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Abstract

The Compact Muon Solenoid Experiment measured dijets produced in photon-nuclear

collisions using data taken at the Large Hadron Collider in late 2015. Dijet measure-

ments are potentially useful in constraining the gluon density over a wide range of

x and Q, which is needed in order to measure the quark-gluon plasma viscosity and

to search for the color-glass condensate. Recently it has been suggested by several

theoretical groups that photon induced dijets can also be used to examine the correla-

tion between the gluons in the nucleus. This analysis focused on the latter, examining

azimuthal correlations between the total transverse momentum of the dijets and the

momentum difference of the dijets. Following the prescription suggested by theorists,

a positive correlation was found.
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Chapter 1

Introduction

The purpose of the heavy ion program at Brookhaven and CERN is to understand the nature

of the strong nuclear force at very high energy and density. The strong force is described by the

theory of Quantum Chromo-Dynamics, or QCD. According to the theory, particles that feel the

strong force, or hadrons, are made of quarks. These quarks carry a special type of charge called

color. Color is the strong analog to the electric charge in electromagnetism. The strong force is

mediated by the exchange of massless particles known as gluons that are analogous to photons

in electromagnetic interactions. However, photons possess no charge, whereas gluons themselves

do possess color; therefore, gluons can interact with other gluons. This “non-abelian” property

of the gluons makes QCD calculations extremely difficult. This computational difficulty renders

experimental study of the strong force all the more essential.

Heavy ion collisions are an important component of the experimental study of the strong force.

One generic prediction of QCD is that, at high energy density, a plasma of quarks and gluons

should be created [39]. The first compelling evidence for this state came from the STAR, PHENIX,

BRAHMS, and PHOBOS experiments at the Relativistic Heavy Ion Collider (RHIC) and previ-

ously from CERN SPS experiments [6], [5], [9], [10]. This plasma seems to behave as an almost

perfect fluid with a viscosity/entropy ratio close to the limit of 1
4π

for a quantum fluid [38]. There

is also evidence that the initial state of the system was not a simple superposition of proton and

neutron wave functions and that the number of low momentum gluons in the nucleus was less than

expected. There are three immediate questions regarding the quark-gluon plasma.

1. What are the relevant degrees of freedom in the plasma and how are colored objects (jets and
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heavy quarks) affected by the plasma as they travel through it?

2. What is the ratio of viscosity to entropy of the plasma?

3. Can the initial state of the system be represented as a classical color field of gluon saturation,

a “color glass condensate” [31] [39]?

In order to accurately measure the viscosity of the plasma, it is necessary to know the initial

state of the system, which requires an understanding of the lead wave function. The purpose of the

research presented here is to seek further understanding in the distribution of quarks and gluons

inside the lead nucleus before it collides.

In experimental studies of protons, nuclei, and other hadrons, two useful quantities are Bjorken

x and Q. Bjorken x is the fraction of momentum a parton (quark or gluon) possesses with respect

to the hadron of which it is a component. From here on, Bjorken x will be referred to as x.

x =
momentum o f parton
momentum o f hadron

, (1.1)

and Q is the momentum transferred to a parton when it is struck by an incoming object. Deep

inelastic scattering of electrons on protons has revealed that at lower values of x, there are a larger

number of gluons in the proton [44]. However, there should be a limit to this number since the size

of the proton is finite. One possible result of this limit is gluon saturation, otherwise known as the

“color glass condensate” [31] [39].

Figure 1.1 illustrates the ranges of x and Q that are covered in principle by the Large Hadron

Collider (LHC), RHIC, and the Super Proton Synchrotron (SPS). The research presented here uses

the Compact Muon Solenoid (CMS) Detector at the LHC to measure the x and Q of dijets resulting

from ultra-peripheral collisions (UPCs) of 208Pb nuclides. These measurements help constrain the

gluon density over a wide range of x and Q. This information is useful for understanding how the

initial states of the viscosity/entropy ratio fluctuate in heavy ion collisions that, in conjunction with

flow measurements, would constrain viscosity/entropy in the final state.
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Figure 1.1: (courtesy of Michael J. Murray) Range of x and Q2 (denoted as M2 in the figure) for
the LHC, RHIC, and SPS.
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Chapter 2

Theory

This chapter lays out the theoretical background for measuring hadronic pairs of jets for ultra-

peripheral collisions, or "UPC dijets". Section 2.1 summarizes what is known about quantum

chromodynamics, the theory that describes the workings of the strong nuclear force. Section 2.2

provides a detailed discussion about the electromagnetic interactions between heavy ions that give

rise to the photons that interact with gluons to produce UPC jets. Section 2.3 discusses how UPC

jets can be used to measure the four momentum distribution of gluons in the pre-collision nuclides

and concludes with the predicted UPC dijet yield from the LHC.

2.1 Quantum Chromo-Dynamics

Quantum Chromo-Dynamics (QCD) is a theoretical framework describing the workings of the

strong nuclear force. According to QCD, the fundamental property of the strong nuclear force,

analogous to charge in the electromagnetic force, is “color". For the electromagnetic force, there

are two types of charge, positive and negative. In QCD, however, there are three sets of colors,

as opposed to one set of charge in electromagnetism, for a total of six colors as opposed to two

charges. They are red and anti-red, blue and anti-blue, and green and anti-green. Each color paired

with its anti-color forms a colorless configuration, much like how a positive charge paired with a

negative charge of equal magnitude forms a charge-neutral configuration. Colorless configurations

can also be formed by a combination of red, blue, and green as well as anti-red, anti-blue, and

anti-green.

In QCD, nucleons and other hadrons are modeled as being made up of subatomic particles
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known as partons. These partons include quarks and gluons. Quarks are massive fermionic parti-

cles (spin h̄/2, where h̄ is Planck’s constant divided by 2π) that possess fractional electric charge

(with respect to the electron charge, 1.60218×10−19 C ([30], XVI)) and interact via the strong nu-

clear force. That is, they have color. There are twelve types of quarks, or rather three generations

of quarks, each generation consisting of two “flavors", plus their anti-matter counterparts. They

are listed in Table 2.1.

Table 2.1: Quark generations, flavors, and electric charges

Generation Flavor Electric Charge

first
d (down) -1/3
u (up) +2/3

second
s (strange) -1/3
c (charm) +2/3

third
b (bottom) -1/3
t (top) +2/3

anti-first
d̄ (anti-down) +1/3
ū (anti-up) -2/3

anti-second
s̄ (anti-strange) +1/3
c̄ (anti-charm) -2/3

anti-third
b̄ (anti-bottom) +1/3
t̄ (anti-top) -2/3

Gluons are massless, bosonic (integer spin h̄) particles that mediate the strong interaction, anal-

ogous to the photon in electromagnetism. At the most basic level, QCD models the strong force as

an exchange of gluons between quarks. However, unlike electromagnetism where the photons that

mediate the interaction between charged particles are themselves uncharged, the gluons themselves

possess color and thus interact with other gluons. Specifically, each gluon carries one color and one

anti-color. This also means that a specific flavor of quark changes color upon interacting strongly

with another quark; hence, whereas the electric charge of an electromagnetically-interacting parti-

cle is fixed, the color of a quark or gluon changes with every strong interaction.

Generally, hadrons are composed of 3 quarks (baryons), 3 anti-quarks (anti-baryons), or quark-

anti-quark pairs (mesons). Baryonic arrangements involve three quarks that form a colorless com-
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bination (red, blue, and green or anti-red, anti-blue, and anti-green), for example protons and

neutrons. The quarks that form hadronic bound states, as discussed above, are known as valence

quarks. Valence quarks are not the only quarks in hadrons, however. There are also sea quarks,

quark-antiquark pairs, in the hadron that exist virtually. Mesonic arrangements involve a quark-

antiquark pair that form a colorless combination (red and anti-red, etc.). Evidence has also recently

emerged suggesting the existence of exotic mesons containing two quarks and two anti-quarks, as

well as exotic baryons containing four quarks and one anti-quark [8].

Like the electromagnetic force, there is a potential energy between two particles interacting via

the strong nuclear force. The potential energy of the electromagnetic force between two electric

charges is well understood, and has the form

V (r) =
1

4πεo

q2

r
, (2.1)

where V is the potential energy, εo is the permittivity of free space (see Section 2.2 for exact value),

q is electric charge, and r is the distance between the two charges in question. If q is equal to the

electron charge, then q2 = h̄cα , and the potential is then ([30], 162)

V (r) =
1

4πεo

h̄cαe

r
. (2.2)

αe is the fine structure constant, also known as the electromagnetic coupling constant, and has

a value of 1
137.036 . The electric charge of a particle is not necessarily constant, however. The

formation of virtual pairs of charged particles and their corresponding anti-particles result in virtual

electric dipoles that partially screen electric charges and reduce their fields. This is known as

vacuum polarization, where the vacuum has a dielectric effect ([30], 69). Beyond the Compton

wavelength (λc = h/mc, where h is Planck’s constant and m is the mass of the charged particle),

this effect is negligible, but within the Compton wavelength this means that the magnitude of the

electric charge will increase up to a certain point.

For the strong nuclear force, the potential energy between two colored partons is not well
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understood. It is known to have the approximate form ([30], 173)

V (r) =
f h̄cαs

r
+F(r). (2.3)

Here, there are some additional factors compared to the electromagnetic potential between two

charges. F(r) is a term that apparently increases with r without limit. Its exact form is not known.

F(r)≈r2, F(r)≈r, and F(r)≈ln(r) all apparently fit existing data reasonably well. They each do

not differ very much over the range of distances for which sensitive probes have been available thus

far. f is an additional color factor that depends on the specific color state and flavor configuration

1. αs is the strong nuclear counterpart to the electromagnetic coupling constant. However, in QCD,

the coupling "constant" is not constant at all and is therefore referred to as the running coupling

constant, and is said to possess the property known as asymptotic freedom. It has the form ([44],

[30], [40])

αs =
12π

(11nc−2n f )ln(Q2/Λ2)
. (2.4)

The term nc is the number of color-anti-color pairs and is therefore equal to 3, while n f is the

number of flavor-anti flavor pairs. The factor 11nc− 2n f accounts for an opposing vacuum po-

larization effect between the quarks and the gluons. Like electrically charged particles, there is a

vacuum polarization effect for strongly colored partons. For quarks, the effect is similar to that of

electrically-charged particles where the color magnitude increases at shorter distances. However,

for gluons, the vacuum polarization effect is the opposite, and the color magnitude decreases at

shorter distances. n f depends on the energy threshold and how it compares to the quark flavor

masses. For example, if Q is greater than the energy of the rest mass of the charm quark but

less than that of the bottom quark, n f = 4. Since there are six flavor-anti-flavor pairs, n f has a

maximum potential value of 6. Therefore, |11nc|> |2n f | under all circumstances, so the gluon po-

larization effect dominates the quark polarization effect, and the color magnitude decreases overall

at shorter distances. Λ is a momentum cutoff scale, which is something of a boundary between the

1See [30], Chapter 8, Sections 3 and 4 for more details.
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partonic and hadronic scales. Developing a firm understanding of the strong nuclear force and how

it behaves over short and long distances is a fundamental objective of further research in nuclear

physics.

This increasing strength of the strong nuclear force between partons as they get further apart

means that all partons are effectively confined in bound states to other partons in color-neutral

configurations. This of course includes the force between quarks in baryons and mesons, which

increases if the quarks are further apart. If the energy driving two quarks apart is sufficiently

high, at a separation of around 10−15 m new quark-anti-quark pairs are formed, thus increasing

the number of hadrons. A cascading of this process results in the production of hadronic jets, with

each jet moving along the direction of the original quark/anti-quark, as in Figure 2.1.

Figure 2.1: ([30], 276) Two separate quarks fragment into jets. Note the link between them that
ensures color neutralization.

The relative four-momentum contributions of the valence quarks, sea quarks, and gluons to the

total four-momentum of the hadron can be modeled by parton distribution functions. The four-

momentum of a particle i ~pi is

~pi ·~pi = p2
i = E2

i /c2−pi ·pi (2.5)
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where E is energy, c is the speed of light, and p is the spatial momentum vector. From here on,

four-momentum will be referred to as momentum. In general, the function f(x) can be used to

represent the parton probability density and xf(x) to represent the parton momentum distribution.

More specifically, g(x) can be used to represent the probability density for the gluons, and q(x)

can be used to represent the probability density for all of the quarks. For quarks, q(x) includes the

contribution of both valence quarks and sea quarks,

q(x) = qv(x)+qs(x), (2.6)

where qv(x) is the probability density for the valence quarks of a particular flavor, and qs(x) is the

probability density for the sea quarks of that flavor. The total momentum of all of the partons in a

hadron must add up to the momentum of the hadron, that is:

1 =

ˆ 1

0
x[q(x)+g(x)]dx, (2.7)

The momentum distribution of partons in the hadron can be studied via deep inelastic scattering

with electrons or muons, as shown in Figure 2.2. The parton is struck by the virtual photon radiated

from an electron, and the parton has a fraction x of the total momentum of the hadron. Consider the

following situation, as illustrated in Figure 2.3, where two incoming particles with initial momenta

p1 and p2 scatter, resulting in two outgoing particles with final momenta p3 and p4. The momenta

of the particles are related by the following relativistic invariants:

S = (~p1 +~p2)
2 = (~p3 +~p4)

2 (2.8)

T = (~p1−~p3)
2 = (~p2−~p4)

2 (2.9)

U = (~p1−~p4)
2 = (~p2−~p3)

2 (2.10)

√
S is the total momentum that is available in the collision. The square of the momentum transfer
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Figure 2.2: ([44], 66) Deep inelastic scattering: an electron scatters off of a proton. The electron
emits a virtual photon, which transfers momentum between the electron and a charged parton
within the proton.

from the electron to the parton via the virtual photon is given by T . In terms of the above variables:

x = T/S = Q2/S, (2.11)

where Q is the vector magnitude of ~Q, the momentum difference between ~p1 and ~p3. In the case

of deep inelastic scattering, ~Q is the momentum transferred between the electron and the parton it

scatters off of. Figure 2.4 shows fits to the momentum distributions for valence quarks, sea quarks,

and gluons at a Q2 = 10 (GeV/c)2, as measured by the H1 and Zeus experiments at the HERA

electron proton collider. The number of gluons increases as x decreases. However, Equation 2.7

imposes a bound on the integral of the quark and gluon densities. Therefore, at some point, this
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Figure 2.3: ([44], 14) Branches of a 2→2 scattering event.

trend of increasing numbers of gluons at lower x must reverse.

At both the LHC and RHIC, heavy ions are being collided at energies that result in the forma-

tion of what appears to be a decoupled state of strongly-interacting matter, a quark-gluon plasma.

In a quark-gluon plasma, quarks are no longer bound in hadronic forms, and the medium behaves

as a dense liquid of unbound but strongly-interacting quarks and gluons. The formation of the

quark-gluon plasma from hadronic matter is a phase transition that occurs at a temperature corre-

sponding to about 170 MeV [44]. This formation of the quark-gluon plasma duplicates conditions

that are hypothesized to have existed in the universe shortly after the Big Bang, when temperatures

were above this threshold. As stated in Chapter 1, experimental measurements indicate that the

quark-gluon plasma is an almost perfect fluid, exhibiting little if any viscosity. Chiral symmetry is

also thought to be restored at or near this phase transition. Chiral symmetry, or parity invariance,

deals with "handedness" of a particle. The breaking of this symmetry, that is, the non-conservation
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Figure 2.4: ([44], 84) Proton parton distribution functions as a function of x at Q2 = 10 GeV 2/c2.
The parton distribution functions are fits to data, and are represented as follows: solid = valence u
quark, dashed = valence d quark, dot-dashed = sea u and ū quarks, dotted = sea d and d̄ quarks, dot-
dot-dot-dashed = sea s and s̄ quarks , and dash-dash-dash-dotted = gluons. The gluon distribution
has been divided by 10. Note how rapidly the gluon density increases as x decreases.

of parity, results in the different masses of quark flavors. After its formation, the quark-gluon

plasma will quickly change phase again back to hadronic matter by freezing out into a large num-

ber of hadrons. Figure 2.5 shows a diagram of the known and hypothesized QCD states of strong

nuclear matter.

As mentioned in Chapter 1, one immediate question regarding the quark-gluon plasma is

whether the initial state of the strong nuclear-interacting matter prior to the formation of the quark-

gluon plasma at high energies can be represented as a color glass condensate. Since the increasing

number of gluons at lower values of x must reverse at some point, the gluons in the nuclides must

reach a state of saturation at some low value of x. The color glass condensate is a theoretical

model of this state of saturation [27]. In the color glass condensate, the sources of color appear

to be randomly distributed from event to event but "frozen" on the natural time scales of strong
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Figure 2.5: ([36], 84) Phase diagram of known and QCD-hypothesized states of strong nuclear-
interacting matter is shown here. Experiments at RHIC and the LHC take place in high temperature
but low density regions that resemble conditions that existed throughout the universe shortly after
the Big Bang. Color superconductor refers to extremely dense states of strong nuclear-interacting
matter that from spin-0 pairs and behave like bosons.

nuclear interactions due to relativistic time dilation. Meanwhile, there are dynamic fields that em-

anate from and couple to the color sources that are analogous to the electric and magnetic fields

described by classical electromagnetic theory. The seemingly frozen state of the color sources that

change slowly with time is the origin of the term "color glass," as a glass behaves like a solid on

short time scales but like a liquid on long time scales. The term "condensate" refers to the high

gluon density.

The optimal way to probe the initial state of the nuclides prior to the collision is via deep in-

elastic scattering with electrons. However, at LHC and RHIC energies, deep inelastic scattering to

probe the initial state is not presently an option. There are proposals to build electron-ion colliders,

including the possible conversion of RHIC into an electron-ion collider, and such initiatives are

ongoing at present. At the same time, ultra-peripheral collisions can be used to study the gluon

distribution [21] [22] [20]. These results serve as a probe of the initial conditions in the nuclides

13



prior to collision and can be used to search for the color glass condensate. In an ultra-peripheral

heavy ion collision, the impact parameter of the collision is greater than the sum of the radii of

the two nuclei. However, these nuclei still interact electromagnetically and exchange photons.

Quantum field fluctuations can result in photons transforming into quark or gluon pairs, and those

gluon pairs then go on to interact with the gluons in the nucleus, producing vector mesons, open

heavy flavor mesons, or jets. These measurements could then be used to reveal properties of the

initial state such as the gluon distribution, which could indicate the presence of the color glass

condensate.

2.2 Electromagnetic Interactions in Ultra-Peripheral Heavy Ion Collisions

This section describes in detail how the relativistic transformation of the electromagnetic fields

of heavy ions gives rise to the photon flux that can produce UPC dijets. At high energies, the fields

transform in such a way that they closely resemble a ring of photons that surround each heavy ion

nuclide. The electric fields specifically resemble those shown in Figure 2.6.

Figure 2.6: ([29], 440) The electric field lines of a point charge moving at a relativistic speed are
shown here.
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2.2.1 Electromagnetic Fields of Relativistic Heavy Ions

In special relativity, the Lorentz Transformations relate coordinates in four-dimensional space-

time between two inertial, i.e. non-accelerating, reference frames. Specifically, the coordinate

relationships between a reference frame S and a reference frame S̄ moving in the +x̂xx direction at a

speed v relative to S, shown in Figure 2.7, are as follows ([29], 496). Going from S to S̄, they are

t̄ = γ(t− vx
c2 )

x̄ = γ(x− vt)

ȳ = y

z̄ = z

(2.12)

where c is the speed of light (3∗108 m/s) ([29]) and γ= 1√
(1−v2/c2)

. Going from S̄ to S, they are

t = γ(t̄ +
vx̄
c2 )

x = γ(x̄− vt̄)

y = ȳ

z = z̄

(2.13)

To understand the electromagnetic interaction between two nuclei in ultra-peripheral heavy ion

collisions, it is necessary to understand how the electromagnetic fields of the nuclei relativistically

transform ([29], 525-532).

Consider the case of an electric field between the plates of a large parallel-plate capacitor that

carries surface charge densities on each plate of±σo. In frame So, the capacitor is at rest, as shown

in Figure 2.8a. The electric field between the plates is

Eo =
σo

εo
ŷyy, (2.14)
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Figure 2.7: ([29], 529) Coordinate axes for three inertial reference frames, So, S, and S̄, and their
speeds with respect to each other.

where εo is the permittivity of free space (8.85∗10−12 C2/Nm2 [29]). In frame S, which is moving

to the right at speed vo, the capacitor is observed to move left as shown in Figure 2.8b. Here, the

electric field is

E =
σ

εo
ŷyy. (2.15)

Charge is invariant. All observers in any inertial reference frame will agree on the quantity of

charge. However, observers in frame S will measure a different length in the x̂-dimension than will

be seen in So. Therefore, the charge density σ will increase over σo such that

σ = γoσo (2.16)

where γo= 1√
(1−v2

o/c2)
. The components of the electric field perpendicular to the capacitor plates

are therefore

E,perp =
γoσo

εo

= γoEo,perp .

(2.17)
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Figure 2.8: ([29], 526) Parallel plate capacitor shown in frame So (a) and in frame S (b).

The electric field for parallel components can be found by considering the capacitor aligned with

the yz plane, as shown in Figure 2.9. This time it is plate separation distance d that is length-

contracted in frame S, whereas length l and width w are the same in both S and So. Therefore, the

charge density σo is the same in both frames as well, and the parallel components of the electric

fields in frames S and So are

E,par = Eo,par. (2.18)

In frame S, there is also a magnetic field due to the surface currents

KKK± =∓σvo x̂xx. (2.19)

By the right-hand rule, this magnetic field points in the -ẑ direction. By Ampere’s Law, its magni-

tude is

Bz =−µoσvo , (2.20)

where µo is the permeability of free space (4π ∗ 10−7N/A2) [29]. In the third inertial reference

frame S̄ that is traveling to the right with speed v relative to S and v̄ relative to So, as shown in

Figure 2.5, the fields are then

Ēy =
σ̄

εo
(2.21)
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Figure 2.9: ([29], 527) Parallel plate capacitor aligned with the yz plane.

B̄z =−µoσ̄ v̄ , (2.22)

keeping note that Ey =
σ

εo
by the argument in the previous paragraph.

By Einstein’s velocity addition rule ([29], 498), v̄, the speed of S̄ with respect to So, is

v̄ =
(v+ vo)

(1+ vvo/c2)
(2.23)

where

γ̄ =
1√

(1− v̄2/c2)
(2.24)

and

σ̄ = γ̄σo . (2.25)
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Expressing the components of Ē and B̄ in terms of E and B,

Ēy =
σ̄

εo

=
γ̄σo

εo

=
γ̄

εo
(

σ

γo
)

= (
γ̄

γo
)

σ

εo
,

(2.26)

and

B̄z =−µoσ̄ v̄

=−µoγ̄σov̄

=−µoγ̄(
σ

γo
)v̄

=−( γ̄

γo
)µov̄ .

(2.27)

Now, after doing some algebra,
γ̄

γo
= γ(1+

vvo

c2 ) . (2.28)

Inserting this into the above equations for Ēy and B̄z,

Ēy = (
γ̄

γo
)(

σ

εo
)

= γ(1+
vvo

c2 )(
σ

εo
)

= γ(
σ

εo
+

vvoσ

εoc2 )

= γ(Ey−
vBz

µoεoc2 ) ,

(2.29)
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and

B̄y =−(
γ̄

γo
)µoσ v̄

=−γ(1+ vvo/c2)µoσ(v+ vo)

(1+ vvo/c2)

=−γµoσ(v+ vo)

=−γ(µoεoEyv−Bz)

= γ(Bz−µoεovEy) .

(2.30)

Since µoεo =
1
c2 ,

Ēy = γ(Ey− vBz) , (2.31)

and

B̄z = γ(Bz−
vEy

c2 ) . (2.32)

In order to find Ēz and B̄y in terms of Ez and By, the capacitor is aligned parallel to the xy plane

instead of the xz plane, as shown in Figure 2.10. Therefore, in frame S,

Ez =
σ

εo
, (2.33)

and

By = µoσvo . (2.34)

Again, the right-hand rule is used to determine the direction and therefore the sign of By. The rest

of the process is the same as in the last paragraph, where Ez replaces Ey and −By replaces Bz:

Ēz = γ(Ez + vBy) , (2.35)

and

B̄y = γ(By +
vEz

c2 ) . (2.36)
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Figure 2.10: ([29], 530) Parallel plate capacitor aligned with the xy plane.

As far as the x components are concerned,

Ēx = Ex (2.37)

for the reason, previously detailed, that the field does not depend upon the distance between the

capacitor plates when the capacitor is aligned with the yz plane. However, this being the case, there

is no associated magnetic field in this situation. To find out how Bx transforms, it is necessary to

consider another arrangement: a long solenoid, as shown in Figure 2.11. By Ampere’s Law ([29],

227-228), the magnetic field inside the solenoid is:

Bx = µonI , (2.38)

with I being the solenoid current and n being the number of turns per unit length. In S̄, there is
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Figure 2.11: ([29], 531) A long solenoid.

length contraction and time dilation, so n gets larger and I gets smaller:

n̄ = γn, Ī =
I
γ
. (2.39)

So,

B̄x =
µoγnI

γ
= µonI = Bx ; (2.40)

as with the component of the electric field parallel to the direction of motion, the component of the

magnetic field parallel to the motion is also unchanged.

The complete list of transformation rules for the components of the electric and magnetic fields
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is therefore:

Ēx = Ex

Ēy = γ(Ey− vBz)

Ēz = γ(Ez + vBy)

B̄x = Bx

B̄y = γ(By +
vEz

c2 )

B̄z = γ(Bz−
vEy

c2 ) .

(2.41)

Note that if B = 0 in S,

B̄ =
γv(Ezŷyy−Eyẑzz)

c2

=
v(Ēzŷyy− Ēyẑzz)

c2 ;
(2.42)

or, more generally, being that vvv = vx̂xx,

B̄ =−(vvv× Ē)
c2 . (2.43)

Likewise, if E = 0 is S,

Ē =−γv(Bzŷyy−Byẑzz)

=−v(B̄zŷyy− B̄yẑzz) ;
(2.44)

or again, more generally,

Ē = (vvv× B̄) . (2.45)

These transformation rules can be used to transform the fields of a point charge. A heavy

nuclide can be approximated as a point charge. If a point charge q is at rest at the origin of So, the
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components of the electric field Eo in S (moving at velocity vvvo relative to So) are

Exo =
qxo

4πεo(x2
o + y2

o + z2
o)

3/2 ,

Eyo =
qyo

4πεo(x2
o + y2

o + z2
o)

3/2 ,

Ezo =
qzo

4πεo(x2
o + y2

o + z2
o)

3/2 .

(2.46)

From Equations 2.17 and 2.18, these become

Ex = Exo =
qxo

4πεo(x2
o + y2

o + z2
o)

3/2 ,

Ey = γoEyo =
γoqyo

4πεo(x2
o + y2

o + z2
o)

3/2 ,

Ez = γoEzo =
γoqzo

4πεo(x2
o + y2

o + z2
o)

3/2 .

(2.47)

With the geometry of a point charge at some arbitrary point P, as shown in Figure 2.12, the elec-

Figure 2.12: ([29], 528) Diagram of a point charge in motion with respect to an arbitrary point P.

tric field E can be expressed in terms of the vector R from the charge in S. Using the Lorentz
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transformations (Equation 2.13),

xo = γo(x+ vot) = γoRx ,

yo = y = Ry ,

zo = z = Rz .

(2.48)

The electric field is then

E =
γoqR

4πεo(γ2
o R2cos2θ +R2sin2θ)3/2 . (2.49)

After some algebra, this simplifies to

E =
q(1− v2

o/c2)R̂
4πεoR2[1− (v2

o/c2)sin2θ ]3/2 . (2.50)

As for the magnetic field, note that the magnetic field is zero everywhere in the point charge’s rest

frame So. Therefore, Equation 2.43 can be used to find the magnetic field in S:

B =−vvvo×E
c2

=−µoεo(vvvo×E)

=− µoεoq(1− v2
o/c2)

4πεoR2(1− (v2
o/c2)sin2θ)3/2 (vvvo×R) ,

(2.51)

simplifying to

B =
µoqvo(1− v2

o/c2)sinθ

4πR2(1− (v2
o/c2)sin2θ)3/2 φ̂φφ , (2.52)

where, by the right-hand rule, φ̂φφ points counterclockwise when facing the oncoming charge. The

field lines of the electric and magnetic fields of the point charge in S are shown in Figures 2.13 and

2.14, respectively (note that vvvooo is simply denoted as "vvv" here). The electric field lines of a fast

moving point charge are flattened out like a pancake in the direction perpendicular to the velocity

of the charge due to the factor of sin2θ in the denominator ([29], 439). The magnetic field lines,

meanwhile, circle around the charge and increase in magnitude closer to the charge.
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Figure 2.13: ([29], 440) The electric field lines of a point charge moving at a relativistic speed
flatten out like a pancake perpendicular to the charge velocity.

The power per unit area, that is, the energy per unit time per unit area, transported by these

electromagnetic fields is known as the Poynting vector ([29], 347, 533):

SP =
E×B

µo

=−µoεo

µo
E× (vvvo×E) (by Equation 2.51)

=−εo[vvvo(E ·E)−E(E · vvvo)]

=−vvvoεo|E|2 .

(2.53)

For the point charge in S, the Poynting vector is

SP =
µovo(q(1− v2

o/c2))2sinθ

µ0εo(4πR2(1− (v2
o/c2)sin2θ)3/2)2

R̂× φ̂φφ

=
voq2(1− v2

o/c2)2sinθ

16π2εoR4(1− (v2
o/c2)sin2θ)3 v̂vvo

(2.54)

since, by the right-hand rule, R̂× φ̂φφ = vvvo, the direction of motion of the point charge. When vo

approaches c, at a distance away from the trajectory of the point charge, the electromagnetic fields
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Figure 2.14: ([29], 440) The magnetic field lines of a point charge circle the direction of charge
velocity, with increasing magnitude closer to the charge.

of the point charge just described resemble those of propagating electromagnetic waves ([12], [26],

[45], [46]). Therefore, these electromagnetic fields can be modeled as a flux of photons around

the fast-moving charge; and another charged particle, such as another heavy nuclide, that passes

through the electromagnetic field of this fast-moving charge at this distance will pass through this

flux of photons.

2.2.2 Photon Flux of Relativistic Heavy Ions

For ultra-peripheral heavy ion collisions, the energy of these photons can be estimated from

the energy-time uncertainty principle:

∆t∆E ≥ h̄
2
, (2.55)

where ∆t is the time of the collision and ∆E is the range of photon energies. The time of the

collision in S is

∆t =
2Rnuc

γovo
, (2.56)
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since S is time-dilated with respect to So, and Rnuc is the nuclear radius. Therefore,

2Rnuc∆E
γovo

≥ h̄
2

⇒ ∆E ≥ γovoh̄
4Rnuc

.

(2.57)

The energies of the photons surrounding the nuclide will have energies close to these values. Note

that the energy of a photon is, generally, E = h̄ω , where ω is the angular frequency of the electro-

magnetic waves surrounding the nuclide.

The flux of photons surrounding the nuclide, N, is estimated using the quasi-classical Wiezsäcker-

Williams Method of Virtual Quanta ([12], [26], [45], [46], [28], [35] 724-729, [44] 98-100). The

Wiezsäcker-Williams Method is summarized as follows. The Fourier Transform of E is

E(ω) =
1

2π

ˆ +∞

−∞

E(t)eiωt dt , (2.58)

with the Fourier Transform of E(t) to E(ω), SP is equal to the frequency spectrum, that is, the

energy per unit time per unit frequency interval dI
dω

([35], 726):

|SP|= voεo|E(ω)|2 = dI
dω

. (2.59)

For a relativistic charged particle passing an area in S, the radiation from the charge can be

modeled as two pulses, P1 and P2, as shown in Figure 2.15. The frequency spectra for these pulses

are

dI1

dω
(ω,b) =

1
π2 (

c
vo
)2 1

b2 (
ωb
γovo

)2K2
1 (

ωb
γovo

) = voεo|E2(ω)|2,and

dI2

dω
(ω,b) =

1
π2 (

c
vo
)2 1

b2
1
γ2

o
(

ωb
γovo

)2K2
0 (

ωb
γovo

) = voεo|E1(ω)|2,
(2.60)

where b is the impact parameter (the distance of the charged particle to the center of the area of

concern in S at the charged particle’s closest point of approach), K0 and K1 are modified Bessel

functions ([44], 98), and E1 and E2 are the magnitudes of the components of E(ω) as shown in
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Figure 2.15: ([35], 726) The radiation of a point charge passing in proximity to an area of space in
frame S can be modeled as two pulses P1 and P2.

Figure 2.13. The total frequency spectrum is yielded by:

dI
dω

(ω) = 2π

ˆ
∞

bmin

[
dI1

dω
(ω,b)+

dI2

dω
(ω,b)]b db (2.61)

resulting in
dI
dω

(ω) =
2
π

q2

c
(

c
vo
)2{xK0(x)K1(x)−

v2
o

2c2 x2[K2
1 (x)−K2

0 (x)]}, (2.62)

where x = ωbmin
γovo

.

The quasi-classical estimate of the photon flux is yielded by the relation

dI
dω

(ω) dω = h̄ωN(h̄ω) d(h̄ω), (2.63)

where N(h̄ω) is the number spectrum of virtual quanta, i.e., the photon flux per unit energy interval.

Therefore,

N(h̄ω) =
1

h̄2
ω

dI
dω

(ω) . (2.64)

It should be noted that P2 is very small compared to P1 in the relativistic limit, hence these

electromagnetic fields approximating a ring of photons around a highly relativistic heavy ion.
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2.3 Hadronic Jets From Ultra-Peripheral Heavy Ion Collisions

The photons from this flux can interact with gluons by means of photon-gluon fusion ([43]

[44] 96-98 [12] [37]) in which quantum field fluctuations allow for the two particles to interact

via the strong nuclear force. A quark-antiquark pair is the result of this interaction, which then

cascades into two jets. In this process, the photon is defined as having momentum fraction x1,

and the gluon is defined as having momentum fraction x2. In the LHC experiment being detailed

here, the photon and the gluon collide at an angle of 180o, or π radians. Therefore, the total sum

of the momentum vectors of the dijets that result will be entirely along the directional axis of

the original path along which the photon and gluon were moving before fusion, i.e., "along the

beam line." In other words, the total momentum of the system will have an entirely longitudinal

direction, parallel or anti-parallel to the original path of the photon and gluon. This means that any

transverse momentum (pT ) the jets have, that is, any momentum the jets have that is perpendicular

to the beamline, will sum to zero. A schematic diagram of this process is shown in Figure 2.16,

and a Feynman diagram is shown in Figure 2.17.

In order to find x1 and x2, and subsequently Q, for the gluons that combine with the photons to

produce dijets, the relationship between x1 and x2 and quantities that are directly measurable needs

to be clear. Particles of concern, in this case photons and gluons, have momenta with the general

components

~p = (E, pT , pz) (2.65)

where E is the energy as defined in Equation 2.5, and pz is the longitudinal momentum of particle,

i.e., the momentum along the beamline. The vector sum of pT and pz is the particle’s spatial

momentum vector. Since the photons and the gluons interact, it is necessary to use the momenta

of the partons in the hadrons. Therefore, parton momentum is the product of x and the hadron
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Figure 2.16: (Courtesy of Ayman Al-bataineh) Conceptual diagram of an ultra-peripheral collision
that produces dijets. In this diagram, nPb = dI

dω
(as defined in Section 2.2) and R is the nuclear

radius.

momentum:

p′1 = x1 p1, and

p′2 = x2 p2,

(2.66)

where p′1 and p′2 are the parton momenta and p1 and p2 are the hadron momenta. Both photons

and gluons are massless, so the components of p′1 and p′2 are

~p′1 = (
E ′1
c
, p′T 1, p′z1) = (

x1
√

S
2

, 0,
x1
√

S
2

), and

~p′2 = (
E ′2
c
, p′T 2, p′z2) = (

x2
√

S
2

, 0, −x2
√

S
2

),

(2.67)

where S was defined in Equation 2.8. For the specific interaction between the photon and gluon, a
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Figure 2.17: ([43], 1) Feynman diagram of an inclusive UPC resulting in dijets. A photon with
momentum fraction x1 from one nuclide A is absorbed by the second identical nuclide A, where
quantum field fluctuations cause it to interact with a gluon of momentum fraction x2, and dijets
with equal in magnitude and opposite in direction pT result.

relativistic invariant s can be defined according to Equation 2.8:

s = (~p′1 +~p′2)
2 = (~p′3 +~p′4)

2 (2.68)

where ~p′3 and ~p′4 are the momenta of the respective dijets. Expanding this out for the former case,

s = p′21 +2~p′1·~p′2 + p′22 . (2.69)

Since the photons and gluons are massless,

E ′1
c

= |p′1| ⇒ p′21 =
E ′21
c2 −|p

′
1|2 = 0, (2.70)
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and, likewise, p′22 = 0. Therefore,

s = 2p′1·p′2

= 2(
x1
√

S
2

, 0,
x1
√

S
2

)·(x2
√

S
2

, 0, −x2
√

S
2

)

= 2(
x1x2S

4
−−x1x2S

4
)

= 2(
2x1x2S

4
)

= x1x2S.

(2.71)

At this point, it is necessary to define a quantity known as rapidity, y:

y =
1
2

ln
E + pzc
E− pzc

. (2.72)

y can also be expressed in terms of the particle’s speed if the direction of the particle’s velocity is

wholly along the beamline:

y =
1
2

ln
1+β

1−β
(2.73)

since β = pzc
E in this case 2. Now,

sinh y =
ey− e−y

2
, cosh y =

ey + e−y

2
. (2.74)

Therefore,

ey = (
E + pzc
E− pzc

)
1
2 =

√
E + pzc
E− pzc

,

e−y = (
E + pzc
E− pzc

)−
1
2 =

√
E− pzc
E + pzc

(2.75)

2In general, β = |p|c
E
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⇒ey + e−y =

√
E + pzc
E− pzc

+

√
E− pzc
E + pzc

=

√
(E + pzc)(E + pzc)
(E− pzc)(E + pzc)

+

√
(E− pzc)(E− pzc))
(E + pzc)(E− pzc)

=
(E + pzc)√
E2− p2

z c2
+

(E− pzc)√
E2− p2

z c2

=
2E√

E2− p2
z c2

,

(2.76)

and

cosh y =
ey + e−y

2
=

E√
E2− p2

z c2
. (2.77)

Similarly,

sinh y =
ey− e−y

2
=

pzc√
E2− p2

z c2
. (2.78)

It is convenient to restate sinh y and cosh y in terms of the quantity called transverse mass, mT .

A particle’s relativistic invariant is

m2c4 = E2− p2
z c2− p2

T c2. (2.79)

Adding the pT term to both sides,

m2c4 + p2
T c2 = E2− p2

z c2 = m2
T c4. (2.80)

Therefore,

mT c2 =
√

E2− p2
z c2, (2.81)

and sinh y and cosh y become

sinh y =
pzc

mT c2 ,

cosh y =
E

mT c2 .

(2.82)
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Using these terms, the jet momenta p′3 and p′4 have the components

p′3 = (
E ′3
c
, p′T 3, p′z3) = (m′T 3cosh y′3, p′T 3, m′T 3sinh y′3)

p′4 = (
E ′4
c
, p′T 4, p′z4) = (m′T 4cosh y′4, p′T 4, m′T 4sinh y′4).

(2.83)

Now,

p′1 + p′2 = p′3 + p′4. (2.84)

Filling in the components of p′1, p′2, p′3, p′4 in Equation 2.84, which are given in Equations 2.67

and 2.83, yields the following results:

x1
√

S
2

+
x2
√

S
2

= m′T 3cosh y′3 +m′T 4cosh y′4, (2.85)

0+0 = p′T 3 + p′T 4 = 0 (2.86)

since p′T 3 =−p′T 4, and

x1
√

S
2
− x2
√

S
2

= m′T 3sinh y′3 +m′T 4sinh y′4. (2.87)

The objective here is to solve for x1 and x2. To do this, first add Equations 2.85 and 2.87:

2x1
√

S
2

= m′T 3(cosh y′3 + sinh y′3)+m′T 4(cosh y′4 + sinh y′4). (2.88)

Next, subtract Equation 2.87 from Equation 2.85:

2x2
√

S
2

= m′T 3(cosh y′3− sinh y′3)+m′T 4(cosh y′4− sinh y′4). (2.89)
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At this point, the hyperbolic trigonometric identities of Equation 2.74 are again called upon:

x1
√

S = m′T 3(
ey′3 + e−y′3 + ey′3− e−y′3

2
)+m′T 4(

ey′4 + e−y′4 + ey′4− e−y′4

2
)

= m′T 3ey′3 +m′T 4ey′4,

(2.90)

⇒x1 =
m′T 3ey′3 +m′T 4ey′4

√
S

(2.91)

and similarly,

x2 =
m′T 3e−y′3 +m′T 4e−y′4

√
S

. (2.92)

From Equation 2.80,

mT =

√
m2 +

p2
T

c2 . (2.93)

Therefore,

x1 =
ey′3

√
m′23 +

p′2T 3
c2 + ey′4

√
m′24 +

p′2T 4
c2√

S
, (2.94)

x2 =
e−y′3

√
m′23 +

p′2T 3
c2 + e−y′4

√
m′24 +

p′2T 4
c2√

S
. (2.95)

Bjorken x1 and x2 are now entirely in terms of quantities which can be experimentally deter-

mined. Note, however, that while x1 has been arbitrarily defined and the momentum fraction of

the photon and x2 has been arbitrarily defined as the momentum fraction of the gluon, the reality is

that the two are experimentally ambiguous. Bjorken x1 can be the momentum fraction of the gluon

and Bjorken x2 can be the momentum fraction of the photon. It is therefore necessary to be able to

resolve this experimental ambiguity by having a device that can measure the nuclear breakup. The

nuclide containing the gluon that is struck by the photon is likely to at least partially break up, and

evidence of this breakup can be detected in the form of neutrons and other particles. Measurements

of these particles on one side of the collision but not the other side will yield the original photon

direction [7], and thereby resolve the ambiguity between the photon x and the gluon x. With this

information, Q can then be found using Equation 2.11 [7]. The x and Q distributions measured
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from this analysis are discussed in Chapter 6, Section 6.2.

The hypothesized cross section for photon-gluon fusion that results in UPC jets, σγg→qq̄ is [12]

σγg→qq̄(Wγg) =
πe2

qαeαs(Q2)h̄2c2

Wγg
[(3−β

4)ln(
1+β

1−β
)−2β (2−β

2)], (2.96)

where eq is the quark electric charge, Wγg is the photon-gluon center of momentum energy, β =

(1− 4m2
qc4

W 2
γg

), mq being the mass of the quark or antiquark, and αs is evaluated at Q2 = m2
qc2+ p2

T . A

plot of the predicted UPC dijet production rate in the LHC is shown in Figure 2.18. The data used

Figure 2.18: ([43], 2) Predicted UPC dijet production rate for a Pb-Pb run of 106 seconds at
luminosity 0.42×1027cm−2s−1 and

√
SNN = 5.5 TeV. Rates are in counts per bin of ±1 GeV and

±0.25x2.

to produce the predicted dijet production rate in Figure 2.18 were also used to plot the predicted

number of dijets produced strictly as a function of pT . This is shown in Figure 2.19.
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Figure 2.19: (Prediction specifics provided courtesy of Ramona Vogt) Predicted dijet yield as a
function of pT for a Pb-Pb run of 106 seconds at luminosity 0.42×1027cm−2s−1 and

√
SNN = 5.5

TeV.

2.4 Using UPC Jets To Examine Gluon Correlations

The most detailed distribution of the nucleus is given by the Wigner distribution, W(x,~b,~qT ).

This encodes the three dimensional, x,~b,~qT , distribution of partons within nuclei, where ~qT is the

transverse momentum of a parton and~b the impact parameter vector. Recently it has been proposed

that angular correlations in the exclusive production of dijets in ultra-peripheral heavy ion colli-

sions might be sensitive to the correlations between the~b and ~qT distribution of gluons [32]. For

such exclusive processes there is no net electric charge or color exchanged. If the photon fluctuates

into a quark-antiquark (qq̄) pair within the Pb nuclide, both q and q̄ can interact, respectively, with

a pair of gluons that have a net color of zero, as shown in Figure 2.20. The angular correlation

between the vector sum and vector difference of the two jets in exclusive UPC events is expected

to be sensitive to the correlations between gluons [32]. The search for these azimuthal correlations

was a principal focus of this analysis. Preliminary results of the azimuthal correlations measure-

ment are described in Chapter 6, systematic effects on the azimuthal correlations measurement are

described in Chapter 7, and the final results of the azimuthal correlations measurement for this

analysis are given in Chapter 8.
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Figure 2.20: ([32], 2) A Feynman diagram of exclusive UPC dijet production is shown here. A qq̄
pair interacts with a gluon pair of net color zero, resulting in a dijet with no net color or electric
charge exchanged.
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Chapter 3

The Compact Muon Solenoid Experiment Part I: Experimental

Apparatus

This chapter describes in detail the experimental equipment that was used to gather the data

used to perform this UPC dijet analysis. Section 3.1 describes the LHC, the particle collider

that was used to accelerate Pb nuclides to the energies at which they were collided. Section 3.2

summarizes the basic principles behind the workings of the types of particle detectors used by the

CMS detector. Section 3.3 provides a description of the CMS detector and each of its sub-systems.

3.1 The Large Hadron Collider

The Compact Muon Solenoid (CMS) is one of the detector systems operated by an experimen-

tal collaboration at the Large Hadron Collider, which is located at the European Organization for

Nuclear Research (CERN). CERN is a laboratory that is a joint project of 22 member states, mostly

European, and researchers and institutions throughout the world participate in research activities

there. CERN is located on the Franco-Swiss border near Geneva, Switzerland, and its facilities are

located in both France and Switzerland. The Large Hadron Collider was built to find the Higgs

boson. The Higgs boson was found in 2012, and further studies of the Higgs boson are ongoing.

At the same time, the LHC is being used for several other purposes, including searches for physics

beyond the standard model and studies of heavy ion physics. The LHC is a proton-proton collider

and Pb-Pb collider (specifically, lead-208 isotopes). Two beams of protons or Pb ions are accel-

erated in opposite directions. The beams cross over into a common beam line at four locations.

At those locations are four detector systems that are run by four respective experimental collabo-
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rations. These are ALICE, ATLAS, CMS, and LHCb. The LHC has a circumference of about 27

kilometers and is located between 50 and 175 meters underground (tunnel constructed at a slope

with a gradient of 1.4%) [25]. A picture of the location of the LHC and the four experiments is

shown in Figure 3.1.

Figure 3.1: ([2]) Location of LHC and experiments in the vicinity of Geneva, Switzerland.

Particle accelerators such as the LHC accelerate hadrons with an electric field following the

basic principle

F = qE, (3.1)

where E is the electric field and F is the force that the electric field exerts on the charged particle

q (in the case of the LHC a hadron). The energy the charged particle gains from the electric field

that accelerates it is

E = qV, (3.2)

where V is the electric potential difference across the electric field through which the particle is
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accelerated (not to confuse energy E with electric field E). V is related to E by

V =

ˆ b

a
E·dlll (3.3)

where dlll is an infinitesimal unit of length of the field through which the particle is accelerated and

a and b mark the beginning and end points of where the field accelerates the particle.

Prior to entering the LHC, protons and Pb ions are pre-accelerated by a series of smaller ac-

celerators [25] [17]. A diagram of the LHC and its support complex is shown in Figure 3.2. For

Figure 3.2: ([25], 13) Diagram of LHC and its feeder accelerators and supporting equipment.

protons, the process begins with a bottle of hydrogen from which atoms are taken from and ionized

by electric fields. The ionized hydrogen, i.e., protons, are given an initial boost in LINAC2. After

LINAC2 they are fed into the PS Booster where they are accelerated to an energy of 50 MeV1.

The PS Booster accelerates them to 1.4 GeV, and they are then fed into the Proton Synchrotron

1An electron volt (eV) is a unit of energy that is equal to the amount of energy an electron receives after being
accelerated through a 1 volt potential. MeV stands for mega, or million, electron volts. Additionally, GeV is a giga-,
or billion, electron volts, and TeV is a tera-, or trillion, electron volts.
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(PS) where they are accelerated to 25 GeV. Following this, the protons are injected into the Super

Proton Synchrotron (SPS) where they are accelerated to 450 GeV. It is at this energy that protons

are injected into both rings of the LHC, clockwise in one ring and counter-clockwise in the other

ring.

For Pb ions, the process is somewhat different. They are produced from a highly purified 208Pb

sample that is heated to a temperature of about 800◦C. The Pb vapor that results is partly ionized

(stripped of electrons) by an electron current. The partially ionized Pb nuclides are accelerated to

4.2 MeV/u (that is, MeV per nucleon) by LINAC3. They then pass though a carbon foil which

ionizes them further. They are next injected into the Low Energy Ion Ring (LEIR), which accel-

erates them to 72 MeV/u. Following this they are transferred to the PS, which accelerates them

to 5.9 GeV/u. They are sent through a second foil which completely ionizes them before being

sent to the SPS. The SPS accelerates them to 177 GeV/u, and they are then injected into both rings

of the LHC, clockwise and counterclockwise as with the protons. Injecting Pb ions into one ring

and protons into the other ring for proton-Pb collisions can also be done. Protons and Pb ions are

injected in to the LHC in groupings called bunches, which are grouped in the booster machines.

The LHC itself accelerates protons up to 6.5 TeV and Pb nuclides up to 2.51 TeV/u. The electric

fields which accelerate the particles are supplied by 16 radiofrequency (RF) cavities, with 8 RF

cavities per ring. An RF cavity is an open space inside a conducting material that has dimensions

causing electromagnetic waves at certain frequencies to resonate, thereby establishing a standing

wave and consequently a steady electric field from which charged particles can be accelerated [47].

An RF cavity diagram is shown in Figure 3.3, and a photograph of the exterior of the LHC’s RF

cavities is shown in Figure 3.4. Each RF cavity on the LHC is supplied with electromagnetic

waves by a single klystron that is connected to the cavity by a waveguide [14]. A klystron, shown

in Figure 3.5, is a device that uses a stream of electrons to amplify the power of an electromagnetic

wave signal [47] [33]. The electrons are first emitted/accelerated by a cathode ray tube and then

bunched together in a resonant cavity by the electromagnetic wave signal to be amplified. Those

electron bunches then arrive at another resonant cavity. The bunches arrive at the other cavity at the
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Figure 3.3: ([47], 147) Diagram of a cylindrically-shaped RF cavity. The geometry with cylindrical
coordinates is shown on the left. The right shows a side-view cross section, where the cavity has
length h and radius ro. Also visible on the right is the beam inlet and outlet on each end of the
cavity as well as the waveguide input at the top.

frequency of the electromagnetic signal, and also arrive just when the electric field of the signal acts

to slow down the electrons. Electron kinetic energy is converted to electric field potential energy,

thereby amplifying the power of the electromagnetic wave. The amplified electromagnetic waves

are subsequently sent to the RF cavity by the waveguide. The electromagnetic waves that accelerate

particles in the LHC have a frequency of 400 megahertz (MHz), and their electric fields have a

strength of 5 MeV/m, each RF cavity yielding a total of 2 MeV per pass. The electromagnetic

wave frequency can be changed so that it is synchronized with the increasing speed of the particle

as the particle is accelerated. However, in the LHC, this change is not more than a few Hertz

in practice because the particles are already traveling at nearly the speed of light when they are

injected. Due to the special relativistic limit of the energy of a massive particle going to infinity

at the speed of light, the large energy increase that the LHC imparts on the protons and lead ions

results in extremely little speed increase. The RF cavities take about 20 minutes to accelerate

protons and lead ions from their injection energy to their maximum energy for collisions. The

electric fields established by the RF cavities also serve the purpose of keeping the bunches of

protons or lead nuclides tightly bunched.

The protons and lead nuclides in the LHC are accelerated radially, i.e., "steered" around the

rings, by magnetic fields provided by superconducting magnets [25] [33]. An electric charge
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Figure 3.4: ([1]) Photograph of LHC RF cavities.

moving through a magnetic field experiences a force

F = qv×B (3.4)

where F is the force the magnetic field B exerts on charge q and v is the velocity of q. The LHC

has 1232 main dipole magnets for steering the beams. Each produces a magnetic field of 7.74

tesla (T). This is accomplished by the use of cables made of a niobium-titanium alloy. There are

36 windings of this cable within a few cm, and the cable has a diameter of 15 mm. These cables

become superconducting at 10 K (-263.2◦C). In a superconducting state, they have no electrical

resistance. They are cooled to a temperature of 1.9 K (-271.3◦C) by a refrigeration system using

liquid nitrogen and helium as working fluids. This enables the cables to carry an electric current

of as much as 11850 Amperes (A), and produce the magnetic fields for steering the beam that are
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Figure 3.5: ([47], 156) Diagram of a klystron. A steady stream of electrons is accelerated by a
voltage across a cathode ray tube consisting of a heater, cathode, and anode. The buncher cavity
receives the steady stream of electrons and electromagnetic wave signals to be amplified, which
organizes the electrons into bunches. The electron bunches travel through the drift tube and ar-
rive at the catcher cavity at the frequency of the electromagnetic wave and at such a time where
the electric field in the cavity opposes their motion. The amplified electromagnetic wave is then
outputted through a waveguide while the decelerated electrons end their run in the collector.

designed to get as high as 8.33 T. There are also 392 quadrupole magnets that focus the beams. In

total, the LHC contains 9593 magnets. A cutaway diagram of an LHC dipole magnet is shown in

Figure 3.6, and the shape of its magnetic fields is shown in Figure 3.7.

The protons in the LHC collide at the crossover points where the detector complexes are lo-

cated. The bunch spacing and frequency in each ring is established such that the bunches will

collide at the centers of the detectors. The bunch spacing is 7.5 m, corresponding to a time of

25 nanoseconds (ns) between collisions [25]. The proton-proton collisions have a center of mo-

mentum energy of 13 TeV, and the Pb-Pb collisions have one of 5.02 TeV. The design parameters

of the LHC allow for a maximum possible proton beam energy of 7 TeV and maximum possible

Pb ion energy of 2.76 TeV/u in the future, and maximum possible center of momentum energy of

14 TeV and 5.52 TeV/u, respectively [14]. The beamlines are maintained at a vacuum of 10−13

46



Figure 3.6: ([3]) A cutaway diagram, with components labeled, of a dipole magnet for steering the
beams in the LHC.

atmospheres to avoid collisions with gas molecules as much as possible.

3.2 Basic Detector Principles

Detectors of high energy nuclear/subatomic interactions rely on the ionization of nearby ma-

terials that such interactions cause in order to detect and ultimately reconstruct those interactions.

There are three basic categories of detectors that CMS utilizes.

The first is that of semiconductor detectors. Semiconductor detectors consist of a semicon-

ductor material, such as silicon, connected in an electrical circuit. Radiation that results from

high energy nuclear/subatomic interactions elevates the energy of atomic electrons when it passes

through the semiconductor. A number of these electrons are elevated to conduction energy lev-

els. With a potential difference, i.e., voltage, applied across the semiconductor, the electrons then

constitute a pulse of current that is directly measurable as a signal.
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Figure 3.7: ([3]) Magnetic fields of an LHC diople magnet.

The second category is that of gas-filled chambers ([4], 2-55 - 2-58). Gas-filled chambers con-

sist of a hollow metal cylinder and a conducting wire that runs along the cylinder’s axis, as shown

in Figure 3.8. The hollow cylinder is filled with gas. A large voltage is applied between the cylin-

der, which serves as the negative electrode (cathode), and the wire, which serves as the positive

electrode (anode). Radiation from high energy nuclear/subatomic interactions that pass through

the chamber will cause ionizations of the gas atoms or molecules, resulting in the formation of ion

pairs of electrons and positively charged ions. The electric potential will accelerate the electrons

toward the positively-charged central wire and the ions toward the negatively-charged cylinder.

When the electrons reach the wire, the result is a pulse of current that corresponds to a signal. In

general, a higher voltage applied across the chamber will make it more sensitive to a lower flux of

ionizing radiation.

The third category is that of scintillation detectors ([4], 2-58 - 2-60). Scintillation detectors

depend upon solid or liquid materials, known as phosphors, that emit light when radiation from
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Figure 3.8: ([4], 2-56) Basic diagram of a gas-filled chamber detector.

high energy nuclear/subatomic interactions interacts with/ionizes the material. When this happens,

the atoms or molecules of the material then emit the energy they have gained from the radiation

as light. This flash of light from each interacting particle is known as a scintillation. The overall

intensity of the light is proportional to the energy of the radiation. A basic diagram of a scin-

tillation detector is showing in Figure 3.9. The scintillating material is optically connected to a

photomultiplier tube. A photomultiplier tube collects a light signal and converts it into an elec-

tronic signal that can be measured. Figure 3.10 shows a diagram of how a photomultiplier tube

works. It consists of a photocathode followed by a series of electrodes called dynodes. Its basic

working principle is as follows. Scintillation light strikes a photocathode, which frees electrons via

the photoelectric effect. There is a voltage applied between the dynodes, and the overall voltage

across the chain of dynodes is large. The voltage difference between the photocathode and the

first dynode causes the electrons to accelerate toward the first dynode, and when they strike it, they

cause additional ionizations, which free more electrons. This amplified number of electrons is then

accelerated toward the second dynode, where yet more ionizations occur and more electrons are

freed. The overall effect is a cascade of electrons that yield a pulse of current at the last dynode

that corresponds to a signal. The strength of that signal is ultimately proportional to the energy

49



Figure 3.9: ([4], 2-59) Diagram of a scintillation detector. The aluminum foil in this example
serves to reflect the light flashes toward the photomultiplier tube.

of the radiation that caused the initial scintillation. This makes scintillation detectors optimal for

measuring the energy of high energy nuclear interactions.

A special type of scintillation detector is known as a Cherenkov detector. Instead of a phosphor,

a Cherenkov detector is built with a dielectric. A dielectric is an electrically insulating material

that becomes polarized in the presence of an applied electric field, resulting in the establishment

of an electric field within the material that partially cancels the applied electric field. A charged

particle traveling through the dielectric applies such a field that causes polarization. If the particle

moves at a faster speed than the dielectric medium can respond, the changes in the electric field

are not steady, and electromagnetic radiation in the form of scintillation light is emitted as a result.

The speed of light in a dielectric medium is slower than c (the speed of light in a vacuum), and if

the particle’s speed exceeds that of light in the medium, the light will be emitted as a Mach cone

with its apex at the moving particle (similar in principle to a sonic boom). The angle of this cone
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Figure 3.10: ([4], 2-60) Diagram of a photomultipler tube in a scintillation detector. In this case, a
total potential of 1000 volts is applied across all of the dynodes.

apex, which can be measured, yields the speed of the particle by the following relation:

cos θ =
c
nv

, (3.5)

where θ is the cone apex angle, n is the index of refraction of the phosphor, and v is the speed of

the particle.

3.3 The CMS Detector Complex

The Compact Muon Solenoid is a cylindrical detector complex that is built within and around

a solenoid magnet. It is 21.6 meters long and 14.6 meters in diameter, and has a mass of 12,500

tonnes ([11], 9). The cylindrical complex is generally constructed with a "barrel" region and two

"endcaps" on each end of the barrel. Aside from the solenoid magnet, CMS consists of a silicon

tracker, an electromagnetic calorimeter, a hadronic calorimeter, and a muon detector/tracker sys-

tem. The muon detector is located outside of the solenoid coils, and the other sections are located
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Figure 3.11: ([11], 8) The CMS detector complex and its components. Note that the ZDCs, which
are located forward of the main complex on each end, are not shown.

inside of the coils. The silicon tracker is the innermost component surrounding the beamline and

interaction point. The electromagnetic calorimeter is located outside of the silicon tracker, and

the hadronic calorimeter surrounds the electromagnetic calorimeter. The hadronic calorimeter in-

cludes the hadronic forward (HF) detectors at each end of the silicon tracker. The muon detector,

silicon tracker, the electromagnetic calorimeter, and the hadronic calorimeter all provide full az-

imuthal coverage of the interaction point in CMS. Additionally, there are two more calorimeters in

the forward regions of the detector, CASTOR and the Zero Degree Calorimeter (ZDC). A diagram

of the CMS Detector and its components is shown in Figure 3.11.

The coordinate convention for CMS is a right-handed coordinate system ([19], 3). In the rectan-

gular coordinate system, x̂xx points toward the center of the LHC ring, ŷyy points up and perpendicular
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to the plane of the LHC ring, and ẑzz points in the counter-clockwise direction at any point along

the LHC beamline when looking at the plane of the LHC ring from above. For the convenience of

CMS, other coordinates are also used. r refers to the radial distance from the beamline, the angle

θ is defined relative to +ẑzz, and the azimuthal angle φ is defined relative to the x̂xx-axis in the x-y

plane. It is even more convenient to express the angle θ in terms of a quantity that is relativistically

invariant in all reference frames. That quantity is known as pseudo-rapidity, η :

η =−ln [tan
θ

2
]. (3.6)

When pc >> mc2, as is often the case with particles produced in high energy collisions, pseudo-

rapidity approaches equality with rapidity, that is

η ≈ y. (3.7)

3.3.1 The Solenoid Magnet

The central feature of the CMS detector is the superconducting solenoid magnet. The magnet

generates a magnetic field, the purpose of which is to radially accelerate charged particles. The

curvature of the path of those particles, as measured by the silicon tracker and (for muons) the

muon detector, can then be used to determine the magnitude of the spatial momentum vector of the

charged particles. The magnetic field is generated specifically by a superconducting coil with 2168

turns, a length of 12.9 meters, and an inner bore diameter of 5.9 meters ([11], 9-10). The coil carries

a current of 19.5 kA. Exterior to the coil is a steel skeleton for CMS that serves three purposes: 1)

to provide structural form and integrity to the CMS cylindrical detector complex as a whole, 2) to

provide a specific structural frame for the muon detector/tracker, and 3) to "capture" the magnetic

field of the solenoid outside of the coil such that the muon detector/tracker components have a

uniform magnetic field. The steel skeleton consists of five three-layered dodecagonal wheels in

the barrel region and three disks at either endcap region, as shown in Figure 3.12 [18]. The steel
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Figure 3.12: ([18], 1) Diagram of the CMS structural steel skeleton is shown here. In the barrel
region, there are five wheel sections (labeled with prefix W) that run the length of the barrel. These
wheel sections have three layers (L) plus one extra "tail catcher" (TC) layer in the W0 wheel (see
Hadronic Calorimeter subsection below). The wheels are dodecagonal-shaped with 12 azimuthal
sections (S). In the two endcap sections, there are three disks (D). The "Chimneys" are for the
routing of cryogenic and electrical connections. The light blue sections are the components of the
muon detector/tracker.

skeleton has a mass of 12000 tonnes, making up the bulk of the mass of the CMS detector. The

solenoid generates a magnetic field of up to 4 T inside the coil and up to 2 T in the sections of

the steel skeleton containing the muon detector/tracker components, and can store up to 2.7 GJ

of energy. Thus far, however, the CMS solenoid magnet has been operated at a maximum of 3.8

T inside the coil and up to 1.9 T in the muon detector. Figure 3.13 shows a map of the design

magnetic field strength and flux from the CMS solenoid magnet.

3.3.2 The Silicon Tracker

The silicon tracker is a semiconductor detector. It is the CMS component that lies closest to the

interaction point, immediately surrounding the beamline [19]. The purpose of the silicon tracker

is to provide position measurements of the charged particles that strike it. It is 5.8 meters long and

has a diameter of 2.5 meters. The silicon tracker consists of two principal components: a small
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Figure 3.13: ([18], 6) CMS magnetic field magnitude (left) and flux density right at a maximum of
3.8 T inside the coil. Each field line on the right represents a magnetic flux increment of 6 Wb.

pixel detector closest to the beamline and a large strip detector outside of the pixel detector. A

cross-sectional diagram of one half of the silicon tracker is shown in Figure 3.14. Pseudo-rapidity

ranges of -2.4 < η < 2.4 are fully covered by the silicon tracker, as shown in detail in Figure 3.15.

The pixel detector consists of three cylindrical barrel layers at radii of 4.4 cm, 7.3 cm, and 10.2

cm, respectively. It also consists of two endcap disks on each end at z =± 34.5 cm and± 46.5 cm.

It has a total area of about 1m2 and contains 66 million pixels. The pixels are roughly square in

shape with an area of 100 × 150 µm2, their silicon layer has a thickness of 285 µm, and they have

a resolution of about 10 µm for rφ and 20-40 µm for z ([19], 3-4; [11], 19-20). A basic layout of

the pixel detector is shown in Figure 3.16.

The strip detector is made up of four sections: the Tracker Inner Barrel (TIB), the Tracker Inner

Disks (TID), the Tracker Outer Barrel (TOB), and the Tracker End Caps (TEC) ([19], 3-4; [11],

19-20). The TIB and TID cover r < 55 cm and |z| < 118 cm. The TIB has four barrel layers, and the

TID has three disks on each end of the TIB. The TIB provides position measurements in rφ with

a resolution of 23-34 µm and in z with a resolution of 230 µm; and the TIDs provides position
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Figure 3.14: ([19], 3) Cross-sectional diagram of the silicon detector on one side of the beamline.

measurements in rφ with a similar resolution. The TOB covers r > 55 cm and |z| < 118 cm. It

has six barrel layers that yield position measurements in rφ with a resolution of 35-52 µm and in

z with a resolution of 530 µm. The two TECs on each end have nine disks. The TECs cover the

ranges 124 < |z| < 282 cm and have a similar resolution in rφ to the TOB. The strip detector has a

total area of about 198 m2 and contains 9.6 million strips. In the TIB, TID, and inner three TEC

rings, the silicon layer of the strips is 320 µm thick, while the TOB and the rest of the TEC have

strips with a silicon layer thickness of 500 µm.

3.3.3 The Electromagnetic Calorimeter

Lying outside of the silicon tracker is the electromagnetic calorimeter [11], [23]. The elec-

tromagnetic calorimeter is a scintillation detector, the purpose of which is to measure the energy

of electrons, positrons, and photons. It also works in concert with the hadronic calorimeter to

measure the energy and position of hadronic jets. The scintillation material in the electromagnetic

calorimeter is a high density, transparent material lead tungstate (PbWO4). PbWO4 has a short

radiation length X0 (that is, it will attenuate the energy of photons and electrons/positrons over a

small distance) of 0.89 cm, and the scintillation events in PbWO4 are fast such that 80% of the
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Figure 3.15: ([11], 18) Pseudorapidity layout and limit of the silicon tracker as shown on one
quarter of the tracker.

light in the event is emitted within 25 ns (the time interval between LHC particle bunches).

The electromagnetic calorimeter has a barrel section and two endcap sections on each end of

the barrel section. The barrel section consists of 61200 PbWO4 crystals and each endcap section

consists of 7324 PbWO4 crystals, for a total of 75848 crystals in the electromagnetic calorimeter.

A PbWO4 crystal from the electromagnetic calorimeter is shown in Figure 3.17. The inner radius

of the barrel section is 129 cm, and the barrel section covers the pseudorapidity range 0 < |η | <

1.479. The granularity of each crystal in the barrel section is ∆η × ∆φ = 0.0174 × 0.0174 (1◦

in ∆η and ∆φ ). These crystals have a front face area of 22 × 22 mm2, a rear face area of 26 ×

26 mm2 ([23] 92), and a length of 23 cm (= 25.8X0). The crystals are angularly aligned with the

interaction point plus an additional offset of 3◦ in both φ and η , the offset being there to avoid the

boundary between crystals aligning with possible particle trajectories. The faces of the endcaps

are located at |z| = 314 cm, and the endcaps cover the pseudorapidity range 1.479 < |η | < 3.0. The

crystals in the endcaps have a front face area of 28.62 × 28.62 mm2, a rear face area of 30.00 ×

30.00 mm2 ([23] 93,) and a length of 22 cm (= 24.7X0). The endcap crystals align with a focus

130 cm beyond the interaction point so that there is an angular offset of between 2◦ and 8◦, again

to avoid crystal boundaries lining up with particle trajectories.

There is also a preshower detector attached to the front of the endcaps [23]. The main purpose
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Figure 3.16: ([11], 20) Layout of the pixel detector, with the three barrel layers and two endcap
disks on each end clearly shown.

of the preshower detector is to identify neutral pions in the pseudorapidity ranges 1.653 < |η | < 2.6,

which the preshower detector covers. It also helps to distinguish electrons from minimum ionizing

particles and improves the position measurement of electrons and photons. The preshower detector

consists of two layers of lead, each of which is backed by a silicon strip detector. The preshower

detector is a total of 20 cm thick. The layout of the electromagnetic calorimeter is shown in

Figure 3.18.

The energy resolution of the electromagnetic calorimeter was measured with an electron test

beam at CERN [11] [23]. The result of this test is shown in Figure 3.19. The energy resolution

improves with increasing energy and is expressed by

(
σ

E
)2 = (

S√
E
)2 + (

N
E
)2 + C2, (3.8)

where S accounts for stochastic effects, N accounts for noise, and C is a constant. The measured

results for these terms are given in Figure 3.19.
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Figure 3.17: ([23], 91) An electromagnetic calorimeter PbWO4 crystal, with photomultiplier tube
attached, is shown here. This particular crystal is from the endcap section. The barrel section
crystals are somewhat longer and more narrow, but are otherwise similar.

3.3.4 The Hadronic Calorimeter

The hadronic calorimeter is largely positioned between the electromagnetic calorimeter and the

solenoid magnet coil, although is has components beyond the coil and in very forward regions on

the end of the CMS cylinder [11] [23]. It has four general sections: the hadron barrel (HB), the

hadron outer (HO), the hadron endcap (HE), and the hadron forward (HF). The hadronic calorime-

ter is a scintillation detector whose purpose is to measure the energy of hadrons such as protons,

anti-protons, neutrons, pions, etc. It measures the energy and position of hadronic jets, with assis-

tance from the electromagnetic calorimeter. Figure 3.20 shows the overall layout of the hadronic

calorimeter and its four general sections.

There is an additional challenge, as compared to the electromagnetic calorimeter, posed by

measuring hadronic energy in a scintillation detector. The interactions that the hadrons undergo

with the calorimeter materials, which allow their energy to be measured, typically occur by means

of the strong nuclear force, but the interactions behind the workings of a scintillation detector are

electromagnetic. It is therefore necessary for a scintillation detector that measures hadron energy
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Figure 3.18: ([34], 33) Layout of the electromagnetic calorimeter, as shown with a one quarter
section. The pseudorapidity limits of the barrel section, endcap section, and preshower device are
shown. Notice the angular arrangement of the PbWO4 crystals in the barrel and endcap sections.

to incorporate absorber material, in which the hadronic interactions take place, to be interspersed

with scintillation material, in which the radiation that results from the hadronic interaction in the

absorber material causes the ionizations that yield scintillation. Tiles of scintillator material used

in the hadronic calorimeter are shown in Figure 3.21.

The necessity of capturing all of the hadronic energy in the calorimeter along with the general

need to confine the hadronic calorimeter to the space between the electromagnetic calorimeter and

the magnet coil (so as not to interfere with the design of the muon detector) greatly influenced

the design and construction of the hadronic calorimeter. This resulted in the use of very heavy,

dense, and mostly non-magnetic absorber materials in the hadronic calorimeter to make interaction

lengths as short as practical, to minimize the amount of scintillator material to as little as necessary,

and to avoid distorting the solenoidal magnetic field of CMS.

The HB section surrounds the barrel section of the electromagnetic calorimeter and lies im-

mediately inside of the solenoid magnet coil. For absorber material, it has 14 non-magnetic brass

layers plus two external stainless steel layers for structural strength. These layers are parallel to

60



Figure 3.19: ([23], 5) Electromagnetic calorimeter energy resolution as measured with test beam.
Equation 3.8, with the values of S, N, and C shown in the plot, expresses these results.

the beamline. The brass is known as C26000 cartridge brass. It is 70% copper and 30% zinc,

with a density of 8.53 g/cm3, a radiation length of 1.49 cm, and an interaction length 2 of 16.42

cm. The inner steel plate is 4 cm thick, the outer steel plate is 7.5 cm thick, the first eight brass

layers are 5.05 cm thick, and the last six brass plates are 5.65 cm thick. Altogether, this adds

up to 5.82 interaction lengths at 90o to the beamline. The absorber layers are interspersed with

Kuraray SCSN81 plastic scintillator plates with a thickness of 3.7 mm. There are additional scin-

tillator plates outside of the steel support plate: Bicron BC408 right outside of the electromagnetic

calorimeter barrel, and Kuraray SCSN81 right inside of the magnet coil, each of which is 9 mm

thick. The scintillator plates have optical fibers with a 0.94 mm diameter embedded in them for

collection and transmission of the scintillation light to photomultipier tubes. The HB covers the

pseudorapidity range -1.4 < η < 1.4 and has a granularity of ∆η × ∆φ = 0.087 × 0.087. Part of

the HB is shown in Figure 3.22.

2The interaction length is the average length a hadron travels before interacting with the absorber material nuclei.
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Figure 3.20: ([23], 123) Diagram of one quarter of the CMS detector complex that shows the
hadronic calorimeter and specifically the locations of HB, HO, HE, and HF. Note the pseudorapid-
ity scale plot that is superimposed up to η=3.0.

The HO section lies immediately outside of the magnet coil. It serves as a "tail catcher." The

HB section is unable to capture all of the hadronic energy in the low psuedorapidity regions, so the

HO serves to capture the remaining energy that escapes the HB. The HO uses the magnet coil as

an absorber layer with an interaction length of 1.4 at 90o. The HO is divided into 5 sections, i.e.,

rings, each of which encircle the magnet coil and are mounted on an iron frame. The central ring

has scintillator layers mounted on either side of the iron frame, 19.5 cm thick, at r = 3.82 m and

4.07 m, respectively. The other rings have one scintillator layer at 4.07 m. The iron frame serves as

an additional absorber layer. The HO combined with the HB extends the total interaction length to

11.8 except at the boundary of the HB and HE. The scintillator layers are made of Bicron BC408

scintillator plates that are 10 mm thick. Optical fibers of diameter 0.94 mm are embedded in the

plates for collection and transmission of scintillation light to photomultiplier tubes. HO covers the

pseudorapidity range -1.262 < η < 1.262 and, like HB, has a granularity of ∆η × ∆φ = 0.087 ×
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Figure 3.21: ([23], 143) Scintillator tiles used in the hadronic calorimeter. Note the optical fibers
embedded in the tiles, which collect scintillation light and transmit it to photomultiplier tubes.
These particular tiles are made of Bicron BC408 scintillator and are used in HO.

0.087. Each of the 5 rings is 2.536 m long in the z-direction. Relative locations and general layout

of the HO scintillation layers are shown in Figures 3.23 and 3.24, respectively.

The HE lies within the magnet coil at either end of the HB and just outside the electromagnetic

calorimeter endcaps. The HE is separated from HB by a gap that does not align with the interaction

point, so that the combination of the HB, HO, and HE completely enclose the interactions from

the beam collisions and all the particles and hadronic jets they produce. For absorber material, HE

uses the same C26000 cartridge brass that HB uses. The brass layers, normal to the z-direction, are

79 mm thick. There are 18 layers of absorber material in HE, which makes for about 10 interaction

lengths when the electromagnetic calorimeter endcaps are included. The scintillator plates between

the brass layers are 3 mm thick SCSN81 scintillators, and there is one additional 9 mm-thick layer

of Bicron BC408 on the outside of the first layer. Like HB and HO, the scintillator plates have

optical fibers that collect and transmit scintillator light to photomultiplier tubes. HE covers the

pseudorapidity range 1.3 < |η | < 3. HE has a granularity of ∆η × ∆φ = 0.087 × 0.087 for |η | <

1.6, and ∆η × ∆φ ≈ 0.17 × 0.17 with ∆η ranging from 0.09 to 0.35 for |η | > 1.6. A diagram of

HE is shown in Figure 3.25.

The HF is located on each end of the CMS cylinder, the front edge being 11.2 m from the

interaction point. Figure 3.26 shows a diagram of HF on one end of CMS. As this is beyond the
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Figure 3.22: ([23], 124) Photograph of one half of HB prior to installation. The absorber layers of
brass are clearly visible, as well as the gaps between them that contain the scintillator plates.

ends of the solenoid magnet coil, it is not necessary to use non-magnetic absorber materials like

it is for the other hadronic calorimeter sections. The HF is a Cherenkov detector. It is a cylinder

that is divided into two symmetric segments on each side of the beamline, extending from an inner

radius of 12.5 cm to an outer radius of 130 cm. It is constructed of 5 mm-thick steel plates that

are diffusion-welded together. Each plate has a square grid of grooves over its area. The grooves

are roughly square-shaped with sides of about 1 mm. The center of each groove is 5 mm away

from the center of adjacent grooves in the square grid. When the plates are welded together, the

grooves form spaces in the steel that run the length of the cylinder parallel to the beamline. Into

these grooves are inserted quartz fibers with a fused-silica core and polymer-hard cladding, which

constitute the dielectric material. The fibers have a diameter of 0.63 mm, where 0.6 mm is the

fused-silica core and the rest is the polymer-hard cladding. Additionally, there is a protective

64



Figure 3.23: ([23], 138) Relative location of HO and its scintillator layers shown looking from the
r-direction (left) and z-direction (right).

acrylate buffer layer that extends the diameter of the fiber structure in the grooves to 0.8 mm. The

Cherenkov scintillation light from traversing particles is produced in the quartz fibers and travels

along the fibers to connected light guides, which in turn are connected to photomultiplier tubes.

The HF absorber area is 165 cm long, about 10 interaction lengths. There are two sets of quartz

fibers, one of which runs the full length of HF and one of which does not run the length of the

first 22 cm of the HF (i.e., 165 cm and 143 cm, respectively). Adjacent grooves alternate between

containing long and short fibers. This arrangement of long and short fibers allows the signal from

hadrons to be distinguished from that of electrons, positrons, and photons. The electrons, positrons,

and photons deposit much of their energy in the first 22 cm of HF, while the hadrons produce

nearly equal signals between the first 22 cm and the last 143 cm. Radiation shielding protects

various components of HF outside of the absorber area due to the intensity of radiation in this

region of CMS. HF covers the pseudorapidity range 2.866< |η | < 5.205 and has a granularity of

about ∆η × ∆φ = 0.175 × 0.175. The exceptions are the innermost segment where ∆η = 0.30,

the two innermost segments where ∆φ ≈ 0.35, and the outermost segment where ∆η = 0.111

(see Fig. 3.27). Figure 3.27 shows the segmentation of HF. Figure 3.28 shows a quarter view that

includes all of the components of HCAL and displays their segmentation.

The hadronic calorimeter energy resolution is determined by examining jet transverse energy
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Figure 3.24: ([23], 142) Layout of HO scintillator layers is shown here. The central ring has two
layers on each side of the iron frame it is mounted on, the other rings have one.

resolution and missing transverse energy resolution (transverse energy is the same thing as trans-

verse mass, defined in Equation 2.81). The missing transverse energy refers to: (1) the momentum

imbalance between the hadrons that the hadronic calorimeter measures, and (2) the initial momen-

tum of the incoming particles that collide. The hadronic calorimeter cannot measure muons and

neutrinos, as those particles are insensitive to the strong nuclear force and therefore deposit little,

if any, energy in the absorber material. The energies of those particles the hadronic calorimeter

cannot measure manifests as this missing transverse energy. The hadronic calorimeter jet trans-

verse energy resolution is shown in Figure 3.29. The overall energy resolution of the hadronic

calorimeter, combined with the electromagnetic calorimeter is expressed as [34]

(
σE

E
)2 = (

120%√
E

)2 + (6.9%)2. (3.9)

3.3.5 The Zero Degree Calorimeter

The Zero Degree Calorimeter (ZDC) consists of two identical Cherenkov detectors. Each one

is respectively located on either end of the CMS detector at the points where the two LHC rings

merge into a common beamline for the beams to undergo collisions in CMS [23]. This is about 140
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Figure 3.25: ([23], 137) Diagram of HE and its segmentation and geometry is shown here. The
angles of the boundaries between the towers, shown as green dashed lines emanating from the
interaction point, are given in units of pseudorapidity and degrees.

meters on each end from the interaction point, which is well outside the CMS cylinder complex

and solenoid magnet. The principle purpose of the ZDC is to detect evidence of nuclear breakup in

heavy ion collisions in CMS. Where the beamline separates back into two rings, neutral particles

such as neutrons and photons emitted at very high pseudorapidities will not be steered by the

magnets into the two separate rings. In a peripheral or an ultra-peripheral collision, the nuclides

will undergo partial or total breakup, and the now free neutrons that previously were part of the

nuclides will travel down the beamline until the beamline separates, at which point they strike the

ZDC.

Each ZDC detector has two parts, an electromagnetic (EM) section and a hadronic (HAD)

section. Photons interact with EM while hadrons interact with both EM and HAD. The EM section

consists of 33 layers of 2 mm-thick tungsten plates interspersed with 33 layers of 0.7 mm diameter
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Figure 3.26: ([23], 147) Diagram of one end of HF is shown here. The absorber is the sensitive
area of HF. Other components are protected by radiation shielding.

quartz fibers. The tungsten plates are oriented vertically and the quartz fibers are laid in ribbons.

The HAD section consists of 24 layers of 15.5 mm thick tungsten plates interspersed with 24

layers of 0.7 mm diameter quartz fibers, which again are laid in ribbons. These plates and fibers

are oriented 45◦ from the vertical. Overall, the ZDC EM and HAD sections combine for about

7.5 interaction lengths. The quartz fiber ribbons are grouped together to form readout bundles.

In EM, there are five such bundles that are each connected directly to a photomultiplier tube. In

HAD, there are four bundles, each consisting of six individual ribbons. Each bundle is connected

to a light guide that carries the light to a photomultiplier tube. Each bundle in both EM and HAD

forms a readout channel. The ZDC has a total of 18 readout channels, where there are five EM and

four HAD channels in either ZDC detector. The ZDC covers a pseudorapidity range of η ≥ |8.3|.

Figure 3.30 shows a diagram of the ZDC and a photograph of HAD.

The energy resolution of the ZDC was measured with test beams consisting of electrons,

positrons, pions, and muons. For different positron energies, the energy resolution is shown in
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Figure 3.27: ([23], 148) Diagram of an HF segment is shown here. Rings and wedges define
the pseudorapidity and azimuthal segmentation of HF, respectively. Ring radius and respective
pseudorapidity values are shown. It can also be seen that the two innermost rings have an azimuthal
angle of 20o ( 0.35 radians) instead of 10o ( 0.175 radians).

Figure 3.31 and can be expressed as

(
σ

E
)2 = (

70%√
E
)2 + (8%)2 (3.10)

where E is the energy in GeV. For pion energies, the resolution can be expressed as

σ

E
=

138%√
E

+ 13%. (3.11)

69



Figure 3.28: ([7]) A quarter view of HCAL and all of its components is shown here, along with the
specific segmentation of each component.

3.3.6 CASTOR

CASTOR (Centauro and Strange Object Research) consists of two identical Cherenkov detec-

tors in the very forward region on each side of the CMS detector (Figure 3.32). They are located

14.38 m from the interaction point [23] and cover the pseudorapidity ranges 5.2 < |η | < 6.6.

Like the ZDC, each CASTOR detector has an electromagnetic (EM) and hadronic (HAD) section.

Both sections consist of layers of tungsten (W) absorber plates (density = 18.5 g/cm3) interspersed

with fused silica quartz plates (Q). The quartz plates are 2 mm and 4 mm thick in EM and HAD,

respectively, while the tungsten plates in those sections are 5.0 mm and 10.0 mm thick, respec-

tively. The layers are inclined from the beamline at 45◦, forming a chevron-like structure that

points toward the interaction point. The combination of one tungsten and one quartz plate is called

a sampling unit (SU), and a group of five SUs forms one readout unit (RU). The light from an RU

is transported by light guides to a photomultiplier tube (PMT). EM has two RUs, and HAD has

12. Each CASTOR detector has a total of 10 interaction lengths. Figure 3.33 shows a diagram of

a CASTOR detector.
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Figure 3.29: ([23], 5) Jet transverse energy resolution for the hadronic calorimeter is shown for the
given pseudorapidity ranges, roughly corresponding to HB/HO, HE, and HF, respectively.

3.3.7 Muon Detector/Tracker System

CMS, as its name implies, was designed principally with the muon detector/tracker system

in mind. The muon system measures the position and, in concert with the solenoidal magnetic

field, the momentum of muons resulting from interactions in CMS. The muon system consists

of three types of gas-filled chamber detector complexes: drift tube chambers (DT), cathode strip

chambers (CSC), and resistive plate chambers (RPC) [11] [23] [7] [34]. The muon system covers

the pseudorapidity ranges |η | < 2.4. The drift tubes make up a barrel region of the muon system

that covers |η |< 1.2. The cathode strip chambers form an endcap region of the muon system that

covers 0.9 < |η | < 2.4. The resistive plate chambers fill a corner gap between the drift tubes and

the cathode strip chambers, covering up to |η | < 1.6. These components of these three detector

complexes are mounted to the wheels and disks of the barrel and endcap regions, respectively, of

the steel skeleton (see Figure 3.12). Since the steel skeleton captures and channels the flux of the

magnetic field outside of the solenoid coils, this provides a uniform magnetic field for the muon

system components to measure muon momentum. A diagram of the muon system components is

appears in Figure 3.34.
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Figure 3.30: ([23], 159) On the left a diagram of the ZDC detector is shown. EM is at the far left.
It is followed by HAD, whose 45o-angled alternating tungsten and quartz layers are clearly visible.
Also visible are the 4 readout channels of HAD. A photograph of HAD is shown on the right.

Figure 3.31: ([23], 161) ZDC energy resolution as a function of the positron test beam energy is
shown here.
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Figure 3.32: ([23], 157) Location of one CASTOR detector in CMS is shown here.

Figure 3.33: ([23], 158) Diagram of CASTOR and its components is shown here. The red arrow
indicates the direction away from the interaction point from which particles emerge.
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Figure 3.34: ([11], 12) Quarter diagram of the muon system is shown here.
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Chapter 4

The Compact Muon Solenoid Experiment Part II: Analysis

Techniques

Chapter 3 was a description of the design principles and specifications of the CMS detector.

This chapter describes how the CMS detector was utilized to detect and measure UPC dijets.

Section 4.1 discusses how UPC dijet events were identified and selected from the 2015 CMS

heavy ion data run. Section 4.2 describes the particle flow algorithm, which was used to identify

and classify the particle detections that were used in this analysis. Section 4.3 describes the anti-kT

algorithm, which was used to identify the UPC dijets used in this analysis.

4.1 Triggering and Data Gathering

To record data in CMS, triggers must be used. A trigger is a system by which unwanted data is

screened out and only useful data is recorded for analysis. This is necessary because the potential

data stream from collisions/interactions in CMS is too large to be recorded in its entirety. There

are about 109 interactions per second in CMS, yet only about 102 of those can be permanently

recorded. CMS has hardware-based Level 1 Triggers, which use signals only from the calorimeters

and muon detector, and software-based High Level Triggers to accomplish this.

For this analysis on UPC jets, an effective trigger needed to screen for and use the following

characteristics of UPC jets:

• Two jets, i.e., dijets, in CMS;

• An imbalance of neutrons between ZDC+ and ZDC-; and
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• A pseudorapidity gap, meaning there should be nothing in one HF calorimeter.

Although CMS does have dedicated jet triggers, it was decided not to use them because, while they

work well for jets with high pT , their efficiency falls off rapidly for jets with pT < 60 GeV/c [16],

where the great statistical majority of UPC jets are predicted to lie. Instead, it was decided to use

a trigger that selects events meeting the following criteria:

• Electromagnetic calorimeter measures at least 5 GeV from a single particle hit (L1);

• Energy is measured exclusively in one HF calorimeter, not both (L1); and

• At least one 1 pixel track is measured (HLT).

The first criterion is what was utilized as a "jet trigger," since UPC jets are highly likely to deposit

at least 5 GeV of energy in the electromagnetic calorimeter. The second criterion is indicative of a

pseudorapidity gap. The third, which was an HLT trigger because tracks can only be reconstructed

after tracker signals have been taken, was used because a UPC jet should have at least one charged

hadron that leaves a track in the pixel detector. The ZDC was not used for triggering purposes but

nonetheless served an important role in the subsequent analysis.

The data for this analysis was collected during the 2015 LHC Pb-Pb data run. This occurred

from 16 November-13 December 2015. During this time, a total integrated luminosity of 0.404

nb−1 1 for the Pb-Pb beams was attained. The trigger used allowed an integrated luminosity of

0.38 nb−1 to be attained for this analysis. The Pb-Pb collisions had a collisional momentum per

nucleon
√

SNN = 5.02 TeV.

4.2 The Particle Flow Algorithm

CMS identifies particles as well as missing energy by utilizing the subdetector systems, de-

scribed in the previous chapter and shown again in Figure 4.1, in concert to classify the objects

1nb is an abbreviation for nanobarn where 1 barn ≡ 10−28 m2. This is a unit of area that represents the probability
that a subatomic collision or other reaction will happen.
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Figure 4.1: ([24]) A cutaway diagram of the CMS cylinder and its subsystems.

that they measure. There are five classes of particles that the particle flow algorithm will classify:

muons, electrons/positrons, charged hadrons, neutral hadrons, and photons. Computer programs

will sort through the data collected by all of the CMS subdetectors for a particular interaction

event, account for the magnetic field present, and use this information to reconstruct the tracks and

calorimeter hits of specific particles, which are then classified according to how they interact with

the detector as a whole. The process is best summarized by Figure 4.2, and detailed explanations

for each of the five classes of particles follow.

• Muon: A muon will leave tracks in the silicon tracker and will register in the chambers of the

muon detector. A muon’s track will have two radii of curvature, one in the silicon tracker and

one in the muon detector, being that a muon is a charged particle traveling through the CMS

magnetic field. The radii of curvature will be in opposite directions in the silicon tracker

and the muon detector, as the former is inside the solenoid and the latter is outside (where

the field is "captured" by the steel skeleton, to which the muon chambers are mounted). The
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Figure 4.2: ([24]) A diagram of the CMS particle flow process.

radii of curvature are used to determine the charge and to calculate the spatial momentum

vector of the muon. A muon detection is shown in blue in Figure 4.2.

• Electron/Positron: An electron or positron will register in the silicon tracker before deposit-

ing energy in the electromagnetic calorimeter. The electron or positron’s track in the silicon

tracker has a radius of curvature due to the magnetic field, and this is used to determine the

charge, i.e., whether it is an electron or a positron, as well as its spatial momentum vec-

tor. The electromagnetic calorimeter then completely attenuates the electron or positron,

yielding a measurement of its energy as well as a continued projection of its track. An

electron/positron detection is shown in red in Figure 4.2.

• Charged Hadron: A charged hadron will register in the silicon tracker before depositing its

energy in the hadronic calorimeter. The hadron’s track in the silicon tracker has a radius of

curvature due to the magnetic field, and this is used to determine the hadron’s charge and

spatial momentum vector. The hadronic calorimeter then completely attenuates the hadron,

yielding a measurement of its energy and a continued projection of its track. A charged

hadron detection is shown as a solid green line in Figure 4.2.
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• Neutral Hadron: A neutral hadron will only register in the hadronic calorimeter, where it

deposits its energy and yields an energy measurement. A directional track can be constructed

based on the specific sections of the hadronic calorimeter where the neutral hadron’s energy

is deposited. A neutral hadron detection is shown as a dashed green line in Figure 4.2.

• Photon: A photon will primarily register in the electromagnetic calorimeter, where it de-

posits its energy and yields an energy measurement. A directional track can be constructed

based on the specific sections of the electromagnetic calorimeter where the photon’s energy

is deposited. Since a photon has no mass, measuring its energy also yields its spatial mo-

mentum vector magnitude. A photon detection is shown as a dashed blue line in Figure 4.2.

To summarize, CMS can measure the spatial momentum of muons, electrons/positrons, charged

hadrons, and photons; and it can measure the energy of electrons/positrons, charged hadrons, neu-

tral hadrons, and photons. The particle flow algorithm utilizes the known value of muon mass to

calculate muon energy. Strictly speaking, CMS is not able to measure the magnitude of neutral

hadron spatial momentum. However, the energies of the already-known mass values of neutral

hadrons that are long-lived enough to deposit their energy in the hadronic calorimeter are less

than what the hadronic calorimeter can resolve, and neutral hadrons produced in interactions in

CMS (along with all other massive particles produced in LHC interactions) are highly relativistic.

Therefore, a measurement of neutral hadron energy effectively yields a measurement of neutral

hadron spatial momentum magnitude. Using the combination of measurements and known data,

the particle flow algorithm calculates the full momentum vector for all particles it measures.

One other important function of the particle flow algorithm is to calculate missing momentum

and missing energy. CMS is designed to be a hermetically-sealed detector that completely encloses

all the particles and radiation produced in the collision interactions. The input energy, spatial

momentum, and momentum of the colliding protons or nuclides are known and all are conserved

in the collisions. The particle flow algorithm sums up the total energy, spatial momentum, and

momentum of the particles and radiation measured from the interactions and compares these sums

to those of the pre-collisional protons or nuclides. An imbalance where the initial energy and
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momentum differ from those of the final is missing momentum and missing energy, which is

indicative of the production of particles that CMS cannot detect, such as neutrinos.

4.3 The Anti-kT Algorithm

The particle flow algorithm identifies specific particles, but to identify hadronic jets another

analysis method is needed to classify clusters of particles. CMS uses the anti-kT jet-clustering

algorithm for this purpose, kT being transverse spatial momentum with respect to the beamline.

The anti-kT algorithm works as follows [15] [42]. An event with a few well-separated particles

with relatively high kT and many particles with relatively low kT is considered. Two types of

distances are defined, di j and diB. di j is the distance between two entities (particles or pseudojets)

i and j, and diB is the distance between particle i and the beam ([15], 2). They are specifically

defined as

di j =
min(1/k2

Ti,1/k2
T j)∆

2
i j

R2 (4.1)

and

diB =
1

k2
Ti
, (4.2)

where

∆
2
i j = (yi− y j)

2 +(φi−φ j)
2. (4.3)

yi, and φi are, respectively, rapidity and azimuthal angle of entity i (similar for j). R, which is

defined in the same y and φ coordinate system as ∆i j, is the radius around a high kT entity within

which di j and diB are calculated. The smallest of these distances is identified. If the smallest

distance is a di j, i and j are combined, that is, their momenta are summed. If the smallest distance

is a diB, i is classified as a jet and removed from consideration. The process is repeated to find the

next smallest distance for the remaining entities until all the entities being considered have been

included in a jet cluster.

If a high kT particle has no high kT neighbors within a distance 2R, all of the low kT particles
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within R of the high kT particle are clustered into a perfectly conical jet. If there is another high kT

particle 2 where R < ∆12 < 2R from high kT particle 1, there will be two jets, at least one of which

will not be perfectly conical. If ∆12 < R, both high kT particles will be clustered into a single jet,

which might or might not be perfectly conical. The key characteristic here is that relatively low kT

particles do not modify the shape of the jet but relatively high kT particles do. Figure 4.3 shows an

example of anti-kT clustering results. For this UPC jet analysis, anti-kT clustering with R = 4 was

used.

Figure 4.3: ([15], 4) A sample event where jets are identified with the anti-kT algorithm. In this
case, R=1. Some of the clusters here are random low kT objects that might not be true jets. Notice
how when two jet clusters overlap, which occurs when there are high kT (pT ) particles within
R < ∆12 < 2R of each other, the relative comparison of each particle’s kT determines how
conical their respective jet clusters are.
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Chapter 5

ZDC Calibration and Analysis

In order for the ZDC to be used for physics analysis, it first had to be properly calibrated

for the 2015 LHC Pb-Pb heavy ion data run. This chapter provides a detailed description of the

calibration process and presents the data that were used to undertake the calibration. The results of

this calibration were then used in some of the data analyses detailed in Chapter 6.
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Figure 5.1: Time slice signals compared between ZDC+ HAD1 and all other readout channels on
ZDC+.

The first step in the ZDC calibration process was to determine the time slices in which the

principal signal lay. The ZDC detector signal is divided into 10 time segments, or time slices. In

order to determine the time slice(s) that contained the signal of interest for the UPC jet analysis,

as opposed to detector noise, time slices in readout channels 1-5 of both the ZDC+ and ZDC-

EM sections and readout channels 2-4 of the ZDC+ and ZDC- HAD sections were compared,
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Figure 5.2: Time slice signals compared between ZDC- HAD1 and all other readout channels on
ZDC-.

respectively, with the time slices in ZDC+ HAD1 and ZDC- HAD1 readout channels. The data

used for this was minimum bias data from the CMS 2015 PbPb data run at all centralities, which

used calibration settings from the 2010 LHC Pb-Pb data run. Minimum bias data is data that

are taken with minimal trigger criteria – it can be thought of as a representative sample of the

results of all interactions in CMS; and centrality is a measurement of the portions of each heavy

nuclide that are directly involved in the collision with the other nuclide. To perform the time

slice comparisons, the time slice containing the maximum signal for each readout channel in each

event in the utilized minimum bias data was determined. The number of maximum signals in

each time slice in each readout channel was tallied. These tallies were subsequently plotted in

the form of two-dimensional histograms that compared all ten time slices of one selected readout

channel to all ten time slices of another selected readout channel. Figures 5.1 and 5.2 show these

histograms/comparisons. Based on these results, the time slices evaluated to contain the primary

signal for calibration purposes are shown in Table 5.1. Additionally, time slices evaluated to almost

solely contain electronic noise, which needed to be subtracted from the ZDC readout channel signal

in the data analysis, were determined based on the information in Figures 5.1 and 5.2 and are also
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Table 5.1: ZDC Time Slices with Signal, shown in descending order with strongest signal listed
first.

Readout Channel Time Slices with
Signal

Time Slices
Representative of
Noise

ZDC+ EM1 4, 3 7
ZDC+ EM2 4, 5 8
ZDC+ EM3 4 7
ZDC+ EM4 5 7
ZDC+ EM5 1 7
ZDC+ HAD1 4 7
ZDC+ HAD2 5 7
ZDC+ HAD3 5 7
ZDC+ HAD4 0, 9 6
ZDC- EM1 5 7
ZDC- EM2 0 7
ZDC- EM3 1 7
ZDC- EM4 5, 4 8
ZDC- EM5 0 7
ZDC- HAD1 3 7
ZDC- HAD2 6 9
ZDC- HAD3 6, 7 9
ZDC- HAD4 7, 6 9

shown in Table 5.1.

After determining which time slices contained signal and which time slices were representative

of electronic noise in the ZDC, the next step was to determine calibration constants for the read-

out channels of ZDC-. To do this, the same sample of minimum bias data, this time considering

only those time slices containing the signal, was used to plot the following ZDC- readout chan-

nel ratios: EM1+EM5/EM3, EM2+EM4/EM3, HAD2/HAD1, HAD3/HAD1, and HAD4/HAD1.

These ratios are shown in Figure 5.3. These ratios were then compared to the same ratios from

the 2010 LHC Pb-Pb heavy ion data run. The 2010 data was used as a standard for calibration

because that was when the ZDC was newly commissioned, and it has since accumulated radi-

ation damage. The 2010 ZDC- readout channel ratios for EM1+EM5/EM3, EM2+EM4/EM3,

HAD2/HAD1, HAD3/HAD1, and HAD4/HAD1 are shown in Figure 5.4. The key item of interest
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Figure 5.3: Average signal in femtocoulombs (fC) for the ZDC- signal ratios EM1+EM5/EM3,
EM2+EM4/EM3, HAD2/HAD1, HAD3/HAD1, and HAD4/HAD1, respectively.

in each of the 2015 and 2010 ZDC- ratio plots shown in Figures 5.3 and 5.4 is the peak ratio,

which was read upon magnification and close examination of each of these plots. The 2010 peak

ratio for each plot was then divided by the corresponding 2015 peak ratio. This result was multi-

plied by the 2010 ZDC- readout channel calibration constants in order to arrive at the 2015 ZDC-

readout channel calibration constants. These results are shown in Tables 5.2 and 5.3.

ZDC+ calibration constants were measured next. The first step in this process was to find the

signal ratio as a function of centrality of each readout channel of ZDC+ to their ZDC- counterparts

and fit them with a zero-order polynomial average. This was done after having applied the 2015

ZDC- calibration constants listed in Table 5.3 and using the 2015 minimum bias data used in the

previous steps. These are shown in Figure 5.5. To properly calibrate the ZDC+ readout channels,

calibration constants that would make the ZDC+/ZDC- signal ratio as a function of centrality

approximately equal to 1 needed to be set, in order to ensure that identical particles of equal energy
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Figure 5.4: (Courtesy of Alice Mignerey) Average signal in femtocoulombs (labeled as counts
on the y-axes) for the ZDC- signal ratios EM1+EM5/EM3, EM2+EM4/EM3, HAD2/HAD1,
HAD3/HAD1, and HAD4/HAD1, respectively for 2010 LHC Pb-Pb heavy ion data.

and momentum interacting with either ZDC+ or ZDC- would generate a signal with equal strength

in each one. To do this, the existing 2010 ZDC+ calibration constants, all equal to 1, were divided

by the p0 value for each readout channel shown in Figure 5.5. Table 5.4 shows these results.

After applying these calibration constants to their respective ZDC+ readout channels, the sig-

nal ratio as a function of centrality of each readout channel of ZDC+ to ZDC- was plotted again,

shown in Figure 5.6. The average value p0 was closer to 1 for each readout channel with these

new ZDC+ calibration constants. To get them even closer to 1, an adjustment of the ZDC+ cali-

bration constants was performed by repeating the same procedure that was used to find the ZDC+
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Table 5.2: ZDC- Peak Ratios

Readout Channel
Ratio

2010 Peak Ratio
(from Figure 5.4)

2015 Peak Ratio
(from Figure 5.3)

Calibration Fac-
tor (= 2010 Peak
Ratio ÷ 2015
Peak Ratio)

EM1+EM5/EM3 0.062 1.09 0.057
EM2+EM4/EM3 0.85 1.75 0.486
HAD2/HAD1 0.618 0.13 4.754
HAD3/HAD1 0.315 0.0499 6.313
HAD4/HAD1 0.259 0.0301 8.605
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Figure 5.5: ZDC+/ZDC- signal ratio vs. centrality for each readout channel of ZDC+ to their ZDC-
counterparts. The red lines are the zero-order polynomial average for each readout channel ratio,
the value of which is labeled in each grey box as "p0".

calibration constants listed in Table 5.4. These adjustments are shown in Table 5.5.

After applying the final ZDC+ calibration constants to their respective ZDC+ readout channels

listed in Table 5.5, the signal ratio as a function of centrality of each readout channel of ZDC+ to

ZDC- was once again plotted. These are shown in Figure 5.7.

With the calibration constants determined, the next step was to examine the ZDC signal in the

UPC data. The specific characteristics of this data will be further detailed in Chapters 6 and 7, but

for now it is necessary to know that the data for each UPC event included both the data run number

and the ZDC signal. It should be noted that the ZDC signal, for both ZDC+ and ZDC-, refers to

87



Table 5.3: 2015 ZDC- Readout Channel Calibration Constants

ZDC- Readout
Channel

Calibration
Factor (from
Table 5.2

2010 Calibration
Constant

2015 Calibra-
tion Constant
(=Calibration
Factor*2010
Calibration
Constant)

EM1 0.057 0.33 0.019
EM2 0.486 0.474 0.23
EM3 1 (calibration ref-

erence)
1.875 1.875

EM4 0.486 1.5 0.729
EM5 0.057 1 0.057
HAD1 1 (calibration ref-

erence)
0.417 0.417

HAD2 4.754 1.67 7.939
HAD3 6.313 1.68 10.605
HAD4 8.605 1 8.605

net ZDC signal:

ZDC+ Signal = (0.1×ZDC+ EM Signal + ZDC+ HAD Signal)

− (0.1×ZDC+ EM Noise + ZDC+ HAD Noise)

ZDC- Signal = (0.1×ZDC- EM Signal + ZDC- HAD Signal)

− (0.1× ZDC+ EM Noise +ZDC+ HAD Noise)

(5.1)

where ZDC+ EM Signal and ZDC- EM Signal are the sums of the respective ZDC+ and ZDC-

EM readout channels containing only the time slices with signal as listed in Table 5.1, ZDC+

HAD Signal and ZDC-HAD Signal are the sums of the respective ZDC+ and ZDC- HAD readout

channels containing only the time slices with signal as listed in Table 5.1, ZDC+ EM Noise and

ZDC- EM Noise are the sums of the respective ZDC+ and ZDC- readout channels containing only

the time slices with noise as listed in Table 5.1, and ZDC+ HAD Noise and ZDC- HAD Noise are

the sums of the respective ZDC+ and ZDC- readout channels containing only the time slices with
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Table 5.4: Initial 2015 ZDC+ Readout Channel Calibration Constants

ZDC+ Readout
Channel

p0 2010 Calibration
Constant

2015 Calibration
Constant (=2010
Calibration Con-
stant/p0)

EM1 9.143 1 0.098
EM2 0.7427 1 0.473
EM3 0.3502 1 1.348
EM4 2.161 1 1.162
EM5 5.101 1 0.099
HAD1 0.4255 1 2.35
HAD2 0.1631 1 6.131
HAD3 0.1358 1 7.364
HAD4 0.1221 1 9.794

noise as listed in Table 5.1. Since the energy deposited in one ZDC end over an extended period of

data taking is proportional to the energy deposited in the corresponding HF end, the average UPC

ZDC event signal for each event as a function of the run number was examined where the energy

deposited in HF+ was > 5 GeV and HF- was < 5 GeV, along with the opposite situation where

HF- was > 5 GeV and HF+ was < 5 GeV. In the former situation, it was the ZDC+ signal that was

examined, and in the latter, it was ZDC-. These are shown in the top row of Figure 5.8. From these

plots, it is evident that there are three general groupings of data runs for both the ZDC+ and ZDC-

signals. A zero-order polynomial (p0) average of each of these three groups was taken for both

ZDC+ and ZDC-, and the specifics of these averages are given in Table 5.6.

Given the proportionality between the ZDC and the HF mentioned above, these p0 averages

could be and were used to perform a further calibration on the ZDC. This calibration was based on

weighted averages, which are given by

a =
w1a1 + w2a2

w1 + w2
(5.2)

where a is the weighted average, a1 and a2 are quantities being averaged together (in this case they
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Figure 5.6: ZDC+/ZDC- signal ratio vs. centrality for each readout channel of ZDC+ to their ZDC-
counterparts following application of calibration constants for ZDC+ channels listed in Table 5.4.

are p0 averages of ZDC+ or ZDC- signals that are shown in the top row of Figure 5.8 and given in

Table 5.6), and

w1 =
1

σ2
1
, w2 =

1
σ2

2
, (5.3)

with σ1 and σ2 being the uncertainty associated with a1 and a2 (these are also given in Table 5.6

for each p0). The basic procedure was to find the weighted average of the p0s for the two later

data run groupings, since they tended to have similar values for both ZDC+ and ZDC-. With this,

a correction factor was then found for each p0:

p0 × correction factor = a of later two p0s. (5.4)

The weighted averages used and the correction factors are also shown in Table 5.6. The correction

factors were multiplied by their respective ZDC signals for the respective run numbers of those

signals, and the average ZDC signals as a function of run number, as shown in the top row of

Figure 5.8, were plotted again. This is shown in the second row of Figure 5.8. The p0 averages

from these are listed in Table 5.7. While the p0 averages of each of the three groups of data runs

for ZDC+ and ZDC- were now considerably closer, it was evident that further corrections were

required to make them even.
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Table 5.5: Final 2015 ZDC+ Readout Channel Calibration Constants

ZDC+ Readout
Channel

p0 Initial 2015 Cali-
bration Constant

Final 2015 Cali-
bration Constant
(= Initial 2015
Calibration
Constant/p0)

EM1 1.738 0.098 0.056
EM2 1.049 0.473 0.451
EM3 0.9812 1.348 1.374
EM4 0.9942 1.162 1.169
EM5 1.159 0.099 0.085
HAD1 0.9649 2.35 2.435
HAD2 0.9016 6.131 6.8
HAD3 0.8307 7.364 8.865
HAD4 0.7213 9.794 13.578

It turned out that the weighted averages procedure needed to be repeated again, followed by an

additional adjustment to bring the p0s for ZDC+ up to these of ZDC-, which were at a consistently

higher signal. The first correction factor adjustments used in the second iteration of the weighted

average procedure, which were multiplied by the respective correction factors in Table 5.6, are

listed in Table 5.7, as are the weighted averages used in this second iteration. The results of the

second iteration are shown in the third row of Figure 5.8. The p0 averages that resulted from the

second iteration as well as the second correction factor adjustments for ZDC+ used in the addi-

tional adjustment (multiplied by the respective correction factor and correction factor adjustments

in Tables 5.6 and 5.7) are listed in Table 5.8. The additional adjustment required no new weighted

average, since all of the p0s of both ZDC+ and ZDC- were within their respective uncertainty

margins. The final p0 averages that resulted from the additional adjustment are listed in Table 5.9.

Also listed in Table 5.9 are the final correction factors, which are the respective products of the

correction factors and correction factor adjustments in Tables 5.6, 5.7, and 5.8. These were mul-

tiplied by their respective ZDC signals for the respective run numbers of those signals to arrive at

the final calibrated ZDC signals, which are shown in the bottom row of Figure 5.8.

The final step in ZDC calibration was to review the ZDC signal distributions for both ZDC+
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Figure 5.7: ZDC+/ZDC- signal ratio vs. centrality for each readout channel of ZDC+ to their ZDC-
counterparts following application of the final calibration constants for ZDC+ channels listed in
Table 5.5.

Table 5.6: Average ZDC Signals for Run Number Groups in the first two plots of the top row of
Figure 5.8 and Initial Correction Factors

ZDC End Run Number
Range

p0 Average (fC) a (fC) Correction Factor

ZDC+ 262600-262800 2367.74±48.9039 4124.198697 1.741829211
ZDC+ 262801-263134 4116.28±37.1823 4124.198697 1.001923751
ZDC+ 263135-263630 4126.54±20.218 4124.198697 0.9994326232
ZDC- 262600-262830 4109.54±59.5661 4302.897463 1.047050877
ZDC- 262831-263132 4370.75±47.6319 4302.897463 0.984475768
ZDC- 263133-263630 4287.75±22.5053 4302.897463 1.00353273

and ZDC- in the UPC jet data. This distribution is shown in Figure 5.9. The signals have similar

distributions along each axis, which was to be expected. This completed the ZDC calibration, and

the ZDC was now ready to be used for physics analyses.
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Table 5.7: Average ZDC Signals for Run Number Groups for the second two plots in the top row
in Figure 5.8 and First Correction Factor Adjustments

ZDC End Run Number
Range

p0 Average (fC) a (fC) Correction Factor
Adjustment

ZDC+ 262600-262800 4006.85±84.9412 4108.333332 1.02532746
ZDC+ 262801-263134 4109.73±40.4 4108.333332 0.9996601558
ZDC+ 263135-263630 4107.92±21.9778 4108.333332 1.000100618
ZDC- 262600-262830 4292.44±67.04 4285.5170337 0.9983871723
ZDC- 262831-263132 4273.1±50.5843 4285.5170337 1.002905861
ZDC- 263133-263630 4288.43±24.4989 4285.5170337 0.9993207383

Table 5.8: Average ZDC Signals for Run Number Groups for the first two plots in the bottom row
in Figure 5.8 and Second Correction Factor Adjustments

ZDC End Run Number
Range

p0 Average Correction Factor
Adjustment

ZDC+ 262600-262800 4108.33±87.0926 1.043348514
ZDC+ 262801-263134 4108.34±40.3863 1.043348514
ZDC+ 263135-263630 4108.33±21.98 1.043348514
ZDC- 262600-262830 4285.52±66.9319 1
ZDC- 262831-263132 4285.52±50.7313 1
ZDC- 263133-263630 4286.42±24.4969 1

Table 5.9: Average ZDC Signals for Run Number Groups for the Final Two Plots in the Bottom
Row in Figure 5.8 and Final Correction Factors Applied

ZDC End Run Number
Range

p0 Average Final Correction
Factor

ZDC+ 262600-262800 4286.42±90.8679 1.863363396
ZDC+ 262801-263134 4275.98±41.8447 1.045000399
ZDC+ 263135-263630 4277.77±22.7855 1.042861462
ZDC- 262600-262830 4285.52±50.7313 1.045362164
ZDC- 262831-263132 4285.52±50.7313 0.9873365177
ZDC- 263133-263630 4286.42±24.4969 1.002851069
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Figure 5.8: Average ZDC signal per event vs. data run number in the 2015 CMS LHC heavy ion
run data run is shown here, with ZDC+ signal where HF+ was > 5 GeV and HF- was < 5 GeV in
the first column, and ZDC- signal where the energy deposited in HF- was > 5 GeV and HF+ was
< 5 GeV in the second column. In the top row, the p0 averages for three groups of data runs show
consistent differences in the ZDC signal strength in each of these groups on both ZDC+ and ZDC-,
particularly with the earliest group. In the second row, the correction factors listed in Table 5.6
have been applied. The p0 averages here for the three groups are considerably closer, but more
corrections were clearly required. Another iteration of corrections plus an additional adjustment to
equalize ZDC+ and ZDC- were performed, with their results shown in the third and fourth rows,
respectively.
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Figure 5.9: ZDC- signal versus ZDC+ signal in UPC jet data. Very low energies for both ZDC+
and ZDC- are consistent with exclusive-type processes.
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Chapter 6

Data Analysis

This chapter provides a detailed analysis of the UPC dijet data that were used to arrive at the

results presented in Chapter 7. Section 6.1 describes how the jet energy resolution for the CMS

data being analyzed was checked. Section 6.2 details the telltale indications that UPC dijets were

in fact selected and observed. Section 6.3 defines the pseudorapidity gap that was used in this

analysis. Section 6.4 details the principle component of this analysis, the azimuthal correlation

analysis between UPC dijets.

6.1 Checking the Jet Energy Scale

UPC jets tend to have energies that are typically about an order of magnitude lower than the

hadronic jets that CMS typically measures. For the very low energies typical of UPC events, it is

possible that the CMS energy scale depends upon pseudorapidity. To check this effect a tag and

probe technique was developed.

The tag and probe procedure worked as follows. Events considered were those passing the

UPC trigger that had exactly two jets, a difference in azimuthal angle of at least 0.25 radians, and

an average pT of 15 GeV or greater. The jet energy scale is most reliable at η=0. Therefore any

jet with |η | < 0.3 was called a probe, and the other jet was designated as the tag. If both jets have

|η | < 0.3 then they are each both tags and probes. For each event the ratio pT,probe
pT,tag

was calculated.

The pseudorapidity of the probe jet vs. the average of this ratio for that particular pseudorapidity

was then plotted. This is shown on the left side of Figure 6.1.

After this, the specific contents of the plot on the left side of Figure 6.1 were used as a correction
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Figure 6.1: Probe jet pseudorapidity η vs. pT,probe
pT,tag

are shown here uncorrected (left) and corrected

(right). pT,probe
pT,tag

is at or close to unity where |η | < 3.

factor for the pT of each jet in each UPC event. To do this, the pT of a particular jet in an event

was divided by the ratio pT,probe/pT,tag at the probe jet pseudorapidity in the left plot of Figure 6.1.

This was done for the pT values in all jets for all UPC events that passed the trigger. The tag and

probe procedure described in the previous paragraph was then repeated. The results are shown in

the plot on the right side of Figure 6.1.

Figure 6.1 reveals that the ratio pT,probe/pT,tag is equal to or nearly equal to 1 where |η | is < 3,

demonstrating that the jet energy scale was independent of η for those ranges of η .

6.2 Selecting Exclusive UPC Dijets

The characteristics of UPC dijets that were listed in Chapter 4.1 were:

• Two jets, i.e. dijets, in CMS (that are back to back in azimuth);

• An imbalance of neutrons between the two ZDC ends; and

• A pseudorapidity gap (more on this in Section 6.3).
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Figure 6.2: Difference of azimuthal angle φ in the lab frame between the leading and subleading
jets (φleading − φsubleading = ∆φ ) in each dijet event, before the application of the cut of |∆φ | = 2
radians. The dijets generally have a difference of π radians. The presence of a small sample that
had a difference of about 0 radians necessitated the |∆φ | = 2 cut.

For this analysis, events considered were those that passed the trigger discussed in Chapter 4, had

a leading jet with a transverse momentum pT > 20 GeV, a subleading jet with pT > 15 GeV, where

the leading and subleading jets had≥ 95% of the total energy in the event, an azimuthal difference

of > 2 radians between the leading and subleading jets, an interaction point < 20 cm from the

center of CMS in the z-direction (i.e., along the beampipe), and where the leading and subleading

jets had a pseudorapidity−2.0≤η ≤ 2.0. The leading jet was defined as the jet with the highest pT

magnitude in each event, and the subleading jet was the jet with the second highest pT magnitude

in the same event. The leading and subleading jet pT cuts, the 95% energy requirement, and the

pseudorapidity limits were implemented based upon consultation with the CMS jet measurement

group. All data presented from this section onward have these cuts applied.

In order for momentum to be conserved in a UPC dijet event, the two jets would be expected to

have an azimuthal angular difference of π radians, which is demonstrated in Figure 6.2. Leading

and subleading jet pT yield distributions are shown in Figure 6.3. The right hand panel shows the

sample of exclusive back to back dijets used in this analysis, while the left hand panel shows the

98



0 50 100
 (GeV)

T
p

1

10

210

310

410

ev
en

t
N

Leading Jet

Subleading Jet

CMS This Thesis

0 50 100
 (GeV)

T
p

1

10

210

310

ev
en

t
N

Leading Jet

Subleading Jet

CMS This Thesis

Figure 6.3: Leading and subleading jet pT are shown here. The left plot includes no cuts on η for
either the leading or the subleading jets, and the right plot applies the cuts where the leading jet
has pT > 20 GeV and the subleading jet has pT > 15 GeV that were used in this analysis.

distributions for all back to back exclusive dijets. The curvature of the leading jet pT distribution

in left panel clearly shows the effect of the jet energy resolution. The distribution of average

pseudorapidity between each leading jet and subleading jet is shown in Figure 6.4. The rapidity

gap that is a defining characteristic of the UPC dijet interactions results means that both jets tend

to strike one end of the detector, leading to the peaks around |η | = 1.3 and the trough around |η | =

0.

A larger neutron presence in one ZDC compared to the other would manifest itself as a strong

ZDC signal in one detector but a weak signal in the other. On a two-dimensional histogram of

ZDC+ signal and ZDC- signal, this would manifest itself as a strong L-shaped pattern along the

axes centered at the origin but weaker signals further away from the axes. Figure 6.5 is a two-

dimensional histogram of ZDC+ signal and ZDC- signal, and it shows exactly this.

Additionally, Figure 6.6 shows a two-dimensional histogram of the ratio of signal difference

between ZDC+ and ZDC- to signal sum of ZDC+ and ZDC- versus dijet average η . When average

η is close to -1, the ZDC asymmetry is close to -1, and when average η is close to +1, the ZDC

asymmetry is close to +1. This figure indicates that the dijets are typically produced on the same
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Figure 6.4: Distribution of average pseudorapidity between each dijet is shown here.

end of CMS where the target nuclide breaks up. An important aspect of this analysis was to

examine the relationship between ZDC signal and average pseudorapidity of the dijets. This was

done by the following methods:

• Developing ZDC examination criteria in which the time slices evaluated to contain the signal

on one ZDC end (see Chapter 5) were paired with a signal threshold for that ZDC end to

evaluate the presence of a ZDC signal and associated pseudorapidities;

• Using an energy threshold in one HF calorimeter and examining the signal on the corre-

sponding ZDC end; and

• Comparing average pseudorapidities on either end of the CMS detector to the ZDC signal.

For the ZDC examination, two basic requirements were set: 1) at least one of the ZDC readout

channels on one ZDC end was required to have its maximum signal in the time slice(s) evaluated

to contain the signal (see Table 5.1), and 2) the ZDC end in question was required to have a sig-

nal of more than 500 fC. This requirement was set for both ZDC ends, ZDC+ and ZDC-. Each

event could satisfy this requirement for both ZDC+ and ZDC-, ZDC+ but not ZDC-, ZDC- but not

ZDC+, or neither ZDC+ nor ZDC-. Figure 6.7 shows the ZDC signal and the pseudorapidity for

100



0 5000 10000 15000 20000

ZDC+ (Femtocoulombs)

0

5000

10000

15000

20000
Z

D
C

- 
(F

em
to

co
ul

om
bs

)

0

5

10

CMS This Thesis

Figure 6.5: Two-dimensional histogram with ZDC+ signal in femtocoulombs on the x-axis and
ZDC- signal in femtocoulombs on the y-axis. The tendency of an event’s signal to be strong in one
ZDC and weak in the other, resulting in the L-shaped plot here, is indicative of a UPC where one
nuclide breaks up and the other one remains intact.

each of these four scenarios. Figure 6.7 shows that there is a strong tendency for UPC dijets to

have pseudorapidities on the same end of the the CMS detector where the ZDC signal is strongest,

although this is not always the case as shown by the extension of the pseudorapidity distributions

into the other end of CMS on the top right and bottom left of Figure 6.7. This indicates that the

gluons in the photon-gluon interactions that produce the dijets tend to have greater energies than

the photons in the CMS detector reference frame. The longitudinal component of their momentum

therefore tends to be in the same direction as the fragments of the target nuclide that the ZDC de-
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Figure 6.6: Two-dimensional histogram with the ratio of signal difference between ZDC+ and
ZDC- to signal sum of ZDC+ and ZDC- versus dijet average η . The tendency of the signal to be
strong at a ratio of -1 where η < 0 and at a ratio of 1 where η > 0 indicates that the dijets are
typically produced on same end of CMS where the heavy nuclide from which they were produced
breaks up.

tects but does not always. Using the data provided by Figure 6.7, x1, x2, and Q can be calculated via

Equations 2.94, 2.95, and 2.11, respectively. The scenario where the ZDC examination require-

ments are met for ZDC+ but not ZDC-, which results in a strong ZDC+ signal but minimal ZDC-

signal, resolves the ambiguity between x1 and x2 such that x1 is the gluon momentum fraction and

x2 is the photon momentum fraction. Q for the photon can then be calculated using the x2 distribu-

tion in Equation 2.11. On the other hand, the scenario where the ZDC examination requirements

are met for ZDC- but not ZDC+, which results in a strong ZDC- signal but minimal ZDC+ signal,

resolves the ambiguity between x1 and x2 such that x1 is the photon momentum fraction and x2 is

the gluon momentum fraction. Q for the photon can then be calculated using the x1 distribution in

Equation 2.11. Figures 6.8 and 6.9 show these calculated distributions.

Comparing HF and ZDC signals was useful given the very forward location of the HF in CMS

and therefore the likelihood that some debris from nuclear breakup would be detected by the HF

as well as the ZDC. For the HF threshold, two specific scenarios were examined. In the first, there

was more than 5 GeV of energy deposited in HF- and less than 5 GeV deposited in HF+ for each

event. In the second, there was less than 5 GeV in HF- and more than 5 GeV in HF+. Both of
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Figure 6.7: Average pseudorapidity (η) and ZDC signal for cases where ZDC examination re-
quirements were met for both ZDC+ and ZDC- (top left), ZDC+ but not ZDC- (top right), ZDC-
but not ZDC+ (bottom left), and neither ZDC+ nor ZDC- (bottom right).

these cases are shown in Figure 6.10, where the former case is shown in the top row and the latter

case in the bottom row. Again, average pseudorapidity between the leading jet and the subleading

jet is compared to ZDC signal. This examination of HF thresholds indicates that the gluons in the

photon-gluon interactions that produce the dijets tend to have greater energies than the photons

in the CMS detector reference frame, and the longitudinal components of their momenta tend to

be in the same direction as the fragments of the target nuclide that the ZDC detects. It is also

indicated, again, that this is not always the case, as there is a tail in the average pseudorapidity

plots in Figure 6.10 extending to the other end of the detector. However, this effect was not as

pronounced here as it was with the ZDC examination. Similarly to the ZDC examination, the

scenario where there is more than 5 GeV in HF-, less than 5 GeV in HF+, a strong signal in ZDC-,

and a relatively weak signal in ZDC+ resolves the ambiguity between x1 and x2 such that x1 is the

photon momentum fraction and x2 is the gluon momentum fraction. Q for the photon can then be

calculated using the x1 distribution in Equation 2.11. Likewise, the scenario where there is more

than 5 GeV in HF+, less than 5 GeV in HF-, a strong signal in ZDC+, and a relatively weak signal

in ZDC- resolves the ambiguity between x1 and x2 such that x1 is the gluon momentum fraction

and x2 is the photon momentum fraction. Q for the photon can then be calculated using the x2
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Figure 6.8: Average η and ZDC signal for the cases in Figure 6.7 where ZDC examination re-
quirements were met for ZDC+ but not ZDC- (top row) and ZDC- but not ZDC+ (bottom row),
along with their respective corresponding calculations of x1, x2, and photon Q. ZDC examination
requirements being met for ZDC+ but not ZDC- resolves the x ambiguity such that x1 is the gluon
momentum fraction and x2 is the photon momentum fraction, whereas ZDC examination require-
ments being met for ZDC- but not ZDC+ resolves the ambiguity between x1 and x2 such that x1 is
the photon momentum fraction and x2 is the gluon momentum fraction.

distribution in Equation 2.11.

ZDC signal was also examined for the average pseudorapidity on either end of the CMS detec-

tor. These results are shown in Figure 6.11, in which the average pseudorapidity η of the two jets

is greater than zero on the left and less than zero on the right. These plots show a tendency for a

strong signal in the ZDC on the side of CMS where the average η for a dijet event lies. However,

the plots also reveal that a weaker signal is present in the ZDC on the opposite side of CMS from

where the average η lies, which could be consistent with some photons having energies in excess

of the gluons they interact with as indicated by Figures 6.7 and 6.10. Note that in the analysis

presented from Section 6.4 the ZDC requirements were not applied. At the same time, the ZDC

was used as a cross check for the exclusivity selection.
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Figure 6.9: Bjorken x and Q distributions from Figure 6.8 are shown here.

6.3 The Pseudorapidity Gap

As stated previously, one characteristic of UPC jets is a pseudorapidity gap. This gap was

utilized through the trigger requirement that energy would be measured in the HF calorimeter on

only one end of CMS, as described in Chapter 4. For the analysis, in addition, a more restrictive

definition of the rapidity gap was needed. Thus, a backward rapidity gap (BRG) and a forward

rapidity gap (FRG) were defined as:

BRG = ηmin + 2.4 (6.1)
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Figure 6.10: Average pseudorapidity, ZDC signal, x1 and x2, and Q where, for each event, more
than 5 GeV of energy was detected in HF- and less than 5 GeV in HF+ in the top row, and vice
versa in the bottom row. The situation in the top row with stronger signals in HF- and ZDC- along
with weaker signals in HF+ and ZDC+ resolves the ambiguity between x1 and x2 such that x1 is the
photon momentum fraction and x2 is the gluon momentum fraction. Likewise, the situation in the
bottom row with stronger signals in HF+ and ZDC+ along with weaker signals in HF- and ZDC-
resolves x ambiguity such that such that x1 is the gluon momentum fraction and x2 is the photon
momentum fraction.

FRG = 2.4 − ηmax (6.2)

where ηmin was the minimum track pseudorapidity for the UPC dijet event, and ηmax was the

maximum track pseudorapidity for the UPC dijet event. All terms in Equations 6.1 and 6.2 have

units of pseudorapidity (η) and |η | = 2.4 corresponds to the edges of the silicon tracker. Back-

ward dominant events were then defined to be events where BRG > 1.2 and BRG > FRG, and

forward dominant events were defined to be events where FRG > 1.2 and FRG > BRG. Figure 6.12

illustrates the basis of these two definitions. Where BRG > FRG and vice versa, the largest con-

centrations of events occur where ∆η > 1.2. Furthermore, Figure 6.13 shows the average dijet η

for backward dominant and forward dominant events. Backward dominant events tend to corre-

spond to dijets at forward pseudorapidities, and forward dominant events tend to correspond to

dijets at backward pseudorapidities. This is consistent with the findings of the previous section,

and is further amplified by Figure 6.14. Figure 6.14 shows the difference/sum ratio of the ZDC
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Figure 6.11: ZDC+ and ZDC- signals where average η between the dijets is > 0 on the left and <
0 on the right.

signal, both by as a function of average η and by itself, for backward dominant and forward dom-

inant events. Backward dominant events have a ZDC difference/sum ratio that peaks at +1, while

forward dominant events have a ZDC difference/sum ratio that peaks at -1.

6.4 Azimuthal Correlation Analysis

As mentioned in Chapters 1 and 2, the goal of this analysis is to study the correlation between

gluons in the nucleus via the azimuthal correlations between the total transverse momentum of the

dijets and the momentum difference of the dijets. To do this, an azimuthal correlation analysis, or

v2 analysis, was performed. This process began by considering the vector sum and the vector

difference of the leading jet and the subleading jet in each UPC event analyzed, as shown in

Figure 6.15. The vector sum of the leading and subleading jet vectors is labeled QQQT , the vector

difference between them is 2PPPT , and the angle running in a counter-clockwise direction from 2PPPT

to QQQT is Φ. The specific definitions of QQQT and PPPT are as follows:

QQQT = ~pT,leading + ~pT,subleading (6.3)
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Figure 6.12: Two-dimensional histogram comparing BRG and FRG for all events being analyzed.
The high concentrations of events where there is high BRG and low FRG or low BRG and high
FRG where ∆η > 1.2 motivated the definitions of backward dominant and forward dominant events
in this analysis.

PPPT =
~pT,leading − ~pT,subleading

2
, when leading jet mass ≥ subleading jet mass,

PPPT =
~pT,subleading − ~pT,leading

2
, when leading jet mass < subleading jet mass,

(6.4)

where the energy equivalent of jet mass was defined in Equation 2.79. The distinction between two

definitions of PT based on whether the leading jet or the subleading jet had the greater mass was

important in the analysis, because a definition of PT where the subleading jet was always subtracted

from the leading jet would introduce a bias into the calculation of Φ such that Φ would always have

a value between 0◦-90◦or 270◦-360◦. The reason for this is that the leading jet, defined as the jet

with the highest pT magnitude, always had a greater pT magnitude than the subleading jet (defined

as the jet with the second highest pT magnitude); therefore the sum of these vectors would always

be in the same hemisphere if only the first definition in Equation 6.4 was used. To calculate Φ with
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Figure 6.13: Average dijet η for backward dominant events (labeled "BRG Dominant") and for-
ward dominant events (labeled "FRG Dominant). BRG Dominant corresponds to more forward
dijet pseudorapidities and FRG Dominant corresponds to more backward dijet pseudorapidities.

respect to QQQT , the dot product and the cross product of PPPT and QQQT were utilized such that

cos Φ =
PPPT · QQQT

|PPPT ||QQQT |
, (6.5)

sin Φ =
|PPPT × QQQT |
|PPPT ||QQQT |

. (6.6)

A separate angle α was then defined:

α = arccos |cos Φ|. (6.7)
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Figure 6.14: The ZDC difference/sum ratio, as a function of average η (top row) and by itself
(bottom row), is shown here. Backward dominant event (BRG) are shown in the left column, and
forward dominant events (FRG) are shown in the right column. BRG event tend toward a ZDC
difference/sum ratio at η ≈1, while (FRG) events tend toward to a ZDC difference/sum ratio at
η ≈-1. The BRG dominant events totaled 10294, with a mean difference/sum ratio of 0.321 at a
standard deviation of 0.561, and a mean average η of 0.8162 at a standard deviation of 0.5576.
The FRG dominant events totaled 10316, with a mean difference/sum ratio of -0.363 at a standard
deviation of 0.562, and a mean average η of -0.8196 at a standard deviation of 0.5689.

If Equation 6.5 gives cos Φ ≥ 0 and Equation 6.6 gives sin Φ ≥ 0, Φ = alpha; if Equation 6.5

gives cos Φ < 0 and Equation 6.6 gives sin Φ ≥ 0, Φ = π - α; if Equation 6.5 gives cos Φ < 0 and

Equation 6.6 gives sin Φ < 0, Φ = π + α; or if Equation 6.5 gives cos Φ≥ 0 and Equation 6.6 gives

sin Φ < 0, Φ = 2π - α . The distribution of Φ is shown in Figure 6.16.

The infinitesimal distribution of exclusive dijet events over Φ, dN
dΦ

, can be modeled as a Fourier

series. A Fourier series is defined as

dN
dΦ

=
∞

∑
n=0

vicos iΦ. (6.8)
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Figure 6.15: Leading and subleading jet vectors, with the leading jet pT denoted by pppT 1 and the
subleading jet pT denoted by pppT 2. QQQT and 2PPPT are also shown, and the angle between them is
denoted as Φ.

The goal was then to calculate the second Fourier component of the distribution dN/dΦ shown in

Figure 6.16, v2:

v2 = 〈cos 2Φ〉, (6.9)

where

cos 2Φ = cos2
Φ − sin2

Φ (6.10)

and the angular brackets denote the average value of cos 2Φ over a number of events. v2 was

analyzed over PT ranges of 18-43 GeV and QT ranges of 0-25 GeV, as those ranges were where the

bulk of the signal lay, as shown in Figure 6.17 and Figure 6.18. In finding v2, it was of interest to

examine v2 separately for backward dominant events and forward dominant events. Figures 6.19

and 6.20 show these results.

It is important to ensure that the v2 signal is the result of a true physics correlation and not an

artifact of the acceptance of CMS. For studies of anisotropic flow in nuclear collisions it is usual to

estimate the acceptance effects by constructing the v2 of mixed events [41]. Mixed events contain
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Figure 6.16: Raw distribution of Φ between QQQT and 2PPPT .

no physics correlations but are sensitive to the detector acceptance and resolution. Mixed events

were constructed by calculating Φ and v2 using the same procedures as described above, only this

time the leading jet was paired with a subleading jet from another event, and this was done up to

5000 times, each time using a different subleading jet from a different event for the leading jet of

the current event. Figures 6.21 and 6.22 show the v2 results for mixed events. This mixed v2 is

then subtracted from raw v2 to produce v2,subtracted as follows:

v2,subtracted = v2,raw − v2,mixed. (6.11)

v2,subtracted is shown in Figures 6.23 and 6.24. While this method is standard in heavy ion flow

studies, the theoretical framework for handling detector effects in the correlation of UPC dijets is

not yet established. For this reason, the three variables, v2,raw, v2,mixed and v2,subtracted are presented

in this analysis.
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Figure 6.17: Overall ranges of QT and PT signals are shown here. Since most of the QT signal was
between 0-25 GeV/c and most of the PT signal was between 18-43 GeV/c, these constituted the
analysis ranges for v2.
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Figure 6.18: Two dimensional histograms of QT vs. PT are shown here for raw signal (left) and
mixed events (right). The raw signal again shows the principal QT signal between 0-25 GeV/c and
the principal PT signal between 18-43 GeV/c.
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events.
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Figure 6.20: Raw v2 vs. PT and QT for BRG-dominant events and FRG-dominant events within
indicated QT and PT ranges.
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Figure 6.21: Mixed events v2 vs. PT (left) and QT (right) for BRG-dominant events (red) and
FRG-dominant events (blue).
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Figure 6.22: Mixed events v2 vs. PT and QT for BRG-dominant events (red) and FRG-dominant
events (blue) within indicated PT and QT ranges. For v2 vs. QT , many of the analysis bins have v2
= 0.
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Figure 6.23: v2,subtracted vs. PT (left) and QT (right) for BRG-dominant events (red) and FRG-
dominant events (blue).
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Figure 6.24: v2,subtracted vs. PT and QT for BRG-dominant events (red) and FRG-dominant events
(blue) within indicated PT and QT ranges.
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Chapter 7

Cross Checks and Systematic Uncertainties

This chapter describes the systematic checks made to test the robustness of the physics results

presented at the end of Chapter 6 to variations of cuts used in the analysis. In systematic checks,

the effects that specified characteristics of the experimental device have on the experimental results

of interest are examined by means of calculating the χ2 value. The quantity ∆v2,subtracted is the

difference in v2,subtracted that results when one of the experimental cuts is changed from the chosen

baseline parameter, that is

∆v2,subtracted, i = (v2,subtracted, i)baseline − (v2,subtracted, i)changed. (7.1)

The uncertainty on ∆v2,subtracted is denoted by σ . The definition of σ depends on some specific

circumstances. If the changed parameters produce data that are completely independent from the

data produced by the baseline parameters, then

σi =
√

σ2
i, baseline + σ2

i, changed, (7.2)

where σi, baseline is the statistical error for (v2,subtracted, i)baseline and σi, changed is likewise the sta-

tistical error for (v2,subtracted, i)changed . However, if the changed parameters yield data that is com-

pletely included in the data yielded by the baseline parameters,

σi =
√
|σ2

i, baseline − σ2
i, changed|. (7.3)
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In this analysis the χ2 value has the general form

χ
2 =

25

∑
i=1

(∆v2,subtracted, i)
2

σ2
i

. (7.4)

In Equation 7.4 i runs from 1 to 25 because there were a total of 25 v2,subtracted values, that is

5 v2,subtracted values for each of the five intervals of QT analyzed between 0 and 25 GeV/c. A

χ2 of 25 or less indicates statistical consistency between data resulting from baseline parameters

and data resulting from changed parameters. Therefore, if χ2 was approximately 25 or less, the

cross check between the varied parameter and the baseline parameter was satisfactory. If χ2 was

significantly greater than 25, this was indicative of a systematic error of unknown origin. In the

latter case, a systematic error SE was determined by requiring the new χ2, χ2
new, to be 25:

χ
2
new =

25

∑
i=1

(∆v2,subtracted, i)
2

σ2
i + SE2 = 25. (7.5)

After each check, systematic errors found were combined into a total systematic error as follows:

SEtotal =
√
(SE1)2 + (SE2)2 + .... (7.6)

7.1 Comparing Forward and Backward Events

The first systematic check was to compare backward dominant and forward dominant dijet

events as defined in Section 6.3 of Chapter 6. Since both ends of the CMS experiment are the

same in principle, one would have expected v2,subtracted of backward dominant events and forward

dominant events to be statistically consistent. This was therefore the most obvious parameter

to explore as a systematic check. Thus the forward/backward symmetry of CMS was the first

systematic check.

For this check, the forward dominant v2,subtracted values shown in Figure 6.24 were subtracted
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Figure 7.1: v2,subtracted results for backward dominant events, forward dominant events, and their
difference is shown here.

from the backward dominant v2,subtracted in that figure. Since these values were completely in-

dependent of each other, their statistical errors were combined in accordance with Equation 7.2.

Figure 7.1 shows the backward dominant v2,subtracted results, the forward dominant v2,subtracted

results, and their difference.

For the difference of v2,subtracted between backward dominant and forward dominant events, the

χ2 was determined to be 51.4. An SE of 0.06 was then found to yield a χ2 of 25.1. The average

values of v2,subtracted between backward dominant events and forward dominant events were taken

to be the main results. These will hereafter be referred to as 〈v2,subtracted〉. In subsequent systematic

checks, 〈v2,subtracted〉 was used as the baseline v2,subtracted as there was no way to decide whether

forward dominant or backward dominant was better.
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7.2 Varying the Exclusivity Parameter α

The second systematic check was performed by changing the value of the proportion of event

energy required to be contained in the dijets (labeled α). For this and the following systematic

checks, 〈v2,subtracted〉 vs. PT for the results in Figure 6.24 were calculated, along with the statistical

uncertainty. The parameters being checked were then changed, while all other baseline analysis

parameters discussed in Section 6.2 were retained. After the parameter in question was changed,

〈v2,subtracted〉 vs. PT was then recalculated, along with their statistical errors. The χ2 value was

then calculated as follows:

χ
2 =

25

∑
i=1

〈∆v2,subtracted, i〉2

σ2
i

, (7.7)

where

〈∆v2,subtracted, i〉 = 〈v2,subtracted, i〉baseline − 〈v2,subtracted, i〉changed, (7.8)

and, since the parameters that were changed yielded data that was completely included in that

yielded by the baseline parameters, σ2
i was found by Equation 7.3.

For the systematic check on α , α was changed from 0.95 to 0.85 while all other baseline
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Figure 7.3: 〈v2,subtracted〉 vs. PT for QT intervals analyzed are shown here for α = 0.85 and α =
0.95.

parameters were retained. Figure 7.2 shows a comparison for α = 0.95, α = 0.85, and no limits

on α; and Figure 7.3 shows the effect on 〈v2,subtracted〉 when α = 0.95 and α = 0.85. From these

values, the χ2 was found to be 118.8. An SE of 0.044 was found to yield a χ2 of 25.1.

7.3 Varying the Back to Back Requirement |∆φ |

The third systematic check was performed on the minimum azimuthal difference allowed be-

tween the dijets (labeled |∆φ |). For the systematic check on |∆φ |, the requirement was changed

from |∆φ | > 2 to |∆φ | > 2.25, while all other baseline parameters were retained. Figure 7.4 shows

the comparison of ∆φ for |∆φ | > 2.25, |∆φ | > 2, and no limits on |∆φ |; and Figure 7.5 shows the

effect on 〈v2,subtracted〉 when |∆φ | > 2.25 and |∆φ | > 2. From these values, the χ2 was found to be

9.0, and this test was thus considered to be a cross check.
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Figure 7.4: ∆φ for |∆φ | > 2.25, |∆φ | > 2, and no limits on |∆φ | are shown here.

7.4 Varying the Vertex Requirement |vz|

The fourth systematic check was performed on the maximum distance from the midpoint of

CMS that was allowed (labeled |vz|). For the systematic check on |vz|, the requirement was changed

from |vz| < 20 to |vz| < 10, while all other baseline parameters were retained. Figure 7.6 shows the

comparison of average dijet pT for |vz| < 10, |vz| < 20, and no limits on |vz|; and Figure 7.7 shows

the effect on 〈v2,subtracted〉 when |vz| < 10 and |vz| < 20. From these values, the χ2 was found to be

7.872, a satisfactory cross check.

7.5 Examination of Effect of Setting Limit on Conjugate ZDC

Additionally, the effect of requiring the conjugate ZDC, that is the ZDC that did not register a

relatively strong signal in a backward dominant or forward dominant dijet event, to have a signal

of < 1000 fC was examined. This was not figured into the final systematic error analysis since the

possibility that this could have non-systematic effects could not be ruled out, but was nonetheless

thought to be important enough to study. Figure 7.8 shows the effect on 〈v2,subtracted〉 when the

conjugate ZDC had less than 1000 fC for each backward dominant or forward dominant dijet
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Figure 7.5: 〈v2,subtracted〉 vs. PT for QT intervals analyzed are shown here for |∆φ | > 2.25 and |∆φ |
> 2.

event as compared to the the baseline rapidity gap requirements for backward dominant events and

forward dominant events as stated in Section 6.3.

7.6 Systematic Analysis Results

Table 7.1 summarizes the findings of the systematic analysis. The total systematic uncertainty

was determined to be 0.074, with the difference between v2,subtracted for backward dominant and

forward dominant events and α being the contributors. Figure 7.9 shows 〈v2,subtracted〉 with the

systematic error bands included. 〈v2,subtracted〉 is shown because, as stated earlier, the main results

were taken to be the average v2,subtracted of backward dominant and forward dominant events.

For the final 〈v2,subtracted〉 results, it is also important to correct for CMS detector resolution

in the determination of Φ. This would involve the application of a resolution correction factor,
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Figure 7.6: Number of events for |vz| < 10, |vz| < 20, and no limits on |vz| are shown here.

Table 7.1: Systematic Analysis Results on v2,subtracted

Systematic
Check

χ2 Statistically Con-
sistent

Systematic Error

Backward/Forward 51.409 No 0.060
α 118.818 No 0.044
|∆φ | 8.976 Yes negligible
|vz| 7.872 Yes negligible
Total Systematic
Error

0.074

labeled R, to the 〈v2,subtracted〉 results such that

final 〈v2,subtracted〉 =
〈v2,subtracted〉

R
. (7.9)

At the time of writing the report on this analysis, studies to determine appropriate R values for the

applicable QT ranges are ongoing. A Monte Carlo program known as RAPGAP that is instrumental

to finding the appropriate R values is in the process of being integrated into CMS [13].
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Figure 7.7: 〈v2,subtracted〉 vs. PT for QT intervals analyzed are shown here for |vz| < 10 and |vz| <
20.

128



20 25 30 35 40

 (GeV/c)TP

1.0−

0.5−

0.0

0.5

1.0

>
2,

 s
ub

tr
ac

te
d

<
v  Gap RequirementsηBaseline 

Conjugate ZDC < 1000 fC

difference

CMS This Thesis

 < 5 GeV
T

Q

20 25 30 35 40

 (GeV/c)TP

1.0−

0.5−

0.0

0.5

1.0

>
2,

 s
ub

tr
ac

te
d

<
v

 = 5-10 GeV
T

Q

20 25 30 35 40

 (GeV/c)TP

1.0−

0.5−

0.0

0.5

1.0

>
2,

 s
ub

tr
ac

te
d

<
v

 = 10-15 GeV
T

Q

20 25 30 35 40

 (GeV/c)TP

1.0−

0.5−

0.0

0.5

1.0

>
2,

 s
ub

tr
ac

te
d

<
v

 = 15-20 GeV
T

Q

20 25 30 35 40

 (GeV/c)TP

1.0−

0.5−

0.0

0.5

1.0

>
2,

 s
ub

tr
ac

te
d

<
v

 = 20-25 GeV
T

Q

Figure 7.8: 〈v2,subtracted〉 vs. PT for QT intervals analyzed are shown here for where backward
dominant and forward dominant dijet events are required to have less than 1000 fC in the conjugate
ZDC as compared to dijet events meeting the baseline backward dominant and forward dominant
criteria.
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Figure 7.9: 〈v2,subtracted〉 with the systematic error bands included are shown here.
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Chapter 8

Results and Conclusion

This dissertation presents a measurement of dijets produced in ultra-peripheral lead-lead colli-

sions at
√

sNN=5.02 TeV. The triggers and analysis cuts selected events that had two jets in CMS,

a signal in only one HF, an imbalance of signal between ZDC+ and ZDC-, and an η gap in one

hemisphere of CMS. In this study, the events were selected where the leading jet had a pT > 20

GeV/c and the subleading jet had a pT > 15 GeV.

There are four principal conclusions that can be drawn from this analysis of this measurement.

The first conclusion is that UPCs produce dijet events with where the leading jet has pT up to

at least 100 GeV. The pT distribution of these dijets is shown in Figure 6.3. The second conclu-

sion is that these events are asymmetric in η , that is they populate either the forward or backward

hemispheres of CMS. Figure 6.10 shows the average η distributions and associated ZDC signals

for dijets selected by these cuts while Figure 6.12 shows the η gap distribution. The asymme-

try is prominently evident in both of these figures. Using the ZDC and HF, photon Bjorken x,

gluon Bjorken x, and Q appeared to be determined. The x and Q distributions are also shown in

Figure 6.10.

We also focused on the study of the angular correlation between dijet PPPT and QQQT , i.e., the

difference and sum of the dijet pT values. The presence of a non-zero correlation would be an

indication that the two partons that were struck by the incoming photon were correlated. The third

conclusion is that there seems to be such a correlation between dijet PPPT and QQQT . The raw dis-

tribution of the angle between QQQT and PPPT is shown in Figure 6.16. This distribution is not flat,

indicating an angular correlation between QQQT and PPPT . Figure 6.16 has two prominent dips, sug-

gesting a strong second harmonic in the distribution. This harmonic is measured by 〈v2,subtracted〉.
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Figure 8.1 shows 〈v2,subtracted〉 as a function of PT and QT . It was found that 〈v2,subtracted〉 is al-

ways greater than zero. For PT > 23 GeV/c, 〈v2,subtracted〉 tends to rise with QT and fall with PT .

Further refinement of these positive results is pending the completion of efforts to correct for the

resolution of CMS in the measurement of the Φ angle between PPPT and QQQT .

The fourth conclusion is that the correlation between PT and QT is independent of the neutron

signal in the conjugate ZDC. Figure 7.8 shows 〈v2,subtracted〉 for the baseline analysis and for the

events where the conjugate ZDC had less than 1000 fC. The additional cut on the conjugate ZDC

does not appreciably affect 〈v2,subtracted〉. This implies that the physical processes that result in a

signal in the conjugate ZDC are separate from those that produce the dijet.

Ongoing and future studies on UPC dijets at CMS could involve the following. Comparison

of UPC dijets produced in p-Pb UPCs to those produced in in Pb-Pb UPCs could be examined.

Increased beam luminosity in the 2018 PbPb data run could result in significantly greater numbers

of dijets at higher pT being measured, which would allow for a viable analysis of v2 at PT > 43

GeV/c and QT > 25 GeV/c. Additionally, the theoretical uncertainties concerning whether and

how v2,mixed should be subtracted from v2,raw in order to compensate for detector effects need to

be addressed. Finally, UPC heavy flavor jets, that is, UPC jets involving bottom quarks, could also

be studied [43].
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Figure 8.1: 〈v2,subtracted〉 vs. PT over QT ranges and QT over PT ranges containing the principal
signal. A positive 〈v2,subtracted〉 between QT and PT is generally present.

133



Bibliography

[1] "Radiofrequency Cavities". Sep 2012: http://cds.cern.ch/record/1997424.

[2] "HL-LHC Industry", 30 NOV 2017: https://project-hl-lhc-industry.web.cern.ch/.

[3] "Accelerators for Society", 8 December 2017: http://www.accelerators-for-society.org/case-

studies/index.php?id=12.

[4] Applied Engineering Principles, Rev 3. Bettis Atomic Power Laboratory and Knolls Atomic

Power Laboratory, December 1995.

[5] John Adams et al. “Experimental and theoretical challenges in the search for the quark

gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC

collisions”. Nucl. Phys., A757:102–183, 2005.

[6] K. Adcox et al. “Formation of dense partonic matter in relativistic nucleus-nucleus collisions

at RHIC: Experimental evaluation by the PHENIX collaboration”. Nucl. Phys., A757:184–

283, 2005.

[7] Ayman Al-bataineh. J/ψ production in ultra-peripheral proton-lead and lead-lead collisions

with CMS. PhD thesis, University of Kansas, 2017.

[8] Ahmed Ali, Jens Sören Lange, and Sheldon Stone. "Exotics: Heavy Pentaquarks and

Tetraquarks". Prog. Part. Nucl. Phys., 97:123–198, 2017.

[9] I. Arsene et al. “Quark gluon plasma and color glass condensate at RHIC? The Perspective

from the BRAHMS experiment”. Nucl. Phys., A757:1–27, 2005.

[10] B. B. Back et al. “The PHOBOS perspective on discoveries at RHIC”. Nucl. Phys., A757:28–

101, 2005.

134



[11] G. L. Bayatian et al. CMS Physics: Technical Design Report Volume 1: Detector Perfor-

mance and Software. 2006.

[12] Carlos A. Bertulani, Spencer R. Klein, and Joakim Nystrand. “Physics of Ultra-Peripheral

Nuclear Collisions”. Annual Review of Nuclear and Particle Science, 55 (2005):271–310, 13

July 2005.

[13] Samuel Steed Boren. Ph.D. Candidate, University of Kansas, CMS Heavy Ion Forward

Physics Group, 4 June 2018.

[14] Oliver S. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock.

LHC Design Report Vol.1: The LHC Main Ring. 2004.

[15] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "The Anti-k(t) jet clustering algo-

rithm". JHEP, 04:063, 2008.

[16] Ivan Amos Cali. "HIL1 Trigger Studies Upgrade", 10 June 2015:

https://twiki.cern.ch/twiki/bin/viewauth/CMS/HIL1TriggerStudiesUpgrade.

[17] Mario Campanelli. Inside CERN’s Large Hadron Collider, From the Proton to the Higgs

Boson. World Scientific Publishing Co. Pte. Ltd., Singapore, 2016.

[18] S. Chatrchyan et al. "Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using

Cosmic Rays". JINST, 5:T03021, 2010.

[19] Serguei Chatrchyan et al. "Description and Performance of Track and Primary-Vertex Re-

construction With the CMS Tracker". JINST, 9(10):P10009, 2014.

[20] ALICE Collaboration. “Coherent ρ0 photoproduction in ultra-peripheral Pb–Pb collisions at
√

SNN=2.76 TeV”. Journal of High Energy Physics, 31 March 2015.

[21] ALICE Collaboration. “Charmonium and e+e- pair photoproduction at mid-rapidity in

ultra-peripheral Pb-Pb collisions at
√

SNN=2.76 TeV”. European Physical Journal C, 73

(2013):2617, 7 November 2014.

135



[22] ALICE Collaboration. “Coherent j/psi photoproduction in ultra-peripheral Pb-Pb collisions

at
√

SNN=2.76 TeV”. Physics Letters B, 718 (2013):1273–1283, 8 March 2013.

[23] CMS Collaboration. The CERN Large Hadron Collider, Accelerator and Experiments: The

CMS Experiment at the CERN LHC. Institute of Physics Publishing and SISSA, http://www-

spires.fnal.gov/spires/find/books/www?cl=QC787.P73C37::2009, 2008.

[24] CMS Collaboration. "CMS Detector Design", 23 November 2011:

http://cms.web.cern.ch/news/cms-detector-design.

[25] CERN Education Communications and Outreach Group. "LHC faq the guide", 30 NOV

2017: http://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf.

[26] Enrico Fermi. “Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen

Teilchen.”. Zeitschrift fur Physik, 29 (1924):315–327, December 1924.

[27] Francois Gelis, Edmond Iancu, Jamal Jalilian-Marian, and Raju Venugopalan. "The Color

Glass Condensate". Ann. Rev. Nucl. Part. Sci., 60:463–489, 2010.

[28] Victor P. Gonçalves. "photon induced interactions at the LHC". In New trends in high energy

physics and QCD school; International Institute of Physics, Federal University of Rio Grande

do Norte; Natal, Brazil, 21-31 October 2014.

[29] David J. Griffiths. Introduction to Electrodynamics, Third Edition. Prentice Hall, Inc., Upper

Saddle River, NJ, Upper Saddle River, NJ, U.S.A., 1999.

[30] David J. Griffiths. Introduction to Elementary Particles, Second, Revised Edition. WILEY-

VCH Verlag GmbH and Co. KGaA, Weinheim, Weinheim, Baden-Württemberg, F.R.G.,

2008.

[31] Miklos Gyulassy and Larry McLerran. “New forms of QCD matter discovered at RHIC”.

Nucl. Phys., A750:30–63, 2005.

136



[32] Yoshikazu Hagiwara, Yoshitaka Hatta, Roman Pasechnik, Marek Tasevsky, and Oleg"

Teryaev. Accessing the gluon wigner distribution in ultraperipheral pa collisions. Phys.

Rev., D96(3):034009, 2017.

[33] Jr. Humphries, Stanley. Principles of Charged Particle Acceleration. John Wiley and Sons,

Inc., New York, NY, U.S.A., 1986.

[34] Bora Isildak. Measurement of the Differential Dijet Production Cross Section in Proton-

Proton Collisions at
√

s = 7 TeV. PhD thesis, Bogazici U., 2011.

[35] John David Jackson. Classical Electrodynamics, Third Edition. John Wiley and Sons, Inc.,

Hoboken, NJ, U.S.A., 1999.

[36] Japan Joint Institute for Computational Fundamental Science, University of Tsukuba. "Get-

ting to the Heart of Matter", 2011: http://www.jicfus.jp/en/promotion/pr/mj/guido-cossu.

[37] L. M. Jones and H. W. Wyld. “Charmed Particle Production by Photon Gluon Fusion”. Phys.

Rev., D17:759, 1978.

[38] P. Kovtun, Dan T. Son, and Andrei O. Starinets. “Viscosity in strongly interacting quantum

field theories from black hole physics”. Phys. Rev. Lett., 94:111601, 2005.

[39] T. D. Lee and G. C. Wick. “Vacuum Stability and Vacuum Excitation in a Spin 0 Field

Theory”. Phys. Rev., D9:2291–2316, 1974.

[40] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. West-

view Press, www.westviewpress.com, 1995.

[41] Arthur M. Poskanzer and S. A. Voloshin. Methods for analyzing anisotropic flow in relativis-

tic nuclear collisions. Phys. Rev., C58:1671–1678, 1998.

[42] Philipp Schieferdecker. "Jet Algorithms", 17 April 2009:

https://twiki.cern.ch/twiki/bin/view/Sandbox/PhilippSTalk.

137



[43] Mark Strikman, Ramona Vogt, and Sebastian N. White. “Probing small x parton densities in

ultraperipheral AA and pA collisions at the LHC”. Phys. Rev. Lett., 96:082001, 2006.

[44] Ramona Vogt. Ultrarelativistic Heavy Ion Collisions. Elsevier B. V., Oxford, U.K., 2007.

[45] C. F. von Weizsäcker. “Ausstrahlung bei Stößen sehr schneller Elektronen.”. Zeitschrift fur

Physik, 88 (1934):612–625, September 1934.

[46] E. J. Williams. “Nature of High Energy Particles of Penetrating Radiation and Status of

Ionization and Radiation Formulae”. Physical Review, 45 (1934):729–730, 1934.

[47] Edmund Wilson. An introduction to Particle Accelerators. Oxford University Press, Oxford,

U.K., 2001.

138


	Introduction
	Theory
	Quantum Chromo-Dynamics
	Electromagnetic Interactions in Ultra-Peripheral Heavy Ion Collisions
	Electromagnetic Fields of Relativistic Heavy Ions
	Photon Flux of Relativistic Heavy Ions

	Hadronic Jets From Ultra-Peripheral Heavy Ion Collisions
	Using UPC Jets To Examine Gluon Correlations

	The Compact Muon Solenoid Experiment Part I: Experimental Apparatus
	The Large Hadron Collider
	Basic Detector Principles
	The CMS Detector Complex
	The Solenoid Magnet
	The Silicon Tracker
	The Electromagnetic Calorimeter
	The Hadronic Calorimeter
	The Zero Degree Calorimeter
	CASTOR
	Muon Detector/Tracker System


	The Compact Muon Solenoid Experiment Part II: Analysis Techniques
	Triggering and Data Gathering
	The Particle Flow Algorithm
	The Anti-kT Algorithm

	ZDC Calibration and Analysis
	Data Analysis
	Checking the Jet Energy Scale
	Selecting Exclusive UPC Dijets
	The Pseudorapidity Gap
	Azimuthal Correlation Analysis

	Cross Checks and Systematic Uncertainties
	Comparing Forward and Backward Events
	Varying the Exclusivity Parameter 
	Varying the Back to Back Requirement ||
	Varying the Vertex Requirement |vz|
	Examination of Effect of Setting Limit on Conjugate ZDC
	Systematic Analysis Results

	Results and Conclusion

