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Abstract

Spatial distribution of dark matter displays a variety of intricate three dimensional

structures on the largest scales in the Universe, notably the massive haloes, long tubu-

lar filaments, flattened walls and the vast under-dense voids. Galaxies embedded in the

dark matter structures have illuminated the rich geometry of these structures currently

known as the cosmic web.

Cosmological N-body simulations are indispensable tools for understanding the evo-

lution of the dark matter web. Recent developments in the numerical analysis of these

simulations have hinted towards incorporating the dynamical information of gravita-

tional clustering of collisionless dark matter. This is inferred from a six-dimensional

Lagrangian sub-manifold – comprising of initial and final coordinates of the dark mat-

ter particles. Velocity multistream field derived from this sub-manifold sheds new light

on the nature of gravitational collapse.

Geometrical, topological, morphological and heuristic diagnostic tools used in this

novel parameter space reveal features of the dark matter distribution. For instance,

a single void structure not only percolates the multistream field in all the directions,

but also occupies over 99 per cent of all the single-streaming regions. On the other

hand, connected filaments display a rapid topological transition to isolated islands at

high multistream values. Hessian analysis delineates structures with different shapes:

tubular, sheet-like, or globular – enabling detection of the dark matter haloes without

ad hoc parameters related to matter density or distance field.
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Chapter 1

General Introduction

1.1 Cosmic web studies: Past, present and future

Large scale structures with highly anisotropic shapes were first theoretically predicted by the

Zel’dovich approximation (Zel’dovich 1970 and later elaborated in Shandarin & Zel’dovich 1989,

hereafter referred to as the ZA). The model based on the ZA suggested that the eigenvalues of the

deformation tensor dictate the shapes of the collapsed structures at the beginning non-linear stage

of gravitational instability (Arnold et al. 1982, see also Shandarin & Zel’dovich 1989 and Hidding

et al. 2014). These structures were found to be crudely characterized as two-, one- and zero- di-

mensional which actually meant that three characteristic scales of each structure (L1 ≥ L2 ≥ L3)

are approximately related as L(p)
1 ≈ L(p)

2 � L(p)
3 (for pancakes) or L( f )

1 � L( f )
2 ≈ L( f )

3 (for fila-

ments) or L(h)
1 ≈ L(h)

2 ≈ L(h)
3 (for haloes) respectively. In addition it implied that L(p)

1 ≈ L( f )
1 and

L(p)
3 ≈ L( f )

2 ≈ L(h)
1 .1 At present these generic types of structures are referred to as pancakes/wall-

s/sheets/membranes, filaments and haloes. Although the accuracy of the ZA deteriorates from

pancakes to filaments and especially to halos on qualitative level there are no more types of struc-

tures. Altogether these structures contain the most of mass in the universe, they occupy very little

space. Most of space is almost empty and is referred to as voids.

1The multi-scale character of the cosmic web was not discussed until 1990s.
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Klypin & Shandarin (1983) (firstly reported in Shandarin 1983b) were the first to identify a

‘three dimensional web structure’ in the N-body simulation of the hot dark matter scenario. The

simulation with 323 particles using Cloud-in-Cell (CIC) technique on equal mesh revealed that the

gravitationally bound clumps of mass – haloes in the present-day terminology – were linked by the

web of filamentary enhancements of density which spanned throughout the entire simulation box

with the side of about 150h−1Mpc in co-moving space. In addition Klypin & Shandarin (1983)

suggested that pancakes must be considerably less dense than the filaments since they were not

detected in the simulation. These results were quickly confirmed by Centrella & Melott (1983)

and Frenk et al. (1983). In addition Centrella & Melott (1983) who ran the simulation on similar

mesh but with 27 times more particles also detected pancakes at ρ/ρ̄ = 2 level. At present this

picture is widely accepted, and is referred to as the ‘cosmic web’ (Bond et al. 1996 and van de

Weygaert et al. 2008).

Galactic distributions in redshift surveys have also revealed distinct geometries and topologies

of the cosmic web. One of the first indications of the connectivity in the galaxy clusters via fila-

ments was demonstrated by Gregory & Thompson (1978) who discovered a conspicuous chain of

galaxies between Coma and A1367 clusters using a sample of 238 galaxies. Later this result was

confirmed by de Lapparent et al. (1986) who used a significantly greater redshift catalog of 1100

galaxies of the same region. Zel’dovich et al. (1982) compared the percolation properties of the

redshift catalog of 866 local galaxies provided by J. Huchra with three theoretical distribution of

particle in space: a Poisson distribution, the hierarchical model by Soneira & Peebles (1978) and

the particle distribution obtained from N-body simulation by Klypin & Shandarin (1983). They

found that both the galaxy sample and the density field obtained in N-body simulation percolated

at considerably smaller filling factors than the Poisson distribution. On the other hand the hier-

archical model percolated at higher filling factors than the Poisson distribution. Further studies

confirmed that the galaxies and the particles in the hot dark matter model are arranged in the

web-like structures Zel’dovich et al. (1982), Shandarin (1983b), Shandarin & Zel’dovich (1983),

Shandarin & Klypin (1984). This result was confirmed in more detailed analysis by Einasto et al.
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(1984). Melott et al. (1983) also found similar percolation properties in the mass distribution in

the N-body simulation of a Cold Dark Matter (CDM) model.

Thus by the early 1990s it was clearly demonstrated that the web like structure is a generic

type for a wide range of initial conditions in both two-(Doroshkevich et al. 1980, Doroshkevich

et al. 1989, Melott & Shandarin 1990 and Beacom et al. 1991) and three- dimensional (Melott &

Shandarin, 1993) cosmological N-body simulations. However it also was demonstrated that the

quantitative parameters of the web structures depend on the initial power spectrum. Remarkably

the simulations also showed that adding small scale perturbations does not ruin the large scale

structures if the slope of the power spectrum is negative in both two- and three- dimensional sim-

ulations.

All aspects of these studies have been experiencing great advancements in three decades passed

since the discovery and first studies of the geometry and topology of the large-scale structures. The

galaxy redshift catalogs have grown by thousands of times (by surveys such as Sloan Digital Sky

Survey (SDSS) Tegmark et al. 2003 and Albareti et al. 2016 and the 2MASS Redshift Survey

Huchra et al. 2012), the sizes of cosmological N-body simulations (modern large scale simulations

like Millennium Springel et al. 2005 and Q-Continuum Heitmann et al. 2015) by more than a

million times. The number of various methods for identifying structures has also grown practically

from one method2 to several dozens (Colberg et al. 2008, Knebe et al. 2011, Onions et al. 2012,

Knebe et al. 2013 and references therein). Measuring or quantifying the structures always has been

a difficult problem and many sophisticated techniques both mathematically and computationally

have been proposed and investigated (see reviews by van de Weygaert et al. 2008, van de Weygaert

& Bond 2008).

Cosmic web structures have been characterized using several geometrical and topological in-

dicators such as genus curves (Gott et al. (1986)). In an attempt to characterize the shapes of

individual regions in the excursion sets of the density field, Sahni et al. (1998) suggested the use

2Friends-of-Friends (FOF) method was used for the topological studies via percolation technique and identifying
super clusters of galaxies (Zel’dovich et al. 1982, Shandarin 1983b, Shandarin & Zel’dovich 1983 on the one hand and
for identifying halos Davis et al. 1985 on the other.
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of partial Minkowski functionals. They developed the method labeled SURFGEN and applied

it to CIC density field obtained in N-body simulations (Sathyaprakash et al. 1998, Sheth et al.

2003, Shandarin et al. 2004). Aragon-Calvo et al. (2007) have developed the multi-scale MMF

(Multi-scale Morphology Filter) detection technique based on the signs of three eigenvalues of

the Hessian computed for a set of replicas of the density field filtered on different scales. Sim-

ilar multi-scale approaches to identifying structures is adopted in NEXUS and its extensions to

velocity shear, divergence, and tidal fields (Cautun et al., 2013). More recently, persistence and

Morse-Smale complexes in the density fields are analyzed by Sousbie (2011), Sousbie et al. (2011)

and Shivshankar et al. (2015) to detect multi-scale morphology of the cosmic web.

There is also an increasing interest in the measures for detecting filaments in large astronom-

ical surveys. Topology in the large scale structure was analyzed by Betti Numbers for Gaussian

fields (Park et al., 2013) and SDSS-III Baryon Oscillation Spectroscopic Survey (Parihar et al.,

2014). Sousbie et al. (2008b) detected skeleton of filaments of the SDSS and compared to the

corresponding galaxy distribution. In smoothed density of mock galaxy distribution, Bond et al.

(2010a) studied the projection of eigenvalues. The Hessian eigenvector corresponding to the largest

eigenvalue is used by Bond et al. (2010b) to trace individual filaments in N-body simulations and

the SDSS redshift survey data. Majority of the above analyses, however, ignore the dynamical

information from the velocity field.

On the other hand, detection of voids and study of their morphological properties are done via

numerous methods too. Traditional detection of void regions using just the particle coordinates

differ based on the various methods used to identify them (see comparison of void finders in Col-

berg et al. 2008 and references therein). Some methods involve using under-density thresholds.

Blumenthal et al. (1992) proposed that the mean density in voids is δ = −0.8 by applying a linear

theory argument. Similar threshold was used by Colberg et al. (2005) to identify voids. Under-

dense excursion set approach was used by Shandarin et al. (2006) to identify percolating voids.

Sheth & van de Weygaert (2003) used the excursion set formalism to develop an analytical model

for the distribution voids in hierarchical structure formation (also see the excursion set approaches
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applied to voids by Paranjape et al. 2012, Jennings et al. 2013 and Achitouv et al. 2015). Voids are

also detected by isolating regions around local minima of density fields. For instance, the water-

shed transform is used by WVF-Platen et al. (2007), ZOBOV-Neyrinck (2008) and VIDE-Sutter

et al. (2015) for segmentation of under-dense regions.

The unfiltered density field was generated using DTFE-Delaunay Tessellation Field Estimator

(Schaap & van de Weygaert 2000, van de Weygaert & Schaap 2009 and Cautun & van de Weygaert

2011) by applying it to the particle coordinates. Earlier it was shown that DTFE is superior to CIC

techniques (Schaap 2007 and van de Weygaert & Schaap 2009) in generation of the density field

with high spatial resolution. In a new approach to the analysis of the shapes of the large-scale

structures, Sousbie (2011) introduced DIScrete Persistent Structure Extractor (DisPerSE) based

on Morse-smale complex. By implementing it on realistic cosmological simulations and observed

redshift catalogs Sousbie et al. (2011) found that DisPerSE traces very well the observed filaments,

walls and voids.

An additional dimension to the scope of the structure shapes is related to the question whether

the density distribution (regardless of its form: continuous or discrete) is the only physical diag-

nostic of the cosmic web shapes or not. If not, then is it the best possible diagnostic? And even if

it is, can other fields or distributions provide valuable contributions to understanding the shapes of

the cosmic web? The answer to the latter question seems to be positive. In fact there are examples

of attempts to bring new players into the field. For instance Hahn et al. (2007a) and Forero-Romero

et al. (2009) studied the relation between the geometry of structures and the Hessian of the grav-

itational potential. Shandarin (2011) demonstrated that the study of the multistream field reveals

some features of the structures that cannot be easily seen in the density field. This has become even

more evident when Shandarin et al. (2012) and Abel et al. (2012) showed that the full dynamical

information in the form of three-dimensional sub-manifold in six-dimensional phase space can be

easily obtained from the initial and final coordinates of the particles in DM simulations. Hahn

et al. (2015) showed that this method provides extremely accurate estimates of the cosmic velocity

fields and its derivatives. It has been shown that the multistream field provides a physical definition
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of voids in N-body DM simulations by the local condition nstr = 1 (Shandarin et al. 2012 and Ra-

machandra & Shandarin 2015). Falck et al. (2012) proposed the ORIGAMI method of assigning

particles to structures based on the number of axes along which particle crossing has occurred.

Void, wall, filament, and halo particles are particles that have been crossed along 0, 1, 2, and 3

orthogonal axes, respectively. Shandarin & Medvedev (2017) identify the void particles as the

ones that do not undergo any flip-flop through the evolution. Each of above definitions completely

independent of any free parameters, with small differences in the physical implication.

1.2 Significance and Impact of the Cosmic Web

Understanding the nature of the cosmic web is important for a variety of reasons. Quantitative

measures of the cosmic web may provide information about the dynamics of gravitational struc-

ture formation, the background cosmological model, the nature of dark matter (hereafter DM) and

ultimately the formation and evolution of galaxies. Since the cosmic web defines the fundamental

spatial organization of matter and galaxies on scales of one to tens of Megaparsecs, its structure

probes a wide variety of scales, from the linear to the nonlinear regime. This suggests that quan-

tification of the cosmic web at these scales should provide a significant amount of information

regarding the structure formation process. As yet, we are only at the beginning of systematically

exploring the various structural aspects of the cosmic web and its components towards gaining

deeper insights into the emergence of spatial complexity in the Universe (see e.g. Cautun et al.,

2014).

The cosmic web is also a rich source of information regarding the underlying cosmological

model. The evolution, structure and dynamics of the cosmic web are to a large extent dependent on

the nature of dark matter and dark energy. As the evolution of the cosmic web is directly dependent

on the rules of gravity, each of the relevant cosmological variables will leave its imprint on the

structure, geometry and topology of the cosmic web and the relative importance of the structural

elements of the web, i.e. of filaments, walls, cluster nodes and voids. A telling illustration of this
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is the fact that void regions of the cosmic web offer one of the cleanest probes and measures of

dark energy as well as tests of gravity and General Relativity. Their structure and shape, as well

as mutual alignment, are direct reflections of dark energy (Park & Lee, 2007; Platen et al., 2008;

Lavaux & Wandelt, 2010, 2012; Bos et al., 2012; Sutter et al., 2014; Pisani et al., 2015). Given

that the measurement of cosmological parameters depends on the observer’s web environment (e.g.

Wojtak et al., 2014), one of our main objectives is to develop means of exploiting our measures

of filament structure and dynamics, and the connectivity characteristics of the web-like network,

towards extracting such cosmological information.

Perhaps the most prominent interest in developing more objective and quantitative measures of

large-scale cosmic web environments concerns the environmental influence on the formation and

evolution of galaxies, and the dark matter halos in which they form (see e.g. Hahn et al., 2007b;

Cautun et al., 2014). The canonical example of such an influence is that of the origin of the ro-

tation of galaxies: the same tidal forces responsible for the torquing of collapsing protogalactic

halos (Hoyle, 1951; Peebles, 1969; Doroshkevich, 1970) are also directing the anisotropic contrac-

tion of matter in the surroundings. We may therefore expect to find an alignment between galaxy

orientations and large scale filamentary structure, which indeed currently is an active subject of in-

vestigation (e.g. Aragon-Calvo et al., 2007; Lee & Pen, 2000; Jones et al., 2010; Codis et al., 2012;

Tempel et al., 2013; Trowland et al., 2013; Hirv et al., 2017). Some studies even claim this implies

an instrumental role of filamentary and other web-like environments in determining the morphol-

ogy of galaxies (see e.g. Pichon et al., 2016, for a short review). Indeed, the direct impact of the

structure and connectivity of filamentary web on the star formation activity of forming galaxies

has been convincingly demonstrated by Dekel et al. (2009, see also Danovich et al. 2015; Goerdt

et al. 2015; Aragon-Calvo et al. 2016). Such studies point out the instrumental importance of the

filaments as transport conduits of cold gas on to the forming galaxies, and hence the implications

of the topology of the network in determining the evolution and final nature. Such claims are sup-

ported by a range of observational findings, of which the morphology-density relation (Dressler,

1980) is best known as relating intrinsic galaxy properties with the cosmic environment in which
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the galaxies are embedded (see e.g. Kuutma et al., 2017). A final example of a possible influence

of the cosmic web on the nature of galaxies concerns a more recent finding that has led to a vigor-

ous activity in seeking to understand it. The satellite galaxy systems around the Galaxy and M31

have been found to be flattened. It might be that their orientation points at a direct influence of

the surrounding large scale structures (see Ibata et al., 2013; Cautun et al., 2015; Forero-Romero

& Gonzalez, 2014; Gonzalez & Padilla, 2016), for example a reflection of local filament or local

sheet.

1.3 This thesis

Of all the the mass that is able to cluster in the Universe, 85 per cent is constituted by the mys-

terious dark matter. Clustering of dark matter plays the dominant role in the formation of all

observed structures on scales from a fraction to a few hundreds of Mega-parsecs. On these large

scales, the dark matter distribution is broadly classified into voids, walls, filaments and haloes.

Although this characterization is deeply enrooted in dynamical framework by the ZA (Zel’dovich,

1970; Shandarin & Zel’dovich, 1989), the vast majority of the current classification schemes em-

ploy techniques based on a static portrait of the web, like the clustering information of dark matter

particles (density thresholds, linking lengths etc.) or structural features (eigenvalue analyses, con-

nectivities etc.). In this thesis we demonstrate a novel approach to dynamical understanding of the

cosmic web features – fundamentally based on the ZA, and its direct consequence of multistream-

ing phenomenon.

However, it has to be noted and stressed that almost all the results here pertain to dark matter

structures, not baryonic matter distribution of galaxies, stars or gas. While clustering of galaxies

is positively correlated with dark matter concentrations, the difference in the dynamics of DM and

baryonic gas are vast. Perhaps the most important difference in the context of this thesis is the

difference of collisional cross-sections. Dark matter particles are collisionless in N-body simula-

tions, hence display multiple velocity streams. The motion of cold baryonic gas resembles that
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of dark matter only until the first orbit crossing arises. However, streams of gas cannot penetrate

through one another, causing layers of neighboring gas layers to collide and result in shock waves.

On galactic scales, the gas dynamics is further complicated by processes like radiative cooling and

heating, supernova feedback, star formation and more.

1.3.1 Chapter Organization

This thesis is a comprehensive collection of various cosmic structure analyses in the context of

Lagrangian sub-manifold – from topological studies of voids, to environmental investigation of

dark matter haloes. In Chapter 2, we give a brief overview of topics related to rest of the thesis –

including the Zel’dovich approximation, Lagrangian sub-manifold and multistream fields. Chapter

3 attempts to quantify thresholds based on multistreams with the cosmic web structures. The

next two chapters deal with deeper understanding of topological and geometrical features detected

in multistream field (in Chapter 4) and a new approach of detecting dark matter haloes that is

independent of heuristic parameters (in Chapter 5). Comparison of a variety of current cosmic

structure finding algorithms are compared with our multistream-based methodology in Chapter

6. The concluding Chapter 7 highlights future avenue of similar studies on the Lagrangian sub-

manifold – including detection of caustic surfaces and halo substructure analysis using flip-flop

fields.
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Chapter 2

Background

2.1 Cosmic fields: Characterizing non-linear growth of Cosmic

structure

The most fundamental attributes of particles in the N-body simulations are their position and ve-

locity co-ordinates, and their masses. Due to the lack of numerical tools for the direct analysis

these raw data, fields such as mass density ρ(x, t), velocity v(x, t) or gravitational potential φ(x, t)

fields are often computed numerically. Mass density fields were calculated using the Cloud-in-Cell

(CIC) algorithm (cf. Hockney & Eastwood 1988), which is numerically equivalent to counting the

number of particles on each cell of a regular grid. Alternatively, the density field may also be

generated on irregular grids by applying Delaunay (For example, Icke & van de Weygaert 1991

and the Delaunay Tessellation Field Estimator (DTFE) by Schaap & van de Weygaert 2000 and

van de Weygaert & Schaap 2009) or Voronoi tessellations (See Schaap & van de Weygaert 2000

and references therein) to the particle coordinates. Another parameter ‘linking length’, using dis-

tances between nearest neighboring particles, was used for percolation analyses and identifying

super-clusters of galaxies ( Zel’dovich et al. 1982, Shandarin 1983b and Shandarin & Zel’dovich

1983) for identifying halos Davis et al. 1985 in the cosmological simulations. THe left panel in

Figure 2.1 shows some of the popular fields/parameters that use particle mass and positions. It has
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to be noted that the density fields or linking-lengths are not dynamical descriptions that invoke the

initial field of density fluctuations or the velocity of the particles.

An obvious advantage of methods based on particle coordinates, both on structured and un-

structured grids, is their applicability to redshift catalogs. The redshift catalogs like SDSS and 2dF

provide only two angular coordinates and distances in redshift space. But cosmological N-body

dark matter simulations provide the full dynamical information in six-dimensional phase space.

This additional information is very valuable providing a greater opportunity for understanding the

physics of the web and developing a better theory of the web.

The velocity fields in the simulations of collision-less cold dark matter particles can become

multi-valued under the action of gravity. This phenomenon was first discussed by Zel’dovich

(1970), where he predicted the formation of non-linear structures (also see Shandarin & Zel’dovich

1989 for discussion on formation of multi-stream). The primordial oblate structures were later

known as ‘Zel’dovich pancakes’. These pancakes grow from initial perturbations in a continuous

mass distribution, where the velocities are single-valued (also referred to as single-stream) every-

where in the configuration space. Multiple values in the velocity field v(x, t) or ‘multi-streams’

can also be seen in the dynamically equivalent Lagrangian sub-manifold - (q,x), where x and q are

co-moving Eulerian and Lagrangian co-ordinates respectively. Shandarin (2011) and Abel et al.

(2012) studied this q 7→ x mapping in N-body simulations to quantify the number of streams using

phase-space tessellations. Shandarin (2011) define a multi-stream field nstr(x) as a field taking

discrete values that are equal to the number of streams at every evaluation point in configuration

space. Ordered sign-reversal of each elementary volume element in the Lagrangian sub-manifold

was measured by Shandarin & Medvedev (2014). Their flip-flop field n f f (q) in Lagrangian space

demonstrates a very rich sub-structure of the cosmic web, especially in a halo environment.

Fields computed from a complete dynamical information (either (q,x) or (p,q)) could provide

valuable contributions to our understanding of the cosmic structure. Falck et al. (2012) have re-

cently delineated archetypal web structures by counting the number of foldings in the sub-manifold

for each dark matter particle along different directions. Another study by Ramachandra & Shan-
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darin (2016) explored some of the global topological and local geometrical properties of the web

in the context of multi-streaming. The applications of these analyses is certainly not limited to

diagnostic tools; the multi-streaming phenomenon can be used in improving N-body simulations

(Hahn et al., 2013), and studying galaxy evolution and star formation as well (Aragon-Calvo et al.,

2016).

2.2 Zel’dovich Approximation

The Zel’dovich Approximation is an elegant analytical approximation to describe the non-linear

gravitational evolution of collisionless particles in continuous media. Technically it is the first oder

Lagrangian perturbation theory, however Zel’dovich suggested extrapolating it to the beginning of

the non-perturbative nonlinear stage and predicted the formation of caustics which are the bound-

aries of the first very thin multistream regions dubbed by him ’pancakes’. The ZA describes a

dynamical mapping from the initial Lagrangian coordinates q to Eulerian positions at time t. In

co-moving coordinates, x = r/a(t) (where r is the physical coordinate and a(t) is the scale factor;

assuming normalization a(z = 0) = 1,r are the physical coordinates of particles at present ), the ZA

takes the form:

x(q,D(t)) = q + D(t)s(q) (2.1)

where D(t) is the linear density growth factor, and the the initial density perturbation field

ψ(q) determines the potential vector field s(q) = −∇qψ(q). Mass conservation formalism implies

ρ(x, t)dx = ρ0dq, so the density field at t > 0 in terms of Lagrangian coordinates is given as

ρ(q, t) = ρ0J
[
∂x
∂q

]−1

(2.2)

where the Jacobian J
[
∂x
∂q

]
is calculated using Equation 2.1. Diagonalization of the resulting

real, symmetric deformation tensor di j = −∇qs(q) = ∂2ψ(q)/∂qi∂q j in terms of its eigenvalues
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λ1(q), λ2(q), λ3(q) gives the contraction or expansion along the three principal axes. This reduces

the mass density to a convenient form in Lagrangian coordinates:

ρ(q, t) =
ρ0[

1−D(t)λ1(q)
] [

1−D(t)λ2(q)
] [

1−D(t)λ3(q)
] (2.3)

However, transforming it in Eulerian coordinates requires solving Equation 2.1 for q, which

is not possible analytically in the case of random initial condition. Since the deformation tensor

di j and its eigenvalues depend only on the initial density field, the ordered eigenvalues defined

in Lagrangian space λ1(q) ≥ λ2(q) ≥ λ3(q) determine collapse condition for masses in Eulerian

space (see Doroshkevich (1970) and Lee & Shandarin (1998) for the PDFs of the eigenvalues as

well as several other parameters in the case of Gaussian random fields). Formation of caustics

is of much interest: with increasing D(t), the mass density rises untila singularity is reached at

D1(t) = 1/λ1(q). In Lagrangian space, the caustics stem from these points, and their counterparts

in Eulerian space were proposed by Zel’dovich as the ‘birthplaces’ of the first collapsed structure

by gravitational clustering. The collapse along other principal axes correspond to formation of

filaments and knots (Arnold et al., 1982), Shandarin and Klypin (1984). However simultaneous

collapses along all three eigen axes never happen in the case of generic flows.

Furthermore, the analytical understanding of these structures are thoroughly complicated: In

a 2-dimensional ZA scenario, for example, there are only two types of fundamental singularities

that exist at generic instants of time (A2, which are lines and A3, which are the cusp points of A2

lines). In addition there are two singular points (A4, and D4) that exist only at particular instants of

time: at A4 two cusp A3-points are formed and a smooth part of an A2 line is transformed in self-

crossing line. In addition there are several transient forms that exist only at particular times. Each

of these correspond of formation, mergers, branching and other dynamical processes involving

pancakes. Arnold et al. (1982) and Hidding et al. (2014) studied of singularities in 2-dimensional

collapse) in exhaustive detail, but similar analytical characterization of 3-dimensional Zel’dovich

approximation has not been satisfactorily done yet.

Complexities in 3-dimensional caustics is partly due to the intricate mapping in the hyper-
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Figure 2.2: This plot shows the idea of Lagrangian tessellations. Left: The distribution of Dark
matter particles in Lagrangian space is on the regular grid. The tetrahedra surfaces in this case
are mostly regular (except at the edges). Right panel shows the Eulerian positions of the same
particles at z = 0. The particles clearly have undergone multiple flip-flops, and the intersections of
Lagrangian tetrahedra signifies locations of caustic surfaces. Specific tessellation schemes can be
utilized separately to identify these surfaces.

surface x(q) called the Lagrangian sub-manifold (See Figure 2.2). The Lagrangian sub-manifold

x(q) is a single valued, smooth and differentiable function in its 6-dimensional space (q,x), how-

ever the projection onto 3-dimensional Eulerian space is entangled with creases, kinks and folds

(Note that this sub-manifold is very different than the phase space (x,v), even though they are

connected by a canonical transformation). However, delineating the Lagrangian sub-manifold re-

veals several properties of the dark matter dynamics not inferred from position-space analyses.

Two fields related to tessellating the Lagrangian sub-manifold – The Multistream field nstr(x) in

Eulerian space and the Flip-Flop field n f f (q) in Lagrangian space (see Shandarin et al. (2012),

Ramachandra & Shandarin (2015), Shandarin & Medvedev (2017)) are closely related.
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Figure 2.3: Multi-streaming in one-dimensional gravitational collapse. Top panel: (p,x) phase-
space representation redshift zini and z = 0. Dots represent the dark matter particles. Initially the
mass particles are in the linear stage of evolution. At z = 0, multiple values of p(x) are seen in the
collapsed regions. Middle panel: Equivalent Lagrangian sub-manifold q(x). Blue line represents
the sub-manifold at zini. The value of nstr (number of streams) is parametrized from this sub-
manifold. Bottom panel: The multistream field nstr and the number-density using CIC algorithm,
nCIC at z = 0.
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2.3 The multistream flow field in one-dimension

The top panel in Figure 2.3 shows the velocity multistreaming phenomenon in a one-dimensional

collapse. The phase-space (p,x) (where p is the momentum and x is the co-moving Eulerian

coordinate) is single-valued in the linear stage of evolution (at redshift zini). A non-linear stage of

gravitational evolution of the collisionless dark matter particles then results in multi-valued p(x,z)

at z = 0. The mass particles are sparsely distributed outside the region of gravitational collapse,

and are denser in the inner streams.

A dynamically equivalent transformation (p,x) 7→ (q,x) (where q is the Lagrangian coordi-

nate) shows the Lagrangian sub-manifold in the middle panel of Figure 2.3. This two-dimensional

phase-space has foldings that correspond to multiple velocity streams, although the sub-manifold

itself remains continuous. A projection of the Lagrangian sub-manifold at each point in the con-

figuration space quantifies the number-of-streams. Folding in the sub-manifold is checked for

points in configuration space using tessellations. The tessellating simplices1 in one-dimensional

model are just the line-segments whose nodes are the dark matter particles in the Lagrangian space.

Dynamical properties are accounted for in this phase-space tessellation since labels of the nodes

remain intact throughout the evolution; the line segments may shorten, extend or change orienta-

tion. Each folding in the Lagrangian sub-manifold increases the number of streams by a factor

of two. In three-dimensional simulations, the sub-manifold twists in complicated ways in a six-

dimensional phase space. The number-of-streams in N-body simulations (Shandarin et al. 2012

and Abel et al. 2012) is calculated using Lagrangian/phase-space tessellations. This triangulation

is conceptually different from the Voronoi (See Schaap & van de Weygaert 2000 and references

therein) or Delaunay (Icke & van de Weygaert, 1991) tessellation schemes.

The bottom panel of Figure 2.3 shows the the multistream field nstr(x) at z = 0. The field only

takes the values of 1, 3, 5 and 7 in this scenario. Caustics occur at the folds in Lagrangian sub-

manifold, and have a measure zero (study of caustics in one- and two-dimensional evolution is done

1In geometry, a simplex is the simplest possible polytope in any given space. Simplex in two-dimensions is a
triangle because it is the simplest polygon. Similarly a tetrahedra is the simplest polyhedra in three-dimensions.
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Figure 2.4: Dynamical collapse of dark matter in one-dimensional universe: Top panels show the
(p,x) phase-space manifold of the dark matter sheet at redshifts z1, z2, z3 and z = 0. Dots represent
the dark matter particles. The momentum values are chosen at arbitrary scales. Bottom panels
show the corresponding multistream field multistream field nstr(x,z) (red) and density field ρ(x,z)
(gray).

in Hidding et al. (2014), three-dimensional caustic surface in a cosmological simulation is shown in

Ramachandra & Shandarin (2017b) ). Several properties of the multistream field are significantly

different from mass density. The bottom panel also shows an illustration of the CIC algorithm (cf.

Hockney & Eastwood 1988) in calculating density, which is numerically equivalent to counting

the number of particles on each cell of a regular grid. One major difference is in the regions before

gravitational collapse: nstr is universally equal to unity, whereas number density fluctuates. It

should also be noted that density by definition is a continuous field; numerical approximations like

CIC discretize the field. Alternatively, multistream field is intrinsically a discrete-data field.

2.4 Phase-space representation of gravitational clustering

We begin with a simple illustration showing the formation of a few haloes in a one-dimensional

simulation. Dark matter clustering in a (1+1)-dimensional phase-space (p,x) (where p is the mo-

mentum and x is the co-moving Eulerian coordinate) at four successive time steps is shown in the

top panels of Figure 2.4. The lower panels show the corresponding multistream field (Shandarin
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et al. 2012 and Abel et al. 2012) nstr(x,z) (red) and density field ρ(x,z) (gray). At z1 (left-most

panel), velocity is single-valued in Eulerian co-ordinates shown, except at a small three-stream re-

gion near x = 5π/4. This is the first instance of multistreaming in the region, which was previously

had nstr = 1 throughout. The interface of nstr = 1 and nstr = 3 regions is also the location of the

first caustic. On the other hand, the density calculated at a high resolution shows variations, even

in the mono-streaming regions. The variations are especially more pronounced around the caustic

(near x = 5π/4).

The gravitational clustering is more evolved in the two center panels (z2 and z3) with three

prominent phase-space spirals. The regions between the spirals have sparsely distributed dark

matter particles, and have nstr = 1. Each spiral corresponds to a location of gravitational collapse

with nstr > 1 region, and higher density. A few of these regions within three-streaming regions are

elevated to nstr = 5. The corresponding density field is not only noisier, but also reaches very high

values at the caustics. This is also a primary distinguishing feature between mass density fields

and multistream fields: At the locations of caustics, the density (regardless of how it is calculated)

is not smooth Vogelsberger & White (2011). Computational limitations on simulation resolutions

and refinement of density calculations soften the fields, more so at the zero volume measure regions

of caustic surfaces. On the other hand, multistream values are increased by finite values at caustic

surface locations. This property is preserved at higher simulation resolutions and any refinements

of multistream field calculations, although nstr may be resolved enough to have intermediate even

values. Multistream fields are also intrinsically discrete valued, which is not true with density

fields. Discreteness of multistream fields is discussed in more detail in Ramachandra & Shandarin

(2017b).

The right-most panel in Figure 2.4 shows the final structure at z = 0. Two large spirals have

spatially merged. These collapse environments are naturally very complex, with an increased

number of successive caustic formation and merging. The corresponding velocity streams also

show a more complicated structure. Clearly, the multistream field has a saddle point that is not as

low as nstr = 1. This poses a bigger problem in the context of most of halo detection algorithms,
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and we discuss this in Appendix A.

2.4.1 Collapse in higher dimensions

Extending the above results of one-dimensional collapse into higher dimension is vital, primarily

in the context of halo formation. The individual spiral collapses in one-dimension happen at a

small region (left-most panel in Figure 2.4), and the region grows by volume, whilst increasing

the spiral twists within. This is in contrast with the theoretical top-hat spherical model of halo

formation when the shell crossing would not happen until the final moment of the collapse of the

entire halo into a point-like singularity. Thus, all shell crossings happen at a single point and at

a single instant of time. The collapse of an isolated, spherically symmetric density peak is a very

exceptional case, because every spherical shell feels only the force due to interior mass until it

collapses into the caustic region. The collapse of the real peak proceeds in the field generated by

the mass distribution - in both the mass within the forming halo, and the mass outside the halo.

The collapse of a uniform ellipsoid also results in a simultaneous collapse of the entire ellipsoid

however this time not into a point but into a two-dimensional ellipse (Lin et al. 1965, Icke 1973,

Eisenstein & Loeb 1995). Another customarily used spherical model of halo formation by Fillmore

& Goldreich (1984) and Bertschinger (1985) does not consider the initial collapse at all. Instead it

assumes self-similar initial conditions and the halo at advanced stage with formally infinite number

of spherical caustic shells.

The ‘core’ in a collisionless dark matter collapse (Figure 2.4) is a region where a multistream

region is first formed due to caustic formation. This is conceptually similar to a shell crossing.

However, there are successive caustic formations that follow the first shell crossing, and they are

not limited to the halo cores. Each caustic increases the multistream value within by a finite

number. The cores of the multistream haloes obviously have the local maxima of velocity streams

in Eulerian coordinates. On the contrary, mass densities have infinite values at the caustics surfaces,

including the core. Discontinuities in densities at these regions of sharp multistream transitions

are clearly seen if the mass and spatial resolutions were sufficiently high( see two-dimensional
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simulations by Melott & Shandarin 1989 as well as in three-dimensional simulations by Hahn

et al. 2013, Angulo et al. 2016, Hahn & Angulo 2016 etc.).

In three-dimensional simulations, the Lagrangian sub-manifold twists in complicated ways in a

six-dimensional phase space. This is due to complexities involving caustic formations in higher di-

mensions, which is true even in the ZA (see Arnold et al. 1982 and Hidding et al. 2014 for detailed

analyses of caustic formation). The resulting intricate geometrical structures can be characterized

by the nstr field. Nearly 90% of the volume in N-body simulations is composed of single-streamed

voids at z = 0 (Shandarin et al. 2012, also see Falck & Neyrinck 2015 for a percolation analysis

of single-streaming voids). From the visualizations in Ramachandra & Shandarin (2015) and per-

colation analysis of Ramachandra & Shandarin (2017b), we also know that the nstr = 3 regions

mostly form connected wall-like structures, unlike the isolated patches as seen in one-dimensional

simulations of Figure 2.4. The structures become predominantly filamentary at higher thresholds

of nstr & 17 (also see Figure 2.5). Subsequently, the regions around the multistream maxima have

isolated closed surfaces (for example, in Figure 2.6), which may be identified as halo locations.

Caustic formations and mass accretion are also seen to occur more along the higher streams,

which makes the haloes non-spherical, with the alignment generally determined by a complicated

interplay of the intensities of the streams from neighboring filamentary structures. The number of

streams corresponding to the dark matter halo also has a local environment dependence. The three

small haloes in Figure 2.6, where the number of streams are higher than the neighboring filaments,

are aligned along three intersecting filaments. Halo environment studied in Ramachandra & Shan-

darin (2015) show similar hierarchical variation in nstr values. The halo environments are thus

very complicated, and empirical thresholds (on multistream or density fields) may not account for

all the haloes uniformly. Hence we use a local geometrical method to identify potential haloes in

multistream fields in Ramachandra & Shandarin (2017a)

The first non-linear structures in the web have nstr = 3. By visual inspection, these regions

generally form a fabric-like open structures that resemble walls. The surface contours of higher

nstr are embedded within the walls. Figure 2.5 shows a filamentary structure of the web at nstr & 17.
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Figure 2.5: Three dimensional rendering of the multistream field: the cosmic web structure of a
50h−1Mpc×50h−1Mpc×50h−1Mpc slice in a simulation box of side length 100h−1 Mpc and 1283

particles. The multistream field is calculated at 8 times the native resolution. Void (black) is a
percolating structure with nstr = 1. Regions nstr ≥ 17 show a filamentary structure (gray) and the
bright spots at the intersections of the filaments are regions with nstr ≥ 100.
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Figure 2.6: Multistream field contours: The multistream field is calculated at 8 times the native
resolution. There are three local multistream maxima in the interior regions of each convex blobs
(red). Surrounding outer shell (blue) is not convex throughout the surface, and the outermost gray
multistream surface displays the transition to filamentary geometry.

The figure also shows regions around local maxima of the multistream field, which are generally

located at the intersections of filaments.
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Chapter 3

Multi-stream portrait of the Cosmic web

In this chapter, we report the results of the first study of the multi-stream environment of dark

matter haloes in cosmological N-body simulations in the ΛCDM cosmology. We arrive at heuris-

tic parameters for delineating walls, filaments and haloes in the multi-stream web, while single

streaming regions are simply devoid of gravitational collapse, i.e., are voids. The results in the

chapter were first discussed in Ramachandra & Shandarin (2015).

3.1 Brief introduction

The problem of objective identification and quantitative characterization of anisotropic structures

in the distribution of galaxies in space emerged after the first evidences of their existence (see the

review by Oort 1983 and the references therein). The first theoretical model predicting highly

anisotropic concentrations in the mass distribution coming into existence at the non-linear stage of

gravitational instability is known as the Zel’dovich Approximation (the ZA) (Zel’dovich 1970, for

further developments see also Shandarin & Zel’dovich 1989 and the references therein). The ZA

predicted the formation of ‘pancakes’ also known as the walls in the currently popular jargon. The

later development of the model by Arnold et al. (1982) predicted the formation of filaments along

with the pancakes. Klypin & Shandarin (1983) and Shandarin & Klypin (1984) demonstrated that

the filaments emerge in the cosmological N-body simulation in three-dimensional space. However,
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they failed to identify the pancakes at z = 0. Both the existence of filaments connecting compact

clumps of matter and absence of pancakes were confirmed by Frenk et al. (1983). Puzzled by the

absence of the pancakes Klypin & Shandarin (1983) speculated that insufficient mass resolution

of the simulation was the cause of the negative outcome. This has been unambiguously confirmed

by recent simulations using a better numerical technique of computing a density field from the

particle coordinates in cosmological N-body simulations ( Shandarin et al. 2012 and Abel et al.

2012). Klypin & Shandarin 1983 also stressed that the most of filaments are incorporated in ‘a

single three-dimensional web structure’1. They admitted that their simulation did not allow them

to confirm the existence of pancakes between the filaments predicted by the ZA (Arnold et al.,

1982).

Although the four archetypal elements of the cosmic web: voids, walls/pancakes, filaments and

haloes were predicted by ZA and confirmed in cosmological N-body simulation their identification

and quantitative characterization remains under vigorous debate (see e.g. Colberg et al. 2008, Elahi

et al. 2013, Knebe et al. 2013, Hoffmann et al. 2014). The dark matter haloes are arguably the eas-

iest objects to identify in N-body simulations. They can also be reliably associated with observed

objects like galaxies and clusters of galaxies. But even in this case Knebe et al. (2013) refer to

almost thirty different halo finders suggested after 2000. Identifying filaments and pancakes/walls

is far more controversial in both N-body simulations and galaxy catalogs. For instance, even esti-

mating the global parameters of the web in N-body simulation such as the fractions of volume and

mass in voids, walls/pancakes, filaments and haloes produced quite different results. The estimates

of volume fractions of voids range from 13 to 86% (Cautun et al. 2014, Falck & Neyrinck 2015,

Forero-Romero et al. 2009 , Hahn et al. 2007a , Aragon-Calvo et al. 2010). Similar estimates for

walls/pancakes, filaments and haloes are respectively 5-56% 2-26% and 0.1-1%. Estimates of the

mass content vary in large ranges as well.

Large differences in the estimates of volume and mass fractions made by different groups are

not surprising if we recognize considerable differences in the definitions of the components of the

1The term ‘cosmic web’ was coined by Bond et al. (1996).
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cosmic web and numerical methods used in the estimates. Without trying to provide an exhaustive

review of all definitions and techniques used for the quantitative morphological analysis of the web

we just briefly describe a few approaches in order to illustrate how different they could be. Some

groups study the web morphology using only coordinates of simulation particles, while others use

the particle velocities too. Transforming data from point sets to the density and other fields on a grid

is also often used because fields allow to use a variety of mathematical techniques not available for

the particle sets. However this step can be done by a variety of methods some as simple as cloud-in-

cell (CIC), or more complicated as smoothed-particle hydrodynamics (SPH), or using Voronoi and

Delaunay tessellations as in the Delaunay Tessellation Field Estimator (DTFE) method ( van de

Weygaert et al. 2009, Cautun et al. 2014). Recently a new method called a discrete persistent

structure extractor (DisPerSE Sousbie 2011, Sousbie et al. 2011 allowing to identify haloes and

other components of the web directly from the particles has been designed. This method can be

applied to the galaxy catalogs, for instance Sousbie et al. (2011) applied it to SDSS catalog and

extracted the filaments (which are made available online).

An obvious advantage of methods based on particle coordinates, both based on the density

field and directly on particle coordinates, is their applicability to redshift catalogs. The redshift

catalogs like SDSS and 2dF provide only two angular coordinates and distances in redshift space.

But cosmological N-body dark matter simulations provide the full dynamical information in six-

dimensional phase space. This additional information is very valuable providing a greater oppor-

tunity for understanding the physics of the web and developing a better theory of the web.

Dark matter distribution in phase space is highly degenerate because it is cold. Practically, it

occupies a three-dimensional sub-manifold in six-dimensional phase space. In the linear regime,

the dark matter sub-manifold is a single-valued function of Eulerian coordinates which means that

at each point the dark matter is represented by a single stream flow. As the density perturbations in

dark matter grow with time the number of streams jumps to three at the regions of shell crossing.

Then five stream regions emerge inside of the three stream regions and so on. Number of streams

remains an odd integer in generic points. The corresponding parts of the three-dimensional dark
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matter sub-manifold form complicated folds in six-dimensional phase space.

The regions with multi-stream flow constitute the web while the regions with only one stream

form voids (Shandarin 2011, Shandarin et al. 2012, Abel et al. 2012, Falck et al. 2012). This

definition of voids states that in a given N-body simulation, no haloes can be formed before the

first shell crossings have occurred and the smallest haloes cannot be smaller than the mass cor-

responding to the small scale cut-off in the initial power spectrum regardless of the cause of the

cut-off: physical or due to numerical limitations (see e.g. Angulo et al. 2013b). This definition of

voids is physical by nature and thus has no free parameters. In addition, it does not speculate on

the sub-grid physical processes. The first three-stream flow regions are similar to the pancakes in

the ZA. They quickly grow and merge into a complicated three-dimensional structure; filaments

making the framework of the web manifest themselves at the pancake crossings, and haloes emerge

at the filament crossings. At later times different parts of the web participating in the large-scale

motion overlap which increases the web complexity further.

Using the full six-dimensional information allows one to generate new fields which provide

additional useful information about the evolution and morphology of the web. One of them is a

multi-stream field in Eulerian space, which will be the focus of this chapter. Another example

is the flip-flop field in Lagrangian space. In cosmological context it was first used in the ZA.

Vogelsberger & White (2011) used it in a study of multi-stream structure of galaxy size haloes.

Shandarin & Medvedev (2014) applied it for identifying sub-haloes in dark matter haloes. A

similar although somewhat simplistic realization of this idea has been revealed in the ORIGAMI

method used for the analysis of the web ( Falck et al. 2012, Falck & Neyrinck 2015 ). Although

these fields cannot be used directly on observational data because the full phase-space information

is not available, they provide much deeper insight into non-linear clustering of collision-less dark

matter and reveal new features of the web.

In order to compute the multi-stream field we will use the tessellation scheme described in

Shandarin et al. (2012) which is also briefly discussed in Section 3.3. Using this methodology on

the entire simulation box, we discuss the global behavior of the number of streams in the cosmic
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web in Section 3.4. The tessellation technique we have utilized can be used to find multi-stream

fields in smaller Eulerian boxes with very high resolution too. In Section 3.5 we study the local

behavior of multi-streams flows in regions around haloes the detected using friends-of-friends

(FOF) technique.

3.2 The simulation

We have utilized the data from cosmological N-body simulations by Gadget-2 (Springel, 2005)

for 100 h−1 Mpc and 200 h−1 Mpc box sizes with 1283, 2563 and 5123 grids. Each particle is

between 109−1012M�. The initial conditions and cosmological parameters are consistent with the

Planck cosmology. We utilize the initial Lagrangian box and do a three-dimensional mapping onto

corresponding evolved simulations. In addition, for local multi-stream analyses around haloes, we

have utilized halo catalogs for each of these simulation boxes. These haloes are detected using

FOF method considering objects with more than 20 particles found at linking length, b = 0.2.

3.3 Multi-stream field calculation

Phase space tessellation considers the dynamics of the particles similar to that of a standard N-

body code. However the particles are nodes of the tessellation, and are just massless tracers of the

flow. Assuming that the uniform state is modeled by a simple rectangular grid, the particles are

the nodes of the grid. Each elementary cube of the grid is tessellated by five tetrahedra (Shandarin

et al. 20122) of which the vertices are the vertices of the cube. Mass is assumed to be uniformly

distributed within each tetrahedron and the tessellation remain intact at all times. The tetrahedra

of the tessellation change their shapes and volumes, the latter are used for computing the densities

of the tetrahedra. Despite the complicated deformations experienced by the three-dimensional

sub-manifold tessellated by the tetrahedra, it remains continuous. Projected on three-dimensional

configuration space, the tetrahedra may form complicated structures. The number of streams at a

2For the description of an alternative type of the tessellation see Abel et al. (2012).
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chosen point x is simply the number of tetrahedra that contain the point. The diagnostic points are

computationally convenient to choose on a regular grid which can be significantly finer than the

original grid in Lagrangian space. The ratio of separation of particles on the initial unperturbed

grid to the separation distance of points in the diagnostic grid lpart/ldg will be referred to as the

refinement factor in the rest of the chapter.

Number of streams are odd-valued in the entire configuration space, except in a set of points of

measure zero where caustics are formed. A single-stream flow implies that the tetrahedra do not

overlap in the corresponding region and thus defined as a void region. The web is defined as a set

of non-void regions, i.e. the set of regions where the number of stream is equal to or more than

three. The level of non-linearity in the web can be quantitatively characterized by using ‘number

of streams’ as a parameter. As shown in (Shandarin et al., 2012) there is no simple local relation

between the number of streams and density, however the both fields are obviously correlated.

3.4 Global statistics of Cosmic web

The 3-dimensional multi-stream field for the entire simulation box exhibits cosmic web structure

with void, walls, filaments and haloes. We propose the number of streams, ‘nstr’ as a parameter

for characterizing and distinguishing structures in the universe. This is different from Falck &

Neyrinck (2015), where the authors have identified voids, walls, filaments and haloes by particles

which have undergone any number of flip-flops along 0, 1, 2 or 3 axes respectively. Their descrip-

tion of voids is close to ours except that some particles that have experienced no flip-flops might

be in the region of multi stream flow formed by other particles. Thus we expect that the mass

fraction in voids defined as the regions with nstr = 1 is somewhat lower than that defined as the

particles with flip-flops = 0 only at the final state. This is because some particles may have already

fallen in the web but have not experienced flip flop yet and some particles that have experienced an

even number of flip flops may come back to the original order. However the above arguments are

valid only if the thickness of the web is the same in the both approaches. As we discuss below the
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thickness of the web in our analysis is about (100% - 84%)/(100%-93%)=2.3 times thinner than in

the analysis by Falck & Neyrinck (2015) (See Table 3.4 for details). However Falck & Neyrinck

(2015) discussed these effects and claimed that they were small.

Whereas for non-linear structures, our parameter space has more freedom in terms of number

of streams. Similar to the density threshold, the number of streams - used as a local parameter -

cannot distinguish unambiguously whether a point is in a wall, filament or halo. Only some parts

of walls where there are only three streams can be identified locally without confusion. This is

because the formation of a filament requires at least five streams. A flip-flop along one axis would

produce a three-stream region which may be only a pancake. Therefore another flip-flop along the

other axis in one of the streams from previous stage is required to transform it into a three-stream

flow. Thus the total becomes five. However, if the second flip-flop happens along the same axis

the resultant structure will remain a wall. Therefore some points in the five-stream flows can be

within walls while the other in filaments. The present simulations have no information about the

evolution of the flip-flop field therefore we rely on visual impressions initially to understand the

transformation of walls into filaments and parts of filaments into haloes. By inspection, we have

identified all the regions with three streams as walls. Unfortunately, walls are difficult to display on

paper since they essentially block the view in two-dimensional projection. Nevertheless, we have

demonstrated and analyzed walls on a smaller Eulerian box around haloes in Section 3.5 using a

simple and reasonably effective approximation.

For a multi-stream field calculated on a simulation box of size 100h−1 Mpc and 1283 particles,

it is visually observed that with the increase of nstr from 3 to 15, the corresponding occupied

regions increasingly belong to filamentary structure rather than the membrane like walls, until at

the level nstr & 17 we observe that the number of wall points become negligible.

The filamentary structure of regions with 17 or more streams (denoted as 17+ ) is shown for

a slice of simulation box of size 100h−1 Mpc and 1283 particles in Figure 3.1. It has to be noted

that all the regions with 17+ streams are regions with 3+ streams. Thus, the filaments are just

interior parts of walls with higher nstr. These are visually observed mostly at the intersections of
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Figure 3.1: The cosmic web structure in a slice of 30h−1Mpc× 100h−1Mpc× 100h−1Mpc in a
simulation box of size 100h−1 Mpc and 1283 particles. Regions with 17 or more streams (blue)
form a filamentary structure. The haloes determined by FOF (red) are predominantly embedded in
the intersections of the filaments.
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walls. Further, at the intersections of multiple filaments, there are regions with locally maximum

number of streams, signifying the most dense regions in the simulations i.e. the dark matter haloes

as Figure 3.5 illustrates. By superimposing the positions from the FOF-halo catalog, it is visually

confirmed that the FOF haloes reasonably coincide with these high-streaming intersections, as

Figure 3.1 illustrates.

3.4.1 Volume and mass fractions

The single-stream flow, which corresponds to the void, occupies majority of volume of the sim-

ulation box (Figure 3.2). As mentioned in Section 3.4, higher multi-streaming flow regions are

nested inside the lower streaming regions. Thus the volume occupied by higher number of streams

monotonically decreases with the number of streams. This relation is approximately found to be a

power law. For the box of size L = 100 h−1 Mpc and N = 1283 particles (L/N = 0.78 h−1 Mpc), the

volume fraction corresponding to each value of number of streams, fvol(nstr) in the multi-stream

field calculated with refinement factor of 8 (i.e. the multi-stream field was computed on 10243 grid

as described in Shandarin et al. (2012)) is

fvol(nstr) = 0.69n−2.5
str (3.1)

This is a good fit for the range of number of streams nstr ≥ 5. In multi-stream field for the

simulation box mentioned above, about 93% of the volume is occupied by 1-stream. With an

increase in nstr, the corresponding volume fraction reduces. Physically, however, the number of

streams reflect the advancement of non-linearity. Hence the higher nstr regions are typically regions

with higher densities. In effect, the mass fraction can also be approximated by a decreasing power

law function of nstr,

fmass(nstr) = 0.61n−1.3
str (3.2)

This is also a good fit for the range of number of streams nstr ≥ 5. For the same range of number

of streams, the mean density in the regions with particular number of streams, given by the ratio of
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Figure 3.2: Volume and mass fraction of each stream, mean density of each stream in a box of size
100 h−1 Mpc and 1283 particles. Exact values of fractions, density and their curve fit for the range
nstr ≥ 5 from Eq. 3.1, Eq. 3.2 and Eq. 3.3 are shown. Multi-streams are calculated with refinement
factor of 8. The void (nstr = 1) occupies 93% of the volume and 55% of the mass.

corresponding mass and volume fractions, increases as expected.

ρ̄(nstr)
〈ρ〉

= 0.89n1.2
str , (3.3)

where 〈ρ〉 is the mean density of the universe. This also quantifies our previous claim that very high

multi-streams correspond to the most dense areas in the Universe, i.e. the condensed haloes. The

common over-density threshold of 200 using virial equilibrium corresponds to roughly 90 streams

in Figures 3.2 and Eq. 3.3.

Comparing the volume fractions of various simulation boxes in Figure 3.3 and corresponding

power law dependences in Table 3.1 (also, specifically for the volume fraction of voids in Table

3.2), we find that the profile is similar for boxes with same inter-particle resolution; i.e., equal box

length to grid size ratio( For e.g., L/N = 0.78 h−1 Mpc for the simulation box of 100 h−1 Mpc - 1283

particles and 200 h−1 Mpc - 2563 particles). The box with minimum inter-particle resolution in the

data, hence the best raw resolution ( L/N = 0.19 h−1 Mpc for 100 h−1 Mpc, 5123 particles), has

higher volume fraction for each multi-stream compared to lower resolution boxes. Additionally, it
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has a more non-linear stage advanced over time resulting from the initial small scale perturbations.

The advancement of non-linearity manifests itself in higher number of streams. Box with the least

raw inter-particle resolution (L/N = 1.56 h−1 Mpc for 200 h−1 Mpc, 1283 particles), occupies lower

volumes than other boxes for each nstr. It is also prone to noise at very high streaming regions.

One of the advantages of using tessellation is the freedom to compute densities at very high

resolutions (Abel et al. (2012), Shandarin et al. (2012)). We remind that the parameter ‘refinement

factor’ denotes the ratio of separation of the particles to the separation distance of points in the

diagnostic grid as defined in Sec. 3. High refinement factors are extensively used in understanding

stream behavior not only in the halo environment, but inside the halo too (Section 3.5). The

volume fractions of resulting number of streams are similar for all refinement factors as shown

in bottom of the Figure 3.3 and in Table 3.3. Multi-stream fields calculated on low refinement

factors are more noisy at high number of streams.

With same refinement factors, the mass fractions exhibit similar pattern for same L/N as well

(Figure 3.4). The simulation box with highest inter-particle distance (thus least mass resolution)

has more mass particles in single streaming region, as tabulated in Table 3.2, but decreases steeply

thereafter (Table 3.1). Unlike the volume fraction, the behavior of mass fraction has a systematic

variation across different refinement factors. The mass fractions given in Table 3.3 show that the

single-streaming regions in the multi-stream fields with refinement factors 1 and 2 have higher

mass fraction than in the fields with refinement factor of 8. Decreasing the resolution from refine-

ment factor of 8 to 1 effectively introduces smoothing of the structure. This results in growth of

mass fraction in voids (nstr = 1) and decreasing it in the web (nstr > 1). The multi-stream field is

more robust as one can see in Figure 3.3. and 3.4. In addition, the less refined multi-stream grids

are prone to noise at high nstr as usual.
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Figure 3.3: Top: Volume fraction distribution of streams in 6 simulation boxes of size 100 h−1

Mpc, 200 h−1 Mpc and 1283, 2563, 5123 grids (with refinement factor of 1). Volume fractions are
similar for simulation boxes with same inter-particle resolution. Slopes of the curve fits are shown
in Table 3.1. Bottom: Volume fraction distribution for different refinement factors for 100 h−1

Mpc, 1283 box. A considerably smoother volume fraction distribution is obtained at high number
of streams in multi-stream fields with high refinement factor.
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Figure 3.4: Top: Mass fraction distribution of streams in 6 simulation boxes of size 100 h−1 Mpc,
200 h−1 Mpc and 1283, 2563, 5123 grids ( with refinement factor of 1). Mass fractions are similar
for simulation boxes with same inter-particle resolution. Slopes of the curve fits are shown in
Table 3.1. Bottom: Mass fraction distribution for different refinement factors for 100 h−1 Mpc,
1283 box. Single-streaming void regions have more fraction of mass particles in multi-stream
fields calculated at low refinement factors of 1 and 2. This effect is minimized when calculation is
done at better refinement. In addition, mass fraction distribution is less noisy.
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Table 3.1: Comparison of the approximate power law dependences of curve fits in Figure 3.3 and
Figure 3.4. Power law relations for volume fraction fvol(nstr) and mass fractions fmass(nstr) as a
function of number of streams at nstr ≥ 5 are shown (amplitudes are not shown). The boxes of
size 100 h−1 Mpc on 1283 grids and, 200 h−1 Mpc on 2563 grids have same L/N = 0.78h−1 Mpc.
Similarly, L/N = 0.39h−1 Mpc for boxes of size 100 h−1 Mpc on 2563 grids and, 200 h−1 Mpc on
5123 grids.

L/N 0.19 0.39 0.78 1.56
fvol(nstr) Vs. nstr −2.1 −2.3 −2.5 −2.9
fmass(nstr) Vs. nstr −1.1 −1.2 −1.4 −2.0

Table 3.2: Comparison of the volume and mass fractions of the void (nstr = 1) regions of the
cosmic web for various simulation boxes at refinement factor of 1. Mean density is the ratio of
mass fraction to the volume fraction. It is given in units of the mean density of the universe. The
boxes of size 100 h−1 Mpc on 1283 grids and, 200 h−1 Mpc on 2563 grids have same L/N = 0.78h−1

Mpc. Similarly, L/N = 0.39h−1 Mpc for boxes of size 100 h−1 Mpc on 2563 grids and, 200 h−1

Mpc on 5123 grids.

L/N 0.19 0.39 0.78 1.56
Volume Fraction (%) 88 90 93 96
Mass Fraction (%) 24 36 55 77
Mean density 0.27 0.40 0.59 0.80

Table 3.3: Comparison of the volume and mass fractions of the void (nstr = 1) regions of the cosmic
web for a simulation box at different refinement factors. Mean density is the ratio of mass fraction
to the volume fraction. All the multi-streams for simulation box of length 100 h−1 Mpc on raw
resolution of 1283 grids (L/N = 0.78h−1)

Refinement factor 1 2 8
Volume Fraction (%) 93 93 93
Mass Fraction (%) 55 44 32
Mean density 0.59 0.47 0.35
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3.5 Stream environment around haloes

Multi-stream field can be easily computed for a small Eulerian box with higher refinement factor.

This can be utilized to analyze the phase-space behavior inside and around haloes. In this section,

we have used the halo coordinates identified by the FOF method, and selected Eulerian boxes

around it. A reasonable correspondence between FOF halo centers and local maxima of multi-

stream field is visually examined in Figure 3.1.

Since each multi-stream region is surrounded by lower number of streams, the walls sandwich

filaments within themselves (Figure 3.5). The filaments are embedded with haloes at various inter-

sections. These high-streaming haloes are completely covered by relatively low-stream filaments

and hence surrounded by walls too. This result differs considerably from the several void finder

methods, which find existence of haloes within void regions (See Colberg et al. 2008 and refer-

ences therein). By our classification, we distinguish configuration space of the simulation box as

void and non-void or web regions. Further, we have made an attempt to classify the web into

walls, filaments and haloes based on multi-stream thresholds. This classification based on number

of stream threshold provides only a very crude description of visual impression from the richness,

complexity and fundamentally multi-scale character of the web. The heuristic numbers we use

in this chapter are by no means universal, but may provide limited use in the discussion of these

particular simulations.

Visual inspection of Figure 3.5 reveals that the multi-stream environment of a halo is a highly

intricate. Though the haloes are surrounded by filaments and walls, it can be surprisingly close to

the voids in particular directions. Filaments defined by the multi-steam field are quite elongated,

but the cross-sections are not circular or elliptical, and moreover, they branch-out and intersect at

several regions. Finally, the haloes defined by contours of the multi-steam field look neither spher-

ical nor ellipsoidal. We use a simple geometrical technique of projecting the number of streams

onto a diagnostic spherical surface around a haloes to visualize and quantify their environments.
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Figure 3.5: Multi-stream flow regions in a small box of the simulation. Top left: regions with
more than 3-stream flow are identified as walls (brown). Intersection of multiple walls have higher
nstr regions (green, 17+ streams). Single-streaming voids (white) occupy large volume and are
very close to the filaments in some directions. Top right: 17+ streams (green) form filamentary
structures with nodes at the intersections (red, 90+ streams) Bottom left and right: Closer look at
the highly non-linear region reveals that a filament is sandwiched between the walls (brown). The
90+ stream region (red) forms a compact structure and is entirely contained within the filament.
The black dots show the particles around the FOF halo within linking length of 0.2.
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3.5.1 Technique

Motivated by the complicated morphology of multi-stream field around a dark matter halo, we de-

vised an empirical statistical tool to quantify the multi-stream environment of the FOF haloes. The

method is geometrical and non-local. We randomly select a large number of points on a diagnostic

spherical surface centered at the FOF center of the halo and compute the number of streams at

these points. By increasing the radius of the sphere from inside of the halo to several times the

halo radii, we estimate the fractions of the area on the diagnostic spherical surface occupied by the

regions with different numbers of streams: 3+, 5+, ..., where n+ corresponds to n or higher number

of streams.

The geometry of a filament can be crudely approximated by a cylinder and that of a wall by

a sheet with a small constant thickness ’d’. Upon intersecting with the spherical surface, these

geometries occupy certain cross-sectional area, Areac/s, on the sphere (See Figure 3.6). The ratio

of this area to the surface area of the sphere is given by Equation 3.4 and Equation 3.5,

fwall(r) =
Areac/s

4πr2 =
2πrd
4πr2 ∝ r−1 (3.4)

f f il(r) =
Areac/s

4πr2 =
const.
4πr2 ∝ r−2 (3.5)

The fractions of points on the surface of the sphere by multiple number of intersecting sheet-

like walls or cylindrical filaments also scale proportional to r−1 and r−2 respectively.

For the diagnostic spheres of different radii, the scaling of multi-streams at the intersections is

calculated. By checking the variation in the fraction of area occupied, we associate the number of

streams with wall or halo.

Each of the Mollweide projections in Figures 3.7 - 3.10 shows projection of the multi-stream

field on to the spherical surface, and provide useful insight into the multi-stream structure around a

halo. In a Mollweide projections, each filament stemmed from the halo looks as a compact patch.

If the physical area of the cross section of the filament remains approximately constant, then the
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Figure 3.6: Modeling a wall and a filament. A diagnostic spherical surface is intersected by a
cylinder and plane.
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size of the patch on the Mollweide projection would decrease with the increasing radius of the

diagnostic sphere. The cross section of a wall with the diagnostic sphere has a well known ‘S’-

shape (similar to the ecliptic plane in the galactic coordinates) and the width decreases with the

growth of the diagnostic sphere. Both patterns are clearly seen in Figures 3.7 - 3.10.

3.5.2 Voids, filaments and walls around haloes

From the technique described above, we arrive at quantitative thresholds for the different compo-

nents of the web i.e., all regions where nstr ≥ 3. We stress that this method is only a practical tool

in arriving at heuristic thresholds of cosmic web structures. The analysis done here are for the

simulation box of 100 h−1 Mpc, 1283 particles, with refinement factor of 8.

The scaling of fraction of points with 3+ streams is closest to r−1, where r is the radius of

the diagnostic sphere around the halo (Figures 3.7 - 3.10; top figures). Since r−1 variation is

geometrically identical to that of a wall, it is identified as a flow region with 3+ stream flow. In this

simulation the volume fraction of the web is dominated by 3-stream flows: fvol(3) ≈ 0.04 while∑∞
5 fvol(nstr) ≈ 0.02.

The deviation from the exact slope is expected, since assuming the filaments and walls as

uniform cylinders and planes is rather crude. In the simulation, the filaments and walls have a far

more complicated structure, where they branch out, and do not correspond to regular geometrical

shapes. Detailed explanations for deviations are illustrated using Mollweide projections in the next

section.

Variation of multi-streams regions of 5+ to 17+ streams steadily changes from r−1 to r−2. This

smooth transition implies that finding an exact cut-off of nstr for a filament is possible neither nstr

threshold nor by density. At 17+ stream regions scaling is closest to r−2, the approximate filamen-

tary geometry. In fact, nstr = 19+ regions also exhibit similar variation in spherical projections, but

our choice of the threshold based on the lowest nstr value that scales close to r−2. Again, unlike

the threshold for voids and walls, the threshold for filaments and haloes are not unambiguous. Our

seemingly arbitrary choice of definition of filaments as regions with 17+ streams (in Section 3.4,
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Figures 3.1 and Figures 3.5) was motivated by this observation. Thus projections on a diagnostic

sphere is a convenient tool for classifying regions in the simulation as belonging to void, wall,

filament or a halo.

For illustrations, we have picked 4 haloes from different mass ranges: 3.7× 1014M�, 5.0×

1013M� , 7.0×1012M� and 1.1×1012M� from the simulation box of 100 h−1 Mpc length and 1283

particles. Multi-stream field with a high refinement factor of 8 is calculated for a greater resolution

on scales of the halo volume. Diagnostic spheres of radii 0.1 h−1 Mpc to 5 h−1 Mpc are drawn for

each of these haloes (Figures 3.7 - 3.10; bottom figures), with the multi-stream field projected

onto the surface. In the Mollweide projections of these spheres, the white space refers to single-

stream voids. For the largest halo (Figures 3.7) with FOF radii 1.2 h−1 Mpc, the voids already

appear in sphere of radius 1.5 h−1 Mpc and in the smaller haloes (Figure 3.10) it appears as early

as 0.5 h−1 Mpc.

Up to 1 h−1 Mpc from halo center of the largest halo, the surfaces are uniformly covered with

high number of streams (red, 17+). This shows that the most non-linear regions are close to centers

of haloes. A similar trend is seen for the halo of radius 0.7 h−1 Mpc (Figures 3.8). However, for

smaller haloes (Figures 3.9 and 3.10) lower number of streams (even the wall forming 3+ streams;

blue) start occupying the spherical surface at radii lesser than FOF-radius. In the case of the

smallest halo of 1.1×1012M� mass, the 17+ streams are seen at scales as low as 0.1 h−1 Mpc. The

distribution of multi-streams on the surface seems do not have a symmetry of any kind , signifying

a complex morphology of the web in the vicinity of the haloes. Regions with 5+ to 15+ streams

form structures intermediary to filament-like and wall-like behavior, as seen by scaling of fraction

of total points on the space with distance from halo center.

Halo environment at distance over twice the FOF radius reveals interesting morphological fea-

tures. The walls intersect the sphere, and in the Mollweide projections, appear like a thin strip. We

also note that a filament oriented tangentially to the diagnostic surface may occasionally appear as

a strip too (like in Figure 3.8, see the corresponding discrepancy in fraction of streams), but upon

inspecting the spheres at various radii, we can clearly identify the persisting line-like structures,
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Figure 3.7: Large halo of mass 3.7× 1014M� and FOF radius 1.2 h−1 Mpc (dotted-violet line in
the top figure). Top: Fractional distribution of streams on the surface of spheres of increasing
radii. Dashed-black lines are for r−1 and r−2 scaling. 3+ streams are closest to r−1 and 17+ scales
close to r−2. for higher thresholds, the fractional distribution departs smoothly from r−2. Bottom:
Mollweide projection of multi-streams on the surface of the sphere.
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Figure 3.8: Halo of mass 5.0×1013M� and FOF radius 0.7 h−1 Mpc. Top: Fractional distribution
of streams deviates from r−1 and r−2 scales since the high stream filament passes along the surface
of the sphere. Bottom: Filament passing through the surface is seen from 2 to 5 times the halo
radius.
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Figure 3.9: Halo of mass 7.0×1012M� and FOF radius 0.4 h−1 Mpc. Top: All lines clearly scale
between r−1 and r−2. Bottom: The filament is passing through the center. It persists from radius
of halo to 4 h−1 Mpc. It is also surrounded by a single wall appearing as a line in the middle.
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Figure 3.10: Halo of mass 1.1× 1012M� and FOF radius 0.2 h−1 Mpc (dotted-violet line). This
halo just has 26 particles, hence the resolution is lesser than previous haloes for surfaces with
low radii. Top: There is a bump in fraction of each of 3+ streams a little over 1 h−1 Mpc. This
is due to the presence of an additional halo nearby, as seen in the projections. The Mollweide
projections from 0.4 h−1 Mpc to 2 h−1 Mpc have high stream flow regions near the lower surfaces
of diagnostic spheres. Bottom: Corresponding FOF halo (red, at the center) has a more massive
neighboring FOF halo (blue) within distance of 2 h−1 Mpc. The 17+ stream regions (green) are
increased around the neighboring halo.
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and they correspond to the walls. Similarly, a filament is projected as a compact patch structure,

which occurs due to an intersection of a cylinder-like geometry with the spherical surfaces. It is

clearly observed at the distance of 4 - 5 h−1 Mpc in Figure 3.7 and in between 0.5 - 5.0 h−1 Mpc in

Figure 3.9.

Hence we conclude that the 3+ stream regions constitute predominantly walls and the regions

with 17+ streams correspond mostly to filaments. The higher nstr shells must be surrounded by the

layers with lower nstr. Thus, the filaments are within the walls, and do not exist independently. We

remind that the radius of diagnostic sphere varies from 0.1 - 5 h−1 Mpc, whereas the Mollweide

projections shown here are of the same size. Hence the walls and filaments appear more narrow

and smaller in larger spheres due to zooming-out effects. In some cases (Figures 3.8, 3.10), the

Mollweide projections display the walls and filaments as a complicated network with patches of

high number of streams.

The high peak shown by the curves corresponding to the numbers of streams from 11+ to 17+

in the top panel of Figure 3.10 is mostly due to the presence of another halo nearby ( seen at

bottom of Mollweide projection of 1 - 2 h−1 Mpc). Figure 3.8 also has a deviation from usual

scaling, and this due to the intricate shape of 17+ stream filament, which appears to be branching

out after 1 h−1 Mpc.

Generally the transitions from haloes to filaments then to walls and finally to voids appear to

be rather smooth. However occasionally sharp features as the one seen in Figure 3.10 may emerge

when the diagnostic sphere hits a neighboring halo.

The friends-of-friends analysis identifies haloes as spherical structures. The distribution of

multi-streams projected onto these surfaces of the FOF haloes can be utilized for a statistical anal-

ysis of the haloes (Figures 3.11 and 3.12). We have utilized FOF catalogs of haloes more than 20

particles found at linking length b = 0.2. The nstr ranging from as low as 1 to higher than 103 are

seen on the halo surfaces. Haloes which have the minimum nstr = 1 are in contact with the void.

However, if the maximum nstr is also 1, then the halo is completely within the void. In calculations

with low refinement factor of 1, only 7.3% (for L/N = 0.78h−1) and 6.5% (for L/N = 0.19h−1)
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Figure 3.11: Scatter plot of minimum and maximum number of streams on the surface of FOF
radius around all haloes in FOF catalog. For the analysis, we use a total of 5521 haloes that
are identified using the FOF technique with linking length, b = 0.2. Since several of the haloes
coincide, distributions of number of haloes corresponding to minimum and maximum nstr on their
FOF radii are shown above and beside the scatter plot respectively. Top: Full box of L = 100 h−1

Mpc and N = 1283 (i.e. L/N = 0.78h−1), with a low refinement factor of 1 is utilized for multi-
stream field calculation. Bottom: Same simulation box; multi-stream field calculated with higher
refinement factor of 8.
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Figure 3.12: Scatter plot of minimum and maximum number of streams on the surface of FOF
radius around all haloes in FOF catalog. Distributions of number of haloes corresponding to mini-
mum and maximum nstr on their FOF radii are shown above and beside the scatter plot respectively.
Top: In the simulation box of L = 100 h−1 Mpc and N = 5123 (i.e. L/N = 0.19h−1), multi-stream
field is calculated on a smaller slice of 25 h−1 Mpc is with a refinement factor of 1. Multi-stream
field is projected onto surfaces of 3448 FOF haloes within this small box. Bottom: Same simula-
tion box; the multi-stream field calculated on the the same small box, but with a refinement factor
of 8.
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of the haloes are completely within single streaming voids. This is solely due to low resolution

of multi-stream field, since none of the FOF haloes are found in high resolution multi-stream cal-

culations on both L/N = 0.78h−1 and L/N = 0.19h−1 boxes. At high refinement factors, none

of the haloes are entirely embedded in a region with just one multi-stream value (i.e., max(nstr)

= min(nstr), along the dotted-red lines in Figures 3.11 and 3.12). However, there are significant

number of haloes whose FOF surfaces are in contact with the void region: in calculations with re-

finement factor of 8, 62% of the haloes in L/N = 0.78h−1 and 34% of the haloes in L/N = 0.19h−1

are in contact with void on their FOF radii. Rest of the haloes are completely within non-void

regions.

Statistical analysis of FOF haloes in Figures 3.11 and 3.12 show that massive haloes tend to

have low min(nstr) and high max(nstr), hence a very diverse multi-stream environment on their

spherical surface. The heuristic multi-stream threshold for haloes mentioned in Section 3.4 results

in virialized haloes with a constant nstr value. These halo surfaces far from sphere (see Figures

3.5), whereas, the FOF surfaces are spherical and have a large range of number of streams on their

surfaces. The probability distribution function of number of FOF haloes has an approximately

exponential tail monotonically decreasing with with min(nstr).

3.6 Summary

In this chapter, we discuss the results of the first study of the multi-stream environment of dark

matter haloes in cosmological N-body simulations. The visualization and quantitative character-

ization of generic non-linear fields in three-dimensional space represent a serious challenge from

both conceptual and computational points of view. The complexity of the problem requires diverse

tools for analyzing the results of cosmological simulations as well as galaxy catalogs.

This study is different from the most previous works in a few aspects. Firstly, we consider the

representation of the cosmic web in the form of a multi-stream field rather than a density field.

The multi-stream field contains a different information about the web than the density and velocity
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fields and thus represents a complimentary characterization of the web revealing new dynamical

features of the web (Shandarin 2011, Shandarin et al. 2012, Abel et al. 2012). Secondly, for

computing the multi-stream field we use the tessellation of three-dimensional Lagrangian sub-

manifold x = x(q,z = 0) in six-dimensional (x,q) space which allows to significantly increase the

spatial resolution (Shandarin et al. 2012, Abel et al. 2012). The Lagrangian sub-manifold is more

convenient since x is a single-valued function of q at any stage including a highly non-linear regime

while the phase space sheet projected on x- or v-space is not. If the initial state of the simulation is

represented by a uniform three-dimensional mesh, then storing the Lagrangian sub-manifold does

not require additional space for Lagrangian coordinates. And thirdly, in the study of the multi-

stream environment of dark matter haloes we use the Mollweide projection of the multi-stream

field computed on a set of diagnostic spherical surfaces centered at the FOF haloes and having

radii from 0.1 h−1Mpc to 5 h−1Mpc.

Most of the results are obtained for a simulation in L = 100h−1Mpc box with N = 128 particles

along each axes although we report some of the results for the simulations in 100 h−1Mpc box with

2563 and 5123 particles as well as in 200 h−1Mpc box with 1283, 2563 and 5123 particles.

Using the tessellation of the three-dimensional Lagrangian sub-manifold x = x(q, t) (Shandarin

et al., 2012), we compute the multi-stream field i.e. the number of streams on a regular grid in the

configuration x-space, nstr(x) for estimating global parameters or on selected set of points in the

study of the haloes environments.

The multi-stream field takes odd whole numbers everywhere except at a set of points of measure

zero where it takes positive even whole numbers. This property is very useful for debugging the

numerical code.

The multi-stream field allows one to define physical voids as the regions with nstr = 1. The

rest of space with nstr ≥ 3 can be called the non-void or web. This division of the space into two

parts is unique and physically motivated: no object can form before shell crossing happens. It is

worth emphasizing that the division of space into voids and web is based on the local parameter,

the number of streams at a single point (Shandarin et al. 2012, Abel et al. 2012). Falck et al. (2012)
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and Falck & Neyrinck (2015) defined the web as a set of particles that experienced the ’flip-flop’

at least once along any axis. We discussed potential problems with this definition in the beginning

of Section 3.4.

The further division of the web into walls, filaments and haloes is not straightforward although

haloes can be defined using dynamical parameters related to the requirement of virialization of

haloes. One of the simplest is the famous density threshold ρ/ρ̄ ≈ 200. Identifying filaments and

walls is significantly more tricky (see e.g. Hahn et al. 2007a, Forero-Romero et al. 2009, Aragon-

Calvo et al. 2010, Cautun et al. 2014, Falck & Neyrinck 2015) and require non-local parameters.

The large part of walls can also be identified locally since the regions where nstr = 3 can be

neither filaments nor haloes. For instance, in the simulation 100 h−1Mpc box with 1283 particles

the web occupies about 6% of the volume, the three-stream flow regions occupy about 4% and the

rest of the web remaining 2% of the total volume.

In this study we introduced an empirical statistical criteria which very crudely distinguish wall,

filament and haloes. We have found empirically that in the studied simulation the transition from

wall points to filament points takes place approximately at 5 ≤ nstr . 15. Using the virial over-

density threshold of 200 in Eq. 3.3, we have also estimated that the haloes correspond to the

regions with nstr & 90. Thus, the transition from filament to haloes takes place in the range 17 ≤

nstr . 90. The above critical values for transition from walls to filaments and from filaments to

haloes were shown to be approximately correct for the simulation with L/N = 0.78h−1 Mpc. This

technique can be also applied to simulations with different L/N ratio and multi-stream grid of

different refinement factors but the classification based on the threshold applied locally will remain

only a very crude estimator. A more sophisticated morphological analysis will require non-local

geometric and topological methods, which is discussed in Chapters 4 and 5.

We have found that the volume and mass fractions in the voids are approximately V.F./M.F.

= 96/76, 93/32 and 88/24, where each number is the percentage, for the simulations with L/N =

1.56h−1, 0.78h−1 and 0.19h−1 Mpc respectively. As the ratio L/N gets smaller both volume and

mass fractions in voids monotonically decrease. This is fairly consistent with the results of Falck
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Table 3.4: Comparison of the volume and mass fraction of the elements of the cosmic web between
our analysis and Falck & Neyrinck (2015). L/N = 0.78h−1 Mpc for simulations used in both
techniques. We use a refinement factor of 8 for the multi-stream grid. The mean density is given
in units of the mean density of the universe.

Multi-stream analysis (This work) ORIGAMI (Falck & Neyrinck, 2015)
Voids Walls Filaments Haloes Voids Walls Filaments Haloes

Volume Fraction (%) 93 7 < 1 < 0.1 84 12 3 < 1
Mass Fraction (%) 32 35 17 14 26 19 19 35
Mean density 0.34 5 > 17 > 140 0.31 2.2 6 > 35

& Neyrinck (2015), considering the differences between our numerical methods. We compare the

fractions of the volumes and masses in other components of the web in Table 3.4, and the results

are in a good qualitative agreement. Our estimates systematically higher for both volume and mass

fractions for voids and thus systematically lower for the web. One general conclusion seems to

be obvious: the web defined by the multi-stream flows is about (100% - 84%)/(100%-93%)=2.3

times thinner than that defined by the ORIGAMI method.

In conclusion we would like to outline the major aspects of the web revealed by the study of

the multi-stream field. The multi-stream field is a fundamental attribute of the structures formed in

cold collision-less dark matter. Its properties are of great importance for the detecting dark matter

directly in a laboratory setting or indirectly via astronomical observations. The dark matter web

described by a multi-stream field represents a nested structure, consisting of layers with increasing

number of streams. The number of streams are odd integers almost everywhere except on caustics

where they are even integers. The caustics occupy infinitesimal volume. The most of the volume is

occupied by one stream flow regions which are dark matter voids. The regions with three streams

are the regions occupying the second largest volume. They form very thin membrane type struc-

tures (often referred to as walls or pancakes) most of which are connected in one huge connected

formation. The three-stream regions form the external shell of the web. All other structures fila-

ments and haloes are within the three-stream shell. The membranes are attached to each others by

the filaments which locally consist of regions with higher number of streams than the neighboring

membranes. The filaments form the framework or a skeleton of the dark matter web. Similar to
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a real skeleton, the filamentary structure has joints where most of the the dark matter haloes are

located. The haloes are the local peaks of the multi-stream field.
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Chapter 4

Topology and geometry of dark matter

structures

Heuristic analysis of the multistream field has been done in Chapter 3 where the dark matter struc-

tures were classified based on local multistream variational approach. In this chapter, we analyze

the dark matter structures based on their physical shapes and connectivity. Extensive studies of

geometrical and topological properties in cosmic matter density field have been done in the past.

Here we extend some of these studies into the Lagrangian sub-manifold regime – taking advantage

of certain unique properties of the multistream field supplement our understanding of dark matter

structures. The analysis and text in this chapter overlaps with Ramachandra & Shandarin (2017b).

4.1 Introduction

Despite the considerable improvements in simulating, identifying and measuring the cosmic web,

many aspects remain unsettled and are vigorously debated. The intention of this work is to further

investigate the strengths and weaknesses of the multistream field as a complimentary diagnostic

of the shapes in the DM web. Multi-stream filed is simply the number of DM streams at every

point of Eulerian space. Thus it is an odd positive integer at a given point (Arnold et al. 1982, see

also Shandarin & Zel’dovich 1989 and Hidding et al. 2014). We estimated it on a regular mesh

56



of a chosen resolution from the tessellation of of the simulation particles in Lagrangian space and

the particle coordinates at a chosen time Shandarin et al. (2012). The external boundaries of the

cold DM web are the caustics in the density field which are clearly seen in the simulations with

adequate resolution of the density field (see e.g. Fig 7 in Hahn et al. (2015)). However the exactly

same boundaries of the DM web can be identified as the boundaries of a single-stream flow which

is a local parameter. The multistream field even a better indicator of the boundaries of the DM web

than caustics because caustics are present everywhere the number of streams varies (from 1 to 3,

from 3 to 5, etc) but the boundary of the web are only the one where the number of stream changes

from 1 to 3.

In particular we would like to discuss the differences in defining voids in density and mul-

tistream fields. It is closely related to the definition and distinguishing of linear and non-linear

structures or regimes. One simple statistical definition that often used is as follows: after defining

the std of the density contrast σδ ≡< (ρ(x)/ρ̄− 1)2 >1/2 one can roughly separate the linear and

non-linear regimes by the boundary σδ = 1. This is obviously very crude characteristic which does

not say much about the geometry and topology of the non-linear structures. The parameter σδ

is frequently is evaluated for filtered fields σδ = σδ(Rf). Unfortunately the transition from ‘non-

linear’ field at small Rf to ‘linear’ field at large Rf is smooth and thus choosing a particular value

of Rf is remarkably subjective.

A related but different question is how to select individual non-linear structure, like halos,

filaments and walls by using a local parameter. In particular the density threshold has been used on

numerous occasions especially for identifying halos and voids. As a rule the choices of particular

values have not been justified by solid physical evidences. The virial mass and virial radius of a

halo are often used as direct indicators of gravitationally bound objects but they are determined

by a nonlocal quantity – the mean over-density of the halo. An interesting comparison of several

kinds of boundaries of halos was provided by More et al. (2015). In particular they considered the

virial radius Rvir, R200m, the splashback radius Rsp, and Rinfall. The splashback radius is defined as

an average distance from the center of the halo to the most external caustic if it was resolved. The
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authors argue that it is “a more physical halo boundary choice" than “commonly defined to enclose

a density contrast ∆m,c relative to a reference (mean or critical) density. This is the boundary where

the number of streams falls from three to one in the multistream field.

Gravitationally bound structures could be defined as linear in the sense that δ(x)� 1 for all

points in the structure. A simple example is a progenitor of large halo at linear stage. However

one cannot accurately identify such an object at linear stage using a local criterion like a density

threshold. Even at the nonlinear stage of N-body simulation one cannot predict when a particular

fluid element with a given value of δ in a void will be accreted to a wall or filament. Among other

factors the size of the void and proximity to a wall would play significant roles. In addition the

walls accrete expanding fluid elements as well thus the velocity divergence on the fluid element

would not help.

The rest of the chapter is organized as follows: we describe the cosmological simulations in

Section 4.2. Some of the important features of the multistream field are described in Section 4.2.1.

Topology of the single-streaming voids is discussed in 4.3 and that of the multistream structure

is investigated using percolation theory in Section 4.4. . Discussion of the local geometry of

multistream field using Hessian matrices is done in Section 4.5.

4.2 The simulation

In this analysis, we use cosmological N-body simulations generated by the tree-PM code GADGET-

2 (Springel 2005 and Springel et al. 2001b). The periodic side lengths L, number of particles Np,

masses of each particle mp and the gravitational softening length ε for the two simulations are tabu-

lated in Table 4.1. Initial conditions at redshift of zini = 80 are generated by MUSIC (Hahn & Abel,

2011) with the transfer function from Eisenstein & Hu (1998). We adopt the ΛCDM cosmological

model with cosmological parameters Ωm = 0.276, ΩΛ = 0.724, the Hubble parameter, h = 0.703,

the power spectrum normalization, σ8 = 0.811 and the spectral index ns = 0.961.
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Table 4.1: Parameters for the simulation boxes: Side length L, number of particles Np, mass of
each particle mp, and the gravitational softening length ε for the GADGET simulations are shown.

L Np mp ε

100h−1Mpc 1283 3.65×1010h−1M� 20h−1kpc
100h−1Mpc 2563 4.57×109h−1M� 10h−1kpc

4.2.1 Multi-stream field at z = 0

The multistream field objectively characterizes the level of non-linearity in the cosmic web. The

‘number-of-streams’ field or nstr(x) is computed from the Lagrangian sub-manifold x(q), which is

a continuous three-dimensional sheet in a six-dimensional (q,x) space. In this chapter, we utilize

the tessellation implementation by Shandarin et al. (2012) to calculate the multistream flow field on

the GADGET-2 snapshot at z = 0. This implementation only requires initial and final coordinates

of the dark matter particles.

The nstr(x) values are mostly odd-numbered since each folding in the Lagrangian sub-manifold

results in an increase of nstr by 2. Exception to this are only at caustics - which have volume

measure zero, then the nstr is even-valued number. The particles in nstr = 1 have not experienced

orbit crossings and thus these regions are unambiguously identified as void (Shandarin et al., 2012).

Foldings in the Lagrangian sub-manifold generally occur one-by-one. For example, a contour of

nstr = 7 will be within a region of nstr ≤ 5. Hence the multistream field commonly has nesting

shells, i.e., 3 ⊇ 5 ⊇ 7 ⊇ 9 ⊇ 11 . . .. Some of the important features of the multistream field are

discussed in Appendix 2.3.

The first non-linear DM structures that reach non-perturbative stage of gravitational evolution

have nstr = 3. By visual inspection, these regions generally form a fabric-like open structures that

resemble walls. N-body simulations suggest that a DM fluid element after the first crossing of a

caustic never returns in a single-streaming state. Therefore the local condition nstr(rf.e.)≥ 3 (where

rf.e. is the position of the fluid element) is sufficient for the fluid element to be bound to the DM

web.

All particles that have fallen into a wall will never return to any single-streaming regions, there-
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Figure 4.1: Opposite faces of the multistream field for the simulation box with Np = 1283. Non-
void regions (gray) have nstr > 1. The largest void (white) in the entire field spans over the entire
box. Rest of the smaller isolated voids (red) occupy very small volume fraction.

fore they can be labeled as gravitationally bound to pancakes/walls. The surface contours of higher

nstr are embedded within the walls. Figure 2.5 shows a filamentary structure of the multistream

web at nstr ≥ 17. The figure also shows regions around local maxima of the multistream field,

usually located at the intersections of filaments.

The multistream field can be computed at arbitrary resolutions of diagnostic grids. The param-

eter ‘refinement factor’ denotes the ratio of separation of the particles in Lagrangian grid, ll, to

side length of diagnostic grid ld. In a simulation of 1283 particles, for instance, multistream field

computed on a diagnostic grid of size 2563 would have a refinement factor of ll/ld = 2.
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4.3 Voids in the multistream field

Gravitational instability results in movement of the collision-less fluid particles in the Universe

from voids to walls, walls to filaments, and filaments to haloes. As we mentioned above in the

multistream portrait, the entry of mass particles from single-streaming regions into nstr > 1 region

is irreversible. The converse is obviously not true, that is, the particles in nstr = 1 regions may

move to multistreaming region at a later time in the evolution. At a given cosmic time, sufficient

condition for dark matter particles to be bound to non-perturbative and non-linear structures like

walls/filaments/haloes is being in multistream regions. Therefore, a single-stream flow implies that

gravitationally bound structures haven’t yet formed, and thus defined as a void region. This defini-

tion of void is unambiguous and physically motivated, as demonstrated by Shandarin et al. (2012).

It is worth stressing that while the density in voids varies, the number-of-streams is uniformly

equal to unity.

For simulation box with 1283 particles, nstr = 1 regions have a large volume fraction of VFV ≈

93 per cent regardless of the value of refinement factor (shown in Table 4.2). Multi-stream web

structure in the simulation with higher mass resolution (Np = 2563) is better enhanced, and the

single streaming void occupies around 90 per cent of the volume. Figure 4.1 shows the single

streaming voids occupying large volume of the simulation with 1283 particles at refinement factor

of 4.

4.3.1 Connectivity of the voids

In order to find whether the void regions of the multistream field are connected or not, we isolate

three-dimensional segments with nstr = 1 and separately label them. The number of disconnected

voids in the simulation with Np = 1283 range from 1 (for refinement factor, ll/ld = 1) to about 900

(for ll/ld = 8) as shown in Table 4.2. Number of isolated voids increases similarly in the simulation

with Np = 2563 particles as well.

Smoothing of the structure at lower resolution of the multistream field results in increased con-
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Table 4.2: Volume fraction VFV of the voids, total number of isolated voids NV and the filling
fraction of the largest void FF1/VFV at different refinement factors ll/ld. The filling fractions of
the largest void at each refinement factor show that most of the nstr = 1 region is almost entirely a
single percolating structure.

Np ll/ld VFV NV FF1/VFV
1283 1 93.46% 1 100%
1283 2 93.44% 11 99.999%
1283 4 93.44% 113 99.999%
1283 8 93.44% 914 99.997%
2563 1 90.80% 11 99.999%
2563 2 90.80% 97 99.999%
2563 4 90.80% 1029 99.997%
2563 8 90.80% 7259 99.964%

nectivity of single-streaming regions. In Figure 4.1, opposite faces on each axes of the multi-field,

show a large connected void (white). This means that the largest void percolated throughout the

multistream field in all directions. This result is in agreement with Falck & Neyrinck (2015), who

studied percolation of ORIGAMI-voids in simulations with side lengths of 100 and 200h−1Mpc.

In addition to the percolating the field, the largest void also fills most of the void volume: the ratio

of filling fraction of the largest void FF1 to the volume fraction of nstr = 1 regions in the simula-

tion is close to unity (see Table 4.2). This phenomenon is seen at each of the refinement factors in

our analysis. Hence, over 99.9 per cent of the single-streaming sites are connected throughout the

simulation box, and they form a single empty region.

As previously mentioned, the multistream web structures of nstr = 3 form the first gravitation-

ally collapsed structures. These tiny structures are better resolved in higher refinement factors, and

they tend to enclose greater number of pockets of single-streaming voids inside them. The red

regions in Figure 4.1 some of the small voids on faces of the simulation box with 1283 particles.

Despite increase in the number of small voids at each of the refinement factors, these void regions

(i.e., the single streaming regions excluding the largest void) collectively occupy less than 0.1 per

cent of the total void volume in both the simulations. It is also likely that the small voids are simply

due to numerical noise. However, the major conclusion regarding small voids remains the same up

to refinement factor of 8. We do not pursue further investigation due to tiny effects.
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Figure 4.2: Single-streaming void distribution on diagnostic spheres around FOF-haloes are con-
sidered. At radius r10, each diagnostic sphere has nstr = 1 on 10 per cent of its spherical surface.
Distribution function of r10 (blue) and FOF-radii rvir (red) are shown. Inner plot shows the dis-
tribution function of r10/rvir. The haloes within the dashed line have at least 10 per cent of their
virial-surfaces in contact with nstr = 1 regions.

4.3.2 Halo boundaries within the void

Dark matter haloes are the most non-linear objects in the cosmic web. With the exception of

ORIGAMI (Falck et al., 2012), most of the halo finders do not consider multistreaming in the

configuration space for finding haloes. Potential haloes found by several such halo finding meth-

ods, hence, may have boundaries that intersect with the single-streaming void, which is the least

non-linear structure in the dark matter universe. Colberg et al. (2008) even mention existence of

‘void-haloes’ in several halo finder algorithms.

We studied the nstr environment of the haloes detected using the Friends-of-Friends method

(FOF-Davis et al. 1985) as illustrated in Figure 4.2. FOF-haloes with more than 20 particles are

detected using linking-length of b = 0.2 in the simulation with 1283 particles. We implement the

diagnosis method prescribed in Ramachandra & Shandarin (2015): a large number of points are

randomly selected on diagnostic spherical surfaces centered at the FOF-center of the halo. Multi-

stream values are iteratively calculated at these spherical surfaces of various radii. We define the
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distance from center of a halo, r10, where nstr = 1 at 10 per cent of the surface of the diagnostic

sphere. Distribution of this void-distance parameter is compared to the virial radii rvir of the FOF-

haloes. Surprisingly, r10 distribution peaks at slightly lower values than the rvir distribution. This

implies a large number of FOF-haloes are in the vicinity of the void.

For specific examples of some FOF-haloes, Ramachandra & Shandarin (2015) showed that

single-stream may appear within their virial radii too. The distribution of r10/rvir in the inner plot

of Figure 4.2 shows the same phenomenon. The FOF-haloes within r10/rvir < 1 (represented by

the vertical dashed line) have nstr = 1 on 10 per cent of their virial surfaces. The figure illustrates

that a large number of FOF-haloes satisfy this condition, thus are in contact with the void surfaces.

Hence not all the FOF particles have undergone a gravitational collapse during their evolution.

For methods such as FOF, there is no unambiguous linking-length criterion for voids. Similarly

for the density fields, a range of under-densities are prescribed by various void finder methods (cf.

Colberg et al. 2008). On the other hand, the multistream field unambiguously identifies all the

regions without a single gravitational collapse as voids. Haloes detected on the multistream field

may address the issue of haloes being in contact with voids.

4.4 Percolation in the multistream web

A single percolating void fills the nstr = 1 regions almost entirely, as discussed in Section 4.3.1.

Disconnected pockets of void may exist, but they collectively occupy very small volume fraction

(less than 0.1 per cent of the total volume as tabulated in Table 4.2). Whereas, the non-void

structure in the multistream field has a different topological structure. The regions selected with

a lower bound on nstr could be isolated (generally for high nstr thresholds) or connected in a

percolating region (for low nstr thresholds). We investigate the topological transitions in these

excursion sets of multistream field.

The volume fraction as a function of number-of-streams decreases according to a power law in

the nstr > 1 structure (Shandarin et al. 2012 and Ramachandra & Shandarin 2015 report VF(nstr)
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decreasing as nstr
−2.8 and nstr

−2.5 respectively for their simulations). The volume fraction of the

excursion set fES (ni) is the ratio of volume of all the regions with a lower bound ni on the mul-

tistream field to the total volume Vtot of the simulation box, i.e, fES (ni) =
VES

Vtot
=

∑
nstr≥ni

VF(nstr).

Since volume fraction of the each nstr rapidly increases with an decrease in multistream value, so

does the fES .

The excursion set may have number of isolated segments of different volumes. A measure of

connectivity in the excursion set regions can be given by the filling fraction, f1/ fES , where f1 is the

volume fraction of the largest isolated region in the excursion set. f1 can be computed numerically

in the simulations. If the value of f1/ fES is close to 0, then none of the isolated regions dominate

the excursion set. This implies absence of percolation. If f1/ fES is close to one, it implies a single

connected structure dominates most of the excursion set.

The filling fraction f1/ fES grows from 0 to 1 occurs rapidly fES during percolation phase

transition. A practical robust definition of the percolation transition is at f1/ fES = 0.5, i.e, when

the largest region occupies more than 50 per cent of the excursion set volume. The percolation plot

in Figure 4.3 reveals this phenomenon. Excursion volume fraction fES at this transition, f (p)
ES = 0.48

and 0.75 per cent for the simulations with with 1283 and 2563 particles respectively (although the

numbers were obtained in one simulation each. The difference may be well within the range of

statistical errors for this size of simulation box). After the percolation transition, the filling fraction

of the largest structure stabilizes towards unity.

The nature of the transition in mass density field is similar to that in multistream field. For the

simulation simulation with 2563 particles, the density is calculated using CIC method at 2563 and

5123 grid points. In Figure 4.3, the percolation phenomenon in both mass density fields is shown

along with that of multistream fields. The excursion set volume fraction at percolation transition,

f (p)
ES is lower for multistream field, because the filaments in the multistream field are thinner than

that of density picture. Volume fraction of the largest structure detected in the density field also

tends to unity with decreasing fES , albeit less rapidly as that of the multistream field. This means

that while the largest structure in a multistream web occupies most of the structure, the over-density
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excursion set is more fragmented.

The excursion volume fraction of the multistream web structure is limited to a small fraction of

less than 10 per cent since rest of the volume is void. The excursion set volume fraction increases

with decreasing number-of-streams and reaches it’s maximum at nstr = 3. At this limit the filling

fraction f1/ fES is still less than unity, about 95 per cent. These two peculiar properties of the

multistream field explain the shape of the percolation curves in Figure 4.3. Since the multistream

flow field is a discrete data field, the percolation transition is seen to occur at a particular value

of nstr rather than a large range of values. For nstr = 17, the largest structure in the excursion set

occupies more than half the volume of the entire excursion set. At this multistream threshold, the

largest segment starts spanning large volume of the simulation box (as observed in the left panel

of Figure 4.4). The volume fraction of the excursion set at this percolation transition is f (p)
ES = 0.75

per cent for simulation with 2563 particles.

The percolation transition at nstr = 17 could be used as a criterion for detecting filaments in the

cosmic web. Since the largest nstr ≥ 17 region occupies more than 50 per cent of the excursion set,

it is essentially the ‘backbone’ of the cosmic web (Shandarin et al., 2010). Heuristic analysis as

discussed by Ramachandra & Shandarin (2015) also arrived at the same threshold for identifying

filaments. That analysis was based on a multistreams variation in halo environments, hence a local

value. From our percolation analysis, we see that it is also justified globally.

In the simulation with 2563 particles, percolations in the density field occurs at ρDT FE/ρb =

5.16 and ρCIC/ρb = 5.49 for densities calculated with DTFE and CIC respectively. Here ρb =

2563/1003M�h−3Mpc−3, the background density. Notice that these values correspond to the den-

sity as calculated by the CIC and DTFE algorithms, and it might be different for other density

finding methods. The volume fraction of the excursion set of over-densities at the percolation,

f (p)
ES = 2.7 per cent, is considerably higher than the corresponding f (p)

ES value in the multistream

field. This implies that the percolation occurs at larger values of filling fraction in mass densities.
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4.5 Local geometry of the multistream field

The multistream field has a constant value of 1 for around 90 per cent of the simulation box. At

least one gravitational collapse occurs in the remaining 10 per cent of the volume. In these non-

void regions, the nstr value varies from 3 to very high values, often in the order of thousands. In

the multistream field of refinement factor of 2 for simulation with Np = 1283 particles, maximum

nstr is 2831. Within the non-void structure, the multistream field may have several local maxima,

minima and saddles. Variation of nstr is especially high inside halo boundaries, where the particles

in their non-linear stage of evolution have undergone a large number of flip-flops.

Local second order variation in a scalar field f like the multistream field can by found using

the Hessian matrix H( f ). An element of the Hessian matrix is given in Equation 4.1, where i and

j can be any of x, y or z directions.

Hi j( f ) =
∂2 f
∂xi∂x j

(4.1)

In our analysis, we have chosen f = −nstr(x) for understanding local variations of the multi-

stream field. The resulting Hessians at each point on the configuration space are always symmetric

matrices, as illustrated in Appendix A. The eigenvalues of these Hessian matrices are always real,

and depending on if their values are positive or negative, one may infer local geometrical features

in the multistream field.

Within the void, there is no variation in the multistream values. Hessians H(−nstr) are zero

matrices in large volume fraction of the simulation box (around 90 per cent in both the simulations)

due to the constant value of nstr = 1 in this percolating void. Eigenvalues of these Hessian matrices,

sorted as λ1 ≥ λ2 ≥ λ3 are close to 0 at a large number of regions as shown in the top panel of

Figure 4.5. In the simulation with 1283 particles, the median values of each eigenvalue are 0.09,

−3× 10−10 and −0.11 for λ1, λ2 and λ3 respectively. By selecting just the non-void region by

nstr > 1, notably fewer number of eigenvalues have small absolute values. The median values

of each of the eigenvalues in the non-void regions are 4.01, 0.48, and −0.85 respectively for λ1,
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(dashed lines) and the multistream web structure (solid lines). The multistream web has fewer
eigenvalues below λth = 0.1. The void seems to have most of the small eigenvalues.

λ2 and λ3. Bottom panel in Figure 4.5 shows a significant change in the probability distribution

of Hessian eigenvalues around 0, the distribution pattern at the tails are mostly identical to the

distribution pattern in the entire simulation box.

A large fraction of eigenvalues in non-void regions are still around 0, but their percentage is

quite less compared to that of the entire box. For instance, nearly 66 per cent of λ1’s, 72 per cent

of λ2’s and 48 per cent of λ3’s are within in the range of 0.0± 0.1 in the entire simulation box.

However, with the exclusion of void regions, these volume fractions drops to 0.1, 7.7 and 8.4 per

cent respectively (Figure 4.6). Hence most of the eigenvalues at the void region have small absolute

values.

Hessian eigenvalues in multistream fields differ from that in density, gravitational potential or

velocity shear tensor. Constant scalar value of nstr facilitates the Hessian H(−nstr) matrices to be

presumptively close to zero. On the other hand, in density field manifests in a range of low values in

the voids, resulting in non-zero Hessian matrices. Eigenvalues of velocity shear tensor do not peak

at zero either Libeskind et al. (2013). For the deformation tensor, morphological characterization
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of the cosmic web using Zel’dovich formalism shows that each eigenvalue must be negative in

voids.

The eigenvalues of H(−nstr) span a large range of values in our cosmological simulation. The

largest eigenvalue of the triplets, λ1 having large positive values throughout the multistream web

structure ( see Figure 4.7 ). Absolute values |λ1|, |λ2| and |λ3| peak around the neighborhood of

intersections of filaments. These junctions are usually high streaming regions due to shell cross-

ing from multiple directions. Ramachandra & Shandarin (2015) observed that these regions with

intersecting filaments are in the vicinity of large FOF haloes.

If the Hessian matrices are positive definite in a region, i.e., if all the eigenvalues are strictly

positive, then the interior of this convex region has at-most one minimum. For our choice of

−nstr(x) as the domain of Hessian, this means that the convex neighborhoods around local maxima

of the multistream field are isolated by the positive definite Hessian matrices. Closed surface

contours at high streaming or the most non-linear regions are selected. These regions my indeed

be the regions of dark matter haloes.

The smallest eigenvalue, λ3 has lowest volume fraction of all the eigenvalues in the positive

tail of the distributions in Figure 4.5. Since the condition λ3 > 0 ensures the Hessian matrix to

be positive definitive, we may use it as a primary criterion in isolating compact regions of dark

matter haloes. These regions also roughly correspond to isolated globs as seen in Figure 4.8.

Local geometry analysis is pertinent for halo detection due to compact geometry of the haloes.

In principle, other components of the cosmic web could also be detected. Tubular structures in

filaments could be detected, as shown in Figure 4.8, using conditions on the eigenvalues as λ1 >

λ2 > 0 and λ3 < 0 . Fabric-thin walls could be detected by λ1 > 0 and λ3 < λ2 < 0.

4.5.1 Softening of the multistream field

Hessian eigenvalues are generally defined on continuous functions. Although our domain of the

Hessian is an inherently integer-valued field, it describes the multistream structure at the level of

diagnostic grid. Hence it may be considered to be numerically equivalent to a continuous function
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Figure 4.8: Surfaces identified in the multistream field. Blue regions are closed regions with λ3 > 0,
which we identify as two haloes. Other surface has an open curvature along one direction, with
λ1 > λ2 > 0 and λ3 < 0.

where the numerical approximation of differentiation is a valid operation. This can be verified

mathematically by finding that Hessian H(−nstr) is symmetric (Appendix A shows the numerical

approximation of the Hessian matrix term for generic unfiltered multistream field.)

Smoothing the multistream field (at the refinement level of ll/ld = 1 or 2) effectively reduces

noise. There is also a systematic variation in the distribution of smoothed nstr values as shown in

Figure 4.9. Volume fraction of the single-streaming voids only varies from 90.8 per cent without

smoothing to 89.1 per cent for the Gaussian softening length of 0.39 h−1Mpc (twice the length of

diagnostic grid ld). On the other hand, nstr = 3 regions gain volume fraction from 4.9 per cent in

un-smoothed field to 7.1 per cent for 0.39 h−1Mpc. This is seen in the multistream structures of

smoothing scales of 0.39 h−1Mpc in Figure 4.10. Multi-stream regions with 3 < nstr ≤ 100 occupy

correspondingly lower volumes for higher smoothing, and the variation is noisy beyond nstr > 100.

Figure 4.10 shows the multistream field on a small slice of the simulation at different softening

scales, and walls and filaments are resolved better with increasing softening.

Smoother multistream fields result in less noisy PDFs of the Hessian eigenvalues. For instance,

the volume fraction of regions with positive curvature (i.e. λ3 > 0) is 2.4%, 2.3% and 2.5% for

scales 0.20h−1 Mpc, 0.39h−1 Mpc, 0.78h−1 Mpc respectively. Further analysis of smoothed posi-

tive definite regions is relevant in determining halo boundaries, and will be extensively discussed

73



Table 4.3: Volume fraction (in per cent) of nstr thresholds for cosmic web structures as defined by
Ramachandra & Shandarin (2015). Multi-stream field is calculated at 1, 2, 4, and 8 times the native
simulation resolution of 643 grids. Small slice of 50h−1Mpc× 50h−1Mpc× 50h−1Mpc is chosen
for the analysis.

Global thresholds 643 1283 2563 5123

nstr = 1 (Void) 90.87 90.92 90.94 90.94
3 ≤ nstr < 17 (Wall) 8.71 8.66 8.63 8.64
17 ≤ nstr < 90 (Filaments) 0.39 0.39 0.39 0.39
nstr ≥ 90 (Haloes) 0.034 0.035 0.036 0.036

in the next chapter.

4.5.2 Resolution dependence

Multi-stream calculation can be done at arbitrarily high resolutions by populating the tetrahedral

simplices. For our resolution study, we have chosen a smaller slice of 50h−1Mpc× 50h−1Mpc×

50h−1Mpc (grid of size 643 from the N-body simulation) from the simulation with Np = 1283

particles. The multistream field is calculated at 4 different refinement factors, i.e., at diagnosis

grids of size 643 (ll/ld = 1), 1283 (ll/ld = 2), 2563 (ll/ld = 4) and 5123 (ll/ld = 8) respectively.

Volume fractions of each multistream does not change systematically for different levels of

refinement, except at very high nstr values (see Ramachandra & Shandarin 2015 for dependence of

nstr variation on refinement of the diagnostic grid). At high multistream values, higher resolutions

reveal a considerably less noisy multistream fields.

There are no variations in the volume fractions of the cosmic web components classified using

the global nstr thresholds as shown in Table 4.3. Voids (nstr = 1) occupy about 90 per cent of

the volume at each refinement factor. Rest of the heuristic thresholds that identify the structure

components (as prescribed by Ramachandra & Shandarin 2015) are constant multistream contours:

3 ≤ nstr < 17 for walls, 17 ≤ nstr < 90 for filaments and nstr ≥ 90 for haloes. Since the volume

fraction of each nstr values are about the same at each refinement factor, the volume fraction of the

cosmic web components corresponding to global multistream thresholds do not vary considerably.

However, local geometry analysis of the multistream flow field varies considerably on the reso-
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Figure 4.9: Probability distribution function of the multistream nstr values in the simulation box
with Np = 2563. The multistream field is calculated at refinement factor ll/ld = 2. Unsmoothed
multistream field is compared with different Gaussian filtering scales. Softening scales of equal to
0.5, 1, and 2 times the side length of diagnostic grid ld correspond to 0.10h−1Mpc, 0.20h−1Mpc,
and 0.39h−1Mpc respectively.
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lution of the analysis grid. For our Hessian H(−nstr), the regions with λ1 ≥ λ2 ≥ λ3 > 0 in non-void

regions occupy 1.8 per cent of the entire box in native resolution of diagnostic grid, as shown in

Table 4.4. This fraction reduces to 1.3 per cent at diagnostic grid of 5123 resolution. Variations

with refinement factors are seen in other eigenvalue conditions in the non-void too: volume frac-

tion of λ1 > 0 > λ2 ≥ λ3 regions increases from 1.7 per cent at refinement factor of 1 to 3 per cent

at refinement factor of 8. Volume fraction of λ1 ≥ λ2 > 0 > λ3 regions decreases from 5.6 to 4.6 per

cent with the increase of refinement from 1 to 8.

In principle, the conditions for geometric criteria are: λ1 > 0 > λ2 ≥ λ3 for locally flat regions,

λ1 ≥ λ2 > 0 > λ3 for locally tubular structures and λ1 ≥ λ2 ≥ λ3 > 0 for clumped blobs. However,

the tabulated the volume fractions in Table 4.4 does not correspond to cosmic web components

themselves. Identification of the components may require post processing steps.

High resolution studies of multistream fields would play an important role in detection of walls

and filaments. These two components have smaller length scales along at least one direction with

respect to others. As seen in Section 4.3.1, walls are more resolved in high resolution of multi-

stream fields, enclosing pockets of voids (see Figure 4.1).

However, a Hessian analysis to identify filaments and walls may be considerably different from

that of halo finding due to the following reasons: First, a local geometrical analysis is uniquely

convenient for detecting dark matter haloes since they are local structures. Filaments and walls,

alternatively, are structures that span over large distances. Secondly, we try to find regions around

local maxima of multistream field for haloes. Whereas, filaments and walls have much weaker

relationship with local multistream maxima. Filaments and walls usually deviate from flat planar

or straight tubular geometries: they often have complicated structures several connections and

branches. For these reasons, Hessian eigenvalues alone would not be sufficient in detecting walls

or filaments.
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Table 4.4: Volume fraction of criteria based on nstr and λs of H(−nstr) calculated at various res-
olutions. We chose a smaller slice of 50h−1Mpc×50h−1Mpc×50h−1Mpc i.e., half the volume of
the original GADGET simulation box. The refinement factors are the multiplication factors of 1,
2, 4 and 8 times of the native resolution (643) of the simulation grid along each axis. Eigenvalues
of the Hessian of the field are local geometric parameters. The void is globally defined as nstr = 1
and the multistream web structure as nstr > 1.

Global/local conditions 643 1283 2563 5123

nstr = 1 (Void) 90.87 90.92 90.94 90.94
nstr > 1; λ1 > 0 > λ2 ≥ λ3 1.72 2.22 2.67 2.96
nstr > 1; λ1 ≥ λ2 > 0 > λ3 5.60 5.28 4.91 4.57
nstr > 1; λ1 ≥ λ2 ≥ λ3 > 0 1.81 1.56 1.37 1.26

4.6 Discussion

Formation of multiple velocity streams in the context of structure formation has been known in

the past, starting from Zel’dovich approximation. Quantification of the multistreams in N-body

simulations, however, was recently achieved by Shandarin et al. (2012) and Abel et al. (2012)

using the Lagrangian sub-manifold. In our study, the multistream fields are calculated using the

tessellation algorithm by Shandarin et al. (2012). We have analyzed, for the first time, the local

geometry and percolation properties of the cosmic web using this multistream field.

Distinguishing the configuration space into void and non-void is one of the uses of the mul-

tistream field. Lagrangian sub-manifold has no folds in the beginning, thus nstr = 1 uniformly

throughout the simulation. Gravitational instability folds the sub-manifold in complicated ways,

however, most of the volume has particles without any collapse. Shandarin et al. (2012) and

Ramachandra & Shandarin (2015) observed that the single-streaming voids occupy around 85-

90 per cent of the simulations at z = 0. In this study, we found that the void regions are also

connected in a way that the largest percolating void occupies more than 99 per cent of the all

the single-streaming regions. Recent study by Wojtak et al. (2016) uses a watershed transform

method in the density field prescribed by Lagrangian tessellations (Shandarin et al. 2012 and Abel

et al. 2012) to analyze the evolution of isolated voids. Another recent study by Falck & Neyrinck

(2015) on ORIGAMI-voids also reveal a similar percolation at the limit of simulation resolution.

They observed persistence of this phenomenon for different resolutions of the N-body simulation.
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Multi-stream analysis, on the other hand, is not limited to mass resolution of the simulation. Our

multistream analysis refined up to 8 times the simulations resolution revealed that the percolation

phenomenon still persists. However, at high refinements of the multistream field, we observed

small voids that are enclosed by highly resolved non-void membranes.

Walls are the first collapsed structures in the dark matter Universe. At highly refined multi-

stream field, thin membranes of the structures are often resolved, revealing small voids enclosed

by them (compare two top panels in Figure 4.11). These preliminary structures are separated from

the voids by caustic surfaces. These caustics have volume measure zero, which makes detection

of their surface harder in the multistream field, even at very high resolutions. On the other hand,

caustic surfaces themselves can by detected using the Lagrangian sub-manifold by identifying the

common faces of neighboring tetrahedra with opposite volume signs (Shandarin et al., 2012). They

are shown in the bottom panel in Figure 4.11. One can see that increasing the refinement factor

from 2 to 8 adds mostly walls but the complete wall structure shown in the bottom panel is still

considerably greater. Please note that the plots in two top panels adjusted exactly to the simulation

box in Eulerian space, and the bottom plot shows the Lagrangian box mapped to Eulerian space

without adjusting to the simulation box.

There are extensive number of topological indicators in the context of density fields or spatial

co-ordinates - such as alpha shapes, Betti numbers, genus statistics. Although a comparative study

of these topological measures in multistream fields may be interesting, it is not the intent of this

chapter (See Chapter 6 for a detailed comparison of various structure finding algorithms). In this

study, we only investigate percolation transitions in excursion sets of multistreams as a preliminary

analysis of topological connectivities. Excursion sets in density fields are shown to have quick per-

colation transitions (Shandarin et al., 2010) and a similar trend in multistream field is investigated

here.

Excursion sets of multistream and density field (calculated using CIC and DTFE in this study)

reveal some of the topological differences. At any volume fraction of excursion set fES , the filling

factor of the largest structure f1/ fES is lower for mass density (both CIC and DTFE). This con-
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Figure 4.11: Two top panels show three contours (nstr = 3,11,17) in a slice 100h−1Mpc ×
100h−1Mpc× 10h−1Mpc in the simulation with 1283 particles, computed at two refinement fac-
tors: 2(upper) and 8 (lower). The bottom panel shows the caustic surfaces in the same slice.
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cludes that the mass density field is more fragmented than the multistream field. A large number

of disconnected segments are seen at high nstr or ρ/ρb thresholds, and the number of connections

increase with decreasing nstr threshold.

Global connectivities in the cosmic web is slightly different for multistream field and the den-

sity field. The largest structure in the excursion set starts percolating at certain values of ex-

cursion volume fraction ( fES ). As shown in Section 4.4, these percolation transitions occur at

ρDT FE/ρb = 5.16, ρCIC/ρb = 5.49 for density fields and nstr = 17 for the multistream field. The

corresponding percolation volume fraction f (p)
ES is smaller for multistream fields ( f (p)

ES = 0.75 per

cent for multistream field and f (p)
ES = 1.7 per cent for the CIC-density field f (p)

ES = 2.9 per cent for

the DTFE-density field). This indicates that the percolating multistream filament is over 2 times

thinner than that of ρDT FE and over 3 times thinner than ρCIC field.

Since the nstr field in this study is calculated on regular grids, the boundaries of the structures

are not exactly traced. Outlining foldings in the Lagrangian sub-manifolds exactly as shown in Fig-

ure 4.11 or in the flip-flop calculations shown in Shandarin & Medvedev (2017) give point datasets

which are considerably more difficult to analyze. However, recent advancements in computational

topology - such as the adaptation of the watershed transforms (using SpineWeb -Aragon-Calvo

et al. 2008 and Morse theory (using DisPerSe - Sousbie et al. 2011 and Felix - Shivshankar et al.

2015) to inherently discrete datasets may be useful in the topological analyses of flip-flop fields

and caustics.

The multistream field is a scalar function of Eulerian coordinates. We have analyzed functional

variation of the −nstr(x) field using Hessian eigenvalues. The Hessian analysis is generally done

for inherently continuous fields, For example, Hessian analysis has been previously studied for

smoothed density fields (see Sousbie et al. 2008b, Aragon-Calvo et al. 2007, Aragón-Calvo et al.

2010, Cautun et al. 2014 etc.), gravitational potential and velocity shear tensor (Hoffman et al.

2012, Libeskind et al. 2013, Hahn et al. 2007a, Forero-Romero et al. 2009, Hoffman et al. 2012

and Cautun et al. 2014). Although the multistream field has discrete values by definition, it may

be considered smooth for numerical analysis at the scale of grid length of the field. The resulting
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Hessian eigenvalues characterize the geometry in a four-dimensional hyper-space of (−nstr, x,y,z).

The boundary of a region with λ1 ≥ λ2 ≥ λ3 > 0 is a closed convex contour in this hyper-space, and

thus it’s projection onto the three-dimensional Lagrangian space is also closed and convex.

Dark matter haloes, being localized structures, are uniquely convenient for our local Hessian

analysis. Conditions of λ1 > 0> λ2 ≥ λ3 and λ1 ≥ λ2 > 0> λ3 also give information about curvature.

Hessian eigenvalue analysis at high resolution of multistream fields may be very interesting in

understanding the tubular edges of filaments and surfaces of walls at smaller scales.

4.7 Summary

We studied certain geometrical and topological aspects of the multistream field in the context of

large scale structure of the Universe. Several features were found to be considerably different from

traditional density fields. The major findings from our analysis are briefly summarized as follows:

• We use the multistream field as a proxy for distinguishing of the DM web from DM voids:

the web is defined as the regions with number of streams greater than one and thus voids as a

single stream regions. The boundary between them representing a sharp transition from one–

to three– stream flow regions would be a caustic surface in the density field if the mass and

spatial resolutions were sufficiently high. They were clearly seen in 2 simulations by Melott

& Shandarin (1989) as well as in three dimensional simulations by Angulo et al. (2016),

Hahn & Angulo (2016), Hahn et al. (2013) and in velocity fields Hahn et al. (2015).

• Regions without any folds in the Lagrangian sub-manifold are mostly connected. These

single streaming void regions at z = 0 occupy around 90 per cent of both simulations used in

this study, most of which belong to a single percolating structure. However at high resolution

multistream analysis, we identify a number of isolated pockets that are entirely enclosed by

boundary of walls. But these voids are tiny and collectively occupy less than 0.1 per cent of

the volume of the simulation box.
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• The Hessian components of the multistream field are universally zero in the interior of the

void, due to constant value of nstr. Density field need not have zero Hessians since mass

density is not unequivocally constant at z = 0.

• We studied the global topology of the non-void (nstr > 1) structure using percolation analysis.

A rapid percolation transition occurred in our multistream field at nstr = 17. The percolating

filament in multistream field is thinner than the percolating filament in mass density field.

The Lagrangian sub-manifold contains dynamical information of structure formation. We ana-

lyzed the multistream field that contains the information of foldings in the sub-manifold. Connec-

tivities in the void and non-void components of the multistream web reveal several details about

structure of the Universe that are not probed by traditional density fields. In addition, we demon-

strated the use of geometrical features of the multistream field in identifying potential dark matter

halo candidates in cosmological N-body simulations.

83



Chapter 5

Dark matter haloes: a multistream view

Identifying the haloes from the distribution of particles in N-body simulations is one of the prob-

lems attracting both considerable interest and efforts. In this chapter, we propose a novel frame-

work for detecting potential dark matter haloes using the field unique for dark matter – multistream

field. The current status of halo finding techniques are summarized in Section 5.1. A review of

the DM particle clustering in a one-dimensional dimensional universe is made in Section 2.4, and

the concept of multistream field is extended to higher dimensions. The multistream field is com-

puted on the cosmological simulations described in Section 5.2. The halo identification framework

in this field is described in Section 5.3. This algorithm isolates convex regions of the multistream

field using Hessian eigenvalues, each enclosing a local multistream maximum. Without employing

any non-local thresholds that several halo finders generally use, these convex multistream regions

are identified as potential halo sites. We also illustrate the significance of multistream refinement

and softening scales in finding sub-haloes. However, this chapter does not focus on adaptive multi-

scale analyses for substructure studies. A few properties of the multistream haloes are discussed

in Section 5.4, and comparison of these haloes with AHF and FOF algorithms is done in Section

5.5. We also discuss the spatial distribution of the dark matter haloes along the percolating web

structure.
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5.1 Overview of halo finders

The web-like distribution of matter initially revealed by redshift surveys (with less than 300 galax-

ies by Gregory & Thompson 1978 and around 1000 galaxies by de Lapparent et al. 1986) and

numerical modeling (using N-body simulations of around 30000 particles by Shandarin 1983b and

Klypin & Shandarin 1983) pioneered morphological investigations of the cosmic web structures

(see Bond et al. 1996, also reviews by Shandarin & Zel’dovich 1989 and van de Weygaert & Bond

2008). Detailed mapping of the Universe has crossed three million objects today, by catalogs such

as the Sloan Digital Sky Survey (SDSS; Albareti et al. 2016). The upcoming Large Synoptic Sur-

vey Telescope (LSST; LSST Science Collaboration et al. 2009) is expected to probe the nature of

dark matter using several billion galaxies. On the other hand, cosmological simulations have im-

proved immensely in several aspects – numerical techniques, parallelization schemes, inclusion of

various physical processes, volume and resolution (some of these developments are summarized

in Bertschinger (1998) and Bagla & Padmanabhan (1997). Modern state-of-the-art simulations

like the Illustris Project Vogelsberger et al. (2014), the EAGLE project Schaye et al. (2015) and

Q-Continuum Heitmann et al. (2015) use more than a billion dark matter particles. Finally, the

ever improving data analysis techniques have resulted in new and sophisticated density estimators,

geometrical and topological indicators. A plethora of algorithms for identifying and character-

izing dark matter structures have emerged in last two decades (a summary on cosmological data

analysis is highlighted in van de Weygaert & Schaap 2009). Considering all these improvements,

it is worth noting that the proto-structures detected in the modern simulations are qualitatively

similar to the quasi-linear description of clustering by Zel’dovich Approximation (ZA; Zel’dovich

1970). Location and properties of these structures, i.e., the voids, walls, filaments and haloes

maybe inconsistent across different structure finding algorithms, but that is primarily due to varied

definitions.

Most of structure finders are halo finders only and majority of them are stemmed from three

underlying algorithms. One of them is the SO (Spherical Over-density) halo finder that defines

halos as spherical regions whose mass density exceeds the mean density by a specified factor
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(Press & Schechter, 1974). Another is the FOF (Friends-of-Friends) halo finder describing haloes

as the groups of particles separated less than a specified linking length often chosen as 0.2 times the

mean particle separation (Davis et al., 1985). The FOF can be also used for identifying filaments

and walls/pancakes by increasing the linking length (Zel’dovich et al. 1982, Shandarin 1983c,

Shandarin et al. 2010). Finally the DENMAX (DENsity MAXimum) halo finder assumes that the

halos are the peaks of the density fields and thus selects the particles concentrated in the vicinity of

the density maxima (Bertschinger & Gelb, 1991). One of the common features of these techniques

is that all three are based on density, in one form or another. And all of them depend on free

parameters that are chosen chiefly on the ‘merits principle’ (Forero-Romero et al., 2009) rather

than on physics. Over the years all three kinds of the halo finders have been experiencing various

modifications and improvements. A few examples from a long list of these modifications may

include:

(i) Improvised techniques of generation of the density field from the particle positions, and

finding spherically bound over-densities (Lacey & Cole 1994, Jenkins et al. 2001, Evrard et al.

2002, Weinberg et al. 1997, Neyrinck et al. 2005, Knollmann & Knebe 2009, Sutter & Ricker

2010, Planelles & Quilis 2010 etc.)

(ii) Adaptive methods controlling the linking length in methods using FOF (Davis et al. 1985,

van Kampen 1995, Gottlober et al. 1999, Springel et al. 2001a, Habib et al. 2009, Rasera et al.

2010 etc.)

(iii) Adaptive methods for searching the positions of density maxima (For example, Klypin

et al. 1999.)

(iv) Generalization of FOF and DENMAX techniques to six-dimensional phase space, and

many others (such as 6DFOF by Diemand et al. 2006 and ROCKSTAR by Behroozi et al. 2013

use velocity-position space with parameters analogous to linking-length.)

(v) Computing hierarchical tree of clusters in the phase-space such as the Hierarchical Structure

Finder MacIejewski et al. (2009), and the 6-D Hierarchical Over-density Tree Ascasibar (2010).

(vi) Hybrid algorithms: frameworks such as the Hierarchical Bound-Tracing algorithm Han et al.
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(2012) and SURV Giocoli et al. (2010) identify haloes at multiple time steps from the simulation

to find prospective sub-haloes. In addition, there are HOP methods by Eisenstein & Hut (1998),

Tweed et al. (2009) and Skory et al. (2010).

A detailed comparisons of several halo/sub-halo finders is provided in Knebe et al. (2011),

Knebe et al. (2013), Onions et al. (2012). In a nice summary discussing these developments as

well as describing a few new suggestions they concluded that there was no general consensus for a

precise definition of a halo or a sub-halo. Consequently, there were different estimates of number

of haloes, halo mass functions, halo center locations, boundaries and other parameters.

There are significant concerns with SO, DENMAX and FOF algorithms - both in terms of

underlying mechanisms of halo formation and the parameters used in halo identification. SO is

motivated by the analytical toy model of the collapse of a top-hat spherical density perturbation.

Parameters of the virial radii rvir and virial mass Mvir are determined by the regions with density

ρvir ≥ ∆vir ×ρb, where ρb is the background density of the simulation box. ∆vir is generally taken

around 180 or 200, derived for an isolated spherical collapse model, and it varies for different

cosmologies and redshift. The peaks in CDM models not only aspherical, but their collapse is

subject to tidal forces, mergers and presence of sub-structures - none of these complexities are

weighed in the spherical collapse model.

For FOF, the free parameter of linking length is generally taken as b = 0.2 times the mean sep-

aration of particles at z = 0. This inter-particle separation corresponds to ∆vir ≈ 180 if the halo has

an isothermal density profile, ρ ∝ r−2. Using percolation theory, More et al. (2011) argued that this

corresponds to a rather wide range of over-densities depending on halo mass and density profiles.

They found out that b = 0.2 corresponds to local over-density δ within the enclosed halo to be in

the range of 250 to 600. Moreover, the resulting FOF-haloes need not have a compact geometry:

often the haloes are irregularly shaped, which is unlikely if the halos are virialized. Hence modern

algorithms re-define the halo boundaries by excluding particles using post-processing techniques.

In recent simulations with clear delineation of walls and filaments Angulo et al. (2013c), b = 0.05

was used for finding FOF-haloes since the traditional value of b = 0.2 corresponded to structures
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that percolate into the web structure.

Absence of dynamical traits in the FOF and SO algorithms are arguably more crucial. In phase-

space, the halo collapse models show collisionless DM particles in oscillatory motions about a core,

at successive foldings of the phase-space sheet. The velocity field within each oscillatory spiral

is multi-valued in physical space. Incrementing multistream shells, separated by caustic surfaces

sequentially trace the structures of the cosmic web - walls, filaments and the haloes. Majority

of the mass accretion into the haloes along the filaments: from lower multistreams into higher.

Thus the DM haloes are not independent of filaments around them, and the hierarchical layers

of multistreams represents this portrait precisely. This picture of structure formation was initially

theorized using ZA Zel’dovich (1970) and in context of caustics Arnold et al. (1982) as well as in

the Adhesion Approximation (Gurbatov et al. 1989, Kofman et al. 1992). Shandarin & Zel’dovich

(1989) reviewed gravitational evolution of density perturbations in the context.

It has been demonstrated that the multistream field in Eulerian space can be computed directly

from the Lagrangian sub-manifold (Shandarin et al. 2012 and Abel et al. 2012). About 90% of

the field is single-streaming voids, and the rest of the volume comprises of multistream walls, fil-

aments and haloes. Ramachandra & Shandarin (2015) found the multistream value of nstr ≈ 90

corresponds to virial density ∆vir = 200. On the other hand, DM particles are identified by (Falck

et al., 2012) as belonging to haloes if they undergo flip-flop along 3 orthogonal axes. These anal-

yses have opened up a new avenue in studies of halo formation, both qualitative and quantitative.

Re-investigations of halo spins, physical radii of the halo, sub-structure in the light of streaming

phenomena have shown that the halo structures and formations are more complicated than pre-

viously believed. Vogelsberger & White (2011) investigated the distribution of streams in small

haloes at various redshifts. They concluded that tracking caustics and streams is better than den-

sity, since density fields are noisy in the dense inner regions of haloes. In another study, More

et al. (2015) argued that the ‘splashback radius’ - distance from the halo core to the first caustic

enumerated from outside - is a better physical indicator of DM halo boundary than the virial radius

(also see the discussion on turn-around radius of bound objects by Lee & Yepes 2016). Angulo
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et al. (2013c) also agree with the view that the locally over-dense regions correspond better with

the volumes within the first caustic than the virialized DM clumps. Recent toy model of anisotropic

halo collapse by Neyrinck (2016) considers intersecting multistream filaments forming spinning

nodes. Ramachandra & Shandarin (2017b) showed that the virial surfaces of FOF haloes have

varying number of streams, including single-streams. Study by Shandarin & Medvedev (2017)

delineated the rich sub-structure of haloes using another derivative parameter from the Lagrangian

sub-manifold called the ‘flip-flop’ defined on the Lagrangian space.

5.2 Simulations and tools

The emphasis of this chapter is to demonstrate the use of multistream field in identifying potential

dark matter haloes, and not a full statistical analysis of halo properties. For this purpose, we have

run simulations at two different mass resolutions (number of particles Np = 1283 and 2563, and

respective mass of particles, mp = 3.65×1010h−1M� and 4.57×109h−1M�), with the same periodic

side length L = 100h−1Mpc. The gravitational softening length ε = 20h−1kpc and 10h−1kpc for low

and high resolution simulation respectively. The initial conditions are generated by MUSIC (Hahn

& Abel, 2011) with the transfer function from Eisenstein & Hu (1998) at a redshift of zini = 80. The

ΛCDM cosmological simulation is run using GADGET-2 (Springel 2005 and Springel et al. 2001b)

is similar to the ones used in Ramachandra & Shandarin (2017b). The cosmological parameters

used in the simulation are Ωm = 0.276, ΩΛ = 0.724, the Hubble parameter, h = 0.703, the power

spectrum normalization, σ8 = 0.811 and the spectral index ns = 0.961.

Multistream field nstr(x) is calculated on the GADGET-2 snapshots at z = 0 using the tessel-

lation scheme by Shandarin et al. (2012). The multistream field can be computed at the native

resolution of the Lagrangian grid of the simulation, i.e., at refinement factor of ll/ld = 1 (where ll

is the inter-particle separation in Lagrangian grid and ld is the side length resolution of diagnostic

grid). Arbitrarily high refinement factors can be utilized in computing multistream fields as well,

for example ll/ld = 8 for the halo multistream environment shown in Figure 2.6. For analysis of
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full simulation boxes, we restrict ll/ld to 1 and 2.

Two halo finders are also used to identify potential haloes with 20 or more particles at z = 0: a

classic Friends-of-Friends method (FOF-Davis et al. 1985) using a popular linking length, b = 0.2

(e.g. Frenk et al. 1988 and Lacey & Cole 1994) and the Adaptive Mesh Investigations of Galaxy

Assembly (AMIGA halo finder or AHF-Knollmann & Knebe 2009, Gill et al. 2004). Halo catalog

from these halo finders are used to compare with our implementation of halo detection in the

multistream field. The haloes candidates from AHF and FOF algorithms are hereafter referred to

as AHF-haloes and FOF-haloes respectively.

5.3 Haloes in the multistream field

We intend to identify haloes in the nstr(x) field instead of using just the position coordinate data.

While the eigenvalue analysis itself is done at a chosen time, the multistream field inherently

has data from six-dimensional Lagrangian space (q,x) that contains the full dynamical informa-

tion,similar to the phase-space sheet albeit in a different form. Dynamical history that is embedded

in the multistream field is crucial in understanding the strength of gravitational binding of the par-

ticles. A physically motivated distinction between void and gravitationally collapsed regions –

voids are the regions with a single stream – is a unique feature of multistream analysis (Shandarin

et al. 2012 and Ramachandra & Shandarin 2017b). Thus the haloes detected from local maxima

of the nstr field can be ensured to be away from the mono-streaming voids. Methods based on

linking-length or density fields may not be able to ensure that all the particles in haloes are away

from voids (as shown for FOF haloes in Ramachandra & Shandarin 2017b) .

Numerical analyses of scalar fields generally depend on resolution as opposed to particle co-

ordinates analysis tools like FOF. The multistream field conveniently has an advantage of being

less noisy than mass density (Shandarin et al. 2012, also see the Appendix in Ramachandra &

Shandarin 2017b ).
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5.3.1 Hessian of multistream fields

Hessian matrix H( f ) of a scalar field f involves local second-order variations in three orthogonal

directions. Each element of the Hessian matrix Hi j( f ) (where i and j can be any of x, y or z

directions) is given by Equation 5.1.

Hi j( f ) =
∂2 f
∂xi∂x j

(5.1)

By choosing a f = −nstr(x) (smoothened if necessary), local multistream variations can be di-

agnosed. The Hessian matrices at each point on the configuration space are always symmetric

matrices, resulting in real eigenvalues. The Hessian eigenvalues in multistream fields differ from

that in density, gravitational potential or velocity shear tensor. We refer the readers to Ramachan-

dra & Shandarin (2017b) for an extensive analysis on multistream Hessians and their geometrical

significance. Some of the salient features of Hessian eigenvalues of multistream field are as fol-

lows:

• Every element of Hessian matrices H(−nstr), and consequently the eigenvalues λi’s are zero

in single-stream voids. Even if the multistream field is a smoothed, the eigenvalues peak

at zero. This property is unique to multistream fields. Eigenvalues of Hessians of density

Aragon-Calvo et al. (2007), velocity shear tensor Libeskind et al. (2013) do not peak at

zero, and the eigenvalues of deformation tensor are negative in voids as a result of continuity

equation (shown in Zel’dovich formalism as well).

• The eigenvalues of these Hessian matrices are always real, and depending on if their values

are positive or negative, one may infer local geometrical features in the field. For our choice

of −nstr(x) as the domain of Hessian, at least in principle, the conditions for geometric

criteria are: λ1 > 0 > λ2 ≥ λ3 for locally flat regions, λ1 ≥ λ2 > 0 > λ3 for locally tubular

structures and λ1 ≥ λ2 ≥ λ3 > 0 for clumped blobs.

• Convex neighborhoods around local maxima of the multistream field are isolated by the
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positive definite Hessian matrices.

• The resulting Hessian eigenvalues characterize the geometry in a four-dimensional hyper-

space of (−nstr, x,y,z). The boundary of a region with λ1 ≥ λ2 ≥ λ3 > 0 is a closed convex

contour in this hyper-space, and thus it’s projection on to the three-dimensional Lagrangian

space is also closed and convex.

Of the three geometries that are characterized by the eigenvalue conditions, we investigate the

convexity of multistream contours in the context of halo finding in the section below.

5.3.2 Halo finder algorithm

Our goal is to isolate the locations of convex geometries in the multistream flow field. Prospective

regions of the halo locations in the web structure are selected by positive definite condition of the

Hessian H(−nstr): λ1 > 0, λ2 > 0 and λ3 > 0, or simply the smallest of the eigenvalues, λ3 > 0. We

also filter out the regions if the multistream values inside do not suggest gravitational collapse into

haloes. The sequence of our halo detection framework is listed below:

1. The multistream flow field is calculated on a diagnostic grid. The number of tetrahedra that

encompass each vertex in the grid gives the nstr field. Top left panel of Figure 5.1 shows the

multistream web structure in a slice of the simulation with nstr > 1 in gray and nstr ≥ 7 in

blue.

2. The discrete multistream flow field is smoothed in order to reduce numerical noise. We have

used Gaussian kernel for smoothing in our analysis. Effect of smoothing scales in the halo

identification is discussed in Section 5.3.3.

3. Second order variations of the smoothed −nstr(x) is computed at each point in the field.

This gives symmetric Hessian matrices for this field whose eigenvalues are real. Ordered

eigenvalues of the Hessian, λ1 ≥ λ2 ≥ λ3 are calculated. The λ3 field is shown in the top right

panel of Figure 5.1.
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4. Using segmentation techniques, each region with λ3 strictly greater than 0 within nstr ≥ 3

regions of multistream field are isolated and labeled. This condition for each halo candidate

guarantees that it is in the region where at least one gravitational collapse happened within

the halo boundary. Mass particles belonging to these regions are shown shown as dark spots

in in the top right panel of Figure 5.1.

5. The multistream field has a range of values within the isolated sites. We impose constraints

on the isolated regions to rule out the labels with low multistream values. The local maxima

of nstr inside each halo must be at least 7. By this restriction, it is ensured that the halo sites

with three Lagrangian sub-manifold foldings are selected. Bottom left panel of Figure 5.1

shows patches that are discarded in red. The resulting λ3-haloes are shown in the bottom

right.

6. In our comparisons with other halo finders in Section 5.5, we also used an additional con-

straint on the minimum number of mass particles in the haloes to be 20 - which is generally

used as a criteria in several halo finders.

For the illustration halo detection framework in this section, we have calculated the number-of-

streams at refinement factor of 2 and smoothing scale of 0.39h−1Mpc (equal to the grid length of

the multistream field) for the simulation box of 1283 particles and size L = 100h−1Mpc . Hessian

matrices and eigenvalues are calculated on the same diagnosis grid. Results of the halo detection

scheme for simulation box of higher mass resolution, and different smoothing factors are discussed

in Sections 5.5 and 5.3.3. Hereafter we refer to the potential dark matter haloes detected from the

Hessian analysis of the multistream field as λ3-haloes for brevity.

Applying the above scheme on the simulation with side length of 100h−1 Mpc and 1283 parti-

cles (with cosmological parameters mentioned in Section 5.2), we detected approximately 50000

regions satisfying λ3 > 0 within the non-void in the multistream field of refinement factor ll/ld = 2

and smoothing scale of grid length, i.e, 0.39h−1Mpc. We filtered out the segments with local

maxima of nstr < 7, and around 14000 regions remained as prospective haloes. Majority of these
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Figure 5.1: Detection of potential halo candidates in the multistream field: algorithm of segmenta-
tion and filtering are illustrated in a smaller slice of 40h−1Mpc×40h−1Mpc slice of the simulation
box. Top left figure shows the multistream field of the slice. Voids (white) are the regions with
nstr = 1, rest are non-void structures. Blue patches within the structure (gray) are the regions with
gravitational collapses in more than one direction, i.e., nstr ≥ 7. Top Right figure shows the small-
est eigenvalue λ3 field. The value of λ3 is close to 0 in most of the regions (yellow), including
the voids. Regions with λ3 > 0 and nstr > 1, are isolated (black spots) using image segmentation
techniques. Bottom left panel shows the filtering scheme: the red patches do not have maxima of
nstr ≥ 7 in the regions, hence are filtered out. The remaining potential halo regions with more than
20 particles are shown in the bottom right panel.
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Figure 5.2: PDF of highest λ1, λ2 and λ3 values in each of 4492 haloes detected by out algorithm.
The peaks of the PDF are in the range 1-10. Shaded regions represent 1σ error.

Table 5.1: Statistics of the Hessian eigenvalues in the halo candidates

Statistics λ1 λ2 λ3
Minimum 1.5 0.5 1.3×10−2

Maximum 1.7×103 1.5×103 1.1×103

Median 10.5 5.5 1.9

regions have less than 20 particles, which are excluded in the halo catalogs. On the whole, our

algorithm detected about 4500 haloes with more than 20 particles in the entire simulation box. We

have not applied virialization to define the halo boundaries. A more detailed study of halo edges,

and comparison with that of FOF-haloes and AHF-haloes is done in Section 5.4. Here we concen-

trate on the three vital factors in our framework: local geometrical indicators λi’s, the softening

scale of the field and multistream thresholds.

The maximum values of λ1, λ2 and λ3 in each of the haloes have peaks away from 0 as shown

in Figure 5.2. The median values of max(λ1) and max(λ2) are in the range of 1-10 (Table 5.1), in-

spite of the threshold for λ3 being barely positive, by definition. Hence the interior of the potential

halo segments is quite convex, with a local maxima inside. In some haloes, the local maxima of

eigenvalue are in the order of thousands, as tabulated in Table 5.1.
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With this algorithm, we obtain prospective dark matter haloes - regions with a local maximum

of the multistream field in the interior of their closed convex surfaces. The haloes are detected

without using density fields or linking lengths between particles. The parameters in the algorithm

are entirely based on features of the multistream field and local geometry using Hessian matrices.

5.3.3 Effect of smoothing

In order to reduce noise, the field is smoothed for our analysis using a Gaussian filter. The effect

of smoothing scale on the distribution of the eigenvalue λ3 in the simulation of 1283 particles is

shown in Figure 5.3. Effect of softening on the multistream fields does not alter the distribution

of multistream distribution significantly (Seen in Figure 10 of Ramachandra & Shandarin 2017b).

However, the second order variation (and consequently the Hessian eigenvalues) is significantly

changed due to the softening of the edges of structures. PDF of λ3 at multistream smoothing scale

of the half the side length of diagnostic grid , 0.5× ld = 0.20h−1 Mpc is noisier than in the scales

of ld and 2× ld. However, at every scale, the PDF peaks at 0. The volume fraction of regions with

λ3 > 0 (i.e. with positive curvature) is 2.4%, 2.3% and 2.5% for scales 0.20h−1 Mpc, 0.39h−1 Mpc,

0.78h−1 Mpc respectively. For the detection of haloes in Section 5.3, we only look at these regions.

In addition to reducing the numerical noise, smoothing of the multistream field also results

in softening of the sub-structures Ramachandra & Shandarin (2017b). Since our framework of

detecting haloes isolates the multistream regions with local maxima, the closed curvatures are

resolved separately. The halo or a sub-halo regions, that enclose the local maxima of the nstr

field, vary with the smoothing scale of the multistream field. By increasing smoothing of the

multistream field, the number of haloes are reduced as shown in Table 5.2. In the simulation with

2563 particles, 27929 λ3-haloes are detected at smoothing scale equal to the diagnostic grid length,

ld = 0.20h−1Mpc. The number of haloes decreases to 18221 and 7897 at softening scales of two-

and four times the grid lengths respectively.

Moreover, since the spatial resolution is higher at the low softening, more small haloes are

detected, as shown in lower mass regime of halo mass functions in Figure 5.4. The tail of halo
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Figure 5.3: The distribution of λ3 in the simulation box of 1283 particles and multistream field of
refinement factor ll/ld = 2. Three smoothing scales are shown.

Table 5.2: Number of λ3-haloes identified at smoothing of nstr(x) at different scales.

Np 0.20h−1Mpc 0.39h−1Mpc 0.78h−1Mpc
1283 5181 4492 2923
2563 27929 18221 7897
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Figure 5.4: Top panel shows Halo Mass functions of the potential λ3-haloes in the multistream
field refinement factor ll/ld = 2 with various smoothing scales. Simulation box has 2563 particles.
Lower panel shows the deviation of the each halo mass function with respect to their average.

mass functions reveal that large haloes are more massive for higher softening scales. For instance,

the largest haloes for the same simulation with multistream softening length of 0.20h−1Mpc,

0.39h−1Mpc and 0.78h−1Mpc have 30650, 38333 and 56257 particles respectively.

The sub-halo finder methods (see Onions et al. 2012 and references therein) identify substruc-

tures within a large host halo. The sub-haloes are resolved individually as λ3-haloes at different

scales from our algorithm if the local maxima of the smoothed multistream field is enclosed within

the boundary.
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5.3.4 Effect of multistream thresholds

Environmental dependence of the haloes results in various multistream values for the halo core.

Theoretical toy models of halo formation, such as the tetrahedral collapse model Neyrinck (2016)

describes a three-dimensional halo with four filaments accreting mass into it, has 15 stream cross-

ings. Ramachandra & Shandarin (2015) have previously showed that a high threshold of nstr ≥ 90

is equivalent of virial density of ρvir = 200, and filters most of the large haloes above 1013M�.

The algorithm used for detecting multistream haloes initially detects all the closed regions in

the multistream (nstr > 1) regions of the cosmological simulation. In order to exclude some of the

obvious non-halo sites, we impose a lower threshold of nstr ≥ 7 on the multistream maximum (these

regions were also seen as parts of walls or filaments in Ramachandra & Shandarin 2015 ), so that

all the sites with three or more foldings in the Lagrangian sub-manifold are chosen. Combining

this with the conditions on local eigenvalues, number of particles in haloes etc, we got a pretty

good correspondence with other halo finders as demonstrated in section 5.5 .

Although this condition is by no means strict, it is necessary to check the validity of the assump-

tion. Figure 5.5 shows the halo mass functions for the haloes detected with changing thresholds on

the multistream values of the halo cores. The figure demonstrates that increasing the cut-off from

nstr ≥ 3 to nstr ≥ 25 systematically excludes small mass haloes while the number of haloes with

M & 2×1012M⊙ remains the same.

5.4 Halo properties

Multistream environment of haloes can be very diverse. Ramachandra & Shandarin (2015) demon-

strated that a majority of the FOF-haloes are in contact with the single-streaming voids. Illustration

in Ramachandra & Shandarin (2017b) also shows that a large number of FOF-haloes have more

than 10 per cent void on the spherical surfaces with virial radii. The λ3 haloes are significantly

different: none of the λ3-haloes are in contact with the regions where gravitational collapse has

not occurred. This is guaranteed by the lower bound of nstr = 3 on all potential halo candidates.
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Figure 5.5: Halo Mass functions of the potential λ3-haloes in the multistream field refinement
factor ll/ld = 2 (in Simulation box with Np = 2563) with various thresholds on local maxima of nstr
within the halo. Lower panel shows the deviation of the each halo mass function with respect to
their average.

100



101 102 103

nstr

101

102

103

P
D

F

max(nstr)

median(nstr)

min(nstr)

Figure 5.6: Maximum, minimum and median of nstr in each of 4492 halo candidates. The closed
contours of haloes encompass a wide range of multistream values. None of the haloes are in contact
with the void region, since lowest value of min(nstr) is 3. Shaded regions are the 1σ absolute errors
in the number of λ3-haloes.

Condition on the multistream field within the potential halo sites also ensures that there are col-

lapses along more than one direction, which corresponds to nstr = 7. Hence by definition, for any

multistream halo Hi, highest and the lowest multistream value are nhigh
str (Hi) ≥ 7 and nlow

str (Hi) ≥ 3

respectively.

The potential haloes His selected by eigenvalue condition λ3 > 0 have a local maxima of

nhigh
str (Hi) inside their boundaries. For a large number of these λ3-halo candidates, the maximum

nhigh
str is higher than the bound of nstr ≥ 7, as shown in Table 5.3 and Figure 5.6. For simulation with

1283 particles, the median of this peak nhigh
str (Hi) value is 17. Unsurprisingly, the global maximum

of the multistream field (nstr = 2831) is also a local maximum for one of the haloes. On the other

hand, the median of lowest multistream value nlow
str (Hi) in the haloes is 3 (Table 5.3), which is also

the first stage of non-linearity.

An important feature of our halo detection method is that the detected λ3-haloes do not have

a global threshold on nstr or mass density values. The local conditions may be more suited in

identifying haloes in multistream fields, since the multistream environments around haloes are
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Table 5.3: Local maxima and minima of nstr in each of 4492 haloes. The highest nstr values in
the interior of haloes span over a large range of values. Low values of nstr in haloes, which are
generally near halo boundaries, have a median of 3.

Statistics nhigh
str (Hi) nlow

str (Hi)
Minimum 7 3
Maximum 2831 459
Median 17 3

very diverse. For instance, regions with nstr ≥ 25 are tubular around one of the the large haloes

in Figure 5.7. Even the region with more than 75 streams does not enclose a convex multistream

region. Whereas, for nstr ≥ 200 the region is convex and the particles detected by our method

reside mostly within. We detect closed regions in the multistream field as long as they are not in

void, and have at least three foldings in the Lagrangian sub-manifold.

However, the λ3-halo boundary is different from any constant multistream contour. That is,

from the function nstr(x), convex regions in the four-dimensional function space (−nstr, x,y,z) are

projected onto three-dimensional co-ordinate space using eigenvalues. This is different from pro-

jecting ‘iso-multistream’ slice onto three-dimensional co-ordinate space. Appendix B illustrates

the difference in the two approaches for a one-dimensional function.

The multistream field usually has concentric shells in the regions of successive gravitational

collapses (as explained in Section 2.4 and Appendix in Ramachandra & Shandarin 2017b). In a

specific scenario of Figure 5.7, regions of lower number-of-streams (nstr = 25 and lower) is are

tubular and have regions of higher nstr inside (nstr = 200 and higher) that is closed. However, this

transition from concavity to convexity of the multistream field does not occur at a constant value

of nstr throughout the field. Instead, it is a local geometrical change that occurs at λ3 = 0. For the

λ3-haloes in our simulation (Np = 1283), minimum of multistream values nlow
str (Hi) within each halo

has a range of values shown in Table 5.3 and Figure 5.6 – this varies between 3 ≤ nlow
str (Hi) ≤ 459.

Hence a global condition on nstr does not guarantee that the region is convex.

The particles in a massive λ3-halo shown in Figure 5.7 form a spheroidal structure. The number

of particles in similar massive haloes are in the order of 103 − 104 particles. For instance, the
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Figure 5.7: Multistream environment of a λ3-halo. The contours represent regions with 3 different
multistream values: Outermost nstr ≥ 25 (gray) is tubular, The blue region has nstr ≥ 75. The inner
region is highly non-linear with nstr ≥ 200. The black dots represent the mass particles belonging
to a λ3-halo, as detected by our algorithm.

most massive halo in the simulation (with Np = 1283) has 5593 particles. We have chosen a

minimum threshold of 20 particles, which is an artificial parameter (may be cooked up or ad

hoc) used by most halo finder methods. Majority of the λ3-haloes have low number of particles;

median of number of particles per halo is 49. Each particle in this simulation is approximately

3.65×1010h−1M�. Hence the halo mass range varies in the order of 1011M� to 1014M�. Combined

mass of all the λ3-halo candidates is about 31 per cent of the total mass in the simulation. In

contrast, the haloes occupy just 0.3 per cent of the total volume. Thus the λ3-haloes are extremely

dense structures. Further analysis of halo mass function of λ3-haloes and comparison with AHF-

and FOF-haloes is done in the Section 5.5.

5.5 Correspondence with other halo finders

Comparison of haloes obtained from AHF and FOF method, along with our geometric analysis

of the multistream field reveals several interesting features. The number of haloes (NH) with at
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Table 5.4: Number of haloes, NH detected by the three halo finder algorithms in the two simulations
of L = 100h−1Mpc with different mass resolutions. Values shown for λ3-haloes are done in the
multistream fields with refinement factor of 2, and smoothing scale equal to the diagnostic grid
size.

Np NAHF
H Nλ3

H NFOF
H

1283 3374 4492 5440
2563 24710 27929 35765

least 20 particles that were detected by all the algorithms is shown in Table 5.4. For both the

simulations, FOF detects the highest number of haloes and AHF detects the least. By applying

the Hessian algorithm on multistream fields smoothed at the scale of diagnostic grid size, ld, we

detected around 4500 and 28000 haloes in simulations with 1283 and 2563 particles respectively.

The number of λ3-halo is close to the mean of AHF- and FOF- haloes in each simulation – i.e.,

Nλ3
H is around 2 per cent of mean of NAHF

H and NFOF
H for the Np = 1283 simulation and 8 per cent

for the Np = 2563 simulation. Multistream field both the simulations we calculated at a refinement

factor of ll/ld = 2.

The halo mass functions from all three finders are shown in Figure 5.8. For smaller haloes of

order of 1013M�, our method predicts a slightly higher number of haloes than FOF and AHF. For

the most massive haloes of mass around 1014M�, number of λ3-haloes is fewer than the other 2

methods, albeit around the range of error of AHF-haloes.

By observing some of the massive haloes, like the one in Figure 5.9, we find that the λ3-halo

particles are within AHF- or FOF-halo region. This is generally observed in other massive haloes

too: the large λ3-haloes have fewer particles than corresponding AHF- or FOF-haloes. For haloes

greater than 1014M�, λ3-haloes have boundaries slightly within the AHF virial radius. Without

unbinding, the FOF-haloes can be very large compared to other methods, as seen in Figure 5.9.

This results in a deviation in the λ3-halo mass function (Figure 5.8) from the other two methods

over halo mass of 1014M�. Further discussion of size of the detected λ3-haloes in the context of

smoothing of the multistream is done in Section 5.3.3.

The particles identified by the AHF as belonging to haloes form spherical structures due to
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Figure 5.8: Halo Mass functions from AHF-, FOF- and λ3-haloes. The AHF-haloes are fewer
than FOF- or λ3-haloes. The number of haloes above a mass threshold are binned and taken along
vertical axis, normalized to simulation box volume. Error of 1σ is shown in shaded region.

a series of processes (including virialization) applied to unbind the particles. Inherently, the iso-

density contours at virial levels are not spherical or spheroidal. The virialized AHF-haloes on the

web are shown in the top panel of Figure 5.10. However, the spherical AHF-haloes are fewer in

number compared to the other methods.

The popular choice of linking length of b = 0.2, although corresponding to virial density, does

not ensure that the haloes have positive curvature. Most algorithms based on the FOF method re-

define the halo boundaries by unbinding the particles outside a truncation radius. This truncation

radius maybe the distance from the center of mass of the halo to the farthest particle, rms distance,

or an inflection point in the density field (For details on these methods, see Knebe et al. 2011 and

references therein). Some halo finders define the virial radius, rvir at the distance from halo center

where the density is ∆vir times the background density. In the middle panel of Figure 5.10, the

FOF-haloes are shown without any of the above post-processing schemes. Without any unbinding,

the FOF-haloes are generally larger in size than λ3-haloes in the center panel of Figure 5.10. For a

specific case of a massive halo, Figure 5.9, FOF identifies more particles as bounded, than AHF or

our algorithm.
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Figure 5.9: A large halo that was detected by AHF (top, red), our geometric analysis in the mul-
tistream field (center, green) and FOF (bottom, blue). Halo boundary differs for each halo finder
method. AHF detects particles within a sphere of virial radius. FOF-halo is irregularly shaped.
λ3-halo particles are in a non-spherical, yet compact structure.
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Figure 5.10: Potential haloes detected by AHF (top), our analysis (center) and FOF (bottom).
Most of the haloes are embedded in a percolating filament with nstr ≥ 9. AHF-haloes are spherical
by definition. FOF-haloes without any post processing are elongated along the filament. λ3-halo
candidates are neither spherical, nor elongated. Boundaries of λ3-haloes are well resolved.
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In contrast to the AHF and FOF algorithms, our halo method directly detects a closed, convex

surface (approximately the largest one, since λ3 > 0) for each of the haloes. There is no unbinding

procedure on the particles identified within the halo site. The boundaries of λ3-haloes themselves

are not spherical or of any regular structure, but they are closed convex surfaces, as seen in the

middle panel of Figure 5.10.

Haloes from the three finders in Figure 5.10 also show other differences in the halo boundaries.

While all the AHF-haloes are spherical by definition, the FOF-haloes are irregular. The boundaries

of the λ3 haloes are not spherical either, but are more compact than FOF-haloes and in addition they

are convex surfaces by design. At some junctions of the filaments, FOF identifies a large region

as belonging to single halo, whereas AHF and our algorithm detect multiple isolated haloes. Each

isolated λ3-halo region enclose one maximum of multistream field, thus guaranteeing that multiple

haloes are always resolved. On the other hand, a linking length cut-off or a constant threshold

on scalar fields may enclose regions with multiple local maxima ( For one-dimensional fields, an

illustration of this is shown in Appendix B).

The halo-mass fractions in a simulation box, fh = (
NH∑
i=1

mH(i))/(mpNp) (where Np is the number

of particles in the simulation of mass mp each, mH is the mass of each halo and NH is total number

of haloes) are shown in a Venn diagram in Figure 5.11. For the simulation with Np = 1283 particles,

AHF-, λ3-, and FOF- haloes occupy 22, 31 and 35 per cent of the total mass respectively. Nearly

19 per cent of the total mass are concurrently detected as belonging to haloes by all the three

algorithms. FOF (with highest halo mass fraction) detects virtually all the haloes that AHF (with

least halo mass fraction). About 3 per cent of the particles classified as belonging to haloes by both

AHF and FOF are not classified as multistream halo particles. Our method also detected nearly 6

per cent of mass particles as haloes, which neither FOF nor AHF classify as haloes. For simulation

with Np = 2563 particles, the corresponding halo mass fractions f AHF
h = 30 per cent, f λ3

h = 32 per

cent, and f FOF
h = 42 per cent respectively. Thus the mass fraction f λ3

h remains fairly consistent over

increasing mass resolution, as opposed to AHF and FOF. However, large fractions of these mass

particles, nearly 23 per cent of the Np = 2563 (increased from 19 per cent for low mass resolution
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simulation), are simultaneously detected as belonging to haloes by different methods, as shown in

the right panel of Figure 5.11. For the simulation with Np = 2563, we also see increase in agreement

between any two pairs for halo finders. That is, the mass fraction of haloes simultaneously detected

by λ3 and FOF jumps from 25 per cent to 27 per cent. This correspondence increases from 19 to 23

per cent for λ3-AHF, and 22 to 30 per cent for FOF-AHF pairs. For the same pair (in the Np = 2563

simulation), 12.3 per cent of particles are detected by FOF but not AHF, whereas almost all the

particles (> 99.9) for the AHF particles were also detected by FOF. For the pair λ3-AHF, 9.5 per

cent of particles are detected by λ3 but not AHF, and 7.3 per cent of particles were detected by

AHF but not by λ3. Finally, for the λ3-FOF pair, 5 per cent of particles are detected by λ3 but not

FOF, and 15 per cent of particles were detected by FOF but not by λ3.

On the other hand, looking at the mass particles that were only detected as haloes by one

method, but not by other two, we see that only the multistream haloes improve (i.e., the disagree-

ment reduces from 5.9 to 5 per cent) with mass resolution. FOF detects 6.3 and 7.8 per cent of

haloes in simulations of 1283 and 2563 particles respectively, that were not classified as haloes by

the other two methods. AHF-halo particles, being sub-set of FOF-haloes for the most part, show

less than 0.1 per cent disagreement with other finders.

The discrepancies may have to be addressed on a case-by-case basis. One of the major differ-

ence between the haloes detected by isolating local multistream maxima regions and AHF/FOF is

shown for a large halo in Figure 5.9. Without any unbinding procedure, FOF may detect very large

irregular sized haloes, often consisting of multiple sub-haloes as shown in the bottom panel. On

the other hand, the corresponding AHF-halo (top panel) is smaller spherical subset of FOF-halo.

Furthermore, the λ3-halo in the middle panel is smaller than both. Our multistream field detection

technique selects convex regions with strictly one nstr maxima within them. The sub-haloes de-

tected by FOF (or AHF), may be detected as separate λ3-haloes. Nevertheless, some of the mass

particles between the two neighboring haloes (like ones along saddle regions of multistream fields)

will not be included as belonging to the halo. This effect is seen in halo mass functions (Figure 5.8

for large haloes of mass more than 1014M⊙ – number density of large λ3-haloes is smaller than
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Figure 5.11: Mass fraction of haloes fh (in per cent) as a detected by the three finders. Each
circle represents fractions of mass of all halo particles (AHF, FOF or λ3) in the total mass of the
simulation box. The particles concurrently detected as belonging to haloes by different frameworks
are shown in the intersections.

FOF. Similarly it causes a few discrepancies in mass fractions of potential haloes as well.

Other cause for differences in mass fraction is also rooted in the definition of haloes. Single-

streaming regions are excluded from our halo search completely. Whereas, FOF and AHF employ

no such mechanism to check for number of gravitational collapses. Ramachandra & Shandarin

(2015) showed that a significant fraction (nearly 35 per cent) of FOF-haloes are in contact with

single-streaming voids. Particles within these regions would not be considered as potential λ3-halo

particles. This also contributes to the discrepancy in halo mass fraction by different halo finders.

5.5.1 Haloes in the percolating filament

The excursion set of multistreams above an nstr threshold hosts a varying number of haloes. We

compare the multistream halo candidates from our geometric method with the AHF and the FOF

method in Figure 5.12

for the simulation with Np = 2563. The regions in the co-ordinate space are classified into

excursion set and non-excursion set regions based on whether the multistream is over or under

the nstr threshold. In the excursion set we also distinguish the largest structure from the rest of
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the structures because the largest region of the excursion set plays the crucial role in detecting the

transition to percolation. Percolation takes place at thresholds nstr ≤ 17 (Ramachandra & Shandarin

2017b) to the right from the vertical dashed dashed line. Based on the coordinates of the halo

particles, we check if a halo is in contact with the largest region of the excursion set or with rest of

the excursion set.

The fraction of haloes in the non-excursion set are shown at various nstr thresholds in the top

panel of Figure 5.12. At thresholds greater than 17 streams (i.e. in non-percolating regime), a

large fractions of the AHF-, FOF- and λ3-haloes are in the non-excursion set, as shown in the top

panel of Figure 5.12. The fraction of λ3-haloes is slightly higher than FOF or AHF in this regime.

At relatively high threshold of, say, nstr = 35, about 65% of the AHF-haloes, about 75% of the

FOF-haloes and about 80% of the λ3-haloes are in the non-excursion set.

For multistream values lower than the percolation threshold of nstr ≤ 17 (i.e. in percolating

regime) the fractions of AHF-, λ3- and FOF-haloes in the largest (i.e. percolating) region quickly

grow with decreasing values of the threshold and surpass both the corresponding fractions in the

non-percolating regions of the excursion set and that in the non-excursion set at nstr ≈ 10. The

majority of the haloes belong to the single percolating structure (shown for the simulation with

Np = 1283 in Figure 5.10. Similar spatial distribution of SUBFIND haloes Springel et al. 2001a in

the multistream regions is shown by Aragon-Calvo et al. 2016) and at nstr = 3, all the haloes are

attached to the web.

At nstr = 3, the filling fraction f1/ fES is almost close to unity Ramachandra & Shandarin

(2017b). Most halo candidates from all three algorithms are at least in contact with the percolating

cosmic web. Due to the threshold on nstr in our halo detection method, the λ3-haloes are not only

in contact, but completely within this structure.
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Figure 5.12: Percentage of haloes detected (in the simulation with Np = 2563) that are embedded
in the non-excursion set (top panel), largest excursion set segment (center panel) and the rest of
excursion set regions (bottom panel). Multistream haloes, AHF-haloes and FOF-haloes are shown
in green, red and blue respectively. Vertical dashed line at nstr = 17 is where percolation transition
occurs.
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5.6 Discussion

The multistream field can have only integral values, moreover these values must be odd numbers

practically at every point, because the number of streams can be even only on a set of measure

zero. It means that in numerical simulations even values may occur on extremely rare occasions.

We have analyzed functional variation of the scalar field −nstr(x) using Hessian eigenvalues. The

Hessian analysis is generally done for inherently continuous fields since it requires evaluation of

the second derivatives. Geometries of web structures unveiled by Hessian signatures of smoothed

density fields (such as Sousbie et al. 2008a, Aragon-Calvo et al. 2007, Aragon-Calvo et al. 2010,

Cautun et al. 2014, Bond et al. 2010a and many more), tidal shear or velocity shear tensor (Hahn

et al. 2007a, Forero-Romero et al. 2009, Hoffman et al. 2012, Hoffman et al. 2012, Libeskind et al.

2013, Cautun et al. 2014 etc.) and observational data from surveys (Sousbie et al. 2008a, Bond

et al. 2010a, Bond et al. 2010b, Pahwa et al. 2016 etc.).

Although the multistream field has discrete values by definition, it may be smoothed for nu-

merical analysis at some scale, typically the scale of grid length of the field. The resulting Hes-

sian eigenvalues approximately characterize the geometry in a four-dimensional hyper-space of

(−nstr, x,y,z). Our only assumption about the shape of the boundary of a virialized halo is that it is

a convex surface. Therefore the boundary of a halo can be defined as a region with λ1 ≥ λ2 ≥ λ3 > 0

since it is a closed convex contour in the (−nstr, x,y,z) hyper-space, and thus it’s projection onto

the three-dimensional (x,y,z) space is also closed and convex.

Differentiating a smoothed nstr(x)-field may still pose a problem in the regions where nstr(x) is

close to a constant and therefore the eigenvalues represent noise about the zero level. Fortunately

in the most of such regions the unsmoothed nstr(x) = 1 therefore they can be easily eliminated.

Our algorithm for detecting potential dark matter haloes is unique due to two important factors:

the geometrical attribute and the choice of field. Local geometrical analysis on the multistream

field conveniently delineates the non-void structures without any free parameters. The dark halo

candidates have compact surfaces that enclose local maxima of the multistream field. We do not

employ non-local thresholds that several halo finders use (see Knebe et al. 2011, Knebe et al.
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2013 and Onions et al. 2012 for comparisons of various halo finders). Global thresholds (like a

constant nstr cut-off) might be unsuitable for detecting halo candidates since the halo multistream

environments are generally not categorical. Secondly, the nstr field enables us to mask out the

regions belonging to mono-stream regions without a heuristic criteria. Our method guarantees that

none of the λ3-halo particles belong to void region.

We note that present halo finders employ a variety of physical and numerical processes to

identify dark matter halo candidates. Furthermore, there is no consensus in the definition of haloes

itself (see discussion in Knebe et al. 2011). This is also the cause for the few differences between

FOF-, AHF- and multistream haloes: FOF and AHF haloes only use Eulerian co-ordinates x(z) –

either raw positions or in the form of mass density. On the other hand, we utilize a mapping on the

Lagrangian sub-manifold x(q,z) to define the multistream field nstr(x). The boundaries of haloes

in FOF and AHF are defined by the free-parameter thresholds of linking length and density, and

the halo-center is usually defined as the center of mass of the particles. Conceptually, the center

of a λ3-halo is the location of the local multistream maximum, and the boundary of the halo is the

convex region surrounding it. At least for large haloes like the one in Figure 5.9, this convex region

is well within the FOF boundary.

The applicability of non-local thresholds in detecting haloes deserves deeper investigation.

Lower bounds on over-density or linking-length thresholds traditionally define halo regions in

several halo finders. Values such as ∆vir ≈ 180 or b ≈ 0.2 correspond to virial theorem applied

to isolated spherical collapse models. Recently More et al. (2011) demonstrated that depending

on halo environment, cosmology and redshift the over-densities corresponding to b = 0.2 have

different values. The virial theorem itself is a good measure of equilibrium of a system. However,

the global thresholds empirically derived from it may not be pertinent to diverse environment of

dark matter haloes.

The algorithm prescribed in Section 5.3 lists out a set of physically motivated steps that filter

out the noisy λ3 > 0 regions that cannot be identified as haloes. The analysis in the simulation of

100h−1 Mpc side length and 1283 particles, with the multistream calculated on 2563 diagnosis box,
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approximately 40000 labeled segments satisfying λ3 > 0 criterion in the non-voids were filtered out

by a lower limit on multistreaming regions. One of the possible improvements in our algorithm

would be to use information of number of flip-flops of each particle (For instance, using methods

prescribed by Shandarin & Medvedev 2014, 2017). Such methods involving the Lagrangian sub-

manifold may reveal rich sub-structure in the haloes.

The requirement that each halo should have closed convex surfaces with a multistream max-

imum inside may identify sub-haloes in large haloes but is too demanding because a halo with

sub-haloes must have saddle points in the nstr field. This may explain the shortage of massive

haloes shown in Figure 5.8. Applying a filter for smoothing the nstr field increases the number of

massive haloes but reduces the number of low mass haloes. Although our present method does

not currently perform an analysis simultaneously on multiple smoothing scales, such approaches

done in density, log-normal density, tidal, velocity divergence or velocity shear fields (see MMF by

Aragon-Calvo et al. 2007 and NEXUS+ by Cautun et al. 2013) have shown interesting multi-scale

features of the cosmic web.

Dark matter haloes, being localized structures, are uniquely convenient for our local Hessian

analysis. Conditions of λ1 > 0> λ2 ≥ λ3 and λ1 ≥ λ2 > 0> λ3 also give information about curvature.

Hessian eigenvalue analysis at high resolution of multistream fields may be very interesting in

understanding the tubular edges of filaments and surfaces of walls at smaller scales. However, in

this study, Hessian analysis is only applied to haloes. Walls and filaments span large volumes in

the dark matter simulations, and we employ topological tools to investigate them.

5.7 Summary

We studied certain geometrical of the multistream field in the context of halo formation. Findings

from our analysis are summarized as follows:

• Several aspects of halo formation in the Lagrangian sub-manifold are considerably different

than that of reference models of spherical top-hat collapse and ellipsoidal collapse. Succes-
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sive formations of caustics (and consequently multiple velocity streams) play a crucial role

in the process of clustering.

• We present a novel halo detection algorithm for identifying dark matter halo candidates in

the multistream field. Conditions on the local geometric indicators of the field are used

to ensure that each closed halo boundary hosts a local multistream maxima. The positive

signs of all principal curvatures (please note that we use curvatures of −nstr(x) field) inside

the boundary also guarantee that the boundary is convex. Bounds on nstr guarantee that all

the halo particles are in the non-void structure. We also ensure that the halo regions have

foldings in the Lagrangian sub-manifold in more than one direction.

• The multistream field within the halo boundaries may be very diverse. We do not detect halo

candidates from a global lower bound on nstr. Instead, we look for closed convex regions

in the multistream field. For the simulation with 1283 particles, minima of nstr in each halo

vary from 3 to nearly 450. Maxima of nstr in the halo vary from 7 to about 2800.

• Our multistream halo candidates had a reasonably good correspondence with haloes from

AHF and FOF catalogs. One notable difference was found with massive haloes. Our al-

gorithm predicted fewer particles than the FOF method. This is likely to be caused by the

requirement that the multistream field in the regions of the λ3-halo candidates is convex

which may be a reasonable approximation for simple haloes (i.e. having no sub-haloes) but

massive haloes are more likely to have sub-haloes and therefore the nstr field in the corre-

sponding regions must have saddle points ant therefore cannot be entirely convex. Our study

of the smoothing effects has shown that the number of massive sub-haloes tend to increase

with growing smoothing scale which seems to agree with the above explanation. We will

address this problem in the following study.

• Halo candidates were mostly embedded on the excursion set of the multistream field after

percolation transition (nstr = 17 in the simulation with 2563 particles). At lower thresholds
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(around nstr = 5 to 11), the largest percolating structure in the excursion set hosts most of the

haloes.

In conclusion, the Lagrangian sub-manifold contains dynamical information of structure for-

mation. We analyzed the multistream field that contains the information of foldings in the sub-

manifold. In addition, we demonstrated the use of geometrical features of the multistream field in

identifying potential dark matter halo candidates in cosmological N-body simulations.
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Chapter 6

Comparison of structure finding algorithms

This chapter brings twelve cosmic web classification methods together and applies all the different

algorithms to the same data set in order to understand how they compare. One of methods is based

on our multistream algorithm summarized in Chapter 3 and Ramachandra & Shandarin (2015).

In general these cosmic web classifiers have been designed with different cosmological goals in

mind, and to study different questions. Therefore one would not a priori expect agreement between

different techniques however, many of these methods do converge on the identification of specific

features. We study the agreements and disparities of the different methods. For example, each

method finds that knots inhabit higher density regions than filaments, etc. and that voids have the

lowest densities. For a given web environment, we find substantial overlap in the density range

assigned by each web classification scheme. We also compare classifications on a halo-by-halo

basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e.

Mhalo ∼ 1013.5h−1M�) as being in filaments.

The individual methods and the comparison study are tabulated in Libeskind et al. (2018),

which is the outcome of the “Tracing the Cosmic Web” Lorentz Center workshop, held in Leiden,

17-21 February of 2014. To enable comparison of any future cosmic web classification scheme

with the 12 methods used here, we have made all the data used in this chapter public: https:

//data.aip.de/tracingthecosmicweb/
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6.1 Overview of Cosmic components

On Megaparsec scales the matter and galaxy distribution is not uniform, but defines an intricate

multi-scale inter-connected network which is known as the cosmic web. It represents the funda-

mental spatial organization of matter on scales of a few up to a hundred Megaparsec. Galaxies,

intergalactic gas and dark matter arrange themselves in a salient wispy pattern of dense com-

pact clusters, long elongated filaments, and sheetlike tenuous walls surrounding near-empty void

regions. Ubiquitous throughout the entire observable Universe, such patterns exist at nearly all

epochs, albeit at smaller scales. It defines a complex spatial pattern of intricately connected struc-

tures, displaying a rich geometry with multiple morphologies and shapes. This complexity is

considerably enhanced by its intrinsic multi-scale nature, including objects over a considerable

range of spatial scales and densities. For, a recent up-to-date report on a wide range of relevant

aspects of the cosmic web, we refer to the volume by van de Weygaert et al. (2016).

The presence of the weblike pattern can be easily seen in the spatial distribution of galaxies.

Its existence was suggested by early attempts to map the nearby cosmos in galaxy redshift surveys

(Gregory & Thompson, 1978; de Lapparent et al., 1986; Geller & Huchra, 1989; Shectman et al.,

1996). Since then, the impression of a weblike arrangement of galaxies has been confirmed many

times by large galaxy redshift surveys such as 2dFGRS (Colless et al., 2003; van de Weygaert et al.,

2009), the Sloan Digital Sky Survey SDSS (Tegmark et al., 2003) and the 2MASS redshift survey

(Huchra et al., 2012), as well as by recently produced maps of the galaxy distribution at larger

cosmic depths such as VIPERS (Guzzo et al., 2014). From cosmological N-body simulations (e.g.

Springel, 2005; Vogelsberger et al., 2014; Schaye et al., 2015) and recent Bayesian reconstructions

of the underlying dark matter distribution in the Local Universe (Hess et al., 2013; Kitaura, 2013),

we have come to realize that the weblike pattern is even more pronounced and intricate in the

distribution of dark matter.
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6.1.1 The Components of the Cosmic Web

The most prominent and defining features of the cosmic web are the filaments. The most outstand-

ing specimen in the local Universe is the Pisces-Perseus chain (Giovanelli & Haynes, 1985). A

recent systematic inventory of filaments in the SDSS galaxy redshift distribution has been cata-

loged by Tempel et al. (2014) (also see Jones et al., 2010; Sousbie et al., 2011). Filaments appear

to be the highways of the Universe (as predicted by the adhesion approximation – Gurbatov et al.

1989 and Shandarin & Zel’dovich 1989), the transport channels along which mass and galaxies

get channeled into the higher density cluster regions (van Haarlem & van de Weygaert, 1993) and

define the connecting structures between higher density complexes (Bond et al., 1996; Colberg

et al., 2005; van de Weygaert et al., 2009; Aragon-Calvo et al., 2010). On the largest scales, fila-

ments on scales of 10 up to 100 Mpc, are found to connect complexes of superclusters - such as the

great attractor (Lynden-Bell et al., 1988), the Shapley concentration (Shapley, 1930; Proust et al.,

2006) or more recently the Vela supercluster (Kraan-Korteweg et al., 2017) - as was, for example,

indicated by the work of Bharadwaj et al. (2004) and Libeskind et al. (2015).

By contrast, the tenuous sheetlike membranes are considerably more difficult to find in the

spatial mass distribution traced by galaxies. Their low surface density renders them far less con-

spicuous than the surrounding filaments, while they are populated by galaxies with a considerably

lower luminosity (see e.g. Cautun et al., 2014). When looking at the spatial structure outlined by

clusters, we do recognize more prominent flattened supercluster configurations, often identified as

Great Walls, which is a reflection of their dynamical youth. Particularly outstanding specimens are

the CfA Great Wall (Geller & Huchra, 1989), the Sloan Great Wall (Gott III et al., 2005), and most

recently the BOSS Great Wall (Lietzen et al., 2016) and the well established supergalactic plane

(de Vaucouleurs, 1953; Lahav et al., 2000).

Along with filaments, the large void regions represent the most prominent aspect of the Mega-

parsec scale Universe. These are enormous regions with sizes in the range of 20−50h−1 Mpc that

are practically devoid of any galaxy, usually roundish in shape and occupying the major share of

space in the Universe (see van de Weygaert et al., 2016, for a recent review). Forming an essential
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and prominent aspect of the cosmic web, voids are instrumental in the spatial organization of the

cosmic web (Icke, 1984; Sahni et al., 1994; Sheth & van de Weygaert, 2003; Aragon-Calvo &

Szalay, 2012). The first indications for their existence was found in early galaxy redshift samples

(Gregory & Thompson, 1978; Zel’dovich et al., 1982), while the discovery of the 50 Mpc size

Boötes void by Kirshner et al. (1981), Kirshner et al. (1987) and the CfA study by de Lapparent

et al. (1986) established them as key aspects of the large scale galaxy distribution. Recent studies

have been mapping and cataloging the void population in the Local Universe (Pan et al., 2012;

Sutter et al., 2012), and even that in the implied dark matter distribution (Leclercq et al., 2015a).

In the immediate vicinity of our Milky Way, one of the most interesting features is in fact the Local

Void whose diameter is around 30 Mpc (Tully & Fisher, 1987). Its effectively repulsive dynamical

influence has been demonstrated in studies of cosmic flows in the local volume (Tully et al., 2008),

while a recent study even indicated the dominant impact of a major depression at a distance of

more than 100 Mpc (the so-called “dipole repeller”, Hoffman et al., 2017).

6.1.2 Physics and Dynamics of the Cosmic Web

The cosmic web is a direct result of two physical drivers, which are at the heart of the current

paradigm of structure formation. The first is that the initial density field is a Gaussian random

field, described by a power spectrum of density fluctuations (Adler, 1981; Bardeen et al., 1986).

The second is that these perturbations evolve entirely due to gravity (Peebles, 1980). Gravitational

instability is responsible for increasing the contrast in the universe, as rich over-dense regions

grow in mass and density while shrinking in physical size, and as empty voids expand and come

to dominate the volume of the universe. Once the gravitational clustering process begins to go

beyond the linear growth phase, we see the emergence of complex patterns and structures in the

density field.

Within the gravitationally driven emergence and evolution of cosmic structure the weblike pat-

terns in the overall cosmic matter distribution do represent a universal but possibly transient phase.

As borne out by a large array of N-body computer experiments of cosmic structure formation (e.g.
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Springel, 2005; Vogelsberger et al., 2014; Schaye et al., 2015), web-like patterns defined by promi-

nent anisotropic filamentary and planar features — and with characteristic large under-dense void

regions — are the natural outcome of the gravitational cosmic structure formation process. They

are the manifestation of the anisotropic nature of gravitational collapse, and mark the transition

from the primordial (Gaussian) random field to highly nonlinear structures that have fully collapsed

into halos and galaxies. Within this context, the formation and evolution of anisotropic structures

are the product of anisotropic deformations accurately described by the Zel’dovich formalism in

the mildly nonlinear stage, driven by gravitational tidal forces induced by the inhomogeneous mass

distribution. In other words, it is the anisotropy of the force field and the resulting deformation of

the matter distribution which are at the heart of the emergence of the weblike structure of the mildly

nonlinear mass distribution.

This idea was first pointed out by Zel’dovich (1970, also see Shandarin & Zel’dovich 1989)

who described, in the now seminal "Zel’dovich approximation" framework, how gravitational col-

lapse amplifies any initial anisotropies and gives rise to highly anisotropic structures. Accordingly,

the final morphology of a structure depends on the eigenvalues of the deformation tensor. Sheets,

filaments and clusters correspond to domains with one, two and three positive eigenvalues, while

voids correspond to regions with all negative eigenvalues. Based on this realization, Doroshke-

vich (1970) derived a range of analytical predictions for structure emerging from an initial field of

Gaussian perturbations. In the emerging picture of structure formation, also known as Zel’dovich’s

pancake picture, anisotropic collapse has a well defined sequence, with regions first contracting

along one axis to form sheets, then along the second axis to produce filaments and only at the

end to fully collapse along each direction (Shandarin & Zel’dovich, 1989; Shandarin & Sunyaev,

2009).

Following up on this, the early evolution of the cosmic web can be understood in detail in terms

of the singularities and caustics that are arising in the matter distribution as a result of the structure

of the corresponding flow field (see Shandarin & Zel’dovich, 1989; Hidding et al., 2014). Indeed,

one of the most interesting recent developments in our understanding of the dynamical evolution

122



of the cosmic web has been the uncovering of the intimate link between the emerging anisotropic

structures and the multistream migration flows involved in the buildup of cosmic structure (Shan-

darin, 2011; Shandarin et al., 2012; Falck et al., 2012; Abel et al., 2012).

Also recent observational advances have enabled new profound insights into the dynamical

processes that are shaping the cosmic web in our Local Universe. In particular the Cosmicflows-

2 and Cosmicflows-3 surveys of galaxy peculiar velocities in our Local Universe have produced

tantalizing results (Courtois et al., 2013; Tully et al., 2014), opening up a window on the flows of

mass along and towards structures in the local cosmic web. Amongst others, these studies show

the sizable impact of low-density void regions on the dynamics in the vicinity of the Milky Way

and have allowed the velocity shear based V-web identification of weblike components in the local

Universe (Hoffman et al., 2017).

The extension of the Zel’dovich approximation, the adhesion approximation (Gurbatov et al.,

1989, 2012; Kofman et al., 1992; Hidding et al., 2012), allows further insights into the hierarchical

buildup of the cosmic web. By introducing an artificial viscosity term, the adhesion approximation

mitigates some of the late-time limitations of the Zel’dovich approximation. It also leads to a pro-

found understanding of the link between the evolving phase-space structure of the cosmic matter

distribution and the tendency to continuously morph the emerging spatial structure into one marked

by ever larger structures (see also Sahni & Coles, 1995, for a review of analytical extensions to the

Zel’dovich approximation).

Interestingly, for a considerable amount of time the emphasis on anisotropic collapse as agent

for forming and shaping structure in the Zel’dovich pancake picture was seen as the rival view to

the purely hierarchical clustering picture. In fact, the successful synthesis of both elements cul-

minated in the cosmic web theory, which stresses the dominance of filamentary shaped features

and appears to provide a successful description of large scale structure formation in the ΛCDM

cosmology. This theoretical framework pointed out the dynamical relationship between the fil-

amentary patterns and the compact dense clusters that stand out as the nodes within the cosmic

matter distribution: filaments as cluster-cluster bridges (also see Bond et al., 1996; Colberg et al.,

123



2005; van de Weygaert et al., 2009). In the overall cosmic mass distribution, clusters — and the

density peaks in the primordial density field that are their precursors — stand out as the dominant

features for determining and outlining the anisotropic force field that generates the cosmic web.

The cosmic web theory embeds the anisotropic evolution of structures in the cosmic web within

the context of the hierarchically evolving mass distribution. Meanwhile, complementary analytical

descriptions of a hierarchically evolving cosmic web within the context of excursion set theory

form the basis for a statistical evaluation of its properties (Sheth & van de Weygaert, 2003; Shen

et al., 2006).

6.1.3 Detection and Classification of Cosmic Web Structure

To enable further advances in the astronomical issues addressed above, we need to establish a

more objective description and quantification of the structure seen in the cosmic web. However,

extracting such topological and morphological information from a discrete set of points, provided

by either an N-body simulation or a galaxy survey, is very difficult. As such, many different meth-

ods have been developed to tackle this problem (reviewed in depth in Section 4). Some of the

problems faced by observational surveys include sampling errors, projection effects, observational

errors, incomplete sky coverage, magnitude limits, as well as various biases (e.g. Malmquist bias,

selection bias). On the other hand, N-body simulations return the full 6-dimensional phase space

and density field of the simulated universe at any desired epoch. A method that takes full advantage

of this often unobservable information cannot be directly applied to observations, but can be ap-

plied to simulations constrained to match observations. For this reason, methods that are developed

specifically for the analysis of numerical simulations, may be completely inapplicable to current

observational data sets and vice versa. Yet the numerous articles in the literature which attempt

to study the cosmic web often refer to the same structural hierarchy: knots, filaments, sheets and

voids. Here, we use a numerical simulation to compare classifiers, that, regardless of their position

on the theoretical to observational spectrum, speak the same language of knots, filaments, sheets,

and voids.
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In the spirit of previous structure finder comparison projects (Colberg et al., 2008; Knebe et al.,

2011, etc.), we present a comparison of cosmic web identification codes and philosophies. How-

ever, our comparison differs significantly from e.g. the seminal Santa Barbara comparison project

(Frenk et al., 1999) or other tests of codes which purport to model the same physical process (e.g.

Scannapieco et al., 2012; Knebe et al., 2013). Instead, the methods compared here were developed

for very different purposes, to be applied to different kinds of data and with different goals in mind.

Some of the methods are based on treating galaxies (haloes) as points; while others were developed

to be applied to density or velocity fields. Furthermore, unlike halo finders seeking collapsed or

bound objects, there is no robust analytical theory (such as the spherical top hat collapse model

of Sheth & Tormen, 1999) which we may use as a guide for how we expect different cosmic web

finders to behave. Therefore, we enter into this comparison fully expecting large disagreements

between the methods examined.

6.1.4 Outline

This chapter is laid out as follows: in Section 6.2 we group the different methods into “families”

that follow broadly similar approaches. In Section 6.3, we present the test dataset that has been

used as the basis for our comparison. In Section 6.2, we review each method that has taken part

in the comparison. In Section 6.4, we describe the results of the comparison and the final section

summarizes our results and drawn conclusions.

6.2 Web Identification Methods: Classification

It is a major challenge to characterize the structure, geometry and connectivity of the cosmic web.

The complex spatial pattern – marked by a rich geometry with multiple morphologies and shapes,

an intricate connectivity, a lack of symmetries, an intrinsic multi-scale nature and a wide range

of densities – eludes a sufficiently relevant and descriptive analysis by conventional statistics to

quantify the arrangement of mass and galaxies.
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Many attempts to analyze the clustering of mass and galaxies at Megaparsec scales have been

rather limited in their ability to describe and quantify, let alone identify, the features and compo-

nents of the cosmic web. Measures like the two-point correlation function, which has been the

mainstay of many cosmological studies over the past nearly forty years (Peebles, 1980), are not

sensitive to the spatial complexity of patterns in the mass and galaxy distribution. The present

chapter seeks to compare the diverse range of more sophisticated techniques that have been devel-

oped over the past few years to address the spatially complex Megaparsec scale patterns delineated

by mass and galaxies in the Universe.

In the present study we compare the results and web evaluations and identifications of 12

different formalisms. They are diverse, involving different definitions for the physical identity

of the structural features, as well as employing different means of turning these definitions into

practical identification tools. The various different methods that have been developed can largely

be grouped into five main classes (See Table 6.1 for a brief summary):

1. Graph and Percolation techniques. The connectedness of elongated supercluster struc-

tures in the cosmic matter distribution was first probed by means of percolation analysis, in-

troduced and emphasized by Zel’dovich and coworkers (Zel’dovich et al., 1982; Shandarin,

1983a; Shandarin & Zel’dovich, 1989; Shandarin et al., 2004). A related graph-theoretical

construct, the minimum spanning tree (MST) of the galaxy distribution, was extensively an-

alyzed by Bhavsar and collaborators (Barrow et al., 1985; Colberg, 2007) in an attempt to

develop an objective measure of filamentarity. Colberg (2007) set out to identify filaments

and their adjoining clusters, using an elaborate set of criteria for the identification of features

based on the branching of MSTs. In our study, we involve the MST based algorithm devel-

oped by Alpaslan et al. (2014a) for identification of filaments and void regions in the GAMA

survey (Alpaslan et al., 2014b).

2. Stochastic methods. This class of methods involves the statistical evaluation of stochas-

tic geometric concepts. Examples are filament detection algorithms based on the Bayesian

sampling of well-defined and parameterized stochastic spatial (marked) point processes that
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model particular geometric configurations. Stoica et al. (2010) use the Bisous model as an

object point process of connected and aligned cylinders to locate and catalog filaments in

galaxy surveys. One of the advantages of this approach is that it can be applied directly on

the original galaxy point field, given by the positions of the galaxies centers, without requir-

ing the computation of a continuous density field. These methods are computationally very

demanding. A thorough mathematical nonparametric formalism involving the medial axis

of a point cloud, as yet for 2-D point distributions, was proposed by Genovese et al. (2010).

It is based on a geometric representation of filaments as the medial axis of the data distribu-

tion. Also solidly rooted within a geometric and mathematical context is the more generic

geometric inference formalism developed by Chazal et al. (2009). It allows the recovery of

geometric and topological features of the supposedly underlying density field from a sam-

pled point cloud on the basis of distance functions. In addition, we also see the proliferation

of tessellation-based algorithms. Following specific physical criteria, González & Padilla

(2010) put forward a promising combination of a tessellation-based density estimator and a

dynamical binding energy criterion (also see van de Weygaert et al., 2009). We may also

include another recent development in this broad class of methods. Leclercq et al. (2015c,b)

describe a highly interesting framework for the classification of geometric segments using

information theory. Leclercq et al. (2016) have previously compared a few cosmic-web clas-

sifiers to each other, judging them on the basis of their information content.

3. Geometric, Hessian-based methods. A large class of approaches exploits the morphologi-

cal and (local) geometric information included in the Hessian of the density, tidal or velocity

shear fields (e.g. Aragon-Calvo et al., 2007; Hahn et al., 2007a; Forero-Romero et al., 2009;

Bond et al., 2010a; Cautun et al., 2013). Based on the realization that the formation and

dynamical evolution of the cosmic web is tied to the tidal force field, Hahn et al. (2007a)

developed an elaborate classification scheme based on the signature of the tidal tensor (also

see Hahn et al., 2007b). A further extension and elaboration of this tidal field based scheme
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Figure 6.1: A thin slice through the cosmological simulation used for comparing the web identi-
fication methods. The left panel shows the density field in a 2 h−1Mpc slice with darker colors
corresponding to higher density regions. The red lines show the δ = 0 contours (dividing over
and under dense regions, with respect to the mean) and are reproduced in the right panel (and in
Figure 6.2 as black lines). The right panel shows the positions of haloes in a 10 h−1Mpc slice,
where symbol sizes are scaled by halo mass. This same slice will be used to showcase the web
identification methods in Figure 6.2 and Figure 6.3 as well as the level of agreement across web
finders in Figure 6.7.
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was developed by Forero-Romero et al. (2009), while also the multi-scale Nexus formal-

ism incorporates versions that classify weblike features on the tidal tensor signature (Cautun

et al., 2013, see below)

Following a similar rationale and focusing on the link between emerging weblike structures

and the nature of the velocity flow in and around these features, in a sense following up on

the classic realization of such a connection by Zel’dovich (1970), Libeskind, Hoffman and

collaborators forwarded the V-web technique (Hoffman et al., 2012; Forero-Romero et al.,

2009; Libeskind et al., 2013). Its classification is explicitly based on the signature of the

velocity shear field.

Instead of using the tidal or velocity sheer field configuration, one may also try to link di-

rectly to the morphology of the density field itself (Aragon-Calvo et al., 2007; Bond et al.,

2010a; Cautun et al., 2013). Though this allows a more detailed view of the multi-scale

matter distribution, it is usually more sensitive to noise and less directly coupled to the un-

derlying dynamics of structure formation than the tidal field morphology. A single scale

dissection of the density field into its various morphological components has been defined

by Bond et al. (2010a), and applied to N-body simulations and galaxy redshift samples (also

see Bond et al., 2010a,b; Choi et al., 2010).

3b. Scale-space Multi-scale Hessian-based methods. While most of the Hessian-based for-

malisms are defined on one particular (smoothing) scale for the field involved, explicit multi-

scale versions have also been developed. The MMF/Nexus Multi-scale Morphology Filter

formalism of Aragon-Calvo et al. (2007) and Cautun et al. (2013) look at structure from a

Scale Space point of view, where the (usually Gaussian) smoothing scale of the field, de-

fines an extra dimension. This formalism takes into account the multi-scale character of the

cosmic mass distribution by assessing at each spatial location the prominence of structural

signatures, set by the signature of the Hessian of the field involved (Aragon-Calvo et al.,

2007; Cautun et al., 2013). A somewhat similar multi-scale approach was followed by the
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Metric Space Technique described by Wu et al. (2009), who applied it to a morphological

analysis of SDSS-DR5. While the original MMF method (Aragon-Calvo et al., 2007) only

involved the density field, the Nexus formalism extended this to a versatile algorithm that

classifies the cosmic web on the basis of a multi-scale filter bank applied to either the density,

tidal, velocity divergence or velocity shear fields. Applying the technique to the logarithm

of the density increases its sensitivity and dynamical range and allows the approach to attain

its optimal form, the so called NEXUS+ method, revealing both major filamentary arteries

as well as tiny branching tendrils (Cautun et al., 2013).

4. Topological methods. While the Hessian-based methods concentrate on criteria of the local

geometric structure of density, velocity or tidal field, another family of techniques seeks to

assess the cosmic web by studying the connectivity and topological properties of the field

involved. A typical example involves the delineation of under-dense void basins in the large

scale mass distribution by means of the Watershed Transform, in the form of the Watershed

Void Finder (Platen et al., 2007) and ZOBOV (Neyrinck, 2008). The Spineweb procedure

(Aragon-Calvo et al., 2010) extends this to an elaborate scheme for tracing the various we-

blike features – filaments, sheets and voids – on purely topological grounds. Spineweb

achieves this by identifying the central axis of filaments and the core plane of walls with the

boundaries between the watershed basins of the density field. While the basic Spineweb pro-

cedure involves one single scale, the full multi-scale spineweb procedure allows a multi-scale

topological characterization of the cosmic web (Aragón-Calvo et al., 2010; Aragon-Calvo

et al., 2010).

In essence, the Spineweb procedure is a practical implementation of the mathematics of

Morse theory (Morse, 1934). Morse theory describes the spatial connectivity of the density

field on the basis of its singularity structure, i.e. on the location and identity of the sin-

gularities - maxima, minima and saddle points - and their spatial connectivity by means of

the characteristic lines defined by the gradient field. Colombi et al. (2000) first described

the role of Morse theory in a cosmological context, which subsequently formed the basis of
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the skeleton analysis by Novikov et al. (2006) (2-D) and Sousbie et al. (2008a) (3-D). This

defined an elegant and mathematically rigorous tool for filament identification. In a consid-

erably more versatile elaboration of this, invoking the power of topological persistence to

identify topologically significant features, Sousbie (2011) has formulated the sophisticated

DisPerSE formalism that facilitates the detection of the full array of structural features in the

cosmic mass distribution (also see Sousbie et al., 2011). Nonetheless, most of its applica-

tions are directed towards outlining the filaments. A further development along these lines,

invoking the information provided by persistence measures, is that advocated by Shivshankar

et al. (2015).

5. Phase-space methods. Most closely connected to the dynamics of the cosmic web forma-

tion process are several recently proposed formalisms that look at the phase-space structure

of the evolving mass distribution (Abel et al., 2012; Falck et al., 2012; Shandarin et al., 2012;

Shandarin & Medvedev, 2017; Ramachandra & Shandarin, 2015, 2017b). They are based on

the realization that – in cosmologies in which the intrinsic velocity dispersion of particles in

the primordial universe is small – the evolving spatial mass distribution has the appearance

of a 3D sheet folding itself in 6D phase space, a phase space sheet. By assessing its struc-

ture in full phase space, these formalisms trace the mass streams in the flow field reflecting

the emergence of nonlinear structures. Noting that the emergence of nonlinear structures

occurs at locations where different streams of the corresponding flow field cross each other,

these phase-space methods provide a dynamically based morphological identification of the

emerging structures.

This class of methods contains the ORIGAMI formalism (Falck et al., 2012; Falck & Neyrinck,

2015), the phase-space sheet methods of Shandarin (2011) (also see Ramachandra & Shan-

darin, 2015) and Abel et al. (2012), and the Claxon formalism (Hidding, 2017). The Claxon

approach incorporates the modeling of the nonlinear evolution of the cosmic mass distribu-

tion by means of the adhesion formalism (Gurbatov et al., 1989; Hidding et al., 2012), in

order to identify and classify the singularities – shocks – emerging in the evolving structure.
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Claxon states that these singularities trace the skeleton of the cosmic web.

6.3 Test data: Simulation and Data set

Each of the participants applied their web identification methods to the same Gadget-2 (Springel,

2005) dark matter only N-body simulation, with a box size of 200 h−1Mpc and 5123 particles.

The ΛCDM cosmological parameters are taken from Planck (Planck Collaboration et al., 2014):

h = 0.68, ΩM = 0.31, ΩΛ = 0.69, ns = 0.96, and σ8 = 0.82. Haloes in the simulation are identified

using a standard FOF algorithm (Davis et al., 1985), with a linking length of b = 0.2 and a minimum

of 20 particles per halo. Figure 6.1 shows a thin slice through the density field and the halo

population of this simulation.

The main output of the methods is the classification of the dark matter density field into one

of four web components: knot, filament, wall and void. This classification is performed for either

volume elements (e.g. the Hessian methods), dark matter mass elements (e.g. the phase-space

methods), or for the haloes (e.g. the point process methods). The exact choice was left to the dis-

cretion of the authors to better reflect the procedure used in the studies employing those methods.

Though the output format of the web identification methods may vary, each participant was

asked to provide two datasets: the web identification tag defined on a regular grid with a 2 h−1Mpc

cell size (1003 cells) and the web classification of each FOF halo. Most methods returned both

datasets except for some of the point-process methods (MST, FINE), for which assigning a en-

vironment tag to each grid cell would not make sense. These return information regarding the

filamentary environment of just the FOF haloes.

The simulation is made publicly available1 for exploitation by interested parties. We have

included the z = 0 Gadget snapshots, the FOF halo catalog as well as the output of each cosmic

web method included in this work. Where available, each method’s classification is returned on a

regular grid. Included in the data set is also the FOF catalog appended with the classification of

1http://data.aip.de/tracingthecosmicweb/

doi:10.17876/data/2017_1
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each halo for each method. We encourage other methods not included in this chapter, to use this

data set as a bench mark of the community’s current status.

6.4 Comparison and Results

Here we present a visual and quantitative comparison of the different methods. We focus on com-

paring general features of the cosmic web: mass and volume filling fractions, density distributions

and halo mass functions in each environment. As already mentioned, all methods were applied to

the same simulation and they all used, depending on the method, either the dark matter particle

distribution or the FOF halo catalog.

6.4.1 Visual comparison

We begin our analysis by performing a visual comparison of the various web finders. Figure 6.2 and

Figure 6.3 show the environments returned by the web identification methods that took part in the

comparison. Each panel shows the same 2 h−1Mpc thick slice through the simulation box. Broadly

speaking, there are two types of methods: the ones that return multiple cosmic web environments

(i.e. voids, sheets, filaments and possibly knots; these are shown in the Figure 6.2) and the ones

that identify only filaments (shown in Figure 6.3). Among the first type, DisPerSE, MMF and

Spineweb do not identify knots. For the second type of methods, we show either the grid cells

identified as filaments (the Bisous method) or the positions of the haloes associated to filaments

for the methods that did not return a web classification for each volume element (the FINE and

MST methods). A number of general points are immediately visible from inspection of Figure 6.2

and Figure 6.3 (in no particular order):

• DisPerSE provides no knots, and its filaments are relatively thick compared to the other

methods.

• MMF-2 and Spineweb fill much of the simulation’s volume with sheets and filaments.
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Figure 6.2: Visual comparison of environments as detected by the different cosmic web finders. All
panels show a thin, 2 h−1Mpc thick slice, where the various colors indicate: knots (red), filaments
(blue), walls (green) and voids (white). Each panel has a set of solid lines which indicate the δ = 0
contours (see the density distribution in Figure 6.1). The simulation is purposefully coarse grained
with cells of size 2h−1Mpc, as it is on this scale that the methods returned a classification.
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Figure 6.3: Same as Figure 6.2 but for the three methods that identify only filaments.

Figure 6.4: Comparison of the density contrast, 1 + δ, PDF as a function of environment for the
different cosmic web finders. The panels show the density PDF for: knots (top-left), filaments
(top-right), sheets (bottom-left) and voids (bottom-right). The vertical arrows indicate the median
of each distribution. Each PDF is normalized to unity and thus does not correspond to the volume
filling fraction.
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• ORIGAMI ascribes much of the over-dense volume as knots – owing primarily to the fact

that these regions contains haloes which have undergone shell crossing along three orthogo-

nal axes.

• The Hessian methods (NEXUS+, T-web, V-web and CLASSIC) have a mix of knots, fila-

ments and sheets, with voids dominating the under dense volume.

• The Bisous model and MST seem to more or less agree with each other, whereas the FINE

method ascribes far fewer haloes to filaments.

It is important to note that some of these methods (specifically NEXUS+, MMF-2, T-web

and V-web) have been designed, to various degrees, to reproduce the visual impression of the

cosmic web. Furthermore, given that voids are by definition under-dense regions, it is ideologically

unlikely that a given method would be designed to identify clusters deep inside voids2.

6.4.2 Density PDF

The relationship between the cosmic web and the density field can be quantified by studying the

probability distribution function (PDF) of the density field for each volume element (grid cell)

as a function of web environment. This is shown in Figure 6.4, where the total density PDF for

this simulation (computed on a regular grid with cell spacing of 2 h−1Mpc) is shown in black

and is the same in all panels; we quantify the density by normalizing to the mean density of the

universe, δ = ρ/ρ̄. Note that only those methods that assign web classification to volume elements

are included here – the FINE and MST methods assign a cosmic web environment only to haloes

and are therefore excluded. The median of each PDF is denoted by the corresponding arrow.

6.4.2.1 Knots

In Figure 6.4(a) we show that knots are characterized by a wide variety of environmental densities.

Although the T-web, V-web and CLASSIC roughly agree, they differ substantially from the fourth
2The measure of a density depends on scale: large enough volumes that include relatively small over-densities can,

on average, be well below the mean density and thus considered voids.

138



Figure 6.5: The mass and volume filling fraction of knots (top-left), filaments (top-right), sheets
(bottom-left) and voids (bottom-right) as identified by the various cosmic web finders. These
quantities were computed using a regular grid with a cell spacing of 2 h−1Mpc. The solid line
shows the mean filling fraction, i.e. a slope of unity, where the volume filling fraction equals
the mass filling fraction. Namely, points above this line lie in under-densities, points below it in
over-densities.
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Hessian method, NEXUS+, which has a much narrower and higher distribution of densities. In-

deed NEXUS+ is in closer agreement with MSWA. ORIGAMI peaks at roughly the same density

as V-web, although is a little narrower.

Perhaps the strongest conclusion we can draw from Figure 6.4(a) is that the local density by

itself is a poor proxy for being considered a knot by any given method. Or, conversely, where knots

are found, their density may differ by an order of magnitude or more.

6.4.2.2 Filaments

In Figure 6.4(b) we show the PDF of densities for cells identified as filaments. Qualitatively, the

picture is similar to that for knots, but pushed to slightly lower densities. There also appears to

be a weak convergence of the median density among methods. Namely, although the widths of

the PDF are similar, their medians are more strongly in agreement (with the exception of MSWA),

and span less than an order of magnitude. MSWA stands out here in labeling higher density cells

as filamentary; the Bisous model (the only filament only model that can participate in this test)

closely resembles ORIGAMI, while the PDFs of three of the Hessian methods (T-web, V-web and

CLASSIC) have similar shapes but are offset with respect to each other. The PDF of Spineweb

peaks at the lowest density.

6.4.2.3 Sheets

The density PDF for cells labeled as sheets, shown in Figure 6.4(c), displays more coherence than

those of knots or filaments. Despite the PDFs still varying widely among the web finders, the

median densities of the PDFs are roughly similar and take values around δ = 0. The median of the

set of density PDFs moves to lower values, although, like the PDFs for knots and filaments, there

is still a wide variety of permissible environments. Three pairs of methods produce nearly identi-

cal PDFs: NEXUS+ and ORIGAMI, DisPerSE, T-web, and MMF-2, and V-web and CLASSIC.

Again, the PDF of Spineweb peaks at the lowest density.
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6.4.2.4 Voids

The best agreement between methods is found in regions denoted as voids, as shown in Fig-

ure 6.4(d). The void density PDFs show less diversity and generally have the same shape. The

spread in medians is small: less than 0.2 dex. As voids purport to be the most under-dense re-

gions in the universe, they also make up the greatest fraction of the simulation’s volume (as can

be inferred by the overlap between the void density PDF and the total density PDF). It can thus be

said that the methods studied here all agree that the majority of the simulation volume is indeed

categorized as void.

6.4.2.5 Trends in the density PDFs

The cosmic web classification is layered: knots are embedded in filaments, which, in turn, reside

in sheets, which, in turn constitute the boundaries between different void basins. As our analysis of

the cosmic web moves from knots to voids, the median of the density distribution of each method

and for each web type moves to lower values in tandem. Although for a given web type there may

be a wide variety of permissible density environments across the analyzed methods, each method

follows a similar trend. The peak of the density PDF moves to lower and lower densities, with

most methods converging in the lowest density and most abundant environment in the simulation:

voids.

6.4.3 Mass and volume fraction

We continue the cosmic web finder’s comparison with a study of the volume and mass filling

fractions that are ascribed to a specific cosmic web type. These quantities are shown in Figure 6.5

for knots, filaments, sheets and voids. The mass fraction is found by summing up the particles

in all the cells with the same cosmic web type and dividing by the total number of particles in

the simulation. The volume fraction is found by counting all the cells with the same cosmic web

type and dividing by the total number of cells. Note that for these tests we have a 1003 grid with
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(2 h−1Mpc)3 cells.

• Knots: as ORIGAMI makes no distinction between knots and haloes, it is perhaps unsur-

prising that this method finds that nearly half the simulation’s mass is confined in ∼ 7% of

the volume. Most other methods tag far fewer cells as knots, claiming they constitute below

∼ 1% of the volume with between 10%-20% of the mass. Interestingly the mass-volume

fraction relation for knots follows a fairly tight linear proportionality – the more mass found

in knots, the more volume, regardless of method used.

• Filaments: A similar, but slightly weaker proportionality between mass and volume frac-

tion is found for filament regions. Here, Spineweb and DisPerSE place roughly 60% of

the simulations mass in filaments which occupy some ∼ 35% and ∼ 25% of the simulation

volume, respectively. Unlike knots, there is considerably more spread in the relationship

between mass and volume fractions amongst the methods, although a linear relationship is

still discernible to the eye. Similar to knots, MSWA continues to place virtually none of the

volume and roughly ∼ 10% of the simulation’s mass in filaments. The Bisous model – the

only one of the filament-only models that can participate in this comparison – finds very sim-

ilar filament volume and mass filling fractions as CLASSIC, V-web and MMF-2, with some

∼ 5% of the simulations volume and ∼ 30% of the simulations mass labeled as filaments.

To summarize, the filament volume filling fraction spans from virtually nothing (MSWA) to

more than a third of the volume (Spineweb); while the filament mass filling fraction spans

roughly double that range, from ∼ 10% (MSWA) to ∼ 60% (DisPerSE).

• Sheets: The spread of the sheet mass filling fraction is quite tight, with most methods assign-

ing ∼ 30%± 5% of the total mass to sheets (with the exception of ORIGAMI and MMF-2,

which find lower values). However, the sheet volume filling fractions vary substantially be-

tween methods, ranging from less than ∼ 10% for MWSA to more than 40% for T-web. As

in knots and filaments, MWSA continues to assign only a small volume fraction to sheets.
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Figure 6.6: Comparison of the halo mass function as a function of environment for the various
cosmic web finders. The panels show the mass function for: knots (top-left), filaments (top-right),
sheets (bottom-left) and voids (bottom-right). The black solid line shows the total halo mass func-
tion.
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Figure 6.7: The level of agreement, on a halo by halo basis, in assigning a web classification to
a given halo. For each halo in a given mass bin, we ask how many methods have assigned it the
same web type. We plot the fraction of these haloes as a function of halo mass for the four web
environments: knots (top-left), filaments (top-right), sheets (bottom-left) and voids (bottom-right).
Each line shows the fraction of haloes at fixed halo mass that were assigned by N methods to that
environment, with N from 0 (no assignments) to 10 (all methods agree). Note that not all methods
identify all web types, so that the maximum number of agreements varies with web type: 6 for
knots, 12 for filaments, 9 for sheets and 10 voids.
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Figure 6.8: A visualization of the agreement across methods regarding a specific halo’s classifica-
tion shown in the same 10h−1Mpc thick slice as in Figs. 6.1– 6.3. Not all web types are identified
by each method, so for each panel the various colors indicate a different number of agreements.
In the “Knot haloes” panel, a halo is plotted in black if 5–6 methods agree, blue if 3–4 methods
agree and red if 1–2 methods agree that a halo is in a knot. In the “Filament haloes” panel colors
represent: black if 9–12 methods agree, blue if 4–8 methods agree and red if 1–3 methods agree
that a halo is in a filament. For “Sheet haloes” the colors represent: black if 7–9 methods agree,
blue if 4–6 methods agree and red if 1–3 methods agree that a halo is in a sheet. For the “Void
haloes” the colors represent: black if 7–10 methods agree, blue if 4–6 methods agree and red if
1–3 methods agree that a halo is in a void. In all panels, haloes not assigned that web classification
are shown in grey.
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• Voids: The volume fraction associated to voids shows three distinct groups: three methods

with ∼ 40% (DisPerSE, Spineweb and T-web), five with ∼ 70% (NEXUS+, ORIGAMI, V-

web, MMF-2 and CLASSIC), and one with ∼ 90% (MSWA). For the first group of finders

(DisPerSE, Spineweb and T-web), the mass fraction is more or less the same at around

10− 15%. For the second group (NEXUS+, ORIGAMI, V-web, MMF-2 and CLASSIC),

the mass fraction in voids spans a large range from ∼ 15% for NEXUS+ to >∼ 50% for MMF-

2. In general it is apparent that the mass fraction assigned to void regions spans a large

range. It is interesting to note how the void mass filling fractions of these methods have

flipped compared to their estimate for the filament mass fraction.

In summary, the various methods predict fairly large ranges for the volume and mass fractions

assigned to a given web type. Given the substantial differences in how these methods identify the

web components, it is not very surprising that there are large discrepancies in these fractions. That

said, in each plot of Figure 6.5, clusters of methods can be identified which have similar values of

either the volume fraction, mass fraction or both. The values for the mass and volume fractions are

shown in the first two columns of Table 6.2.

6.4.4 Halo assignment and mass functions

We now compare how the web environment assigned to haloes varies across cosmic web finders.

For most methods, each halo is assigned the cosmic web environment of the cell in which its center

is located in. For the filament only methods (Bisous, FINE, and MST), the methods themselves

directly identify which haloes are part of a filamentary structure.

In Figure 6.6 we show the halo mass function for the entire halo sample and for each web type.

We find a mixed picture, with substantial variations in the halo mass function of web types. Despite

this, there are also agreements. For example, all the methods place the most massive haloes (i.e.

M >
∼ 1014M�) into knots. Similar trends are visible in how the filament halo mass function behaves

– the mass functions are similarly valued at low masses and show a “knee” that precipitates a quick

decline in the mass function. The agreement of mass functions in filaments is strongest (except
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the phase-space methods, ORIGAMI and MSWA), and the shape of the halo mass function in

filaments is the closest one to the total halo mass function. Indeed, MMF-2 and Spineweb place

nearly all haloes in filaments: the green dashed and dot-dashed curves are only visibly separate

from the black line below ∼ 1012.5h−1M�.

The last column of Table 6.2 shows how much mass is locked up in haloes of a given web

type for each web finder. The four Hessian methods (NEXUS+, T-web, V-web and CLASSIC)

agree that around 20-30% of mass in haloes is found in knot haloes. This is dramatically different

from DisPerSE, MMF-2 and Spineweb which do not identify haloes as belonging to knots, and

the phase-space methods (ORIGAMI and MSWA), which place the bulk of halo mass in knots.

It is interesting to note that the methods that do not identify knots, but do identify filaments,

sheets and voids (Spineweb, MMF-2, and DisPerSE) place the overwhelming bulk of halo mass

in filaments (with >
∼ 80% of all halo mass in filaments). All methods also agree that haloes in

voids have the least amount of total halo mass, although they disagree on exactly how much this

is, with methods predicting either ∼ 15% (V-web, CLASSIC), ∼ 5% (T-web, DisPerSE) or <∼ 1%

(NEXUS+, ORIGAMI, MSWA, Spineweb, MMF-2) of halo mass in voids.

It is important to compare the environment tag associated to haloes on a halo per halo basis

too, not only globally as is the case when comparing halo mass functions. To accomplish this, we

ask the following question: for haloes in a given mass range, how many methods agree that some

fraction of these have the same cosmic web environment? The answer to this question is shown in

Figure 6.7.

To better understand our analysis, lets consider the panel of Figure 6.7(a), which gives the

agreement across methods for individual knot haloes. For high halo masses, M >
∼ 1014h−1M�, the

panel shows that most such haloes (∼ 90%) are assigned to knots by all the six methods (namely:

NEXUS+, T-web, V-web, CLASSIC, ORIGAMI, and MSWA) that identify knot environments

(dot-dashed red curve). Conversely, 60% of the smallest haloes (with M ∼ 1011h−1M�) are not

assigned by any method to the knot environment (solid black curve). In between the two extreme

masses, we find two bell-like curves where haloes with M ∼ 1012h−1M� are assigned to knots by

147



only one method (black dotted curve), and haloes with M ∼ 1013h−1M� (black dashed curve) are

assigned to knots by the two phase-space methods, MSWA and ORIGAMI.

In Figure 6.7(b), we show the agreement among filament haloes. Note the two peaks in the

blue dashed and blue dot-dashed lines at Mhalo ≈ 1013.5: nine methods agree that ∼ 30% of haloes

of this mass are in filaments while 10 methods agree that at least 10% of halos of this mass are in

filaments. Here, four methods (DisPerSE, Spineweb, MMF-2 and MST) place the most massive

haloes in filaments. Figure 6.7(c) and Figure 6.7(d) indicate that no method puts the most massive

haloes in sheets or voids. Specifically this means that no haloes with M >
∼ 1014h−1M� are found in

sheets, and no haloes with M >
∼ 1013.5h−1M� are found in voids, by any method.

The degree of agreement of web classifiers on a halo per halo basis varies accordingly to the

spatial distribution of haloes, as we illustrate in Figure 6.8. Here, each halo is colored by how many

methods agree on its given classification. Because the number of methods capable of assigning

haloes to a given web type changes (e.g filament only finders can’t identify knot haloes, etc) the

color scheme is not identical in each panel (see caption for exact color explanation). In general if

many of the capable methods agree on a specific halo’s classification the halo is shown in black; if

around half of the capable methods agree, the halo is plotted in blue. If a small number of capable

methods agree, the halo is plotted in red. If no method assigns a halo a given classification, the

halo is plotted in grey.

Figure 6.8 “Knot” and “Filament” halo panels shows quite clearly that the haloes where the

most methods agree belong to a biased set and are not simply random. Knot haloes find the most

agreement in the densest areas of the simulation – a reassuring result. Similarly, those haloes

which by eye appear to define the filamentary network too have the most agreements. Accordingly

none of the haloes in either the densest parts of the simulation or in the filaments are assigned as

void haloes (appearing as grey points). Sheets appear, as often is the case, as tenuous structures.

Figure 6.8 indicates that most or many methods are likely to agree on a specific halo’s classification

based on its location.
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6.5 Summary and Conclusions

Large galaxy redshift surveys (e.g. 2dFGRS, SDSS, 2MRS) reveal that at Megaparsec scales the

Universe has a salient weblike structure. On these scales, the galaxies and the matter distribution

in the universe has arranged itself into a complex weblike network of dense, interconnected knots,

elongated filaments, two-dimensional sheets, and large nearly-empty voids. These cosmic envi-

ronments characterize the universe on the largest scales. One important aspect of the cosmic web

is its multi-scale character, manifesting itself in the existence of weblike structures over a sizable

range of scale. High-resolution simulations have revealed that such structures can be found down

to very small scales, even down to the virial radius of haloes, and that they play a prominent role in

the accretion of cold gas onto young and assembling protogalaxies in the early Universe (Danovich

et al., 2012). It ties in with the results of a range of recent studies that have analyzed the role of

environment on the formation and the evolution of galaxies (e.g. Carollo et al., 2013; Eardley et al.,

2015; Guo et al., 2015; Creasey et al., 2015; Martinez et al., 2016; Poudel et al., 2017). Further-

more, theoretical studies have suggested that around half of the warm gas in the Universe is hiding

in a “warm-hot- intergalactic medium”, presumably in the filaments of the cosmic web (e.g. Eckert

et al., 2015). It has therefore become of key importance to gain more insight into the structure and

dynamics of the weblike universe, and into the interaction of the cosmic web with galaxy scale

processes.

The cosmic web is one of the most intriguing and striking patterns found in nature, rendering its

analysis and characterization far from trivial. This is evidenced by the many elaborate descriptions

that have been developed. The absence of an objective and quantitative procedure for identifying

and isolating knots, filaments, sheets and voids in the cosmic matter distribution has been a ma-

jor obstacle in investigating the structure and dynamics of the cosmic web. The overwhelming

complexity of the individual structures and their connectivity, the huge range of densities and the

intrinsic multi-scale nature prevent the use of simple tools. Over the past years, we have seen

the introduction and proliferation of many new approaches and techniques. These methods are

very varied in how they identify the cosmic web environments; being designed with different cos-
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mological data in mind and to answer different questions. These issues are compounded since

the techniques available to theorists and simulators differ substantially from those employed by

observers. This makes it even more important to understand how the various web identification

methods compare with each other.

The main driver of this chapter is to quantify in a systematic way both the similarities and

differences between cosmic web finders. There is no well motivated common framework to objec-

tively define the constituents of the cosmic web, so there is no way of judging which methods are

successful or which ones are - in some objective way - “better”. As such, the goal is to compare the

output of the various methods to better relate studies that make use of different web identification

methods. We proceeded by comparing several basic properties of the cosmic web: the mass and

volume filling fraction of each component, the density distribution and the halo mass function in

each environment, and a halo by halo comparison of their environment tag. For this, we asked

the authors of each method to apply their technique to the same data, the output of an N-body

simulation, and to return the resulting web classification in a common format.

We find a substantial diversity in the properties of the cosmic web across the various methods.

This is to be expected given the challenges inherent in identifying the cosmic web and the multitude

of approaches undertaken in doing so. In spite of this, we also find many similarities across the

methods. Some of the most important agreements are:

• Voids correspond to the most under-dense regions and are consistently identified as such by

all the methods. The voids occupy the largest volume fraction, with the majority of methods

finding a ∼70% volume filling fraction.

• Most methods, except ORIGAMI and T-web, find that knots contain ∼10% of the total mass

in less than 1% of the volume of the universe.

• All the methods find that the density PDF systematically shifts towards lower densities as

we go from knots to filaments, than to sheets and voids. Despite this trend, there is still a

substantial overlap between the density PDF of different environments, which suggests that
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a simple density is inadequate for cosmic web identification.

• Most massive haloes, M >
∼ 1014h−1M�, are classified as residing in knot environments by all

the methods that identify knots.

• The voids are only sparsely populated with haloes and they lack completely massive haloes

with M >
∼ 1013.5h−1M�.

We have a very incomplete knowledge of what is the effect of environment on galaxy formation

and evolution or of what is the cosmological information encoded in the cosmic web pattern. The

lack of knowledge is a result of the limitations of analytical approaches in modeling these non-

linear processes. Each web finder captures different aspects of this very complex pattern, i.e. the

cosmic web, so it is a worthwhile pursuit to analyze the connection between the environments

identified by each method and the effect on galaxies and cosmological constraints.
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Chapter 7

General Conclusions

Formation and evolution of velocity multistreams in the dark matter Universe plays a vital role in

the formation of large scale structures in the Universe. In this thesis, we have analyzed this multi-

stream field in cosmological context – from dark matter halo environments to connectivities in the

single streaming voids. It has been demonstrated that the studies of the Lagrangian sub-manifold

not only provide a novel way of looking at the cosmos, but also boost our current knowledge of

the dark matter Universe.

This final chapter encapsulates significant findings of our work. In addition, we also highlight

a few interesting avenues for future research using the Lagrangian sub-manifold.

7.1 Summary of major results

The full dynamical state of cold dark matter can be described as a three-dimensional sub-manifold

in six-dimensional phase space - the dark matter sheet. In our study we use a Lagrangian sub-

manifold x = x(q, t) (where x and q are co-moving Eulerian and Lagrangian coordinates respec-

tively), which is dynamically equivalent to the dark matter sheet but is more convenient for nu-

merical analysis. Projecting the Lagrangian sub-manifold at each point in the configuration space

defines the multistream field nstr(x,z). This integer-valued field is equivalent to counting the num-

ber of foldings in the sub-manifold and we numerically calculate by a Lagrangian tessellation
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scheme. The resulting multistream field is positively correlated with matter density, and supple-

ments our knowledge of spatial clustering. It is a fundamental feature of collisionless dark matter

structures, and is of great importance in understanding the nonlinear gravitational collapse.

Our major results can be summarized as follows:

7.1.1 Morphological properties of the dark matter web

The first study of the multi-stream environment of dark matter haloes in cosmological N-body sim-

ulations in the ΛCDM cosmology reported in Chapter 3 (first shown in Ramachandra & Shandarin

2015) shows that at the resolution of the simulation i.e. without additional smoothing, the cosmic

web represents a hierarchical structure: each halo is embedded in the filamentary framework of the

web predominantly at the filament crossings, and each filament is embedded in the wall like fabric

of the web at the wall crossings.

Voids are uniquely defined by the local condition requiring to be a single-stream flow region.

This definition unambiguous and physically motivated, i.e., it implies that the voids are regions in

the Universe where a gravitational collapse has not occurred. The single-streaming voids occupies

around 90 per cent of total simulation volume and about 30 per cent of total mass. This results in

over-density in the voids as δv ≈ −0.7, in agreement with several other definitions on voids.

On the other hand, such definitions for walls, filaments and haloes are empirical – with or with-

out the multistream picture. These definitions can be simple mass density thresholds, or based on

geometry of the dark matter structure (spheroidal, tubular or flat) or topology (connected/isolated).

Our algorithm in Ramachandra & Shandarin (2015) was motivated by the complex and diverse

morphologies exhibited by the multi-stream field around a halo. We isolated various halo environ-

ments, and checked the variation of areal fraction of multistreams on concentric shells around the

halo centers, with radii r = 0.1h−1Mpc to 5h−1Mpc for each of these haloes. If this fraction scales

as fstr(r) ∝ r−1 with respect to the radius r, the corresponding multistream region is geometrically

identical to that of a wall or a pancake. Such scaling is seen for nstr � 3 regions. This result is

completely in agreement of ZA, where the pancakes are the first collapsed regions formed. Our

153



morphology based algorithm also identifies regions with three streams as pancakes.

Between multistream values 5−15, the scaling gradually changes from fstr(r) ∝ r−1 to fstr(r) ∝

r−2. Particularly for our simulation, the variation of nstr � 17 is closest to that of filamentary

geometry i.e., r−2. As discussed in Chapter 4, nstr � 17 is also the value at which rapid percolation

transition from isolated islands to connected filaments occurs in the multistream field.

Finally, at multistream thresholds nstr > 17, the variation fstr(r) departs from r−2 towards that

of knots. The generally accepted mass density threshold for compact haloes, the virial over-density

of ρvir = 200 corresponded to nstr � 90 in our simulation. We also demonstrated in Chapter 3 that

the shells of streams around haloes are quite thin and the closest void region is typically within one

and a half FOF radius from the center of the halo.

Qualitatively, the results are in good agreement with the hierarchical picture of the large scale

structures: The multistream web represents a nested structure, consisting of layers with increasing

number of streams. The number of streams in the neighboring filaments is higher than in the

neighboring walls. However, some of the quantitative results tabulated above (and mentioned in

Chapter 3 in detail) may vary depending on the simulation parameters and cosmological models.

With the exception of void definition as regions with nstr = 1, one should be cautious about using

the same multistream threshold for walls, filaments and haloes. Instead, the heuristic multistream

cut-offs should be verified or re-calculated for the specific cosmological simulation.

7.1.2 Geometric view of the multistream haloes

Haloes are perhaps the most investigated dark matter structures in the Universe. Currently there are

over 30 halo finders, with substantial disagreements within each other. This is not too astounding

because apart from the qualitative understanding of haloes being dense, compact structures with

large number of gravitational collapses, there is no consensus on the definition of a halo. Multiple

proposed definitions, computational algorithms and post-processing schemes for detecting haloes

in simulations.

The local maxima of multistream fields are the locations of halo centers in the phase space pic-
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ture. In our simulation reported in Chapter 3, simple virial density criterion corresponds to a global

threshold of nstr ≥ 90 for DM haloes. This shows a reasonably good correspondence with several

state-of-the-art structure finders. Alternatively, a more sophisticated halo finding formulation is

done in Chapter 5 assuming that the virialized haloes have convex boundaries. Closed and convex

regions of the multistream field are hence isolated by imposing a positivity condition on all three

eigenvalues of the Hessian estimated on the smoothed multistream field.

As opposed to several other halo finders, this geometrical approach accounts for non-spherical

boundaries and minimizes the need for post-processing in the production of halo catalogs for dark

matter simulations. Since the haloes are found only in the nstr > 1 regions, it is ensured that none

of the halo particles are in the void. It is also guaranteed that the halo regions have foldings in the

Lagrangian sub-manifold in more than one direction. Finally, this halo finding technique is free of

any heuristic parameters, which are often calibrated in other halo finders.

Such methods based on geometry may also be extended to delineate filaments, walls, voids, as

well as halo sub-structures. In a single-scale analysis of high multistream field resolution and low

softening length, the halo substructures with local multistream maxima are isolated as individual

halo sites. Agreement of halo summary statistics (like the halo mass function) of the multistream

haloes with traditional halo finders (Friends-of-Friends and Spherical Over-density based tech-

niques) is shown Ramachandra & Shandarin (2017a).

7.1.3 Topological transitions in the cosmic web

Percolation based analyses have been done in cosmological analyses, where one studies the prop-

erties of over-dense and under-dense excursion sets. The matter density fields exhibit rapid topo-

logical transitions at certain critical density threshold. Similar effect is seen in multistream fields

as well, i.e., at a given multistream threshold (nstr � 17 in our cosmological simulations), the fill-

ing fraction of the largest structure in the Universe dominates the excursion volume fraction. At

this threshold, the excursion set regions transition from isolated patches to connected filamentary

structures.
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However, the topological connections in the single-streaming voids and multistreaming fila-

ments and walls reveal a cosmic web structure different from traditional mass density fields. For

the multistreaming excursion sets, the percolating structure is significantly thinner than the per-

colating filaments in over-density excursion approach. We also demonstrate in Chapter 4 that the

matter density field is more fragmented than the multistream field.

While varying density threshold for the under-dense phase of excursion set regions may be

used for detecting voids in a mass density field, the void definition in the multistream portrait

of the cosmic web is unambiguous. The single-streaming voids occupy over 90 per cent of the

dark matter Universe. A single void structure not only percolates the multistream field in all the

directions, but also spans over 99 per cent of all the single-streaming regions. Sub-grid analyses

on scales smaller than the simulation resolution also reveal tiny pockets of voids that are isolated

by membranes of the structure.

7.2 Future directions

Although the scope of this thesis has primarily been multistream field and its application to cosmic

structure formation, it is necessary to highlight other important physical insights derived from

the Lagrangian sub-manifold. For instance, tracing the Lagrangian sub-manifold also provides

rich insights into halo collapse modeling Neyrinck (2016). Recently, there have been attempts to

improve N-body simulations (see Hahn et al. (2013), Angulo et al. (2013c), Angulo et al. (2013a),

Sousbie & Colombi (2015) and Hahn & Angulo (2016)) by solving the Vlasav-Poisson equation

using tessellations in the Lagrangian sub-manifold. Galaxy evolution and star formation in the

context of multi streaming phenomenon are studied by Aragon-Calvo et al. (2016). Problems

of halo-core tracking, dynamical analysis of halo merger histories, halo and sub-halo disruption

events and mass accretion of filaments and haloes may be revisited using Lagrangian sub-manifold.

This section reviews two of the potential avenues for interesting application of Lagrangian sub-

manifold. One may track the Flip-Flop field – to understand the rich and complex substructures
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within haloes. On the other hand, Lagrangian sub-manifold may also be used to identify caustic

surfaces – measure-zero surfaces in the DM Universe that have formally infinite density.

7.2.1 Flip-Flop analyses in Lagrangian field

The integer value of Flip-flop in Lagrangian field, n f f (q) is increased by every swap of the Eu-

lerian coordinates of the two neighboring DM particles. This number field is estimated in three

dimensions by computing the Jacobian J(q, t) = | ∂x
∂q | on each particle at each time step. If the sign

of the Jacobian changes, the number of flip-flops for the corresponding particles is increased by

one. Details of calculation of flip-flop field and its significance in dynamical history of substructure

formation is explained in (Shandarin & Medvedev, 2017), and summarized in Section 2.2. This

Lagrangian field n f f (q) for a cosmological simulation with 1283 DM particles and side length of

100h−1Mpc is shown in the bottom panel of Figure 7.1. Halo environment analysis similar to one

in Chapter 5 may allow us to identify and track the formation of DM haloes directly from the La-

grangian space. Alternatively, this also enables back-tracking the DM particles in halos cores and

substructures all the way to the initial configurations in the simulation.

Since the n f f field is defined on particles, mapping the field to Eulerian field is straightforward.

Correspondence between the multistream field defined in Eulerian space nstr(x) is shown in the top

left and top right panels of Figure 7.1. Most particles that have not undergone a flip-flop are in the

single-streaming region. In the multistreaming region, however, consists of particles with n f f = 0

and n f f > 0. On the other hand, n f f > 0 particles are not found in single-streaming voids.

Percolation analysis (similar to the multistream analysis in Chapter 4) may also be done using

the Flip-Flop in the Lagrangian field. Figure 7.2 shows topological transitions similar to ones in

multistream and matter density fields shown in Figure 4.3 and Figure 4.4, except here we explore

the connectivities in the Lagrangian space. This could reveal topological connections in the initial

positions, and reveal whether or not the connections remain intact throughout the evolution of

nonlinear gravitational collapse.
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Figure 7.1: Top left panel: Eulerian picture, only the particles with n f f (q) = 0. are shown. Red
regions show regions with nstr(x) > 1. Top right panel: Eulerian picture, only the particles with
n f f (q) > 0. are shown. Red regions show regions with nstr(x) > 1. Bottom panel: Lagrangian slice
of the Flip-Flop field n f f (q) in a cosmological simulation with L = 100h−1Mpc. The values of n f f
varies from 0 to 15.
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transition for the Flip-Flop field, n f f (q) and multi-stream field nstr(x).

7.2.2 Caustics formation

Existence of singularities is a distinguishing feature of collisionless DM collapse from that of

baryonic matter. Caustic formation in the context of the ZA (Zel’dovich, 1970) was discussed

earlier in Section 2.2 (also see Shandarin & Zel’dovich (1989) for a detailed study of cosmic

singularities). Theoretical characterization of caustic surfaces in a two dimensional gravitational

collapse was studied by (Arnold et al., 1982). However, such analytical treatment is complicated

in the three-dimensional case (See for example, the discussions in Hidding et al. 2014, Feldbrugge

et al. 2018). Numerically, one may find the particles belonging to caustic surfaces by following the

determinants of the volume elements in the Lagrangian sub-manifold. This result of such scheme

was demonstrated in Figure 4.11.

Matter density is formally infinite at the location of caustic surfaces, where dark matter sheet

folds in phase-space. Being measure-zero structures, identification of caustics via matter density

fields is usually restricted to fine-grained simulations. Caustics are clearly related to multistream

or Flip-Flop fields as well. Multistream values are generally odd-valued - i.e., the nstr(x) = 1,3,5,7

and so on. Exceptions occur at Eulerian positions of caustic surfaces xc, where are there are even

number of streams. Unfortunately, these are not easily resolved since the structures are of zero

volume measure. However, multistream fields do resolve positions of caustic surfaces to the level
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Figure 7.3: Percolation in caustic particles with variation of lmax: Top panel shows the mass frac-
tion of the largest isolated caustic surface f1 and mass fraction of all particles in the caustic fES .
Bottom panel shows the filling fraction f1/ fES . Between 1.1− 1.4h−1Mpc the caustic surfaces
transition into distinct isolated surfaces – i.e., forming turn-around boundaries of haloes.

of resolution of the field. In other words, any transition in nstr(x) value signifies location of caustic

surface between the gradient. On the other hand, Flip-Flop fields have a more straightforward

relationship since they are defined on the particles. In one dimensional collapse, caustic locations

are simply the particles where the value of n f f changes.

Despite the theoretical understanding mentioned above, delineating caustic surfaces at various

levels of gravitational collapse has been proven to be difficult. Instead, a combination of geometric

and topological methods may also enable us to trace the caustic formation. The DM particles on

the caustics are on curved two dimensional surfaces, forming vertices of triangles that constitute

the tiles of the surface. These triangles are of various shapes and size. Since the mean separation

of particles is smaller than elsewhere in the cosmic web, the triangles are smaller on an average.
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Figure 7.4: Caustic surfaces in a small cosmological simulation of L = 20 Mpc, Np = 323.
Caustics are filtered by longest side length lmax of the triangle constituting the caustic surface.
Top left: all values of lmax (all the caustic surfaces), top right: lmax ≤ 1.8h−1Mpc, bottom left:
lmax ≤ 1.25h−1Mpc, bottom right: lmax ≤ 1.0h−1Mpc. Multiple colors in bottom right panel indi-
cate isolated inner caustic surfaces, while the other three panels display connected outer caustic
structures.
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Using the largest side of the triangle lmax as a proxy for length scale of the triangle, one may

perform morphological analyses on the type of caustic surfaces. One such study is shown in

Figure 7.3. Percolation transitions (in an unstructured grid, as opposed to regular grid analyses

for multistream or flip-flop fields) are used to differentiate the larger caustic surface (like the ones

between voids and walls) and the smaller ones (like the concentric caustic shells around haloes).

This transition in our small cosmological simulation of side length L = 20h−1Mpc is seen at around

1.2h−1Mpc.

Using the heuristic parameter of lmax, we are able to isolate caustic surfaces around specific

structures like the haloes. The Figure 7.4 shows all the caustic surfaces in the top left panel, and

the inner caustics filtered using lmax thresholds in the subsequent panels. Another interesting aspect

of this filtering scheme is the ability to isolate the caustic surfaces around the haloes as seen in the

bottom right panel of Figure 7.4.

Careful examination of the smaller caustic surfaces around the haloes may reveal concentric

shells where the particles turn back. A spherical approximation of this, called the splashback

radius (More et al., 2015). This has gained a considerable attention recently due to possible ob-

servational signatures of physical boundaries of dark matter haloes (Chang et al., 2017). Caustic

finding scheme with appropriate filtering provides a general method to find these boundaries in N-

body simulations exactly. Moreover, mapping caustic surfaces from Eulerian space to Lagrangian

space displays concentric surfaces, providing a dynamical insight into the splashback radii of dark

matter haloes.

7.3 Final remarks

Understanding the complex dynamical processes that shape the dark matter web has been the pri-

mary focus of this thesis. By developing a wide variety of topological, geometrical and statistical

diagnostic algorithms, we have demonstrated the potential of the Lagrangian sub-manifold in un-

veiling properties of the cosmic structures. Despite these modern advancements, the Zel’dovich
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approximation has to be recognized as the basis for a dynamical theory for the evolution of the

dark matter web and its components.

On the one hand, such a motivated theoretical framework may result in a systematic descriptor

of the large scale dark matter structures in the Universe. On the other, perplexing complexities

of halo substructures, caustic singularities and merger histories could be unmasked. This only

demands extensive studies in the field of Physical cosmology.
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Astronomical Society, 328(June), 320–328.

Codis, S., Pichon, C., Devriendt, J., Slyz, A., Pogosyan, D., Dubois, Y., & Sousbie, T. (2012).

170



Connecting the cosmic web to the spin of dark haloes : implications for galaxy formation.

Monthly Notices of the Royal Astronomical Society, 427, 3320–3336.

Colberg, J. (2007). Quantifying cosmic superstructures. Monthly Notices of the Royal Astronomi-

cal Society, 375, 337–347.

Colberg, J. M., Pearce, F., Foster, C., Platen, E., Brunino, R., Neyrinck, M., Basilakos, S., Fairall,

A., Feldman, H., Gottlober, S., Hahn, O., Hoyle, F., Muller, V., Nelson, L., Plionis, M., Porciani,

C., Shandarin, S., Vogeley, M. S., & Van De Weygaert, R. (2008). The Aspen-Amsterdam void

finder comparison project. Monthly Notices of the Royal Astronomical Society, 387(2), 933–944.

Colberg, J. M., Sheth, R. K., Diaferio, A., Gao, L., & Yoshida, N. (2005). Voids in lcdm universe.

Monthly Notices of the Royal Astronomical Society, 360, 216–226.

Colless, M., Peterson, B., Jackson, C., Peacock, J., Cole, S., Norberg, P., Baldry, I., Baugh, C.,

Bland-Hawthorn, J., Bridges, T., Cannon, R., Collins, C., Couch, W., Cross, N., Dalton, G., De

Propris, R., Driver, S., Efstathiou, G., Ellis, R., Frenk, C., Glazebrook, K., Lahav, O., Lewis, I.,

Lumsden, S., Maddox, S., Madgwick, D., Sutherland, W., & Taylor, K. (2003). The 2dF Galaxy

Redshift Survey: Final Data Release. ArXiv Astrophys. e-prints.

Colombi, S., Pogosyan, D., & Souradeep, T. (2000). Tree Structure of a Percolating Universe.

Phys. Rev. Lett., 85, 5515–5518.

Courtois, M., Pomar, D., Tully, R. B., Hoffman, Y., Courtois, D., Inp, U. C. B. L. C., & Lyon, I.

P. N. (2013). Cosmography of the local Universe. ApJ, 146, 69.

Creasey, P., Scannapieco, C., Nuza, S., Yepes, G., Gottlöber, S., & Steinmetz, M. (2015). The

Effect of Environment On Milky Way-Mass Galaxies in a Constrained Simulation of the Local

Group. The Astrophysical Journal Letters, 800, L4.

Danovich, M., Dekel, A., Hahn, O., Ceverino, D., & Primack, J. (2015). Four phases of angular-

171



momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to

disc and bulge. Monthly Notices of the Royal Astronomical Society, 449, 2087–2111.

Danovich, M., Dekel, A., Hahn, O., & Teyssier, R. (2012). Coplanar streams, pancakes and

angular-momentum exchange in high-z disc galaxies. Monthly Notices of the Royal Astronomi-

cal Society, 422, 1732–1749.

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. (1985). The evolution of large-scale

structure in a universe dominated by cold dark matter. ApJ, 292, 371.

de Lapparent, V., Geller, M. J., & Huchra, J. P. (1986). A slice of the universe. ApJ, 302, L1—-L5.

de Vaucouleurs, G. (1953). Evidence for a local super,galaxy. \aj, 58, 30.

Dekel, A., Sari, R., & Ceverino, D. (2009). Formation of massive galaxies at high redshift: Cold

streams, clumpy disks, and compact spheroids. ApJ, 703(1), 785–801.

Diemand, J., Kuhlen, M., & Madau, P. (2006). Early Supersymmetric Cold Dark Matter Substruc-

ture. ApJ, 649(1), 1–13.

Doroshkevich, A., Khlopov, M., & Klypin, A. (1989). Large-scale structure of the universe in

unstable dark matter models. Monthly Notices of the Royal Astronomical Society, 239, 923–

938.

Doroshkevich, A., Kotok, E., Poliudov, A., Shandarin, S., Sigov, I., & Novikov, I. (1980). Two-

dimensional simulation of the gravitational system dynamics and formation of the large-scale

structure of the universe. Monthly Notices of the Royal Astronomical Society, 192, 321–337.

Doroshkevich, A. G. (1970). Spatial structure of perturbations and origin of galactic rotation in

fluctuation theory. Astrophysics, 6(4), 320–330.

Dressler, A. (1980). Galaxy morphology in rich clusters: Implications for the formation and evo-

lution of galaxies. ApJ, 236, 351–365.

172



Eardley, E., Peacock, J., McNaught-Roberts, T., Heymans, C., Norberg, P., Alpaslan, M., Baldry,

I., Bland-Hawthorn, J., Brough, S., Cluver, M., Driver, S., Farrow, D., Liske, J., Loveday, J., &

Robotham, A. (2015). Galaxy And Mass Assembly (GAMA): the galaxy luminosity function

within the cosmic web. Monthly Notices of the Royal Astronomical Society, 448, 3665–3678.

Eckert, D., Jauzac, M., Shan, H., Kneib, J.-P., Erben, T., Israel, H., Jullo, E., Klein, M., Massey,

R., Richard, J., & Tchernin, C. (2015). Warm-hot baryons comprise 5-10 per cent of filaments

in the cosmic web. Nature, 528, 105–107.

Einasto, J., Klypin, A., Saar, E., & Shandarin, S. F. (1984). Structure of cuperclusters. Monthly

Notices of the Royal Astronomical Society, 206, 529–558.

Eisenstein, D. J. & Hu, W. (1998). Baryonic Features in the Matter Transfer Function. ApJ, 496,

605.

Eisenstein, D. J. & Hut, P. (1998). HOP: A New Group-finding Algorithm for N-Body Simulations.

ApJ, 498(1), 137–142.

Eisenstein, D. J. & Loeb, A. (1995). An analytical model for the triaxial collapse of cosmological

perturbations. ApJ, 439, 520.

Elahi, P. J., Han, J., Lux, H., Ascasibar, Y., Behroozi, P., Knebe, A., Muldrew, S. I., Onions, J.,

& Pearce, F. (2013). Streams going Notts: The tidal debris finder comparison project. Monthly

Notices of the Royal Astronomical Society, 433(2), 1537–1555.

Evrard, A. E., MacFarland, T. J., Couchman, H. M. P., Colberg, J. M., Yoshida, N., White, S. D. M.,

Jenkins, A., Frenk, C. S., Pearce, F. R., Peacock, J. A., & Thomas (The Virgo Consortium), P. A.

(2002). Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky

Survey Populations. ApJ, 573(1), 7–36.

Falck, B. & Neyrinck, M. C. (2015). The persistent percolation of single-stream voids. Monthly

Notices of the Royal Astronomical Society, 450(3), 3239–3253.

173



Falck, B. L., Neyrinck, M. C., & Szalay, A. S. (2012). Origami: Delineating Halos Using Phase-

Space Folds. ApJ, 754(2), 126.

Feldbrugge, J., van de Weygaert, R., Hidding, J., & Feldbrugge, J. (2018). Caustic Skeleton &

Cosmic Web. J. Cosmol. Astropart. Phys., 2018(05), 27.

Fillmore, J. A. & Goldreich, P. (1984). Self-similar gravitational collapse in an expanding universe.

ApJ, 281, 1.

Forero-Romero, J. E. & Gonzalez, R. E. (2014). The Local Group in the cosmic web. 45, 1–6.

Forero-Romero, J. E., Hoffman, Y., Gottlober, S., Klypin, A., & Yepes, G. (2009). A dynamical

classification of the cosmic web. Monthly Notices of the Royal Astronomical Society, 396(3),

1815–1824.

Frenk, C., White, S., Bode, P., Bond, J., Bryan, G., Cen, R., Couchman, H., Evrard, A., Gnedin,

N., Jenkins, A., Khokhlov, A., Klypin, A., Navarro, J., Norman, M., Ostriker, J., Owen, J.,

Pearce, F., Pen, U.-L., Steinmetz, M., Thomas, P., Villumsen, J., Wadsley, J., Warren, M., Xu,

G., & Yepes, G. (1999). The Santa Barbara Cluster Comparison Project: A Comparison of

Cosmological Hydrodynamics Solutions. The Astrophysical Journal, 525, 554–582.

Frenk, C. S., White, S. D. M., & Davis, M. (1983). Nonlinear evolution of large-scale structure in

the universe. ApJ, 271(Part 1), 417–430.

Frenk, C. S., White, S. D. M., Davis, M., & Efstathiou, G. (1988). The formation of dark halos in

a universe dominated by cold dark matter. ApJ, 327, 507–525.

Geller, M. J. & Huchra, J. P. (1989). Mapping the Universe. Science (80-. )., 246(4932), 897–903.

Genovese, C., Perone-Pacifico, M., Verdinelli, I., & Wasserman, L. (2010). The Geometry of

Nonparametric Filament Estimation. ArXiv e-prints.

Gill, S. P. D., Knebe, A., & Gibson, B. K. (2004). The evolution of substructure -I. A new identi-

fication method. Monthly Notices of the Royal Astronomical Society, 351(2), 399–409.

174



Giocoli, C., Tormen, G., Sheth, R. K., & van den Bosch, F. C. (2010). The substructure hierarchy

in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 404(1), 502–517.

Giovanelli, R. & Haynes, M. P. (1985). A 21 CM survey of the Pisces-Perseus supercluster. I - The

declination zone +27.5 to +33.5 degrees. Astron. J., 90(12), 2445.

Goerdt, T., Ceverino, D., Dekel, A., & Teyssier, R. (2015). Distribution of streaming rates into

high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 454, 637–648.

González, R. & Padilla, N. (2010). Automated detection of filaments in the largeâĂŘscale structure
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Appendix A

Variations in the multistream field

A second-order local variations of a scalar field f is described by a Hessian. In a three-dimensional

domain, the Hessian is given by Equation 5.1. The geometry of the scalar field is classified by

the Eigenvalues of the Hessian. The convex regions have at-most one maxima within the (3+1)-

dimensional functional space. Projection of this closed region onto three-dimensional coordinate

space also gives a closed surface in coordinate space.

We treat nstr approximately continuous, for which the Hessian is always symmetric. In this

study we use the scalar field nstr(x) inherently has discrete values like 1, 3, 5, and so on. The

equation for numerical differentiation in the off-diagonal terms using Forward-difference method

(using step-sizes of ∆xi and ∆x j along i and j respectively) is given in Equation A.1. Notice that
∂2 f
∂xi∂x j

=
∂2 f
∂x j∂xi

, since RHS in Equation A.1 remains same. Hence the Hessian matrix in Equation 5.1

for the discrete scalar field nstr is always numerically symmetric. Backward or central difference

give similar results too. Smoothing of the multistream field further reduces any numerical noise in

the Hessian eigenvalues.

∂2 f
∂xi∂x j

=
1

∆xi∆x j

[
fi+1, j+1,k − fi, j+1,k − fi+1, j,k + fi, j,k

]
(A.1)

An integer-valued function, like the multistream field, is either constant or changes by a con-

stant value in its real domain. In addition, the transitions in the multistream field are of multiples
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of 2, unless caustic surfaces are detected at the exact grid location. Consider fi, j,k = n at any grid

point. Due to the property of multistream field, the values in the neighbourhood differ by a multiple

of 2. That is, fi+1, j,k = n+2p, fi, j+1,k = n+2q, fi+1, j+1,k = n+2r, for some integers p, q and r. Thus

the second order variation of the multistream field reduces to Equation A.2.

∂2 f
∂xi∂x j

=
1

∆xi∆x j

[
2r−2p + 2q

]
(A.2)

Thus the numerical differentiation is independent of nstr itself. It’s important to note that this

behaviour of the multistream field is independent of grid size. Also, the second order variation is

a ratio of an even-number and the face area of the grid cube. The Equation A.2 becomes zero in a

trivial case of r = p = q = 0, which corresponds to regions where nstr is constant, including voids.

In the non-trivial case, r = (p + q), for non-zero r, p and q. In the multistream grid, 2(p + q) could

be considered as sum of variations in nstr in the immediate neighbouring grid points. And 2r is the

variation between next closest grid point, which is along the face-diagonal.

On the other hand, mass density fields have sharp peaks at the multistream transitions. These

peaks in the at the location of caustic are far less predictable, since the density fields become ex-

tremely noisy. For instance,Vogelsberger & White (2011) show noisy peaks of varying magnitude

at the at high resolutions of mean density near halo locations. At lower resolutions, these sharp

peaks are smoothed out, hence giving the impression of a smooth field. Hahn et al. (2015) show

similar ‘ill-behaved’ derivatives in velocity fields at the caustic locations, where the derivatives are

infinite.
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Appendix B

Hessian signatures of the multistream field

Second-order local variations of a scalar field f is described by a Hessian matrix, whose element in

a three-dimensional domain is given by Equation 5.1. The geometry of the scalar field is classified

by the Eigenvalues of the Hessian. The convex regions have at-most one maxima within the (3+1)-

dimensional functional space. Projection of this closed region onto three-dimensional coordinate

space also gives a closed surface in coordinate space. An illustration of the projection is shown

in Figure B.1 for a simpler function f (x) in one-dimensional domain. The eigenvalue criteria for

regions are simplified: for instance, ∂2 f
∂x2 < 0 for convex region. Projection of these regions onto

coordinate space is shown in the shaded regions. This is different from regions within a contour,

which is the projection of the curve along which the function has a constant value. Boundaries of

these two regions may, but not necessarily, intersect.

In the case of cosmic fields, thresholds like ∆vir are equivalent to the green dotted line in

Figure B.1. The over-dense regions (green shaded regions) are not constrained to be convex.

Similarly structures selected based on nstr thresholds do not universally result in convex structures

either. Local geometry can be probed from the eigenvalue criteria instead, as shown by the red line

on the curve and corresponding shaded area. The projected structures, albeit convex, may have

very small values of f (x) (like the red shaded area around x = 5). In the framework of identifying

potential haloes in multistream field, multistream thresholds are devised in so that some of these
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Figure B.1: Projections of regions of f (x) from (1+1)-dimensional function space onto one-
dimensional coordinate space. Convex regions and regions above a threshold of an arbitrary func-
tion f (x) are shown. Both the regions intersect around a few maxima, but not universally.

small peaks detected by the Hessian are not considered as potential halo sites.
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