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Abstract 

Satellite images offer continuous spatial and temporal coverage of surface temperature, 

thus allowing us to transcend limitations of in-situ measurements and giving us a powerful tool 

to understand the Urban Heat Island (UHI). This study uses MODIS Land Surface Temperature 

(LST) at 1 km to examine the relationship between urban morphology and UHI. Using the 

Kansas City metropolitan area as a case study, we examined MODIS LST data during the 

summer months of 2002-2017. We found that LST anomalies increase exponentially from 1.5°C 

at the 90-95 percentile to 3.5°C at the 95-100 percentile. In particular, natural land cover LCZ 

classes are found to have higher LST anomalies than built-type LCZ classes by up to 5°C. 

Results suggest that the higher LST anomalies over outlying areas are not due to suburban 

development during the most extreme heat episodes. We also examined the utility of the LCZ 

scheme during extreme heat events. We found that the LST response is not statistically different 

between the various LCZ classes and that the local built environment is not as important in 

predicting the LST response to increasingly extreme heat events. However, the LST response by 

most LCZ classes as a function of distance from downtown is statistically significant, with 

values ranging from -0.08°C/km to -0.01°C/km. The results show that the distance from the city 

center plays a more important role in helping predict LST response than knowledge of the LCZ 

class. 
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CHAPTER 1 

Introduction 

 
With rapid urbanization in the past few decades, over half of the world population now 

live in urban areas for the first time in history (WHO 2010). The phenomenon where the urban 

center is warmer than the surrounding rural areas is known as the Urban Heat Island (UHI), 

which can be primarily attributed to the greater thermal capacity of the material used to build 

roads and high-rises, such as asphalt and concrete (Oke 1982). The high fraction of impervious 

surfaces in cities modifies the surface energy balance and weather processes (Roth 2013; Wood 

et al. 2013). Indeed, several studies have proposed that local land cover composition is a primary 

determinant of land surface temperature (LST) patterns (Hu et al. 2014; Hu and Brunsell 2013; 

Li et al. 2013; Connors et al. 2013; Zhou and Wang 2011; Tomlinson et al. 2011). UHI is tied to 

urban canyons, i.e. urban streets flanked by buildings on both sides (Vardoulakis and et al. 

2003). The orientation and height/width ratio affects air circulation and therefore the dissipation 

of heat (Oke 1988). For example, brick houses, top floor apartments with no through ventilation 

and closed windows are associated with an increased risk of mortality during a heat wave 

(Kovats and Hajat 2007). Neighborhoods with greater UHI often have a higher concentration of 

marginalized groups such as the poor, minorities and elderly relative to less susceptible areas 

(Bryant-Stephens 2009; Smargiassi et al. 2009). Unsurprisingly, these neighborhoods have 

reported higher emergency hospital admissions (Kovats and Hajat 2007; Graham and et al. 2016) 

and mortalities (Peng et al. 2011). It is therefore of critical importance to develop a systematic 

and reliable way to relate urban morphology and UHI.  

Excessive heat events (more commonly known as heat waves), which UHI can 

potentially exacerbate, are the number one cause of weather-related deaths in the United States 
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(Roth 2013). According to Robinson (2001), heat waves occur when conditions exceed both the 

daytime high and the nighttime low thresholds of the same percentile for two consecutive days. 

Heat waves generally result from stagnant synoptic high pressure systems that are associated 

with clearer skies, calmer winds and drier soils, which all contribute to higher UHI intensity 

(Schatz and Kucharik 2015; Loikith and Broccoli 2012; Oke 1982). Between 1999 and 2009, an 

annual average of 658 heat-related deaths were reported in the United States (Fowler et al. 2013). 

Anthropogenic climate change also has the capacity to increase the magnitude of the UHI by up 

to 30 percent (McCarthy et al. 2010). Indeed, global climate models are predicting more 

frequent, intense, and longer heat waves (Forzieri et al. 2016; Lemordant et al. 2016; Trenberth 

et al. 2015; Russo et al. 2014; Peng et al. 2011; Fischer and Schar 2010; Meehl and Tebaldi, 

2004). Oleson et al. (2011) finds that anthropogenic heat flux from space heating and air 

conditioning processes contributes about 0.01 W m-2 of heat distributed globally. In particular, 

regions of fast-growing population overlap with areas of high UHI potential (McCarthy et al. 

2010).  

                 Until recently, there has been no standardized way to characterize urban morphology 

(Bechtel et al. 2015). UHI studies have been complicated by the traditional urban-rural 

distinction, which is subjective and does not always reflect the heterogeneity in land cover in and 

around a city (Stewart and Oke 2009; Hu and Brunsell 2015). UHI intensity is traditionally 

defined as the temperature difference between a city and its rural surroundings (Schatz and 

Kucharik 2015; Stewart and Oke 2012). However, the degree of urban development and thereby 

the magnitude of UHIs varies continuously across landscapes. Zhou et al. (2017) found that UHI 

increases with the logarithm of city size and fractal dimension (compactness of a city) but is 

reduced with the logarithm of anisometry (measure of city shape). To address the shortcoming of 
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the highly subjective urban-rural distinction, the concept of surface UHI (SUHI) is 

conceptualized to exclude any rural comparison and allow intra-city comparison based on 

surface temperature. Instead, it is defined with respect to a spatial reference and ambient (or 

prevalent) meteorological conditions (Martin et al. 2015). Stewart and Oke (2012) created the 

Local Climate Zone (LCZ) system, which standardizes urban and rural land cover across a city 

based on land cover, building structure, material and human activity. The appropriate LCZ is 

assigned based on surface properties such as vegetative fraction, impervious fraction and albedo 

as well as building properties like sky view factor and mean building height (Ching et al. 2018; 

Oke 2006; Unger 2004).  

One of the key advantages of the LCZ system is that it provides a culturally neutral 

platform to classify and compare cities in terms of urban form and urban function (Gal et al., 

2015; Stewart and Oke 2012). Each of the 17 LCZ classes is associated with a defined set of 

value ranges for a set of key urban canopy parameters. These include vegetative fraction, 

impervious fraction, albedo as well as building properties such as sky view factor, mean building 

height and the building surface fraction (Oke 2006; Unger 2004). The lowest level of detail (L0) 

data is used to maps cities and their surrounding natural landscape into LCZ classes (Stewart and 

Oke 2012). Urban experts have used the Landsat-derived L0 data to classify over 80 cities 

worldwide (Ching et al. 2018; Bechtel and et al. (2017a, 2017b, 2015); Bechtel and Daneke 

2012).  

The complex nature of cities leads to large temperature differences across neighborhoods, 

even within a short distance (Harlan et al. 2006). Satellite data offer continuous spatial and 

temporal coverage of temperature and moisture, thus allowing us to potentially overcome 

limitations of in-situ temperature measurements (Voogt and Oke 2003). Thus, a key advantage of 
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using remotely sensed LST is that the variability in surface temperatures measured over the 

extent of the city more closely approximate the actual living conditions of urban residents than 

air temperature measured at weather stations that are sparsely distributed across a city (Laaidi et 

al. 2012).  

The strong positive relationship between near-surface air temperature and LST is well 

established (Yang et al. 2017, Mutiibwa et al. 2015, Sohrabinia et al. 2015, Zeng et al. 2015, 

Zhang et al. 2015, Jang et al. 2014, Prihodko and Goward 1997). Indeed, the remotely sensed 

SUHI is often used as an indicator of the effect of building energy use and heat stress (Oke et al. 

2017). The SUHI is primarily attributed to the radiative and thermal properties of the building 

material as well as the moistness of the surrounding natural land cover (Oke et al. 2017). 

Vegetation may enhance cooling in warm urban environments by increasing the effect of shading 

and potential transpiration rates (Ramamurthy and Bou-Zeid 2017; Jenerette et al. 2016, Tayyebi 

and Jenerette 2016; Jenerette et al. 2011). Monaghan et al. (2014) shows that increasing the 

complexity of urban morphology representation in urban environment can improve the accuracy 

of urban canopy models. 

In this paper, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) 

LST product to examine the spatial distribution of UHI on days of extreme heat events. 

Specifically, we examined the UHI response for different LCZ classes as heat events increases 

become more extreme. Given the above review, the following research question and associated 

hypothesis was proposed: How are urban morphology and UHI magnitude related? We 

hypothesized that there is a distinctive spatial pattern of UHI magnitude, which is analogous to 

the spatial distribution of LCZs. We examined the UHI response for different LCZ classes as 

heat events become more extreme.  
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CHAPTER 2 

Methodology 

2.1. Overview of the study area 

We chose the Kansas City metropolitan area as our case study, which includes 4 counties 

in Kansas (Miami, Johnson, Wyandotte and Leavenworth) and 5 counties in Missouri (Cass, 

Jackson, Platte, Clay and Ray). Kansas City is the 31st largest metro area in the U.S. with 2.1 

million people (DATA USA 2017). We chose Kansas City because of its frequent heat wave 

episodes, which provides the opportunity to study the variability of the UHI during extreme heat 

events. Summer heat waves in Kansas City generally occur when high pressure moves to the east 

of Missouri along with an upper level ridge over the area (Chang and Wallace 1987). In addition, 

Kansas City is located in the Central Great Plains, where an unprecedented drought occurred in 

2012 (Cook at al. 2015; Hoerling et al. 2014).  

Figure 1a shows a LCZ map for the Kansas City metropolitan area, which is classified 

using the System for Automated Geoscientific Analyses geographic information system (SAGA-

GIS) and Landsat imagery at 30-meter resolution. The method is described in Bechtel et al. 

(2015). Training areas (TAs) are created to identify areas of the metropolitan area that exemplify 

the various LCZ classes. This information is then utilized to classify Landsat scenes into LCZ 

maps using a Random Forest (RF) classifier (Conrad et al. 2015). Figure 1b shows an example of 

the heterogeneity in land surface temperature (LST) distribution across Kansas City on Jun 27, 

2012 in the midst of a prolonged heat wave.  
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Figure 1. (a) LCZ map of Kansas City metro area. LCZ 1-10 represent urban built-type classes 
while LCZ A-G are natural cover-type classes (see Table 1). (B) MODIS Land Surface 

Temperature (LST) image of Kansas City metropolitan area on Jun 27, 2012.  
 
 
Due to reduced sample size of certain LCZ classes (Table 1), we consolidated similar LCZ 

classes to conduct spatial analyses. LCZ class 1, 3, 4, 5 and 6 were classified as the dense urban 

class group. Class 7, 8, 9 and 10 are the sparse urban class group. Finally, LCZ class A, B, D and 

G are in the natural land cover type group. The LCZ map was resampled using nearest neighbor 

to match the spatial resolution of MODIS LST product. Because of the scarcity of pixels for LCZ 

class 1, 3, 4, 7 and E, these classes are not considered during the LST anomaly analysis. In 

addition, water bodies (LCZ Class G) are not included in the LST anomaly analysis.  

 
Table 1. Pixel breakdown by LCZ class following resampling by nearest neighbor 

 
LCZ Description Number of pixels 

1 Compact high-rise 9 
3 Compact low-rise 2 
4 Open high-rise 6 
5 Open mid-rise 134 
6 Open low-rise 1364 
7 Lightweight low-rise 46 
8 Large low-rise 494 
9 Sparsely built 1065 
10 Heavy industry 151 
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A Dense trees 1643 
B Scattered trees 460 
D Low plants 5723 
E Bare rock or paved 31 
G Water 3059 

NA  164 
Total  14351 

 
 
2.2. Identification of heat wave days 

In this paper, we used MODIS LST product at 1km (MYD11_L2) to study LST response 

based on urban morphology during extreme heat episodes. The key advantage of MODIS 

products is their daily temporal resolution, which enabled us to examine all heat wave days 

between 2002-2017 to assess the LST response to increasingly extreme heat events. The 

metropolitan area is approximately 80km north-south and 80km east-west, and therefore the 1km 

spatial resolution is deemed sufficient to perform neighborhood analysis and assess the effect of 

urban morphology on UHI.  

We examined all available summer months of MODIS LST data (2002 to 2017). In order 

to account for potential suburban development and changes in the LCZ class over time, we 

linearly removed the long-term LST trend in 10 day moving windows between May 1 and Sep 

30 for each LCZ class for every pixel. This is particularly pertinent for areas southwest of 

downtown Kansas City, such as Johnson County, Kansas that have rapidly developed over the 

past two decades.  

Heat wave days are classified by every 5th percentile from 70-100 percentile based on all 

available MODIS LST data during the summer months of May to September from 2002-2017. 

The thresholds are set for every LCZ class by 10-day interval, i.e. beginning from May 1-10 and 

ending Sep 21-30. We identified days where the LST exceeded the 70th percentile and classified 

those as heat wave days. Then we categorized these heat wave days from 70-100 percentile by 5-
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percentile interval to reflect the increasing severity of the heat wave episodes. The LST anomaly 

is then calculated by taking the difference at every 5-percentile interval.  
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CHAPTER 3 

Results 

3.1. Comparing LST anomalies across LCZ classes for extreme heat events 

In order to examine how the LST response for different LCZ classes throughout the 

summer, we separated the LST data for all identified heat wave days into different months to 

analyze them by their respective LCZ classes. Figure 2 shows the average LST distribution by 

LCZ class in 10-day windows. The months of May to August are shown to compare the LST 

response between early (Figure 2a and 2b) and mid-summer (Figure 2c and 2d). The distribution 

of median LST generally shows what we expected, i.e. that the natural land cover type classes 

have lower LST than urban built-type classes. And this LST distribution is similar for different 

stages of the summer season. LCZ 1 (Compact high-rise) has the highest LST and LCZ A (Dense 

trees) has the lowest LST in each time period due to the cooling effect of vegetation. The less 

dense built-type LCZ classes show lower LST than their more dense counterparts (e.g. 1 and 10), 

demonstrating the positive relationship between urban morphology and UHI. In addition, the 

natural land cover type LCZ classes generally show lower LST than the built-type LCZ classes. 

The exception is that in the latter part of summer (Figure 2c and 2d), the natural land cover type 

LCZ classes (e.g. B and D) are warmer than the sparse urban built-type classes (e.g. 8 and 9). 

However, they are still cooler than the dense urban built-type classes (e.g. 5 and 6) and industrial 

class (i.e. 10).   
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Figure 2. MODIS LST distributions in 10-day intervals by LCZ class 
 

     Next, we analyzed the LST anomaly from 70th percentile of all available MODIS LST 

data to examine the UHI response as heat events become more extreme. With increasing 

extremity of heat events, the temperature anomaly increases steadily until a sharp jump at the 95-

100 percentile for all LCZ classes (Figure 3). For the most predominant built-type LCZ in the 

Kansas City area (LCZ 6), the average LST increases by 0.57°C between 70-75th percentile. At 

the 95-100 percentile, the LST anomaly is significantly higher at 3.09°C. It is noteworthy that 
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the LST response for natural land cover type LCZ classes is higher than that for built-type LCZ 

classes. This may be somewhat surprising given the cooling effect of vegetation. We will 

examine possible reasons for the higher UHI response in vegetated areas in subsequent sections.  

 

 
Figure 3. Distributions for selected LCZ classes showing the LST response to increasing heat 

wave magnitude (70-100 percentile) 
 

In order to compare the individual responses of different LCZ classes to heat wave 

events, we fit the LST response with an exponential curve in the form of y=e^(a+bx) for each 

LCZ class by every 5th percentile interval and tested for the statistical significance of the 

regressions. Figure 4 (a-h) shows the exponential relationship between LST anomaly and 

percentile increase for each LCZ class. The regression of each LCZ class was compared against a 

general relationship of all LCZ classes (Figure 4i). The LST anomaly regression for each LCZ 

class is compared to the general regression for all LCZ classes and the results of the two-sample 

t-test are shown in Table 2. Since the p-values are much larger than 0.05, we concluded that the 
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difference in the regressions between various LCZ classes and all LCZ classes as a whole is not 

statistically significant. In other words, knowing the LCZ class does not give us more 

information about the LST response as a function of increasingly extreme heat events.  

 

 
 

Figure 4. Regressions for LST-anomalies as a function of heat-wave percentile for each LCZ 
class. The red dots represent the median LST response for every 5th percentile and the blue line 

is the best-fit exponential curve.  
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Table 2. Statistical summary for exponential regressions of LST-anomalies as a function of heat-
wave percentile (a, b, R2) and for comparison of various LCZ classes against a general 

relationship of all LCZ classes using a two-sample t-test (p-value) 
 

LCZ a b R2 p-value 
5 -0.75872 0.0596 0.8073 0.6832 
6 -0.79388 0.06105 0.8215 0.6627 
8 -0.6499 0.06239 0.8646 0.9541 
9 -0.69775 0.06377 0.8818 0.9879 
10 -0.7538 0.06055 0.8178 0.7302 
A -0.68717 0.0622 0.8767 0.9503 
B -0.64656 0.06433 0.8792 0.8711 
D -0.66784 0.06334 0.8785 0.9589 

All -0.68011 0.06303 0.872 NA 
 
 
3.2. Spatial distribution of LST 

 Since knowing the LCZ class does not give us more information about LST response as 

heat events become more extreme, we examined the response for different years during the study 

period. We grouped similar LCZ classes together to facilitate a more effective comparison of 

LST response to urban morphology: Dense urban built-type (LCZ 5 and 6); sparse urban built-

type (LCZ 8 and 9); natural land cover type (LCZ A, B and D) as well as industrial type (LCZ 

10). In Figure 5, the years of 2004 and 2012 stand out for having the lowest and highest LST 

anomalies respectively across all LCZ groups. Based on the number of heat wave days we 

identified for each summer, the summer of 2012 is the hottest (70 days) and 2004 is the coolest 

(9 days) during our study period. During the cool summer of 2004, the LST anomaly for natural 

land cover type group is lower than all other LCZ groups (Figure 5a and 5b). Whereas during the 

hot summer of 2012, the LST anomaly for the natural land cover type group is higher than those 

of the other LCZ groups. We then took a closer look at the spatial distribution of LST in those 

two years.  
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Figure 5. July and August LST anomalies in the Kansas City metropolitan area by year from 
2002-2017. The LCZ classes were grouped together according to their similarity: Dense urban 
built-type (LCZ 1, 3, 4, 5 and 6); Sparse urban built-type (LCZ 7, 8 and 9); Natural land cover 

type (LCZ A, B and D) as well as Industrial type (LCZ 10).  
 
 

We examined the mean LST for the Kansas City metropolitan area for the months of July 

and August in 2004 and 2012 (Figure 6). This coincides with the peak summer heat and the 

months where most heat wave days occur. As expected, the downtown area is warmer than the 

surrounding suburbs in both 2004 and 2012 (Figure 6a to 6d). However, there is also a zone of 

warmer LSTs to the southwest of downtown Kansas City in July and August 2012, which is the 

year of the anomalously hot summer (Figure 6c and 6d). To better understand the mean LST 

spatial distribution, we next looked at the spatial distribution of LST anomalies for the same time 

periods.  
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Figure 6. Spatially distributed mean LST for KC metro for the months of July and August in 
2004 (cool) and 2012 (hot). 

 
 

In the cool summer of 2004, LST anomalies are the highest towards downtown and 

decreases towards the outlying areas (Figure 7a and 7b). In the hot summer of 2012, the pattern 

is reversed. Outlying areas have higher LST anomalies than downtown (Figure 7c and 7d). So 

we decomposed all the summers in our study period to the seven warmest and eight coolest 

summers to see if whether the summer is hot or cool matters for the spatial distribution of LST.  

 



	 16 

 
 

Figure 7. Spatially distributed LST anomalies for KC metro for the months of July and August in 
2004 (cool) and 2012 (hot).  

 
As in Figure 5, similar LCZ classes were grouped together to facilitate a more effective 

comparison of LST response to urban morphology. In general, LST anomaly increases with 

increasingly extreme heat events. There is a sharp increase in LST anomaly at the 95th percentile 

for warm summers (Figure 8a) while the increase is more linear for cool summers (Figure 8b).  
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Figure 8. LST anomalies from 70-100th percentile for (a) the 7 warmest summers and (b) the 8 
coolest summers during our study period of 2003-2017. As in Figure 5, similar LCZ classes were 

grouped together to facilitate a more effective comparison of LST response to urban 
morphology.  

 
We plotted regressions for each of the four LCZ groupings as a function of increasingly 

extreme heat events (Figure 9 and 10). We then tested for statistical significance in the difference 

between regression for each LCZ group and for all LCZ classes in general. The results are shown 

in Table 3a and 3b. While the regressions are found to be significant by themselves, the 

difference between the regression of the various LCZ groups and that of all LCZ classes is not 

statistically significant as a function of increasingly extreme heat events.  
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Figure 9. Regressions for LST-anomalies as a function of heat-wave percentile for each LCZ 
group (Warm summers). 

 
 

 
 

Figure 10. Regressions for LST-anomalies as a function of heat-wave percentile for each LCZ 
group (Cool summers). 
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Table 3a. Statistical summary for exponential regressions of LST-anomalies as a function of 
heat-wave percentile (a, b, R2) and for comparison of various LCZ groups against a general 

relationship of all LCZ classes using a two-sample t-test (p-value)  
(Warm summers) 

 
LCZ a b R2 p-value 

Dense Built -0.8126 0.03777 0.8158 0.6351 
Industrial -0.7407 0.03629 0.8835 0.8129 

Sparse Built -0.7396 0.04053 0.8888 0.9283 
Natural -0.6554 0.03468 0.8959 0.9414 

All -0.6892 0.03598 0.8847 NA 
 
 

Table 3b. As per Table 3a, but for cool summers 
 

LCZ a b R2 p-value 
Dense Built 0.3396 0.0109 0.9612 0.5305 
Industrial 0.3798 0.0122 0.9429 0.8387 

Sparse Built 0.3513 0.01572 0.9564 0.7173 
Natural 0.3515 0.0135 0.9757 0.9798 

All 0.3502 0.01346 0.9727 NA 
  
 
3.3. LCZ as a function of distance from downtown 

 Since the regressions for individual LCZ classes are not statistically significant with 

respect to increasingly extreme heat events, we then examined if LCZ as a function of distance 

from downtown is statistically significant. In order to find out whether knowing the LCZ class 

type can help us better predict the LST response, we examined the LST response by LCZ class as 

a function of distance from downtown. We consolidated the distance from downtown into 5 km 

bins. We looked at all summer days and all heat wave days. Outliers were removed using 

knowledge of the number of pixels by LCZ class in each 5 km bin (Table 4). We conducted a 

two-sample t-test to compare the difference in regression of individual LCZ classes and the 

general regression of all LCZ classes. The regressions are shown in shown in Figure 11 for all 

summer days and Figure 12 for all heat wave days. Table 5a and 5b show the statistical results of 
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the regressions for all summer days and all heat wave days respectively. The slope represents the 

change in LST (°C) per km from downtown.  

All the LCZ classes have a moderate to strong negative linear relationship with distance, 

with R2 values between 0.6 and 0.8. The exception is LCZ A (trees), with a multiple R2 value of 

0.2655 for all summer days and 0.06894 for all heat wave days. This means that the linear 

regression of LST anomaly as a function of distance for LCZ A is weak. We also examined if the 

difference in regression between each LCZ class and all LCZ classes in general is statistically 

significant. The p-value for most LCZ classes is less than 0.05 (Table 5a and 5b), so the 

difference is statistically significant. The exceptions are LCZ 8 (large low rise) and LCZ B 

(scattered trees), whose p-values for all summer days are 0.542 and 0.2417 respectively. LCZ 10 

(Heavy industry) have the steepest slope at -0.08°C/km whereas LCZ 9 (Sparsely built) have a 

slope of -0.013°C/km for all summer days and -0.016°C/km for all heat wave days. In other 

words, we know more information about the LST response as a function of distance when we 

know the LCZ class type for most LCZ classes, except for LCZ 8 and LCZ B.  

 
 



	 21 

 
 

Figure 11. Regressions for LST-anomalies as a function of distance from city center for each 
LCZ class on all summer days. The red dots represent the median LST response for every 5th 

percentile and the blue line is the best-fit linear curve.  
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Figure 12. Regressions for LST as a function of distance from city center for each LCZ class on 
all heat wave days. The red dots represent the median LST response for every 5th percentile and 

the blue line is the best-fit linear curve.  
 

 
Table 4. Number of pixels by LCZ class in each 5km bin 

 
Distance 

(km) 
LCZ 5 LCZ 6 LCZ 8 LCZ 9 LCZ 

10 
LCZ 

A 
LCZ 

B 
LCZ 

D 
All 

LCZs 
1-5 13 42 9 0 37 0 0 3 104 
6-10 17 209 13 13 25 6 0 21 304 
11-15 14 305 9 63 9 24 1 79 504 
15-20 23 232 16 131 24 55 12 205 698 
21-25 29 221 28 157 19 59 22 339 874 
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26-30 16 186 29 148 13 76 39 425 932 
31-35 14 102 22 125 12 114 50 537 976 
36-40 3 26 30 106 4 154 63 641 1027 
41-45 1 5 50 95 0 205 71 706 1133 
46-50 1 8 44 110 2 219 67 749 1200 
51-55 1 21 89 82 3 198 69 682 1145 

 
 

Table 5a. Statistical summary for linear regression of LST-anomalies as a function of distance 
(a, b, R2) and for comparison of various LCZ classes against a general relationship of all LCZ 

classes using a two-sample t-test (p-value) 
(All summer days) 

 
LCZ a b  R2 p-value 

5 36.31519 -0.06192 0.6238 5.191e-05 
6 34.242278 -0.031579 0.6785 0.004609 
8 32.7844 -0.041 0.7836 0.542 
9 31.1533 -0.01287 0.5822 0.02357 
10 36.28 -0.08205 0.7706 0.002413 
A 29.586 0.009074 0.2655 0.0005529 
B 31.938 -0.0204 0.7064 0.2417 
D 31.329 -0.01366 0.4209 0.0456 

All 34.223 -0.07962 0.7493 NA 
 
 

Table 5b. As per Table 5a, but for all heat wave days 
 

LCZ a b  R2 p-value 
5 39.732 -0.0659 0.6749 7.316e-05 
6 37.7133 -0.0405 0.7441 0.008287 
8 36.2765 -0.0478 0.851 0.6014 
9 34.5177 -0.0163 0.7701 0.02789 
10 39.5556 -0.0799 0.7466 0.001813 
A 32.8255 0.00398 0.06894 0.0003894 
B 35.2168 -0.02076 0.7225 0.2621 
D 34.617 -0.01586 0.5725 0.0445 

All 37.5706 -0.08248 0.7556 NA 
 
 

Now that we have confidence in the statistical significance of LST response by LCZ class 

as a function of distance from downtown, we can examine the spatial pattern of LST in more 

detail. To better understand the relationship between urban morphology and temperature 
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anomaly, we examined the spatial distribution of the LST response across downtown Kansas 

City for the most extreme heat events. The maps in Figure 13 excluded LCZ 8 and LCZ B, 

whose regressions as a function of distance from downtown are found to be not statistically 

significant (Table 5a and 5b). As such, the dense urban built-type classes shown on the maps are 

LCZ 5 and 6 (Figure 13a and 13d); sparse urban built-type/industrial classes are LCZ 9 and 10 

(Figure 13b and 13e) and the natural land cover type classes are LCZ A and D (Figure 13c and 

13f). We examined the spatial distribution of the LST anomaly response at the 75-80 percentile 

(Figure 13a to 13c) and at the 95-100 percentile (Figure 13d to 13f). We found that the higher 

heat anomalies can be found generally in the outlying areas in all LCZ groups, though the pattern 

is more pronounced in the 95th percentile cases (Figure 13d to 13f). These indicate that while the 

LCZ class regressions are not statistically significant with respect to increasingly extreme heat 

events, they are statistically significant as a function of distance from downtown. In other words, 

while knowledge of LCZ classes do not tell us more information about the LST response to more 

severe heat events, knowing the LCZ class is useful from the standpoint of where it is located 

with respect to the city center.  
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Figure 13. Spatial distribution of the LST anomalies at the 75-80 percentile level across the 
Kansas City metropolitan area for LCZ class (a) 5 and 6 (b) 9 and 10 & (c) A and D; At the 95-

100 percentile level for LCZ class (d) 5 and 6 (e) 8 and 10 & (f) A and D. 
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CHAPTER 4 

Discussion and conclusion 

In this research, we used a LCZ classification scheme to represent morphology in the city 

center and surrounding areas (Figure 1a and Table 1). We hypothesized that the spatial pattern of 

UHI would be analogous to the spatial pattern of LCZs, i.e. that areas of most densely built 

environment correspond to areas of highest UHI. We used all available summer MODIS LST 

data from 2003 to 2017 to study the LST distribution by LCZ class during heat wave events, 

which we define to be from 70-100 percentile. Figure 3 shows that LST for all the LCZ classes 

warm with increasingly extreme heat events. But when we examined if different LCZ classes 

warm differently, the difference between regressions for individual LCZ classes and that of all 

LCZ classes is not statistically significant (Table 2). We then examined the LST response for all 

the years in our study period (Figure 5) and singled out 2004 and 2012 as the years with the 

lowest and highest LST anomalies respectively. 2004 and 2012 are also the coolest and hottest 

summers during our study period, with respect to the number of heat wave days. We examined 

the spatial distribution of mean LST (Figure 6) and LST anomalies (Figure 7) for the months of 

July and August in those two years. During the cool summer of 2004, the downtown area shows 

a higher LST anomaly than outlying areas (Figure 7a and 7b). However, during the warm 

summer of 2012, the pattern is reversed with outskirts showing a higher LST anomaly than the 

city center (Figure 7c and 7d). While the mean LST is warmer in the downtown area for both 

2004 and 2012, there is also a zone of warmer LSTs in the outlying areas, especially to the 

southwest of downtown Kansas City in July and August 2012 (Figure 6c and 6d). This can 

possibly be explained by the higher LST anomalies in the outskirts during the extreme heat 

episodes in the anomalously hot summer.  
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We then decomposed all the years into the 7 warmest and 8 coolest summers (Figure 8) 

and tested the regressions of the four LCZ groups against increasingly extreme heat events 

(Figure 9 and 10). The regressions for the individual LCZ groups are found to be not statistically 

significant (Table 3a and 3b). Finally, we looked at the regressions of individual LCZ classes as 

a function of distance from urban core for all summer days (Figure 11) and all heat wave days 

(Figure 12). The regressions for most LCZ classes with the exception of LCZ 8 and LCZ B are 

found to be statistically significant (Table 5a and 5b). Of the six LCZ classes with statistically 

significant relationships, the slope ranges from -0.08°C/km to -0.01°C/km. Therefore, while 

knowledge of LCZ classes does not give more information for predicting UHI response in 

extreme heat events, the knowledge is useful from the standpoint of where the LCZ is located 

with respect to the city center. This is further illustrated in Figure 13, where the higher LST 

anomalies can be found towards the outlying areas regardless of LCZ class. The pattern is even 

more pronounced at the 95th percentile of all heat events (Figure 13d to 13f).  

A possible explanation for the highest LST anomalies to occur over outlying vegetated 

areas is the onset of drought conditions during the most extreme heat wave. It is well-known that 

vegetation along with pervious land cover have a cooling effect on the surrounding environment, 

thereby resulting in lower temperatures (Declet-Barreto et al. 2016; Jenerette et al. 2011; Imhoff 

et al. 2010). Furthermore, vegetation restores moisture availability in urban areas and reactivates 

the negative feedback on urban temperatures associated with evaporation (Li and Bou-Zeid 

2013). However during prolonged heat waves, soils dry up and lose their moisture. Dried up soil 

heats up more easily, thus leading to increased LST (Hauser et al. 2016; Hirschi et al. 2011). The 

anomalously hot summer of 2012 was precipitated by an abnormally dry and warm spring, which 

saw much of the Southwest and Central Great Plains setting record warmest springs and 
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experiencing drought conditions (Cook et al. 2015; Hoerling et al. 2014). The extreme heat and 

drought conditions likely overcame even the effects of irrigation in the city (Rippey 2015). The 

enhanced spring evapotranspiration from earlier vegetation activity resulted in soil moisture 

depletion that likely increased summer heating (Wolf et al. 2016). The effect was relevant for 

Kansas City, which lies in the Central Great Plains, a region with significant land-atmosphere 

coupling during the summer (Koster et al. 2004). Given the initial cooler LST to begin with, the 

LST anomalies for outlying areas with more pervious land cover were unsurprisingly greater 

than over impervious surfaces. Therefore, while dense urban morphology with higher buildings 

generally mean higher LST and UHI response during summers with average temperatures, the 

extreme drought in 2012 summer brought about an even higher LST anomaly in areas with 

abundant natural land cover.  

Overall, the key finding of this research is that knowledge of the LCZ class is not as 

important for predicting LST response as the distance from the city center. This is despite the 

usefulness of the LCZ system in classifying cities worldwide and helping us to better understand 

UHI beyond the traditional urban-rural distinction. This also poses the question of the effect of 

heat mitigation by having vegetation cover or a relative abundance of open spaces during the 

most extreme heat episodes. While urban planners generally encourage increasing the amount of 

green spaces in cities to mitigate UHI (Sharma et al. 2016; Li et al. 2014), vegetation may not 

provide the expected cooling effect in the most extreme heat wave events, particularly when 

drought conditions have developed, such as in 2012. In the city, however, this may not be true 

due to the ability to continue irrigation in cities as opposed to natural areas on the outskirts. But 

with climate change, there will likely be more extreme heat days and more prolonged heat 

waves. We have seen that as heat events worsen beyond a certain threshold, the pervious land 
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and vegetative cover lose their cooling effect. There may be significant societal and public health 

implications for people who live in areas with relative abundance of greenery if the heat anomaly 

is higher than in highly urbanized areas with lots of buildings and concrete. As such, the 

statistically significant relationship of various LCZ classes as a function of distance from the city 

center that we found provides a potentially significant insight when developing policies to adapt 

to more extreme summers in the near future.   
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