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Abstract

In this work, we present analytical studies of standing waves in three NLS models.

We first consider the spectral stability of ground states of fourth order semi-linear

Schrödinger and Klein-Gordon equations and semi-linear Schrödinger and Klein-Gordon

equations with fractional dispersion. We use Hamiltonian index counting theory, to-

gether with the information from a variational construction to develop sharp conditions

for spectral stability for these waves. The second case is about the existence and the

stability of the vortices for the NLS in higher dimensions. We extend the existence

and stability results of Mizumachi from two-space dimensions to n space dimensions.

Finally, the third equation we consider is a nonlocal NLS which comes from model-

ing nonlinear waves in Parity-time symmetric systems. Here again, we investigate the

spectral stability of standing waves of its PT symmetric solutions.
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Chapter 1

Introduction

1.1 Basic Sobolev Spaces

For functions u : R 7→ C, we define the Lp -norm for any p≥ 1,

‖u‖p :=
(ˆ

R
|u(x)|p dx

)1/p

.

The L∞ -norm is realized as the p→∞ limit of the Lp -norm, and is given for smooth functions

by

‖u‖∞ := sup
x∈R
|u(x)|.

For any p≥ 1 the Bananch space Lp(R) is given by

Lp(R) := {u : ‖u‖p < ∞}.

For differentiable functions we define the W k,p-norm

‖u‖W k,p :=

(
k

∑
j=0
‖∂ j

x u‖p
p

) 1
p

,

and the associated space

W k,p(R) := {u : ‖u‖W k,p < ∞}.
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The Hilbert spaces Hk :=W k,2 are used frequently throughout the text. We introduce the inner

product

〈 f ,g〉 :=
ˆ
R

f (x)g(x) dx,

where the overbar denote complext conjugation. The spaces Hk(R) are Hilbert spaces, since their

norm is induced by the inner product

‖u‖2
Hk =

k

∑
j=0

〈
∂

j
x u,∂ j

x u
〉
.

Introducing the Fourier transform of u,

û(η) :=
1√
2π

ˆ
R

e−iηxu(x) dx,

and its inverse,

u(x) :=
1√
2π

ˆ
R

eiηxû(η) dη ,

we have Plancherel’s equality

‖u‖2 = ‖û‖2,

and one particularly useful property of the Fourier transform:

∂̂ l
xu = (ik)l û.

Moreover, for each k > 0 the following norm is equivalent to the usual norm on Hk(R),

‖u‖2
Hk =

ˆ
R

(
1+ |η |2k

)
|û(η)|2 dη .
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1.2 The Point Spectrum: Sturm-Liouville Theory

1.2.1 Sturm-Liouville Operators on a Bounded Domain

A Sturm-Liouville operator L takes the form

Lp := ∂
2
x p+a1(x)∂x p+a0(x)p,

and will also be called a Sturmian operator.

Consider L to be defined on the bounded interval [−1,1], subject to boundary conditions

b−1 p(−1)+b−2 ∂x p(−1) = 0, b+1 p(+1)+b+2 ∂x p(+1) = 0. (1.2.1)

Assume that (b±1 )
2 +(b±2 )

2 > 0, and the coefficients a1(x) and a0(x) in L are C1 and real-valued.

The spectral problem is naturally posed on H2
bc[−1,+1], where

H2
bc[−1,+1] := {u ∈ H2[−1,+1] : b±1 u(±1)+b±2 ∂xu(±1) = 0}.

The operator L is self-adoint in the weighted inner product 〈u,v〉p :=
´ 1
−1 u(x)v(x)ρ(x) dx, with

associated norm ‖ · ‖ρ , where the weighted function is

ρ(x) := e
´ x

0 a1(s) ds > 0.

The associated eigenvalue problem is

Lp = λ p, (1.2.2)

Theorem 1.2.1. Consider the Sturmian eigenvalue problem 1.2.2 with separated boundary condi-

tions 1.2.1 on the space H2
bc([−1,+1]). All of the eigenvalues are real-valued and simple, and can

3



be enumerated in a strictly descending order

λ0 > λ1 > λ2 > · · · , lim
n→∞

λn =−∞.

The eigenfunctions p j(x) associated with the eigenvalue λ j for j = 0,1,2, · · · , can be normalized

so that

(a) p j has j simple zeros in the open interval (−1,+1).

(b) The eigenfunctions are orthonormal in the ρ-weighted inner product,

〈
p j, pk

〉
ρ
= δ jk,

where δ is the Kronecker delta.

(c) The eigenfunctions form a complete orthnormal basis of L2[−1,1] in the ρ-weighted inner

product. That is , any u ∈ L2[−1.1] can be expressed as

u =
∞

∑
j=0

u j p j,

where the sum on the right-hand side converges in ‖ · ‖ρ and u j :=
〈
u, p j

〉
ρ

and

‖u‖2
ρ =

∞

∑
j=0
|u j|2.

(d) The ground-state eigenvalue can be characterized as the supremum of the bilinear form

associated to L,

λ0 = sup
‖u‖ρ=1

〈Lu,u〉
ρ
,

moreover the supremum is achieved at u = p0, which has no zeros on (−1,1).
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1.2.2 Sturm-Liouville Operators on the Real Line

Consider the Sturmian operator L acting on H2(R) with smooth coefficients a0(x) and a1(x), which

decay exponentially to constants at x =±∞, i.e.,

lim
x→±∞

eν |x||a1(x)−a±1 |= 0, lim
x→±∞

eν |x||a0(x)−a±0 |= 0, (1.2.3)

for some ν > 0 and constants a±1 a±0 ∈ R. The operator L is self-adjoint in the ρ-weighted inner

product, and the weight has the finite asymptotic values

ρ± := lim
x→±∞

e−a±1 x
ρ(x).

Moreover, the following theorem holds.

Theorem 1.2.2. Consider the eigenvalue problem 1.2.2 on the space H2(R), where the coefficients

satisfy 1.2.3. The point spectrum, σpt(L), consists of a finite number, possibly zero, of simple

eigenvalues, which can be enumerated in a strictly descending order

λ0 > λ1 > · · ·> λN > b := max{a−0 ,a
+
0 }.

For j = 0, · · · ,N the eigenfunction p j(x) associated with the eigenvalue λ j can be normalized so

that:

(a) p j has j simple zeros.

(b) The eigenfunctions are orthonormal in the ρ-weighted inner product.

(c) The ground-state eigenvalue, if it exists, can be characiterized as the supremum of the bi-

linear form associated to L, λ0 = sup
‖u‖ρ=1

〈Lu,u〉
ρ

, and the supremum is acheived at u = p0,

which has no zeros.

5



1.3 Total positivity theory

In this section, we present some basic results from John Albert’s positivity theory, [23]

Let T be the operator defined on a dense subspace of L2(R) by

T g(x) = Mg(x)+ωg(x)−ϕ
p(x)g(x),

where p≥ 1 is an integer, ω is a real parameter, ϕ is real-valued solution of

(M+ω)ϕ =
1

p+1
ϕ

p+1.

having a suitable decay at infinity, and M is defined as a Fourier multiplier operator by

M̂g(ξ ) = m(ξ )ĝ(ξ ).

Here circumflexes denotes the Fourier transform, m(ξ ) is a measurable, locally bounded, even

function on R satisfying

(1) A1|ξ |µ ≤ m(ξ )≤ A2|ξ |µ for |ξ | ≥ ξ0;

(2) m(ξ )≥ b;

where A1 and A2 are positive real constants, µ ≥ 1, and ξ0 and b are real numbers. Throughout, it

is assumed that ω >−b. Under the above assumptions, we have the following.

Lemma 1.3.1. The operator T is a closed, unbounded, self-adjoint operator on L2(R) whose

spectrum consists of the interval [ω,∞) together with a finite number of discrete eigenvalues in

the interval (−∞,ω], in which all of them have finite algebraic multiplicity. In addition, zero is an

eigenvalue of T with eigenfunction ϕ ′.

Proof.

6



Proposition 1.3.2. The essential spectrum is conserved under a relatively compact perturbation.

More precisely, let T ∈L(x) and Let A be T−compact. Then T and T +A have the same essential

spectrum.

Consider T g(x) = Mg(x)+ωg(x)−ϕ p(x)g(x), first, note that the essential spectrum of the

operator M+ω is the interval [ω,∞), while the operator T is a perturbation of M+ω by a relatively

compact operator. Therefore, by the Proposition above, the essential spectrum of T is also [ω,∞).

We also know that the dimensions of the null space and deficiency of T −λ I are independent of λ

if λ /∈ [ω,∞), with the possible exception if a set of isolated points {λn}.

Remark 1.3.3. Let T ∈ L(X ,Y ), the graph G(T ) of T is the closed linear manifolds of X ×Y

consisting of all elements {u,T u} where u ∈ D(T ). Note that: N(T ) = G(T )∩X, R(T )+X =

G(T )+X.

null T = dim(G(T )∩X) = null (G(T ),X),

de f T = codim(G(T )+X) = de f (G(T ),X).

Proposition 1.3.4. A closed symmetric operator T has deficiency index (0,0) if and only if T is

self-adjoint.

Since T is self-adjoint, then we have null (T −λ I) = de f (T −λ I) = 0 for λ /∈ {λn}∪ [ω,∞),

which means that λn are isolated eigenvalues of T . Furthermore, to show that the set of all λn is

finite, it suffices to show that the spectrum of T is bounded below. Then it will be shown that if

K = (|ϕ|p∞)+ω , then spec(T ) does not intersect the interval (−∞,−K). Let λ <−K, and consider

T −λ I. T −λ I = (M−λ I)+ (ω −ϕ p), since M−λ I has symbol (α(k)−λ ) and λ < 0, then

M−λ I is invertible as an operator on L2. We can obtain

‖(M−λ I)−1‖2,2 = sup
k∈R
| 1
α(k)−λ

|= 1
λ
,

Further,

‖w−ϕ
p‖2,2 ≤ K < |λ |= 1

‖(M−λ I)−1‖2,2
.

7



Hence, the Neumann series for the inverse of (M−λ I)+(ω−ϕ p) converges, so that (T −λ I)−1

exists and is bounded. Hence λ /∈ spec(T ). Thus the spectrum of T is bounded below and this

completes the proof of the lemma.

In order to obtain additional spectral properties of T , let us introduce the family of operators

Sθ , θ ≥ 0 on L2(R).

Sθ g(x) =
1

ωθ (x)

ˆ
R

K(x− y)g(y) dy,

where K(x) = ϕ̂ p(x) and ωθ (x) = m(x)+θ +ω . These operators act on the Hilbert space

X = {g ∈ L2(R);‖g‖X ,θ =

(ˆ
R
|g(x)|2ωθ (x) dx

)1/2

< ∞}.

Proposition 1.3.5. (a) If g ∈ L2 is an eigenfunction of Sθ for a non-zero eigenvalue, then g ∈ X.

(b) The restriction of Sθ to X is a compact, self-adjoint operator on X with respect to the norm

‖ · ‖X ,θ .

The following two corollaries are immediate consequence of the Proposition above and the

spectral theorem for self-adjoint compact operators on a Hilbert space.

Corollary 1.3.6. Suppose θ ≥ 0. Then −θ is an eigenvalue of T (as an operator on L2(R)) with

eigenfunction g if and only if , 1 is an eigenvalue of Sθ (as an operator on X) with eigenfunction ĝ.

In particular, both eigenvalues have the same multiplicity.

Corollary 1.3.7. For every θ ≥ 0, Sθ has a family of eigenvectors {ψi(θ)}∞
i=0 forming an or-

thonormal basis of X with respect to the norm ‖ · ‖X ,θ . Moreover, the corresponding eigenvalues

{λi(θ)}∞
i=0 are real and can be numbered in order of decreasing absolute value:

|λ0(θ)| ≥ |λ1(θ)| ≥ · · · ≥ 0.

We also have the third result which is a Krein-Rutman-type theorem.

8



Lemma 1.3.8. The eigenvalue λ0(0) of S0 is positive, simple, and has a strictly positive eigenfunc-

tion ψ0,0(x). Moreover, λ0(0)> |λ1(0)|.

Recall that a function h : R→ R is said to be in the class PF(2) if :

(1) h(x)> 0 for all x ∈ R;

(2) for any x1,x2,y1,y2 ∈ R with x1 < x2 and y1 < y2, there holds h(x1− y1)h(x2− y2)−h(x1−

y2)h(x2− y1)≥ 0;

(3) strict inequality holds in (2) whenever the intervals (x1,x2) and (y1,y2) intersect.

Theorem 1.3.9. Suppose ϕ̂ > 0 on R and ϕ̂ p =: K ∈ PF(2). Then T satisfies the following.

(1) T has a simple, negative eigenvalue κ;

(2) T has no negative eigenvalue other than κ;

(3) the eigenvalue 0 of T is simple.

Proof. The stated assumptions on ϕ and K imply that for all θ ≥ 0, the eigenvalues λ0(θ) and

λ1(θ) of Sθ are distinct, positive and simple. Moreover, by classical perturbation theory, λ0(θ)

and λ1(θ) depend differentiably on θ in [0,∞); and corresponding eigenfunctions ψ0 = ψ0(θ)∈ X

and ψ1 = ψ1(θ) ∈ X may be chosen which also depend differentiably on θ in [0,∞) and which

satisfy ‖ψ0(θ)‖X ,θ = ‖ψ1(θ)‖X ,θ = 1 for all θ ≥ 0.

Then we claim that
d

dθ
(λi(θ))< 0 f or i = 0,1 and θ ≥ 0.

Consider the following:

dλi

dθ
=

d
dθ

(λi‖ψi‖X ,θ ) =
d

dθ
{λi

ˆ
∞

−∞

(ψi(x))2wθ (x) dx}= d
dθ
{
ˆ

∞

−∞

(Sθ ψi(x))ψi(x)wθ (x) dx}

=
d

dθ
{
ˆ

∞

−∞

(

ˆ
∞

−∞

K(x− y)ψi(y) dy)ψi(x) dx}

=

ˆ
∞

−∞

ˆ
∞

−∞

K(x− y){dψi

dθ
(y)ψi(x)+ψi(y)

dψi

dθ
(x)} dxdy = 2

ˆ
∞

−∞

dψi

dθ
(x)(Sθ ψi(x))wθ (x) dx

9



= 2λi

ˆ
∞

−∞

dψi

dθ
(x)ψi(x)wθ (x)dx = 2λi{

d
dθ

(
1
2

ˆ
∞

−∞

(ψi(x))2wθ (x) dx)− 1
2

ˆ
∞

−∞

(ψi(x))2 dx}

= 2λi{0−
1
2

ˆ
∞

−∞

(ψi(x))2 dx}=−λi

ˆ
∞

−∞

(ψi(x))2 dx < 0

limθ→∞ λ0(θ) = 0, furthermore, we have λ1(0) = 1. Hence λ0(0) > 1. Then it follows that there

exists a unique θ0 ∈ (0,∞) such that λ0(θ0) = 1. Set κ = −θ0 and then −θ0 is an eigenvalue of

T . Also, for i ≥ 1 and θ > 0, one has λi(θ) ≤ λ1(θ) < λ1(0) = 1, showing that 1 can not be an

eigenvalue of Sθ , besides θ = θ0. Furthermore, 0 is an eigenvalue of T , which means that 1 is an

eigenvalue of S0. Thus 0 is simple.

1.4 Properties of Solitary Wave solutions

The equation

ut +upux− (Mu)x = 0, (1.4.1)

where p > 0 is an integer, and M is defined as a Fourier multiplier operator by

M̂g(ξ ) = m(ξ )ĝ(ξ ).

for all k inR.

Here circumflexes denotes the Fourier transform, m(ξ ) is a measurable, locally bounded, even

function on R satisfying

(1) A1|ξ |µ ≤ m(ξ )≤ A2|ξ |µ for |ξ | ≥ ξ0;

(2) m(ξ )≥ b;

where A1 and A2 are positive real constants, µ ≥ 1, and ξ0 and b are finite real numbers. Let

u(x, t) = ϕ(x−Ct) be a travelling-wave solution of (1.4.1). Substituting the form of u(x, t) into

10



(1.4.1) and integrating once (with zero boundary conditions imposed at infinity), one obtains

(M+C)ϕ = (
1

p+1
)ϕ p+1. (1.4.2)

Any solution ϕ of (1.4.2) is an even function and lies in the space Hµ/2. Also assume C > −b,

hence M+C represents a positive operator. In studying the stability of the solitary wave ϕ , it has

been found useful to consider the linear operator L : L2→ L2 defined by Lu = (M+C)u−ϕ pu.

Similarly, let’s consider the solitary-wave solutions of equations of the form

ut +upux− (Mn,p(u))x = 0,

where Mn,p is differential operator of order 2n. The solitary waves in question are of the form

ϕ(x) = (sech(x))r, where r = 2n
p . The operator Mn,p will be defined by means of the following

Proposition.

Proposition 1.4.1. Let n be a given positive integer and p a given positive real number. Then there

exists a unique vector A = (a0,a1, · · · ,an) in Rn+1 such that

n

∑
i=0

ai(∂
2i

ϕ) =
ϕ p+1

p+1
.

Proof. For each natural number i, one has ∂ 2iϕ = ∑
i
j=0 bi jsechr+2 j(x), where the bi j are non-zero

real numbers depending only on r. Define B to be the (n+1)× (n+1) matrix {bi j}i, j=0,n, where

bi j is set equal to zero for i< j. Since ϕ p+1(x) = sechr+2n(x), it holds if and only if AB=D; where

D = (0,0, · · · ,0, 1
p+1)∈R

n+1. But B is non-singular, as it is a lower-diagonal matrix with non-zero

elements on the diagonal. Hence there is a unique A in Rn+1 for which the above holds.

Now, for given n and p, define the differential operator Mn,p by

Mn,p =
n

∑
i=1

ai∂
2i;

11



where the ai are the constants . Also define Cn,p = a0. Then one has

(Mn,p +Cn,p)(ϕ) =
1

p+1
(ϕ)p+1.

Thus, for ϕ(x)= (sech(x))r, and L=(Mn,p+Cn,p−ϕ p), where r = 2n
p , first we need to compute

the sign of I1 := (L−1ϕ,ϕ). We will compute by means of a spectral analysis of the operators T0

and S0 introduced above in Section 1. The notation

λm =
Γ(r+m)

Γ(r+1)
· Γ(r+2n+1)

Γ(r+2n+m)
(m≥ 0)

will be used later.

Lemma 1.4.2. For any integer m≥ 0, there exist constants cm j (0≤ j ≤ m−1), depending only

on n and p, such that

∂
m(

ϕ p+1

p+1
) = ϕ

p{( 1
λm

)(∂ m
ϕ)+

m−1

∑
j=0

cm, j(∂
j
ϕ)}.

Proof. The proof is by induction. It clearly holds for m = 0. Assume that it holds for m. Then for

any integer j ≥ 0, there exist constant β jl (0≤ l ≤ j) such that

(∂ϕ)(∂ j
ϕ) = ϕ{( r

r+ j
)(∂ j+1

ϕ)+
j

∑
l=0

β jl(∂
j
ϕ)}.

Then by the inductive hypothesis,

∂
m+1(

ϕ p+1

p+1
) = ∂∂

m(
ϕ p+1

p+1
) = (

1
λm

)∂ (ϕ p(∂ m
ϕ))+

m−1

∑
j=0

cm j∂ (ϕ
p(∂ j

ϕ))

= (
1

λm
)[pϕ

p−1(∂ϕ)(∂ m
ϕ)+ϕ

p(∂ m+1
ϕ)]+

m−1

∑
j=0

cm, j[pϕ
p−1(∂ϕ)(∂ j

ϕ)+ϕ
p(∂ j+1

ϕ)]

= (
1

λm
)[pϕ

p−1(∂ϕ)(∂ m
ϕ)+ϕ

p(∂ m+1
ϕ)]+

m−1

∑
j=0

cm, j[pϕ
p−1(∂ϕ)(∂ j

ϕ)+ϕ
p(∂ j+1

ϕ)]

12



= (
1

λm
)(

pr
r+m

+1)ϕ p(∂ m+1
ϕ)+ϕ

p
m−1

∑
j=0
{
(

pcm jr
r+ j

+1
)
(∂ j+1

ϕ)+
j

∑
l=0

pcm jβ jl(∂
l
ϕ)}.

Since 1
λm
( pr

r+m +1) = ( 1
λm+1), it proves the statement of the Lemma for (m+1).

Lemma 1.4.3. For any integer m≥ 0, there exist constants γmi (0≤ i≤ m), depending only on n

and p, such that the function qm = ∑
m
i=0 γmi(∂

iϕ) satisfies (Mn,p +Cn,p)(qm) = ( 1
λm
)ϕ pqm.

Proof. Define the matrix G = {gi j}0≤i, j≤m by

gi j =


ci j if 0≤ j ≤ i−1

1
λi

if j = i

0 if i+1≤ j ≤ m

(1.4.3)

If 0≤ i≤ m then

∂
i(

ϕ p+1

p+1
) = ϕ

p
m

∑
j=0

gi j(∂
j
ϕ).

Since G is a lower- diagonal matrix with diagonal entries gi j =
1
λi

, then 1
λi

is an eigenvalue of G for

each 0 ≤ i ≤ m. Define (γm0, · · · ,γmm) to be a left eigenvector of G for the eigenvalue 1
λm

, so that

∑
m
i=0 γmigi j = ( 1

λm
)γm j for each 0≤ j ≤ m. Since

(Mn,p +Cn,p)(ϕ) =
1

p+1
(ϕ)p+1.

It follows that

(Mn,p +Cn,p)(qm) =
m

∑
i=0

γmi∂
i(Mn,p +Cn,p)(ϕ) =

m

∑
i=0

γmi∂
i(

ϕ p+1

p+1
) = (ϕ p)

m

∑
i=0

γmi

m

∑
j=0

gi j(∂
j
ϕ)

= (ϕ p)
m

∑
j=0

(
m

∑
i=0

γmigi j)(∂
j
ϕ) = (ϕ p)

m

∑
j=0

(
1

λm
γm j)(∂

j
ϕ) =

1
λm

ϕ
pqm.

Theorem 1.4.4. If ϕ(x) = (sech(x))r, and L = (Mn,p+Cn,p−ϕ p), where r = 2n
p , then the quantity

I1 = (L−1ϕ,ϕ) is given by the formula

13



a
∞

∑
j=0

(
λ2 j

1−λ2 j

){
Γ(2 j+1) · (2 j+n+ r− 1

2)

Γ(2 j+2n+2r−1)

}{
Γ( j+n)Γ( j+n+ r− 1

2)

Γ( j+1)Γ( j+ r+ 1
2)

}2

,

where a =
(

2n+r−1Γ(r)
πΓ(n)

)2
.

Proof. Denote {Tθ}θ≥0 by

Tθ g = (M+C+θ)−1(ϕ p ·g).

Let’s consider the following statements.

Proposition 1.4.5. Suppose ker(Tθ ) = 0. Let {ζi}∞
i=0 be a complete orthonormal set of eigenfunc-

tions of Tθ in Y, with Tθ ζi = λiζi for i ≥ 0. Then {
√

λiζ̂i}∞
i=0 is a complete orthonormal set of

eigenfunctions for Sθ in X, with Sθ ζ̂i = λiζ̂i.

Lemma 1.4.6. Let p = r+ n− 1
2 . For each integer m ≥ 0, the functions ζm(x) = ϕ(x)Cp

m(tanhx)

is an eigenfunction of T0 for the eigenvalue λm. Furthermore, {ζm}m≥0 forms a complete set of

eigenfunctions for T0 in Y.

Then we begin our proof. First we define ei =
√

λi(
ζ̂i
‖ζi‖Y ) for i ≥ 0. Then by lemma above

{ei}i≥0 is a complete orthonormal set of eigenfunctions for S0 in X. Define a function η by

η =
∞

∑
i=0

(
1

1−λi
)〈 ϕ̂

w0
,ei〉X ,0ei.

Since ∑
∞
i=0(

1
1−λi

)2‖〈 ϕ̂

w0
,ei〉X ,0‖2 ≤ A∑

∞
i=0 ‖〈

ϕ̂

w0
,ei〉X ,0‖2 = A‖ ϕ̂

w0
‖2

X ,0 = A
´

∞

−∞
|ϕ̂|2 dx = A‖ϕ‖2

0

the series for η converges in X, and so η ∈ X ⊂ L2. We choose ψ ∈ L2 so that ψ̂ = η . Then we

have

(Lψ)ˆ = [(Mn,p +Cn,p)ψ−ϕ
p
ψ]ˆ = w0(η−T0η)

= w0

∞

∑
i=0
〈 ϕ̂

w0
,ei〉X ,0ei = ϕ̂

14



Hence Lψ = ϕ and so I = 〈ψ,ϕ〉0. Applying the inverse Fourier transform to η gives

ψ =
∞

∑
i=0

(
λi

1−λi
)(

ˆ
∞

−∞

ϕ(t)ζi(t) dt)
ζi

‖ζi‖2
Y
.

Then we note that the Gegenbauer polynomials {Cp
m}∞

m=0 are defined by

Cp
m(ξ ) =

[m/2]

∑
s=0

(−1)s Γ(m+ p− s)
s!(m−2s)!Γ(p)

(2ξ )m−2s.

where p > −1/2.And the expression for the coefficients of Cp
m is not defined if p = 0. Let

L2,p = L2,p([−1,1]) be the space of all measurable functions h on [−1,1] such that ‖h‖2,p =(´ 1
−1 |h(ξ )|

2(1−ξ 2)p−1/2 dξ

)1/2
<∞. Then L2,p is a Hilbert space with the inner product 〈g,h〉2,p =´ 1

−1 g(ξ ) ¯h(ξ )(1− ξ 2)p−1/2 dξ ; and {Cp
m}∞

m=0 forms a complete orthogonal set in L2,p; with nor-

malizing constants given by

‖Cp
m‖2,p = {

π21−2pΓ(m+2p)
Γ(p)2(m+ p)m!

}1/2.

(Here Γ denotes Euler’s Gamma function.) If {Pm}∞
m=0 is any other set of orthogonal polynomials

in L2,p such that deg(Pm) = m for all m≥ 0, then each Pm must be a constant multiple of Cp
m. Thus

for all p,σ >−1/2 one has the identity as follows:

For m odd, ˆ 1

−1
Cp

m(ξ )(1−ξ
2)σ−1/2 dξ = 0,

For m even,
´ 1
−1Cp

m(ξ )(1−ξ 2)σ−1/2 dξ = [ Γ(σ+1/2)√
πΓ(p)Γ(p−σ)

][Γ(m/2+p−σ)Γ(m/2+p)
Γ(m/2+1)Γ(m/2+σ+1) ]

Therefore

I = 〈ψ,ϕ〉0 =
∞

∑
i=0

(
λi

1−λi
)
(
´

∞

−∞
ϕ(t)ζi(t) dt)2

‖ζi‖2
Y

=
∞

∑
i=0

(
λi

1−λi
)

(
´

∞

−∞
Cp

i (tanhx)sech2r(x) dx)2

´
∞

−∞
(Cp

i (tanhx))2 sech2n+2r(x) dx

=
∞

∑
i=0

(
λi

1−λi
)
(
´ 1
−1Cp

i (z)(1− z2)r−1 dz)2

´ 1
−1(C

p
i (z))2(1− z2)n+r−1 dz
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1.5 Instability Index Count Theory

We consider the Hamiltonian system

∂tu = J
δH
δu

(u) (1.5.1)

and impose the following conditions on J andH.

Hypothesis: Hamiltonian Framework

(a) H : Y 7→ R has two continuous derivatives, δH
δu : Y 7→ Y ∗, and δ 2H

δu2 : D⊂ X 7→ X generates a

continuous bilinear form on Y . In particular for each critical point φ ofH, there exists C > 0

such that |
〈

δ 2H
δu2 (φ)v,v

〉
| ≤ c‖v‖2

Y and moreover

‖H(φ + v)−H(φ)−
〈

δ 2H
δu2 (φ)v,v

〉
‖ ≤C‖v‖3

Y ,

for all ‖v‖Y .

(b) J : Y 7→ X is skew-symmetric and there exists M > 0 such that

ker(J) = span{ψ1, · · · ,ψM}

with the ψ ′js orthonormal in X .

(c) Both J andH possess an N− dimensional symmetry group T (γ) : Y 7→ Y satisfying

(a)Tj(0) = I,

(b)Tj(s+ t) = Tj(s)Tj(t) = Tj(t)Tj(s),

(c)Ti(γi)Tj(γ j) = Tj(γi)Ti(γ j)

(d)Tj(γ j)F(u) = F(Tj(γ j)u),F = J
δH
δu

,

(e)T ′j := lim
γ j→0

Tj(γ j)−Tj(0)
γ j

.

(1.5.2)
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(c) In particular

H(T (γ)u) =H(u), JT (γ) = T (γ)J,

for all u ∈ Y and γ ∈ RN .

(d) The symmetry T is an isometry on X ; that is,

〈T (γ)u,T (γ)v〉X = 〈u,v〉X

for all u,v ∈ X and all γ ∈ RN .

(e) For each j = 1, · · · ,N, the symmetry generator T
′
j : Y ⊂ X → ker(J)⊥ ⊂ X. Moreover for

each j the operator J−1Tj : X 7→ Y ∗ is bounded.

(f) There is an open, connected set Ω⊂ RN such that for all c ∈Ω there is a φc that solves

δE
δu

(φc) = 0;

where E(u;c) :=H(u)+
N

∑
i=1

ciQi(u), Qi(u) := 1
2

〈
J−1T

′
i u,u

〉
, i = 1, · · · ,N.

(g) dimker(L) = N and Ker(L) = span{T′1φc, · · · ,T
′
nφc}.

(h) The dimension of the negative space of L is finite.

(i) There exists δ > 0 such that b[v,v] ≥ δ‖v‖2
Y , v ∈ P(L), where P(L) is the largest subspace

K ⊂ Y ⊂ X over which the bilinear form b associated with L is positive, b[v,v] := 〈Lv,v〉.

(j) the essential spectrum of JL is a strict subset of the imaginary axis, that is, ther exists ω0 > 0

such that

σess(JL)⊂ (−i∞,−iω0]∪ [iω0, i∞).

We investigate the spectrum of the full linearization, JL of (1.5.1) about a critical point φc of E.

We have σpt(JL) satisfies as below.
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Proposition 1.5.1. Consider the linear operator JL associated with the linearization of the real

Hamiltonian system (1.5.1) about a critical point φc. The point spectrum σpt(JL) is symmetric

with respect to the real and imginary axes. That is, if λ ∈ σpt(JL), then the quartet {±λ ,±λ̄} ⊂

σpt(JL).

Definition 1.5.2. (Negative Krein index) Let Hypothesis (a)− ( j) hold with L = δ 2H/δu2. Let

λ ∈ iR\{0} be a purely imaginary nonzero eigenvalue with associated generalized eigenspace Eλ

and basis given by {vλ
1 , · · · ,vλ

k }. For λ ∈ (iR\{0})∩σpt(JL), we introduce the negative Krein

index k−i (λ ) := n(Eλ ), and define the total negative Krein index k−i = k−i (JL) := ∑
Reλ=0

k−i (λ ). If

k−i (λ ) ≥ 1, then the eigenvalue λ is said to have a negative Krein signature; otherwise, it has a

positive Krein signature.

Then we introduce the instability indices counting formulas, which in many cases can be used

to determine accurately both stability and instability regimes for the waves under consideration.

For a Hamiltonian eigenvalue problem in the form

JLu = λu,

where J is skew symmetric and L is a self-adjoint linear differential operator with domain D(L) =

Hs(R) for some s≥ 0. Assume the spectrum of L is such that

(1) there are n(L) = N < +∞ negative eigenvalues (counting multiplicity), so that each of the

corresponding eigenvectors { f j}N
j=1 belongs to Hs+1(R).

(2) there is a κ > 0, such that σess(L)⊂ [κ2,+∞).

(3) dim[kerL]< ∞.

Let us define various quantities that will appear in the index count.

• Let kr represent the number of positive real eigenvalues (counting multiplicities).

• kc is the number of complex eigenvalues with positive real part.
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• k−i is the number of pairs of purely imaginary eigenvalues with negative Krein signature.

• We will henceforth denote by n(M) the number of negative eigenvalues (counting multiplic-

ities) of a self-adjoint operator M. Again by symmetries, ki and kc are even.

• The total Hamilton-Krein index is then defined

KHam := kr + kc + ki.

Theorem 1.5.3. For the eigenvalue problem

JLu = λu u ∈ L2(R),

where J is assumed to be bounded, invertible and skew-symmetric (J∗ = −J), while (L,D(L))

is self-adjoint(L∗ = L) and not necessarily bounded, with finite dimensional kernel Ker[L]. In

addition, we assume that J−1 : Ker[L]→ Ker[L]⊥. Here, the orthogonality is understood with

respect to the dot product of the underlying Hilbert space H : D(L) ⊂ H. Further L satisfies

D(L) = Hs(R) for some s > 0, assume that conditions (1),(2) and (3) above hold. Introduce the

matrix D as follows. Let Ker[L] = {φ1, . . . ,φn}, then

Di j := 〈L−1[J−1
φi],J−1

φ j〉. (1.5.3)

Note that the last formula makes sense, since J −1φi ∈ Ker[L]⊥. Thus L−1[J −1φi] is well-defined.

The index counting theorem, see Theorem 1, [25] states that if det(D) 6= 0, then

kr +2kc +2k−i = n(L)−n(D). (1.5.4)
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Chapter 2

Ground States of NLS and KG with fractional dispersion

In this chapter, we consider standing wave solutions of various dispersive models with non-standard

form of the dispersion terms. Using index count calculations, together with the information from

a variational construction, we develop sharp conditions for spectral stability of these waves.

2.1 Introduction and statement of the main results

For s ∈ (0,1] and d ≥ 1, we consider the focusing fractional Schrödinger equation

iut− (−∆)su+ |u|αu = 0,(t,x) ∈ R+×Rd (2.1.1)

In addition, we shall be interested in the fractional Klein-Gordon equation

utt +(−∆)su+u−|u|αu = 0,(t,x) ∈ R×Rd (2.1.2)

These nonlocal equations arise in a variety of models in mathematical physics, see many examples

in [1] and the references therein. Also, a similar model

iut +(−∆)su+ |u|αu = 0, (2.1.3)

has been introduced by Laskin in quantum physics [20], and it is a fundamental equation of frac-

tional quantum mechanics, a generalization of the standard quantum mechanics extending the

Feynman path integral to Levy processes[20]. Further, in [13], Hong and Sire have discussed
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the local well-posedness and ill-posedness in Sobolev spaces, and in [12], Guo and Huo focused

on the global well-posedness for the Cauchy problem of the 1-D fractional nonlinear Schrödinger

equation with data in L2(R). Regarding well-posedness in the natural energy space, one has local

and hence global well-posedness for Cauchy data in Hs(Rd), provided α < 4s
d , due to the conser-

vation law. Generally, some solutions will blow up for α > 4s
d , [8].

Additionally, we will be interested in two higher order dispersion models, which are outside of

the scope of (3.1.1) and (2.1.2). Namely, we consider the fourth order cubic Schrödinger equation,

in one spatial dimension

iut +uxx−uxxxx + |u|2u = 0 (2.1.4)

and the fourth order cubic Klein-Gordon equation

utt +uxxxx−uxx +u−|u|2u = 0, (2.1.5)

The fourth order Schrödinger equation was introduced in [17] and [18], and it has an important

role in modeling the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.

Moreover, the equation was also used in nonlinear fiber optics and the theory of optical solitons in

gyrotropic media. In this chapter, we are interested in the existence and linear stability of standing

wave solutions for these equations.

2.1.1 Standing wave solutions for fractional models

The existence of special solutions is an important feature of the fractional models. More pre-

cisely, we seek solutions of the fractional NLS equation (i.e. (3.1.1)) in the form uω(t,x) =

eiωtQω(x),ω > 0, with Qω > 0. We obtain the following profile equation

ωQω +(−∆)sQω −Qα+1
ω = 0,x ∈ Rd (2.1.6)
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For the fractional Klein-Gordon equation, we have the profile equation

(1−ω
2)Rω +(−∆)sRω −Rα+1

ω = 0,x ∈ Rd. (2.1.7)

where we require that |ω|< 1, Rω > 0. Clearly (2.1.6) and (2.1.7) are closely related to each other.

Indeed, setting for each ω ∈ (−1,1), γ := 1−ω2 > 0, whence Rω = Qγ . Thus, we proceed to

describe the properties of Qω , keeping in mind this relationship.

Note that the equation (2.1.6) enjoys a nice scaling property, which allows one to explicitly

describe the solutions Qω of (2.1.6) in terms of a single function. To this end, consider (2.1.6) with

ω = 1,

(−∆)sQ+Q−Qα+1 = 0,x ∈ Rd, (2.1.8)

where we henceforth adopt for brevity the notation Q = Q1. If one establishes that (2.1.8) has

a unique (modulo symmetries) solution Q, then all solutions of (2.1.6) (modulo symmetries) are

given by the formula Qω = w
1
α Q(w

1
2s x).

The equation (2.1.8) has been well-studied, at least in the classical case s = 1, in the last thirty

years. First, it is well-known that for s = 1,d = 1,α > 0, such solutions are explicitly given in

terms of powers of the sech functions. Clearly, one cannot hope for such solutions to be explicit

outside of the cases mentioned above. In the case s = 1, d ≥ 1, α > 0, it has been shown in the

classical paper [28] that such Q : Q > 0 is unique, modulo the translational symmetries. In the

fractional case, i.e. s ∈ (0,1), this difficult problem was resolved recently. It has been shown (in

[10] for the case d = 1 and subsequently in [11] for the case d ≥ 2) that (2.1.8) possesses a unique

positive radial solution1, provided

0 < α < α∗(s,d) =


4s

d−2s s < d
2

∞ s > d
2 .

On the other hand, Pokhozaev type arguments for the elliptic equation (2.1.8) show that smooth

1 which we refer to, with a slight abuse of notation, by Q(|x|)
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and localized solutions Q do not exist, when α > α∗(s,d).

In addition to the uniqueness, a number of additional properties of Q were established, which

will be important for us as well and we discuss them below. The main tool in establishing all

these important results has been the heavy use of the fact that a variant of (2.1.8) is in fact the

Euler-Lagrange equation of a particular constrained minimization problem and Q is its minimizer.

2.1.2 Standing waves for fourth order models

It is clear that the fourth order case (which roughly corresponds to the case s = 2,d = 1 of our

fractional family of equations) does not fit in the Frank-Lenzmann theory. Indeed, important in-

gredients of their proofs break down, such as maximum principle and positivity of the heat kernels

of the corresponding semigroups, to mention a few. Nevertheless, it is an interesting question

whether there exist any reasonable solutions of the profile equations and if so, what are their stabil-

ity properties. More precisely, we again consider solutions in the form u = eiαtφ of (2.1.4), which

yields the profile equation

φ
′′′′−φ

′′+αφ −φ
3 = 0. (2.1.9)

The ansatz φ(x) = asech2(bx) produces, for α = 4
25 , the solution

φ(x) =

√
3

10
sech2

(
x√
20

)
. (2.1.10)

Here, the solution displayed in (3.3.1) serves as a standing wave to the fourth order Schrödinger

equation (2.1.4). A simple modification provides a solution to the fourth order Klein-Gordon

equation as well. Indeed, a direct verification shows that

u(x, t) = ei
√

21
5 t

φ(x) (2.1.11)

is a solution to (2.1.5). One of the main difficulties associated with the stability analysis of (3.3.1) (

(2.1.11) respectively) is the fact that no explicit solution is available for values of α 6= 4
25 . In other
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words, since we lack a one parameter family of solutions, the spectral computations become quite

delicate. In particular, the standard approach to computing certain quantities related to stability

depends on taking a derivative (in the explicit solution) in terms of α . This is the usual presentation

of the Vakhitov-Kolokolov criteria, which in this case necessarily fails, due to the fact that such an

explicit formula in terms of α is simply unavailable. We overcome these issues by resorting to the

positivity theory as developed in [23], [5], [6].

In the next sections, we consider the linearized problems associated with the stability of these

solitary waves.

2.1.3 The eigenvalue problem for the fractional NLS model

We first linearize around the standing wave Q = Q1 in (3.1.1). Using the ansatz

u = eit{Q+(ϕ + iψ)}, (2.1.12)

and taking real and imaginary parts leads us to

ϕt = (−∆)s
ψ +ψ−Qα

ψ

−ψt = (−∆)s
ϕ +ϕ− (α +1)Qα

ϕ.

Introduce the skew symmetric portion is J :=

 0 −1

1 0

 and the self-adjoint portion of the

linearized operator L :=

 L1 0

0 L2

 with

L1 = (−∆)s +1− (α +1)Qα ,

L2 = (−∆)s +1−Qα .
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both acting on the domain H2s(Rd). It is now clear that the eigenvalue problem is in the form

∂t

 ϕ

ψ

= JL

 ϕ

ψ

 (2.1.13)

Standard scaling argument shows that stability for Q1 is equivalent to the stability for Qω ,ω > 0,

whence we henceforth concentrate on this particular case.

2.1.4 The eigenvalue problem for the fractional Klein-Gordon model

For the fractional KG model, (2.1.2), we linearize at the solution eiwt(1−w2)
1
α Q((1−w2)

1
2s x).

More precisely, we take the ansatz

u = (1−w2)
1
α eiwt{Q((1−w2)

1
2s x)+ v((1−w2)

1
2s x, t)},

Ignoring all second and higher order terms leads us to the eigenvalue problem

iwvt + vtt−w2(Q+ v)+(1−w2)(−∆)sQ+

+ ((1−w2)(−∆)sv+Q+ v− (1−w2)(Qα+1 +Qαv+αQα
ℜ(v)) = 0,

Letting v =

 ℜv

ℑv

 =

 ϕ

ψ

 allows us to rewrite the eigenvalue problem in the following

matrix form  ϕ

ψ


tt

+

 0 −w

w 0


 ϕ

ψ


t

+(1−w2)L

 ϕ

ψ

= 0 (2.1.14)

where L is already defined in (2.1.13). Equivalently, writing ϕ → eλ tϕ,ψ → eλ tψ , one can write

the last second order model as a first order system in the form
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∂t



ϕ

ψ

ϕt

ψt


= JL



ϕ

ψ

ϕt

ψt


, (2.1.15)

where

J =



0 0 1 0

0 0 0 1

−1 0 0 w

0 −1 −w 0


,L=



(1−w2)L1 0 0 0

0 (1−w2)L2 0 0

0 0 1 0

0 0 0 1


(2.1.16)

are a skew-symmetric and a self-adjoint operators respectively.

2.1.5 The eigenvalue problem of the fourth order models

We now derive the relevant eigenvalue problem for the fourth order Schrödinger model (2.1.4).

In order to consider the stability of the wave eiαtφ , with α = 4
25 and φ given by (3.3.1). We

take

u = eiαt [φ + v+ iw], (2.1.17)

for real-valued functions v,w and plug it into (2.1.4). Ignoring the contributions of terms in the

form O(v2),O(w2) and some algebra leads us to the the eigenvalue problem

∂t

 v

w

=

 0 −1

1 0


 ∂ 4

x −∂ 2
x +α−3φ 2 0

0 ∂ 4
x −∂ 2

x +α−φ 2


 v

w

 (2.1.18)

As usual, we denote J =

 0 −1

1 0

, L=

 L1 0

0 L2

 with
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 L1 = ∂ 4
x −∂ 2

x +α−3φ 2,

L2 = ∂ 4
x −∂ 2

x +α−φ 2.
(2.1.19)

Finally, we discuss the linearization (and subsequently the eigenvalue problem) associated with

the solution (2.1.11) to the fourth order cubic equation (2.1.5). To introduce proper notations, let

β =
√

21
5 , so that the wave is exactly eiβ tφ(x) = eiβ t

√
3

10sech2(
√

1
20x). Setting

u = eiβ t(φ +ϕ + iψ),

plugging this ansatz into (2.1.5), ignoring the contributions of the type O(ϕ2),O(ψ2) and taking

real and imaginary parts, we obtain

 ϕ

ψ


tt

+

 0 −2β

2β 0


 ϕ

ψ


t

+

 L1 0

0 L2


 ϕ

ψ

= 0, (2.1.20)

where L1,L2 are exactly the operators introduced in (2.1.19). We can also write a further equivalent

formula

∂t



ϕ

ψ

ϕt

ψt


=



0 0 1 0

0 0 0 1

−L1 0 0 2β

0 −L2 −2β 0





ϕ

ψ

ϕt

ψt


=:H



ϕ

ψ

ϕt

ψt


(2.1.21)

We note that in addition

H= JL=

 0 I2

−I2 B


 L̃ 0

0 I2

 (2.1.22)

L̃=

 L1 0

0 L2

 ,B =

 0 −2β

2β 0

 , I2 =

 1 0

0 1

 . (2.1.23)
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2.1.6 Main results

We are now ready to state our results, first for the fractional NLS.

Theorem 2.1.1. The standing waves eiωtQω of the fractional NLS (3.1.1) are linearly and orbitally

stable for α < 4s
d . Moreover, they are linearly unstable for α > 4s

d .

For the fractional Klein-Gordon model, the soliton eiωt(1−ω2)
1
α Q((1−ω2)

1
2s x) is spectrally

stable if and only if

α <
4s
d
,

√
4sα

4sα +4s−αd
< |ω|< 1

Our next result concerns the stability of the waves for the fourth order Schrödinger and Klein-

Gordon equations.

Theorem 2.1.2. The wave eiαtφ (with α = 4
25 and φ given by (3.3.1)) is spectrally stable solution

of (2.1.4). The wave eiβ tφ , with β =
√

21
5 is spectrally unstable as a solution to the fourth order

Klein-Gordon model (2.1.5).

2.1.7 Spectral information regarding the operators L1,L2

By the representations of the Hamiltonian in both (2.1.13) and (2.1.16), it is clear that the spectral

properties of the operators L1,L2 will play substantial role in our analysis.

Proposition 2.1.3. The operator L1 defined in (2.1.13) has a unique negative eigenvalue, which is

simple. The eigenvalue zero is of multiplicity d, with Ker[L1] = span{∂1Q, . . . ,∂dQ}. The operator

L2 satisfies L2 ≥ 0, with an eigenvalue at zero, which corresponds to the eigenfunction Q. As such

the eigenvalue at zero is simple. Moreover, the essential spectrum for both operators is [1,∞).

Proof. For L1, we refer to the paper [11], where it was shown that n(L1) = 1, while Ker[L1] =

{∂1Q, . . . ,∂dQ}.

Next, we clearly have L2[Q] = 0, by construction of Q. We now show that L2 has no negative

eigenvalues. Assume for a contradiction that L2 has a negative eigenvalue, say we pick the smallest

such eigenvalue −σ2. Then, there is an F 6= 0, so that L2[F ] = −σ2F,‖F‖ = 1. According to
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the Rayleigh characterization of e-values, −σ2 = inf‖G‖=1〈L2G,G〉 and so F is a solution of this

problem. Rewrite this constrained minimization problem in the form

 〈L2G,G〉= ‖(−∆)s/2G‖2
L2 +‖G‖2

L2−
´

Rd Qα(x)G2(x)dx→min
´

Rd G2(x)dx = 1
(2.1.24)

We now need to refer to recent results on the multi-dimensional Polya-Szegö inequality, which

imply that the functional 〈L2G,G〉 is minimized by its decreasing rearrangement. More precisely,

for s ∈ (0,1), there is the generalized Polya-Szegö inequality

1‖(−∆)s/2G‖L2 ≥ ‖(−∆)s/2G∗‖L2,

where G∗ is the decreasing rearrangement of the function G. Moreover, since Qα is radially de-

creasing, there is the simple inequality

ˆ
Rd

Qα(x)G2(x)dx≤
ˆ

Rd
Qα(x)[G∗]2(x)dx (2.1.25)

where the equality in (2.1.25) is achieved only if G = G∗. This is a simple consequence of
´

f g≤
´

f ∗g∗, see Theorem 3.4, [21]. In addition, an elementary property of the decreasing rearrangement

says that ‖G‖Lp = ‖G∗‖Lp for p ∈ (0,∞) and in particular for p = 2. It follows that 〈L2G,G〉 ≥

〈L2G∗,G∗〉, with equality possible only if G = G∗, while clearly ‖G‖L2 = ‖G∗‖L2 . Thus, the

eigenfunction F , corresponding to the lowest eigenvalue−σ2 must necessarily be such that F =F∗

( since it isa solution to the constrained minimization problem (2.1.24)). In particular F ≥ 0. But

then 〈F,Q〉 = 0, since any two e-functions corresponding to two different eigenvalues of L2 must

be orthogonal. This however leads to a contradiction, since F ≥ 0, Q > 0. Thus, 0 is the lowest

eigenvalue for L2, whence L2 ≥ 0.

29



2.2 On the stability of the standing waves for the fractional NLS and Klein-

Gordon equations: Proof of Theorem 2.1.1

We consider the cases of NLS and Klein-Gordon separately, although there is quite a few calcula-

tions that will appear in both.

2.2.1 Stability of fNLS waves

For the stability of the eigenvalue problem (2.1.13), we take the standard transformation ϕ

ψ

→ eλ t

 ϕ

ψ

. In addition, due to the results of Proposition 2.1.3, the self-adjoint opera-

tor L satisfies n(L) = 1 and

Ker[L] =


 0

Q

 ,

 ∂1Q

0

 , . . . ,

 ∂dQ

0


=: {Q0,Q1, . . . ,Qd}. (2.2.1)

In addition, it is clear that J −1 =−J : Ker[L]→ Ker[L]⊥, whence the matrix D ∈M(d+1)×(d+1)

may be defined as in (1.5.3). Obviously, for j ≥ 1, D0 j = 0. Next, note that for i≥ 1, j ≥ 1, i 6= j,

we have

Di j = 〈L−1
2 ∂iQ,∂ jQ〉= 0, (2.2.2)

since ∂iQ is odd in the ith variable (and then so2 is L−1
2 [∂iQ]), while ∂ jQ is odd in the jth variable.

On the other hand, for i = 1, . . .d,

Dii = 〈L−1
2 ∂iQ,∂iQ〉> 0,

due to the positivity of L−1
2 on Ker[L2]

⊥ and the fact that ∂iQ⊥ Ker[L2] = span[Q]. Clearly now,

n(D) = n(〈L−1J −1Q0,J −1Q0〉= n(〈L−1
1 [Q],Q〉).

In order to compute this quantity, we use the standard scaling properties of the profile equation

2Note that the space of functions which are odd in the jth, j = 1, . . . ,d variable, is an invariant subspace for L−1
2
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(2.1.8). Namely, Qµ := µ
1
α Q(µ

1
2s x) solves

µQµ +(−∆)sQµ −Qα+1
µ = 0.

Taking derivative in µ yields the relation L1[
∂Qµ

∂ µ
] =−Qµ , whence since Qµ ⊥ Ker[L1], we derive

L−1
1 [Qµ ] =−

∂Qµ

∂ µ
, whence

〈L−1
1 [Q],Q〉=−1

2
∂µ‖Qµ‖2|µ=1 =−

1
2

(
2
α
− d

2s

)
‖Q‖2. (2.2.3)

The fact that n(L) = 1, the spectral stability of fNLS waves is equivalent to 〈L−1
1 [Q],Q〉 < 0, or

2
α
− d

2s > 0. This is easily seen to be equivalent to α < 4s
d as stated. Due to the structure of Ker[L],

namely (2.2.1), all the elements of the Ker[L] are accounted for by invariances of the model, so by

the results of [37] (Theorem 5.2.11) and the well-posedness of the Cauchy problem in the energy

space Hs(Rd) established in [9], the waves are orbitally stable as well.

2.2.2 Stability of the fKG waves

The relevant eigenvalue problem for the stability of the fractional Klein-Gordon waves is JL~X =

λ~X , where J ,L are given by (2.1.16). By the form of L, we have that n(L) = n(L1) = 1, owing

to Proposition 2.1.3. The description of Ker[L] is again explicit, thanks again to Proposition 2.1.3.

More precisely, we have

Ker[L] = {Q0,Q1, . . . ,Qd},Q0 =



0

Q

0

0


,Q j =



∂ jQ

0

0

0


, j = 1, . . . ,d.
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Since J −1 =



0 ω −1 0

−ω 0 0 −1

1 0 0 0

0 1 0 0


, we have by (1.5.3), that for i≥ 1, j ≥ 1, i 6= j,

Di j =
ω2

1−ω2 〈L
−1
2 [∂iQ],∂ jQ〉= 0,

by (2.2.2). Similarly, Di0 = D0i = 0 by our previous arguments for the fNLS case. Thus, the matrix

D has only diagonal potentially non-zero entries. In fact, the entries Dii, i = 1, . . . ,n are positive

due to the positivity of L−1
2 on Ker[L2]

⊥. Indeed,

Dii = 〈L−1J −1Qi,J −1Qi〉=

= 〈



L−1
1

1−ω2 0 0 0

0 L−1
2

1−ω2 0 0

0 0 1 0

0 0 0 1





0

−ω∂iQ

∂iQ

0


,



0

−ω∂iQ

∂iQ

0


〉=

=
ω2

1−ω2 〈L
−1
2 [∂iQ],∂iQ〉+‖∂iQ‖2 > 0.

Thus, as before, matters have been reduced to D00, more precisely, n(D) = n(D00). The stability

condition, according to (1.5.4) is exactly D00 < 0. We have, according to (2.2.3)

D00 = 〈L−1J −1Q0,J −1Q0〉=
ω2

1−ω2 〈L
−1
1 [Q],Q〉+‖Q‖2 =

=

[
ω2

1−ω2

(
d
4s
− 1

α

)
+1
]
‖Q‖2.

It is clear that the stability condition is satisfied only if α < 4s
d and then,

ω2

1−ω2 >
4sα

4s−αd
.
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Resolving this last inequality yields the condition

ω
2 >

4sα

4sα +4s−αd
.

Since we have initially required |ω| < 1 for the existence of the waves, we can finally formulate

the necessary and sufficient condition for stability as follows

4sα

4sα +4s−αd
< ω

2 < 1.

Note that this last inequality implicitly requires α < 4s
d , since otherwise the double inequality will

not have any solutions in ω .

2.3 On the stability of the standing waves for the fourth order models

We start this section with a discussion about the spectral properties of the self-adjoint operators

L1,L2, defined in (2.1.19). We have the following result.

Proposition 2.3.1. The operator L1 with domain H4(R)×H4(R) has a unique negative eigenvalue,

which is simple. The eigenvalue zero is of dimension exactly d = 1, with associated eigenfunctions

∂ jφ , j = 1, . . .d. L2 has no negative eigenvalues, it has eigenvalue at zero, which is simple. More-

over the essential spectrum is the interval [α,∞).

2.3.1 Computing the Vakhitov-Kolokolov type quantities for sechr solutions

using Albert’s approach

For ϕ(x) = (sech(x))r,r = 2n
p , it was established that (see Lemma 4.7, [23]) there exist unique

(n+1) tuple a0, . . . ,an, so that
n

∑
i=0

ai(∂
2i

ϕ) =
ϕ p+1

p+1
.
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Thus, upon introducing the differential operator Mn,p := ∑
n
i=1 ∂ 2i, and denoting Cn,p := a0, we see

that ϕ satisfies the profile equation

(Mn,p +a0)ϕ =
ϕ p+1

p+1
. (2.3.1)

With this notations, Albert has shown (see Theorem 4.10 in [23]) the following formula

〈(Mn,p +Cn,p−ϕ
p)−1

ϕ,ϕ〉= a
∞

∑
j=0

b j (2.3.2)

where a =
(

2n+r−1Γ(r)
πΓ(n)

)2
> 0, λm = Γ(r+m)

Γ(r+1)
Γ(r+2n+1)
Γ(r+2n+m) and

b j =

(
λ2 j

1−λ2 j

){
Γ(2 j+1) · (2 j+n+ r− 1

2)

Γ(2 j+2n+2r−1)

}{
Γ( j+n)Γ( j+n+ r− 1

2)

Γ( j+1)Γ( j+ r+ 1
2)

}2

.

2.3.2 Stability of the wave of the fourth order Schrödinger equation (2.1.4)

Matters are reduced to the number of negative eigenvalues of D. As we have previously observed

on the related fractional NLS model,

D =

 〈L−1
2 φ ′,φ ′〉 0

0 〈L−1
1 φ ,φ〉

 ,

which in view of the positivity of L−1
2 on Ker[L2]

⊥ reduces to the consideration of the quantity

〈L−1
1 φ ,φ〉. The stability is then characterized by the condition 〈L−1

1 φ ,φ〉 < 0. Recalling that

L1 = ∂ 4
x − ∂ 2

x +α − 3φ 2, with φ given by (3.3.1), we apply the Albert’s theory for the quantity

〈L−1
1 φ ,φ〉, see Section 2.3.1 and (2.3.2) below. More specifically, in the notations there, we take

n = 2,r = 2, p = 2, which yields the formula

λ2 j =
Γ(2 j+2)

Γ(3)
· Γ(7)

Γ(2 j+6)
=

6!
2!
· (2 j+1)!
(2 j+5)!

. (2.3.3)
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and hence

b j =
360(2 j+7/2)( j+1)2( j+5/2)2(2 j)!

((2 j+2)(2 j+3)(2 j+4)(2 j+5)−360)(2 j+6)!
. (2.3.4)

Then we have3
∑

∞
j=1 b j ≈ 0.0118141, b0 =−0.045573, whence

〈L−1
1 φ ,φ〉= a

∞

∑
j=0

b j < 0,

whence we conclude the stability of the wave (3.3.1).

2.3.3 On the instability of the wave (2.1.11) of the fourth order Klein-Gordon

model

We need to consider the eigenvalue problem (2.1.21), with L,J given in (2.1.23). Based on the

index counting theory and the fact that n(L) = 1 by proposition 2.3.1, we are interested in the

number of negative eigenvalues of the matrix

D =

 〈L−1J −1φ1,J −1φ1〉 〈L−1J −1φ1,J −1φ2〉

〈L−1J −1φ2,J −1φ1〉 〈L−1J −1φ2,J −1φ2〉


where the two elements of the kernel are given by

φ1 = (φ ′,0,0,0)T , φ2 = (0,φ ,0,0)T

Since

J −1 =



0 2β −1 0

−2β 0 0 −1

1 0 0 0

0 1 0 0


(2.3.5)

3Here we have used Mathematica for an approximation of the value of the series
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We have

D11 = 〈L−1J −1
φ1,J −1

φ1〉=

=

〈


L−1
1 0 0 0

0 L−1
2 0 0

0 0 1 0

0 0 0 1





0

−2βφ ′

φ ′

0


,



0

−2βφ ′

φ ′

0


〉

=

= 4β
2〈L−1

2 φ
′,φ ′〉+‖φ ′‖2 > 0,

since L−1
2 is positive on Ker[L2]

⊥ = span[φ ]⊥. A quick inspection shows D12 = D21 = 0, while

D22 = 4β
2〈L−1

1 φ ,φ〉+‖φ‖2.

Thus, we have reduced matters to the sign of D22, as usual. It turns out that D22 > 0, which implies

a real instability, since then n(D) = 0, while n(L) = 1. Thus, it remains to show that D22 > 0. We

apply again Albert’s theory.

We have in fact just evaluated the quantity 〈L−1
1 φ ,φ〉 in our Schrödinger calculations. With the

same λ2 j and b j as in (2.3.3), (2.3.4) respectively, we find

〈L−1
1 φ ,φ〉= 1

3
(

√
9
10

)2 1√
1/20

(
23Γ(2)
πΓ(2)

)2

(
∞

∑
j=0

b j)≈−0.0979003,

However, for the function φ defined in (3.3.1), ‖φ‖2 ∼ 1.7888543... whence

D22 = 4β
2〈L−1

1 φ ,φ〉+‖φ‖2 ∼ 0.802019... > 0.
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Chapter 3

Spectral stability of vortices for the NLS in n dimensions

3.1 Introduction and statement of the main results

We consider the focusing nonlinear Schrödinger equation

iut +4u+ |u|p−1u = 0,(t,x) ∈ R+×Rn (3.1.1)

We will be particularly interested in the stability properties of its vortices in arbitrary spatial di-

mensions, n≥ 2. Clearly, a solution in the form eiωtΨ(x) satisfies the standard profile equation

−∆Ψ+ωΨ−|Ψ|p−1
Ψ = 0,x ∈ Rn (3.1.2)

3.1.1 Vortices of NLS

We are interested in vortex type solutions for (3.1.2). In order to introduce the relevant form of

these special solutions, let us focus for the moment on the case of two spatial dimensions, n = 2.

In this case, we are looking for standing wave solutions in the form Ψ = eimθ φ(r), where ω > 0,

m ∈ N and (r,θ) are the polar coordinates in R2. In terms of the radial variable, φ satisfies the

ODE

− [∂ 2
r +

1
r

∂r]φω +

(
ω +

m2

r2

)
φω −|φω |p−1

φω = 0, r > 0. (3.1.3)
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The general case of vortices in arbitrary spatial dimension is handled as follows. In even space

dimensions, n = 2l, standing wave solutions are sought in the form

Ψ = ei∑
l
k=1 mkθkφω(r1,r2, · · · ,rl),

where (rk,θk) are polar coordinates for (x2k−1,x2k), mk ∈ N∪ {0}, k = 1,2, · · · , l. Clearly, the

profile equation for such a φ is as follows

−
l

∑
k=1

∆rkφω +(ω +
l

∑
k=1

m2
k

r2
k
)φω −|φω |p−1

φω = 0, (3.1.4)

where we have used the notation ∆r = ∂ 2
r + 1

r ∂r for the radial Laplacian in two spatial dimensions.

In odd spatial dimensions, say n = 2l +1, l ≥ 1, the waves are

Ψ = ei∑
l
k=1 mkθkφw(r1,r2, · · · ,rl,z),

where (rk,θk) are in R2, mk ∈ N∪ {0}, k = 1,2, · · · , l − 1, and (rl,θl,z),z = xn are cylindrical

coordinates in R3. The corresponding profile equation is

− [∂ 2
z +

l

∑
k=1

∆rk ]φω +(ω +
l

∑
k=1

m2
k

r2
k
)φω −|φω |p−1

φω = 0 (3.1.5)

Before we discuss the known results for the existence and uniqueness of such vortex solutions,

let us take the time to quickly review the classical ground states. These are solutions in the form

eiωtΨ(ρ) for the profile equation (3.1.2), which are well-understood in the literature. In fact,

its existence and uniqueness ( [26], [27],[28]) in all dimensions and appropriate values, namely

p∈ (1, p∗n), p∗n :=

 +∞ n = 1,2

1+ 4
n−2 n≥ 3

was shown in [28]. Further, the stability behavior of these

(unique) solutions is also well-known, [29], this is in fact one of the main class of examples that

was worked out within the Grillakis-Shatah-Strauss formalism, [29], [30]. Concisely, these waves

are spectrally/orbitally/linearly stable for p ∈ (1,1+ 4
n) and unstable for p ∈ (1+ 4

n , p∗n) [31]. It is
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worth mentioning however that the ground states conform to our setup only in the case of n = 2,

as ρ there is the global radial variable, whereas we are proposing here an ansatz with [n
2 ] pairs of

radial variables.

We now turn to the problem at hand, namely the existence and stability of solutions to (3.1.4)

and (3.1.5). In the two dimensional case, n = 2 and m = 0, these are the ground states, for which

we have a complete picture, including uniqueness and stability analysis. For the case n = 2,m 6= 0,

the existence of the solutions of (3.1.3) are also well-studied. In the work [32], the authors have

provided a detailed study of the elliptic problem (3.1.3) - in particular, they proved the existence

of smooth solutions to (3.1.3) with any prescribed number of zeros. If φω,m is nonnegative, then

ei(mθ+wt)φω(r) is a ground state in the class Xm = {eimθ v(r)|v ∈ H1
rad(R

2),v ∈ L2
rad(R

2)}, and

Mizumachi, [33, 34] proved that the standing wave solution ei(mθ+ωt)φω(r) is orbitally stable in

the class Xm if 1 < p < 3.

Muzumachi showed the uniqueness of positive solutions to (3.1.3) with m 6= 0,using the classi-

fication theorem developed by Yanagida and Yotsutani [35]. He has also considered their stability,

when the perturbation is in the same form as the soliton, namely v = ei(mθ+ωt)h(t,r). His results

can be summarized as follows - these solutions are unique for all p ∈ (1,∞) and they are orbitally

stable for p ∈ (1,3) and unstable otherwise. Here, it is worth discussing the situation in more

details. Recall that this is indeed in line with the expectations and the case m = 0, which predicts

stability for two spatial dimensions exactly for p ∈ (1,3). On the other hand, the perturbations for

the vortices are only in the special form described above, so it remained an open question whether

or not such stability holds for arbitrary perturbations. In addition, the ODE techniques in [33, 34]

seem to apply to the two dimensional case only.

3.1.2 Function spaces and harmonics

We will work with the Lebesgue spaces Lp(Rn),1 ≤ p ≤ ∞, defined through the norms ‖ f‖p =(´
Rn | f (x)|pdx

)1/p. More generally, Lp(w(x)dx) for a positive weight w, is defined by the norm

‖ f‖Lp(w(x)dx) =
(´

Rn | f (x)|pw(x)dx
)1/p. In addition, there are the corresponding Sobolev spaces,
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W k,p(Rn), defined through f (α) ∈ Lp(Rn) : |α| ≤ k, with their respective natural norms.

Next, we introduce the following decomposition of L2(R2) - we can identify an arbitrary func-

tion f ∈ L2(R2) with a sequence { fn}∞
n=−∞ by

f =
∞

∑
m=−∞

fm(ρ)eimθ

so that ‖ f‖2
L2(R2)

= ∑
∞
m=−∞ ‖ fm‖2

L2((0,∞),ρdρ)
. This is nothing but an instance of a decomposition

in spherical harmonics, valid in all dimensions, which takes this particularly simple form in two

spatial dimensions. We will denote the L2 subspaces Xm := span{g(ρ)eimθ |g ∈ H1
rad(R

2),g ∈

L2
rad(R

2)}. Clearly, in the standard dot product of L2(R2), Xl ⊥Xm, as long as l 6= m, so L2(R2) =

⊕∞
m=−∞Xm.

Clearly, the Laplacian ∆ on Xm takes the form

∆[ f (ρ)eimθ ] = [∂ 2
ρ f +

1
ρ

∂ρ f − m2

ρ2 f ]eimθ = [∆r f − m2

ρ2 f (ρ)]eimθ . (3.1.6)

Note that the evolution of the NLS (3.1.1) leaves the spaces Xm invariant, in the sense that

whenever u0 ∈Xm, the corresponding solution u(t, ·) ∈Xm for any later time t > 0. In view of this,

it is worth considering the Cauchy problem for (3.1.1) in the spaces Xm,m = 0,1, . . .. In particular,

Mizumachi’s results state that the two dimensional solutions of (3.1.3), φω,m are orbitally stable on

Xm.

In the higher dimensional situations, n≥ 3, we can similarly consider spaces

X~m,~m = (m1, . . . ,ml), l = [
n
2
].

X~m := span{ f~m(ρ1, . . . ,ρl)ei(m1θ1+...+mlθl)| f~m ∈ H1
rad(R

l), f~m ∈ L2
rad(R

l)},

with the appropriate norm. In the case n = 2l, we can write

f =
∞

∑
m1,...,ml=−∞

f~m(ρ1, . . . ,ρl)ei(m1θ1+...+mlθl)
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with a norm ‖ f‖2
L2(R2)

= ∑
∞
m1,...,ml=−∞ ‖ f~m‖2

L2((0,∞)l ,ρ1...ρldρ1...dρl)
.

In the odd dimensional case, n = 2l +1, we simply take [21]

f =
∞

∑
m1,...,ml=−∞

f~m(ρ1, . . . ,ρl,zn)ei(m1θ1+...+mlθl)

with a norm ‖ f‖2
L2(R2)

= ∑
∞
m1,...,ml=−∞ ‖ f~m‖2

L2((0,∞)l ,ρ1...ρldρ1...dρl)L2
z
. For future reference, introduce

the subspace of L2(Rn)

L2
r := { f = f (ρ1, . . . ,ρl) : ‖ f‖2

L2
r
=

ˆ
∞

0
| f (ρ1, . . . ,ρl)|2ρ1 . . .ρldρ1 . . .dρl}

in the case n = 2l, while in the odd dimensional case, n = 2l +1,

L2
r := { f = f (ρ1, . . . ,ρl,xn) : ‖ f‖2

L2
r
=

ˆ
∞

0
| f (ρ1, . . . ,ρl,xn)|2ρ1 . . .ρldρ1 . . .dρldxn},

and the corresponding Sobolev spaces H2
r = { f ∈ L2

r : ∂ 2
ρk

f ∈ L2
r ,k = 1, . . . , l}, H2

r = { f ∈ L2
r :

∂ 2
ρk

f ,∂ 2
xn

f ∈ L2
r ,k = 1, . . . , l}

We are now ready to give a precise formulation of the main results. As usual, the spectral

stability of a wave is determined by its linearized operator. It simply means that the linearized

operator around the wave lacks spectrum in the open right-half of the complex plane. Otherwise,

we refer to the wave as (spectrally) unstable.

3.1.3 Main results

We start with the two dimensional case. This case was considered by Mizumachi in [33, 34], but

we include our approach and results here in order to illustrate the variational method we use in the

higher dimensional cases. Our result states the following.

Theorem 3.1.1. Let n = 2, 1 < p < 3, ω > 0, m ∈ Z . Then, the equation (3.1.3) has classical and

positive solutions φω,m, which are constructed as (multiples of ) the minimizers of the following
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constrained minimization problem


H(u) = 1

2

´
R2 |Ou|2 dx− 1

p+1

´
R2 |u|p+1 dx→min

K(u) =
´
R2 |u|2 dx = λ ,u ∈ Xm

(3.1.7)

Such solutions are spectrally stable, for p ∈ (1,3), with respect to perturbations in Xm.

Remark: Mizumachi, [33] has shown the uniqueness, by ODE methods, for positive solutions

of (3.1.3). Thus the solutions produced by Theorem 3.1.1 are exactly the same as the ones in

[33]. Thus, the results of Theorem 3.1.1 are not really new, but the proof follows along a com-

pletely different line of argument. Basically, we do not need to study the spectral properties of

the linearized operators, arising out of the solutions of the ODE (3.1.3). Instead, we rely on the

variational construction, which yields the same properties in a more direct way.

On the other hand, it is worth noting that Mizumachi’s result is stronger, namely the orbital

stability in the case p∈ (1,3), while our results concern only the spectral stability. For the purposes

of the proof (see Theorem 7.1.5, [37]), orbital stability is the same as spectral stability plus it

requires in addition that the linearized operator L+ (see Proposition 3.2.4 below for a definition)

to satisfy Ker[L+] = span[∇φω,m]. We do not verify here this property, sometimes referred to as

non-degeneracy of φω,m.

In the higher dimensional cases, the statement remains essentially unchanged, except with the

appropriate dependence of the index p on the dimension. The results here are new, but in fact they

follow along the ideas of the proof of Theorem 3.1.1. Again, orbital stability will follow, once

one can establish the non-degeneracy of the waves.

Theorem 3.1.2. Let n ≥ 3, ~m ∈ Z [ n
2 ], p ∈ (1,1+ 4

n) and ω > 0. Then, the equation (3.1.3) has

classical and positive solutions φω,~m, constructed as multiples of the minimizers of the following
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constrained variational problem


H(u) = 1

2

´
Rn |Ou|2 dx− 1

p+1

´
Rn |u|p+1 dx→min

K(u) =
´
Rn |u|2 dx = λ ,u ∈ X~m

(3.1.8)

Such solutions are spectrally stable, when p∈ (1,1+ 4
n), with respect to perturbations in the space

X~m.

3.2 The vortices in R2 and their stability properties

We start with the variational construction. in addition to establishing the existence of these waves1,

this approach will give us helpful information regrading the spectral properties of the associated

linearized operators, which in turn will be helpful in our stability considerations.

3.2.1 Variational construction of the vortices in R2

We consider the minimization problem (3.1.7) and show that the minimizer exists and is a weak

solution of the associated Euler-Lagrange equation (3.1.3). We compute the action of the functional

H(u) = 1
2

ˆ
R2
|Ou|2 dx− 1

p+1

ˆ
R2
|u|p+1 dx

on functions u ∈ Xm, where u(x) = u(ρ,θ) = φ(ρ)eimθ to get the following convenient form

H(u) =H(φ) = 1
2

ˆ
∞

0
|φ ′|2 ρdρ +

1
2

m2
ˆ

∞

0

|φ |2

ρ
dρ− 1

p+1

ˆ
∞

0
|φ |p+1

ρdρ,

where ρ = |x| is the radial variable in dimension two and u ∈ H1
r (R2) is a radial function. Fix m.

Let Iλ = infu∈Xm,K(u)=λH(u) with λ > 0. We will show that a minimizer u = φ(|x|) exists and is a

weak solution of (3.1.3) for some ω . To do this, we will use a concentration compactness argument

1which has already been established with other methods, e.g. [32], [33], [34]
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and a few preliminary lemmas.

Proposition 3.2.1. If 1 < p < 3, and λ > 0, then −∞ < Iλ < 0. In addition, there exists a con-

strained minimizer in Xm.

Proof. Fix λ > 0, and u ∈ Xm with ‖u‖L2(R2) = λ . Consider dilations uµ(x) = µu(µx), µ > 0.

Since ‖uµ‖L2 = ‖u‖L2 , ‖Ouµ‖L2 = µ‖Ou‖L2 , ‖uµ‖Lp+1 = µ
p−1
p+1‖u‖Lp+1 , we have that

H(uµ) =
µ2

2

ˆ
R2
|∇u|2 dx− µ p−1

p+1

ˆ
R2
|u|p+1 dx.

For p < 3,H(uµ)< 0 for µ > 0 sufficiently small. Thus Iλ < 0. We will also show Iλ >−∞.

By Gagliardo-Nirenberg-Sobolev Inequality,

‖u‖Lq ≤Cn,q‖∇u‖n(1/2−1/q)
L2(Rn)

‖u‖1−n(1/2−1/q)
L2(Rn)

(3.2.1)

if n > 2, 2≤ q≤ 2n
n−2 , and if n = 2, 2≤ q < ∞.

H(u) = 1
2

ˆ
R2
|Ou|2 dx− 1

p+1

ˆ
R2
|u|p+1 dx

≥ 1
2

ˆ
R2
|Ou|2 dx−

Cp+1
2,p

p+1
‖∇u‖

2(p−1)
2

L2(R2)
λ

b

≥ 1
2

ˆ
R2
|Ou|2 dx−

Cp+1
p

p+1
‖∇u‖p−1

L2(R2)
λ

b

where b = 1
2(1−2(1/2−1/p+1))(p+1). ThenH(u)≥ g(‖∇u‖L2), where

g(R) = 1
2R2− Cp+1

2,p
p+1 λ bRp−1 for p < 3. Hence Iλ ≥ gmin >−∞. It follows that −∞ < Iλ < 0.

Next, we will use a standard concentration compactness argument in order to establish the ex-

istence of u. We just indicate the main steps, as the argument mirrors a well-known construction.2

Since −∞ < Iλ < 0, we can find a minimizing sequence {uk}∞
k=1 ⊂ Xm, such that ‖uk‖2

L2 = λ

andH(uk)→ Iλ as k→ ∞. Since Iλ < 0, thusH(uk)< ∞ for k large enough. Further, by Sobolev-

2 except at the final phase, when the tightness is established. There, one needs to show the non-trivial fact that the
translates guaranteed by tightness are actually bounded in R2, whence it easily follows that there is a minimizer in Xm
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Garliardo-Nirenberg, for large k, g(‖∇uk‖L2)≤H(uk)< 0. Then it follows that ‖∇uk‖L2(R2) ≤ R0

for k sufficiently large.

Without loss of generality, we can assume that ‖∇uk‖L2(R2) ≤ R0 for any k > 0. Thus {uk}∞
k=1

is bounded in H1(R2). By concentration compactness, we have either "convergence of translates",

"vanishing" or "splitting".

First let’s rule out vanishing. SinceH(uk)≤ Iλ

2 < 0 for k sufficiently large,

1
2

ˆ
R2
|Ouk|2 dx− 1

p+1

ˆ
R2
|uk|p+1 dx≤ Iλ

2
< 0.

for k sufficiently large. In particular, we obtain

1
p+1

ˆ
R2
|uk|p+1 dx≥−Iλ

2
> 0.

for k sufficiently large. If vanishing occurred, by Gagliardo-Nirenberg-Sobolev, there will exist a

subsequence {uk j}∞
j=1 such that uk j→ 0 in Lq(R2), for any 2 < q < ∞, a contradiction.

Then we rule out splitting. If splitting occurred, then there exists γ ∈ (0,λ ) and a subsequence

{uk j}∞
j=1, and bounded sequences {v j}∞

j=1 and {w j}∞
j=1 in Xm with

lim
j
‖v j‖2

L2(R2) = γ, lim
j
‖w j‖2

L2(R2) = λ − γ,

dist(spt(v j),spt(w j))→ ∞

lim
j

ˆ
R2

(
|uk j |

p+1−|v j|p+1−|w j|p+1) dx = 0

liminf
j→∞

ˆ
Rn

(
|∇uk j |

2−|∇v j|2−|∇w j|2
)

dx≥ 0,

where spt(v j) = {x ∈ R2|v j(x) 6= 0} and spt(w j) = {x ∈ R2|w j(x) 6= 0}. Fix ε > 0, we have that

for all sufficiently large j,

Iλ +5ε ≥H(uk j)+4ε ≥H(v j)+H(w j)+ ε.
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Now there exist sequences {a j}∞
j=1,{b j}∞

j=1 : lim j a j = lim j b j = 1, so that ‖a jv j‖2
L2 = γ , ‖b jw j‖2

L2 =

λ − γ . ThusH(a jv j)≥ Iγ andH(b jw j)≥ Iλ−γ , while for j large enough, we have

H(v j)≥H(a jv j)− ε/2, H(w j)≥H(b jw j)− ε/2,

since lim j[H(a jv j)−H(v j)] = 0. Thus for large j, Iλ + 5ε ≥ H(a jv j)+H(b jw j) ≥ Iγ + Iλ−γ ,

whence

Iλ ≥ Iγ + Iλ−γ .

However, similar to the classical case, the map λ → Iλ is strictly subadditive. In fact, we have the

following lemma to that effect. Once Lemma 3.2.2 is established, a contradiction is reached and

we will have shown that splitting cannot occur.

Lemma 3.2.2. The map λ → Iλ is strictly subadditive, i.e Iλ < Iγ + Iλ−γ , ∀γ ∈ (0,λ ).

Proof. Note for every θ > 1,

H(θu) =
θ 2

2

ˆ
R2
|∇u|2 dx− θ p+1

p+1

ˆ
R2
|u|p+1 dx

= θ
2(

1
2

ˆ
R2
|∇u|2 dx− θ p−1

p+1

ˆ
R2
|u|p+1 dx)< θ

2H(u)

Thus Iθ 2λ < θ 2Iλ , for all θ > 1. Hence, for all γ ∈ (λ

2 ,λ ),

Iλ = Iλ

γ
γ
<

λ

γ
Iγ = Iγ +(

λ − γ

γ
)Iγ = Iγ +

λ − γ

γ
I γ

λ−γ
(λ−γ) < Iγ + Iλ−γ

If γ ∈ (0, λ

2 ], repeat the steps above with replacing γ with λ − γ .

By concentration compactness, there is a subsequence {uk j}∞
j=1 and a sequence {y j}∞

j=1 ⊂ R2,

such that uk j(· − y j)→ u0 in L2, for some u0 ∈ H1(R2). We will show first that {y j}∞
j=1 is a

bounded sequence. In fact, we have the following
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Lemma 3.2.3. The sequence {y j} ⊂ R2 is bounded.

Proof. We argue by contradiction. Let {y j} be unbounded (and after picking a subsequence, de-

noted again by {y j}), so that lim j |y j| = ∞ and y j
|y j| → (cos(θ0),sin(θ0)) ∈ S1. Without loss of

generality, uk j(x) = φk j(|x|)eimθ , for real-valued functions φk j . Let ε > 0. Then, there is N and j0,

so that for all j ≥ j0,

‖u0‖L2(|x|>N) < ε,‖uk j(·− y j)‖L2(|x|>N) < ε.

We introduce the function θ j(x) : x− y j = (|x− y j|cosθ j(x), |x− y j|sinθ j(x)) such that

lim
j→∞
‖φk j(| ·−y j|)eimθ j(·)−u0(·)‖L2(|x|<N) = 0.

Since |x|< N, we have

eiθ j(x) =

(
x1− y1

j

|x− y j|
+ i

x2− y2
j

|x− y j|

)
→−

(
y1

j

|y j|
+ i

y2
j

|y j|

)
=−eiθ0.

Thus, lim j e−imθ j(x) = (−1)me−imθ0 =: eiαm . It follows that

lim
j→∞
‖φk j(| ·−y j|)− eiαmu0(·)‖L2(|x|<N) = 0

Then there is j0, so that whenever j ≥ j0,

‖φk j(| ·−y j|)− eiαmu0(·)‖ ≤ 3ε.

We conclude that eiαmu0 is real-valued. Without loss of generality (namely, if we have picked

eiαmuk j(·−y j)→ eiαmu0), we have reduced to the case where uk j(·−y j)→ u0 and u0 is real-valued.

It follows that for uk j(x) = φk j(|x|)eimθ (here φk j is not necessarily real valued!), we have

lim
j
‖φk j(| · |)e

imθ −u0(·− y j)‖L2 = 0. (3.2.2)
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Letting φk j(|x|) = p j(|x|)+ iq j(|x|) and taking the imaginary part of the function in (3.2.2)

lim
j
‖p j(|x|)sin(mθ)+q j(|x|)cos(mθ)‖L2(R2) = 0.

But by the constraint,

‖p j(|x|)sin(mθ)+q j(|x|)cos(mθ)‖2
L2(R2) =

ˆ
∞

0

ˆ 2π

0
[p2

j(ρ)sin2(mθ)+q2
j(ρ)cos2(mθ)]dθρdρ

= π

ˆ
∞

0
[p j(ρ)

2 +q2
j(ρ)]ρdρ =

1
2
‖φk j‖

2
L2(R2) =

λ

2
.

Thus, we have reached a contradiction with lim |y j|= ∞.

Since y j is a bounded, after taking a subsequence (denoted the same), we have y j → y0 ∈ R2.

It now easily follows that lim j ‖uk j−u0(·−y0)‖L2 = 0. Clearly, since Xm is a closed subspace, we

have that u0(x− y0) =: v0 = φ0(|x|)eimθ and ‖v0‖2 = lim j ‖uk j‖2 = λ . By (3.2.1), it follows that

lim j ‖uk j − v0‖Lq = 0,2 < q < ∞, in particular for q = p+1.

Clearly, uk j→ v0 weakly in H1(R2), whence using lower-weak semicontinuity of u→
´
R2 |∇u|2 dx,

we conclude

Iλ = liminf
j→∞

H(uk j)≥H[v0],

while ‖v0‖2 = λ . Thus, v0 ∈ Xm is a minimizer of (3.1.7).

Proposition 3.2.4. A constrained minimizer of (3.1.7), φ satisfies the Euler-Lagrange equation

−∆φ +ωλ φ −|φ |p−1
φ = 0, ωλ =

‖φ‖p+1
Lp+1(R2)

−‖∇φ‖2
L2(R2)

λ
. (3.2.3)
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Moreover, the following scaling identities hold

φ
λ = λ

1
3−p φ

1(λ
p−1

2(3−p) x), Iλ = λ
2

3−p I1, Jλ = ‖Oφ
λ‖2 = λ

2
3−p

2(p−1)
p−3

I1 (3.2.4)

Kλ =

ˆ
R2
|φ λ |p+1 dx = λ

2
3−p

2(p+1)
p−3

I1, ωλ = λ
p−1
3−p

4
p−3

I1 (3.2.5)

Finally, the linearized operator

L+ :=−∆+ωλ − p|φ |p−1

is non-negative on the co-dimension one subspace {φeimθ}⊥ of the space Xm. That is,

〈L+h,h〉 ≥ 0, h ∈ {φeimθ}⊥,h ∈ Xm∩domain(L+).

Equivalently, the operator Lrad
+ =−∆r +

m2

|x|2 +ωλ − p|φ |p−1 acting on the subspace H2
rad.∩{φ}⊥

is non-negative.

Proof. φ λ = λ bφ(λ ax) where φ = φ 1 with
´
R2 |φ(x)|2 dx = 1. Set Jλ (φ

λ ) = J1(φ
λ )+ J2(φ

λ ),

where

J1(φ
λ ) :=

ˆ
R2
|Oφ

λ |2 dx =
ˆ
R2
|λ a+bOφ(λ ax)2| dx = λ

2b
ˆ
R2
|Oφ(x)|2 dx = λ

2bJ1(φ).

Further, we also have

J2(φ
λ ) = m2

ˆ
R2

|φ λ (x)|
|x|2

dx = m2
λ

2b
ˆ
R2

|φ(λ ax)|
|x|2

dx = m2
λ

2b
ˆ
R2
|φ(x)|2 dx = λ

2bJ2(φ).

Kλ (φ
λ ) =

ˆ
R2
|φ λ (x)|p+1 dx = λ

b(p+1)
ˆ
R2
|φ(λ ax)|p+1 dx

= λ
b(p+1)−2a

ˆ
R2
|φ(x)|p+1 dx = λ

b(p+1)−2aK(φ).
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So we have

λ
2b = λ

b(p+1)−2a⇒ b+2a = bp.

Further

λ =

ˆ
R2

λ
2b|φ(λ ax)|2 dx = λ

2b−2a
ˆ
R2
|φ(x)|2 dx = λ

2b−2a⇒ 2b−2a = 1.

Clearly we obtain a = p−1
2(3−p) and b = 1

3−p . Hence φ λ = λ
1

3−p φ1(λ
p−1

2(3−p) x), H(φ) = 1
2J(φ)−

1
p+1K(φ) andHλ = λ 2bH1 = λ

2
3−pH1. Let J := J1 and K := K1we obtain,

Thus it suffices to prove the results for the case λ = 1. So fix λ = 1. Let φ = φ 1 be a minimizer.

For any δ > 0, consider uδ = φ +δh. We have that

H( uδ

‖uδ‖
)≥H1.

Note that

‖uδ‖=
√
‖φ‖2 +2δ 〈φ ,h〉+O(δ 2) = 1+δ 〈φ ,h〉+O(δ 2).

1
2

∥∥∥∥ Ouδ

‖uδ‖

∥∥∥∥2

=
1
2
‖Oφ +δOh‖2

‖uδ‖2

=
1
2
‖Oφ‖2 +2δ 〈Oφ ,Oh〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)
=

1
2
‖Oφ‖2−2δ 〈4φ ,h〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)

=
1
2
‖Oφ‖2(1+2δ 〈φ ,h〉)−2δ 〈φ ,h〉‖Oφ‖2(1+2δ 〈φ ,h〉+O(δ 2))−2δ 〈4φ ,h〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)

=
1
2

J1−δ (〈4φ ,h〉+ J1 〈φ ,h〉)+O(δ 2)

Then we come to compute the p+1 order term as below,

− 1
p+1

ˆ
R2

|uδ |p+1

‖uδ‖p+1 dx =− 1
p+1

ˆ
R2

|φ +δh|p+1

(1+δ 〈φ ,h〉+O(δ 2))p+1 dx,
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Then we simplify,

− 1
p+1

ˆ
R2

|uδ |p+1

‖uδ‖p+1 dx =− 1
p+1

ˆ
R2

(
|φ +δh|2

) p+1
2

(1+δ 〈φ ,h〉+O(δ 2))p+1 dx

=− 1
p+1

ˆ
R2

|φ |p+1 +δ (p+1)|φ |p−1φh+O(δ 2)

1+(p+1)δ 〈φ ,h〉+O(δ 2)
dx

=− 1
p+1

ˆ
R2

|φ |p+1(1+(p+1)δ 〈φ ,h〉)−δ (p+1)|φ |p+1 〈φ ,h〉+δ (p+1)|φ |p−1φh+O(δ 2)

1+(p+1)δ 〈φ ,h〉+O(δ 2)
dx

=− 1
p+1

ˆ
R2
|φ |p+1 dx+δ

ˆ
R2
|φ |p+1 〈φ ,h〉−δ

〈
|φ |p−1

φ ,h
〉
+O(δ 2)

=− 1
p+1

K +δ
(
K 〈φ ,h〉−

〈
|φ |p−1

φ ,h
〉)

+O(δ 2)

For the term containing m2, we also obtain,

1
2

m2
ˆ
R2

|uδ |2

|x|2‖uδ‖2 dx =
1
2

m2
ˆ
R2

|φ +δh|2

|x|2(1+2δ 〈φ ,h〉+O(δ 2))
dx

=
1
2

m2
ˆ
R2

|φ |2(1+2δ 〈φ ,h〉)−|φ |2(2δ 〈φ ,h〉+O(δ 2))+2δφh+O(δ 2)

|x|2(1+2δ 〈φ ,h〉+O(δ 2))
dx

=
1
2

J2− J2δ 〈φ ,h〉+δ
m2

|x|2
〈φ ,h〉+O(δ 2) =

1
2

J2 +δ

(
m2

|x|2
〈φ ,h〉− J2 〈φ ,h〉

)
+O(δ 2)

Since 1
2J− 1

p+1K =H1 andH( uδ

‖uδ ‖
)≥H1, we obtain

1
2J−δ

(
〈4φ ,h〉− m2

|x|2 〈φ ,h〉+ J 〈φ ,h〉
)
− 1

p+1K+δ
(
K 〈φ ,h〉−

〈
|φ |p−1φ ,h

〉)
+O(δ 2)≥ 1

2J− 1
p+1K

We conclude

δ

〈
−4φ +

m2

|x|2
φ −φ

p +(K− J)φ ,h
〉
+O(δ 2)≥ 0

Since it is true for all δ ∈ R and for all test functions h, we conclude that φ satisfies

−4φ +
m2

|x|2
φ −|φ |p−1

φ +(K− J)φ = 0

which is the Euler-Lagrange equation (3.1.3), with a scalar ω = K − J. Finally, there is the

Pokhozaev’s identity, which we derive in the following way.
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Set

zµ(x) = µφ(µx).

Since
´
R2 z2

µ(x) dx =
´
R2 φ 2 dx = 1, zµ satisfies

H(zµ) =
µ2

2
J− µ p−1

p+1
K.

Since the scalar valued function µ → Hµ(z) achieves its minimum at µ = 1, we must have
dH(zµ )

dµ
|µ=1 = 0. This is the Pokhozaev’s identity

J− p−1
p+1

K = 0.

Hence we obtain the formulas

J =
2(p−1)

p−3
H1 (3.2.6)

K =
2(p+1)

p−3
H1 (3.2.7)

ω =
4

p−3
H1. (3.2.8)

We then establish the non-coercivity of L+ on the codimension subspace {φ}⊥. Note that for

every test function h, the function

g(δ ) =H( φ +δh
‖φ +δh‖

)

has a minimum at δ = 0, which means that we must have g′(0) = 0, and g′′(0)≥ 0.

We take h : 〈h,φ〉= 0, and ‖h‖= 1. Note that under this restriction

‖φ +δh‖2 = ‖φ‖2 +2δ 〈φ ,h〉+δ
2‖h‖2 = 1+δ

2,

‖φ +δh‖= (1+δ
2)1/2 = 1+

δ 2

2
+O(δ 3).
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Consider g(δ ) :

1
2

∥∥∥∥O(φ +δh)
‖φ +δh‖

∥∥∥∥2

=
1
2
‖Oφ‖2 +2δ 〈Oφ ,Oh〉+δ 2‖Oh‖2

1+δ 2

=
1
2
‖Oφ‖2(1+δ 2)−δ 2‖Oφ‖2(1+δ 2)−2δ 〈4φ ,h〉(1+δ 2)+δ 2 〈−4h,h〉(1+δ 2)+O(δ 3)

1+δ 2

=
1
2

J1−
1
2

δ
2J1−δ 〈4φ ,h〉+ δ 2

2
〈−4h,h〉+O(δ 3)

Further, for the p+1 order term, we can compute,

− 1
p+1

ˆ
R2

|φ +δh|p+1

‖φ +δh‖p+1 dx =
−1

p+1

ˆ
R2

|φ |p+1 +δ (p+1)|φ |p−1φh+ p(p+1)
2 δ 2|φ |p−1h2 +O(δ 3)

(1+δ 2)
p+1

2

dx

=
−1

p+1

ˆ
R2

|φ |p+1(1+ p+1
2 δ 2)− p+1

2 δ 2|φ |p+1 +δ (p+1)|φ |p−1φh+ p(p+1)
2 δ 2|φ |p−1h2 +O(δ 3)

1+ p+1
2 δ 2 +O(δ 3)

dx

=− 1
p+1

K +
δ 2

2
K−δ

〈
|φ |p−1

φ ,h
〉
− p

2
δ

2 〈|φ |p−1h,h
〉
+O(δ 3)

In addition,

1
2

m2
ˆ
R2

|φ +δh|2

|x|2‖φ +δh‖2 dx=
1
2

m2
ˆ
R2

|φ |2 +2δφh+δ 2h2

|x|2(1+δ 2)
dx=

1
2

J2−
1
2

δ
2J2+

δ 2m2

2|x|2
〈h,h〉+O(δ 3)

Thus

g(δ ) = g(0)− δ 2

2

〈
(J−K)h+4h− m2

|x|2
h+ p|φ |p−1h,h

〉
+O(δ 3)

Recall that ω = K− J. Since g(δ ) ≥ g(0) for all small enough δ , it follows that the operator L+

defined by L+ =−4r +ω + m2

|x|2 − p|φ |p−1 satisfies 〈L+h,h〉 ≥ 0, which completes the proof.

Theorem 3.2.5. The vortex solution u = ei(mθ+ωt)φ(r) constructed through the variational proce-

dure above is positive. In addition, it is spectrally stable with respect to perturbations in the same

class Xm, when 1 < p < 3.

Proof. Linearize around the solution φ , consider u = ei(mθ+ωt)(φ +ϕ + iψ), where ϕ,ψ are radial
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functions. This results in the following equations for the perturbation.

−ϕt = 4rψ− (ω +
m2

|x|2
)ψ + |φ |p−1

ψ

ψt = 4rϕ− (ω +
m2

|x|2
)ϕ + p|φ |p−1

ϕ.

This gives the system

 ϕ

ψ


t

=

 0 1

−1 0


 L+ 0

0 L−


 ϕ

ψ

 (3.2.9)

where

L+ = −∆r +(ω +
m2

|x|2
)− p|φ |p−1,

L− = −∆r +(ω +
m2

|x|2
)−|φ |p−1.

Introducing

J =

 0 1

−1 0

 ,L =

 L+ 0

0 L−

 ,

we see that the eigenvalue problem (3.2.9) can be presented in the form

JL

 ϕ

ψ

= λ

 ϕ

ψ

 . (3.2.10)

We study this problem, using index counting theories. More precisely, by a corollary of the index

counting theorem (see Theorem 1, [25] or better yet, Theorem 7.1.5, [37])

nunstable(JL)≤ n(L)−n(D), (3.2.11)
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where in our case

D =

 〈L−1
− φ ′,φ ′〉 0

0 〈L−1
+ φ ,φ〉

 .

We proceed to establish that n(L) = 1= n(D), which would imply the spectral stability, by (3.2.11).

Since

−∆rφ +(ω +
m2

|x|2
)φ −|φ |p−1

φ = 0,

we have that L−φ = 0 and L+φ =−4rφ +(ω + m2

|x|2 )φ − p|φ |p−1φ =−(p−1)|φ |p−1φ .

It follows that

〈L+φ ,φ〉=−(p−1)
ˆ

∞

0
|φ(r)|p+1rdr < 0

We claim that L− does not have negative spectrum and zero is a simple eigenvalue. Assume that ψ

is such that ‖ψ‖= 1and L−ψ =−σ2ψ . Then, 〈ψ,φ〉= 0, and further

−σ
2 = 〈L−ψ,ψ〉> 〈L+ψ,ψ〉

But this is a contradiction, since we have proved that L+|{φ}⊥ ≥ 0. Thus, L− doesn’t have negative

spectrum. Similar argument, with σ = 0, shows that L− does not have other eigenfunctions at

zero except φ . Note that by Sturm-Liouville theory for the singular Schrödinger operator L− =

−∆r +(ω + m2

r2 )−|φ |p−1, acting on L2(rdr), we have that φ > 0, as a ground state.

Next, observe that

−4φ − (ω +
m2

|x|2
)φ + |φ |p−1

φ = 0

has solutions φ(r) = ω
1

p−1 φ(ω
1
2 r). By differentiating the equation above with respect to ω , we

have

L+(−
d

dω
φ) = φ

which implies that

〈L−1
+ φ ,φ〉=−1

2
d

dω
‖φ‖2.
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We obtain

〈L−1
+ φ ,φ〉=−1

2
d

dω

ˆ
∞

0
ω

2
p−1 |φ1(ω

1
2 r)|2r dr =−1

2
3− p
p−1

ω
4−2p
p−1

ˆ
∞

0
|φ1(r)|2r dr.

It follows that 〈L−1
+ φ ,φ〉 < 0, if 1 < p < 3. where n(L) = n(L+) + n(L−) = 1 and n(D) =

n(
〈
L−1

1 φ ,φ
〉
) = 1, thus it is spectrally stable, if 1 < p < 3.

3.3 The vortices in higher dimensions

The arguments proceed parallel to the two dimensional case, so we just indicate the main points.

First, consider the NLS equation in space dimension n = 2l

iut +4u+ |u|p−1u = 0, x ∈ R2n, t > 0

and study the existence and stability of standing wave solutions of the form

eiωtei∑
l
k=1 mkθkφω(r1,r2, · · · ,rl),

where (rk,θk) are polar coordinates in R2, mk ∈ N∪{0}, k = 1,2, · · · , l. Then φω satisfies (3.1.4).

The case of odd-dimensional space R2l+1 proceeds the same way by using solutions of the

form

eiωtei∑
l
k=1 mkθkφω(r1,r2, · · · ,rl,z),

where (rk,θk) are polar coordinates in R2, mk ∈ N∪{0}, k = 1,2, · · · ,n−1, and (rl,θl,z) are the

cylindrical coordinates in R3. The equation for φω is then (3.1.5).

3.3.1 Variational construction of the waves

The minimization problem remains the same for both even and odd cases: for λ > 0 minimize the

functional
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H(u) = 1
2

ˆ
R2l
|Ou|2 dx− 1

p+1

ˆ
R2l
|u|p+1 dx

subject to the constraint ˆ
R2l
|u|2 dx = λ ,u ∈ X~m.

Restricting this problem to the subspaces X~m, allows us to find a minimizer in X~m. Let Iλ =

infu∈X~m,K(u)=λH(u).

Proposition 3.3.1. Let ~m ∈ Z [ n
2 ] and 1 < p < 1+ 4

n , and λ > 0, then −∞ < Iλ < 0. In addition,

there exists a constrained minimizer in X~m.

Proof. Assume that n≥ 3, since we have already considered the case n = 2.

By (3.2.1) and taking into account that ‖u‖2
L2 = λ , we have

H[u]≥ 1
2

ˆ
Rn
|∇u|2dx−Cλ ,p,n‖∇u‖

n(p−1)
2 ,

we conclude thatH[u]≥ g(‖∇u‖), with g(R) = R2

2 −Cλ ,p,nR
n(p−1)

2 , which is bounded from below, if
n(p−1)

2 < 2 or equivalently, if p < 1+ 4
n . Thus, Iλ >−∞. A dilation argument, with uµ = µ

n
2 u(µ·) :

‖uµ‖2
L2 = ‖u‖2

L2 = λ , we have

H[uµ ] = µ
2[

1
2
‖∇u‖2− µ

n(p−1)
2 −2

p+1
‖u‖p+1

Lp+1]

which shows that for µ << 1, we have H[uµ ]< 0, whence Iλ < 0.

Since−∞ < Iλ < 0, we can find a minimizing sequence {uk}∞
k=1 ⊂H1(Rn), such that ‖uk‖2

L2 =

λ and H(uk) → Iλ as k → ∞. Since Iλ < 0, thus H(uk) < ∞ for k large enough. Further,

by Gagliardo-Nirenberg-Sobolev, for large k, g(‖Duk‖L2) ≤ H(uk) < 0. Then it follows that

‖Duk‖L2(Rn) ≤ R0 for k sufficently large. WLOG, we can assume that ‖Duk‖L2(Rn) ≤ R0 for any

k > 0. Thus {uk}∞
k=1 is bounded in H1(Rn). By concentration Compactness. We have either "con-

vergence of translates", "vanishing" or "splitting".
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First let’s rule out "vanishing".

H(uk)≤ Iλ

2 < 0 for k sufficently large. Hence

1
2

ˆ
Rn
|Ou|2 dx+

ˆ
Rn

[ n
2 ]

∑
k=1

m2
k

x2
2k−1 + x2

2k
|u|2 dx− 1

p+1

ˆ
Rn
|u|p+1 dx≤ Iλ

2
< 0

for k sufficently large. Thus we obtain 1
p+1

´
Rn |uk|p+1 dx ≥ − Iλ

2 > 0 for k sufficently large. If

"vanishing" occurred, then there exists subsequence {uk j}∞
j=1 such that uk j→ 0 in Lq(Rn), for any

2 < q < 2+ 4
n−2 , n ≥ 3. Since 1 < p < 1+ 4

n−2 . Thus here 2 < p+ 1 < 2+ 4
n−2 ,and satisfying

uk j → 0 in Lp+1(Rn). Contradiction.

Then we rule out splitting.

If splitting occurred, then there exists subsequence {uk j}∞
j=1 and bounded sequences {v j}∞

j=1 and

{w j}∞
j=1 in H1(Rn) with

‖v j‖2
L2(Rn)→ γ < λ ,

‖w j‖2
L2(Rn)→ λ − γ,

dist(spt(v j),spt(w j))→ ∞

and
´

Rn

(
|uk j |q−|v j|q−|w j|q

)
dx→ 0 as j→ ∞ for any 2 < q < 2n

n−2 ,

and liminf j→∞

´
Rn

(
|Duk j |2−|Dv j|2−|Dw j|2

)
dx≥ 0 Then ∀ε > 0, for j sufficently large,

Iλ +(n+4)ε ≥H(v j)+H(w j)+ ε

Now ∃ sequence {a j}∞
j=1,{b j}∞

j=1 in R+ such that ‖a jv j‖2
L2 = γ , ‖b jw j‖2

L2 = λ − γ for any j and

further a j,b j→ 1, thus

H(a jv j)≥ Iγ

and

H(b jw j)≥ Iλ−γ
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for any j. Further, for j large enough, we have

H(v j)≥H(a jv j)− ε/2,

H(w j)≥H(b jw j)− ε/2,

Thus ∀ j sufficently large Iλ + 5ε ≥ H(a jv j)+H(b jw j) ≥ Iγ + Iλ−γ , taking ε → 0+, then we

obtain

Iλ ≥ Iγ + Iλ−γ .

for every γ ∈ (0,λ ), while Lemma 3.2.2 (just replacing R2 by Rn) implies the opposite inequal-

ity. Hence, splitting is ruled out as well. It follows that tightness occurs. In other words, there is

a subsequence {uk j} and a sequence of {y j} ⊂ Rn, so that uk j(·− y j)→ u0 in L2(Rn). Again, we

show that {y j} must be a bounded sequence.

Lemma 3.3.2. In the even dimensional case, n = 2l, the sequence {y j} ⊂ Rn is bounded. In the

odd dimensional case, n = 2l +1, ỹ j := (y1
j , . . . ,y

2l
j ) is a bounded in R2l = Rn−1.

Proof. We start with the case of even dimensions. The proof generally proceeds parallel to Lemma

3.2.3, with a few important technical differences that we outline below.

Assume that unboundedness of {y j}. After taking a subsequence (denoted the same), we may

and do assume lim j |y j|= ∞. Note that y j = ((y1
j ,y

2
j), . . . ,(y

2l−1
j ,y2l

j )). We consider the variables in

pairs (y2k−1,y2k),k = 1, . . . l. Clearly, we may have a situation where some pairs (y2k−1
j ,y2k

j ), as ele-

ments of R2, are unbounded, while some others are bounded. Up to a permutation of the variables,

it is clearly enough to consider the case where lim j |(y1
j ,y

2
j)| = ∞, . . . , lim j |(y2k0−1

j ,y2k0
j )| = ∞,

while the rest of the coordinates {|(y2k−1
j ,y2k

j )|} j,k > k0 ≥ 1 are bounded. After passing to another

subsequence, if necessary, we may assume that the bounded coordinates are actually convergent,

say to (y2k0+1, . . . ,y2l). Defining ỹ j = (y1
j , . . . ,y

2k0
j ,0, . . . ,0), we see that

lim
j
‖uk j(x− ỹ j)−u0(x1, . . . ,x2k0 ,x2k0+1 + y2k0+1, . . . ,x2l + y2l)‖L2(Rn) = 0.
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Recalling that uk j ∈ X~m, it follows that without loss of generality, we may assume that uk j(x− y j)

has the following representation

φk j(|(x1− y1
j ,x2− y2

j)|, . . . , |(x2k0−1− y2k0−1
j ,x2k0− y2k0

j )|, |(x2k0+1,x2k0+2)|, . . .)×

× ei(∑
k0
k=1 mkθ k

j (x)+∑
n
k=k0+1 mkθ k(x))

Thus, after some relabeling, we may without loss of generality assume that again

lim j ‖uk j(x− y j)−u0‖L2(Rn) = 0, where y j = (y j
1, . . . ,y

j
2k0

,0, . . . ,0) and

lim j |(y1
j ,y

2
j)| = ∞, . . . , lim j |(y2k0−1

j ,y2k0
j )| = ∞. Passing to a further subsequence, we may and do

assume that
(y2k−1

j ,y2k
j )

|(y2k−1
j ,y2k

j )|
→ (cos(θk),sin(θk)) ∈ S1.

Let ε > 0, choose N and j0, so that for j ≥ j0,

‖u0‖L2(|x|>N) < ε,‖uk j(·− y j)‖L2(|x|>N) < ε

Now, for the polar angles θ k
j (x), corresponding3 to the pair (x2k−1− y2k−1

j ,x2k − y2k
j ), we have

again

eiθ k
j (x) =

(
x2k−1− y2k−1

j

|(x2k−1− y2k−1
j ,x2k− y2k

j )|
+ i

x2k− y2k
j

|(x2k−1− y2k−1
j ,x2k− y2k

j )|

)
→−eiθk ,

whence lim j e−imkθ k
j (x) = (−1)me−imkθk =: eiαk . As in Lemma 3.2.3, it follows that

φk j(|(x1− y1
j ,x2− y2

j)|, . . . , |(x2k0−1− y2k0−1
j ,x2k0− y2k0

j )|, |(x2k0+1,x2k0+2)|, . . .)

converges in L2(|x|< N) to

ei(∑
k0
k=1 αk−∑

n
k=k0+1 mkθ k(x))u0.

The choice of N implies that this convergence is over L2(Rn) and hence

ei(∑
k0
k=1 αk−∑

n
k=k0+1 mkθ k(x))u0 is real-valued, as a limit of real-valued functions.

3Here, for k ≥ k0 +1, we simply have that θ k is the polar angle for (x2k−1,x2k)
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By a similar argument to Lemma 3.2.3, we may assume without loss of generality that uk j(x−

y j)→ u0 and u0 is real-valued. Note that lim j ‖uk j(·)−u0(x− y j)‖L2 = 0.

Picking representative, φk j (which is not necessarily real-valued anymore!), we conclude that

lim
j
‖φk j(|(x1,x2)|, . . . , |(x2l−1,x2l)|)ei∑

l
k=1 mkθk(x2k−1,x2k))−u0(x− y j)‖L2(Rn) = 0. (3.3.1)

Let φk j(|(x1,x2)|, . . . , |(x2l−1,x2l)|) = p j(r1, . . . ,rl)+ iq j(r1, . . . ,rl) and taking imaginary parts in

(3.3.1), we obtain

lim
j
‖p j sin(

l

∑
k=1

mkθk(x2k−1,x2k))+q j cos(
l

∑
k=1

mkθk(x2k−1,x2k))‖L2(Rn) = 0. (3.3.2)

But,

‖p j sin(
l

∑
k=1

mkθk(x2k−1,x2k))+q j cos(
l

∑
k=1

mkθk(x2k−1,x2k))‖2
L2(Rn) =

=

ˆ
[p2

j(r1, . . . ,rl)sin2(
l

∑
k=1

mkθk)+q2
j(r1, . . . ,rl)cos2(

l

∑
k=1

mkθk)]dθ r1 . . .rldr+

+ 2
ˆ

p j(r1, . . . ,rl)q j(r1, . . . ,rl)sin(
l

∑
k=1

mkθk)cos(
l

∑
k=1

mkθk)dθ r1 . . .rldr.

But
´
[0,2π]l sin(∑l

k=1 mkθk)cos(∑l
k=1 mkθk)dθ1 . . .dθl = 0, while

ˆ
[0,2π]l

sin2(
l

∑
k=1

mkθk)dθ1 . . .dθl =

ˆ
[0,2π]l

cos2(
l

∑
k=1

mkθk)dθ1 . . .dθl =
(2π)l

2
,

whence

‖p j sin(
l

∑
k=1

mkθk)+q j cos(
l

∑
k=1

mkθk)‖2
L2(Rn) =

1
2
‖φk j‖

2
L2(Rn) =

λ

2
> 0.

This is a contradiction with (3.3.2), whence the proof of Lemma 3.3.2 in the even dimensional

case.

In the odd dimensional case, we proceed similarly. Note the last component may be unbounded.

Assuming the unboundedness of {ỹ j} : ỹ j = (y1
j , . . . ,y

n−1
j ,0), we take a subsequence (denoted the
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same) so that lim j |ỹ j|= ∞. We have

‖uk j(x− ỹ j)−u0(x1,x2, . . . ,xn−1,xn− yn
j)‖L2 → 0.

Take our initial sequence to be ũk j(x) := |uk j(x1, . . . ,xn−1,xn+yn
j). Clearly, it still belongs to X~m if

uk j does and for which ‖ũk j‖2
L2 = ‖uk j‖2

L2 = λ andH[ũk j ] =H[uk j ]. Thus, we have reduced matters

to

‖ũk j(·− ỹ j)−u0‖L2 → 0.

We rule out the potential unboundedness of the ỹ j as in the argument for even dimensions, since

ỹ j has even number of non-zero component, for which we apply the polar coordinates etc. Thus, it

follows that sup j |ỹ j|< ∞ and the proof of Lemma 3.3.2 is complete.

We are now ready to finish the proof of Proposition 3.3.1. Since {y j} is bounded (or just {ỹ j}

in the odd dimensional case), we may take a convergent subsequence (denoted the same), y j→ y0

(or ỹ j→ ỹ0 in the odd dimensions). We have lim j ‖uk j−u0(·−y0)‖L2(Rn) = 0 or lim j ‖uk j−u0(·−

(ỹ0,yn
j))‖L2(Rn) = 0 in odd dimensions. From this, it follows that u0(· − y0) ∈ X~m in the even

dimensional case and u0(· − (ỹ0,0)) ∈ X~m in the odd dimensional case. Both of these serve as

constrained minimizers of (3.1.8) and Proposition 3.3.1 is established.

Next, we need a version of Proposition 3.2.4. We just state it as the proof proceeds in an

identical way as in the case n = 2.

Proposition 3.3.3. A constrained minimizer of (3.1.7), φ satisfies the Euler-Lagrange equation

−∆φ +ωλ φ −|φ |p−1
φ = 0, ωλ =

‖φ‖p+1
Lp+1(Rn)

−‖∇φ‖2
L2(Rn)

λ
. (3.3.3)

Alternatively, φ~m satisfies either (3.1.4) in the even case or (3.1.5) in the odd case, with ω = ωλ .
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Moreover, the following scaling identities hold

φ
λ = λ

2
4−n(p−1) φ

1(λ
p−1

4−n(p−1) x), Iλ = λ

n+2−p(n−2)
4−n(p−1) I1, ωλ = λ

2(p−1)
4−n(p−1)

2n(p−1)−4(p+1)
4−n(p−1)

I1 (3.3.4)

The linearized operator

L+ :=−∆+ωλ − p|φ |p−1

is non-negative on the co-dimension one subspace {φei∑
[ n
2 ]

k=1 mkθk}⊥ of the space X~m. That is,

〈L+h,h〉 ≥ 0,h ∈ X~m∩{φei∑
[ n
2 ]

k=1 mkθk}⊥∩domain(L+),

Equivalently, in the even dimensional case, the operator

Lrad
+ =−

n
2

∑
k=1

∆rk +

n
2

∑
k=1

m2
k

r2
k
+ωλ − p|φ |p−1

acting on the subspace H2
r ∩{φ}⊥ is non-negative, while in the odd dimensional case

Lrad
+ =−

n−1
2

∑
k=1

∆rk−∂
2
xn
+

n−1
2

∑
k=1

m2
k

r2
k
+ωλ − p|φ |p−1

is non-negative on the subspace H2
r ∩{φ}⊥

Proof. φ λ = λ bφ(λ ax) where φ = φ 1 with
´
Rn |φ(x)|2 dx = 1. Set Jλ (φ

λ ) = J1(φ
λ )+ J2(φ

λ ),

where

J1(φ
λ ) :=

ˆ
Rn
|Oφ

λ |2 dx=
ˆ
Rn
|λ a+bOφ(λ ax)2| dx= λ

2b+2a−na
ˆ
Rn
|Oφ(x)|2 dx= λ

2b+2a−naJ1(φ).

J2(φ
λ ) =

ˆ
Rn

[ n
2 ]

∑
k=1

m2
k

x2
2k−1 + x2

2k
|φ λ |2 dx = λ

2b+2a−naJ2(φ).

Kλ (φ
λ ) =

ˆ
Rn
|φ λ (x)|p+1 dx = λ

b(p+1)−naK(φ).
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So we have

λ
2b+2a−na = λ

b(p+1)−na⇒ b+2a = bp.

Further

λ =

ˆ
Rn

λ
2b|φ(λ ax)|2 dx = λ

2b−na
ˆ
Rn
|φ(x)|2 dx = λ

2b−na⇒ 2b−na = 1.

Clearly we obtain a = p−1
4−n(p−1) and b = 2

4−n(p−1) . Hence φ λ = λ
2

4−n(p−1) φ 1(λ
p−1

4−n(p−1) x), H(φ) =
1
2J(φ)− 1

p+1K(φ) andHλ = λ

n+2−p(n−2)
4−n(p−1) H1.

Thus it suffices to prove the results for the case λ = 1. So fix λ = 1. Let φ = φ 1 be a minimizer.

For any δ > 0, consider uδ = φ +δh. We have that

H( uδ

‖uδ‖
)≥H1.

Note that

‖uδ‖=
√
‖φ‖2 +2δ 〈φ ,h〉+O(δ 2) = 1+δ 〈φ ,h〉+O(δ 2).

In the odd dimensional case, (with the obvious modifications in the even case)

1
2

∥∥∥∥ Ouδ

‖uδ‖

∥∥∥∥2

=
1
2
‖Oφ +δOh‖2

‖uδ‖2 =
1
2
‖Oφ‖2 +2δ 〈Oφ ,Oh〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)
=

1
2
‖Oφ‖2−2δ 〈4φ ,h〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)

=
1
2
‖Oφ‖2(1+2δ 〈φ ,h〉)−2δ 〈φ ,h〉‖Oφ‖2(1+2δ 〈φ ,h〉)−2δ 〈4φ ,h〉+O(δ 2)

1+2δ 〈φ ,h〉+O(δ 2)

=
1
2

J1−δ (<4φ ,h >+J1 〈φ ,h〉)+O(δ 2)

=
1
2

J1−δ

〈( n−1
2

∑
k=1
4rk +4z)φ ,h

〉
+ J1 〈φ ,h〉

+O(δ 2)

In addition,

1
2

ˆ
Rn

n−1
2

∑
k=1

m2
k |uδ |2

(x2
2k−1 + x2

2k)‖uδ‖2 =
1
2

J2 +δ

 n−1
2

∑
k=1

m2
k

(x2
2k−1 + x2

2k)
〈φ ,h〉− J2 〈φ ,h〉

+O(δ 2)
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We can also compute the last term with p+1 power,

− 1
p+1

ˆ
Rn

|uδ |p+1

‖uδ‖p+1 dx =
−1

p+1

ˆ
Rn

|φ +δh|p+1

(1+δ 〈φ ,h〉+O(δ 2))p+1 dx

=
−1

p+1

ˆ
Rn

|φ |p+1 +δ (p+1)|φ |p−1φh+O(δ 2)

1+(p+1)δ 〈φ ,h〉+O(δ 2)
dx

=
−1

p+1

ˆ
Rn

|φ |p+1(1+(p+1)δ 〈φ ,h〉)−δ (p+1)|φ |p+1 〈φ ,h〉+δ (p+1)|φ |p−1φh+O(δ 2)

1+(p+1)δ 〈φ ,h〉+O(δ 2)
dx

=
−1

p+1

ˆ
Rn
|φ |p+1 dx+δ

ˆ
Rn
|φ |p+1 〈φ ,h〉−δ

〈
|φ |p−1

φ ,h
〉
+O(δ 2)

=− 1
p+1

K +δ
(
K 〈φ ,h〉−

〈
|φ |p−1

φ ,h
〉)

+O(δ 2)

Since 1
2J− 1

p+1K =H1 andH( uδ

‖uδ ‖
)≥H1, We conclude

δ

〈
−(

n−1
2

∑
k=1
4rk +4z)φ +

n−1
2

∑
k=1

m2
k

(x2
2k−1 + x2

2k)
φ −|φ |p−1

φ +(K− J)φ ,h

〉
+O(δ 2)≥ 0

Since it is true for all δ ∈ R and for all test functions h, we conclude that φ satisfies

−(
n−1

2

∑
k=1
4rk +4z)φ +

n−1
2

∑
k=1

m2
k

(x2
2k−1 + x2

2k)
φ −|φ |p−1

φ +(K− J)φ = 0

which is the Euler-Lagrange equation (3.1.5), with a scalar ω = K − J. Finally, there is the

Pokhozaev’s identity, which we derive in the following way. Set

zµ(x) = µ
n
2 φ(µx).

Since
´
Rn z2

µ(x) dx =
´
Rn φ 2 dx = 1, zµ satisfies

H(zµ) =
µ2

2
J− µ

n
2 (p−1)

p+1
K.

Since the scalar valued function µ → Hµ(z) achieves its minimum at µ = 1, we must have
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dH(zµ )
dµ
|µ=1 = 0. This is the Pokhozaev’s identity

J− n(p−1)
2(p+1)

K = 0.

Hence we obtain the formulas

J =
2p−2+2(n−1)(p−1)

4−n(p−1)
H1 (3.3.5)

K =
4(p+1)

4−n(p−1)
H1 (3.3.6)

ω =
2n(p−1)−4(p+1)

4−n(p−1)
H1. (3.3.7)

We then establish the non-coercivity of L+ on the codimension subspace {φ}⊥. Note that for every

test function h, the function

g(δ ) =H( φ +δh
‖φ +δh‖

)

has a minimum at δ = 0, which means that we must have g′(0) = 0, and g′′(0)≥ 0.

We take h : 〈h,φ〉= 0, and ‖h‖= 1. Note that under this restriction

‖φ +δh‖2 = ‖φ‖2 +2δ 〈φ ,h〉+δ
2‖h‖2 = 1+δ

2,

‖φ +δh‖= (1+δ
2)1/2 = 1+

δ 2

2
+O(δ 3).

Consider g(δ ) :

1
2

∥∥∥∥O(φ +δh)
‖φ +δh‖

∥∥∥∥2

=
1
2
‖Oφ‖2 +2δ 〈Oφ ,Oh〉+δ 2‖Oh‖2

1+δ 2

=
1
2
‖Oφ‖2(1+δ 2)−δ 2‖Oφ‖2(1+δ 2)−2δ 〈4φ ,h〉(1+δ 2)+δ 2 〈−4h,h〉(1+δ 2)+O(δ 3)

1+δ 2

=
1
2

J1−
1
2

δ
2J1−δ 〈4φ ,h〉+ δ 2

2
〈−4h,h〉+O(δ 3)
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Thus it comes to

1
2

∥∥∥∥O(φ +δh)
‖φ +δh‖

∥∥∥∥2

=
1
2

J1−
1
2

δ
2J1−δ

〈
(

n−1
2

∑
k=1
4rk +4z)φ ,h

〉
+

δ 2

2

〈
−(

n−1
2

∑
k=1
4rk +4z)h,h

〉
+O(δ 3)

One also has

1
2

ˆ
Rn

n−1
2

∑
k=1

m2
k |φ +δh|2

(x2
2k−1 + x2

2k)‖φ +δh‖2 dx =
1
2

J2−
1
2

δ
2J2 +(

n−1
2

∑
k=1

m2
k

x2
2k−1 + x2

2k
)〈h,h〉+O(δ 3).

Further we obtain

− 1
p+1

ˆ
Rn

|φ +δh|p+1

‖φ +δh‖p+1 dx

=
−1

p+1

ˆ
Rn

|φ |p+1(1+ p+1
2 δ 2)− p+1

2 δ 2|φ |p+1 +(p+1)δ |φ |p−1φ + p(p+1)
2 δ 2|φ |p−1h2 +O(δ 3)

1+ p+1
2 δ 2 +O(δ 3)

dx

=
−1

p+1
K +

δ 2

2
K−δ

〈
|φ |p−1

φ ,h
〉
− p

2
δ

2 〈|φ |p−1h,h
〉
+O(δ 3).

Hence it follows that

g(δ ) = g(0)− δ 2

2

〈
(J−K)h+(

n−1
2

∑
k=1
4rk +4z)h−

n−1
2

∑
k=1

m2
k

x2
2k−1 + x2

2k
h+ p|φ |p−1h,h

〉
+O(δ 3).

Recall that ω = K− J. Since g(δ ) ≥ g(0) for all small enough δ , it follows that the operator L+

defined by L+ =−(∑
n−1

2
k=14rk +4z)+w+∑

n−1
2

k=1
m2

k
x2

2k−1+x2
2k
− p|φ |p−1 satisfies 〈L+h,h〉 ≥ 0.

The next theorem gives the spectral stability of the vortices constructed in this section, with

respect to perturbations in X~m.

3.3.2 Stability analysis of the waves

Theorem 3.3.4. In the even dimensional cases n = 2l, the vortex soltion φ~m(r1, . . . ,rl)ei∑
l
k=1 mkθk is

spectrally stable with respect to perturbations in X~m, whenever 1 < p < 1+ 4
n .
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In the odd dimensional case, n = 2l +1, the vortex soltion φ~m(r1, . . . ,rl,xn)ei∑
l
k=1 mkθk is spec-

trally stable with respect to perturbations in X~m, whenever 1 < p < 1+ 4
n .

Proof. The linearized problem that we obtain is exactly in the form (3.2.9). Passing to the radial

subspaces L2
r , the system is in the form

 0 1

−1 0


 L+ 0

0 L−


 ϕ

ψ

= λ

 ϕ

ψ

 .

where now in the even case

L+ = −
n
2

∑
k=1

∆rk +

n
2

∑
k=1

m2
k

r2
k
+ωλ − p|φ |p−1

L− = −
n
2

∑
k=1

∆rk +

n
2

∑
k=1

m2
k

r2
k
+ωλ −|φ |p−1,

with the obvious modifications in the odd case. Recall that according to Proposition 3.3.3, we

have that n(L+) = 1, while for L−, we establish in the similar fashion that L− ≥ 0, with an unique

eigenvalue at zero, spanned by φ~m. Thus, spectral stability will be established (see the index

counting formula (3.2.11)), once we verify that the quantity 〈L−1
+ φ~m,φ~m〉< 0.

Similar to the two dimensional case, this computation is done by a scaling argument. Indeed,

taking a derivative in λ in the Euler-Lagrange equation (3.3.3), we obtain

L+[∂λ φλ ] =−
dωλ

dλ
φ ,

whence it follows that

〈L−1
+ φ ,φ〉=− 1

dωλ

dλ

〈∂λ φλ ,φλ 〉=−
1

dωλ

dλ

.

From the scaling relation (3.3.4), we compute

dωλ

dλ
=

2(p−1)
4−n(p−1)

λ

p(n+2)−(n+6)
4−n(p−1)

2n(p−1)−4(p+1)
4−n(p−1)

I1.
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One can check that this last expression is positive, since I1 < 0 and p∈ (1,1+ 4
n). Thus, 〈L−1

+ φ ,φ〉<

0 and the spectral stability is established.
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Chapter 4

Nonlocal NLS equation PT symmetric systems

The first integrable nonlinear evolution equation solved by the method of inverse scattering trans-

form was the Korteweg-deVries (KdV) equation [38]. Remarkably, it was shown that solitons

corresponded to eigenvalues of the time independent linear Schrödingerequation. Soon thereafter,

the concept of Lax pair [39] was introduced and the KdV equation, and others, were expressed as a

compatibility condition of two linear equations. A few years later, Zakharov and Shabat [40] used

the idea of Lax pair to integrate the nonlinear Schrödinger equation.

iqt(x, t) = qxx(x, t)−2σq2(x, t)q∗(−x, t), σ =±1, (4.0.1)

where ∗ is the complex conjugate, and obtain soliton solutions.

In 2013, a new nonlocal reduction of the AKNS scattering problem was found [3], which gave

rise to an integrable nonlocal NLS equation (4.0.1). Remarkably, it has a self-induced nonlinear

"potential", thus, it is a PT symmetric equation [7]. In other words, one can view (4.0.1) as a

linear Schrödinger equation

iqt(x, t) = qxx(x, t)+V (q,x, t)q(x, t), (4.0.2)

with a self-induced potential V (q,x, t) =−2σq(x, t)q∗(−x, t) satisfying the PT symmetry condi-

tion V (q,x, t) =V ∗(q,−x, t).
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4.1 Nonlocal NLS equation

In this section following the paper by Ablowitz and Musslimani [2], we first consider the following

nonlocal NLS equation

iqt(x, t) = qxx(x, t)+2q2(x, t)q̄(−x, t), (4.1.1)

It is nonlocal in a simple way, since one of the nonlinear terms has to depend on −x. The equation

can be written as

iqt(x, t) = qxx(x, t)+V (x, t)q(x, t),

where V (x, t) = 2q(x, t)q̄(−x, t).

The equation is NLS with a PT symmetric potential V (x, t), since V (x, t) = V̄ (−x, t). Consider

the standing waves in the form q(x, t) = e−iwtφ(x), where φ(x) = φ(−x). We obtain

i(−iw)e−iwt
φ − e−iwt

φxx−2e−2iwt
φ

2eiwt
φ = 0

Thus φ satisfies the second order ODE

−φ
′′+wφ −2φ

3 = 0. (4.1.2)

Thus φ ′′ = wφ −2φ 3 can be multiplied on both sides by φ ′ to get φ ′′φ ′ = wφφ ′−2φ 3φ ′. Integrate

once to get φ ′ =±φ(w−φ 2)
1
2 . It follows that

ˆ
dφ

φ(w−φ 2)1/2 =±
ˆ

dx. We have obtained the

explicit form of the wave φ =
√

wsech(
√

wx).

To study the linear stability, we linearize around φ , set q = e−iwt(φ(x)+u(x, t)) Then it follows

that
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we−iwt(φ +u)+ ie−iwtut−e−iwt(φ ′′+uxx)−2e−iwt(φ 2+2φu)(φ(x)+ ū(−x, t)) = 0, and we obtain

the equation for a complex solution u(x, t),

wu+ iut−uxx−2φ
2ū(−x, t)−4φ

2u = 0.

Take u = u1 + iu2, and separate the real and imaginary parts,

w(u1 + iu2)+ i(u1 + iu2)t− (u1 + iu2)xx−2φ 2(u1(−x, t)− iu2(−x, t))−4φ 2(u1 + iu2) = 0.

The resulting 2×2 system looks like:


wu1− (u2)t− (u1)xx−4φ 2u1−2φ 2u1(−x, t) = 0

wu2 +(u1)t− (u2)xx−4φ 2u2 +2φ 2u2(−x, t) = 0

We will introduce new variables in order to formally get rid of the nonlocality of this system.

Consider variables U1, V1, U2 and V2 as follows:

U1 =
u1(x, t)+u1(−x, t)

2
, even in x,

V1 =
u1(x, t)−u1(−x, t)

2
, odd in x

U2 =
u2(x, t)+u2(−x, t)

2
, even in x

V2 =
u2(x, t)−u2(−x, t)

2
, odd in x,

Further, u1(x, t) = U1 +V1, u2(x, t) = U2 +V2, u1(−x, t) = U1−V1 and u2(−x, t) = U2−V2. The

system becomes:


−(U2 +V2)t +w(U1 +V1)− (U1 +V1)xx−4φ 2(U1 +V1)−2φ 2(U1−V1) = 0

(U1 +V1)t +w(U2 +V2)− (U2 +V2)xx−4φ 2(U2 +V2)+2φ 2(U2−V2) = 0

Since U1,U2 are even and V1,V2 are odd, this can be written as a system of four equations:
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

−(U2)t +wU1− (U1)xx−4φ 2U1−2φ 2U1 = 0

−(V2)t +wV1− (V1)xx−4φ 2V1 +2φ 2V1 = 0

(U1)t +wU2− (U2)xx−4φ 2U2 +2φ 2U2 = 0

(V1)t +wV2− (V2)xx−4φ 2V2−2φ 2V2 = 0

or 

(U2)t =−(U1)xx +wU1−6φ 2U1

(V2)t =−(V1)xx +wV1−2φ 2V1

(U1)t = (U2)xx−wU2 +2φ 2U2

(V1)t = (V2)xx−wV2 +6φ 2V2

for (U1,V1,U2,V2) ∈ L2
even×L2

odd×L2
even×L2

odd.

Introduce the operators L+ =−∂xx +w−6φ 2, L− =−∂xx +w−2φ 2 acting on H2
even or H2

odd.

Then the system can be written in the form



U1

V1

U2

V2


t

= JL



U1

V1

U2

V2


,

since



U1

V1

U2

V2


t

=



−L−U2

−L+V2

L+U1

L−V1


=



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0





L+ 0 0 0

0 L− 0 0

0 0 L− 0

0 0 0 L+





U1

V1

U2

V2



73



In here we use J =



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


and L =



L+ 0 0 0

0 L− 0 0

0 0 L− 0

0 0 0 L+


.

Since φ is a solution to (4.1.2), L−φ = 0. Also φ =
√

wsech(
√

wx) does not have zeros. Using

Sturm-Liouville theory, we deduce that L− ≥ 0.

Again using (4.1.2) and differenting with respect to w on both sides, it follows that

L+(−dφ

dw) = φ . Thus
〈
L−1
+ φ ,φ

〉
=−1

2
d

dw‖φw‖2 =−1
2

d
dw

ˆ
∞

−∞

wsech2(
√

wx) dx =− 1
2
√

w
< 0.

Further φ ′′ = wφ −2φ 3, by taking derivative on both sides, we have L+φ ′ = 0.

φ ′ = −w tanh(
√

wx)sech(
√

wx), φ ′ = 0 as x = 0, and φ ′ changes sign once. L+φ = −4φ 3,

〈L+φ ,φ〉=−4
´

∞

−∞
φ 4 dx < 0.

Using Sturm-Liouville theory again, L+ has a simple negative eigenvalue.

Ker(L) = Ker



L+ 0 0 0

0 L− 0 0

0 0 L− 0

0 0 0 L+


=





0

0

0

φ ′


,



φ ′

0

0

0


,



0

φ

0

0


,



0

0

φ

0




Then we have

(1) L+ is defined on L2(R) with domain H2(R), has a unique, simple negative eigenvalue whose

eigenfunction is even; zero is simple with associated eigenfunction φ ′, and the essential

spectrum is [w,∞).

(2) L− is defined on L2(R) with domain H2(R), has no negative eigenvalue ; zero is simple with

associated eigenfunction φ , and the essential spectrum is [w,∞).

(3) J is bounded, invertible and skew-symmetric (J∗=−J). In addition, J−1 : Ker[L]→Ker[L]⊥.

We will take advantage of a simple version of the index counting theorem:

nunstable(JL)+ even number = n(L)−n(D).
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Then we need to compute n(D).

D=



〈
L−1J−1φ1,J−1φ1

〉 〈
L−1J−1φ1,J−1φ2

〉 〈
L−1J−1φ1,J−1φ3

〉 〈
L−1J−1φ1,J−1φ4

〉
〈
L−1J−1φ2,J−1φ1

〉 〈
L−1J−1φ2,J−1φ2

〉 〈
L−1J−1φ2,J−1φ3

〉 〈
L−1J−1φ2,J−1φ4

〉
〈
L−1J−1φ3,J−1φ2

〉 〈
L−1J−1φ3,J−1φ2

〉 〈
L−1J−1φ3,J−1φ3

〉 〈
L−1J−1φ3,J−1φ4

〉
〈
L−1J−1φ4,J−1φ1

〉 〈
L−1J−1φ4,J−1φ1

〉 〈
L−1J−1φ4,J−1φ3

〉 〈
L−1J−1φ4,J−1φ4

〉



where φ1 =



0

0

0

φ ′


, φ2 =



φ ′

0

0

0


, φ3 =



0

φ

0

0


, φ4 =



0

0

φ

0



D11 =

〈


L−1
+ 0 0 0

0 L−1
− 0 0

0 0 L−1
− 0

0 0 0 L−1
+





0

φ ′

0

0


,



0

φ ′

0

0


〉

=
〈
L−1
− φ ′,φ ′

〉
> 0.

D22 =

〈


L−1
+ 0 0 0

0 L−1
− 0 0

0 0 L−1
− 0

0 0 0 L−1
+





0

0

−φ ′

0


,



0

0

−φ ′

0


〉

=
〈
L−1
− φ ′,φ ′

〉
> 0.

D33 =

〈


L−1
+ 0 0 0

0 L−1
− 0 0

0 0 L−1
− 0

0 0 0 L−1
+





0

0

0

−φ


,



0

0

0

−φ


〉

=
〈
L−1
+ φ ,φ

〉
< 0.

D44 =

〈


L−1
+ 0 0 0

0 L−1
− 0 0

0 0 L−1
− 0

0 0 0 L−1
+





φ

0

0

0


,



φ

0

0

0


〉

=
〈
L−1
+ φ ,φ

〉
< 0.

And Di j = 0, where i 6= j, and i, j ∈ {1,2,3,4}.
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Thus n(D) = 2 and n(L) = 2, nunstable(JL) = 0, thus the waves are spectrally stable.

We have the following result.

Theorem 4.1.1. The standing wave solutions e−iwt√wsech(
√

wx) of the nonlocal NLS equation

(4.1.1) are spectrally stable.

4.2 Reverse time nonlocal NLS

In this section, we consider the following reverse time nonlocal NLS equation [2]

iqt(x, t) = qxx(x, t)−2q2(x, t)q(x,−t), (4.2.1)

Consider the standing waves in the form q(x, t) = eiwtφ(x), Thus φ satisfies the second order ODE

φ
′′+wφ −2φ

3 = 0 (4.2.2)

Thus it can be multiplied on both sides by φ ′ to get φ ′′φ ′+wφφ ′− 2φ 3φ ′ = 0. Integrate once to

get 1
2(φ
′)2 + 1

2wφ 2− 1
2φ 4 = 1

2A⇒ φ ′ = ±
√

φ 4−wφ 2 +A, where A is a constant. In the special

case, by taking A = w2

4 , we get the explicit form of the wave φ(x) =
√w

2 tanh(
√w

2 x).

To study the linear stability, we linearize around φ . Set q = eiwt(φ(x)+u(x, t)).

Then it follows that−weiwt(φ +u)+ ieiwtut−eiwt(φ ′′+uxx)+2eiwt(φ 2+2φu)(φ(x)+u(x,−t))= 0

and we obtain the equation for a complex solution u(x, t)

−wu+ iut−uxx +2φ
2u(x,−t)+4φ

2u = 0.

Let u = u1 + iu2 and separate the real and imaginary parts,
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−w(u1 + iu2)+ i(u1 + iu2)t− (u1 + iu2)xx +2φ 2(u1(x,−t)+ iu2(x,−t))+4φ 2(u1 + iu2) = 0.

The resulting 2×2 system looks like:


−wu1− (u2)t− (u1)xx +4φ 2u1 +2φ 2u1(x,−t) = 0

−wu2 +(u1)t− (u2)xx +4φ 2u2 +2φ 2u2(x,−t) = 0

we introduce new variables to formally get rid of the nonlocality of the system, consider variables

U1, V1, U2 and V2 as follows:

U1 =
u1(x, t)+u1(x,−t)

2
, even in t,

V1 =
u1(x, t)−u1(x,−t)

2
, odd in t

U2 =
u2(x, t)+u2(x,−t)

2
, even in t

V2 =
u2(x, t)−u2(x,−t)

2
, odd in t,

Further, u1(x, t) = U1 +V1, u2(x, t) = U2 +V2, u1(x,−t) = U1−V1 and u2(x,−t) = U2−V2. The

system becomes


(U2 +V2)t +w(U1 +V1)+(U1 +V1)xx−4φ 2(U1 +V1)−2φ 2(U1−V1) = 0

(U1 +V1)t−w(U2 +V2)− (U2 +V2)xx +4φ 2(U2 +V2)+2φ 2(U2−V2) = 0

Since U1,U2 are even and V1,V2 are odd. This can be written as a system of four equations

77





(U2)t +wU1 +(U1)xx−4φ 2U1−2φ 2U1 = 0

(V2)t +wV1 +(V1)xx−4φ 2V1 +2φ 2V1 = 0

(U1)t−wU2− (U2)xx +4φ 2U2 +2φ 2U2 = 0

(V1)t−wV2− (V2)xx +4φ 2V2−2φ 2V2 = 0

which will become 

(U2)t =−(U1)xx−wU1 +6φ 2U1

(V2)t =−(V1)xx−wV1 +2φ 2V1

(U1)t = (U2)xx +wU2−6φ 2U2

(V1)t = (V2)xx +wV2−2φ 2V2

for (U1,V1,U2,V2) ∈ L2
even×L2

odd×L2
even×L2

odd.

Introduce the operators L+ =−∂xx−w+6φ 2, L− =−∂xx−w+2φ 2 acting on H2
even or H2

odd.

Then the system can be written in the form



U1

V1

U2

V2


t

=



−L+U2

−L−V2

L+U1

L−V1


,after transformations



U1

V1

U2

V2


t

→ eλ t



U1

V1

U2

V2


We have the eigenvalue problem

λ

 U1

V1

=

 −L+ 0

0 −L−


 U2

V2

 , λ

 U2

V2

=

 L+ 0

0 L−


 U1

V1


or directly

78



λ
2

 U1

V1

=

 −L2
+ 0

0 −L2
−


 U1

V1


We obtain L2

+U1 =−λ 2U1 and L2
+V1 =−λ 2V1, it follows that λ is pure imaginary. So there are no

eigenvalues such that ℜλ > 0. Hence the waves are stable in the sense that the eigenvalue is pure

imaginary.

Theorem 4.2.1. The standing wave solutions eiwt√w
2 tanh(

√w
2 x) of the reverse time nonlocal NLS

equation (4.2.1) are stable in the sense that the eigenvalue is pure imaginary.
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