRp̃ ≥ 2 + j. Thus, H1
m(Rp̃) = 0.

Thus, by Hochster’s formula, we have H̃1−|F ′|−1(lklkF F
′) = 0 for all F ′. In particular,

H̃0(lklkF ∅) = 0, which implies lklkF ∅ = lk∆ F is connected.

Now suppose dim lkF ≥ 1 + j implies lkF is connected. Thus, we have H̃0(lklkF ∅) = 0.

The link of F has dimension at least 1. Thus, if we take a face of lkF F ′ such that |F ′| = 1,

then lklkF F
′ is not empty. Thus, H̃−1(lklkF F

′) = 0 for all |F ′| = 1. Thus, we get that

H1
m(Rp) = 0 where p is the prime generated by the variables contained in F . Thus, we

have depthRp ≥ 2. This argument holds for all primes generated by variables such that

dimRp ≥ 2 + j. If we have a prime p such that dimRp < 2 + j, we still have depthRp ≥ 1,

since Rp is a Stanley-Reisner ring. Therefore, R satisfies (Sj2).
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4.7 Monomial Ideals

In this section, we consider monomial ideals that are not necessarily square-free. For conve-

nience, we will establish a few conventions. When we consider the depth of a Stanley-Reisner

ring, we shall be considering its depth with respect to the unique maximal homogeneous ideal.

When we speak of the localized Stanley-Reisner ring of a link, we shall mean the Stanley-

Reisner ring of the link localized at its unique maximal homogeneous ideal. Throughout this

section, let k be a field.

One of the most powerful techniques for working with such ideals is polarization. We

reproduce the definition of (MT09).

Definition 4.7.1. Let I be a monomial ideal in k[x1, ..., xn]. Let the minimal generators of I

be u1, ..., um where ui =
∏n

j=1 x
aij
j . For 1 ≤ j ≤ n, let aj = max{aij}, and let N = max{aj}.

Then let

T = k[x1,1x1,2, ..., x1,N , x2,1, x2,2, ..., x2,N , ..., xn,1, xn,2, ..., xn,N ].

Definition 4.7.2. The polarization of a monomial u = xa1
1 x

a2
2 ...x

an
n is

pol(u) =
∏

1≤k≤n,ak 6=0

(xk,1xk,2...xk,ak)

Let J be the square-free monomial ideal of T generated by {pol(ui)}. We call J the

polarization of I.

In (HTT05), Herzog, Takayama, and Terai proved that for a monomial ideal I, S/I

being Cohen-Macaulay implies S/
√
I is Cohen-Macaulay. In (PSFTY14), Pournaki et al.

generalize this result to say S/I satisfying (S`) implies S/
√
I satisfies (S`). We generalize

this result further to hold for (Sj` ).

Lemma 4.7.3. Localization preserves (Sj` ).
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Proof. Let R satisfy (Sj` ). Let S be a multiplicatively closed set in R. Let q be a prime

ideal of RS. The ideal q is the extension of a prime ideal p in R and so (RS)q ∼= Rp. Since

R satisfies (Sj` ),

depth(RS)q = depthRp ≥ min{`, dimRp − j} = min{`, dim(RS)q − j}.

Therefore, RS satisfies (Sj` ).

In (MT09), Murai and Terai prove that polarization preserves (S`). We will generalize

their argument in the following lemmas.

Lemma 4.7.4. If depthR ≥ dimR− j then depthRp ≥ dimRp− j for all p ∈ SpecR where

p is generated by variables.

Proof. The ring Rp where p is a prime generated by variables is the 0 ring, a field, or the

localized Stanley-Reisner ring of the link of F, which is generated by the variables not in the

generating set of p. From (MT09), we have depth(k[lk∆(v)]) ≥ depth(k[∆])− 1. Therefore,

depthRp ≥ depthR− |F | ≥ dimR− j − |F | ≥ dimRp − j.

Lemma 4.7.5. Polarization preserves (Sj` ).

Proof. We mimic the proof of (MT09).

Let us consider an (Sj` ) ring k[x1, ..., xn]/I. Let Ipol ⊆ T be the polarization of I. Let ∆

be the complex whose Stanley-Reisner ring is T/Ipol. Let F be an arbitrary face of ∆. We

will be finished when we prove depth(k[lk∆(F )]) ≥ min{r, dim lk∆(F ) + 1− j}.

Let us write Vk = {xk,1, xk,2, ..., xk,N}. We may write F = F1∪F2∪· · ·∪Fs∪Vs+1∪· · ·∪Vn,

where Fk is a proper subset of Vk for 1 ≤ k ≤ s.

Set S ′ = k[x1, ..., xs], I
′ = (I : xNs+1, ..., x

N
n ) ∩ S ′. Let p = 〈x1, ..., xs〉. Then:
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depth(S ′/I ′) = depth(S/I)p ≥ min{r, dim(S/I)p − j} = min{r, dim(S ′/I ′)− j}

Let B = k[∪sk=1Vk]. Let J ⊆ B be the monomial ideal generated by the polarization of

the minimal generators of I ′. Let Γ be the set of all square-free monomials in B which are

not in J . We note Γ is a simplicial complex if we identify square-free monomials with sets

of variables. Since J is a square-free monomial ideal, J is generated by the monomials that

generate IΓ and the variables of B which are not in Γ. Therefore, we have depth(k[Γ]) =

depth(B/J). Because J is the polarization of I ′ we get (from (BH98)):

depth(k[Γ]) = depth(B/J) = depth(S ′/I ′) + s(N − 1).

By construction of ∆ and Γ, we get lk∆(Vs+1 ∪ ... ∪ Vn) = Γ. Thus, lk∆(F ) = lkΓ(F1 ∪

.... ∪ Fs).

Thus, it will be sufficient to show

depth(k[lkΓ(F1 ∪ · · · ∪ Fs)]) ≥ min{r, dim lkΓ(F1 ∪ · · · ∪ Fs) + 1− j}.

Suppose depth(S ′/I ′) ≥ dim(S ′/I ′)− j.

From the process of polarization we can see that

dim(B/J) = dim(S ′/I ′) + s(N − 1).

Thus, we have depthB/J ≥ dimB/J − j. By lemma 7.4, we have

depth(k[lkΓ(F1 ∪ · · · ∪ Fs)]) ≥ dim lkΓ(F1 ∪ · · · ∪ Fs) + 1− j.
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Now suppose depth(S ′/I ′) ≥ `. From (MT09), we have

depth(k[lkΓ(F1 ∪ · · · ∪ Fs)]) ≥ `.

Theorem 4.7.6. Let A = k[x1, · · · , xn] be the polynomial ring in n variables over a field k.

Let I be a monomial ideal of A. Suppose that A/I satisfies (Sj` ). Then A/
√
I satisfies (Sj` ).

Proof. Using the lemmas and theorem in this section, we follow the argument of Theorem

8.3 of Pournaki et al (PSFTY14).

Let T/J be the polarization of A/I, where T = k[x1, ..., xn, Y ] is the new polynomial ring

over k with Y as the set of new variables. By Theorem 4.7.5, T/J satisfies (Sj` ). Let W be

the multiplicatively closed subset k[Y ]\0 in T and consider F = k(Y ). Then the localization

of T/J at W is isomorphic to:

F [x1, ..., xn]/
√
I ∼= (k[x1, ..., xn]/

√
I)⊗k F.

Since localization preserves generalized Serre’s condition, (k[x1, ..., xn]/
√
I)⊗k F satisfies

(Sj` ). Now to finish the proof, we will mirror the argument found in Section 2.1 of (BH98).

We wish to show (k[x1, ..., xn]/
√
I) ⊗k F satisfying (Sj` ) implies (k[x1, ..., xn]/

√
I) satisfies

(Sj` ). Let us consider p ∈ Spec(k[x1, ..., xn]/
√
I). Since (k[x1, ..., xn]/

√
I) ⊗k F is faithfully

flat, there exists a q ∈ Spec(k[x1, ..., xn]/
√
I)⊗k F such that p =

(k[x1, ..., xn]/
√
I)∩q and q is minimal over p((k[x1, ..., xn]/

√
I)⊗kF ). Therefore, ht p = ht q.

We will take M = R = (k[x1, ..., xn]/
√
I)p, N = S = ((k[x1, ..., xn]/

√
I) ⊗k F )q. Since

(k[x1, ..., xn]/
√
I)⊗kF is flat over (k[x1, ..., xn]/

√
I), N is flat over R. Thus, applying Theorem

1.2.16 and A.11 from (BH98) we get:
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depthSM ⊗R N = depthRM + depthS N/mN

dimSM ⊗R N = dimRM + dimS N/mN

The fiber of the extension R→ S is a localization of k(p)⊗F . Thus, the fiber is Cohen-

Macaulay by Proposition 2.11 of (BH98). The fiber of that map is also Sq/pSq = Nq/pNq,

because p is the maximal ideal of Rp. Thus, Nq/pNq is Cohen-Macaulay. Thus, subtracting

the above equations gives:

dimM ⊗R N − depthSM ⊗R N = dimM − depthRM.

Since ht p = ht q, we get dimRp = dimSq. Thus, depthRp = depthSq ≥ min{r, dimSq−

j} = min{r, dimRp − j}.

4.8 Skeletons

In this section, we examine the i-skeletons of simplicial complexes. We begin with the

definition.

Definition 4.8.1. The simplicial complex ∆(i) := {F ∈ ∆| dimF ≤ i} is the i-skeleton of

∆.

These i-skeletons are subcomplexes that retain many important properties of the original

complex. In particular, these complexes are a powerful tool for understanding depth. A

complex whose Stanley-Reisner ring has depth b has a Cohen-Macaulay b− 1-skeleton.
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Proposition 4.8.2 ((HTYZN11, Proposition 2.3)). Let k be a field and ∆ a simplicial

complex. If ∆ satisfies (S`) over k, then ∆(i) also satisfies (S`) over k for (2 ≤ ` ≤ i+ 1).

Theorem 4.8.3. Let k be a field and ∆ a simplicial complex with Stanley-Reisner ring R.

If ∆ is pure and R satisfies (Sj` ) over k, then ∆(i) is also pure and its Stanley-Reisner ring

satisfies (S
max{0,j+i+1−d}
` ) over k for (2 ≤ ` ≤ i+ 1).

Proof. Let us consider R that satisfies (Sj` ). Then depthRp ≥ min{`, dimRp − j} for all

p ∈ SpecR. As noted earlier, we may restrict our consideration to primes generated by

variables. Let ∆p be the simplicial complex whose localized Stanley-Reisner ring is Rp. We

note (∆p)
(i−d+dimRp) ∼= (∆(i))p when d − dimRp ≤ i. We also note that if d − dimRp > i

then (∆(i))p has Stanley-Reisner ring k or 0, and thus is Cohen-Macaulay. It is known that

the b-skeleton of a simplicial complex is Cohen-Macaulay if and only if the depth of that

complex is greater than or equal to b+ 1.

We consider two cases. First, i + j + 1 ≤ d. This is equivalent to |(∆p)
(i−d+dimRp)| ≤

dimRp − j. If depthRp ≥ i − d + dimRp + 1 then (∆p)
(i−d+dimRp) is Cohen-Macaulay.

Otherwise, depthRp < |(∆p)
(i−d+dimRp)| ≤ dimRp − j. Thus,

depthRp ≥ `. Thus, depth(∆p)
(i−d+dimRp) ≥ `. Combining these, we get:

depth(∆p)
(i−d+dimRp) ≥ min{`, |(∆p)

(i−d+dimRp)|}.

Therefore, the Stanley-Reisner ring of (∆)i satisfies (S`).

Now consider the case i + j + 1 > d. Again if depthRp ≥ i − d + dimRp + 1 then

(∆p)
(i−d+dimRp) is Cohen-Macaulay. Otherwise, depth(∆p)

(i−d+dimRp) = depthRp

≥ min{`, dimRp − j} = min{`, i + 1 − d + dimRp − (i + j + 1 − d)}. Thus, we have the

Stanley-Reisner ring of (∆(i))p satisfies (Si+j+1−d
` ). Combining these two cases gives the proof

of the theorem.

Theorem 4.8.4. Let k be a field and ∆ a simplicial complex with Stanley-Reisner ring R.
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If R satisfies (Sj` ) over k, then the Stanley-Reisner ring of ∆(i) satisfies (Sj` ) over k for

(2 ≤ ` ≤ i+ 1).

Proof. This proof will be similar to the previous proof.

Let us consider R that satisfies (Sj` ).

We consider two cases. First, i+ 1− n+ dimSp ≤ dimRp − j. This is equivalent to

|(∆p)
(i−n+dimSp)| ≤ dimRp − j. If depthRp ≥ i− n + dimSp + 1 then (∆p)

(i−n+dimSp) is

Cohen-Macaulay. Otherwise, depthRp < |(∆p)
(i−n+dimSp)| ≤ dimRp−j. Thus, depthRp ≥ `.

Thus, depth(∆p)
(i−n+dimSp) ≥ `. Combining these, we get

depth(∆p)
(i−n+dimSp) ≥ min{`, |(∆p)

(i−n+dimSp)|}.

Therefore, the Stanley-Reisner ring of (∆)i satisfies (S`).

Now consider the case i+1−n+dimSp > dimRp−j. Again if depthRp ≥ i−n+dimSp+1

then (∆p)
(i−n+dimSp) is Cohen-Macaulay. Otherwise, depth(∆p)

(i−n+dimSp) = depthRp ≥

min{`, dimRp−j} = min{`, i+1−n+dimSp−(i+j+1−n−dimRp +dimSp)}. We note if

i+ j+1−n−dimRp +dimSp ≥ j then i+1−dimRp ≥ (n−dimSp). We note n−dimSp is

positive and thus we get i+1 ≥ dimRp. In this case, we note we would merely be examining

∆p. Thus, we have the Stanley-Reisner ring of (∆(i))p satisfies (Sj` ). Combining these two

cases gives the proof of the theorem.
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Chapter 5

Higher Nerves of Simplicial

Complexes

5.1 Introduction

The work in this chapter is joint work. Sections 1 through 7 are based on joint work with

Hailong Dao, Joseph Doolittle, Ken Duna, Bennet Goeckner, and Justin Lyle. Section 8 is

based on joint work with Bennet Goeckner.

The nerve complex has been an important object of study in algebraic combinatorics

(Bjö03; Grü70; Bor48; Bas03; KM05; LSVJ11; CJS15; PUV16). We remind the reader of its

definition:

Let A = {A1, A2, . . . , Ar} be a family of sets.

Definition 5.1.1. Consider

N(A) := {F ⊆ [r] : ∩i∈F Ai 6= ∅}.

This simplicial complex is the Nerve Complex of A.
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Of special interest is the case where A is the set of facets of a simplicial complex ∆; in

this case, one sets N(∆) := N(A). We propose a natural extension of this notion.

Definition 5.1.2. Let A = {A1, A2, . . . , Ar} be the set of facets of a simplicial complex ∆.

Define

Ni(∆) := {F ⊆ [r] : | ∩j∈F Aj| ≥ i}.

We call this simplicial complex the ith nerve Complex of ∆ and we refer to the Ni(∆) as the

higher nerve complexes of ∆.

When i = 1, this definition recovers N(∆).

The Nerve Theorem of Borsuk (Bor48) gives that N(∆) and ∆ have the same homologies.

We now explain how the higher nerves relate to the original complex in a more subtle manner.

Namely, their homologies determine important algebraic and combinatorial properties of ∆.

We summarize our main quantitative results below.

Theorem 5.1.3 (Main Theorem). Let k be a field, let ∆ be a simplicial complex, and let

k[∆] be the associated Stanley-Reisner ring. Let H̃i denote ith reduced simplicial homology

with coefficients in k, and let χ denote Euler characteristic. Then:

1. H̃i(Nj(∆)) = 0 for i+ j > d and 1 ≤ j ≤ d (see Corollary 5.3.8).

2. depth(k[∆]) = inf{i+ j : H̃i(Nj(∆)) 6= 0} (see Theorem 5.5.2).

3. For i ≥ 0, fi(∆) =
d∑

j=i+1

(
j − 1

i

)
χ(Nj(∆)) (see Theorem 5.6.1).

In short, the numbers bij = dim H̃i(Nj(∆)) for 0 ≤ i ≤ d − j and 1 ≤ j ≤ d can be

presented in a table which determine both the depth and the f -vector (and thus also the

h-vector) of ∆. We provide an explicit example below.

Example 5.1.4. Consider the simplicial complex ∆ with facets
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Table 5.1: Nerves of ∆

{ABCD,BCDE,DEFG,DFGH}.

The following are geometric realizations of the complex and its higher nerves:

H̃0 H̃1 H̃2 χ
N1 0 0 0 1
N2 0 0 0 1
N3 1 0 0 2
N4 3 0 0 4

Table 5.2: Nerve Homologies

Using our main theorem and the Table 2, depth k[∆] = 3 and f(∆) = (1, 8, 17, 14, 4).

Using our main result, we provide a formula to compute the regularity of any monomial

ideal, not necessarily square-free, in Theorem 5.7.2. Other algebraic properties such as

Serre’s condition (Sr) can also be detected from the nerve table: see Chapter 6.

One way to gather the data stored by the higher nerves is to consider the nerve complex

of a simplicial complex ∆ along with an integer labeling of the faces of the nerve complex.

For the labeling, we assign each face with the highest nerve in which it appears. We designate

this construction the nervous system of ∆. This object retains enough information about

the original simplicial complex to determine it completely up to isomorphism. We also define
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the k-nervous system to be the nerve complex along with an integer labeling of each face,

such that each face is labeled with the smaller of k and the highest nerve in which the face

appears. We note the k-nervous system is the nervous system when k is at least d.

Remark 5.1.5. Though we will not consider it in this thesis, one can also define higher

nerves in a more general setting. Let A be a collection of subsets of a topological space X.

Define Ni(A) := {F ⊆ [r] : dim∩j∈FAj ≥ i}, where dim represents Krull dimension. In

this setting, special interest is given to the case where X is a Noetherian algebraic scheme;

in this case, one sets Ni(X) := Ni(A), where A is the collection of irreducible components

of X. In particular, if X = SpecR for a local ring R, then the Ni(X) provide a natural

generalization of the Lyubeznik complex of R (see (Lyu07, Theorem 1.1) for the definition).

If, instead, X = SpecR for R a Stanley-Reisner ring of a simplicial complex ∆, then the

complex defined in this remark coincides with that of Definition 5.1.2, via the Stanley-Reisner

correspondence.

We now briefly describe the structure of this chapter. In Section 5.2, we cover combina-

torial background and fix the notation we will use throughout the chapter. In Section 5.3,

we recall and prove certain basic facts about depth and connectivity of a complex, which

motivate our results and will be used in our proofs. We provide a strengthened version of

the classical Nerve Theorem that suits our purpose in Proposition 5.3.7. This proposition

is a critical component of parts (1) and (2) of our main theorem. We conclude this section

by proving part (1) of our main theorem. In Section 5.4, we provide several lemmata, the

main technical tools of most of our proofs. Section 5.5 is devoted to the proof of the second

part of our main theorem. Section 5.6 gives the proof of the third part of our main theorem

and provides a formula for the h-vector in terms of homologies of higher nerves in Corollary

5.6.2. Section 5.7 applies our main theorem to give a formula for computing the Castelnuovo-

Mumford regularity of any monomial ideal. In Section 5.8, we explore unpublished SAGE
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code created to facilitate use of the nerve complex. We also introduce the nervous system

and k-nervous system along with code for implementation of these objects.

5.2 Notation and Definitions

In this section we introduce the notation we will use throughout this chapter. Unless other-

wise stated, we fix the field k and let H̃i denote ith reduced simplicial or singular homology,

whichever is appropriate, always with coefficients in k.

We will use V (∆) to represent the vertex set of a simplicial complex ∆; we will use V

instead of V (∆) when the choice of ∆ is clear; we also set n := |V (∆)| and S := k[x1, . . . , xn].

We denote the subcomplex of ∆ induced by the vertex set W by ∆|W := {F ∈ ∆: F ⊆ W}.

Given a subset T ⊆ V (∆), we may define the star, the anti-star, and the link of T ,

denoted st∆(T ), astar∆(T ), and lk∆(T ), respectively, as follows:

st∆ T := {G ∈ ∆: T ∪G ∈ ∆}

astar∆ T := {G ∈ ∆: T ∩G = ∅} = ∆|V \T

lk∆ T := {G ∈ ∆: T ∪G ∈ ∆ and T ∩G = ∅} = st∆ T ∩ astar∆ T

The star and link of T are the void complex exactly when T /∈ ∆, and the link of T is

the irrelevant complex {∅} exactly when T is a facet. On the other hand, the anti-star of

any T ( V (∆) is nonempty.

We call ∆(k) := {σ ∈ ∆ : |σ| ≤ k + 1} the k-skeleton of ∆.

Definition 5.2.1. Let F>k(∆) denote the face poset of ∆ restricted to faces of ∆ with

cardinality strictly greater than k.

We note the face poset of ∆ is F>−1(∆). Furthermore F>d(∆) is the empty poset.

76



Definition 5.2.2. The order complex of a poset P , denoted O(P ), is the simplicial complex

whose faces are all the chains in P .

We will denote the geometric realization of ∆ as ||∆||.

Given a complex ∆, its barycentric subdivision may be defined as sd ∆ := O(F>0(∆)).

The following is well-known (see Corollary 5.7 of (Gib77) for example).

Lemma 5.2.3. The realization ||∆|| is homeomorphic to || sd ∆||. In particular, H̃i(∆) =

H̃i(sd ∆) for all i.

We let ρ : F>0(∆) → V (sd ∆) be the map which sends an element of F>0(∆) to itself

viewed as a vertex of sd ∆.

We will often use the following shorthand:

[∆]>k = O(F>k(∆))

= sd ∆
∣∣
V (sd ∆)\V (sd(∆(k−1)))

Notice that the image of ρ may be restricted to V ([∆]>k) by restricting its domain to

F>k(∆). A simplicial map f : ∆1 → ∆2 is a function f : V (∆1) → V (∆2) so that for all

σ ∈ ∆1, f(σ) ∈ ∆2. We say a simplicial map f is a simplicial isomorphism if f has an inverse

that is a simplicial map. Note that if f : Q → P is an order-reversing or order-preserving

poset map, then f : O(Q)→ O(P ) is a simplicial map.

Given a simplicial complex ∆, we also consider algebraic properties of its Stanley-Reisner

ring k[∆]. Unless otherwise stated, we write d for dim k[∆], the Krull dimension of the ring

k[∆]. We also use s(∆) to mean the size of the smallest facet of ∆.
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We further note that

dim k[∆] = max{|F | : F is a facet of ∆}

depth k[∆] = max{i : ∆(i−1) is Cohen-Macaulay} ≤ s(∆).

5.3 Preparatory Results

In this section, we begin by exploring what is known in the literature and use our construction

to prove some immediate results. Many of these results follow as a consequence of our main

theorem, but their immediacy shows that our construction is a natural one. We then prove

a generalization of Borsuk’s Nerve Theorem for simplicial complexes.

We now present Hochster’s formula, which will be used throughout the chapter. It relates

the ith local cohomology module of k[∆] supported on m, denoted H i
m(k[∆]), to the reduced

homology of links of certain faces of ∆. Here m is the ideal of k[∆] generated by the residue

classes of all variables in S.

Theorem 5.3.1 (Hochster (BH98)). Let ∆ be a simplicial complex. Then the Hilbert series

of the local cohomology modules of k[∆] with respect to the fine grading is given by:

HilbHi
m(k[∆])(t) =

∑
T∈∆

dimk H̃i−|T |−1(lk∆ T )
∏
vj∈T

t−1
j

1− t−1
j

.

One has depth k[∆] = min{i : H i
m(k[∆]) 6= 0} and dim k[∆] = max{i : H i

m(k[∆]) 6= 0},

so Hochster’s formula allows us to characterize depth and dimension of k[∆] in terms of

homologies of links of faces. The following is a generalization of Reisner’s well known criterion

for Cohen-Macaulayness.

Corollary 5.3.2. Let ∆ be a simplicial complex. Then depth k[∆] ≥ t if and only if

H̃i−1(lk∆ T ) = 0 for all T ∈ ∆ with i+ |T | < t.
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The following theorem, known as the Borsuk Nerve Theorem, is one of the main tools

for working with the classical nerve complex.

Theorem 5.3.3 ((Bor48, Section 9, Corollary 2)). ∆ and N1(∆) have same homotopy type.

In particular, H̃i(∆) ∼= H̃i(N1(∆)) for all i.

Note if depth k[∆] ≥ t, then H̃i−1(∆) = H̃i−1(N1(∆)) = 0 for i < t by Corollary 5.3.2

and Corollary 5.3.3.

Following from the definition of higher nerves, we are able to quickly derive the following

results. We will prove much stronger results in subsequent sections.

Lemma 5.3.4. If i ≤ s(∆) and Ni(∆) is connected, then ∆(1) is an i-connected graph.

Proof. Since Ni(∆) is connected, there is a spanning tree of Ni(∆)(1). Let S be a set of

all vertices of ∆ except for at most i − 1 of them. We have that N1(∆|S) is connected,

since the facets of ∆|S are a subset of the facets of ∆, and the induced spanning tree is

preserved. Since connectedness is equivalent to trivial 0th reduced homology and N1(−)

preserves reduced homology, ∆|S is connected. Therefore ∆(1) is i-connected.

Corollary 5.3.5. Let t = depth k[∆]. Then ∆(1) is a (t− 1)-connected graph.

Proof. Since ∆(t−1) is Cohen-Macaulay, the facet-ridge graph of ∆(t−1) is connected by

(Har62); that is, between any pair of (t − 1)-faces of ∆, there is a sequence of (t − 1)-

faces, so that each consecutive pair intersects in a (t− 2)-face. Then for any pair of facets of

∆, by choosing a (t − 1)-face for each, and finding such a sequence between them, we con-

struct from this a sequence of facets so that each consecutive pair intersects in a (t−2)-face.

Therefore Nt−1(∆) is connected, and the result then follows from Lemma 5.3.4.

An easy proof of Borsuk’s Nerve Theorem (Theorem 5.3.3) uses the following result.
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Theorem 5.3.6 ((Qui78), Proposition 1.6). Let f : ∆ → O(P ) be a simplicial map. If

for all x ∈ P we have that f−1(P≥x) is contractible, then f induces a homotopy equivalence

between ∆ and O(P ).

Using the above theorem, we are able to provide a generalization of the classical Nerve

Theorem.

Proposition 5.3.7 (Generalized Nerve Theorem). [∆]>j is homotopy equivalent to Nj+1(∆).

Proof. We use a similar approach as that of Theorem 10.6 in (Bjö95).

Let P = F>0(Nj+1(∆)) and define f : F>j(∆)→ P by

f(σ) = {Fi : σ ⊆ Fi facet of ∆}.

This map is order-reversing, and it is well-defined, since |σ| ≥ j + 1. Therefore, f :

O(F>j(∆))→ O(P ) is a simplicial map. For any τ ∈ P , we have that

f−1(P≥τ ) =
⋂
Fi∈τ

Fi,

which is a face of ∆ and is thus contractible. Therefore, by Theorem 5.3.6, f induces a homo-

topy equivalence betweenO(F>j(∆)) andO(P ). SinceO(P ) is the barycentric subdivision of

Nj+1(∆), Lemma 5.2.3 says that ||O(P )|| ∼= ||Nj+1(∆)||, and therefore, O(F>j(∆)) = [∆]>j

is homotopy equivalent to Nj+1(∆).

Notice when j = 0, we recover the classical Nerve Theorem.

We may now prove part (1) of our main theorem as a corollary.

Corollary 5.3.8. For a simplicial complex ∆, H̃i(Nj(∆)) = 0 for i+ j > d and 1 ≤ j ≤ d.

Proof. By Proposition 5.3.7, we get
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H̃i(Nj(∆)) = H̃i([∆]>j−1).

But [∆]>j−1 has dimension at most d− j and the result follows.

5.4 Lemmata

In this section, we introduce several lemmata that will be integral to proving our main

theorem.

Lemma 5.4.1. Let T be a face of ∆ and |T | = k > 0. Then, lk[∆]>k−1
(ρ(T )) ∼= [lk∆(T )]>0

as simplicial complexes. In particular, H̃i(lk[∆]>k−1
(ρ(T ))) ∼= H̃i(lk∆(T )) for every i.

Proof. First note that if T is a facet then lk∆(T ) = {∅} = [lk∆(T )]>0. But, since T is a

facet, {ρ(T )} must be a facet of [∆]>k−1, since this is a chain of maximal length containing

ρ(T ). Thus lk[∆]>k−1
(ρ(T )) = {∅} = [lk∆(T )]>0, and thus we have the result if T is a facet.

Now, suppose T ∈ ∆ is not a facet and define f : V ([lk(T )]>0) → V (lk[∆]>k−1
(ρ(T ))) by

f(ρ(τ)) = ρ(τ ∪ T ). One can check that f is a simplicial isomorphism.

Then f induces a homeomorphism between the geometric realizations of [lk∆(T )]>0 and

lk[∆]k−1
(ρ(T )), and the result follows from Lemma 5.2.3.

Lemma 5.4.2. Let T be a non-trivial, non-facet face of ∆ with |T | = k. Let i be such that

H̃i−1(∆) = H̃i−1([∆]>k−1) = H̃i(∆) = H̃i([∆]>k−1) = 0. Then

H̃i−1(lk∆(T )) ∼= H̃i−1(astar[∆]>k−1
(ρ(T ))).

Proof. Notice that st(T ) ∪ astar∆(T ) = ∆ and st(T ) ∩ astar∆(T ) = lk∆(T ) 6= ∅, thus we

81



have a Mayer-Vietoris exact sequence in reduced homology:

· · · → H̃i(∆)→ H̃i−1(lk∆(T ))→ H̃i−1(st(T ))⊕ H̃i−1(astar∆(T ))→ H̃i−1(∆)→ · · ·

Since st(T ) is a cone, it is acyclic. Since H̃i−1(∆) = H̃i(∆) = 0, this sequence gives that

H̃i−1(astar∆(T )) ∼= H̃i−1(lk∆(T )).

By the same reasoning, we have H̃i−1(astar[∆]>k−1
(ρ(T ))) ∼= H̃i−1(lk[∆]>k−1

(ρ(T ))).

By Lemma 5.4.1, we have H̃i−1(lk[∆]>k−1
(ρ(T ))) ∼= H̃i−1([lk∆(T )]>0).

Lemma 5.4.3. Let ∆ be a simplicial complex and J ( V = V (∆) such that dim(∆|J) = 0.

Assume that H̃i−1(∆) = H̃i(∆) = 0. Then

H̃i−1(∆|V \J) ∼=
⊕
x∈J

H̃i−1(∆|V \{x}).

Proof. We will proceed by induction on |J |. When |J | = 1, the result is immediate. Suppose

the result holds for any J of cardinality k for some k ≥ 1, and suppose now that |J | = k+ 1.

Let x ∈ J and J ′ = J \ {x}. Suppose σ ∈ ∆. If x ∈ σ, then σ ∈ ∆|V \J ′ ; otherwise if σ

contained some y ∈ J ′, then {x, y} ∈ ∆, contradicting the fact that dim(∆|J) = 0. If x /∈ σ,

then σ ∈ ∆|V \{x}. Therefore, ∆ = ∆|V \J ′∪∆|V \{x}. Note that ∆|V \J ′∩∆|V \{x} = ∆|V \J 6= ∅.

We have the following Mayer-Vietoris sequence in reduced homology:

· · · → H̃i(∆)→ H̃i−1(∆|V \J)→ H̃i−1(∆|V \J ′)⊕ H̃i−1(∆|V \{x})→ H̃i−1(∆)→ · · ·

Because H̃i−1(∆) = H̃i(∆) = 0, we have that

H̃i−1(∆|V \J) ∼= H̃i−1(∆|V \J ′)⊕ H̃i−1(∆|V \{x}).
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By induction, H̃i−1(∆|V \J ′) ∼=
⊕

y∈J ′ H̃i−1(∆|V \{y}). Therefore

H̃i−1(∆|V \J) ∼=
⊕
x∈J

H̃i−1(∆|V \{x}).

5.5 Depth and Higher Nerves

Theorem 5.5.1. The following are equivalent:

1. H̃i−1(Nj+1(∆)) = 0 for all i, j ≥ 0 such that i+ j < m.

2. H̃i−1(lk∆(T )) = 0 for all i, j ≥ 0, |T | = j, and i+ j < m.

Proof. We begin the proof by showing that each condition implies m ≤ s(∆) and thus we

will never need to consider the case when T is a facet. Consider the first condition: if

m > s(∆), then we may take j = s(∆) − 1, i = 1. This nerve will have an isolated vertex

corresponding to the facet of smallest size. The nerve will not be connected unless that

facet is the only facet. However, if this facet is the only facet, then we contradict the first

condition for j = s(∆), i = 0. Now consider the second condition: suppose m > s(∆). Then

take j = s(∆), i = 0. Then we have a contradiction when T is a facet.

To prove equivalence, we will induct on j. Thus, let us begin by considering the case

j = 0. The first set of equations is then H̃i−1(N1(∆)) = 0 for all i < m. Using Theorem 5.3.3

(1), we get that this statement is equivalent to H̃i−1(∆) = 0 for all i < m. When j = 0, the

second set of equations is in fact H̃i−1(∆) = 0 for all i < m, since |T | = 0 implies T is the

empty set. Thus we have equivalence when j = 0.

Now, let us take as our induction hypothesis that our theorem holds for j = k − 1.

Consider j = k < m. Assuming either set of equations holds, the j = 0 case again says
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that H̃i−1(∆) = 0 for all i < m. By Proposition 5.3.7 and the j = k − 1 case, either set of

equations yields H̃i−1([∆]>k) = 0 for all i < m− (k − 1). Therefore, we may apply Lemma

5.4.2 for all i < m− (k − 1)− 1 = m− k. Thus, we have

⊕
T∈∆
|T |=k

H̃i−1(lk∆(T )) ∼=
⊕
T∈∆
|T |=k

H̃i−1(astar[∆]>k−1
(ρ(T ))).

Applying Lemma 5.4.3, we get:

H̃i−1([∆]>k) ∼=
⊕
T∈∆
|T |=k

H̃i−1(astar[∆]>k−1
(ρ(T ))).

And by Proposition 5.3.7:

H̃i−1([∆]>k) ∼= H̃i−1(Nk+1(∆)).

Thus, we have completed the proof by induction.

Combining Corollary 5.3.2 and Theorem 5.5.1, we obtain the second part of our main

theorem, Theorem 5.1.3, restated here:

Theorem 5.5.2. For a simplicial complex ∆, depth(k[∆]) = inf{i+ j |H̃i(Nj(∆)) 6= 0}.

Remark 5.5.3. Since depth is a topological property ((Mun84, Theorem 3.1)), we always

have depth k[∆] = depth k[sd ∆] by Lemma 5.2.3. One can apply (Hib91, Proposition 2.8)

repeatedly to show that depth[∆]>j ≥ depth k[∆] − j for every j ≤ d. In particular,

this implies H̃i(Nj(∆)) = 0 for i + j < depth k[∆]. Therefore, one immediately obtains

depth k[∆] ≤ inf{i+ j |H̃i(Nj(∆)) 6= 0}. However, the converse to (Hib91, Proposition 2.8)

does not hold, even with additional hypotheses on vanishing of homology, and therefore,

these methods are incapable of establishing the reverse inequality.
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5.6 The f-vector and the h-vector

In this section, we prove part 3 of Theorem 5.1.3. We set χ(Nj(∆)) to be the Euler char-

acteristic of Nj(∆) and χ̃(Nj(∆)) to be the reduced Euler characteristic of Nj(∆). We use

fi(∆) to indicate the ith entry in the f -vector of ∆.

Theorem 5.6.1. Let i ≥ 0,

fi(∆) =
d∑

j=i+1

(
j − 1

i

)
χ(Nj(∆))

We note that f−1 is always 1.

Proof. Before we proceed, we introduce some additional notation:

Let fh,k be the number of h-faces in Nk(∆). We note that for any complex ∆, fh,k is 0

for large enough h and for large enough k.

If a face appears in Nk+1(∆), then that face also appears in Nk(∆). We wish to count

the h-faces of Nk(∆) which first appear in Nk(∆). This number is given by

fh,k − fh,k+1.

For a collection of facets ρ let ϕ(ρ) = ∩F∈ρF . Note that for a given α ∈ ∆, the set of ρ

such that α ⊆ ϕ(ρ) is Boolean. Let y, x1, . . . , xn be indeterminates, and let xα =
∏

i∈α xi.

Then,

∑
ρ

∑
α⊆ϕ(ρ)

(−1)|ρ|xαy
|α| =

∑
α∈∆

xαy
|α|
∑
ρ

α⊆ϕ(ρ)

(−1)|ρ| = 0.

This is because for each α, the set of such ρ is Boolean, and therefore,
∑
ρ

α⊆ϕ(ρ)

(−1)|ρ| = 0.

Now, setting xi = 1 for all i and solving for the ρ = ∅ term yields:
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∑
α∈∆

y|α| = −
∑
ρ 6=∅

(−1)|ρ|
∑

α⊆ϕ(ρ)

y|α| =
∑
ρ6=∅

(−1)|ρ|−1

|ϕ(ρ)|∑
j=0

(
|ϕ(ρ)|
j

)
yj.

Taking the (i+ 1)st coefficient of each side yields:

fi(∆) =
∑
ρ6=∅

|ϕ(ρ)|≥i+1

(−1)|ρ|−1

(
|ϕ(ρ)|
i+ 1

)

=
∞∑
h=0

∞∑
k=i+1

(−1)h
(

k

i+ 1

)
#{ρ | |ρ| − 1 = h, ρ ∈ Nk(∆)\Nk+1(∆)}

=
∞∑
h=0

(−1)h
∞∑

k=i+1

(
k

i+ i

)
(fh,k − fh,k+1)

=
∞∑
h=0

(−1)h
∞∑

k=i+1

(fh,k − fh,k+1)
k∑

j=i+1

(
j − 1

i

)

=
∞∑
h=0

(−1)h
d∑

j=i+1

∞∑
k=j

(
j − 1

i

)
(fh,k − fh,k+1)

=
d∑

j=i+1

(
j − 1

i

) ∞∑
h=0

(−1)hfh,j

=
d∑

j=i+1

(
j − 1

i

)
χ(Nj(∆)).

For the convenience of the reader, we have worked out the corresponding formula for the

h-vector (h0 = 1, h1, . . . , hd) of ∆.

Corollary 5.6.2. For k ≥ 1 we have:

hk(∆) = (−1)k−1
∑
j≥1

(
d− j
k − 1

)
χ̃(Nj(∆)).

We also record the following:
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Corollary 5.6.3. If ∆1 and ∆2 are simplicial complexes with H̃i−1(Nj(∆1)) ∼= H̃i−1(Nj(∆2))

for all i, j, then ∆1 and ∆2 have identical f -vectors and h-vectors.

5.7 LCM-lattice and Regularity of Monomial Ideals

In this section, we use our main theorem, Theorem 5.1.3, to deduce a formula for the

Castelnuovo-Mumford regularity of any monomial ideal I, denoted by reg(I). We first fix

some notation motivated by (Wel99). Suppose f1, . . . , fr are the minimal monomial genera-

tors of I.

Definition 5.7.1. We define the j-th LCM complex of I to be:

Lj(I) := {F ⊆ [r] : |lcmi∈F (fi)| ≤ j}.

Theorem 5.7.2. Let I be a monomial ideal. Then:

reg(I) = sup{j − i |H̃i(Lj(I)) 6= 0}.

Proof. Let Ipol = (g1, . . . , gr) be the polarization of I. Then it is well-known that reg(I) =

reg(Ipol) (see for instance (Pee11, Theorem 21.10)). From the construction of the gi’s from

the fi’s, it is obvious that for any subset F ⊆ [r], lcmi∈F (fi) and lcmi∈F (gi) have the same

size. Thus, the problem reduces to the case when I is a square-free monomial ideal.

Now let I∨ be the Alexander dual of I. It is the Stanley-Reisner ideal of some complex

∆. We have that

reg(I) = pdS/I∨ = n− depthS/I∨

by the Eagon-Reiner theorem ((MS05, Theorem 5.59)) and the Auslander-Buchsbaum for-

mula. We now note that each gi is precisely the product of variables in the complement of
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the corresponding facet Fi of ∆. Thus Lj(I) = Nn−j(∆). Putting all of these together, we

have:

reg(I) = n− inf{i+ j |H̃i(Ln−j(I)) 6= 0} = sup{j − i |H̃i(Lj(I)) 6= 0}

as desired.

Remark 5.7.3. Our formula above should be compared with Theorem 2.1 in (Wel99).

5.8 Nerve Code, Nervous Systems, and k-Nervous Sys-

tems

In this section, we introduce unpublished code written in SAGE (TheYY) to facilitate the

use of the nerve, the nervous system, and the k-nervous system. This code was written with

Goeckner.

Though the collection of higher nerves retain enough information about the complex to

determine the depth and f -vector of the complex, the collection of higher nerves do not

retain all of the information about the nerve. This is made apparent in Chapter 6, where

we will show that the higher nerves do not retain enough information to determine if the

original complex satisfied Serre’s condition.

The nervous system is the nerve of a complex along with an integer labelling of each

face. Each face is labelled with the highest nerve in which it appears. This object retains

enough information about the original simplicial complex to determine it completely up to

isomorphism. The k-nervous system is the nerve complex along with an integer labelling of

each face, such that each face is labelled with the smaller of k and the highest nerve in which

the face appears.
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The following code is commented for ease of understanding and implementation.

#a program to cons t ruc t a h i ghe r nerve from the s im p l i c i a l complex

def nerve (X, j =1) : ## Defau l t s to ” f i r s t ” nerve

Pow = powerset (X. f a c e t s ( ) )

F = [ ]

for p in Pow:

i f len (p) > 0 :

i n t e r = set (p [ 0 ] )

for i in range ( len (p) ) :

i n t e r = i n t e r . i n t e r s e c t i o n (p [ i ] )

i f len ( i n t e r ) >= j :

F . append (p)

return Simpl ic ia lComplex (F)

#We wish to make t h i s nerve program f a s t e r

#We prov ide two op t i ons to handle very d i f f e r e n t t ype s o f complexes .

#Below , we implement a method t ha t s t a r t s from the bottom and b u i l d s up

nerves u n t i l the i n t e r s e c t i o n i s no longer o f s i z e at l e a s t j .

#This method w i l l be much f a s t e r f o r sparse nerves .

#nerve bot tom up w i l l c a l l a r e cu r s i v e program with the empty face

( S impl ic ia lComplex ( ) ) .

#nerve bot tom up w i l l r e c e i v e a f a c e t l i s t from the r e cu r s i v e program . From

t h i s nerve bot tom up w i l l make a s im p l i c i a l complex

def nerve bottom up (X, nerve number=1) :

o r d e r e d f a c e t l i s t = X. f a c e t s ( )

l a s t f a c e t i n l i s t = −1 #keeps t rack o f which f a c e t s we shou ld be

cons i de r ing moving forward . I f we only cons ider f a c e t s a f t e r t h i s

i n t e g e r we w i l l avo id doub le count ing .

temp = nerve bot tom up recur s ive (

o r d e r e d f a c e t l i s t , l a s t f a c e t i n l i s t , nerve number , [ ] , Set ( [ ] ) )
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return Simpl ic ia lComplex ( temp)

#the r e cu r s i v e program adds the input f a c e t l i s t to answer

#The r e cu r s i v e program w i l l then add a f a c e t to our f a c e t l i s t which was not

p r e v i o u s l y inc luded .

#I f i n t e r and the new f a c e t have an i n t e r s e c t i o n o f s i z e at l e a s t j we c a l l

the r e cu r s i v e program on the new f a c e t l i s t and new i n t e r s e c t i o n .

#we append anyth ign t ha t r e turns to our answer in the curren t i t e r a t i o n o f

the recur s ion ; f i n a l l y we re turn our answer

#X w i l l be a s im p l i c i a l complex , f a c e t l i s t g e t s b u i l t up u n t i l the

i n t e r s e c t i o n becomes too sma l l . We can avoid b i g g e r i n t e r s e c t i o n s by

doing t h i s .

def nerve bot tom up recur s ive (

o r d e r e d f a c e t l i s t , l a s t f a c e t i n l i s t , j , f a c e t l i s t , i n t e r ) :

answer = [ ] #i n i t i a l i z i n g a l i s t o f l i s t s

i f l a s t f a c e t i n l i s t != −1:

c o p y l i s t = l i s t ( f a c e t l i s t )

answer . append ( c o p y l i s t )

#now we w i l l l ook at f a c e t s which are not in f a c e t l i s t and whose

add i t i on w i l l make combinat ions which w i l l not be checked e l s ewhere .

for i in range ( l a s t f a c e t i n l i s t +1, len ( o r d e r e d f a c e t l i s t ) ) :

i f i n t e r == Set ( [ ] ) :

tempinter = [ ( o r d e r e d f a c e t l i s t [ i ] ) ]

else :

tempinter = [ ( l i s t ( set ( i n t e r [ 0 ] ) & set ( o r d e r e d f a c e t l i s t [ i ] ) ) ) ]

i f len ( l i s t ( tempinter [ 0 ] ) ) >= j :

t emp f a c e t l i s t = l i s t ( f a c e t l i s t )

t emp f a c e t l i s t . append ( o r d e r e d f a c e t l i s t [ i ] )

add to answer = nerve bot tom up recur s ive (

o r d e r e d f a c e t l i s t , i , j , t emp f a c e t l i s t , tempinter )

90



answer = answer + add to answer

return answer

def nerve top down (X, nerve number=1) :

answer = [ ]

f a c e t l i s t = X. f a c e t s ( )

i n t e r = i n t e r s e c t l i s t ( f a c e t l i s t )

i f len ( i n t e r ) >= nerve number :

answer = [ f a c e t l i s t ]

else :

answer = nerve top down recur s i ve ( f a c e t l i s t , nerve number )

return Simpl ic ia lComplex ( answer )

#we know tha t the i n t e r s e c t i o n o f e v e r y t h in g in f a c e t l i s t w i l l not be s i z e

nerve number . We t r y one sma l l e r

def nerve top down recur s i ve ( f a c e t l i s t , nerve number ) :

#we ’ l l do the i=0 case s e p a r a t e l y

answer = [ ]

for i in range (0 , len ( f a c e t l i s t ) ) :

t emp l i s t = l i s t ( f a c e t l i s t ) #makes a copy t ha t doesn ’ t po in t to the

same l o c a t i o n

del t emp l i s t [ i ]

i n t e r = i n t e r s e c t l i s t ( t emp l i s t )

i f len ( i n t e r ) >= nerve number :

answer = answer + [ t emp l i s t ]

else :

add to answer = nerve top down recur s i ve ( t emp l i s t , nerve number )

answer = answer + add to answer

return answer

#The Nervous System i s a way to keep t rack o f a l l o f the nerves o f a complex
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at once . I t i s the o r i g i n a l

#nerve complex wi th each face l a b e l l e d by the l a r g e s t nerve in which t ha t

f ace appears .

#Nervous Systems de s c r i b e complexes up to isomorphism .

def nervousSystem (X) :

Pow = powerset (X. f a c e t s ( ) )

F = [ ]

maxCard = 0

for p in Pow:

i f len (p) > 0 :

i n t e r = set (p [ 0 ] )

for i in range (1 , len (p) ) :

i n t e r = i n t e r . i n t e r s e c t i o n (p [ i ] )

i f len ( i n t e r ) >= 1 :

F . append ( [ p , len ( i n t e r ) ] )

i f maxCard < len (p) :

maxCard = len (p)

return [ F , maxCard ]

class Nervous System :

def i n i t ( s e l f , l i s t , int ) :

X = [ l i s t , int ]

s e l f . gamma = X[ 0 ]

s e l f . maxCard = X[ 1 ]

#This method take s a Nervous System and re turns the a s s o c i a t e d S imp l i c i a l

Complex

def unnerve ( s e l f ) :
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f a c e t l i s t = [ ] #t h i s w i l l be a l i s t o f f a c e t s , from t h i s we w i l l

c r ea t e the s im p l i c i a l complex we in tend to re turn

ve r t ex a r r ay = [ ] #an array o f arrays . we w i l l add

( sigma , new ver t i c e s , number o f new v e r t i c e s )

ve r t ex counte r = 1 #a counter o f how many v e r t i c e s have been added

minus 1 . used to add new v e r t i c e s which w i l l be un i que l y named

i n t e g e r s .

d = s e l f . maxCard

i f d != 1 : #i f d=1 then we go s t r a i g h t to con s t ru c t i n g the f a c e t s

for sigma in s e l f . gamma:

i f sigma [ 1 ] < 0 :

return f a l s e

i f len ( sigma [ 0 ] ) == d :

new ve r t i c e s = [ ] #an array where we w i l l add new

v e r t i c e s .

for count in range ( sigma [ 1 ] ) :

n ew ve r t i c e s . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

ve r t ex a r r ay . append (

[ sigma [ 0 ] , new ver t i c e s , sigma [ 1 ] ] )

#we have made v e r t i c e s from the d−dimensiona l f a c e s o f the

nervous system

#we repea t t h i s proces s f o r d−1,d−2 , . . . 2 . Af ter t ha t we must

a c t u a l l y b u i l d the f a c e t s ou t s i d e t h i s i f s ta tement

for j in range (d−2) :

for sigma in s e l f . gamma:

i f len ( sigma [ 0 ] ) == d−1− j :

s = 0 #we s h a l l s u b t r a c t t h i s from sigma [ 1 ] to

determine how many v e r t i c e s need to be added .

for de l t a in ve r t ex a r r ay :

subse t s = Set ( de l t a [ 0 ] ) . subse t s ( )
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i f Set ( sigma [ 0 ] ) in subse t s :

s = s+de l t a [ 2 ]

t = sigma [1]− s

i f t < 0 :

return f a l s e

n ew ve r t i c e s = [ ] #an array where we w i l l add new

v e r t i c e s .

for count2 in range ( t ) :

n ew ve r t i c e s . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

ve r t ex a r r ay . append (

[ sigma [ 0 ] , new ver t i c e s , t ] )

#now we make the f a c e t s by l o o k in g at the v e r t i c e s o f the nervous

system

for sigma in s e l f . gamma: #t h i s loop f i n d s sigma [ 0 ] = 1 , t h e s e sigmas

then rep re s en t the f a c e t s we wish to b u i l d

i f len ( sigma [ 0 ] ) == 1 :

temp = [ ] #a temporary array to he l p us b u i l d the f a c e t

corresponding to sigma

s=0

for de l t a in ve r t ex a r r ay :

subse t s = Set ( de l t a [ 0 ] ) . subse t s ( )

i f Set ( sigma [ 0 ] ) in subse t s :

s = s+de l t a [ 2 ]

#append the v e r t i c e s c rea t ed f o r d e l t a

for alpha in range ( d e l t a [ 2 ] ) :

temp . append ( de l t a [ 1 ] [ d e l t a [2]− alpha −1])

t = sigma [1]− s

i f t < 0 :

return f a l s e

for count3 in range ( t ) :
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temp . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

tempsubsets = Set ( temp) . subse t s ( )

for omega in f a c e t l i s t : #t h i s f o r loop w i l l check to make

sure we don ’ t have redundant f a c e t s

subse t s2 = Set ( omega ) . subse t s ( )

i f Set ( temp) in subse t s2 :

return f a l s e

i f Set ( omega ) in tempsubsets :

return f a l s e

f a c e t l i s t . append ( temp)

answer = Simpl ic ia lComplex ( f a c e t l i s t )

return answer

#The k−Nervous System i s the nerve complex such t ha t each face o f the complex

i s l a b e l l e d wi th the sma l l e r o f

#the number k and the l a r g e s t nerve in which the face appears . I f k =

dimension o f the Stanley−Reisner r ing

#then we have the Nervous System .

def knervousSystem (X, k ) :

Pow = powerset (X. f a c e t s ( ) )

F = [ ]

Label = [ ]

maxCard = 0

for p in Pow:

i f len (p) > 0 :

i n t e r = set (p [ 0 ] )

i = 1

while i < len (p) :

i n t e r = i n t e r . i n t e r s e c t i o n (p [ i ] )
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i = i + 1

i f len ( i n t e r ) >= 1 :

i f len ( i n t e r ) >= k :

F . append ( [ p , k ] )

i f maxCard < len (p) :

maxCard = len (p)

e l i f len ( i n t e r ) < k :

F . append ( [ p , len ( i n t e r ) ] )

i f maxCard < len (p) :

maxCard = len (p)

return [ F , maxCard ]

class kNervous System :

def i n i t ( s e l f , l i s t , int ) :

X = [ l i s t , int ]

s e l f . gamma = X[ 0 ]

s e l f . maxCard = X[ 1 ]

def pr intknervous ( s e l f ) :

print s e l f . gamma

print s e l f . maxCard

#we can re turn a s im p l i c i a l complex a s s o c i a t e d to a k−Nervous System , but

i t i s not the on ly such complex

def kunnerve ( s e l f , k ) :

f a c e t l i s t = [ ] #t h i s w i l l be a l i s t o f f a c e t s , from t h i s we w i l l

c r ea t e the s im p l i c i a l complex we in tend to re turn

ve r t ex a r r ay = [ ] #an array o f arrays . we w i l l add

( sigma , new ver t i c e s , number o f new v e r t i c e s )

96



ve r t ex counte r = 1 #a counter o f how many v e r t i c e s have been added

minus 1 . used to add new v e r t i c e s which w i l l be un i que l y named

i n t e g e r s .

d = s e l f . maxCard

i = d−1

i f d != 1 :

for sigma in s e l f . gamma:

i f sigma [ 1 ] < 0 :

return f a l s e

i f sigma [ 1 ] > k :

return f a l s e

i f len ( sigma [ 0 ] ) == d :

new ve r t i c e s = [ ] #an array where we w i l l add new

v e r t i c e s .

count = 0

while count < sigma [ 1 ] :

n ew ve r t i c e s . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

count = count+1

ve r t ex a r r ay . append ( [ sigma [ 0 ] , new ver t i c e s , count ] )

while i > 1 :

for sigma in s e l f . gamma:

i f len ( sigma [ 0 ] ) == i :

s = 0 #we s h a l l s u b t r a c t t h i s from sigma [ 1 ] to

determine how many v e r t i c e s need to be added .

for de l t a in ve r t ex a r r ay :

subse t s = Set ( de l t a [ 0 ] ) . subse t s ( )

i f Set ( sigma [ 0 ] ) in subse t s :

s = s+de l t a [ 2 ]

t = sigma [1]− s

i f t < 0 :
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i f t != k :

return f a l s e

n ew ve r t i c e s = [ ] #an array where we w i l l add new

v e r t i c e s .

counter2 = 0

while counter2 < t :

n ew ve r t i c e s . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

counter2 = counter2+1

ve r t ex a r r ay . append (

[ sigma [ 0 ] , new ver t i c e s , counter2 ] )

i = i−1

for sigma in s e l f . gamma:

i f len ( sigma [ 0 ] ) == 1 :

i f sigma [ 1 ] > k :

return f a l s e

temp = [ ] #a temporary array to he l p us b u i l d the f a c e t

corresponding to sigma

s=0

for de l t a in ve r t ex a r r ay :

subse t s = Set ( de l t a [ 0 ] ) . subse t s ( )

i f Set ( sigma [ 0 ] ) in subse t s :

s = s+de l t a [ 2 ]

#append the v e r t i c e s c rea t ed f o r d e l t a

tempcount=de l t a [ 2 ]

while tempcount > 0 :

temp . append ( de l t a [ 1 ] [ tempcount−1])

tempcount = tempcount − 1

t = sigma [1]− s

i f t < 0 :

i f t != k :
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return f a l s e

count3 = 0

while count3 < t :

temp . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

count3 = count3+1

tempsubsets = Set ( temp) . subse t s ( )

for omega in f a c e t l i s t : #t h i s f o r loop w i l l check to make

sure we don ’ t have redundant f a c e t s

subse t s2 = Set ( omega ) . subse t s ( )

i f Set ( temp) in subse t s2 :

temp . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

i f Set ( omega ) in tempsubsets :

omega . append ( ve r t ex counte r )

ve r t ex counte r = ve r t ex counte r+1

f a c e t l i s t . append ( temp)

print f a c e t l i s t

answer = Simpl ic ia lComplex ( f a c e t l i s t )

return answer

#re turns the l i s t o f homologies o f the h i ghe r nerves .

def homo logy l i s t (X) :

d = dim(X)+1

rows = [ ]

temp = [ ]

Homs = X. homology ( )

for j in range (d) :

temp . append (Homs [ j ] )

rows . append ( temp)

for i in range (2 , d+1) : ## Sta r t w/ second nerve
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temp = [ ]

N = nerve (X, i )

Homs = N. homology ( )

for j in range (d) :

i f j > dim(N) :

temp . append ( Simpl ic ia lComplex ( [ 0 ] ) . homology ( ) [ 0 ] ) #appends

the 0 homology group

else :

temp . append (Homs [ j ] )

rows . append ( temp)

return rows

#take s a l i s t o f the dimensions o f the homologies o f the nerves and

c a l c u l a t e s the depth

def d ep th by n e r v e l i s t (L) :

#A va r i a b l e count ing depth . We cont inue to decrease i t as we examine our

in format ion .

depth = len (L [ 0 ] )

i = 1 #keeps t rack o f which nerve we are cons i de r ing .

while i < depth :

j=0

while i+j < depth :

i f L [ i −1] [ j ] != 0 :

depth = i+j

j=j+1

i = i + 1

return depth

#take s a s im p l i c i a l complex and c a l c u l a t e s i t ’ s depth us ing the nerve

homologies and the theorem of DDDGHL

100



def depth by nerve (X) :

Y = Simpl ic ia lComplex ( [ 0 ] )

Test = Y. homology ( ) [ 0 ] #I am unaware o f a c l eaner way to

ge t t h i s

#A va r i a b l e count ing depth . We cont inue to decrease i t as we examine our

in format ion .

depth = dim(X)+1

j=0

while 1+j < depth :

i f X. homology ( ) [ j ] != Test :

depth = 1+j

j = j+1

i=2 #Sta r t wi th 2nd Nerve b/c f i r s t nerve has same homologies as the

complex

#Given a bound on depth , k , the k th nerve and above cannot impose

s t ronge r bounds on depth .

while i < depth :

N = nerve (X, i )

j=0

while i+j < depth :

i f N. homology ( ) [ j ] != Test :

depth = i+j

j=j+1

i = i + 1

return depth

#Makes a t a b l e t h a t shows the reduced homologies o f the h i ghe r nerves o f the

s im p l i c i a l complex X
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def nerveTable (X) :

d = dim(X)+1

rows = [ ]

temp = [ ]

temp . append ( ”” )

for j in range (d) : #makes the l a b e l s

temp . append ( ”H”+str ( j ) )

rows . append ( temp)

temp = [ ]

Homs = X. homology ( )

temp . append ( ”N1” )

for j in range (d) : #we do the f i r s t nerve s e p a r a t e l y because i t has the

same homologies as X and i s thus l e s s computa t i ona l l y i n t e n s i v e

temp . append (Homs [ j ] )

rows . append ( temp)

for i in range (2 , d+1) :

temp = [ ]

temp . append ( ”N”+str ( i ) )

N = nerve (X, i )

Homs = N. homology ( )

for j in range (d) :

i f j > dim(N) :

temp . append (0)

else :

temp . append (Homs [ j ] )

rows . append ( temp)

print t ab l e ( rows , header column = True , header row = True )

#Takes a l i s t o f l e n g t h d , where d i s the dimension o f o r i g i n a l complex . The

i t h e lement o f t h i s l i s t i s a l i s t o f the f i r s t d reduced homologies o f
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the i t h nerve .

#This program take s t h i s in format ion and re turns the f−vec t o r o f the complex .

def f v e c t o r n e r v e (L) :

answer = [ ]

answer . append (1) #nega t i v e f i r s t e lement o f f−vec t o r i s a lways 1

d = len (L [ 0 ] ) #dimension o f the complex

#below we c a l c u l a t e the reduced Euler Cha r a c t e r s i s t i c s f o r the h i ghe r

Nerves

eu l e r = [ ]

for j in range (1 , d+1) :

temp = 0

for n in range (d) :

temp = temp + (−1) ˆ(n) ∗(L [ j −1] [ n ] ) #ca l c u l a t e the reduced eu l e r

c o e f f i c i e n t s

eu l e r . append ( temp)

#now we c a l c u l a t e the f−vec t o r us ing the eu l e r c h a r a c t e r i s t i c s

for i in range (d) :

A = 0

for j in range ( i +1,d+1) :

A = A+(binomial ( j −1, i ) ∗( e u l e r [ j −1]+1) ) #ca l c u l a t e a s i n g l e

e lement o f the f−vec t o r

answer . append (A)

return answer

#Takes a l i s t o f l e n g t h d , where d i s the dimension o f o r i g i n a l complex . The

i t h e lement o f t h i s l i s t i s a l i s t o f the f i r s t d reduced homologies o f

the i t h nerve .

#This program take s t h i s in format ion and re turns the h−vec t o r o f the complex .

def h vec to r ne rve (L) :

answer = [ ]

answer . append (1) #h 0 = 1
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d = len (L [ 0 ] ) #dimension o f complex

#below we c a l c u l a t e the reduced Euler Cha r a c t e r s i s t i c s f o r the h i ghe r

Nerves

eu l e r = [ ]

for j in range (1 , d+1) :

temp = 0

for n in range (d) :

temp = temp + (−1) ˆ(n) ∗(L [ j −1] [ n ] ) #ca l c u l a t e the reduced eu l e r

c o e f f i c i e n t s

eu l e r . append ( temp)

#below we c a l c u l a t e the h−vec t o r wi th the Euler c h a r a c t e r i s t i c s

for k in range (1 , d+1) :

A = 0

for j in range (1 , d+1) :

A = A + ( eu l e r [ j −1])∗binomial (d−j , k−1) #eu l e r [ j −1] i s the Euler

char o f the j t h Nerve

A = A∗(−1) ˆ(k−1)

answer . append (A)

return answer
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Chapter 6

Rank Selection Theorems for

Balanced Simplicial Complexes

6.1 Introduction

The work in this chapter is based on joint work with Justin Lyle.

Two objects which have attracted attention in recent years are balanced simplicial com-

plexes and simplicial complexes satisfying Serre’s condition (S`) (see (DHV16; PSFTY14;

HTYZN11; MT09; TY08; Ter07; Bjö03; Yan00; KN16; BVT12; Het06; JV18)).

Let (∆, π) be a balanced simplicial complex of dimension d − 1 with ordered partition

π = (V1, . . . , Vd), and let k[∆] denote its Stanley-Reisner ring over the field k. If S ⊆ [d],

we let ∆S denote the S-rank selected subcomplex of ∆; that is, ∆S is the subcomplex of ∆

induced on
⋃
i∈S Vi. For convenience, we also set ∆̃S := ∆[d]−S. The so-called rank selection

theorems of Stanley ((Sta79)) and Munkres ((Mun84)) show that ∆S often inherits nice

properties, in a homological sense, from ∆. Specifically, we have the following:

Theorem 6.1.1 ((Sta79)). Let (∆, π) be a balanced simplicial complex. If k[∆] is Cohen-

Macaulay, then k[∆S] is Cohen-Macaulay for any S ⊆ [d].
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This can be extended, from a more general statement of Munkres, to the following:

Theorem 6.1.2 ((Mun84)). Let (∆, π) be a balanced simplicial complex. Then, for any

S ⊆ [d], depth k[∆̃S] ≥ depth k[∆]− |S|.

As Serre’s condition (S`), like depth, extends the Cohen-Macaulay property, it is natural

to consider if there is any extension of these results to (S`). We prove this is indeed the case:

Theorem 6.1.3. Let (∆, π) be a balanced simplicial complex of dimension d−1, with ordered

partition π = (V1, . . . , Vd). If k[∆] satisfies Serre’s condition (S`), then k[∆S] satisfies (S`)

for any S ⊆ [d].

A motivating example of a balanced simplicial complex is the order complex O(P ) of a

poset P , whose elements are partitioned by height. In this case, O(P>j) is the subcomplex

of O(P ) with the bottom j ranks removed. For this case, we prove the following:

Theorem 6.1.4. Let P be a finite poset. We use O(P ) for the order complex of P .

1. If k[O(P )] satisfies (S`), then H̃i−1(O(P>j); k) = 0 whenever i+ j < d and 0 ≤ i < `.

2. If P is the face poset of a simplicial complex and H̃i−1(O(P>j); k) = 0 whenever i+j < d

and 0 ≤ i ≤ `, then k[O(P )] satisfies (S`).

We also provide a more direct extension of Theorem 6.1.2, and a formula for depth k[∆]

in terms of reduced homologies of rank selected subcomplexes.

Proposition 6.1.5. Let (∆, π) be a balanced simplicial complex of dimension d − 1, with

ordered partition π = (V1, . . . , Vd). If H̃depth k[∆]−1(∆) = 0, then there is an i ∈ [d] such that

depth k[∆̃{i}] = depth k[∆]− 1.

Theorem 6.1.6. Let (∆, π) be a balanced simplicial complex of dimension d−1, with ordered

partition π = (V1, . . . , Vd). Then
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depth k[∆] = min{i+ |S| | H̃i−1(∆̃S; k) 6= 0}.

Finally, we use higher nerve complexes (see Definition 5.1.2 to provide a formula for sums

of reduced Euler characteristics of links.

Theorem 6.1.7. Suppose ∆ is pure and let P be the face poset of ∆. Write χ for Euler

characteristic and χ̃ for reduced Euler characteristic. Then

∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ(O(P>k))− χ(O(P>k−1)).

We now briefly describe the structure of our paper. In Section 2, we set notation and

provide the algebraic and combinatorial background we appeal to throughout the paper. In

Section 3 we prove Theorems 6.1.3 and 6.1.4, and in section 4, we prove Proposition 6.1.5

and Theorem 6.1.6. In section 5, we prove Theorem 6.1.7 and provide an application to

Gorenstein∗ complexes. The last section discusses open problems related to this work and

provides examples indicating the sharpness of our results.

6.2 Background and Notation

In this section we set notation and provide algebraic and combinatorial background. Once

and for all, fix the base field k. We let H̃i denote ith simplicial or singular homology,

whichever is appropriate, always taken with respect to the field k. We use χ for Euler

characteristic and χ̃ for reduced Euler characteristic.

Given a simplicial complex ∆ we write k[∆] for its Stanley-Reisner ring over k. We write

V (∆) for the vertex set of ∆, but, if ∆ is clear from context, we generally write V for V (∆)

and n for |V |; we set A := k[x1, . . . , xn]. We write fi(∆) for the number of i-dimensional faces
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of ∆, and hi(∆) for the ith entry of the h-vector of ∆; so hi(∆) =
∑k

i=0

(
d−i
k−i

)
(−1)k−ifi−1(∆).

We let ||∆|| denote the geometric realization of ∆. We call ∆(k) := {σ ∈ ∆ : dim σ ≤ k} the

k-skeleton of ∆.

Given a subset T ⊆ V (∆), we use ∆|T := {σ ∈ ∆ | T ⊆ σ} for the induced subcomplex

of ∆ on T . We may then define the star, the anti-star, and the link of T , respectively, as

follows:

st∆ T := {G ∈ ∆ | T ∪G ∈ ∆}

astar∆ T := {G ∈ ∆ | T ∩G = ∅} = ∆|V−T

lk∆ T := {G ∈ ∆ | T ∪G ∈ ∆ and T ∩G = ∅} = st∆ T ∩ astar∆ T

Of import, st∆(T ) is a cone over lk∆(T ) for any T ∈ ∆, in particular is acyclic. When

T = {v}, we abuse notation and write st∆(v), astar∆(v), and lk∆(v).

We say that J ⊆ V (∆) is an independent set for ∆ if {a, b} /∈ ∆ for any a, b ∈ J with

a 6= b. Motivated by (Hib91), we say that J ⊆ V (∆) is an excellent set for ∆ if J is an

independent set for ∆ and J ∩F 6= ∅ for every facet F ∈ ∆. When ∆ is clear from context,

we simply say that J is an independent set or that J is an excellent set, as appropriate.

The main computational tools of this paper are two exact sequences recorded in the

following propositions:

Proposition 6.2.1. Suppose T ∈ ∆ is not a facet. Then there is a Mayer-Vietoris exact

sequence of the form

· · · → H̃i(∆)→ H̃i−1(lk∆(T ))→ H̃i−1(st(T ))⊕ H̃i−1(astar∆(T ))→ H̃i−1(∆)→ · · ·

Proposition 6.2.2. Suppose {x} ( J ( V is an independent set. Set J ′ = J − {x}. Then

there is a Mayer-Vietoris exact sequence of the form
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· · · → H̃i(∆)→ H̃i−1(astar∆(J))→ H̃i−1(astar∆(J ′))⊕ H̃i−1(astar∆(x))→ H̃i−1(∆)→ · · ·

We will say ∆ satisfies (S`) if k[∆] does. Every simplicial complex satisfies (S1), and

a simplicial complex satisfies (Sd) if and only if it is Cohen-Macaulay. The following is

an immediate consequence of Hochster’s formula (BH98, Theorem 5.3.8) and gives a useful

characterization of depth for Stanley-Reisner rings in terms of reduced homologies of links:

Proposition 6.2.3. Let ∆ be a simplicial complex. Then depth k[∆] ≥ t if and only if

H̃i−1(lk∆(T )) = 0 for all T ∈ ∆ with i+ |T | < t.

The corresponding result for (S`) can be found in (Ter07):

Proposition 6.2.4 ((Ter07)). Let ∆ be a simplicial complex. Then ∆ satisfies (S`) for ` ≥ 2

if and only if H̃i−1(lk∆(T )) = 0 whenever i + |T | < d and 0 ≤ i < `. In particular, (S`)

complexes are pure if ` ≥ 2.

Define coreV (∆) := {v ∈ V (∆) | st∆(v) 6= ∆} and set core ∆ := ∆|coreV (∆). We say that

∆ is Gorenstein if the ring k[∆] is Gorenstein; if, in addition, core ∆ = ∆, we say that ∆ is

Gorenstein∗. One has the following, see (BH98, Theorem 5.6.1):

Theorem 6.2.5. A simplicial complex ∆ is Gorenstein∗ if and only if

H̃i−1(lk∆(T )) ∼=


k if i = d− |T |

0 if i 6= d− |T |

Now, suppose P is a poset. If p ∈ P , we let ht(p) denote the length of a longest chain

p1 ≺ p2 ≺ · · · ≺ pi = p and let htP := max{ht p | p ∈ P}. We denote by P>j the poset

obtained by restricting to elements p ∈ P so that ht p > j. The order complex of P , denoted
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O(P ), is the simplicial complex on P consisting of all chains of elements in P . Let F(∆)

denote the face poset of ∆. We set [∆]>j := O(F(∆)>j). We note that when j = 0, [∆]>0

is the barycentric subdivision of ∆. The following is well known (see (Gib77, Corollary 5.7),

for example):

Lemma 6.2.6. The realization ||∆|| is homeomorphic to ||[∆]>0||. In particular, H̃i(∆) ∼=

H̃i([∆]>0) for all i.

We let ρ : ∆ − {∅} → V ([∆]>0) be the map which sends T to itself viewed as a vertex

of [∆]>0.

There are several advantages of working with [∆]>k. For instance, Lemma 5.4.1

Definition 6.2.7. A balanced simplicial complex is a pair (∆, π) satisfying:

1. ∆ is d− 1 dimensional simplicial complex on a vertex set V .

2. π = (V1, . . . , Vd) is an ordered partition of V .

3. For every facet F ∈ ∆ and every i ∈ [d], |F ∩ Vi| ≤ 1.

Balanced simplicial complexes were introduced by Stanley in (Sta79). One can find more

information on them in (BSF87; BGS82; Gar80); (Sta96) gives a more modern treatment

of the subject. An important property of balanced simplicial complexes is that each Vi is

an independent set for ∆, and, if ∆ is pure, the Vi are excellent sets for ∆. If (∆, π) is

a balanced simplicial complex with π = (V1, . . . , Vd), and if S ⊆ [d], we define the S-rank

selected subcomplex of ∆ to be the complex ∆S := ∆|⋃
i∈S Vi

; for notational convenience,

we also set ∆̃S = ∆[d]−S. If (∆, π) is a balanced simplicial complex, we often suppress the

ordered partition π and simply refer to ∆ as a balanced simplicial complex; in this case we

always write π = (V1, . . . , Vd) for the corresponding ordered partition.
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Now, let P be a finite poset. If we set Vi := {p | ht(p) = i} and π = (V1, . . . , VhtP ),

then (O(P ), π) is a balanced simplicial complex. In particular, this means [∆]>j is always a

balanced simplicial complex for any j.

Finally, we will need the higher nerves defined in 5.1.2.

6.3 Rank Selection Theorems for Serre’s Condition

In this section we prove some general statements and use them to derive Theorems 6.1.3 and

6.1.4.

Lemma 6.3.1. Suppose J ⊆ V is excellent and ∆ satisfies (S`). Set ∆̃ := astar∆(J). Then

∆̃ satisfies (S`).

Proof. We proceed by induction on `. The claim is clear when ` = 1, since every simplicial

complex satisfies (S1). So, suppose we know the result for all 1 ≤ j ≤ ` and suppose ∆

satisfies (S`+1). Inductive hypothesis gives us that ∆̃ satisfies (S`).

By Proposition 6.2.4, we have that H̃i−1(lk∆(T )) = 0 whenever i+ |T | < d and 0 ≤ i ≤ `,

H̃i−1(lk∆̃(T )) = 0 whenever i + |T | < d − 1 and 0 ≤ i < `, and we need only show that

H̃`−1(lk∆̃(T )) = 0 for all T ∈ ∆̃ with `+ |T | < d− 1.

Pick T ∈ ∆̃ such that ` + |T | < d − 1. Let σ ⊇ T be a facet of ∆. Since J is excellent,

there is a b ∈ J ∩ σ, and thus b ∪ T ∈ ∆. Since b /∈ T , this means b ∈ lk∆(T ). Note T ∪ {b}

cannot be a facet of ∆, since this would mean |T | + 1 = d, whilst ` + |T | < d − 1. Set

S = J ∩ V (lk∆(T )). Then evidently we have lk∆̃(T ) = astarlk∆(T )(S). By Proposition 6.2.1,

we have, for any b ∈ S, the exact sequence:

H̃`(astarlk∆(T )(b))
i∗b−→ H̃`(lk∆(T ))→ H̃`−1(lklk∆(T )(b))→ H̃`−1(astarlk∆(T )(b))→ H̃`−1(lk∆(T ))

where i∗b is the induced map coming from the inclusion ib : astarlk∆(T )(b) ↪→ lk∆(T ). Since
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lklk∆(T )(b) = lk∆(T ∪ {b}) and since ` + |T | < d − 1, we have H̃`−1(lklk∆(T )(b)) = 0. Since

H̃`−1(lk∆(T )) = 0, we obtain H̃`−1(astarlk∆(T )(b)) = 0 and that i∗b is surjective, from exact-

ness.

Now, since J is an independent set in ∆, S is an independent set in lk∆(T ). We claim

that H̃`−1(astarlk∆(T )(I)) = 0 for any ∅ ( I ⊆ S. To see this, we induct on |I|. Note that

the claim is true when |I| = 1, from above. Now suppose the claim is true for every I with

|I| = k, and suppose we are given an I with |I| = k + 1. Write I = L ∪ {b} so that |L| = k.

By Proposition 6.2.2 we have the exact sequence

H̃`(astarlk∆(T )(b))⊕ H̃`(astarlk∆(T )(L)) H̃`(lk∆(T ))

H̃`−1(astarlk∆(T )(I)) H̃`−1(astarlk∆(T )(b))⊕ H̃`−1(astarlk∆(T )(L))

i∗b − k
∗

where k∗ is the induced map coming from the inclusion k : astarlk∆(T )(L) ↪→ lk∆(T ).

By inductive hypothesis, we have that H̃`−1(astarlk∆(T )(b)) ⊕ H̃`−1(astarlk∆(T )(L)) =

0. As we saw previously, i∗b is surjective so that i∗b − k∗ is as well. Thus we obtain

H̃`−1(astarlk∆(T )(I)) = 0 from exactness. Therefore, induction gives us that

H̃`−1(astarlk∆(T )(S)) = H̃`−1(lk∆̃(T )) = 0, and thus, ∆̃ satisfies (S`+1).

Theorems 6.1.3 and 6.1.4 (1) now follow as quick consequences of Lemma 6.3.1:

Theorem 6.3.2. Let ∆ be a balanced simplicial complex. If ∆ satisfies (S`), then ∆S satisfies

(S`) for any S ⊆ [d].

Proof. The claim is clear when ` = 1. When ` ≥ 2, ∆ is pure, and the result follows by

applying Lemma 6.3.1 inductively on each i ∈ [d]− S.
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Theorem 6.3.3. If P is a finite poset satisfying (S`), then H̃i−1(O(P>j)) = 0 whenever

i + j < d and 0 ≤ i < `. In particular, if ∆ is a simplicial complex satisfying (S`), then

H̃i−1([∆]>j) = 0 whenever i+ j < d and 0 ≤ i < `.

Proof. Suppose P is (S`). By Theorem 6.3.2, O(P>j) satisfies (S`) for each 0 ≤ j ≤ d − 1.

In particular, H̃i−1(O(P>j)) = 0 for i < d− j and 0 ≤ i < `. It only remains to remark that

if ∆ is a simplicial complex satisfying (S`), then, since ||∆|| ∼= ||[∆]>0|| and since (S`) is a

topological property ((Yan11, Theorem 4.4 (d))), [∆]>0 satisfies (S`).

Remarkably, Theorem 6.3.3 admits a partial converse (Theorem 6.1.4 (2)) when P is the

face poset of a simplicial complex.

Theorem 6.3.4. If H̃i−1([∆]>j) = 0 whenever i + j < d and 0 ≤ i ≤ `, then ∆ satisfies

(S`).

Proof. We follow a similar approach to that of Lemma 6.3.1; we induct on `. The result is

clear when ` = 1. Suppose we know the result for ` and suppose H̃i−1([∆]>j) = 0 whenever

i+ j < d and 0 ≤ i ≤ `+ 1. From induction hypothesis, we have that ∆ satisfies (S`). Note

that we assumed, in particular, that H̃0([∆]>j) = 0 whenever j < d − 1. Thus, no facet of

∆ can have cardinality less than or equal to d − 1; that is, ∆ is pure. Since ∆ is (S`), we

have H̃i−1(lk∆(T )) = 0 whenever i + |T | < d and 0 ≤ i < `, and we need only show that

H̃`−1(lk∆(T )) = 0 whenever |T | < d− `. To see this, we proceed by induction on |T |. When

|T | = 0, we have H̃`−1(lk(T )) = H̃`−1(∆) = H̃`−1([∆]>0) = 0. Suppose H̃`−1(lk(T )) = 0

whenever j = |T | < d− `, and consider T ∈ ∆ with j + 1 = |T | < d− `.

Letting S = {ρ(T ) | T ∈ ∆, |T | = j + 1} and writing S = I ∪ {ρ(T )}, we have, by

Proposition 6.2.2, the exact sequence
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H̃`−1([∆]>j+1) H̃`−1(astar[∆]>j
(ρ(T )))⊕ H̃`−1(astar[∆]>j

(I)) H̃`−1([∆]>j)

Since H̃`−1([∆]>j+1) = 0 = H̃`−1([∆]>j), we have

H̃`−1(astar[∆]>j
(ρ(T )))⊕ H̃`−1(astar[∆]>j

(I)) = 0. In particular, H̃`−1(astar[∆]>j
(ρ(T ))) = 0.

As ∆ is pure, T is not a facet, and so lk∆(T ) 6= {∅} whence lk[∆]>j
(ρ(T )) 6= {∅}. By

Proposition 6.2.1, we have the exact sequence

H̃`(astar[∆]>j
(ρ(T )))→ H̃`([∆]>j)→ H̃`−1(lk[∆]>j

(ρ(T )))→

H̃`−1(astar[∆]>j
(ρ(T )))→ H̃`−1([∆]>j)

Since H̃`−1(astar[∆]>j
(ρ(T ))) = 0 = H̃`([∆]>j), it follows that H̃`−1(lk[∆]>j

(ρ(T ))) = 0 =

H̃`−1(lk(T )). Thus, ∆ satisfies (S`+1), and the result follows from induction.

Remark 6.3.5. When ` = 2, the conclusion of Theorem 6.3.3 is equivalent to H̃0([∆]>d−2) =

0, since, for a pure complex, connectivity of [∆]>j implies connectivity of [∆]>j−1.

Remark 6.3.6. Since, by Theorem 1.1.14 (4), H̃i−1([∆]>j) ∼= H̃i−1(Nj+1(∆)) for any i and

j, Theorems 6.3.3 and 6.3.4 also serve as a version of Theorem 1.1.14 (2) for (S`).

6.4 Depth of Rank Selected Subcomplexes

The following lemma follows from (Hib91, Proposition 2.8) and a slightly weaker version can

be found in (Mun84, Theorem 6.4):

Lemma 6.4.1. Suppose depth k[∆] ≥ ` and that J is an independent set. Set ∆̃ =

astar∆(J). Then depth k[∆̃] ≥ `− 1.
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We first provide a refinement of this lemma:

Lemma 6.4.2. Let depth ∆ = ` and suppose H̃`−1(∆) = 0. Choose T ∈ ∆ of minimal

cardinality such that H̃`−|T |−1(lk∆(T )) 6= 0 (that such a T exists follows from Proposition

6.2.3). Let J be an independent set and suppose T = T ′∪{b} with b ∈ J . Set ∆̃ = astar∆(J).

Then H̃`−|T ′|−2(lk∆̃(T ′)) 6= 0. In particular, depth ∆̃ = `− 1.

Proof. If T is a facet of ∆, then we have that |T | = `, and, as lk∆(T ) = lklk∆(T ′)(b), that {b}

is a facet of lk∆(T ′). By our minimality hypothesis, H̃0(lk∆(T ′)) = 0. It follows that lk∆(T ′)

is a simplex with facet {b}, and so lk∆̃(T ′) = astarlk∆(T ′)(b) = {∅}. Thus T ′ is a facet of ∆̃,

and so H̃`−1−|T ′|−1(lk∆̃(T ′)) = H̃−1(lk∆̃(T ′)) 6= 0.

Otherwise, set S = J ∩V (lk∆(T ′)) and note that lk∆̃(T ′) = astarlk∆(T ′)(S). Lemma 6.2.1

gives the following exact sequence

H̃`−|T |(lk∆(T ′))→ H̃`−|T |−1(lklk∆(T ′)(b))→ H̃`−|T |−1(astarlk∆(T ′)(b))→ H̃`−|T |−1(lk∆(T ′))

By minimality of |T | and Lemma 6.4.1, we have H̃`−|T |(lk∆(T ′)) = H̃`−|T |−1(lk∆(T ′)) = 0.

Thus, H̃`−|T |−1(lklk∆(T ′)(b)) ∼= H̃`−|T |−1(astarlk∆(T ′)(b)). But, lklk∆(T ′)(b) = lk∆(T ′ ∪ {b}) =

lk∆(T ), and so, in particular, H̃`−|T |−1(astarlk∆(T ′)(b)) 6= 0.

But now, Lemma 5.4.3 gives that

H̃i−|T |−1(astarlk∆(T ′)(S)) ∼=
⊕
x∈S

H̃i−|T |−1(astarlk∆(T ′)(x)),

in particular, is nonzero. That depth ∆̃ = ` − 1 now follows from Lemma 6.4.1 and Propo-

sition 6.2.3.

Proposition 6.4.3. Let ∆ be a balanced simplicial complex. Suppose H̃`−1(∆) = 0. Then

there exists an i such that depth astar∆(Vi) = `− 1.
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Proposition 6.1.5 now follows immediately.

With these results in hand, we now prove Theorem 6.1.6:

Theorem 6.4.4. If ∆ is a balanced simplicial complex, then

depth ∆ = min{i+ |S| | H̃i−1(∆̃S) 6= 0}.

Proof. That

depth ∆ ≤ min{i+ |S| | H̃i−1(∆̃S) 6= 0}

follows at once from Lemma 6.4.1, so we need only concern ourselves with the reverse inequal-

ity. We proceed by induction on depth ∆, noting that the claim is clear when depth ∆ = 0,

that is, when ∆ = {∅}. Suppose depth ∆ = `. The claim is clear if H̃`−1(∆) 6= 0, so we may

suppose this is not the case. By Proposition 6.4.3, there is an i with depth astar∆(Vi) = `−1.

From inductive hypothesis, we have `− 1 = min{i + |S| | H̃i−1(astar∆(Vi)[d]−S)}. In partic-

ular, there is an S ⊆ [d − 1] with H̃`−|S|−2(astar∆(Vi)) = H̃`−|S∪{i}|−1(∆̃|S∪{i}|) 6= 0, and the

result follows.

Corollary 6.4.5. Let P be a finite poset. For any S ⊆ {1, . . . , htP}, let P̃S denote the poset

obtained by restricting P to elements whose height is not in S. Then

depthO(P ) = min{i+ |S| | H̃i−1(O(P̃S)) 6= 0}.

6.5 Euler Characteristics of Links and Truncated Posets

We now shift our attention to Theorem 6.1.7. Similar to the proof of (HN02, Lemma 1 (ii)),

a simple counting argument shows
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∑
T∈Fk

fi−1(lk∆(T )) =

(
i+ k

k

)
fi+k−1(∆).

As in (Swa05, Proposition 2.3) one can combine this with Theorem 1.3 (3) to obtain a

formula for
∑
T∈∆
|T |=k

hi(lk∆(T )) in terms of Euler characteristics of higher nerves. We follow a

similar approach to obtain a particularly simple formula for
∑
T∈∆
|T |=k

χ̃(lk∆(T )):

Theorem 6.5.1. Suppose ∆ is pure. Then

∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ([∆]>k)− χ([∆]>k−1)

Proof. We make use of the following identity:

j∑
i=0

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
=


−1 j = k − 1

1 j = k

0 j 6= k, k − 1

Set Fk = {T ∈ ∆, |T | = k}. Now,

∑
T∈Fk

χ̃(lk∆(T )) =
d−k∑
i=0

∑
T∈Fk

(−1)i+1fi−1(lk∆(T ))

=
d−k∑
i=0

(−1)i+1

(
i+ k

k

)
fi+k−1(∆)

=
d−k∑
i=0

d−1∑
j=i+k−1

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
χ(Nj+1(∆))

=
d−1∑
j=0

j∑
i=0

(−1)i+1

(
i+ k

k

)(
j

i+ k − 1

)
χ(Nj+1(∆))

= χ(Nk+1(∆))− χ(Nk(∆))
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Th result then follows from Theorem 1.1.14 (4).

Note that, as long as k 6= d,
∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>k) − χ([∆]>k−1) = χ̃([∆]>k) −

χ̃([∆]>k−1).

Corollary 6.5.2. Suppose ∆ is pure. Then

i∑
k=j

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i)− χ([∆]>j−1).

In particular,
i∑

k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i).

As an application, we provide a result analogous to those of sections 6.3 and 6.4 for

Gorenstein∗ complexes.

Corollary 6.5.3. Suppose ∆ is Gorenstein∗. Then

dimk H̃i−1([∆]>j) =


dimk H̃j−1(∆(j−1)) if i = d− j

0 if i 6= d− j.

The converse holds if lk∆(T ) is non-acyclic for each T ∈ ∆.

Proof. By Theorem 1.1.14 (4), H̃i−1([∆]>j) ∼= H̃i−1(Nj+1(∆)) for any i and j. Thus, by

Theorems 1.1.14 (1) and 6.2.5, both conditions imply ∆ is Cohen-Macaulay, in particular,

that ∆(j−1) is Cohen-Macaulay for every j ((Frö90, Theorem 8)). In this case, we have

dimk H̃j−1(∆(j−1)) = (−1)jχ̃(∆(j−1)) =

j∑
k=0

(−1)j−kfk−1(∆).
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Suppose ∆ is Gorenstein∗. Then, by Theorem 6.2.5

H̃i−1(lk∆(T )) ∼=


k if i = d− j

0 if i 6= d− j

Likewise, since ∆ is Cohen-Macaulay, we have H̃i−1(Nj+1(∆)) = 0 unless i = d − j by

Theorem 1.1.14. By Corollary 6.5.2 we have

j∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) =

j∑
k=0

∑
T∈Fk

(−1)d−k−1 =

j∑
k=0

(−1)d−k−1fk−1(∆) =

(−1)d−j−1 dimk H̃d−j−1([∆]>j)

and the result follows.

Now suppose lk∆(T ) is non-acyclic for each T ∈ ∆ and that

dimk H̃i−1([∆]>j) =


j∑

k=0

(−1)j−kfk−1(∆) if i = d− j

0 if i 6= d− j.

.

Since ∆ is Cohen-Macaulay, H̃i−1(lk∆(T )) = 0 unless i = d− |T |. Now we induct on |T |

to show that H̃d−|T |−1(lk∆(T )) ∼= k for each T . When T = ∅ we have dim H̃d−1(lk∆ T ) =

dim H̃d−1(∆) ∼= dim H̃d−1([∆]>0) = f−1(∆) = 1. Now suppose H̃d−|T |−1(lk∆(T )) ∼= k when-

ever |T | < j. Then

j∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ̃([∆]>j) = (−1)d−j−1 dimk H̃d−j−1(Nj+1(∆)) =

j∑
k=0

(−1)d−k−1fk−1(∆)
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Similarly,
j−1∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) =

j−1∑
k=0

(−1)d−k−1fk−1(∆),

and thus

∑
T∈Fj

χ̃(lk∆(T )) =
∑
T∈Fj

(−1)d−j−1 dimk H̃d−j−1(lk∆(T )) = (−1)d−j−1fj−1(∆).

Then ∑
T∈Fj

dimk H̃d−j−1(lk∆(T )) = fj−1(∆),

but, since lk∆(T ) is non-acyclic for each T , we must have dimk H̃d−j−1(lk∆(T )) = 1 for each

T ∈ Fj, by pigeonhole. The result now follows from induction.

Remark 6.5.4. We claim the result of Corollary 6.5.3 is analogous to those of Sections

6.3 and 6.4, but this is perhaps not obvious. To see this, note that dimk H̃i−1(∆(j−1)) =

dimk H̃i−1(P−1
>d−j) where P is the face poset of ∆ (excluding ∅). In essence, our result

says that, when ∆ is Gorenstein∗, removing j ranks from the bottom of P gives the same

homologies as removing d− j ranks from the top, though they are in different degrees.

6.6 Open Problems and Examples

We

say that A ⊆ ∆ is independent if σ ∪ τ /∈ ∆ for all σ, τ ∈ A with σ 6= τ . We say that

A is excellent if, additionally, for every facet F of ∆, F ⊇ σ for some (necessarily unique)

σ ∈ A. Note that J = {v1, . . . , vm} ⊆ V is independent (resp. excellent) if and only if

{{v1}, . . . , {vm}} is an independent (resp. excellent) subset of ∆. If A ⊆ ∆ is independent,

120



we set

∆A := ∆− {σ ∈ ∆ | σ ⊇ τ for some τ ∈ A}.

If A = {{v1}, . . . , {vm}} where J = {v1, . . . , vm} ⊆ V is independent, then ∆A = astar∆(J).

Essentially the same argument as (Hib91, Proposition 2.8) shows the following extension of

Lemma 6.4.2:

Proposition 6.6.1. Suppose A ⊆ ∆ is independent. Then depth k[∆] ≥ ` implies

depth k[∆A] ≥ `− 1.

We conjecture a similar extension of Lemma 6.3.1.

Conjecture 6.6.2. Suppose A ⊆ ∆ is excellent. If ∆ satisfies (S`), then ∆A satisfies (S`).

Remark 6.6.3. If A is independent and ` ≥ 2 the conclusion can only hold if A is excellent,

since (S2) complexes are pure. Similar to Proposition 6.6.1, one can modify the argument of

(Hib91, Proposition 2.8) to show that ∆A satisfies (S`−1) whenever ∆ satisfies (S`) and A is

excellent. However, as in the proof of Theorem 6.3.3, one often needs to cut away excellent

subsets inductively, and, for this purpose, (S`−1) is not generally good enough. A positive

answer to this conjecture would allow one to extend Theorem 6.1.3 to balanced complexes

of a more general type, along the lines of (Hib91, Section 3).

The following examples show that converses of Theorems 6.3.3 and 6.3.4 do not hold,

even for face posets of simplicial complexes:

Example 6.6.4. Consider the complex with facets:

{4, 5, 6}, {1, 5, 6}, {1, 3, 5}, {2, 3, 6}, {2, 5, 6}, {2, 4, 6}.

This complex is not (S2) and has H̃i−1([∆]>j) = 0 for all i, j with i+ j < d and 0 ≤ i < 2.
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Example 6.6.5. Consider the complex with facets:

{4, 5, 6}, {3, 5, 6}, {2, 3, 5}, {2, 3, 4}, {1, 3, 4}, {2, 4, 6}.

This complex is (S2) but has non-trivial H̃1([∆]>0).

In fact, H̃i−1([∆1]>j) ∼= H̃i−1([∆2]>j) for every i and every j. Since Example 6.6.5 is (S2)

and Example 6.6.4 is not, this shows that (S2) cannot be determined in general by reduced

homologies of the [∆]>j. Further, Example 6.6.5 is Buchsbaum while Example 6.6.4 is not,

so Buchsbaum cannot be determined either. In a similar fashion, the following example

shows that Gorenstein cannot be detected in general.

Example 6.6.6. Let ∆1 be the complex with facets

{2, 3, 4}, {1, 3, 4}, {1, 2, 5}, {2, 3, 5}, {1, 2, 4}, {1, 3, 5}

and ∆2 the complex with facets

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}.

Then [∆1]>j and [∆2]>j have isomorphic homologies for each j, but ∆1 is Gorenstein whilst

∆2 is not (it is not even 2-Cohen-Macaulay).

The above discussion leads us to ask the following general question:

Question 1. In addition to the reduced homologies of the [∆]>j, what information does

one need to determine if a simplicial complex satisfies homological conditions such as (S`),

Buchsbaum, or Gorenstein?
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Appendix A

Appendix of Notation

We list some notation which is consistently used throughout this document.

1. R is a commutative Noetherian ring

2. µ(d, n) is the largest diameter of a Hochster-Huneke graph of an (S2) Stanley-Reisner

ring of dimension d and codimension n− d.

3. G(R) is the Hochster-Huneke graph of R.

4. Gj(R) is the generalized Hochster-Huneke graph of R.

5. V (G) is the vertex set of the graph G.

6. E(G) is the edge set of the graph G.

7. ∆∨ is the Alexander dual of ∆.

8. I∨ is the Alexander dual of I.

9. Ḡ(R) is the Hochster-Huneke graph of R relabeled so that its vertices are the comple-

ments of V (G).
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10. st∆ T is the star of the face T over the complex ∆. It is the set {G ∈ ∆ | T ∪G ∈ ∆}

11. astar∆ T is the antistar of the face T over the complex ∆. It is the set {G ∈ ∆ |

T ∩G = ∅} = ∆|V−T

12. lk∆ T is the link of the face T over the complex ∆. It is the set {G ∈ ∆ | T ∪ G ∈

∆ and T ∩G = ∅} = st∆ T ∩ astar∆ T

13. O(P ) is the order complex of the poset P .

14. Ni(∆) is the ith nerve of ∆.

15. χ(∆) represents the Euler Characteristic of ∆.

16. F>k(∆) is the face poset of ∆ restricted to faces of ∆ with cardinality strictly greater

than k.

17. sd ∆ := O(F>0(∆)) is the barycentric subdivision of ∆.

18. [∆]>k = O(F>k(∆))

19. χ̃(∆) represents the reduced Euler Characteristic of ∆.

20. ∆S is the subcomplex of ∆ induced on
⋃
i∈S Vi where the Vi represent the ordered

partition of a balanced simplicial complex.

21. ∆̃S := ∆[d]−S.

Unless otherwise stated, all rings are assumed to be commutative and Noetherian, and

all modules will be finitely generated.
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MR 1453579

[Swa05] E. Swartz, Lower bounds for h-vectors of k-CM, independence, and broken cir-

cuit complexes, SIAM J. Discrete Math. 18 (2004/05), no. 3, 647–661. MR

2134424

[Ter96] Naoki Terai, On h-vectors of Buchsbaum Stanley-Reisner rings, Hokkaido Math-

ematical Journal 25 (1996), 137–148.

[Ter07] Naoki Terai, Alexander duality in Stanley-Reisner rings, Affine algebraic geom-

etry, Osaka Univ. Press, Osaka, 2007, pp. 449–462. MR 2330484

[TheYY] The Sage Developers, Sagemath, the Sage Mathematics Software System (Ver-

sion x.y.z), YYYY, http://www.sagemath.org.

[TY06] Naoki Terai and Ken-ichi Yoshida, Buchsbaum Stanley–Reisner rings with

minimal multiplicity, Proceedings of the American Mathematical Society 134

(2006), no. 1, 55–65.

[TY08] , A note on Cohen–Macaulayness of Stanley–Reisner rings with Serre’s

condition (S2), Communications in Algebra R© 36 (2008), no. 2, 464–477.

[Var13] Matteo Varbaro, Cohomological and projective dimensions, Compos. Math. 149

(2013), no. 7, 1203–1210. MR 3078644

[Vas05] Wolmer Vasconcelos, Integral closure: Rees algebras, multiplicities, algorithms,

Springer-Verlag Berlin Heidelberg, 2005.

132



[Wei94] Charles Weibel, An introduction to homological algebra, Cambridge University

Press, Cambridge, England, 1994.

[Wel99] V Gasharov-I Peeva-V Welker, The lcm-lattice in monomial resolutions, Math-

ematical Research Letters 6 (1999), 521–532.

[Yan00] Kohji Yanagawa, Alexander duality for Stanley-Reisner rings and square-free

Nn-graded modules, J. Pure Appl. Algebra 146 (2000), no. 3, 630–645.

[Yan11] , Dualizing complex of the face ring of a simplicial poset, J. Pure Appl.

Algebra 215 (2011), no. 9, 2231–2241.

133


	Introduction
	Overview

	Background
	Historical Note
	Algebraic Combinatorics
	Commutative Algebra

	On the Diameter of Dual Graphs of (S2) Stanley-Reisner Rings 
	Introduction
	Background and Notation
	Introduction of Terms
	Serre's Condition

	Upper Bounds
	Gluing
	Complexes Built by Gluing
	Constructing Graphs to Identify Lower Bounds
	Final Remarks

	A Generalized Serre Condition
	Introduction
	An Equivalent Functorial Condition
	Bounds on Cohomological Dimension
	A Generalized Hochster-Huneke Graph
	Resolution of the Alexander Dual
	A Generalization of Reisner's criterion
	Monomial Ideals
	Skeletons

	Higher Nerves of Simplicial Complexes
	Introduction
	Notation and Definitions
	Preparatory Results
	Lemmata
	Depth and Higher Nerves
	The f-vector and the h-vector
	LCM-lattice and Regularity of Monomial Ideals
	Nerve Code, Nervous Systems, and k-Nervous Systems

	Rank Selection Theorems for Balanced Simplicial Complexes
	Introduction
	Background and Notation
	Rank Selection Theorems for Serre's Condition
	Depth of Rank Selected Subcomplexes
	Euler Characteristics of Links and Truncated Posets
	Open Problems and Examples

	Appendix of Notation

