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Abstract

In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study

the existence and stability of periodic waves in equations that possess nonlocal disper-

sion, i.e. equations in which the dispersion relation between the temporal frequency ω and

wavenumber k of a plane wave (x,t) 7→ ei(kx−ωt) is not of the form ω(k) = p(ik) where p

is a polynomial. In models that involve only classical derivative operators (known as local

equations), the behavior of the system at a point is influenced solely by the behavior in an

arbitrarily small neighborhood. In contrast, equations involving nonlocal operators incor-

porate long-range interactions as well. Such operators appear in numerous applications,

including water wave theory and mathematical biology.

Specifically, we establish the existence and nonlinear stability of a special class of

periodic bound state solutions of the Fractional Nonlinear Schrödinger Equation, where

the nonlocality of the fractional Laplacian presents formidable analytical challenges and

elicits the development of functional-analytic tools to complement the absence of more-

understood techniques commonly used to analyze local equations.

Further, we use numerical methods to survey the existence and spectral stability of

small- and large-amplitude periodic wavetrains in Bidirectional Whitham water wave mod-

els, which implement the exact (nonlocal) dispersion relation of the incompressible Euler

equations and are thus expected to better capture high-frequency phenomena than the uni-

directional Whitham and Korteweg-de Vries (KdV) equations.
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Chapter 1

Background and Overview

As an overarching theme, in this work we will examine the stability of periodic waves in

nonlocal dispersive equations. Here, dispersion refers to the phenomenon in which waves

of different frequencies travel at different speeds. For example, consider the classical linear

transport equation

ut+ cux = 0, u= u(x,t),

which provides a simple translational model of mass transport. One can easily verify that

this system admits plane wave solutions of the form

u(x,t) = Aei(kx−ωt), A ∈ R (1.1)

when c = ω/k, which is interpreted as the wave speed of (1.1). This is readily seen when

(1.1) is expressed in traveling wave form:

u(x,t) = Aeik(x−ct), c=
ω

k
.

In this example, we write ω(k) = ck, where this relationship between the plane wave’s

temporal frequency ω as a function of its wavenumber k is referred to as the dispersion
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relation of the PDE. Moreover, we define the linear phase speed c(k) := ω(k)/k. Per

these relationships, we see that waves of different wavenumber k (in correspondence with

the frequency of the wave) will indeed propagate at different speeds c(k).

The dispersion relation varies from equation to equation. For example, upon substitut-

ing the plane wave ansatz (1.1) into the linearized Korteweg-de Vries equation

ut+ux+
1

6
uxxx = 0,

we obtain the following dispersion relation and linear phase speed, respectively:

ω(k) = k− 1

6
k3, c(k) = k− 1

6
k2.

We say that an equation has local dispersion if the dispersion relation is of the form

ω(k) = p(k), where p is a polynomial. This is often the case, as equations involving only

classical derivative operators ∂jx will possess polynomial dispersion relations. However,

equations involving nonlocal operators (e.g. integral operators) that incorporate long-range

interactions across the entire spatial domain will have non-polynomial dispersion relations.

We will examine a few such equations.

In particular, in Chapter 2 we study the existence and nonlinear, orbital stability, i.e.

stability modulo translation and phase symmetries, of T -antiperiodic standing waves (x,t) 7→

eiωtφ(x) in the Fractional Nonlinear Schrödinger Equation (fNLS)

iut−Λαu+γ |u|2σ u= 0, x, t ∈ R
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where u = u(x,t) is generally complex-valued and Λα := (−∂2
x)α/2 is the nonlocal frac-

tional Laplacian operator defined through Fourier multipliers:

Λ̂αf(n) =
∣∣∣πn
T

∣∣∣α f̂(n), n ∈ Z.

Guided by what is known in the local case α = 2 (where fNLS becomes the Classical

Nonlinear Schrödinger Equation), we roughly follow a standard program of demonstrating

the existence and stability of constrained energy minimizers, where existence is obtained

through variational methods and stability is shown as a consequence of the nondegeneracy

of the Hessian of the Lagrangian functional; that is, we show that the kernel of the Hessian

evaluated at the antiperiodic standing wave profile is spanned precisely by eigenfunctions

obtained by differentiating with respect to translation and phase symmetries in the govern-

ing PDE. The techniques typically used to show nondegeneracy of the Hessian do not apply

in the genuinely nonlocal setting α ∈ (1,2), hence suitable replacement theories must be

developed. In Section 1.1.1, we review the variational methods used to find solutions of

the classical Nonlinear Schrödinger Equation as constrained minimizers of an energy func-

tional, and in Section 1.1 we review the definitions and techniques relevant to the stability

of waves in Hamiltonian systems.

In Chapter 3, we numerically survey the existence and spectral stability of a class of

periodic traveling waves in several Bidirectional Whitham shallow water models, e.g.

 ut = −ηx−uux

ηt = −Kux− (ηu)x,

where u is a fluid velocity (more specifically, the trace of the velocity potential at the free

surface of the wave), η is the wave surface’s displacement from the undisturbed water
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depth, and the nonlocal operator K is defined through Fourier multipliers as

K̂f(n) :=
tanh(n)

n
f̂(n), n ∈ Z.

In contrast with other popular shallow water models such as the Korteweg-de Vries equation

(KdV) and the unidirectional Whitham equation (see Section 1.2.1), these Bidirectional

Whitham models possess the exact (non-dimensionalized) dispersion relation

(ω(k))2 = k tanh(k)

of the extremely general incompressible Euler equations and are thus expected to better

capture high-frequency phenomena than the KdV and the unidirectional Whitham mod-

els, whose dispersion relations approximate but do not match those of the full water wave

model. Numerical approximations of solutions in the bidirectional Whitham models are

obtained through continuation methods seeded by their local bifurcation theory, which is

sketched in Section 1.2.2, and Floquet’s theorem (see Section 1.2.3) forms the foundation

for the numerical methods used to approximate the spectrum of the linearized equation

about an equilibrium background wave.

1.1 Existence and Stability in Hamiltonian Systems

1.1.1 Variational Methods

In local equations, where equilibria possess an ODE structure, it is generally convenient to

establish existence of equilibria via phase plane analysis. However, such structure is absent

in the Fractional Schrödinger Equation, which will be studied in depth in Chapter 2. Here,

we outline the process of establishing existence of solutions to a PDE through variational
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methods, where solutions are found as critical points of a functional subject to constraint(s).

Fortunately, this procedure does not rely on ODE structure and will be used heavily in the

analysis of Chapter 2.

To illustrate such methods, consider the cubic, defocusing Classical Nonlinear

Schrödinger Equation (NLS)

iut+uxx−|u|2u= 0, x, t ∈ R (1.2)

where u is generally complex-valued, posed on the L2-based Sobolev space

H1(0,2T ) :=

{
u ∈ L1

loc(0,2T ) : ‖u‖2H1(0,2T ) :=

∫ 2T

0

(
|u|2 + |ux|2

)
dx <∞

}
,

where ux is to be interpreted in the weak sense. Further, ansatz a spatially periodic bound

state solution of the form

u(x,t) = eiωtφ(x), ω ∈ R, (1.3)

where the profile φ(x) is 2T -periodic. Substituting (1.3) into (1.2), we obtain the profile

equation

−φ′′+ωφ+ |φ|2φ= 0. (1.4)

Now, NLS possesses the following conserved quantities, referred to as the Hamiltonian

energy and charge, respectively:

H(u) :=
1

2

∫ 2T

0

(
|ux|2 +

1

2
|u|4
)
dx, Q(u) :=

1

2

∫ 2T

0
|u|2 dx.

Using these conserved quantities, consider the following minimization problem over real-

valued functions in which the Hamiltonian energy is minimized subject to fixed charge
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µ > 0:

φ= argmin
u∈Aµ

H(u), Aµ := {u :Q(u) = µ}. (1.5)

We will use the following theorem regarding constrained minimizers:

Theorem 1.1.1 (Lagrange multiplier theorem). Suppose that φ ∈ Aµ := {u ∈X : Q(u) =

µ} is a local minimum (or maximum) of H|Aµ . If the Gâteaux derivative dH[φ] exists at φ

and is linear, and the Fréchet derivative DQ(φ) is not the zero map, then there exist ω ∈R

such that

dH[φ]v+ωDQ(φ)v = 0 for all v ∈X .

So, provided such a φ exists per (1.5), then by the Lagrange multiplier theorem there

exists ω ∈ R such that

δH(φ) +ωδQ(φ) = 0, (1.6)

which, when c= 0, is equivalent the profile equation (1.4). See Appendix A for a discussion

of the variational derivatives δH, δQ in the generally fractional setting. In particular, α= 2

corresponds to the classical case discussed here.

In order to show that such a φ exists in (1.5), first note thatH is clearly bounded below

(by zero), hence λ := infu∈AµH(u) is well-defined and there exists a minimizing sequence

{uk} ⊂ Aµ such that limk→∞H(uk) = λ. Further,H and the constraint Q≡ µ control the

H1(0,2T ) norm for the sequence {uk}:

1

2
‖uk‖2H1(0,2T ) ≤Q(uk) +H(uk) = µ+H(uk)→ µ+λ as k→∞,

hence {uk} is bounded in H1(0,2T ). Since the unit ball is not compact in H1(0,2T ), an

infinite dimensional (Hilbert) space, we cannot a-priori extract a convergent subsequence
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in H1(0,2T ). However, the following theorem allows one to extract a convergent subse-

quence in the weak topology:

Theorem 1.1.2 (Banach-Alaoglu). Let {uk} be a bounded sequence in a reflexive Banach

spaceX . Then there exists φ∈X and a subsequence {ukj}⊂X that converges to φ weakly

in X .

Since H1(0,2T ) is a Hilbert space, it is reflexive, and we use the Banach-Alaoglu

theorem to extract a candidate minimizer φ ∈H1(0,2T ) which is the weak limit of a sub-

sequence {ukj}. It is yet unclear whether φ ∈ Aµ, i.e that Q(u) = µ. However, by the

following theorem, one can extract a further subsequence that converges strongly (i.e. in

norm) to φ in L2(0,2T ):

Theorem 1.1.3 (Rellich-Kondrachov). If s1 > s0, thenHs1((0,T );C) is compactly embed-

ded in Hs0((0,T );C).

(The statement given here is a special case of [1, Theorem 5.1] with n= 1, p0 = p1 = 2,

E0 = E1 = C, and X = (0,T )⊂ R.)

Now, since strong convergence implies weak convergence and weak limits are unique,

there exists a further subsequence {ukj} such that ‖ukj −φ‖2L2(0,2T )
→ 0, which implies

that Q(ukj )→ Q(φ). Thus φ ∈ Aµ is a candidate constrained minimizer of H, and it

remains to show that H(φ) = λ := infu∈AµH(u). Since H1(0,T ) is compactly embedded

in L4(0,2T ) by Sobolev embedding, there exists a further subsequence such that P (ukj )

converges, and by the weak lower semicontinuity of the L4(0,2T ) norm and the weak lower

semicontinuity of the functional u 7→
∫ 2T

0 |ux|
2 dx, we have that

λ= liminf
j→∞

H(ukj )≥H(φ)≥ λ,

7



henceH(φ) = λ, and we have that φ is a minimizer ofH with respect to fixed charge, hence

by the previous discussion φ and the corresponding Lagrange multiplier ω form a bound

state solution u(x,t) = eiωtφ(x) of (1.2).

We remark that the bound state solution (1.3) constructed above with real-valued profile

is embedded in a family of complex-valued traveling waves

u(x,t) = eiωtψ(x− ct;c),

with a generally complex-valued profile ψ which satisfies the profile equation

−ψ′′+ωψ+ icψ′+ |ψ|2ψ = 0. (1.7)

This embedding is due to the Galilean invariance

Gcu(x,t) = e
icx
2 −

ic2t
4 u(x− ct, t) (1.8)

which smoothly maps a real-valued standing wave solutions to complex-valued traveling

wave solutions. In proving the stability of standing waves, it will be important to differen-

tiate the profile equation (1.7) with respect to the wave speed c, which is justified by this

Galilean invariance.

In Proposition 2.2.2, we use a similar approach as above to construct a class of spatially

periodic traveling waves (x,t) 7→ eiωtφ(x− ct) in the fractional case, solving an adapted

minimization problem to account for the lack of an exact Galilean invariance.

8



1.1.2 Nondegeneracy and Orbital Stability

In addition to the question of existence, one is often also interested in the stability of

solutions, which essentially addresses whether an equilibrium will persist for long times

even when slightly perturbed. Continuing with the discussion of the Classical Nonlinear

Schrödinger Equation, we will examine the nonlinear stability of the constrained energy

minimizers φ constructed in Section 1.1.1. In a co-rotating frame, such φ are equilibria of

the PDE

iut+uxx−ωu−|u|2u= 0. (1.9)

We say that φ is stable (in the sense of Lyapunov) if for every ε > 0 there exists δ > 0

such that if ‖v‖ < δ, then the solution of (1.9) with initial data u(x,0) = φ+ v satisfies

‖u(·, t)−φ‖< ε for all time, where ‖·‖ is an appropriate norm.

Now, note that (1.2) has translation and trivial-phase invariances; i.e. if u(·, t) is a

solution, then so is

eiβu(·−x0, t), for all x0,β ∈ R.

So, we can only expect that a time-evolved solution of (1.9) remains close to its initial

data modulo invariances. This leads us to define the notion of orbital stability, where we

classify an initial datum φ as orbitally stable if the time-evolved solution u(·, t) with initial

data u(·,0) = φ+v for a small perturbation v remains close to φ for all time, where “close”

is measured in the semidistance

ρ(u(·, t),φ) := inf
x0,β∈R

∥∥∥eiβu(·−x0, t)−φ
∥∥∥ .

That is, the time-evolved solution is translated and rotated for “best fit” before measuring

its norm-difference from φ.

9



To proceed, consider the Lagrangian functional

E(u) :=H(u) +ωQ(u).

Then (1.9) can be written as the Hamiltonian system

ut = J δE(u) (1.10)

with symplectic form J = −i. Then, per (1.6), a solution of the profile equation (1.4)

is a critical point of E , i.e. δE(φ) = 0. Perturbing φ by a complex-valued, co-periodic

perturbation v and expanding in a Taylor series, we have

E(φ+v)−E(φ) =
1

2

〈
δ2E(φ)v,v

〉
+O(‖v‖3).

As is known from the theory of finite dimensional Hamiltonian systems, the stability of φ

follows if
〈
δ2E(φ)v,v

〉
is uniformly positive for all v, i.e. that the Hessian δ2E(φ) of the

Lagrangian is positive-definite. A-priori, this is too much to hope for due to the symmetries

present in NLS. Indeed, δ2E(φ) has a nontrivial kernel: writing v = Re(v) + i Im(v) and

decomposing the action of δ2E(φ) into real and imaginary parts, due to the reality of φ we

can represent δ2E(φ) as a diagonal matrix operator

δ2E(φ)v ∼

L+ 0

0 L−


Re(v)

Im(v)

 ,
where

L+ :=−∂2
x+ 3φ2 +ω, L− :=−∂2

x+φ2 +ω.

10



It is easy to verify that, due to the profile equation (1.4), φ ∈ ker(L−) and φ′ ∈ ker(L+),

hence δ2E(φ) is not positive definite, as φ′+ iφ ∈ ker(δ2E(φ)).

However, not all hope is lost–an appropriate positive-definiteness can be recovered if

δ2E(φ) can be shown to be nondegenerate, i.e. that its kernel is precisely spanned by

symmetry eigenfunctions. Here, this means showing that

ker(L+) = span{φ′}, ker(L−) = span{φ}.

The proof of nondegeneracy relies on a ground state and oscillation theory for the L+ and

L− operators, which is traditionally addressed via Sturm-Liouville Theory:

Theorem 1.1.4 (Periodic Sturm-Liouville Theory). Consider the eigenvalue problem

Lu= λu, L :=−∂2
x+V (x) (1.11)

where V is T -periodic. There exists a real sequence

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ ·· ·

such that:

1. The eigenvalue problem (1.11) has a T -periodic solution u if and only if λ = λ4j−1

or λ = λ4j for some j ≥ 0. The T -periodic eigenfunction corresponding to λ0 has

no zeros in [0,T ), and the T -periodic eigenfunctions corresponding to λ4j−1,λ4j for

j ≥ 1 have 2j zeros on [0,T ).

2. The eigenvalue problem (1.11) has a T -antiperiodic solution (i.e. u(x+T ) =−u(x))

if and only if λ = λ4j−3 or λ = λ4j−2 for some j ≥ 1. Such T -antiperiodic eigen-

functions have 2n−1 zeros in [0,T ).

11



(See [63, Theorem 5.37], [49, Theorem 2.1].)

Analyzing L+ and L− on subspaces of odd and even functions and applying Sturm-

Liouville theory in conjunction with monotonicity and parity properties of φ and φ′, it

is possible through proof by contradiction with the Fredholm alternative to rule out the

existence of further non-trivial eigenfunctions in the kernels of L±. For these Fredholm

alternative arguments, knowledge of a few elements in the range of L± will be needed,

some of which are obtained by differentiating (1.7) with respect to parameters. The ability

to do this is justified in the classical case by the Galilean invariance (1.8), but smoothness

assumptions will be needed in the fractional case. Moreover, the classical Sturm-Liouville

Theory stated in Theorem 1.1.4, whose proof depends on ODE techniques (e.g. Wronskian

determinant, Prüfer variables in phase space) does not apply in the fractional setting, hence

a similar ground state and oscillation theory must be developed to replace it. This is done

through semigroup theory and applying rearrrangement inequalities to a variational char-

acterization of a linear operator’s the principal eigenvalue. See Section 2.3.1 and Section

2.3.2.

Lastly, we remark that the Hessian δ2E(φ) considered as an operator acting on 2T -

antiperiodic functions a-priori has at most two negative eigenvalues, which is too unwieldy

to establish stability. This difficulty was encountered in [3], where the proof of stability of

cnoidal waves required an additional assumption that the wave profile be T -antiperiodic,

i.e. that φ(x+T ) =−φ(x). In addition to the fact that phase-plane analysis in the local case

yields the existence of antiperiodic solutions (see the introductory discussion of Section

2.2), this difficulty motivates incorporating T -antiperiodic function spaces directly into the

existence and stability theories for the fractional setting.
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1.2 Dispersive Shallow Water Wave Models

1.2.1 Korteweg-de Vries and Unidirectional Whitham Equations

To set the stage for an exploration of bidirectional Whitham shallow water models as pre-

sented in Chapter 3, consider the Incompressible Euler Equations

 ut+ u ·∇u = −1
ρ∇P −gj,

∇·u = 0,
(1.12)

which are a very general model of an inviscid, incompressible fluid. Here, u is the fluid

velocity vector (which will be assumed to be irrotational), −gj is a constant gravitational

field, ρ is the density of the fluid, and P is the pressure of the fluid. Since u is irrotational,

we can express u =∇ϕ in terms of a velocity potential ϕ, and the incompressibility con-

dition leads to the velocity potential satisfying Laplace’s equation in the fluid. Then by

continuity of pressure in the fluid, the role of pressure is reduced to a boundary condition at

the wave surface, where the pressure is taken to be the constant, undisturbed air pressure.

Under these assumptions, it is shown in [66, Chapter 13], that waves in water of constant

mean depth h0 possess the dispersion relation

ω2 = gk tanh(kh0). (1.13)

Remark 1.2.1. That the dispersion relation (1.13) does not depend on the pressure P in

the Incompressible Euler Equations (1.12) can be intuited from the fact that the external

forcing (including∇P ) drops out of the linearized system.
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Making a further assumption that the fluid depth h0 is small relative to the wavelength

2π/κ leads to the one-dimensional shallow water equations [66, (13.79)]

 ηt+h0ux+ (uη)x = 0

ut+uux+gηx = 0,
(1.14)

which is not dispersive since the linear part of (1.14) can easily be checked to have con-

stant linear phase speed ω/k = ±
√
gh0. To introduce dispersion into the shallow water

equations, note that since kh0� 1 by the shallow water hypothesis, the dispersion relation

(1.13) can be expanded in a Maclaurin series to obtain

ω2 = gh0k
2

(
1− 1

3
(kh0)2 +O((kh0)4

)
.

Taking the square root of both sides, keeping the positive branch (which corresponds to

unidirectional waves propagating to the right), and expanding the square root in a Maclaurin

series yields, to third order,

ω =
√
gh0

(
k− h

2
0

6
k3

)
. (1.15)

This is the dispersion relation for the linear equation

ηt+
√
gh0 ηx+

h2
0

6
ηxxx = 0,

and combining this linear equation with the shallow water nonlinearity ηηx leads to the

dimensional Korteweg-de Vries (KdV) equation

ηt+
√
gh0 ηx+

h2
0

√
gh0

6
ηxxx+

3

2h0
ηηx = 0. (1.16)
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Due to the truncation of the full Euler dispersion relation in (1.15), we expect (1.16)

to be a poor model for waves of large wavenumber (i.e. high frequency). In an effort to

more closely capture the behavior of the full Euler equations, Whitham [66] suggested a

correction of the KdV model in which its linear phase speed is replaced with the (positive)

Euler phase speed. To do this, first observe that one can express (1.16) as

ηt+F−1
k (cKdV(k))∗ηx+

3

2h0
ηηx = 0, (1.17)

where cKdV(k) =
√
gh0

(
1− h20

6 k
2
)

is the linear phase speed obtained from (1.15). Note

that the linear phase speed of the full Euler equations is given by

(cEuler(k))2 =
g tanh(kh0)

k
,

hence waves propagating to the right have phase speed

cEuler,+(k) =

√
g tanh(kh0)

k
. (1.18)

Replacing the KdV linear phase speed in (1.17) with the positive Euler phase speed, we

obtain

ηt+F−1
k (cEuler,+(k))∗ηx+

3

2h0
ηηx = 0. (1.19)

In contrast with cnoidal periodic traveling waves in KdV, which are always spectrally stable

[6], numerical studies [60] show that periodic traveling waves in (1.19) possess spectral

instabilities. This difference of behavior indicates that stability/instability in the full water

wave model depends sensitively on both dispersion and nonlinearity. In Chapter 3, we

numerically study the spectral stability of bidirectional Whitham models whose linear phase

speed matches (1.18), permitting waves that travel the left or to the right. One such model
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is given by  ut = −ηx−uux

ηt = −Kux− (ηu)x

(1.20)

where the operator K incorporates the full-Euler dispersion and is defined via its symbol

K̂f(n) = K̂(n)f̂(n) :=
tanh(n)

n
f̂(n), n ∈ Z. (1.21)

Here, η represents the fluid height and u = φx, where φ(x,t) = φ(x,η(x,t), t) denotes the

trace of the velocity potential at the free surface.

Due to accurate dispersion, we will find that traveling waves in bidirectional Whitham

equations such as (1.20) capture a high frequency instability that is found in neither of the

KdV nor unidirectional Whitham equations.

1.2.2 Local Bifurcation Theory and Continuation

In Chapter 3, we will find traveling wave solutions of bidirectional Whitham water wave

models such as (1.20) by seeking equilibrium wave profiles φ and their corresponding wave

speeds c that satisfy a profile equation of the form

F (c,φ) :=Kφ−g(c,φ) = 0, (1.22)

where the operator K defined in (1.21) encodes the full Euler dispersion and the function

g depends on the specific model and implicitly relates the profile φ and the wave speed c.

It will be especially convenient to seek constant solutions and their corresponding wave

speeds. Though constant solutions are not interesting in their own right, under appropriate

conditions there could be non-trivial solutions of very small amplitude “nearby”. So, we
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ask the question: which constant solutions φ0 and corresponding wave speeds c0 could

possibly experience a bifurcation into small-amplitude periodic solutions?

By the implicit function theorem, a constant solution (c0,φ0) of (1.22) can possibly

bifurcate into a nonconstant one if the kernel of the Fréchet derivative δφF (c0,φ0) is non-

trivial; i.e. if

δφF (c0,φ0)(v) := lim
ε→0

F (c0,φ0 + εv)−F (c0,φ0)

ε
= 0.

for some nontrivial v. That is, if the above Fréchet derivative vanishes at v, then the curve

{(c,φ) :F (c,φ) = 0} is not guaranteed to be uniquely parameterized by c in a neighborhood

of (c0,φ0), which potentially allows nontrivial solutions (c,v) to satisfy F (c,v) = 0 in a

neighborhood of (c0,φ0).

We now endeavor to find such nontrivial v and corresponding c. For this example

discussion, we will use

F (c,φ) :=Kφ− 1

2
φ3 +

3

2
cφ2− c2φ,

=⇒ δφF (c,φ) :=K− 3

2
φ2 + 3cφ− c2 Id

corresponding to the traveling wave profile equation of (1.20). See (3.24) and the surround-

ing discussion for further details. Restricting to even, real-valued 2π-periodic functions, we

express v in its Fourier series as v(x) =
∑∞

n=0 v̂(n)cos(nx). We want constant φ0, c0, and

nontrivial v to simultaneously satisfy


F (c0,φ0) = Kφ0−

1

2
φ3

0 +
3

2
c0φ

2
0− c20φ0 = 0

δφF (c0,φ0)(v) = Kv− 3

2
φ2

0v+ 3c0φ0v− c20v = 0.

(1.23)
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Taking the Fourier transform of the second equation in (1.23), we have

(
K̂(n)− 3

2
φ2

0 + 3c0φ0− c20
)
v̂(n) = 0, ∀n ∈ Z.

When n= 1 (corresponding to fundamental period 2π), we see that if

K̂(1)− 3

2
φ2

0 + 3c0φ0− c20 = 0,

then v̂(1) can be any real number, hence

ker
(
δφF (c0,φ0)

)
= span{cos(x)} . (1.24)

So, any c0 and constant φ0 satisfying


Kφ0−

1

2
φ3

0 +
3

2
c0φ

2
0− c20φ0 = 0

K̂(1)− 3

2
φ2

0 + 3c0φ0− c20 = 0.

will yield a solution that can likely be continued to a branch of nontrivial 2π-periodic

solutions. Taking φ0 = 0 (as is done in Section 3.3.1), we have that c0 :=

√
K̂(1) yields a

point where a bifurcation from the trivial solution φ≡ 0 is possible. To continue the branch

of nontrivial solutions from (c0,0), for |a| � 1 we seek (c(a),v(·;a)) of the form

c(a) = c0 +ac1 +a2c2 +a3c3 +O(a4)

v(x;a) = 0 +acos(x) +a2v2 +a3v3 +O(a3)

such that F (c(a),v(·;a)) = 0, where v2 and v3 are even, 2π-periodic functions. (The above

expansion is justified by the Lyapunov-Schmidt reduction.) Computing F (c(a),v(·;a)) and
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grouping the O(a), O(a2), and O(a3) terms yields1

0 =
(
Kcos(x)− c20 cos(x)

)
a

+

(
Kv2− c0v2 +

3c0
4
−2c0c1 cos(x) +

3

4
c0 cos(2x)

)
a2

+

(
Kv3− c20v3−

(
3

8
+ 2c0c2

)
cos(x) + 3c0v2(x)cos(x)− 1

8
cos(3x) +O(c1)

)
a3

+O(a4).

The coefficient of a above vanishes since cos(x) ∈ ker(K− c20 Id) by (1.24). We also want

the coefficient of a2 to vanish. Taking the Fourier transform of the coefficient of a2 yields

(
K̂(n)− c20

)
v̂2(n)−2c0c1δn,1 +

3c0
4

(δn,0 + δn,2) = 0, (1.25)

where δn,k is the Kronecker delta. When n= 1, (1.25) becomes−2c0c1 = 0, which implies

that c1 = 0. When n= 0 (and now c1 = 0) in (1.25), we immediately obtain

v̂2(0) =
3c0

4(c20−1)
.

Similarly, with n= 2 in (1.25) we obtain

v̂2(2) =
3c0

4(c20−K̂(2))
.

Finally, analyzing the Fourier transform of the O(a3) terms with c1 = 0 and n= 1 yields

c2 =
3

2
v̂2(0) +

3

4
v̂2(2)− 3

16c0

=
9c0

8(c20−1)
+

9c0

8(c20− K̂(2))
− 3

16c0
.

1This is very tedious, and Mathematica can help a lot here.
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Putting it all together, we finally have

c(a) = c0 +

(
9c0

8(c20−1)
+

9c0

8(c20− K̂(2))
− 3

16c0

)
a2 +O(a3)

v(x;a) = acos(x) +O(a2),

where c0 = K̂(1) = tanh(1). Such local bifurcation formulas will be sufficient to seed a

numerical continuation method that successively solves for solutions of larger and larger

amplitude; see Section 3.2.2.

1.2.3 Spectral Stability and Floquet’s Theorem

In studying the bidirectional Whitham models, we will numerically approximate the spec-

trum of the linearization of the system about an equilibrium background wave. In particu-

lar, we concern ourselves with the following notion of stability, known as spectral stability,

which is defined as follows:

Definition 1.2.2 (Spectral Stability). An equilibrium solution φ of an autonomous system

ut = F (u) is spectrally stable if the linear operator L[φ] obtained by linearizing system

about φ has no spectrum with strictly positive real part.

We will be interested in studying the stability of an equilibrium φ with respect to local-

ized perturbations v(·, t) ∈ L2(R), which satisfy to first order

vt = L[φ]v.

Separating variables, we write v(x,t) = eλtV (x), which yields the eigenvalue problem

L[φ]V = λV (1.26)
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on L2(R). Clearly if any eigenpair V , λ is such that Re(λ)> 0, then the perturbation grows

exponentially forward in time, leading to (spectral) instability.

Floquet’s theorem provides a convenient representation of bounded solutions to the

eigenvalue problem (1.26):

Theorem 1.2.3 (Floquet). Consider the linear homogeneous differential equation y′ =

A(x)y for some square matrix A(x) of complex continuous functions such that A(x+L) =

A(x). Then any fundamental matrix Φ(x) of this system may be decomposed as

Φ(x) = Φ̃(x)eRx,

where R is a constant matrix and Φ̃(x) is L-periodic and nonsingular. The eigenvalues

of R are known as Floquet exponents, and bounded solutions on R correspond to purely

imaginary Floquet exponents. Thus every bounded solution of (1.26) is of the form

V (x) = eiµxṼ (x), (1.27)

where Ṽ (x) is L-periodic and µ ∈ [0,2π/L).

In implementing the Fourier-Floquet-Hill Method (FFHM) [16] for approximating the

spectrum of a linear operator with periodic coefficients, the decomposition (1.27) of the

eigenfunction in (1.26) is advantageous since the periodic function Ṽ can be expanded in

a (truncated) Fourier series, which leads to a finite dimensional eigenvalue problem on the

Fourier coefficients for each µ ∈ [0,2π/L) that can be solved using standard numerical

techniques and software packages [43].

A further important consequence of Floquet’s theorem is that the L2(R)-spectrum of a

linear operator with periodic coefficients is purely essential. Indeed, by Floquet’s theorem,

any nontrivial V ∈ L2(R) satisfying (1.26) is either unbounded on R or is of the form
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(1.27); regardless, ‖V ‖L2(R) = +∞, hence

σL2(R)(L[φ]) = σL2(R),ess(L[φ]).

Moreover, given that every eigenfunction of (1.26) is of the form (1.27), we have for each

Bloch parameter µ ∈ [0,2π/L) that

λeiµxṼ = L[φ]
(
eiµxṼ

)
=⇒ λṼ =

(
e−iµxL[φ]eiµx

)
Ṽ =: Lµ[φ]Ṽ ,

where Lµ[φ] is a linear operator with periodic coefficients acting on a bounded domain

with periodic boundary conditions. Hence for each µ ∈ [0,2π/L) the spectrum of Lµ[φ]

is purely point spectrum, which leads to the following convenient characterization of the

spectrum of L[φ]:

σL2(R)(L[φ]) = σL2(R),ess(L[φ]) =
⋃

µ∈[0,2π/L)

σL2
per(0,L),pt(L

µ[φ]).

In the spectral computations of Chapter 3 (and in the more general discussion of Appendix

C) we will capitalize on this characterization to numerically approximate the spectrum of

the linearization of a bidirectional Whitham models by expanding the periodic eigenfunc-

tions for each Lµ[φ] in Fourier series.

Lastly, we remark that Floquet’s theorem as stated above applies to purely differential

operators. This theorem can be extended to a nonlocal setting (see [42, Proposition 3.1],

for instance), which will be of interest in the bidirectional Whitham equations we consider.
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Chapter 2

The Fractional Nonlinear Schrödinger Equation

2.1 Introduction

In this chapter, we consider the existence and stability properties of a class of spatially

periodic solutions to the fractional nonlinear Schrödinger equations (fNLS) of the form

iut−Λαu+γ|u|2σu= 0, x, t ∈ R, (2.1)

where subscripts denote partial differentiation. Here and throughout, u= u(x,t) is a gener-

ally complex-valued function, and the pseudodifferential operator Λα := (−∂x)α/2 acting

on 2T -periodic functions is defined by Fourier multipliers via

Λ̂f(n) =
∣∣∣πn
T

∣∣∣α f̂(n), n ∈ Z.

Further, γ = 1, γ =−1 distinguishes between focusing (attracting) and defocusing (repul-

sive) nonlinearities, respectively.

The parameter α ∈ (0,2] describes the fractional dispersive nature of the equation.

When α = 2, the operator Λ2 = −∂2
x is the classical (local) Laplacian having positive,

discrete point spectrum. In this case, (2.1) reduces to the well-studied classical nonlinear
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Schrödinger equation (NLS), which serves as a canonical model for weakly nonlinear wave

propagation in dispersive media; see, for example, [61]. When α ∈ (0,2), Λα denotes the

so-called fractional Laplacian, which arises naturally in a variety of applications including

the continuum limit of discrete models with long range interaction [46], dislocation dynam-

ics in crystals [11], mathematical biology [51], water wave dynamics [41], and modeling

waves in lossy media [62]. See also [9] for a recent discussion on applications.

Throughout our analysis, we will study solutions of the form

u(x,t) = eiωtφ(x− ct;c), (2.2)

where ω,c ∈ R are parameters and φ is a bounded solution to the (generally) nonlocal

profile equation

Λαφ+ωφ+ icφ′−γ|φ|2σφ= 0.

When c= 0, the focusing fNLS is known to admit standing solitary waves that are asymp-

totic to zero at spatial infinity; see [25]. Among such solitary wave solutions, specific

attention is often paid to the positive, radially symmetric solutions typically referred to as

“ground states”. The stability of such ground states dates back to the work of Cazenave

and Lions [13] and Weinstein [64, 65] on the classical case α= 2, using the method of con-

centration compactness along with the construction of appropriate Lyapunov functionals.

For α ∈ (1,2], such ground states are known to be orbitally stable provided the nonlinearity

is energy sub-critical, i.e. if 0 < σ < α; see [32, 65], for example. While no nontrivial

localized solutions exist in the defocusing case γ = −1, it is known in the classical case

α= 2 to admit so-called black solitons of the form (2.2) corresponding to monotone front-

like solutions asymptotic to constants as x→±∞. The dynamics and stability of black

solitons has been studied in numerous works; see, for example, [5, 28, 29].
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The stability of periodic standing waves of (2.1) is considerably less understood than

their asymptotically constant counterparts, even in the classical case. For the classical

cubic NLS, Rowlands [59] formally demonstrated that all periodic standing waves in the

focusing case are modulationally unstable (i.e. spectrally unstable to long-wavelength per-

turbations), while periodic standing waves are modulationally stable in the defocusing case.

These results were rigorously established later by Gallay and Haragus [27] for small am-

plitude waves, and for arbitrary amplitude waves by Gustafson, Le Coz, and Tsai [33] and

Deconinck and Segal [15]. The spectral stability to arbitrary bounded perturbations of peri-

odic standing waves in the defocusing NLS (α= 2) was later shown by Gallay and Haragus

[27] for small amplitude waves and by Bottman, Deconinck, and Nivala [7], for waves of

arbitrary amplitude by using complete integrability. These results give the impression that

the defocusing NLS demonstrates better stability properties, hence we restrict our attention

to the defocusing case for the nonlocal fNLS as well. As for the local case, we expect that

periodic waves in the nonlocal fNLS will also be modulationally unstable, though this has

not been verified; to our knowledge there has been no rigorous study into the dynamics of

such waves in the fractional case.

In this work, we will study the nonlinear stability of periodic standing waves of (2.1)

in the genuinely nonlocal case α ∈ (0,2). Since (2.1) is invariant under phase rotation

and spatial translation, i.e. if u(x,t) solves (2.1), then so does eiβu(x−x0, t), we should

only expect stability up to these invariances. Thus, we will measure stability with the

semidistance

ρ(u,v) := inf
x0,β∈R

∥∥∥u(·, t)− eiβv(·−x0, t)
∥∥∥
X
,

where X is a suitably-chosen function space. Such an orbital stability result for solutions

of (2.1) was first obtained in the classical, focusing, periodic case by Angulo-Pava [3],

where the orbital stability of dnoidal type (hence strictly positive) standing waves was
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established to co-periodic perturbations. Pava’s analysis relied on a direct adaptation of

the classical approach to orbital stability by Grillakis, Shatah, and Strauss [30, 31] and

could not be extended to cnoidal type (sign changing) solutions in either of the focusing

or defocusing cases. This issue was later resolved by Gallay and Haragus in [26], which

demonstrated the stability of cnoidal waves in the defocusing cubic NLS (α = 2, σ = 1) to

perturbations with the same period as the modulus of the underlying wave. This restrictive

class of perturbations is essential to employ the techniques of [30, 31] since, as noted by

Pava, the Hessian of the Lagrangian associated with such a cnoidal wave has two negative

eigenvalues when acting on co-periodic functions, invalidating the structural hypotheses of

[30, 31].

Here, per the analysis in [26], we study the existence and nonlinear stability of periodic

standing waves of the fNLS (2.1) with fractional dispersion α ∈ (0,2) to an appropriately

restricted class of perturbations. We concentrate on the defocusing case, and in Section 2.2

we construct a three-parameter family of real-valued T -antiperiodic standing waves, i.e.

2T -periodic waves with

φ(x+T ) =−φ(x),

as local minima of the Hamiltonian energy subject to conservation of charge and angular

momentum: see Proposition 2.2.2 and Lemma 2.2.6. Then we establish the nonlinear

orbital stability of these standing waves to small T -antiperiodic perturbations: see Theorem

2.4.1.

A key step in the stability analysis is to demonstrate that the Hessian of the Hamilto-

nian energy is nondegenerate at such an antiperiodic, local constrained minimizer of the

defocusing fNLS; i.e. that the kernel is generated only by spatial translations and phase

rotations. The nondegeneracy of the linearization is known to play an important role in

the stability of traveling and standing waves (see [65], [48], and [26]) and in the blowup
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analysis (see [45], [61], for instance) of the related dynamical equation. In the case of

the classical NLS with cubic nonlinearity, the nondegeneracy at such antiperiodic standing

wave solutions was established by Gallay and Haragus [26, Proposition 3.2]. Their proof,

however, fundamentally relies on ODE techniques, particularly the Sturm-Liouville theory

for ODEs and a-priori bounds on the number of linearly independent solutions to the lin-

earized equations. These methods are not directly applicable to the nonlocal case α∈ (0,2).

Nevertheless, Frank and Lenzmann [25] recently established the nondegeneracy of solitary

waves for a family of nonlocal evolution equations, including the focusing fNLS. Their

analysis develops a nonlocal analog of Sturm-Liouville theory using the characterization

of the fractional Laplacian as a Dirichlet-to-Neumann operator for a local elliptic problem

in the upper half-plane. Then, via topological nodal domain arguments, they obtain an up-

per bound on the number of sign changes achieved by eigenfunctions of fractional linear

Schrödinger operators acting on the line. This oscillation theory was recently extended to

the periodic setting in [39], which considers the orbital stability of periodic traveling waves

of the fractional gKdV equation.

Considerable modification is needed in the defocusing case to account for the incon-

gruity of the T -periodic potential in the associated linear Schrödinger operators acting on

T -antiperiodic function spaces. Indeed, even in the classical case, antiperiodic ground

states for linear Schrödinger operators need not be simple, and there are examples of po-

tentials for which the associated Schrödinger operator will have an antiperiodic ground

state of multiplicity two; see [49] for instance. We handle this difficulty by demonstrating

that the associated linear semigroup is positivity improving when restricted to antiperiodic

subspaces of even and odd functions, which ultimately yields a characterization of the an-

tiperiodic ground states of such fractional linear Schrödinger operators restricted to these

even and odd subspaces: see Theorem 2.3.8. Further, using antiperiodic rearrangement

inequalities developed in Appendix B, we demonstrate that the ordering of the even and
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odd antiperiodic ground states for a fractional linear Schrödinger operator depends explic-

itly on the monotonicity properties of the real-valued periodic potential: see Proposition

2.3.9. Once the appropriate ground state theory is developed, a suitable oscillation theory

for higher antiperiodic eigenfunctions follows by the arguments in [25, 39]: see Lemma

2.3.10.

We emphasize that the realness of the T -antiperiodic solutions φ discussed above is

absolutely crucial to our analysis, guaranteeing that the Hessian of the Lagrangian func-

tional (whose critical points are solutions of the fNLS profile equation (2.3)) acts as a

diagonal operator on L2
a(0,T )×L2

a(0,T ) upon decomposing into real and imaginary parts.

This diagonal property reduces the nondegeneracy analysis to the study of two scalar lin-

ear fractional Schrödinger operators, which is precisely the setting where our techniques

from Section 2.3 apply. In the “nontrivial phase” case where solutions φ are genuinely

complex-valued, the Hessian operator couples the real and imaginary parts of the pertur-

bations, invalidating the strategy and techniques contained in this chapter: see equation

(2.21) below. The corresponding nondegeneracy and stability analysis for the nontrivial

phase solutions is completely open in the nonlocal case and is an interesting direction for

future research. To our knowledge, the only nondegeneracy result known in the nontrivial

phase case was provided by in [26] using ODE techniques that are not applicable to the

nonlocal setting.

The outline of the chapter is as follows. In Section 2.2 we use variational arguments to

establish the existence of antiperiodic solutions of the profile equation (2.3) in the defocus-

ing case. We then consider the nondegeneracy of these antiperiodic solutions in Section 2.3,

followed by a proof of their orbital stability in Section 2.4. Appendix B contains proofs of

the relevant rearrangement inequalities used in the development of the antiperiodic ground

state theory used in Section 2.3, and Appendix A gives an account of the functional deriva-

tives used in the existence and stability theories.
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2.2 Existence of Constrained Local Minimizers in the De-

focusing Case

We begin our analysis by establishing the existence of periodic waves of the form (2.2) of

the defocusing (γ =−1) fNLS (2.1). Substituting the standing wave ansatz (2.2) into (2.1)

yields the nonlocal profile equation

Λαφ+ωφ+ icφ′+ |φ|2σφ= 0, ω,c ∈ R, (2.3)

where φ is generally a complex-valued function and σ > 0; further restrictions will be

placed on c, ω, σ, and α later. Here and throughout, given a finite period T > 0 we consider

for each α > 0 the operator Λα as a closed operator on

L2
per([0,2T ];C) :=

{
f ∈ L2

loc(R;C) : f(x+ 2T ) = f(x) ∀x ∈ R
}

with dense domain Hα
per([0,2T ];C), defined via its Fourier series as

Λαf(x) =
∑

n∈Z\{0}

∣∣∣πn
T

∣∣∣α eπinx/T f̂(n), α≥ 0.

We will be interested primarily in standing wave solutions of (2.1) with real-valued pro-

files, in which case c = 0. To motivate the expected structure of such solutions, we note

that when α= 2 and c= 0 the profile equation (2.3) is integrable and, upon integration, can

be expressed as
1

2

(
φ′
)2

=H−V (φ;ω)
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Figure 2.1: The effective potential V (φ;ω) for the defocusing NLS with ω < 0.

whereH ∈ R denotes the ODE energy and

V (φ;ω) :=−ω
2
φ2− 1

2σ+ 2
φ2σ+2

denotes the effective potential energy. Observe that the potential V is even for every ω ∈

R and, possesses a unique local minimum when ω < 0, yielding the existence of a one-

parameter family, of periodic orbits1 parameterized byH that oscillate symmetrically about

the equilibrium solution φ = 0; see Figure 2.1. Further, up to translations these waves can

be chosen to be even and antiperiodic, i.e. they satisfy

φ(x+T ) =−φ(x)

where 2T > 0 denotes the fundamental period of φ. While such solutions can be expressed

explicitly in terms of the Jacobi elliptic function cn when α = 2, we are unaware of such

an explicit solution formula for α ∈ (0,2). Nevertheless, for each α ∈ (1,2) and T > 0

we expect to be able to construct a three-parameter family of real-valued, T -antiperiodic

solutions of the profile equation (2.3).

1When ω > 0, the potential V is strictly decreasing on (0,∞) and hence no nontrivial bounded solutions
exist in this case.
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Through a constrained minimization argument, we will construct real-valued, antiperi-

odic solutions of (2.3) with c= 0 as a member of a larger family of complex-valued, travel-

ing waves with c 6= 0. See Remark 2.3.12. In the local case, the existence of such a family

is apparent from an exact Galilean invariance; that is, if u(x,t) solves (2.1) with α = 2,

then so does

Gcu(x,t) = e
icx
2 −

ic2t
4 u(x− ct, t) (2.4)

for each wave speed c ∈R. However, when α 6= 2 no such exact Galilean invariance exists,

so the variational arguments below will construct a general class of antiperiodic travel-

ing wave solutions of (2.1) of the form (2.2) with |c| sufficiently small. With appropriate

smoothness assumptions, the resulting wave at c = 0 can be taken to be real-valued, even,

and decreasing on (0,T ) by applying rearrangement arguments.

To this end, for a fixed T > 0 we will use L2-based Lebesgue and Sobolev spaces over

the antiperiodic interval [0,T ]. Define the real vector space

L2
a([0,T ];C) :=

{
f ∈ L2

loc(R;C) : f(x+T ) =−f(x) ∀x ∈ R
}

equipped with inner product 〈u,v〉= Re
∫ T

0 uv̄ dx, and for each α ∈ (0,2) define

H
α/2
a ([0,T ];C) :=

{
f ∈Hα/2

loc (R;C) : f ∈ L2
a([0,T ];C)

}
(2.5)

considered as a real vector space with inner product

(u,v) := Re

∫ T

0
(uv̄+ Λα/2uΛα/2v)dx.
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Unless otherwise indicated, throughout this chapter we will denote

Hs
∗(0,T ) :=Hs

∗([0,T ];C),

where ∗ could be either “per”, or “a”. At times we may work with the subspace of real-

valued functionsHα/2
a ([0,T ];R) inHα/2

per (0,T ); when the choice of scalar field is irrelevant

or obvious from context, we will simply write Hα/2
a (0,T ) for these spaces.

In applying machinery from functional analysis, it will be important that (2.5) is a

Hilbert space, which we show here.

Lemma 2.2.1. Hα/2
a (0,T ) is a Hilbert space for all α > 1.

Proof. The space Hα/2
a (0,T ) is clearly a subspace of Hα/2

per (0,T ), so it only remains to

show that Hα/2
a (0,T ) is closed. Let {un} ⊂ H

α/2
a (0,T ) be a convergent sequence in

H
α/2
per (0,T ) with limit u∗ ∈Hα/2

per (0,T ). We will show that u∗ ∈Hα/2
a (0,T ). SinceHα/2

a (0,T )

⊂Hα/2
per (0,T ) b L∞(0,T ), there exists a convergent subsequence {unj} in L∞(0,T ). By

the above embedding, for α > 1 there exists constant C > 0 such that

‖v‖L∞(0,T ) ≤ C ‖v‖Hα/2
a (0,T )

for all v ∈Hα/2
a (0,T ), hence

∥∥unj −u∗∥∥L∞(0,T )
≤ C

∥∥unj −u∗∥∥Hα/2
a (0,T )

→ 0 as j→∞.

Now examine

|u∗(x+T ) +u∗(x)|=

∣∣∣∣∣∣∣u∗(x+T ) −unj (x+T )−unj (x)︸ ︷︷ ︸
= 0 since unj is T -antiperiodic

+u∗(x)

∣∣∣∣∣∣∣
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≤
∣∣u∗(x+T )−unj (x+T )

∣∣+ ∣∣u∗(x)−unj (x)
∣∣

≤ 2
∥∥u∗−unj∥∥L∞(0,T )

→ 0 as j→∞.

Therefore u∗(x+T )+u∗(x) = 0 for all x ∈ (0,T ), i.e. u∗ ∈Hα/2
a (0,T ). So, Hα/2

a (0,T ) is

a closed subspace of the Hilbert space Hα/2
per (0,T ), which implies that Hα/2

a (0,T ) is itself

a Hilbert space.

Furthermore, we identify the dual space Hα/2
a (0,T )∗ with H−α/2a (0,T ) via the pairing

`(v) = 〈w,v〉 := Re

∫ T

0
wv̄ dx, ` ∈Hα/2

a (0,T )∗, v ∈Hα/2
a (0,T ), (2.6)

where w = w(`) ∈ H−α/2(0,T ) is the unique element such that (2.6) holds for all v ∈

H
α/2
a (0,T ).

To begin the existence theory, we consider α > 1 and define the functionals

K(u) :=
1

2

∫ T

0
|Λα/2u|2 dx, P (u) :=

1

2σ+ 2

∫ T

0
|u|2σ+2 dx

on Hα/2
a (0,T ), which we refer to as the kinetic and potential energies, respectively. Then

the fNLS (2.1) admits the conserved quantities

H(u) :=K(u) +P (u) =
1

2

∫ T

0

(∣∣∣Λα/2u∣∣∣2 +
1

σ+ 1
|u|2σ+2

)
dx, (2.7)

Q(u) :=
1

2

∫ T

0
|u|2 dx, (2.8)

N(u) :=
i

2

∫ T

0
Λ1/2u HΛ1/2udx, (2.9)
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which we refer to as the Hamiltonian (energy), charge, and (angular) momentum, respec-

tively. By Noether’s theorem, conservation ofH is due to the fact that (2.1) is autonomous

in time, while conservation of Q and N follow from the phase and translational invariance

of (2.1), respectively. For smooth solutions, the momentum functional (2.9) is typically de-

fined as N(u) := i
2

∫ T
0 ūux dx, but we may consider ux to be well-defined on Hα/2

a (0,T ) in

the sense of distributions via integration by parts and the identity ∂x =HΛ, where H is the

Hilbert transform, a bounded linear map from L2
a(0,T )→L2

a(0,T ) with ‖Hf‖L2 ≤‖f‖L2 ,

defined through Fourier multipliers as

Ĥf(ξ) :=−isgn(ξ)f̂(ξ).

For a general α ∈ (1,2], the functionals H, Q, and N are smooth on Hα/2
a (0,T ), and

their first order variational derivatives are smooth maps from H
α/2
a (0,T ) into Hα/2

a (0,T )∗

with the dual elements in H−α/2a (0,T ) given explicitly by

δH(u) = Λαu+ |u|2σu, δQ(u) = u, δN(u) = iux.

(See Appendix A.) Then the fNLS profile equation (2.3) can be written in terms of these

variational derivatives as

δH(φ) +ωδQ(φ) + cδN(u) = 0,

hence T -antiperiodic standing waves of (2.1) arise as critical points of the Lagrangian func-

tional

H
α/2
a (0,T ) 3 u 7→ H(u) +ωQ(u) + cN(u)
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for some ω,c ∈ R. Thus it would be natural to seek solutions of (2.3) as critical points of

H subject to the conservation of Q and N , treating both ω and c as Lagrange multipliers.

However, in the existence theory we will need precise information on the range of values

of c for which such a critical point exists, so it will be more appropriate to treat the wave

speed as a free parameter and to attempt to construct solutions of (2.3) for a fixed c as

critical points of the functional

Fc(u) :=H(u) + cN(u) (2.10)

subject to fixed Q.

Proposition 2.2.2. Let α ∈ (1,2) and T,σ > 0 be fixed in the defocusing (γ = −1) fNLS

(2.1). For each µ > 0 define the constraint space

Aµ :=
{
u ∈Hα/2

a (0,T ) :Q(u) = µ
}
.

Then for each µ > 0 and |c| < c∗ :=
(
π
T

)α−1
2 there exists a nontrivial φ = φ(·;c,µ) ∈ Aµ

such that

Fc(φ) = min
u∈Aµ

Fc(u)

where Fc is as in (2.10), and φ(·;c,µ) satisfies (2.3) for some ω=ω(c,µ)∈R in the sense of

distributions. Moreover, the function φ belongs toH∞a (0,T ) and minimizes the Lagrangian

functional

E(u;c,µ) :=H(u) +ω(c,µ)Q(u) + cN(u) (2.11)

over Hα/2
a (0,T ) subject to the fixed Q≡ µ and N ≡N(φ), specifically

E(φ;c,µ) = inf {E(ψ;c,µ) : ψ ∈ Aµ, N(ψ) =N(φ)} .
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To prove this proposition, we will first need the following technical lemmas:

Lemma 2.2.3. |N(u)| ≤
(
T
π

)α−1
2 K(u) for all u ∈Hα/2([0,T ];C) and α > 1.

Proof. Let u ∈Hα/2
a ([0,T ];C). Then

|N(u)| ≤ 1

2

∫ T

0

∣∣∣Λ1/2u
∣∣∣ ∣∣∣HΛ1/2u

∣∣∣ dx
≤ 1

2

∥∥∥Λ1/2u
∥∥∥
L2(0,T )

∥∥∥HΛ1/2u
∥∥∥
L2(0,T )

by Cauchy-Schwarz

≤ 1

2

∥∥∥Λ1/2u
∥∥∥2

L2(0,T )
since H : L2(0,T )→ L2(0,T ) is bounded with constant 1

=
T

2
·
(π
T

)1/2∑
n∈Z
|n|1/2 |û(n)|2 by Parseval

≤ T

2
·
(π
T

)1/2∑
n∈Z
|n|α/2 |û(n)|2 for α > 1

=
T

2

(
T

π

)α−1
2 ∑

n∈Z

∣∣∣nπ
T

∣∣∣α/2 |û(n)|2

=
1

2

(
T

π

)α−1
2 ∥∥∥Λα/2u

∥∥∥2

L2(0,T )
by Parseval

=

(
T

π

)α−1
2

K(u).

Lemma 2.2.4. Let uk → u be a strongly convergent (i.e. in norm) sequence H1/2(0,T ).

Then lim
k→∞

N(uk) =N(u).

Proof. Since uk→ u in norm in H1/2(0,T ), there exists M > 0 such that ‖uk‖H1/2(0,T ) ≤

M for all k. Recall that the Hilbert transform H : L2(0,T ) → L2(0,T ) is defined by

Ĥf(ξ) =−isgn(ξ)f̂(ξ). Now examine

−2i(N(uk)−N(u)) =
〈
HΛ1/2uk,uk

〉
L2(0,T )

−
〈
HΛ1/2u,u

〉
L2(0,T )
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=
〈
HΛ1/2(uk−u),uk

〉
L2(0,T )

−
〈
HΛ1/2u,uk−u

〉
L2(0,T )

=
〈
uk−u,−HΛ1/2uk

〉
L2(0,T )

−
〈
HΛ1/2u,uk−u

〉
L2(0,T )

.

Thus by Cauchy-Schwarz and the fact that H : L2(0,T )→ L2(0,T ) is bounded with sharp

constant 1, we have

2 |N(uk)−N(u)| ≤ ‖uk−u‖L2(0,T )

∥∥∥Λ1/2uk

∥∥∥
L2(0,T )

+
∥∥∥Λ1/2u

∥∥∥
L2(0,T )

‖uk−u‖L2(0,T )

≤
(
M +

∥∥∥Λ1/2u
∥∥∥
L2(0,T )

)
‖uk−u‖L2(0,T )

→ 0

as k→∞. Thus N(uk)→N(u) as k→∞.

Lemma 2.2.5. K is weakly lower semicontinuous on Hα/2(0,T ).

Proof. Let uk ⇀u weakly in Hα/2(0,T ) and note that uk 7→
〈

Λα/2uk,Λ
α/2u

〉
L2(0,T )

is a

bounded linear functional on Hα/2(0,T ) for fixed u. By Cauchy-Schwarz we have

〈
Λα/2uk,Λ

α/2u
〉
L2(0,T )

≤
∥∥∥Λα/2uk

∥∥∥
L2(0,T )

∥∥∥Λα/2u
∥∥∥
L2(0,T )

= 2K(uk)
1/2K(u)1/2, (2.12)

hence we have by weak convergence that

2K(u) = lim
k→∞

〈
Λα/2uk,Λ

α/2u
〉
L2(0,T )

= liminf
k→∞

〈
Λα/2uk,Λ

α/2u
〉
L2(0,T )

≤ 2K(u)1/2 liminf
k→∞

K(uk)
1/2 by (2.12)

=⇒ K(u)≤ liminf
k→∞

K(uk).
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Thus K is weakly lower semicontinuous on Hα/2(0,T ).

Proof of Proposition 2.2.2. Fix µ > 0 and consider the functional

Fc(u) :=H(u) + cN(u) =K(u) + cN(u) +P (u).

For u ∈ Aµ we have

Fc(u) =K(u) + cN(u) +P (u)

≥K(u) + cN(u)

≥K(u)−|c|
(
T

π

)α−1
2

K(u) by Lemma 2.2.3

=

(
1−|c|

(
T

π

)α−1
2

)
K(u).

So, if |c|<
(
T
π

)α−1
2 =: c∗, thenFc is bounded below (by zero) onAµ, hence λ := infu∈Aµ F (u)

is well-defined and there exists a minimizing sequence {uk} ⊂Aµ such that lim
k→∞

F (uk) =

λ. Now examine

1

2
‖uk‖2Hα/2(0,T ) =K(uk) +Q(uk)

= Fc(uk)− cN(uk)−P (uk) +µ

≤ Fc(uk) + |c|
(
T

π

)α−1
2

K(uk)−P (uk) +µ by Lemma 2.2.3

≤ Fc(uk) +
1

2
|c|
(
T

π

)α−1
2

‖uk‖2Hα/2(0,T ) +µ,

hence
1

2

(
1−|c|

(
T

π

)α−1
2

)∥∥∥ukj∥∥∥2

Hα/2(0,T )
≤ Fc(uk) +µ,
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where the right-hand side of the above inequality is bounded since {Fc(uk)} is a conver-

gent real sequence. Thus if |c| < c∗, then {uk} is bounded in Hα/2(0,T ). By Banach-

Alaoglu, there exists a subsequence {ukj} converging weakly in Hα/2(0,T ) to some φ ∈

H
α/2
a (0,T ). Now, by Rellich-Kondrachov, there exists a further subsequence2 such that

ukj → φ strongly (in norm) in H1/2(0,T ). Moreover, since strong convergence implies

weak convergence and weak limits are unique, there exists a further subsequence converg-

ing to φ strongly in L2(0,T ). For this subsequence, we have

Q(φ) =
1

2
‖φ‖2L2(0,T ) = lim

j→∞

1

2

∥∥∥ukj∥∥∥
L2(0,T )

= lim
j→∞

Q(ukj ) = µ,

thus u ∈ Aµ.

Now, since ukj ⇀φ (weak limits are unique) with P compact on Hα/2(0,T ) due to the

compact Sobolev embedding Hα/2
a (0,T ) b L2σ+2(0,T ) for σ > 0, there exists a further

subsequence {ukj} such that {P (ukj )} converges in R. Also, by Lemma 2.2.4, we have

liminf
j→∞

N(ukj ) = lim
j→∞

N(ukj ) =N(φ).

Since K is weakly lower semicontinuous on Hα/2(0,T ) by Lemma 2.2.5 and P (·) is the

L2σ+2(0,T ) norm (which is weakly lower semicontinuous), we have that

liminf
j→∞

Fc(ukj )≥K(φ) + cN(φ) +P (φ) = Fc(φ).

Now, since φ ∈ A, we have by the definition of infimum that

λ≤ Fc(φ)≤ liminf
j→∞

Fc(ukj ) = lim
j→∞

Fc(ukj ) = λ.

2To avoid the burden of excessive subscripts, going forward we will abuse notation by continuing to use
{ukj} to denote further subsequences.
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Therefore Fc(φ) = λ, so φ ∈ A satisfies Fc(φ) = infu∈AFc(u), hence by Lagrange multi-

pliers there exists ω(c,µ) ∈ R such that

0 = δFc(φ) +ω(c,µ)δQ(φ) = Λαφ+ icφ′+ |φ|2σ φ+ωφ,

i.e. φ= φ(·;c,µ) solves the profile equation (2.3), and we have that u(x,t) = eiωtφ(x − ct)

is a traveling wave solution of (2.1).

It remains to establish the H∞ smoothness of the solution φ ∈ Hα/2
a (0,T ), which we

will demonstrate via a bootstrap argument. To show that φ ∈Hα
a (0,T ), i.e. that it actually

has twice its a-priori regularity, notice that for any |c|< c∗ the profile equation (2.3) can be

written as

−φ= (Λα+ ic∂x)−1
(
ωφ+ |φ|2σφ

)
, (2.13)

where the operator (Λα+ ic∂x)−1 is guaranteed to be well-defined on Hα/2
a (0,T ) since the

T -antiperiodic function φ has zero mean. Specifically, for u ∈ Hα/2
a (0,T ), the function

v = (Λα+ ic∂x)−1u solves

(Λα+ ic∂x)v = u,

where u is orthogonal to ker(Λα+ic∂x) = span{1} by antiperiodicity, hence such a v exists

by the Fredholm alternative. Moreover, note that if an operator L has symbol L̂(n), then

L̂−1(n) =
(
L̂(n)

)−1
since

û(n) = L̂−1Lu(n) = L̂−1(n)L̂(n)û(n) =⇒ L̂−1(n) =
(
L̂(n)

)−1
. (2.14)

Applying Λα to both sides of (2.13), we have

−Λαφ= Λα(Λα+ ic∂x)−1(ωφ+ |φ|2σ φ),
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and taking the L2(0,T ) norm of both sides yields, by Parseval and (2.14),

‖Λαφ‖L2(0,T ) =
√
T

∥∥∥∥∥ |n|α

|n|α−
(
T
π

)α−1
cn

(
ωφ̂(n) + |̂φ|2σφ(n)

)∥∥∥∥∥
`2n(Z\{0})

. ‖φ‖L2(0,T ) +‖|φ|2σφ‖L2(0,T ) (2.15)

. ‖φ‖L2(0,T ) +‖φ‖2σL∞(0,T )‖φ‖L2(0,T )

<∞,

where . denotes less than or equal to, up to multiplication by a constant independent of φ.

The last inequality is due to the Sobolev embedding Hα/2
a (0,T )⊂ L∞(0,T ).

So, φ ∈Hα
a (0,T ). We claim that Λ2αφ ∈ L2(0,T ) as well. Indeed,

∥∥Λ2αφ
∥∥
L2(0,T )

= ‖Λα(Λαφ)‖L2(0,T )

. ‖Λαφ‖L2(0,T ) +
∥∥Λα(|φ|2σφ)

∥∥
L2(0,T )

by (2.15). (2.16)

By the fractional Leibniz rule [14, Proposition 3.3], we have

∥∥∥Λα(|φ|2σ φ)
∥∥∥
L2(0,T )

. ‖φ‖2σL∞(0,T ) +‖φ‖L∞(0,T )

∥∥∥Λα |φ|2σ
∥∥∥
L2(0,T )

≤ ‖φ‖2σL∞(0,T ) +‖φ‖L∞(0,T )

∥∥Λαφ2σ
∥∥
L2(0,T )

by Lemma (B.0.3).

By the fractional chain rule [34, (3.3)],

∥∥Λαφ2σ
∥∥
L2(0,T )

. ‖φ‖2σ−1
L∞(0,T ) ‖Λ

αφ‖L2(0,T ) ,

hence

∥∥∥Λα(|φ|2σ φ)
∥∥∥
L2(0,T )

. ‖φ‖2σL∞(0,T ) +‖φ‖L∞(0,T ) ‖φ‖
2σ−1
L∞(0,T ) ‖Λ

αφ‖L2(0,T )
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= ‖φ‖2σL∞(0,T ) +‖φ‖2σL∞(0,T ) ‖Λ
αφ‖L2(0,T )

<∞,

hence in (2.16) we finally have
∥∥Λ2αφ

∥∥
L2(0,T )

< ∞, so φ ∈ H2α
a (0,T ). Iterating, we

achieve φ ∈H∞a (0,T ).

Lastly, we show that φ(·;c,µ) minimizes E(u;c,µ) with respect to fixed Q ≡ µ and

N ≡N(φ). Simply examine

inf
Q(u)=µ

N(u)=N(φ)

E(u;c,µ) = inf
Q(u)=µ

N(u)=N(φ)

(H(u) + cN(u) +ωQ(u))

= inf
Q(u)=µ

N(u)=N(φ)

Fc(u) +ωµ

= Fc(φ) +ωQ(φ)

= E(φ;c,µ),

as claimed.

To recap, for each α ∈ (1,2), σ > 0, T > 0, |c| < c∗ and µ > 0, Proposition 2.2.2

produces a generally complex-valued function φ(·;c,µ)∈H∞a (0,T ) and a ω(c,µ)∈R such

that

Λαφ+ω(c,µ)φ+ icφ′+ |φ|2σφ= 0, Q(φ) = µ.

In particular, incorporating phase and translation invariances, for each half-period T > 0

we have constructed a four-parameter family of generally complex-valued T -antiperiodic

smooth solutions of the defocusing fNLS (2.1):

u(x,t;c,µ,θ,ζ) = ei(ω(c,µ)t−θ)φ(x− ct+ ζ;c,µ)
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where |c|<c∗, µ> 0, θ∈ [0,2π) and ζ ∈R are constants. These solutions are parameterized

by the wave speed c, the chargeQ(u) of the wave, and the parameters θ and ζ with the phase

and translation symmetries of the PDE (2.1). The remainder of this chapter focuses on the

standing wave solutions of (2.1), which correspond to the above solutions with c= 0. Some

important properties of and assumptions on the minimizer φ and the temporal frequency

(Lagrange multiplier) ω at c= 0 are provided here.

Lemma 2.2.6. The function ω = ω(c,µ) : (−c∗, c∗)×R+ → R constructed in Proposi-

tion 2.2.2 is smooth in c, µ provided the minimizer φ(·;c,µ) and the functionals depend

smoothly on c,µ. Further, for each µ > 0, the profile φ(·;0,µ) ∈ H∞a ((0,T );C) satisfies

the constrained variational problem

E(φ;0,µ) = inf
{
E(ψ;0,µ) : ψ ∈Hα/2

a (0,T ), Q(ψ) =Q(φ), N(ψ) = 0
}
, (2.17)

and there exists a real-valued profile φR(·;0,µ) ∈ H∞a ((0,T );R) that is even and strictly

decreasing on (0,T ) which we will assume also satisfies (2.17).

Outside the proof of this lemma, we abuse notation and use φ(·;0,µ) to denote the

real-valued minimizer φR(·;0,µ) at c= 0.

Proof. A minimizer φ = φ(·, c,µ) and a corresponding Lagrange multiplier ω(c,µ) con-

structed per Proposition 2.2.2 satisfy the Euler-Lagrange equation

Λαφ+ω(c,µ)φ+ icφ′+ |φ|2σ φ= 0. (2.18)

Since φ(·;c,µ) is such that Q(φ) = µ > 0, multiplying through (2.18) by φ̄ and integrating

yields

2K(φ(;c,µ)) + 2µω(c,µ) + 2cN(φ(;c,µ)) +

∫ T

0
|φ(x;c,µ)|2σ φ(x;c,µ)dx= 0
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=⇒ ω(c,µ) =− 1

µ
[H(φ(·;c,µ)) + cN(φ(·;c,µ)) + 2σP (φ(·;c,µ))] .

Due to the smoothness of the functionals H, N , and P , it follows that ω(c,µ) depends

smoothly on c,µ so long as φ(·;c,µ) depends smoothly on c,µ.

The real-valued profile φR(·;0,µ) at c = 0 is obtained through the exact same mini-

mization program as in Proposition 2.2.2, except working over the space Hα/2
a ((0,T );R)

of real-valued functions instead of the space Hα/2
a ((0,T );C) of complex-valued functions.

SinceHα/2
a ((0,T );R)⊂Hα/2

a ((0,T );C), the minimizer of Fc over the space of real-valued

functions may a-priori not be a minimizer of Fc over the space of complex-valued func-

tions. Nevertheless, going forward we will assume that

Fc(φR(·;0,µ)) = min
u∈Hα/2

a ((0,T );R)
Q(u)=µ

Fc(u) = min
u∈Hα/2

a ((0,T );C)
Q(u)=µ

Fc(u) = Fc(φ(·;0,µ)) (2.19)

in order to apply rearrangement inequalities to obtain the desired parity and monotonicity

properties for later analysis. See Remark 2.2.7 for further discussion.

Outside this lemma, we will abuse notation and use φ(·;0,µ) to denote the real-valued

minimizer φR(·;0,µ) at c = 0, and the parity and monotonicity of φ(·;0,µ) := φR(·;0,µ)

now follow from the 2T -periodic rearrangement arguments outlined in Appendix B.

Remark 2.2.7. In the nonlocal case, it is a difficult open problem to prove the smoothness of

minimizers and the Lagrange multiplier on parameters c and µwithout an a-priori convexity

(positive-definiteness) assumption on the energy functional. So, we make such smoothness

assumptions for our analysis, which depends on differentiating with respect to parameters

c and µ.

As evidence that complex-valued minimizers may be taken to be real at c = 0, i.e. that

(2.19) holds, we claim that N(φ(·;0,µ)) = 0 =N(φR(·;0,µ)). That is, the complex-valued
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minimizer has zero angular momentum, same as any real-valued minimizer. To this end,

observe that since φ(·;c,µ) minimizes Fc subject to fixed Q≡ µ, we have

Fc(φ(·;c,µ))≤ Fc(φ(·;c,µ))

=⇒ cN(φ(·;c,µ))≤ cN(φ(0;c,µ)) =−cN(φ(0;c,µ)),

hence

cN(φ(·;c,µ))≤ 0 for all |c|< c∗.

Then

N(φ(·;c,µ))≤ 0 if c > 0 and N(φ(·;c,µ))≥ 0 if c < 0,

and it must be that N(φ(·;0,µ)) = 0 =N(φR(·;0,µ)) provided N(φ(·;c,µ)) is continuous

at c= 0.

In conclusion, for fixed α∈ (1,2) and σ > 0, we have constructed for each T > 0 a three-

parameter family of real-valued, T -antiperiodic, even solutions of the profile equation (2.3)

with c = 0. These profiles lead to a three-parameter family of standing wave solutions of

(2.1) of the form

u(x,t;µ,β,x0) = ei(ω(0,µ)t+β)φ(x−x0;0,µ)

Going forward, we will restrict our attention to these real-valued profiles with c= 0. How-

ever, as stated previously, the fact that such solutions belong to a larger class of complex-

valued traveling waves will be used heavily in the upcoming analysis; see Remark 2.3.12.

For notational simplicity, we will also suppress the dependence of ω and φ on the wave

speed c whenever it is clear from context that c= 0.
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2.3 Nondegeneracy of the Linearization in the Defocusing

Case

Throughout this section, for each µ > 0 we let φ(x;µ) denote a real-valued, even, T -

antiperiodic standing wave solution of the nonlocal profile equation (2.3) with c = 0 satis-

fying Q(φ) = µ, whose existence is guaranteed by Proposition 2.2.2 and Lemma 2.2.6, so

that the function u(x,t;µ) = eiω(µ)tφ(x;µ) is a T -antiperiodic standing wave solution of

the defocusing (γ = −1) fNLS (2.1) Moving to a co-rotating coordinate frame, the profile

φ(·;µ) is thus a real-valued, T -antiperiodic equilibrium solution of the PDE

iut−ω(µ)u−Λαu+γ|u|2σu= 0, (2.20)

which can be rewritten as the Hamiltonian system

ut =−iδE(u;0,µ)

acting on L2
per(0,2T ), where here E is the modified energy functional defined in (2.11).

For such Hamiltonian systems, it is well known that the local dynamics of (2.20) near φ, in

particular its orbital stability or instability, is intimately related to spectral properties of the

second variation of the energy functional

δ2E(φ;c,µ) = Λα+ω(µ) + ic∂x−γ |φ|2σ−2γσ |φ|2σ−2φRe(φ̄ ·) (2.21)

acting on appropriate subspaces of L2
per(0,2T ). See Appendix A for further details about

computing the second variations of the component functionals of (2.21). Of particular im-

portance, note that the operator δ2E(φ) has T -periodic coefficients due to the T -antiperiodicity

of φ. As we will see below, however, the phase and translation symmetries of (2.20) gen-
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erate elements of the kernel of δ2E(φ) that are T -antiperiodic, hence zero is an isolated

eigenvalue with finite multiplicity of δ2E(φ) acting on L2
a(0,T ). We will restrict our at-

tention to T -antiperiodic perturbations of the underlying wave φ, which will necessitate a

detailed spectral analysis of the operator δ2E(φ) acting on L2
a(0,T ).

To aid in the analysis, it will be convenient to decompose the action of δ2E(φ) into

real and imaginary parts: for a real-valued, stationary background wave φ constructed in

Lemma 2.2.6 when c= 0, expressing a given v ∈Hα
a (0,T ) as v = a+bi for a,b real-valued

and applying (2.21) yields

δ2E(φ;0,µ)(v) =
[
Λαa+ω(0,µ)a−γ(2σ+ 1)φ2σa

]
+ i
[
Λαb+ω(0,µ)b−γφ2σb

]
=: L+a+ iL−b,

where L± are linear operators acting on L2
a([0,T ];R) defined by

L+ := Λα−γ(2σ+ 1)φ2σ +ω (2.22)

L− := Λα−γφ2σ +ω. (2.23)

Consequently, we can study δ2E(φ) as the matrix operator diag(L+,L−) acting on the

product space L2
a([0,T ];R)×L2

a([0,T ];R). Concerning the spectrum of δ2E(φ), observe

that δ2E(φ) is bounded below and self-adjoint on L2
a(0,T ) with compactly embedding do-

main Hα
a (0,T ). So, the spectrum of δ2E(φ), and hence of the operators L±, acting on

L2
a(0,T ) is comprised of a countably infinite discrete set of real eigenvalues tending to

+∞ with no finite accumulation point. An important component in the stability analysis

of φ will be to determine the number of negative T -antiperiodic eigenvalues of δ2E(φ), as

well as to enumerate its T -antiperiodic kernel. We now turn our attention to these matters.
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Differentiating with respect to the symmetries of (2.20) yields eigenfunctions in the

kernel of δ2E(φ). To find the translation symmetry eigenfunction, note that if (x,t) 7→

eiωtφ(x) solves (2.1), then so does (x,t) := eiωtφ(x + ∆x). Taylor expanding

eiωtφ(x+ ∆x) = eiωt(φ(x) +φ′(x)∆x+O(∆x2))

and substituting into (2.1) yields

(Λαφ+γφ2σφ+ωφ) + (Λαφ′−γ(2σ+ 1)φ2σφ′+ωφ′)∆x=O(∆x2)

=⇒ Λαφ′−γ(2σ+ 1)φ2σφ′+ωφ′ =O(∆x) by (2.3) at c= 0.

Taking ∆x→ 0, we have

L+φ
′ = 0, (2.24)

hence span{φ′}⊆ ker(L+). To find the phase symmetry eigenfunction, note that if (x,t) 7→

eiωtφ(x) solves (2.1), then so does u(x,t) := eiωt+βφ(x) for β ∈ C, and substituting into

(2.1) immediately yields

0 = Λαφ−γ |φ|2σ φ+ωφ= L−φ,

hence span{φ′} ⊆ ker(L−). Thus φ′ and φ belong to the T -antiperiodic kernel of the T -

periodic coefficient operators L+ and L−, respectively. In general, it is very difficult to

determine whether these are the only nontrivial functions in the T -antiperiodic kernels,

i.e. that ker(L+) = span{φ′} and ker(L−) = span{φ}. Indeed, T -antiperiodic eigenvalues

of a Schrödinger operator with T -periodic potential need not be simple, even in the lo-

cal case. Hence standard Perron-Frobenius arguments fail to characterize the ground state

eigenvalues of δ2E(φ) on L2
a(0,T ). Moreover, determining the number of T -antiperiodic
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negative eigenvalues of δ2E(φ) often involves classical Sturm-Liouville type arguments.

Per the classical Sturm-Liouville theory of periodic functions in the local case, the fact that

φ ∈ ker(L−) has one zero on [0,T ) implies that λ = 0 is either the first or second antiperi-

odic eigenvalue, so L− can have at most one negative antiperiodic eigenvalue. Similarly,

since φ′ ∈ ker(L+) has one zero on [0,T ), we have that λ = 0 is either the first or second

antiperiodic eigenvalue of L+, hence L+ can have at most one negative antiperiodic eigen-

value. Altogether, δ2E(φ)
∣∣∣
L2

a (0,T )
could potentially have at most two negative eigenvalues,

which is typically an unfavorable configuration for orbital stability due to the overwhelm-

ing difficulty of controlling two negative directions. However, classical Sturm-Liouville

arguments do not apply to the operators L± when α ∈ (1,2), so alternative methods will

be necessary in order to determine the number of negative eigenvalues of δ2E(φ), which

we will handle in part by studying the action of δ2E(φ) separately on the even and odd

subspaces of L2
a(0,T ). We obtain the following nondegeneracy result:

Proposition 2.3.1 (Nondegeneracy). Let α ∈ (1,2) and σ > 0 in the defocusing (γ = −1)

fNLS (2.1). Let φ(·;µ) := φ(·, c = 0,µ) ∈ Hα/2
a (0,T ) be a real-valued local minimizer of

H over Hα/2
a (0,T ) subject to fixed Q(u) = µ > 0 and N(u) = 0, as constructed in Lemma

2.2.6, and assume that φ and the associated Lagrange multiplier ω depend on c in a C1

manner near c = 0. Then the associated Hessian operator δ2E(φ) acting on L2
a(0,T ) is

nondegenerate, i.e.

ker(δ2E(φ)) = span
{
φ′, iφ

}
and n−(δ2E(φ)) = 1. Specifically, the operators L± are nondegenerate acting on L2

a(0,T )

with

ker(L+) = span{φ′} and ker(L−) = span{φ}.
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Moreover, n−(L+) = 0 and n−(L−) = 1, where the Morse index of a linear operator L is

defined as n−(L) := #
{
λ ∈ σL2

a(0,T )(L) : λ < 0
}

.

Remark 2.3.2. In the above proposition, we must view the minimizer φ(·;µ) as a standing

wave within larger family of traveling waves φ(·;c,µ), with φ(·;c = 0,µ) = φ(·;µ). In the

local case when α= 2, this embedding follows by an exact Galilean symmetry. Indeed, by

(2.4), if u(x,t) = eiω0tφ(x) for real-valued profile φ(x) and ω0 ∈ R solves NLS, then so

does

Gcu(x,t) = e
icx
2 −

ic2t
4 eiω0tφ(x− ct)

= eiω(c)t φ̃(x− ct),

where φ̃(x) := eicx/2φ(x) is complex-valued and ω(c) = ω0 +c2/2 is smooth in c. Further-

more, stability results for solitary and periodic waves in the local context fundamentally

rely on the ability to differentiate φ and ω with respect to parameters, allowing one to con-

nect the geometry and smoothness of the manifold of solutions to the associated stability

theory; see, for example, the discussion immediately following the proof of Proposition

2.3.1 below. In this nonlocal context, however, we have yet to obtain this smoothness re-

sult, and we consider this an interesting direction for future research. Our methods depend

heavily on φ and ω depending smoothly on c near c = 0 (as in the analysis in the local

case α = 2), so we will take these as assumptions in the subsequent analysis; see Remark

2.3.12 below. Furthermore, it is important to note that even in cases where such smooth

dependence is given a-priori, nondegeneracy is still represents a formidable problem. Fi-

nally, we note that while the smooth dependence of φ and ω on µ is not needed for this

nondegeneracy theory, it will play a role in the upcoming stability theory. See Remark

2.4.2.
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As noted in the introduction, Proposition 2.3.1 was established using ODE techniques

in the local case α = 2 by Gallay and Haragus [26]. Precisely, their proof uses Sturm-

Liouville theory for (local) differential operators, together with a homotopy argument and

a-priori control over the dimension of the T -antiperiodic kernels. While these ODE-based

techniques are not directly available in the nonlocal setting α∈ (0,2), Frank and Lenzmann

[25] recently obtained the nondegeneracy of the linearization about solitary waves for a

family of nonlinear nonlocal models that include the focusing (γ = +1) fNLS (2.1). Their

idea was to find a suitable replacement for the Sturm-Liouville oscillation theory to control

the number of sign changes in eigenfunctions for a fractional Schrödinger operator with

real, localized potential. This theory, developed on the line, was then adapted to the periodic

setting in [39], which studies the nonlinear orbital stability of T -periodic traveling wave

solutions to the fractional gKdV equation.

The proof of Proposition 2.3.1 extends these previous nondegeneracy results to encom-

pass the T -antiperiodic spectra of fractional Schrödinger operators with real, T -periodic

potentials. As mentioned above, this extension is significant as, even in the classical α = 2

case, the ground state antiperiodic eigenvalue of T -periodic linear Schrödinger type opera-

tors need not be simple. This is in stark contrast to the ground state T -periodic eigenvalues

of such operators, which are always simple by Perron-Frobenius theory. While our proof

follows the basic strategy in [25] and [39], substantial modifications are necessary to ac-

commodate the antiperiodic structure of the admissible class of perturbations.

Two analytical results are key in establishing Proposition 2.3.1. First, we require an ap-

propriate characterization of the ground state eigenfunctions of L± acting on L2
a(0,T ).

A natural approach is to attempt a Perron-Frobenius argument, demonstrating that the

semigroups e−L±t are positivity improving on appropriate subspaces of L2
a(0,T ). Second,

we require a nonlocal Sturm-Liouville type oscillation theory for the second antiperiodic

eigenfunctions of L±. Following the general ideas in [25] and [39], this is accomplished
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by extending the antiperiodic eigenvalue problems for L± on L2
a(0,T ) to appropriate local

problems on the upper half-space.

2.3.1 Ground State Theory for Antiperiodic Eigenfunctions

The goal of this section is to provide a characterization of the antiperiodic ground state

eigenfunctions for linear, fractional Schrödinger operators of the form

L := Λα+V (x), (2.25)

where the potential V (x) is even, real-valued, smooth and T -periodic for some finite T > 0.

In particular, we will classify properties of the T -antiperiodic ground state for L, along

with upper bounds on the number sign changes on higher T -antiperiodic eigenfunctions.

As noted in the introduction, even in the local case α = 2 such results are nontrivial, as

T -antiperiodic ground states need not be simple. As we will see below, this comes from

the fact that the semigroup generated by L is not positivity improving when acting on

L2
a(0,T ). To handle this difficulty, we will decompose the space L2

a(0,T ) of real-valued

T -antiperiodic functions on R into the (invariant) even and odd subspaces, and develop

ground state and oscillation theories for the operator L in each subspace separately. As

we will see, restricted to these subspaces, the semigroup generated by L will indeed be

positivity improving. Finally, using rearrangement properties we find an ordering between

the antiperiodic odd and even ground state eigenvalues for L in terms of monotonicity

properties of the potential V on (0,T ).

We begin by observing that the T -periodicity of the potential V implies that the operator

L is well-defined as a closed, densely defined operator from L2
a(0,T ) into itself. Since V is

a bounded and smooth potential, the operator L is a relatively compact perturbation of the

operator −Λα, hence Theorem XIII.44 from [55] implies that the ground state eigenvalues
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of L acting on an invariant subspace Y of L2
a(0,T ) is simple as an eigenvalue of L|Y

provided the fractional heat semigroup
{
e−Λαt

}
t≥0

is positivity improving on Y; that is, if

f ∈ Y , f ≥ 0, f 6= 0 =⇒ e−Λαtf > 0 on Y .

Thus, it is sufficient to study the semigroup generated by−Λα on L2
a(0,T ), which we study

below by first considering the semigroup acting on L2(R) and appropriately periodizing its

integral kernel.

The semigroup e−Λαt acting on L2(R) is naturally understood via the Fourier transform

F(f)(ξ) :=
1√
2π

∫
R
e−iξxf(x)dx,

which maps the Schwartz space S(R) to the space of tempered distributions S ′(R) with

inverse

F−1(f)(x) :=
1√
2π

∫
R
eiξxf(ξ)dξ.

For all t≥ 0, the operators e−Λαt acting on S(R) can be understood via

e−Λαtf(x) = F−1
(
e−|·|

αtf̂(·)
)

(x) =
1√
2π

∫
R
e−|ξ|

αtf̂(ξ)eiξx dξ, (2.26)

which, using the convolution theorem, we may write

e−Λαtf(x) =

∫
R
K(x−y, t)f(y)dy,

where K is given by

K(x,t) := F−1
(
e−|·|

αt
)

(x).

See Figure 2.2. Note that when α = 2, the convolution kernel K agrees with the standard
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0
0

Figure 2.2: K(x,t= 0.3), with α = 3/2. As expected, K(·, t) resembles a Gaussian.

Gauss-Weierstrass heat kernel and can be expressed explicitly as

K(x,t) =
1√
2t
e−x

2/(4t).

While such explicit formulas are not available in the nonlocal case α ∈ (0,2), in the recent

work of Frank & Lenzmann [25, Appendix A] it was observed that, for all t > 0 and

α ∈ (0,2), the kernel K(·, t) is even, strictly positive, and decays rapidly as |x| →∞ with

∂xK(x,t)< 0 for all x > 0. Further, K(·, t) ∈ L1(R) since, by the positivity of K,

‖K(·, t)‖L1(R) =

∫
R
K(x,t)dx= F(K(·, t))(ξ = 0) = 1.

Since we are interested in developing a T -antiperiodic oscillation theory for operators

of the form (2.25), we now describe how e−Λαt acts on periodic functions. Since K(·, t) ∈

L1(R) for all t > 0, given any 2T -periodic f ∈ L∞(R) we can express the action of the

semigroup e−Λαt on R in terms of K acting on 2T -periodic cells:

e−Λαtf(x) =

∫
R
K(x−y, t)f(y)dy
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=
∑
n∈Z

∫ (2n+1)T

(2n−1)T
K(x−y, t)f(y)dy

=

∫ T

−T

(∑
n∈Z

K(x−y+ 2nT,t)

)
f(y)dy

=

∫ T

−T
Kp(x−y, t)f(y)dy,

where

Kp(x,t) :=
∑
n∈Z

K(x+ 2nT,t) (2.27)

represents the 2T -periodic periodization of the integral kernel K. See Figure 2.3. Observe

that the sum defining Kp is absolutely convergent for each t > 0 due to the rapid decay of

K(·, t) at spatial infinity. Important properties of the periodized kernel Kp are collected

−T T
0

Figure 2.3: Kp(x,t= 0.3), with α = 3/2.

here.

Lemma 2.3.3. For all t > 0 and α ∈ (0,2], Kp(·, t) is positive, even, 2T -periodic, and

strictly decreasing on (0,T ).

Proof. The kernel K(x,t) on R was shown by Frank & Lenzmann [25, Appendix A] to be

even and positive for all t > 0, x∈R. SinceK(·, t)∈L1(R) for all t > 0, the representation

(2.27) implies that the periodization Kp(·, t) must also be even, positive and 2T -periodic

for all t > 0. To prove thatKp(·, t) is decreasing on (0,T ) for each t > 0, we follow [25] and
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observe that the function g(z) = e−z
α/2

is completely monotone on the positive half-line

(0,∞) for all α ∈ (0,2]; that is, (−1)j∂jzg(z) ≥ 0 for all j ∈ N and z > 0. Thus by Bern-

stein’s theorem, g is the Laplace transform of a non-negative finite measure να depending

on α, i.e. e−z
α/2

=
∫∞

0 e−τzdνα(τ). Setting z = |x|2, the inverse Fourier transform of the

Gaussian e−τξ
2

leads to the “subordination formula”3

K(x,t) = t−1/α

∫ ∞
0

1√
2τ

exp

(
−t
−2/αx2

4τ

)
dνα(τ) (2.28)

which is valid for all x ∈ R and t > 0. Periodizing (2.28) over 2T -periodic cells as was

done to derive (2.27), it follows that for all α ∈ (0,2) the 2T -periodic kernel Kp can be

expressed as

Kp(x,t) = t−1/α

∫ ∞
0

1√
2τ

[∑
n∈Z

exp

(
−(x+ 2nT )2

4t2/ατ

)]
dνα(τ)

= t−2/α
√

2π

∫ ∞
0

[∑
n∈Z

1√
4πu

exp

(
−(x+ 2nT )2

4u

)]
dνα(u),

where the final equality follows from the variable substitution u = t2/ατ . The integrand

above may be recognized as the 2T -periodized Gauss-Weierstrass kernel

ϑu(x) :=
∑
n∈Z

1√
4πu

exp

(
−(x+ 2nT )2

4u

)
, (2.29)

hence we may express Kp(x,t) concisely as

Kp(x,t) = t−2/α
√

2π

∫ ∞
0

ϑu(x)dνα(u).

3This subordination formula is stated in [25] for the case t = 1 only. This more general formula follows
from the scaling K(x,t) = t−1/αK(t−1/αx,1).
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The monotonicity properties of the function ϑu(x) have been studied in [2, Theorem 4.2],

where it was shown4 to be strictly decreasing in x on (0,T ) for all u > 0. It now clearly

follows that if x,y ∈ (0,T ) with x < y, then

Kp(y, t)−Kp(x,t) = t−2/α
√

2π

∫ ∞
0

(ϑu(y)−ϑu(x)) dνα(u)< 0,

i.e. Kp(·, t) is decreasing on (0,T ) for all t > 0, as claimed.

Remark 2.3.4. The subordination formula (2.28) conveniently encodes all spatial depen-

dence on α into the non-negative measure να, which facilitates studying the fractional heat

kernel using familiar techniques of the classical heat kernel. Again, in order for this re-

sult to apply, we must restrict to α ∈ (0,2] as the function g(z) = exp(−zα/2) fails to be

completely monotone for α > 2.

To study the antiperiodic eigenvalues of L, we now further restrict the semigroup e−Λαt

to the subspace L2
a(0,T ) of T -antiperiodic functions. For such f ∈ L2

a(0,T ) we have the

representation

e−Λαtf(x) =

∫ T

0
[Kp(x−y, t)−Kp(x−y−T,t)]f(y)dy =:

∫ T

0
Ka(x−y, t)f(y)dy

for the action of e−Λαt on T -antiperiodic functions, where Ka denotes the T -antiperiodic

kernel

Ka(x,t) :=Kp(x,t)−Kp(x−T,t). (2.30)

See Figure 2.4. Next, we gather some important properties of Ka.

4While the results in [2] were stated only for the case T = π they easily extend to this more general setting
via scaling.
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−T T

Figure 2.4: Ka(x,t= 0.3), with α = 3/2.

Lemma 2.3.5 (Properties of Ka). For all t > 0 and α ∈ (0,2], the function Ka(·, t) is even,

T -antiperiodic and strictly positive for all x ∈ (−T/2,T/2). Furthermore, Ka(·, t) is odd

about x= T/2 and is strictly decreasing on (0,T ).

Proof. The parity and antiperiodicity of Ka follow directly from (2.30). Since all even, T -

antiperiodic functions are odd5 about x = T/2, it remains to show that Ka(·, t) is positive

on (−T/2,T/2) and strictly decreasing on (0,T ). To this end, fix x ∈ (0,T/2) and observe

that the evenness of Kp(·, t) implies that

Ka(x,t) =Kp(x,t)−Kp(T −x,t)> 0, (2.31)

where the strict inequality follows since Kp(·, t) is strictly decreasing on (0,T ) by Lemma

2.3.3 and 0 < x < T − x < T for x ∈ (0,T/2). Since Ka(·, t) is even for all t > 0, the

positivity of Ka(·, t) on (−T/2,T/2) follows. Similarly, differentiating (2.31) with respect

to x, it follows that for x ∈ (0,T ) we have

∂xKa(x,t) = ∂xKp(x,t) +∂xKp(T −x,t)< 0

where we have used that ∂xKp(x,t)< 0 for all x ∈ (0,T ) by Lemma 2.3.3.

5Indeed, if f is even and T -antiperiodic then f(x+T/2) = f(−x−T/2) = f(−x+T/2).
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An important consequence of Lemma 2.3.5 which is visually evident from Figure 2.4

is that the semigroup e−Λαt is not necessarily positivity improving (nor even positivity

preserving) on L2
a(0,T ), since the convolution kernel Ka is not positive, hence the an-

tiperiodic ground states of the operator L in (2.25) are not immediately characterized by

standard Perron-Frobenius arguments. However, since the potential V (x) in (2.25) is even,

the operator L maps even functions to even functions and odd functions to odd functions,

respecting the orthogonal decomposition

L2
a(0,T ) = L2

a,even(0,T )⊕L2
a,odd(0,T ),

whereL2
a,even(0,T ), L2

a,odd(0,T ) denote the subspaces of even and odd functions inL2
a(0,T ),

respectively. Precisely, the subspaces La,even(0,T ) and La,odd(0,T ) are invariant subspaces

for L, and

σL2
a(0,T ) (L) = σL2

a,even(0,T ) (L) ∪ σL2
a,odd(0,T ) (L) ,

where we emphasize the above spectral decomposition need not be disjoint. Next, we

consider the action of the semigroup e−Λαt on the above invariant subspaces.

First, note that if f ∈ L2
a,even(0,T ) then

e−Λαtf(x) =
1

2

[∫ T

0
Ka(x−y, t)f(y)dy+

∫ 0

−T
Ka(x+y, t)f(y)dy

]

=
1

2

[∫ T

0
Ka(x−y, t)f(y)dy+

∫ T

0
Ka(x+y−T,t)f(y−T )dy

]

=
1

2

∫ T

0
[Ka(x−y, t) +Ka(x+y, t)]f(y)dy,

where the final equality follows from the T -antiperiodicity of both Ka(·, t) and f . Observe

that since f(y) and Ka(x− y, t) +Ka(x+ y, t) are even and T -antiperiodic in y, they are
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both odd functions in y about y = T/2. Consequently, their product is even in y about

y = T/2, which yields the representation

e−Λαtf(x) =

∫ T/2

0
[Ka(x−y, t) +Ka(x+y, t)]f(y)dy (2.32)

for the action of semigroup e−Λαt on L2
a,even(0,T ).

Lemma 2.3.6. For all x,y ∈ (−T/2,T/2) and t > 0, we have

Ka(x−y, t) +Ka(x+y, t)> 0.

In particular, the semigroup e−Λαt restricted to L2
a,even(0,T ) is positivity improving, i.e. if

f ∈L2
a,even(0,T ) is non-trivial with f(x)≥ 0 for x∈ (−T/2,T/2), then e−Λαtf(x)> 0 for

all x ∈ (−T/2,T/2).

Proof. We begin by proving the claim for x,y ∈ (0,T/2). Fix t > 0 and defineG(x,y; t) :=

Ka(x− y, t) +Ka(x+ y, t), and note that G(x,y; t) = G(y,x; t) for all x,y. So, without

loss of generality we need only prove that G(x,y; t) > 0 for all (x,y) ∈ R := {(x,y) : 0 <

x < T/2, 0< y ≤ x}. Observe that for all (x,y) ∈R, we have

0≤ x−y < T/2 and 0≤ x+y < T,

hence

∂xG(x,y; t) = ∂xKa(x+y, t) +∂xKa(x−y, t)< 0

since Ka(·, t) is decreasing on (0,T ) by Lemma 2.3.5. Moreover, for all y ∈ (0,T/2), we

have

G(T/2,y; t) =Ka(T/2 +y, t) +Ka(T/2−y, t) = 0
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since Ka(·, t) is odd about T/2, again by Lemma 2.3.5. Thus for every y0 ∈ (0,T/2), the

function x 7→G(x,y0; t) is decreasing on y0 < x< T/2 toward the value G(T/2,y0; t) = 0,

hence it must be that G(x,y; t) > 0 for all (x,y) ∈ R, and we conclude that G(x,y; t) > 0

for all x,y ∈ (0,T/2). Finally, since G(x,y; t)> 0 for all x,y ∈ (0,T/2), we also have that

G(x,y; t) > 0 for all x,y ∈ (−T/2,T/2) since G is invariant under the maps x 7→ −x and

y 7→ −y.

For the odd subspace, similar calculations to those above yield the representation

e−Λαtf(x) =
1

2

∫ T

0
[Ka(x−y, t)−Ka(x+y, t)]f(y)dy. (2.33)

for the action of the semigroup e−Λαt on L2
a,odd(0,T ).

Lemma 2.3.7. For all t > 0 and x,y ∈ (0,T ), we have

Ka(x−y, t)−Ka(x+y, t)> 0.

In particular, the semigroup e−Λαt restricted to L2
a,odd(0,T ) is positivity improving, i.e.

if f ∈ L2
a,odd(0,T ) is nontrivial with f(x) ≥ 0 for x ∈ (0,T ), then e−Λαtf(x) > 0 for all

x ∈ (0,T ).

Proof. Fix t > 0 and x,y ∈ (0,T ), and observe that the T -antiperiodicity ofKa(·, t) implies

that

Ka(x−y, t)−Ka(x+y, t)

=Ka(x−y, t) +Ka(x+y−T,t)

=Ka

((
x− T

2

)
−
(
y− T

2

))
+Ka

((
x− T

2

)
+

(
y− T

2

))
.

Since x−T/2, y−T/2 ∈ (−T/2,T/2), the proof follows by Lemma 2.3.6.
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From Lemma 2.3.6 and Lemma 2.3.7, the ground state eigenfunctions of e−Λαt acting

on the invariant subspaces La,even(0,T ) and La,odd(0,T ) are positivity improving. Since the

operator L defined in (2.25) is a relatively compact perturbation of−Λα, we can apply stan-

dard Perron-Frobenius arguments to deduce that the largest eigenvalues of e−Lt restricted

to Hα/2
a,even(0,T ) and Hα/2

a,odd(0,T ) separately are simple with strictly positive eigenfunction

on (−T/2,T/2) and (0,T ), respectively; see [55, Theorem XIII.44], for instance.

Theorem 2.3.8 (Antiperiodic Ground State Theory). Let α ∈ (1,2) and let V : R→ R be

an even, smooth, T -periodic potential and consider the linear operator L = Λα + V (x)

acting on L2
a(0,T ).

(a) The ground state eigenvalue of L restricted to L2
a,even(0,T ) is simple, and the corre-

sponding T -antiperiodic, even eigenfunction is sign-definite on (−T/2,T/2).

(b) The ground state eigenvalue of L restricted to L2
a,odd(0,T ) is simple, and the corre-

sponding T -antiperiodic, odd eigenfunction is sign-definite on (0,T ).

Proof. Parts (a) and (b) follow directly from Lemma 2.3.6, Lemma 2.3.7, and [55, Theorem

XIII.44], as discussed above.

While Theorem 2.3.8 establishes the simplicity of the even and odd antiperiodic ground

state eigenvalues of L on the respective subspace, it is natural to consider the ordering be-

tween these ground state eigenvalues. When the potential has sufficiently small amplitude,

the ordering between odd and even T -antiperiodic ground state eigenvalues may be veri-

fied directly through the use of bifurcation theory: see, for example, Proposition 6.2 and

Remark 6.3 in [53] where the analysis was carried out in a local context. In that case,

the ground state eigenvalues agree at zero-amplitude and one tracks the splitting of these

eigenvalues for very small amplitudes. For general amplitude potentials, however, in the

local case α = 2 it was shown in [19, Lemma 2.2] through the use ODE techniques and
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increasing/decreasing rearrangement inequalities that the ordering of these ground states

depends sensitively on the monotonicity properties of the periodic potential V in (2.25).

Using symmetric antiperiodic rearrangement inequalities, together with the above nonlo-

cal ground state theory, we are able to extend the results of [19] to the nonlocal setting

α ∈ (1,2); see Appendix B. Such information will be used heavily in the coming sections.

Proposition 2.3.9 (Ground State Ordering). Let α ∈ (1,2) and let V : R→ R be an even,

smooth, T -periodic potential, and consider the linear operator L = Λα +V (x) acting on

L2
a(0,T ).

(i) If the potential V is nonincreasing on (0,T/2), then the ground state T -antiperiodic

eigenvalue of L has at least one odd eigenfunction, i.e.

minσ

(
L
∣∣
L2
a,odd(0,T )

)
≤minσ

(
L
∣∣
L2
a,even(0,T )

)
.

(ii) If the potential V is nondecreasing on (0,T/2), then the ground state T -antiperiodic

eigenvalue of L has at least one even eigenfunction, i.e.

minσ
(
L
∣∣
L2
a,even(0,T )

)
≤minσ

(
L
∣∣
L2
a,odd(0,T )

)
.

2.3.2 Antiperiodic Oscillation Theory

In addition to the above ground state theories, we require a Sturm-Liouville type oscillation

theory to characterize the possible nodal patterns for the second antiperiodic eigenfunctions

of the fractional Schrödinger operators L±. To this end, first note that an H
α/2
a (0,T )-

eigenfunction of L± is necessarily continuous, bounded, and can be chosen to be real-

valued. Following the ideas in [25] and [39], we proceed by extending the eigenvalue
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problem associated to L± on L2
a(0,T ) to an appropriate local problem in the upper half

space.

Note that the operator Λα acting onL2
a(0,T ) can be viewed as the Dirichlet-to-Neumann

operator for a suitable local problem in the antiperiodic half-strip [0,T ]× (0,∞). Indeed,

following [10, 58], for a given α ∈ (0,2), there exists a constant C(α) such that for any

f ∈Hα
a (0,T ) we have

C(α)Λαf := lim
y→0+

y1−αwy(·,y),

where w =: E(f) ∈ C∞((0,∞);H
α/2
a (0,T ))∩C([0,∞);L2

a(0,T )) is the unique solution

to the elliptic boundary value problem

 ∆w+ 1−α
y wy = 0, in [0,T ]antiper× (0,∞)

w = f on [0,T ]antiper×{0}

As in [25, 39], it follows that the eigenvalue problems for L± on L2
a(0,T ) can be extended

to an eigenvalue problem for a local elliptic problem in the antiperiodic upper-half space

[0,T ]antiper× (0,∞). In this equivalent local setting, one can derive a variational charac-

terization for the T -antiperiodic eigenvalues and eigenfunctions of L± as follows.

If v ∈L2
a(0,T ) is an eigenfunction ofL±, then the extensionE(v) is inC0([0,T ]antiper×

[0,∞)). Defining the zero set of v to be

N := {(x,y) ∈ [0,T ]antiper× [0,∞) : E(v)(x,y) = 0} ,

which is clearly closed in [0,T ]antiper× [0,∞), the nodal domains of E(v) are the con-

nected components of the open set ([0,T ]antiper× [0,∞)) \ N . Recalling the classical

Courant nodal domain theorems yield an upper bound for the number of nodal domains

of E(v) in [0,T ]antiper× (0,∞), we find the following oscillation result.

64



Figure 2.5: Curves γ± connecting points in nodal domains N± of the upper half space
[−T/2,T/2]antiper× [0,∞).

Lemma 2.3.10 (Antiperiodic Oscillation Theory). Under the hypothesis of Theorem 2.3.8,

any even (resp. odd) T -antiperiodic eigenfunctions of L associated with the second eigen-

value (not counting multiplicity6) has at most two sign changes over (−T/2,T/2) (resp.

(0,T )).

Proof. The proof follows along the same lines as [39, Lemma 3.2] and [25, Theorem

3.1]; see also [40] for a combinatorial argument via non-crossing partitions. Consider

the spectrum of L acting on L2
a,even(0,T ), and suppose that v(x) is an even T -antiperiodic

eigenfunction of L associated with the its second eigenvalue λ2, and suppose (to show a

contradiction) that v has at least three sign changes in (−T/2,T/2). Since v is even and

T -antiperiodic, it must be that v actually has at least four sign changes in (−T/2,T/2), so

there are points

−T/2< x1 < y1 < x2 < y2 < x3 < T/2

such that, up to switching signs, v(xj) < 0 and v(yj) > 0; see Figure 2.5. By a stan-

dard Courant nodal domain argument that the extension E(v) can have at most two nodal

domains in the strip (−T/2,T/2)× (0,∞). Since the nodal domains are open and con-

nected (thus pathwise connected) in (−T/2,T/2)× (0,∞), we may find continuous curves

6That is, only the distinct elements of the T -antiperiodic spectrum of L are listed.
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γ± ⊂ C0([0,1]; [−T/2,T/2)× [0,∞)) such that

γ−(0) = x1, γ−(1) = x2, γ+(0) = y1, γ+(1) = y2

and

E(v)(γ+(t))> 0, E(v)(γ−(t))< 0 for all t ∈ [0,1].

In particular, γ+(t) belongs to the same nodal domain for all t ∈ (0,1), denoted N+, while

γ−(t) belongs to the same nodal domainN− for all t∈ (0,1). By the Jordan curve theorem,

the curves γ± must cross at least once in (−T/2,T/2)× (0,∞). Thus N+ ∩N− 6= ∅,

a contradiction of the fact that nodal domains are disjoint. A nearly identical argument

shows that odd eigenfunctions corresponding to the second eigenvalue have at most two

sign changes on (0,T ).

2.3.3 Proof of Nondegeneracy

Now that we have information regarding the T -antiperiodic ground state eigenfunctions of

L± and the nodal patterns for their second T -antiperiodic eigenfunctions, we aim to estab-

lish the nondegeneracy of the linearization δ2E(φ). To this end, for each µ > 0 let φ(·;µ) ∈

H
α/2
a (0,T ) be a real-valued local minimizer of E(·;µ) := E(·;0,µ) over Hα/2

a (0,T ) sub-

ject to fixed Q(u) = µ and N(u) = 0. Then by construction, the second derivative test for

constrained extrema yields

δ2E(φ)|{δQ(φ),δN(φ)}⊥ ≥ 0,

where

{δQ(φ), δN(φ)}⊥ :=
{
h ∈Hα/2

a ([0,T ];C) : 〈φ,h〉=
〈
iφ′,h

〉
= 0
}
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denotes the tangent space at φ to the codimension two constrained subspace

Σµ :=
{
ψ ∈Hα/2(0,T ) :Q(ψ) = µ, N(ψ) = 0

}

in Hα/2
a (0,T ). Recall that the inner product 〈·, ·〉 is defined throughout as

〈u,v〉= Re

∫ T

0
uv̄ dx.

Thus δ2E(φ) has at most two negative T -antiperiodic eigenvalues. Specifically, since

δ2E(φ) is diagonal and δQ(φ) = φ and δN(φ) = iφ′ are real- and imaginary-valued, re-

spectively, it follows that the linear operators L+ and L− each have at most one negative

T -antiperiodic eigenvalue, with

L+

∣∣
{δQ(φ)}⊥ ≥ 0 and L−

∣∣
{Im(δN(φ))}⊥ ≥ 0. (2.34)

Lemma 2.3.11. Under the hypothesis of Proposition 2.3.1, the following are true:

(i) The operator δ2E(φ) acting on L2
a(0,T ) has at most one negative eigenvalue, with

L+ ≥ 0 and n−(L−)≤ 1.

(ii) φ′ ∈ ker(L+), and it corresponds to the ground state eigenfunction of L+ restricted

to the subspace of odd functions in Hα/2
a (0,T ).

(iii) φ ∈ ker(L−), and it corresponds to the ground state eigenfunction of L− restricted

to the subspace of even functions in Hα/2
a (0,T ).

(iv) φ′,φ2σφ′ ∈ range(L−).

(v) φ2σ+1 ∈ range(L+).
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Proof. First, note that the profile equation (2.3) is equivalent to L−φ= 0, while differenti-

ating the profile equation with respect to x gives L+φ
′ = 0; see (2.24). Further, due to the

monotonicity properties guaranteed by Lemma 2.2.6, we have φ is even and sign-definite

on (−T/2,T/2), hence φ is the ground state of L− acting on L2
a,even(0,T ) by Theorem

2.3.8(a). Similarly, φ′ is odd and is sign-definite on (0,T ), hence φ′ is the ground state of

L+ acting on L2
a,odd(0,T ) by Theorem 2.3.8(b). This establishes claims (ii) and (iii).

Moreover, the potentials

V+(x) = (2σ+ 1)φ2σ +ω, V−(x) = φ2σ +ω (2.35)

of L+ and L− (respectively) are decreasing on (0,T/2), so it follows from Proposition

2.3.9 that

0 = minσ
(
L+|L2

a,odd

)
≤minσ

(
L+|L2

a,even

)
,

hence L+ has no negative eigenvalues, i.e. L+ ≥ 0. Further, L− can have at most one

negative eigenvalue by by (2.34), hence n−(L−)≤ 1. This establishes claim (i).

To prove claims (iv) and (v), observe that L+ = L−+ 2σφ2σ. Hence

L+φ= L−φ+ 2σφ2σ+1 = 2σφ2σ+1,

which establishes (v). Similarly,

0 = L+φ
′ = L−φ

′+ 2σφ2σ

=⇒ L−φ
′ =−2σφ2σ,
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i.e. φ2σ ∈ range(L−). Finally, differentiating the profile equation (2.3) with respect to c

gives

Λα
∂φ

∂c
+ω

∂φ

∂c
+
∂ω

∂c
φ+ ic

∂φ′

∂c
+ iφ′+ |φ|2σ ∂φ

∂c
+ 2σ |φ|2σ−2φRe

(
φ
∂φ

∂c

)
= 0,

where φ = φ(·;c,µ) is a minimizer with corresponding Lagrange multiplier ω = ω(c,µ)

as constructed in Proposition 2.2.2. Evaluating the above expression at c = 0 and taking

imaginary parts yields, by reality of φ at c= 0,

Λα
(
∂φ

∂c

∣∣∣
c=0

)
+

(
ω
∂φ

∂c

)∣∣∣
c=0

+φ2σ+1∂φ

∂c

∣∣∣
c=0

=−iφ′,

i.e. L−

(
Im

∂φ

∂c

∣∣∣∣
c=0

)
=−φ′. Thus φ′ ∈ range(L−), completing (iv).

Remark 2.3.12. In differentiating the profile equation at c= 0 to prove that φ′ ∈ range(L−),

we relied on the fact that the real-valued, T -antiperiodic standing profile φ(·;µ) is a mem-

ber of a more general family of complex-valued T -antiperiodic traveling waves φ(·;c,µ)

defined for |c| sufficiently small; see Proposition 2.2.2 and Lemma 2.2.6. In the local case

α= 2, one may rely on the Galilean invariance of (2.1) to produce such a curve of traveling

solutions near c= 0, and differentiating along this curve yields the same result. Since such

an (exact) Galilean invariance does not exist for α ∈ (1,2), for µ > 0 the existence theory

constructs a minimizer for each c, thus allowing one to vary φ smoothly as a function of c

near c= 0.

Finally, we are ready to establish the nondegeneracy of L±.

Proof of Proposition 2.3.1. First, note that since φ2σ is even and T -periodic by construc-

tion, the subspacesL2
a,odd(0,T ) andL2

a,odd(0,T ) of respectively even and odd T -antiperiodic

functions are invariant subspaces of the operators L±. In particular, the operators L± re-
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spect the orthogonal decomposition

L2
a(0,T ) = L2

a,odd(0,T )⊕L2
a(0,T )even

so that

σ
(
L±
∣∣
L2
a(0,T )

)
= σ

(
L±
∣∣
L2
a,odd(0,T )

)
∪σ
(
L±
∣∣
L2
a,even(0,T )

)
.

Since Lemma 2.3.11 implies that

ker

(
L+

∣∣
L2
a,odd(0,T )

)
= span

{
φ′
}

and ker
(
L−
∣∣
L2
a,even(0,T )

)
= span{φ} ,

it remains to verify that ker
(
L+

∣∣
L2
a,even(0,T )

)
and ker

(
L−
∣∣
L2
a,odd(0,T )

)
are trivial.

First, suppose there exists a non-trivial solution v ∈L2
a,even(0,T ) of the equation L+v=

0. Since L+ is self adjoint on L2
a(0,T ), the Fredholm alternative implies that v must be or-

thogonal to the range of the operator L+ acting on L2
a(0,T ). Since zero is the ground

state eigenvalue of L+ acting on L2
a(0,T ) by Lemma 2.3.11(i), it follows that v is the even

ground state eigenfunction for L+ and hence, by Theorem 2.3.8, may be chosen to be

strictly positive on (−T/2,T/2). To reach the desired contradiction, observe that Lemma

2.3.11(v) implies the function φ2σ+1 is in the range of L+ acting on L2
a(0,T ). Since φ2σ+1

is sign-definite on (−T/2,T/2) we have that
〈
φ2σ+1,v

〉
6= 0, a contradiction of the Fred-

holm alternative. Consequently, ker(L+|L2
a,even(0,T )) = {0}, hence

ker(L+) = span
{
φ′
}
. (2.36)

That is, L+ is nondegenerate on L2
a(0,T ).

Next, we turn our attention to L−. First, we claim that L− has exactly one negative

T -antiperiodic eigenvalue. To this end, suppose (to show a contradiction) that L− does
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not have a negative eigenvalue. Since L−φ = 0 and φ is even, the ground state ordering

(Proposition 2.3.9) implies that there exists ψ ∈ L2
a,odd(0,T ) such that L−ψ = 0 with ψ

being the ground state on L−|L2
a,odd(0,T ). Then by Theorem 2.3.8(b), ψ is sign-definite on

(0,T ), hence 〈ψ,φ′〉 6= 0, i.e. φ is not orthogonal to φ′. But φ′ ∈ range
(
L−|L2

a,odd(0,T )

)
=

ker
(
L−|L2

a,odd(0,T )

)⊥
, a contradiction of the Fredholm alternative. Thus it must be that

n−(L−)≥ 1, which implies that n−(L−) = 1 by Lemma 2.3.11(i). Now, since L−φ= 0, it

follows that λ = 0 is the second eigenvalue of L− acting on L2
a(0,T ). As above, suppose

there exists a nontrivial solution v ∈ L2
a,odd(0,T ) to the equation L−v = 0. By Lemma

2.3.10, v may change signs at most twice on (0,T ). We will show that such a nontrivial

v cannot exist, again by using the Fredholm alternative. To this end, note that if v is sign-

definite on (0,T ), then the fact that φ′ < 0 on (0,T ) implies 〈φ′,v〉 6= 0, a contradiction

of the Fredholm alternative since φ′ ∈ range(L−) by Lemma 2.3.11(iv). Thus, any non-

trivial v ∈ ker(L−) must change signs at least once in (0,T ) and, since odd T -antiperiodic

functions are even about x = T/2, such a function must have exactly two sign changes in

(0,T ); one at some x= x0 ∈ (0,T/2) and the other at x= T −x0 ∈ (T/2,T ). Define

η(x) := φ′(x)
(
φ(x)2σ−φ(x0)2σ

)
and note that η ∈ range(L−) by Lemma 2.3.11(iv). Further, η changes signs at x= x0 and

x = T − x0 by monotonicity of φ on (0,T ). Consequently, 〈η,v〉 6= 0, again contradict-

ing the Fredholm alternative. Thus, it must be that ker

(
L−
∣∣
L2
a,odd(0,T )

)
= {0}, and we

conclude that

ker(L−) = span{φ}, (2.37)

verifying the nondegeneracy of L− on L2
a(0,T ).
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Finally, since L= diag(L+,L−) is diagonal, we have by (2.36) and (2.37) that

ker(L) = span


u
v

 : u ∈ ker(L+),v ∈ ker(L−)

= span


φ′

0

 ,
0

φ


 ,

completing the proof of Proposition 2.3.1.

We end this section by demonstrating that the generalized L2
a(0,T )-kernel of the lin-

earized operator associated with (2.1) supports a Jordan structure if ∂
∂cN(φ(·;c,µ))

∣∣∣
c=0
6= 0,

which plays a central role in the forthcoming stability analysis. Note that linearizing (2.20)

about φ(·;µ) produces the linear system

vt =−iδ2E(φ)v,

which, by separating variables v(x,t) = eλtV (x) and decomposing into real and imaginary

parts, leads to the spectral problem

 0 1

−1 0


L+ 0

0 L−


Re(V )

Im(V )

= λ

Re(V )

Im(V )

 .
Proposition 2.3.13 (Jordan Block Structure). Under the hypotheses of Proposition 2.3.1,

zero is a T -antiperiodic generalized eigenvalue of the linearized operator

JL :=

 0 1

−1 0


L+ 0

0 L−


associated to the profile φ0 := φ(·;c= 0,µ) with algebraic multiplicity four and geometric

multiplicity two provided that
∂

∂c
N(φ(·;c,µ))

∣∣∣
c=0
6= 0.
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Proof. By Proposition 2.3.1, we have that dim

(
ker

(
L±

∣∣∣
L2

a (0,T )

))
= 1, hence zero is a

T -antiperiodic eigenvalue of L+ and of L− with algebraic multiplicity at least one and

geometric multiplicity precisely one, and

ker(JL) = span


φ′0

0

 ,
 0

φ0


 .

To understand the generalized kernel of JL, we try to solve

JL

ξ
η

=

φ′0
φ0

 ,
which leads to

L+ξ =−φ0, L−η = φ′0.

From Lemma 2.3.11(iv), we have that η =− Im
(
∂φ
∂c

∣∣∣
c=0

)
, and such a T -antiperiodic func-

tion ξ exists by the Fredholm alternative since φ0 is orthogonal to ker(L+). So, zero is is

a generalized eigenvalue of JL with geometric multiplicity at least two and and algebraic

multiplicity of at least four.

By the Fredholm alternative, the generalized kernel of JL terminates at height two pro-

vided that ξ⊥ ker(L−) and Im
(
∂φ
∂c

∣∣∣
c=0

)
⊥ ker(L+), i.e. if 〈φ,ξ〉 6= 0 and

〈
φ′0, Im

(
∂φ
∂c

∣∣∣
c=0

)〉
6= 0. Writing ξ= ξeven +ξodd as a sum of even and odd functions, we have by T -antiperiodicity

of ξ and the evenness and monotonicity of φ0 (see Lemma 2.2.6) that

〈φ0, ξ〉= 〈φ0, ξeven〉︸ ︷︷ ︸
6=0

+〈φ0, ξodd〉︸ ︷︷ ︸
=0

6= 0.
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Further, by hypothesis we have

0 6= ∂

∂c
N(φ(·;c,µ))

∣∣∣
c=0

=

〈
δN(φ(·;0,µ)),

∂φ

∂c

∣∣∣
c=0

〉
=

〈
iφ′0,

∂φ

∂c

∣∣∣
c=0

〉
=

〈
φ′0, Im

(
∂φ

∂c

∣∣∣
c=0

)〉
.

So, the generalized kernel of JL has geometric multiplicity exactly two and algebraic mul-

tiplicity exactly four if
∂

∂c
N(φ(·;c,µ))

∣∣∣
c=0
6= 0, as claimed.

2.4 Stability of Defocusing Constrained Energy Minimiz-

ers

Let T > 0 and µ0 > 0 be fixed and let φ0 := φ(·;µ0) denote a real-valued, T -antiperiodic

solution of the nonlocal profile equation (2.3) with c = 0 satisfying Q(φ0) = µ0, whose

existence is guaranteed by Proposition 2.2.2 and Lemma 2.2.6. The profile φ0 is thus an

equilibrium solution of the PDE

iut−ω0u−Λαu−|u|2σu= 0, (2.38)

where ω0 := ω(0,µ0). In this section, we consider the stability of φ0 under the evolution

of (2.38) to general complex-valued, T -antiperiodic perturbations or, equivalently, the sta-

bility of the standing wave solution u(x,t;µ0) = eiω0tφ0(x) under the evolution of (2.1) to

such perturbations.

For α > 1 and σ > 0, an iteration argument reveals that the Cauchy problem for (2.38)

is locally in time well-posed in H1/2+
a ([0,T ];C). Furthermore, using conservation laws
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these local solutions can be extended to global ones in Hα/2
a ([0,T ];C) provided the initial

data is in Hα/2
a (0,T ). Throughout our analysis we work on an appropriate subspace X ⊆

H
α/2
a ([0,T ];C) where the Cauchy problem associated with (2.20) is locally well-posed and

where the functionalsH,Q,N :X → R are smooth.

Observe that the evolution defined by (2.1), and hence of (2.38), is invariant under

a two-parameter group of symmetries generated by spatial translations and unitary phase

rotations. For each w ∈X this motivates us to define the group orbit

Ow :=
{
eiβw(·−x0) : β,x0 ∈ R

}
⊂X.

We say that the standing wave φ0(·;µ0) is orbitally stable if the group orbit Oφ0 is stable

under the evolution of (2.38), i.e. solutions of (2.38) remain close in the X-norm to Oφ0
for all future times if their initial data is sufficiently close in the X-norm to Oφ0 . Setting

E0(u) :=H(u) +ω0Q(u), (2.39)

we recall from Lemma 2.2.6 that φ0 is a critical point of E0, i.e. that δE0(φ) = 0, or,

equivalently, that φ0 is a critical point of H subject to fixed Q(u) = µ0 and N(u) = 0.

Furthermore, Proposition 2.3.1 shows that the kernel of the Hessian δ2E0(φ0) is generated

by the translation and phase rotation symmetries. Intuitively, as in finite dimensions, we

expect the group orbit of φ0 to be stable provided the operator δ2E0(φ0) is positive-definite

at φ0. We will demonstrate this positive-definiteness and establish the orbital stability of

the standing wave φ0 under the evolution of (2.38). The main orbital stability result is as

follows:

Theorem 2.4.1 (Orbital Stability). Suppose α ∈ (1,2], and let φ(·;µ0) = φ(·;c = 0,µ0) ∈

H
α/2
a (0,T ) be a real-valued, T -antiperiodic local minimizer of H subject to Q(u) = µ0
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and N(u) = 0 as constructed in Lemma 2.2.6. Suppose in addition that both φ and the

associated Lagrange multiplier ω depend on µ and c in a C1 manner near (µ,c) = (µ0,0).

If
∂

∂c
N(φ(·;c,µ0))

∣∣∣
c=0
6= 0, (2.40)

then for all ε > 0 sufficiently small there exists a constant C =C(ε) such that if v ∈X with

‖v‖X ≤ ε and N(φ(·;µ0) + v) = 0, and if u(·, t) is a local in time solution of (2.38) with

initial data u(·,0) = φ(·;µ0) + v, then u(·, t) can be continued to a solution for all t ≥ 0

and

sup
t≥0

inf
β,x0∈R

∥∥∥u(·, t)− eiβφ(·−x0;µ0)
∥∥∥
X
≤ C‖v‖X .

Remark 2.4.2. As in the nondegeneracy theory in Section 2.3, the smooth dependence of φ

and ω on the wave speed c near c = 0 is crucial to our stability analysis. The requirement

that these quantities also depend smoothly on the charge µ is needed to allow perturbations

v ∈X for which Q(φ(·;0,µ0) + v) 6= µ0, i.e. perturbations that slightly change the charge

from that of the underlying wave. If restricting to a class of perturbations that preserve the

charge, i.e. v ∈X such thatQ(φ(·;0,µ0)+v) = µ0, then φ and ω need not depend smoothly

on µ. See the proof of Theorem 2.4.1.

To begin the proof of Theorem 2.4.1, observe Proposition 2.3.1 and Lemma 2.3.11

imply that δ2E0(φ0)
∣∣∣
H
α/2
a (0,T )

has one negative direction and two neutral directions. To

control these potentially unstable directions, we note that the evolution of (2.38) does not

occur on the whole space X , but rather on the codimension two nonlinear manifold

Σ0 := {u ∈X :Q(u) = µ0, N(u) = 0} .

In particular, Σ0 is an invariant set under the flow of (2.38), with Oφ0 ⊂ Σ0. The key step

in the proof of Theorem 2.4.1, we establish the coercivity of E0 on Σ0 in a neighborhood
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of Oφ0 provided that condition (2.40) holds. To this end, we define

T0 := span{δQ(φ0), δN(φ0)}⊥ = span{φ0, iφ
′
0}⊥ (2.41)

to be the tangent space in X to Σ0 at φ0, and establish the following technical result.

Lemma 2.4.3 (Positive-Definiteness). Suppose that
∂

∂c
N(φ(·;c,µ)

∣∣∣
c=0
6= 0. Then

inf
{〈
δ2E0(φ)v,v

〉
: ‖v‖X = 1, v ∈ spanR{φ′, iφ,φ, iφ′}⊥

}
> 0.

Proof. We will decompose v ∈X into real and imaginary parts ~v =

[
Re(v) Im(v)

]T
and

analyze the equivalent matrix formulation δ2E0(φ) ∼ L := diag(L+,L−) that acts on real

and imaginary parts separately.

Define the projection Π̂ := diag(Π,Π0), where for real-valued u ∈X ,

Πu := u− 〈u,φ〉
〈φ,φ〉

φ, Π0u := u− 〈u,φ
′〉

〈φ′,φ′〉
φ′.

Then for all ~v =

v1

v2

 ∈ T0 := span


φ

0

 ,
 0

φ′



⊥

, we have v1 ⊥ φ and v2 ⊥ φ′, hence

Π̂~v =

Πv1

Π0v2

=

v1

v2

= ~v.

Moreover, it is easy to check that Π̂ is a symmetric operator, hence for all ~v ∈ T0, we have

〈L~v,~v〉=
〈
L~v, Π̂~v

〉
=
〈

Π̂L~v,~v
〉
.
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Due to the periodic boundary conditions, the spectrum of the symmetric operator Πδ2E0(φ0)

is real and purely discrete, consisting of isolated eigenvalues accumulating at +∞. By the

second derivative test for constrained extrema, we already have that
〈

Π̂L~v,~v
〉

= 〈L~v,~v〉 ≥

0 for all ~v ∈ T0, so due to the spectral gap there exists λ > 0 such that

inf
{〈

Π̂L~v,~v
〉

: ‖~v‖L2(0,T ) = 1, ~v ∈ T0∩ker(Π̂L)⊥
}
≥ λ. (2.42)

That is,
〈

Π̂L~v,~v
〉
≥ λ‖~v‖L2(0,T ) for all ~v with ‖~v‖L2(0,T ) = 1, which implies that

〈
Π̂L~v,~v

〉
≥ λ‖~v‖X

for all ‖~v‖X = 1 as well.

We claim that if ~v ∈ T0, then ~v ∈ ker(Π̂L) if and only if ~v ∈ ker(L). It is clear that if ~v ∈

ker(L), then ~v ∈ ker(Π̂L). Conversely, suppose that ~v =

[
v1 v2

]T
∈ T0 and ~v ∈ ker(Π̂L).

Then

ΠL+v1 = 0, Π0L−v2 = 0,

hence

L+v1 = aφ, L−v2 = bφ′

for some a,b ∈ R. Since aφ ⊥ ker(L+) and bφ′ ⊥ ker(L−), by the Fredholm alternative

there exist unique solutions in X to the above equations:

v1 = aL−1
+ (φ) =: aξ

v2 = bL−1
− (φ′) =−b Im

(
∂φ

∂c

∣∣∣
c=0

)
.
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However, we require v1 ⊥ φ, which occurs only if a= 0:

0 = 〈v1,φ〉

=−a〈ξ,φ〉 ,

which implies that a= 0 since 〈ξ,φ〉 6= 0 as shown in Proposition 2.3.13. So, v1 ∈ ker(L+).

Moreover, we require v2 ⊥ φ′, which occurs only if b= 0:

0 =
〈
v2,φ

′〉
= b

〈
− Im

(
∂φ

∂c

∣∣∣
c=0

)
,φ′
〉

=−b ∂

∂c
N(φ(·;c,µ)

∣∣∣
c=0

=⇒ b= 0 since
∂

∂c
N(φ(·;c,µ)

∣∣∣
c=0
6= 0 by hypothesis

=⇒ v2 ∈ ker(L−).

So, if ~v =

[
v1 v2

]T
∈ T0 and ~v ∈ ker(Π̂L), then we have established that ~v ∈ ker(L). It

follows that

T0∩ker(Π̂L)⊥ = T0∩ker(L)⊥,

hence by (2.42) we have

0< inf
{〈

Π̂L~v,~v
〉

: ‖~v‖X = 1, ~v ∈ T0∩ker(L)⊥
}

= inf
{〈
δ2E0(φ)v,v

〉
: ‖v‖X = 1, v ∈ spanR

{
φ,iφ′,φ′, iφ

}⊥}
,

as claimed.
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Next, we introduce the semidistance ρ on X defined via

ρ(u,v) := inf
(β,x0)∈R2

∥∥∥u− eiβv(·−x0)
∥∥∥
X
,

and observe that ρ(u,v) simply measures the distance in X from u to the group orbit Ov

or, equivalently, from v to Ou. Next, we show that the functional E0 is coercive on the

nonlinear manifold Σ0 with respect to the semidistance ρ.

Proposition 2.4.4 (Coercivity). Under the hypothesis of Theorem 2.4.1, there exist con-

stants ε > 0 and C = C(ε)> 0 such that if u ∈ Σ0 with ρ(u,φ0)< ε, then

E0(u)−E0(φ0)≥ Cρ(u,φ0)2.

Proof. We claim that there exists a neighborhood Uε ⊂X of φ0 and continuously differen-

tiable maps τ,β : Uε→ R such that for all u ∈ Uε, we have ρ(u,φ0)< ε and



τ(φ0) = 0

β(φ0) = 0〈
eiβ(u)u(·+ τ(u)),φ′0

〉
= 0〈

eiβ(u)u(·+ τ(u)), iφ0

〉
= 0.

(2.43)

To prove this, consider the C1 functions F1,F2 : R×R×X → R defined by

F1(τ,β,u) :=
〈
eiβu(·+ τ),φ′0

〉
, F2(τ,β,u) :=

〈
eiβu(·+ τ), iφ0

〉
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and note that F1(0,0,φ0) = 〈φ0,φ
′
0〉= 0 and F2(0,0,φ0) = 〈φ0, iφ0〉= 0. Further,

∂(F1,F2)

∂(τ,β)

∣∣∣∣
(0,0,φ0)

= det

〈eiβu′(·+ τ),φ′0
〉 〈

ieiβu(·+ τ),φ′0
〉

〈
eiβu′(·+ τ), iφ0

〉 〈
ieiβu(·+ τ), iφ0

〉

∣∣∣∣∣∣∣
(0,0,φ0)

=
〈
φ′0,φ

′
0

〉
〈iφ0, iφ0〉

6= 0.

Thus by the implicit function theorem there exists an open ball Uε := {u∈X : ‖u−φ0‖X <

ε} and C1 maps τ,β : Uε→ R with τ(φ0) = β(φ0) = 0 such that

F1(τ(u),β(u),u) = F2(τ(u),β(u),u) = 0

for all u ∈ Uε, which completes the demonstration of (2.43). This neighborhood Uε is also

close to the group orbit Oφ0 in the sense that, for all u ∈ Uε,

ρ(u,φ0) = inf
τ,β∈R

∥∥∥eiβu(·+ τ)−φ0

∥∥∥
X

≤ ‖u−φ0‖X

< ε,

as claimed.

Let u ∈ Uε. Since E0 is invariant under spatial translations, it will suffice to show that

E0(u(·+ τ(u))−E(φ0)≥ Cρ(u(·+ τ(u)),φ0)2. Fix u ∈ Uε∩T0 and write

eiβ(u)u(·+ τ(u)) = φ0 +C1φ0 + iC2φ
′
0 + iC3φ0 +C4φ

′
0 +y, (2.44)
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where C1,C2,C3,C4 ∈ R and y ⊥ spanR{φ0, iφ0,φ
′
0, iφ

′
0}. Let

h := eiβ(u)u(·+ τ(u))−φ0 = C1φ0 + iC2φ
′
0 + iC3φ0 +C4φ

′
0 +y.

Taking inner products of (2.44) with φ′0 and with iφ0, then applying (2.43) yields C3 =

C4 = 0, hence

h= C1φ0 + iC2φ
′
0 +y.

Now,

Q(u) =Q(eiβ(u)u(·+ τ(u)))

=Q(φ0 +h)

=Q(φ0) + 〈δQ(φ0),h〉+O(‖h‖2X) by Taylor’s theorem

=⇒ 0 = 〈φ0,h〉+O(‖h‖2X) since Q(u) =Q(φ0)

= C1 ‖φ0‖2L2(0,T ) +O(‖h‖2X)

=⇒ C1 =O(‖h‖2X).

Similarly,

N(u) =N(eiβ(u)u(·+ τ(u)))

=N(φ0 +h)

=N(φ0) + 〈δN(φ0),h〉+O(‖h‖2X)

=⇒ 0 =
〈
iφ′0,h

〉
+O(‖h‖2X)

=⇒ C2 =O(‖h‖2X).
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Again by Taylor’s theorem,

E0(u) = E0(eiβ(u)u(·+ τ(u)))

= E0(φ0) + 〈δE0(φ0),h〉+ 1

2

〈
δ2E0(φ0)h,h

〉
+o(‖h‖2X)

=⇒ E0(u)−E0(φ0) =
1

2

〈
δ2E0(φ0)h,h

〉
+o(‖h‖2X)

=
1

2

〈
δ2E0(φ0)y,y

〉
+O(‖h‖3X)

≥ C∗ ‖y‖2X − C̃ ‖h‖
3
X for some constants C∗ > C̃ by Lemma 2.4.3

upon possibly taking ε smaller (‖h‖X < ε)

= C∗
∥∥h−C1φ0− iC2φ

′
0

∥∥2

X
− C̃ ‖h‖3X

≥ C ‖h‖2X for some constant C > 0 since C1,C2 =O(‖h‖2X)

= C
∥∥∥eiβ(u)u(·+ τ(u))−φ0

∥∥∥2

X

≥ ρ(u,φ0)2.

So, there exist constants ε,C > 0 such that E0(u)−E0(φ0)≥Cρ(u,φ0)2 whenever ρ(u,φ0)<

ε, as claimed.

Equipped with the coercivity estimate in Proposition 2.4.4 above, we now establish

orbital stability of φ0 with respect to complex-valued, T -antiperiodic perturbations.

Proof of Theorem 2.4.1. This proof follows the approach of [26, Proposition 3.1], [39, The-

orem 4.1]. For the minimizer φ0, let δ > 0 be such that Proposition 2.4.4 holds, i.e. that

there exists constant C1 > 0 such that C1ρ(ψ,φ0) ≤ E0(ψ)−E0(φ0) for all ψ ∈ Σ0 with

ρ(ψ,φ0) < δ, and let v ∈ X satisfy ‖v‖X ≤ ε for some ε > 0 small. Since φ0 is a critical

point of E0, Taylor’s theorem implies that E0(φ0 + v)−E0(φ0) ≤ C2ε
2 for some constant

C2 > 0. Furthermore, notice that if φ0 + v ∈ Σ0, then the unique solution u(·, t) of (2.38)

with u(·,0) = φ0 +v remains in Σ0 so long as it exists since Q and N are conserved under
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the flow of fNLS. Since E0(u(·, t)) = E0(u(·,0)) = E0(φ0 +v) independently of t, we have

C1ρ(u(·, t),φ0)2 ≤ E0(φ0 +v)−E0(φ0)≤ C2ε
2

for all t ≥ 0, provided ε is taken small enough so that C2ε
2 < C1δ

2. This establishes the

orbital stability of φ0 to such perturbations.

Now consider the case that φ0 + v /∈ Σ0 but ‖v‖X ≤ ε and N(φ0 + v) = 0. First, we

claim that the mapping

(c,µ) 7→ (N(φ(·;c,µ)),Q(φ(·;c,µ)))

is a period-preserving diffeomorphism from a neighborhood of (c,µ) = (0,µ0) onto a

neighborhood of (N,Q) = (0,µ0). Indeed, consider the Jacobian

∂(N,Q)

∂(c,µ)

∣∣∣∣ c=0
µ=µ0

= det

 ∂
∂cN(φ(·;c,µ0))

∣∣∣
c=0

∂
∂cQ(φ(·;c,µ0))

∣∣∣
c=0

∂
∂µN(φ(·;0,µ))

∣∣∣
µ=µ0

∂
∂µQ(φ(·;0,µ))

∣∣∣
µ=µ0


and note that

∂

∂µ
N(φ(·;0,µ))

∣∣∣
µ=µ0

=

〈
δN(φ0),

∂φ

∂µ
(·;0,µ0)

〉
X

=

〈
iφ′0,

∂φ

∂µ
(·;0,µ0)

〉
X

= 0

since φ′0 and ∂φ
∂µ(·;0,µ0) are real-valued functions, and

∂

∂µ
Q(φ(·;0,µ))

∣∣∣
µ=µ0

=
∂

∂µ
µ
∣∣∣
µ=µ0

= 1.
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Thus
∂(N,Q)

∂(c,µ)

∣∣∣∣ c=0
µ=µ0

=
∂

∂c
N(φ(·;c,µ0))

∣∣∣
c=0
6= 0

by hypothesis, so there exists µ̃ ∈ R with µ̃ =O(ε) such that φ̃ := φ(·;0,µ0 + µ̃) is a real-

valued, T -antiperiodic standing wave of fNLS (2.38) satisfying Q(φ̃) = Q(φ0 + v) and

ρ(φ0, φ̃) =O(ε). Defining

Ẽ(u) := E(u) +ω(0,µ0 + µ̃)Q(u),

we have that φ̃ minimizes Ẽ subject to the constraints Q ≡ Q(φ0 + v) and N ≡ 0. By

Proposition 2.4.4, there exist constants δ,C1 > 0 such that

C1ρ(ψ,φ̃)≤ Ẽ0(ψ)−Ẽ0(φ̃)

for all ψ ∈ Σ̃0 := {u ∈ X : Q(u) = µ0 + µ̃, N(u) = 0} such that ρ(ψ,φ̃) < δ. By conser-

vation of Q and N , we have that u(·, t) ∈ Σ̃0 for all t, hence the above coercivity estimate

gives

C1ρ(u(·, t), φ̃)≤ Ẽ0(ψ)−Ẽ0(φ̃)

whenever ρ(u(·, t), φ̃)< δ.

Since φ̃ is a critical point of Ẽ , we also have that

Ẽ(u(·, t))−Ẽ(φ̃) = Ẽ(φ0 +v)−Ẽ(φ̃)

= Ẽ(φ̃+ (φ0− φ̃+v))−Ẽ(φ̃)

=O(‖φ0− φ̃+v‖2X)

=O(ε2),
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hence there exists C2 > 0 such that Ẽ(u(·, t))−Ẽ(φ̃)≤ C2ε
2 for all t≥ 0. So,

C1ρ(u(·, t), φ̃)2 ≤ C2ε
2

for all t≥ 0, provided ε is taken to be small enough so that C2ε
2 < C1δ

2.

Finally, by the triangle inequality, we have for ε sufficiently small that

ρ(u(·, t),φ0)2 =
(
ρ(u(·, t), φ̃) +ρ(φ̃,φ0)

)2
=O(ε2)

for all t≥ 0. Thus φ0 is orbitally stable to small perturbations that “slightly” change Q yet

preserve N , establishing Theorem 2.4.1.

Remark 2.4.5. From the above proof, the assumption in Theorem 2.4.1 that φ, ω depend

smoothly on µ is only needed when considering perturbations v such that φ0 + v /∈ Σ0

and N(φ0 + v) = 0. So, these assumptions can be removed if one is willing to restrict to

perturbations v that preserve the charge and angular momentum of the underlying wave.
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Chapter 3

Numerical Bifurcation and Spectral Stability of

Wavetrains in Bidirectional Whitham Models

3.1 Introduction

While the Euler equations form the de facto model for water waves, analysis of this very

general model remains difficult, and simpler models have been proposed. Using KdV as a

starting point, which is known to be a good model for waves of large wavelength in shallow

water, Whitham [66] proposed the model

ut+Mux+uux = 0,

where the operator M is a Fourier multiplier with symbol m(ξ) =
√

tanh(ξ)/ξ, that in-

corporates the full unidirectional dispersion relation for the Euler equations in an effort

to better capture mid- and high-frequency phenomena found in the Euler equations, such

as wave steepening/peaking. His equation, now referred to as the Whitham equation, has

received considerable attention in recent years, having been investigated analytically ([24],

[21], [20], [37]) as well as numerically ([60], [24], [57]). These studies have found that the

unidirectional Whitham equation not only captures wave steepening and derivative blow-up
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[36], but also exhibits a highest cusped traveling wavetrain [23], existence of smooth soli-

tary traveling waves [23], as well as the famous Benjamin-Feir, or modulational, instability

for small amplitude wavetrains [37]. Furthermore, generalizations of Whitham’s equation

accounting for constant vorticity and surface tension have been studied [38]. However, the

Whitham equation fails to capture particular high-frequency (spectral) instabilities of small

periodic wavetrains due to the unidirectionality of wave propagation; see [18, 17].

Recently there has been interest in bidirectional Whitham models [52, 20, 35, 54, 22,

12] in an effort to discover models that capture more of the important qualitative properties

of the full Euler equations, e.g. existence of smooth solitary waves and peaked traveling

waves, and both high-frequency and modulational instabilities of small periodic wavetrains.

These are often built as full-dispersion generalizations of the nonlinear shallow water equa-

tions 
ut =−ηx−uux

ηt =−ux− (ηu)x.

(3.1)

However, there does not seem to be a unique way to generalize (3.1) to incorporate the full

dispersion relation for the Euler equations. Indeed, several different models can be found

in the literature, all of which claim to be bidirectional Whitham equations. One of the main

goals of this chapter is to numerically investigate the existence and stability of periodic

wavetrains of both small and large amplitude, including the existence of highest peaked /

cusped traveling waves, providing numerical confirmation of known analytical results as

well as offering new conjectures for large amplitude waves in hopes of spurring further

analytical study.

In this chapter, we will study three fully-dispersive shallow water wave models that

have been presented in the literature. In [52], the bidirectional Whitham equation (written
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here in non-dimensional form) is derived from the Euler equations:

 ut = −ηx−uux

ηt = −Kux− (ηu)x

(3.2)

where the operator K incorporates the full-Euler dispersion and is defined via its symbol

K̂f(n) :=
tanh(n)

n
f̂(n), n ∈ Z. (3.3)

Here, η represents the fluid height and u = φx with φ(x,t) = φ(x,η(x,t), t) denoting the

trace of the velocity potential at the free surface. A quick calculation shows that the disper-

sion relation of (3.2) agrees exactly with that of the full Euler equations: taking the linear

part of (3.2) and differentiating the first equation with respect to t and the second equation

with respect to x yields

utt =Kuxx.

With u(x,t) = Aei(kx−ωt) for A ∈ R, we have

A(−iω)2ei(kx−ωt) = A(ik)2 tanh(k)

k
ei(kx−ωt) =⇒ ω2 = k tanh(k),

the exact dispersion relation of the full Euler equations.

While the well-posedness of this system is not fully understood, a recent result [22,

Theorem 1] establishes that (3.2) is locally well-posed for all initial data η(x,0) = ψ(x),

u(x,0) = φ(x) with infψ > 0. Though this result does not prove that the system is ill-

posed for initial data having negative infimum, numerical evidence suggests that this is

indeed the case: see Section 3.3.1 for further details. Furthermore, in [20] a class of 2π-

periodic traveling wave solutions of (3.2) was constructed, and it was proven that there

exists a highest wave with a logarithimically-cusped singularity. Concerning the stability
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of wavetrains, it has recently been shown that there exists a critical wavenumber κc ≈

1.008 such that all 2π/κ-periodic wavetrains of (3.2) of sufficiently small amplitude are

modulationally unstable provided κ > κc: see [54]. Our studies numerically confirm this

rigorous modulational instability result, and we investigate the presence of such instabilities

for large amplitude wavetrains as well.

Alternatively, [35] proposes the non-dimensional, full dispersion shallow water model

 ut = −Kηx−uux

ηt = −ux− (ηu)x,
(3.4)

where K, u, and η are as in (3.2). Moreover, [35], establishes the local well-posedness of

(3.4), the existence of even, small-amplitude, 2π/κ-periodic wavetrains for all κ > 0, and

that this system possesses a critical wavenumber κc ≈ 1.610 such that all periodic waves of

sufficiently small amplitude are modulationally unstable for κ> κc. In Section 3.3.2 below,

we numerically study the existence and stability of wavetrain solutions of (3.4), including

those of large amplitudes. We note that, in contrast with (3.2), it appears branches of

smooth periodic traveling waves in (3.4) bifurcating from a zero-amplitude state do not

appear to peak/cusp; rather, we posit that such waves of arbitrarily large amplitude are

smooth.

Lastly, in [18, Section 5], a bidirectional Boussinesq-Whitham model is proposed:

utt = ∂2
x(u2 +Ku), (3.5)

which we write as a first order system:

 ut = η

ηt = ∂2
x(u2 +Ku).

(3.6)
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This model is based on the so-called “bad Boussinesq” equation

utt = ∂2
x

(
u2 +u+uxx

)
from shallow water theory. Although (3.6) is known to be ill-posed, see [35, Appendix C],

it has nevertheless been shown to exhibit high-frequency instabilities of small amplitude

periodic wavetrains, which are known to exist in the full Euler equations; see [50, 17]. In

Section 3.3.3 below, we numerically study the existence and stability of large-amplitude

periodic wavetrains of (3.6) and provide numerical evidence that the bifurcation branch of

such such solutions terminates with a peaked or cusped wave.

To streamline our discussion and to set up a framework amenable to “black-box” com-

putations, we will view each of the systems (3.2), (3.4), and (3.6) in a very general frame-

work of the form  ut = F (~u,~η)

ηt = G(~u,~η),
(3.7)

where

~u := (u,∂xu,∂
2
xu, . . . ,∂

n
xu), ~η := (η,∂xη,∂

2
xη, . . . ,∂

n
xη).

For the models being considered, one of F or G will incorporate the Euler dispersion

operator K. Upon transforming x 7→ x− ct in (3.7), traveling wave solutions with wave

speed c satisfy (with a slight abuse of notation)

 ut = cux+F (~u,~η) =: F (~u,~η;c)

ηt = cηx+G(~u,~η) =:G(~u,~η;c),
(3.8)
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and equilibrium solutions (u(x,t),η(x,t)) = (φ(x),ψ(x)) of the above traveling wave sys-

tem satisfy the profile equations

 F (~φ, ~ψ;c) = 0

G(~φ, ~ψ;c) = 0.
(3.9)

Assuming that one can resolve either ψ(x) in terms of φ(x) or φ(x) in terms of ψ(x) in

(3.9), which will fortunately be the case for our intended applications, we can conveniently

express a single profile equation for, say, φ in the form

Kφ= g(c,φ), (3.10)

whereK is as in (3.3) and g implicitly relates the wave speed c and its corresponding profile

φ. Using this framework, we implement numerical methods for each model to compute a

global bifurcation of periodic solutions from a constant amplitude state, as well as the

spectrum of the linearization for a sampling of waves of various heights. See Section 3.2

and Appendix C for detailed discussions of these methods.

Through numerical experiments, we find that, from the perspective of bifurcation and

stability of periodic wavetrains, the three models discussed above have many similar quali-

tative features. We find that periodic traveling waves in each of these models indeed exhibit

both high-frequency and modulational instabilities for waves of sufficiently large ampli-

tude. However, high-frequency instabilities for small amplitude waves as predicted by the

full Euler equations are numerically imperceptible for the models considered here, suggest-

ing that these models fail to capture high-frequency instabilities in arbitrarily small ampli-

tude waves. Furthermore, we find that while the global bifurcation branches of smooth

periodic wavetrains for the models (3.2) and (3.5) seem to terminate in a highest singu-

lar (peaked/cusped) wave, our numerical experiments lead us to conjecture that the cor-
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responding branches for the model (3.4) extend to arbitrarily high amplitude smooth so-

lutions. Furthermore, while the model (3.4) is known to be locally well-posed [35], the

model (3.2) is only known to be conditionally locally well-posed [22], requiring that the

height profile η of the initial data be uniformly positive. In Section 3.3.1 below we pro-

vide strong numerical evidence that the local evolution of (3.2) is in fact ill-posed if the

positivity condition on η is removed. This leads us to construct new branches of periodic

wavetrains of (3.2) with uniformly positive η, which had previously been unstudied: see

Section 3.3.1 below.

The outline of this chapter is as follows. In Section 3.2 we discuss the numerical bifur-

cation techniques used to construct the global bifurcation curves of periodic wavetrain so-

lutions with fixed period. In Section 3.3 we present our main results for each of the models

(3.2), (3.4), and (3.5): see Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Further, in Section

3.3.1 describes in detail the numerical methods used to approximate the stability spectrum

associated to periodic wavetrains of (3.2). Section 3.4 provides a concluding summary

of the main observations of this chapter. In Appendix C we detail how these numerical

stability methods extend to more general models, including (3.4) and (3.5). Throughout,

the parameters of the numerical methods (e.g. number of Fourier modes used) are chosen

by experiment to ensure that the behavior of the computed waves and their corresponding

spectra are qualitatively correct. See Appendix D for further details.

3.2 Numerical Bifurcation Methods

In this section we discuss the methods used to numerically approximate the even, 2π-

periodic solutions of the bidirectional Whitham models. In summary, the approximations

will be obtained by truncating an expansion of the profile φ in an appropriate Fourier basis

and discretizing the integrals that yield the Fourier coefficients. The resulting expression
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will then be used to form a discretized version of the profile equation (3.10), which will

be enforced at a fixed number of collocation points in order to yield a nonlinear system

of equations which may be solved, for example, via Newton’s method. Using the local

bifurcation theory for the model to generate an “initial guess” for the nonlinear system

solver, an algorithm known as the pseudo-arclength method will be employed as a robust

method for simultaneously continuing the values of the wave speed and its corresponding

approximate profiles along a global bifurcation branch.

3.2.1 Cosine Collocation Method

Note that even, 2π/κ-periodic functions φ = φ(x) are naturally represented in a cosine

series

φ(x) =
∞∑
n=0

φ̂(n)cos(nκx), (3.11)

where

φ̂(n) =


κ

π

∫ π/κ

0
φ(x)dx if n= 0

2κ

π

∫ π/κ

0
φ(x)cos(nκx)dx if n≥ 1.

(3.12)

Partitioning the interval [0,π/κ] into N subintervals, for each n ∈ N0 we discretize the

integrals in (3.12) by the midpoint method as

∫ π/κ

0
φ(x)cos(nκx)dx≈

N∑
i=1

φ(xi)cos(nκxi)
π

κN
, (3.13)

where the xi =
(2i−1)π

2κN
for i= 1,2, . . . ,N are the so-called collocation points on [0,π/κ].

Using this approximation in (3.12), we obtain the following approximations of the series

coefficients:

φ̂(n)≈ φ̂N (n) := w(n)
N∑
i=1

φ(xi)cos(nκxi), (3.14)
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where

w(n) :=


1/N if n= 0

2/N if n≥ 1.

Using this approximation for the series coefficients in (3.11), and truncating the series to

N terms, we obtain

φ(x)≈ φN (x) :=
N−1∑
n=0

[
w(n)

N∑
i=1

φ(xi)cos(nκxi)

]
cos(nκx)

=
N∑
i=1

[
w(n)

N−1∑
n=0

w(n)cos(nκxi)cos(nκx)

]
φ(xi). (3.15)

Moreover, note that since φ is even, so is Kφ, where again K is defined as in (3.3) . It

follows we can approximate Kφ(x) similarly by truncating cosine series expansion and

again approximating coefficients with (3.14):

Kφ(x) =
∞∑
n=0

K̂φ(n)cos(nκx)

≈
N−1∑
n=0

K̂φN (n)cos(nκx)

=
N−1∑
n=0

K̂(n)φ̂N (n)cos(nκx)

=
N∑
i=1

[
N−1∑
n=0

w(n)
tanh(κn)

κn
cos(nκxi)cos(nκx)

]
φ(xi) =: (Kφ)N (x). (3.16)

Thus we arrive at an approximate profile equation:

(Kφ)N (x) = g(c,φN (x)). (3.17)
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For notational convenience, going forward we denote evaluation of φN and (Kφ)N at each

collocation point xi via a superscript:

φiN := φN (xi), and (Kφ)iN := (Kφ)N (xi).

Enforcing (3.17) at each xi yields a nonlinear system

fi(c,φ
1
N ,φ

2
N , . . . ,φ

N
N ) := g(c,φiN )− (Kφ)iN = 0, i= 1, . . . ,N, (3.18)

which we will endeavor to solve for wave speed c and approximate points φ1
N , . . . ,φ

N
N on

the corresponding profile.

Remark 3.2.1. Note that the system defined by (3.18) is actually underdetermined, as it con-

tains N + 1 unknowns but only N equations. However, as discussed below, the numerical

continuation algorithm will impose an additional condition as these solutions are computed

along the global bifurcation branch, at each step yielding a well-defined, full-rank system.

3.2.2 Numerical Continuation by the Pseudo-Arclength Method

To solve the discretized profile system (3.18), we use the pseudo-arclength method, a nu-

merical continuation algorithm which is well-known to the numerical bifurcation commu-

nity. Nevertheless, we provide a summary of the method here.

For further notational convenience, let y := (c,φ1
N , . . . ,φ

N
N ) ∈ RN+1 and define f :

RN+1→ RN by f(y) := (f1(y), . . . ,fN (y)). Then to solve (3.18), we seek y such that

f(y) = 0. (3.19)
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The pseudo-arclength method is a predictor-corrector method; given a point on the solution

curve f(y) = 0, another solution is found by first applying an extrapolation (predictor)

from the known solution, followed by a corrector process that projects the extrapolation

back onto the solution curve. More specifically, the pseudo-arclength method follows the

following program:

1. Given a point y0 ∈ RN+1 with f(y0) = 0, a unit tangent direction z0 to the solution

curve at y0, and a step size h, form the predictor yp1 by extrapolating h units along z0,

i.e. yp1 := y0 +hz0.

2. Project yp0 back onto the solution curve f(y) = 0 along the direction orthogonal to

z0. That is, solve for y1 in the augmented nonlinear system

 f(y1) = 0

z0 · (y1−yp1) = 0.

3. For the next step of the method, a suitable tangent vector z1 to the solution curve at

the point y1 can be found by solving for z1 in the following system ofN+1 equations

and N + 1 unknowns:  Df(y1)z1 = 0

z0 · z1 = 1.
(3.20)

Note that the z1 solved for in (3.20) will not necessarily be of unit length and should there-

fore be normalized before further iteration. Steps (1)-(3) above can be iterated to continue

from a solution yk to another point yk+1 such that f(yk+1) = 0. See Figure 3.1 for a graph-

ical illustration of the method.

Remark 3.2.2. The first equation in (3.20) is the tangency condition ensuring that z1 is

tangent to the solution curve at y1. The second equation is an orientation condition guar-
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anteeing that the angle between z0 and z1 is acute. Hence the tangent vectors will be con-

sistently oriented from one iteration to the next so that the method always makes “forward

progress”, not backtracking toward the previous solution point. Together, these conditions

form a full-rank system that can also be solved using a nonlinear equation solver. In theory,

any positive number could be used on the right-hand side of the orientation condition of

(3.20). The only difference would be the magnitude of the solution z1, which is inconse-

quential as this initial solution is scaled to unit length before further iteration.

Figure 3.1: Illustration of the pseudo-arclength method: via a predictor-corrector scheme, for
a given point yk such that f(yk) = 0 the method computes yk+1 such that f(yk+1) = 0 and a
consistently-oriented tangent direction zk+1 at yk+1.

As is evident from Step (1) of the pseudo-arclength algorithm given above, it is neces-

sary to start the method with an initial point y0 such that f(y0) = 0. We can find such a

point near the start of the bifurcation branch via the local bifurcation theory for the model,

which yields curves c = c(ε) and φ = φ(x;ε) that trace the bifurcation branch for ε > 0

small. Indeed, for small ε0 > 0 fixed, consider

y0 := (c(ε0),φ(x1;ε0),φ(x2;ε0), . . . ,φ(xN ;ε0)) . (3.21)
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This y0 does not necessarily solve f(y0) = 0 exactly, but by virtue of ε0 being small, y0

should be very close to the solution curve. Thus we may use this y0 as a good “initial

guess” to seed the pseudo-arclength method. Moreover, since the local bifurcation curve is

parameterized by ε for ε> 0 small, we compute the tangent direction to the local bifurcation

curve at y∗0 by differentiating with respect to ε at ε0 and normalizing to unit length:

z∗0 :=

(
c′(ε0),

∂φ

∂ε
(x1;ε0),

∂φ

∂ε
(x2;ε0), . . . ,

∂φ

∂ε
(xN ;ε0)

)
, z0 :=

z∗0
|z∗0 |

,

Now, z∗0 is not necessarily tangent to the solution curve, but since ε0 > 0 is small, z∗0 is very

nearly tangent to the solution curve at y0 as found above, and we take z0 := z∗0/ |z∗0 | as the

initial tangent direction.

Remark 3.2.3. In practice it does not matter that z0 is not exactly tangent to the solution

curve at y0. The accuracy of the y0 and z0 obtained from the local bifurcation formulas

affects the quality of the first predictor yp1 , but for small ε0 these initial inaccuracies are

mitigated by the Newton solver in steps (2) and (3) of the method to obtain y1 and z1.

Then, fortunately, all future iterations will have highly accurate starting points and tangent

directions from which to form their predictors.

3.3 Numerical Results

In this section, we present our main numerical results for each of the bidirectional Whitham

models (3.2), (3.4), and (3.6). Precisely, we implement the program outlined by the nu-

merical bifurcation methods described in Section 3.2 to compute small and large amplitude

traveling periodic profiles, and we produce the global bifurcation diagrams of periodic trav-

eling waves with fixed period. Moreover, we study the stability of these waves to localized

(i.e. integrable on R) perturbations by using a Fourier-Floquet-Hill method [16] to numer-
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ically compute the spectrum of the associated linearized operators. We begin our analysis

by demonstrating the relevant details of the computations for the model (3.2). Since the

details for the models (3.4) and (3.6) are highly similar, only a summary of their relevant

formulas will be provided.

3.3.1 Analysis of System (3.2)

We begin our analysis by considering the existence of periodic traveling waves for the

bidirectional Whitham model (3.2):

 ut = −ηx−uux

ηt = −Kux− (ηu)x.

Recall that in the modeling of shallow water waves, η represents the fluid height and u

is the trace of the velocity potential at the free surface. Transforming to traveling wave

coordinates x 7→ x−ct, such solutions are seen to be stationary, spatially periodic solutions

(u(x,t),η(x,t)) = (φ(x),ψ(x)) of the evolutionary equation

 ut = −ηx−uux+ cux =: F (u,ux,η,ηx;c)

ηt = −Kux− (ηu)x+ cηx =:G(u,ux,η,ηx;c),
(3.22)

hence the profiles φ,ψ satisfy the system

 0 = −ψ′−φφ′+ cφ′

0 = −Kφ′− (ψφ)′+ cψ′.
(3.23)
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Upon integrating (3.23) and setting constants of integration to zero1, we can resolve ψ in

terms of φ in (3.23) to obtain

ψ = cφ− 1

2
φ2

Kφ=
1

2
φ3− 3

2
cφ2 + c2φ=: g(c,φ). (3.24)

As explained in [20], one should not expect (3.24) to admit smooth solutions of arbitrary

amplitude. Indeed, notice that if φ is an H1 solution of (3.24) then differentiating (3.24)

yields

Kφ′ =
(

3

2
φ2−3cφ+ c2

)
φ′ =⇒ φ′ =

Kφ′
3
2φ

2−3cφ+ c2
. (3.25)

The operator K improves the smoothness of its operand by exactly one order, hence by

(3.25) we have that φ′ is as smooth as φ so long as 3
2φ

2− 3cφ+ c2 6= 0, in which case

a bootstrap argument demonstrates that φ is in fact C∞. When continuing from con-

stant solutions, i.e. solutions with height zero, the breakdown of smoothness occurs when

3
2φ

2− 3cφ+ c2 = 0 or, more precisely, when the bifurcation branch intersects the curve

φ =
(

1− 1√
3

)
c. Thus we expect (as is shown in [20]) that periodic solutions of (3.24)

along the bifurcation branch with fixed period will have a maximum amplitude of

maxφ(x) = γ := c

(
1− 1√

3

)
.

See [20] for details of the above arguments.

1Note by Galilean invariance, one of the two integration constants can always be set to zero. For our
analysis, we set the other integration constant to zero for simplicity. See [20] for details.
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Figure 3.2: (a) A numerical approximation of the global bifurcation branch of 2π-periodic
(κ= 1), even traveling solutions of (3.24) is displayed, with specific points A-E labeled for
forthcoming computations: Point A at c ≈ 0.8726, height ≈ 0.01; Point B at c ≈ 0.8595,
height ≈ 0.15; Point C at c≈ 0.8312, height ≈ 0.30; Point D at c≈ 0.8138, height ≈ 0.40;
Point E at c ≈ 0.8051, height ≈ 0.49. (b) Bifurcation branches of 2π/κ-periodic solutions
of (3.24) for varying values of κ. Notice all these curves experience a turning point near
the top of the branch.

Analysis of Waves Bifurcating from Zero

To study the 2π/κ-periodic traveling wave solutions of (3.24) bifurcating from the trivial

state φ ≡ 0, we use the profile equation (3.24) in combination with the following local

bifurcation formulas (see [20, Proposition 5.1])

φ(x;ε) := εcos(κx) +
3cκε

2

4

(
1

c2κ−1
+

cos(2κx)

c2κ− c22κ

)
+O(ε3) (3.26)

c(ε) := cκ+
3ε2

8

[
− 1

2cκ
+ 3cκ

(
1

c2κ−1
+

1

2(c2κ− c22κ)

)]
, c` :=

√
tanh(`)

`
, (3.27)

and apply the pseudo-arclength method as discussed in Section 3.2.2 to compute approxi-

mations φN (xi) of the profile φ(xi) at the collocation points xi =
(2i−1)π

κN
for i= 1, . . . ,N ,

continuing while φ(0) ≈ φN (x1) < γ. A global bifurcation plot of waveheight vs. wave
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Figure 3.3: (a) Profiles corresponding to the sampled points on the branch of 2π-periodic
solutions of in Figure 3.2(a): Point B at c≈ 0.8595, height ≈ 0.15; Point C at c≈ 0.8312,
height ≈ 0.30; Point D at c≈ 0.8138, height ≈ 0.40; Point E at c≈ 0.8051, height ≈ 0.49.
(b) A nearly “highest” wave high up the bifurcation branch in Figure 3.2(a).

speed for various wavenumbers κ is shown in Figure 3.2(b), where we define

waveheight := max
x∈[0,π/κ]

φ(x)− min
x∈[0,π/κ]

φ(x) = φ(0)−φ(π/κ),

which is well-defined due to the monotonicity properties of even solutions along the global

bifurcation branch as demonstrated in [20].

To illustrate the our numerical results for this model, we sample a selection of points

along the global bifurcation diagram as described in Figure 3.2(a). As shown in Figure

3.3(a), the crest at the maximum of the smooth profiles along the global bifurcation branch

becomes sharper as the waveheight increases, appearing to converge to a non-trivial profile

with a singularity at the origin. The existence and qualitative properties of this highest

singular wave has been studied analytically in [20], where it was shown the highest wave

has a logarithmic cusp of order |x ln |x|| near the top of the bifurcation curve: see Figure

3.3(b). We refer the interested reader to [20] for details.

103



In addition to the existence of a highest singular wave, we also wish to understand the

dynamical stability of the smooth periodic solutions constructed above. To this end, we

wish to determine the spectrum of the linearization of (3.22) about such a smooth periodic

traveling wave φ. To linearize the traveling wave system (3.22) about the velocity profile φ

described above and the corresponding height profile ψ = cφ− 1

2
φ2, we write

u(x,t) = φ(x) + εv(x,t) +O(ε2)

η(x,t) = ψ(x) + εw(x,t) +O(ε2)
(3.28)

where, since we are interested in the stability to localized perturbations, we require that

v(·, t),w(·, t) ∈ L2(R) at each time t > 0 for which they are defined. Substituting these

expansions into the first equation of (3.22) yields

εvt = (−ψ′−φφ′+ cφ′) + ε
[
−φ′v+ (c−φ)vx−wx

]
+O(ε2)

εwt = (−Kφ′− (ψφ)′+ cψ′) + ε
[
−ψ′v−ψvx−Kvx−ψ′w+ (c−φ)w

]
+O(ε2) (3.29)

as ε→ 0, where the O(1) terms vanish per the equilibrium system (3.23). Taking ε→ 0

above and applying separation of variables to decompose the perturbations as

(v(x,t),w(x,t)) = eλt(v(x),w(x))

yields the spectral problem on L2(R)×L2(R):



λv =−φ′v+ (c−φ)vx−wx

λw =−ψ′v−ψvx−Kvx−ψ′w+ (c−φ)w

=: L

 v

w

 .
(3.30)
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(d) (e) (f)

Figure 3.4: (a)-(e) Numerical approximations of the spectrum of L corresponding to the
linearization of (3.2) about the profiles corresponding to the points A-E, respectively, along
the bifurcation branch for 2π-periodic solutions in Figure 3.2(a). (f) Zoom-in on the high-
frequency instability (top) and the modulational instability (bottom) in the spectral plot
(b).

By Floquet theory, we know the spectrum associated to L is purely essential, containing

no isolated eigenvalues of finite multiplicity: see [56, 8]. Indeed, one can show that λ

belongs to theL2(R)-spectrum ofL if and only if there exists a so-called “Bloch parameter”

µ ∈ [0,1) such that (3.30) has a bounded solution satisfying

(v,w)(x+ 2π/κ) = eiκµ(v,w)(x)

for all x ∈ R. It follows that the perturbations (v,w) in (3.30) can be expanded in “Bloch”

form as

v(x) =
∑
l∈Z

V̂ (l)eiκ(µ+l)x, w(x) =
∑
l∈Z

Ŵ (l)eiκ(µ+l)x. (3.31)
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Figure 3.5: (a)-(e) Plots of the growth rates Re(λ) vs. µ for each of the spectral plots
(a)-(e), respectively, in Figure 3.4.

Substituting the expansions (3.31) for v and w into the first equation of (3.30), we obtain

λ
∑
m∈Z

V̂ (m)eiκmx =
∑
m∈Z

∑
l∈Z

[(
icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l)

)
V̂ (l)

− iκ(µ+ l)Ŵ (l)
]
eiκmx,

where φ̂(n) denotes the nth Fourier coefficient associated to the periodic profile φ. It

follows that each m ∈ Z we must have

λV̂ (m) =
∑
l∈Z

[
Âµ(m,l)V̂ (l) + B̂µ(m,l)Ŵ (l)

]
, (3.32)

where

Âµ(m,l) = icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l)
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B̂µ(m,l) =−iκ(µ+ l)δm,l

with δm,n denoting the Kronecker delta. Similarly, substituting the expansions (3.31) into

the second equation of (3.30) yields, for each m ∈ Z,

λŴ (m) =
∑
l∈Z

[
Ĉµ(m,l)V̂ (l) + D̂µ(m,l)Ŵ (l)

]
, (3.33)

where

Ĉµ(m,l) =−iκ(µ+m)ψ̂(m− l)− iκ(µ+ l)K̂(κ(µ+ l))δm,l

D̂µ(m,l) = icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l).

Defining the bi-infinite matrices

Âµ := [Âµ(m,l)]m,l∈Z, B̂µ := [B̂µ(m,l)]m,l∈Z,

Ĉµ := [Ĉµ(m,l)]m,l∈Z, D̂µ := [D̂µ(m,l)]m,l∈Z

entry-wise for row-m and column-l with m,l ∈ Z, the system (3.32)-(3.33) can be written

in block bi-infinite matrix form as

λ

 Ṽ

W̃

=

 Âµ B̂µ

Ĉµ D̂µ


 Ṽ

W̃

=: L̂µ

 Ṽ

W̃

 , (3.34)

where Ṽ ,W̃ denote the bi-infinite arrays


Ṽ :=

[
. . . Ṽ (−2) Ṽ (−1) Ṽ (0) Ṽ (1) Ṽ (2) . . .

]T
W̃ :=

[
. . . W̃ (−2) W̃ (−1) W̃ (0) W̃ (1) W̃ (2) . . .

]T
.
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For each µ, the spectrum of L̂µ consists of countably many discrete eigenvalues with finite

multiplicity and, furthermore, by the above considerations we have the spectral decompo-

sition

σL2(R)(L) =
⋃

µ∈[0,1)

σ(L̂µ).

We numerically approximate the spectrum of the bi-infinite matrix L̂µ by taking a se-

quence of µ in a finite discretization of [0,1), truncating each block of L̂µ in (3.34) to finite

dimension, and computing the eigenvalues of the truncated matrix using a standard matrix

eigenvalue solver. See Appendix C for further discussion. See Figure 3.4 for plots of the

spectrum at the sampled points on the bifurcation diagram of 2π-periodic solutions in Fig-

ure 3.2(a), as well as Figure 3.5 for plots of the growth rate Re(λ) vs. the Bloch parameter

µ. It is known that the full Euler equations exhibit high-frequency instabilities (visually

characterized by “bubbles” of spectrum emanating from the imaginary axis from points

away from the origin) in small-amplitude periodic traveling waves; however, we discover

that while this model demonstrates both high-frequency and modulational instabilities for

waves of sufficiently high amplitude, a high-frequency instability is numerically unde-

tectable for small amplitude waves: see Figure 3.4(a) and Figure 3.5(a) below. Whether

such instabilities are actually nonexistent or simply not detected for small amplitude waves

in our numerics is unclear.

Solutions of different wavelength can be generated by varying the value of κ, as shown

in the plot of the bifurcation diagrams for various κ in Figure 3.2(b). In [35], an anal-

ysis of asymptotically small amplitude waves shows that there exists a critical value κc

such that all waves are modulationally unstable for all κ > κc where κc ≈ 1.008. Inspired

by this analysis, we performed numerical experiments varying the value of κ for small,

but fixed, waveheights, finding very good agreement with the results in [35]. Figure 3.6(a)

demonstrates that waves with waveheight 0.01766 and corresponding to κ= 1.005 are mod-
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(a) (b)

Figure 3.6: Evidence of the Benjamin-Feir instability in (3.2) for waveheight 0.01766. In(a)
we have κ= 1.005 while in (b) we have κ= 1.008.

ulationally stable, while for κ = 1.008 a modulational instability appears for waves of the

same height: see Figure 3.6(b).

Time Evolution and Ill-Posedness

The numerical findings in the previous section are restricted to waves bifurcating from the

zero constant state in the bidirectional Whitham model (3.2). This is largely motivated by

the fact that the structure of the global bifurcation branch was recently studied analytically

in [20]. In an effort to understand the nonlinear dynamics about the numerically computed

profiles in Figure 3.2(a), we use a sixth-order pseudospectral operator splitting method [67]

to evolve (3.22) with the numerical solutions as initial data, with the expectation that the

initial profile translates as a traveling wave with corresponding wave speed c, mapping

onto itself after an integral number of temporal periods T = 2π
κc . Interestingly, however,

such time evolution attempts failed, resulting in wild oscillations after a short amount of

time, e.g. 35.4% of a temporal period for a 2π-periodic wave of small waveheight maxψ−

minψ ≈ 0.00109 and wave speed c≈ 0.872693. See Figure 3.7. This seems to suggest that
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Figure 3.7: Numerical evidence of ill-posedness of (3.2) for initial data η(x,0) = ψ(x)
having negative infimum. (a) The result of a short time evolution of a 2π-periodic wave
(κ= 1) with small waveheight maxψ−minψ ≈ 0.00109, c≈ 0.872693. We zoom in near
the rightmost and leftmost of the waves in (b) an (c), respectively. In (d) we observe that
oscillations also are forming near the positive maxima, although the oscillations there are
not as pronounced as near the minima.
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either the solutions computed in Figure 3.2(a) are in fact not traveling wave solutions of

(3.2), or that the local evolution in the PDE (3.2) about such waves is ill-posed.

In this direction, we note that it has recently been reported in [22, Theorem 1] that (3.2)

is locally well-posed for all initial data η(x,0) =ψ(x), u(x,0) =φ(x) with infx∈[0,2π)ψ(x)>

0. As the height profiles about the waves along the bifurcation curves constructed above

all have a strictly negative infimum, it follows that the local well-posedness result in [22]

does not apply to the waves constructed in the previous section and, extension, also not to

the waves constructed in [20]. The time evolution results reported in Figure 3.7 strongly

indicate that the positivity assumption on the height profile η in [22] is sharp and cannot be

removed in general.

In contrast, waves of (3.2) having strictly positive profile that are constructed by bi-

furcating from a positive constant state exhibit local well-posedness in time. See Figure

3.10 and the surrounding discussion. See Appendix D.2 for further details about the time

evolution.

Analysis of Waves with Positive Height Profile

Given the well-posedness result [22] and the apparent failure of the waves considered in

Section 3.3.1 to have well-posed local dynamics, we attempt to construct wavetrain so-

lutions of (3.2) for which the local evolution is well-posed, i.e. solutions of (3.22) that

have strictly positive height profiles η(x), by bifurcating from a positive constant state. As

discussed in [20], the curves of trivial solutions for (3.22) are given by

c 7→ 0, c 7→ Γ±(c) :=
3c±
√

8 + c2

2
,

and the waves studied in Section 3.3.1 above bifurcate from the zero-amplitude state, where

the height profiles η(x) all have strictly negative infima. Since Γ−(c)> 0 for all c > 1, this
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Figure 3.8: (a) Bifurcation diagram of (3.24). Waves bifurcating from the zero state are
likely ill-posed, while waves bifurcating from a non-zero constant state (curve Γ−) are
well-posed. (b) Numerical approximations of the bifurcation branches of even, one-sided
monotone, 2π/κ periodic solutions of (3.24). From left to right, κ= 0.5,1.0,1.3,1.6.

motivates an attempt to construct waves that bifurcate from the Γ− curve, which (at least

for small waveheight) are guaranteed to fall into the regime of well-posedness: see Figure

3.8 below.

To this end, observe that non-zero constant profiles φ of (3.24) satisfy

Q(φ;c) := c2−1− 3

2
cφ+

1

2
φ2 = 0. (3.35)

Let (φ∗, c∗) be a solution of (3.35) for c∗ > 1. In order for non-trivial, real-valued, even,

periodic solutions to branch from the constant state at c∗, the kernel of the Fréchet derivative

δφQ(φ∗;c∗) must be non-trivial. If v ∈ ker(δφQ(φ∗;c∗)) with v(x) =
∑∞

n=0 v̂(n)cos(nκx),

then

0 = δφQ(φ∗;c∗)v =

(
K− c2∗+ 3c∗φ∗−

3

2
φ2
∗

)
v.
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Figure 3.9: Positive 2π-periodic equilibrium profiles η(x,t) = ψ(x) bifurcating from con-
stant positive state. In (a), we show the global bifurcation branch with points A-E la-
beled for forthcoming computations: Point A at c ≈ 1.1184, height ≈ 0.003; Point B at
c ≈ 1.1252, height ≈ 0.15; Point C at c ≈ 0.8312, height ≈ 0.30; Point D at c ≈ 0.8138,
height ≈ 0.40; point E at c ≈ 0.8051, height ≈ 0.49. In (b), we show the height profiles ψ
associated to the waves A-E of increasing waveheight along the branch in (a).

Taking the Fourier transform yields

0 =

(
K̂(κn)− c2∗+ 3c∗φ∗−

3

2
φ2
∗

)
v̂(n), n ∈ N0,

and we see that if

K̂(κn0)− c2∗+ 3c∗φ∗−
3

2
φ2
∗ = 0 (3.36)

for fixed n0 ∈ N0, then

span{cos(κn0x)}= ker(δφQ(φ∗, c∗)).
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Combining (3.35) and (3.36) yields a system of necessary conditions for a non-trivial

branch of 2π/(κn0)-periodic traveling wave solutions of (3.2) to appear:


c2∗−1− 3

2
c∗φ∗+

1

2
φ2
∗ = 0

K̂(κn0)− c2∗+ 3c∗φ∗−
3

2
φ2
∗ = 0.

(3.37)

For positive wave speed, this system has a unique solution (c∗(n0),φ∗(n0)) for each n0 ∈

N0. In the case of n0 = κ= 1, corresponding to 2π-periodic solutions of (3.24), we find

c∗ ≈ 1.11834, φ∗ ≈ 0.15677.

By standard Lyapunov-Schmidt arguments, it can be shown that a local bifurcation of 2π-

periodic wavetrains of asymptotically small waveheight occurs at (φ∗, c∗). In particular,

one finds the following local bifurcation formulas:

φ(x;a) := φ∗+acos(κn0x) +O(a2)

c(a) := c∗+
3−4q

24φ∗−16c∗
a2 +O(a3), q :=

3

4

[
φ∗− c∗

K̂(2κn0)− c2∗+ 3c∗φ∗− 3
2φ

2
∗

]
.

Using the methods of Section 3.2 to approximate the wave profiles, we obtain a branch of

solutions, depicted in Figure 3.9 as waveheight vs. wave speed, with all the height profiles

ψ possessing a strictly positive infimum and an increasingly sharp crest for large wave-

heights. In particular, we note that the time evolution about these waves indeed appears to

be well-posed. In fact, a time evolution of a 2π-periodic solution of (3.2) with wave speed

c ≈ 1.1698 and maxψ−minψ ≈ 0.387 over 15 temporal periods 15T = 15 · 2π/c closely
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Figure 3.10: A time evolution of (3.2) using a positive equilibrium profile as initial data
appears stationary after 15 temporal periods, mapping closely onto itself.

mapped the initial data onto itself, with residual

‖η(·,15T )−ψ‖L2 ≈ 3.5×10−6.

See Figure 3.10. This demonstrates that these computed profiles with positive minimum

indeed form traveling wave solutions of (3.2) that exhibit locally well-posed time evolution.

Concerning the stability of these 2π-periodic positive height waves, we find that they

behave similarly to ill-posed waves discussed in the previous section, with waves of suffi-

ciently large height demonstrating modulational and high-frequency instabilities: see Fig-

ure 3.11. In fact, Figure 3.11(a) suggests that 2π-periodic waves of small amplitude exhibit

modulational instability.
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(c) (d)

Figure 3.11: Spectral plots for 2π-periodic positive waves for (3.2) at points A (a), B (b),
and D (c) along the bifurcation branch of 2π-periodic solutions in Figure 3.9. (d) Zoom-
in on the high-frequency instability (top) and the modulational instability (bottom) in the
spectral plot (c).

3.3.2 Analysis of System (3.4)

We now turn our attention to the bidirectional Whitham model (3.4):

 ut = −Kηx−uux

ηt = −ux− (ηu)x.

In particular, we are interested in performing an analogous study for (3.4) that was per-

formed for the model (3.2) in Section 3.3.1 above. Below, we compute global bifurcation

diagrams, including large amplitude solutions, and analyze the spectrum of the lineariza-

tion of (3.4) about these solutions.
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As mentioned in the introduction, this model was proposed and analyzed in [35], which

examines the local bifurcation and spectral stability of asymptotically small amplitude pe-

riodic traveling waves, finding that this model exhibits the Benjamin-Feir instability. Pre-

cisely, they prove the existence of a critical wavenumber κc ≈ 1.610 such that asymptoti-

cally small-amplitude wavetrains of period 2π/κ are modulationally unstable when κ > κc

(“super-critical”), while they are spectrally stable for 0<κ< κc (“subcritical”). Below, we

numerically confirm this result for small amplitude waves, and also demonstrate that large

amplitude waves are spectrally unstable in both the sub-critical and super-critical regimes.

See Figure 3.14 for spectrum plots in the super-critical case and Figure 3.15 for spectrum

plots the sub-critical case. Furthermore, from our experiments we make a conjecture re-

garding the nonexistence of a singular wave of greatest height.

To generate profiles, we follow the program of the numerical methods described in

Section 3.2. First, we transform (3.4) to traveling wave coordinates:

 ut = cux−Kηx−uux =: F (u,ux,η,ηx;c)

ηt = cηx−ux− (ηu)x =:G(u,ux,η,ηx;c).

An equilibrium solution (u,η)(x,t) = (φ,ψ)(x) of the above traveling wave system satisfies

 −cφ
′+Kψ′+φφ′ = 0

−cψ′+φ′+ (ψφ)′ = 0

which, upon integrating and setting integration constants to zero, yields

 −cφ+Kψ+ 1
2φ

2 = 0

−cψ+φ+ψφ = 0.
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Then resolving φ in terms of ψ yields the scalar profile equation

Kψ =
c2ψ

1 +ψ
− c2ψ2

2(1 +ψ)2
=: g(c,ψ). (3.38)

Using the methods in Section 3.2.1, we numerically compute the bifurcation branch and pe-

riodic profiles with various waveheights with super-critical κ = 1.611: see Figure 3.12(a)-

(c). Further, in Figure 3.12(d) we compute bifurcation branches of 2π/κ-periodic profiles

for various κ.

In contrast to the model (3.2) analyzed in Section 3.3.1 above, we conjecture that the

bifurcation branches associated with (3.4) will not possess peaked/cusped waves of maxi-

mum height. In fact, we believe the profiles along the global bifurcation branches will be

smooth for arbitrarily large waveheight. To see this, observe that differentiating the profile

equation (3.38) and rearranging yields

ψ′ =
c2

(1 +ψ)3
Kψ′.

Since Kψ′ has the same regularity as ψ, we have that ψ′ is smooth so long as the wave

speed c remains bounded away from zero and the profiles ψ remain bounded away from

ψ = −1 along the bifurcation branch. From Figure 3.12, it seems plausible that both of

these conditions hold uniformly along the bifurcation branch, indicating that the bifurcation

branch does not terminate in a highest wave. See Figure 3.12(d) for a periodic profile of

large waveheight having a visibly smooth crest. We leave the analytical verification of this

conjecture as an interesting open problem.

Remark 3.3.1. Since this model is conjectured to not possess peaked/cusped waves of max-

imum height, the waveheight vs. wave speed plots in Figures 3.12(a), (d) were stopped at

height 3. As seen in Figure 3.12(a), a turning point occurs near waveheight 3, after which
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Figure 3.12: Bifurcation branches of (3.38) for super-critical κ= 1.611>κc. (a) Locations
on the bifurcation branch of periodic solutions corresponding to super-critical κ= 1.611 of
(3.38) that are sampled for profile and spectral plots: Point A at c≈ 0.7569, height ≈ 0.03;
Point B at c ≈ 7528, height ≈ 0.15; Point C at c ≈ 0.7412, height ≈ 0.30; Point D at c ≈
0.7201, height ≈ 0.50; Point E at c≈ 0.6759, height ≈ 1.00. (b) Profiles corresponding to
the points along the bifurcation branch labeled in (a). (c) A super-critical wave (κ= 1.611)
of large waveheight; c≈ 0.6745, waveheight≈ 1.500. The crest of the wave is still smooth
despite the large waveheight. (d) Numerical approximations of the 2π/κ periodic solutions
of (3.38) with wave speed c. From left to right, κ= 1.6,1.3,1,0.8.
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Figure 3.13: Secondary turning points in the bifurcation diagrams for system (3.4) are
present at large waveheight, but this is believed to be purely due to truncation since its
location increases as the number of Fourier modes N ∈ {64,128,256,512} increases.

the wave speed increases as the waveheight increases. Numerically, a second turning point

is also observed for waves of larger height, but we believe that this second turning point

is only due to truncation, at its location varies considerably as larger numbers of Fourier

modes N are used. See Figure 3.13.

To study the dynamical stability of the periodic wavetrains computed in Figure 3.12,

we use the general methods of Appendix C. In particular, we build truncated bi-infinite

matrices whose eigenvalues approximate the spectrum of the linearization:

Âµ(m,l) = icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l)

B̂µ(m,l) =−iκ(µ+ l)K̂(κ(µ+ l))δm,l

Ĉµ(m,l) =−iκ(µ+ l)δm,l− iκ(µ+m)ψ̂(m− l)

D̂µ(m,l) = icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l).

Plots of the spectrum at the sampled points along the bifurcation branch in Figure 3.12(a)

are shown in Figure 3.14. In particular, Figure 3.14(a) demonstrates a modulational in-

stability for a small waveheight, while the other plots for larger waveheights show both a
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: (a)-(e) Spectral plots for 2π/κ-periodic waves A-E selected along the bifur-
cation branch in Figure 3.12(a) with super-critical κ = 1.611. (f) Zoom-in on the high-
frequency instability (top) and modulational instability (bottom) for the spectrum in (b).

modulational instability and a high-frequency instability. Moreover, plots of the growth

rate Re(λ) vs. µ for these spectra are shown in Figure 3.16. Moreover, the spectral stability

of small-amplitude sub-critical solutions is shown in Figure 3.15(a), as predicted by ana-

lytical theory in [35]. However, even for κ in the sub-critical regime, waves of sufficiently

large waveheight develop both modulational and high-frequency instabilities (see Figure

3.15(b)) while small amplitude waves are spectrally stable. Moreover, waves are stable

with respect to co-periodic perturbations.

3.3.3 Boussinesq-Whitham

Finally, we now turn our attention to the scalar Boussinesq-Whitham model (3.5) proposed

in [18, Section 5]:

utt = ∂2
x(u2 +Ku).
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(a) (b)

Figure 3.15: Spectral plots for small 2π/κ-periodic solutions of (3.38) with sub-critical
κ = 1.609 < κc). In (a), the waveheight of the underlying wave ψ is 0.03, while in (b) it is
0.15.

Since [18] does not provide details for the local bifurcation theory of this model, we sketch

the Lyapunov-Schmidt reduction here. Writing the second order equation (3.5) as a first

order system, we have  ut = η

ηt = ∂2
x(u2 +Ku),

and changing to traveling wave coordinates yields

 ut = η+ cux =: F (u,ux,η,ηx;c)

ηt = cηx+∂2
x(u2 +Ku) :=G(u,ux,η,ηx;c).

Equilibrium solutions (u,η) = (φ,ψ) of this system satisfy

 −cφ
′ = ψ

−cψ′ = (φ2 +Kφ)′′,
(3.39)
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(a) (b) (c)

(d) (e)

Figure 3.16: (a)-(e) Re(λ) vs. µ for each of the spectral plots (a)-(e), respectively, for the
super-critical κ in Figure 3.14.

in which we can resolve ψ in terms of φ by integrating the second equation, setting the

resulting constant of integration to zero. This yields the relation

−cψ = (φ2 +Kφ)′.

Using this relationship in the first equation of (3.39) and integrating, again setting the con-

stant of integration to zero, yields the scalar profile equation

Kφ= c2φ−φ2 =: g(c,φ). (3.40)

for the velocity profile φ.
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Concerning the smoothness of solutions of (3.40), note that differentiating (3.40) im-

plies that

Kφ′ = (c2−2φ)φ′ =⇒ φ′ =
Kφ′

c2−2φ
. (3.41)

As before, since Kφ′ has the same regularity as φ, we have by (3.41) that φ′ is as smooth as

φ so long as c2− 2φ 6= 0. Precisely, we see that smoothness should be expected to break

down if the bifurcation branch of periodic solutions of (3.40) intersects the curve φ =

c2/2 non-trivially. So, in our numerical bifurcation calculations we stop the continuation

algorithm when the maximum value of the approximated wave exceeds c2/2.

In order to use (3.40) to perform a numerical continuation, we first obtain local bifur-

cation curves from zero amplitude in order to accurately seed the continuation algorithm.

Recasting (3.40) as a solution of

Q(φ;c) :=Kφ+φ2− c2φ= 0,

the variational derivative of Q with respect to φ evaluated at φ= 0 is

δφQ(0;c) =K− c2Id. (3.42)

By the implicit function theorem, no bifurcation can occur unless ker(K−c2Id) is nontriv-

ial. Restricting to even, real-valued, 2π/κ-periodic functions, we find that for wave speed

cκ :=

√
K̂(κ) =

√
tanh(κ)/κ, the kernel of (3.42) is indeed non-trivial, with

ker(K− c2κId) = span{cos(κx)}.
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Per a standard Lyapunov-Schmidt reduction argument, to bifurcate from the zero state at

c= c0, write

c(ε) = c0 + εc1 + ε2c2 + ε3c3 +O(ε4),

φ(x;ε) = 0 + εcos(κx) + ε2v2 + ε3v3 +O(ε4).

Then for φ to be a profile of (3.40), we must have

0 =Q(0 + εcos(x) + ε2v2 + ε3v3 + · · · ;c0 + εc1 + ε2c2 + ε3c3 + · · ·).

Expanding the above expression in a Taylor series about (φ,c) = (0, c0) and collecting

terms, we obtain a local bifurcation curve {(c(ε),φ(x;ε))}|ε|�1 of non-trivial 2π/κ-periodic

traveling wave solutions φ(x;ε) of (3.40) with wave speed c(ε). In fact, we obtain the fol-

lowing asymptotic formulas describing the local bifurcation curve for |ε| � 1:

c(ε) = cκ+
ε2

4cκ

[
1

c2κ−1
+

1

c2κ− c22κ

]
+O(ε3)

φ(x;ε) = εcos(κx) +
ε2

2

[
1

c2κ−1
+

1

c2κ− c22κ

]
cos(2κx) +O(ε3),

where cκ =

√
K̂(κ) =

√
tanh(κ)/κ.

Using the above bifurcation formulas, along with the methods of Sections 3.2.1 and

3.2.2, we can generate numerical bifurcation diagrams of 2π/κ-periodic even solutions

for this model: see Figures 3.17(a), (d). Numerical approximations of the profiles at the

sampled locations on the bifurcation branch of 2π-periodic solutions are displayed in Figure

3.17(a) are presented in Figure 3.17(b). Near the top of the bifurcation branch of 2π-

periodic solutions, the profiles begin to display a cusp singularity, similar to what was

observed in the model (3.2) in Section 3.3.1 above. See Figure 3.17(c).
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Figure 3.17: (a) Numerical approximation of the bifurcation branch of even, 2π-periodic
solutions of (3.40), with with specific points A-E labeled for forthcoming computations:
Point A at c ≈ 0.8727, height ≈ 0.01; Point B at c ≈ 0.8662, height ≈ 0.14; Point C at
c ≈ 0.8470, height ≈ 0.30; Point D at c ≈ 0.8333, height ≈ 0.4; Point E at c ≈ 0.8237,
height ≈ 0.50. (b) the profiles associated to the sampled points A-E in (a). (c) A (nearly
peaked) 2π-periodic profile near the top of the bifurcation branch of 2π-periodic solutions,
corresponding to c≈ 0.8227, waveheight≈ 0.5650. (d) The bifurcation branches of 2π/κ-
periodic solutions of (3.40) for varying κ.

To study the stability of these periodic traveling wave solutions, we again follow the

method of Appendix C and define the following bi-infinite matrices whose eigenvalues, af-

ter finite-dimensional truncation, approximate the spectrum of the corresponding lineariza-

tion:

Âµ(m,l) = icκ(µ+ l)δm,l

B̂µ(m,l) = δm,l
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: (a)-(e) Spectral plots for Boussinesq-Whitham at the points A-E, respectively,
sampled along the bifurcation branch for 2π-periodic solutions in Figure 3.17(a). (f) A
zoom-in on the high-frequency instability (top) and modulational instability (bottom) for
the spectral plot (c).

Ĉµ(m,l) =−2κ2(µ+m)2φ̂(m− l)−κ2(µ+ l)2K̂(κ(µ+ l))δm,l

D̂µ(m,l) = icκ(µ+ l)δm,l.

Plots of the spectrum, along with the growth rates Re(λ) with respect to the Bloch pa-

rameter µ, are shown in Figures 3.18 and 3.19, respectively. Based on these numerics, we

see that, similar to the other models considered here, all waves of sufficiently large wave-

height appear to exhibit both modulational and high-frequency instabilities, while high-

frequency instabilities for asymptotically small waves are unobserved in our experiments.

Furthermore, all computed waves appear to be spectrally stable with respect to co-periodic

perturbations.
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(a) (b) (c)

(d) (e)

Figure 3.19: (a)-(e) Re(λ) vs. µ for each of the spectral plots (a)-(e), respectively, of
Boussinesq-Whitham shown in Figure 3.18.

3.4 Summary

Using robust numerical methods, we have presented numerically-computed waveheight vs.

wave speed global bifurcation diagrams for three fully-dispersive bidirectional Whitham

models and studied the spectral stability of such waves by numerically approximating the

spectrum of their associated linearized operators in both small and large amplitude regimes.

Our results confirm a number of analytical results concerning the stability of asymptotically

small waves in these models and provide new insight into the existence and stability of

large amplitude waves, including highest singular waves. We note that while these models

compare similarly with regard to existence and stability, we find evidence that the model

(3.4) does not have a highest singular wave. Furthermore, we provide numerical evidence

that the conditional well-posedness result in [22] is in fact sharp, in the sense that local

evolution of initial data with height profiles with negative minima appears to be ill-posed.
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This has led us to construct and analyze new wavetrain solutions of (3.2) with strictly

positive height profile, ensuring the local dynamics about such waves is indeed well-posed.
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Appendix A

Variational Derivatives

Here we briefly demonstrate the computation of first and second variational derivatives of

a functional as applied to the fNLS conserved quantities (2.7), (2.8), and (2.9). Recall that

these functionals are defined as

H(u) :=K(u) +P (u) =
1

2

∫ T

0

(∣∣∣Λα/2u∣∣∣2− γ

σ+ 1
|u|2σ+2

)
dx, (A.1)

Q(u) :=
1

2

∫ T

0
|u|2 dx, (A.2)

N(u) :=
i

2

∫ T

0
Λ1/2u HΛ1/2udx (A.3)

and act on Hα/2(0,T ) for α ∈ (1,2]. Then their variational derivativesH′, Q′ , and N ′ are

maps from Hα/2(0,T ) to the dual space Hα/2(0,T )∗, which is isometrically isomorphic

to H−α/2(0,T ) over R by the Riesz representation theorem; in particular, for each u ∈

Hα/2(0,T ) there exists a unique δH(u) ∈H−α/2(0,T ) such that

H′(u)(v) = 〈δH(u),v〉 := Re

∫ T

0
δH(u)v̄ dx

for all v ∈Hα/2(0,T ). This pairing identifies the map H′(u) with its corresponding func-

tional δH(u), hence we will abuse notation and simply sayH′(u) = δH(u).
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A.1 Hamiltonian

In computing the first variation of (A.1), we will make use of the following identity for

u,v ∈ C and ε ∈ R, k > 0:

|u+ εv|2k = [(u+ εv)(ū+ εv̄)]k

=
[
|u|2 + 2εRe(uv̄) +O(ε2)

]k
= |u|2k + 2εkRe(uv̄) |u|2k−2 +O(ε2). (A.4)

Let u,v ∈X and ε ∈ R. Then compute

H(u+ εv) =
1

2

∫ T

0

[∣∣∣Λα/2(u+ εv)
∣∣∣2 +

γ

σ+ 1
|u+ εv|2(σ+1)

]
dx

=
1

2

∫ T

0

[∣∣∣Λα/2u∣∣∣2 + 2εRe(Λα/2uΛα/2v)

− γ

σ+ 1

(
|u|2σ+2 + 2ε(σ+ 1)Re(uv̄) |u|2σ

)]
dx+O(ε2)

by using expansion (A.4)

=⇒ H(u+ εv)−H(u) = ε

∫ T

0

[
Re(Λα/2uΛα/2v)−γ Re(uv̄) |u|2σ

]
dx+O(ε2)

= ε
[〈

Λα/2u,Λα/2v
〉
−
〈
γ |u|2σ u,v

〉]
+O(ε2)

= ε
[
〈Λαu,v〉−

〈
γ |u|2σ u,v

〉]
+O(ε2) since Λα/2 is symmetric

= ε
〈

Λαu−γ |u|2σ u,v
〉

+O(ε2).

Then
H(u+ εv)−H(u)

ε
=
〈

Λαu−γ |u|2σ u,v
〉

+O(ε),
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and taking ε→ 0 we conclude that

δH(u) = Λαu−γ |u|2σ u.

The second variation is found similarly: for u,v,w ∈X , compute

〈δH(u+ εv),w〉=
〈

Λα(u+ εv)−γ |u+ εv|2σ (u+ εv),w
〉

=
〈

Λαu+ εΛαv−γ
(
|u|2σ + 2εσRe(ūv) |u|2σ−2 +O(ε2)

)
(u+ εv),w

〉
=
〈

Λαu−γ |u|2σ u,w
〉

+ ε
〈

Λαv−γ |u|2σ v−2γσRe(ūv) |u|2σ−2u,w
〉

+O(ε2)

= 〈δH(u),w〉+ ε
〈

Λαv−γ |u|2σ v−2γσuRe(ūv) |u|2σ−2 ,w
〉

+O(ε2).

So, we have the bilinear form

δ2H(u)(v) = Λαv−γ |u|2σ v−2γσRe(ūv) |u|2σ−2u.

As an operator, δ2H(u) = Λα−γ |u|2σ−2γσRe(ū ·) |u|2σ−2u.

A.2 Charge

For u,v ∈X , compute

Q(u+ εv) =
1

2

∫ T

0
|u+ εv|2 dx

=
1

2

∫ T

0

[
|u|2 + 2ε Re(uv̄) +O(ε2)

]
dx

=⇒ Q(u+ εv)−Q(u) = ε Re

∫ T

0
uv̄ dx+O(ε2)
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= ε〈u,v〉+O(ε2).

So, δQ(u) = u.

To compute the second variation, let u,v,w ∈X and compute

〈δQ(u+ εv),w〉= 〈u+ εv,w〉

= 〈u,w〉+ ε〈v,w〉

= 〈δQ(u),w〉+ ε〈v,w〉 .

So,

δ2Q(u)(v) = v.

As an operator, δ2Q(u) = 1.

A.3 Angular Momentum

For u,v ∈X , compute

N(u+ εv) =
i

2

∫ T

0
(u+ εv)(u+ εv)x dx

=
i

2

∫ T

0
(ūux+ ε[ūvx+ v̄ux])dx+O(ε2)

=⇒ N(u+ εv)−N(u) =
εi

2

∫ T

0
[ūvx+ v̄ux] dx

=
εi

2

∫ T

0
[−ūxv+ v̄ux]dx by integration by parts

=
ε

2

∫ T

0

[
iuxv̄+ iuxv̄

]
dx

=
ε

2

∫ T

0
2Re(iuxv̄)dx
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= ε〈iux,v〉 .

So, δN(u) = iux.

To compute the second variation, let u,v,w ∈X and compute

〈δN(u+ εv),w〉= 〈iux+ εivx,w〉

= 〈δN(u),w〉+ ε〈ivx,w〉 .

So,

δ2N(u)(v) = ivx.

As an operator, δ2N(u) = i∂x.
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Appendix B

Antiperiodic Rearrangement Inequalities

In this section, we establish results pertaining to symmetric decreasing rearrangements of

T -antiperiodic functions and their consequences. A nice introduction to rearrangements

can be found in [47, Chapter 3], and [44] provides a much more in-depth treatment of the

subject.

Given a function f ∈ L2
per([0,2T ];R)∪C0(R) we will end up using four separate

equimeasurable rearrangements of f , which we will describe below. Throughout, we de-

note the Lebesgue measure on R/2TZ by m. Given a continuous 2T -periodic function

f : R→ R, we define the 2T -periodic symmetric decreasing rearrangement f∗2T of f on

(−T,T ) by

f∗2T (x) = inf {t :m({z ∈ (−T,T ) : f(z)> t})≤ 2|x|} for x ∈ [−T,T ]

and note that f∗2T is even, nonincreasing on (0,T ), and satisfies f∗2T (0) = maxx∈R f(x)

and f∗2T (T ) = minx∈R f(x). Similarly, we define the 2T -periodic rearrangement f#2T (x)

by

f#2T (x) = f∗2T (x−T/2)
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and note that f# is even about x = T/2, nondecreasing on (−T/2,T/2) and satisfies

f#2T (T/2) = maxx∈R f(x) and f#2T (−T/2) = minx∈R f(x). Both f∗2T and f#2T have

the same distribution functions as f on (−T,T ) so that, in particular,

‖f‖Lp(−T,T ) = ‖f∗2T ‖Lp(−T,T ) = ‖f#2T ‖Lp(−T,T )

for all f ∈ Lpper(0,T ) and 1≤ p≤∞. Of special interest here is that if f is T -antiperiodic,

then f∗2T is an even, T -antiperiodic function on R while f#2T is an odd, T -antiperiodic

function on R.

Our first result is an analogue of the classical Pólya-Szegö inequality, which states that

the kinetic energy is nonincreasing under symmetric decreasing rearrangement.

Lemma B.0.1 (Pólya-Szegö). For all α ∈ (1,2) and f ∈Hα/2
per ([0,2T ];R), we have

∫ T

−T

∣∣∣Λα/2f∗2T ∣∣∣2 dx=

∫ T

−T

∣∣∣Λα/2f#2T

∣∣∣2 dx≤ ∫ T

−T

∣∣∣Λα/2f ∣∣∣2 dx.
In particular, if such an f is T -antiperiodic, then

∫ T/2

−T/2

∣∣∣Λα/2f∗2T ∣∣∣2 dx=

∫ T/2

−T/2

∣∣∣Λα/2f#2T

∣∣∣2 ≤ ∫ T/2

−T/2

∣∣∣Λα/2f ∣∣∣2 dx.
Proof. Given f ∈Hα/2

a ([0,T ];R), observe that for all t > 0 we have

〈
f,e−Λαtf

〉
=

∫ T

−T

∫ T

−T
f(x)Kp(x−y, t)f(y)dxdy, (B.1)

whereKp(x,t) is the 2T -periodic integral kernel associated to the semigroup e−Λαt defined

in (2.27). By Lemma 2.3.3, Kp(·, t) = K∗2Tp (·, t) for all t > 0 and hence the Bernstein-

136



Taylor Theorem [4, Theorem 2] we have

∫ T

−T

∫ T

−T
f(x)Kp(x−y, t)f(y)dxdy ≤

∫ T

−T

∫ T

−T
f∗2T (x)Kp(x−y, t)f∗2T (y)dxdy

so that 〈
f,e−Λαtf

〉
≤
〈
f∗2T , e−Λαtf∗2T

〉
for all f ∈Hα/2

a ([0,T ];R) and t > 0. Since f and f∗2T are equimeasurable, it follows that

〈
f,e−Λαtf

〉
−‖f‖2

L2(−T,T )

t
≤

〈
f∗2T , e−Λαtf∗2T

〉
−‖f∗2T ‖2

L2(−T,T )

t

for all t > 0. Taking t→ 0+ yields the desired result for the rearrangement f∗2T . The

corresponding result for f#2T and the restriction to T -antiperiodic functions now follows

trivially.

Next, we complement the above result by considering the effect of the above rearrange-

ments on linear potentials.

Lemma B.0.2. Let V : R→ R be an even, smooth and T -periodic potential.

(i) If V (x) is nonincreasing on (0,T/2), then

∫ T/2

−T/2
V (x)f2(x)dx≥

∫ T/2

−T/2
V (x)

(
f#2T

)2
(x)dx

for all continuous f ∈ L2
a([0,T ];R).

(ii) If V (x) is nondecreasing on (0,T/2), then

∫ T/2

−T/2
V (x)f2(x)dx≥

∫ T/2

−T/2
V (x)(f∗2T )2 (x)dx
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for all continuous f ∈ L2
a([0,T ];R).

Proof. We begin by proving (i). Notice by the hypothesis on V , the function (−V (x)) is

even about x= T/2 and is nonincreasing on (T/2,T ). By the Riesz inequality [47, Section

3.4] we thus have

∫ T

0
(−V (x))f2(x)dx≤

∫ T

0
(−V (x))

(
f2
)#T (x)dx,

where here (f2)#T denotes the T -periodic rearrangement of the T -periodic function f2

taken to be even about x = T/2 and nonincreasing on (T/2,T ). Since antiperiodicity of f

implies (
f2
)#T (x) =

(
f#2T

)2
(x) ∀x ∈ (0,T ),

the estimate in (i) follows.

Similarly, if V satisfies the hypotheses of (ii), then the Riesz inequality again gives

∫ T

0
(−V (x))f2(x)dx≤

∫ T

0
(−V (x))

(
f2
)∗T (x)dx,

where here (f2)∗T denotes the T -periodic rearrangement of the T -periodic function f2

taken to be even about x = 0 and nonincreasing on (0,T/2). Antiperiodicity of f again

implies that (
f2
)∗T (x) = (f∗2T )2 (x) ∀x ∈ (0,T/2),

the estimate in (ii) follows.

We now come to the main result of this appendix, providing an ordering between the

even and odd ground state antiperiodic eigenvalues of a periodic Schrödinger operator L=

−Λα+V in terms of the monotonicity properties of the potential V .
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Proof. Proof of Proposition 2.3.9 First, assume that V (x) satisfies the hypothesis of (i) and

suppose that ψ is an eigenfunction associated to the ground state eigenvalue of L acting on

L2
a,even(0,T ), normalized to be real-valued and ‖ψ‖L2(0,T ) = 1. Then by Lemma B.0.1 and

Lemma B.0.2

minσ
(
L
∣∣
L2
a,even(0,T )

)
=

∫ T

0

∣∣∣Λα/2ψ∣∣∣2 dx+

∫ T

0
V (x)ψ(x)2dx

≥
∫ T

0

∣∣∣Λα/2ψ#2T

∣∣∣2 dx+

∫ T

0
V (x)

(
ψ#2T

)2
(x)dx

≥minσ

(
L
∣∣
L2
a,odd(0,T )

)
,

where the last inequality is justified since ‖ψ#2T ‖L2(0,T ) = 1. This verifies (i). A similar

proof establishes the ordering in (ii).

As a final useful inequality, we establish thatK does not increase under taking complex

modulus.

Lemma B.0.3 (Diamagnetic Inequality). Suppose α ∈ (1,2] and u∈Hα/2
a ([0,T ];C). Then

K(|u|)≤K(u).

Proof. Observe that

∫ T

−T

∣∣∣Λα/2u∣∣∣2 dx=
〈

Λα/2u,Λα/2u
〉
L2(−T,T )

= 〈Λαu,u〉L2(−T,T )

=− d

dt

∣∣∣
t=0+

〈
e−Λαtu,u

〉
L2(−T,T )

. (B.2)
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Further, by (B.1),

〈
e−Λαtu,u

〉
L2(−T,T )

=

∫ T

−T

∫ T

−T
u(x)Kp(x−y, t)u(y)dydx

≤
∫ T

−T

∫ T

−T
|u(x)|Kp(x−y) |u(y)| dydx since Kp(·, t) is positive

=
〈
e−Λαt |u| , |u|

〉
L2(−T,T )

.

Then we have for t > 0 that

−

〈
e−Λαtu,u

〉
L2(−T,T )

−〈u,u〉L2(−T,T )

t
≥−

〈
e−Λαt |u| , |u|

〉
L2(−T,T )

−〈|u| , |u|〉L2(−T,T )

t
,

and taking t→ 0+ yields

− d

dt

∣∣∣
t=0+

〈
e−Λαtu,u

〉
L2(−T,T )

≥− d

dt

∣∣∣
t=0+

〈
e−Λαt |u| , |u|

〉
L2(−T,T )

,

and it follows immediately by (B.2) that

∫ T

−T

∣∣∣Λα/2u∣∣∣2 dx≥ ∫ T

−T

∣∣∣Λα/2 |u|∣∣∣2 dx.
Then by T -antiperiodicity, we finally have

K(u) =

∫ T

0

∣∣∣Λα/2u∣∣∣2 dx≥ ∫ T

0

∣∣∣Λα/2 |u|∣∣∣2 dx=K(|u|).
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Appendix C

General Framework for Computing the Spectrum of a

Bidirectional Whitham Model Linearization

In this appendix we seek to generalize the method for shown in Section 3.3.1 for setting

up a bi-infinite matrix representation of a linearized operator, whose spectrum is suitably

approximated by truncating to finite dimensions.

Recall that we are dealing with nonlinear traveling wave models of the form (3.8). To

linearize the operator associated with such a model about an equilibrium solution

(u(x,t),η(x,t)) = (φ(x),ψ(x)),

we first express solutions u and η as localized perturbations from equilibrium:

u(x,t) = φ(x) + εv(x,t) +O(ε2)

η(x,t) = ψ(x) + εw(x,t) +O(ε2)
(C.1)
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with v(·, t),w(·, t) ∈ L2(R) for each t > 0 for which they are defined. Substituting (C.1)

into (3.7), Taylor expanding, and taking ε→ 0 yields


vt =

n∑
j=0

[
F
∂jxu

(~φ, ~ψ)∂jxv+F
∂jxu

(~φ, ~ψ)∂jxw
]

wt =
n∑
j=0

[
G
∂jxu

(~φ, ~ψ)∂jxv+G
∂jxu

(~φ, ~ψ)∂jxw
] (C.2)

where

~φ := (φ,φ′,φ′′, . . .φ(n)), ~ψ := (ψ,ψ′,ψ′′, . . .ψ(n)).

As was done in [60] for the Whitham equation, we will apply Bloch theory to study the

2π-periodic spectrum of the linearization by writing

v(x,t) = eλtV (x) + c.c., w(x,t) = eλtW (x) + c.c., (C.3)

where c.c. denotes complex conjugate of the preceding expression (in order to ensure the

reality of the functions v and w), and

V (x) =
∑
l∈Z

Ṽ (l)eiκ(µ+l)x, W (x) =
∑
l∈Z

W̃ (l)eiκ(µ+l)x (C.4)

with Bloch coefficients Ṽ (l), W̃ (l) for l ∈Z and Bloch parameter µ∈ [0,1). We remark that

the classical Floquet theorem that justifies these expansions only applies to differential op-

erators. However, the theorem can be extended to the nonlocal setting: see [42, Proposition

3.1], for instance.

Per equations (C.2), we will need to understand how the operators F
∂jxu

, F
∂jxη

, G
∂jxu

,

and G
∂jxη

act on the Bloch decompositions (C.4). In the models of interest, these opera-

tors will be linear combinations of 2π-periodic multiplication operators and the differen-
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tial/pseudodifferential operators ∂x, K. We derive the Bloch transforms of such operators

here.

If f is a 2π/κ-periodic function (multiplication operator), then we may represent f in

Fourier series as

f(x) =
∑
m∈Z

f̂(m)eimκx.

Then

f(x)V (x) =

(∑
m∈Z

f̂(m)eimκx

)(∑
l∈Z

Ṽ (l)eiκ(µ+l)x

)

=
∑
m∈Z

∑
l∈Z

f̂(m)Ṽ (l)eiκ(µ+m+l)x

=
∑
m∈Z

(∑
l∈Z

f̂(m− l)Ṽ (l)

)
eiκ(µ+m)x by taking m 7→m− l.

Hence the Bloch transform of the product fV is given by

f̃V (m) =
∑
l∈Z

f̂(m− l)Ṽ (l), m ∈ Z. (C.5)

Moreover, the Bloch transform with parameter µ acts on the derivative operator ∂x as

∂̃xf(m) = ∂̂x(κ(µ+m))f̃(m) = iκ(µ+m)f̃(m), m ∈ Z,

and, by analogy, the Bloch transform acts on the pseudodifferential operator K as

K̃f(m) := K̂(κ(µ+m))f̃(m) =
tanh(κ(µ+m))

κ(µ+m)
f̃(m), m ∈ Z. (C.6)
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Substituting (C.3) into (C.2) and taking the Bloch transform of both sides, we have the

simultaneous eigenvalue problems

λṼ (m) =
n∑
j=0

(
F
∂jxu

(~φ, ~ψ;c)V (j) +F
∂jxη

(~φ, ~ψ;c)W (j)
)∼

(m)

=:
∑
l∈Z

[
Âµ(m,l)Ṽ (l) + B̂µ(m,l)W̃ (l)

]
(C.7)

and λW̃ (m) =
n∑
j=0

(
G
∂jxu

(~φ, ~ψ;c)V (j) +G
∂jxη

(~φ, ~ψ;c)W (j)
)∼

(m)

=:
∑
l∈Z

[
Ĉµ(m,l)Ṽ (l) + D̂µ(m,l)W̃ (l)

]
, (C.8)

where Âµ(m,l), B̂µ(m,l), Ĉµ(m,l), and D̂µ(m,l) are the coefficients of the Bloch co-

efficients upon expanding the Bloch transform. Define the following bi-infinite matrices

entry-wise for row-m and column-l with m,l ∈ Z as

Âµ := [Âµ(m,l)]m,l∈Z, B̂µ := [B̂µ(m,l)]m,l∈Z,

Ĉµ := [Ĉµ(m,l)]m,l∈Z, D̂µ := [D̂µ(m,l)]m,l∈Z.

Writing (C.7) and (C.8) jointly in block bi-infinte matrix form, we have

λ

 Ṽ

W̃

=

 Âµ B̂µ

Ĉµ D̂µ


 Ṽ

W̃

=: L̂µ

 Ṽ

W̃

 (C.9)

where

Ṽ :=

[
. . . Ṽ (−2) Ṽ (−1) Ṽ (0) Ṽ (1) Ṽ (2) . . .

]T
W̃ :=

[
. . . W̃ (−2) W̃ (−1) W̃ (0) W̃ (1) W̃ (2) . . .

]T
.
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To numerically approximate the bi-infinite eigenvalue problem (C.9), we truncate each of

the bi-infinite matrices Âµ, B̂µ, Ĉµ, and D̂µ to have dimension (2N + 1)× (2N + 1), i.e.

ÂµN (m,l) := [Âµ(m,l)]−N≤m,l≤N ∈ C(2N+1)×(2N+1)

and similarly define B̂µ
N , ĈµN , and D̂µ

N , which together form L̂µN ∈ C(4N+2)×(4N+2) as

shown in (C.10) below. Moreover, we also truncate Ṽ and W̃ as

ṼN =

[
Ṽ (−N) . . . Ṽ (0) . . . Ṽ (N)

]T
,

W̃N =

[
W̃ (−N) . . . W̃ (0) . . . W̃ (N)

]T
.

Then, using a standard matrix eigenvalue solver (e.g. Matlab’s eig or Python’s

numpy.linalg.eig [43]), we solve for λµN ∈ C such that

λµN

 ṼN

W̃N

=

 ÂµN B̂µ
N

ĈµN D̂µ
N


 ṼN

W̃N

=: L̂µN

 ṼN

W̃N

 (C.10)

We solve this eigenvalue problem for µ in a discrete subset of [0,1). For our computations,

we used a uniform mesh {µj = j∆µ}j with subintervals of constant width ∆µ.

Remark C.0.1. The above method is inspired by the Fourier-Floquet-Hill Method (FFHM)

given in [16], which is used to compute the spectrum of a linear, locally-acting operator

having periodic coefficients. As was done in [16], we define convergence of the spec-

tral approximation in the sense that any eigenvalue λµN of L̂µN above converges to some

eigenvalue λ of non-truncated linearization L. Moreover, the incorporation of all Bloch
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parameters µ ∈ [0,1) yields the entire spectrum, i.e.

lim
N→∞

⋃
µ∈[0,1)

σ(L̂µN ) = σ(L).

To obtain the approximate Fourier coefficients φ̂ and ψ̂ (in the exponential basis) needed

to construct the bi-infinite matrix L̂µN , for a given wave speed c, we use the approximate

values of φ(xm) at each collocation point xm = (2m−1)π
2κN obtained in the numerical bifurca-

tion (see Section 3.2) and compute the approximate coefficients via their integral definitions

using the midpoint quadrature:

φ̂(n) =
κ

2π

∫ π/κ

−π/κ
φ(x)e−inκx dx

=
κ

π

∫ π/κ

0
φ(x)cos(nκx)dx since φ is even

≈ 1

N

N∑
m=1

φ(xm)cos(nκxm) by (3.13).

Similarly,

ψ̂(n)≈ 1

N

N∑
m=1

ψ(xm)cos(nκxm).

Remark C.0.2. The approximation of ψ̂(n) above requires that ψ be an even function. This

is always the case since we are considering models for which ψ can be resolved in terms of

φ, hence ψ = ψ(φ(x)) is also an even function.

As an example, here we show the relevant calculations in detail for the model (3.22)

as a concrete demonstration of the more abstract framework established in this appendix.
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Recall that this model is given by

 ut = cux−ηx−uux =: F (u,ux,η,ηx)

ηt = cηx−Kux− (ηu)x =:G(u,ux,η,ηx),

with equilibrium solutions u(x,t) = φ(x), η(x,t) = ψ(x). Beginning with (3.32), we first

compute

Fu(φ,φ′,ψ,ψ′) =−φ′, Fux(φ,φ′,ψ,ψ′) = c−φ,

Fη(φ,φ
′,ψ,ψ′) = 0, Fηx(φ,φ′,ψ,ψ′) =−1.

All of the above are 2π/κ-periodic multiplication operators, hence we apply (C.5) in (C.7),

here with n= 1, to achieve the following formulas for m ∈ Z:

F̃uV (m) =
∑
l∈Z
−̂φ′(m− l)Ṽ (l) =

∑
l∈Z
−iκ(m− l)φ̂(m− l)Ṽ (l)

F̃uxV
′(m) =

∑
l∈Z

(̂c−φ)(m− l) ∂̃xV (l) =
∑
l∈Z

(
cδm,l− φ̂(m− l)

)
· iκ(µ+ l)Ṽ (l)

F̃ηW (m) =
∑
l∈Z

0W̃ (l)

F̃ηxW
′(m) =

∑
l∈Z

(̂−1)(m− l) ∂̃xW (l) =
∑
l∈Z
−δm,l · iκ(µ+ l)W̃ (l),

where δm,l is the Kronecker delta. Summing the above expressions and grouping terms

involving Ṽ (l) and W̃ (l) per (C.7), we obtain

Âµ(m,l) =−iκ(m− l)φ̂(m− l) +
(
cδm,l− φ̂(m− l)

)
· iκ(µ+ l)

= icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l) (C.11)

B̂µ(m,l) =−iκ(µ+ l)δm,l, (C.12)
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Similarly, per (C.8), we compute

Gu(φ,φ′,ψ,ψ′) =−ψ′, Gux(φ,φ′,ψ,ψ′) =−K−ψ,

Gη(φ,φ
′,ψ,ψ′) =−φ′, Gηx(φ,φ′,ψ,ψ′) = c−φ.

Then

G̃uV (m) =
∑
l∈Z
−̂ψ′(m− l)Ṽ (l) =−iκ(m− l)ψ̂(m− l)Ṽ (l)

G̃uxV
′(m) = [(−K−ψ)∂xV ]∼ (m)

=−K̃∂xV (m)− ψ̃ ∂xV (m)

=−iκ(µ+m)K̂(κ(µ+m))Ṽ (m)−
∑
l∈Z

ψ̂(m− l) iκ(µ+ l)Ṽ (l)

=
∑
l∈Z
−iκ(µ+ l)

[
K̂(κ(µ+ l))δm,l+ ψ̂(m− l)

]
Ṽ (l)

G̃ηW (m) =
∑
l∈Z
−̂φ′(m− l)W̃ (l) =

∑
l∈Z
−iκ(m− l)φ̂(m− l)W̃ (l)

G̃ηxW
′(m) =

∑
l∈Z

(̂c−φ)(m− l) ∂̃xW (l) =
∑
l∈Z

(
cδm,l− φ̂(m− l)

)
· iκ(µ+ l)W̃ (l).

Summing the above expressions and grouping terms involving Ṽ (l) and W̃ (l) per (C.8),

we obtain

Ĉµ(m,l) =−iκ(µ+ l)K̂(κ(µ+ l))δm,l− iκ(µ+m)ψ̂(m− l) (C.13)

D̂µ(m,l) = icκ(µ+ l)δm,l− iκ(µ+m)φ̂(m− l). (C.14)

Note that the formulas for Âµ(m,l), B̂µ(m,l), Ĉµ(m,l), D̂µ(m,l) given above in (C.11),

(C.12), (C.13), and (C.14) agree with those found in Section 3.3.1 circa (3.32), (3.33) by

manipulating Fourier series.
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Appendix D

Bidirectional Whitham Numerical Parameters

D.1 Bifurcation and Spectral Figures

In Table D.1, we provide the numerical parameters used to compute bifurcations via the

pseudo-arclength method and spectra via the Fourier-Floquet-Hill-Method (FFHM). A brief

reminder of the symbols involved:

Pseudo-arclength Parameters:

• κ is the wavenumber, which yields waves of period 2π/κ.

• N is the number of collocation points xi = (2i−1)π
2κN , i = 1, . . . ,N on the half-period

cell [0,π/κ], as well as the number of modes used in the profile’s truncated series

φ(x) =
∑N−1

n=0 φ̂(n)cos(nκx). See Section 3.2.1.

• h is the length of a step along the tangent direction in each iteration of the pseudo-

arclength method. See Figure 3.1 and the surrounding discussion.

• ε0 determines a suitable starting point (see (3.21)) near the global bifurcation curve

based on the model’s local bifurcation formulas (e.g. (3.26), (3.27)).
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FFHM Parameters:

• ∆µ is the width of a subinterval in the uniform mesh {µj = j∆µ}j ⊂ [0,1) of Bloch

parameters used to discretize the L2(R) spectrum. See (C.4) and Remark C.0.1.

• N determines the dimension of the truncated bi-infinite matrix L̂µN ∈C
(4N+2)×(4N+2).

See (C.10) and the surrounding discussion.

D.2 Time Evolution by Operator Splitting

Consider the time-evolution of a nonlinear initial-value problem

 ut(x,t) = (A+B)u(x,t)

u(x,0) = u0(x),
(D.1)

where A and B are, respectively, linear and nonlinear operators. Abstractly, the solution at

time t is given in terms of the operator exponential as

u(x,t) = e(A+B)tu0(x).

An operator-splitting method allows one to solve the above IVP by successively solving

the linear and nonlinear parts separately. For example, it is easy to verify that

e(A+B)t = e
1
2 tAetBe

1
2 tA+O(t3). (D.2)

That is, to second order in the time step t, the IVP (D.1) can be evolved forward by time

step t as follows:

1. Solve the linear equation ut = Au with initial data u0 forward by time step 1
2t.
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2. Then solve the nonlinear equation ut = Bu forward by time step t using initial data

e
1
2 tAu0 (the output of Step 1).

3. Then again solve the linear equation ut = Au forward by time step 1
2t using initial

data etBe
1
2 tAu0 (the output of Step 2).

Iterating the above method allows one to time-evolve the system to arbitrary time. A big ad-

vantage of this method in solving periodic problems is that solutions of the linear equation

can be performed very efficiently using spectral (i.e. Fourier transform) methods, while the

nonlinear part can be solved using a method that is well-suited to the given nonlinearity (the

standard fourth-order Runge-Kutta method is often a good choice). For the time evolution

here, we use a sixth-order pseudospectral operator splitting method as described above,

where the details of the method and the analogous form of (D.2) for sixth-order accuracy

can be found in [67].

The linear part of (3.2) is  ut = −ηx

ηt = −Kux,

which can be transformed into decoupled wave-like second-order in time IVPs


ηtt(x,t) = Kηxx(x,t)

η(x,0) = ψ(x)

ηt(x,0) = −Kφ′(x)


utt(x,t) = Kuxx(x,t)

u(x,0) = φ(x)

ut(x,0) = −ψ′(x),
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where ψ(x), φ(x) are equilibria as discussed in Section 3.3.1. Taking the Fourier transform

of the above equations in x yields ODE IVPs in t for each fixed n ∈ Z:


η̂tt(n,t) = −κ2n2K̂(n)η̂(n,t)

η̂(n,0) = ψ̂(n)

η̂t(n,0) = −inK̂(n)φ̂(n)


ûtt(n,t) = −κ2n2K̂(n)û(n,t)

û(n,0) = φ̂(n)

ût(n,0) = −inψ̂(n).

(D.3)

The equations in (D.3) are well-known to model simple harmonic motion and can be solved

explicitly. For the nonlinear part of (3.2), the typical fourth-order Runge-Kutta scheme

(RK4) is used.

• In Figure 3.7, a small 2π-periodic wave of height maxψ−minψ ≈ 0.00109 gen-

erated by the pseudo-arclength method with parameters κ = 1, h = 0.01, ε0 = 1×

10−5, and N = 2048 collocation points on the half-periodic cell [0,π] (∆x= π
2048 ≈

0.00153) is used as initial data in (D.3). A time step of ∆t= 0.001 is used in each it-

eration of the 6th-order operator splitting method to integrate to time t= 2.55, which

is about 35.4% of a temporal period for this wave.

• In Figure 3.10, a large 2π-periodic positive wave of height maxψ−minψ ≈ 0.387

generated by the pseudo-arclength method with parameters κ = 1, h = 0.01, ε0 =

1× 10−5, and N = 2048 collocation points on the half-periodic cell [0,π] (∆x =

π
2048 ≈ 0.00153) is used as initial data in (D.3). A time step of ∆t = 0.001 was used

to integrate for 15 temporal periods (to time t≈ 80.5706).

The ease of time-evolving large positive waves (which are proven to be locally well-

posed; see [22]), as opposed to the difficulty of evolving non-positive waves in the same

model with the same ∆t/∆x≈ 0.6536 suggests that the non-positive waves are not locally

well-posed in time.
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Table D.1: Parameters for figures generated by the pseudo-arclength method (bifurcation)
and Fourier-Floquet-Hill method (spectrum).

Figure(s) Pseudo-arclength Parameters FFHM Parameters
3.2 (a) κ= 1, N = 256, h= 10−3, ε0 = 10−5

3.2 (b) κ ∈ {0.8,1.0,1.3,1.6}, N = 256,
h= 10−3, ε0 = 10−5

3.3 (a), (b) κ= 1, N = 256, h= 10−3, ε0 = 10−5

3.4 (a) κ= 1, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/10000
3.4 (b), (c) κ= 1, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/5000
3.4 (d), (e) κ= 1, N = 256, h= 10−3, ε0 = 10−5 N = 128, ∆µ= 1/5000
3.5 (a)-(e) Same data as Figure 3.4 (a)-(e) Same data as Figure 3.4 (a)-(e)
3.6 (a) κ= 1.005, N = 64, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/15000
3.6 (b) κ= 1.008, N = 64, h= 10−3, ε0 = 10−5 N = 64, ∆µ= 1/15000
3.8 (b) κ ∈ {0.5,1.0,1.3,1.6}, N = 256,

h= 10−3, ε0 = 10−5

3.9 (a), (b) κ= 1, N = 2048, h= 10−3, ε0 = 10−5

3.11 (a) κ= 1, N = 2048, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/50000
3.11 (b) κ= 1, N = 2048, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/10000
3.11 (c) κ= 1, N = 2048, h= 10−3, ε0 = 10−5 N = 128, ∆µ= 1/5000
3.12 (a)-(c) κ= 1.611, N = 256, h= 10−3, ε0 = 10−5

3.12 (d) κ ∈ {0.8,1,1.3,1.6}, N = 256,
h= 10−3, ε0 = 10−5

3.13 κ= 1, N ∈ {64,128,256,512},
h= 10−3, ε0 = 10−5

3.14 (a), (b) κ= 1.611, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/10000
3.14 (c), (d) κ= 1.611, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/5000
3.14 (e) κ= 1.611, N = 256, h= 10−3, ε0 = 10−5 N = 128, ∆µ= 1/5000
3.15 (a), (b) κ= 1.609, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/10000
3.16 (a)-(e) Same data as Figure 3.14 Same data as Figure 3.14
3.17 (a)-(c) κ= 1, N = 256, h= 10−3, ε0 = 10−5

3.17 (d) κ ∈ {0.8,1.0,1.3,1.6}, N = 256,
h= 10−3, ε0 = 10−5

3.18 (a)-(d) κ= 1, N = 256, h= 10−3, ε0 = 10−5 N = 50, ∆µ= 1/10000
3.18 (e) κ= 1, N = 256, h= 10−3, ε0 = 10−5 N = 128, ∆µ= 1/10000
3.19 Same data as Figure 3.18 Same data as Figure 3.18
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