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Abstract

This dissertation systematically considers the inference problem for stochastic differen-

tial equations (SDE) driven by fractional Brownian motion. For the volatility parame-

ter and Hurst parameter, the estimators are constructed using iterated power variations.

To prove the strong consistency and the central limit thoerems of the estimators, the

asymptotics of the power variatons are studied, which include the strong consistency,

central limit theorem, and the convergence rate for the iterated power variations of the

Skorohod integrals with respect to fractional Brownian motion. The iterated logarithm

law of the power variations of fractional Brownian motion is proved. The joint con-

vergence along different subsequence of power variations of Skorohod integrals is also

studied in order to derive the central limit theorem for the estimators.

Another important topic considered in this dissertation is the estimation of drift

parameters of the SDEs. A least squares estimator (LSE) is proposed and the strong

consistency is proved for the fractional Ornstein-Uhlenbeck process that is the solution

to the linear SDE. The fourth moment theorem is applied to obtain the central limit

theorems. Then the LSE is considered for the drift parameter of the multi-dimensional

nonlinear SDE. While proving the strong consistency of LSE, the regularity structure of

the SDE’s solution is explored and the maximal inequality for the Skorohod integrals is

derived. The main tools used in this research are Malliavin calculus and some Gaussian

analysis elements.
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Chapter 1

Introduction

Stochastic models have been widely used to describe various phenomena in many re-

search areas, such as physics, economics and finance etc. The important examples

include the semimartingale models that demonstrate the Markovian property. How-

ever, as the Hurst phenomena and the fractal property of financial market were discov-

ered, researchers began to widely investigate the non-Markovian models. The fractional

Brownian motion (fBm) and the stochastic processes driven by fBm are the essential

representatives. A typical model of great interest is

dXt = f (θ , t,Xt)dt +σtdBH
t , (0.1)

with initial condition X0 ∈ R, where BH = {BH
t , t ≥ 0} is a fractional Brownian (fBm)

motion of Hurst parameter H ∈ (0,1). The volatility σt is a stochastic process with

β -Hölder continuous trajectories, where β > 1−H. Under this condition on σt , the

stochastic integral
∫ t

0 σsdBH
s is well defined as a pathwise Riemann-Stieljes integral

(see, for instance, [41]).

There are different assumptions that are imposed on the drift funciton f such that

the above stochastic differential equation has a unique solution (see [32, 16] and the
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reference therein). In the papaer [32], the drift function f is Lipschitz continuous and

satisfies a boundness condition, i.e.,

| f (θ , t,x)− f (θ , t,y)| ≤C|x− y|, ∀ x, y ∈ R, ∀ t ∈ [0,T ]

and

f (θ , t,x)≤C|x|+ f0(t),∀x ∈ R,∀ t ∈ [0,T ].

In the paper [16], they consider the drift funciton f in the form of f (Xt), and require

that f is one-sided dissipative Lipschitz and it has polynomial growth together with its

derivative, i.e.,

〈x− y, f (x)− f (y)〉 ≤ −L|x− y|2, ∀ x, y ,

| f (x)|+ |D f (x)| ≤ K(1+ |x|q) ,

for some q≥ 1 and a constant K > 0. In each chapter, we may clearly state the condi-

tions of f such that the stochastic differential equation has a unique solution.

Now we assume that one trajectory of the stochastic process Xt has been obtained.

We are interested in the estimation of the parameters H,σt and θ . It is worth mentioning

that the inference problem under multiple trajectories has been well established where

the law of large numbers could be applied. However, in real world usually there is only

one trajectory available, and this challenging problem is discussed in this thesis.

The statistical estimation of the integrated volatility has already been studied in

the recent decades. Barndorff-Nielsen et al ([4] - [5]) studied estimation of volatility

for Brownian semimartingale and Brownian semi-stationary processes by using power,

bipower, or multipower variations. However, those results cannot be applied to the

fractional Ornstein-Uhlenbeck process due to its lack of the semimartingale property.

To tackle this difficulty, Berzin and León use the regression models in the paper [7] to
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estimate the volatility and the Hurst parameter. Some other researchers used quadratic

variations to estimate the Hurst parameter of the fBm. Interested readers are referred

to the papers [25, 23]. In this research work, we will apply general power variations

to estimate volatility and Hurst parameter. This will involve some research work on

the asymptotic behavior of power variations, which has been discussed by Nualart,

Corcuera and Woerner in the paper [15]. They studied the asymptotic behavior of the

power variation of the stochastic integral Zt =
∫ t

0 usdBH
s , which is defined as

V n
p (Z)t =

[nt]

∑
i=1
|Zi/n−Z(i−1)/n|p

for any p > 0. They proved that if the process u = {ut , t ≥ 0} has finite q-variation on

any finite interval, for some q < 1/(1−H), then, as n→ ∞,

n−1+pHV n
p (Z)t → c1,p

∫ t

0
|us|pds

uniformly in probability in any compact sets of t, where c1,p = E|BH
1 |p. The corre-

sponding central limit theorem was also obtained for H ∈ (0, 3
4 ]. These results can be

applied to construct an estimator based on the power variation of
∫ t

0 σsdBH
s to estimate

the integrated volatility
∫ t

0 |σs|pds when H ∈ (0, 3
4 ]. However, the condition H ∈ (0, 3

4 ]

is critical in [15]. The first objective of this research is to remove this restriction. To

this end, we shall use higher order (or iterated) power variations defined as

V n
k,p(Z)t =

[nt]−k+1

∑
i=1

∣∣∣∣∣ k

∑
j=0

(−1)k− j
(

k
j

)
Z(i+ j−1)/n

∣∣∣∣∣
p

,

for any integer k ≥ 1. In Section 3.1, we study the asymptotic behavior of these higher

order power variations of the general stochastic integral Zt =
∫ t

0 usdBH
s . The application
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of these results to estimate the integrated volatility are presented in Section 3.4. In

particular, when σt = σ we can use

|σ̂T |p =
n−1+pHV n

k,p(X)T

ck,pT

to estimate σ , where ck,p is a constant. The almost sure convergence and the central

limit theorems of the estimators for both the integrated volatility and the volatility itself

are established.

Another related problem of power variations is the convergence rate. We know that

as an immediate consequence of ergodic theory,

n−1+pHV n
p (B)t = n−1+pH

[nt]

∑
i=1
|B i

n
−B i−1

n
|p→ E|B1|p

almost surely as n→ ∞. The central limit theorem can be obtained by the Wiener

Chaos projection and Fourth moment theorem. However, it is unknown whether the

law of iterated logarithm exists, and the total variation distance between the power

variation sequence and its limit distribution is not known either. In this research, we

will investigate these problems thoroughly for the first time. We have discovered that, if

p≥ 3, the law of iterated logarithm is valid for all H ∈ (0,1) if iterated power variations

are used.

Based on the results on power variations, we develop the estimation method for the

Hurst parameter using change-of-frequency method. The estimator is proposed as

Ĥλ ,n =
1
p

(
1−

logV λn
k,p(X)t− logV n

k,p(X)t

logλ

)
, t ∈ [0,T ] ,

where λ > 1 is the scaling constant. We will prove the consistency and the central limit

theorem.
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To estimate the drift parameter θ , We may assume that the Hurst parameter H and

the volatility σ are known or have been estimated by the above methods. There have

been two popular types of estimators for this drift parameter. One is the maximum

likelihood estimator and the other one is the least square estimator. In the Brownian

motion case, they coincide, but for the fractional Ornstein-Uhlenbeck processes they

are different (see [20] and [24]).

For the linear SDE, also known as fractional Ornstein-Uhlenbeck processes, there

have been many results on this topic when H ∈ [1
2 ,1). Interested readers are referred

to the papers [10, 20, 36, 21, 26, 22, 40, 9]. In the case of continuous observations,

Kleptsyna and Le Breton ([24]) studied the maximum likelihood estimator (MLE) and

proved the almost sure convergence. It is worth noting that Tudor and Viens ([38]) have

also obtained the almost sure convergence of both the MLE and a version of the MLE

using discrete observations for all H ∈ (0,1). Bercu, Courtin and Savy proved in [6] the

central limit theorem for the MLE in the case of H > 1
2 . They claimed without proof

that the above convergence is also valid for H ∈ (0, 1
2).

On the other hand, Hu and Nualart ([20]) proposed the least square estimator and

another ergodic type estimator. They obtained almost sure convergence and the central

limit theorem for H ∈ [1
2 ,

3
4). Sottinen and Viitasaari derived a central limit theorem

and a Berry-Esseen bound for the ergodic type estimator when H ∈ (0,1) in a recently

published paper [36]. However, they did not give an explicit expression for the limiting

variance.

Moreover, when H ∈ (0, 1
2)∪ [

3
4 ,1), the central limit theorems for the least square

estimator have not been known yet. One of the objectives in this thesis is to prove the

asymptotic consistency by using a new method, different from that in [20], which is

valid for all H ∈ (0,1). This method involves the relationship between the divergence

and Stratonovich integrals and the integration by parts technique and it is based on the
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pathwise properties of the fractional Ornstein-Uhlenbeck process established in a paper

[12] by Cheridito, Kawaguchi and Maejima. A central limit theorem for the least square

estimator will be established. We will make a comparison of the asymptotic variance for

these three estimators. We will use the ergodic-type estimator to construct a consistent

estimator for high frequency data (if only discrete observations are available). The

asymptotic behavior of this estimator in the discrete case is also studied.

For a general nonlinear SDE, let us first mention the paper [38] in which the maxi-

mum likelihood estimator is analyzed. The paper [2] is more related to our work, where

Neuenkirch and Tindel studied the discrete observation case and proved the strong con-

sistency of the following estimator

θ̄n = argminθ

∣∣∣∣∣ 1
nα2

n

n−1

∑
k=0

(
|Xtk+1−Xtk− f (Xtk ;θ)αn|2−

d

∑
j=1
|σ j|2α

2H
n

)∣∣∣∣∣
when H > 1

2 , where αn = tk− tk−1 satisfies that αnnα converges to a constant as n→∞

for some small α > 0. Their approach relies on Young’s inequality from the rough path

theory to handle Skorohod integrals, which cannot be applied for the case H ∈ (0, 1
2 ].

In this research, motivated by the parameter estimation, we contribute some stochas-

tic analysis results on the Skorohod integrals. Through Malliavin calculus and factor-

ization method, a maximum inequality for Skorohod integrals is developed. Moreover,

some useful results on the solution of stochastic differential equations with drift func-

tion in the form of −θ f (Xt) are also derived, for example, the moment estimation and

the regularity analysis of the solution. These are important ingredients to prove the

strong consistency of the least squares estimator.

6



Chapter 2

Preliminary

2.1 Fractional Brownian motion

The fractional Brownian motion (fBm) BH = {BH
t , t ∈ R} with Hurst parameter H ∈

(0,1) is a zero mean Gaussian process, defined on a complete probability space (Ω,F ,P),

with the following covariance function

E(BH
t BH

s ) = RH(t,s) =
1
2
(|t|2H + |s|2H−|t− s|2H). (1.1)

This process is self-similar of order H > 0, that is, for any a > 0 the processes {BH
at , t ∈

R} and {aHBH
t , t ∈ R} are the same in law. From (1.1), it is easy to see that

E|BH
t −BH

s |2 = |t− s|2H .

Then it follows from Kolmogorov’s continuity criterion that on any finite interval, al-

most surely all paths of fBm are α-Hölder continuous with α < H. Denote by ηT the
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α-Hölder coefficient of fBm on the interval [0,T ], i.e.,

ηT = sup
t 6=s∈[0,T ]

∣∣BH
t −BH

s
∣∣

|t− s|α
. (1.2)

Clearly, E|ηT |q = T q(H−α)E|η1|q for any q > 1, by the self-similarity property of fBm.

Let F denote the σ -field obtained from the completion of the σ -field generated by

BH . Let E denote the space of all real valued step functions on R. The Hilbert space H

is defined as the closure of E endowed with the inner product

〈1[a,b],1[c,d]〉H = E
(
(BH

b −BH
a )(B

H
d −BH

c )
)
.

Under the convention that 1[0,t] = −1[t,0] if t < 0, the mapping 1[0,t] 7→ BH
t can be ex-

tended to a linear isometry between H and the Gaussian space H1 spanned by BH . We

denote this isometry by H 3 ϕ 7→ BH(ϕ).

If f ,g ∈ H and g is a continuously differentiable function with compact support,

we can use step functions in E to approximate f and g and by a limiting argument we

deduce

〈 f ,g〉H =
∫
R2

f (t)g′(s)
∂RH(t,s)

∂ t
dtds (1.3)

(see [19]). We can also use Fourier transform to compute 〈 f ,g〉H, namely,

〈 f ,g〉H =
1

c2
H

∫
R

F f (ξ )Fg(ξ )|ξ |1−2Hdξ , (1.4)

where cH =
(

2π

Γ(2H+1)sin(πH)

) 1
2 (see [35]). When H > 1/2, for any f ,g ∈ L1/H([0,T ]),

if we extend f and g to be zero on R∩ [0,T ]c, then f ,g ∈ H and we have the following

8



simple identity

〈 f ,g〉H = αH

∫
[0,T ]2

f (u)g(v)|u− v|2H−2dudv , (1.5)

where αH = H(2H−1).

Next we introduce the d-dimensional fBm B = {(B1
t , . . . ,B

d
t ), t ≥ 0} with Hurst

parameter H ∈ (0,1), which is a zero mean Gaussian process whose components are

independent and have the covariance function

E(Bi
tB

i
s) = RH(t,s) :=

1
2
(|t|2H + |s|2H−|t− s|2H), (1.6)

for i = 1, . . . ,d.

Let E d denote the set of Rd-valued step functions on [0,∞) with compact support.

The Hilbert space Hd is defined as the closure of E d endowed with the inner product

〈(1[0,s1], . . . ,1[0,sd ]),(1[0,t1], . . . ,1[0,td ])〉Hd = E

[(
d

∑
j=1

B j
s j

)(
d

∑
j=1

B j
t j

)]
=

d

∑
i=1

RH(si, ti) .

Then the mapping (1[0,t1], . . . ,1[0,td ]) 7→ ∑
d
j=1 B j

s j can be extended to a linear isometry

between Hd and the Gaussian space H1 spanned by B. We denote this isometry by

ϕ ∈ Hd 7→ B(ϕ).

When H = 1
2 , B is just a d-dimensional Brownian motion and Hd = L2([0,∞);Rd).

When H ∈ (1
2 ,1), let |H|d be the linear space of Rd-valued measurable functions ϕ on

[0,∞) such that

‖ϕ‖2
|H|d = αH

d

∑
j=1

∫
[0,∞)2

|ϕ j
r ||ϕ j

s ||r− s|2H−2drds < ∞ ,

9



where αH = H(2H−1). Then |H|d is a Banach space with the norm ‖ · ‖|H|d and E d is

dense in |H|d . Furthermore, for any ϕ ∈ L
1
H ([0,∞);Rd), we have

‖ϕ‖|H|d ≤ bH,d‖ϕ‖
L

1
H ([0,∞);Rd)

, (1.7)

for some constant bH,d > 0 (See [29]). Thus, we have continuous embeddings

L
1
H ([0,∞);Rd)⊂ |H|d ⊂ Hd

for H > 1
2 .

When H ∈ (0, 1
2), the covariance of the fBm B j can be expressed as

RH(t,s) =
∫ s∧t

0
KH(s,u)KH(t,u)du ,

where KH(t,s) is a square integrable kernel defined as

KH(t,s) = dH

(( t
s

)H− 1
2
(t− s)H− 1

2 − (H− 1
2
)s

1
2−H

∫ t

s
vH− 3

2 (v− s)H− 1
2 dv

)
,

for 0 < s < t, with dH being a constant depending on H (see [29]). The kernel KH

satisfies the following estimates

|KH(t,s)| ≤ cH

(
(t− s)H− 1

2 + sH− 1
2

)
, (1.8)

and ∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣≤ c′H(t− s)H− 3
2 , (1.9)
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for all s < t and for some constants cH ,c′H . Now we define a linear operator KH from

E d to L2([0,∞);Rd) as

KH(φ)(s) =
(

KH(T,s)φ(s)+
∫ T

s
(φ(t)−φ(s))

∂KH

∂ t
(t,s)dt

)
1[0,T ](s) , (1.10)

where the support of φ is included in [0,T ]. One can show that this definition does not

depend on T . Then the operator KH can be extended to an isometry between the Hilbert

space Hd and L2([0,∞);Rd) (see [29]), and if φ ∈ Hd has support in [0,T ], then (1.10)

holds. For φ ∈ Hd with support in [0,T ], we define

‖φ‖2
Kd

T
:=

∫ T

0
|φ(t)|2

(
(T − t)2H−1 + t2H−1)dt

+
∫ T

0

(∫ T

s
|φ(t)−φ(s)|(t− s)H− 3

2 dt
)2

ds .

By the estimates (1.8) and (1.9), there exists a constant C depending on H such that for

any φ ∈ Hd with support in [0,T ],

‖φ‖2
Hd = ‖KH(φ)‖2

L2([0,∞);Rd) ≤C‖φ‖2
Kd

T
. (1.11)

2.2 Malliavin Calculus

We define two types of stochastic integrals: Stratonovich integral and divergence inte-

gral (Skorohod integral). Given a stochastic process {v(t), t ≥ 0} such that
∫ t

0 |v(s)|ds<

∞ a.s. for all t > 0, the Stratonovich integral
∫ t

0 v(s) ◦ dBH
s is defined as the following

limit in probability if it exists

lim
ε→0

∫ t

0
v(s)ḂH,ε

s ds ,

11



where ḂH,ε
s is a symmetric approximation of ḂH

s :

ḂH,ε
s =

1
2ε

(BH
s+ε −BH

s−ε) .

Before we define the divergence integral, we present some background of Malliavin

calculus. For a smooth and cylindrical random variable F = f (BH(ϕ1), . . . ,BH(ϕn)),

with ϕi ∈H and f ∈C∞
b (R

n) ( f and all of its partial derivatives are bounded), we define

its Malliavin derivative as the H-valued random variable given by

DF =
n

∑
i=1

∂ f
∂xi

(BH(ϕ1), . . . ,BH(ϕn))ϕi.

By iteration, one can define the k-th derivative DkF as an element of L2(Ω;H⊗k). For

any natural number k and any real number p≥ 1, we define the Sobolev space Dk,p as

the closure of the space of smooth and cylindrical random variables with respect to the

norm || · ||k,p defined by

||F ||pk,p = E(|F |p)+
k

∑
i=1

E(||DiF ||p
H⊗i).

The divergence operator δ is defined as the adjoint of the derivative operator D in

the following manner. An element u ∈ L2(Ω;H) belongs to the domain of δ , denoted

by Domδ , if there is a constant cu depending on u such that

|E(〈DF,u〉H)| ≤ cu||F ||L2(Ω)

for any F ∈D1,2. If u ∈Domδ , then the random variable δ (u) is defined by the duality

relationship

E(Fδ (u)) = E(〈DF,u〉H) ,

12



which holds for any F ∈D1,2. If u= {ut , t ∈ [0,T ]} is a stochastic process, whose trajec-

tories belong to H almost surely (with the convention ut = 0 if t 6∈ [0,T ]) and u∈Domδ ,

we make use of the notation
∫ T

0 utdBH
t = δ (u) and call δ (u) the divergence integral of

u with respect to the fractional Brownian motion BH on [0,T ]. It is worth noting that

the divergence integral of fBm with respect to itself does not exist if H ∈ (0, 1
4) because

the paths of the fBm are too irregular (see [13]). For this reason, in [13] the authors in-

troduce an extended divergence integral δ ∗ such that Domδ ∗∩L2(Ω;H) = Domδ and

the extended divergence operator δ ∗ restricted to Domδ coincides with the divergence

operator. In a similar way we can introduce the iterated divergence operator δ k for each

integer k ≥ 2, defined by the duality relationship

E(Fδ
k(u)) = E

(
〈DkF,u〉H⊗k

)
,

for any F ∈ Dk,2, where u ∈ Domδ k ⊂ L2(Ω;H⊗k).

For any integer m ≥ 1, we use H⊗m and H�m to denote the m-th tensor product

and the m-th symmetric tensor product of the Hilbert space H, respectively. We de-

note by Hm the closed linear subspace of L2(Ω) generated by the random variables

{Hm(BH(ϕ)) : ϕ ∈ H, ||ϕ||H = 1}, where Hm is the m-th Hermite polynomial defined

by

Hm(x) =
(−1)m

m!
e

x2
2

dm

dxm e−
x2
2 , m≥ 1,

and H0(x) = 1. The space Hm is called the Wiener chaos of order m. The m-th mul-

tiple integral of ϕ ∈ H�m is defined by the identity Im(ϕ) = δ m(ϕ), and in particular,

Im(φ
⊗m) = Hm(BH(φ)) for any φ ∈ H. The map Im provides a linear isometry between

H�m(equipped with the norm 1√
m!
|| · ||H⊗m) and Hm (equipped with L2(Ω) norm) (see

[28], Theorem 2.7.7). By convention, H0 = R and I0(x) = x.
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The space L2(Ω) can be decomposed into the infinite orthogonal sum of the spaces

Hm, which is known as the Wiener chaos expansion. Thus, any square integrable

random variable F ∈ L2(Ω) has the following expansion,

F =
∞

∑
m=0

Im( fm),

where f0 = E(F), and fm ∈ H�m are uniquely determined by F . We denote by Jm the

orthogonal projection onto the m-th Wiener chaos Hm. This means that Im( fm)= Jm(F)

for every m≥ 0.

For all t ≥ 0 and F ∈ L2(Ω), we define the Ornstein-Uhlenbeck semigroup (Pt)t≥0

as

Pt(F) =
∞

∑
m=0

e−mtJm(F) ∈ L2(Ω) .

Denote L = d
dt |t=0Pt the infinitesimal generator of (Pt)t≥0 on L2(µ). Then we have

LF =−
∞

∑
m=1

mJm(F)

for any F ∈ DomL (see [28]). We define the pseudo-inverse of L as

L−1F =−
∞

∑
m=1

1
m

JmF.

The following lemma establishes the relationship among Pt ,D,L−1 (see [28]).

Lemma 2.2.1. Suppose F ∈ D1,2 and E(F) = 0. Then we have the identity

−DL−1F =
∫

∞

0
e−tPtDFdt .
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Next, we define the derivative operator and its adjoint, the divergence with respect

to d-dimensional fractional Brownian motion. Consider a smooth and cylindrical ran-

dom variable of the form F = f (Bt1 , . . . ,Btn), where f ∈ C∞
b (R

d×n) ( f and its partial

derivatives are all bounded). We define its Malliavin derivative as the Hd-valued ran-

dom variable given by DF = (D1F, . . . ,DdF) whose jth component is given by

D j
sF =

n

∑
i=1

∂ f

∂x j
i

(Bt1 , . . . ,Btn)1[0,t j](s).

By iteration, one can define higher order derivatives D j1,..., jiF that take values on

(Hd)⊗i. For any natural number p and any real number q ≥ 1, we define the Sobolev

space Dp,q as the closure of the space of smooth and cylindrical random variables with

respect to the norm ‖ · ‖p,q given by

‖F‖q
p,q = E(|F |q)+

p

∑
i=1

E

( d

∑
j1,..., ji=1

‖D j1,..., jiF‖2
(Hd)⊗i

) q
2
 .

Similarly, if W is a general Hilbert space, we can define the Sobolev space of W-valued

random variables Dp,q(W).

For j = 1, . . . ,d, the adjoint of the Malliavin derivative operator D j, denoted as δ j,

is called the divergence operator or Skorohod integral (see [29]). A random element u

belongs to the domain of δ j, denoted as Dom(δ j), if there exists a positive constant cu

depending only on u such that

|E(〈D jF,u〉H)| ≤ cu‖F‖L2(Ω)

15



for any F ∈ D1,2. If u ∈ Dom(δ j), then the random variable δ j(u) is defined by the

duality relationship

E
(
Fδ

j(u)
)
= E(〈D jF,u〉H) ,

for any F ∈ D1,2. In a similar way, we can define the divergence operator on Hd and

we have δ (u) = ∑
d
j=1 δ j(u j) for u = (u1, . . . ,ud) ∈ ∩d

j=1Dom(δ j). We make use of the

notation δ (u) =
∫

∞

0 utdBt and call δ (u) the divergence integral of u with respect to the

fBm B.

For p > 1, as a consequence of Meyer’s inequality, the divergence operator δ is

continuous from D1,p(Hd) into Lp(Ω), which means

E(|δ (u)|p)≤Cp

(
E(‖u‖p

Hd)+E(‖Du‖p
Hd⊗Hd)

)
, (2.1)

for some constant Cp depending on p.

2.3 Convergence results

Let {ek,k ≥ 1} be a complete orthonormal system in the Hilbert space H. Given f ∈

H�n,g∈H�m, and p = 1, . . . ,n∧m, the p-th contraction between f and g is the element

of H⊗(m+n−2p) defined by

f ⊗p g =
∞

∑
i1,...,ip=1

〈 f ,ei1⊗·· ·⊗ eip〉H⊗p⊗〈g,ei1⊗·· ·⊗ eip〉H⊗p .

The following result (known as the fourth moment theorem) provides necessary

and sufficient conditions for the convergence of some random variables to a normal

distribution (see [30, 31, 28]).
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Theorem 2.3.1. Let n≥ 2 be a fixed integer. Consider a collection of elements { fT ,T >

0} such that fT ∈ H�n for every T > 0. Assume further that

lim
T→∞

E[In( fT )
2] = lim

T→∞
n!‖ fT‖2

H⊗n = σ
2.

Then the following conditions are equivalent:

1. limT→∞E[In( fT )
4] = 3σ2.

2. For every p = 1, . . . ,n−1, limT→∞ || fT ⊗p fT ||H⊗2(n−p) = 0.

3. As T tends to infinity, the n-th multiple integrals {In( fT ),T ≥ 0} converge in

distribution to a standard Gaussian random variable N(0,σ2).

4. ‖D(In( fT ))‖2
H

L2(Ω)−−−→
T→∞

nσ2.

Remark 2.3.2. The multidimensional version of the above theorem is also stated and

proved in [30, 28, 33].

For the two real-valued random variables F and G, the total variation distance be-

tween the laws of F and G is defined by the quantity

dTV(F,G) = sup
B∈B(R)

|P(F ∈ B)−P(G ∈ B)| ,

where the supremum is taken over Borel sets B of R. Then we have the following

bounds on normal approximation inside a Wiener chaos (see [28]).

Proposition 2.3.3. Let n≥ 2 be an integer, and FT = In( f ) be a multiple integral of or-

der n with E(F2
T )= 1. Let N be a random variable with the standard normal distribution.
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Then the total variation distance between FT and N is bounded as follows.

dTV(FT ,N)≤ 2

√
Var
(

1
n
‖DFT‖2

H

)
.

In the paper [30], Nualart and Ortiz-Lattore apply the fourth moment theorem to

establish the following weak convergence result for an arbitrary sequence of centered

square integrable random vectors.

Theorem 2.3.4. Let {Fk,k ∈ N} be a sequence of d-dimensional centered square inte-

grable random vectors with the following Wiener chaos expansions:

Fk =
∞

∑
m=1

JmFk .

Suppose that:

(i) limM→∞ limsupk→∞ ∑
∞
m=M+1E[|JmFk|2] = 0 .

(ii) For every m≥ 1, 1≤ i, j ≤ d, limk→∞E[(JmF i
k)(JmF j

k )] =Ci j
m .

(iii) For all v ∈ Rd , ∑
∞
m=1 vTCmv = vTCv, where C is a d×d symmetric nonnegative

definite matrix.

(iv) For all m≥ 1, 1≤ i, j ≤ d,

〈D(JmF i
k),D(JmF j

k )〉H
L2(Ω)−−−→
k→∞

mCi j
m .

Then, Fk converges in distribution to the d-dimensional normal law Nd(0,C) as k tends

to infinity.

Next let us recall the definition of the Rosenblatt process that will appear in the limit

theorems of the following chapters. Fix H > 3/4 and t ∈ [0,1]. Consider the sequence
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of functions of two variables

ξn,t = 2n
[2nt]

∑
i=1

1⊗2
((i−1)2−n,i2−n] .

Through a direct computation using (1.5) one can show that this sequence is Cauchy in

H⊗2 and converges to distribution denoted by δ0,t and defined by

〈δ0,t , f 〉=
∫ t

0
f (s,s)ds, (3.1)

for any test function f on R2. It turns out (see [27] for the proofs) that the sequence

I2(ξn,t) converges in L2 as n tends to infinity to the Rosenblatt random variable Rt =

I2(δ0,t). For any f ∈ L1/H([0,1]2), we have the following formula, letting f equal to

zero on R2∩ [0,1]c,

E(RtI2( f ))= 2〈δ0,t , f 〉H⊗2 = 2α
2
H

∫ t

0
dv
∫
[0,1]2

f (u1,u2)|u1−v|2H−2|u2−v|2H−2du1du2 .

(3.2)

In the paper [3], the authors establish an explicit connection between Stein matrices

and the law of iterated logarithm, which is stated as the following proposition.

Proposition 2.3.5. Let X = {Xn,n ≥ 1} be a sequence of centered random variables.

We assume that X satisfies the following conditions.

1. There exists a function δ : N→ R+ such that δ (n) = O(nαL(n)) for some α ∈

(0,1] where L satisfies limx→∞ L(ax)/L(x) = 1 for any a > 0, and for all n1 < n2,

∣∣∣∣∣E
(

Xn2−Xn1

δ (n2−n1)

)2

−1

∣∣∣∣∣≤ C
1+ log(n2−n1)

,

where C > 0 is a constant independent of n1,n2.
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2. For every m ∈ N, and every increasing sequence~n = {ni}1≤i≤2m = {[a(b+i)1+α

]}

where a > 1,α > 0 and m,b ∈ N, we define the vector ~R = (R1, . . . ,Rm) where

Ri =
Xn2i−Xn2i−1

δ (n2i−n2i−1)
.

Then ~R admits a m×m Stein matrix τ = (τi j).

3. There exists a > 1 such that for every α > 0, there exists a positive constant C

depending on a,α satisfying the following inequalities.

√
Var(τii(~R))≤

C
1+ log(n2i−n2i−1)

, i = 1, . . . ,m,

and √
E(τi j(~R)2)≤ C

1+ log(n2i−n2i−1)
, i 6= j.

4. There exist positive constants C,θ such that for all r ≥ 1, n1 < n2,

(
E|τ
(

Xn2−Xn1

δ (n2−n1)

)
−1|r

) 1
r

≤ Crθ

1+ log(n2−n1)
,

where τ is the Stein factor of
Xn2−Xn1
δ (n2−n1)

.

Then

limsup
n→∞

Xn√
2δ 2(n) log logn

= 1, a.s.

liminf
n→∞

Xn√
2δ 2(n) log logn

=−1, a.s.

We end this section by stating the following theorem proved in the paper [14] on

the asymptotic behavior of weighted random sums. It will be used in the next section

to prove the central limit theorem of the power variation of stochastic integrals.
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Theorem 2.3.6. Let (Ω,F ,P) be a complete probability space. Fix a time interval

[0,T ] and consider a double sequence of random variables ξ = {ξi,m,m ∈ Z+,1≤ i≤

[mT ]}. Assume the double sequence ξ satisfies the following hypotheses.

(H1) Denote gm(t) := ∑
[mt]
i=1 ξi,m. The finite dimensional distributions of the sequence of

processes {gm(t), t ∈ [0,T ]} converges F -stably to those of {B(t), t ∈ [0,T ]} as m→∞,

where {B(t), t ∈ [0,T ]} is a standard Brownian motion independent of F .

(H2) ξ satisfies the tightness condition

E

∣∣∣∣∣ k

∑
i= j+1

ξi,m

∣∣∣∣∣
4

≤C
(

k− j
m

)2

for any 1≤ j < k ≤ [mT ].

If { f (t), t ∈ [0,T ]} is an α−Hölder continuous process with α > 1/2 and we set

Xm(t) := ∑
[mt]
i=1 f ( i

m)ξi,m, then we have the F -stable convergence

Xm(t)
L−−−→

m→∞

∫ t

0
f (s)dB(s),

in the Skorohod space D [0,T ].
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Chapter 3

Estimation for the volatility parameter and Hurst

parameter

3.1 Asymptotic behavior of power variations

We first recall the definition of p-variation. For any p > 0, the p-variation of a real-

valued function f on an interval [a,b] is defined as

varp( f ; [a,b]) = supπ

( n

∑
i=1
| f (ti)− f (ti−1)|p

)1/p
,

where the supremum runs over all partitions π = {a = t0 < t1 < · · · < tn = b}. If f is

α-Hölder continuous on the interval [a,b], α ∈ (0,1], then we set

‖ f‖α := supa≤s<t≤b
| f (t)− f (s)|
|t− s|α

.

It is known that an α -Hölder continuous function f on the interval [a,b] has finite 1/α-

variation on this interval. If f and g have finite p-variation and finite q-variation on the

interval [a,b] respectively and 1/p+ 1/q > 1, the Riemann-Stieltjes integral
∫ b

a f dg

exists (see Young [41]). By Young’s result, the stochastic integral
∫ t

0 usdBH
s is well
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defined as a pathwise Riemann-Stieltjes integral provided that the trajectories of the

process {ut , t ≥ 0} have finite q-variation on any finite interval for some q < 1/(1−H).

Next we introduce high order power variations and prove some asymptotic results

for the high order power variations of stochastic integrals with respect to fBm. The

high order power variations will be used to construct estimators for Hurst parameter, the

volatility and the integrated volatility of some stochastic processes in the next sections.

Consider a sequence of random variables {Xi−1 , i ≥ 1}. Denote the first order dif-

ference ∆Xi−1 = ∆1Xi−1 = Xi−Xi−1. Define the k-th order difference by induction as

follows ∆kXi−1 = ∆k−1Xi−∆k−1Xi−1 for k = 2,3, . . . , namely,

∆kXi−1 =
k

∑
j=0

(−1)k− j
(

k
j

)
Xi+ j−1 .

Let BH = {BH
t , t ≥ 0} be a fBm with Hurst parameter H ∈ (0,1). For any j ≥ 0, we

can write down the covariance function of the k-th order difference of the sequences

{BH
n ,n≥ 0} and {BH

n+ j,n≥ 0} as follows

ρk,H( j) := E[(∆kBH
n+ j)(∆kBH

n )] =
1
2

k

∑
i=−k

(−1)1−i
(

2k
k− i

)
| j− i|2H .

Since all the moments of a mean zero Gaussian can be expressed by its variance, we

see that the p-th moment of ∆kBH
n is given by

ck,p = E[|∆kBH
n |p] =

2p/2Γ((p+1)/2)
Γ(1/2)

[ρk,H(0)]p/2. (1.1)

Notice that the quantities ρk,H( j) and ck,p are independent of n, due to the fact that the

fBm has stationary increments.
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From the fact that ρk,H( j) = o( j2H−2k) for j large it follows that

∞

∑
j=0

ρ
2
k,H( j)


= ∞ when k = 1 and 3

4 ≤ H < 1,

< ∞ when k = 1 and when 0 < H < 3
4 ,

< ∞ when k ≥ 2 .

Let p > 0 and let n ≥ 1 be an integer. We define the k-th order p-variation of a

stochastic process Z = {Zt , t ≥ 0} as

V n
k,p(Z)t =

[nt]−k+1

∑
i=1

|∆kZ i−1
n
|p =

[nt]−k+1

∑
i=1

∣∣∣∣∣ k

∑
j=0

(−1)k− j
(

k
j

)
Z i+ j−1

n

∣∣∣∣∣
p

, (1.2)

where we use the convention that the sum is zero if [nt]− k+1 < 1.

The following proposition shows the convergence of the k-th order p-variation for

stochastic integrals of fractional Brownian motion, extending a result in [15] which is

valid when k = 1.

Theorem 3.1.1. Let k ≥ 2 and let H ∈ (0,1). Suppose that {ut , t ∈ [0,T ]} is a stochas-

tic process whose sample paths are Hölder continuous with exponent a ∈ (1−H,1].

Consider the pathwise Riemann-Stieltjes integral

Zt =
∫ t

0
usdBH

s , t ∈ [0,T ].

Then for any p > 0, as n→ ∞,

n−1+pHV n
k,p(Z)t → ck,p

∫ t

0
|us|pds (1.3)

almost surely, uniformly on [0,T ], where ck,p is the constant introduced in (1.1).
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Proof. Denote by ‖ · ‖∞ the supremum norm on [0,T ]. For any t ∈ [0,T ] and any m ≥

n≥ 1, by the definition of V m
k,p(Z)t , we have

m−1+pHV m
k,p(Z)t− ck,p

∫ t

0
|us|pds

= m−1+pH
[mt]−k+1

∑
i=1

(∣∣∣∆kZ i−1
m

∣∣∣p− ∣∣∣u i
m

∆kBH
i−1
m

∣∣∣p)
+ m−1+pH

(
[mt]−k+1

∑
i=1

∣∣∣u i
m

∆kBH
i−1
m

∣∣∣p− [nt]−k+1

∑
i=1

∣∣∣u i−1
n

∣∣∣p ∑
j∈In(i)

∣∣∣∣∆kBH
j−1
m

∣∣∣∣p
)

+ m−1+pH
[nt]−k+1

∑
i=1

∣∣∣u i−1
n

∣∣∣p ∑
j∈In(i)

∣∣∣∣∆kBH
j−1
m

∣∣∣∣p− ck,pn−1
[nt]−k+1

∑
i=1

∣∣∣u i−1
n

∣∣∣p
+ ck,p

(1
n

[nt]−k+1

∑
i=1

∣∣∣u i−1
n

∣∣∣p−∫ t

0
|us|pds

)
=: A(m)

t +B(n,m)
t +C(n,m)

t +D(n)
t , (1.4)

where In(i) = { j : j−1
m ∈ ( i−1

n , i
n ]}, 1≤ i≤ [nt]− k+1.

Because of the stationary property of the increments of BH , the high order difference

sequence {∆kBH
j−1 , j ≥ 1} is stationary as well. Thus, for any fixed n ∈ N and 1≤ i≤

[nt]− k+1, we apply the ergodic theorem to obtain

m−1+pHn ∑
j∈In(i)

∣∣∣∣∆kBH
j−1
m

∣∣∣∣p− ck,p→ 0 , (1.5)

almost surely as m→ ∞. This implies

lim
m→∞
‖C(n,m)‖∞ = 0 (1.6)

almost surely, for any fixed n≥ 1.
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In the following arguments, we will use the two elementary inequalities

|x+ y+ z|p ≤ 3(p−1)+[|x|p + |y|p + |z|p], (1.7)

||x|p−|y|p| ≤ (p∨1)2(p−2)+[|x− y|p + |y|(p−1)+|x− y|(p∧1)] (1.8)

for any p≥ 0, and any x,y,z ∈ R.

For the term B(n,m)
t ,

‖B(n,m)‖∞ ≤ m−1+pH
[nT ]

∑
i=1

∑
j∈In(i)

∣∣∣|u j
m
|p−|u i−1

n
|p
∣∣∣ ∣∣∣∆kB j−1

m

∣∣∣p
≤ 1

n

[nT ]

∑
i=1

sup
s∈( i−1

n , i+1
n ]

∣∣∣|u i−1
n
|p−|us|p

∣∣∣(m−1+pHn ∑
j∈In(i)

∣∣∣∆kB j−1
m

∣∣∣p)
≤ C(n−ap +‖|u|p‖∞n−a(p∧1)) ,

where the last step we have used the result of (1.5) for the second factor for each fixed n,

and for the first factor, we have applied the inequlaity (1.8) and the the Hölder continuity

of u. Therefore,

lim
n→∞

lim
m→∞
‖B(n,m)‖∞ = 0 , (1.9)

almost surely.

The term D(n)
t is the remainder of a Riemann sum approximation. For all p > 0, we

have

|D(n)
t | =

∣∣∣∣∣[nt]−k+1

∑
i=1

1
n

∣∣∣u i−1
n

∣∣∣p−∫ i
n

i−1
n

|us|pds

∣∣∣∣∣+
∫ t

[nt]−k
n

|us|pds

≤ 1
n

[nT ]

∑
i=1

sup
s∈( i−1

n , i
n ]

∣∣∣∣∣∣u i−1
n

∣∣∣p−|us|p
∣∣∣+ k+1

n
‖|u|p‖∞

≤ C(n−ap +‖|u|p‖∞n−a(p∧1))+Cn−1‖|u|p‖∞ ,
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where in the last step we have used inequality (1.8) and the Hölder continuity of u.

Therefore,

lim
n→∞
‖D(n)‖∞ = 0 , (1.10)

almost surely.

It remains to deal with the term A(m). Using inequality (1.8), we obtain

|A(m)
t | ≤ m−1+pH

[mt]+1−k

∑
i=1

∣∣∣|∆kZ i−1
m
|p−|u i

m
∆kBH

i−1
m
|p
∣∣∣

≤ (p∨1)2(p−2)+m−1+pH

{
[mt]+1−k

∑
i=1

[∣∣∣∆kZ i−1
m
−u i

m
∆kBH

i−1
m

∣∣∣p
+
∣∣∣u i

m
∆kBH

i−1
m

∣∣∣(p−1)+ ∣∣∣∆kZ i−1
m
−u i

m
∆kBH

i−1
m

∣∣∣p∧1]}
=: (p∨1)2(p−2)+[E(m)

k,p (t)+F(m)(t)] . (1.11)

First, we use mathematical induction on k to prove limm→∞ ‖E(m)
k,p ‖∞ = 0, almost surely.

For k = 1, the result is true by the proof of Theorem 1 in [15]. Assume the convergence

holds true for k−1. We can express E(m)
k,p (t) in the following way

E(m)
k,p (t) = m−1+pH

[mt]+1−k

∑
i=1

∣∣∣Φ(m)
i,1 −Φ

(m)
i,2 +Φ

(m)
i,3

∣∣∣p ,
where

Φ
(m)
i,1 = ∆k−1Z i

m
−u i+1

m
∆k−1BH

i
m
,

Φ
(m)
i,2 = ∆k−1Z i−1

m
−u i

m
∆k−1BH

i−1
m
,
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and

Φ
(m)
i,3 = ∆k−1BH

i
m
(u i+1

m
−u i

m
).

Then, applying inequality (1.7) yields

E(m)
k,p (t) ≤ 3(p−1)+m−1+pH

[mt]+1−k

∑
i=1

(
|Φ(m)

i,1 |
p + |Φ(m)

i,2 |
p + |Φ(m)

i,3 |
p
)

≤ 3(p−1)+
(

2E(m)
k−1,p(t)+m−1+pH

[mt]+1−k

∑
i=1

|Φ(m)
i,3 |

p

)
.

Choosing 0 < ε < a+H−1, we can write

m−1+pH
[mt]+1−k

∑
i=1

|Φ(m)
i,3 |

p ≤CmpH−pa−p(H−ε)‖u‖p
a‖B‖

p
H−ε

,

for some constant C depending on T , p, ε , k and H. Using the induction hypothesis,

and taking into account that −a+ ε < H−1 < 0, we conclude that ‖E(m)
k,p ‖∞ converges

to zero almost surely, as m tends to infinity.

Finally, the infinity norm of the term F(m) can be bounded by

‖F(m)‖∞ ≤C‖u‖(p−1)+
∞ ‖B‖(p−1)+

H−ε
m−(p−1)+(H−ε)‖E(m)

k,p∧1‖∞ ,

where again C is a constant depending on T , p, ε , k and H. Then, ‖F(m)‖∞ goes to 0

almost surely, as m→ ∞.

Thus, by (1.11) we have ‖A(m)‖∞→ 0 almost surely, as m→ ∞ . The proposition

follows then from this convergence and the limits established in (1.6), (1.9) and (1.10).
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Next we study the central limit theorem of (1.3). We will use the notation

v2
1 =

∞

∑
m=2

c2
m

m!

[
1+2

∞

∑
j=1

(
ρk,H( j)
ρk,H(0)

)m]
, (1.12)

where cm = m!(ρk,H(0))
p
2 E[Hm(N)|N|p] and N is a standard Gaussian random variable.

We shall first deal with the case of the fractional Brownian motion (Zt = BH
t ) and then

consider the general case of stochastic integrals.

Proposition 3.1.2. Fix a positive integer k ≥ 2. Let H ∈ (0,1), T > 0 and p > 0. Then

(
BH

t ,
√

n
(

n−1+pHV n
k,p(B

H)t− ck,pt
))
→ (BH

t ,v1Wt) (1.13)

in law in the space D([0,T ])2 equipped with the Skorohod topology, where v1 is defined

by (1.12) and W = {Wt , t ∈ [0,T ]} is a Brownian motion, independent of the fractional

Brownian motion BH .

Proof. The proof will be completed in two steps.

Step 1: We show the convergence of the finite-dimensional distributions. Let the in-

tervals (al,bl], l = 1, . . . ,ν , be pairwise disjoint in [0,T ]. Define the random vectors

B = (BH
b1
−BH

a1
, . . . ,BH

bν
−BH

aν
) and X (n) = (X (n)

1 , . . . ,X (n)
ν ), where

X (n)
l = n−

1
2+pH

∑
j∈Inl

∣∣∣∆kBH
j−1
n

∣∣∣p−√nck,p|bl−al|,

and Inl = ([nal]− k+1, [nbl]− k+1], for l = 1, . . . ,ν . We claim that

(B,X (n))
L−−−→

n→∞
(B,V ) , (1.14)

29



where B,V are independent and V is a centered Gaussian vector, whose components

are independent and have variances v2
1|bl−al|. Here v2

1 is defined in (1.12).

Set ξ j = BH
j −BH

j−1 and h(x) = |x|p−ck,p. Then {ξ j, j≥ 1} is a stationary Gaussian

sequence. Introduce the random vectors B(n)=(B(n)
1 , . . . ,B(n)

ν ) and Y (n)=(Y (n)
1 , . . . ,Y (n)

ν ),

where

B(n)
l = n−H

∑
[nal ]< j≤[nbl ]

ξ j ,

Y (n)
l =

1√
n ∑

j∈Inl

h(∆k−1ξ j), 1≤ l ≤ ν .

By the self-similarity property of fBm, the convergence of (1.14) will follow from the

convergence

(B(n),Y (n))
L−−−→

n→∞
(B,V ) . (1.15)

We are going to prove (1.15) by Theorem 2.3.4. Consider the normalized sequence

N j =
∆k−1ξ j√
ρk,H(0)

, j ≥ 1. (1.16)

Since the function h(x) has Hermite rank 2, the term Y (n)
l can be decomposed as

Y (n)
l = ∑

m≥2
JmY (n)

l := ∑
m≥2

cm√
n ∑

j∈Inl

Hm(N j) ,

where JmY (n)
l is the projection of Y (n)

l on the m-th Wiener chaos, and

cm = m!E[Hm(N)h(
√

ρk,H(0)N)] = m!(ρk,H(0))
p
2 E[Hm(N)|N|p] ,

with N being a standard Gaussian random variable. We have the following five state-

ments.
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(i) limn→∞E[B(n)
h B(n)

l ] = E[(BH
bh
−BH

ah
)(BH

bl
−BH

al
)] for all 1≤ h, l ≤ ν .

(ii) E(B(n)
h JmY (n)

l ) = 0, for all 1 ≤ h, l ≤ ν . This is clear because B(n)
h ∈ H1 and

JmY (n)
l ∈Hm with m≥ 2.

(iii) For all 1≤ l ≤ ν , we have

limsup
n→∞

∞

∑
m=M+1

E[|JmY (n)
l |

2] = limsup
n→∞

∞

∑
m=M+1

c2
m
n ∑

i, j∈Inl

E[Hm(Ni)Hm(N j)]

≤ limsup
n→∞

[nbl]− [nal]

n

∞

∑
m=M+1

c2
m

m!

[
1+2

[nbl ]−[nal ]

∑
i=1

∣∣∣∣ ρk,H(i)
ρk,H(0)

∣∣∣∣m
]
,

which equals the constant bl−al multiplying the tail of v2
1, and it converges to 0

as M→ ∞.

(iv) For all 1≤ l,h≤ ν , we have

E(JmY (n)
l JmY (n)

h ) =
c2

m
n ∑

j∈Inl

∑
i∈Inh

E[Hm(N j)Hm(Ni)].

As n→ ∞, this quantity converges to

Σlh = δlhc2
m(bl−al)

1
m!

[
1+2

∞

∑
j=1

(
ρk,H( j)
ρk,H(0)

)m]
.

(v) For all 1≤ l,h≤ ν , we have

〈DJmY (n)
l ,DJmY (n)

h 〉H =
c2

m
n ∑

j∈Inl

∑
i∈Inh

Hm−1(N j)Hm−1(Ni)E(NiN j),
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which converges to mΣlh in L2(Ω) as n goes to infinity. To show this, we explain

the details for l = h. The case l 6= h can be treated in a similar way.

‖DJmY (n)
l ‖

2
H =

c2
m
n ∑

i∈Inl

H2
m−1(Ni)

+2
c2

m
n ∑

i∈Inl

[nbl ]−[nal ]−1

∑
j=1

Hm−1(Ni)Hm−1(Ni+ j)
ρk,H( j)
ρk,H(0)

.

Denote ζi = ∑
∞
j=1 Hm−1(Ni)Hm−1(Ni+ j)

ρk,H( j)
ρk,H(0)

. We can show that the sequence

ζi converges almost surely and in L2(Ω) using the fact that

sup
j
E
[∣∣Hm−1(Ni)Hm−1(Ni+ j)

∣∣2]< ∞

and ∑
∞
j=0 |ρk,H( j)|2 < ∞. Meanwhile, since Ni given by (1.16) is stationary and

ergodic so is {ζi, i≥ 1}. By the ergodic theorem, we have thus in L2(Ω)

lim
n→∞
‖DJmY (n)

l ‖
2
H

= c2
m(bl−al)

(
E[H2

m−1(N1)]+2
∞

∑
j=1

E[Hm−1(N1)Hm−1(N1+ j)]
ρk,H( j)
ρk,H(0)

)
,

which equals mΣlh for l = h.

These can be used to verify the conditions in Theorem 2.3.4 to obtain the convergence

(B(n),Y (n))
L−−−→

n→∞
(B,V ) and correspondingly the convergence (1.14) stands true.

Step 2: Let

gn(t) = n−
1
2+pH

[nt]−k+1

∑
j=1

|∆kBH
j−1
n
|p−
√

ntck,p . (1.17)
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We need to show that the sequence of processes gn is tight in D([0,T ]). To this end we

want to prove E(|gn(r)− gn(s)|2|gn(t)− gn(r)|2) ≤C(t− s)2 for any s < r < t. First,

let us compute E(|gn(t)−gn(s)|4) for s < t,

E(|gn(t)−gn(s)|4) =
1
n2E

( [nt]−k

∑
j=[ns]−k+1

h(∆kBH
j )+ ck,p([nt]−nt− [ns]+ns)

)4
.

Using the elementary inequality |a+b|4 ≤ 8(|a|4 + |b|4), we can bound the right-hand

side of the above equation as follows

E(|gn(t)−gn(s)|4) ≤
8
n2E

(∣∣∣ [nt]−k

∑
j=[ns]−k+1

h(∆kBH
j )
∣∣∣4)+8c4

k,p
([nt]−nt− [ns]+ns)4

n2

≤ K1
([nt]− [ns])2

n2

( ∞

∑
j=0

ρ
2
k,H( j)

)2
+8c4

k,p
([nt]−nt− [ns]+ns)4

n2

≤ C
([nt]− [ns])2

n2 +
C
n2 , (1.18)

where the second inequality follows from Proposition 4.2 in [37]. The constant K1 is

independent of n, t,s, but it may depend on the function h and the distribution of ∆kBH
j .

Now for s < r < t, if t− s≥ 1/n, applying the above inequality (1.18), we have

E(|gn(r)−gn(s)|2|gn(t)−gn(r)|2) ≤ E(|gn(r)−gn(s)|4 + |gn(t)−gn(r)|4)

≤ C
([nt]− [ns])2

n2 +
C
n2 .

Clearly, the right-hand side of the above inequality is at most C(t− s)2.

If t−s< 1/n, then either s and r or t and r lie in the same subinterval (( j−1)/n, j/n]

for some j. It suffices to look at the former case. By (1.17),

gn(r)−gn(s) =
√

nck,p(s− r).
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Using this fact and applying Cauchy-Schwarz inequality, we obtain

E(|gn(r)−gn(s)|2|gn(t)−gn(r)|2) = nc2
k,p(r− s)2E|gn(t)−gn(r)|2

≤ nc2
k,p(r− s)2

√
E|gn(t)−gn(r)|4

≤ C(t− s)2 ,

where in the last step we have used (1.18) for E|gn(t)−gn(r)|4. The desired tightness

property follows from Theorem 13.5 in [8].

Theorem 3.1.3. Let H ∈ (0,1) and k ≥ 2. Fix p > 0 and suppose u = {ut , t ∈ [0,T ]}

is a stochastic process with Hölder continuous sample paths of order a > max(1−

H, 1
2(p∧1)) so that the pathwise Riemann-Stieltjes integral Zt =

∫ t
0 usdBH

s is well-defined.

Then

(BH
t ,n

− 1
2+pHV n

k,p(Z)t− ck,p
√

n
∫ t

0
|us|pds)→ (BH

t ,v1

∫ t

0
|us|pdWs) ,

in law in the space D([0,T ],R2) equipped with the Skorohod topology, where v1 is de-

fined by (1.12), W = {Wt , t ∈ [0,T ]} is a Brownian motion independent of the fractional

Brownian motion BH .

Proof. We start with the following decomposition of the concerned quantity

n−
1
2+pHV n

k,p(Z)t− ck,p
√

n
∫ t

0
|us|pds

= n−
1
2+pH

[nt]+1−k

∑
j=1

(∣∣∣∆kZ j−1
n

∣∣∣p− ∣∣∣∣u j
n
∆kBH

j−1
n

∣∣∣∣p)
+
(

n−
1
2+pH

[nt]+1−k

∑
j=1

∣∣∣∣u j
n
∆kBH

j−1
n

∣∣∣∣p− ck,p√
n

[nt]+1−k

∑
j=1

∣∣∣u j
n

∣∣∣p)
+ ck,p

( 1√
n

[nt]+1−k

∑
j=1

∣∣∣u j
n

∣∣∣p−√n
∫ t

0
|us|pds

)
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=: A(n)
t +B(n)

t + ck,pC(n)
t .

Using the Hölder continuity of u, we can show limn→∞ ‖C(n)‖∞ = 0 almost surely. The

fact that limn→∞ ‖A(n)‖∞ = 0 almost surely can be proved by the same arguments as in

the proof of Theorem 3.1.1 under the condition a > 1
2(p∧1) . It remains to show that

B(n)
t

L−−−→
n→∞

v1

∫ t

0
|us|pdWs , (1.19)

in the Skorohod topology of D([0,T ]). Denote

gn(t) = n−
1
2+pH

[nt]+1−k

∑
i=1

∣∣∣∆kBH
i−1

n

∣∣∣p− [nt]√
n

ck,p,

ξ j,n = gn(
j+ k−1

n
)−gn(

j+ k−2
n

) = n−
1
2+pH

∣∣∣∆kBH
j−1
n

∣∣∣p− ck,p√
n
.

Then B(n)
t = ∑

[nt]+1−k
j=1 |u j/n|pξ j,n. In order to finish the proof of (1.19), we are going

to apply Theorem 2.3.6. We shall verify the hypotheses (H1) and (H2). By Propo-

sition 3.1.2 and its proof, (BH
t ,gn(t))

L−−−→
n→∞

(BH
t ,v1Wt), so the sequence of processes

{gn(t), t ∈ [0,T ]} satisfies the hypothesis (H1). Using a similar argument as that for

(1.18), namely by Proposition 4.2 in [37] again, the family of random variables ξ sat-

isfies the tightness condition (H2). This concludes the proof of the theorem.

Corollary 3.1.4. If a stochastic process {Yt , t ∈ [0,T ]} satisfies n−
1
2+pHV n

k,p(Y )t → 0

almost surely on [0,T ] and if {Zt , t ∈ [0,T ]} satisfies the conditions of Theorem 3.1.3,

then

(BH
t ,n

− 1
2+pHV n

k,p(Y +Z)t− ck,p
√

n
∫ t

0
|us|pds) L−−−→

n→∞
(BH

t ,v1

∫ t

0
|us|pdWs)
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in law in D([0,T ])2 equipped with the Skorohod topology, where W = {Wt , t ∈ [0,T ]}

is a Brownian motion independent of the fractional Brownian motion BH .

Remark 3.1.5. When k=1, Theorem 3.1.1, Proposition 3.1.2, Theorem 3.1.3 and Corol-

lary 3.1.4 are proved in [14] and [15] for H ∈ (0, 3
4). We need to use higher order (k≥ 2)

power variations to estimate the volatility or integrated volatility for a general Hurst pa-

rameter case.

3.2 Convergence rate of power variations

Proposition 3.2.1. Let the intervals (a j,b j] be pairwise disjoint in [0,∞), and denote

the intervals In j = ([na j], [nb j]], for j = 1, . . . ,ν and ν ≥ 1. Define the random vector

Y (n) = (Y (n)
1 , . . . ,Y (n)

ν ), where

Y (n)
l =

1√
n ∑

j∈Inl

h(Nl), 1≤ l ≤ ν , (2.1)

where

h(x) =
(
ρk,H(0)

) p
2 |x|p− ck,p, (2.2)

and

Nl =
∆kBH

j−1√
ρk,H(0)

. (2.3)

Then we have the following results.

dTV(Y (n),Z)≤Cn4H−4k+1∨n−1/2 , (2.4)
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where Z is multi-dimensional Gaussian with law N(0,Σ), and Σ is a ν×ν matrix with

components

Σi j = v2
1|bi−ai|δi j := σ

2
i δi j. (2.5)

In the following parts of this chapter, we will use the following notation.

ρ( j) = E(N1N j+1) (2.6)

for the stationary sequence (N j) j≥0. Clearly,

ρ( j) =
ρk,H( j)
ρk,H(0)

∼ j2H−2k.

Before we prove this proposition, we need the following two auxiliary lemmas.

Lemma 3.2.2. Let the sequence {Y (n)
j ,n≥ 1} be defined by (2.1). Then

E(Y (n)
i Y (n)

j )→ δi jσ
2
i

as n→ ∞ at the rate of n4H−4k+1∨n−1, where σi is defined in (2.5).

Proof. First we write

E(Y (n)
i Y (n)

j ) =
1
n ∑

l1∈Ini

∑
l2∈In j

E(h(Nl1)h(Nl2)) .

For i 6= j, we use Gebebein’s inequality,

E(Y (n)
i Y (n)

j )≤ 1
n ∑

l1∈Ini

∑
l2∈In j

ρ(l2− l1)2 = O(n4H−4k+1∨n−1) .
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For i = j,

E((Y (n)
i )2) =

1
n

(
∑

l∈Ini

E(h(Nl)
2)+2 ∑

l1<l2∈Ini

E(h(Nl1)h(Nl2))

)

→ |bi−ai|

(
E(h(N)2)+2

∞

∑
l=1

E(h(N1l)h(N2l))

)
= |bi−ai|ν2

1 ,

at the rate of n−1∨ n4H−4k+1, where N is standard Gaussian and (N1l,N2l) is centered

Gaussian with covariance matrix  1 ρ(l)

ρ(l) 1

 .

Lemma 3.2.3. Denote

I1 :=
∫

∞

0

∫
∞

0
e−t−sh′′(Nl2)h

′′(Nl4)Pth′(Nl1)Psh′(Nl3)dsdt ,

and

I2 :=
∫

∞

0

∫
∞

0
e−2t−2sh′(Nl2)h

′(Nl4)Pth′′(Nl1)Psh′′(Nl3)dsdt .

Then I1, I2 ∈ Lr(Ω) for any r > 0. Moreover,

|EI1| ≤C(|ρ(l1− l2)|+ |ρ(l1− l4)|+ |ρ(l1− l3)|), (2.7)

and

|EI2| ≤C
4

∑
i6= j; i, j=1

|ρ(li− l j)|. (2.8)

Proof. Clearly I1, I2 ∈ Lr(Ω) for any r > 0, because h′′,Pth′ have finite moments. Since

Pth′(Nl1) is centered, using the identity Pth′(Nl1) =−δDL−1Pth′(Nl1) and applying du-

38



ality, we obtain

EI1 = −
∫
[0,∞)2

e−t−sE〈DL−1Pth′(Nl1),D(h′′(Nl2)h
′′(Nl4)Psh′(Nl3)〉Hdsdt

=: I11 + I12 + I13 ,

where

I11 =−
∫
[0,∞)2

e−t−sE
(
h′′(Nl4)Psh′(Nl3)h

′′′(Nl2)〈DL−1Pth′(Nl1),DNl2〉H
)

dsdt ,

I12 =−
∫
[0,∞)2

e−t−sE
(
h′′(Nl2)Psh′(Nl3)h

′′′(Nl4)〈DL−1Pth′(Nl1),DNl4〉H
)

dsdt ,

I13 =−
∫
[0,∞)2

e−t−sE
(
h′′(Nl2)h

′′(Nl4)〈DL−1Pth′(Nl1),DPsh′(Nl3)〉H
)

dsdt .

For the term I11, since Pth′(Nl1) is centered, we apply Lemma 2.2.1 and use the semi-

group property of Pt to obtain

I11 =
∫
[0,∞)

e−sds

×E
(

h′′(Nl4)Psh′(Nl3)h
′′′(Nl2)

∫
[0,∞)2

e−θ−t〈Pθ+tDh′(Nl1),DNl2〉Hdθdt
)

= ρ(l1− l2)
∫
[0,∞)3

e−s−θ−tE
(
h′′(Nl4)Psh′(Nl3)h

′′′(Nl2)Pθ+th′′(Nl1)
)

dsdθdt .

Using Cauchy-Swartz inequality and taking into account the fact that h′,h′′,h′′′ have

finite moments, we have

|I11| ≤C|ρ(l1− l2)| .

Similary, we deduce

|I12| ≤C|ρ(l1− l4)| .
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For the term I13, we use the similar argument but also taking into account the relation-

ship DPs = e−sPsD. In this way,

I13 = ρ(l1− l3)
∫
[0,∞)3

e−2s−t−θE
(
h′′(Nl2)h

′′(Nl4)Pt+θ h′′(Nl1)Psh′′(Nl3)
)

dsdtdθ .

Therefore,

|I13| ≤C|ρ(l1− l3)| .

This finishes the proof of (2.7).

The proof of (2.8) is similar after centering the function h′′. Namely, denote M =

E(h′′(N)) where N is standard Gaussian and h̃′′ = h′′−M. Then the term I2 can be

written as

EI2 =
3

∑
i=1

I2i,

where

I21 := E
∫

∞

0

∫
∞

0
e−2t−2sh′(Nl2)h

′(Nl4)Pt h̃′′(Nl1)Psh′′(Nl3)dsdt ,

I22 := ME
∫

∞

0

∫
∞

0
e−2t−2sh′(Nl2)h

′(Nl4)Psh̃′′(Nl3)dsdt ,

I23 := M2
∫

∞

0

∫
∞

0
e−2t−2sE(h′(Nl2)h

′(Nl4))dsdt .

We use the similar arguments for the terms I21 and I22 as that for (2.7), and obtain

|I21| ≤C
4

∑
i=2
|ρ(l1− li)| , |I22| ≤C(|ρ(l3− l2)|+ |ρ(l3− l4)|) .

Finally, applying Gebelein’s inequality to the term I23 yields

|I23| ≤C|ρ(l4− l2)| .
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Proof of Proposition 3.2.1. We first write

Y (n)
l = LL−1Y (n)

l = δ (−DL−1Y (n)
l ) = δ (

∫
∞

0
e−tPtDY (n)

l dt) =: δ (u(n)l ),

where

u(n)l =
1√
n ∑

j∈Inl

∫
∞

0
e−tPth′(N j)ϕ jdt ,

with ϕ j ∈ H satisfies ‖ϕ j‖2
H = E|N j|2. To prove the thoerem, it suffices to prove (2.4),

for which we use Theorem 6.1.1 in [28] by verifying the following result,

√
E
(
〈DY (n)

i ,u(n)j 〉H−δi jσ
2
i

)2
= O(n4H−4k+1∨n−1/2)

for i, j = 1, . . . ,ν . Considering

E
(
〈DY (n)

i ,u(n)j 〉H−δi jσ
2
i

)2

≤ 2Var(〈DY (n)
i ,u(n)j 〉H)+2

(
E(Y (n)

i Y (n)
j )−δi jσ

2
i

)2
. (2.9)

and Lemma 3.2.2, we just need to study the first summand on the right-hand side of the

the above inequality. Observe that

Var(〈DY (n)
i ,u(n)j 〉H) = Var

(
1
n ∑

l1∈In j

∑
l2∈Ini

ρ(l2− l1)h′(Nl2)
∫

∞

0
e−tPth′(Nl1)dt

)
.

(2.10)

By Poincare inequality,

Var(〈DY (n)
i ,u(n)j 〉H)≤ E

∥∥∥∥∥1
n ∑

l1∈In j

∑
l2∈Ini

ρ(l2− l1)
∫

∞

0
e−tD(h′(Nl2)Pth′(Nl1))dt

∥∥∥∥∥
2

H

.
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By Lemma 3.2.3 and the elementary inequality ‖X +Y‖2 ≤ 2‖X‖2 +2‖Y‖2,

Var(〈DY (n)
i ,u(n)j 〉H) ≤

2
n2 ∑

l1,l3∈In j

∑
l2,l4∈Ini

|ρ(l2− l1)ρ(l4− l3)ρ(l2− l4)|

(|ρ(l1− l2)|+ |ρ(l1− l3)|+ |ρ(l1− l4)|)

+ |ρ(l2− l1)ρ(l4− l3)ρ(l3− l1)|
4

∑
i6= j, i, j=1

|ρ(li− l j)| .

We recall that the convolution for two sequences {u(l)}l∈Z and {v(l)}l∈Z is defined as

u∗ v(i− j) = ∑l∈Z u(i− l)v( j− l) whenever u(−l) = u(l) and v(−l) = v(l). Then we

expand the interval {l1, l3 ∈ Ini}∪{l2, l4 ∈ In j} to be {l1, . . . , l4 ∈ [0, [nbν ]]}. In this

case, by setting

ρ̃n(l) = |ρ(l)|1|l|≤[nbν ],

and analyzing the summand in the above inequality one by one, and

Var(〈DY (n)
i ,u(n)j 〉H) ≤

8
n ∑

l∈Z
ρ̃

2
n ∗ (ρ̃n ∗ ρ̃n)(l)+

4
n ∑

l∈Z
(ρ̃n ∗ ρ̃n)

2(l)

+
6
n ∑

l∈Z
(((ρ̃n ∗ ρ̃n)ρ̃n)∗ ρ̃n)(l)

≤ 8
n
‖ρ̃2

n ∗ (ρ̃n ∗ ρ̃n)‖`1 +
4
n
‖ρ̃n ∗ ρ̃n‖2

`2 +
6
n
‖((ρ̃n ∗ ρ̃n)ρ̃n)∗ ρ̃n‖`1 .

Applying Young’s convolution inequality yields

‖ρ̃2
n ∗ (ρ̃n ∗ ρ̃n)‖`1 ≤ ‖ρ̃2

n‖`p‖ρ̃n‖`r‖ρ̃n‖`r , for 1/p+1/r+1/r = 3 ,

‖ρ̃n ∗ ρ̃n‖2
`2 ≤ ‖ρ̃n‖4

`
4
3
,

‖((ρ̃n ∗ ρ̃n)ρ̃n)∗ ρ̃n‖`1 ≤ ‖ρ̃n‖`a‖ρ̃n‖`b‖ρ̃n‖`r‖ρ̃n‖`q for 1/a+1/b+1/r+1/q = 3 ,

where for the third inequality we also apply Hölder inequality to handle the norm of

(ρ̃n ∗ ρ̃n)ρ̃n. Notice that ‖ρ̃2
n‖`p ≤Cn(2(2H−2k)+1/p)+ and ‖ρ̃n‖`r ≤Cn(2H−2k+1/r)+ for
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any p,r > 0, because of the fact ρ(l)∼ l2H−2k. Thus,

Var(〈DY (n)
i ,u(n)j 〉H)≤Cn8H−8k+2∨n−1 .

Plugging this inequality into (2.9), we complete the proof.

Proposition 3.2.4. [Law of iterated logarithm for power variations of fBm] Let p ∈

{2}∪ [3,∞) and k ≥ 2. Define the sequence Wn as

Wn = npH−1
[nt]−k+1

∑
j=1

∣∣∣∆kB j−1
n

∣∣∣p− ck,pt.

Then

limsup
n→∞

nWn√
Cpn log logn

= 1 ,

liminf
n→∞

nWn√
Cpn log logn

=−1 ,

almost surely.

Proof. It sufficies to use Proposition 2.3.5 with the function δ (n) =
√

n to prove the

law of iterated logarithm for the sequence

X̃n :=
n

∑
j=1

∣∣∆kB j−1
∣∣p− ck,p =

n

∑
j=1

h(N j) ,

where N j is given by (2.3) and the function h(x) is defined by (2.2). Clearly X̃n ∈ L2(Ω)

has Wiener chaos expansion as

X̃n :=
n

∑
j=1

∑
m≥2

cmHm(N j),
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where cm = m!〈| · |p,Hm(·)〉L2(µ), with dµ = e−
x2
2 dx. Moreover, the coefficients cm

satisfies ∑
m≥2

c2
m

m! < ∞.

Firstly, let ν2
1 be defined by (1.12). For all n1 < n2 ∈ N,

E

 X̃n2− X̃n1√
(n2−n1)ν

2
1

2

−1

=
1

(n2−n1)ν
2
1

n2

∑
j,l=n1+1

∑
m,m′≥2

cmcm′E
(
Hm(N j)Hm′(Nl)

)
−1

=
1

(n2−n1)ν
2
1

n2

∑
j,l=n1+1

∑
m≥2

(ρ(l− j))m c2
m

m!
−1

=
2

ν2
1

∑
j>n2−n1

∑
m≥2

ρ( j)m c2
m

m!

Now we use the estimate ρ( j) = o( j2H−2k) to get

∣∣∣∣∣∣∣E
 X̃n2− X̃n1√

(n2−n1)ν
2
1

2

−1

∣∣∣∣∣∣∣ ≤
2

ν2
1

∑
m≥2

c2
m

m! ∑
j>n2−n1

ρ( j)2

≤ C(n2−n1)
2(2H−2k)+1 ≤ C

1+ log(n2−n1)
.(2.11)

Secondly, we consider the random vector Yn = (Y1, . . . ,Yd) where the component is

given by

Yi =
X̃n2i− X̃n2i−1√
(n2i−n2i−1)ν

2
1

, i = 1, . . . ,d.

We write

Yi = LL−1Yi = δ (−DL−1Yi) = δ (
∫

∞

0
e−tPtDYidt) =: δ (Si),

where
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Si =
1√

(n2i−n2i−1)ν
2
1

∑
j∈Ii

∫
∞

0
e−tPth′(N j)φ jdt ,

with φ j ∈ H satisfies ‖φ j‖2
H = E|N j|2, and the interval Ii = [n2i−1 +1,n2i].

Clearly, the vector Yn admits the stein matrix as τi, j = E(〈Si,DYj〉H|Yn). Next, we

calculate Var(τi,i(Yn)) as

Var(τi,i(Yn)) ≤ Var(〈Si,DYi〉H)

=
1

|Ii|2σ4 Var

(
∑

j,l∈Ii

∫
∞

0
e−tPth′(N j)h′(Nl)ρ( j− l)dt

)
.

We use the similar argument as the one for (2.10) to obtain

Var(τi,i(Yn)) = O((n2i−n2i−1)
4H−4k+1)≤ C

1+ log(n2i−n2i−1)
.

Finally, denote the stein factor of Y1 as

τ(Y1) := τ11(Y1) = 〈S1,DY1〉H =
1

(n2−n1)σ2 ∑
j,l∈I1

∫
∞

0
e−tPth′(N j)h′(Nl)ρ( j− l)dt .

We have for an abitrary even natural number r,

(E|τ(Y1)−E(τ(Y1))|r)
1
r ≤ (r−1)

1
2 (E‖Dτ(Y1)‖r

H)
1
r .

Note that

‖Dτ(Y1)‖2
H ≤

1
(n2−n1)2σ4 ∑

j1, j2,l1,l2∈I1

ρ( j1− l1)ρ( j2− l2)ρ(l2− l1)A( j1, j2, l1, l2)
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where

A( j1, j2, l1, l2) :=
∫
[0,∞)2

e−t−sh′′(Nl1)h
′′(Nl2)Pth′(N j1)Pth′(N j2)dsdt.

Therefore,

(E|τ(Y1)−E(τ(Y1))|r)
1
r

≤ (r−1)
1
2

σ2

(
∑

j1, j2,l1,l2∈I1

ρ( j1− l1)ρ( j2− l2)ρ(l2− l1)‖A( j1, j2, l1, l2)‖L
r
2 (Ω)

) 1
2

≤ C(r−1)
1
2

σ2

(
1

n2−n1
‖ρ̃n ∗ ρ̃n ∗ ρ̃n‖`1

) 1
2

.

Applying Young’s convolution inequality yields

(E|τ(Y1)−E(τ(Y1))|r)
1
r ≤ C(r−1)

1
2

σ2 (n2−n1)
3H−3k+1 .

Taking into account the inequality (2.11) and E(τ(Y1)) = E(Y 2
1 ), we have

(E|τ(Y1)−1|r)
1
r ≤ C(r−1)

1
2

σ2(1+ log(n2−n1))
.

As a by-product of the above Proposition 3.2.4 and the proof of Theorem 3.1.1, we

obtain the convergence rate of the terms defined by (1.4) as follows.

‖C(n,m)‖∞ = O((m/ log logm)−
1
2 ), ‖B(n,m)‖∞ = O(n−a(p∧1)),

‖D(n)‖∞ = O(n−a(p∧1)), ‖A(m)‖∞ = O(m−(p∧1)(a−ε)),
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for any ε ∈ (0,H + a− 1). Correspondingly, we can get the rate of convergence for

(1.3), which is stated as the following proposition.

Proposition 3.2.5. Let the stochastic process Zt be defined by Theorem 3.1.1, i.e.

Zt =
∫ t

0
usdBH

s , t ∈ [0,T ] ,

and the conditions of Theorem 3.1.1 hold and, in addition, a(p∧ 1) > 1
2 , and k ≥ 2.

Then

n−1+pHV n
k,p(Z)t− ck,p

∫ t

0
|us|pds = O((n/ log logn)−

1
2 ), a.s..

3.3 Joint convergence along different subsequences of

power variations

For this topic, the paper [11] discussed the signed cubic variation of fBm. Here we

consider a general power variation of fBm. Fix a natural number λ . Define ∆̃Xi−λ =

Xi−Xi−λ and ∆̃kXi−λ = ∆̃k−1Xi− ∆̃k−1Xi−λ . Clearly when λ = 1, ∆̃k = ∆k. Moreover,

we have

∆̃kXi =
k

∑
l=0

(−1)k−l
(

k
l

)
Xi+λ l ,

and correspondingly we obtain for every i, j ∈ R,

Φ(i, j) := E(∆̃kBi∆kB j) =−
1
2

k

∑
l=0

k

∑
l′=0

(−1)l+l′
(

k
l

)(
k
l′

)∣∣i+λ l− j− l′
∣∣2H

. (3.1)

The following lemma is a consequence of the properties of fBm.

Lemma 3.3.1. The function Φ(i, j) has the following properties.
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(1) ∀c ∈ R, Φ(i, j) = Φ(i+ c, j+ c).

(2) Φ(i, j) = Φ( j+ k, i+λk) = Φ( j+ k−λk, i).

Lemma 3.3.2. The function Φ(i, j) admits the following integral expression.

Φ(i, j) = αk(H)
∫ i+λ

i

∫ tk+λ

tk
· · ·
∫ t2+λ

t2∫ j+k

j+k−1

∫ sk

sk−1
· · ·
∫ s2

s2−1
(t1− s1)

2H−2kds1 · · ·dskdt1 · · ·dtk ,

for all i, j ∈ R, where αk(H) = 1
2((2H−2k+2) · · · · · (2H))−1.

Proof. It is trivial to see that the statement is valid for k = 1. Suppose it is true for k−1.

Then

E(∆̃kBi∆kB j) = E
(
(∆̃k−1Bi+λ − ∆̃k−1Bi)(∆k−1B j+1−∆k−1B j)

)
. (3.2)

Note that

E(∆̃k−1Bi+λ ∆k−1B j+1)

= αk−1(H)
∫ i+2λ

i+λ

∫ tk+λ

tk
· · ·
∫ t3+λ

t3∫ j+k

j+k−1

∫ sk

sk−1
· · ·
∫ s3

s3−1
(t2− s2)

2H−2k+2ds2 · · ·dskdt2 · · ·dtk

= αk−1(H)
∫ i+λ

i

∫ tk+λ

tk
· · ·
∫ t3+λ

t3∫ j+k

j+k−1

∫ sk

sk−1
· · ·
∫ s3

s3−1
(t2 +λ − s2)

2H−2k+2ds2 · · ·dskdt2 · · ·dtk .

We denote the region

D = {(t2, · · · , tk,s2, · · · ,sk : s3−1 < s2 < s3, · · · ,sk−1 < sk−1 < sk,

j+ k−1 < sk < j+ k, t3 < t2 < t3 +λ , · · · , tk < tk−1 < tk +λ , i < tk < i+λ} .
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Then similarly we have

E(∆̃k−1Bi+λ ∆k−1B j) =
∫
D
(t2 +λ − s2 +1)2H−2k+2ds2 · · ·dskdt2 · · ·dtk ,

E(∆̃k−1Bi∆k−1B j+1) =
∫
D
(t2− s2)

2H−2k+2ds2 · · ·dskdt2 · · ·dtk ,

E(∆̃k−1Bi∆k−1B j) =
∫
D
(t2− s2 +1)2H−2k+2ds2 · · ·dskdt2 · · ·dtk .

Taking into account that

((2H−2k+2)(2H−2k+1))−1
∫ t2+λ

t2

∫ s2

s2−1
(t1− s1)

2H−2kds1dt1

= (t2 +λ − s2)
2H−2k+2− (t2 +λ − s2 +1)2H−2k+2

−(t2− s2)
2H−2k+2 +(t2− s2 +1)2H−2k+2 ,

we finish the proof by plugging the above equations into (3.2).

Lemma 3.3.3. Fix a ∈ R and 2 ≤ m ∈ N, the series ∑l∈Z |Φ(l,a)|m is absolutely con-

vergent. Moreover, we have the following estimate.

∑
l∈Z∩[a−λk, a+k]c

|Φ(l,a)|m ≤Cθ λ
m(2H−k−θ) ,

for any θ <−1
2 .

Proof. We consider the case l > a+ k first.

Φ(l,a) = αk(H)
∫ l+λ

l

∫ tk+λ

tk
· · ·
∫ t2+λ

t2∫ a+k

a+k−1

∫ sk

sk−1
· · ·
∫ s2

s2−1
(t1− s1)

2H−2kds1 · · ·dskdt1 · · ·dtk

= αk(H)
∫ l+λ

l

∫ a+k

a+k−1

∫
[0,λ ]k−1

∫
[0,1]k−1

ds′1 · · ·ds′k−1dskdt ′1 · · ·dt ′k−1dtk

49



(tk− sk + t ′1 + · · ·+ t ′k−1 + s′1 + · · ·+ s′k−1)
2H−2k ,

where we have used the change of variables, t1 − t2 → t ′1, · · · , tk−1 − tk → t ′k−1 and

s2− s1→ s′1, · · · ,sk− sk−1→ s′k−1. Note that for negative numbers θ ,a1,a2, · · · ,ak−1

satisfying θ +a1 · · ·+ak−1 = 2H−2k, we have the following inequality

(tk− sk + t ′1 + · · ·+ t ′k−1 + s′1 + · · ·+ s′k−1)
2H−2k

≤ (tk− sk)
θ (t ′1)

a1 · · ·(t ′k−1)
ak−1 ≤ (l−a− k)θ (t ′1)

a1 · · ·(t ′k−1)
ak−1 .

Therefore,

|Φ(l,a)| ≤ (l−a− k)θ
λ

2H−k−θ .

Similarly, when l < a−λk, we have

|Φ(l,a)| ≤ (a− l−λk)θ
λ

2H−k−θ .

Denote two intervals I1 = [1, [nt]− k+1] and I2 = [1, [λnt]− k+1]. Next we are

interested in the convergence of the random vector

(Y 1,Y 2) := (
1√
n ∑

i∈I1

h(Ñ1
k,i),

1√
λn

∑
i∈I2

h(Ñ2
k,i)) (3.3)

where the function h is given by (2.2), and

Ñ1
k,i = nH

∆kB i−1
n√

ρk,H(0)
, Ñ2

k, j = (λn)H
∆kB j−1

λn√
ρk,H(0)

,
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are two standard Gaussian random variables for each i, j ∈ Z. Then

E(Ñ1
k,iÑ

2
k, j) = ρk,H(0)−1

λ
−HE(∆̃kBλ (i−1)∆kB j−1) = ρk,H(0)−1

λ
−H

Φ(λ i−λ , j−1) .

(3.4)

Theorem 3.3.4. Let k ≥ 2. Let the random vector (Y 1,Y 2) defined by (3.3). Then

(Y 1,Y 2)→VWt

in law as n→ ∞ in the space D([0,T ])2 equipped with the Skorohod topology, where

V = v1


√

1−|v−2
1 ρ|2 v−2

1 ρ

0 1

 ,

ρ = ∑
m≥2

c2
m

m!
λ
− 1

2−mH
ρk,H(0)−m

∑
l∈Z

Φ(l− (k−1)(λ −1),0)m ,

and v1 is defined by (1.12), and W = {Wt , t ∈ [0,T ]} is a standard two-dimensional

Brownian motion, independent of the fractional Brownian motion B.

Remark 3.3.5. By Lemma 3.3.3,

|ρ| ≤C ∑
m≥2

c2
m

m!
λ
− 1

2+mH−mk−mθ ,

where θ <−1
2 . A sufficient condition for ρ being finite is that H < k+θ or H = 1

2 .

Proof. Recall that the function h(N) given by (2.2) with N being standard Gaussian has

the Wiener Chaos expansion as

h(N) = ∑
m≥2

cmHm(N) .
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Due to the results of convergence and tightness proved in Theorem 1.13, we need to

check the random vector (Y 1,Y 2) converges to the centered Gaussian random vector

with covariance

v2
1 ρ

ρ v2
1

. Applying Proposition 3.2.1 and its proof, we just need to

consider the limit of E(Y 1Y 2). Using Wiener chaos expansion, we first compute the

following quantity.

E(JmY 1JmY 2) =
c2

m√
λn

∑
i∈I1

∑
j∈I2

E(Hm(Ñ1
k,i)Hm(Ñ2

k, j)).

By setting l = j− iλ , we obtain

E(JmY 1JmY 2) =
c2

m√
λnm!

∑
i∈I1

∑
j∈I2

E(Ñ1
k,iÑ

2
k, j)

m

=
c2

m

λ
1
2+mHnm!ρk,H(0)m

[nt]−k+1

∑
i=1

[λnt]−k+1−iλ

∑
l=1−λ i

Φ(λ i−λ , l + iλ −1)m ,

where in the second equality we have used (3.4). Now using Lemma 3.3.1 yields

E(JmY 1JmY 2)

=
c2

m

λ
1
2+mHnm!ρk,H(0)m

[nt]−k+1

∑
i=1

[λnt]−k+1−iλ

∑
l=1−λ i

Φ(l−λk+λ + k−1,0)m

=
c2

m

λ
1
2+mHm!ρk,H(0)m

1
n

([λnt]−k+1−l)λ−1

∑
i=(1−l)λ−1

[λnt]−k+1−λ

∑
l=1−λ ([nt]−k+1)

Φ(l−λk+λ + k−1,0)m.

From Lemma 3.3.3, we know that the series ∑l∈ZΦ(l,0)m is absolutely convergent.

Thus we can compute

lim
n→∞

E(JmY 1JmY 2) =
c2

mt

λ
1
2+mHm!ρk,H(0)m ∑

l∈Z
Φ(l−λk+λ + k−1,0)m .
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The computation is complete by noting that ρ = ∑m≥2 limn→∞E(JmY 1JmY 2).

3.4 Estimation of the integrated volatility

We consider the stochastic process Xt that satisfies

dXt = f (t,Xt)dt +σtdBH
t , (4.1)

with initial condition X0 ∈ R, where BH = {BH
t , t ≥ 0} is a fractional Brownian (fBm)

motion of Hurst parameter H ∈ (0,1), the volatility σt is a stochastic process with

β -Hölder continuous trajectories, where β > 1−H. Under this condition on σt , the

stochastic integral
∫ t

0 σsdBH
s is well defined as a pathwise Riemann-Stieljes integral

(see, for instance, [41]). The drift function f (t,Xt) is Lipschitz continuous and satisifes

a boundness conditon, i.e.,

| f (t,x)− f (t,y)| ≤C|x− y|, ∀x,y ∈ R,∀t ∈ [0,T ]

and

f (t,x)≤C|x|+ f0(t),∀x ∈ R,∀t ∈ [0,T ].

Under these assumptions, the above stochastic differential equation has a unique solu-

tion (see [32]). As a consequence of Proposition 3.2.5, Theorem 3.1.3, Corollary 3.1.4,

and Proposition 3.2.5, we have the following convergence rate for the power variations

of the solution Xt to the SDE (4.1).

Theorem 3.4.1. Let Xt satisfy (0.1), where the sample path of σt is Hölder continuous

of exponent a > max(1−H, 1
2(p∧1)). Assume k ≥ 2 and p ∈ {2}∪ [3,∞). We have the

following results.
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1. We have the convergence rate for the power variation of Xt .

n−1+pHV n
k,p(X)t− ck,p

∫ t

0
|us|pds = O((n/ log logn)−

1
2 ), a.s..

2. The following central limit theorem holds true.

√
n
(

n−1+pHV n
k,p(X)t− ck,p

∫ t

0
|σs|pds

)
L−→ v1

∫ t

0
|σs|pdWs , as n→ ∞ ,

in law in D([0,T ]) equipped with the Skorohod topology, where v1 is defined

by (1.12) and W = {Wt , t ∈ [0,T ]} is a Brownian motion, independent of the

fractional Brownian motion B.

Assume we observe one trajectory of X . Now we are interested to estimate the

integrated volatility
∫ t

0 |σs|pds. Motivated by Theorem 3.1.3, we construct the kth order

power variation estimator PVk,p(X)t for the integrated volatility
∫ t

0 |σs|pds as follows

PVk,p(X)t =
n−1+pHV n

k,p(X)t

ck,p
, t ∈ [0,T ] , (4.2)

where the kth order power variation V n
k,p(X)t is given by (1.2), and the normalizing

constant ck,p is given by (1.1). For this estimator we have the following asymptotic

consistency and the central limit theorem.

Theorem 3.4.2. Let Xt satisfy (4.1), where the sample path of σt is Hölder continuous

of exponent a > max(1−H, 1
2(p∧1)). Assume k ≥ 2 and p > 1

2 . Then the estimator

PVk,p(X)t defined by (4.2) converges in probability to
∫ t

0 |σs|pds uniformly on any com-

pact interval [0,T ]. Furthermore, the following central limit theorem holds true.

√
n
(

PVk,p(X)t−
∫ t

0
|σs|pds

)
L−→ v1

ck,p

∫ t

0
|σs|pdWs , as n→ ∞ ,
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in law in D([0,T ]) equipped with the Skorohod topology, where v1 is defined by (1.12)

and W = {Wt , t ∈ [0,T ]} is a Brownian motion, independent of the fractional Brownian

motion BH .

Proof. By assumption, the stochastic process σt has Hölder continuous trajectories of

order a > 1−H. Then the stochastic process Xt has Hölder continuous trajectories as

well. Write Xt = X0 +Yt +
∫ t

0 σsdBH
s , where Yt = −θ

∫ t
0 Xsds. It is easy to check that

n−1/2+pHV n
k,p(Y )t → 0 almost surely on [0,T ]. The theorem follows from Theorem

3.1.1, Theorem 3.1.3, and Corollary 3.1.4.

When σt = σ is time independent, Theorem 3.4.2 gives the following result.

Proposition 3.4.3. Let k≥ 2 and p> 1
2 . Then the estimator PVk,p(X)t converges almost

surely to |σ |pt uniformly on any compact interval [0,T ]. Furthermore,

√
n(PVk,p(X)t−|σ |pt) L−→ v1|σ |p

ck,p
Wt

as n→ ∞ in law in D([0,T ]) equipped with the Skorohod topology, where v1 is given

by (1.12) and Wt is a Brownian motion independent of the fractional Brownian motion

BH .

This proposition gives another estimator for |σ |:

|σ̂T |
p =

n−1+pHV n
k,p(X)T

ck,pT
. (4.3)

It is easy to see that Theorem 3.4.2 and Proposition 3.4.3 yield the following result.

Proposition 3.4.4. When H ∈ (0, 3
4), set k ≥ 1. When H ∈ [3

4 ,1), set k ≥ 2. Assume

p > 1
2 . Then, the estimator |σ̂T |p defined by (4.3) converges almost surely to |σ |p.
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Furthermore,
√

n(|σ̂T |p−|σ |p)
L−→ N(0,ν2) as n→ ∞, where the asymptotic variance

ν2 is given by

ν
2 =

Γ(1
2)

2

2pΓ( p+1
2 )2

∞

∑
m=2

m!E2(Hm(N)|N|p)
[
1+2

∞

∑
j=1

(
ρk,H( j)
ρk,H(0)

)m] |σ |2p

T
. (4.4)

Here N is a standard Gaussian random variable.

Usually the variance in (4.4) is complicated to compute. When p = 2, we compute

the normalized asymptotic variance of ν2 T
|σ |2p for some H and k in the following Table.

Table 1: Normalized Asymptotic variance ν2 T
|σ |2p (when p = 2)

k

H 1 2 3 4 5

0.1 2.7283 3.7127 4.4814 5.1354 5.7147

0.3 2.2504 3.3539 4.1909 4.8855 5.4924

0.5 2.0000 3.0000 3.8889 4.6200 5.2531

0.6 2.1639 2.8308 3.7364 4.4830 5.1282

0.7 3.6088 2.6704 3.5846 4.3443 5.0005

0.8 - 2.5215 3.4348 4.2047 4.8707

0.9 - 2.3872 3.2884 4.0651 4.7393

We see that when H is small (for example when H ≤ 0.6), it is more efficient to

use the first order power variation than the higher order ones. However, when H is

large (for example when H ≥ 3
4 ), the central limit theorem of the first order power

variation does not hold, but we always have the central limit theorem for the second

order power variation. As long as the central limit theorem of the power variation

holds, it is preferable to use the lowest order.
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3.5 Estimation for Hurst parameter

In this section, we consider the estimation for Hurst parameter in the SDE (4.1).

Let λ > 1 be the scaling parameter. Introduce the statistics Sn as

Sλ ,n,t :=
V λn

k,p(X)t

V n
k,p(X)t

=
∑
[λnt]−k+1
i=1

∣∣∣∆kX i−1
λn

∣∣∣p
∑
[nt]−k+1
i=1

∣∣∣∆kX i−1
n

∣∣∣p .

Then we propose the estimator for the Hurst parameter H as follows

Ĥλ ,n,t =
1
p

(
1−

logSλ ,n,t

logλ

)
. (5.1)

Theorem 3.5.1. Let Ĥλ ,n,t be defined by (5.1). Then Ĥλ ,n,t→H almost surely as n→∞,

for all λ > 1, for any t ∈ [0,T ]. Moreover, |Ĥλ ,n,t −H| = O((n/ log logn)−
1
2 ), and

√
n
(
Ĥλ ,n,t−H

)
converges in law to the normal distribution with mean 0 and variance

2(v2
1−ρ)

p2(logλ )2
(∫ t

0 |σs|pds
)2

∫ t

0
|σs|2pds .

Proof. Denote

αn = n−1+pHV n
k,p(X)t , βn = (λn)−1+pHV λn

k,p(X)t , γ = ck,p

∫ t

0
|σs|pds.

Since αn→ γ and βn→ γ almost surely, βn
αn
→ 1 as n→∞ by Theorem 3.4.1. Note that

βn

αn
= λ

−1+pHSλ ,n,t .

Therefore,

Ĥλ ,n,t =
1
p

(
pH− 1

logλ
log

βn

αn

)
→ H ,
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almost surely as n→ ∞. Note that

| logβn− logγ|= 1
γ∗
|βn−λ | ,

for some γ∗ between βn and γ , so logβn− logγ =O((n/ log logn)−
1
2 ). This is valid for

logαn− logγ as well. Taking into account

|Ĥλ ,n,t−H|= 1
p logλ

|(logβn− logγ)− (logαn− logγ)| ,

we have |Ĥλ ,n,t −H| = O((n/ log logn)−
1
2 ). We use a ∼ b to denote that a and b have

the same asymptotic distribution.

√
np logλ

(
Ĥλ ,n,t−H

)
∼
√

n(logαn− logγ)−
√

n(logβn− logγ)

∼
√

n
αn

(αn− γ)−
√

n
βn

(βn− γ) .

From Theorem 3.3.4, we see that the random vector
√

n(αn− γ,βn− γ) converges

in law to the centered normal distribution with covariance

∫ t

0
|σs|2pds

v2
1 ρ

ρ v2
1

 .
Therefore,

√
np logλ

(
Ĥλ ,n,t−H

)
converges in law to the normal distribution

N(0,
1
γ2 (2v2

1−2ρ)
∫ t

0
|σs|2pds).
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Chapter 4

Drift parameter estimation for linear stochastic

differential equations

In this chapter we consider the fractional Ornstein-Uhlenbeck process defined as the

unique pathwise solution to the stochastic differential equation

dXt =−θXtdt +σdBH
t , (0.1)

with initial condition X0 ∈ R, where BH = {BH
t , t ≥ 0} is a fractional Brownian (fBm)

motion of Hurst parameter H ∈ (0,1), θ is a positive parameter and the volatility σ > 0

is a constant. The above stochastic differential equation has a unique solution.

Assume that the parameters θ > 0 is unknown and that the process can be observed

continuously or at discrete time instants. We want to estimate the drift parameter θ for

any H ∈ (0,1). We assume that the Hurst parameter H and the volatility σ are known

and we want to estimate the drift parameter θ . There have been two popular types of

estimators for this drift parameter. One is the maximum likelihood estimator and the

other one is the least square estimator. In the Brownian motion case, they coincide, but

for the fractional Ornstein-Uhlenbeck processes they are different (see [20] and [24]).

A summary of some relevant results are presented below.
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(i) In the case of continuous observations, Kleptsyna and Le Breton ([24]) studied the

maximum likelihood estimator (MLE) which is defined by

θ̂MLE =−
{∫ T

0
Q2(s)dwH

s

}−1 ∫ T

0
Q(s)dZs ,

where

Q(t) =
d

dwH
t

∫ t

0
kH(t,s)Xsds, Zt =

∫ t

0
kH(t,s)dXs,

kH(t,s) = κ
−1
H s

1
2−H(t − s)

1
2−H and wH

t = λ
−1
H t2−2H with constants κH and λH

depending on H. They proved the almost sure convergence of θ̂MLE to θ as T

tends to infinity. It is worth noting that Tudor and Viens ([38]) have also obtained

the almost sure convergence of both the MLE and a version of the MLE using

discrete observations for all H ∈ (0,1). Bercu, Courtin and Savy proved in [6]

the following central limit theorem for the MLE in the case of H > 1
2 :

√
T (θ̂MLE −θ)

L−−−→
T→∞

N(0,2θ) .

They claimed without proof that the above convergence is also valid for H ∈

(0, 1
2).

(ii) Hu and Nualart ([20]) proposed the least square estimator defined by

θ̂T =−
∫ T

0 XtdXt∫ T
0 X2

t dt
= θ −σ

∫ T
0 XtdBH

t∫ T
0 X2

t dt
, (0.2)

where the integral with respect to BH is interpreted in the Skorohod sense. They

also introduced another estimator θ̃T based on the ergodic theorem given by

θ̃T =
( 1

σ2HΓ(2H)T

∫ T

0
X2

t dt
)− 1

2H
. (0.3)
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Almost sure convergence and central limit theorems for these two estimators have

been proved for H ∈ [1
2 ,

3
4).

However, when H ∈ (0, 1
2)∪ [

3
4 ,1), the central limit theorems for the least square

estimator θ̂T have not been known yet. The first objective of this chapter is to prove the

asymptotic consistency of θ̂T by using a new method, different from that in [20], which

is valid for all H ∈ (0,1). This method involves the relationship between the divergence

and Stratonovich integrals and the integration by parts technique and it is based on

the pathwise properties of the fractional Ornstein-Uhlenbeck process established in a

paper [12] by Cheridito, Kawaguchi and Maejima. The next and the main objective

of this chapter is to establish a central limit theorem for the least square estimator θ̂T

for H ∈ (0, 1
2) and a noncentral limit theorem for H ∈ [3

4 ,1). In the later case, we can

identify the limit as a Rosenblatt random variable. We will make a comparison of the

asymptotic variance for these three estimators and show that the least square estimator

performs better than the maximum likelihood estimator when H ∈ (0, 1
2). Since the

ergodic-type estimator θ̃T is a function of a pathwise Riemann integral that appears

simpler than the other two estimators, we will use θ̃T to construct a consistent estimator

θ̄n for high frequency data (if only discrete observations are available). The asymptotic

behavior of θ̄n in this case is also studied in this paper. The proofs of our results are

highly technical and rely on some sophisticated computation, which we shall put in the

last section of this chapter.

4.1 Lease squares estimator

We shall focus on the least square estimator as introduced in [20]:

θ̂T =−
∫ T

0 XtdXt∫ T
0 X2

t dt
= θ −σ

∫ T
0 XtdBH

t∫ T
0 X2

t dt
, (1.1)
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where dBH
t denotes the divergence integral. In the paper [20], the almost sure con-

vergence of θ̂T to θ is proved for H ≥ 1
2 and the central limit theorem is obtained for

H ∈ [1
2 ,

3
4). In this paper, we shall extend these results for a general Hurst parameter

H ∈ (0,1). In addition, we shall also consider a simulation friendly estimator: ergodic

type estimator.

To simplify notation, we assume X0 = 0. In this case the solution to (0.1) is given

by

Xt = σ

∫ t

0
e−θ(t−s)dBH

s . (1.2)

Theorem 4.1.1. For H ∈ (0,1), θ̂T → θ a.s. as T → ∞.

Proof. Using integration by parts, we can write

Xt = σ

∫ t

0
e−θ(t−s)dBH

s = σ

(
BH

t −θ

∫ t

0
BH

s e−θ(t−s)ds
)
. (1.3)

Since Xt is in the first Wiener chaos, we have the relationship between the divergence

integral and the Stratonovich integral as

∫ T

0
XtdBH

t =
∫ T

0
Xt ◦dBH

t − `(T ) , (1.4)

where `(T ) = E
∫ T

0 Xt ◦dBH
t . Using (1.3), `(T ) can be computed as follows

`(T ) = σE
∫ T

0
(BH

t −θ

∫ t

0
BH

s e−θ(t−s)ds)◦dBH
t

= σ

[1
2

T 2H−θ

∫ T

0

∫ t

0
e−θ(t−s)∂E(BH

s BH
t )

∂ t
dsdt

]
=

σ

2
T 2H−m(T ) , (1.5)

where

m(T ) := Hθσ

∫ T

0

∫ t

0
e−θ(t−s)(t2H−1− (t− s)2H−1)dsdt.
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Making the substitutions t− s→ u, s→ v and then integrating first in the variable v

yield

m(T ) =
σ

2
γ

1
θT T 2H +σθ

−2H
γ

2H+1
θT (H− 1

2
)−T Hσθ

1−2H
γ

2H
θT . (1.6)

In the above equation, we use the notation γα
T =

∫ T
0 e−xxα−1dx. Observe that γα

T

converges to Γ(α) exponentially fast as T → ∞. Then clearly we have

lim
T→∞

T−1`(T ) = lim
T→∞

T−1(σ

2
T 2H−m(T )

)
= Hσθ

1−2H
Γ(2H) . (1.7)

On the other hand, we have

σ

∫ T

0
Xt ◦dBH

t =
∫ T

0
Xt ◦ (dXt +θXtdt) =

X2
T

2
+θ

∫ T

0
X2

t dt . (1.8)

Combining (1.4) and (1.8) we obtain

σ

∫ T

0
XtdBH

t =
X2

T
2

+θ

∫ T

0
X2

t dt−σ`(T ) . (1.9)

From Lemma 4.5.6, we see lim
T→∞

X2
T

T
= 0. Therefore, by Lemma 4.5.7, (1.7), and

(1.9), we have

lim
T→∞

T−1
σ

∫ T

0
XtdBH

t = 0.

As a consequence,

lim
T→∞

θ̂T = lim
T→∞

(
θ −

σ
∫ T

0 XtdBH
t∫ T

0 X2
t dt

)
= θ .

The next theorem shows the asymptotic laws for the least square estimator θ̂T .
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Theorem 4.1.2. As T → ∞, the following convergence results hold true.

(i) For H ∈ (0, 3
4),
√

T (θ̂T −θ)
L−→ N(0,θσ2

H), where

σ
2
H =


(4H−1)+ 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H) when H ∈ (0, 1
2) ,

(4H−1)
[
1+ Γ(3−4H)Γ(4H−1)

Γ(2−2H)Γ(2H)

]
when H ∈ [1

2 ,
3
4) .

(ii) For H = 3
4 ,

√
T√

log(T )
(θ̂T −θ)

L−→ N(0,4π
−1

θ).

(iii) For H ∈ (3
4 ,1), T 2−2H(θ̂T −θ)

L−→ −θ 2H−1

HΓ(2H)
R1, where R1 = I2(δ0,1) is the Rosen-

blatt random variable and δ0,1 is the Dirac-type distribution defined in (3.1).

Remark 4.1.3. It is interesting to note that when H ∈ (0, 1
2), by the fact limz→0 zΓ(z) =

1, we have

lim
H→ 1

2
−

σ
2
H = 2

which is consistent with σ2
H = 2 if H = 1

2 . Moreover, we also see that limH→0 σ2
H = 0.

Proof. The case H ∈ [1
2 ,

3
4) was proved in [20]. We shall use Malliavin calculus to

prove the theorem for H ∈ (0, 1
2)∪ [

3
4 ,1).

Step 1: We use Theorem 2.3.1 to prove the central limit theorem when H ∈ (0, 1
2). By

(1.1) and (1.2), we can write our target quantity as

√
T (θ̂T −θ) =−

σ2
√

T

∫ T
0 (
∫ t

0 e−θ(t−s)dBH
s )dBH

t∫ T
0 X2

t dt/T
=
− σ2

2
√

T
FT∫ T

0 X2
t dt/T

, (1.10)
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where

FT =
∫ T

0

∫ T

0
e−θ |t−s|dBH

s dBH
t . (1.11)

We introduce the function

f (s, t) =
1√
T

e−θ |s−t|1[0,T ]2 . (1.12)

Then
1√
T

FT = I2( f ) is in the second Wiener chaos. Our main objective is to use

Theorem 2.3.1 to obtain the central limit theorem for the term
1√
T

FT and then we

apply Lemma 4.5.7 and Slutsky’s theorem for (1.10) to obtain the central limit theorem

of θ̂T . First of all, let us check the variance assumption in Theorem 2.3.1. By the

isometry between the Hilbert space H⊗2 and the second chaos H2, we have

E
(

1
T

F2
T

)
=

2
T
〈e−θ |s1−t1|,e−θ |s2−t2|〉H⊗H.

To compute the above norm, we shall use the definition of the tensor product space

where the norm in the Hilbert space H is defined by (1.3), namely,

E
(

1
T

F2
T

)
=

2
T

∫
[0,T ]4

∂e−θ |s1−t1|

∂ t1

∂e−θ |s2−t2|

∂ s2

∂RH(s1,s2)

∂ s1

∂RH(t1, t2)
∂ t2

ds1ds2dt1dt2.

(1.13)

By Equation (5.25) in Lemma 4.5.5, we have

lim
T→∞

E
(

1
T

F2
T

)
= 4H2

θ
1−4H

Γ(2H)2
(
(4H−1)+

2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

)
. (1.14)
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Next, let us check the second condition in Theorem 2.3.1. Without loss of generality

we can assume θ = 1. The first contraction of the kernel f is

( f ⊗1 f )(s, t) =
1
T
〈e−|·−s|1[0,T ](·),e−|·−t|1[0,T ](·)〉H . (1.15)

We want to prove that the norm of the above function in the Hilbert space H⊗2 goes to

0 as T → ∞. Using the identity (1.4), we rewrite

( f ⊗1 f )(s, t) =
1

T c2
H

∫
R

F (e−|·−s|1[0,T ](·))(ξ )F (e−|·−t|1[0,T ](·))(ξ )|ξ |1−2Hdξ

=
4

T c2
H

∫
R

(∫
R

e−isη

1+η2 ·
1− e−iT (ξ−η)

i(ξ −η)
dη

)
×
(∫

R

eitη ′

1+η ′2
· 1− eiT (ξ−η ′)

−i(ξ −η ′)
dη
′
)
|ξ |1−2Hdξ .

Observe that the function f ⊗1 f is the inverse Fourier transformation of the following

function

h(s, t) =
4

T c2
H

∫
R

( 1
1+ s2 ·

1− e−iT (ξ+s)

i(ξ + s)

)( 1
1+ t2 ·

1− eiT (ξ−t)

−i(ξ − t)

)
|ξ |1−2Hdξ .

By the Parseval’s identity, the norm of the function f ⊗1 f in the space H⊗2 can be

computed as

‖ f ⊗1 f‖2
H⊗2 =

1
c2

H

∫
R2
|h(η ,η ′)|2|η |1−2H |η ′|1−2Hdηdη

′

≤ C
T 2

∫
R2

|η |1−2H

1+η4
|η ′|1−2H

1+η ′4
(1.16)

×
(∫

R

|eiT (ξ−η)−1|
|ξ −η |

|eiT (ξ−η ′)−1|
|ξ −η ′|

|ξ |1−2Hdξ

)2
dηdη

′ .

(1.17)
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Now our task is to show the right-hand side of the above inequality goes to 0 as T →∞.

This can be achieved by studying the asymptotic behavior of the multiple integral in

(1.17), which is denoted by I. Making a change of variable ξ → x+η yields

I =
∫
R2

|η |1−2H

1+η4
|η ′|1−2H

1+η ′4

(∫
R

|eiT x−1|
|x|

|eiT (x+η−η ′)−1|
|x+η−η ′|

|x+η |1−2Hdx

)2

dηdη
′

≤ 2
∫
R2

|η |1−2H

1+η4
|η ′|1−2H

1+η ′4

(∫
R

|eiT x−1|
|x|2H

|eiT (x+η−η ′)−1|
|x+η−η ′|

dx

)2

dηdη
′

+2
∫
R2

|η |3−6H

1+η4
|η ′|1−2H

1+η ′4

(∫
R

|eiT x−1|
|x|

|eiT (x+η−η ′)−1|
|x+η−η ′|

dx

)2

dηdη
′ .

Making another change of variable η ′→ η− y, we can write

I ≤ 2
∫
R2

|η |1−2H

1+η4
|η− y|1−2H

1+(η− y)4

(∫
R

|eiT x−1|
|x|2H

|eiT (x+y)−1|
|x+ y|

dx

)2

dηdy

+2
∫
R2

|η |3−6H

1+η4
|η− y|1−2H

1+(η− y)4

(∫
R

|eiT x−1|
|x|

|eiT (x+y)−1|
|x+ y|

dx

)2

dηdy

=: 2(I1 + I2).

For the term I2, taking into account that

M := sup
y∈R

∫
R

|η |3−6H

1+η4
|η− y|1−2H

1+(η− y)4 dη < ∞,

we see

I2 ≤M
∫
R

(∫
R

|eiT x−1|
|x|

|eiT (x+y)−1|
|x+ y|

dx

)2

dy = M‖ f ∗ f‖2
L2(R) ,
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where f (x) = |eiT x−1|
|x| . By Young’s inequality

I2 ≤M‖ f‖4
L4/3(R) = M

(∫
R

|eiT x−1|4/3

|x|4/3 dx

)3

= MT

(∫
R

|eix−1|4/3

|x|4/3 dx

)3

=CT.

Now we consider the term I1. The measure µ(dy) =
∫
R
|η |1−2H

1+η4
|η−y|1−2H

1+(η−y)4 dη is finite

and has a bounded density with respect to the Lebesgue measure. Consider the function

g(x) = |eiT x−1|
|x|2H . For any p≥ 2,

I1 = ‖ f ∗g‖2
L2(R,µ) ≤C1‖ f ∗g‖2

Lp(R,µ) ≤C2‖ f ∗g‖2
Lp(R) .

Let p also satisfy p > 1
2H and for such p we can choose α and β such that α > 1,

2Hβ > 1 and 1
α
+ 1

β
= 1+ 1

p . Then by Young’s inequality

I1 ≤ C2‖ f‖2
Lα (R)‖g‖

2
Lβ (R)

=C2

(∫
R

|eiT x−1|α

|x|α
dx
) 2

α

(∫
R

|eiT x−1|β

|x|2Hβ
dx

) 2
β

.

A change of variable x→ y/T tells us that I1 ≤CT 4H− 2
p . From (1.17), we obtain

‖ f ⊗1 f‖2
H⊗2 ≤CT (−1)∨(4H−2− 2

p ) , (1.18)

and this goes to 0 as T tends to infinity. By Theorem 2.3.1, as T goes to infinity, the

term
1√
T

FT converges in distribution to a centered Gaussian random variable with vari-

ance given by (1.14). Applying Slutsky’s theorem and Lemma 4.5.7 from Appendix to

the equation (1.10), we finish the proof of the theorem for H ∈ (0, 1
2).
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Step 2: Case H = 3
4 . First note that Lemma 4.5.5 in the Appendix gives the limiting

variance of
FT√

T logT
. To obtain the central limit theorem, we need to check one of the

equivalent conditions in Theorem 2.3.1. This can be dealt with in a similar way as in the

proof of Theorem 3.4 in [20] by verifying condition 5 of Theorem 2.3.1. However, it

is worth noting that it also suffices to verify the equivalent condition ‖ f ⊗1 f‖2
H⊗2 → 0,

and the arguments used in the case of H ∈ (0, 1
2) can be extended to the case H ∈ (0, 3

4 ].

Step 3: In this step we will prove the theorem when H ∈ (3
4 ,1). Recall that the term FT

is given by (1.11). By (1.1) and (1.2), we write

T 2−2H(θ̂T −θ) =
−σ2

2 T 1−2HFT∫ T
0 X2

t dt/T
.

Denote

F̃T = T 2H
∫
[0,1]2

e−θT |t−s|dBH
s dBH

t . (1.19)

By the self-similarity property of the fBm, the process {FT ,T > 0} has the same law as

{F̃T ,T > 0}. To prove part (iii) of the theorem, we need to show T 1−2HFT
L−→ 2θ−1R1.

It suffices to prove

lim
T→∞

E(T 1−2H F̃T −2θ
−1R1)

2 = 0 . (1.20)

By Equations (5.27) and (5.28), we see immediately that

lim
T→∞

E
(

T 2−4H F̃2
T

)
= lim

T→∞
E
(
T 2−4HF2

T
)
=

16α2
Hθ−2

(4H−2)(4H−3)
,

lim
T→∞

E
[
2θ
−1R1(T 1−2H F̃T )

]
=

16α2
Hθ−2

(4H−2)(4H−3)
,
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where αH = H(2H−1). On the other hand, we have

E(2θ
−1R1)

2 = 8θ
−2

α
2
H

∫
[0,1]4

δ0,1(s− t)δ0,1(s′− t ′)|s− s′|2H−2|t− t ′|2H−2dsdtds′dt ′

= 8θ
−2

α
2
H

∫
[0,1]2
|t− s|4H−4dsdt =

16θ−2α2
H

(4H−3)(4H−2)
.

This shows (1.20) and hence completes the proof of the theorem.

As an immediate consequence of the proof of the central limit theorem for
1√
T

FT

when H ∈ (0, 3
4), we can derive the total variation distance between

1√
T

FT and its

limiting distribution. The case H = 3
4 is similar. This is summarized in the following

proposition.

Proposition 4.1.4. Let FT be given by (1.11) and let σ2
T = E(( fT FT )

2) be its variance,

with the normalizing factor fT = 1√
T

1{H∈(0, 3
4 )}

+ 1√
T log(T )

1{H= 3
4}

. Let N denote a

random variable with the standard normal distribution. Then

dTV(
fT FT

σT
,N)≤



C√
T

when H ∈ (0, 1
2)

C√
T 3−4H when H ∈ [1

2 ,
3
4)

C√
log(T )

when H = 3
4 .

Proof. It suffices to consider the case H ∈ (0, 3
4). The case H = 3

4 can be treated in a

similar way. Recall that 1√
T

FT = I2( f ), where the kernel f is given by (1.12). Applying

Proposition 2.3.3 yields

dTV(
FT√
T σT

,N) ≤ 2

√
Var
(

1
2
‖ 1

σT
√

T
DFT‖2

H

)
=

1
σ2

T
‖ f ⊗1 f‖H⊗2 ≤C

√
T (−1)∨(4H−2− 2

p ) ,
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for any p ≥ 2, where for the above identity we used Lemma 5.2.4 from [28], and for

the last inequality we used the inequality (1.18). Clearly, when H ∈ (0, 1
2), the bound

is C/
√

T . When H ∈ [1
2 ,

3
4), p = 2 is chosen to derive the bound.

Remark 4.1.5. We make some comments on the distance between the normalized FT ,

θ̂T , and their limiting distributions.

1. Recall that
√

T (θ̂T −θ) =
−σ2

2 FT /
√

T
1
T
∫ T

0 X2
t dt

. We have obtained the asymptotic behav-

ior for the numerator in the preceding Proposition 4.1.4. By Lemma 4.5.7, The

denominator converges to a constant almost surely, and the convergence rate is

of
√

T (See [36]). It is challenging to study the total variation distance between
√

T (θ̂T − θ) with its limiting normal distribution, since it involves the quotient

of two dependent random variables. This is left as an open problem.

2. For H ∈ (3
4 ,1), we can get a convergence rate for (1.20) by examining the proof

of (5.27) and (5.28) in Lemma 4.5.5. In this way we find that

E
(
T 1−2H F̃T −2θ

−1R1
)2

= O(T 3−4H).

This implies that T 1−2HFT (which has the same law as T 1−2H F̃T defined by

(1.19)) converges to the Rosenblatt random variable in law at the rate of
√

T 4H−3.

4.2 Ergodic type estimator

In this section, we shall use the results of the last section to consider a simulation

friendly estimator: ergodic type estimator.
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Theorem 4.2.1. Define an ergodic-type estimator for the drift parameter by

θ̃T =
( 1

σ2HΓ(2H)T

∫ T

0
X2

t dt
)− 1

2H
. (2.1)

Then θ̃T → θ almost surely as T → ∞. Furthermore, we have the following central

limit theorem (H ≤ 3/4) and noncentral limit theorem (H > 3/4).

(1) When H ∈ (0, 3
4), we have

√
T (θ̃T −θ)

L−→ N(0, θ

(2H)2 σ2
H) as T → ∞, where σ2

H

is defined in Theorem 4.1.2.

(2) When H = 3
4 , we have

√
T

log(T )(θ̃T −θ)
L−→ N(0, 16θ

9π
) as T → ∞.

(3) When H ∈ (3
4 ,1), we have T 2−2H(θ̃T −θ)

L−→ −θ 2H−1

HΓ(2H+1)R1, where R1 = I2(δ0,1)

is the Rosenblatt random variable, and δ0,1 is the Dirac-type function defined in

(3.1).

Proof. The paper [20] provides a proof of the theorem when H ∈ (1
2 ,

3
4). Here we

present a proof valid for all H ∈ (0,1). By Lemma 4.5.7, it is easy to see θ̃T → θ

almost surely as T → ∞.

We prove the central limit theorem when H ∈ (0, 3
4). For H ∈ [3

4 ,1), the proof is

similar. By (1.1) and (1.9), we can derive an expression for
∫ T

0 X2
t dt, and then express

θ̃T as a function of θ̂T . In this way, we obtain

√
T (θ̃T −θ) =

√
T

[(
σ2HΓ(2H)θ̂T

−X2
T

2T +σT−1`(T )

) 1
2H

−θ

]
.

By Lemma 4.5.6 and (1.7) we have

√
T (θ̃T −θ) =

√
T
[( 1

θ 1−2H +o(T−1/2)

) 1
2H

θ̂
1

2H
T −θ

]
=
√

T θ
1− 1

2H (θ̂
1

2H
T −θ

1
2H )+

√
T o(T−1/2)θ̂

1
2H

T .
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Meanwhile, we can write

√
T
[
θ̂

1
2H

T −θ
1

2H

]
=
√

T
[ 1

2H
θ

1
2H−1(θ̂T −θ)+

1−2H
8H2 (θ̂T −θ)2(θ ∗T )

1
2H−2

]

for some θ ∗T between θ and θ̂T . Now the theorem follows from Theorem 4.1.2.

Remark 4.2.2. By the property for gamma function: Γ(1− z)Γ(z) = π

sin(πz) for z /∈ Z,

we see limH→0
θ

(2H)2 σ2
H = π2

2 θ .

Now we have obtained the asymptotic law of the least square estimator (LSE) θ̂T

and the ergodic type estimator (ETE) θ̃T . Next, we compare these two estimators with

the maximum likelihood estimator by computing their asymptotic variance. For con-

venience, we assume θ = 1. As it can be seen from Figure 1, the asymptotic variance

of LSE increases as H increases. When H ∈ (0, 1
2), the asymptotic variance of LSE

is less than that of MLE, where the converse is true for H ∈ (1
2 ,

3
4). The asymptotic

variance of ETE decreases on H ∈ (0, 1
2) and then increases on H ∈ (1

2 ,
3
4); however, it

does not blow up as fast as LSE does when H is close to 3
4 . If we justify these three

estimators only based on asymptotic variance, LSE performs best when H ∈ (0, 1
2) and

MLE performs best when H ∈ (1
2 ,

3
4). At H = 1

2 , these three estimators have the same

asymptotic variance.

4.3 Discrete case

The estimators θ̂T and θ̃T are based on continuous time data. In practice the process can

only be observed at discrete time instants. This motivates us to construct an estimator

based on discrete observations. We assume that the fractional Ornstein-Uhlenbeck pro-

cess X given by (1.2) can be observed at discrete time points {tk = kh,k = 0,1, . . . ,n}.

We shall use nh instead of T for the time period of the observation. Here h represents
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Figure 4.1: Asymptotic Variance of the Three Estimators

the observation frequency and it depends on n. We will only consider the high fre-

quency observation case, namely, we shall assume that h→ 0 as n→ ∞. We shall use

ergodic type estimator since it can be expressed as a pathwise Riemann integral with

respect to time. The following Theorem shows its asymptotic consistency and some

results on its asymptotic law.

Theorem 4.3.1. Assume the fractional Ornstein-Uhlenbeck process X given by (1.2) is

observed at discrete time points {tk = kh,k = 0,1, ...,n}. Suppose that h depends on n

and as n→ ∞, h goes to 0 and nh converges to ∞. In addition, we make the following

assumptions on h and n:

(1) When H ∈ (0, 3
4), nhp→ 0 for some p ∈ (1, 3+2H

1+2H ∧ (1+2H)) as n→ ∞.

(2) When H = 3
4 , nhp

log(nh) → 0 for some p ∈ (1, 9
5) as n→ ∞.

(3) When H ∈ (3
4 ,1), nhp→ 0 for some p ∈ (1, 3−H

2−H ) as n→ ∞.
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Set

θ̄n =

(
1

nσ2HΓ(2H)

n

∑
k=1

X2
kh

)− 1
2H

. (3.1)

Then θ̄n converges to θ almost surely as n→ ∞. Moreover, as n tends to infinity, we

have the following central and noncentral limit theorems.

(1) When H ∈ (0, 3
4),
√

nh(θ̄n−θ)
L−→ N(0, θ

(2H)2 σ2
H), where σ2

H is given in Theorem

4.1.2.

(2) When H = 3
4 ,

√
nh

log(nh)(θ̄n−θ)
L−→ N(0, 16θ

9π
).

(3) When H ∈ (3
4 ,1), (nh)2−2H(θ̄n−θ)

L−→ −θ 2H−1

HΓ(2H+1)R1, where R1 = I2(δ0,1) is the

Rosenblatt random variable and δ0,1 is the Dirac-type function defined in (3.1).

Before we prove Theorem 4.3.1, we state and prove an auxillary result in the follow-

ing lemma about the regularity of sample paths of the fractional Ornstein-Uhlenbeck

process X .

Lemma 4.3.2. Let Xt be given by (1.2). Then for every interval [0,T ] and any 0 < ε <

H,

|Xt−Xs| ≤V1|t− s|H−ε +V2|t− s| a.s., (3.2)

where the random variables Vi are defined as follows: V1 = σηT where ηT is given by

(1.2) with α = H− ε , V2 = 2σθ supu∈[0,T ] |BH
u |.

Proof. Consider the process Qt = σθ
∫ t

0 BH
v e−θ(t−v)dv. Using (1.3), for any s, t ∈ [0,T ]

and s < t, we have

|Xt−Xs|=
∣∣σ(BH

t −BH
s )− (Qt−Qs)

∣∣≤ σ
∣∣BH

t −BH
s
∣∣+ |Qt−Qs| .
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Note that

|Qt−Qs| ≤ σθ

∣∣∣∣∫ t

s
BH

v e−θ(t−v)dv
∣∣∣∣+σθ

∣∣∣∣∫ s

0
BH

v (e
−θ(t−v)− e−θ(s−v))dv

∣∣∣∣
≤ σθ sup

v∈[s,t]
|BH

v |
∫ t

s
e−θ(t−v)dv

+σθ sup
v∈[s,t]

|BH
v |
(

1− e−θ(t−s)
)∫ s

0
e−θ(s−v)dv

≤ 2σθ sup
v∈[s,t]

|BH
v ||t− s| .

Using the above inequality for |Qt−Qs| and Applying (1.2), with α = H−ε , for BH
t −

BH
s yield

|Xt−Xs| ≤ σηT |t− s|H−ε +2σθ sup
u∈[s,t]

|BH
u ||t− s| .

Proof of Theorem 4.3.1: Let T = nh, Zn =
1
nh
∫ nh

0 X2
t dt, and ψn =

1
n ∑

n
k=1 X2

kh. Consider

the function

f (x) =
√

x1{0<H<3/4}+
√

x/ log(x)1{H=3/4}+ x2−2H1{3/4<H<1} .

Step 1: We claim that f (nh) |Zn−ψn|→ 0 almost surely as n→∞. Applying Markov’s

inequality for δ > 0,q > 1 yields

P( f (nh) |Zn−ψn|> δ )≤ δ
−q f (nh)qE |Zn−ψn|q . (3.3)

We apply Minkowski’s inequality to obtain

E |Zn−ψn|q = (nh)−qE
∣∣∣ n

∑
j=1

∫ jh

( j−1)h
(Xt +X jh)(Xt−X jh)dt

∣∣∣q
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≤ (nh)−q

(
n

∑
j=1

∫ jh

( j−1)h

(
E(|Xt +X jh||Xt−X jh|)q)1/q dt

)q

.

Taking into account of Lemma 4.3.2, we have

E |Zn−ψn|q

≤ (nh)−q

(
n

∑
j=1

∫ jh

( j−1)h
‖V1(Xt +X jh)‖Lq|t− jh|H−ε +‖V2(Xt +X jh)‖Lq|t− jh|dt

)q

,

where the Vi’s are defined in Lemma 4.3.2. By Hölder’s inequality and the fact ‖Xt‖Lq =

(E|Xt |q)1/q ≤Mq for all t > 0, q > 1, we can write

‖Vi(Xt +X jh)‖Lq ≤ 2Mqri‖Vi‖qsi ,

where 1/ri +1/si = 1. Therefore,

E |Zn−ψn|q ≤C
(

Mq
qr1
‖V1‖q

qs1
hq(H−ε)+Mq

qr2
‖V2‖q

qs2
hq
)
,

where C denotes a generic constant.

By (1.2), ‖V1‖q
qs1 = CT qε for ε ∈ (0,H). By the self-similarity property of fBm,

‖V2‖q
qs2 =CT qH . Using these observations, we obtain

E |Zn−ψn|q ≤C
(
(nh)qεhq(H−ε)+(nh)qHhq

)
,

and plugging this inequality to (3.3), we get

P( f (nh) |Zn−ψn|> δ )≤Cδ
−q f (nh)q

(
(nh)qεhq(H−ε)+(nh)qHhq

)
. (3.4)
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If the right-hand side of the above inequality is summable with respect to n, then

f (nh) |Zn−ψn|→ 0 almost surely by the Borel-Cantelli Lemma. We show this summa-

bility when H ∈ (0,1/2) and the other cases are similar. The right-hand side of (3.4)

can be written as

Cn−1−λ

(
(nhβ1)γ1 +(nhβ2)γ2

)
,

where

β1 =
q/2+qε +q(H− ε)

1+λ +qε +q/2
, β2 =

3/2q+qH
1+λ +q/2+qH

,

and γi’s are the denominator of βi’s. Note that the positive variables ε and λ can be

arbitrarily small and q can be arbitrarily large. In this way, we have β1 ∈ (1,1+ 2H)

and β2 ∈ (1, 3+2H
1+2H ). If nhp→ 0 for some p ∈ (1,min(3+2H

1+2H ,1+2H)), then nhβi → 0 by

carefully choosing these free variables.

Step 2: We prove the almost sure convergence of θ̄n. Denote ρ = σ2HΓ(2H). Recall

that θ̃T is given in Theorem 4.2.1. By the mean value theorem, we can write

θ̄n−θ =

(
ψn−Zn

ρ
+ θ̃

−2H
T

)− 1
2H

−θ = θ̃T −θ +
∫ 1

0
gn(λ )dλ , (3.5)

where gn(λ ) =− 1
2H

ψn−Zn
ρ

(
λ

ψn−Zn
ρ

+ θ̃
−2H
T

)− 1
2H−1

.

The result in Step 1 also implies Zn−ψn→ 0 almost surely as n→∞, so limn→∞ gn(λ )=

0 a.s. for all λ ∈ [0,1]. Meanwhile, for almost all ω , there exists N := N(ω) ∈ N such

that for n > N,

∣∣∣∣ψn−Zn

ρ

∣∣∣∣< 1
3

θ
−2H ,

∣∣∣θ̃−2H
T −θ

−2H
∣∣∣< 1

3
θ
−2H .
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Then for n > N, |gn(λ )| ≤Cθ . By the dominated convergence theorem,

lim
n→∞

∫ 1

0
gn(λ )dλ = 0 a.s. .

Then it is clear that θ̄n converges to θ almost surely.

Step 3: We prove the asymptotic laws of θ̄n. Equation (3.5) yields

f (nh)(θ̄n−θ) = f (T )(θ̃T −θ)+ f (nh)
∫ 1

0
gn(λ )dλ .

Using the result of Step 1 and the similar arguments in step 2, we obtain

lim
n→∞

∫ 1

0
f (nh)gn(λ )dλ = 0 a.s. .

Then it is clear that f (nh)(θ̄n− θ) converges in law to the same random variable as

f (T )(θ̃T −θ) when T tends to infinity. By Theorem 4.2.1, we finish the proof.

4.4 Monte Carlo simulations

we use the R package Yuima to do some Monte Carlo simulations. The Wood-Chan

simulation method is used to generate fractional Gaussian noise, and the Euler-Maruyama

scheme is used to produce sample observations of the stochastic differential equation

(0.1) (we take σ = 1).

First we choose θ = 1. For each H value, only one trajectory is generated and

θ̄n is calculated along this trajectory. The values of θ̄n are plotted in Fig. 4.2 as T
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increases. As it can be seen, θ̄n converges to the true value θ = 1 as sufficient number

of observations are obtained.

Next we choose θ = 0.5. For each H value, we perform 5000 Monte Carlo sim-

ulations to generate 5000 trajectories. For each trajectory, the quantity
√

nh(θ̄n− θ)

is calculated, and the density plot of these 5000 estimators is obtained, which is dis-

played in Fig. 4.3. The graphs show that the density plot of the simulation results is

close to the kernel of the limiting distribution of
√

nh(θ̄n−θ) when H = 0.25,0.5,0.6.

For H > 3
4 , the limiting distribution, known as Rosenblatt distribution, is not known to

have a closed form. Readers who are intersted in the density plot of Rosenblatt random

variable are referred to the paper [39] and the references therein.
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Figure 4.2: The one-trajectory simulation results of θ̄n for different H values, with
θ = 1 and h = 0.01.
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Figure 4.3: Density plots for 5000 simulation results of
√

nh(θ̄n− θ) and its limiting
distribution, with θ = 0.5, h = 0.01, n = 100,000.

4.5 Some computations

This section contains some technical results needed in the proofs of the main theorems

of the paper. First we need to identify the limits of some multiple integrals. Denote

ψ(x,u) := ψT (x,u) = T 4H+1e−θT (u+x) , (5.1)

ϕ1(x) :=
∫ 1

x
[(t− x)2H−1−1][(1− t)2H−1− (1− t + x)2H−1]dt , (5.2)

ϕ2(x) :=
∫ 1

x
[(t− x)2H−1− t2H−1](1− t + x)2H−1dt , (5.3)

ϕ3(x,u) :=
∫ 1

x
[sgn(u− t)|u− t|2H−1− sgn(x+u− t)|x+u− t|2H−1]dt , (5.4)

ϕ4(x,u) :=
∫ 1

x
t2H−1sgn(x+u− t)|x+u− t|2H−1

−(t− x)2H−1sgn(u− t)|u− t|2H−1dt , (5.5)
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ϕ5(x,u) :=
∫ 1

x
sgn(x+u− t)|x+u− t|2H−1(1− t)2H−1

−sgn(u− t)|u− t|2H−1(1− t + x)2H−1dt .

Fix an ε ∈ (0, 1
4). Denote [0,1]2 =I1∪I2 where I1 = [0,ε]2 and I2 = [0,1]2\[0,ε]2.

Lemma 4.5.1. Let H ∈ (0, 1
2). When (x,u) ∈I1, we have the following estimates.

(i)

|ϕ1(x)| ≤ x2H , (5.6)

(ii)

|ϕ3(x,u)| ≤C(x2H +u2H + |u− x|2H) , (5.7)

(iii)

|ϕ5(x,u)| ≤C(x2H +u2H + |u− x|2H) , (5.8)

where C is a constant independent of x,u.

Proof. First we prove (5.6). Observe that

0≤ ϕ1(x)≤
∫ 1

x
f (x, t)dt, (5.9)

where

f (x, t) = (t− x)2H−1[(1− t)2H−1− (1− t + x)2H−1] .

It is clear that

f (x, t)≤
(1− x

2
)2H−1

[(1− t)2H−1− (1− t + x)2H−1] ,
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for 1+x
2 ≤ t ≤ 1. For x≤ t ≤ 1+x

2 , applying the mean value theorem for the second factor

of f (x, t) yields

f (x, t)≤ (1−2H)(t− x)2H−1(1− x
2
)2H−2x .

Integrating the right-hand side of the above two inequalities with respect to t, we obtain

∫ 1

x
f (x, t)dt

≤ 1
2H

(1− x
2
)2H−1[(1− x

2
)2H−

(1+ x
2
)2H

+ x2H]+ 1−2H
2H

(1− x
2
)4H−2x

≤ 1
2H

(1− ε

2
)2H−1x2H +

1−2H
2H

(1− ε

2
)4H−2x2H ,

where we have used the inequality x < x2H on I1 (i.e., x ∈ (0,ε)). Thus, (5.6) follows

from the above inequality and (5.9).

Next we prove (5.7). Note that the antiderivative of the function sgn(x)|x|2H−1 is

(2H)−1|x|2H , so we can compute ϕ3(x,u) as follows

ϕ3(x,u) =
1

2H
(|u− x|2H− (1−u)2H +(1− x−u)2H−u2H) . (5.10)

Applying the inequality

∣∣(1− x−u)2H− (1−u)2H∣∣≤ 2H(1− x−u)2H−1x≤ 2H(1−2ε)2H−1x2H ,

and the triangular inequality to (5.10) yields

|ϕ3(x,u)| ≤ (2H)−1(|u− x|2H +u2H +2H(1−2ε)2H−1x2H)

≤ C(|u− x|2H +u2H + x2H) ∀ x,u ∈I1 .
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Finally, we prove (5.8). Denote

ζx,u(t)= sgn(x+u−t)|x+u−t|2H−1(1−t)2H−1−sgn(u−t)|u−t|2H−1(1−t+x)2H−1.

Let δ ∈ (1
2 ,1). Since ε ∈ (0, 1

4) and (x,u) ∈ (0,ε)2, the interval (x,1) can be decom-

posed into the following three intervals, where

J1 = (x, u+ x), J2 = (u+ x, δ ), J3 = (δ , 1) .

Then ϕ5(x,u) = ∑
3
k=1

∫
Jk

ζx,u(t)dt. We consider the above three integrals separately.

Case 1: When t ∈ J1, we have

(1− t)2H−1 ≤ (1−u− x)2H−1 ≤ (1−2ε)2H−1 . (5.11)

When t falls in different subintervals of J1, we bound (1− t +x)2H−1 in different ways.

Namely, if t ∈ (x,u) and u≥ x,

(1− t + x)2H−1 ≤ (1+ x−u)2H−1 ≤ (1− ε)2H−1 . (5.12)

If t ∈ (x∨u,x+u),

(1− t + x)2H−1 ≤ (1−u)2H−1 ≤ (1− ε)2H−1 . (5.13)
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Applying (5.11) for the first summand in ζx,u(t), (5.12) and (5.13) for the second sum-

mand, we can bound the integration of ζx,u(t) on J1 as follows

∣∣∣∫
J1

ζx,u(t)dt
∣∣∣ ≤ (1−2ε)2H−1

∫ u+x

x
(x+u− t)2H−1dt

+(1− ε)2H−1(∫ u

x
(u− t)2H−11{u≥x}dt +

∫ x+u

x∨u
(t−u)2H−1dt

)
.

Integrating with respect to t yields

∣∣∣∫
J1

ζx,u(t)dt
∣∣∣≤C(u2H +(u− x)2H1{u≥x}+ x2H) .

Case 2: For t ∈ J2, we rewrite

−
∫

J2

ζx,u(t)dt =
∫

δ

u+x
(1− t)2H−1((t−u− x)2H−1− (t−u)2H−1)

+ (t−u)2H−1((1− t)2H−1− (1− t + x)2H−1)dt ,

which is nonnegative. In the above integrand, we bound (1− t)2H−1 by (1− δ )2H−1

for the first summand. For the second summand, we apply the mean value theorem for

the difference part and bound (t−u)2H−1 by x2H−1. Then integrating t yields

0≤−
∫

J2

ζx,u(t)dt ≤ (1−δ )2H−1

2H

(
(δ −u− x)2H− (δ −u)2H + x2H)

+ x2H((1−δ )2H−1− (1−u− x)2H−1)
≤ (1−δ )2H−1

2H
x2H +(1−δ )2H−1x2H ≤Cx2H .

Case 3: For t ∈ J3, we rewrite

−
∫

J3

ζx,u(t)dt =
∫ 1

δ

(t−u− x)2H−1((1− t)2H−1− (1− t + x)2H−1)
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+ (1− t + x)2H−1((t−u− x)2H−1− (t−u)2H−1)dt ,

which is nonnegative. In the above integrand, we bound (t − u− x)2H−1 by (δ −

2ε)2H−1 for the first summand. For the second summand, apply the mean value the-

orem for the difference part and bound (1− t + x)2H−1 by x2H−1. Then integrating t

yields

0≤−
∫

J3

ζx,u(t)dt ≤ (δ −2ε)2H−1

2H

(
(1−δ )2H− (1−δ + x)2H + x2H)

+ x2H((δ −u− x)2H−1− (1−u− x)2H−1)
≤ (δ −2ε)2H−1

2H
x2H + x2H(δ −u− x)2H−1 ≤Cx2H .

In the last step we have applied the inequality δ −u− x≥ δ −2ε .

Lemma 4.5.2. Suppose H ∈ (0, 1
2). Let ψ(x,u) and ϕ4(x,u) defined by (5.1) and (5.5),

respectively. Fix ε ∈ (0,1/4). Then

lim
T→∞

∫
[0,ε]2

ψ(x,u)(x2H +u2H + |x−u|2H)dxdu = 0 , (5.14)

and

lim
T→∞

∫
[0,1]2

ψ(x,u)ϕ4(x,u)dxdu

= θ
−1−4H

(
Γ(2H)2(2H−2−1)+

Γ(2−4H)Γ(2H)Γ(4H)

Γ(1−2H)

)
. (5.15)

Proof. We first prove (5.14). For the first summand, making the change of variables

T x→ x1 and Tu→ x2 yields

∫
[0,ε]2

T 4H+1e−θT (x+u)x2Hdxdu = T 2H−1
∫
[0,T ε]2

e−θ(x1+x2)x2H
1 dx1dx2 , (5.16)
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which goes to 0 as T→∞. A similar argument could be applied to the second summand.

For the third summand, by symmetry it suffices to consider the integral on the region

{u > x}. Making the change of variables T (u− x)→ x1, T x→ x2 yields

∫
[0,ε]2

T 4H+1e−θT (x+u)|u−x|2Hdxdu= 2T 2H−1
∫
[0,T ε]2,x1+x2≤T ε

e−θ(x1+2x2)x2H
1 dx1dx2 ,

(5.17)

which goes to 0 as T → ∞.

Next we show (5.15). Set

Θ := lim
T→∞

∫
[0,1]2

ψ(x,u)ϕ4(x,u)dxdu.

Making change of variables, θT x→ x,θTu→ u,θTt→ t, we can write

Θ = θ
−1−4H

∫
[0,∞)2

e−(u+x)dxdu

×
∫

∞

x
[t2H−1sgn(x+u− t)|x+u− t|2H−1− (t− x)2H−1sgn(u− t)|u− t|2H−1]dt .

The above integral can be decomposed as follows

Θ = θ
−1−4H(L1−L2 +L3) ,

where

L1 :=
∫
[0,∞)2

e−(x+u)dxdu
∫ x+u

x
t2H−1(x+u− t)2H−1dt ,

L2 :=
∫
[0,∞)2,u>x

e−(x+u)dxdu
∫ u

x
(t− x)2H−1(u− t)2H−1dt ,

L3 :=
∫
[0,∞)2

e−(x+u)dxdu
(∫ ∞

u∨x
(t−x)2H−1(t−u)2H−1dt−

∫
∞

x+u
t2H−1(t−x−u)2H−1dt

)
.
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Making the change of variables t− x→ s and integrating u, we obtain

L1 = Γ(2H)
∫
[0,∞)2

e−(x+s)(x+ s)2H−1dxds = Γ(2H)22H .

Denote by B(α,β ) the Beta function. Then

L2 = B(2H,2H)
∫
[0,∞)2,u>x

e−(x+u)(u− x)4H−1dxdu .

By setting u− x→ v and integrating in x first, we deduce L2 = Γ(2H)2/2. To compute

L3, by symmetry it suffices to integrate on the region {u < x}. For the second integral,

we make the change of variables t−u→ y. In this way, we obtain

L3 = 2
∫

0<u<x<y<∞

e−(u+x)((y−u)2H−1− (y+u)2H−1)(y− x)2H−1dydxdu.

The change of variables x−u→ a,y− x→ b yields

L3 = 2
∫
R3
+

e−(a+2u)b2H−1[(a+b)2H−1− (a+b+2u)2H−1]dudadb

= 2
∫
R3
+

e−(a+2u)b2H−1dudadb
∫ 2u+a

a
(1−2H)(b+ z)2H−2dz

= 2(1−2H)
∫
R2
+

e−(a+2u)duda
∫ 2u+a

a
(
∫
R+

b2H−1(b+ z)2H−2db)dz .

Setting z/(b+ z)→ v and integrating v on [0,1], we obtain

L3 = 2(1−2H)B(2−4H,2H)
∫
R2
+

e−(a+2u)duda
∫ 2u+a

a
z4H−2dz

=
Γ(2−4H)Γ(2H)Γ(4H)

Γ(1−2H)
.

Then, the lemma follows from the above computations of L1, L2 and L3.
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Lemma 4.5.3. Denote I1 = [0,ε]2 and I2 = [0,1]2\[0,ε]2. The functions ψ and ϕi

are given by (5.1) to (5.6). Suppose H ∈ (0, 1
2). For j = 1,2 and i = 1,2,3,5, we have

the following result.

lim
T→∞

∫
I j

ψϕidxdu = 0 . (5.18)

Proof. The proof of (5.18) is divided into the cases j = 2 and j = 1.

Case j = 2: Clearly, for (x,u) ∈I2,

ψ(x,u)≤ T 4H+1e−θT ε , (5.19)

which implies ∫
I2

ψϕidxdu → 0 for i = 1,2,3,5 (5.20)

as T → ∞. Thus, (5.18) holds true for j = 2.

Case j = 1: For i = 2, we evaluate the integral of ψϕ2 on I1 by making change of

variables T x→ x, Tu→ u and Tt→ t. In this way, we obtain

∫
I1

ψϕ2dxdu =
∫
[0,T ε]2

e−θ(u+x)dxdu
∫ T

x
[(t− x)2H−1− t2H−1](T − t + x)2H−1dt .

(5.21)

Clearly (T−t+x)2H−1≤ x2H−1, so the integrand of the above triple integral is bounded

by the function e−θ(u+x)((t−x)2H−1−t2H−1)1{t≥x}x2H−1 which is integrable on [0,∞)3.

As T → ∞, (T − t + x)2H−1 → 0. Applying the dominated convergence theorem, we

have

lim
T→∞

∫
I1

ψϕ2dxdu = 0. (5.22)

The cases i = 1,3,5 follows from (5.6), (5.7) and (5.8) and Lemma 4.5.2.
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Lemma 4.5.4. For n≥ 0, and H ∈ [3
4 ,1), set

A1,H(T ) = T 3−4H
∫ T

0

∫ T−t

0
sne−θst2H−2(s+ t)2H−2dsdt,

and

A2,H(T ) = T 3−4H
∫ T

0

∫ T

0
sne−θst2H−2(s+ t)2H−2dsdt.

Then

(i) For H ∈ (3
4 ,1), lim

T→∞
A1,H(T ) = lim

T→∞
A2,H(T ) =

θ−(n+1)Γ(n+1)
4H−3

;

(ii) For H = 3
4 , lim

T→∞

A1,H(T )
logT

= lim
T→∞

A2,H(T )
logT

= Γ(n+1)θ−(n+1).

Proof. (i) For H ∈ (3
4 ,1), we have

A2,H(T )≤ T 3−4H
∫ T

0

∫ T

0
sne−θst4H−4dsdt,

and

A1,H(T )≥ T 3−4H
∫ T

0

∫ T−t

0
sne−θs(s+ t)4H−4dsdt.

For the right-hand sides of the above two inequalities, we integrate first in t to obtain

1
4H−3

(∫ T

0
sne−θsds−T 3−4H

∫ T

0
sn+4H−3e−θsds

)
≤ A1,H(T )≤ A2,H(T )≤

1
4H−3

∫ T

0
sne−θsds.

This yields (i) by letting T → ∞.
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(ii) For H = 3
4 , by the L’Hopital rule, we have

lim
T→∞

A2,H(T )
logT

= lim
T→∞

T
[∫ T

0
sne−θsT−

1
2 (s+T )−

1
2 ds+

∫ T

0
T ne−θT t−

1
2 (T + t)−

1
2 dt
]
.

The second summand on the right-hand side of the above equation goes to 0 as T →∞,

so

lim
T→∞

A2,H(T )
logT

≤
∫

∞

0
sne−θsds. (5.23)

On the other hand, by the inequality t ≤ s+ t,

A1,H(T )
logT

≥ 1
logT

∫ T

0

∫ T−t

0
sne−θs(s+ t)−1dsdt

=
1

logT

[
logT

∫ T

0
sne−θsds−

∫ T

0
sne−θs logsds

]
.

The function sne−θs logs is integrable on [0,∞). Thus,

lim
T→∞

A1,H(T )
logT

≥
∫

∞

0
sne−θsds. (5.24)

By (5.23) and (5.24), we conclude the proof of (ii).

Lemma 4.5.5. Let FT , F̃T be defined by (1.11) and (1.19), respectively. Moreover, let

R1 be defined in Part (iii) of Theorem 4.1.2. Then we have the following convergence

results.

(i) When 0 < H < 1
2 we have

lim
T→∞

E
(

1
T

F2
T

)
= 4H2

θ
1−4H

Γ(2H)2
(
(4H−1)+

2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

)
. (5.25)
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(ii) When H = 3
4 , we have

lim
T→∞

E
(
F2

T
)

T log(T )
= 9/4θ

−2 . (5.26)

(iii) When H > 3
4 , we have

lim
T→∞

E
(
T 2−4HF2

T
)
=

16α2
Hθ−2

(4H−2)(4H−3)
, (5.27)

lim
T→∞

E[T 1−2HR1F̃T ] =
8α2

Hθ−1

(4H−2)(4H−3)
, (5.28)

where αH = H(2H−1).

In the above lemma, we do not give a statement when H ∈ [1
2 ,

3
4), because this case

has been studied in [20].

Proof. Part (i): Assume H ∈ (0, 1
2). Applying L’Hopital’s rule to (1.13) yields

lim
T→∞

E
(

1
T

F2
T

)
= lim

T→∞
4H2

θ
2(I1 + I2) , (5.29)

where

I1 = (Hθ)−1
∫
[0,T ]3

e−θ(T−t1)∂e−θ |s2−t2|

∂ s2
[T 2H−1− (T − s2)

2H−1]
∂RH(t1, t2)

∂ t2
ds2dt1dt2 ,

I2 =−(Hθ)−1
∫
[0,T ]3

e−θ(T−s1)
∂e−θ |s2−t2|

∂ s2

∂RH(s1,s2)

∂ s1

×[t2H−1
2 +(T − t2)2H−1]ds1ds2dt2 . (5.30)

To compute the limit of E( 1
T F2

T ) we will consider that of I1 and I2.
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Computation of limT→∞ I1: We first compute explicitly the partial derivatives in the

integrand of I1. On the region {t2 > s2}, we make change of variables 1− t1
T → u,

t2
T −

s2
T → x and 1− s2

T → t, and on the region {t2 < s2}, we make change of variables

1− t1
T → u, s2

T −
t2
T → x and 1− t2

T → t. In this way, I1 can be written as

I1 =
∫
[0,1]3,x≤t

T 4H+1e−θT (u+x)(1− t2H−1)(
(1− t + x)2H−1− sgn(x+u− t)|x+u− t|2H−1)dudxdt

−
∫
[0,1]3,x≤t

T 4H+1e−θT (u+x) (5.31)(
1− (t− x)2H−1)((1− t)2H−1− sgn(u− t)|u− t|2H−1)dudxdt .

(5.32)

Reorganize the terms in the above integrals we have

I1 =
∫
[0,1]2

ψ(x,u)
4

∑
i=1

ϕidxdu , (5.33)

where the functions ψ , ϕi are given by (5.1) to (5.5).

By (5.18), we see

lim
T→∞

I1 = lim
T→∞

∫
[0,1]2

ψ(x,u)ϕ4(x,u)dxdu , (5.34)

whose value is computed in (5.15) of Lemma 4.5.2.

Computation of limT→∞ I2: We first compute explicitly the partial derivatives in the

integrand of (5.30). On the region {s2 > t2}, we make change of variables T −s1→ Tu,

s2−t2→ T x and T−t2→ Tt, and on the region {t2 > s2}, we make change of variables
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T − s1→ Tu, t2− s2→ T x and T − s2→ Tt. In this way,

I2 =
∫
[0,1]3,t≥x

T 4H+1e−θT (u+x) ((1−u)2H−1 + sgn(x+u− t)|x+u− t|2H−1)
(
t2H−1 +(1− t)2H−1)dudxdt−

∫
[0,1]3,t≥x

T 4H+1e−θT (u+x)(
(1−u)2H−1 + sgn(u− t)|u− t|2H−1)((1− t + x)2H−1 +(t− x)2H−1)dudxdt .

Note that

∫ 1

x

(
t2H−1 +(1− t)2H−1)− ((1− t + x)2H−1 +(t− x)2H−1)dt = 0 ,

so I2 can be simplified and rewritten as

I2 =
∫
[0,1]2

ψ(x,u)
(
ϕ4(x,u)+ϕ5(x,u)

)
dxdu , (5.35)

where ψ(x,u), ϕ4(x,u) and ϕ5(x,u) are given by (5.1), (5.5) and (5.6) respectively.

By (5.34) and the result of (5.18) for i = 5, we have

lim
T→∞

I2 = lim
T→∞

I1 . (5.36)

Then part (i) follows from (5.29), (5.34), (5.36) and (5.15).

Part (ii) and (iii): Assume H ≥ 3/4. Using (1.5), we have

E(F2
T ) = 2α

2
HIT , (5.37)
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where αH = H(2H−1), and

IT =
∫
[0,T ]4

e−θ |s2−u2|−θ |s1−u1||s2− s1|2H−2|u2−u1|2H−2du1du2ds1ds2 . (5.38)

Applying L’Hopital rule yields


lim

T→∞
E(T 2−4HF2

T ) =
8α2

H
4H−2

lim
T→∞

T 3−4HJT when H ∈ (3
4 ,1)

lim
T→∞

EF2
T

T logT
=

9
8

lim
T→∞

JT

logT
when H = 3

4 ,

(5.39)

(5.40)

where

JT =
∫
[0,T ]3

e−θ |T−u2|−θ |s1−u1|(T − s1)
2H−2|u2−u1|2H−2du1du2ds1 .

Denote

h(T ) = T 3−4H1{H∈( 3
4 ,1)}

+(logT )−11{H= 3
4}
.

Then, finding the limits (5.39) and (5.40) is reduced to the computation of limT→∞ h(T )JT .

Making the change of variables x = T −u2, y = u1− s1 and z = T − s1 in the region

{u1 > s1} and the change of variables x = T −u2, y = s1−u1, z = T − s1 in the region

{u1 < s1}, we can write JT as follows

JT =
∫
[0,T ]3,y<z

e−θ(x+y)z2H−2|x+ y− z|2H−2dxdydz

+
∫
[0,T ]3,y+z<T

e−θ(x+y)z2H−2|y+ z− x|2H−2dxdydz . (5.41)
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Consider the functions

f1(x,y,z)= e−θ(x+y)z2H−2|x+y−z|2H−2 , f2(x,y,z)= e−θ(x+y)z2H−2|y+z−x|2H−2 .

For the first integral of (5.41), we split the integration interval {y < z} into {x+ y <

z}∪{x+y≥ z,y< z}. For the second integral of (5.41), we write the integration interval

as {y+ z < T}= {x+ y < T,x ≤ y}∪{x+ y < T,0 < x− y < z}∪{x+ y < T,x− y≥

z}∪{x+y≥ T}\{y+ z≥ T}. In this way, we can split JT into seven integrals. It turns

out that some of them are bounded by a constant independent of T and they do not

contribute to the limit, because h(T )→ 0. More precisely, we can derive the following

bounds:

∫
[0,T ]3,x+y≥z,y<z

f1(x,y,z)dxdydz ≤
∫
[0,T ]3,x+y≥z

f1(x,y,z)dxdydz

= C1

∫
[0,T ]2

e−θ(x+y)(x+ y)4H−3dxdy≤C ,

where in the second step we integrated in z and the last step follows from the inequality

x+ y≥ 2
√

xy. It is trivial to show that

∫
[0,T ]3,x+y≥T

f2(x,y,z)dxdydz≤ e−θT
∫
[0,T ]3

z2H−2|y+ z− x|2H−2dxdydz≤C ,

and

∫
[0,T ]3,x+y<T,x−y≥z

f2(x,y,z)dxdydz

≤
∫
[0,T ]3,x−y≥z

e−θ(x+y)z2H−2(x− y− z)2H−2dxdydz

= C1

∫
[0,T ]2

e−θ(x+y)(x− y)4H−3dxdy≤C .
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The last bounded integral is

∫
[0,T ]3,y+z≥T

f2(x,y,z)dxdydz ≤
∫
[0,T ]3,y+z≥T

e−θ(x+y)z2H−2(T − x)2H−2dxdydz

≤
(∫ T

0
e−θx(T − x)2H−2dx

)2

≤C ,

where in the second step we have used the inequality z2H−2 ≤ (T − y)2H−2 and the last

step follows from the following inequality

∫ T

0
e−θx(T − x)2H−2dx ≤

∫ T/2

0
e−θxx2H−2dx+

∫ T

T/2
e−θ(T−x)(T − x)2H−2dx

≤ 2
∫

∞

0
e−θxx2H−2dx .

With these observations,

lim
T→∞

h(T )JT = lim
T→∞

h(T )
∫

x+y<z
f1(x,y,z)dxdydz

+ lim
T→∞

h(T )
∫
{x+y<T,x≤y}

f2(x,y,z)dxdydz

+ lim
T→∞

h(T )
∫
{x+y<T,0<x−y<z}

f2(x,y,z)dxdydz .

We make change of variables z−(x+y)→ u,x+y→ v,y→ y for the first term, y−x→

u,z→ v,y→ y for the second term, and x−y→ u,z−x+y→ v,y→ y for the third term.

In this way, we obtain

lim
T→∞

h(T )JT = lim
T→∞

h(T )
∫
[0,T ]3,u+v<T,y<v

e−θv(u+ v)2H−2u2H−2dydudv

+ lim
T→∞

h(T )
∫
[0,T ]3,u<y<(T+u)/2

e−θ(−u+2y)v2H−2(u+ v)2H−2dydudv

+ lim
T→∞

h(T )
∫
[0,T ]3,u+v<T,y<(T−u)/2

e−θ(u+2y)(u+ v)2H−2v2H−2dydudv .
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Finally, the limits (5.26) and (5.27) follow from integrating in the variable y and an

application of Lemma 4.5.4.

We proceed now to the proof of (5.28). Assume H > 3/4. Recall that R1 = I2(δ0,1)

is given in Theorem 4.1.2 and F̃T is given by (1.19). By (3.2), we can write

E(R1(T 1−2H F̃T )) = 2α
2
HT

∫
[0,1]3

e−θT |t−s||t− t ′|2H−2|s− t ′|2H−2dsdtdt ′ .

We make the change of variables Tt→ x,T s→ y,Tt ′→ z to rewrite the above equation

as

E(T 1−2HR1F̃T ) =
2α2

H
T 4H−2

∫
[0,T ]3

e−θ |x−y||x− z|2H−2|y− z|2H−2dxdydz .

By the symmetry of x,y in the above equation, applying L’Hopital’s rule yields

lim
T→∞

E(T 1−2HR1F̃T ) (5.42)

=
α2

H
2H−1

lim
T→∞

T 3−4H
(

2
∫
[0,T ]2

e−θ(T−y)(T − z)2H−2|y− z|2H−2dydz

+
∫
[0,T ]2

e−θ |x−y|(T − x)2H−2(T − y)2H−2dxdy
)

(5.43)

=:
α2

H
2H−1

lim
T→∞

T 3−4H(2L1 +L2) . (5.44)

To compute L1, on the region {y > z} we make the change of variables y− z→ t, T −

y→ s and on the region {y < z} we make the change of variables z−y→ s, T − z→ t.

In this way we obtain

L1 =
∫
[0,T ]2,s+t<T

e−θs(s+ t)2H−2t2H−2dsdt +
∫
[0,T ]2,s+t<T

e−θ(s+t)t2H−2s2H−2dsdt
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For the term L2, by symmetry it is sufficient to consider the region {x > y} and making

the change of variables T − x→ t, x− y→ s, we obtain

L2 = 2
∫
[0,T ]2,s+t<T

e−θst2H−2(s+ t)2H−2dsdt .

Notice that the second summand of L1 is bounded by
∫
[0,∞)2 e−θ(s+t)t2H−2s2H−2dsdt.

Therefore,

lim
T→∞

E(T 1−2HR1F̃T ) =
4α2

H
2H−1

lim
T→∞

T 3−4H
∫
[0,T ]2,s+t<T

e−θs(s+ t)2H−2t2H−2dsdt

=
4α2

Hθ−1

(2H−1)(4H−3)
,

where the last step is due to Lemma 4.5.4. This finishes the proof of Lemma 4.5.5.

Lemma 4.5.6. Let YT be defined by

Yt = σ

∫ t

−∞

e−θ(t−s)dBH
s = Xt + e−θ t

ξ , (5.45)

where

ξ = σ

∫ 0

−∞

eθsdBH
s . (5.46)

For any α > 0,
YT

T α
converges almost surely to zero as T tends to infinity.

Proof. The case H ≥ 1
2 was proved in [20]. Here, we present a different proof valid for

all H ∈ (0,1). We denote β := Eξ 2 = σ2θ−2HHΓ(2H), which is computed in Lemma

4.5.7. Notice that the covariance of the process Yt for t > 0 is computed as

Cov(Y0,Yt) = e−θ tE
(

ξ

[
ξ +σ

∫ t

0
eθudBH

u

])
= e−θ t

β + e−θ t
σ

2E
(∫ 0

−∞

eθsdBH
s

∫ t

0
eθudBH

u

)
.
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We use integration by parts for both integrals in the above equation to rewrite

Cov(Y0,Yt) = e−θ t
β +g1(t)−g2(t) ,

where

g1(t)= e−θ t
σ

2
θ

2E
(∫ 0

−∞

∫ t

0
BH

s BH
u eθ(u+s)duds

)
, g2(t)=σ

2
θE
(∫ 0

−∞

BH
s BH

t eθsds
)
.

By Fubini theorem and the explicit form of the covariance of fBm,

g1(t) =
1
2

e−θ t
σ

2
θ

2
∫ 0

−∞

∫ t

0
(|s|2H +u2H− (u− s)2H)eθ(u+s)duds

= β (1− e−θ t)+
1
2

e−θ t
σ

2
θ

∫ t

0
eθuu2Hdu− β

2
(eθ t− e−θ t) .

When we compute the above double integral, we write the integrand as three items

by distributing eθ(u+s) and then integrate the terms one by one. For the term involving

(u−s)2H , we make the change of variables u−s→ x,s→ y and integrate in the variable

y first. Similarly,

g2(t) =
1
2

σ
2
θ

∫ 0

−∞

(|s|2H + t2H− (t− s)2H)eθsds

= β +
1
2

σ
2t2H−βeθ t +

1
2

σ
2
θeθ t

∫ t

0
e−θss2Hds .

Denote at = o(bt) if limt→0
at
bt
= 0. Notice that

∫ t

0
eθ(u−t)u2Hdu−

∫ t

0
eθ(t−s)s2Hds = o(t2H).
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Based on the above computations, for t small, we have

Cov(Y0,Yt) = β

[
1− θ 2H

Γ(2H +1)
t2H +o(t2H)

]
.

The lemma now follows from Theorem 3.1 of [34].

Lemma 4.5.7. Let the stochastic process Xt satisfy (0.1) (with σt = σ ). Then

1
T

∫ T

0
X2

t dt→ σ
2
θ
−2HHΓ(2H)

a.s. and in L2, as T → ∞.

Proof. When H ≥ 1
2 , the Lemma is proved in [20]. We shall handle the case of general

Hurst parameter in a similar way. The process {Yt , t ≥ 0} defined by (5.45) is Gaussian,

stationary and ergodic for all H ∈ (0,1). By the ergodic theorem,

1
T

∫ T

0
Y 2

t dt→ E(Y 2
0 ), as T goes to infinity,

almost surely and in L2. This implies

1
T

∫ T

0
X2

t dt→ E(Y 2
0 ),

as T goes to infinity, almost surely and in L2. Moreover, integrating by parts yields

E(Y 2
0 ) = E(ξ 2) = σ

2E
(∫ 0

−∞

eθsdBH
s

)2
= θ

2
σ

2E
∫ 0

−∞

∫ 0

−∞

BH
s BH

r eθ(s+r)dsdr

= θ
2
σ

2
∫

∞

0

∫
∞

0
e−θ(s+r)RH(s,r)dsdr = σ

2
θ
−2HHΓ(2H) .
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In the last step of the above computation, we use the same idea as near the end of the

proof for Lemma 4.5.6. Namely, one writes out the explicit form of RH(s,r), split the

integrand into three items by distributing e−θ(s+r) to the summands of RH(s,r), and

then integrate the three items one by one. For the item involving |s− r|2H , noticing the

symmetry of s,r, one can make change of variables s− r→ u,r→ v, and then integrate

in the variable v first.
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Chapter 5

Drift parameter estimation for nonlinear stochastic

differential equations

5.1 Main results

In this chapter, we study a parameter estimation problem for the following stochastic

differential equation (SDE) driven by a fractional Brownian motion (fBm)

dXt =− f (Xt)θdt +σdBt , t ≥ 0 , (1.1)

where X0 = x0 ∈ Rm is a given initial condition. The notations appearing in the above

equation are explained as follows. For the diffusion part, B = (B1, . . . ,Bd) is a d-

dimensional fBm of Hurst parameter H ∈ (0,1). The diffusion coefficient σ =(σ1, . . . ,σd)

is an m×d matrix, with σ j, j = 1, . . . ,d being given vectors in Rm. For the drift part,

the function f : Rm → Rm×l satisfies some regularity and growth conditions that we

shall specify below. We write f (x) = ( f1(x), . . . , fl(x)), with f j(x), j = 1, . . . , l, being

vectors in Rm. We assume that θ = (θ1, . . . ,θl)∈Rl is an unknown constant parameter.

In equation (1.1) we have used matrix notation, where the vectors are understood as
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column vectors. With above notations, we may write (1.1) as

dXt =−
l

∑
j=1

θ j f j(Xt)dt +
d

∑
j=1

σ jdB j
t .

Our objective is to estimate the parameter vector θ , from the continuous observa-

tions of the process X = {Xt , t ≥ 0} in a finite interval [0,T ]. We consider a least squares

type estimator, which consists of minimizing formally the quantity
∫ T

0 |Ẋt + f (Xt)θ |2dt,

where and in what follows we use | · | to denote the Euclidean norm of a vector or the

Hilbert-Schmidt norm of a matrix. From this procedure, the least squares estimator

(LSE) is given explicitly by

θ̂T =−
(∫ T

0
( f tr f )(Xt)dt

)−1 ∫ T

0
f tr(Xt)dXt , (1.2)

where f tr denotes the transpose of the matrix f . Substituting (1.1) into the above ex-

pression we have

θ̂T = θ −
(∫ T

0
( f tr f )(Xt)dt

)−1 ∫ T

0
f tr(Xt)σdBt . (1.3)

In the above equation, the stochastic integral with respect to the fBm is understood as a

divergence integral (or Skorohod integral). See Section 2 for its definition.

In order to state the main result of the paper, we introduce the following hypothesis.

Hypothesis 5.1.1. The functions f j, 1 ≤ j ≤ m are continuously differentiable and

there is a positive constant L1 such that the Jacobian matrices ∇ f j(x) ∈ Rm×m satisfy
l
∑
j=1

θ j∇ f j(x)≥ L1Im for all x ∈ Rm, where Im is the m×m identity matrix.

In the above hypothesis and in what follows we use the notation A ≥ B to denote

the fact that A−B is a non-negative definite matrix.
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We denote by C 1
p (Rm) the class of functions g ∈ C 1(Rm) such that there are two

positive constants L2 and γ with

|g(x)|+ |∇g(x)| ≤ L2(1+ |x|γ) , (1.4)

for all x∈Rm. We denote by C 2
p (Rm) the class of functions g∈C 2(Rm) such that there

are two positive constants L2 and γ with

|g(x)|+ |∇g(x)|+ |H(g)(x)| ≤ L2(1+ |x|γ) , (1.5)

for all x ∈ Rm, where H(g) =
(

∂ 2g
∂xi∂x j

)
1≤i, j≤m

denotes Hessian matrix of g.

It is easy to see that under Hypothesis 5.1.1, f satisfies the one-sided dissipative

Lipschitz condition:

〈x− y,( f (x)− f (y))θ〉 ≥ L1|x− y|2 , ∀ x,y ∈ Rm . (1.6)

According to the papers [16, 17, 2] and the references therein, under Hypothesis 5.1.1

and assuming fi j ∈C 1
p (Rm), for all 1≤ i≤m, 1≤ j≤ l, the SDE (1.1) admits a unique

solution Xt in C α(R+;Rm) for all α < H. Now we state the main result of this paper.

Theorem 5.1.2. Assume Hypothesis 5.1.1 and that the components of f belong to

C 1
p (Rm) when H ∈ [1

2 ,1), and they belong to C 2
p (Rm) when H ∈ (1

4 ,
1
2). Suppose that

P
(
det( f tr f )(X)> 0

)
> 0, where X is the random variable appearing in Theorem 5.2.1.

Then the least squares estimator θ̂T of the parameter θ is strongly consistent in the

sense that lim
T→∞
|θ̂T −θ |= 0 almost surely.
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Remark 5.1.3. Condition P
(
det( f tr f )(X)> 0

)
> 0 means that ν(det( f tr f )> 0)> 0,

where ν is the invariant measure of the SDE (1.1). A sufficient condition for this to

hold is det( f tr f )(x)> 0 for all x ∈ Rm.

Remark 5.1.4. When f (x) = x is linear, this inference problem of θ has been exten-

sively studied in the previous chapter.

5.2 Ergodicity of the stochastic differential equations

First, let us recall an ergodic theorem for the solution to equation (1.1) that is crucial

for our arguments. Recall that the d-dimensional fBm B = {(B1
t , . . . ,B

d
t ), t ≥ 0} with

Hurst parameter H ∈ (0,1), is a zero mean Gaussian process whose components are

independent and have the covariance function

E(Bi
tB

i
s) = RH(t,s) :=

1
2
(|t|2H + |s|2H−|t− s|2H), (2.1)

for i = 1, . . . ,d. The probability space (Ω,F ,P) we are taking is the canonical proba-

bility space of the fractional Brownian motion. Namely, Ω = C0(R+;Rd) is the set of

continuous functions from R+ to Rd equipped with the uniform topology on any com-

pact interval; F is the Borel σ -algebra, and P is the probability measure on (Ω,F )

such that the coordinate process Bt(ω) = ω(t) is a fractional Brownian motion with

Hurst parameter H ∈ (0,1).

We define the shift operators µt : Ω→Ω as

µtω(·) = ω(·+ t)−ω(t), t ∈ R,ω ∈Ω .
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The probability measure P is invariant with respect to the shift operators µt . The ergodic

property of the SDE (1.1) is summarized in the following theorem (see [17, 2]).

Theorem 5.2.1. Assume the drift function f satisfies Hypothesis 5.1.1 and its compo-

nents belong to C 1
p (Rm). Then, the following results hold:

(i) There exists a random variable X : Ω→ Rm with E|X |p < ∞ for all p ≥ 1 such

that

lim
t→∞
|Xt(ω)−X(µtω)|= 0 (2.2)

for P-almost all ω ∈Ω.

(ii) For any function g ∈ C 1
p (Rm), we have

lim
T→∞

1
T

∫ T

0
g(Xt)dt = E[g(X)] P-a.s. (2.3)

5.3 Moment estimates and maximal inequality for di-

vergence integrals with respect to fBm

When H > 1
2 , thanks to (1.7) and (2.1), the following lemma provides a useful estimate

for the p-norm of the divergence integral with respect to fBm.

Lemma 5.3.1. Let H ∈ (1
2 ,1) and let u be an element of D1,p(Hd), p > 1. Then u

belongs to the domain of the divergence operator δ in Lp(Ω). Moreover, we have

E(|δ (u)|p)≤Cp,H

(
‖E(u)‖p

L1/H([0,∞);Rd)
+E

(
‖Du‖p

L1/H([0,∞)2;Rd×d

))
.
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Now we consider the case of H ∈ (0, 1
2). First we will derive an estimate for the

p-norm of ‖u1[a,b]‖H⊗W, where u is a stochastic process with values in a Hilbert space

W.

Consider the functions Lt and Lt,s defined for 0 < s < t < b by

Lt(λ0,λ1) := (b− t)λ0tλ1 , (3.1)

Lt,s(λ2,λ3,λ4) := (b− t)λ2(t− s)λ3sλ4 . (3.2)

where the λi’s are parameters. We denote by C a generic constant that depends only on

the coefficients of the SDE (1.1), the Hurst parameter H and the parameters introduced

along the paper.

Proposition 5.3.2. Let p ≥ 2 and H ∈ (0, 1
2). Fix b ≥ 0. Let W be a Hilbert space

and consider a W-valued stochastic process u = {ut , t ≥ 0} satisfying the following

conditions:

(i) ‖ut‖Lp(Ω;W) ≤ K1Lt(λ0,λ1), for all t ≥ 0;

(ii) ‖ut−us‖Lp(Ω;W) ≤ K2Lt,s(λ2,λ3,λ4), for all s < t ≤ b,

where the parameters λi satisfy λ0 >−H, λ1,λ4 ≥ 0, λ2 >−1
2 , and λ3 >

1
2 −H. Then

for all 0≤ a≤ b,

E(‖u1[a,b]‖
p
H⊗W) (3.3)

≤ CK p
2 bpλ4(b−a)pH+pλ2+pλ3 + CK p

1 bpλ1(b−a)pH+pλ0 . (3.4)

Proof. To simplify we assume W= R. Using the isometry of the operator KH , we can

write

E(‖u1[a,b]‖
p
H) = E

(
‖KH(u1[a,b])‖

p
L2([0,b])

)
.
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We decompose the integral appearing in (1.10) into sum of three terms according to the

cases where one of s, t is in the interval (a,b) or both. In this way, we obtain

KH(u1[a,b]) = KH(b,s)us1[a,b](s)+
(∫ b

s
(ut−us)

∂KH

∂ t
(t,s)dt

)
1[a,b](s)

+

(∫ b

a
ut

∂KH

∂ t
(t,s)dt

)
1[0,a](s)

=: I1 + I2 + I3 .

Thus,

E(‖u1[a,b]‖
p
H)≤C

3

∑
i=1

Ai , (3.5)

where Ai = E
(
‖Ii‖p

L2([0,b])

)
. Now we estimate each term Ai in (3.5). For A1, applying

Minkowski inequality and condition (i), we obtain

A1 ≤ C
(∫ b

a

(
(b− s)2H−1 + s2H−1)‖us‖2

Lp(Ω)ds
) p

2

≤ CK p
1

(∫ b

a
((b− s)2H−1 + s2H−1)(b− s)2λ0s2λ1ds

) p
2

≤ CK p
1

(∫ b

a

(
(b− s)2H−1 +(s−a)2H−1)(b− s)2λ0s2λ1ds

) p
2

= CK p
1 bpλ1(b−a)pH+pλ0 .

For the term A3, applying again Minkowski inequality and condition (i), we can write

A3 ≤ C

(∫ a

0

(∫ b

a
‖ut‖Lp(Ω)(t− s)H− 3

2 dt
)2

ds

) p
2

≤ CK p
1

(∫ a

0

(∫ b

a
(b− t)λ0tλ1(t− s)H− 3

2 dt
)2

ds

) p
2

.
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Denote g(t) = (b− t)λ0tλ1 which is positive. Then

A3 ≤CK p
1

(∫
[a,b]2

g(t1)g(t2)dt1dt2
∫ a

0
(t1− s)H− 3

2 (t2− s)H− 3
2 ds
) p

2

.

Now

∫ a

0
(t1− s)H− 3

2 (t2− s)H− 3
2 ds≤

∫ a

0
(t1−a)H− 3

2 (t2− s)H− 3
2 ds≤C(t1−a)H− 3

2 (t2−a)H− 1
2 .

In the same way we have

∫ a

0
(t1− s)H− 3

2 (t2− s)H− 3
2 ds≤C(t2−a)H− 3

2 (t1−a)H− 1
2 .

Using the fact that if u≤ a1 and u≤ a2, then u≤√a1a2, we see that

∫ a

0
(t1− s)H− 3

2 (t2− s)H− 3
2 ds≤ (t1−a)H−1(t2−a)H−1 .

Therefore, we have

A3 ≤ CK p
1

(∫ b

a
(b− t)λ0(t−a)H−1tλ1dt

)p

≤CK p
1 bpλ1(b−a)pH+pλ0 .

For A2, applying Minkowski inequality and condition (ii), yields

A2 ≤ C

(∫ b

a

(∫ b

s
‖ut−us‖Lp(Ω)(t− s)H− 3

2 dt
)2

ds

) p
2

≤ CK p
2

(∫ b

a

(∫ b

s
(b− t)λ2(t− s)λ3sλ4(t− s)H− 3

2 dt
)2

ds

) p
2

≤ CK p
2

(∫ b

a
(b− s)2λ2+2λ3+2H−1s2λ4ds

) p
2

= CK p
2 bpλ4(b−a)pH+pλ2+pλ3 .
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This completes the proof.

Suppose now that u is a d-dimensional stochastic process. We will make use of the

notation ‖u‖p,a,b := supa≤t≤b ‖ut‖Lp(Ω;Rd). Consider the following regularity conditions

on u:

Hypothesis 5.3.3. Assume that there are constants K > 0, β > 1
2 −H and λ ∈ (0,H],

such that the Rd-valued process u = {ut , t ≥ 0} and its derivative {Dut , t ≥ 0} satisfy

the following conditions:

(i) ‖u‖p,0,∞ = supt≥0 ‖ut‖Lp(Ω;Rd) < ∞,

(ii) ‖ut−us‖Lp(Ω;Rd) ≤ K(t− s)β ,

(iii) ‖Dut‖Lp(Ω;Hd⊗Rd) ≤ Ktλ ,

(iv) ‖Dut−Dus‖Lp(Ω;Hd⊗Rd) ≤ K(t− s)β sλ ,

for all 0≤ s < t.

As an application of (2.1) and Proposition 5.3.2, we give the following estimate for

the p-th moment of the divergence integral δ (u1[0,T ]).

Proposition 5.3.4. Let H ∈ (0, 1
2) and p ≥ 2. Assume that the Rd-valued stochastic

process {ut , t ≥ 0} satisfies Hypothesis 5.3.3. Then for any T > 0, the divergence

integral δ (u1[0,T ]) is in Lp(Ω), and

E(|δ (u1[0,T ])|p)≤CT pH(1+T pλ )(1+T pβ ) ,

where the constant C is independent of T .
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Proof. We will use inequality (2.1) to prove the proposition and it suffices to compute

the right-hand side of (2.1). Applying Proposition 5.3.2 to W = Rd , λ3 = β and λi =

0, i 6= 3, we obtain

E(‖u1[0,T ]‖
p
Hd)≤C

(
‖u‖p

p,0,∞T pH +K pT pβ+pH
)
.

To compute the p-th moment of the derivative of u, we use the functions Lt and Lt,s

introduced in (3.1) and (3.2), respectively, to write the conditions (iii) and (iv) of Hy-

pothesis 5.3.3 as

‖Dut‖Lp(Ω;Hd⊗Rd) ≤ KLt(0,λ ) ,

and

‖Dut−Dus‖Lp(Ω;Hd⊗Rd) ≤ KLt,s(0,β ,λ ) .

Then we use Proposition 5.3.2 for W=Hd⊗Rd and take into account the isomorphism

H⊗ (Hd⊗Rd)∼= Hd⊗Hd to obtain

E(‖Du1[0,T ]‖
p
Hd⊗Hd)≤CK pT pH+pλ (1+T pβ ) .

This completes the proof of the proposition.

When H 6= 1
2 , the divergence integral

{∫ t
0 usdBs , t ≥ 0

}
is not a martingale, so we

cannot apply Burkholder inequality to bound the maximum of the integral. However,

if the process u satisfies some regularity conditions in Hypothesis 5.3.3, we can use a

factorization method to estimate the maximum, as it has been done in [1]. This result

is given in the following theorem.

Theorem 5.3.5. Let {ut , t ≥ 0} be an Rd-valued stochastic process. For the divergence

integral
∫ t

0 usdBs, t ≥ 0, we have the following statements:
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1. Let H ∈ (1
4 ,

1
2) and p > 1

H . Assume that the stochastic process u satisfies Hypoth-

esis 5.3.3. Then the divergence integral
∫ t

0 usdBs is in Lp(Ω) for all t ≥ 0 and for

any 0≤ a < b we have the estimate

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a
usdBs

∣∣∣∣p
)
≤C(b−a)pH(1+(b−a)pβ )(1+bpλ ) ,

where C is a generic constant that does not depend on a,b.

2. Let H ∈ (1
2 ,1) and 1

p +
1
q = H with p > q. Suppose that for all T > 0

(i)
∫ T

0 E(|us|p)ds < ∞,

(ii)
∫ T

0
∫ s

0 E(|Dtus|p)dtds < ∞.

Then the divergence integral
∫ t

0 usdBs is in Lp(Ω) for all t ≥ 0 and for any interval

[a,b], we have

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a
usdBs

∣∣∣∣p
)

≤ C
(
(b−a)

p
q

∫ b

a
E(|us|p)ds+(b−a)

2p
q

∫ b

a

∫ s

a
E(|Dtus|p)dtds

)
,

where the constant C does not depend on a,b.

Proof. We may assume that u is a smooth function. The general case follows from

a limiting argument. We will use the elementary integral
∫ t

s (t − r)α−1(r− s)−αdr =

π

sin(απ) for any α ∈ (0,1), and a stochastic Fubini’s theorem. For any α ∈ ( 1
p ,1), we

have

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a
usdBs

∣∣∣∣p
)

=

(
sin(απ)

π

)p

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a

(∫ t

s
(t− r)α−1(r− s)−αdr

)
usdBs

∣∣∣∣p
)

113



(
sin(απ)

π

)p

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a

(∫ r

a
(r− s)−αusdBs

)
(t− r)α−1dr

∣∣∣∣p
)

≤
(

sin(απ)

π

)p

E

(
sup

t∈[a,b]

(∫ t

a

∣∣∣∣∫ r

a
(r− s)−αusdBs

∣∣∣∣p dr
)∣∣∣∣∫ t

a
(t− r)

p(α−1)
p−1 dr

∣∣∣∣p−1
)

≤Cα,p(b−a)pα−1
∫ b

a
E(|Gr|p)dr , (3.6)

where

Gr :=
∫ r

a
(r− s)−αusdBs, r ∈ [a,b] .

Case H ∈ (1
2 ,1): Using Lemma 5.3.1 for α ∈ ( 1

p ,
1
q) and 1

p +
1
q = H, we get

E(|Gr|p) ≤ Cp,H

((∫ r

a
(r− s)−

α

H |E(us)|
1
H ds
)pH

+E
(∫ r

a

∫ s

a
(r− s)−

α

H |Dµus|
1
H dµds

)pH )
≤ Cp,H

(∫ r

a
(r− s)−αqds

) p
q
(∫ r

a
|E(us)|pds

)
+ Cp,H

(∫ r

a

∫ s

a
(r− s)−αqdµds

) p
q
(∫ r

a

∫ s

a
E(|Dµus|)pdµds

)
≤ Cα,p,q,H

(
(r−a)

p
q−α p

∫ r

a
E(|us|p)ds

+(r−a)
2p
q −α p

∫ r

a

∫ s

a
E(|Dµus|p)dµds

)
.

Therefore,

E

(
sup

t∈[a,b]

∣∣∣∣∫ t

a
usdBs

∣∣∣∣p
)
≤ C

(
(b−a)

p
q

∫ b

a
E(|us|p)ds

+(b−a)
2p
q

∫ b

a

∫ s

a
E(|Dµus|p)dµds

)
.
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Case H ∈ (0, 1
2): Denote ψ(t) = (r− t)−αut for t ∈ [a,r). Then by (2.1),

E(|Gr|p)≤ E(‖ψ1[a,r)‖
p
Hd)+E(‖D(ψ1[a,r))‖

p
Hd⊗Hd) . (3.7)

We will estimate the above two items on the right-hand side one by one. For a ≤ s <

t < r,

|ψ(t)−ψ(s)| = |(r− t)−α(ut−us)+
(
(r− t)−α − (r− s)−α

)
us|

≤ (r− t)−α |ut−us|+(r− t)−2α(t− s)α |us| ,

where we have used the inequality 1− (r− t)α(r− s)−α ≤ (r− s)−α(t − s)α . Thus,

using Hypothesis 3.3 (ii), we can write

‖ψ(t)−ψ(s)‖Lp(Ω;Rd) ≤ (r− t)−α‖ut−us‖Lp(Ω;Rd)+(r− t)−2α(t− s)α‖us‖Lp(Ω;Rd)

≤ K(r− t)−α(t− s)β +‖u‖p,a,b(r− t)−2α(t− s)α , (3.8)

and

‖ψ(t)‖Lp(Ω;Rd) = (r− t)−α‖ut1[a,r)‖Lp(Ω;Rd) ≤ (r− t)−α‖u‖p,a,b , (3.9)

This means that ψ satisfies the assumptions of Proposition 5.3.2 with W =Rd with the

functions Lt(−α,0) and Lt,s(−α,β ,0)+Lt,s(−2α,α,0) if we choose α ∈ (max( 1
p ,

1
2−

H),H), which requires H ∈ (1
4 ,

1
2). In this way, we obtain

E(‖ψ1[a,r]‖
p
Hd) ≤ C(r−a)pH−pα(1+(r−a)pβ ) . (3.10)
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Similarly, using Hypotheses 3.3 (iii) and (iv), we have

‖Dψ(t)−Dψ(s)‖Lp(Ω;Hd⊗Rd)

≤ (r− t)−α‖Dut−Dus‖Lp(Ω;Hd⊗Rd)+(r− t)−2α(t− s)α‖Dus‖Lp(Ω;Hd⊗Rd)

≤ K(r− t)−α(t− s)β sλ + K(r− t)−2α(t− s)αsλ (3.11)

and

‖Dψ(t)‖Lp(Ω;Hd⊗Rd) = (r− t)−α‖Dut‖Lp(Ω;Hd⊗Rd) ≤ K(r− t)−αtλ . (3.12)

This means that Dψ satisfies the assumptions of Proposition 5.3.2 with W = Hd⊗Rd

with the functions Lt(−α,λ ) and Lt,s(−α,β ,λ )+Lt,s(−2α,α,λ ). Using Proposition

5.3.2 for Dψ with W = Hd⊗Rd , we have

E(‖D(ψ1[a,r])‖
p
Hd⊗Hd) ≤ C(r−a)pH−pα(1+(r−a)pβ )bpλ . (3.13)

Substituting the bounds of (3.10) and (3.13) into (3.7), we have

E(|Gr|p) ≤ C(r−a)pH−pα(1+(r−a)pβ )(1+bpλ ) . (3.14)

Finally, putting this estimate into (3.6), we complete the proof.
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5.4 Estimates of the solution of stochastic differential

equations

Before we present the proof of the main theorem, we need some auxiliary results. First,

we prove some estimates for the p-th moment of the solution of the SDE (1.1).

Proposition 5.4.1. Let H ∈ (0,1) and p ≥ 1. Assume the drift function f of the SDE

(1.1) satisfies Hypotheses 5.1.1 and its components belong to C 1
p (Rm). Let X be the

unique solution to (1.1). Then we have the following statements:

(1) There exists a constant Cp > 0 such that ‖Xt‖Lp(Ω;Rm) ≤Cp, and

‖Xt−Xs‖Lp(Ω;Rm) ≤Cp|t− s|H

for all t ≥ s≥ 0.

(2) The Malliavin derivative of the solution Xt satisfies for all 0≤ s≤ t

|DsXt | ≤ |σ |e−L1(t−s) , a.s. (4.1)

Moreover, if v≤ u≤ s≤ t, we have

‖DuXt−DvXt‖Lp(Ω;Rm×d) ≤Ce−L1(t−u)(1∧|u− v|) , (4.2)

‖DuXt−DuXs‖Lp(Ω;Rm×d) ≤Ce−L1(s−u)(1∧|t− s|) , (4.3)

and

‖DuXt−DvXt− (DuXs−DvXs)‖Lp(Ω;Rm×d) ≤Ce−L1(s−u)(1∧|u− v|)(1∧|t− s|) ,

(4.4)
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where C is a generic constant.

Proof. For the proof of the first result we refer to [16], [17], and [2].

To show the second part of this proposition, taking the Malliavin derivative for s≤ t

on both sides of equation (1.1) yields

DsXt =−
∫ t

s

l

∑
j=1

θ j∇ f j(Xr)DsXrdr+σ , (4.5)

where σ = (σ1, . . . ,σd) ∈ Rm×d . Denote Zt = DsXt for t ≥ s. We can write the above

equation as the following ordinary differential equation for t ≥ s:


dZt =−∑

l
j=1 θ j∇ f j(Xt)Ztdt,

Zs = σ .

Differentiating |Zt |2 with respect to t, and using (1.6), we get

d|Zt |2

dt
= 2〈Zt ,−

l

∑
j=1

θ j∇ f j(Xt)Zt〉 ≤ −2L1|Zt |2 .

By Gronwall’s lemma, we obtain

|Zt |2 ≤ e−2L1(t−s) |σ |2 ,

and this implies (4.1).

We now proceed to the proof of (4.2). For v≤ u≤ t, equation (4.5) implies

DuXt−DvXt =−
∫ t

u

l

∑
j=1

θ j∇ f j(Xr)(DuXr−DvXr)dr+
∫ u

v

l

∑
j=1

θ j∇ f j(Xr)DvXrdr .

(4.6)
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Repeating the above arguments for DuXt−DvXt , t ≥ u, we can write

|DuXt−DvXt | ≤ e−L1(t−u)
∣∣∣∫ u

v

l

∑
j=1

θ j∇ f j(Xr)DvXrdr
∣∣∣ .

Applying Minkowski inequality and (4.1) to DvXr, and then using the fact that the Lp-

norm of |∇ f j(Xr)| is bounded due to condition (1.4), we obtain

‖DuXt−DvXt‖Lp(Ω;Rm×d) ≤ e−L1(t−u)
∫ u

v
‖

l

∑
j=1

θ j∇ f j(Xr)DvXr‖Lp(Ω;Rm×d)dr

≤ Ce−L1(t−u)
∫ u

v
e−L1(r−v)dr ≤Ce−L1(t−u)(1∧|u− v|) .

This proves (4.2). To prove (4.3), we use equation (4.5) to obtain

E(|DuXt−DuXs|p) = E

(∣∣∣∣∣
∫ t

s

l

∑
j=1

θ j∇ f j(Xr)DuXrdr

∣∣∣∣∣
p)

.

Applying Minkowski inequality and using (4.1) for DuXr, and the fact that the Lp-norm

of |∇ f j(Xr)| is bounded, we obtain

‖DuXt−DuXs‖Lp(Ω;Rm×d) ≤
∫ t

s

∥∥∥∥∥ l

∑
j=1

θ j∇ f j(Xr)DuXr

∥∥∥∥∥
Lp(Ω;Rm×d)

dr

≤ C
∫ t

s
e−L1(r−u)dr ≤Ce−L1(s−u)(1∧|t− s|) .

Finally we prove (4.4). Using (4.6), we have the following estimate

‖DuXt−DvXt− (DuXs−DvXs)‖Lp(Ω;Rm×d)

=

∥∥∥∥∥
∫ t

s

l

∑
j=1

θ j∇ f j(Xr)(DuXr−DvXr)dr

∥∥∥∥∥
Lp(Ω;Rm×d)

.

119



Applying Minkowski inequality and Cauchy-Schwartz inequality yields

‖DuXt−DvXt− (DuXs−DvXs)‖Lp(Ω;Rm×d)

≤ C
∫ t

s
‖∇ f j(Xr)‖L2p(Ω;Rm×m)‖DuXr−DvXr‖L2p(Ω;Rm×d)dr

≤ C(1∧|u− v|)
∫ t

s
e−L1(r−u)dr ≤Ce−L1(s−u)(1∧|u− v|)(1∧|t− s|) .

This proves (4.4) and proof of the proposition is complete.

Remark 5.4.2. It is worth pointing out that the solution of the SDE (1.1) is Hölder

continuous in Lp for all p ≥ 1 with exponent H, i.e., ‖Xt −Xs‖Lp(Ω;Rm) ≤ C|t − s|H .

However, the Malliavin derivative of Xt is more regular, i.e.,

‖DuXt−DuXs‖Lp(Ω;Rm×d) ≤C|t− s|.

That is, the Hölder continuity exponent is improved from H to 1. This is because the

noise in the SDE is additive.

The next lemma provides bounds for the norm of the derivative of a function of the

solution to equation (1.1).

Lemma 5.4.3. Let H ∈ (0, 1
2) and p≥ 2. Consider a function g = (g1, . . . ,gd) : Rm→

Rd whose components belong to C 2
p (Rm). Then for all 0≤ s≤ t, we have

‖Dg(Xt)−Dg(Xs)‖Lp(Ω;Hd⊗Rd) ≤ K(t− s)Hsλ , (4.7)

and

‖Dg(Xs)‖Lp(Ω;Hd⊗Rd) ≤ Ksλ , (4.8)

for any λ ∈ (0,H], where K is a constant that may depend on λ .
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Proof. Consider the Hd⊗Rd-valued function φ := Dg(Xt)−Dg(Xs). We can writre

‖φ‖2
Hd⊗Rd ≤C‖φ‖2

Kd
t ⊗Rd ≤ C

∫ t

0
|φ(u)|2

(
(t−u)2H−1 +u2H−1)du

+C
∫ t

0

(∫ t

v
|φ(u)−φ(v)|(u− v)H− 3

2 du
)2

dv

=: C(A1 +A2) .

Therefore,

‖φ‖Lp(Ω;Hd⊗Rd) ≤C
2

∑
i=1
‖Ai‖

1
2

L
p
2 (Ω)

.

It remains to estimate ‖Ai‖
1
2

L
p
2 (Ω)

for i = 1,2. First, we write φ(u) as

φ(u) = ∇g(Xt) · (DuXt−DuXs)+(∇g(Xt)−∇g(Xs)) ·DuXs . (4.9)

Thus, by the submultiplicativity of Hilbert-Schmidt norm, i.e., |AB| ≤ |A||B|, we have

|φ(u)| ≤


|∇g(Xt)||DuXt−DuXs|+ |Xt−Xs||DuXs|

×
∫ 1

0 ‖H(g(Xs + r(Xt−Xs)))‖dr when u≤ s≤ t ;

|∇g(Xt)||DuXt | when s≤ u≤ t .

HereH(g)= (H(g1), . . . ,H(gd)) is understood as the third order tensor, and ‖H(g)‖2 =

∑i |H(gi)|2. Since the components of g belong to C 2
p (Rm), Proposition 5.4.1 says that

the Lp norm of |∇g(Xt)| and ‖H(g(Xt))‖ are both bounded for any t ≥ 0, p≥ 1. Due to

121



these facts and the inequalities (4.1) and (4.3), we have

(E(|φ(u)|p))
1
p ≤ C



(
E(|∇g(Xt)|2p)

) 1
2p
(
E(|DuXt−DuXs|2p)

) 1
2p

+e−L1(s−u) ∫ 1
0
(
E(‖H(g(Xs + r(Xt−Xs)))‖2p)

) 1
2p dr

×
(
E(|Xt−Xs|2p)

) 1
2p when u≤ s≤ t;(

E(|∇g(Xt)|2p) 1
2p
(
E(|DuXt |2p)

) 1
2p when s≤ u≤ t

≤ Ce−L1(s−u)(t− s)H1{u<s}+Ce−L1(t−u)1{u>s} .

Therefore,

‖A1‖
1
2

L
p
2 (Ω)

≤
(∫ t

0
(E(|φ |p))

2
p
(
(t−u)2H−1 +u2H−1)du

) 1
2

≤ C(t− s)H
(∫ s

0
e−2L1(s−u) ((t−u)2H−1 +u2H−1)du

) 1
2

+C
(∫ t

s
e−2L1(t−u) ((t−u)2H−1 +u2H−1)du

) 1
2

≤ C(t− s)H ,

where in the last inequality we have used the following arguments. For the second

summand, we have bounded e−2L1(t−u) by 1 and applied the inequality t2H − s2H ≤

(t− s)2H . For the first summand, we bound (t−u)2H−1 by (s−u)2H−1 and decompose

the integral in the intervals [0,1] and [1,s] (if s≥ 1).
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Now we discuss A2. For v < u, we decompose

φ(u)−φ(v) =



(∇g(Xt)−∇g(Xs)) · (DuXt−DvXt)

+∇g(Xs) · (DuXt−DvXt− (DuXs−DvXs))

when v < u < s < t ;

(∇g(Xt)−∇g(Xs)) · (DuXt−DvXt)

+∇g(Xs) · (DuXt−DvXt +DvXs) when v < s < u < t ;

∇g(Xt) · (DuXt−DvXt) when s < v < u < t .

We shall consider the above three cases separately.

Case 1): v < u < s < t. In this case we have

(E(|φ(u)−φ(v)|p))
1
p

≤
∫ 1

0

(
E(‖H(g(Xs + r(Xt−Xs)))‖4p)

) 1
4p dr

×
(
E(|Xt−Xs|4p)

) 1
4p
(
E(|DuXt−DvXt |2p)

) 1
2p

+
(
E(|∇g(Xs)|2p)

) 1
2p
(
E(|DuXt−DvXt− (DuXs−DvXs)|2p)

) 1
2p .

Case 2): s < v < u < t. We have

(E(|φ(u)−φ(v)|p))
1
p = (E(|∇g(Xt) · (DuXt−DvXt)|p))

1
p

≤
(
E(|∇g(Xt)|2p)

) 1
2p
(
E(|DuXt−DvXt |2p)

) 1
2p .

Case 3): v < s < u < t. We have

φ(u)−φ(v) = ∇g(Xt) ·DuXt−∇g(Xt) · (DvXt−DvXs)− (∇g(Xt)−∇g(Xs)) ·DvXs ,
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so

(E(|φ(u)−φ(v)|p))
1
p

≤
(
E(|∇g(Xt)|2p)

) 1
2p

((
E(|DuXt |2p)

) 1
2p +

(
E(|DvXt−DvXs|2p)

) 1
2p

)
+
∫ 1

0

(
E(‖H(g(Xs + r(Xt−Xs)))‖4p)

) 1
4p dr

×
(
E(|Xt−Xs|4p)

) 1
4p
(
E(|DvXs|2p)

) 1
2p .

Combining the above cases, and using the inequalities (4.1) to (4.4) in Proposition

5.4.1, we obtain

(E(|φ(u)−φ(v)|p))
1
p (4.10)

≤ C|t− s|He−L1(s−u)|u− v|ε1{v<u<s<t}+ Ce−L1(t−u)|u− v|ε1{v>s}

+ C
(

e−L1(t−u)+ e−L1(s−v)|t− s|H
)
1{v<s<u<t}

:=
4

∑
i=1

A2i , (4.11)

where we have used 1∧|u−v| ≤C|u−v|ε for any ε ∈ [0,1] and 1∧|t− s| ≤C|t− s|H .

Now we apply Minkowski’s inequality to ‖A2‖
1
2

L
p
2 (Ω)

and then an application of (4.11)

yields

‖A2‖
1
2

L
p
2 (Ω)
≤

(∫ t

0

(∫ t

v
(E|φ(u)−φ(v)|p)

1
p (u− v)H− 3

2 du
)2

dv

) 1
2

≤
4

∑
i=1

A(i)
2 ,

where

A(i)
2 =

(∫ t

0

(∫ t

v
A2i(u− v)H− 3

2 du
)2

dv

) 1
2

.
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For i = 1, fix λ ∈ (0,H] and set ε = 1−H +λ for A21 in (4.11). In this way, we obtain

A(1)
2 ≤ C(t− s)H

(∫ s

0

(∫ s

v
e−L1(s−u)(u− v)λ− 1

2 du
)2

dv

) 1
2

≤C(t− s)H
(∫ s

0
(s− v)2λ−1dv

) 1
2

≤C(t− s)Hsλ ,

where the second inequality follows from the following estimate. For any α ∈ (−1,0),

∫ s

v
e−L1(s−u)(u− v)αdu ≤

∫ s−v

0
e−L1(s−v−x)xαdx

≤
∫ s−v

2

0
e−L1(

s−v
2 )xαdx+

∫ s−v

s−v
2

(
s− v

2
)αe−L1(s−v−x)dx

≤ C
(

e−L1(
s−v

2 )(
s− v

2
)α+1 +(

s− v
2

)α

)
(4.12)

≤ C(s− v)α , (4.13)

taking into account the fact that the function xe−L1x is bounded on [0,∞).

For i = 2, choosing ε = 1, we can write

A(2)
2 ≤C

(∫ t

s

(∫ t

v
e−L1(t−u)(u− v)H− 1

2 du
)2

dv

) 1
2

Using (4.13) by setting λ = H− 1
2 , we have

A(2)
2 ≤C

(∫ t

s
(t− v)2H−1dv

) 1
2

≤C(t− s)H .

For i = 3,

A(3)
2 ≤ C

(∫ s

0

(∫ t

s
e−L1(t−u)(u− v)H− 3

2 du
)2

dv

) 1
2
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≤C
∫ t

s

(∫ s

0
e−2L1(t−u)(u− v)2H−3dv

) 1
2

du≤C
∫ t

s
(u− s)H−1du≤C(t− s)H .

For i = 4,

A(4)
2 ≤ C(t− s)H

(∫ s

0

(∫ t

s
(u− v)H− 3

2 du
)2

e−L1(s−v)dv

) 1
2

≤C(t− s)H
(∫ s

0
(s− v)2H−1e−L1(s−v)dv

) 1
2

≤C(t− s)H .

This finishes the proof of (4.7). The proof of (4.8) is similar.

We next apply Proposition 5.4.1 and Lemma 5.4.3 to deduce the estimate for the

p-th moment of the divergence integral Zg,t which is defined as

Zg,t :=
∫ t

0
g(Xs)dBs , (4.14)

where {Xt , t ≥ 0} is the solution of the SDE (1.1), and the function g :Rm→Rd satisfies

some regularity and growth conditions.

Proposition 5.4.4. Let the divergence integral Zg,T be defined by (4.14).

1. If H ∈ (1
4 ,

1
2) and p≥ 2, assume that the components of the function g : Rm→Rd

belong to the space C 2
p (Rm). Then we have

E(|Zg,T |p)≤CT pH(1+T pλ )(1+T pH) ,

for any λ ∈ (0,H], where C > 0 is a constant independent of T .
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2. If H ∈ (1
2 ,1), assume that the components of the function g : Rm→Rd belong to

the space C 1
p (Rm). Then for p > 1

H , we have

E(|Zg,T |p)≤CT pH ,

for all T > 0, where C > 0 is independent of T .

Proof. First, for H ∈ (1
4 ,

1
2), by Proposition 5.4.1, the process {g(Xt), t ≥ 0} satisfies

conditions (i) and (ii) of Hypothesis 5.3.3 with β = H, which requires H > 1
2 −H, i.e.,

H > 1
4 . By (4.7) and (4.8) of Lemma 5.4.3, Dg(Xt) satisfies conditions (iii) and (iv)

of Hypothesis 5.3.3 with β = H and λ ∈ (0,H]. By Proposition 5.3.4, we obtain the

result.

Second, for H ∈ (1
2 ,1), applying the results in the preceding Proposition 5.4.1,

we get that g(Xt) and ∇g(Xt) are bounded in Lp(Ω), so clearly g(Xt) is in the space

D1,p(Hd). Applying Lemma 5.3.1 to Zg,T yields

E(|Zg,T |p)≤Cp,H

((∫ T

0
E(|g(Xt)|

1
H )dt

)pH

+E
(∫ T

0

∫ t

0
|Dsg(Xt)|

1
H dsdt

)pH
)

.

Then we use (4.1) and integrate s to obtain

E(|Zg,T |p)

≤ Cp,H

((∫ T

0
E(|g(Xt)|

1
H )dt

)pH

+
|σ |pH pH

LpH
1

E
(∫ T

0
|∇g(Xt)|

1
H (1− e−

L1
H t)dt

)pH
)

≤ Cp,H

(∫ T

0
E(|g(Xt)|

1
H )dt

)pH

+Cp,H,L1,σ

(∫ T

0
(E|∇g(Xt)|p)

1
pH dt

)pH

≤CT pH .

This concludes the proof.
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5.5 Proof of the strong consistency of the least squares

estimator

The following lemma is an important ingredient of the proof of Theorem 5.1.2.

Lemma 5.5.1. Suppose f satisfies P
(
det( f tr f )(X)> 0

)
> 0, then E

(
( f tr f )(X)

)
is

invertible.

Proof. Let ν be the law of X . Applying Minkowski determinantal inequality and

Jensen’s inequality yields

det
(∫

Rm
( f tr f )(x)ν(dx)

) 1
l

≥
∫
Rm

det
(
( f tr f )(x)

) 1
l ν(dx) ,

which is positive under our hypothesis.

Next we proceed to prove Theorem 5.1.2. Recall that the estimator θ̂T is given by

(1.3). By Theorem 5.2.1, we have

1
T

∫ T

0
( f tr f )(Xt)dt→ E

(
( f tr f )(X)

)
a.s. ,

which is invertible. Therefore,

(
1
T

∫ T

0
( f tr f )(Xt)dt

)−1

→
(
E
(
( f tr f )(X)

))−1 a.s. . (5.1)

Fix j = 1, . . . , l and consider the function g j(x) = f tr
j (x)σ : Rm→ Rd . Denote

Z j,t =
∫ t

0
g j(Xs)dBs =

∫ t

0
f tr

j (Xs)σdBs.
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for j = 1, . . . , l. Taking into account (5.1), to show limT→∞
1
T |θ̂T −θ |= 0 it suffices to

show

lim
T→∞

1
T

Z j,T = 0 (5.2)

for each j = 1, . . . , l. The proof of (5.2) will be done in two steps.

Step 1: Fix j = 1, . . . , l. We first show that

lim
n→∞

n−1Z j,n = 0.

Since the components of f belong to the space C i
p(Rm) with i = 1,2, depending on

H > 1
2 or H < 1

2 , respectively, clearly the function g j(x) satisfies the conditions in

Proposition 5.4.4. Applying Proposition 5.4.4,

E(|Z j,n|p)≤


CnpH when H ∈ (1

2 ,1)

Cnp(2H+λ ) when H ∈ (1
4 ,

1
2)

(5.3)

for any λ ∈ (0,H]. We will choose p and λ in such a way that p > 1
1−H if H ∈ (1

2 ,1)

and 0 < λ < 1−2H and p > 1
1−2H−λ

if H ∈ (0, 1
2).

On the other hand, for any ε > 0, by Chebyshev inequality and the above estimates

we have

∞

∑
n=1

P(
∣∣n−1Z j,n

∣∣> ε) ≤
∞

∑
n=1

ε
−pE

(∣∣n−1Z j,n
∣∣p)

≤


C ∑

∞
n=1 ε−pn(H−1)p when H ∈ (1

2 ,1)

C ∑
∞
n=1 ε−pn(2H+λ−1)p when H ∈ (0, 1

2)

< ∞.
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By Borel-Cantelli lemma, n−1Z j,n→ 0 a.s. as n→ ∞.

Step 2: For any T > 0 we define the integer kT by kT ≤ T < kT +1. We write

1
T

Z j,T =
kT

T
1
kT

∫ kT

0
g j(Xt)dBt +

1
T

∫ T

kT

g j(Xt)dBt .

Thus,
1
T

∣∣Z j,T
∣∣≤ 1

kT

∣∣∣∣∫ kT

0
g j(Xt)dBt

∣∣∣∣+ 1
T

∣∣∣∣∫ T

kT

g j(Xt)dBt

∣∣∣∣ .
Clearly from Step 1 the first summand converges to 0 almost surely as T → ∞. For the

second summand, observe that

1
T

∣∣∣∣∫ T

kT

g j(Xt)dBt

∣∣∣∣≤ 1
kT

sup
t∈[kT ,kT+1]

∣∣∣∣∫ t

kT

g j(Xs)dBs

∣∣∣∣ . (5.4)

Now we apply Theorem 5.3.5 to the p-th moment of supt∈[kT ,kT+1]
∣∣∫ t

kT
g j(Xs)dBs

∣∣.
When H ∈ (1

2 ,1), we have

E

[
sup

t∈[kT ,kT+1]

∣∣∣∣∫ t

kT

g j(Xs)dBs

∣∣∣∣p
]

≤ C
(∫ kT+1

kT

E(|g j(Xs)|p)ds+
∫ kT+1

kT

∫ s

kT

E(|Dµg j(Xs)|p)dµds
)

≤ C
∫ kT+1

kT

E
(
|g j(Xs)|p + |∇g j(Xs)|p

)
ds≤C .

Similarly, for H ∈ (1
4 ,

1
2), g j belongs to C 2

p (Rm), so by Lemma 5.4.3 it satisfies Hy-

pothesis 5.3.3. Then applying Theorem 5.3.5 yields

E

[
sup

t∈[kT ,kT+1]

∣∣∣∣∫ t

kT

g j(Xs)dBs

∣∣∣∣p
]
≤C(kT +1)pλ
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for all p > 1
H , and any λ ∈ (0,H]. By Chebyshev inequality,

P

(
1
kT

sup
t∈[kT ,kT+1]

∣∣∣∣∫ t

kT

g j(Xs)dBs

∣∣∣∣> ε

)

≤ ε
−pE

(
1

kT
p sup

t∈[kT ,kT+1]

∣∣∣∣∫ t

kT

g j(Xs)dBs

∣∣∣∣p
)
≤Cε

−pkpλ−p
T .

Choosing p large enough, the above right-hand side is summable with respect to kT and

the desired result just follows from Borel-Cantelli Lemma. This completes the proof of

Theorem 5.1.2.

Remark 5.5.2. From the proof of Theorem 5.1.2 we can see that the random variables

ξt = t−1Z j,t converge to 0 as t tends to infinity for every j = 1, . . . , l in the following

sense. For any ε > 0,

lim
n→∞

∞

∑
k=n

P( sup
k≤t≤k+1

|ξt |> ε) = 0 .

This type of convergence is analogous to the complete convergence of a sequence of

random variables (see [18]), which implies the almost sure convergence.

Remark 5.5.3. If we assume that the parameter vector θ belongs to a compact set

Θ ⊂ Rl , the upper bound of the p-th moment of Xt would be independent of θ , and,

correspondingly, the constants C and K that appear in Proposition 5.4.1, Lemma 5.4.3

and Proposition 5.4.4 would be independent of θ as well. As a consequence, we get

the uniform strong convergence of the random variables ξt = t−1Z j,t to 0 as t tends to

infinity for every j = 1, . . . , l, in the sense of

lim
T→∞

sup
θ∈Θ

P(sup
t≥T
|ξt |> ε) = 0
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for any ε > 0. Furthermore, if the function f satisfies ( f tr f )−1 ≤ L3Il where L3 > 0

is a constant independent of θ and Il is an l× l identity matrix, the uniform strong

consistency of θ̂T can be established by observing that
(

1
T
∫ T

0 ( f tr f )(Xt)dt
)−1
≤ L3Il .
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Chapter 6

Summary and future research work

In this chapter, we summarize the obtained results in this dissertation and discuss some

other research work that could be completed in the near future.

6.1 Summary

In this study, we consider the parameter estimation for stochastic differential equations

driven by fractional Brownian motion.

In Chapter 1, we recall the background on Malliavin calculus and Gaussian analysis

elements that play important roles in this research.

In Chapter 2, we have investigated the asymptotics of iterated power variations. The

law of iterated logarithm of fBm has been obtained and correspondingly the conver-

gence rate of the iterated power variations is discovered for the first time. We have also

obtained the joint convergence along different subsequences of power variations. As

a consequence, we have applied these results to construct the estimators for integrated

volatility, volatility and Hurst parameter in the SDEs. These estimators are strongly

consistent and admit central limit theorems.
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In Chapter 3, we have studied the drift estimation for the fractional Ornstein-Uhlenbeck

process that is the solution to the linear SDE. Through minimizing the L2 norm of the

noise part, we have derived the least squares estimator and prove the strong consistency

and limit theorems. We have also studied the discrete case and obtained a strongly con-

sistent estimator. Monte Carlo simulations have been carried out to valid our results.

In Chapter 4, we have considered least squares estimation for the drift parameter

vector in the nonlinear SDEs. To prove the consistency of the estimator, we have used

the ergodicity of the SDE and investigated the regularity of the SDE’s solution. The

maximum inequality of Skorohod integrals has been developed as well.

6.2 Future research work

Besides the asymptotics and convergence rate for iterated power variations that have

been obtained in this dissertation, there are several other things that we can contribute

to the well estabilished limiting theory using Stein’s method and Malliavin calculus.

As one of my ongoing projects, the convergence rate of a general smooth functional

of a stationary Gaussian sequence is under investigation. Later on, this research work

could be extended for the non-stationary Gaussian case and even other non-Gaussian

distributions.

Moreover, as an important application of limiting theorems, the inference problems

of stochastic processes are actively studied in the recent decades along with the de-

velopment of Gaussian analysis. There are several things that could be completed in

addition to the results in this dissertation. Firstly, we could consider the consistency of

the least squares estimator in the discrete case for a general nonlinear SDE, especially

when H < 1
2 . Secondly, it is unknown whether the least squares estimator for the non-

linear SDE admits the central limit theorem. This is a challenging problem which relies
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on the research of the limiting theorem of Skorohod integrals. Thirdly, in addition to

least squares estimation and maximum likelihood estimation, many other estimation

methods can be considered including moment estimation and Bayesian method. More-

over, We can extend these estimation methods to other stochastic models driven by a

general Gaussian noise and some reflected SDEs.

Finally, it is worth mentioning that it would be interesting to apply these estimation

methods to deal with real world data.
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[32] D. Nualart and A. Răşcanu. Differential equation driven by fractional Brownian
motion. Collect. Math., 53:55–81, 2002. Cited on 1, 2, 53

[33] G. Peccati and C. A. Tudor. Gaussian limits for vector-valued multiple stochastic
integrals. In Sém. Probab.XXXVIII, pages 247–262. Springer, Berlin, 2004. Cited
on 17

[34] J. Pickands. Asymptotic properties of the maximum in a stationary Gaussian
process. Trans. Amer. Math. Soc., 145:75–86, 1969. Cited on 101

[35] V. Pipiras and M. S. Taqqu. Integration questions related to fractional Brownian
motion. Probab. Theory Relat. Fields, 118:251–291, 2000. Cited on 8

138



[36] T. Sottinen and L. Viitasaari. Parameter estimation for the langevin equation
with stationary-increment gaussian noise. Statistical Inference for Stochastic Pro-
cesses., http://dx.doi.org/10.1007/s11203-017-9156-6, 2017. Cited on 5, 71

[37] M. S. Taqqu. Law of the iterated logarithm for sums of non-linear functions of
Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeits-
theorie Verw. Geb., 40:203–238, 1977. Cited on 33, 35

[38] C. A. Tudor and F. Viens. Statistical aspects of the fractional stochastic calculus.
The Annals of Statistics, 35, No.3:1183–1212, 2007. Cited on 5, 6, 60

[39] M. Veillette and M. Taqqu. Properties and numerical evaluation of the rosenblatt
distribution. Bernoulli, 19, No.3:982–1005, 2013. Cited on 80

[40] W. Xiao, W. Zhang, and W. Xu. Parameter estimation for fractional Ornstein-
Uhlenbeck processes at discrete observation. Applied Mathematical Modelling,
35:4196–4207, 2011. Cited on 5
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