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Abstract  

Scientific publications are a rich but underutilized source of structural and functional information 

on proteins and protein interactions. Although scientific literature is intended for human audience, 

text mining makes it amenable to algorithmic processing. It can focus on extracting information 

relevant to protein binding modes, providing specific residues that are likely be at the binding site 

for a given pair of proteins. The knowledge of such residues is a powerful guide for the structural 

modeling of protein-protein complexes. This work combines and extends two well-established 

areas of research: the non-structural identification of protein-protein interactors, and structure-

based detection of functional (small-ligand) sites on proteins. Text-mining based constraints for 

protein-protein docking is a unique research direction, which has not been explored prior to this 

study. Although text mining by itself is unlikely to produce docked models, it is useful in scoring 

of the docking predictions. Our results show that despite presence of false positives, text mining 

significantly improves the docking quality. To purge false positives in the mined residues, along 

with the basic text-mining, this work explores enhanced text mining techniques, using various 

language processing tools, from simple dictionaries, to WordNet (a generic word ontology), parse 

trees, word vectors and deep recursive neural networks. The results significantly increase 

confidence in the generated docking constraints and provide guidelines for the future development 

of this modeling approach. With the rapid growth of the body of publicly available biomedical 

literature, and new evolving text-mining methodologies, the approach will become more powerful 

and adequate to the needs of biomedical community.   
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Chapter 1                                                                                           

Introduction  

Protein-protein interactions (PPI) are an integral part of life processes. The function of a protein is 

largely determined by its structure. Thus, structural characterization of protein-protein complexes 

is important for understanding and manipulating molecular mechanisms in living systems. Because 

of the inherent limitations of the experimental approaches, only a fraction of protein-protein 

complexes have their structure determined experimentally. This makes computational modeling 

indispensable for large-scale structure characterization of PPI [1].  

Structural modeling of protein-protein complexes (protein docking) predicts the structure of 

the protein complex from the structures of the individual proteins. Docking typically yields 

multiple candidate models requiring further assessment/scoring [2]. Such scoring can significantly 

benefit from constraints (cues) for elimination of non-native models that are not distinguishable 

based on energy, shape, and other common docking characteristics. An exponentially growing 

number of research publications on protein structure and function is a rich material for PPI cue 

generation (Figure 1-1). Text mining (TM) is a well-established field for automated extraction of 

information from publications [3, 4] It has been widely used for non-structural prediction of protein 

interactors [5-7], and structural determination of functional (small ligand) sites on proteins [8, 9]. 

Prior to our study, it had not been used in protein docking. Critical Assessment of Prediction of 

Interactions (CAPRI) is a community wide challenge to assess performance of the protein docking 

efforts [10]. The submitted blind predictions are compared to unpublished experimentally 

determined structures, providing an objective assessment. The cues generated using our text-

mining tools have been successfully utilized in the effort since 2014. Systematic evaluation of the 
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docking approaches with our text mining-generated constraints on comprehensive benchmark sets 

of protein-protein complexes showed a significant improvement of the docking success rates. 

 

Figure 1-1: The growth of the number of articles in PubMed (http://dan.corlan.net/medline-

trend.html). 

 

1.1 An overview of protein docking 

Early protein docking approaches focused on the global search of the rigid-body complementarity 

of the two proteins, typically assuming no additional available information other than the structure 

of the participating proteins [11]. These ab initio or free docking approaches, still popular in the 

field, take advantage of the proteins structural complementarity, as well as complementarity of the 

physicochemical characteristics - electrostatics, hydrogen bonding, hydrophobicity, and such. 

Following the rapid growth of experimentally derived data on protein interactions, the docking 

techniques have been increasingly incorporating data-driven approaches, such as knowledge-based 

potentials [12], and binding site characteristics [13]. The ultimate data-driven docking techniques, 
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based on similarity to the experimentally determined complexes of similar proteins, has become 

known as template-based or comparative docking [14]. 

 

1.2 Stages in protein docking 

Typical protein docking routine consists of three (sometimes partially overlapping) stages: (i) 

global rigid-body scan, (ii) scoring and (iii) local structural refinement. 

The scan stage in free docking approaches systematically samples possible mutual 

orientations obtained by relative translation and rotation and ranks them according to the quality 

of the fit. In template-based docking, the global scan search is for matching the sequence and/or 

the structure to the pool of template complexes, and assembly of the target proteins according to 

the matching templates. Scoring re-ranks the tentative complexes predicted by either free or 

template-based scan, based on a variety of information, including energetics, statistics, and such. 

Refinement stage enhances structural details in the top ranked models. Despite the difference in 

the nature of structural inaccuracies of the free and comparative docking, similar refinement 

techniques are applicable to both [15]. Refinement typically involves high resolution rigid-body 

adjustment, side chain repacking, and backbone conformational changes. 

 

1.3 Free docking scan 

The basic shape matching is often augmented by physics or knowledge-based potentials to better 

discriminate the candidate models. Physics-based potentials (e.g. electrostatic, hydrophobic, and 

such) [16-18] focus on the underlying physiochemical principles. Statistical potentials rely on 

deviation from a random distribution of residue or atom pairings [19, 20]. 
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The main approaches to the free global scan are: (i) correlation by Fast Fourier Transform 

(FFT docking) performing efficient exhaustive sampling of the discrete search space  – an idea 

borrowed from pattern recognition [21], (ii) geometric hashing, matching a list of surface features 

or motifs described as a hash [22],  and (iii) Monte Carlo protocols relying upon randomized 

sampling [23].  

Some notable FFT docking programs are GRAMM [24], ZDOCK [25], PIPER [19], and 

HEX[26, 27]. GRAMM focuses on the fast, low-resolution geometric matching, which tolerates 

structural inaccuracies, and serves as the starting point for detailed modeling. ZDOCK and PIPER 

integrate pairwise statistical potential with the FFT based geometric fitting. HEX uses spherical 

harmonics to speed-up the FFT-based search. 

RosettaDock [23] implements a low-resolution Monte Carlo search with simultaneous 

optimization of the backbone displacement (otherwise usually performed at the final stage). Some 

programs emphasize integration of experimental information in the docking process. HADDOCK 

[28, 29] integrates biochemical and biophysical interaction data (chemical shift perturbation) with 

ambiguous distance information from NMR studies. 

 

1.4 Template-based docking 

Sometimes called docking by analogy, the template-based (or comparative) docking paradigm 

follows template-based methodologies of the individual proteins modeling. The structure 

prediction of the individual proteins, historically, started as ab initio. However, along with 

accumulation of the experimentally determined structures, its focus gradually shifted to template-

based approaches. A similar transition is underway in the protein docking field. The template-

based docking scan hinges on the observation that similar protein pairs form similar complexes. 
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Sequences of the target proteins are aligned with sequences of the putative templates, with a good 

match implying structural correspondence. Since this match is obtained by sequence alignment, 

the process is called sequence homology-based structure prediction [30].  

In the absence of strong sequence similarity, the homology paradigm is still applicable 

because the structure is more conserved than the sequence. Evidence suggests that structure-based 

templates are available to model nearly all protein-protein complexes [14]. The full structure 

alignment technique aligns target proteins with the entire structure of the template complexes. The 

partial (interface) structure alignment approach aligns the target protein only with the co-

crystalized interfaces of the template complexes [31-33]. 

 

1.5 Refinement 

Proteins undergo conformational change upon binding. Thus, to accurately model the atomic 

details of the protein-protein interface, the rigid-body global scan requires structural refinement 

that includes conformational search of the predicted interface area [11]. Side-chain repacking is 

aided by exploring alternative rotational isomers configurations (rotamer libraries). Advanced 

docking approaches also include the backbone flexibility. The backbone refinement, for the 

interface and the surrounding area, or for the entire complex [23] can be achieved by structure 

perturbation or by maximizing Ramachandran probability. For the backbone refinement, 

HADDOCK performs molecular dynamics-based simulated annealing. One popular approach to 

the structural refinement is normal mode analysis where the docked complex is modeled as elastic 

network, with perturbations generating oscillations at fixed frequencies (modes). HexDock 

performs pose dependent analysis with only a few modes [34], and SwarmDock allows linear 
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combination of the modes [35].  RosettaDock refinement is based on a tree-like representation of 

molecular structure allowing simultaneous rigid-body, side-chain, and backbone refinement [36]. 

 

1.6 Text mining for PPI  

Because of the complexity of the docking search space, constraints on the possible docking 

solutions are of great value for the predictive protocols. Such constraints implemented at the 

scoring stage re-rank the docking output, improving discrimination of the false-positive solutions. 

The focus of this study is on exploring generation of such constraints from the text mining of 

biomedical literature (Figure 1-2). 

 

Figure 1-2: Cues generated by text mining are used at the scoring stage to re-rank docking output.  
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Text mining has been used in non-structural approaches to recreating the networks of protein-

protein interactions, and in structure-based detection of functional (small molecule) binding sites 

on proteins. We synergistically use these two areas of research for the structural modeling of 

protein-protein complexes. Our procedure retrieves published articles on the protein-protein 

interaction and extracts the relevant residues. 

The text mining systems retrieve relevant text from the repository (Information Retrieval, 

IR), and attempts to extract meaningful information (Information Extraction, IE). Part of Speech 

Tagging (POS) and Named Entity Recognition (NER) help identify concepts and objects of interest 

in the Natural language Processing (NLP) systems. POS tagger attempts to assign a part of speech 

tag to every word encountered during the textual analysis. NER focuses on nouns (or Named 

Entities) and the kinds of things they refer to. Maintaining a simple dictionary may suffice in many 

cases. Since our entities of interest are residues, each a combination of an amino acid name and a 

number, they are easily identified using regular expressions [37]. 

 

1.7 Summary 

Incorporating mined cues from publications at the scoring stage allows one to discriminate false-

positive poses from the docking scan. The primary aim of this study has been to explore the 

effectiveness of the text mining for a mainstream docking approach. 

 

Chapter 2 investigates generation of docking constraints by basic text mining techniques that rely 

on co-occurrence as the source of confidence in the prediction. The Chapter is a reprint of Badal 

VD, Kundrotas PJ and Vakser IA, Text Mining for Protein Docking. PLoS Comput Biol, 2015, 11: 

e1004630. Supporting information for this Chapter is in Appendix A. 
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Chapter 3 investigates the use of sophisticated NLP techniques, starting with the distance measures 

based on generic word ontologies (WordNet) and dictionaries of various sizes. Syntactic 

(grammatical) information from the parse trees of embedding and surrounding sentences as context 

and Support Vector Machines (SVM) are utilized to purge irrelevant residues. The Chapter is a 

reprint of Badal VD, Kundrotas PJ, Vakser IA: Natural language processing in text mining for 

structural modeling of protein complexes. BMC Bioinformatics 2018, 19: 84. Supporting 

information for this Chapter is in Appendix B. 

 

 

Chapter 4 explores recent developments in deep learning (DL) for language composition, including 

deep recursive neural networks (DRNN). Distributed representation of words and the binary parse 

tree are the input to a DRNN that learns word composition and performs sentiment analysis. We 

explore effectiveness of the basic and enhanced (DL and NLP) text mining on publication abstracts 

and the full text papers. The Chapter is a reprint of Badal VD, Kundrotas PJ, Vakser IA, Enhanced 

text mining of biomedical literature for modeling of protein complexes. Submitted. Supporting 

information for this Chapter is in Appendix C. 
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Chapter 2                                                                                               

Text Mining for Protein Docking 

 

Varsha D. Badal1, Petras J. Kundrotas1, and Ilya A. Vakser1,2 

 

1Center for Computational Biology and 2Department of Molecular Biosciences, The University of 

Kansas, Lawrence, Kansas 66047, USA 

 

PLoS Comp Biol. 2015; 11:e1004630.  
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2.1 Introduction 

The rapidly growing amount of publicly available information from biomedical research is a 

modern day phenomena that is likely to continue and accelerate in the future. Most of this 

information is readily accessible on the Internet, providing a powerful resource for predictive 

biomolecular modeling. The accumulated data revolutionized structure prediction of proteins in 

the 80’s [38] and, recently, of protein complexes [39-41] due to the growth of Protein Data Bank 

(PDB) [42], providing enough structural “templates” for the prediction targets. Instead of 

painstaking and generally unreliable exploration of the enormous search space, based on the 

physical “first principles,” nowadays tools can simply proceed to the solution based on similarity 

to the existing, previously determined structures. 

In our opinion, the next stage of this revolution is brewing due to the rapidly expanding 

amount of information, other than experimentally determined structures, which still can be used 

as constraints in biomolecular structure prediction [43]. In this paper we present the first, to our 

knowledge, approach to structural modeling of protein-protein (PP) complexes (protein docking), 

based on the input from automated text mining (TM) of publications on the Internet. 

Protein-protein interactions (PPI) are central for many cellular processes. Structural 

characterization of PPI is essential for fundamental understanding of life processes and 

applications in biology and medicine. Because of the inherent limitations of experimental 

techniques and rapid development of computational power and methodology, protein docking is a 

tool of choice in many studies. One of the main problems in protein docking [11] is identification 

of a near-native match among the large, often overwhelming, number of putative matches 

produced by a global docking scan. To detect the near-native matches at the docking post-

processing stage, a scoring procedure is performed by re-ranking of the scan output matches, 
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typically using energy/scoring functions, which are too computationally expensive or 

impossible/impractical to include in the global search. Such scoring schemes may be based on 

structural, physicochemical, or evolutionary considerations [44]. For some PPI, information on the 

docking mode (e.g. one or more residues at the PP interfaces) is available prior to the docking. If 

this information is certain, there is no need for the docking global scan, and the search can be 

performed in the sub-space that satisfies the constraints. However, if the probability of such 

information is <100%, it may rather be included in the post-processing of the global scan, as part 

of the scoring.  

Given the inherent uncertainties of the global-search docking predictions, such 

independent information on the binding modes is extremely valuable [45]. Such information may 

be available on the case-by-case basis. However, for docking server predictions that can be used 

by the broad biological community an automated search for such information can be of great value. 

The PPI research is an extremely active field, yielding a vast amount of publications on 

interacting proteins [46]. These publications quickly become available online (e.g. through 

PubMed, http://www.ncbi.nlm.nih.gov/pubmed), and are a growing resource for automated 

mining of the PP binding mode. Many applications (PubMed ENTREZ, NLProt, MedMiner, etc.) 

utilizing TM techniques have been developed to improve access to the published knowledge [47]. 

TM converts textual information into database content and complex networks, facilitating 

development of novel working hypothesis [4]. In biology, TM tools have been used to mine generic 

or specific information on genes, proteins and their functional relationships. Natural Language 

Processing (NLP) and Support Vector Machines (SVM) have been used to extract information on 

connection between proteins in PPI networks [3, 5, 48-52]. Along with the networks of interacting 

proteins, TM tools have been used to generate a dataset of non-interacting proteins [53]. Full-text 
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articles on metabolic reactions and mutation impacts have been mined by rule-based parser, pattern 

matching, and entity taggers (protein and gene names along with specific keywords) [54, 55]. 

Automated TM procedure was developed to extract subcellular localization and function of 

proteins [56]. TM in combination with the dynamic perturbation analysis has been employed to 

increase confidence in predicted protein functional site [57], suggesting that if a residue is 

mentioned in an abstract on the protein structure, it is likely to be in the functional site. 

TM approaches are also implemented in many Web-based applications. There are different 

TM tools for identification of interacting proteins from biological literature and databases [58]. 

GENIA corpus (a collection of semantically annotated documents) has been specifically designed 

for testing NLP approaches [59]. PESCADOR extracts a network of interactions from a user-

provided set of PubMed abstracts [60]. LAITOR can further filter this mined interactome 

according to the specific user needs [61]. CRAB extracts data from MEDLINE abstracts, which 

are relevant to tumor-related chemicals posing risk to human health [62]. PIE utilizes word and 

syntactic features to effectively capture PPI patterns from biomedical literature [7, 63]. eFIP mines 

information on phosphorylation and related interactions of a given protein using rule-based NLP 

[64]. PPInterFinder extracts Medline abstracts on human proteins using co-occurrences of protein 

names, specific keyword dictionary, and pattern matching [65]. BioQRator can annotate PPI-

relevant entity relationships from the biomedical publications [66]. 

In this paper, we propose the first, to our knowledge, approach to TM constraints for PP 

docking. Our methodology, by design, is a combination and expansion of two well-developed TM 

fields: (1) identification of interactors in PPI networks, and (2) detection of protein functional 

(small ligand) sites. We use the first one as the source of expertise on TM of PPI (existing 

approaches are concerned with the fact of interaction, not the mode of interaction), and the second 
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one as the source of expertise on TM for structural prediction of the binding sites on proteins 

(existing approaches are for small non-protein ligands). The method was tested on PubMed 

abstracts of publications on protein complexes from DOCKGROUND 

(http://dockground.compbio.ku.edu) and showed a significant improvement of the docking success 

rates. 

2.2 Methods 

2.2.1 Text-mining protocol 

The principal stages of the TM protocol are shown in Figure 2-1. We divide our procedure into 

two parts, information retrieval (selecting abstracts containing names of both or either proteins in 

a complex) and information extraction (detecting occurrence of residues in the retrieved abstracts). 

The abstracts were further filtered by SVM model with optimal sets of features. The TM tool was 

benchmarked on 579 PP complexes with known bound X-ray structures from Dockground and 

applied for re-scoring of the initial docking models for 99 protein pairs from the Dockground 

unbound benchmark set 3. 

2.2.2 Information retrieval 

Protein name and UniProtKB ID, corresponding to the particular PDB code and protein chain, 

were obtained from PDB. To simulate the “real case scenario” when the structure of the target 

protein is unknown, PubMed ID (PMID) of the direct citation (publication describing the X-ray 

structure of the complex) was extracted from the PDB and the publication excluded from the 

further consideration. To further test our methodology, we also restricted the analysis to abstracts 

published prior to the direct citation paper. Using the UniProtKB ID, protein information in XML  
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Figure 2-1: Flowchart of the text mining protocol. 
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format was acquired from the UniProtKB [67]. Information from both PDB and UniProtKB was 

accessed through REST (REpresentational State Transfer) Web Services 

(http://www.rcsb.org/pdb/software/rest.do), (http://www.uniprot.org/help/programmatic_access). 

For the query construction, at the current stage, we used only recommended, short and alternative 

protein names, ignoring organism name, classification of the monoclonal antibodies 

(“CD_antigen” tag), all parts of gene information (name, synonyms, ordered locus names, and 

open reading frame), E.C (Enzyme Commission) numbers, as well as UniProtKB terms 

“Uncharacterized protein.” Inclusion of all this additional information into the search queries 

requires implementation of deep parsers, which is in our plans for the future research. 

Protein names were normalized by replacing reserved characters with their URL encodings 

(spaces replaced by %20, etc.), by removing extra (trailing) spaces, and by hyphen replacement. 

The query for a protein with a hyphen in its name contains OR-connected versions of the name 

with hyphen, hyphen removed and replaced by space. For example, query for “IL-15R-alpha” 

(PDB: 2z3q, chain B) also includes following variations: “IL-15Ralpha”, “IL15R-alpha”, 

“IL15Ralpha”, “IL%2015Ralpha”, “IL15R%20alpha”, and “IL%2015R%20alpha”. Short names 

with < 3 symbols were ignored and additional AND-connected keyword “protein” was added to 

the 3-symbols names.  

For 13 PP complexes in the set, protein names coincided with generic, frequently used 

words (“act” for 1yrt, chain A, UniProtKB: P0DKX7 or “hot” for 2ido, chain B, UniProtKB: 

Q71T70). To reduce noise, search queries for such complexes contained also MESH terms [68] 

(combinations of the MESH terms under heading “Biochemical Phenomena”). 

For 87 proteins, UniProtKB had section “Cleaved into the following X chains” referring to 

different domains. In such cases, we considered several scenarios. In the case of exact match 
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between PDB and UniProtKB recommended protein names (29 proteins), we assumed that the 

PDB structure comprised all the domains mentioned in UniProtKB and included into the query 

OR-connected recommended name for the entire protein and the names of all the domains. For 

example, X-ray structure for cationic trypsin (PDB 2xtt, chain B, UniProtKB: P00760) contains 

both domains (Alpha-trypsin chain 1 and Alpha-trypsin chain 2) mentioned in UniProtKB and the 

PDB name matches exactly the UniProtKB recommended name. If PDB name matched exactly 

only one of the domain names (17 proteins), than the query included the name of only this domain 

along with the recommended protein name. For example, “Protease inhibitor SGPI-1” (PDB 2xtt, 

chain A, UniProtKB: O46162) is the PDB protein name, which matches exactly one of the cleaved 

components and does not match recommended UniProtKB name “Serine protease inhibitor I/II”. 

If the PDB protein name did not match exactly neither UniProtKB recommended name, nor any 

domain names (41 proteins), we considered only the recommended and the PDB names. For 

example, “epithelial-cadherin” is the PDB protein name (PDB 2omz, chain B, UniProtKB: 

P12830), which is not the same as the recommended UniProtKB name “Cadherin-1” and none of 

the cleaved components (“E-Cad/CTF1”, “E-Cad/CTF2”, “E-Cad/CTF3”). String comparison was 

performed using Perl module Text::Levenshtein, which implements Levenshtein similarity string 

matching algorithm (http://search.cpan.org/dist/Text-Levenshtein/lib/Text/Levenshtein.pm). 

After constructing two queries, “query1” and “query2”, one for each protein in a particular 

complex, two final queries were assembled: “query1 AND query2” (termed here as AND-query) 

and “query1 OR query2” (OR-query). The AND- and OR-queries were submitted to ESearch and 

EFetch modules of NCBI E-utilities tool [69], (http://www.ncbi.nlm.nih.gov/books/ NBK25501). 

To keep track on which protein is studied in the retrieved abstracts, two parts of the OR-query 
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were submitted separately. Maximum of 100,000 PubMed abstracts with publication dates 

between January 1, 1971 and November 30, 2014 were retrieved for each submitted query. 

2.2.3 Information extraction 

Abstracts of publications corresponding to 579 complexes, retrieved by the E-utilities from the 

PubMed (the number of abstracts varies for different types of queries, see Results and Discussion), 

were searched for the residues using regular expressions (Table 2-1) obtained by the manual 

inspection of 100 abstracts that mention residues. We considered patterns with only three-letter or 

full residue names, since mining of one-letter residue abbreviations requires deep parsing of the 

surrounding text, which is beyond the scope of our current study. However, if keywords related to 

mutagenesis studies (“mutation”, “mutagenesis”, “mutagen”, “mutant”, “substitution”) were 

spotted, one-letter abbreviations for mutation (e.g., “S4A”) were included in the search patterns. 

For the mutations, both original and substitution residues were taken (e.g., for the pattern “S4A”, 

both Serine 4 and Alanine 4 were considered as the mined residues). 

Since residues participating in docking are on the protein surface, the names and numbers 

of the extracted residues were checked against the names and numbers of the surface residues from 

the original PDB file. For the AND-query, the check was performed against both chains of the 

original complex, whereas for the OR-query, the examination was done only for the protein 

mentioned in the retrieved abstract (to reduce noise due to the accidental match of the residue name 

and numbers). Surface residues were defined as those with ≥ 25% of their surface exposed to 

solvent [70]. The solvent accessible area was calculated by the program surfv [71]. Only the 

residues with both name and number matching the residues from the original PDB file were 

considered further (we termed them "identified residues"). In the case of mismatch between PDB 

and UniProt sequence numbering, we mapped the UniProt sequence on the PDB one as in Ref. 



18 

 

[72]. An identified residue was considered correct if any of its heavy atoms was ≤ 6 Å from any 

heavy atom of the interacting protein in the co-crystallized complex, which means that the residue 

is at the PP interface. Performance of the TM protocol for a particular PPI, for which a query 

extracted N abstracts containing residues, was quantified as a fraction of correct (interface) 

residues among all identified residues 
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where int

iN  and non

iN  are numbers of interface (correct) and non-interface (incorrect) residues in 

abstract i. 

Table 2-1: Regular expressions for amino acids in the information extraction part of the text 

mining protocol 

 

Parameter Value 

Number [1-9][0-9] a 

Amino acid (AA) [Ala,…, Val] OR [ala,…, val] OR [ALA,…, VAL] b 

Three letter residue 
AA(no space)Number OR AA(space)Number OR AA – Number | 

AA(Number) 

Full AA [Alanine,...,Valine] OR [alanine,...,valine] c 

Full word residue 
Full_AA(no space)Number OR | Full_AA(space)Number OR  

Full_AA – Number OR Full_AA(Number) 

Single AA [A,....,V] d 

Single letter mutation Single_AA(no space)Number(no space)Single_AA 

Three letter mutation AA(no space)Number(no space)AA OR AA-Number(no space)AA 

 

a Non-zero digit followed by any number of digits 

b Three-letter abbreviation for standard amino acids 

c Full name of amino acid 

d One-letter abbreviation for amino acid 
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2.2.4 Generation of feature sets for SVM models 

We generated a set of features by handpicking 60 words from carefully read randomly selected 21 

PPI abstracts and 43 non-PPI abstracts (Table 2-2). Subsets of 50, 40, 30, 20 and 10 features were 

also selected based on our understanding of importance of a feature for PPI description. We refer 

to these sets of features as manually selected, abbreviated as MFxx, where xx is the number of 

features in the set. 

We also generated a set of features by automated counting of words in the abstracts. We 

refer to this set and all of its subsets as automatically selected, abbreviate as AFxx, where xx is the 

number of features in the set. For this set, Lpos = 450 positive and Lneg = 855 negative abstracts, 

respectively satisfying conditions 
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were selected from 1,523 abstracts retrieved by the AND-queries. Positive and negative abstracts 

were further randomly split into training (80% of abstracts, or = 360 positive and = 684 

negative abstracts) and validation (remaining 20%) sets, and features were selected from the 

training set. 

Specific protein and amino acid names were excluded from the counting, as they were part 

of the queries in the TM protocol. Stop words (“and”, “as”, “because”, “the”) were also purged 

from the abstracts. The abstracts were subjected to the tokenizer [73] for the suffix stripping by 

the Porters stemming algorithm [74] in order to get the stem (root) forms of the remaining abstract 

words. We slightly modified the original algorithm so that a root of a word would accommodate 

train

posL train

negL
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wider variability in the spelling of words with the same meaning. For example, words “include” 

and “inclusion” are counted by the root “inclu-”, words “mutant”, “mutagenesis”, “mutation”, 

“mutagen”, “mutated”, “mutations”, “mutation” are accounted for by the root “muta-”, etc. 

The normalized counts for each stem (feature) were calculated separately for the positive 

(k = pos) and the negative (k = neg) abstracts in the training set 

where  is the number of times feature m appears in abstract i. All features satisfying 

conditions 

        pos neg pos neg0.02 and 0.2f m f m f m f m    , (2-4) 

were selected for the full set AF143 (automatically selected 143 features). The criteria are meant 

to balance a maximal number of features and a strong signal. The full set was sorted based on the 

ratio 

 

, 

  

(2-5) 

and consists of 76 PPI-relevant (   0m  ) and 67 PPI-non-relevant (   0m  ) features 

(Table 2-2).  
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Table 2-2: Sets of features (stems) for SVM models.  

Manually selected features are sorted alphabetically and automatically selected features are 

sorted based on the ratio  (Eq. (2-5) large to small. PPI-relevant features are in bold. 

 

Number of words in a bag Bag of words 

Manual selection 

60 activ, affin, alloster, associ, attach, between, bind, bond, bound, catalyt, chang, cleavag, cofactor, complex, conform, 

cooper, conjug, conserv, contact, cycliz, delet, diminish, direct, domain, downstream, enhanc, enzym, facilit, growth, 

increas, induc, induct, inhibit, interact, interfac, involv, linkag, mechan, metabol", modifi, modul, phosphoryl, positio, 

preferenti, proxim, reassoci, receptor, recognit, redox, regulatori, signal, specif, stabil, stimul, substrat, suppress, 

surfac, target, transform, trigger 

 

50 affin, alloster, associ, attach, bind, bond, bound, catalyt, chang, cleavag, complex, conform, conserv, cooper, contact, 

cycliz, delet, diminish, direct, domain, downstream, enhanc, enzym, facilit, growth, increas, induc, inhibit, interact, 

interfac, involv, linkag, mechan, metabol, modifi, modul, preferenti, reassoci, recognit, regulatori, signal, specif, stabil, 

stimul, substrat, suppress, surfac, target, transform, trigger. 

 

40 affin, alloster, associ, attach, bind, bond, bound, catalyt, cleavag, complex, conform, conserv, cooper, contact, cycliz, 

delet, diminish, domain, enhanc, enzym, facilit, increas, induc, inhibit, interact, interfac, linkag, mechan, modifi, modul, 

preferenti, recognit, regulatori,  specif, stabil, substrat, surfac, target, transform, trigger. 

30 affin, alloster, associ, attach, bind, bond, bound, cleavag, complex, conform, conserv, contact, cooper, domain, induc, 

interfac, interact, ,linkag, , mechan, modifi, modul, preferenti, recognit, regulatori specif, stabil, surface, substrat, target, 

transform 

 

20 alloster, bind, bond, bound, cleavag, complex, conform, contact, conserv, domain, induc, interfac, interact, mechan, 

modul, preferenti, recognit, specif, stabi, surface. 

 

10 alloster, bind, complex, conform, conserv, contact, induc, interface, interact, recognit. 

Automated selection 

143 polymorph, interfac, energi, bond, free, antibodi, beta, phenotyp, patient, promot, light, degre, conjug, gene, affin, 

label, diseas, filament, affect, signal, ca2+, crystal, properti, complex, interact, resist, level, valu, detect, membran, 

contain, contribut, inclu, terminu, produc, genera, regul, shown, examin, transcript, normal, lower, time, base, stabil, 

express, critic, phosphoryl, subunit, function, assai, peptid, catalyt, surfac, enhanc, investig, format, positio, determin, 

residu, bind, loop, rate, effici, report, factor, molecul, inhibit, prolifer, deriv, sequenc, alter, singl, mediat, structur, 

purifi, induc, depend, dna, reveal, sensit, receptor, compar, model, cleavag, via, product, target, variant, specif, loss, 

growth, potenti, requir, essenti, caus, decreas, low, substrat, associ, mechan, conform, fold, contrast, similar, type, 

involv, found, novel, region, exhibit, wild, vitro, observ, develop, fragment, famil, conserv, cell, identifi, stud, reduc, 

provid, demonstr, acid, data, link, effect, presenc, activ, result, role, domain, chain, enzym, form, alpha, index, site, 

increas, suggest, mutant, protein 
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2.2.5 SVM models 

We define an SVM model as an SVM classifier with a kernel function, trained and validated with 

a particular set of features. For the training and validation of the SVM models we used readily 

available SVMLight [75, 76] with polynomial, , and radial-base (RBF), 

 kernel functions (Xi and Xj are support and test feature vectors). 

We tested different values of parameters d and γ while parameters α and C had default values (α = 

1 and C = 0), and distinguished a particular case of the polynomial kernel with d = 1, as the linear 

kernel. We have also investigated how results are affected by varying degree d of polynomial and 

parameter γ of RBF kernels. Validation of the SVM models was carried out in the classification 

mode where an abstract was identified as positive or negative depending on the sign of the SVM-

score. In some cases, abstracts with SVM scores close to zero (within a margin) were considered 

as “unclassified” and excluded from the performance evaluation.  

All SVM models were trained on 1044 abstracts and validated on different 261 abstracts 

(see above). Performance of an SVM model was evaluated in usual terms of precision P, recall R, 

accuracy A [77], and Matthews’ correlation coefficient MCC [78] 
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2.2.6 Docking with text-mining constraints 

Basic TM protocol with the OR-queries was used to mine residues for 99 complexes from the 

DOCKGROUND benchmark set 3 [79], containing the unbound X-ray structures for the co-

crystallized complexes (bound structures). Queries for individual proteins and 63 binary 

complexes were generated as described above. For 36 multimeric complexes, queries were 

generated using OR-combinations of queries for all monomers in a multimeric chain (e.g., for 

complex AB: CDE the OR-query was “(queryA OR queryB) OR (queryC OR queryD OR 

queryE)”). Abstract of publications on the X-ray structure of the co-crystallized complex were 

excluded from consideration using corresponding PMID from the PDB entry. For validation, the 

extracted residues were matched to the residues in the bound structures of the dataset (numbering 

and chain IDs in the bound and the unbound structures is often different). Extracted residues were 

ranked, in descending order, separately for each interactor (single or multimeric) by the confidence 

function  

 

, 
(2-7) 

where NR is the total number of distinct abstracts, in which residue R is mentioned, and 𝑎𝑖 = 2, if 

abstract i was retrieved by the AND-query and 𝑎𝑖 = 1, if the abstract was retrieved by the OR-

query only. Top five residues for each interactor were used as constraints in our GRAMM docking 

program [80] giving an extra weight (proportional to f(R)) to the scoring function if the identified 

residue was at the interface of a docking model. The upper limit of 10 in Equation (2-7) was chosen 

to balance the diversity of low confidence (f = 1) vs. high confidence (f = 10) constraints and 

potential overrepresentation of a residue in publications (very high f values). If > 5 residues had 

the highest f values, then preference was given to the residues with scores containing more 
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contributions from the abstracts retrieved by the AND-queries. Otherwise, the excess residues 

were removed from the list randomly. 

For validation, the residues at the crystallographically determined interface (reference 

residues) were extracted from the co-crystallized complexes using 6 Å distance cutoff between the 

heavy atoms of the proteins in the complex. All pairs of these interface residues were ranked in 

ascending order by the distance between their Cα atoms. The top three pairs were submitted to 

GRAMM with the highest possible confidence score 10 (reference constraints). 

The unbound structures were docked by GRAMM once using the TM constraints and then, 

for comparison, the reference constraints. The output of the global low-resolution docking scan 

consisted of 20,000 matches, with no post-processing (except for the removal of redundant 

matches). These matches were subjected to scoring by the sum of the f values (Equation (2-7)) if 

constraints were generated for the complex. If no constraints were generated, the score was zero. 

All matches were then re-sorted according to these scores. The quality of a match was assessed by 

Cα ligand interface root-mean-square deviation, i-RMSD (ligand and receptor are the smaller and 

the larger proteins in the complex, respectively), calculated between the interface of the docked 

unbound ligand and corresponding atoms of the unbound ligand superimposed on the co-

crystallized bound structure. 

2.3 Results and Discussions 

2.3.1 Basic text mining 

Overall performance of two query types. The ultimate success of our TM approach relies heavily 

on the text pool obtained during information retrieval stage (Figure 2-1). Queries for mining texts 

on interactions of two proteins often are generated based on the co-occurrence principle [61], 

requiring that information on both proteins be presented in the abstract of a publication (AND-
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query, see Methods). For generating docking constraints, however, it could be desirable to extract 

a more diverse text set by requiring presence of information on either protein (OR-query). This 

could be especially helpful for proteins that bind several partners at the same interface. However, 

the “brute-force” use of the OR-queries may also result in many irrelevant abstracts (allosteric 

sites, substrate preference, signaling and conformational changes, etc.). 

To clarify this issue, we have analyzed abstracts for 579 protein complexes from DOCKGROUND 

retrieved by the AND- and OR-queries. The original publications, describing the PDB structures 

of the complex, were excluded from consideration. The AND-queries retrieved 220,603 abstracts 

for 277 complexes; and 18,670 residues (with the names that match features in Table 2-2) were 

extracted from 11,732 abstracts for 193 complexes. In 11,732 abstracts for 193 complexes, 

residues were detected 18,670 times. The application of the simple filters (see Methods) reduced 

these numbers to 1,375 residues (identified residues) in 1,660 abstracts for 128 complexes. Of 

those, 571 residues for 108 complexes were found to be correct (at the PP interfaces). For 21 

complexes, all identified residues were correct (PTM = 1), and for 20 complexes, all identified 

residues were outside the interface (PTM = 0). The OR-queries retrieved 2,640,816 abstracts for 

492 complexes; and 207,931 residues were extracted from 150,060 abstracts for 431 complexes. 

Residue filtering resulted in 5,781 identified residues in 18,528 abstracts for 328 complexes, out 

of which 1,919 residues in 273 complexes were correct. All identified residues were correct in 36 

complexes, and no interface residues were identified for 55 complexes. All abstracts retrieved by 

the AND-queries were retrieved by the OR-queries as well. 

Comparison of the overall basic TM performance for AND- and OR-queries (first two data 

rows in Table 2-3) suggests significantly higher coverage, with comparable accuracy for the OR–

queries. However, as data in Figure 2-2 indicates, the OR-queries also extracted many irrelevant 
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abstracts with non-interface residues (bars for the OR-queries with weaker TM performance 

[smaller PTM values] are larger than the corresponding bars for the AND-queries). For example, 

for SH2D1A-p59Fyn complex (1m27) AND-query did not retrieve any abstracts, whereas OR-

query retrieved 6 abstracts, from which 3 interface and 1 non-interface residues were extracted 

(Figure 2-3; for the detailed description, see Text A-1). Figure A-1 and Text A-1 provide more 

examples of the basic TM performance with different PTM and a detailed explanation of what 

residues were extracted from the abstracts, retrieved by the AND- and OR-queries. 

 

 
Figure 2-2: Distribution of complexes according to the quality of the basic TM.  

The TM performance is according to PTM (Eq.(2-1)). The distribution is normalized to the total 

number of complexes for which residues were identified (column 3 in Table 2-3)). 
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Figure 2-3: Examples of residues extracted from an abstracts retrieved by OR-query. 

The structure, chain ID, and residue numbers are from 1m27. Interface and non-interface residues 

are in brown and magenta, correspondingly. 

 

Correction for different residue numbering. For 430 out of 1158 monomers, the numbering of 

residues in PDB files did not match that in the UniProt. For these monomers, we modified the 

filtering of the initial pool of extracted residues (described above), which resulted in 1,619 

identified residues in 2,028 abstracts for 142 complexes, for AND- queries; and 6,735 identified 

residues in 20,040 abstracts for 342 complexes, for OR- queries. All identified residues were 

correct for 25 and 31 complexes, and no interface residues were identified for 24 and 59 complexes 

for AND- and OR-queries, respectively. Analysis of these results (third and fourth data rows in 

Table 2-3 and Figure A-2 ) suggests that the numbering mapping only slightly improved TM 

performance.  
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Mining of abstracts published before the PDB structure paper. To further test the predictive 

power of our approach, for each complex, we considered only abstracts with publication date 

earlier than that of the paper on the PDB structure. This reduced the pool to 84,366 abstracts for 

263 complexes, and 1,586,097 abstracts for 487 complexes retrieved by the AND- and OR-queries, 

respectively. For AND- queries, 7,956 residues were extracted from 3,944 abstracts, and standard 

residue filtering (see Methods) resulted in 776 identified residues in 814 abstracts for 96 

complexes. For OR- queries, 114,472 residues were extracted from 81,418 abstracts, and standard 

residue filtering resulted in 3,731 identified residues in 9,321 abstracts for 268 complexes. All 

identified residues were correct for 21 and 29 complexes, and no interface residues were identified 

for 21 and 66 complexes, for AND- and OR-queries, respectively. The analysis of these TM results 

(5th and 6th data rows in Table 2-3 and Figure A-3) showed no significant change in the TM 

performance. 

2.3.2 SVM-enhanced text mining 

Optimization of SVM models. For the manual mode of feature selection, we considered full 

MF60 set and five of its subsets, MF50, MF40, MF30, MF20 and MF10 (upper part of Table 2-2). 

For the automated mode of feature selection, we started with the full AF143 set (lower part of 

Table 2-2) and gradually remove features with smallest |δ(m)| (Eq. (2-5)). For each subset, we 

trained and tested SVM procedure with several different kernels, with and without a margin for 

the abstract classification (see Methods).  

Introduction of the margin only slightly changes SVM performance (Figure A-4 and 

Figure A-6 for the MFxx sets with linear and RBF γ = 1 kernels, respectively) and filters out 

considerable number of the abstracts (e.g., for the MF50 set, 13 and 223 abstracts were classified 

within the 0.05 margin by the linear and the RBF γ = 1 kernels, respectively). Results for the AFxx 
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sets and other kernels do not show significant change in the performance of SVM with the margin 

as well (examples of data for the linear kernel are compared in Figure A-8 and Figure A-9). 

Varying degree d of the polynomial (Figure A-5 and Figure A-10) and parameter γ of the RBF 

(Figure A-7 and Figure A-11) kernels for both MFxx and AFxx sets also did not change the SVM 

performance significantly. Thus, for simplicity, we present and analyze results only for the linear 

(polynomial d = 1) and RBF γ = 1 kernels without the margin. Hereafter, we will abbreviate SVM 

models as AB, where A stands for the feature set (see Methods) and B = L, R for linear or RBF 

kernels, correspondingly.  

In this study, we utilized a binary SVM classifier (abstracts are categorized as either positive 

or negative). Then, the performance of our SVM models can be quantified by a single measure, 

Matthew correlation coefficient, MCC (Eq. (2-6)) and the optimum SVM model would have the 

maximum MCC value [78]. Results, presented in  

Figure 2-4, show that three SVM models (MF50L, AF138L, and AF24L) have approximately 

the same maximum MCC value ~0.25. The AF138L model has the best recall (57.8%), but worst 

accuracy and precision (64% and 48.1%, respectively), whereas the AF24L model achieved the 

best accuracy and precision (66.7% and 51.7%, respectively), but the worst recall (51.1%). The 

MF50L model has all parameters between the AF138L and AF24L models (Table 2-4). The 

variations in the model parameters do not exceed 10% (Table 2-4). Thus we kept all three models 

for further consideration. 

No models with the RBF kernel had similar performance, except the AFxx sets with xx < 15 ( 

Figure 2-4). Such small number of features in the SVM model is clearly not enough for statistically 

reliable results and such models were discarded. As number of features in the model increases, the 

performance of the RBF kernel deteriorates, in particularly, due to the large amount of abstracts 
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with the SVM score close to zero (Figure A-6, Figure A-7, Figure A-11). This correlates with 

the conclusion of other studies [81-83] that for the most text categorization problems, the best 

performance is achieved by the linear separation of feature vectors.  

 

 
 

Figure 2-4: Matthews correlation coefficient vs. number of features in SVM model.  

The Matthews correlation coefficient (MCC) is calculated according to Eq. (2-6). The features 

were selected manually (A) and in automated mode (B), for linear and RBF SVM kernels. The data 

was obtained on the validation set of 261 abstracts. The SVM models were trained on 1,044 

abstracts (see Methods).  

 

Abstract-wise feature selection, irrespective of the number times a feature appears in an 

abstract, used earlier to extract features for prediction of protein function and localization [56, 84], 

changes the rank of the initial features. However, the MCC values, calculated for the SVM models 
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with two different methods of feature selections, are in the same range (Figure A-12). Thus 

significant changes in the SVM performance should not be expected. 

 

Table 2-3: Performance of basic and SVM-enhanced TM protocols. 

The SVM models were trained and tested on abstracts retrieved by the AND-queries. Best models 

were applied to abstracts retrieved by the OR-queries (see Methods). Total number of complexes 

in the dataset is 579, if not specified otherwise. 

 

Query type SVM model Ltot a Lint b Coverage  
(%) c 

Success 
(%) d 

Accuracy 
(%) e 

Basic text mining (numbering of residues from PDB only) 

AND  128 108 22.1 18.7 84.4 

OR  328 273 56.6 47.2 83.2 

Basic text mining (numbering of residues from PDB and UniProt) 

AND  142 118 24.5 20.4 83.1 

OR  342 283 59.1 48.9 82.7 

Basic text mining (numbering of residues from PDB, only abstracts prior original publication) 

AND  96 75 16.6 13.0 78.1 

OR  268 202 46.3 34.9 75.4 

SVM-enhanced text mining (numbering of residues from PDB only) 

OR MF50L 266 211 45.9 36.4 79.3 

OR AF138L 269 213 46.5 36.9 79.2 

OR AF24L 253 193 43.7 33.3 76.3 

Basic text mining on benchmark 3 (99 complexes, numbering of residues from PDB only) 

OR  93 82 93.9 82.8 88.2 

 

a Number of complexes for which TM protocol found at least one abstract with residues 

b Number of complexes with at least one interface residue found in abstracts 

c Ratio of Ltot and total number of complexes 

d Ratio of Lint and total number of complexes 

e Ratio of Lint and Ltot 
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Table 2-4: Classification of abstracts in the test set by the three optimal SVM models.  

Total number of abstracts 261 (90 PPI-relevant and 171 non-PPI). 

 

SVM model TP FN TN FP 

MF50L 48 42 123 48 

AF138L 52 38 115 56 

AF24L 46 44 128 43 

 

Performance of SVM-enhanced text-mining protocol. While retrieving abstracts with the 

residues for significantly larger amount of PPI, the OR-queries bring also up many irrelevant 

residues. As the first step in mitigating this problem, we filtered 7,991 abstracts for 328 complexes 

(hereafter, called the original set of complexes), for which residues were found in the abstracts 

retrieved by the OR-queries, using three optimal SVM models (MF50L, AF138L and AF24L), 

trained and validated on the 1,305 abstracts retrieved by the AND-queries (see above). In this 

approach, an abstract is classified either as positive (publication in the PPI context) or negative 

(not PPI-relevant context) and then only positive abstracts are retained for the PTM calculation (Eq. 

(2-1). 

MF50L, AF138L and AF24L models removed at least one abstract for 296, 294 and 302 

complexes, respectively, which is ~ 90 % of the initial set. Overall performance of the SVM-

enhanced TM did not change significantly (middle part of Table 2-3 and Figure 2-5 A) compared 

to the basic TM (upper part of Table 2-3 and Figure 2-2). However, complexes, for which SVM 

models erroneously remove interface residues (PTM decreases) constitute only ~ 1/3 of the initial 

set (Figure 2-5 B). The SVM models filtered out all PPI-relevant and all PPI-irrelevant (with non-

interface residues) abstracts for ~13 % and ~ 7 % of the initial dataset, respectively (hatched parts 

of the ΔPTM < 0 and ΔPTM = 0 bars in Figure 2-5 B). 
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Figure 2-5: Performance of the best SVM models. 

The abstracts were retrieved by the OR-queries. Distribution of complexes (A) is shown according 

to the TM performance, PTM (Eq.(2-1). The distribution is normalized by the total number of 

complexes for which residues were retrieved (column two in Table 2-3)). After filtering of abstracts 

by the optimal models, for a number of complexes (B) PTM improves (PTM > 0), does not change 

(PTM = 0) and gets worse (PTM < 0). Hatched areas show the number of complexes, for which 

the optimal models removed all abstracts. 

 

Analysis of performance of the SVM models on several complexes (Table A-1 and Text A-2) 

revealed somewhat erratic performance of different models, caused by the inconsistency in residue 

context where interface residues are present in the abstracts with prevailing non-PPI features and 

vice versa (e.g., Ala11 of TIMP3 was found in the abstract of study about vasoconstricting peptide 

administration, not directly relevant to this protein binding [85]).  
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2.3.3 Docking with the text mining constraints 

We ran the free docking by GRAMM to model complexes of unbound proteins from the 

DOCKGROUND X-ray benchmark 3 [79] using constraints generated by the basic TM protocol with 

OR-queries (see Methods).  

In the unbound set of 99 complexes, by design the component proteins have both the co-

crystallized and separately resolved X-structures, and as such were presumably on average more 

extensively studied than the complexes from the main bound set of 579 complexes used in this 

study for TM evaluation. This resulted in a significantly larger pool of publications extracted by 

the OR-queries (68 abstracts per complex for the unbound set, compared to 32 abstracts per 

complex for the bound set). Thus, a significantly larger number of residues per complex were 

identified (Figure A-13) and the TM performed better on the unbound set than on the larger bound 

one (last row in Table 2-3). However, the number of irrelevant (non-interface) residues was also 

significantly larger, reducing TM effectiveness (Figure A-14). The AND-queries retrieved 

abstracts with residues for 37 complexes only and TM protocol with the AND-queries was not 

used here separately. However, for residue ranking (Eq. (2-7)), we kept track of which residues 

were retrieved by the AND-queries. The TM results based on OR-queries for the top 10 residues 

per complex (5 for each protein, ranked by the frequency of the residue occurrence, Eq. (2-7)) 

were significantly better (Figure A-14). Thus, these residues were submitted to GRAMM docking 

program for scoring of the docking scan output. 

To single out the role of the TM constraints, they were applied to re-rank unrefined and 

otherwise unscored docking models output directly from the GRAMM scan (the baseline for 

evaluating the impact of the TM constraints). For comparison, the re-ranking was also done 

separately with the correct interface residues as constraints (see Methods). We used strict (at least, 
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one model with i-RMSD ≤ 5 Å in top 10 predictions) and relaxed (at least, one model with i-

RMSD ≤ 8 Å in top 100 predictions) success criteria.  

The TM scoring significantly increased docking success rates, by 71% (compared to the 

baseline shown as blue columns in Figure 2-6) according to the stricter criterion, and by 32% 

according to the relaxed one (Figure 2-6). The results on the reference set of constraints, 

corresponding to the correct interface residues, showed that 27 complexes have near-native 

matches in the top 20,000 scan predictions according to the strict criterion, and 62 according to the 

relaxed one. The RMSD was calculated between the unbound ligand predicted match and the 

unbound ligand structurally aligned with the bound in the complex. Such alignment has significant 

mismatches with the receptor in a number of complexes, due to the conformational change upon 

binding. So the near-native matches for such complexes cannot be predicted by the surface 

complementarity-based rigid body free docking (this correlates with the docking decoys results 

[86] where a near-native match was found only for 61 complexes in 500,000 top scan matches). 

The observed increase of the docking success rate is the result of constraints from the basic 

TM only. One can assume that the deep parsing/NLP will lead to further improvement of the 

docking quality, closer to the level of the reference constraints (Figure 2-6). 
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Figure 2-6: Docking with TM constraints. 

The results of benchmarking on the unbound X-ray set from DOCKGROUND. A complex was 

predicted successfully if at least one in top ten matches had ligand Cα interface RMSD ≤ 5 Å (A), 

and one in top hundred had RMSD ≤ 8 Å (B). The success rate is the percentage of successfully 

predicted complexes in the set. The low-resolution geometric scan output (20,000 matches) from 

GRAMM docking, with no post-processing, except removal of redundant matches, was scored by 

TM results. The reference bars show scoring by the actual interface residues (see text). 

 

2.4 Conclusions 

TM has been widely used in recreating PPI networks, as well as in detecting functional sites  (small 

ligand binding sites) on protein structures. Combining and expanding these two well-developed 

research areas, we applied TM to structural modeling of protein-protein complexes (protein 

docking). Abstracts of publications on 579 protein complexes from DOCKGROUND were retrieved 

from PubMed, using AND- and OR-queries (both proteins and at least one protein mentioned in 
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the text, correspondingly). The AND-queries identified more correct residues than the OR-queries, 

but retrieved abstracts with residues for significantly less complexes. SVM was used to improve 

the performance of OR-queries. The SVM models generated using simple bag-of-words 

representation of the text, removed irrelevant information extracted by the OR-queries, albeit not 

enough for an accurate discrimination of non-interface from the interface residues, as shown by 

the inconsistent performance of different SVM models. Whereas human expertise can consistently 

distinguish relevant from non-relevant to the interface information (as shown by our evaluation of 

a small subset of abstracts), a reliable and accurate automated procedure requires greater 

sophistication than the basic one used in our study.  

The basic TM was used to generate constraints for docking, and tested on the protein-

protein unbound docking benchmark set. TM significantly increased the docking success rates. 

Contextual analysis by deep parsing on sentence/residue level (an on-going study in our group) 

should improve the detection of the interface residues, and further increase the docking success 

rates. The preliminary results in this proof-of-concept study showed that TM is a promising 

approach to protein docking, with its utility increasing along with the rapidly growing amount of 

publicly available information on protein complexes.  
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3.1 Background 

Protein-protein interactions (PPI) play a key role in various biological processes. An adequate 

characterization of the molecular mechanisms of these processes requires 3D structures of the 

protein-protein complexes. Due to the limitations of the experimental techniques, most structures 

have to be modeled by either free or template-based docking [11]. Both docking paradigms 

produce a large pool of putative models, and selecting the correct one is a non-trivial task, 

performed by scoring procedures [87]. Often knowledge of a few binding site residues is enough 

for successful docking [88]. 

In recent years, the number of biomedical publications, including PPI-relevant fields, has 

been growing fast [46]. Thus, automated text mining (TM) tools utilizing online availability of 

indexed scientific literature (e.g. PubMed, https://www.ncbi.nlm.nih.gov/pubmed) are becoming 

increasingly important, employing Natural Language Processing (NLP) algorithms to purge non-

relevant information from the initial pool of extracted knowledge. TM+NLP techniques are widely 

used in biological text mining [89-102], particularly for the extraction and analysis of information 

on PPI networks [5-7, 49, 51, 53, 103-112] and for the prediction of small molecules binding sites 

[8, 9]. 

Recently, we developed a basic TM tool that extracts information on protein binding site 

residues from the PubMed abstracts. The docking success rate significantly increased when the 

mined residues were used as constraints [37]. However, the results also showed that many residues 

mentioned in the abstracts are not relevant to the protein binding. Examples of such residues 

include those originating from studies of small molecule binding, or from papers on stability of 

the individual proteins. Filtering the extracted residues by the shallow parsing (bag-of-words) 

Support Vector Machines (SVM) was shown to be insufficient. In this paper, we present an 
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advancement of our basic TM procedure based on the deep parsing (NLP techniques for contextual 

analysis of the abstract sentences) for purging of the initial pool of the extracted residues. 

3.2 Methods 

3.2.1 Outline of the text-mining protocol  

The TM procedure was tested on 579 protein-protein complexes (bound X-ray structures purged 

at 30% sequence identity level) from the DOCKGROUND resource 

(http://dockground.compbio.ku.edu) [79]. The basic stage of the procedure consists of two major 

steps: information retrieval and information extraction [37] (Figure 3-1). The abstracts are 

retrieved from PubMed using NCBI E-utilities tool (http://www.ncbi.nlm.nih. 

gov/books/NBK25501) requiring that either the names of both proteins (AND-query) or the name 

of one protein in a complex (OR-query) are present in the abstract. The text of the retrieved 

abstracts is then processed for the residue names. The structures of the individual proteins are used 

to filter the pool of the extracted residues by: (i) correspondence of the name and the number of 

the extracted residues to those in the Protein Data Bank (PDB) file, and (ii) presence of the 

extracted residue on the surface of the protein. Several NLP-based approaches (semantic similarity 

to generic and specialized keywords, parse tree analysis with or without SVM enhancement) were 

further applied for additional filtering of the extracted residues from the abstracts retrieved by the 

OR-queries. Performance of the TM protocol for a particular PPI, for which N residue-containing 

abstracts were retrieved, is evaluated as 
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where 𝑁𝑖
int and 𝑁𝑖

non are the number of the interface and the non-interface residues, 
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correspondingly, mentioned in abstract i for this PPI, not filtered out by a specific algorithm (if all 

residues in an abstract are purged, then this abstract is excluded from the PTM calculations). It is 

convenient to compare the performance of two algorithms for residue filtering in terms of 

      1 2

TM TM TM

X X

tar tarN P N P N P   , (3-2) 

where  1

TM

X

tarN P  and  2

TM

X

tarN P  are the number of targets with PTM value yielded by algorithms 

X1 and X2, respectively. The N(0) and N(1) values capture the general shape of the PTM distribution. 

Thus, the effectiveness of an algorithm can be judged by its ability to reduce N(0) (all false 

positives) and increase N(1) (all true positives). In this study, advanced residue filtering algorithms 

are applied to the pool of residues extracted by the OR-queries with the basic residue filtering, thus 

X2 will hereafter refer to this algorithm. The negative values of  0N  and the positive values of 

 1N indicate successful purging of irrelevant residues from the mined abstracts. 

3.2.2 Selection of keywords 

Generic keywords semantically closest to PPI-specific concept keywords (see Results) were found 

using Perl module QueryData.pm. The other Perl modules lesk.pm, lin.pm and path.pm were used 

to calculate similarity scores introduced by Lesk [113, 114], Lin  [115] and Path [116, 117], 

correspondingly, between the token (words) in a residue-containing sentence and the generic 

keywords. These Perl modules, provided by the WordNet [118, 119] 

(http://wordnet.princeton.edu), were downloaded from http://search.cpan.org. The score 

thresholds for the residue filtering were set as 20, 0.2, and 0.11, for the Lesk, Lin and Path scores, 

respectively. 
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Figure 3-1: Flowchart of NLP-enhanced text mining system.  

Scoring of surrounding sentences is shown for Method 3 (see text). 
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The keywords relevant to the PPI binding site (PPI+ive words), and the keywords that may 

represent the fact of interaction only (PPI-ive words) (Table 3-3) were selected from manual 

analysis of the parse trees for 500 sentences from 208 abstracts on studies of 32 protein complexes. 

3.2.3 Scoring of residue-containing and context sentences 

The parse tree of a sentence was built by the Perl module of the Stanford parser [120, 121] 

(http://nlp.stanford.edu/software/index.shtml) downloaded from http://search.cpan.org. The score 

of a residue in the sentence was calculated as 

 

X

X X

1 1

i ji j
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, 

(3-3) 

where Xid 
 and Xjd 

 are parse-tree distances between a residue and PPI+ive word i and PPI-ive 

word j in that sentence, respectively. Distances were calculated by edge counting in the parse tree. 

An example of a parse tree of residue-containing sentence with two interface residues having score 

0.7 is shown in Additional file (Figure B-1). 

An add-on value to the main SX score (Eq. (3-3)) from the context sentences (sentences 

immediately preceding and following the residue-containing sentence) was calculated either as 

simple presence or absence of keywords in these sentences, or as a score, similar to the SX score, 

but between the keywords and the root of the sentence on the parse tree. 

3.2.4 SVM model 

The features vector for the SVM model was constructed from the SX score(s) of the residue-

containing sentence and the keyword scores of the context sentences (see above). In addition, the 

scores accounting for the presence of protein names in the sentence 
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were also included, separately for the residue-containing, preceding, and following sentences. The 

SVM model was trained and validated (in 50/50 random split) on a subset of 1921 positive (with 

the interface residue) and 3865 negative (non-interface residue only) sentences using program 

SVMLight with linear, polynomial and RBF kernels [75, 122, 123]. The sentences were chosen in 

the order of abstract appearance in the TM results.  

The SVM performance was evaluated in usual terms of precision P, recall R, accuracy A, and 

F-score [124] 
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 (3-5) 

where TP, FP, TN, and FN are, correspondingly, the number of correctly identified interface 

residues, incorrectly identified interface residues, correctly identified non-interface residues, and 

incorrectly identified non-interface residues in the validation set. The results (Figure B-2-

Figure B-7) showed that the best performance was achieved using RBF kernel with gamma 16. 

Thus, this model was incorporated in the TM protocol (Figure 3-1). 

 

3.2.5 Text mining constraints in docking protocol 

TM constraints were incorporated in the docking protocol and the docking success rates assessed 

by benchmarking. Basic TM tool [37] with OR-queries was used to mine residues for 395 

complexes from the DOCKGROUND unbound benchmark set 4. The set consists of the unbound 
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crystallographically determined protein structures and corresponding co-crystallized complexes 

(bound structures). Binary combinations of OR and AND queries were generated [37]. The original 

publication on the crystallographically determined complex was left out, according to PMID in the 

PDB file. Because of the frequent discrepancy in the residue numbering and the chain IDs in the 

bound and the unbound structures, the residues were matched to the ones in the bound protein. The 

residues were ranked for each interacting protein using a confidence score. The confidence range 

was between 1 (low) and 10 (high). The AND-query residues were given preference over the OR-

query ones for the basic TM protocol, according to our ranking scheme [37]. The confidence score 

was calculated as 

 

, 

(3-6) 

where NR is the number of abstracts, mentioning residue R, 𝑎𝑖 = 1, if abstract i was retrieved by 

the OR-query only, and 𝑎𝑖 = 2, if the abstract was retrieved by the AND-query. For each protein, 

the top five residues were used as constraints in GRAMM docking [125]. The constraints were 

utilized by adding an extra weight to the docking score if the identified residue was at the predicted 

interface. The maximum value of 10 reflects the difference between the low confidence (f = 1) and 

the high confidence (f = 10) constraints, while alleviating the effect of possible residue 

overrepresentation in published abstracts (very high f values). 

For the NLP score, the confidence ranking scheme was modified such that the range is 

preserved between 1 and 10 and the AND-query residues are given higher precedence than the 

OR-query residues. The NLP was used for re-ranking within each category as 

  







 



RN

i

iaRf
1

,10min



46 

 

 
i

i

i

10, if for some i,a is retrieved in AND query and passes NLP

8, if a is retrieved in AND query
f(R)=

6, if any a retrieved in OR query passes NLP

max(5,count of abstracts containing R)

 
 
 
 
 
 
 

, (3-7) 

The residues at the co-crystallized interface were used as reference. Such residues were 

determined by 6 Å atom-atom distance across the interface. The reference residue pairs were 

ranked according to the Cα - Cα distance. The top three residue-residue pairs were used in docking 

with the highest confidence score 10, to determine the maximum possible success rate for the 

protein set. 

3.3 Results and Discussion 

3.3.1 Generic and specialized dictionaries 

The simplest approach to examining the context of a residue mentioned in the abstracts would be 

to access the semantic similarity of words (token) in the residue-containing sentence to a generic 

but at the same time PPI-relevant concept. For the purpose of this study, such concept was chosen 

to be “binding site” as the one describing the physical contact between the two entities (proteins). 

We designated the words “touch” and “site” as the most semantically similar words relevant to 

this concept (binding site) to be used in WordNet [118, 119] (generic English lexical database with 

words grouped into sets of cognitive synonyms), which does not contain any knowledge-domain 

specific vocabularies [126]. Thus, we calculated similarity scores (see Methods) between these 

two words and all the words of the residue-containing sentence(s) in the abstracts retrieved by the 

OR-query. If a score exceeded a certain threshold, all residues in the sentence were considered to 

be the interface ones. Otherwise they were removed from the pool of the mined residues. The 
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calculations were performed using three different algorithms for the similarity score. Similarity 

scores by Lesk and Path demonstrated only marginal improvement in the filtering of mined 

residues compared to the basic residue filtering (Table 3-1 and Figure 3-2). Lin’s score yielded 

considerably worse performance. Similarly poor performance of this score was reported 

previously, when it was applied to word prediction for nouns, verbs and across parts of speech 

[127]. In our opinion, this may be due to some degree of arbitrariness in the way the similar words 

are grouped under a common subsumer (most specific ancestor node), and how this subsumer fits 

into the overall hierarchy within the synset (set of cognitive synonyms). Thus, we concluded that 

generic vocabularies cannot be employed in the TM protocols for identifying PPI binding sites. 

This correlates with the conclusions of Sanchez et al. [128] that hierarchical structure of generic 

and domain-specific vocabularies are different and thus, for example, MESH specific vocabulary 

[129] provides more accurate knowledge representation of medical concepts compared to the 

generic WordNet lexicon. 

Next, we tested applicability of the 7 specialized dictionaries (Table 3-2) to filtering of the 

residues mined by the OR-queries. All these dictionaries were specifically designed for the mining 

of the literature on PPI identification and contain up to several hundred PPI-relevant keywords. 

Thus, there is no need to measure semantic similarity between words in the residue-containing 

sentence and words in these dictionaries, and it is just enough to spot these words in the sentences 

(maximum possible semantic similarity). If any keyword was spotted in a sentence, all residues 

mentioned in this sentence were considered as interface residues. The results (Table 3-2 and 

Figure 3-3) indicated, however, that using all dictionaries did not yield significant improvement 

in the residue filtering. While some dictionaries (with  0 0N   in Table 3-2) succeeded in 

removing irrelevant information, there is a general tendency of removing relevant information as 
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well (predominantly negative numbers of  1N  in Table 3-2). Interestingly, the best 

performing dictionary by Schuhmann et al. [130] contains the smallest number of words. 

 

Table 3-1: Overall text-mining performance with the residue filtering using semantic similarity of 

words in a residue-containing sentence to a generic concept in the WordNet vocabulary. 

For comparison, the results with basic residue filtering are also shown. 

 

Query Similarity measure Ltot 
a Lint 

b Coverage 
 (%) c 

Success 
 (%) d 

Accuracy 
 (%) e 

  0N
f  1N f 

AND - 128 108 22.1 18.7 84.4   

OR - 328 273 56.6 47.2 83.2   

OR Lesk [113, 114] 319 267 55.1 46.1 83.7 -3 -1 

OR Lin [115] 251 184 43.4 31.8 73.3 +8 -8 

OR Path [116, 117] 316 265 54.6 45.8 83.9 -3 +1 

 

 

a Number of complexes for which TM protocol found at least one abstract with residues 

b Number of complexes with at least one interface residue found in abstracts 

c Ratio of Ltot and total number of complexes 

d Ratio of Lint and total number of complexes 

e Ratio of Lint and Ltot 

f Calculated by Eq.(3-2) 
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Figure 3-2: Performance of basic and advanced text mining protocols. 

Advanced filtering of the residues in the abstracts retrieved by the OR-queries was performed by 

calculating various similarity scores (see legend) between the words of residue-containing 

sentences and generic concept words from WordNet. The TM performance is calculated using 

Equation (3-1). The distribution is normalized to the total number of complexes for which residues 

were extracted (third column in Table 3-1). 

 

All tested dictionaries were designed for the mining information on the existence of 

interaction. Thus, we also tested our own dictionary, designed specifically to distinguish keywords 

relevant and irrelevant to the protein-protein binding sites (see Methods). Despite the small amount 

of PPI-relevant words in the dictionary, the filtering of the mined residues based on this dictionary 

led to considerable improvement in the TM performance (the rightmost bars in Figure 3-3 and the 

bottom row in Table 3-2). This suggests that even a limited amount of text provided by abstracts 

can be used to extract reliable PPI-relevant keywords. 
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Table 3-2: Overall text-mining performance with the residue filtering based on spotting in the 

residue-containing sentences keyword(s) from specialized dictionaries. 

For definitions of columns 3 - 9, see footnotes to Table 3-1. Full content of in-house dictionary is 

in Table 3-3, but only PPI+ive part was used to calculate the data in this Table. 

 

Dictionary and reference 
Number of PPI 
keywords  

Ltot a Lint b 
Coverage 
(%) c 

Success 
(%) d 

Accuracy 
 (%) e 

  0N f  1N f 

Blaschke et al, [6] 43 265 205 45.8 35.4 77.4 0 -8 

Chowdhary et. al, [131] 191 284 233 49.1 40.2 82.0 -7 -4 

Hakenberg et al [132] 234 297 232 51.3 40.1 78.1 6 -7 

Plake et al [133] 73 291 230 50.3 39.7 79.0 1 -1 

Raja et al [104] 412 302 247 52.2 42.7 81.8 0 -5 

Schuhmann et al [130] 64 212 152 36.6 26.3 71.7 -1 5 

Temkin et al [5] 174 283 223 48.9 38.5 78.8 0 -9 

Own dictionary 16 224 169 38.7 29.2 75.4 -6 8 

 

 

3.3.2 Analysis of sentence parse tree - deep parsing 

In the dictionary look-up approach all residues in the sentence were treated either as interface or 

non-interface ones. The parse tree (hierarchical syntactic structure) of a sentence enables treating 

residues in the sentence differently depending on a local grammatical structure. Also, two adjacent 

words in a sentence can be far apart on the parse tree, and vice versa (distant words in a sentence 

can be close on the parse tree). This mitigates fluctuations in distances between keywords in “raw” 

sentences, caused by peculiarities in author’s writing style (some authors favor writing short 

concise sentences whereas others prefer long convoluted sentences). We adopted a simple 

approach based on the proximity of mined residue(s) to the PPI+ive and PPI-ive keywords 

(Table 3-3) on the parse tree, quantified in the score SX calculated by Eq. (3-3)   the close proximity 

(in the grammatical sense) to the PPI+ive. The high positive value of the score implies that a 

residue is in keywords, making it plausible to suggest that this residue is related to the protein-

protein binding site. Large negative SX values indicate closeness of the residue to the PPI-ive 
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keywords, thus such residue is most likely outside the PPI interface. Note, that this approach is 

susceptible to quality and extent of the dictionary used. However, this problem will be mitigated 

as more relevant texts (including full-text articles) will be analyzed for finding new PPI+ive and 

PPI-ive keywords. 

 

 

Figure 3-3: Performance of basic and advanced text mining protocols.  

Advanced filtering of the residues in the abstracts retrieved by the OR- queries was performed by 

spotting PPI-relevant keywords from various specialized dictionaries (see legend). The TM 

performance is calculated using Equation (3-1). The distribution is normalized to the total number 

of complexes for which residues were extracted (third column in Table 3-2). Full content of the in-

house dictionary is in Table 3-3, but only PPI+ive part was used to obtain results presented in 

this Figure. The data are shown in two panels for clarity.  
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Table 3-3: Manually generated dictionary used to distinguish relevant (PPI+ive) and irrelevant 

(PPI-ive) information on protein-protein binding sites. 

 Only lemmas (stem words) are shown.  

Category Words 

PPI+ive bind, interfac, complex, hydrophob, recept, ligand, contact, recog, dock, groove, pocket, pouch, interact, crystal, 

latch, catal 

PPi–ive deamidation, IgM, IgG, dissociat, antibo, alloster, phosphory, nucleotide, polar, dCTP, dATP, dTTP, dUTP, 

dGTP, IgG1, IgG2, IgG3, IgG4, Fc, ubiquitin, neddylat, sumoyla, glycosylation, lipidation, carbonylation, 

nitrosylation, epitope, paratope, purine, pyrimidine, isomeriz, non-conserved, fucosylated, nonfucosylated, 

sialylation, galactosylation 

 

 The interface residues tend to have SX > 0.25 (Figure B-8).  Thus, we used this value as a 

threshold to distinguish between interface and non-interface residues. Compared to the simple 

dictionary look-up (see above), even such simplified analysis of the parse tree, yielded significant 

improvement in the performance of our text-mining protocol (Method 1 in Table 3-4 and red bars 

in Figure 3-4). 

 

Table 3-4: Overall text-mining performance with the residue filtering based on analysis of 

sentence parse tree. 

Keywords used in the analysis were taken from our dictionary (Table 3-3). For definitions of 

columns 2 - 8, see footnotes to Table 3-1. 

 

Method of parse tree analysis Ltot Lint  Coverage (%) Success (%) Accuracy (%)  0N   1N  

Method 1. Scoring of the residue-
containing sentence only 

222 173 38.3 29.9 77.9 -13 +10 

Method 2. Scoring of the residue-
containing sentence and keyword 
spotting in the context sentences 

208 154 35.9 26.6 74.0 -7 +3 

Method 3. SVM model with scores 
of the residue-containing and 
context sentences 

182 146 31.4 25.2 80.2 -27 +21 
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Figure 3-4: Performance of basic and advanced text mining protocols.  

Advanced filtering of the residues in the abstracts retrieved by the OR-queries was performed by 

different methods of analysis of the sentence parse trees (for method description see first column 

in Table 3-4) The TM performance was calculated using Equation (3-1). The distribution is 

normalized to the total number of complexes for which residues were extracted (second column in 

Table 3-4).  

 

 The main message of a sentence can propagate through the article text comprising several 

sentences around the master sentence (context) and therefore it would be logical to include context 

information in the residue filtering as well. However, there is no clear understanding how far away 

the message can spread, especially in such dense text as an abstract. Thus, we treated as context 

only sentences immediately preceding and following the residue-containing sentence. These 

sentences usually do not contain residues. Thus, we included context information either by simple 

spotting PPI+ive keywords in these sentences (Method 2) or by calculating SX-like score of 

PPI+ive and PPI-ive words with respect to the sentence root (Method 3). In the former algorithm, 

a mined residue is treated as interface residues if its SX > 0.25 and a PPI+ive keyword was spotted 
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in the context sentences. The latter algorithm requires a more complicated approach as there is no 

clear distinction between the context-sentence scores for interface and non-interface residues. 

Thus, classification of the residues was performed by an SVM model with the optimal parameters 

(see Methods).  

Inclusion of the context information by simple keyword spotting worsens the performance 

of the residue filtering (Method 2 in Table 3-4 and cyan bars in Figure 3-4) as many interface 

residues are erroneously classified due to the absence of the keywords in the context sentences. 

Application of the SVM model, despite a relatively small number of its features, increased filtering 

performance dramatically, making SVM-based approach superior to all other methods investigated 

in this study. All three methods have comparable values of overall success and accuracy 

(Table 3-4). An example of successful filtering of non-interface residues is shown in Figure 3-5 

for the chains A and B of 2uyz. Out of five residues mined by the basic TM protocol, only one 

residue (Figure 3-5, Glu67B) was at the complex interface (PTM = 0.20). SVM model has filtered 

out all four non-interface residues, elevating TM performance to PTM = 1.00 (details are available 

in Table B-1 and accompanying text).  

Finally, to ensure that the results are not determined by over fitting the SVM model, we 

filtered residues on a reduced set of abstracts where all abstracts for a complex were excluded from 

the consideration if at least one abstract contained sentence(s) used for the training of the SVM 

model. Despite a significant drop in the coverage, the results on the reduced set (Figure B-9) did 

not differ much from the results obtained on the full set of abstracts.  
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Figure 3-5: Successful filtering of mined residues by the SVM-based approach of the parse-tree 

analysis  

(Method 3 in Table 3-4). The structure is 2uyz chains A (wheat) and B (cyan). Residues mined by 

the basic TM protocol are highlighted. The ones filtered out by the advanced TM protocol are in 

orange. 

 

3.3.3 Docking using text-mining constraints 

Constraints generated by NLP were tested in docking by GRAMM to model complexes of 

unbound proteins from the DOCKGROUND X-ray benchmark set 4 (see Methods). The set consists 

of 395 pairs of separately resolved unbound protein structures and their co-crystallized complexes. 

Each unbound complex was docked by GRAMM three times, using (1) constraints from the basic 

TM, (2) constraints re-ranked by NLP, and (3) the reference constraints. The output of the global 

low-resolution docking scan consisted of 20,000 matches, with no post-processing (except for the 

removal of redundant matches). The matches were scored by the sum of the f values (Eq  (3-7)), 

if constraints were generated for the complex. If no constraints were generated, the score was zero. 
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The quality of a match was assessed by Cα ligand interface root-mean-square deviation, i-RMSD 

(ligand and receptor are the smaller and the larger proteins in the complex, respectively), calculated 

between the interface of the docked unbound ligand and the corresponding atoms of the unbound 

ligand superimposed on the bound ligand in the co-crystallized complex. Success was defined as 

at least one model with i-RMSD ≤ 5 Å in top 10 predictions. The results (Figure 3-6) show 

significant success rate increase in the docking output when using constraints generated by the 

advanced TM, from 27% in the case of the basic TM, to 47% in the case of the advanced TM with 

NLP. 

Since some authors might not include the required details in the abstracts of their papers, we 

plan to extend the automated analysis to the full-text articles, as well as to explore incorporation 

of the papers from bioaRxiv. This should increase of the size of the training sets for machine-

learning models, and the number of available features, thus enabling the use of the deep learning 

methodologies for generation of the docking constraints. Such constraints could be potentially 

further improved by incorporating information automatically extracted from other publicly 

available PPI-related resources, leading to more accurate and reliable structural modeling of 

protein interactions.  
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Figure 3-6: TM contribution to docking.  

The success rate increase of the rigid-body global docking scan by GRAMM using constraints 

generated by basic TM and the advanced TM with NLP.  

 

3.4 Conclusion 

We explored how well the natural language processing techniques filter out non-interface residues 

extracted by the basic text mining protocol from the PubMed abstracts of papers on PPI. The results 

based on generic and specialized dictionaries showed that the dictionaries generated for the mining 

of information on whether two proteins interact, as well as generic English vocabularies are not 

capable of distinguishing relevant (interface) and irrelevant (non-interface) residues. Efficient 

filtering of irrelevant residues can be done only using a narrowly specialized dictionary, which 

comprises words relevant to PPI binding mode (binding site), combined with interpretation of the 

context in which residue was mentioned. Interestingly, the size of such specialized dictionary is 

not a critical factor for the protocol efficiency. We tested several methods of context analysis, 

based on dissection of the sentence parse trees. The best efficiency was achieved using machine-
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learning approaches for examining residue-containing and surrounding sentences (as opposed to 

the rule-based methods). Docking benchmarking showed a significant increase of the success rate 

with constraints generated by the advanced TM with NLP. 

 

. 
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4.1 Introduction 

Protein-protein interactions (PPI) play a key role in cellular mechanisms. Computational 

approaches, such as protein docking, are important for the structural characterization of PPI. 

Protein docking determines the structure of a protein-protein complex, given the structures of the 

interacting proteins [11]. A typical docking pipeline involves three major steps: (i) global scan 

generating multiple tentative docking poses, (ii) evaluation of these poses by scoring functions, 

and (iii) structural refinement of the top-scoring predictions. The ability to differentiate near-

native/correct predictions from false-positives determines the overall docking performance. 

Because of the complexity of the docking problem, information on the docking target that can 

constrain the docking search is of great value. 

Scientific publications are a rich source of information on protein complexes and their 

structures. With the growing number of PPI-related biomedical publications in public repositories, 

such as PubMed, the amount of this information is rapidly increasing. However, while the textual 

content of the publications is easily understandable by experts in the field, for the benefit of the 

modeling tools development and application to PPI, such content has to be processed as an 

automated input to the docking procedures.  

The text mining (TM) techniques, extract usable bits of information from the body of text. 

A scientific text has varying information concentration and coverage depending on a section. 

Abstracts of scientific publications typically are readily and freely available, have high information 

density, but have limited content coverage compared to the full-text papers [134-136]. The full 

texts use longer sentences and parenthesized material [137] and have heterogeneous distribution 

of information (as measured by density of keywords in various sections) [138]. Access to the full-

text papers creates a more comprehensive source (corpus) for the text mining and increases the 
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recall compared to the abstracts [139]. However, copyright restrictions generally limit the use of 

full text articles in the text mining [140, 141]. The number of PMC-OA articles (the freely available 

subset of full-text papers) is not increasing at the same rate as the number of PubMed abstracts. 

The full-text articles have statistical properties (such as term or document frequency) that are more 

robust, but have more noise compared to the abstracts [142]. Text mining of the full-text papers 

has helped in extraction of various biological information [89, 143-148], including one on non-

structural aspects of PPI [132, 149-152].  

Specific patterns in datasets can be identified by machine learning (ML) techniques, 

especially, deep learning (DL) approaches implemented using neural networks (NN) with hidden 

layers several levels deep. Each successive layer learns higher level of abstraction [153, 154]. NN 

are trained using the back-propagation algorithm [153] where the error (the difference between 

actual and desired output) is projected backwards layer-by-layer, with the connection weights 

adjusted in proportion [155]. The NN applications include, but not limited to automatic speech 

recognition [156], machine translation [157],  paraphrasing [158] , and image and scene annotation  

[159, 160]. 

For computational procedures, it is desirable to represent words using numbers. Simplistic 

approaches may assign a unique single number (scalar) to each word of a language (e.g., in 

lexicographical order). The next step is to represent a word as a series of numbers (word vector or 

word embedding), so that vector operations can be meaningfully applied [161, 162]. Then, the 

inner product of the two vectors would be a measure of similarity of the two words, the sum of the 

two vectors would reflect the combined meaning of the two words, and the subtraction of the two 

vectors (offset) would capture the relations (e.g. plural relations, like "molecules vs. molecule" 

and "residues vs. residue" would have similar offsets). Word vectors can be efficiently estimated 
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on a large scale [163]. They are widely used as a first generic step in a united architecture for 

solving a specific Natural Language Processing (NLP) task using deep neural networks [160-166], 

e.g. for machine translation requiring large vocabulary across multiple languages [167]. The word 

vectors are used in a sentence-level sentiment analysis [168, 169] (scoring or quantification of 

subjective information such as “tone of a speaker” or “attitude of a customer”). 

Earlier we implemented an algorithm that searches for the patterns of letters and digits 

typically used by authors referring to a specific residue in a protein. We showed that even such 

basic TM technique enhances docking success rate [37]. However, the information, mined in such 

simplistic manner, needs substantial post-processing in order to remove inappropriate data which 

inevitably occur in the prediction pool when no effort is made to understand a larger context of the 

residue mentioning. Later, we improved filtering out residues non-relevant to the protein binding 

by utilizing simple NLP techniques, although the amount of such residues still remained high 

[170]. In this paper, we present a deep recursive neural network (DRNN) model based on the word 

vectors for analyzing sentiments of residue-containing sentences and context of residue 

mentioning. The model was trained on a large body of full-text articles from PMC-OA and applied 

to purging of irrelevant residues, mined from the PubMed abstracts. We also show that while full-

text papers are a richer source of information, their current availability limits their usefulness for 

extracting PPI-relevant information by automated TM procedures. The results show that, similarly 

to NLP, the DL approach is significantly better than the basic TM in extracting information 

relevant to modeling from the abstracts. Both DL and NLP are superior to the basic TM is 

processing of the full-text papers. With the increase of the full-text papers availability, the 

usefulness of this source of information for structural modeling of protein complexes will further 

grow. 
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4.2 Methods 

4.2.1 Basic text mining protocol  

Our basic TM tool consists of information retrieval (IR) and information extraction (IE) [37]. In 

this study, in addition to using PubMed resources from https://www.ncbi.nlm.nih.gov/ [171], we 

also downloaded and stored locally the PMC (OA) full text articles from 

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/. Thus, the IR stage was modified to incorporate the 

local availability of the full-text articles, as opposed to E-fetch from the E-utilities for the PubMed 

abstracts. PMID (a unique ID for a PubMed abstract) and PMCID (a unique ID for a PMC-OA 

full-text articles) are different for the same article. Thus, mapping between them, allowing fetching 

of a full-text article given a PMID of its abstract, was implemented as a PostgreSQL table. As in 

our previous study [37], in order to retrieve relevant articles for a protein pair, we generate AND-

queries (both proteins in the complex are mentioned in the text) and OR-queries (either of the 

proteins is mentioned) for the PubMed abstracts using NCBI E-utilities 

(http://www.ncbi.nlm.nih.gov/books/NBK25501). Then using PMID-PMCID mapping, the 

available full-text articles for that protein pair were identified (for 2,640,816 PMID only 196,912 

PMCID were mapped). These full-text articles and abstracts were subjected to the IE stage of the 

protocol.  

The basic IE (Figure 4-1) was performed on the retrieved articles/abstracts by spotting 

different variations of the residue name and number, and performing simple filtering [37]. In this 

study, the sentences containing the initially mined residues from the full-text articles were used to 

estimate the effectiveness of the basic TM on the full-texts and to train the DRNN neural network. 

The trained DRNN was further used to classify residues (interface or non-interface) mined from 

the PubMed abstracts. 

https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
http://www.ncbi.nlm.nih.gov/books/NBK25501
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Figure 4-1: Flowchart of the text-mining system.  

Algorithm of the NLP-enhanced text mining with SVM is the same as in Ref. [170] and thus is not 

shown in detail. Both full text sets are unified in one training set (shown by the dashed line) when 

the trained neural network is tested on the PubMed abstracts. 

 

4.2.2 Datasets 

The approaches were benchmarked on the set of 579 non-redundant (at 30% sequence identity 

level) binary protein-protein complexes from the DOCKGROUND resource 

(https://dockground.compbio.ku.edu) [172]. The dataset for training DRNN consisted of 4,982 

residue-containing sentences (hereafter referred to as R-sentences), which passed the initial 

screening of residue-containing sentences automatically extracted by the OR-queries from the full-

text PMC-OA articles. Those sentences were classified into 1,605 positive (interface residue) and 

3,377 negative (non-interface residue) R-sentences (full training set). The interface residues were 

defined by 6 Å distance between atoms in different chains. The dataset for testing the trained 

https://dockground.compbio.ku.edu/
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DRNN model comprised 5,786 R-sentences (or their parts around identified residues, see Results), 

extracted from the PubMed abstracts by the OR-queries (abstract testing set). Since only a small 

fraction of the training text came from PMC-OA abstracts of the PMC-OA articles, we did not 

exclude PubMed abstracts that have PMC-OA full-text articles available. We also performed 

DRNN training and testing using PMC-OA full texts only. In this case, the R-sentences of the full 

training set were divided into training and validation (testing) sub-sets by splitting the 

alphabetically sorted list of 579 PDB codes of our dataset of the protein-protein complexes so that 

each part contains approximately half of the R-sentences (not every PDB code had R-sentences 

associated with it). The 803 positive and 1,689 negative R-sentences in the top 50% of the PDB 

list (259 complexes) were used for the DRNN testing (full-text testing set). The 802 positive and 

1,688 negative R-sentences from the bottom 50% of the list (320 complexes) were used the DRNN 

training (reduced full-text training dataset). These datasets were also used to train Support Vector 

Machine (SVM) model. 

4.2.3 Deep learning architecture 

For the DRNN training, we generated PPI-specific sentiment tree bank, which is a set of binary 

trees (Figure 4-2) of the R-sentences from the training set with each leaf and internal node tagged 

by a sentiment labels ja  and jb , respectively ( j  counts words in the sentence). According to the 

Stanford Sentiment Treebank [168], we utilized five standard sentiment classes: very +ive (labeled 

4), +ive (3), neutral (2), -ive (1), very –ive (0). In a sentence of N words, the is calculated as 

    1 1max , or min , , 2, ,j j j j j jb b a b b a j N      (4-1) 

 

jb
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for the positive and negative sentences, respectively. The sentiment label  is 
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if word j is a keyword

for the rest of the words
 

(4-2) 

 ,      

where jF  is the fixed sentiment label for PPI+ive and PPI-ive keywords, determined by its score.  

Scores for keywords (Table C-1) were generated by dividing sentences from full-text 

papers with mined residues into positive (residue at the interface) and negative (residue not at the 

interface). For each word, we computed its frequency (percent of sentences with the keyword) for 

the positive sentences and for the negative sentences. The difference of the two values represented 

the score (bias). This set is identical to the one used for SVM training and testing (see below). 

Words with the score between 1 and -1 were ignored (bias < 1%). A protein, amino acid, or species 

names were treated in the same manner. Stop words were removed. 

 
 

Figure 4-2: Schematic representation of a sentence binary tree and associated sentiment labels. 

 

ja
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Such labeling scheme ensures that the final sentiment label of a sentence mentioning 

interface residues is 3 or 4 (0 or 1 for sentences with non-interface residues) and captures the 

baseline trend of a sentiment, steadily increasing for the positive and decreasing for the negative 

sentences. The sets of  and  were the first part of the input, necessary for the DRNN training. 

The second part of the training input was a set of initial word vectors (numeric weights 

associated with the word),  kv , for each of the 74,438 unique words in the sentences of the training 

set (out of ~20M total words). The vectors were generated by the word2vec program with skip-

gram model (a predictive language model that works well for even rarely used words) and the 

default training window size of 10 (the number of considered words in the context) [161-163]. The 

dimensionality of the word vectors was set to 300, considered sufficient for complex NLP tasks 

[161, 173, 174]. The word vectors corresponding to similar words were distributed close to each 

other (Figure 4-3). The amino acids were in one region of the vector space, as were the words 

associated with shapes. Similarly, co-localized were words such as "interaction" and "complex." 

Antonyms, such as hydrophobic, hydrophilic, are also in the proximity of each other, indicating 

that these terms are linguistically interchangeable. 

Both input components were submitted to the program drsv (https://github.com/oir/deep-

recursive) [165] to train 3-layers DRNN model. The DRNN learned over ~10 epochs (epoch is 

defined as a sweep through the entire training set). Beyond 10 epochs, DRNN was getting over-

trained (Figure C-3). The same program was used to evaluate the sentiment for the entire or partial 

sentences using trained DRNN model. In this case, the input consisted of the sentiment labels  

(Eq., (4-2) assigned to the words of a sentence or its parts. Such DRNN architecture with 

corresponding sentiment treebanks (domain knowledge specific or generic) is widely used (e.g. in 

the analysis of Netflix movie reviews [165, 168]). 

ja jb

ja

https://github.com/oir/deep-recursive
https://github.com/oir/deep-recursive
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Figure 4-3: Example of the initial word vectors distribution.  

Highlighted areas show similar words in the same region of the vector space. The distribution was 

generated by arbitrarily choosing a set of 55 words that are typically found in PPI publications, 

not meeting any scientific criteria, but representing a rich mix of domain vocabulary. The words 

were put in a list, along with the file containing word-vector lookup table (output of word2vec). 

The t-SNE software [175] extracted relevant 55 word-vectors and performed dimensionality 

reduction, until the required criteria of given perplexity (40) is met and the final dimensionality is 

reduced to 2. The points were plotted and labelled using pyplot in a python script. The highlighted 

areas were overlaid on the graph. 

 

4.2.4 NLP-hybrid approach 

Previously, we explored various Natural Language Processing (NLP) approaches at semantic and 

syntactic levels for filtering residues mined from the PubMed abstracts. We showed that NLP 

hybrid approach, which consists of Support Vector Machine (SVM) Model with features extracted 
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from the parse trees of the residue-containing (R-sentences) and context sentences (immediately 

preceding and following the R-sentence) yields the best performance [170]. Thus, in this paper, 

we explored performance of the NLP hybrid approach on the PMC-OA full-text articles. 

Parse trees of R- and context sentences were built by the Perl module of the Stanford parser [121, 

176] (http://nlp.stanford.edu/software/index.shtml) downloaded from http://search.cpan.org. The 

score of a residue in a R-sentence was calculated as 

 

X

X

i

i i

w
S

d
,  

(4-3) 

       

where summation is over all keywords from Table C-1 in the sentence, iw  is the score of keyword 

i (Table C-1), and Xid  is the distance between the residue and keyword i, calculated by the edge 

counting in the parse tree. The Sx scores tend to be more positive for the interface and negative for 

the non-interface residues (Figure C-1). For the context sentences, scores, similar to the score Sx, 

but between keywords (Table C-1) and the root of the sentence on the parse tree, were calculated. 

We also utilized an additional score accounting for the presence of one (Sprot = 1) or both (Sprot = 

2) protein names in the R- and context sentences (Sprot = 0 if no protein names were mentioned). 

All these scores were used as features in the SVM model. 

The SVM model was trained and validated (50-50 random split) on a subset of 1,605 

positive sentences (with interface residues) and 3,377 negative sentences (with non-interface 

residues) from PMC-OA full-text (the training set also included the context sentences) using the 

program SVMLight with linear, polynomial and RBF kernels [75, 122, 123]. SVM performance 

was evaluated in terms of precision P, recall R, accuracy A, and F score [124]  

http://nlp.stanford.edu/software/index.shtml
http://search.cpan.org/
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where TP, FP, TN, and FN are, the numbers of correctly identified interface, incorrectly identified 

interface, correctly identified non-interface and incorrectly identified non-interface residues in the 

validation set, respectively. Analysis of the results (Figure C-2) showed that the best SVM 

performance was achieved using RBF kernel with gamma 0.25, owing to the highest recall (0.41 

vs. 0.40 and 0.39) for the top three highest accuracy gammas. 

4.2.5 Performance evaluation 

The performance of the TM protocol for a particular PPI, for which N residue-containing articles 

(abstract-only or full-text) were retrieved, was evaluated as 

 

 


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


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N

i

ii
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i
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NN

N
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nonint

1
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(4-5) 

,      

where 𝑁𝑖
int and 𝑁𝑖

non are the numbers of interface and non-interface residues, correspondingly, 

mentioned in article i for this PPI, which were not filtered out by one of the algorithms. If all 

residues in an article are purged, this article was excluded from the PTM calculations. We also 

compared the performance of two algorithms for residue filtering [170] 

 

      1 2

TM TM TM

X X

tar tarN P N P N P  
,   

(4-6) 
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where,  1

TM

X

tarN P  and  2

TM

X

tarN P  are the number of targets with TMP value yielded by 

algorithms X1 and X2, respectively. The negative values of  0N  and the positive values of 

 1N  indicate successful purging of the PPI-irrelevant residues from the mined articles by a 

tested algorithm, since the major contributions to TMP  distribution are from all false positive 

( TM 0P  ) and all true positive ( TM 1P  ) cases. 

4.3 Results and Discussion  

4.3.1 Basic text mining of full-text articles 

The full-text of a paper provides much more information than its abstract. But due to copyright 

restrictions only just over 1 million articles are freely available in the PMC-OA database, 

compared to ~26 million entries in the PubMed database of freely available abstracts. This causes 

significantly better TM performance on the PubMed abstracts than on the abstracts of the PMC-

OA articles (Table 4-1).  

The limited access to the full texts is counterweighted by the abundant information in them, 

as the overall TM performance on the PMC-OA full-text articles is comparable to that on the 

PubMed abstracts (Table 4-1). Significantly better TM performance on PMC-OA full-texts than 

on the PMC-OA abstracts (Table 4-1) points to more frequent mentioning of residues in the full 

texts (for 149 complexes, all mined residues were in the full texts only). However, due to lesser 

space constraints in the full texts, residues there are mentioned in a variety of contexts. This leads 

to a significantly larger number of PPI-irrelevant residues in the full texts than in the abstracts 

(corresponding bars at TM 0P   and TM 1P   in Figure 4-4). 
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Table 4-1: Overall performance of basic TM on abstracts (PubMed and PMC-OA) and full texts 

(PMC-OA). 

 

Dataset 
Query 
Type 

Ltot
a Lint

b Coverage (%)c Success (%)d 
Accuracy 
(%)e 

PubMed  AND 128 108 22.1 18.7 84.4 

PubMed OR 328 273 56.6 47.2 83.2 

PMC-OA abstracts AND 37 21 6.3 3.6 56.7 

PMC-OA abstracts OR 164 89 28.3 15.3 54.2 

PMC-OA full-text AND 103 70 17.7 12.0 67.9 

PMC-OA full-text OR 313 238 54.0 41.1 76.0 

 

a Number of complexes, for which TM retrieved at least one article with residues 

b Number of complexes with at least one interface residue found in the retrieved articles 

c Ratio of Ltot and total number of complexes (579) 

d Ratio of Lint and total number of complexes (579) 

e Ratio of Lint and Ltot 

 

Research on a specific protein interaction could be published only in the journals with 

limited access to their full texts. Our results indicated that for a significant part of the complexes 

in our set (75 out of 579, or ~13%) this is indeed the case (one such example is shown in Figure 4-5 

with the detailed description in Text C-1). Thus, we argue that, at least presently, PMC-OA full-

text articles are more suitable for thorough analysis of residue-mentioning context (with 

consequent application to the residue purging in the PubMed abstracts) rather than for the 

extraction of the raw information. 
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Figure 4-4: Comparison of basic text mining on abstracts and full-texts. 

The performance is calculated on 579 complexes by Eq.(4-5). The distribution is normalized to the 

total number of complexes for which residues were extracted (Table 4-1). 

 

 

 

 

 

Figure 4-5: Example of residues mined from abstracts but not from full texts. 

The abstracts are from PubMed and the full texts are from PMC-OA. The structure is 3a7q chain 

A (gray) and B (cyan). Interface (green) and non-interface (red) residues are mined by the basic 

TM protocol. Details are in Text C-1. 
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4.3.2 Enhanced text mining of full-text articles 

Earlier, we showed that NLP techniques classify PPI-relevant residues mined from the PubMed 

abstracts better than the basic TM [170]. In this study, we applied the same methodology, with 

automatically generated keywords (Table C-1) for filtering initially mined residues in the PMC-

OA full-text test set. The same set of the initially mined residues was also purged by the DRNN 

model, trained with the same set of keywords. Both SVM and DRNN models were trained on the 

same reduced full-text training set. Both methodologies similarly improved the TM of the full-text 

articles (Table 4-2 and Figure 4-6) and their abstracts (Table C-3 and Figure C-6). SVM model 

purged all initially mined residues for a smaller number of complexes. At the same time, it was 

better in removing non-interface residues from the full-text articles (Table 4-2). In the abstracts of 

the PMC-OA articles, NLP and DL removed all retrieved abstracts with the residues for ~ 70% of 

the complexes. Thus, these results were not statistically significant. The SVM performance only 

slightly depends on the keywords used for the SVM training and testing (Table C-2 and 

Figure C-5 show the results for the SVM model with the manually selected keywords from our 

previous study [170]). In our simplified scheme, we assigned a definite sentiment only to 

frequently appearing words designated as PPI keywords. Thus, we could miss infrequently 

occurring words or word groups that carry a strong sentiment. In the future, DRNN performance 

can be potentially improved by the use of PPI- specific hand-curated sentiment tree bank. 

Figure 4-7 illustrates NLP and DL-enhanced TM performance on PMC-OA full-text articles on 

heat shock HSP82 and AHA1 proteins.  
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Table 4-2: Overall TM performance on test set of PMC-OA full-text articles retrieved by OR-

queries with simplified residue filtering (basic TM) and with residue filtering by NLP and DL.  

NLP included SVM model with scores from parse trees of residue-containing and surrounding 

sentences utilizing automated keywords. DL consisted of Deep Recursive Neural Network model 

for classifying residues in the entire sentence. NLP SVM and DL models were trained on reduced 

full-text training set. 

 

Method Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e N(0)f N(1)f 

Basic TM 157 115 60.6 44.4 73.2 ‒ ‒ 

NLP  87 58 33.6 22.4 66.7 ‒22 +15 

DL  75 46 28.9 17.8 61.3 ‒24 +11 

 

a Number of complexes for which TM found at least one article with residues 
b Number of complexes with at least one interface residue found in articles 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
 f From Eq. (4-6) with values from basic TM (first row) as X2  

 

 

Figure 4-6: Comparison of text-mining protocols on full texts. 

The full texts are the PMC-OA set. The performance was calculated by Eq. (4-5). The distribution 

is normalized to the total number of complexes for which residues were extracted (Table 4-2). 
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Figure 4-7: Example of residues mined from full texts. 

The structure is 1usu, chain A (gray) and B (cyan). Basic TM identified 6 residues (4 at the 

interface, in green and yellow, and 2 not at the interface, in red). NLP SVM and DRNN models 

correctly classified 3 interface residues (green). Only one non-interface residue (magenta) was 

mined from the PubMed abstracts. The abstracts from PMC-OA did not predict any residues in 

basic TM. Details are in Text C-2. 

 

4.3.3 Enhanced text mining of abstracts 

When both SVM and DRNN are trained on full-text articles, and applied to classification of 

residues in the abstracts, the results are similar, with somewhat better performance of DRNN 

(Table 4-3 and Figure 4-8). For DRNN, the larger fraction of complexes with only interface 

residues in the final list is counterweighted by the largest fraction of complexes, for which only 

non-interface residues were mined. SVM model was better in removing complexes with only non-

interface residues mined, but failed in increasing the number of complexes, for which all mined 

residues are PPI-relevant (Table 4-3).  
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Figure 4-8: Comparison of text-mining protocols on abstracts. 

The PubMed abstracts were retrieved by the OR-queries with simplified residue filtering (basic 

TM) and with the residue filtering by NLP and DL. The NLP comprised SVM model with scores 

from parse trees of residue-containing and surrounding sentences utilizing automated keywords 

(Table C-1). DL consisted of DRNN model for classifying residues in the entire sentence and with 

7-words window around the mined residues. The performance is calculated by Eq.(4-5). The 

distribution is normalized to the total number of complexes for which residues were extracted 

(Table 4-3). 

 

The DRNN training was done on the entire set of full-text articles. However, its 

performance only weakly depends on the size of the training set (Table C-4 and Figure C-7). One 

can argue that the SVM performance suffered from the different structure of sentences in the full-

texts and the abstracts. DRNN learns data/text patterns at a higher level of generality, and thus 

easily adapts to different domains, as diverse as, for example, protein docking and Netflix movie 

reviews. This suggests the use of DL algorithms for analysis of TM results when, for example, a 

particular PPI is widely studied by a variety of authors using different lexical semantic styles. On 

the other hand, NLP may be better in finer analysis of articles of the same group of authors with 

similar writing styles.  
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Table 4-3: Overall TM performance on PubMed abstracts retrieved by OR-queries with simplified 

residue filtering (basic TM) and with residue filtering by NLP and DLs.  

NLP included SVM model with scores from parse trees of residue-containing and surrounding 

sentences utilizing automated keywords. DL consisted of Deep Recursive Neural Network model 

for classifying residues in the entire sentence, as well as using 7-words window around mined 

residues. NLP and DRNN were trained on complete full-text training set. 

 

Method Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e N(0)f N(1)f 

Basic TM 328 273 56.6 47.2 83.2 ‒ ‒ 

NLP 182  135 31.4 23.3 74.1 -15 -3 

DL (Whole 

sentence) 
179 120 30.9 20.7 67.0 ‒3 +6 

DL (7-words 

window) 
150 104 25.9 18.0 69.3 ‒16 +13 

 

a Number of complexes for which TM protocol found at least one abstract with residues 

b Number of complexes with at least one interface residue found in abstracts 

c Ratio of Ltot and total number of complexes (579) 

d Ratio of Lint and total number of complexes (579) 

e Ratio of Lint and Ltot 

 f From Eq. (4-6) with values from basic TM (first row) as X2 

 

Despite similar performance of NLP and DL methodologies, the latter has an advantage of 

an easy implementation of independent classification of multiple residues in a sentence by limiting 

the context to a few words around the residue (contextual window) and estimating a sentiment for 

that part of the sentence only. Obviously, a smaller contextual window allows independent 

classification of a larger number of residues in the sentence. However, due to the loss of broader 

contextual information embedded in the trained DRNN, the sentiment accuracy may decrease. Our 

results indicate that the optimal TM performance is achieved when the sentiment is calculated for 

sentence fragments of 7 words around the residue (Figure 4-9). Overall, DRNN with the 

contextual window significantly improves filtering of the non-PPI residues, while only slightly 
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reducing the coverage of the dataset (Table 4-3 and Figure 4-8). Figure 4-10 illustrates the 

advantage of sentiment calculation using context window for cationic trypsin - tryptase inhibitor 

complex. 

 

 

 

 

Figure 4-9: TM performance with residue filtering by DL using different window sizes around 

mined residues.  

DL consisted of Deep Recursive Neural Network model for classifying residues in the PubMed 

abstracts, trained on the entire training set of PMC-OA full-text articles. The TM performance 

was calculated by Eq.(4-5). 
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Figure 4-10: Example of residues mined from abstracts by DL in full sentence and with 7-words 

window.  

The structure is 2uuy chain A (gray) and B (cyan). Residues correctly identified at the interface 

are in green, and incorrectly identified in red. DL using full sentence correctly identified 2 out of 

3 residues (the incorrectly identified residue is in magenta). DL using window size of 7 correctly 

identified 2 residues (Gly216, Tyr151). Details are in Text C-3. 

 

 

4.4 Concluding Remarks 

We continued development of the methodology for generating constraints from publicly available 

literature for application to structural modeling of protein complexes. Capitalizing on our earlier 

results on generating such constraints from the basic text mining of PubMed abstracts [37], 

improved by natural language processing techniques [170], in this study, we focused on filtering 

non-interface residues from the list of initially mined residues in PubMed abstracts and PMC-OA 

subset of freely available full text articles by natural language processing and deep learning 

methods. 
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The PMC-OA full text articles, despite representing a small subset of all scientific 

publications, provide a useful source for training of Deep Recursive Neural Networks. The 

networks can be applied to classification of residues found in the abstracts, where the sentence 

structures are, in general, different from those in the full-text articles. In such case, DRNN is 

superior to SVM model, because the success of the latter is often determined by the similarity in 

data/text patterns in the training and the testing sets. Our study provides an insight into the optimal 

context size for TM applications, based on the significant improvement of DRNN performance 

when the sentiment was calculated for a part of the sentence around the mined residue rather than 

for the entire sentence. The results indicate that the bank of sentiment trees, specific for protein-

protein interactions and curated by the experts in the field, is essential for further performance 

improvement of the DL-enhanced text-mining. Overall, following our previous results on NLP 

application to abstracts [170], we showed that DL similarly significantly outperforms the basic 

TM on the abstracts, and both NLP and DL significantly outperform the basic TM on the full-text 

papers. Greater availability of the full-text papers should increase usefulness of this source of 

information for structural modeling of protein complexes.  
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Conclusion 

The results of this work show that the text mining is a valuable tool for protein-protein docking. 

Incorporating NLP methodologies enhances the quality of the constraints. The results indicate that 

small specialized dictionaries are as effective as the generic word ontologies, such as WordNet, in 

distinguishing residues relevant to docking.  Parse trees (Stanford parser) and SVM with domain 

relevant feature words provide the best performance. However, they run a risk of choosing features 

too specific to the training set.  Word vectors together with deep learning for the sentiment analysis 

offer an elegant solution to this problem. The results show that freely available PMC-OA articles 

are a viable alternative to PubMed abstracts in generation of the docking constraints. Incorporating 

the context using the surrounding sentences further improves the performance. Limiting the 

context around the residues is desirable for distinguishing between multiple instances within a 

sentence. NLP and DL similarly significantly outperform the basic TM on the paper abstracts. 

Both NLP and DL significantly outperform the basic TM on the full-text papers. Greater 

availability of the full-text papers should increase the usefulness of this source of information for 

structural modeling of the protein complexes. 

Overall, the study shows the value and the potential of the data-driven approaches for the 

future development of predictive methodologies for modeling of protein interactions. High-

throughput modeling of large biomolecular systems requires powerful automated techniques. 

Computerized mining of the rapidly increasing number of biomedical publications is one such 

approach, the importance of which will grow with further development of the text mining 

methodologies, the greater output of scientific research, and wider public availability of the 

research outcomes. 
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Appendix A  
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Figure A-1: Examples of residues extracted by the basic TM. 

The structure, chain ID, and residue numbers are from 3cki (A), 3f7p (B), and 1zoq (C). Interface 

and non-interface residues detected by the AND-query are in green and red, respectively. 

Additional interface and non-interface residues detected by the OR-query are in brown and 

magenta, respectively. 

 

 

 

 

 

 

 



85 

 

 

 

 

Figure A-2: Distribution of complexes according to the quality of the basic TM, accounting for 

mismatch between residue numbering in PDB and UniProt sequences.  

The TM performance is according to PTM (Eq.(2-1)). The distribution is normalized to the total 

number of complexes for which residues were identified (column 3 in Table 2-3). 

 

 

 

 

Figure A-3: Distribution of complexes according to the quality of the basic TM, excluding 

abstracts published after the paper on the original PDB structure.  

The TM performance is according to PTM (Eq.(2-1)). The distribution is normalized to the total 

number of complexes for which residues were identified (column 3 in Table 2-3). 
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Figure A-4: SVM performance for manual feature selection using linear kernel.  

Data with M suffix was obtained on abstracts excluding those with SVM-scores -0.05 to +0.05. 

Data with NM suffix was obtained on all abstracts. 

 

 

 

 

Figure A-5: SVM performance for manual feature (50_NM) selection using polynomial kernel 

with different degrees. 
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Figure A-6: SVM performance for manual feature selection using RBF kernel with  = 1. 

Data with M suffix was obtained on abstracts excluding those with SVM-scores -0.05 to +0.05. 

Data with NM suffix was obtained on all abstracts. 

 

 

 

Figure A-7: SVM performance for manual feature (20_NM) selection using RBF kernel with 

various γ. 
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Figure A-8: SVM performance for automated feature selection using linear kernel and 0.05 

margin. 
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Figure A-9: SVM performance for automated feature selection using linear kernel without margin. 
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Figure A-10: SVM performance for automated feature selection using polynomial kernel with 

different degrees and no margin.  
  

0 50 100 150
0.3

0.5

0.7

A
c
c
u

ra
c
y

0 50 100 150
0.0

0.5

1.0

P
re

c
is

io
n

0 50 100 150
0.0

0.5

1.0

 degree 2    degree 3    degree 4
R

e
c
a
ll

0 50 100 150

-0.1

0.1

0.3

Number of features in SVM model

M
C

C



91 

 

 

Figure A-11: SVM performance for automated feature selection using RBF kernel with different 

γ and no margin. 
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Figure A-12: Comparison of Matthews correlation coefficient for different approaches to 

calculate the number of features in abstracts in the training set.  

The abstract-wise feature count (irrespective of the number of times the feature appears in an 

abstract) was used earlier in the extraction of features for prediction of protein function and 

localization (Wong & Shatkay, BMC Bioinformatics, 2013,14,Suppl.3: S14; Shatkay et al. 

Methods, 2015,74:54-64). The full count, used in the current study, accounts for all instances of a 

feature in an abstract. The data was obtained on the validation set of 261 abstracts. The SVM 

models were trained on 1,044 abstracts (see Methods).  
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Figure A-13: Distribution of total number of residues per complex extracted by OR-queries in two 

sets.  

The data is normalized by the total number of complexes in the corresponding set. 

 

 

Figure A-14: Normalized distribution of complexes in the Dockground benchmark set 3 according 

to TM performance, PTM (Eq.(2-1)).  

The data is obtained by the basic TM protocol with OR-queries, and is normalized to the total 

number of complexes, for which residues were predicted (column 3 in Table 2-3). Dark and light 

bars show distributions for all retrieved residues and for the top 10 residues, submitted to docking, 

respectively. 

 

 

 

0 20 40 60 80 100
0.0

0.1

0.2

0.70

0.75

F
ra

c
ti
o
n
 o

f 
c
o
m

p
le

x
e
s
 

Number of residues per complex

 587 complexes

 99 complexes

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

F
ra

ct
io

n 
of

 c
om

pl
ex

es

P
TM

 All residues

 Top 10 residues



94 

 

Table A-1: Examples of optimal SVM model impact on TM output. 

The examples are from Figure A-1: Examples of residues extracted by the basic TM. A residue is 

considered removed if an SVM model filtered out all abstracts mentioning this residue. 

 

SVM model 

 
PDB 3cki PDB 3f7p PDB 1m27 PDB 1zoq 

 
CR a IR b CR IR CR IR CR IR 

MF50L  Gly119B Pro5B 
Ala11B 

Arg239A Arg1225C 
Lys1279C 
Arg1281C 
Ser1325C 

Thr53A Tyr132C 
Trp119C 

Ser339A – 

AF138L  Gly119B Pro5B 
Val353A 

Arg239A – – Tyr132C Ser339A, 
Ser385A, 
Ser386A, 
Leu238A 

– 

AF24L  Gly119B Pro5B 
Ala11B 
Val353A 

Arg239A – – Tyr132C Ser339A, 
Ser385A, 
Ser386A, 
Leu238A 

– 

 
a Correctly removed (non-interface residues) 
b Incorrectly removed (interface residues) 
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Text A-1: Performance of basic text mining for specific protein-protein complexes 

SH2D1A – p59Fyn complex (1m27). For this complex, AND-query did not retrieve any abstracts. 

The OR-query identified 6 abstracts with 4 residues, out of which 3 are at the interface (Figure 2-3 

in the main text, PTM =0.75). Arg78 of SH2D1A protein (1m27, chain A) was detected in the 

abstract on the role of tyrosine kinase Fyn and SLAM (synonym of SH2D1A) interaction in the 

development of natural killer T cells in human and mice [177]. The abstract was not detected by 

AND-query because p59Fyn names that do not follow UniProt nomenclature. Arg78 was also 

pinpointed in two mutagenesis studies on the role of the SLAM-SAP-Fyn signaling pathway in 

mice CD4 T cell function and germinal center development [178, 179]. Trp119 of p59Fyn (1m27, 

chain C) was detected in the abstract on interactions of SH2 and SH3 domains of p59Fyn [180]. 

The p59Fyn residue Tyr132 was detected in an abstract of site-directed mutagenesis studies that 

prove importance of this residue in formation of phosphoprotein pp21 [181]. Non-interface 

SH2D1A residue Thr53 was found in the abstract of computational study on the role of SLAM 

mutations in manifestation of an immunodeficiency disease, X-linked lymphoproliferative 

syndrome [182]. Another residue mentioned in this abstract (Arg32) belongs to the protein core 

and thus did not pass protocol filters. 

TACE – TIMP3 complex (3cki). For human tumor necrosis factor alpha converting enzyme 

(TACE) co-crystallized with the metalloproteinase inhibitor 3, TIMP3, the AND-query predicted 

7 interface and 5 non-interface residues (Figure A-1A, PTM = 0.58), mentioned in the abstracts of 

6 publications [183-188], other than the original X-ray study [189]. Redesign of metalloproteinase 

inhibitor TIMP1, using TIMP3 as a scaffold identified three residues, Ser4, Leu67, and Arg84, 

important for the TIMP3-TACE binding [183]. Ser4 and Thr2 were found to be functionally 

important by measuring binding affinities of the mutated TIMP3 [184]. Redesign of 
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metalloproteinase inhibitor TIMP2, using TIMP3 and TIMP1 as scaffolds [185], identified Ser4 

and, additionally, Phe34 residues. Three other residues mentioned in that abstract (Val/Leu69, 

Thr/Leu98 and Leu/Ile/Met100) did not match residues in the original PDB (Gly69, Val98, and 

Arg100, respectively). Phe34 was also mentioned in the original X-ray crystallography paper 

[189]. In the study of TACE cysteine-rich domains role in the TIMP-3 inhibitory potency [186], 

Lys315 was mentioned as a residue adjacent to the TACE catalytic site, which interacts with 

TIMP-3 Glu31, which is close to, but not at the TACE-TIMP3 interface. In this abstract, other 

non-interface residues, Lys26, Lys27, Lys30, and Lys76 were also mentioned along with residues 

(Glu26, Glu27, Glu30, and Glu76) that either did not match PDB numbering or did not follow 

residue patterns considered in this study (Table 2-1). Finally, Pro5 is identified in the analysis of 

expression levels of different human prostatic tumor cell lines [187]. However, Pro5 in this 

publication stands for the name of cell line rather than a residue. Ser4 was also identified by another 

publication [185] where the binding affinity of the mutant is better than TIMP-3. All the above 

residues belong to TIMP3 chain in the original PDB, except Lys315, which belongs to the TACE 

chain. 

The OR-query for this complex found three additional abstracts [85, 190, 191] with two additional 

interface residues (TACE Val353 and TIMP3 Ala11) and one non-interface (TIMP3 Gly119) 

residue (PTM = 0.60). Val353 was identified as functionally important in the study on stabilization 

of the TACE autoproteolysis [190]. Ala11 is mentioned in the abstract of paper [85] showing that 

activation of brain ET(B) receptors causes TIMP-1 and TIMP-3 production. Gly119 is present in 

the abstract of study [191] on mutated growth hormone (bGH) in transgenic mice. This abstract 

was picked due to the presence of the TIMP-3 name, however Gly119 mentioned therein belongs 

to bGH protein and just accidentally coincides with the Gly119 residue in the original PDB file. 
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The OR-query also found three additional abstracts with five residues already picked up by the 

AND-query. Study [192] determined that Lys26, Lys27, Lys30, and Lys76 constitute another 

TIMP3 binding site with the extracellular matrix (ECM). Other residues mentioned in that abstract 

(Arg163 and Lys165) belong to the C-terminal of TIMP3 not present in the original PDB file. 

Lys27 was also present in the abstract of study [193] suggesting that EZH2 (Enhancer of zeste 

homolog 2) accelerates lung cancer cell migration partially through repression of TIMP-3 

expression. Thr2 was identified in the paper [194] showing that mutated N-TIMP3 inhibits 

degradation of ADAMTS-4 and ADAMTS-5 metalloproteinases.  

Complex of Plectin-1 and Integrin beta-4 (3f7p). For this complex, AND-query found 3 

abstracts with 4 interface residues of Integrin beta 4 (Figure A-1B, PTM = 1.00). Abstract in Ref. 

[195] states that mutations at Arg1225 and Arg1281 sites inhibit interaction of the integrin beta 4 

with plectin while mutation of Lys1279 has no effect to recruit plectin. In addition, Arg1281 was 

spotted in the abstract in Ref. [196] also showing that mutation at this site affects the interaction 

between the two proteins. Another mutagenesis study [197] shows that residue Ser1325 is 

important for recruitment of plectin into hemidesmosomes in vivo.  

The OR-query for this complex identified one additional abstract with one additional non-

interface residue (Figure 2-3B) thus reducing TM performance to PTM = 0.80. Arg239 was found 

in the abstract in Ref. [198] on interaction between plectin and glial fibrillary acidic protein 

(GFAP). However, the number of this residue belonging to GFAP protein, just accidentally 

coincides with the number of one of the arginine residues in the original PDB file. The OR-query 

has also retrieved 2 additional abstracts of mutagenesis studies containing Arg1281 pinpointed by 

the AND-query. Mutation at Arg1281 was found to effect severity of epidermolysis bullosa 
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(genetic skin disease) [199] and to inhibit interaction between plectin and integrin beta 4 with its 

alpha 6 chain [200].  

IRF3 – CBP complex (1zoq). For this complex, the AND-query identified 6 abstracts with 3 non-

interface residues in the Interferon regulatory factor 3, IRF3 (Figure A-1D, PTM = 0.00). All found 

residues (Ser339 [201, 202], Ser385 [203-205], and Ser386 [203-206]) were studied in the context 

of their phosphorylation, which regulates CBP binding allosterically. Interferon interacts with 

many partners (e.g., BioGrid database [207] lists 44 interactions for IRF-3) and phosphorylation 

of these three residues was studied in the context of IRF3 binding to other proteins as well. The 

OR-query thus found Ser336, Ser385 and Ser386 residues in one [208], two [209, 210], and five 

[210-214] additional abstracts, respectively. 

The OR-query for this complex found one more residue, Leu238 of IRF3, in one additional 

abstract  (PTM = 0.00) of study on the interferon (IFN) role in resisting evasion of the African swine 

fever virus into pig immune system [215]. 
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Text A-2: Performance of SVM-enhanced text mining for specific protein-protein complexes 

 

For the TACE-TIMP3 complex (3cki, Figure A-1A), all three models removed non-interface 

Gly119 and one or both interface residues brought up by the OR-query (Table A-1). In addition, 

all models removed one interface residue from the AND-query abstracts (Pro5B) and overlooked 

all non-interface residues found by the AND-query. This led to slightly deteriorated TM 

performance (PTM drops by 0.02 for the MF50L and AF138L models and by 0.06 for AF24L 

model). For the Plectin 1 and Integrin beta 4 complex (3f7p, Figure A-1B), the AF138L and AF24L 

models removed plectin non-interface Arg239, detected by the OR-query, thus increasing PTM to 

1.00. The MF50L model, however, also removed all interface residues detected by the AND-query, 

thereby erroneously excluding this complex from the consideration (Table A-1). Still, for the 

SH2D1A-p59Fyn complex (1m27, Figure A-1C), the MF50L model raised PTM to 1.00 but, in 

contrast, the AF138L and AF24L models performed worse, dropping PTM to 0.67 (Table A-1). 

These models purged p59Fyn interface residue Tyr132. Finally, the AF138L and AF24L models 

correctly excluded IRF3-CBP complex (1zoq, Figure A-1D) from consideration removing all non-

interface residues picked up by the OR-query while the MF50L model succeeded only partially, 

removing only one non-interface residue (Table A-1). This model overlooked other non-interface 

residues. 
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Appendix B  
 
Table B-1: Details of residue filtering by the SVM-based approach of the parse-tree analysis  

for SUMO-conjugating enzyme UBC9 complex with small ubiquitin-related modifier 1 (2uyz, 

chains A and B). 

For this complex, the AND-query did not retrieve any abstracts. The OR-query identified 5 

abstracts and 5 residues have passed the initial filters of the basic TM protocol (see Methods in 

the main text), out of which 1 is at the interface (Figure 5 in the main text, PTM =0.2). All five 

residues belong to the small ubiquitin-related modifier 1. Gln69 was detected in the study which 

pointed out that this residue is responsible for not forming polymers unlike ubiquitin [216]. Glu67 

(chain B) was mentioned in the context with interaction of this protein with cytosolic dipeptidyl 

peptidase 9 (DPP9) [217]. Arg54 (chain B) was noted in the context of fusing sumoylation-site 

Tec1 mutant to Ubc9 and alteration of transcription activity [218]. Lys37 (chain B) was detected 

in the mutagenesis studies on ultraspiracle protein (Usp) fragments and its effect on sumoylation 

[219]. Lys39 (chain B) was named in the context of phosphorylated residues contacting this 

residue in SUMO1 thus connecting CK2 signaling [220]. 

 

 

PMID of 
abstract 

(Residue) 
Sentence +ve/-ve words Sx Interface? 

23152501 
(Glu67) 

Surprisingly, DPP9 binds to SUMO1 
independent of the well-known SUMO 
interacting motif, but instead interacts with a 
loop involving Glu(67) of SUMO1. 

binds, interacting, 
interacts/ 

0.70 Yes 

19826484 
(Arg54) 
 

In contrast, fusing sumoylation-site mutant 
Tec1, i.e., Tec1(K54R), to Ubc9 did not 
significantly alter transcriptional activation 
and had a less effect on invasive growth. 

/sumoylation -0.33 No 

22676916 
(Lys37) 
 

Mutagenesis studies on the fragments of Usp 
indicated that sumoylation can occur 
alternatively on several defined Lys residues, 
i.e. three (Lys16, Lys20, Lys37) in A/B 
region, one (Lys424) in E region and one 
(Lys506) in F region. 

/sumoylation -0.16 No 

19217413 
(Lys39) 
 

We provide evidence that the phosphorylated 
residues contact lysine 39 and 35 in SUMO1 
and SUMO2, respectively. 

contact/phosphory
lated 

0.00 No 

9654451 
(Gln69) 

Furthermore, ubiquitin Lys48, required to 
generate ubiquitin polymers, is substituted in 
SUMO-1 by Gln69 at the same position, 
which provides an explanation of why 
SUMO-1 has not been observed to form 
polymers. 

/ubiquitin -0.33 No 
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Figure B-1: Parse tree of sentence  

“Structure-guided alanine mutagenesis of R5-6 revealed that two Lys residues (Lys-2360 and Lys-

2467) constitute a central binding site for the low-density lipoprotein receptor class A module in 

the receptor, indicating a strong similarity to the ligand recognition mode shared among the 

endocytic lipoprotein receptors” from the abstract with PMID:17548821. Four PPI+ive words 

from our own dictionary are in red, magenta, blue and green. Colored numbers are index number 

of the edge in the path connecting mentioned residues (italic, in red) with the keyword of 

corresponding color. In this example, the scores of both residues (Equation (3-3) in main text) are 

X

1

8
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Figure B-2:  SVM performance using linear kernel. Data with no margin was obtained on all 

sentences. 
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Figure B-3: SVM performance using polynomial kernel with different degrees and no margin.  
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Figure B-4: SVM performance using linear kernel and 0.05 margin.  

Data with margin was obtained on sentences excluding those with SVM-scores -0.05 to +0.05.  
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Figure B-5: SVM performance using polynomial kernel with different degrees and 0.05 margin. 

Data with the margin was obtained on sentences excluding those with SVM-scores -0.05 to +0.05.  
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Figure B-6: SVM performance using RBF kernel with different γ and no margin. 
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Figure B-7: SVM performance using RBF kernel with different γ and 0.05 margin. 

Data with the margin was obtained on sentences excluding those with SVM-scores -0.05 to +0.05 

 

 

 

Figure B-8: Normalized distribution of SX scores (Eq. (3-3) in the main text) for 1921 interface 

and 3865 non-interface residues.  

The data was obtained from the parse trees of 5786 sentences of 3109 abstracts on studies of 579 

complexes. Residues were spotted for 328 complexes and for 273 of them at least one found residue 

was at the interface.  
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Figure B-9: Performance of the basic and the advanced text mining protocols.  

Advanced filtering of the residues in the abstracts retrieved by the OR-queries was performed by 

analysis of sentence parse trees using SVM model on the entire and the reduced sets of abstracts. 

The TM performance is according to PTM (Eq. (3-1)). The distribution is normalized to the total 

number of complexes for which residues were identified (328, 182 and 75 for the OR whole set, 

SVM whole set and SVM test set, respectively). 
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Appendix C  
 

Text C-1: for Figure 4-5 (main text) 

 

Residue filtering by basic TM for the complex of reelin (chain A) and low-density lipoprotein 

receptor-related protein 8 (chain B) of 3a7q identified from PubMed abstracts and not from PMC–

OA full text. Only AND-query identified 3 PubMed abstracts. Three residues passed the initial 

filters of the basic TM (see Methods in the main text), of which 2 are at the interface (PTM = 0.66). 

All three residues belong to reelin (chain A of 3a7q). Direct citation of PDB entry identified 

Lys2467 and Lys2360 (both in chain A). These residues play an important role in interaction of 

reelin with apolipoprotein E receptor 2 (ApoER2) [221]. Structure-guided alanine mutagenesis of 

fifth and sixth reelin repeats (R5-6) identified that residues Lys2467 and Lys2360 (both in chain 

A), are part of central binding site for low-density lipoprotein receptor [222]. Another residue 

Ala2101 (chain A) was identified in mutant reelin where this mutant failed to assemble into 

multimers via disulfide bonds. However, it non-covalently associated high molecular weight 

oligomeric states in solution. The binding assay (surface plasmon resonance) showed that this 

mutant retained binding capability towards low density lipoprotein receptor [223]. 
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Text C-2: for Figure 4-7 (main text) 

 

Residue filtering by basic TM for the complex of heat shock protein HSP82 (chain A) and AHA1 

(chain B) of 1usu identified one residue from PubMed abstract. PMC (OA) abstracts did not 

identify any residues, while PMC (OA) full-text identified six residues. The residue identified by 

PubMed is not at the interface (PTM = 0). Four out of six residues identified by PMC (OA) full text 

are at the interface (PTM = 0.66). NLP-hybrid method on PMC (OA) full-text further filtered the 

residues by identifying three residues, all of which are at the interface (PTM = 1). All residues were 

identified by OR-queries. 

TM on abstract from PubMed identified Glu90 in mutant study of Thr90 in Hsp90α when 

investigating the phosphorylation impact of this residue, showing that Thr90 is involved in the 

regulation of the Hsp90α chaperone machinery [224] (PTM = 0).  

TM on PMC (OA) full-text articles identified six residues. The abstract of this full-text 

article, where the residues Leu66, Ile64 and Phe100 were identified as PPI-related using basic TM, 

is about a method to photo-cross-link interacting proteins using p-azido-L-phenylalanine (pAzpa). 

The non-canonical amino acid pAzpa was incorporated into a domain of Aha1 that was known to 

bind Hsp90 in vitro [225]. The abstract of the full-text article from which residue Asp145 was 

retrieved using basic TM is on the analysis of SGT1–HSP90 (Suppressor of G2 allele of skp1 and 

Heat-shock protein 90). The full text mentions this residue as a target for site-directed mutagenesis 

in HSP90 in wheat [226]. Asp53 was identified in the full-text article on structural study of Aha1 

binding with Hsp90 to modulate ATP hydrolysis cycle and client activity in vivo. When this 

residue is mutated in N-terminal domain in yeast Hch1p it impairs the ability to stimulate Hsp90 

[227]. The abstract where the residue Glu22 was identified by basic TM mentions the results of 

computational study of allosteric regulation in Hsp90 complexes with p23 and Aha1 as the co-
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chaperones.  NLP-hybrid on full text correctly classified three interface residues (Leu66, Ile64 and 

Phe100). It rejected 3 residues (Asp145, Asp53 and Glu22) of which one (Asp53) was at the 

interface. Deep learning on full text yielded results identical to those of NLP-hybrid. DL with 7 

words window accepted two residues which are at the interface (Leu66 and Ile64). 
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Text C-3: for Figure 4-10 (main text) 

 

Residue filtering by basic TM for the complex of Cationic Trypsin (chain A) and Tryptase Inhibitor 

(chain B) of 2uuy identified 13 residues from 12 PubMed abstracts. Only 4 of 13 residues were 

correctly identified at the interface (PTM = 0.30). DL using whole sentence identified 3 residues, of 

which only 2 were at the interface (PTM = 0.66). DL using window of 7 identified 2 residues, both 

at the interface (PTM = 1). All residues were identified by OR-queries. 

Basic TM identified correctly Gly216 in a structural analysis of trypsin-BPTI interfaces 

[228]. Tyr151 was correctly identified by basic TM in trypsin forming hydrophobic interface in 

investigation of molecular specificity of Kunitz domain 1 (KD1) of issue factor pathway inhibitor-

2 [229]. Tyr151 was also identified in another abstract where crystal structure of trypsin were 

compared between different organism such as Atlantic salmon, chum salmon and bovine [230]. 

Tyr151 again was correctly, and Ser146 incorrectly, identified in PubMed abstract where the 

residue is part of substrate activation binding site of bovine trypsin [231]. 

Glu79 was incorrectly identified at interface by basic TM in the abstract describing E79K 

mutation in cationic trypsin causing increase in transactivation of anionic trypsinogen and used in-

vitro analysis of recombinant wild and mutant enzymes [232]. Gly65 and Gly23 were incorrectly 

identified by basic TM from an abstract that describes the specificity of papaya proteinase IV 

(PPIV) for cleaving glycyl bonds [233]. Of Thr144 and Gly148 identified by TM only the latter is 

at the interface. The abstract is on the structure of complex of bdellastasin and porcine beta-trypsin 

[234]. Of Gly174, Gln175 and Gly216 identified by TM only the last two were correctly 

determined to be at the interface. The abstract is about a comparative study of structures of 

cyclotheonamide A (CtA) complexes of alpha-thrombin and beta-trypsin [235]. Ser112 was 
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incorrectly identified by basic TM at interface, from abstract about supercharged mutant (variant) 

of serine protease human enteropeptidase light chain [236].  

Lys145 and Ser146 were incorrectly identified by basic TM at the interface, in abstract about 

a crystal structure of an active autolysate form of porcine alpha-trypsin (APT) [237]. Lys145 and 

Ser146 were also identified as an autolysis position in the abstract where the crystal structure of 

Porcine epsilon-trypsin was studied by molecular replacement [238]. Lys222 was incorrectly 

identified by basic TM from an abstract about covalent binding of proteinases by human alpha 2-

macroglobulin [239]. 

DL using full sentence identified 3 residues (Tyr151, Thr144 and Gly148), of which 2 

(Tyr151, Gly148) were correctly determined at the interface. Thr144 is incorrectly identified at the 

interface. DL using window size 7 identified 2 residues (Gly216, Tyr151), both at the interface. 
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Table C-1: List of automatically generated keywords and associated sentiment labels.  

Positive and negative scores indicate keywords relevant (PPI+ive) and irrelevant (PPI-ive), 

respectively, to protein-protein binding sites. Details are in Methods (main text). 

 

Score Keyword Sentiment  Score Keyword Sentiment 
-6.2086 Mutations 0  1.0936 Spots 3 

-5.9771 Mutants 0  1.1334 Compounds 3 

-4.6471 Domain 0  1.1391 Active 3 

-3.9662 Mutant 0  1.1903 intermolecular 3 

-2.9279 Mutation 0  1.2049 Interacting 3 

-2.6234 Anti 0  1.2172 Bond 3 

-2.5567 Cells 0  1.2236 Extensive 3 

-2.1993 Sites 1  1.2634 Defined 3 

-2.1408 Observed 1  1.3243 Ubiquitin 3 

-2.0669 Position 1  1.3600 Docking 3 

-1.9548 Gene 1  1.3602 Structure 3 

-1.8865 Additional 1  1.3658 Form 3 

-1.6241 Phosphorylation 1  1.3942 Expected 3 

-1.4819 Effects 1  1.4608 Stable 3 

-1.4340 Substitutions 1  1.5494 Pocket 3 

-1.4193 Using 1  1.6241 Complexes 3 

-1.4072 Effect 1  1.7257 Salt 3 

-1.3690 Previously 1  1.7428 Loops 3 

-1.3186 Reduced 1  1.7436 Terminal 3 

-1.2951 Values 1  1.7469 Surface 3 

-1.2812 Results 1  1.8078 Buried 3 

-1.2804 Motif 1  1.8793 Aromatic 3 

-1.2780 Substitution 1  2.0572 Sequence 3 

-1.2552 Kinase 1  2.0645 Cluster 3 

-1.1301 Levels 1  2.2051 Main 3 

-1.1065 Reported 1  2.3774 Interface 3 

-1.1025 Linker 1  2.4139 Interact 3 

-1.0708 Catalytic 1  2.4456 Affinity 3 

-1.0642 Amino 1  2.4764 Catenin 3 

-1.0562 Specific 1  2.5009 Helix 4 

-1.0432 Identified 1  2.5481 Site 4 

-1.0416 Direct 1  2.5764 Chains 4 

-1.0399 Chemical 1  2.6105 Contacts 4 

-1.0107 Factor 1  2.7096 Patch 4 

-1.0050 Described 1  2.7569 Interaction 4 

-1.0049 Helices 1  2.7836 Complex 4 

-1.0042 Core 1  3.2955 Hydrogen 4 

1.0270 Burring 3  3.9495 Formed 4 

1.0278 Contributing 3  4.1811 Chain 4 

1.0603 Protonation 3  4.4273 Interactions 4 

1.0855 Forms 3  5.2863 Binding 4 

1.0900 Interacts 3  9.1639 Hydrophobic 4 

 

  



113 

 

Table C-2: TM performance on full texts with residue filtering using NLP and two sets of 

keywords.  

NLP algorithm includes SVM model with scores from parse trees of residue-containing and 

surrounding sentences utilizing automatically (Table C-1 and manually [170] selected keywords. 

 

Keywords Ltot
a Lint

b Coverage (%)c Success (%)d Accuracy (%)e 

Auto 87 58 33.6 22.4 66.7 

Manual 95 62 36.7 23.9 65.3 

 
a Number of complexes for which TM protocol found at least one article with residues 
b Number of complexes with at least one interface residue found in articles 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
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Table C-3: TM performance on the abstracts of PMC-OA test set of full-text articles with 

simplified residue filtering (basic TM) and with the residue filtering by NLP and DL.  

NLP algorithm includes SVM model with scores from parse trees of residue-containing and 

surrounding sentences utilizing automatically selected keywords (Table C-1). DL consists of Deep 

Recursive Neural Network model for classifying residues at the entire sentence level. Both SVM 

model and DRNN were trained on the reduced full-text training set. 

 

Method Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e N(0)f N(1)f 

Basic TM 79 40 30.5 15.4 50.6 ‒ ‒ 

NLP 23 16 8.9 6.2 69.6 ‒34 ‒3 

DL 20 14 7.7 5.4 70.0 ‒35 ‒5 

 

a Number of complexes for which TM found at least one abstract with residues 
b Number of complexes with at least one interface residue found in abstracts 
c Ratio of Ltot and total number of complexes (259) 
d Ratio of Lint and total number of complexes (259) 
e Ratio of Lint and Ltot 
f From Eq.(4-6) in the main text with values from basic TM (first row) as X2 
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Table C-4: Influence of the training set on TM performance with residue filtering by DL. 

DL consists of Deep Recursive Neural Network model for classifying residues in the PubMed 

abstracts at the entire sentence level. 

 

Training dataset Ltot a Lint b Coverage (%)c Success (%)d Accuracy (%)e N(0)f N(1)f 

Full PMC-OA set, (4,982 

sentences) 
179 120 30.9 20.7 67.0 ‒3 +6 

Reduced PMC-OA set 

(2,490 sentences) 
116 77 20.0 13.3 66.4 ‒24 ‒7 

 
a Number of complexes for which TM protocol found at least one abstract with residues 
b Number of complexes with at least one interface residue found in abstracts 
c Ratio of Ltot and total number of complexes (579) 
d Ratio of Lint and total number of complexes (579) 
e Ratio of Lint and Ltot 
f From Eq.(4-6) in the main text with values from the second row in Table 4-1 as X2  
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Figure C-1: Distribution of SX scores for the mined residues. 

The scores were calculated by Eq.(4-3) (main text) for the 1,605 interface and 3,377 non-interface 

mined residues from the parse trees of 4,982 sentences of 1,931 articles on studies of 313 

complexes (from total of 579 complexes in the set). 

 

 

Figure C-2: Optimization of SVM performance. 
Results for the SVM model with and without 0.05 margin (when sentences with the SVM scores ‒

0.05 to +0.05 are excluded from the evaluation) are similar. 
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Figure C-3: Dependence of Deep Recursive Neural Network model accuracy on the training 

length. 

Training and testing were performed on the 4,982 sentences of the PMC-OA full-text articles and 

5,786 sentences of the PubMed abstracts, respectively. The accuracy was defined as the fraction 

of sentences in the dataset, for which the correct sentiment was assigned. The DRNN learned over 

~10 epochs. Beyond that it appeared to be over-trained (accuracy on the training set increases 

without the corresponding increase in the accuracy on the test set). Sharp falls and rises in the 

DRNN accuracy can be attributed to the drop-out method used to avoid the exploding gradient 

issue in DL [165]. Drop-out nodes were chosen at random and at times could correspond to a 

weight representing important learning, thus causing a sudden drop in test and training accuracies 

learned in subsequent epochs. 
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Figure C-4: Fraction of interface residues among the mined residues obtained by different 

filtering algorithms. 

Data is obtained on the test set of PMC-OA full text articles (for 259 complexes). Basic TM 

performed simplified residue filtering on the information retrieved by the OR queries, and was the 

baseline for further residue filtering. NLP algorithm involved SVM model with scores from parse 

trees of residue-containing and surrounding sentences utilizing automated keywords. DL consisted 

of Deep Recursive Neural Network model for classifying residues using entire sentences and 7-

words window around mined residues. 
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Figure C-5: Comparison of NLP performance with automatic and manually selected keywords. 

The NLP algorithm includes SVM model with scores from parse trees of residue-containing and 

surrounding sentences utilizing automatically Table C-1 and manually [170] selected keywords. 

The distribution is normalized by the total number of complexes for which residues were extracted 

(Table C-2). 
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Figure C-6: TM performance on the abstracts of PMC-OA test set of full-text articles with 

simplified residue filtering (basic TM) and with residue filtering by NLP and DL. 

NLP consisted of the SVM model with scores from parse trees of residue-containing and 

surrounding sentences utilizing automatically selected keywords (Table C-1). DL consisted of 

Deep Recursive Neural Network model for classifying residues in the entire sentences. SVM model 

and DRNN were trained on the reduced full-text training set. The distribution is normalized to the 

total number of complexes for which residues were extracted (Table C-3). 
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Figure C-7: Influence of the training set on TM performance with residue filtering by DL.  

DL consisted of Deep Recursive Neural Network model for classifying residues in the PubMed 

abstracts at the entire sentence level. Full and reduced training sets consisted of 4,982 and 2,490 

residue-containing sentences, respectively, from PMC-OA full-text articles. The TM performance 

was calculated by Eq.(4-5) in the main text. The distribution is normalized by the total number of 

complexes for which residues were identified (Table C-4). 
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Appendix D 

List of publications 

 

Reprinted in this thesis 

 Badal VD, Kundrotas PJ, Vakser IA: (2015) Text Mining for Protein Docking. PLoS 

Comput Biol, 11(12), e1004630. 

 Badal VD, Kundrotas PJ, Vakser IA: Natural language processing in text mining for 

structural modeling of protein complexes. BMC Bioinformatics 2018, 19(1):84. 

 Badal VD, Kundrotas PJ, Vakser IA, 2018. Enhanced text mining of biomedical literature 

for modeling of protein complexes. Submitted. 

 

Other related work 

 Anishchenko I, Badal VD, Dauzhenka T, Das M, Tuzikov AV, Kundrotas PJ, Vakser IA: 

Genome-Wide Structural Modeling of Protein-Protein Interactions. In: Bioinformatics 

Research and Applications: 12th International Symposium, ISBRA 2016, Minsk, Belarus, 

June 5-8, 2016, Proceedings: 2016. Springer, 9683: 95. 

 

 Kundrotas PJ, Anishchenko I, Badal VD, Das M, Dauzhenka T, Vakser IA: Modeling 

CAPRI Targets 110–120 by Template‐Based and Free Docking Using Contact Potential 

and Combined Scoring Function. Proteins: Structure, Function, and Bioinformatics 2017. 
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