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Abstract 

Personalized medicine in cancer aims to tailor a treatment plan that takes into account the 

unique features of a patient's malignancy. One therapeutic target that has a chance to affect a 

large population of cancer patients is p53. p53 is a tumor suppressor that activates senescence or 

apoptosis in cells that have accumulated mutations that could lead to cancer. Half of all cancers 

have mutations in p53, which highlights the importance of its role in disease. A subset of these 

mutations have been shown to inhibit p53 function by destabilizing p53's core domain. This led 

to the hypothesis that a personalized drug for patients with this type of destabilized p53 mutation 

could lead to apoptosis in cancer cells. 

There has been a lot of evidence supporting this hypothesis. This evidence has inspired 

many researchers to screen for small molecules that stabilize p53 mutants and rescue function. 

However, the hits discovered in these screens (with one potential exception) have not been found 

to be adequate drug leads for several reasons. Many have turned out to rescue function, but not 

by directly binding p53. Others bind p53, but either lack sufficient binding affinity or cause 

nonspecific cell responses. All of these are likely to induce side effects if used as part of a cancer 

therapeutic. This leads to the question: Is there a better way to find a small molecule stabilizer 

for cancer-associated mutants of p53? 

Here, I present an alternative approach that focuses on finding a direct binder to p53's 

core domain in order to avoid off-target effects. Our initial step was a computational approach 

that uses the crystal structure of p53's core domain in order to virtually screen a set of small 

molecules for binding. I found a novel pocket on the protein structure that I predicted to be 

druggable, because the site readily forms pockets during simulations of the core domain. I 

performed a virtual screen using the DARC, a docking tool from the molecular modeling suite, 
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Rosetta, and selected the 28 best ranked compounds for biochemical testing with purified p53 

using two different cancer-associated, destabilizing mutations. Surprisingly, I found that 11 of 

the 28 compounds stabilized both mutants. Further testing was done in cancer cell lines showing 

that 7 compounds activated p53 transcription of p21 and PUMA, which are known targets of 

p53. Using the fluorescent antibody pAb 1620 that binds natively folded p53, we showed that 4 

of the compounds lead to a much higher concentration of folded p53 in cells.  

The excitingly high hit rate was found from a modest sized initial virtual screen of only 

64,000 molecules. This suggests that this novel pocket is prone to bind molecules in a manner 

that rescues structure and function, and should be as a starting point for a larger screen. Also, the 

compounds from the current screen are intriguing hits that will be further analyzed and optimized 

to develop new stabilizers of p53. 
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Introduction 

p53 as a target for drug discovery in cancer treatment 

It has been estimated that 40% of people will be diagnosed with cancer during their 

lifetime, which is a devastating number considering the fact that 171 out of 100,000 people with 

cancer die from it every year. In 2016, roughly 600,000 people in the US died of cancer [4]. 

Recent advances in our understanding of cancer have lead to an area of research known as 

personalized medicine. This is a method for treating patients based on their disease-causing 

genetic variation. This approach is ideal for cancer treatment since genetic mutations are a major 

factor in the development and progression of cancer. Though, the variations present in cancer are 

incredibly diverse. 

p53 is a promising target for the personalized medicine approach because it is mutated in 

about half of all cancers [6]. p53 is a tumor suppressor that's normally kept at low levels in cells. 

When cell stressors such as cancer mutations are present in the cell, p53 levels are allowed to 

rise, which leads to cell senescence or apoptosis [7]. About half of the cancer-associated 

mutations in p53 have been found to inactivate it by destabilizing the core domain [10]. These 

destabilizing mutants, as a group, would be excellent targets for a personalized treatment for this 

subset of cancers. 

Development of a drug that targets destabilizing mutants of p53 has the potential of 

affecting a wide range of cancers because p53 mutations are prevalent in so many cancers. It has 

been detected in almost all cancers, though its rate varies in individual types of cancers. 

Mutations in p53 have been found at high frequency in the majority of the most common cancers 

[11, 12]. Also, it has been found that the p53 mutations are associated with poor prognosis [13]. 
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So finding a drug that successfully rescues these mutations could have a highly significant effect 

on cancer mortality. 

Rescuing cancer-associated, destabilizing mutations of p53 

Development of a drug lead for cancer-associated, destabilizing mutations of p53 is a 

highly challenging goal. Attempts to find a molecule that stabilizes p53 have been going on for 

two decades, but only modest advancements have been accomplished. The first suggestion that it 

was possible to find a successful stabilizer of p53 was the monoclonal antibody, PAb421, which 

binds p53. Microinjection into SW480 cancer cells restored some p53 function [15-17]. Since 

then we have significantly expanded our understanding of destabilizing p53 mutations and found 

several proof-of-concept compounds that bind, stabilize, and rescue function of p53. 

Destabilizing mutations of p53 are referred to as "structural" mutants, which 

differentiates them from the other main type of cancer-associated mutations of p53 that are 

referred to as "contact" mutants [18]. Contact mutants occur directly in the DNA binding region 

of the core domain. These cannot be rescued by stabilizers because they lack affinity for DNA so 

cannot function as transcription factors. Structural mutants have been shown to decrease the 

stability of p53's core domain causing them to be mostly unfolded at physiological temperature.  

The current hypothesis for potential rescue of p53 is that a small molecule or peptide 

called a reactivator could bind and increase the stability of the core domain enough for a 

structural mutant to remain folded at 37° C. If a cancer patient with a destabilizing mutation in 

p53 was treated with a drug that included a reactivator, p53 is hypothesized to maintain it's 

native fold long enough to trigger apoptosis in the cancer cells, unless of course, there are other 

disease factors that could inhibit the p53 pathway. If the reactivator had a very high affinity, it 
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could be effective at low concentrations and would be far less likely to have non-specific 

interactions, thus avoiding side effects. Not only does this proposed mechanism have the 

capacity to affect a broad range of cancer patients, but also it has the potential to have a focused 

effect on diseased tissue only. 

While this hypothesis has not been proven, there is evidence that this mechanism is 

feasible. For example, the small molecule PhiKan083 was found during a virtual screen using the 

structure of the Y220C structural mutant of p53. It was found to bind and stabilize p53, though 

with inadequate affinity to be a drug lead. Nonetheless, it is also shown to rescue function of 

cancer cells containing the Y220C mutant [19]. Other compounds have been found using cell-

based assays that rescue p53 function, though it has not been proven that they function by 

directly binding and stabilizing p53. So the hypothesis has merit, but more work needs to be 

done to bring it to fruition. 

Better methods of finding and testing reactivators 

The goal of my thesis project was to take the lessons from other researchers that have 

sought a reactivator and improve upon their work in the hunt for a p53 reactivator. There are 3 

major areas that this project focuses on that improve on previous methods. 

 

1) Virtual screen and direct p53 binding assays are more likely to find direct binders.  

Most researchers used cell-based assays in their initial screen for reactivators, but many 

of the compounds discovered this way turned out not to directly stabilize p53 so are more likely 

to result in side effects if used as a cancer treatment. The best way to assure that a reactivator 

directly binds p53 as a part of its mechanism of action is to do the screening process using a 
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structure-based virtual screen for molecules that bind p53. Once a set of molecules has been 

found that are predicted to bind, the next step would be to do biochemical assays with purified 

p53 to show both binding and stabilization of p53. Once predicted compounds are found to truly 

bind and stabilize p53, then it is reasonable to move into cell-based testing to show that 

compounds can stabilize and rescue p53 function in vivo. 

Any molecule that is successful in all these tests is more likely to be a better drug 

candidate because it has shown both specificity to and rescue of p53. Lead optimization can then 

be done to improve affinity and further reduce the likelihood of nonspecific interactions that 

cause side effects. Since compounds found by this method have a predicted binding mode, 

optimization of hits can be done in a structure-based way. So a virtual screen not only prevents 

off-target false positives that are common in cell-based screens, but also provides structural 

insights into potential optimization once hits have been verified. 

 

2) Druggability analysis determines whether surface pockets are amenable to binding small 

molecules. 

Success of a virtual screen is dependent on many factors. Most importantly, the target of 

the screen needs to be amenable to binding a small molecule. Two groups have attempted virtual 

screen for p53 reactivators and found binders with inadequate binding affinity, which may be 

because they are targeting the wrong pockets. Our lab has a method for measuring how 

druggable a surface pocket is [20]. It has been shown to be predictive for a set of benchmarking 

proteins with known druggable sites. It is based on the fact that most druggable sites go through 

a significant conformational change when binding a small molecule. So we computationally 
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predict whether pockets on a protein surface are able to perform the conformational change 

necessary to bind a molecule.  

Druggability analysis is done by performing molecular simulations of protein 

conformational fluctuations in order to discern which locations readily form low energy pockets. 

Sites known to be druggable form pockets while non-druggable sites do not. This is done with a 

slight bias towards structures with larger pockets in order to overcome the energy barrier that 

would otherwise not be breached without the presence of a small molecule. Non-druggable sites 

would not open even with the bias. This analysis is necessary to discover if there is a druggable 

pocket and is helpful in finding energetically favorable, open-pocket conformations that can be 

used when docking small molecules during a virtual screen. 

 

3) Fast, accurate virtual screening using DARC with wild type p53 increases the probability that 

hits will be found. 

 

3a) DARC is more accurate when using shallow pockets. 

Traditional virtual screen is designed to dock molecules in deep pockets such as those 

found in enzyme active sites [21]. This has made sense for most screening targets because most 

active sites evolved a deep pocket that is similar to its bound conformation in order to readily 

bind its cognate molecule. However, we are not able target a deep pocket with p53's core domain 

because the only deep pocket is the one that binds DNA. Our goal is to bind a stabilizing small 

molecule at a location that does not interfere with any interaction sites in order to allow p53 to 

function normally. So if there is a site on p53 that is able to bind a stabilizing molecule that does 
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not have a physiological binding partner, it will be in a relatively shallow pocket. Doing a virtual 

screen with a shallow pocket will require a different kind of docking tool. 

Our lab has developed a docking tool that is designed to optimize docking in shallow 

pockets called DARC (Docking Approach with Ray Casting) [22]. It targets shallow pockets by 

scoring molecules with an algorithm that favors molecules with a maximum amount of contact 

with the protein surface. It does so by defining the topography on the pocket surface and 

compares it to the topography of the docked molecule's interaction at the surface. Then it 

optimizes the molecule's fit in the pocket in order to find the orientation that has the best 

topographical match. DARC has proven to successfully predict the binding modes of a set of 

molecules that bound Mcl-1, which is a similar docking challenge to p53 because the target 

pocket is also far more shallow, that traditional docking sites [22]. 

 

3b) Fast docking is necessary. 

One of the greatest challenges of virtual screen is the computational expense. In an ideal 

situation, computation time would be insignificant. This would allow us to do highly complex 

simulations using elaborate energy functions and exhaustively sample docking orientations using 

every atom in the protein, the docked molecule, and includes water. However, this ideal case 

would require a lifetime to compute so docking tools must always find a balance between speed 

and comprehensive docking analysis. DARC has found that balance with a scoring algorithm that 

is informative, but fast. 

DARC's scoring algorithm utilizes ray casting, as the name implies. Ray casting is also 

used in the computer industry as a method for rendering graphics rapidly. In computer graphics, 

rays are cast to a point that is a virtual representation of an observer of the graphics. Each ray 
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represents a photon or visual representation of the graphics that is observed. As all the rays reach 

the observer, the full image of the graphics is observed so you can think of each ray as a pixel on 

the screen. Ray casting is computationally faster because changes to each ray can be computed 

simultaneously with Graphic Processing Units (GPUs). GPUs have hundreds of computer cores 

that can process the same operation on all the cores, but each core performs the operation on a 

different ray. 

DARC's ray casting is very similar. The observation/ray origin point is a spot inside the 

protein. Rays are cast from this point that go through the surface pocket. So DARC defines the 

topographies of the protein surface and the molecule docked at the surface by measuring where 

the ray first hits the protein surface and the molecule (Chapter One Figure 2). So GPUs can be 

used to make the scoring of each docked pose rapidly during optimization. Faster screening 

allows us to sample a much larger library of small molecules in a reasonable amount of time. 

This increases the probability of finding a molecule that truly binds p53. 

 

3c) Docking should be done with wild type p53. 

The final improvement that is necessary for an initial screening for p53 reactivators is the 

use of wild type p53 as the screening target. One of the only molecules found to specifically bind 

and stabilize p53 was found through a virtual screen with the Y220C mutation [19]. The 

molecule (PhiKan083) binds inside a pocket that forms due to the mutation. While this is an 

exciting proof that virtual screen can work for p53, it has two major drawbacks. First, the affinity 

of PhiKan083 is only 150uM, which is very weak for a drug lead. And secondly, while Y220C is 

a common cancer-associated mutation, it would be far more preferable to target the majority, if 

not all of the structural mutants. 
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The low affinity of PhiKan083 is not surprising considering the pocket used for virtual 

screen. The pocket is a small cleft that is formed because of the tyrosine to cysteine mutation. 

Such a small cleft is inadequate for binding a high affinity stabilizing drug lead. PhiKan08308 

fills the cleft despite being so small (molecular weight of 275, 18 heavy atoms). Such a small 

molecule it is outside of commonly accepted drug-like size [23]. And since it fills the pocket, it 

would be difficult to optimize it by adding moieties to increase molecular contacts. So this 

pocket does not appear to be adequate for finding a drug lead for patients with the Y220C 

mutation. 

Preferably, a small molecule stabilizer would not only target patients with Y220C, but 

also target all structural mutants of p53. This is why the wild type structure would be more useful 

during virtual screen. Targeting a surface pocket that is present in the wild type would more 

likely be present in multiple mutants. Even though structural mutants cause unfolding, there will 

be a percentage of the protein that is folded. And a molecule that bound the folded protein could 

stabilize it long enough for it to function as a tumor suppressor. So our goal is to find a location 

on the wild type that is distant from the most common mutation sites in order to increase the 

likelihood that we find a broad range stabilizer. 
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1.1 Abstract 

Docking Approach using Ray Casting (DARC) is structure-based computational method 

for carrying out virtual screening by docking small-molecules into protein surface pockets. In a 

complementary study we find that DARC can be used to identify known inhibitors from large 

sets of decoy compounds, and can identify new compounds that are active in biochemical assays. 

Here, we describe our adaptation of DARC for use on Graphics Processing Units (GPUs), 

leading to a speedup of approximately 27-fold in typical-use cases over the corresponding 

calculations carried out using a CPU alone. This dramatic speedup of DARC will enable 

screening larger compound libraries, screening with more conformations of each compound, and 

including multiple receptor conformations when screening. We anticipate that all three of these 

enhanced approaches, which now become tractable, will lead to improved screening results. 
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1.2 Introduction 

There are a number of structure-based methods for predicting small molecules that bind 

to specific sites on protein surfaces, most commonly active sites, intended for finding lead 

compounds in drug discovery efforts. High throughput docking tools for “virtual screening” aim 

to dock thousands of compounds and predict several that will exhibit measurable binding, as a 

starting point for further optimization. This computational approach can have potential 

advantages over complementary “wetlab” screening methods because it can be less expensive 

and time consuming [24]. If successful, hits from a computational structure-based screen may 

also provide insights that guide the subsequent medicinal chemistry optimization in directions 

that would not be evident from the chemical structure of the hit compound alone. 

Atomistic molecular dynamics simulations and detailed docking approaches are too 

computationally expensive to allow their direct use for many thousands of independent ligands, 

as required for most virtual screening applications [25]. Accordingly, several methods have been 

developed to speed up docking. Some entail using a reduced representation of the receptor, thus 

reducing the number of calculations associated with each energy evaluation [26-29]. Most 

approaches fix the receptor conformation or allow only limited conformational changes during 

docking, to reduce the number of degrees of freedom associated with the search [30-34]. While 

some methods allow the ligand conformation to vary during docking [32, 35, 36], others carry 

out independent docking trajectories using a series of pre-built low-energy ligand conformations 

(“conformers”) [30, 37, 38]. 

We have developed a docking tool called “Docking Approach using Ray Casting” 

(DARC), as part of the Rosetta macromolecular modeling software suite [39]. Our approach 



 12 

entails casting a set of rays from the protein center of mass to a series of points mapping out a 

surface pocket, thus building up a description of the topography of the protein surface as viewed 

from the protein interior. Since a complementary small-molecule bound to this site should have a 

complementary topography, we then cast the same set of rays towards the candidate inhibitor. If 

the inhibitor is indeed complementary to the protein surface, the intersection distance of each ray 

with the inhibitor should closely match the distance at which the ray reaches the protein surface. 

In a separate study we find that DARC proves capable of identifying known inhibitors from 

among large sets of decoy compounds, and we use DARC to identify new compounds active in 

biochemical assays against the anti-apoptotic protein Mcl-1 [22]. 

Despite using low resolution scoring and a fast minimization method (both are described 

in detail below), DARC screening nonetheless remained limited by computational restrictions. 

Our initial deployment of DARC to screen against Mcl-1 entailed screening only 12,800 

compounds (with a maximum of 100 pre-built conformers per compound), and required 152,500 

CPU hours to complete this screen. We found that we could achieve a speedup of approximately 

6-fold by efficiently neglecting to calculate interactions of rays guaranteed not to contribute to 

the total score (the “ray elimination” step described later), but DARC remained limited by the 

size of compounds libraries that could feasibly be screened. 

Graphics processing units (GPUs) were originally designed to process parallel, 

multithreaded 3D graphics via ray tracing, and have since evolved hardware to enable broader 

types of high throughput processes. Modern GPUs can process mathematical operations, support 

flow control, and have floating point precision. New libraries such as Compute Unified Device 

Architecture [40] and Open Computing Language [41] allow development of non-graphics 

programs for GPUs. These enable an application running on a central processing unit (CPU) to 
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farm out parts of the job to a GPU. A variety of biomolecular modeling tasks have been adapted 

for GPU processing, from carrying out quantum calculations to calculating electrostatic surface 

potentials to stochastic modeling of chemical kinetics and molecular dynamics [42-47]. GPU 

computing has also been used to speed up certain other structure-based docking tools [1-3, 5, 8, 

9, 14]. 

Given that the ray-casting step underlying our approach is highly analogous to the 

problem for which GPUs were originally developed, we reasoned that DARC would be highly 

amenable for porting to GPUs. Since each ray is scored separately and their scores are 

independent of one another, scoring is intrinsically a parallel process. Here we describe our 

adaptation of DARC for GPU scoring, leading to a speedup of approximately 27-fold over the 

corresponding calculation on a CPU alone. 

1.3 Methods 

Virtual screening using DARC 

An overview of the intended DARC workflow for virtual screening is diagrammed in 

Figure 1. The flow is separated into pre-DARC, DARC, and post-DARC stages. 
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In the pre-DARC preparation stage, a target pocket on the protein is identified and 

protein structures are generated for use with DARC. DARC was designed for docking at shallow 

pockets characteristic of those used by small-molecule inhibitors of protein-protein interfaces 

[48, 49]. The protein conformation is not moved during docking, and can come either from an 

experimental derived structure or from simulations designed to generate energetically favorable 

structures with diverse surface pocket shapes at the target site [20]. 

Each of these protein conformations is then used as a starting point for docking in DARC. 

Briefly, DARC sequentially carries out rigid body docking for each ligand conformer using a 

scoring function that maximizes the complementarity of the pocket and ligand shapes when 

viewed from the protein interior; the following two sections will describe the DARC scoring 

scheme and optimization protocol in detail. DARC is used to select the optimal conformer and 

docked pose for every member of the compound library. 

 

Figure 1: Docking Overview. A schematic diagram of the complete workflow split into three stages: pre-DARC 
preparation, DARC, and post-DARC re-ranking. 
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The top-scoring model complexes (typically the best 10%) serve as a starting point for 

further optimization using the all-atom force field in Rosetta. This final energy minimization 

includes all rotatable dihedral angles (in both the protein and the ligand) as degrees of freedom. 

Finally, these minimized complexes are re-ranked on the basis of energetic considerations (e.g. 

interaction energy) as well as structural considerations (e.g. number of buried unsatisfied polar 

groups). The top scoring compounds can then be advanced for further characterization in 

biochemical or cell-based assays. 

Since DARC scoring considers solely shape complementarity, the intended use of DARC 

is not as a standalone tool for predicting binding free energies, or even for predicting whether 

any particular compound is likely to bind the target protein. Rather, DARC is intended to provide 

a fast, low-resolution tool for identifying the likely binding mode of a compound. Our intended 

workflow thus separates the extensive burden of sampling (carried out by DARC using a crude 

scoring scheme) from the requirement of a detailed energy function to discriminate active from 

inactive compounds. This approach is in contrast to complementary methods such as 

RosettaLigand [50-52], which carries out detailed flexible-ligand docking via Monte Carlo 

simulations using the all-atom Rosetta energy function but is too computationally expensive to 

enable routine screening of large compound libraries. 

 

Scoring with DARC 

DARC starts from a PDB file of a protein conformation, either from an experimentally 

derived structure or from biased “pocket optimization” simulations [20]. The shape of a surface 

pocket is defined using a grid-based method described in detail elsewhere [20]. Briefly, a grid is 

placed over the protein surface of interest. Based on the coordinates and radii of the atoms 
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comprising the protein, grid points are marked either “protein” (P) or “solvent” (S). Solvent 

points which lie on a line between two protein points are then marked as “pocket” (to denote 

concave regions on the protein surface); this approach was originally used in the LigASite 

software [53]. 

The pocket “shell” is identified as those pocket grid points in direct contact with the 

protein (Figure 2, yellow squares). Additional grid points are then added around the perimeter of 

the pocket shell (Figure 2, red squares), used to mark regions outside the pocket where ligand 

binding will not lead to favorable interactions (“forbidden” points). The direction from the 

pocket center of mass to the protein center of mass is defined, and a point 30 Å along this 

direction is defined as the origin from which rays will emanate (Figure 2, white point). 

The angles and the distances expressing each of the shell points and forbidden points in 

spherical coordinates (relative to the origin point) are calculated and saved. The number of shell 

points and “forbidden” points that define the pocket – and thus the number of rays – depends 

both the grid spacing (typically 0.5 Å) and on the size of the surface pocket. In a typical use case, 

approximately 7,000 rays are used to define the protein pocket. This collection of vectors 

(representing points on this small region of the protein surface expressed in spherical 

coordinates) serves as a mapping of the protein surface topography that should be complemented 

by a well-docked ligand; the protein conformation and grid points are not directly used in 

docking beyond this point. 

Given the position and orientation of a ligand to be scored, a series of rays are cast from 

the origin along each of the directions used to map the surface topography. For each ray, the 

distance at which the first intersection with the ligand occurs is calculated and subtracted from 

the (stored) distance at which the same ray hit the protein surface (i.e. the shell point). Each ray 
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contributes to the total score as follows (where c1, c2, c3, and c4 are constants set to 1.0, 1.4, 

21.6, and 9.5 respectively): 

 

Ray condition      Contribution to score 

1: Ray hits protein surface point before ligand c1 * difference between distances 

2: Ray hits ligand before protein surface point c2 * difference between distances 

3: Ray does not intersect with ligand  c3 

4: “Forbidden” ray intersects ligand  c4 

 

A highly complementary ligand will fill the pocket on the protein surface exactly; each 

contribution to the score represents some imperfection. A ray that hits the protein surface point 

before the ligand (condition #1) indicates unpacking in this docked pose (Figure 2, yellow rays). 

Conversely, a ray that hits the ligand before the protein surface (condition #2) indicates a steric 

clash (Figure 2, pink rays). A ray that does not intersect the ligand (condition #3) indicates that 

the ligand does not fully fill the surface pocket (Figure 2, orange rays), and “forbidden” rays 

that intersect the ligand (condition #4) indicate that the ligand extends beyond the boundaries of 

the surface pocket (Figure 2, red rays). Forbidden rays that do not intersect with the ligand do 

not contribute to the score (Figure 2, purple rays). The score assigned to the docked pose is 

taken as the sum of contributions from individual rays, divided by the number of contributing 

rays. 

This approach to scoring is notably different from commonly-used docking tools, each of 

which estimate energies as the sum of contributions from interacting atom-atom pairs [24]. 
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Docking with DARC 

Using this method for scoring poses, docking is then carried out using the particle swarm 

optimization (PSO) scheme [54] to optimize this objective function. Much like a genetic 

algorithm, this approach entails generating a set of candidate solutions (here called “particles,” 

each of which corresponds to a different docked pose). The position and orientation of each 

particle is then allowed to adapt in response to the other particles, moving towards the best-

 
 

Figure 2: Docking Approach using Ray Casting. A schematic diagram of DARC scoring is shown in cross 
section. A grid is placed at a region of interest on a protein surface, and used to identify “deep pocket” points. 
Points that are not in direct contact with the protein surface are removed, leaving behind a set of points that map 
the topography of the protein surface pocket (yellow squares). An adjacent layer of points on the protein surface is 
then labeled “forbidden” points (red squares). Rays are cast from an origin point within the protein (white square) 
at each pocket point and forbidden point. To score a docked pose, the same rays are cast at the ligand (blue), and 
the first intersection (if any) is calculated. The contribution to the total score from each ray is dependent on 
whether the ray was defined based on a pocket point or a forbidden point, and whether the ray intersects this point 
before or after it intersects with the ligand. These conditions are described in detail in the main text. 
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scoring local and global particles with a step size that depends on the relative scores of the 

particles [54]. After a number of iterations in which all particles move in response to one 

another, the “swarm” of particles ideally converges upon the globally optimal solution (in this 

case the lowest-scoring pose). 

Though some docking approaches carry out sampling by greedy algorithms (such as 

incremental construction [55], the most common approaches involve either individual Monte 

Carlo trajectories that sample Cartesian space or approaches that generate optimal solutions from 

a population of candidate solutions [24]. The latter class of methods, which include particle 

swarm optimization and genetic algorithms, make use of coupling between candidate solutions 

that can be advantageous in guiding the search towards optimal solutions: in the case of 

AutoDock, for example, a genetic algorithm was found to outperform a Monte Carlo simulated 

annealing protocol [56]. The potential drawback of this coupling lies in the fact that the inherent 

need for communication may preclude running candidate solutions on multiple separate 

machines. In the case of DARC (and virtual screening approaches that use genetic algorithms), 

however, the scoring function can be evaluated sufficiently rapidly that simulation of all 

candidate solutions (particles) can reasonably be evaluated on a single processor. Further, in a 

virtual screening context, running each member of the screening library as an independent job 

can still allow for parallelization across multiple machines. 

In a typical use case, we generate ~7,000 rays to map the protein pocket and dock ligands 

of ~30 (non-hydrogen) atoms, iterating 200 times over a swarm comprised of 200 particles. This 

requires evaluating the DARC score for 40,000 docked poses, from a total of 8.4 x 109 potential 

ray-atom intersections per simulation (210,000 potential ray-atom intersections per pose). 
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In practice, however, angular bounds can be computed from the docked pose that restrict 

which rays will intersect with a ligand. In other words, given a ligand atom radius and position 

relative to the origin, one can compute the maximum and minimum values of each angle required 

for intersection with this atom. Any rays that fall outside the bounds set by all atoms are 

guaranteed not to intersect with the ligand, and thus (in a step we call “ray elimination”) can be 

removed from consideration before this docked pose is scored. This reduces the number of ray-

atom intersections that need to be computed, and leads to a speedup of about 6-fold when 

running on a CPU. 

 

DARC using GPU computing 

As pointed out earlier, particles encoding the position and orientation of the ligand move 

collectively in response to one another, making this aspect of docking not naturally amenable to 

parallel computing. The scoring step, however, entails simultaneously evaluating the scores of 

200 particles by summing independent contributions from a large number of rays; this 

represented a logical candidate for GPU computing. 

DARC scoring was implemented on the GPU using the Open Computing Language 

(OpenCL), which allows the execution of custom programs called “kernels” on a variety of 

GPUs. Modern GPUs have hundreds of processing cores, thus allowing massive parallel 

execution of such kernels on a single GPU. Each kernel performs the same operation, but on a 

different data element from a large set. An important consideration for efficiently adapting 

DARC for GPU computing was avoiding latency associated with the cost of sending data 

between the CPU and the GPU. 
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Our GPU implementation of DARC separates score evaluation (to be carried out on the 

GPU) from updating particle positions (to be carried out on the CPU) (Figure 3). We begin by 

storing information pertaining to rays (i.e. angles and the distance at which these hit the protein 

surface) on the GPU before optimization begins: this information will persist there, since it does 

not change over the course of the minimization. At each iteration of the optimization, 

information pertaining to all particles (i.e. ligand position and orientation) is transferred from the 

CPU to the GPU in a single step. The GPU uses a first kernel to compute the score contribution 

for a single ray to every particle. In the typical use case described above, each of 7,000 processes 

is therefore responsible for computing the potential intersection with the 6,000 atoms comprising 

the swarm (200 particles with 30 atoms each). A second kernel is then applied to each of the 200 

particles, to sum the 7,000 contributions from each ray to the score of this particle. Through the 

use of the second kernel on the GPU, only 200 scores corresponding to particles must be 

returned to the CPU, instead of 1,400,000 scores from individual rays. Once the scores for each 

of the particles have been transferred, the CPU uses these scores to update the ligand position 

and orientation encoded by each particle accordingly. 
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DARC PSO scoring on CPU and GPU 

DARC scoring on a CPU occurs as follows: 

Loop over Particles { 
   Identify the max/min angles required for intersection with ligand 
   Loop over Rays { 
 Check if Ray angles may allow intersection with ligand 
 If Ray may intersect with ligand { 
         Loop over Atoms in current Particle { 
         If Ray intersects Atom { 
     Calculate distance of first intersection 
              Save this distance if it is the lowest of all Atoms 
  } 
    } 
 } 
 Save the contribution of this Ray for the current Particle 
   } 
   Particle score = Sum of Ray scores / Number of Contributing Rays 

 
Figure 3: Control flow for GPU-enabled DARC. Control begins on the CPU. The CPU generates the pocket and 
casts rays at the protein surface, then stores this information on the GPU. The CPU generates 200 “particles” 
(independent initial ligand orientations to be used in the optimization) and passes each of these docked poses to 
the GPU. The GPU evaluates the DARC score of each docked pose, and passes these back to the CPU. The CPU 
uses these scores to update the docked poses accordingly, then sends the new poses to the GPU. This process is 
repeated 200 times, and the best-scoring particle is reported. 
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} 
 

Scoring with the GPU version occurs using two separate two kernels. The first kernel 

processes one ray per thread as follows: 

Get rayID for this process, define current Ray 

Loop over Particles { 
   Loop over Atoms in current Particle { 
 Calculate distance of first intersection with current Ray,   

  if intersection occurs. 
 Save this distance if it is the lowest of all Atoms in  
 this Particle. 
   } 
   Calculate the contribution of the Ray for the current Particle, 
   store it on GPU. 
} 
 

The second kernel processes one particle per thread as follows: 

Get particleID for this process, define current Particle 
 
Loop over Ray scores for this Particle { 
   Add to current score 
} 
 
Particle score = Sum of Ray scores / Number of Contributing Rays 
 

 

Running DARC in Rosetta 

DARC is implemented in the Rosetta software suite [39]. Calculations described here 

were carried out using svn revision 52964 of the developer trunk source code. Rosetta is freely 

available for academic use [57], with the new features described here included in the 3.6 release. 

The standard Rosetta can be built enabling GPU processing as follows (it may be 

necessary to alter rosetta_source/tools/build/basic.settings to add the address of individual 

OpenCL headers): 
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scons mode=release extras=opencl bin 

 

Input files for small molecules are generated in two steps. The first involves downloading 

the ligand in the SMILES format from the ZINC database [58], then creating a pdb format file 

with multiple conformers with using the Omega software [30, 59, 60] as follows: 

 

OpenEye/bin/omega2 -in molecule.smi –out molecules.pdb  

–maxconfs #conformers 

 

When creating multiple conformers, they can be separated by babel as follows: 

 

babel –ipdb molecules.pdb –opdb molecule.pdb -m 

 

In the second step, a parameter file for the ligand is created with babel and the Rosetta 

python app molfile_to_params, as follows: 

 

babel –ipdb molecule.pdb –opdb molecule.sdf 

molfile_to_params.py –c –nKHR –pmol molecule.sdf 

 

The Rosetta command line used to generate a set of rays (rays.txt) that define a protein 

pocket topography is as follows (for target residue number 105 of protein Bcl-xL with the file 

2YXJ.pdb): 

 

make_rayfiles.linuxgccrelease –input_protein_file 2YXJ.pdb  

–central_relax_pdb_num 105 
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The Rosetta command line used to run DARC on a GPU using these input files is as 

follows: 

 

DARC.opencl.linuxgccrelease –input_protein_file 2YXJ.pdb  

–input_ligand_file molecule.pdb –extra_res_fa molecule.params  

–eggshell_triplet rays.txt –gpu 1 

 

1.4 Results 

Determining suitable stopping criteria 

The two key parameters that determine the DARC runtime are the number of particles 

and the number of iterations. In order to determine the extent of sampling required for adequate 

convergence, we evaluated the difference in DARC score obtained from simulations of varying 

computational requirements against the score obtained from an intensive “gold-standard” 

simulation. As a model system, we randomly selected a compound from the ZINC database of 

commercially available compounds [58], ZINC00057615, and docked a single conformer of this 

compound to a pocket on the surface of the protein Bcl-xL (PDB ID 2yxj). 

We initially fixed the number of particles at 200, and sequentially extended the number 

of iterations from 10 up to our “gold standard” value of 1000 iterations. As expected, increasing 

the length of our trajectories led to progressively lower final scores (Figure 4a), at the expense 

of a linear increase in (CPU) runtime (not shown). While the docked score decreased rapidly at 

first, much of the improvement had already been realized after 200 iterations: extending the 

trajectory beyond this point led only to a modest decrease in score. For this reason, we adopted 

200 iterations as our “typical use” value. 
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We then turned to the number of particles for inclusion, and carried out an analogous 

experiment. Using 200 iterations in all cases, we sequentially increased the number of particles 

from 10 up to our “gold standard” value of 1000 particles. As expected, increasing the number of 

particles similarly led to better solutions (Figure 4b), again with a linear increase in runtime (not 

shown). Based on the diminishing benefit of including a large number of particles, we adopted 

200 particles as our “typical use” value. 

 

To put these results in the more pragmatic context of virtual screening experiment, we 

then compiled a set of 1000 randomly selected compound from the ZINC database [58], and 

evaluated how the extent of sampling would affect the ranking of these compounds against the 

same Bcl-xL surface pocket. We started with a “gold standard” ranking of each member of our 

library, by carrying out docking with DARC using 1000 particles and 1000 iterations. We 

marked the top-scoring 10% of the library (100 compounds) as “hits,” then asked how many of 

these “hit” compounds would remain in the top 10% if docking was carried out using a reduced 

 

 
 
Figure 4: Effect of the number of particles and the number of iterations on DARC score. To determine the 
number of particles and number of iterations required for reasonable convergence of the DARC score, docking 
was carried out with (A) an increasing number of iterations while holding the number of particles fixed at 200, and 
(B) an increasing number of particles while holding the number of iterations fixed at 200. Differences in score are 
reported relative to the “gold standard,” taken to be the most extensive simulation in the set (i.e. 1000 iterations or 
1000 particles). 
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number of iterations and particles. We found that 94 of the 100 hit compounds were recovered in 

the top-scoring 10% using our “typical use” parameters of 200 particles and 200 iterations 

(Figure 5), with little benefit associated with more extensive sampling. We therefore carried 

forward these values for the further studies described below. 

 

DARC speedup on Graphics Processing Units (GPUs) 

All timing comparisons described below were carried out using a GeForce GTX 580 

GPU, which can run 1024 threads concurrently, and a Dual Intel Xeon E5-2670 CPU using one 

thread. 

As a first timing benchmark, we evaluated the time needed to carry out docking using the 

same model system described earlier: a single conformer of ZINC00057615 docked against a 

pocket on the surface of the protein Bcl-xL. Based on our typical grid spacing (0.5 Å) and the 

size of the surface pocket we would typically use about 7,000 rays to describe this pocket; for 

 

 
 
Figure 5: Effect of the number of particles and the number of iterations on the “hit” compounds selected. 
The most pragmatic measure of convergence is the identity of the “hits” to be advanced for further evaluation. The 
top scoring 10% of the compound library from the most extensive docking simulations were considered to be the 
“gold standard” hits. With increasing computationally intensive simulations (by together increasing the number of 
particles and the number of iterations), an increasing fraction of the hits are members of the “gold standard” set. 
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benchmarking, we instead reduced the grid spacing to generate 93,000 initial rays then varied the 

number of rays used in docking by generating subsets of this large collection. 

As expected, the time required to complete this calculation scales approximately linearly 

with the number of rays and the number of particles, whether carried out entirely on a CPU 

(Figure S1a) or with the help of a GPU (Figure S1b). While the scaling is similar, however, the 

calculations are completed much more quickly using the GPU: in a typical uses case (7,000 rays, 

200 particles and 200 iterations), the CPU takes 93 seconds to carry out the calculation and the 

GPU takes 3.4 seconds, corresponding to a 27-fold speedup (Figure S1c). 

Similar behavior is observed when docking a single conformer to a surface pocket at the 

functional site of another protein, Mdm2 (Figure S1d-f). Due to the different size and shape of 

this pocket, the same grid spacing would lead to only 3,000 rays to describe this protein surface. 

Under these conditions (again with the standard 200 particles and 200 iterations), the calculation 

would take 47 seconds using the CPU alone, or 3.2 seconds using the GPU (a 15-fold speedup). 

We next tested the scaling of time with regards to the number of atoms in the ligand, 

docking to Mdm2 using 5,000 rays and 200 particles. We used a series of ligands containing 20 

(ZINC0043625), 25 (ZINC00469420), 30 (ZINC01280234), 35 (ZINC01298436), and 40 

(ZINC02091520) non-hydrogen atoms. We find that the time required for this calculation on the 

CPU alone is not linearly related to the number of ligand atoms (Figure 6a), because the 

geometry of the ligand dictates how much of the calculation can be avoided through the “ray 

elimination” step. In all cases, carrying out this calculation using the GPU results in a speedup of 

about 25-fold (Figure 6b). 
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While the typical-use speedup in the examples here is dramatic, we note that these data in 

fact downplay the true difference stemming from the use of the GPU for these calculations. In 

the timings we have reported above, the algorithm carried out on the CPU includes the “ray 

elimination” step that reduces the number of potential ray-atom intersections to be considered. 

The GPU calculations described above, however, do not include this step; we made a design 

decision not to take advantage of the potential for fewer calculations on the GPU, because the 

ray elimination step would cause threads to become asynchronous. This branch divergence in the 

kernel execution would lead to uncoalesced memory access, slowing the total time required for 

the calculation. For a straightforward comparison, we therefore additionally tested a variation of 

the CPU code that does not include the “ray elimination” step, and a variation of the GPU code 

that does include this step (Figure 7). We find that the GPU optimization requires a very similar 

time to reach completion regardless of whether or not the “ray elimination” step is used, 

justifying our design decision. As expected, the opposite holds for the CPU version: performance 

is significantly slower when the “ray elimination” step is not used. In a typical use case for Bcl-

 

 
 

Figure 6: Dependence on number of atoms in the ligand. Ligands of varying sizes were docked using DARC. 
A) Time required to complete the optimization, using a CPU alone or with the GPU. B) Speedup factor, reported 
as the ratio of the time required using the GPU to the time required using the CPU alone. 
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xL comprising 7,000 rays, the GPU version of DARC without the “ray elimination” step is 

completed about 180-fold faster than the same calculation on the CPU alone. 

 

Analysis and implications of DARC speedup on GPUs 

As described earlier, a key motivation in adapting DARC for GPU processing stemmed 

from the practical limitation on the size of compound libraries that can be routinely screened: our 

initial deployment of DARC entailed screening only 12,800 compounds, and required vast 

computational resources. To test whether extending our library size would improve the quality of 

compounds identified – subject to the DARC objective function – we carried out an experiment 

to determine the effect of library size on the resulting hit compounds. Since virtual screening 

involves drawing those few compounds from the extreme end of the distribution of scores, we 

trivially anticipated that increasing library size would lead to a monotonic improvement in the 

score of the top-scoring compound. Accordingly, we built a library of 46,000 compounds 

corresponding to a drug-like subset of the ZINC database [58], then used this to build further 

incrementally smaller libraries (decreasing the library size 10-fold each time). We carried out a 

 

 
 
Figure 7: Comparison of DARC optimization with and without the “ray elimination” step. The “ray 
elimination” step is found to significantly improve performance of DARC on the CPU alone, but made little 
difference when the GPU is used. A) Time required to complete the optimization, using a CPU alone or with the 
GPU. B) Speedup factor, reported as the ratio of the time required using the GPU to the time required using the 
CPU alone. 
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virtual screen of each library against two protein targets, interleukin-2 (PDB ID 1m47) and 

Mdm2 (PDB ID 4jvr), and unsurprisingly observed a considerable decrease in the DARC score 

for the top-scoring compound as we increased our library size (Figure 8). These results serve to 

illustrate the fact that chemical space is not heavily covered by (random) compound libraries of 

this size, and that computational enhancements that enable screening of larger compound 

libraries are likely to enable identification of more optimal compounds for the target of interest – 

subject to the strong caveat that compounds with better scores may not necessarily show more 

activity, depending on the objective function. 

 

With an eye towards additional optimization of our GPU adaption of DARC in the future, 

we sought to better understand the rate-limiting step in our current implementation. Based on the 

relatively weak dependence of the GPU timing on factors that dictate the number of potential 

ray-atom intersections to be considered (number of rays, number of ligand atoms, and number of 

particles) (Figure 9), we surmised that GPU calculation itself was not the rate-limiting step in 

the overall calculation. 

 

 
 
Figure 8: The GPU-enabled speedup facilitates screening of larger libraries, which in turn allows 
better-scoring ligands to be identified. Compound libraries of increasing size were screened against 
interleukin-2 and Mdm2. As expected, screening larger libraries led to identification of compounds with better 
scores. All scores are reported relative to the lowest scoring ligand in the largest set. 
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To test this hypothesis, we carried out minimizations of Bcl-xL (with our typical use case 

of 7,000 rays), but varied the number of iterations while keeping the product of the number of 

iterations and the number of particles was fixed. As expected from fixing the total number of 

potential ray-atom intersections to be computed, the CPU alone required an almost identical 

amount of time to complete each of these calculations, confirming that calculating ray-atom 

intersections was indeed rate-limiting. If the same step was rate-limiting when carried using the 

GPU implementation, we would expect each of these calculations to again require a fixed 

amount of time for completion. In contrast, the use of the GPU allowed faster calculations upon 

decreasing the number of iterations but using more particles: this in turn lead to a greater overall 

speedup with respect to the CPU implementation (Figure 10). We further found that up to eight 

 

 
 

Figure 9: Dependence of simulation time on number of rays. A single ligand conformation was docked in the 
Bcl-xL (A-C) or Mdm2 (D-F) surface pocket, independently varying the number of rays defining the pocket and 
the number of particles. A,D) Time required to complete the optimization using a CPU. B,E) Time required to 
complete the optimization with the GPU. C,F) Speedup factor, reported as the ratio of the time required using the 
GPU to the time required using the CPU alone. 
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independent GPU-DARC threads running on eight (CPU) cores required the same time for 

completion as a single GPU-DARC thread, despite sharing a single GPU (not shown). 

Collectively these observations suggest that given a “typical use” setup in the current 

implementation, the portion of the calculation carried out on the GPU is not rate-limiting; rather 

the rate-limiting step lies either in the CPU-GPU communication step occurring once per 

iteration or, more likely given that a GPU can be effectively shared between multiple cores, lies 

in the few remaining calculations taking place on the CPU. The implications of these 

observations will be discussed further below. 

 

1.5 Discussion 

Here we describe a faster implementation of the DARC ligand-docking program enabled 

by GPU computing. By carrying out the scoring step on GPUs, we achieve a speedup a 180-fold 

speedup over the same calculation carried out on a CPU alone. This calculation could be carried 

out 6-fold faster on the CPU by eliminating certain interactions from consideration before 

 

 
 
Figure 10: Runtime dependence on the number of particles and the number of iterations. A series of 
optimizations are compared in which the number of calculations (and thus the total time required) on the CPU is 
constant, and the speedup factor is reported as the ratio of the time required using the GPU to the time required 
using the CPU alone. The benefit of using the GPU is enhanced when individual GPU tasks are larger (more 
particles), allowing fewer CPU-GPU communication steps. 
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scoring, but this algorithmic difference did not affect timing on the GPU. Accordingly, the GPU-

enabled code is therefore 27-fold faster than our fastest CPU-only code. This speedup was 

achieved using a modern GPU that is relatively inexpensive (less than $500). 

Several other docking tools have recently been adapted to make use of GPU computing, 

leading to reported speedups in ranging from 2-fold to 100-fold (Table 1). Methods that require 

long serial trajectories, such as those built upon molecular dynamics [1, 2], require frequent 

CPU-GPU communication. This in turn leads to latency that limits the speedup achievable 

through GPU computing. A feature common to tools that achieve dramatic speedup is the ability 

to break up tasks into parallel subtasks that are either very numerous (i.e. DARC, PLANTS, 

GPUperTrAmber) or else individually computationally intensive (i.e. AutoDock Vina): either 

approach leads to long stretches of computing carried out exclusively on the GPU without the 

need for communication with the CPU. By extension, for applications such as DARC in which 

the objective function can be easily ported for calculation on the GPU, optimization schemes that 

simultaneously consider multiple candidate solutions (such as genetic algorithms and particle 

swarm optimization) are exceptionally well-suited to achieve dramatic speedups through 

relatively minor code changes. 



 35 

 

In the case of our GPU-enabled DARC implementation, these insights provide inspiration 

by which further speedups may be possible. As noted earlier, the fact that all particles move 

collectively in response to one another does not make porting the entire PSO calculation to the 

GPU an attractive approach for achieving further speedup. However, the fact that eight CPU 

cores can share a single GPU without noticeable slowing implies that the GPU remains under-

utilized in our current implementation; this in turn suggests that the current framework could be 

adapted by increasing the size of the problem allocated to the GPU at each iteration. Through 

further careful examination of the relationship between the number of particles and the number 

of iterations (Figure 10), it may prove possible to achieve equivalent convergence more quickly 

more particles and fewer iterations. Alternatively, further parallelization may be realized by 

bundling particles corresponding to different ligand conformers for simultaneous scoring on the 

GPU, rather than carry out separate (serial) optimization of each conformer. The fact that 

Table 1: Comparison of GPU-enabled docking tools. Docking methods have been adapted for GPU computing 
using a variety of strategies. These require different degrees of CPU-GPU communication, and accordingly enable 
varying speedups relative to the analogous CPU-only protocol. 
 

Docking tool GPU enabled functionality Speedup 

Molecular dynamics combined 
with docking Molecular dynamics 2-3x  [1] 

DOCK6 Amber scoring (molecular dynamics) 6.5x  [2] 

ZDOCK / PIPER / Hex Fast Fourier Transforms 15x  [3] 

MolDock 
Initially only scoring, 

then also differential evolution 
27x  [5] 

DARC Simultaneously scoring multiple particles 27x 

PLANTS Concurrent grid-based search 60x  [8] 

AutoDock Vina Runs docking concurrently from different starting 
orientations 62x  [9] 

GPUperTrAmber Scoring very large systems by decomposition 100x  [14] 
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additional calculations can be likely carried out on the GPU with little additional cost also offers 

the opportunity to fundamentally change the DARC scoring paradigm: either by simultaneously 

using multiple sets of rays originating from distinct origins within the protein, and/or by adding 

new components to capture effects of electrostatics. In short, any enhancement that increases the 

computational burden per iteration that is carried by the GPU is likely to yield further speedup 

relative to the CPU alone. 

Given fixed computational resources allocated for completion of a project, the ability to 

carry out docking more rapidly will have profound implications for applications of DARC. In the 

most obvious case, this speedup will allow screening against very large libraries that previously 

may not have been tractable, for example the complete ZINC database [58] or a library of 

hypothetical compounds likely amenable to straightforward synthesis [61]. Even in cases in 

which a relatively small library of interest is to be screened (for example, computational 

screening of a library of compounds currently available in-house), this speedup will allow an 

increase in the number of conformers screened per compound; this in turn is expected to reduce 

the number of false negatives in the screen, by increasing the likelihood of including an active 

conformer. This speedup may further allow the use of multiple pre-built receptor conformations 

for docking [62-68], providing a means to implicitly represent receptor flexibility and thus allow 

further diversity in collection of hits identified. 
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2.1 Abstract 

Mutations in the tumor suppressor p53 are found in about half of all human cancers. 

Many of these mutations deactivate p53 by reducing the stability of its “core domain”, which is 

the DNA binding domain. Certain small molecules that stabilize the native fold, known as 

“reactivators”, have been shown to rescue activity of these p53 mutants. This has spurred efforts 

in search of potent stabilizing compounds, since these could serve as a starting point for 

development of new drug leads. Here we describe our identification of a novel druggable pocket 

on the surface of p53’s core domain. We used structure-based virtual screening to select 28 

candidate ligands to complement this pocket, and found that 11 of these stabilize recombinant 

p53 core domain in biochemical assays. When applied to cancer cell lines that harbor 

destabilized mutant forms of p53, 4 of these compounds restore p53’s folded structure and lead 

to upregulation of its target genes. Because compounds designed against a single site can rescue 

activity of many different destabilizing mutations, this surface pocket may represent a starting 

point for development of a new class of “universal” drugs that re-activate a broad spectrum of 

p53 mutants. 
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2.2 Introduction 

The p53 cell pathway plays a key role in human cancer [69, 70]. p53 is a tumor 

suppressor, and in healthy cells is continuously produced but maintained at a low level by 

MDM2/MDMX ubiquitination [7, 71]. In the presence of cell stressors such as DNA damage, 

however, p53 levels are allowed to increase [72]. This increase leads to a variety of responses; 

the most well-characterized of these is through p53’s activity as a transcription factor, which 

directly upregulates genes that lead to cell cycle arrest, apoptosis, DNA repair, senescence and 

inhibition of metastasis [73-76]. Thus, the p53 pathway is responsible for preventing cells from 

becoming transformed into tumor or cancer cells. 

Disruption of the p53 pathway in human cancers can occur by upregulation of 

MDM2/MDMX, or by direct genetic alterations to the p53 gene. p53 is the single most-

frequently mutated gene in many different cancers [11]. Further, cancers with p53 mutations are 

often associated with resistance to therapy and poor prognosis [77]. Most genetic alterations to 

p53 are missense mutations that occur in p53’s DNA-binding (or “core”) domain [78, 79]. 

Analysis of these mutations in the core domain has led the field to classify p53 mutations into 

two broad categories. The first type are “DNA contact” mutations, which occur at residues 

making direct contact with DNA. These lead to significant loss of affinity for the p53 response 

element, so that it can no longer function as a transcription factor. This in turn allows the 

unchecked replication that leads to cancer [18]. 

The second category of p53 mutations are known as “structural” or “conformational” 

mutations [18], and it is estimated that 30-40% of cancer-associated mutations fall into this class 

[10]. p53’s core domain is only moderately thermodynamically stable at physiological 
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temperature [80]; mutations in this class often decrease p53’s stability by 3-4 kcal/mol, 

corresponding to a decrease in melting temperature of 5-7 °C [80, 81]. Because of this the 

protein is mostly unfolded at 37 °C, but at lower temperatures it can recover its native fold and 

thus bind DNA [82, 83]. 

This mechanistic understanding of p53 mutations naturally led to new approach for drug 

discovery. It has been shown that exogenously restoring expression of p53 can lead to tumor 

regression in vivo, in a variety of tumor models [84]. In principle, a compound that selectively 

binds and stabilizes natively-folded p53 could restore wild-type activity to these structural 

mutants: this would be expected to have an analogous effect as exogenous addition of the wild-

type protein, and thus could stimulate apoptosis / growth arrest in cancer cells. 

An early proof of concept study in support of this idea came from a peptide, CDB3, that 

was derived from p53’s binding partner 53BP2. Addition of this peptide was found to restore 

DNA-binding to the p53’s R249S structural mutant, and thus represents one of the first examples 

of what has become known as “pharmacological chaperones” for p53 [85]. Other groups have 

since identified small molecules that bind and stabilize other structural mutants which rescued 

p53 function and lead to tumor regression [86-88]. These stabilizing compounds are now 

typically called “reactivators”: they rescue by binding the native conformation of p53’s structural 

mutants, and shifting the equilibrium towards the active conformation [89]. 

To date there have been 11 important reactivators of p53 that have been described in the 

literature [90], though the term reactivator in this context has since come to encompass not only 

compounds that directly bind and rescue p53, but also compounds that rescue p53 activity 

function indirectly without binding to p53. Of these 11 reactivators, eight of them have been 

shown to be effective against one or two structural mutants (Chetomin, NSC319726, p53R3, 
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Prima-1, PK7088, Stictic Acid, STIMA-1, WR-1065) and very few have shown activity against 

three or more mutants (Mira-1, RITA, SCH529074). RITA was shown to reactivate the largest 

number of p53 mutants (seven), but it also induces apoptosis in a cell line expressing wild type 

p53. At this stage the precise mechanism of action for RITA and several of the other reactivators 

(p53R3, SCH529074, WR-1065, STIMA-1) still remains unclear, including even whether or not 

they interact directly with p53 itself [90]. Stictic acid was identified from a computational screen 

against a surface pocket near Cys124 on p53, but it has not yet been confirmed that the 

compound indeed interacts with this surface of p53 (let alone whether any potential interaction is 

covalent or non-covalent). 

That said, the mechanism of action for some of these compounds has been established, 

and these vary widely. For example, NSC319726 reactivates p53 by serving as a zinc 

metallochaperone: it increases the zinc concentration in the cell, which can compensate for p53 

mutations that reduce binding affinity for zinc (needed for p53’s structural integrity) [91]. 

Chetomin reactivates p53 by increasing levels of heat shock protein 40 (HSP40), which in turn 

binds p53 and facilitates folding to the active conformation [90]. 

PhiKan083 and PK7088 represent the best-characterized direct stabilizers of p53’s core 

domain. PhiKan083 was identified through structure-based computational screening [19], 

whereas PK7088 derived from biophysical screening [92]. Nonetheless, both interact with p53 in 

a very similar manner: the destabilizing mutation Y220C introduces a new cleft on the surface of 

p53, and both of these compounds target this feature. Because of this, both classes of compound 

are selective for this Y220C mutant: this is advantageous because it avoids potential on-target 

toxicity with wild-type p53, but is also a limitation because these compounds cannot rescue other 

destabilized mutant. The potency of these compounds are also potentially limited by this small 
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and exposed binding mode: while medicinal chemistry optimization led to a derivative that 

improved upon PhiKan083’s activity 5-fold [93], both compounds nonetheless started with 

binding affinity weaker than 100 µM. 

In light of the limitations inherent to these previously described reactivators, we set out to 

identify a new druggable pocket on the surface of p53’s core domain. If successful, we 

anticipated that a new site could enable identification of compounds that bind more potently and 

selectively than those described to date, and also reactivate a broader spectrum of destabilized 

p53 mutants. Accordingly, we therefore used structure-based computational tools to search for 

candidate druggable sites that would not require covalently binding compounds, at locations not 

overlapping with the most frequently occurring cancer-associated mutations. 

2.3 Results 

Selecting a "Druggable" Pocket on p53's DNA Binding Domain 

Our goal is to find a molecule that binds to p53 with high specificity, so we are using 

rational design with a high-resolution crystal structure to find small molecules that dock in a 

surface pocket with high steric and chemical complementarity. Structure-based virtual screens 

with p53's DNA Binding Domain have been attempted, yet they have found few hits, which had 

low affinity. This may be because these screens are not targeting regions of the protein that are 

amenable to binding a small molecule. Choosing a location on a protein that is druggable has 

proven to be a challenging problem. However, our lab has recently developed a method for 

predicting druggability of surface pockets. 

It has been hypothesized that druggability correlates with the propensity of a surface 

location to form larger and more varied pockets. This is because a protein will often have to 
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undergo some conformational changes in order to be able to bind a molecule. Therefore, it would 

have to be more flexible than a site that is not druggable. Our lab's method computationally 

samples a protein's flexibility using Rosetta Relax, which involves backbone perturbation and 

full atom minimizations in a Monte Carlo simulation. However, our variation has a bias towards 

larger pockets by including an additional energy term that improves the scores for conformations 

with larger pockets. We refer to this method as a Pocket Optimization. We found a correlation 

between sites known to be druggable and the site's capacity to form large pockets using Pocket 

Optimization. And just as importantly, the remaining sites on the protein surface would not form 

pockets [20]. 

We measured pocket volumes globally across p53's DNA Binding Domain crystal 

structure (excluding the DNA binding site) and found three pocket sites (Figure 1a-c). The 

measured pocket volumes only include deeper regions in order to prevent bias towards very 

shallow pockets so the available volume that a molecule could bind is actually much larger. 

Using these three sites, we ran 3-6,000 simulations per pocket with Pocket Optimization. Pocket 

One was clearly able to open pockets of significant size, which were much higher than 150 Å3 in 

over 70% of it's decoys while the others were only able to reach 150 Å3 in 10-20% of their 

decoys (Figure 1d). We also find it to be an appropriately druggable pocket because it is a 

significant distance from the DNA binding region, the zinc binding region, and the most 

common structural mutation sites (Figure 1e-f). Small molecule binding at or near the DNA 

binding region could inhibit DNA binding which would prevent p53 from being able to function 

as a transcription factor. It would also be detrimental to inhibit zinc binding because loss of zinc 

is known to be destabilizing [94]. And it is preferable for the pocket to be distant from common 

cancer-associated mutations because they may alter the pocket shape and loose affinity for a 
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stabilizer that bound there. We aim to find a stabilizer with affinity for a majority of destabilizing 

mutations in order to target more cancer patients.  

 

 
 

 
 

 
 
Figure 1: Analyzing Pockets in the Crystal Structure. A-C) Protein is shown in surface view in grey with 3 
rotations of the structure to highlight pockets. Residues that contact DNA are colored green while residues that 
make up pocket one (A), two (B), and three (C) are blue, red, and yellow respectively. D) Fraction of decoys from 
Pocket Optimization simulations that had pocket volumes from 0 to 300 Å3 for each pocket. Volumes exclude the 
shallowest regions by top shaving 2 Å. E-F) Structure show p53 in cartoon bound to DNA. Pocket residues in 
blue, residues that contact DNA in green, and zinc contacting residues in yellow. DNA is in pink and zinc sphere 
is red. F) Top 10 most common cancer-associated mutations in the TP53 database are shown as yellow spheres. 
Pocket residues are shown in blue spheres.  
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Virtual Screen for Reactivators 

We performed a structure-based screen using a modest-sized small-molecule library 

using our lab's docking tool, DARC (Docking Approach with Ray Casting). Most docking tools 

are designed to dock molecules in deep pockets such as those found in enzyme active sites [21]. 

But compared to enzymes, this pocket is shallow. However, DARC is ideal for a surface pocket 

because it was designed to optimize contacts of a small molecule to a shallow surface [22]. 

DARC uses a rigid body structure of a pocket for docking a library of molecules. We 

used the pocket that was found to be druggable on the crystal structure for docking. However, a 

crystal structure doesn't account for dynamic changes that are likely to occur in vivo and fails to 

show specific conformational changes that occur when a protein binds a molecule. For many 

ligands, the protein would only form the bound conformation in the presence of that ligand 

because the ligand forms contacts that induce the necessary conformational change that would 

otherwise be energetically unfavorable. However, the Pocket Optimization simulations done 

when selecting a druggable site essentially act as an implicit ligand by biasing for open pockets. 

So it can find conformations similar to what a bound protein would form. Therefore, the Pocket 

Optimization simulations were needed not only to find druggable pockets, but were employed to 

find open conformations to use as rigid body structures for virtual screening.  

Pocket Optimized structures were analyzed in order to select representative structures 

that had diverse, large pockets. We were looking for larger pockets in order to complement to 

larger molecules in order to maximize stabilizing contacts and affinity. Also, once binders are 

found, further optimization of the hits can be done so a larger pocket allows room for additional 

moieties to be added in order to increase affinity of hits during the medicinal chemistry 

optimization phase. Visual inspection of pockets formed during the simulations showed that 
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there was significant heterogeneity in pocket shapes. This allows us to find more diverse binders 

in chemical space in order to find a wider range of molecules to improve the probability of 

finding a stabilizer. 

We hypothesized that there were a few general pocket conformations present among the 

simulations. So we used hierarchical clustering with a natural number stopping criteria to group 

Pocket Optimized structures by pocket shape similarity. For each group, the clustroid was 

selected to be the representative structure of the group. We selected simulated structures from the 

two major clusters for virtual screen in addition to the crystal structure (Figure 2). The crystal 

structure pocket was deeper, while the two pockets from simulation were more spread out. 

 

 

 
 
Figure 2: Selecting Multiple Conformations of a Pocket for Virtual Screen. Pockets at a single location from 
Pocket Optimization simulations were clustered by shape into 2 bins. Representative structures of each were 
chosen for virtual screen. The crystal structure is shown in a and d. Representative structure of cluster one is in b 
and e, structure from cluster two is shown in c and e. Docking region is shown in d-f. 
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We used the crystal structure and two representative pockets from the biased simulation 

for screening with a virtual library of 64,000 small molecules. We performed the screen with an 

early version of DARC that used steric minimization. We took the final docked pose from 

DARC for each pocket/molecule pair and performed additional optimization with a Rosetta 

minimization. For each pocket, scores were ranked in terms of total Rosetta Energy and 

Interaction Energy. We visually inspected the top hits and took into consideration the number of 

hydrogen bonds, unsatisfied polar bonds, and solvent accessible surface area reported by Rosetta. 

One simulated pocket (Figure 2c) lacked favorable hits in comparison to the crystal structure 

and the other simulated structure so was excluded. Following visual inspection of the top 300 

hits, twenty-eight compounds were selected (Table 1). 
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Biochemical Testing with Recombinant p53 

In order to verify that compounds specifically bind p53 and stabilize structure, we used 

the purified core domain of p53. Many researchers looking for reactivators test their compounds 

in cells because purified p53 is difficult to work with due to its instability and because working 

with small molecules often causes noisy results in biochemical assays. However, a biochemical 

assay is the optimal approach for determining if the mechanism of action involves direct binding. 

Table 1: Summary of Docking Results. List of small molecules predicted to bind p53 DNA Binding Domain. 
Final docked pose is scored in term of total and interface energy in terms of Rosetta Energy Units (REUs). Ranked 
by Interaction Energy. 

 
Zinc ID Code Name Source Total REU Interaction REU 

ZINC12439266 Spiderman crystal -475.8 -19.8 
ZINC32972442 Thor simulation -499.2 -19.3 
ZINC22024197 Han Solo crystal -483.0 -18.9 
ZINC02759838 Ripley simulation -498.8 -18.4 
ZINC00811037 Sara Connor crystal -476.1 -18.2 
ZINC04554233 Huxley crystal -483.3 -18.1 
ZINC05471605 Oprah crystal -484.2 -17.8 
ZINC02433954 Daenerys crystal -480.9 -17.7 
ZINC00246066 Katniss crystal -484.6 -17.6 
ZINC04100029 The Doctor crystal -478.4 -17.2 
ZINC00883497 Spartacus simulation -499.3 -17.1 
ZINC14115481 Capt. Hammer crystal -478.6 -17.1 
ZINC22018013 Buffy crystal -480.7 -16.9 
ZINC12736934 Shaft crystal -480.8 -16.4 
ZINC13682491 Bruce Lee simulation -496.4 -16.4 
ZINC08762382 Xena simulation -496.3 -16.3 
ZINC07467929 Starbuck simulation -497.6 -15.8 
ZINC13497494 Evita crystal -480.1 -15.4 
ZINC12608763 Buck Rogers simulation -496.6 -15.4 
ZINC77438884 Athena simulation -496.2 -14.3 
ZINC65505827 Che Guevara crystal -472.5 -13.5 
ZINC17730245 John simulation -494.7 -13.3 
ZINC04613946 Jeeves simulation -496.4 -12.9 
ZINC00641309 Jayhawk simulation -493.7 -12.8 
ZINC02860908 George simulation -495.6 -12.1 
ZINC13755423 Jambunathon simulation -495.4 -11.9 
ZINC12858876 Dumbledore simulation -494.2 -11.8 
ZINC76062101 The Bride simulation -494.2 -11.5 
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We created recombinant p53 with two separate cancer-associated, destabilizing mutations. These 

were used for stability experiments and further testing was done in cell lines.  

The initial biochemical screen was done with the core domain of p53 with the H179Y 

destabilizing mutation. Stability in the presence of compound was measured with the protease 

Trypsin. Trypsin cleaves at arginine and lysine residues, which are prevalent throughout p53. 

However, trypsin would only be able to cleave exposed residues so most residues would not be 

cleaved when p53 is in its folded conformation, so increased p53 cleavage is a measure of 

unfolding. At 37° C, even wild type p53 is moderately stable so trypsin would be able to cause 

cleavage to some percent of the p53 molecules. With the H179Y mutant, a noticeable amount of 

p53 is cleaved by 10 minutes at 37° C when visualized by western blot. In the presence of a 

stabilizing compound, we expect fewer p53 molecules will have exposed cleavage sights so more 

intact p53 would be present. 

Before testing began, we hypothesized that we would measure the amount of intact p53 

as a measure of stability, however it was difficult to calculate the levels of intact protein 

remaining. In order to differentiate degrees of stability at lower compound concentration, we 

found that measuring relative amounts of the cleavage fragments was a better indicator of 

whether a compound bound p53. We used Maltose Binding Protein (MBP) fused p53 in order to 

keep p53 in solution after partial cleavage has taken place in order to capture partial cleavage 

states. 

For the pulse proteolysis assay with trypsin, we measured the band intensity of the largest 

p53 cleavage fragment relative to all cleavage fragments (Figure 3a). In the presence of a 

compound that binds p53, there is relatively less of this fragment. So the ratio of the largest 

fragment compared to all fragments will be smaller with a stabilizing compound. MBP is highly 
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resistant to trypsin at the concentrations that was used so all fragments that have the N terminus 

are kept in solution and these are seen on the western blot for analysis.  

The initial screen with H179Y was done with all compounds at 40uM, except one 

compound that was found to be a trypsin inhibitor. Five additional compounds (LM10-15) were 

tested as negative controls, which were similar to our compounds because they come from the 

same virtual screen compounds library, but are compounds predicted to bind Mcl-1 instead of 

p53. All 5 of these had similar ratios as DMSO showing that the assay does not readily have 

false positives. Of the 27 compounds predicted to bind p53 from virtual screen, a surprisingly 

large percent of them showed signs of stabilizing H179Y-p53. We found that 26% of them had a 

relative decrease in the largest fragment by a third. The three best hits (Han Solo, Ripley, and 

Spiderman) decreased the ratio nearly in half (Figure 3b). 

Given the high percent of success, we looked to another destabilizing mutant to select 

hits that were stabilizing to multiple mutants. This is because we intend our stabilizer to function 

as a broad range reactivator of structural p53 mutants. We selected eleven compounds that had 

the strongest stabilizing effect for H179Y and tested them with the structural mutant R175H, 

which is the most prevalent of the cancer-associated, structural mutants in the TP53 database [6]. 

We had hypothesized that this assay would narrow our focus to the best hits, but all eleven 

turned out to be stabilizing on R175H as well (Figure 3c).  

Of course, we also feared that the apparent stabilization of p53 was actually inhibition of 

trypsin so we measured inhibition by compounds with the BaAMC assay. This is a highly 

sensitive assay that can capture even slight inhibition. We also biased the assay towards 

inhibition by using 5x the amount of trypsin that is used in pulse proteolysis and 5x the 

compound concentration that we test. So even minor inhibition would show significant decrease 
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in BaAMC results. Of the 28 compounds analyzed, only one is found to be a strong trypsin 

inhibitor (Jeeves) so was not included in pulse proteolysis (Figure 3d). As an indicator of the 

test's sensitivity, we found that Dumbledore's BaAMC result was only 24% that of DMSO 

despite being in the range of the negative control in the pulse proteolysis assay with p53. 
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Figure 3: Trypsin cleavage used as a measure of protein stability. A) AntiHis6 Western Blot of gels following 
pulse proteolysis shows rescue with seven compounds with MBP-H179Y-p53. First lane has no trypsin. Largest 
cleavage fragment is regularly less prevalent when rescue is present. So ratio of fragment density compared to 
other fragments is measured in B-C. B) Ratio is normalized to 1 for DMSO (red) for destabilizing mutant H179Y 
using compounds at 40uM. Negative control compounds shown in light red are similar to our compounds, but not 
predicted to bind p53. Compounds shown in green. Best compounds are shown in darker green, C) which are the 
compounds used to test in an additional destabilizing mutant R175H. D) The highly sensitive trypsin inhibition 
assay, BaAMC, was used with 5x the amount of compound and trypsin. 
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Cell experiments 

In order to test whether molecules restored wild type function of mutant p53, we used 

multiple cancer cell lines that had wild type, mutant, and knockout p53 to measure downstream 

mRNA levels. We also used a luciferase assay with the response element targeted by p53. We 

visualized wild type p53 activation by fluorescent microscopy using antibodies whose epitope 

only occurs in either native or unfolded p53 in order to validate a stabilizing effect of 

compounds. This work focused on seven compounds that performed well in biochemical assays 

and PhiKan083, which is known to stabilize and rescue p53 mutant Y220C. 

Two well-characterized p53 target genes are p21 (cdkn1a) and PUMA (BBC3) [95]. We 

used quantitative Real time PCR (QT-RT-PCR) to measure their mRNA levels in the presence of 

compounds. p21 is a cyclin dependent kinase inhibitor, which will cause the cell to go into 

G0/senescence when it reaches high levels. It is directly upregulated by the activation of wild 

type p53, which acts as a transcription factor [96]. PUMA is also directly upregulated by the 

transcription factor, p53. PUMA is a proapoptotic protein in the Bcl-2 protein family [97]. We 

measured p21 and PUMA mRNA levels in cell lines with two destabilizing mutations of p53 

(Y220C, R175H) and one DNA binding mutation (R273H) in order to differentiate between 

stability specific rescue of p53 and nonspecific rescue. Most compounds showed significant 

upregulation of p21 and/or PUMA in comparison to DMSO (Figure 4a). The largest increase for 

the destabilizing mutant lines was in the presence of Thor.  

The HCT116 cell line with knockout p53 was used for isogenic analysis with p53 null, 

wild type, or knockin of the DNA-binding mutant of p53 (R273H). Again we measured rescue 

with QT-RT-PCR of p21 and PUMA with seven compounds and PhiKan083. Since PhiKan083 
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binds the Y220C mutant, it is a negative control in this assay. It had some nonspecific increases 

in both genes and all isogenic variations despite its specificity for Y220C. The seven compounds 

had a similar response, showing that these compounds do not rescue in cells without destabilized 

p53 more than the negative control, except for the case of John in cells with R273H (Figure 4b). 

We performed the luciferase assay with BxPC-3 cells transfected with either the PG13 

plasmid, which contain wild type p53 response element upstream of luciferase gene or the MG15 

plasmid, which contains a mutated variation. These transfected cells were treated with Athena, 

John, and Thor. All three compounds showed a significant increase in luciferase activity of PG13 

while showing no effect in MG13 when compared with DMSO control. (Figure 4c). Again, Thor 

had the strongest response (Figure 4d). 
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Final evidence that four of the compounds improved stability of p53 mutant Y220C in 

cells came when using the antibody p1620 whose epitope was only present in folded p53. With 

DMSO, there is clearly minimal folded p53 present in cells, but all four compounds had a 

significant shift of equilibrium towards folded p53 (Figure 5a). In order to verify that there is a 

shift in equilibrium from unfolded to folded p53, we treated cells with Thor and added the 

antibody p240, which only binds an epitope of the unfolded conformation of p53. Thor clearly 

caused a large shift towards the folded population (Figure 5b).  

 
 

     
 

Figure 4: Compound rescue in cancer cell lines. Tops hits in biochemical tests used in cells.  
A) Compounds tested at 40uM with two destabilizing mutant (R175H, Y220C) and one DNA binding mutant 
(R273H). B) Isogeneic p53 knockout cell line used compared to same line with WT or R273H knockin. C) 
Luciferase assay with p53 response element (PG13) or a mutated response element (MG15). D) Final docked 
pose of Thor (blue) with p53 (pink) in spheres.  
*Starbuck tested at 10uM 
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Figure 5: Immunofluorescence of p53 cells. Immunofluorescence in BxPC3 (Y220C p53) cells after treatment 
for 24 hours of compound at 40uM. A) pAb 1620 in green binds folded p53. Cells treated with DMSO, compound, 
or PhiKan083, a known stabilizer of p53. B) Antibodies pAb 1620 and pAb 240 bind correctly folded and 
unfolded p53 respectively with cells treated with DMSO or Thor.  
*Starbuck tested at 10uM 
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2.4 Discussion 

Compounds that reactivate destabilized p53 mutants have the potential to serve as unique 

chemical tools in the treatment of cancer patients. In order to unlock that potential, however, 

such molecules should act in a highly selective manner, and via a clearly established mechanism 

of action. Here, we have identified a novel druggable site on the surface of p53, and demonstrate 

the potential utility of this site through compounds designed to bind here. Through biochemical 

assays we have demonstrated that these compounds interact with p53, and in subsequent cell-

based assays we have begun to probe their biological effects. 

 

Exploring druggable sites on p53 

Two previous studies have utilized structure-based virtual screening in search of 

compounds that reactivate p53 mutants, but these have yielded low affinity hits (Stictic Acid and 

PhiKan083). In retrospect, the sites targeted in these prior studies may explain this. Stictic Acid 

was discovered using the surface pocket found during molecular dynamics centered at a cysteine 

suspected to be a potential PRIMA-1 adduct location. In the case of PhiKan083, the pocket was 

discovered on the crystallographically observed cleft formed by the Y220C mutation [19, 98]. 

In contrast to earlier efforts, here we began by exhaustively searching the surface of p53 

for its optimally druggable site. To do so, we considered not only the conformation observed in 

crystal structures of p53, but also low-energy excited states generated through biased 

simulations. Interestingly, analysis of (unbiased) molecular dynamics simulations in search of 

druggable pockets on the surface of p53 did not reveal this site; this may have simply resulted 

from the different energy functions used in these studies, or alternatively may reflect the 
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challenges in sampling these pocket-containing conformations without explicitly biasing the 

simulations to do so [98, 99]. 

It is encouraging to note that the site is distant from the 5 most common cancer-

associated, destabilizing mutation sites in p53 (R175, G245, R249, R282, Y220), which make up 

15% of somatic mutations in the TP53 database [6]. Because this druggable site is not in 

proximity to these frequently-mutated residues, it is likely that this pocket will not be distorted 

by these mutations – further implying that compounds acting at this site are expected to restore 

activity to each of them. 

We further note that the pocket we have described here is centered around Ser215; 

interestingly, increased phosphorylation at this position by mitotic kinase Aurora A and by 

PAK4 (p21 Activated Kinase 4) have also been shown to deactivate p53 in certain cancers [100-

102]. Based on sterics, we anticipate that compounds binding at this site may also prevent 

phosphorylation at this site: if so, the same compounds may additionally prove effective for 

rescuing p53 activity in cancers that retain wild-type p53 but are instead driven by aberrant 

upregulation of oncogenes Aurora A and/or PAK4. In future, we look forward to testing this 

hypothesis by evaluating the effect of the tool compounds presented here on additional carefully 

selected cancer cell lines. 

Inhibition of phosphorylation at Ser215 may account for the apparent non-specific rescue 

of John in the DNA-binding mutant cell line (Figure 4b). Treatment with John led to rescue of 

p53 in the R273H knockin compared to DMSO. Even though this mutation has decreased 

affinity to DNA, it is likely that it can still bind DNA if its concentration was allowed to 

increase. So inhibition of phosphorylation could increase the levels of functional p53. Further 

testing is required to verify this hypothesis. 
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Therapeutic opportunities for p53 reactivators 

Finding a reactivator that rescues a wide range of structural mutants of p53 has the 

potential to help a large number of cancer patients. Since about half of all cancers have a 

mutation in p53 and 30-40% of those are structural mutants, a broad spectrum stabilizer could 

rescue the p53 pathway in up to 20% of cancers [6, 10]. While that is an optimistic figure, the 

reactivator approach for cancer treatment is promising. Reactivators have been found to rescue 

p53 activity in cancer cell lines and in animal models, and one of these compounds, PRIMA-1, 

has recently entered clinical trials [89]. In fact, PRIMA-1 is currently being tested in three 

ongoing Phase 1b/2 clinical trials [103], to evaluate its promise for targeting oesophageal 

carcinomas, platinum sensitive recurrent high-grade serous ovarian cancers, and myeloid 

neoplasms [6]. 

Despite the promising outlook of existing compounds, there remains a strong need to find 

additional p53 reactivators for structural mutants. PRIMA-1’s progress is exciting, but clinical 

trials have just begun and so their outcome is not yet certain. Further, structure activity 

relationship analysis around PRIMA-1 confirms that it almost certainly involves covalent 

attachment to some target, but it remains controversial whether the relevant target is indeed p53 

[104]. Beyond this, PRIMA-1 also causes an increase in reactive oxygen species (ROS) due to its 

interactions with thioredoxin reductase 1 and glutathione [105-107], implying that unanticipated 

side effects may emerge as studies continue. 

While it is impossible to rule out adverse effects before a drug candidate is thoroughly 

tested through clinical trials, side effects are far less likely for compounds that unambiguously 

engage the intended target. Also, side effects are less likely if a candidate lacks chemically 
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reactive functional groups that form covalent adducts with proteins. While a number of p53 

reactivators have been described in the literature, many have been identified through phenotypic 

(cell-based) screens, and did not turn out to interact with p53 directly. Outside of the compounds 

presented here only a limited subset have been demonstrated through biochemical assays to bind 

to p53: these include PRIMA-1, MIRA-1, PhiKan083, PK7088, and stictic acid. Among these 

though, the former two rely on reactive functional groups and the latter three have very low 

binding affinity [92, 98, 108, 109]. 

By using structure-based design, and by following up with biochemical assays before 

moving into cells, we have ensured that the hit compounds from our study indeed interact with 

p53 directly. Furthermore, this approach has allowed us to rescue many different p53 mutants by 

targeting a specific site on the protein surface: this would not have been possible without 

structure-based design. Using only a modest library, we have already found several hit 

compounds: this suggests that the site is highly amenable to reactivator binding, and should be 

the focus of a larger screen. Rescue of p53 activity has long been perceived to be an effective 

avenue for development of new cancer therapeutics, and now this druggable site may lead to 

development of potent compounds to realize this promise [84]. 

Even beyond therapeutic applications, we also foresee that a potent stabilizer with 

favorable in vivo properties could also play a role in cancer prevention. As many as 10% of all 

cancers are thought to arise from unfavorable genetic variations that mark certain people with a 

predisposition to cancer [6]. 

These members of the population are then more susceptible to additional somatic 

mutations, such as destabilizing mutations in p53. If a potent p53 reactivator can be identified 

that can be administered to healthy patients without side effects, it could be provided to those 
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people most susceptible to future cancers. This preventative approach could trigger apoptosis in 

precancerous somatic cells that have accumulated DNA damage, yet lack the normal p53 

response due to mutations in p53. Such an approach would be particularly effective in patients 

with Li-Fraumeni syndrome, in whom p53 is already systemically deactivated. 

2.5 Methods 

The computational methods described here are implemented in the Rosetta software suite 

[39]. Rosetta is freely available for academic use. 

 

Selecting druggable pocket 

The structure was downloaded for wild type p53 DNA Binding Domain without DNA 

(2OCJ.pdb) from The Protein Database. The volume of surface pockets was calculated using the 

method described in 2013 Johnson et al. Briefly, a grid is created around a residue on the protein 

surface. Grid points are considered protein, surface, or solvent. Pocket grid points are when a 

line of the grid goes from surface-solvent-surface so that the volume of grid squares 

encompassed by pocket grid points can be calculated. Residues that had overlapping pockets 

were grouped into one pocket. 

Each pocket was analyzed separately. Rosetta relax was run with an energy term that 

biases towards larger pockets, also described in Johnson et al. [20]. The proportionality constant 

was modified to be -0.25 Rosetta energy units per Å3. We ran 3-6,000 simulations per pocket 

depending on shape and 1,000 simulations without the bias were run for reference energy. Biased 

structures with energy higher than reference were excluded.  
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Creating Rigid Body Pockets for Docking 

We generated structures when running simulations with Rosetta Relax for pocket 

selection. These were used to create a pocket shell for each structure using the grid defined in 

Selecting Druggable Pockets. Each shell was aligned in order to create a pairwise distance score. 

The score = the number of overlapping grid points divided by the number of grid points in the 

smaller pocket. Scores were put into a distance matrix, which was used with hierarchical 

clustering. We found two clusters of general pocket shapes present within the simulations and 

selected the clustroid from each as representative structures for docking. These two clustroid 

structures and the crystal structure were used to create three pockets for docking, as described in 

Khar et al [110]. 

 

Virtual Screen 

We used the Rosetta tool, DARC, using the method defined in Gowthaman et al. Briefly; 

we created a file that defined the topology of the pocket that DARC uses for scoring. A small 

molecule library was created using the ZINC database to download smiles that were used by 

OMEGA to create pdb and params files with up to 200 conformers as described in Khar et al 

[110]. These were used by DARC, which generated a final docked pose of the most favorable 

conformer of each small molecule in its optimal conformation in each pocket in terms of DARC 

scoring. The final poses were minimized and scored with Rosetta. For each pocket, Z scores 

were generated for Rosetta total energy, Rosetta interaction energy, number of hydrogen bonds, 

number of unsatisfied polar bonds, and solvent exposed surface area. We used the sum of these Z 

scores to rank the final poses, examined the top few hundred structures manually in pymol, and 

selected 28 commercially available compounds for testing. 
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Subcloning, Site-Directed Mutation, and Protein Expression 

Wild type p53's DNA Binding Domain (residues 94-312) was subcloned into pTBSG-

MAL (which was provided courtesy od Dr. Philip Gao) by Ligation Independent Cloning [111] 

as described in Lea et al [112]. This vector forms a construct with an N-terminal His tag 

followed by Maltose Binding Protein, a TEV recognition site, and C-terminal p53. It was 

transformed into E. coli NEB 5-alpha cells and plated on LB agar with 50 mg/mL ampicillin. A 

single colony was used to inoculate 10ml of LB Broth with 50 mg/ml ampicillin and grown 

overnight at 37°C. Plasmids were purified with Quiagen miniprep kit. Upon sequence 

verification, plasmid was transformed into E. coli Rosetta2 (2DE3) pLysS cells and plated on LB 

agar with 50 mg/mL ampicillin. A single colony was used to inoculate 10ml of LB Broth with 50 

mg/ml ampicillin and grown overnight at 37°C. In the morning, 0.5ml of growth was added to 

0.5ml glycerol and moved to -80°C storage. Site Directed Mutation was done in order to create 

structural mutant constructs including R175H and H179Y.  

For expression, an LB agar plate with 50 mg/mL ampicillin was inoculated with glycerol 

stock. A single colony was used to inoculate 100ml LB Broth with 50 mg/mL ampicillin for 

37°C overnight growth. This was used to inoculate four liters of LB Broth with 50 mg/mL 

ampicillin and allowed to grown until 600nm OD reaches ~0.6 and induced with 1mM IPTG. 

Temperature was shifted to 21°C and it was allowed to grow overnight. 

Cells were centrifuged at 5,000g for 10 minutes, then lysed in 50mM Tris pH 7.2, 50mM 

Imidazole, 1M NaCl, 1M Urea, and 1mM DTT. This was centrifuged for 1 hour at 27,000g. 

Lysate was run on Ni-NTA and eluted with 50mM Tris pH 7.2, 500mM Imidazole, 0.3M NaCl, 

and 1mM DTT. This was dialyzed into 50mM Tris pH 7.2, 150mM NaCl, and 10mM DTT. 
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Finally, the protein was concentrated with an Amicon-15 Filter with 10,000MW cutoff until 

concentration is over 5mg/ml. Glycerol is added to bring it up to 50%, then protein is aliquoted 

and stored at -20°C. 

 

Pulse Proteolysis  

Stock solution of trypsin was prepared fresh daily at 1mg/ml. Each sample had a final 

volume of 45ul. Buffer was 50mM Tris pH 7.2, 150mM NaCl, 10mM DTT. DMSO was kept at 

4%. Compounds were dissolved in DMSO and used at 40uM. p53 concentration was 5mM. Final 

concentration of trypsin was 3ug/ml. Samples were mixed on ice in 1.5ml tubes. Trypsin was 

added last. Samples were transferred to 37°C water bath for 10 minutes, then transferred to ice. 

15ul of 4x SDS loading buffer with BME was added to stop reaction and to denature for SDS 

PAGE, which was run immediately. Gel was washed with DI water, then protein was transferred 

to nitrocellulose membrane for 7 minutes. Nitrocellulose was washed three timed for 10 minutes 

with TBS. Then it was blocked for one hour using 5% alkali soluble casein. The TBS wash was 

repeated, then IR800 Anti-His antibody was diluted 50,000x into 5% alkali soluble casein and sat 

overnight on rocker. TBS wash was repeated, then it was visualized with infrared 800 light. 

Images were analyzed with ImageJ. Protein bands were selected in order to calculate the 

intensity. A diagnostic band (largest cleavage fragment shown in figure 3a) is shown to be 

weaker when stabilizing compounds are present, which is found to be a 60kDa fragment 

composed of MBP and the C-terminal 16kDa portion of p53. The total intensity of all p53 bands 

is summed in order to calculate the ratio of diagnostic band intensity/total fragment intensity of 

cleavage bands. This ratio is normalized to DMSO samples so values less than 1 indicate rescue. 
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Trypsin inhibition assay was done with N-Alpha-Benzoyl-L-Arginine 7-Amido-4-

Methylcoumatin HCl (BaAMC), which is a fluorogenic substrate for trypsin. Excitation was 

340nm with 40nm slit, emission measured at 460nm with 40nm slit. Trypsin was 15ug/ml, which 

is 5x higher than what is used in pulse proteolysis assay. Compounds were tested at 200uM. The 

slope of emission is measured during first 20 minutes for 2 replicates for all compounds, but 5 

replicates of positive and negative controls.  

 

Cell Assays 

Human cell lines used in this study are BxPC3 p53Y220C(pancreatic adenocarcinoma 

provided by D. R. Welch at University of Kansas Medical Center, USA), HCT116 p53WT, 

HCT116 p53null, HCT116 p53null+ 273(R273H exogenous, isogenic knockout colon carcinoma 

provided by B. Vogelstein at Johns Hopkins Medicine, USA.), H2087 p53V157F (lung 

adenocarcinoma provided by T. Komiya at University of Kansas Medical Center, USA), HT29 

p53R273H (colorectal adenocarcinoma provided by D. A. Dixon and S. Anant, respectively, at 

University of Kansas Medical Center, USA), MiaPaCa p53R248W (pancreatic carcinoma provided 

by D. R. Welch at University of Kansas Medical Center, USA) and CAL33 p53R175H (tongue 

squamous cell carcinoma provided by S. Thomas at University of Kansas Medical Center, USA). 

Cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM) or Roswell Park 

Memorial Institute (RPMI) 1640 with 10% fetal bovine serum (FBS) and 1% penicillin–

streptomycin. The HCT116 subcell lines, p53null+R175H and p53null+R273H, were generated 

by infecting HCT116 p53null cells with retroviral vectors encoding p53R175H and p53R273H 

cDNAs, respectively. All cell lines were authenticated by autosomal STR profiles provided by 

the University of Arizona Genetics Core. All cell lines were tested negative for mycoplasma. 
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None of the cell lines used was found in the database of commonly misidentified cell lines that 

are maintained by ICLAC and NCBI Biosample. 

RNA was isolated using the RNA-Quick MiniPrep (Zymo Research). Total RNA (1 µg) 

was reversed transcribed to cDNA using M-MLV reverse transcriptase (Amresco), according to 

the manufacturer's instructions, and TaqMan assays were performed with ViiA7 (Life 

Technologies). TaqMan assay primers and probes were purchased from Life Technologies using 

the following assay numbers: human p53, Hs00153349_m1; mouse p21 Mm00432448_m1; Bax 

Mm00432050_m1, Puma Mm00519268_m1; Gapdh, Mm99999915_g1. Taqman assay for 

human GAPDH was purchased from Integrated DNA Technologies (Hs.PT.58.40035104). The 

mRNA levels were normalized to those of GAPDH. 

For Luciferase assay as BxPC3 p53Y220C were transfected with PG13 plasmid with 

response element for p53 and MG15 plasmid that has a mutated variation, along with control 

plasmid for transfection efficiency. After 36 hour of transfection media was changed and 

different drug treatment was done was 24 hour and then after Luciferase activity was measured 

using The Dual-Glo® Luciferase Assay System (Promega, Madison, WI) with BioTek Synergy 

H4 multifunctional plate reader (BioTek). 

Cells grown onto poly-D-lysine/laminin-coated glass cover-slips (BD Biosciences) were 

fixed with 4% paraformaldehyde for 20 min and then permeabilized with 0.3% Triton X-100 for 

5 min, followed by blocking in 1% BSA in PBS-T for 1 h and incubation with PAb1620 p53 

antibody (1:25 dilution) overnight at 4 °C. Goat anti-mouse IgG was used as a secondary 

antibody. Samples were mounted in the ProLong Gold Antifade Reagent with DAPI 

(Invitrogen), followed by analysis with a Nikon epifluorescence microscope.  
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Conclusions 

Developing a cure for cancer is one of the greatest scientific challenges of our time. Each 

different type of cancer has its own set of disease variations, which is further complicated by 

variations within each individual patient. This makes cancer treatment an indescribably complex 

problem. Researchers have recently developed the hypothesis that clinical outcomes would 

improve by utilizing Precision Oncology. This is a personalized medicine approach that tailors a 

cancer remedy based on an individual's genetic profile [113]. This approach would require 

genotyping an individual's malignant cells and searching that genome for an established set of 

genetic mutations associated with cancer, then prescribing a set of anticancer drugs that target 

those specific mutations.  

One set of mutations that may soon become a component of this approach is the 

destabilizing mutations of p53 that are known to be strongly associated with cancer. These are 

the targets of my thesis research. The long term goal of this project is to find a drug that rescues 

the structure and function of destabilizing mutations of p53 in cancer patients. The immediate 

ambition is that the methods developed during this project are an improvement over previous 

methods of finding a p53 stabilizing molecule, so will be a better example for future work. 

Additionally, we suspect that the stabilizing compounds found here are potential drug leads. 

The first stage of my thesis project was to optimize the docking tool DARC by enabling 

GPU processing of the scoring function. Enabling GPU computation resulted in an 180-fold 

increase in the time it takes to score individual poses during docking. This allowed us to perform 

the entire docking process 27 times faster than when calculating on CPUs alone. This speedup in 

important because the amount of time it takes to run a virtual screen is a limiting factor. A faster 

screening process allows us to sample a significantly larger library of molecules during virtual 
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screen, which drastically increases the probability that we will be able to find molecules that bind 

to their targets. 

Once our virtual screening method was optimized, my goal was to use that method on 

p53. I performed druggability analysis on the core domain and found a novel pocket that I used 

for my screen. I found it to be druggable by doing Rosetta Relax simulations that sampled 

conformational variations in the protein in order to find low-energy structures that had larger 

pockets. Pockets opened easily at the novel pocket site, but not on the rest of the protein surface 

(excluding the DNA binding region). This pocket appeared to be an ideal screening spot because 

it is distant from the DNA binding site, the zinc binding site, and the most common cancer-

associated mutation sites. So it should not interfere with normal function and would be present 

(at last transiently) in multiple cancer-associated, destabilizing mutants of p53. 

After selecting a druggable pocket on p53, I performed a virtual screen using DARC on 

the novel pocket using a modest-sized library of compounds. DARC takes a rigid-body pocket 

and samples up to 200 conformers of a small molecule in the pocket in thousands of orientations. 

This is sufficient to find the optimal scoring orientation of the molecule in the pocket, but it 

doesn't account for variation in pocket shape. We use a static pocket in order to decrease the 

degrees of freedom, thus decreasing the number of computations. This makes the process 

quicker, which (as I just mentioned) is a rate-limiting factor when doing virtual screen. We made 

up for the lack of pocket degrees of freedom by running the screen multiple times using several 

energetically-favorable pocket shapes. 

During the Rosetta simulations for druggability analysis, a variety of pocket shapes were 

found at the novel site. Since these shapes represent the dynamic changes that the protein is 

likely to sample in vivo, I analyzed the pocket shapes in order to capture several representative 



 70 

pockets that I could use as rigid-body structures during docking in the virtual screen. I clustered 

all structures created in the simulation based on their pocket shapes. I found two general shapes 

were present among the majority of the structures and selected a representative structure from 

each cluster to use in the virtual screen, in addition to the crystal structure. I found that all 3 

structures had significantly varied pocket shape that would make them unlikely to bind the same 

molecules. 

I performed a virtual screen using DARC on the novel pocket on p53 using a library of 

64,000 compounds and selected 28 compounds that ranked well. My next goal was to do 

biochemical testing to discover which of these compounds bind and stabilize p53. I used the 

purified core domain of p53 that had either the H179Y or R175H mutations, which are both 

cancer-associated, destabilizing mutations. Initial testing was done with H179Y using a pulse 

proteolysis assay. Surprisingly, I found that the majority of the compounds appeared to stabilize 

p53. I selected the 11 most stabilizing of the 28 compounds and repeated the assay on R175H, 

which is the most common cancer-associated, destabilizing mutation of p53. I found that all 11 

of the compounds stabilized R175H. 

We further tested of the compounds in cell based assays. We used mRNA levels of p21 

and PUMA as indicators of p53 rescue because they are directly upregulated by wild type p53. 

Using two cell lines with destabilizing mutations of p53 and one line with a DNA binding 

mutation, we found that 7 compounds showed p53 rescue in the cell lines with destabilizing 

mutations. Most notably, several compounds had stronger rescue than PhiKan083 in the Y220C 

cell line. PhiKan083 is a known stabilizer of this p53 mutant. The best compound in this assay 

was the molecule nicknamed Thor, which upregulated p21 and PUMA by 7.6 and 3.2-fold 

respectively. Thor and 2 other compounds were also found to rescue p53 with the luciferase 
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assay that used a p53 response element. Again Thor was the best, and had almost a 3-fold 

increase in the luciferase response. Thor also showed signs of rescue in the final cell test, which 

used pAb 1620, a immunofluorescent antibody that binds p53. A cell line with Y220C mutant of 

p53 had a highly noticeable increase in the amount of pAb1620 in the presence of Thor and 3 

other compounds. 

While the evidence presented here strongly suggests that we have identified multiple p53 

stabilizers, there is still a lot of work to be done before we can be confident that these are good 

hits. First, we will to use NMR and/or XRay crystallography to verify that these compounds 

directly bind p53 and to confirm their binding modes. Next, we will establish binding affinity 

with additional biochemical assays such as surface plasmon resonance or differential scanning 

fluorimetry. This will allow us to determine which of these hits bind most potently. Lastly, we 

will perform medicinal chemistry optimization in order to improve affinity and obtain the 

physicochemical properties necessary for our hits to be drug-like compounds. 

During my thesis work, I optimized the docking tool DARC, discovered a novel, 

druggable pocket on p53, performed a virtual screen with that pocket, and demonstrated that 

many of the predicted p53 binders not only bind, but rescue the structure and function of 

multiple cancer-associated, destabilizing mutants of p53. These hits may turn out to be strong 

drug leads, and just as importantly, the method used to find these hits appears to be superior to 

previous methods and should be repeated with a larger virtual screen. This brings us a step closer 

to Precision Oncology. 
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