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Abstract

In this thesis we study the interplay between various combinatorial, algebraic, and

topological properties of simplicial complexes. We focus on when these properties

imply the existence of decompositions of the face poset. In Chapter 2, we present the

counterexample to Stanley’s partitionability conjecture that appeared in [DGKM16], we

give a characterization of the h-vectors of Cohen–Macaulay relative complexes, and we

construct a family of disconnected partitionable complexes.

In Chapter 3, we introduce colorated cohomology, which aims to combine the

theories of color shifting and iterated homology. Colorated cohomology gives rise

to certain decompositions of balanced complexes that preserve the balanced structure.

We give conditions that would guarantee the existence of a weaker form of Stanley’s

partitionability conjecture for balanced Cohen–Macaulay complexes.

We consider Stanley’s conjecture on k-fold acyclic complexes in Chapter 4, and

we show that a relaxation of this conjecture holds in general. We also show that the

conjecture holds in the case when k is the dimension of a given complex, and we present

a framework that may lead to a counterexample to the original version of this conjecture.
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Introduction

Simplicial complexes arise naturally in many fields of mathematics. In topology, when

considering a topological space X , it is often easier to find a simplicial complex ∆

whose geometric realization is homeomorphic to X and perform computations with

it, rather than working with X directly. In algebra, simplicial complexes correspond

precisely to square-free monomial ideals of polynomial rings, which have proved useful

in studying homogeneous ideals in general. In combinatorics, simplicial complexes

occupy a central place in the literature—arising as higher dimensional analogues of

simple graphs and as order complexes in the study of posets—and have proved worthy

of study in their own right.

The central theme of this thesis is the interplay between topological, algebraic, and

combinatorial aspects of simplicial complexes. Work in this direction traces back to at

least the 1970s, when Richard Stanley, Melvin Hochster, and Gerald Reisner laid the

groundwork of Stanley-Reisner theory and combinatorial commutative algebra; see, for

example, [Hoc72], [Rei76], [Hoc77], and [Sta77]. In 1975, Stanley used the theory of

Cohen–Macaulay rings to prove the Upper Bound Conjecture for simplicial spheres in

[Sta75], solidifying the idea that complexes with Cohen–Macaulay face rings were a

particularly important class of simplicial complexes. In the years since, combinatorial

commutative algebra has developed into a major modern field; see, for example, [BH93],

[Sta96], [MS05], and [FMS14].

1



We will be particularly interested in how various combinatorial, algebraic, and

topological properties imply the existence of certain decompositions of the face poset of

a simplicial complex. In 1979, Stanley conjectured in [Sta79] that any simplicial complex

with a Cohen–Macaulay face ring could be written as the disjoint union of boolean

intervals whose maximal elements were themselves maximal faces of the simplicial

complex. Such a decomposition is known as a partitioning, and complexes that admit

partitionings are said to be partitionable. This conjecture was recently shown to be

false by Art Duval, Caroline Klivans, Jeremy Martin, and the author in [DGKM16],

but related decomposition conjectures remain open. In 1980, Garsia conjectured in

[Gar80] that Cohen–Macaulay complexes arising as order complexes of posets were

partitionable. In 1993, Stanley conjectured in [Sta93] that complexes with well-behaved

links have decompositions into boolean intervals of appropriate sizes. The majority of

this thesis is work motivated by these conjectures.

Chapter 1 presents the fundamentals of simplicial complexes and Stanley-Reisner

theory. We introduce many well-studied properties of simplicial complexes and survey

known results relating to these properties. We also summarize several common tech-

niques used in the study of simplicial complexes, such as Hochster’s Theorem, algebraic

shifting, and iterated homology.

Chapter 2 covers work arising from the aforementioned conjectures and includes

overviews of joint projects with connections to the rest of the thesis. In particular, we

present brief sections on the counterexample to Stanley’s partitionability conjecture

(based on joint work with Art Duval, Caroline Klivans, and Jeremy Martin) and partition

extenders (based on joint work with Joseph Doolittle and Alexander Lazar). We also

include some additional work on partitionability and relative simplicial complexes.

Chapter 3 focuses on decompositions of balanced simplicial complexes. We in-

troduce the notion of colorated cohomology, which aims to combine the theories of
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color shifting, introduced by Eric Babson and Isabella Novik in [BN06], and iterated

homology, introduced by Art Duval and Lauren Rose in [DR00]. Art Duval and Ping

Zhang showed in [DZ01] that iterated homology provides a way to decompose simplicial

complexes into boolean trees, a weaker analogue of boolean intervals. We show that

colorated cohomology gives rise to boolean trees that preserve a balanced structure, and

we present open questions on decompositions of balanced Cohen–Macaulay complexes.

In Chapter 4, we investigate Stanley’s conjecture on decompositions of k-fold acyclic

complexes. We show that k-fold acyclicity imposes additional structure on the face ring

and show that the conjecture holds in the case when k = dim∆. We also show that a

relaxation of this conjecture holds for all k, and we present a general construction that

may provide a counterexample to Stanley’s original conjecture.
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Chapter 1

Background

1.1 Basic definitions

Simplicial Complexes

The main objects we will study in this thesis are simplicial complexes, which can be

thought of as higher dimensional analogues of simple graphs from graph theory. The

following chapter presents background material; references throughout are [BH93],

[Mar17], [Sta96], and [Sta12].

Definition 1.1.1. Given a set [n] = {1,2, . . . ,n}, an abstract simplicial complex on [n]

is ∆⊆ 2[n] such that σ ∈∆ and τ ⊆ σ =⇒ τ ∈∆. In other words, ∆ is closed under

taking subsets.

If σ ∈∆, we call σ a face of ∆. Maximal faces are called facets. If F1, . . . ,Fk are

the facets of ∆, we often write ∆ = 〈F1, . . . ,Fk〉, that is, ∆ is the complex generated by

the facets F1, . . . ,Fk. The dimension of a face σ is defined as dimσ = |σ|−1, and the

dimension of ∆ is dim∆ = max{dimσ : σ ∈∆}. A simplicial complex is said to be

pure if all its facets have the same dimension. We call 0-dimensional faces vertices,

1-dimensional faces edges, 2-dimensional faces triangles, and so on. If there exists a
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facet F such that σ ⊆ F and dimσ = dimF − 1, then σ is a ridge; if ∆ is pure then

a ridge is just a face of codimension 1. If dim∆≤ 1, then ∆ is a simple graph in the

graph-theoretic sense.

Note in particular that ∅ ∈∆ for all simplicial complexes except for the complex

∆ = ∅, which is called the void complex. We will often want to distinguish between the

void complex and the complex whose only face is the empty set, that is ∆ = {∅}, which

is known as the irrelevant complex. Note that dim{∅}=−1; we will set dim∅=−∞.

Unless otherwise specified, we will adopt the convention throughout that dim∆ = d−1,

thus each facet has at most d vertices.

The f -vector of a simplicial complex ∆ is f(∆) = (f−1,f0, . . . ,fd−1) where fi =

|{σ ∈∆ : dimσ = i}|, the number of i-dimensional faces of ∆. The h-vector is

h(∆) = (h0,h1, . . . ,hd), where the entries are defined by

hk =
k∑
i=0

(−1)i−k
(
d− i
k− i

)
fi−1. (1.1.1)

In other words, the h-vector can be obtained from an invertible linear transformation of

the f -vector. Thus the f -vector of a complex completely determines its h-vector and

vice versa.

We may also consider polynomials that encode the same information. We define the

f -polynomial of ∆ to be

f(∆, t) =
∑
σ∈∆

t|σ| = f−1 +f0t+f1t
2 + · · ·+fd−1t

d (1.1.2)

We may also define the h-polynomial as

h(∆, t) = (1− t)df
(

t

1− t

)
= h0 +h1t+ · · ·+hdt

d (1.1.3)
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with the second equality given by (1.1.1). We note that fi−1 is the coefficient of ti in the

f -polynomial, but hi is the coefficient of ti in the h-polynomial.

If Γ is a simplicial complex and every face of Γ is a face of ∆, then we say that Γ

is a subcomplex of ∆, denoted Γ⊆∆. A subcomplex Γ is proper if there exists some

σ ∈∆ such that σ 6∈ Γ. Given W ⊆ [n], we can define the induced subcomplex of ∆

on W as ∆W = {σ ∈∆ : σ ⊆W} .

Given a face σ ∈∆, its link (with respect to ∆) is

link∆σ = {τ ∈∆ : τ ∪σ ∈∆ and τ ∩σ = ∅}

which we will often denote simply as linkσ. The star of σ is star∆σ= {τ ∈∆ | τ ∪σ ∈∆}.

It is easy to see that link∆σ ⊆ star∆σ ⊆∆ as subcomplexes. Another subcomplex of

note is the i-skeleton of ∆, defined as skeli∆ = {σ ∈∆ : dimσ ≤ i}.

If ∆ and Γ are disjoint simplicial complexes, their join is the complex ∆ ?Γ =

{σ∪ τ : σ ∈∆ and τ ∈ Γ} . If ∆ has a single facet σ (i.e. ∆ is a simplex), then we

often write the join as σ ?Γ. If σ is a vertex, we say σ ?Γ is the cone of Γ; if |σ|= k we

say that σ ?Γ is the k-fold cone of Γ. We note that starσ = σ ? linkσ.

We now turn our attention to the geometric realizations of simplicial complexes. A

set C ⊆ Rn is convex if a,b ∈ C implies that at+ (1− t)b ∈ C for all t ∈ [0,1], i.e. the

line segment from a to b is contained entirely within C. Given a set S ⊆ Rn, the convex

hull of S, denoted conv(S), is defined to be the smallest convex set containing S. Given

a simplicial complex ∆, we denote its geometric realization as |∆|. If ∆⊆ 2[n], then

|∆| lives naturally in Rn−1: To create |∆|, place the vertices of ∆ in general position.

Then we may define |∆|=
⋃
σ∈∆ conv(σ). If X is a topological space, then we say that

∆ is a triangulation of X if |∆| is homeomorphic to X . Where there is no possibility
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of confusion, we will often refer to an abstract simplicial complex ∆ and its geometric

realization |∆| as the same object.

Posets

Definition 1.1.2. A poset (P,≤) is a set P together with a relation ≤ that satisfies the

following three properties for all x,y,z ∈ P :

1. x≤ x.

2. If x≤ y and y ≤ x, then x= y.

3. If x≤ y and y ≤ z, then x≤ z.

We will occasionally use the notation x < y to mean that x≤ y and x 6= y, and we

will often shorten the notation of a poset to P when the relation is unambiguous. If x< y

and there is no z ∈ P such that x < z < y, then we say that y covers x, often denoted

xl y. We say that x and y are incomparable if neither x≤ y nor y ≤ x. Perhaps the

most natural example of a poset is the Boolean poset (2[n],⊆). For more information

on posets, see for example [Sta12] for a general introduction; we note here only a few

important properties of these objects. A poset is bounded if it has a unique minimal

element 0̂ and a unique maximal element 1̂, i.e. for all x ∈ P , 0̂≤ x≤ 1̂. In our example

(2[n],⊆), we see that 0̂ = ∅ and 1̂ = [n].

A finite poset is said to be ranked if there is a rank function r : P → N such that if

xl y, then r(x) = r(y)− 1. In our running example, if S ∈ 2[n] then r(S) = |S|, and

SlT if S ⊆ T and |T \S|= 1. Some sources use the term graded instead of ranked,

but for our purposes these terms will be interchangeable.

Given a poset (P,≤P ), we say that (Q,≤Q) is a subposet of P if Q ⊆ P and Q

inherits its order relation from P . An order ideal of P is a subposet Q with the property
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that x ∈Q implies y ∈Q for all y ≤ x. Similarly, an order filter is a subposet Q with

the property that x ∈Q implies y ∈Q for all x≤ y. A chain C is a subposet of P such

that for all x,y ∈ C, either x ≤ y or y ≤ x (i.e., C is totally ordered). An antichain

is a subset of P with the property that all of its elements are incomparable. Given

a,b ∈ P , the (closed) interval [a,b] is defined as [a,b] = {c ∈ P : a≤ c≤ b}. If [a,b]

is isomorphic to (2[k],⊆) for some k ∈ Z≥0, then [a,b] is a boolean interval of rank k.

Returning to simplicial complexes, we can alternatively think of a simplicial complex

on the vertex set [n] as an order ideal in the boolean lattice (2[n],⊆). In particular, given

a simplicial complex ∆, we can consider the poset P (∆) = (∆,⊆), known as the face

poset of ∆. In this thesis, we will primarily be considering decompositions of the face

poset of a simplicial complex into boolean intervals.

We can represent a poset P using its Hasse diagram, the graph with a vertex for

each element of P and an edge between x and y if xly, oriented so that x is below y

on the page. For example, here is the Hasse diagram for (2[3],⊆), which is also the face

poset of the simplicial complex ∆ = 〈123〉 (abbreviating {1,2,3} as 123, etc.).

123

12 13 23

1 2 3

∅

Given a poset P , we define its order complex O(P ) to be

O(P ) = {σ : σ = {x1 ≤ ·· · ≤ x`} where xi ∈ P}

8



In other words,O(P ) is the simplicial complex whose faces are chains of P . Given a sim-

plicial complex, the barycentric subdivision of ∆ is defined as sd(∆) =O (P (∆\{∅})).

It is known that sd(∆) is homeomorphic to ∆.

1.2 Simplicial homology

For most topological notions, we direct the reader to [Hat02] for general reference, but

we will briefly overview the idea of simplicial homology and highlight a few particularly

useful topological tools that will be used throughout this thesis.

As throughout the rest of this document, we will fix a field k over which we will

perform all calculations. Let ∆ be a (d− 1)-dimensional simplicial complex ∆. For

−1≤ k ≤ d−1, define Ck(∆) to be the kth simplicial chain group, the formal sum of

k-simplices (i.e. k-faces) of ∆ with coefficients in k. Given a k-simplex σ = [v0, . . . ,vk]

with v0 ≤ ·· · ≤ vk (for some fixed order on the n vertices of ∆), then we define the

simplicial boundary map ∂k : Ck→ Ck−1 as

∂k[σ] =
∑
i∈[n]

(−1)i[v0, . . . , v̂i, . . . ,vk]

where the hat denotes removal, and extend this linearly to Ck. We then form the

simplicial chain complex

0→ Cd−1(∆)
∂d−1−−−→ Cd−2(∆)

∂d−2−−−→ . . .
∂1−→ C0(∆)

∂0−→ C−1(∆)→ 0. (1.2.1)

It is a standard exercise that ∂k ◦∂k+1 = 0, i.e. im∂k+1 ⊆ ker∂k and thus these groups

and the maps ∂ together form what is known as a chain complex.
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We then define the kth reduced simplicial homology group of ∆ over k as

H̃k(∆) = H̃k(∆;k) = ker∂k/ im∂k+1.

These homology groups are important topological invariants that only depend on the

homotopy type of the geometric realization |∆|. The kth homology group can be thought

of as counting the k-dimensional “holes” of |∆|. Considering these groups as vector

spaces over k, we say that the kth (reduced) Betti number of ∆ is β̃k = dimk H̃k(∆),

the vector space dimension of H̃k(∆). For example, β̃0 is one less than the number

of connected components of ∆. We say that ∆ is acyclic (over k) if all of its reduced

homology groups vanish.

The following is a well-known fact that follows from basic linear algebra.

Proposition 1.2.1 (Euler-Poincaré Formula). Let ∆ be a simplicial complex, f(∆) be

its f -vector, and β̃k be the reduced Betti numbers of ∆. Then

∑
i≥−1

(−1)ifi =
∑
k≥0

β̃k

regardless of the field k chosen for homology calculations.

One corollary of Proposition 1.2.1 is that if ∆ is acyclic over some field, then its

f -polynomial factors as f(∆, t) = (1 + t)g(t) where g(t) is some other polynomial.

In [Sta93], Stanley showed, via an explicit construction, that this g(t) is in fact the

f -polynomial of some subcomplex ∆′ ⊆ ∆. Chapter 4 is focused on extending this

result to a more general version of acyclicity.

One topological tool that will appear often in this thesis is the Mayer-Vietoris se-

quence, which relates the homology of a complex to the homology of two subcomplexes

and their intersection. While this holds for spaces in more generality, we will state it
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only in the form that we need for simplicial complexes. We first define a key term: If a

chain complex such as (1.2.1) above has the property that im∂k+1 = ker∂k for each k,

then it is said to be an exact sequence.

Theorem 1.2.2 (Mayer-Vietoris Sequence). [Hat02, p. 149]

Let ∆,Γ be nonempty simplicial complexes. Then the chain complex

· · · → H̃i+1(∆∪Γ)→ H̃i(∆∩Γ)→ H̃i(∆)⊕ H̃i(Γ)→ H̃i(∆∪Γ)→ . . .

is an exact sequence.

We will often be able to decompose a complex ∆ into subcomplexes ∆1 and ∆2

such that the homology groups of ∆1, ∆2, and ∆1∩∆2 are easy to describe, and the

Mayer-Vietoris sequence will then allow us to compute the homology of ∆.

Given simplicial complexes Γ⊆∆, we can form the chain complexes for Γ and ∆

as in 1.2.1, and then define the relative chain groups Ck(∆,Γ) as

Ck(∆,Γ) =
Ck(∆)

Ck(Γ)
.

The chain maps ∂ : Ck(∆)→ Ck−1(∆) take k-chains in Γ to (k−1)-chains in Γ, so the

quotient map ∂ : Ck(∆,Γ)→ Ck−1(∆,Γ) is well-defined and a chain map. Thus we get

the chain complex

0→Cd−1(∆,Γ)
∂d−1−−−→Cd−2(∆,Γ)

∂d−2−−−→ . . .
∂1−→C0(∆,Γ)

∂0−→C−1(∆,Γ)→ 0 (1.2.2)

from which we define the (reduced) relative simplicial homology groups H̃k(∆,Γ) =

ker∂k/ im∂k+1.
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A frequent tool in relative homology will be the following long exact sequence in

relative homology.

Proposition 1.2.3 (Long Exact Sequence in Relative Homology). [Hat02, p. 115]

Let Γ⊆∆ be simplicial complexes. Then

· · · → H̃i+1(∆,Γ)→ H̃i(Γ)→ H̃i(∆)→ H̃i(∆,Γ)→ . . .

is an exact sequence.

It is worth noting the similarity between Proposition 1.2.3 and the Mayer-Vietoris

sequence in Theorem 1.2.2. We will often strive to reduce questions about simplicial

complexes to questions about the pair (∆,Γ), which is known as a relative complex

and will be discussed in more detail in Section 1.5.

There is a dual notion of simplicial homology called simplicial cohomology. For our

purposes, it is formed using the same simplicial chain groups as for simplicial homology.

Thinking of the original simplicial boundary maps ∂k : Ck → Ck−1 as matrices, we

take the dual maps ∂∗k : Ck−1→ Ck to be the transpose of these matrices. Then the kth

simplicial cohomology group of ∆ is

H̃k(∆) = ker∂∗k+1/∂
∗
k.

Due to the universal coefficient theorem, since we are computing these groups over a

field k, it turns out that

H̃k(∆)∼= H̃k(∆)

for all k. However, it will sometimes be more useful to use a cohomological approach;

see, for example, Sections 1.6, 1.7, and 3.3.
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1.3 Shellability, constructibility, and partitionability

Shellability, constructibility, and partitionability are three properties of simplicial com-

plexes that can be defined entirely combinatorially. Shellability has been studied exten-

sively, while the other two are less well known. In this thesis we will focus primarily

on partitionability and various related decompositions of the face poset of a simplicial

complex, though shellability in particular will appear frequently, since any shellable

complex is also partitionable.

Definition 1.3.1. A simplicial complex ∆ is said to be shellable if its facets can be

ordered F1, . . . ,Fk such that either of the following equivalent statements is true:

1. 〈F1, . . . ,Fi−1〉∩ 〈Fi〉 is pure of dimension dim(Fi)−1 for 2≤ i≤ k.

2. 〈Fi〉 \ 〈F1, . . . ,Fi−1〉 has a unique minimal face (often denoted Ri and called a

restriction face) for 2≤ i≤ k.

This order of the facets is known as a shelling order (or simply shelling) of ∆. It

is an easy exercise to show that the two above criteria are equivalent. Shellability was

originally only considered for pure complexes but was extended to nonpure complexes

by Björner and Wachs in [BW96] and [BW97]. The definitions given above do not

require that ∆ be pure, and we assume throughout that shellability does not assume

purity unless otherwise noted.

If ∆ has k facets and j < k, we say that a partial shelling of ∆ is an order F1, . . . ,Fj

on j of the facets that meets the criteria of Definition 1.3.1. If every partial shelling

of ∆ can be extended to a (complete) shelling of ∆, then ∆ is said to be extendably

shellable. In this case, for each facet F of ∆, there is some shelling in which F is the

first facet in the shelling order. It is computationally difficult to check in general whether
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a complex ∆ is shellable, but if ∆ is extendably shellable, then a greedy algorithm will

suffice.

Proposition 1.3.2. [BW96, Theorem 4.1] If ∆ is shellable, then ∆ is homotopy equiva-

lent to a wedge of spheres which are indexed by the h-triangle of ∆ (a nonpure analogue

of the h-vector). In particular, if ∆ is pure and shellable of dimension d−1, then ∆ is

homotopy equivalent to a wedge of (d−1)-dimensional spheres.

Furthermore, the restriction faces of a shellable complex ∆ that are themselves facets

give bases of the homology groups of ∆ [BW96, Corollary 4.4]. Proposition 1.3.2 also

implies that if ∆ is pure and shellable, then ∆ only has top-dimensional homology.

Constructibility is a generalization of pure shellability and was introduced by

Hochster in [Hoc72]. While in a shelling, we only add one facet at the time, con-

structibility extends this notion to adding a subcomplex that itself is constructible.

Definition 1.3.3. A pure (d−1)-dimensional complex ∆ is constructible if one of the

following is true:

1. ∆ is a simplex.

2. ∆ = ∆1∪∆2 where ∆1, ∆2 are (d−1)-dimensional constructible complexes and

∆1∩∆2 is a (d−2)-dimensional constructible complex.

Shellable complexes are easily seen to be constructible (let ∆2 be a single facet each

time in the definition above to recover a shelling), but the converse is not true in general.

However, in low enough dimension, these notions are equivalent. If dim∆ = 0, then ∆

is vacuously both shellable and constructible.

Proposition 1.3.4. If ∆ is pure and dim∆ = 1, then the following are equivalent:

1. ∆ is shellable.
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2. ∆ is constructible.

3. ∆ is connected.

However, when dim∆ = 2 there are already many known examples of complexes

that are constructible but not shellable. A particularly good reference on constructible

complexes—which contains several such examples—is Masahiro Hachimori’s PhD

thesis [Hac00a]. Another resource that lists several interesting examples is Hachimori’s

“Simplicial Complex Library” [Hac01].

The decomposition property that we will focus on in this thesis is partitionability,

which is even less well-studied than constructibility. Partitionability was first introduced

and initially studied in the context of probability and operations research in [Bal77],

[Pro77], [BN79], and [BP82].

Definition 1.3.5. A simplicial complex ∆ with facets F1, . . . ,Fk is partitionable if it

can be written as

∆ =
⊔
i∈[k]

[Ri,Fi]

the disjoint union of boolean intervals whose maximal elements are facets of ∆. Such a

decomposition is known as a partitioning, and the Ri are the restriction faces of the

partitioning.

It is immediate that shellability implies partitionability; a shelling in the sense of

Definition 1.3.1 (2) is a partitioning. However, there is no order imposed on the facets in

a partitioning, and shellability is in fact a much stronger condition, even in dimension 1.

For example, consider the following:

Example 1.3.6. The complex ∆ = 〈12,23,13,45〉 is a disconnected graph, but it can be

partitioned ∆ = [1,12]t [2,23]t [3,13]t [∅,45].
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In Section 2.4, we will provide some additional examples of partitionable complexes

that are not shellable.

For many years it was not known whether constructibility implied partitionability.

However, due to recent work of Art Duval, Caroline Klivans, Jeremy Martin, and the

author [DGKM16], it is now known that there exist constructible complexes that are not

partitionable. An explicit example is discussed in Section 2.1.

A strong motivation to study partitionability of simplicial complexes is the follow-

ing result, which interprets the h-vector of a pure simplicial complex in terms of a

partitioning (if one exists).

Proposition 1.3.7. [Sta96, Proposition III.2.3] Let ∆ be a pure simplicial complex with

a partitioning
⊔

[Ri,Fi], and let h(∆) = (h0,h1, . . . ,hd) be the h-vector of ∆. Then

hj = |{Ri : |Ri|= j}| .

In other words, the hj count the number of restriction faces of size j in any partitioning

of ∆.

As for many results that we will state for pure complexes, Björner and Wachs have

proved a similar statement in [BW96] for nonpure complexes and the h-triangle.

As we will note in Section 2.1, many classes of simplicial complexes (including

shellable and constructible complexes) have particularly well-behaved h-vectors, raising

the question of whether these complexes are partitionable. In Section 1.7, we will also

see that Proposition 1.3.7 has an extension to a weaker type of decomposition, so we

may ask similar questions even for non-partitionable complexes.

If the h-vector of a simplicial complex ∆ has any negative entries, then Proposition

1.3.7 immediately implies that ∆ is not partitionable. However, the converse is not

true (see, for example, Proposition 2.1.8). To the best of our knowledge, it is unknown
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whether partitionability places any additional restrictions on the h-vector other than

non-negativity.

For non-partitionable complexes, a combinatorial interpretation of the h-vector is

less apparent. One possible approach uses partition extenders, introduced in the author’s

joint work with Joseph Doolittle and Alexander Lazar [DGL18]. We show that the

h-vector of any pure simplicial complex can be written as the difference of an h-vector

of a partitionable simplicial complex and the h-vector of a partitionable relative complex

in a natural way. More details will be presented in Section 2.5.

1.4 Stanley-Reisner rings

An important algebraic object associated with a simplicial complex is its Stanley-Reisner

ring (or face ring).

Definition 1.4.1. Let k be a field. If ∆ is a simplicial complex on [n], then its Stanley-

Reisner ideal is I∆ =
〈∏

i∈σ xi : σ 6∈∆
〉
⊆ k[x1, . . . ,xn], the ideal generated by non-

faces of ∆. Its Stanley-Reisner ring k[∆] is defined as

k[∆] =
k[x1, . . . ,xn]

I∆
.

If σ 6∈∆ and τ ∈∆ for all τ ( σ, then we call σ a missing face (or minimal non-

face) of ∆. We note that I∆ is generated by monomials corresponding to the missing

faces of ∆. If all missing faces of ∆ have cardinality 2, then ∆ is said to be flag. Order

complexes are easily shown to be flag, so in particular if ∆ = sd(Γ) for some simplicial

complex Γ, then ∆ is flag.

A k-algebra R is graded if it admits a decomposition R =
⊕

i≥0Ri as k-vector

spaces and RiRj ⊆ Ri+j . It is Z`-graded if R =
⊕

α∈Z`Rα and RαRβ ⊆ Rα+β .
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Stanley-Reisner rings are graded, with k[∆]i being the k-span of monomials of de-

gree i. The Hilbert series of a Z`-graded k-algebra R is defined as

Hilb(R,t) =
∑
α∈Z`

dimk (Rα) tα

where tα = tα1
1 . . . tα`

` . The following fact along with Proposition 1.3.7 motivates many

of the decomposition conjectures and theorems considered in this thesis.

Proposition 1.4.2. [Sta96, Theorem II.1.4] Let ∆ be a (d−1)-dimensional simplicial

complex. Then the Hilbert series of k[∆] can be written

Hilb(k[∆], t) =
h(∆, t)

(1− t)d

where h(∆, t) is the h-polynomial, defined in (1.1.3).

Proposition 1.4.2 naturally leads one to ask: If the Stanley-Reisner ring of a complex

has well-behaved structure (in particular, something that controls its Hilbert series),

does the complex have a partitioning? The most famous question in this form is due

to Stanley, who asked whether complexes with Cohen–Macaulay face rings are always

partitionable. This question was answered in the negative in the author’s joint work

with Art Duval, Caroline Klivans, and Jeremy Martin in [DGKM16], and the explicit

counterexample is described in Section 2.1 of this thesis. Before discussing this further,

we will present more algebraic background.

The (Krull) dimension of a ring R is the maximum length of a chain of prime

ideals in R. We call θ1, . . . , θm ∈ R a regular sequence if θi is a non-zerodivisor of

R/(θ1, . . . , θi−1)R for all i= 2, . . . ,m. The depth ofR is the length of the longest regular

sequence in R. It is always the case that depthR≤ dimR, and R is said to be Cohen–

Macaulay (or simply CM) if depthR = dimR. A simplicial complex whose face ring
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is CM is called simply a Cohen–Macaulay complex (this can depend on the choice of

k). There are many characterizations of depth, dimension, and Cohen–Macaulayness for

Stanley-Reisner rings, and we will survey a few below.

Proposition 1.4.3. [Sta96, Theorem II.1.3] If ∆ is a simplicial complex, then dimk[∆] =

dim∆ + 1. In other words, the dimension of the Stanley-Reisner ring is the cardinality

of the largest facet.

Returning to Proposition 1.4.2, we note that the power of (1− t) in the denominator

of the Hilbert series is in fact the dimension of the ring. One particularly succinct way of

encoding the depth and dimension of a ring is by using local cohomology modules. While

we will not define them here, a worthwhile introduction to local cohomology modules is

[ILL+07]. We will often use the following central result on local cohomology.

Proposition 1.4.4. [Sta96, Theorem I.6.3] Let R be a graded commutative ring and

Hi
m(R) its ith local cohomology module where m=

⊕
i>0Ri =R+ the irrelevant ideal.

Then depthR = min
{
i : Hi

m(R) 6= 0
}

and dimR = max
{
i : Hi

m(R) 6= 0
}

.

Proposition 1.4.4 implies that R is Cohen–Macaulay exactly when all but one of its

local cohomology modules vanish.

There is an especially useful result due to Hochster (see, for example, [Sta96,

Theorem II.4.1]) that relates the Hilbert series of local cohomology modules of a

Stanley-Reisner ring k[∆] to the simplicial homology of the links of faces of ∆.

Theorem 1.4.5. [Sta96, Theorem II.4.1, due to Hochster (unpublished)] Let ∆ be a

complex on [n] and let Hi
m(k[∆]) be the ith local cohomology module of k[∆]. Then

the Zn-graded Hilbert series of Hi
m(k[∆]) can be written

Hilb
(
Hi
m (k[∆]) , t1, . . . , tn

)
=
∑
σ∈∆

dimk H̃i−|σ|−1 (link∆σ;k)
∏
j∈σ

t−1
j

1− t−1
j
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where H̃i (X;k) denotes the ith reduced simplicial homology of X computed over k.

Hochster’s theorem provides a powerful way to compute the depth of a Stanley-

Reisner ring in terms of links of faces of ∆. An especially well-known consequence is

the following characterization of Cohen–Macaulay complexes due to Reisner.

Theorem 1.4.6 (Reisner’s Criterion, [Rei76]). The Stanley-Reisner ring k[∆] is Cohen–

Macaulay if and only if

H̃i(link∆σ;k) = 0

for all σ ∈∆ and for all i < dim(link∆σ).

One immediate consequence of Reisner’s Criterion is a relationship between several

of the decomposition properties discussed in Section 1.3 and Cohen–Macaulayness. A

quick proof of this result relies on a Mayer-Vietoris sequence, which is discussed briefly

in Section 1.2.

Theorem 1.4.7. Let ∆ be a simplicial complex. The following implications are always

true.

∆ is pure shellable =⇒ ∆ is constructible =⇒ ∆ is CM over any field

Each of these implications is strict in dimensions ≥ 2.

In dimension one being CM is equivalent to being connected, so Proposition 1.3.4

can be extended to include CM-ness in this list of equivalences. Furthermore, Munkres

showed in [Mun84] that Cohen–Macaulayness is topological, i.e., it depends only on the

geometric realization (and the field k) and not any particular triangulation. While we

often focus on the CM case, we are also interested in measuring the depth of a complex

(i.e., the depth of its face ring) in general. This is a more nuanced question than that
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of the dimension of the face ring, and there are several ways of approaching it. The

following formula is an extension of Reisner’s criterion.

Proposition 1.4.8. [Sta96, Exercise 34] Let ∆ be a simplicial complex and k[∆] its

Stanley-Reisner ring. Then

depthk[∆] = max{i : skeli∆ is CM}+ 1

where skeli∆ is the i-skeleton of ∆.

Another combinatorial way of studying depth was recently introduced in the author’s

joint work with Hailong Dao, Joseph Doolittle, Ken Duna, Brent Holmes, and Justin

Lyle in [DDD+17]. In this preprint, we define a generalization of the well-known nerve

complex as follows.

Definition 1.4.9. Given a simplicial complex ∆ with facets F1, . . . ,Fk, the jth nerve of

∆ is

Nj(∆) = {{Fi} : |∩Fi| ≥ j}

a simplicial complex whose vertices correspond to facets of ∆ with cardinality greater

than or equal to j. When n = 1, this recovers the classical nerve complex; see, for

example [Bor48], [Grü70], and [Bjö95].

The nerve complex has been studied extensively, and in particular is known to be

homotopy equivalent to ∆. This is not true forNj(∆) in general; rather, these complexes

are homotopy equivalent to certain order complexes coming from subposets of the face

poset of ∆. One result on higher nerves that will be useful in Chapter 4 is the following

theorem from [DDD+17].
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Theorem 1.4.10. [DDD+17, Theorem 5.2] Let ∆ be a simplicial complex and k[∆] its

Stanley-Reisner ring. Then

depthk[∆] = min
{
i+ j : H̃i(Nj(∆)) 6= 0

}
.

1.5 Relative simplicial complexes

Given simplicial complexes Γ ⊆ ∆, we define the relative (simplicial) complex as

Θ = (∆,Γ), a relative pair in the sense mentioned in Section 1.2. The face poset of a

relative complex is Θ = (∆,Γ) = ∆ \Γ, i.e. all faces of ∆ that are not in Γ. We will

be interested in relative complexes primarily because many questions about simplicial

complexes can be reduced to questions on relative complexes, but also because relative

complexes have proved worthy of study in their own right. Furthermore, relative

complexes are a more general class of objects, since any simplicial complex can be

written as ∆ = (∆,∅) . We will refer to these relative complexes as absolute. (We note

that this is distinct from the relative complex Θ = (∆,{∅}), the set of all faces of ∆

except for the empty face.)

Many properties of simplicial complexes can be defined similarly for relative com-

plexes. For example, the definitions of f - and h-vectors, dimension, purity, and parti-

tionability are the same for relative complexes as for simplicial complexes. Similarly,

there are analogous definitions for relative shellability and relative Cohen–Macaulayness.

The analogue of the Stanley-Reisner ring in the relative setting is the Stanley-Reisner

module IΘ ⊆ k[∆], defined as

IΘ =

〈∏
i∈σ

xi : σ ∈∆\Γ

〉
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which can be regarded as a module over k[∆] or over k[x1, . . . ,xn]. A relative complex

Θ is Cohen–Macaulay if IΘ is a Cohen–Macaulay module over k[∆]. Versions of

Hochster’s Theorem and Reisner’s Criterion hold for relative complexes as well:

Theorem 1.5.1. [AS16, Theorem 1.8] Let Θ = (∆,Γ) be a relative complex on [n],

and let IΘ be its Stanley-Reisner module in k[∆], and let Hi
m(IΘ) be the ith local

cohomology module of IΘ. Then the Zn-graded Hilbert series of Hi
m(IΘ) can be written

as

Hilb
(
Hi
m (IΘ) , t1, . . . , tn

)
=
∑
σ∈∆

dimk H̃i−|σ|−1 (linkΘσ;k)
∏
j∈σ

t−1
j

1− t−1
j

where linkΘσ = (link∆σ, linkΓσ) is the relative link of σ in Θ.

Theorem 1.5.2. [Sta87, Theorem 5.3] Let Θ = (∆,Γ). The Stanley-Reisner module IΘ

is Cohen–Macaulay over k if and only if

H̃i(linkΘσ;k) = 0

for all σ ∈∆ and for all i < dim(link∆σ).

More will be said about Cohen–Macaulay relative complexes in Chapter 2, particu-

larly in Section 2.3.

1.6 Algebraic shifting

In [Kal01], Kalai introduced algebraic shifting, a way to transform a given simplicial

complex ∆ into a related complex S(∆) that is combinatorially much easier to describe

and study but that preserves much of the same properties of the original complex.

Definition 1.6.1. A simplicial complex ∆ on [n] is shifted if, for every face σ =

{v1, . . . ,vk} with v1 < · · ·< vk, then (σ \{vi})∪{v} ∈∆ for all v < vi.
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The definition easily extends to any simplicial complex equipped with a total order

in its vertex set. One useful feature of shifted complexes is the following proposition.

Proposition 1.6.2. If ∆ is shifted, then ∆ is shellable.

The shelling order on ∆ in this case is given by the lexicographic order of the facets

of ∆. Together with Proposition 1.3.2, this observation implies that all shifted complexes

are homotopy wedges of spheres.

There are two types of algebraic shifting, exterior and symmetric; we will focus

exclusively on exterior shifting, which is defined in terms of the exterior Stanley-Reisner

ring of a complex.

To define exterior shifting, we must use the exterior Stanley-Reisner ring Λ[∆],

which is the exterior analogue of the Stanley-Reisner ring (again taken over a field k).

The only difference is that multiplication in the exterior ring is given by the wedge

product, that is for variables xi,xj ∈ Λ[∆], we have that xi∧xj =−xj ∧xi. This shows

that Hilb(Λ[∆], t) = f−1 + f0t+ f1t
2 + · · ·+ fd−1t

d = f(∆, t). The exterior Stanley-

Reisner ring is a natural place in which we can compute cohomology, as multiplying by

the form x1 + · · ·+xn (or any generic linear form) corresponding to all of the vertices

of ∆ is the same as the coboundary operator.

Given vertices v1, . . . , vn of ∆ and i ∈ [n], define the ith generic linear form as

fi =
n∑
j=1

αijxj (1.6.1)

where αij are n2 algebraically independent elements (which can be adjoined to k if

necessary). Similarly, if T = {i1, . . . , ik} with i1 < · · ·< ik, then define fT = fi1 ∧·· ·∧

fik .

24



Definition 1.6.3. Let ∆ be a simplicial complex on [n] with exterior Stanley-Reisner

ring Λ[∆]. Then the (exterior) algebraic shifting of ∆ is

S(∆) = {T ⊆ [n] : fT 6∈ span{fR : |R|= |T | and R <lex T}}

where <lex denotes lexicographic order.

This definition produces a complex S(∆) that is itself shifted. Algebraic shifting has

proved to be a powerful tool in studying simplicial complexes and their f -vectors, due

in part to the following result.

Theorem 1.6.4. [BK88], [Kal01] Let ∆ be a simplicial complex and S(∆) its algebraic

shifting. Then:

1. If ∆ is shifted, then S(∆) = ∆.

2. Shifting preserves Hilbert series, i.e., Hilb(k[S(∆)]) = Hilb(k[∆]). Equivalently,

f(S(∆)) = f(∆) and h(S(∆)) = h(∆).

3. Shifting preserves Betti numbers, i.e., β̃i(S(∆)) = β̃i(∆) for all i.

4. Shifting preserves depth, i.e. depthk[S(∆)] = depthk[∆].

A consequence of (4) is the following.

Theorem 1.6.5. ∆ is CM if and only if S(∆) is pure.

1.7 Iterated homology

One offshoot of algebraic shifting is the theory of iterated homology developed by

Duval and Rose in [DR00] and extended by Duval and Zhang in [DZ01]. It has found
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applications in nonpure shellability and decompositions of Cohen–Macaulay complexes

(see Theorem 2.1.12). The following groups, defined within the exterior Stanley Reisner

ring Λ[∆], are needed to define iterated homology.

Definition 1.7.1. [DR00, p. 286] Let ∆ be a simplicial complex. If 0≤ r ≤ k+ 1≤ d,

then

Λk[r](∆) = f1∧ . . .fr ∧Λk−r[∆]

Zk[r](∆) =
{
x ∈ Λk[r](∆) : fr+1∧x= 0

}

Bk[r](∆) =


fr+1∧Λk−1[r](∆) if r < k+ 1

0 if r = k+ 1

Hk[r](∆) = Zk[r](∆)/Bk[r](∆)

where the fi are generic linear forms as defined in (1.6.1). The groups Hk[r](∆) are the

rth iterated cohomology groups, and the rth iterated Betti numbers are βk[r](∆) =

dimkH
k[r](∆).

We survey below a few results of iterated homology that will be used throughout

this thesis. Producing balanced analogues of these results is the main focus of Sections

3.3 and 3.4.

Proposition 1.7.2. [DR00, Theorem 4.1] Let ∆ be a (d− 1)-dimensional simplicial

complex, S(∆) its algebraic shifting, and βk[r](∆) an iterated Betti number (where

0≤ r ≤ k+ 1≤ d). Then

βk[r](∆) = |{facets T ∈ S(∆) : |T |= k+ 1 and init(T ) = r}| .

where init(T ) = max{i≥ 0 : [i]⊆ T} if 1 ∈ T and init(T ) = 0 otherwise.
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In particular, if r = 0, then iterated homology is precisely the ordinary cohomology

of ∆, since multiplication by a generic linear form is a coboundary operator. Proposition

3.3.2 is a balanced analogue of Proposition 1.7.2.

In [DZ01], the authors introduce the following definition.

Definition 1.7.3. Given a poset P , a boolean tree is a subposet of P with the following

recursive definition:

• A rank-0 boolean tree is a single element of P .

• A rank-k boolean tree is defined recursively as follows: Let T1 and T2 be two

disjoint rank-(k− 1) boolean trees with minimal elements r1 and r2 such that

r1 l r2. Then T1∪T2 is a rank k boolean tree with minimal element r1.

Here are the rank-k boolean trees for 0≤ k ≤ 3.

Duval and Zhang prove a decomposition theorem [DZ01, Theorem 3.2] which gives

rise to boolean tree decompositions of some complexes. We note that Theorem 3.3.4 is

a balanced analogue of the Duval-Zhang result.

A set B of faces of a simplicial complex ∆ is an r-Betti set if fk−r(B) = βk[r](∆)

for all k.

Theorem 1.7.4. [DZ01, Theorem 3.2] Let ∆ be a (d−1)-dimensional simplicial com-

plex. Then there exists a chain of subcomplexes

∅ = ∆(d+1) ⊆ ·· · ⊆∆(r) ⊆∆(r−1) ⊆ ·· · ⊆∆(1) ⊆∆(0) = ∆,
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where

∆(r) = ∆(r+1)tB(r)tΩ(r+1) (0≤ r ≤ d),

and bijections

η(r) : ∆(r)→ Ω(r) (1≤ r ≤ d),

such that, for each r.

1. ∆(r+1) and ∆(r+1)tB(r) are subcomplexes of ∆(r);

2. B(r) is an r-Betti set; and

3. for any σ ∈∆(r), we have σ ( η(r)(σ) and
∣∣∣η(r)(σ)\σ

∣∣∣= 1.

The following is an important corollary of Theorem 1.7.4.

Theorem 1.7.5. [DZ01, Corollary 3.5] Let ∆ be a simplicial complex. Then there is a

decomposition of ∆ into disjoint boolean trees such that the number of boolean trees of

rank r with a (k− r)-dimensional minimal element is βk[r](∆), a iterated Betti number

of ∆.

Proposition 3.4.4 is a balanced analogue of Theorem 1.7.5.

Boolean trees have the same rank generating functions as boolean intervals, though

they are much less restrictive in structure. However, if ∆ is pure and has a decomposition

into disjoint boolean trees whose tops are the facets of ∆ (i.e., replace “boolean interval”

with “boolean tree” in the definition of a partitioning, Definition 1.3.5), then Proposition

1.3.7 provides a combinatorial interpretation for the minimal elements of the boolean

trees.
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Chapter 2

Partitionability

2.1 Stanley’s partitionability conjecture

A central goal in the study of simplicial complexes is to characterize the f - and h-vectors

of complexes that have various properties. The celebrated Kruskal-Katona Theorem

(proved independently by Kruskal [Kru63], Katona [Kat68], and Schützenberger [Sch59]

in response to a conjecture by Schützenberger) completely classifies which integer

vectors are the f -vectors of simplicial complexes, hence also answers this question for

h-vectors.

In [Sta77], Stanley provided a similar characterization of the h-vectors of shellable

and Cohen–Macaulay (CM) complexes. Given two positive integers `, i ∈ Z>0, there

exists a unique expansion (called the ith Macaulay expansion of `)

`=

(
ni
i

)
+

(
ni−1

i−1

)
+ · · ·+

(
nj
j

)
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such that ni > ni−1 > · · ·> nj > j ≥ 1. Using this decomposition and the notation of

[Sta96], we define `〈i〉 as

`〈i〉 =

(
ni+ 1

i+ 1

)
+

(
ni−1 + 1

i

)
+ · · ·+

(
nj + 1

j+ 1

)

for positive ` and define 0〈i〉 = 0. Then we say that h= (h0,h1, . . . ,hd) is an M -vector

(or O-sequence) if h0 = 1 and 0 ≤ hi+1 ≤ h〈i〉i for i ≥ 1. In [Sta77], Stanley proved

the following result, which he has referred to as “a ‘Kruskal-Katona Theorem’ for

Cohen–Macaulay complexes” [Sta96, p. 58].

Theorem 2.1.1. [Sta77, Theorem 6] Let h= (h0,h1, . . . ,hd) be an integer vector. Then

the following are equivalent.

1. h is an M -vector.

2. h= h(∆) where ∆ is a pure shellable simplicial complex.

3. h= h(∆) where ∆ is a constructible simplicial complex.

4. h= h(∆) where ∆ is a Cohen–Macaulay simplicial complex.

The implication (2) =⇒ (3) =⇒ (4) is immediate by Theorem 1.4.7. Similarly, (4)

=⇒ (2) is due to Theorems 1.6.5 and 1.6.4. Two immediate consequences of Theorem

2.1.1 are that h-vectors of these complexes are non-negative (i.e., hi ≥ 0) and gap-free

(i.e., hi = 0 implies that hi+1 = 0). Neither of these are true for simplicial complexes in

general—see Example 2.5.1 and Example 2.4.4 respectively.

We remind the reader of Proposition 1.3.7, which states that if ∆ is pure and

partitionable, then h(∆) enumerates the minimal faces in any partitioning of ∆. This

proposition—along with the structure that Theorem 2.1.1 guarantees for the h-vectors of
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Cohen–Macaulay complexes—motivated the following conjecture, which Stanley called

“a central combinatorial conjecture on Cohen–Macaulay complexes” [Sta96, p. 85].

Conjecture 2.1.2 (Partitionability Conjecture). [Sta79, p. 149] If ∆ is Cohen–Macaulay,

then ∆ is partitionable.

This conjecture is false. In [DGKM16], Art Duval, Caroline Klivans, Jeremy Martin,

and the author constructed an explicit counterexample to Conjecture 2.1.2. We will

outline this result in the remainder of this section. The main ingredient in the construction

of the counterexample is a non-partitionable relative complex that has the CM property.

We first note the following lemmas.

Lemma 2.1.3. Let ∆1, ∆2 be simplicial complexes and σ ∈∆1∪∆2. Then link∆1∪∆2 σ=

link∆1 σ∪ link∆2 σ and link∆1∩∆2 σ = link∆1 σ∩ link∆2 σ.

Proof. We prove the first equality, and the other holds similarly.

link∆1∪∆2 σ ={τ ∈∆1∪∆2 : τ ∪σ ∈∆1∪∆2, τ ∩σ = ∅}

={τ ∈∆1 : τ ∪σ ∈∆1∪∆2, τ ∩σ = ∅}

∪{τ ∈∆2 : τ ∪σ ∈∆1∪∆2, τ ∩σ = ∅}

={τ ∈∆1 : τ ∪σ ∈∆1, τ ∩σ = ∅}

∪{τ ∈∆2 : τ ∪σ ∈∆2, τ ∩σ = ∅}

=link∆1 σ∪ link∆2 σ.

The following result, allows us to glue Cohen–Macaulay complexes along Cohen–

Macaulay induced subcomplexes of sufficiently high dimension to produce a new

complex that is itself Cohen–Macaulay.
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Lemma 2.1.4. [DGKM16, Lemma 2.2] Let ∆1 and ∆2 be (d−1)-dimensional Cohen–

Macaulay complexes. If ∆1∩∆2 is Cohen–Macaulay and dim(∆1∩∆2)≥ d−2, then

Ω = ∆1∪∆2 is Cohen–Macaulay.

Proof. We will show that Reisner’s Criterion (Theorem 1.4.6) holds for each face σ ∈Ω.

If σ ∈∆1 \∆2, then linkΩσ = link∆1 σ and Reisner’s Criterion holds by assumption.

The argument is similar if σ ∈∆2 \∆1.

If instead σ ∈ ∆1 ∩∆2, then Lemma 2.1.3 and Theorem 1.2.2 gives the Mayer-

Vietoris sequence

· · · → H̃i(link∆1 σ)⊕ H̃i(link∆2 σ)→ H̃i(linkΩσ)→ H̃i−1(link∆1∩∆2 σ)→ . . . .

Observe that

dim(link∆1 σ) = dim(link∆2 σ) = dim
(
link(∆1∪∆2)σ

)
= d−|σ|+ 1

and similarly that

d−|σ|−2≤ dim
(
link(∆1∩∆2)σ

)
≤ d−|σ|+ 1.

Since ∆1, ∆2, and ∆1∩∆2 are Cohen–Macaulay, each of these links have trivial ho-

mology in non-top dimension. Thus H̃i(link(∆1∪∆2)σ) = 0 for i < dim(link(∆1∪∆2)σ).

Therefore ∆1∪∆2 is Cohen–Macaulay.

Remark 2.1.5. If we replace each instance of “Cohen–Macaulay” in Lemma 2.1.4 with

“constructible,” the result also holds.

We may repeat the process in Lemma 2.1.4 arbitrarily many times while preserving

Cohen–Macaulayness, which leads to the following theorem.
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Theorem 2.1.6. [DGKM16, Theorem 3.1] Let Θ = (∆,Γ) be a relative complex such

that

1. ∆ and Γ are Cohen–Macaulay;

2. Γ is an induced subcomplex of ∆ such that dimΓ≥ dim∆−1; and

3. Θ is not partitionable.

Let k be the total number of faces of Γ and let N > k. Then gluing N copies of ∆

together along Γ will produce a non-partitionable Cohen–Macaulay simplicial complex.

Proof. Call the result of this construction Υ.

A complex of simplices is simplicial if and only if distinct faces have distinct vertex

sets. If we glue two simplicial complexes along non-induced subcomplexes, then there

will be two distinct faces that have the same vertex set. However, if the gluing is done

along an induced subcomplex, then the resulting complex Υ is still simplicial. Similarly,

by Proposition 2.1.4, Υ is Cohen–Macaulay.

Finally, assume that there is a partitioning

Υ =
⊔

[Ri,Fi]. (2.1.1)

Since there are more copies of (∆,Γ) in Υ than there are faces of Γ, there must be some

copy of (∆,Γ) such that no face in (∆,Γ) is in an interval in this partitioning with a face

of Γ. But then this means that this partitioning (2.1.1) contains a partitioning of (∆,Γ),

which is a contradiction. Therefore Υ cannot be partitionable.

Remark 2.1.7. It is worth noting that Γ is an induced subcomplex of ∆ if and only if

all minimal faces of the relative complex (∆,Γ) are vertices.
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Theorem 2.1.6 does not guarantee that such a pair (∆,Γ) exists. However, in

[DGKM16], we constructed an example that meets the criteria of Theorem 2.1.6. It

arises as a subcomplex of Ziegler’s Ball [Zie98], a particularly small 3-ball that is

constructible (and hence CM) but not shellable.

Proposition 2.1.8. Let ∆ be the complex with the following facets (where the set

{1,2,4,9} is abbreviated 1249, etc.)

1249,1269,1569,1589,1489,1458,1457,

4578,1256,0125,0256,0123,1234,1347.

(2.1.2)

Let Γ be the induced subcomplex Γ = ∆{0,2,3,4,6,7,8}, which has facets

026,023,234,347,478. (2.1.3)

Then Θ = (∆,Γ) meets the necessary properties of Theorem 2.1.6.

Define Cn to be the complex created by gluing n copies of ∆ together along Γ.

Since f(Γ,1) = 24, gluing 25 copies of ∆ together will produce a non-partitionable

Cohen–Macaulay complex. Thus C25 is a counterexample to Conjecture 2.1.2.

Remark 2.1.9. It is easy to see that ∆ and Γ in Example 2.1.8 are Cohen–Macaulay:

In fact they are shellable, and the orders given in (2.1.2) and (2.1.3) respectively are

shelling orders. Similarly, it is clear that Γ is induced and dimΓ = dim∆− 1. It is a

straightforward argument to show that Θ is not partitionable; see [DGKM16, Theorem

3.3] for details.

Remark 2.1.10. While Theorem 2.1.6 guarantees that gluing 25 copies of ∆ together

along Γ will produce a non-partitionable complex, it turns out that fewer copies are

needed. In fact, C3, the complex constructed by gluing 3 copies of ∆ along Γ, is also
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non-partitionable [DGKM16, Theorem 3.5]. To the best of my knowledge, it is currently

the smallest known counterexample to Conjecture 2.1.2.

Remark 2.1.11. Since ∆ and Γ are both pure shellable, they are also constructible.

Lemma 2.1.4 and Theorem 2.1.6 also hold for constructible complexes, so C3 is also

an example of a non-partitionable constructible complex. This answers Hachimori’s

question [Hac00b] of whether all constructible complexes were partitionable.

In Section 4.3, we will present similar gluing arguments that could be used in

disproving a related conjecture.

While a Cohen–Macaulay complex need not be partitionable, it does admit a rea-

sonably well-behaved decomposition, thanks to a result of Duval and Zhang. If ∆

can be decomposed into disjoint boolean trees such that the top elements of all of the

boolean trees are facets of ∆, we will call such a decomposition an honest boolean

tree decomposition. (This is the same as a partitioning, but with “boolean intervals”

replaced with “boolean trees.”)

Theorem 2.1.12. [DZ01, Theorem 5.4] If ∆ is Cohen–Macaulay, then ∆ has an honest

boolean tree decomposition.

Since ∆ is Cohen–Macaulay if and only if S(∆) is pure, Theorem 2.1.12 follows

from Theorem 1.7.5 and Proposition 1.7.2.

2.2 Stanley depth

A combinatorial version of depth—now referred to as Stanley depth—has recently

attracted a great deal of attention; see [PSFTY09] for an introduction and overview.

Given a polynomial ring S = k[x1, . . . ,xn] and a M a Zn-graded S module, a Stanley
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decomposition D of M is a vector space decomposition

M =
r⊕
i=1

k[Xi] ·mi

where each Xi is a subset of {x1, . . . ,xn} and each mi is a homogeneous element of M .

The Stanley depth of M is defined as

sdepthM = max
D
{min(|X1| , . . . , |Xr|)}

where D ranges over all Stanley decompositions of M . This definition gave rise to the

following conjecture.

Conjecture 2.2.1 (Depth Conjecture). [Sta82, Conjecture 5.1] For all Zn-graded k[x1, . . . ,xn]-

modules M ,

sdepthM ≥ depthM.

In [HJY08, Corollary 4.5], Herzog, Jahan, and Yassemi showed that Conjecture 2.2.1

would have implied Conjecture 2.1.2. Therefore the counterexample in Proposition 2.1.8

is also the first known counterexample to Conjecture 2.2.1.

2.3 h-vectors of Cohen–Macaulay relative complexes

With the M -vector characterization of h-vectors of shellable, constructible, and Cohen–

Macaulay complexes known (see Theorem 2.1.1) the following is a natural question.

Question 2.3.1. Is there a characterization of the h-vectors of shellable or Cohen–

Macaulay relative complexes? Do the same constraints hold for the h-vectors for these

classes of relative complexes?
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Stanley provided a partial answer to this question in [Sta87, Proposition 5.2], showing

that the h-vector of a Cohen–Macaulay relative complex Θ is the sum of m-vectors that

have been shifted in dimension corresponding to the cardinalities of the minimal faces of

Θ. Question 2.3.1 was also recently studied by Codenotti, Khattän, and Sanyal [CKS17],

who also extended this question to complexes which they called fully Cohen–Macaulay

complexes. Their work [CKS17, Theorem 10] implies Proposition 2.3.2, which we

prove independently in this section.

A relative complex Θ = (∆,Γ) is shellable if its facets can be ordered F1, . . . ,Fk

such that

(〈F1, . . . ,Fi+1〉∩Θ)\ (〈F1, . . . ,Fi〉∩Θ)

has a unique minimal element for each i ∈ [k−1].

If Θ is pure shellable, then Θ is Cohen–Macaulay, just as in the simplicial complex

case [Sta96, p. 118]. The following proposition gives an answer to the second part of

Question 2.3.1.

Proposition 2.3.2. Let h = (h0,h1, . . . ,hd) ∈ Zd+1. The following are equivalent, as-

suming that the relative complexes Θ in question are not absolute complexes, i.e.,

∅ 6∈Θ.

1. h0 = 0 and hi ≥ 0 for i ∈ [d].

2. h= h(Θ) for a pure shellable relative complex Θ.

3. h= h(Θ) for a Cohen–Macaulay relative complex Θ.

Note that if ∅∈Θ, then Θ = (∆,∅) = ∆ is a simplicial complex, and Theorem 2.1.1

applies instead of Proposition 2.3.2. We will prove Proposition 2.3.2 by constructing a

pure shellable relative complex Θ such that h(Θ) = h for any given vector h of the form
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in (1). Furthermore, for Θ = (∆,Γ), the complexes ∆ and Γ are connected, pure, and

shifted (both with respect to the same order).

Proof. Recall that if a relative complex is pure and shellable, then it is automatically

Cohen–Macaulay, so (2) =⇒ (3).

We note that (3) =⇒ (1) is implied by [Sta87, Proposition 5.2].

Thus the only implication left to show is (1) =⇒ (2), which we will do by con-

struction. Given h= (0,h1, . . . ,hd) with hi ≥ 0 (assume without loss of generality that

hd 6= 0), we will consider each hi separately and construct hi many disjoint rank-(d− i)

boolean intervals in a certain way to ensure shellability of Θ. In particular, we will

construct Θ = (∆,Γ) and show that ∆ and Γ are pure and shifted and that Θ is shellable.

Let k =
∑d

i=1hi. Define

F = {12 . . .(d−1)(d+ `−1) : ` ∈ [k]}

and let ∆ be the complex generated by the elements of F . Thus ∆ has k facets which

are all (d−1)-simplices glued together along the ridge 12 . . .(d−1). This complex is

pure, shifted, and shellable. Call the facet Fj = 12 . . .(d−1)j the jth facet of ∆.

We will define Γ as a collection of ridges within each facet of ∆, and these ridges

will correspond to a particular entry hi. We will start with hd and work back to h1. The

first hd facets of ∆ will correspond to hd, the next hd−1 facets will correspond to hd−1,

etc. Let Fj be the jth facet of ∆ and assume that it corresponds to hi. We will define

Γj = 〈The lexicographically first i many ridges of Fj〉
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Define Θj = (〈Fj〉 ,Γj), which is a boolean interval of rank-(d−i) with minimal element

Mj . Then |Mj |= i and Mj = {The last i vertices of Fj}. Certainly each of these Γj are

pure, shifted, and shellable, and Γ =
⋃
j∈[k] Γj is also pure, shifted, and shellable.

If Θ = (∆,Γ), then Θ is the union of all of the Θj , which are disjoint boolean

intervals, and h(Θ) = (0,h1, . . . ,hd).

2.4 An algebraic notion of partitionability? / Partition-

able complexes with low depth

Dress [Dre93] and Simon [Sim94] studied the cleanness of modules, an idea that

originated in [DDM96] by Dahmen, Dress, and Micchelli. 1

Given M a module over a commutative ring R, a filtration F is a finite set {Mi} of

R-modules such that

〈0〉=M0 (M1 ( · · ·(Mk =M.

A filtration is clean if, for all i ∈ [k], Mi/Mi−1
∼=R/Pi where Pi is a minimal prime

of R over Ann(M), the annihilator of M . A module is clean if it has a clean filtration.

Theorem 2.4.1. [Dre93] [Sim94, Theorem 2.1.1] A simplicial complex ∆ is shellable

if and only if k[∆] is clean when regarded as a module over itself.

Remark 2.4.2. In Theorem 2.4.1, Dress and Simon did not assume that ∆ was pure; this

is notable because this predates Björner and Wachs’s introduction of nonpure shellability

in [BW96].
1The article [DDM96] was originally written in 1990 but was not officially published until 1996.
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In fact, a clean filtration of k[∆] can be used to construct a shelling of ∆. This leads

naturally to the following question, which was originally posed to the author by John

Shareshian.

Question 2.4.3. Is there an algebraic criterion similar to cleanness for partitionability?

Both a filtration and a shelling rely heavily on an order (respectively on some

submodules or on facets), but there is no sense of an order on the facets in a partitioning.

In general, there is no apparent way to systematically assemble a subcollection of the

intervals of a partitioning. Consider the following example.

Example 2.4.4. [Sta96, p. 85, due to Björner] Let ∆ = 〈123,124,134,234,456〉. The

decomposition

∆ = [∅,456]∪ [1,124]∪ [2,234]∪ [3,134]∪ [123,123]

is one of the two possible partitionings of ∆.

While it is easy in this example to provide an algebraic structure for the interval

[∅,456] (namely k[x4,x5,x6]), it is not so for other proper subcollections of these

intervals. This is because, for example, Γ = [∅,456]∪ [1,124] is not itself a simplicial

complex or relative complex (because 124 ∈ Γ but 2 6∈ Γ), so Γ does not have an obvious

algebraic structure to assign to it. Contrast this to the shellable case—at each step in a

shelling, the object that has been constructed is a simplicial complex.

While the complex in Example 2.4.4 is pure and partitionable, it is not Cohen–

Macaulay (in particular, link(4) fails Reisner’s Criterion, Theorem 1.4.6). This is not

surprising; it has long been known that partitionability does not imply Cohen–Macaulay-

ness.
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Example 2.4.4 also shows that the h-vectors of partitionable complexes have fewer

restrictions than those of CM or shellable complexes. In particular, h(∆) = (1,3,0,1),

which is not an M -vector as it is not gap-free (see Theorem 2.1.1). We can see that

dimk[∆] = 3 and depthk[∆] = 2, so this complex is relatively close to being CM. Our

goal for the remainder of this section is to construct pure partitionable complexes that

have arbitrarily large differences between their depth and dimension, as this would show

that partitionability imposes no restriction on the depth of a complex’s face ring.

We know that depthk[∆]≥ 1 for any non-trivial simplicial complex and depthk[∆] =

1 exactly when ∆ has more than one connected component. Similarly, dimk[∆] =

dim∆ + 1. For each dimension, we will construct a disconnected (hence depth-1) pure

partitionable complex of that dimension.

To motivate the construction, consider the following example:

Example 2.4.5. The complex 〈12,13,23,45〉 is partitionable and disconnected.

In fact, we can completely characterize which graphs are partitionable. In the

proposition below, we say that a connected component is nontrivial if it contains at

least one edge.

Proposition 2.4.6. A graph is partitionable if and only if it contains at most one non-

trivial acyclic connected component.

Proof. Assume that ∆ has at least two non-trivial acyclic connected components, X and

Y . One edge of ∆ can be paired with the empty face in a partitioning of ∆; assume this

edge is not in Y . Thus all of the intervals partitioning Y must be of the form [vi,vivj ]

for vertices vi ∈ Y and edges vivj ∈ Y . But, since Y is acyclic, it has exactly one more

vertex than edge. Therefore Y cannot be partitioned, so ∆ is not partitionable.

Instead assume that ∆ has at most one acyclic connected component. Shell this

component as usual (if all components contain a cycle, pick an arbitrary component and
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shell it). For each other component, find a cycle with vertices v1,v2, . . . , vk,v1. Partition

the elements of this cycle as

[v1,v1v2]t [v2,v2v3]t·· ·t [vk−1,vk−1vk]t [vk,v1vk].

For the remaining edges in this component, add them on one-by-one, as if in a shelling.

Thus ∆ is partitionable.

Full criteria for partitionability of higher-dimensional complexes are not known.

Theorem 2.4.7. Define

αi = i(i+ 1) . . .(d+ i−1)

βi = 12 . . . i(d+ i) . . .(2d−1)

γ = (2d)(2d+ 1) . . .(3d−1).

Let ∆ be generated by the facets:

{αi : i ∈ [d]}∪{βi : i ∈ [d−1]}∪{γ}

Then ∆ is pure and partitionable with h(∆) = (1,2d− 1,0, . . . ,0), dimk[∆] = d, and

depthk[∆] = 1.

Proof. All facets of ∆ have cardinality d, so dimk[∆] = d. Since ∆ is disconnected,

depthk[∆] = 1.

We claim that

∆ =

⊔
i∈[d]

[i,αi]

t
 ⊔
i∈[d−1]

[d+ i,βi]

t [∅,γ] (2.4.1)
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is a partitioning. Let Iτ be the interval from the above decomposition whose unique

minimal face is τ . Except for the interval I∅ = [∅,(2d) . . .(3d−1)], all these minimal

faces τ are vertices in [2d−1].

Let σ ∈∆. If σ ⊆ (2d) . . .(3d−1), then σ is only contained in I∅.

Let σ= σ1 . . .σm 6∈ I∅, where σi are vertices and σ1 < · · ·<σm. If σm−σ1 <d, then

σ ∈ Iσ1 . If instead σm−σ1 ≥ d, then σ ∈ Iσi , where i = min{j : j > d and σj ∈ σ}.

Thus the above is a partitioning for ∆.

Example 2.4.5 is the d= 2 case of this construction. Here is the construction when

d = 3: Let ∆ = 〈123,234,345,145,125,678〉, so dimk[∆] = 3 and depthk[∆] = 1.

Then

∆ = [1,123]t [2,234]t [3,345]t [4,145]t [5,125]t [∅,678]

is a partitioning of ∆.

2.5 Partition extenders

If ∆ is pure and partitionable, then Proposition 1.3.7 gives a specific combinatorial

interpretation for the h-vector of ∆. However, if ∆ is not partitionable, then no such

interpretation exists, so the question remains: What, if anything, does the h-vector of a

simplicial complex count in general?

Recall that the h-vector can contain negative entries.

Example 2.5.1. Consider the bowtie complex B = 〈123,345〉 .

Then f(B) = (1,5,6,2) and h(B) = (1,2,−1,0), so ∆ cannot be partitionable.

However, we can extend B to the complex B′ = 〈123,234,345〉.
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There are two pertinent facts about B′. First, it is shellable, hence partitionable.

Second, the relative complex (B′,B) = {24,234} is also partitionable. As a consequence,

we can now write the h-vector of B as

h(B) = h(B′)−h(B′,B).

In other words, we can write the h-vector as the difference of the h-vectors of two

related complexes (one of which is a relative complex). This idea gives rise to partition

extenders, which are introduced in [DGL18].

Definition 2.5.2. Let ∆ be a pure simplicial complex. Then a pure complex Γ⊇∆ is a

partition extender of ∆ if

1. dimΓ = dim∆,

2. Γ is partitionable, and

3. (Γ,∆) is partitionable.

The following observation motivates the search for partition extenders: If Γ is a

partition extender for ∆, then

h(∆) = h(Γ)−h(Γ,∆)
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and thus h(∆) can be written as the difference of two h-vectors of partitionable com-

plexes. Note that for any complexes A ⊆ B of the same dimension, we can write

h(B,A) = h(B)−h(A) (but this is not true if dimA< dimB).

Proposition 2.5.3. [DGL18] If ∆ is a pure simplicial complex, then ∆ has a partition

extender.

To create a partition extender for ∆, we first greedily construct a maximal partition-

able subcomplex Υ⊆∆. For every face σ ∈∆\Υ, we add a new complex Γσ in such a

way that the relative complexes (Γσ,〈σ〉) and (Γσ,〈∂σ〉) are both partitionable. Then

Γ = Υ∪
⊔
σ∈∆\Υ Γσ is a partition extender for ∆.

We can ask if similar objects exist if we replace “partitionable” in Definition 2.5.3

with other properties that pertain to both simplicial and relative complexes. For example,

we have been able to say the following about Cohen–Macaulay extenders.

Proposition 2.5.4. [DGL18] A simplicial complex ∆ has a Cohen–Macaulay extender

if and only if depthk[∆]≥ dimk[∆]−1.
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Chapter 3

Balanced complexes

3.1 Balanced complexes

In [Sta79], Stanley introduced the notion of balanced complexes, which are simplicial

complexes equipped with certain additional combinatorial structure. In the following

years, balanced complexes have generated a considerable amount of attention; see, for

example [BFS87], [BN06], [Fro08], [BVT13], [JKV17]. While Stanley originally gave

a more general definition, we will focus here on what he originally called completely

balanced complexes in [Sta79].

Definition 3.1.1. A (d−1)-dimensional simplicial complex is balanced if its vertices

can be colored using d colors so that every face σ ∈∆ contains at most one vertex of

each color.

Stanley also assumed purity in his definition [Sta79, p. 143] since he was pri-

marily interested in balanced Cohen–Macaulay complexes. We will not assume bal-

anced complexes are pure unless otherwise noted. Furthermore, we will often as-

sume not only that the vertices of ∆ can be colored as in Definition 3.1.1 but also

that a balanced complex comes equipped with a specific coloring. We can think of

this coloring as an ordered partition on the vertices of ∆ as V = V1t ·· · tVd where
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Vi = {vertices of color i}= {vi,1,vi,2, . . . , vi,ni} such that for all σ ∈∆ and for all i∈ [d],

|σ∩Vi| ≤ 1.

A (d−1)-dimensional complex is balanced if and only if its 1-skeleton skel1 ∆ can

be properly colored (in the graph theoretical sense) using d colors. Balancedness is not

a topological property. For example, a 3-cycle is not balanced because it is not two-

colorable, but a 4-cycle is balanced (a graph is balanced precisely if it is bipartite). In

fact any complex ∆ is homeomorphic to a balanced complex, its barycentric subdivision.

This is part of a larger phenomenon.

Proposition 3.1.2. Let ∆ be an order complex of a finite poset, i.e., ∆ =O(P ) for a

finite poset P . Then ∆ is balanced.

To see that Proposition 3.1.2 is true, for each element x ∈ P , consider the longest

chain in P such that x1 < x2 < · · ·< xj−1 < x. Assign x the color j. Then no chain in

P will contain two elements of the same color and thus ∆ =O(P ) is balanced. We note

that if P is ranked, then this is equivalent to coloring x by r(x), the rank of x, but even

non-ranked posets have balanced (albeit nonpure) order complexes.

There are also many balanced complexes that do not arise as order complexes of

posets. Consider the following example.

x y

z
ab

c
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The above example is balanced, but it is not an order complex. Recall that order

complexes are flag, i.e., the minimal non-faces of ∆ all have cardinality 2. However, we

can see that xyz is a minimal non-face.

Let ∆ be a balanced complex with a given coloring. We can consider refinements of

the original f - and h-vectors. Given a face σ ∈∆, we will define

color(σ) = {i : vi,j ∈ σ for some j ∈ [ni]}= {i : σ contains a vertex of color i} .

The flag f -vector of a balanced complex is

(α∆(C))C⊆[d]

where α∆(C) = |{σ : color(σ) = C}|. We similarly define the flag h-vector as

(β∆(C))C⊆[d]

where β∆(C) =
∑
D⊆C

(−1)|C\D|α∆(D).

These flag vectors are refinements of the original f - and h-vectors; in other words,

fi(∆) =
∑
|C|=i+1

α∆(C) and hi(∆) =
∑
|C|=i

β∆(C). The balanced structure of ∆ produces

a Zd-grading on the face ring k[∆], since no face contains more than one vertex of any

of the d colors. Similarly the flag h-vector gives the coefficients of the Zd-graded Hilbert

series of k[∆].

Proposition 3.1.3. [Sta79, Proposition 3.2] If ∆ is a (d− 1)-dimensional balanced

complex with a given coloring, then

Hilb(k[∆]; t1, . . . , td) =

∑
C β∆(C)

∏
i∈C ti

(1− t1) . . .(1− td)
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is the Zd-graded Hilbert series of k[∆].

Compare the above to Proposition 1.4.2; in particular, if we set ti = t for all ti, then

this recovers Proposition 1.4.2.

Furthermore, there is an analogue of Proposition 1.3.7 for balanced complexes.

Proposition 3.1.4. [Sta79, p. 149] If ∆ is a pure, balanced, partitionable complex, then

β∆(C) = |{Ri : color(Ri) = C}|

where Ri are the restriction faces of a partitioning of ∆.

We will often focus our attention on balanced complexes that are also Cohen–

Macaulay (in fact, this is the context in which Stanley originally defined these complexes).

If ∆ is balanced and C ⊆ [d], its C-color-selected subcomplex (often referred to as the

C-rank-selected subcomplex) is

∆C = {σ ∈∆ : color(σ)⊆ C} .

In other words, we restrict the complex to vertices with colors in C. There is a

connection between the flag h-vector and the reduced Euler characteristics of these color-

selected subcomplexes; in particular, β∆(C) = (−1)|C|−1 ˜χ(∆C) [Sta79, Proposition

3.5]. We will be more interested in the following.

Theorem 3.1.5. Let ∆ be a (d−1)-dimensional balanced Cohen–Macaulay complex

and let C ⊆ [d].

1. [Sta79, follows from Theorem 4.4] β∆(C)≥ 0.

2. [Sta79, Theorem 4.3] ∆C is also Cohen–Macaulay.
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Part 1 follows from Proposition 3.1.3. Part 2 follows from the following argument:

A balanced CM complex has a system of parameters that is homogeneous in the finely

graded sense [Sta96, Proposition III.4.3], and restricting to any set of colors C gives a

homogeneous system of parameters of the face ring of ∆C [Sta96, Theorem III.4.5].

Even with the example from Proposition 2.1.8, it was still unknown whether balanced

CM complexes were partitionable. However, Juhnke-Kubitzke and Venturello recently

showed the following.

Theorem 3.1.6. [JKV17] There exist balanced Cohen–Macaulay complexes that are not

partitionable.

If ∆ is assumed to be balanced, then the construction in Theorem 2.1.6 produces a

non-partitionable balanced simplicial complex as well. Juhnke-Kubitzke and Venturello

were able to show that an appropriate subdivision of the relative complex in Proposition

2.1.8 is balanced, and thus produced a non-partitionable balanced Cohen–Macaulay

complex.

In [Gar80], Garsia made the following conjecture, which remains open.

Conjecture 3.1.7. [Gar80, Remark 5.2] If ∆ is a Cohen–Macaulay order complex, then

∆ is partitionable.

It is unclear whether a similar type of argument as in Theorem 2.1.6 would apply to

provide a counterexample to Conjecture 3.1.7. If the conjecture is true, it would imply

that the barycentric subdivision of a CM complex is partitionable, since the barycentric

subdivision of a complex is the order complex of its face poset not including the empty

set. If the conjecture is false, we may ask the following question:

Question 3.1.8. If ∆ is CM, is there a number of barycentric subdivisions we can take

to guarantee that the resulting complex is partitionable? Is this number constant for all
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CM complexes; for example, is one barycentric subdivision always enough to guarantee

partitionability?

3.2 Color shifting

Algebraic shifting has proved very powerful in the study of Cohen–Macaulay complexes.

However, if ∆ is balanced, then its shifting S(∆) is no longer guaranteed to be balanced

(in fact, it generally isn’t). To extend the idea of algebraic shifting to balanced complexes

while preserving the balanced structure, Babson and Novik introduced color shifting in

[BN06]. Rather than creating a generic initial ideal as in algebraic shifting, the idea is to

construct an initial ideal that is only generic within each color class of vertices.

Definition 3.2.1. Let ∆ be a balanced complex such that each of its color classes

Vi = {vi,1, . . . ,vi,ni} is totally ordered. We say that ∆ is color-shifted if vi,j ∈ σ ∈∆

implies that (σ \{vi,j})∪
{
vi,k
}
∈∆ for all k < j.

Note that the order on the vertices within each color class is needed. This definition

is analogous to Definition 1.6.1 but with the added condition that we only decrease the

variable index within each color class.

We will define a slightly different version of color shifting from what is discussed in

[BN06]; Babson and Novik define color shifting based on symmetric shifting whereas

our definition comes from exterior shifting. Thus our definition will use the exterior

Stanley-Reisner ring Λ[∆].

Instead of defining generic linear forms of all of the vertices together as in Definition

1.6.3, we will only make generic linear forms supported on each color class. This will

allow us to preserve the balancedness/color structure of ∆.
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Set i ∈ [d]. Working in Λ[∆], define the color-generic linear forms of color i to be

fi,j =

ni∑
k=1

αi,j,kvi,k (3.2.1)

for j ∈ [ni] and where αi,j,k are all algebraically independent (adjoin indeterminates to

k as needed). We will often refer to the forms in 3.2.1 as generic vertices, as these turn

out to be the vertices of the color shifting of ∆, which will be defined below. Similarly,

sets of these fi,j will correspond to faces of the color shifting when they satisfy an

appropriate criterion.

Given a set T = {fi1,j1 , . . . ,fi`,j`} of these generic linear forms, define

fT = fi1,j1 ∧·· ·∧fi`,j` . (3.2.2)

Recall that rearranging the order of these terms can change these by a negative sign, so we

will in general assume that these sets are presented with the forms in lexicographic order.

Since ∆ is assumed to be balanced, we note that if im = in for any fim,jm ,fin,jn ∈ T ,

then fT = 0 in Λ[∆].

With the above generic color forms, we can define the following.

Definition 3.2.2. Let ∆ be a balanced simplicial complex on [n] with exterior Stanley-

Reisner ring Λ[∆]. Then the (exterior) color shifting of ∆ is

CS(∆) = {T ⊆ [n] : fT 6∈ span{fR : |R|= |T | and R <lex T}}

where <lex denotes lexicographic order.
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Notice that this definition is identical to Definition 1.6.3 except for the generic forms

in use. In Definition 1.6.3, fully generic forms are used while in Definition 3.2.2 we

restrict the generic forms to each color class to preserve the balanced structure.

3.3 Colorated cohomology

We now will define a colored version of iterated homology, which was discussed in

Section 1.7. The following definitions and results are balanced analogues of similar ones

appearing in [DR00] and [DZ01].

Given a set of colors C = {i1, i2, . . . , i`} ⊆ [d], define its initial vertices to be

init(C) = {fi1,1,fi2,1, . . . ,fi`,1} and define

fC := finit(C) = fi1,1∧fi2,1∧·· ·∧fi`,1

where these fi,j are defined as in (3.2.1).

Working in the exterior Stanley-Reisner ring Λ[∆], we define the following groups.

Let C ⊆ [d] be a set of colors, and let j ∈ [d] be a specific color.

ΛkC(∆) = fC ∧Λk−|C|[∆]

ZkC,j(∆) =
{
x ∈ ΛkC(∆) : fj,1∧x= 0

}
Bk
C,j(∆) = fj,1∧Λk−1

C (∆)

Hk
C,j(∆) = ZkC,j(∆)/Bk

C,j(∆)

(3.3.1)
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The groups Hk
C,j are the colorated cohomology groups of ∆. Notice that if j ∈ C,

then these simplify to

ZkC,j(∆) = ΛkC(∆)

Bk
C,j(∆) = 0

and if j 6∈ C, then

Bk
C,j(∆) = ΛkC∪{j}(∆).

We want to consider the colorated Betti numbers βkC,j(∆), which are defined as

βkC,j = dimk

(
Hk
C,j

)

the dimensions of Hk
C,j(∆) as a vector space over k. First, we need a few more

preliminary definitions.

Let Γ = CS(∆), the color shifting of ∆. If T ∈ Γ, then ics(T ) = {j : fj,1 ∈ T} is

the initial color segment of T . Define

ΓkC = {T ∈ Γ = CS(∆) : |T |= k+ 1 and C ⊆ ics(T )} .

Lemma 3.3.1. ΛkC(∆) = span
{
fT : T ∈ ΓkC

}
. In fact, these fT form a basis of ΛkC(∆).

Proof. Let y ∈ ΛkC(∆). Then y = fC ∧ x where x ∈ Λk−|C|[∆] by the definition of

ΛkC(∆). We can write x=
∑
γRfR where these fR are color generic forms as defined

in Equations 3.2.1 and 3.2.2. Since ∆ is balanced, fC ∧ fR = 0 in Λ[∆] whenever

color(R)∩C 6= ∅. Therefore

y =
∑

color(R)∩C=∅

γRfR∪init(C)
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and so y ∈ span
{
fT : T ∈ ΓkC

}
.

Say instead that T ∈ ΓkC . Then

fT = fC ∧fcolor(T )\C ∈ ΛkC(∆).

Lastly, notice that these fT are independent by the definition of the color shifting of

∆, so they form a basis of their span.

We will use Lemma 3.3.1 in the proof of the following proposition, which relates

the colorated Betti numbers of ∆ to CS(∆), the color shifting of ∆.

We first note if j ∈ C, then

βkC,j = dimkH
k
C,j = dimkZ

k
C,j = dimΛkC =

∣∣∣ΓkC∣∣∣
So if j ∈ C, these colorated Betti numbers do not provide us with any new information

relating to color j. However, they are interesting in the case when j 6∈ C.

Proposition 3.3.2. Let ∆ be a balanced simplicial complex of dimension (d−1) and

CS(∆) be the color-shifting of ∆. Then the colorated Betti numbers of ∆ are

βkC,j = |{T ∈ CS(∆) : |T |= k+ 1, init(C)⊆ T, fj,1 6∈ T, and T ∪{fj,1} 6∈ CS(∆)}|

if j 6∈ C.

Proof. Let C be a set of colors and T be a face of CS(∆). Recall that init(C) =

{fj,1 : j ∈ C} is the set of initial vertices of C and that ics(T ) = {j : fj,1 ∈ T} is the

initial color segment of T . We can see that init(C)⊆ T if and only if C ⊆ ics(T ).
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We will be performing all calculations over the field k, so in particular the groups

defined in (3.3.1) are all finite-dimensional vector spaces. By rank-nullity,

dimZkC,j(∆) = dimΛkC(∆)−dimBk+1
C,j (∆).

Thus we have

βkC,j = dimHk
C,j = dimZkC,j(∆)−dimBk

C,j(∆)

= dimΛkC(∆)−dimBk+1
C,j (∆)−dimBk

C,j(∆)

= dimΛkC(∆)−dimΛk+1
C∪{j}(∆)−dimΛkC∪{j}(∆)

We now calculate these dimensions. Recall that ΓkC = {T ∈ CS(∆) : |T |= k+ 1 and C ⊆ ics(T )}.

By Lemma 3.3.1,

dimΛkC(∆) =
∣∣∣ΓkC∣∣∣= |{T ∈ CS(∆) : |T |= k+ 1 and C ⊆ ics(T )}|

= |{T ∈ CS(∆) : |T |= k+ 1 and init(C)⊆ T}| .

Similarly, since j 6∈ C, thus

dimΛkC∪{j}(∆) =
∣∣∣ΓkC∪{j}∣∣∣=

∣∣∣{T ∈ ΓkC : fj,1 ∈ T
}∣∣∣ .

Finally, considering the bijection T 7→ T ′ = T ∪{fj,1},

dimΛk+1
C∪{j}(∆) =

∣∣∣{T ′ ∈ Γk+1
C : init(C ∪{j})⊆ T ′

}∣∣∣
=
∣∣∣{T ∈ ΓkC : fj,1 6∈ T, T ∪{fj,1} ∈ CS(∆)

}∣∣∣
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Therefore

βkC,j = |{T ∈ CS(∆) : |T |= k+ 1 and init(C)⊆ T}|

−
∣∣∣{T ∈ ΓkC : fj,1 6∈ T, T ∪{fj,1} ∈ CS(∆)

}∣∣∣
−
∣∣∣{T ∈ ΓkC : fj,1 ∈ T

}∣∣∣
= |{T ∈ CS(∆) : |T |= k+ 1, init(C)⊆ T, fj,1 6∈ T, and T ∪{fj,1} 6∈ CS(∆)}|

when j 6∈ C.

Proposition 3.3.2 is a colored analogue of Proposition 1.7.2. However, the key

distinction between these two results is that Proposition 1.7.2 counts specific facets

of the shifting S(∆) whereas Proposition 3.3.2 counts faces that are not necessarily

maximal in the color shifting CS(∆). It is this seemingly small detail that makes

searching for balanced boolean tree decompositions of balanced Cohen–Macaulay

complexes noticeably different from the version presented in [DZ01]. We will discuss

this issue in more depth in Section 3.4.

Definition 3.3.3. Let C ⊆ [d] and j ∈ [d] \C. We call a collection of faces B of a

simplicial complex ∆ a C,j-colorated Betti set if color(σ)∩ (C ∪{j}) = {j} for all

σ ∈B and fk−|C|(B) = βkC,j(∆) for all k.

The following is our main result on colorated cohomology. It allows us to decompose

a balanced complex in a way that preserves its balanced structure. It is a balanced

analogue of Theorem 1.7.4.

Theorem 3.3.4. Let ∆ be a pure, balanced, (d− 1)-dimensional simplicial complex.

Specify the coloring of ∆ and order the colors 1 through d. Then there exist sets ∆(i) (for

0≤ i≤ d), B(i) (for 0≤ i≤ d), and Ω(i) (for 1≤ i≤ d) with the following properties:
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1. ∆(i) is the complex formed by removing all vertices of colors 1 through i.

2. η(i) : ∆(i)→ Ω(i) is a bijection, defined η(i)(σ) = σ∪{vi,j} where

j = max
{
k : σ∪

{
vi,k
}
∈∆(i−1)

}
.

3. ∆(i) = ∆(i+1)tB(i)tΩ(i+1).

4. ∆(i+1) and ∆(i+1)tB(i) are subcomplexes of ∆(i).

5. B(i) is enumerated by β[i],i+1(∆); i.e., B(i) is a colorated Betti set.

Proof. Recall that if C ⊆ [d], then the C-color-selected complex of ∆ is defined as

∆C = {σ ∈∆ : color(σ)⊆ C}. For a color i ∈ [d], recall that Vi = {vi,1, . . . ,vi,ni} is

the set of vertices of color i.

For any subset ∆′ ⊆∆, we define k∆′ to be the k-span within Λ[∆] of monomials

corresponding to faces of ∆′. In other words, if σ = {vi1,j1 , . . . ,vi`,j`} ∈ ∆′ then we

consider vi1,j1 ∧·· ·∧vi`,j` in k∆′.

For i ∈ [d] and x ∈ Λ[∆], define the map δi(x) = (vi,1 + · · ·+ vi,ni)∧x. Let δ0 be

the identity map and δ(i) = δi . . . δ1.

STEP 1 – Defining ∆(i) : Define ∆(i) = ∆[d]\[i], the color selected subcomplex on

the final d− i colors. Notice that ∆(0) = ∆. For i > 0, define

Ii = δ(i)k∆

where k∆ is the k-span of faces of ∆ in Λ[∆]. Notice that if color(σ)∩ [i] 6= ∅, then

δ(i)σ = 0 since ∆ is balanced. Therefore

Ii = δ(i)k∆[d]\[i] = δ(i)k∆(i).
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If σ,τ ∈ ∆(i) and σ 6= τ , then the support of the images of σ and τ under δ(i+1)

are disjoint, and thus δ(i+1) is injective on the restricted domain of k∆(i). Since{
σ : σ ∈∆(i)

}
is a basis for k∆(i), therefore

{
δ(i)σ : σ ∈∆(i)

}
is also a basis for

δ(i)k∆(i) = Ii.

STEP 2 – Defining B(i) : Let Li be the lexicographically least basis of

Ki = kδ(i)∆
(i)/kδ(i+1)∆

(i).

Then define

B(i) =
{
σ ∈∆(i) : δ(i)σ ∈ Li

}
\∆(i+1)

We can rewrite this given our description of ∆(i) above:

B(i) =
{
σ ∈∆(i) \∆(i+1) : δ(i)σ ∈ Li

}
=
{
σ ∈∆ : color(σ)∩ [i+ 1] = {i+ 1} and δ(i)σ ∈ Li

}
Returning to Ki, we see that

Ki = kδ(i)∆
(i)/kδ(i+1)∆

(i)

= kδ(i)∆
(i)/kδ(i+1)∆

(i+1)

= δ(i)

[
k∆(i)/kδi+1∆(i+1)

]
= δ(i)

k∆(i+1)⊕
⊕

σ∈∆(i+1)

k{σ∪{v} : v ∈ Vi+1}/δi+1σ


with the last equality because the faces of ∆(i+1) are not affected by imposing the

new relation. Modding out by δi+1σ gives us precisely one new relation among the faces
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σ∪{v} for v ∈ Vi+1 in Ki. If k is the largest index such that σ∪
{
vi+1,k

}
∈∆(i), then

vi+1,k ∧σ =
∑
j<k

vi+1,j ∧σ

in Ki. (Note that it is possible that this sum on the right is zero, if vi+1,k is the only

vertex of color i+ 1 that can be added to σ.) Therefore

B(i) = {σ ∈∆ : color(σ)∩ [i+ 1] = {i+ 1} , vi+1,j ∈ σ for some j,

and (σ \{vi+1,j})∪
{
vi+1,k

}
∈∆ for some k > j}.

By the definition of B(i) above, we see that ∆(i+1)tB(i) is a (lex least) basis for

δ(i)k∆(i)/δ(i+1)k∆(i).

STEP 3 – Defining Ω(i+1) : For each face σ ∈∆(i), define the map η by

η(σ) = σ∪{vi,j} where j = max
{
k : σ∪

{
vi,k
}
∈∆(i−1)

}

and then define Ω(i) to be the image of ∆(i) under this map. Since ∆ is pure, there

always exists such a vertex vi,j for each σ. Therefore η and Ω are well-defined, and

Ω(i+1) ⊆∆(i). We also note that B(i)∩Ω(i+1) = ∅. Thus

∆(i) = ∆(i+1)tB(i)tΩ(i+1) (3.3.2)

for each i.

STEP 4 – Showing that ∆(i+1) and ∆(i+1)tB(i) are subcomplexes of ∆(i) : By

definition, ∆(i+1) is a subcomplex of ∆(i). Consider instead Γ(i+1) = ∆(i+1)tB(i). By

definition, Γ(i+1) ⊆∆(i) as sets; we must show that Γ(i+1) is itself a simplicial complex.
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Since ∆(i+1) is a simplicial complex, this reduces to showing that if σ ∈ B(i), then

τ ∈ Γ(i+1) for each τ ⊆ σ.

Let σ ∈ B(i) and say σ = σ′∪{vi+1,j}. Then σ′ ∈∆(i+1), so we need only show

that the face τ = τ ′ ∪{vi+1,j} belongs to Γ(i+1) for each proper face τ ′ ( σ′. Note

that τ 6∈∆(i+1), so by the decomposition (3.3.2), it follows that τ ∈ B(i)tΩ(i+1). If

τ ∈Ω(i+1) then τ ′∪
{
vi+1,k

}
6∈∆(i) for all k > j, by the construction of Ω(i+1). But then

also σ′∪
{
vi+1,k

}
6∈∆(i) for all k > j, which is precisely the statement that σ ∈ Ω(i+1),

a contradiction since B(i)∩Ω(i+1) = ∅. Therefore Γ(i+1) is a simplicial complex.

STEP 5 – Showing that the B(i) are colorated Betti sets : We will first show that∣∣∣B(i)
∣∣∣= β[i],i+1. Consider the map

δi+1 : Ii→ Ii+1

where Ii = δ(i)k∆ as in Step 1. By the definition of ∆(i), we know that
∣∣∣∆(i+1)

∣∣∣ =

dimIi+1 = dim(imδi+1). By rank-nullity, thus

∣∣∣∆(i+1)
∣∣∣= dimIi+1 = dim(imδi+1) = dim(Ii)−dim(kerδi+1) .

Similarly, using the definition of B(i), we have

∣∣∣∆(i+1)tB(i)
∣∣∣= dim

(
δ(i)k∆(i)/δ(i+1)k∆(i)

)
= dim

(
δ(i)k∆/δ(i+1)k∆

)
= dim(Ii)−dim(imδi+1) .
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Combining the above, we see that

∣∣∣B(i)
∣∣∣=
∣∣∣∆(i+1)tB(i)

∣∣∣− ∣∣∣∆(i+1)
∣∣∣= dim(kerδi+1)−dim(imδi+1) .

Therefore
∣∣∣B(i)

∣∣∣ = β[i],i+1. We now note that this equality holds if we extend this to

including k, the cardinalities of the faces involved, as cohomology acts on each graded

piece separately.

3.4 Decompositions of balanced complexes

In [JKV17], Juhnke-Kubitzke and Venturello showed that there exist balanced Cohen–

Macaulay complexes that are not partitionable. This prompts the question of whether

balanced Cohen–Macaulay complexes admit some weaker decomposition that provides

a combinatorial explanation for the positivity of their flag h-vectors. Duval and Zhang

showed in [DZ01, Theorem 5.4] (reproduced here as Theorem 2.1.12) that if ∆ is

Cohen–Macaulay, then it admits an honest boolean tree decomposition. However, in the

case that ∆ is balanced, the boolean trees arising from the Duval–Zhang construction do

not explain positivity of the flag h-vector.

Given P ⊆ P (∆), a subposet of the face poset of a balanced complex ∆, we define

its color poset as C(P ) = {color(x) : x ∈ P}.

Definition 3.4.1. A rank-k boolean tree Υ is a balanced boolean tree if its color poset

C(Υ) is a rank-k boolean interval.

This gives us a precise way to state the above question. Recall that a decomposition

of a simplicial complex into disjoint boolean trees an honest boolean tree decomposition

if the tops of each of the boolean trees in the decomposition are facets of ∆.
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Conjecture 3.4.2. (Martin, unpublished) If ∆ is a balanced Cohen–Macaulay complex,

then there exists an honest balanced boolean tree decomposition of ∆.

Preserving balancedness is not an issue for intervals—if ∆ is a balanced simplicial

complex, then any interval in the face poset of ∆ is automatically balanced and thus any

partitioning interprets the flag h-vector. This is not always the case for boolean trees.

Consider the following two boolean trees.

v1,1

v1,1v2,1 v1,1v3,1

v1,1v2,1v3,2

Balanced

v1,1

v1,1v2,1 v1,1v3,1

v1,1v2,1v4,1

Not Balanced

The boolean tree on the left is balanced while the boolean tree on the right is not.

We can see that the color poset of the boolean tree on the left is a rank-2 boolean interval

while the color poset of the tree on the right is not.

Remark 3.4.3. An equivalent rephrasing of Definition 3.4.1 is the following:

• A rank-0 boolean tree is balanced.

• If two rank-(k−1) balanced boolean trees Υ1 and Υ2 have minimal elements r1

and r2 such that r1 l r2 and C(Υ2) = {C ∪{j} : C ∈ C(Υ1)} for some color j,

then Υ = Υ1∪Υ2 is a rank-k balanced boolean tree.

Proposition 3.4.4. If ∆ is pure and balanced, then ∆ can be decomposed into disjoint

balanced boolean trees such that the number of rank-i balanced boolean trees is the

colorated Betti number β[i],i+1(∆).
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Proof. We begin by noting that every face of ∆ is itself a rank-0 balanced boolean tree.

Assume that the first i iterations of the theorem have decomposed ∆ into a family of

balanced boolean trees of rank ≤ i, and that the minimal elements of these trees are all

of the faces in ∆(i), which is defined in Theorem 3.3.4 as ∆(i) = ∆[d]\[i]. By Theorem

3.3.4,

∆(i) = ∆(i+1)tB(i)tΩ(i+1)

and for each σ ∈ ∆(i+1) there exists η(σ) ∈ Ω(i+1) such that η(σ) = σ∪{vi+1,j} for

some vertex vi+1,j ∈ Vi+1. For each σ ∈∆(i+1), let Υσ be the balanced boolean tree

with minimal element σ and Υη(σ) the balanced boolean tree with minimal element η(σ).

Then Υσ,Υη(σ) together meet the criterion in Remark 3.4.3 and thus Υ = Υσ ∪Υη(σ) is

a rank-(i+ 1) boolean tree with minimal element σ ∈∆(i+1).

At each step, the only trees that do not get matched to create larger trees are those

with minimal elements in B(i). Therefore, at the end of this process, there are β[i],i+1

balanced boolean trees of rank i, and the minimal element σ of a tree of rank i will have

the property that colorσ∩ [i+ 1] = {i+ 1}, by the definition of B(i).

This is a direct analogue of Theorem 1.7.5, which allowed Duval and Zhang to prove

Theorem 2.1.12. However, while the above process does create balanced boolean trees,

it does not in general match enough faces of ∆ to construct honest boolean trees in the

Cohen–Macaulay case (i.e., it alone cannot prove a balanced version of Theorem 2.1.12).

This is due to the fact that the unmatched elements at each step correspond to colorated

Betti sets, which in general are much larger than their colorless counterparts.

However, if the complex admits appropriate orderings of colors and color classes,

then there is hope of iterating the process outlined in Proposition 3.4.4 to create an

honest balanced boolean tree decomposition. In particular, after Proposition 3.4.4 is
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applied to ∆, if we can apply it recursively to each of the B(i), then these applications

together will form an honest balanced boolean tree decomposition.

There is at least some hope of doing this when ∆ is a balanced Cohen–Macaulay

complex, and this is the case we are most interested in. By Proposition 3.1.5 (2), we can

see that each of the ∆(i) themselves are CM in this case. If we could also show that the

B(i) are also well behaved, then we could complete this decomposition via induction.

This all hinges on the order placed upon the vertices. It is of note that in the original

Duval-Zhang setup, the vertices had an order which affected the matchings, but this

order did not affect whether Theorem 1.7.5 would produce an honest boolean tree

decomposition for a Cohen–Macaulay complex. However, in the balanced case, it is

possible to order the vertices of a Cohen–Macaulay complex so that Proposition 3.4.4

cannot be iterated to produce an honest balanced boolean tree decomposition.

Example 3.4.5. Consider the complex ∆ = 〈r1b1, r1b2, r2b1, r3b2〉, which is balanced

(the ri are red vertices and the bi blue vertices).

r3 b2 r1 b1 r2

This complex is a connected graph; thus it is partitionable and this partitioning gives an

honest balanced boolean tree decomposition of ∆. We order the colors r < b and apply

our algorithm for creating balanced boolean trees. Here is the face poset of ∆(0) = ∆

without any covering relations.

r3b2 r1b2 r1b1 r2b1

r3 b2 r1 b1 r2

∅

65



Then ∆(1) = 〈b1, b2〉. We match each face σ ∈∆(1) with a covering face that contains

the largest red vertex possible. We add this matching in below. The unmatched faces

together form B(0).

r3b2 r1b2 r1b1 r2b1

r3 b2 r1 b1 r2

∅

Then ∆(2) = {∅}. We match this face to the largest blue vertex.

r3b2 r1b2 r1b1 r2b1

r3 b2 r1 b1 r2

∅

To create an honest decomposition, we would now need to perform further matchings

within B(0). However, we can see from inspection that it is impossible to match r2 to

any unmatched face. However, if we relabel the central red vertex as either r2 or r3, then

this process will produce an honest balanced boolean tree decomposition.

Assume we swap the vertex labels of r1 and r3. Then the first two steps of the

matching give the following.
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r1b2 r3b2 r3b1 r2b1

r1 b2 r3 b1 r2

∅

Then we can perform this matching algorithm for the faces of B(0), first separating this

set into faces containing r1 and faces containing r2. This gives the following honest

balanced boolean tree decomposition.

r1b2 r3b2 r3b1 r2b1

r1 b2 r3 b1 r2

∅

Given a balanced Cohen–Macaulay complex, if we want to avoid the situation in

Example 3.4.5, we must be able to guarantee that we can order the colors and the vertices

within each color class in a particular way. If it were true that

Bi
j := link∆(i−1) (vi,j)∩

⋃
k>j

link∆(i−1) vi,k

 (3.4.1)

is Cohen–Macaulay for all i ∈ [d], j ∈ [ni], then Bi
j is always Cohen–Macaulay, so

Proposition 3.4.4 could be inductively applied to create balanced boolean trees for each

of these Bi
j . Observing that

B(i) =
⋃
j∈[ni]

{
σ∪{vi,j} : σ ∈Bi

j

}
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we see that this would produce an honest balanced boolean tree decomposition for ∆.

68



Chapter 4

k-fold acyclic complexes

4.1 Stanley’s and Duval’s decomposition theorems

For this final chapter, we will assume that dim∆ = d, unless otherwise specified.

Recall that a simplicial complex ∆ is said to be acyclic (over k) if its reduced

homology groups all vanish, i.e., H̃i(∆) = H̃i(∆;k) = 0 for all i. Acyclicity can depend

on k; for example, any triangulation of the real projective plane RP 2 is acyclic over a

field k if char(k) 6= 2 but H̃2(RP 2) 6= 0 if char(k) = 2.

If there is some field k over which ∆ is acyclic, then it is an immediate consequence

of Proposition 1.2.1 that the f -polynomial of ∆ can be factored as f(∆, t) = (1+ t)g(t).

Stanley showed that this polynomial g(t) is itself the f -polynomial of some other

simplicial complex Γ. In fact, he was able to show the following stronger result.

Theorem 4.1.1. [Sta93, Theorem 1.2] Let ∆ be a simplicial complex that is acyclic over

some field. Then there exist ∆′, Ω such that ∆ = ∆′tΩ and a bijection η : ∆′→Ω with

the following properties:

1. ∆′ is a subcomplex of ∆.

2. σ ⊆ η(σ) and |η(σ)\σ|= 1 for all σ ∈∆′.
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B is a Betti set of ∆ if fi(B) = βi(∆) for all i. Duval [Duv94, Theorem 1.1]

generalized Theorem 4.1.1 to all simplicial complexes by introducing a Betti set B of

the complex such that ∆ = ∆′tΩtB and ∆′tB is a subcomplex of ∆. Furthermore,

Duval and Zhang extended this generalization to a sequence of decompositions through

the use of iterated homology [DZ01, Theorem 3.2] (Theorem 1.7.4). Theorem 3.3.4 is a

balanced analogue of the Duval–Zhang result.

Stanley also asked whether a stronger version of Theorem 4.1.1 could be shown for

complexes which possess a stronger notion of acyclicity.

Definition 4.1.2. A simplicial complex ∆ is said to be k-fold acyclic (over a field k) if

link∆(σ) is acyclic for all σ ∈∆ such that |σ|< k.

We can see that ∆ is acyclic if and only if ∆ is 1-fold acyclic, since link∆∅ = ∆.

Similarly, ∆ is 2-fold acyclic whenever ∆ itself is acyclic and link∆ v is acyclic for all

vertices v ∈∆.

With Definition 4.1.2 in mind, we may restate Theorem 4.1.1 as follows: If ∆ is

1-fold acyclic (over some field), then ∆ may be decomposed as

∆ =
⊔
i∈I

[Ri,Gi]

where each [Ri,Gi] is a rank-1 interval and ∆′ = {Ri : i ∈ I} is a subcomplex of ∆.

Notice here that Gi = η(Ri) where η is the map from Theorem 4.1.1.

This observation leads naturally to the conjecture that Stanley made regarding k-fold

acyclic complexes.
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Conjecture 4.1.3. [Sta93, Conjecture 2.4] Let ∆ be k-fold acyclic (over some field).

Then ∆ may be decomposed as

∆ =
⊔
i∈I

[Ri,Gi] (4.1.1)

where each [Ri,Gi] is a rank k interval and ∆′ = {Ri : i ∈ I} is a subcomplex of ∆.

While Equation 4.1.1 appears very similar to Definition 1.3.5 for partitionability,

the key difference is that the faces Gi need not be facets of ∆. However, a partitioning

of ∆ in which the Ri form a subcomplex (or, more generally, a partitioning in which

the intervals can be broken into subintervals whose minimal faces together form a

subcomplex) is also a decomposition in the sense of Conjecture 4.1.3.

4.2 Basic facts about k-fold acyclicity

Notice that k-fold acyclicity is not topological for k > 1. Consider the below examples.

Both of these complexes are homeomorphic to a 2-ball and thus are acyclic. The left

complex is in fact 3-fold acyclic since every non-facet face of the left complex has an

acyclic link. However, the right complex is only 1-acyclic, since the link of the center

vertex has nontrivial homology.

71



Recall that the join of two complexes ∆ and Γ on disjoint vertex sets is ∆ ?Γ =

{σ∪ τ : σ ∈∆ and τ ∈ Γ} . In the case that ∆ = 〈σ〉 is a simplex with |σ|= k, the join

〈σ〉?Γ = ∆?Γ is called a k-fold cone.

It is easy to see that k-fold cones are k-fold acyclic. In fact, k-fold cones are the

simplest class of complexes for which Conjecture 4.1.3 holds. Say that ∆ = σ ?∆′.

Then ∆ may be decomposed as

∆ =
⊔
τ∈∆′

[τ,τ ∪σ]

which fulfills the requirements of Conjecture 4.1.3. Thus Conjecture 4.1.3 identifies a

specific way in which k-fold acyclic complexes may behave like k-fold cones.

In general, Proposition 4.2.2 gives a relationship between cones and acyclicity. We

first need the following lemma.

Lemma 4.2.1. Let σ = σ1∪σ2 such that that σ1 ∈∆, σ2 ∈ Γ. Then

link∆?Γσ = link∆σ1 ? linkΓσ2.

Proof. This lemma follows from the below equalities.

link∆?Γσ = {τ ∈∆?Γ : σ∪ τ ∈∆?Γ, σ∩ τ = ∅}

= {τ1∪ τ2 : τ1 ∈∆, τ2 ∈ Γ, σ∪ (τ1∪ τ2) ∈∆?Γ, σ∩ (τ1∪ τ2) = ∅}

= {τ1∪ τ2 : τ1 ∈∆, τ2 ∈ Γ, σ1∪ τ1 ∈∆, σ2∪ τ2 ∈ Γ, σ∩ (τ1∪ τ2) = ∅}

= {τ1 ∈∆ : σ1∪ τ1 ∈∆, σ1∩ τ1 = ∅}?{τ2 ∈ Γ : σ2∪ τ2 ∈ Γ, σ2∩ τ2 = ∅}

= link∆σ1 ? linkΓσ2

Proposition 4.2.2. If ∆ is j-fold acyclic and |σ|= k, then σ ?∆ is (j+k)-fold acyclic.
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Proof. Let τ ∈ Γ = σ ?∆. Then τ = σ′∪ τ ′ where σ′ ⊆ σ and τ ′ ∈∆. Then linkΓ τ =

(σ \σ′)? link∆ τ
′ by Lemma 4.2.1. Note that |τ |= |σ′|+ |τ ′|. Assume that |τ |< j+k.

If |σ′|< k, then the link of τ is a cone and thus is acyclic. If instead |σ′|= k then σ′ = σ

and linkΓ τ = link∆ τ
′. But since |τ ′|< j, therefore this link is acyclic as well. Thus Γ

is (j+k)-fold acyclic.

We are also able to describe the acyclicity of links of faces in k-fold acyclic com-

plexes, but we first need the following lemma.

Lemma 4.2.3. Let σ,τ ∈∆ and σ∩ τ = ∅. Then

link(link∆σ) τ = link∆(σ∪ τ).

Proof. The proof is the following straightforward calculation.

link(link∆σ) τ = {γ ∈ link∆σ : γ∪ τ ∈ link∆σ and γ∩ τ = ∅}

= {γ ∈∆ : γ∪ τ ∈ link∆σ, γ∪σ ∈∆, γ∩σ = ∅, and γ∩ τ = ∅}

= {γ ∈∆ : γ∪ τ ∈ link∆σ, γ∪σ ∈∆, and γ∩ (σ∪ τ) = ∅}

= {γ ∈∆ : γ∪ (σ∪ τ) ∈∆ and γ∩ (σ∪ τ) = ∅}

= link∆(σ∪ τ)

This proposition can be modified to apply to faces σ,τ ∈∆ with nonempty intersection

by replacing τ with τ \σ.

Proposition 4.2.4. Let ∆ be k-fold acyclic. Then link∆σ is (k−|σ|)-fold acyclic for

every σ ∈∆.
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Proof. Consider a face τ ∈ link∆σ such that |τ |< k−|σ|. Then by Lemma 4.2.3,

link(link∆σ) τ = link∆ (σ∪ τ)

which must be acyclic, since |σ∪ τ |= |σ|+ |τ |< k.

Furthermore, k-fold acyclicity also provides some algebraic structure on a complex’s

Stanley-Reisner ring.

Proposition 4.2.5. Let ∆ be a k-fold acyclic simplicial complex. If ∆ has more than

one facet, then depthk[∆]≥ k+ 1.

Proof. By Proposition 1.4.4, recall that depthk[∆] = min
{
i : Hi

m (k[∆]) 6= 0
}

where

Hi
m (k[∆]) is the ith local cohomology module of k[∆] (withm taken to be the irrelevant

ideal).

Assume k ≥ 1. Hochster’s Theorem together with Proposition 1.4.4 implies that

depthk[∆]≤ k if and only if there is a face σ ∈∆ and a number e≤ k such that

H̃e−|σ|−1 (link∆σ) 6= 0.

Notice that if |σ|> e, then e−|σ|−1<−1 and this homology is trivial by definition. If

|σ|< e, then link∆σ is acyclic since e≤ k and thus H̃e−|σ|−1 (link∆σ) = 0.

Therefore the only case we need to check is when |σ|= e, when we are considering

H̃e−|σ|−1 (link∆σ) = H̃−1 (link∆σ). This homology group is only nontrivial when

link∆σ = {∅}, that is, when σ is a facet of ∆. We may assume there is a ridge τ ⊆ σ

that is contained in another facet σ′ of ∆. (If this is not the case, then ∆ is disconnected

and thus H̃0 (link∆∅) = H̃0(∆) 6= 0, which contradicts k-fold acyclicity.)

But τ is a ridge of σ, so |τ |= |σ|−1< k and link∆ τ is disconnected. This contra-

dicts k-fold acyclicity. Therefore depthk[∆]≥ k+ 1.
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In fact, the bound of Proposition 4.2.5 is tight in any dimension. Consider ∆ to be

two d-simplices glued along a k-simplex, with k < d. This complex is k-fold acyclic

(by, for example, Proposition 4.3.2 in the following section), and so depthk[∆]≥ k+ 1.

However, it is an easy computation (by, say, Proposition 1.4.10) to see that depthk[∆] =

k+ 1.

4.3 Gluing and a relative counterexample

If Θ = (∆,Γ) is a relative complex, recall that for σ ∈∆, the relative link of σ in Θ is

linkΘσ = (link∆σ, linkΓσ). We define a relative complex Θ = (∆,Γ) to be a k-fold

acyclic relative complex if linkΘσ is acyclic for all σ ∈∆ such that |σ|< k.

It turns out that Conjecture 4.1.3 does not hold for relative complexes in general.

Consider the following example.

Example 4.3.1. [DGKM16, Remark 3.6 (vertices relabeled)]

Let ∆ = 〈1345,1346,3456,2356,2456〉 and Γ = 〈145,146,235,245〉. Then the rela-

tive complex Θ = (∆,Γ) is 2-fold acyclic. The following is the face poset of Θ.

13 34 36 56 26

135 134 345 346 136 356 236 456 256 246

1345 1346 3456 2356 2456

One can see from inspection of this face poset that Θ cannot be written as the disjoint

union of rank-2 boolean intervals.

It is natural to look for a counterexample to Conjecture 4.1.3 by gluing together

copies of a relative counterexample, similarly to the construction in Proposition 2.1.8.
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We first need to note that gluing together complexes preserves k-fold acyclicity in a

natural way.

Proposition 4.3.2. Let ∆1 and ∆2 be simplicial complexes such that ∆1 is j-fold

acyclic, ∆2 is k-fold acyclic, and ∆1∩∆2 is `-fold acyclic. Then ∆1∪∆2 is m-fold

acyclic, where m= min{j,k,`}.

Proof. Let σ ∈ ∆1 ∪∆2 and assume |σ| < m. If σ ∈ ∆1 \∆2, then link(∆1∪∆2)σ =

link∆1 σ and thus link(∆1∪∆2)σ is acyclic. The same holds if σ ∈∆2 \∆1.

If instead σ ∈∆1∩∆2, then we will apply Lemma 2.1.3 and Theorem 1.2.2. This

gives the Mayer-Vietoris sequence

· · · → H̃i(link∆1 σ)⊕ H̃i(link∆2 σ)→ H̃i(link∆1∪∆2 σ)→ H̃i−1(link∆1∩∆2 σ)→ . . . .

Since ∆1, ∆2, and ∆1∩∆2 are m-fold acyclic, the homology groups of the links of σ in

each of these complexes vanish since |σ|<m. This implies that H̃i(link∆1∪∆2 σ) = 0

for all i. Therefore ∆1∪∆2 is m-fold acyclic.

With Proposition 4.3.2 in hand, we can prove a k-fold acyclic version of Theorem

2.1.6.

Theorem 4.3.3. Let Θ = (∆,Γ) be a relative complex such that

1. ∆ and Γ are k-fold acyclic;

2. Γ is an induced subcomplex of ∆; and

3. Θ cannot be written as a disjoint union of rank k boolean intervals.

Let k be the total number of faces of Γ and let N > k. Then gluing N copies of ∆

together along Γ will produce a k-fold acyclic complex that cannot be written as a

disjoint union of rank k boolean intervals.
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Proof. The proof follows the same reasoning as the proof for Theorem 2.1.6.

However, we note that Example 4.3.1 is not of the form (∆,Γ) where Γ is an induced

complex of ∆, so it cannot be used with Theorem 4.3.3 to produce a counterexample to

Conjecture 4.1.3. An extensive search has been made using well-known complexes with

interesting decomposition properties (for example, the non-shellable balls constructed

by Rudin [Rud58], Ziegler [Zie98], and Benedetti and Lutz [BL13], along with related

complexes constructed from these examples) but so far no relative complexes meeting

all of the criteria of Theorem 4.3.3 have been constructed, and it is unknown whether

such a relative complex exists.

4.4 Decompositions into boolean trees

While Conjecture 4.1.3 remains open, we can prove a weakened version of it by replacing

boolean intervals with boolean trees.

Proposition 4.4.1. [Sta93, due to Kalai, noted in the proof of Proposition 2.3] If ∆ is

k-fold acyclic, then its algebraic shifting S(∆) is also k-fold acyclic.

Proposition 4.4.2. If ∆ is shifted and k-fold acyclic, then ∆ is a k-fold cone. In other

words, ∆ = 〈12 . . .k〉?∆′ for some subcomplex ∆′.

Proof. Since ∆ is shifted, ∆ = S(∆). By [BK88, Theorem 4.3],

βi(∆) = |{facets T ∈∆ : |T |= i+ 1 and T ∪{1} 6∈∆}|

(Notice that this is the r = 0 case of Proposition 1.7.2). Since ∆ is assumed to be

k-fold acyclic, it is in particular acyclic. Thus βi(∆) = 0 for all i, which implies that

∆ = 〈1〉 ?Γ1 for some complex Γ1. By [DR00, Proposition 2.3], Γ1 is shifted on the
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remaining vertices, and we also know that Γ1 is (k− 1)-fold acyclic. Repeating this

argument, we see that ∆ = 〈1〉?〈2〉? · · ·?〈k〉?∆′ = 〈12 . . .k〉?∆′ for some subcomplex

∆′, i.e., ∆ is a k-fold cone.

An immediate corollary of the above is the following.

Corollary 4.4.3. [Sta93, essentially Proposition 2.3] If ∆ is k-fold acyclic, then its

f -polynomial can be factored as f(∆, t) = (1 + t)kf(∆′, t), where f(∆′, t) is the f -

polynomial of another complex ∆′.

We are now able to prove the following relaxation of Conjecture 4.1.3.

Theorem 4.4.4. Let ∆ be k-fold acyclic. Then ∆ can be written as the disjoint union of

boolean trees of rank k. Furthermore, the minimal faces of these boolean trees together

form a subcomplex ∆′.

Proof. The proof is similar to the proof of Theorem 1.7.5. We will make use of Theorem

1.7.4, and we will use the notation of that theorem.

By Proposition 4.4.2, S(∆) = 〈1 . . .k〉?∆′ for some complex ∆′. Proposition 1.7.2

relates the iterated Betti numbers of ∆ to the algebraic shifting S(∆). In particular, it

says that

βi[r](∆) = |{facets F ∈ S(∆) : |F |= i+ 1 and init(F ) = r}| .

Since S(∆) is a k-fold cone, init(F )≥ k for all facets F ∈ S(∆), and thus βi[r](∆) = 0

for r < k.

Step 0: Note that all faces of ∆ = ∆(0) form rank-0 boolean trees.

We will perform the following step k times: Assume this step has been completed

i < k times, so the minimal elements of boolean trees of rank i are all of the faces of
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∆(i). By Theorem 1.7.4,

∆(i) = ∆(i+1)tB(i)tΩ(i+1)

= ∆(i+1)tΩ(i+1)

with the second equality by 1.7.4 (2) since i < k. For each face σ ∈∆(i+1), we combine

the rank-i boolean trees with minimal elements σ and η(i+1)(σ) to form rank-(i+ 1)

boolean trees. Since B(i) = ∅, there are no rank-i boolean trees remaining after this

step.

Furthermore, if we stop this process after k iterations, we see that the minimal

elements of the resulting boolean trees are precisely the faces of ∆(k+1)tB(k). We

know that

∆(k+1)tB(k) ⊆∆(k) ⊆∆(k−1) ⊆ ·· · ⊆∆(0) = ∆

as subcomplexes, therefore the minimal elements of these boolean trees together form a

subcomplex ∆′ = ∆(k+1)tB(k).

4.5 dim∆-fold acyclic complexes

Recall that in this chapter we adopt the convention dim∆ = d. We will use this section

to show that Conjecture 4.1.3 holds when k = d= dim∆. Thus the conjecture is known

to be true for k = 1 (due to Stanley’s original theorem) and k = dim∆, which is as high

as possible (unless ∆ is a simplex, which is (dim∆ + 1)-fold acyclic). It is unknown

whether the conjecture holds for 1< k < dim∆, except that it is known to be true when

dim∆≤ 2 due to a result of Duval, Klivans, and Martin (unpublished). Much of this

section is based on elements of the Duval–Klivans–Martin proof of the dim∆ = 2 case.
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Assume ∆ is d-fold acyclic. Then by Proposition 4.2.5, depthk[∆]≥ d+ 1. Since

depthk[∆]≤ dimk[∆] = d+ 1, it follows that depthk[∆] = dimk[∆] and therefore ∆

is Cohen–Macaulay. However, we will show that ∆ possesses an even stronger structure

defined below, and this will provide a decomposition of ∆ into rank-d boolean intervals.

Definition 4.5.1. A simplicial complex ∆ is a stacked simplicial complex if ∆ is pure

with a shelling order F1, . . . ,Fj such that 〈F1, . . . ,Fi〉∩ 〈Fi+1〉 has a single facet for all

i ∈ [j−1].

The term “stacked” is intended to suggest the notion of a stacked polytope. A

polytope is stacked if it is a simplex or if it is constructed by taking the cone over a

single facet of a stacked polytope (see, for example, [Grü03]). If Γ = ∂P is the boundary

complex of a stacked polytope P , then it is necessarily a sphere; however, such a complex

Γ is also the boundary of a stacked simplicial complex ∆. However, Definition 4.5.1 is

slightly more lenient than that of a stacked polytope. Note that ∆ = 〈123,124,125〉 is a

stacked simplicial complex, but if Γ = ∂∆ there is no polytope P (stacked or not) such

that Γ = ∂P .

Remark 4.5.2. Definition 4.5.1 is equivalent to the term “facet constructible,” which

appears in [DS17, Section 4].

If ∆ is a stacked simplicial complex, then ∆ is extendably shellable (see p. 13).

Once we have the following lemma, we can say even more about stacked complexes.

Lemma 4.5.3. If ∆ is (pure) shellable, then link∆σ is (pure) shellable for all σ ∈∆.

Proof. Each facet of link∆σ is of the form G where G∪σ = F , a facet of ∆. Given a

shelling order on the facets of ∆, we can order the facets of link∆σ as G1, . . . ,Gk where

Gi = Fji ∩ link∆σ and j1 < j2 < · · ·< jk in the shelling order of ∆.
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Then, for each 1< i≤ k, we have that

〈Gi〉∩ 〈G1, . . . ,Gi−1〉= (〈Fji〉∩ 〈F1, . . . ,Fji−1〉)∩ link∆σ

is pure of dimension d−dimσ. Therefore this is a shelling order of G.

Proposition 4.5.4. Let ∆ be a d-dimensional stacked simplicial complex. Then ∆ is

d-fold acyclic and ∆ can be written as the disjoint union of rank-d boolean intervals,

the minimal elements of which form a subcomplex ∆′ ⊆∆. In other words, Conjecture

4.1.3 holds for stacked complexes.

Proof. We will prove that stacked complexes are d-fold acyclic by induction on d =

dim∆. Notice that if dim∆ = 1, then ∆ is stacked if and only if ∆ is a connected

acyclic graph (i.e., a tree), and thus is 1-fold acyclic.

Assume the result holds for k < d and let dim∆ = d. Let σ ∈∆ such that |σ|< d.

Then link∆σ is shellable by Lemma 4.5.3. Recall that star∆σ= 〈σ〉? link∆σ. Therefore

link∆σ must also be stacked and dimlink∆σ < dim∆ as long as σ 6= ∅. If, however,

σ = ∅, then link∆σ = ∆, which is acyclic by assumption. Thus ∆ is d-fold acyclic, and

we are done by induction.

Given a stacked complex ∆, a shelling F1, . . .Fj gives rise to the following partition-

ing:

∆ = [∅,F1]t [v2,F2]t [v3,F3]t·· ·t [vj ,Fj ]

For any vertex v1 ∈ F1, we can write [∅,F1] = [∅,F1 \ {v1}]t [v1,F1]. Therefore ∆

can be decomposed as

∆ = [∅,F1 \{v1}]t [v1,F1]t [v2,F2]t [v3,F3]t·· ·t [vj ,Fj ]

81



and ∆′ = {∅,v1,v2, . . . ,vj} is a subcomplex of ∆. Thus Conjecture 4.1.3 holds for

stacked complexes.

Therefore the goal of the remainder of this section will be to show that if a d-

dimensional complex ∆ is d-fold acyclic, then ∆ is stacked and thus Conjecture 4.1.3

holds when k = d= dim∆. We also note that Hailong Dao (personal communication)

has been able to show that Conjecture 4.1.3 holds for k = dim∆ using results from

[DS17] and techniques from homological algebra.

We first need several technical lemmas before we can prove our main result.

Lemma 4.5.5. Let Γ ⊆ ∆ be simplicial complexes such that dimΓ = dim∆ = d. If

H̃d(Γ) 6= 0 then H̃d(∆) 6= 0.

Proof. (Sketch) If Γ⊆∆, then the maps Ci(Γ)→ Ci(∆) are injective. Therefore the

induced map H̃d(Γ)→ H̃d(∆) is injective.

Lemma 4.5.6. Let ∆ be d-dimensional and d-fold acyclic. Then ∆ is pure.

Proof. Certainly ∆ is connected; otherwise H̃0 (∆) 6= 0. Assume that ∆ is not pure.

Thus there is some face contained in facets of different dimensions. Take σ to be a face

that is maximal with respect to this property. We must have both |σ|< d and linkσ is

disconnected. This is a contradiction to d-fold acyclicity.

Lemma 4.5.7. Let ∆ be d-fold acyclic and d-dimensional. If X is generated by a partial

shelling of ∆, then X is also d-fold acyclic.

Proof. We note that ∆ is pure by Lemma 4.5.6.

X is pure and is shellable by assumption, thus it only has top dimensional homology.

However, ∆ has no top dimensional homology and X ⊆∆ of the same dimension, thus

H̃d(X) = 0 by Lemma 4.5.5.
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Similarly, let σ ∈X and say |σ|< d. The shelling of X induces a shelling of linkX σ,

thus linkX σ is pure shellable because ∆ is pure. Therefore linkX σ may have homology

only in its top dimension. But again, since linkX σ ⊆ link∆σ of the same dimension and

link∆σ is acyclic by assumption, thus linkX σ is acyclic by Lemma 4.5.5. Therefore X

is d-fold acyclic.

Lemma 4.5.8. Let ∆ be d-fold acyclic and d-dimensional. If X is generated by a partial

shelling of ∆ and Y is generated by the remaining facets of ∆, then X ∩Y is pure of

dimension d−1.

Proof. Since ∆ is d-fold acyclic, X ∩Y is non-empty, otherwise H̃0(∆) 6= 0. Let σ

be a maximal face of X ∩Y . Recall that link∆σ = linkX σ∪ linkY σ by Proposition

2.1.3, and thus is disconnected and therefore not acyclic. If dimσ < d−1, i.e. |σ|< d,

then this would contradict d-fold acyclicity of ∆. Thus X ∩Y is pure of dimension

d−1.

Lemma 4.5.9. Let ∆ be a d-dimensional stacked simplicial complex. If X is generated

by a partial shelling and F is a facet of ∆ such that dimX ∩〈F 〉= d−1, then X ∩〈F 〉

has a single facet.

Proof. This follows from the fact that stacked simplicial complexes are extendably

shellable.

Assume X ∩〈F 〉 has more than one facet. Since X is generated by a partial shelling,

then there must be a way to extend it to a full shelling. At some point this extended

shelling contains F . Then this implies that when F is added in the full shelling of ∆

that it is attached along more than one ridge of ∆. But this contradicts the assumption

that ∆ is stacked.

We now reword the Duval–Klivans–Martin result using our terminology.
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Theorem 4.5.10. [Duval–Klivans–Martin, unpublished] If ∆ is 2-dimensional and 2-

fold acyclic, then ∆ is stacked.

We will now show the general case by induction on dimension.

Theorem 4.5.11. If ∆ is d-dimensional and d-fold acyclic, then ∆ is stacked.

Proof. The statement holds for d= 2 by Theorem 4.5.10 and trivially for d < 2.

Let dim∆ = d> 2 and assume that the statement of the theorem holds for dimensions

lower than d. Let X ⊆∆ be generated by a partial (stacked) shelling of ∆, and let F be

a facet of Y = 〈remaining facets of ∆〉 such that dimX ∩〈F 〉= d−1.

Assume that X ∩〈F 〉 has at least two facets, σ1 and σ2, and assume without loss of

generality that dimσ1 = d−1. Define σ = σ1∩σ2. Note that link∆σ is (d−|σ|)-fold

acyclic and dimlink∆σ = d−|σ|. If σ 6= ∅, then link∆σ is stacked by our induction

hypothesis. Furthermore, link∆σ inherits the induced (stacked) shelling of X , and F \σ

cannot be part of any stacked shelling of link∆σ by Lemma 4.5.9. Thus we reach a

contradiction.

If σ = ∅, then link∆σ = ∆, so we cannot apply induction on dimension in this

case. Instead, we want to consider the homology of linkX∪〈F 〉σ = X ∪ 〈F 〉. Note

that in this case X ∩ 〈F 〉 is two disjoint simplices, σ1 a ridge of ∆ and σ2 a vertex.

So H̃0 (X ∩〈F 〉) 6= 0, and a Mayer-Vietoris sequence (Proposition 1.2.2) implies that

H̃1 (X ∪〈F 〉) 6= 0. But H̃1(∆) = 0 by d-fold acyclicity.

Thus for some 1-chainQ supported inX∪〈F 〉, there exists a collection of remaining

facets Z of ∆ that support a 2-chain in ∆ such that the boundary of this 2-chain is the

1-chain Q. Furthermore, the support of this 1-chain must include an edge with endpoints

σ2 and some v ∈ σ1; otherwise this would contradict d-fold acyclicity of X .

We know that link∆ v is (d−1)-dimensional and (d−1)-fold acyclic, so it is stacked

by our induction hypothesis. Thus there is some shelling of link∆ v that begins with all of
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the facets of (X ∪〈F 〉)∩ link∆ v which eventually adds all of the facets of 〈Z〉∩ link∆ v.

However, this contradicts the assumption that link∆ v is stacked by Lemma 4.5.9, since

some facet of 〈Z〉∩ link∆ v must intersect the partial shelling in more than one ridge.

Therefore link∆ v is not (d−1)-fold acyclic and so ∆ is not d-fold acyclic, which is a

contradiction. This completes the proof.

Combining Theorem 4.5.11 and Proposition 4.5.4, we see that a d-dimensional

complex ∆ is stacked if and only if it is d-fold acyclic. This leads immediately to our

main result of this section.

Corollary 4.5.12. Conjecture 4.1.3 holds when k = dim∆.
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[Grü70] Branko Grünbaum, Nerves of simplicial complexes, Aequationes Math. 4
(1970), 63–73. MR 0264648 Cited on 21
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