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                                                                    Abstract 

           My dissertation consists of three papers on bifurcation and market game models. My 

research focuses on understanding bifurcation phenomena of macroeconometric models, 

exploring price stickiness and markup variations in market game models with production 

through strategic interaction, and analyzing the possibility of endogenous business cycles in 

the overlapping generation market game models with production. Specifically, the three 

chapters are:  

            Bifurcation of Macroeconometric Models and Robustness of Dynamical 

Inferences is a survey paper I coauthored with Prof. Barnett (Barnett and Chen (2015)). In 

systems theory, it is well known that the parameter spaces of dynamical systems are stratified 

into bifurcation regions, with each supporting a different dynamical solution regime. Some 

can be stable, with different characteristics, such as monotonic stability, periodic damped 

stability, or multiperiodic damped stability, and some can be unstable, with different 

characteristics, such as periodic, multiperiodic, or chaotic unstable dynamics. But in general 

the existence of bifurcation boundaries is normal and should be expected from most 

dynamical systems, whether linear or nonlinear. Bifurcation boundaries in parameter space 

are not evidence of model defect. While existence of such bifurcation boundaries is well 

known in economic theory, econometricians using macroeconometric models rarely take 

bifurcation into consideration, when producing policy simulations from macroeconometric 

models. Such models are routinely simulated only at the point estimates of the models’ 

parameters.  

            Barnett and He (1999) explored bifurcation stratification of Bergstrom and Wymer’s 

(1976) continuous time UK macroeconometric model. Bifurcation boundaries intersected the 

confidence region of the model’s parameter estimates. Since then, Barnett and his coauthors 

have been conducting similar studies of many other newer macroeconometric models 
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spanning all basic categories of those models. So far, they have not found a single case in 

which the model’s parameter space was not subject to bifurcation stratification. In most 

cases, the confidence region of the parameter estimates were intersected by some of those 

bifurcation boundaries. The most fundamental implication of this research is that policy 

simulations with macroeconometric models should be conducted at multiple settings of the 

parameters within the confidence region. While this result would be as expected by systems 

theorists, the result contradicts the normal procedure in macroeconometrics of conducting 

policy simulations solely at the point estimates of the parameters.  

            This survey provides an overview of the classes of macroeconometric models for 

which these experiments have so far been run and emphasizes the implications for lack of 

robustness of conventional dynamical inferences from macroeconometric policy simulations. 

By making this detailed survey of past bifurcation experiments available, we hope to 

encourage and facilitate further research on this problem with other models and to emphasize 

the need for simulations at various points within the confidence regions of macroeconometric 

models, rather than at only point estimates.  

             Price Stickiness and Markup Variations in Market Games is a paper I coauthored  

with Prof. Stephen Spear and Dr. C. Gizem Korpeoglu (Chen et al. (2017)). Shapley-Shubik 

market game model received quite a bit of attention in the general equilibrium literature of 

the 1980’s and 1990’s, but never caught on as a possible alternative to models of 

monopolistic competition in macroeconomics. In this paper, we suggest that the market game 

model can provide a better micro-foundation for new Keynesian general equilibrium analysis 

than existing models based on monopolistic competition. We show that the market game 

generates equilibria that have two important features. First, we show that when firms have 

market power, their market-shares in both input and output markets affect the first-order 

conditions of their best responses, in ways that resemble the effects of price changes. From 
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this observation, we are able to establish that firm quantity adjustments (holding input prices 

fixed) can maintain the Nash equilibrium of the model in versions of the model that exhibit 

indeterminacy of the Nash equilibrium. Hence, these versions of the model naturally admit 

sticky prices, regardless of the mechanism(s) that might lead firms to want to keep input 

prices unchanging. Second, we show that there is a close relationship between any individual 

firm’s markup of price over marginal cost and its market share. What the market game brings 

to the discussion of markups that is new, is the fact that markets populated by finite numbers 

of firms operating under possibly different technologies will generate data on markup 

movements over different equilibria that can vary positively, negatively, variably, or not at all 

over business-cycle-like expansions and contractions.     

               Endogenous Business Cycles in the Overlapping Generations Market Game 

Model is my job market paper (Chen (2018)).  We then extend the analysis on market game 

models with production in chapter two to an overlapping generations (OLG) market game 

model, and study whether strategic interactions contribute to instabilities of the economic 

dynamics. Grandmont (1985) was one of the first papers to raise the possibility that 

endogenous complex dynamics might provide an alternative explanation for business cycle 

fluctuations, by showing that such dynamics could arise in conventional OLG models, 

although only for the case of sufficiently large risk aversion on the part of old agents in the 

model. Goenka et al. (1998) showed in the context of a pure exchange OLG market game 

model that the nonlinearities introduced by imperfect competition were such that one could 

obtain chaotic dynamics even for log utility, as long as markets were thin in terms of amount 

of endowment agents offered. Goenka et al. (1998) note that extensions of their work with 

this kind of model suggests that production smooths the model in the sense that complex 

dynamics are not as easily generated as in the pure exchange model. In this paper, analysis 
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shows that production combined with price-taking behavior by households locks down the 

ratio of output and input prices, which then reduces the nonlinearity that arises in the pure 

exchange model. Specifically, we show in the paper that when incorporating production in 

the market game OLG model, the price dynamics depend on market thickness, general 

equilibrium price ratios, individual offers and particular choices of utility function. We find 

that for complex dynamics to occur, the preferences in our model must be a mix of 

preferences, for example, a combination of preferences with constant relative risk aversions 

and increasing relative risk aversions. We also show the impossibility of such price dynamics 

to occur for log-linear preferences. In other words, the case for complex dynamics to occur 

with particular production functions and utility functions is much more limited. As a result, 

complex dynamics are not as easily observable as in models without production. Finally, we 

are able to confirm the results from Goenka et al. (1998) on the Pareto rankability of Nash 

equilibria in terms of market thickness, which has important welfare implications for business 

cycle-like activity based on the coordination equilibria that can arise in market game models. 
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Chapter 1:  Bifurcation of Macroeconometric 
Models and Robustness of Dynamical Inferences1 
1.1  Bifurcation Of Macroeconomic Models2 

1.1.1  Introduction 

Bifurcation has long been a topic of interest in dynamical macroeconomic systems. 

Bifurcation analysis is important in understanding dynamic properties of macroeconomic 

models as well as in selection of stabilization policies.  The goal of this survey is to 

summarize work by William A. Barnett and his coauthors on bifurcation analyses in 

macroeconomic models to facility and motivate work by others on further models. In section 

1.1, we introduce the concept of bifurcation and its role in studies of macroeconomic systems 

and also discuss several types of bifurcations by providing examples summarized from 

Barnett and He (2004, 2006b). In sections 1.2-1.8, we discuss bifurcation analysis and 

approaches with models from Barnett’s other papers on this subject. 

To explain what bifurcation is, Barnett and He (2004,2006b) begin with the general 

form of many existing macroeconomic models:  

                          𝐃𝐱 = 𝐟 𝐱,𝛉 ,                        (1.1.1) 

where 𝐃 is the vector-valued differentiation operator, 𝐱 is the state vector,𝛉 is the parameter 

vector, and 𝐟 is the vector of functions governing the dynamics of the system, with each 

component assumed to be smooth in a local region of interest. 

																																																													
1	This	paper	is	published	as	Barnett	and	Chen	(2015).	

2	This	section	is	summarized	from	Barnett	and	He	(2004,2006b).	
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           In system (1.1.1), the focus of interest lies in the settings of the parameter vector, 𝛉. 

Assume 𝛉 takes values within a theoretically feasible set 𝛩. The value of 𝛉 can affect the 

dynamics of the system substantially through a small change, and we say a bifurcation occurs 

in the system, if such a small change in parameters fundamentally alters the nature of the 

dynamics of the system. In particular, bifurcation refers to a change in qualitative features 

instead of quantitative features of the solution dynamics. A change in quantitative features of 

dynamical solutions may refer to a change in such properties as the period or amplitude of 

cycles, while a change in qualitative features may refer to such changes as changes from one 

type of stability or instability to another type of stability or instability.  

A point within the parameter space at which a change in qualitative features of the 

dynamical solution path occurs defines a point on a bifurcation boundary. At the bifurcation 

point, the structure of the dynamic system may change fundamentally.  Different dynamical 

solution properties can occur when parameters are close to but on different sides of a 

bifurcation boundary. A parameter set can be stratified by bifurcation boundaries into several 

subsets with different types of dynamics within each subset. 

There are several types of bifurcation boundaries, such as Hopf, pitchfork, saddle-

node, transcritical, and singularity bifurcation. Each type of bifurcation produces a different 

type of qualitative dynamic change. We illustrate these different types of bifurcation by 

providing examples in section 1.1.3. Bifurcation boundaries have been discovered in many 

macroeconomic systems. For example, Hopf bifurcations have been found in growth models 

(e.g., Benhabib and Nishimura (1979), Boldrin and Woodford (1990), Dockner and 

Feichtinger (1991), and Nishimura and Takahashi (1992)) and in overlapping generations 

models.  Pitchfork bifurcations have been found in the tatonnement process (e.g., Bala (1997) 



	 3	

and Scarf (1960)).  Transcritical bifurcations have been found in Bergstrom and Wymer’s 

(1976) UK model (Barnett and He (1999)) and singularity bifurcation in Leeper and Sims’ 

Euler-equation model (Barnett and He (2008)). 

One reason we are concerned about bifurcation phenomena in macroeconomic models 

is because changes in parameters could affect dynamic behaviors of the models and 

consequently the outcomes of imposition of policy rules. For example, Bergstrom and 

Wymer’s (1976) UK model operates close to bifurcation boundaries between stable and 

unstable regions of the parameter space. In this case, if a bifurcation boundary intersects the 

confidence region of the parameter estimates, different qualitative properties of solution can 

exist within this confidence region.  As a result, robustness of inferences about dynamics can 

be damaged, especially if inferences about dynamics are based on model simulations with the 

parameters set only at their point estimates. When confidence regions are stratified by 

bifurcation boundaries, dynamical inferences need to be based on simulations at points within 

each of the stratified subsets of the confidence region. 

Knowledge of bifurcation boundaries is directly useful in policy selection.  If the 

system is unstable, a successful policy would bifurcate the system from the unstable to stable 

region.  In that sense, stabilization policy can be viewed as bifurcation selection. As 

illustrated in section 1.1.2, Barnett and He (2002) have shown that successful bifurcation 

policy selection can be difficult to design. 

Barnett’s work has found bifurcation phenomena in every macroeconomic model that 

he and his coauthors have so far explored. Barnett and He (1999,2002) examined the 

dynamics of Bergstrom-Wymer’s continuous-time dynamic macroeconomic model of the UK 

economy and found both transcritical and Hopf bifurcation boundaries. Barnett and He 
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(2008) estimated and displayed singularity bifurcation boundaries for the Leeper and Sims 

(1994) Euler equations model. Barnett and Duzhak (2010) found Hopf and period doubling 

bifurcations in a New Keynesian model. Banerjee, Barnett, Duzhak and Gopalan (2011) 

examined the possibility of cyclical behavior in the Marshallian Macroeconomic Model. 

Barnett and Eryilmaz (2013, 2014) investigated bifurcation in open economy models. Barnett 

and Ghosh (2013a) investigated the existence of bifurcations in endogenous growth models.  

This survey is organized in the chronological order of Barnett’s work on bifurcation 

of macroeconomic models, from early models to many of the most recent models.  

1.1.2  Stability 

There are two possible approaches to analyze bifurcation phenomena: global and 

local. Methods in Barnett’s current papers have used local analysis, which is analysis of the 

linearized dynamic system in a neighborhood of the steady state. In his papers, equation 

(1.1.1) is linearized in the form  

                                   𝐃𝐱 = 𝐀 𝛉 𝐱+ 𝐅(𝐱,𝛉),                             (1.1.2) 

where 𝐀 𝛉   is the Jacobian matrix of 𝐟(𝐱,𝛉), and  𝐅(𝐱,𝛉) = 𝐟(𝐱,𝛉)− 𝐀(𝛉)𝐱 = o(𝐱,𝛉) is 

the vector of higher order term. Define 𝐱∗ to be the system’s steady state equilibrium, such 

that  𝐟 𝐱∗,𝛉 = 𝟎, and redefine the variables such that the steady state is the point  𝐱∗ = 𝟎 by 

replacing  𝐱  with 𝐱−  𝐱∗. 

The local stability of (1.1.1), for small perturbation away from the equilibrium, can be 

studied through the eigenvalues of 𝐀 𝛉 , which is a matrix-valued function of the parameters 

𝛉. It is important to know at what parameter values, 𝛉, the system (1.1.1) is unstable. But it is 
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also important to know the nature of the instability, such as periodic, multiperiodic, or 

chaotic, and the nature of the stability, such as monotonically convergent, damped single-

periodic convergent, or damped multiperiodic convergent. For global analysis, which can be 

far more complicated than local analysis, higher order terms must be considered, since the 

perturbations away from the equilibrium can be large.  Analysis of 𝐀 𝛉  alone may not be 

adequate. More research on global analysis of macroeconomic models is needed. 

To analyze the local stability properties of the system, we need to locate the 

bifurcation boundaries. The boundaries must satisfy 

             𝑑𝑒𝑡 𝐀 𝛉 = 0.                   (1.1.3)                    

             According to Barnett and He (2004), if all eigenvalues of 𝐀 𝛉  have strictly negative 

real parts, then (1.1.1) is locally asymptotically stable in the neighborhood of 𝐱 = 𝟎. If at 

least one of the eigenvalues of 𝐀 𝛉  has positive real part, then (1.1.1) is locally 

asymptotically unstable in the neighborhood of 𝐱 = 𝟎. 

The bifurcation boundaries can be difficult to locate. In Barnett and He (1999, 2002), 

various methods are applied to locate the bifurcation boundaries characterized by (1.1.3). 

Equation (1.1.3) usually cannot be solved in closed form, when 𝛉 is multi-dimensional.  As a 

result, numerical methods are extensively used for solving (1.1.3).  

             Before proceeding to the next section, we introduce the definition of hyperbolic for 

flows and maps, respectively. According to Hale and Kocak (1991), the following definitions 

apply. 

Definition 1.1.1.  An equilibrium point 𝐱∗of 𝐱 = 𝐟(𝐱) is said to be hyperbolic, if all the 

eigenvalues of the Jacobian matrix 𝐷𝐟(𝐱∗) have nonzero real parts. 
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Definition 1.1.2  A fixed point 𝐱∗of 𝐱⟼ 𝐟(𝐱) is said to be hyperbolic, if the linear 

𝐶! map 𝐱⟼ 𝐷𝐟 𝐱∗ 𝐱  is hyperbolic; that is, if the Jacobian matrix  𝐷𝐟 𝐱∗  at  𝐱∗ has no 

eigenvalues with modulus one. 

             Definition 1.1.2. refers to discrete-time dynamical systems. Since bifurcations can 

only occur in a local neighborhood of non-hyperbolic equilibria, we are more interested in the 

behavior at non-hyperbolic equilibria.   

              For a discrete-time dynamical system, consider a generic smooth one-parameter 

family of maps 𝐱⟼ 𝐟 𝐱,𝛼 = 𝐟 ! 𝐱 , 𝐱 ∈ 𝑅!,𝛼 ∈ 𝑅.  Since local bifurcation happens only 

at nonhyperbolic fixed points, there are three critical cases to consider: 

(a)  The fixed point 𝐱∗ has eigenvalue 1. 

(b)  The fixed point 𝐱∗ has eigenvalue -1. 

(c)  The fixed point 𝐱∗ has a pair of complex-conjugate eigenvalues 𝑒±!!! with 

0 < 𝜃! < 𝜋. 

             The codimension 1 bifurcation associated with case (a) is called a fold (saddle node) 

bifurcation. The codimension 1 bifurcation associated with case (b) is called a flip (period 

doubling) bifurcation, while the codimension 1 bifurcation associated with case (c) is called a 

Neimark-Sacker bifurcation.  Neimark-Sacker bifurcation is the equivalent of Hopf 

bifurcation for maps. 

In the following section, we are going to introduce three important one-dimensional 

equilibrium bifurcations described locally by ordinary differential equations. They are 

transcritical, pitchfork, and saddle-node bifurcations. 
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1.1.3   Types of Bifurcations    

1.1.3.1 Transcritical Bifurcations 

For a one-dimensional system, 

𝐷𝑥 = 𝐺 𝑥,𝜃 , 

the transversality conditions for a transcritical bifurcation at 𝑥,𝜃 = (0,0) are 

𝐺 0,0 = 𝐺! 0,0 = 𝐺! 0,0 = 0, 𝐺!!(0,0) ≠ 0, and 𝐺!"! − 𝐺!!𝐺!! 0,0 > 0.  (1.1.4) 

An example of such a form is 

           𝐷𝑥 = 𝜃𝑥 − 𝑥!.         (1.1.5) 

The steady state equilibria of the system are at 𝑥∗ = 0 and  𝑥∗ = 𝜃. It follows that 

system (1.1.5) is stable around the equilibrium 𝑥∗ = 0 for 𝜃 < 0, and unstable for 𝜃 > 0.  

System (1.1.5) is stable around the equilibrium 𝑥∗ = 𝜃 for 𝜃 > 0, and unstable for 𝜃 < 0. 

The nature of the dynamics changes as the system bifurcates at the origin. This transcritical 

bifurcation arises in systems in which there is a simple solution branch, corresponding here to 

𝑥∗ = 0. 

           Transcritical bifurcations have been found in high-dimensional continuous-time 

macroeconomic systems, but in high dimensional cases, transversality conditions have to be 

verified on a manifold. Details are provided in Guckenheimer and Holmes (1983). 

1.1.3.2 Pitchfork Bifurcations 

 
For a one-dimensional system, 
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 𝐷𝑥 = 𝑓 𝑥,𝜃 . 

             Suppose that there exists an equilibrium 𝑥∗ and a parameter value 𝜃∗ such that 

(𝑥∗,𝜃∗) satisfies the following conditions: 

𝑎    
𝜕𝑓 𝑥,𝜃∗

𝜕𝑥 |!!!∗ = 0, 

𝑏    
𝜕!𝑓(𝑥,𝜃∗)

𝜕𝑥! |!!!∗ ≠ 0, 

𝑐    
𝜕!𝑓(𝑥,𝜃) 
𝜕𝑥𝜕𝜃 |!!!∗,!!!∗ ≠ 0, 

 then (𝑥∗,𝜃∗) is a pitchfork bifurcation point.   

An example of such form is  

          𝐷𝑥 = 𝜃𝑥 − 𝑥!. 

            The steady state equilibria of the system are at 𝑥∗ = 0 and 𝑥∗ = ± 𝜃 . It follows that 

the system is stable when 𝜃 < 0 at the equilibrium 𝑥∗ = 0, and unstable at this point when 

𝜃 > 0. The two other equilibria 𝑥∗ = ± 𝜃  are stable for 𝜃 > 0. The equilibrium 𝑥∗ = 0 

loses stability, and two new stable equilibria appear. This pitchfork bifurcation, in which a 

stable solution branch bifurcates into two new equilibria as 𝜃 increases, is called a 

supercritical bifurcation. 

Bala (1997) shows how pitchfork bifurcation can occur in the tatonnement process.  

1.1.3.3    Saddle-Node Bifurcations 

For a one-dimensional system, 
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        𝐷𝑥 = 𝑓 𝑥,𝜃 .   

A saddle-node point (𝑥∗,𝜃∗) satisfies the equilibrium condition 𝑓 𝑥∗,𝜃∗ = 0 and the 

Jacobian condition 
  

∂ f (x,θ *)
∂x

|
x=x*= 0 , as well as the transversality conditions, as follows: 

𝑎    
𝜕𝑓(𝑥,𝜃)
𝜕𝜃  |!!!∗,!!!∗ ≠ 0, 

𝑏    
𝜕!𝑓(𝑥,𝜃)
𝜕𝑥! |!!!∗,!!!∗ ≠ 0. 

Sotomayor (1973) shows that transversality conditions for high-dimensional systems can also 

be formulated. 

A simple system with a saddle-node bifurcation is 

𝐷𝑥 = 𝜃 − 𝑥!. 

The equilibria are at  𝑥∗ = ± 𝜃, which requires 𝜃 to be nonnegative. Therefore, there exist 

no equilibria for 𝜃 < 0, and there exist two equilibria at 𝑥∗ = ± 𝜃, when 𝜃 > 0. It follows 

that when 𝜃 > 0, the system is stable at 𝑥∗ = 𝜃 and unstable at 𝑥∗ = − 𝜃. In this example, 

bifurcation occurs at the origin as 𝜃 increases through zero, which is called the (supercritical) 

saddle node. 

1.1.3.4   Hopf Bifurcations   

Hopf bifurcation is the most studied type of bifurcation in economics. For continuous 

time systems, Hopf bifurcation occurs at the equilibrium points at which the system has a 

Jacobian matrix with a pair of purely imaginary eigenvalues and no other eigenvalues which 

have zero real parts.  For discrete time system, the following theorem applies in the special 
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case of  n =2.  The Hopf Bifurcation Theorem in Gandolfo (2010, ch. 24, p.497) is widely 

applied to find the existence of Hopf bifurcation.  

Theorem 1.1.1  (Existence of Hopf Bifurcation in 2 dimensions) Consider the two-

dimensional non-linear difference system with one parameter 

                                               𝐲!!! = 𝛗(𝐲! ,𝛼),  

and suppose that for each 𝛼 in the relevant interval there exists a smooth family of 

equilibrium points, 𝐲! = 𝐲!(𝛼), at which the eigenvalues are complex conjugates,  

𝜆!,! = 𝜃 𝛼 + 𝑖𝜔 𝛼 .  If there is a critical value 𝛼! of the parameter such that  

a. the eigenvalues’ modulus becomes unity at 𝛼!, but the eigenvalues are not roots of 

unity (from the first up to the fourth), namely 

𝜆!,! 𝛼! = 𝜃! + 𝜔! = 1,   𝜆!,!
! 𝛼! ≠ 1 for  𝑗 = 1,2,3,4, 

and 

      b.  
  

d λ1,2 (α )
dα

|α=α0
≠ 0,

 
then there is an invariant closed curve bifurcating from 𝛼!. 

This theorem only applies with a 2×2 Jacobian. The earliest theoretical works on 

Hopf bifurcation include Poincaré (1892) and Andronov (1929), both of which were 

concerned with two-dimensional vector fields.  A general theorem on the existence of Hopf 

bifurcation, which is valid in 𝑛 dimensions, was proved by Hopf (1942).   

A simple example in the two-dimensional system is  

 𝐷𝑥 = −𝑦 + 𝑥 𝜃 − 𝑥! + 𝑦! , 
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 𝐷𝑦 = 𝑥 + 𝑦 𝜃 − 𝑥! + 𝑦! . 

One equilibrium is 𝑥∗ = 𝑦∗ = 0 with stability occurring for 𝜃 < 0 and the instability 

occurring for  𝜃 > 0. That equilibrium has a pair of conjugate eigenvalues 𝜃 + 𝑖 and 𝜃 − 𝑖. 

The eigenvalues become purely imaginary, when 𝜃 = 0. 

             Barnett and He (2004) show the following method to find Hopf bifurcation. They let 

𝑝 𝑠 = 𝑑𝑒𝑡 (𝑠𝐈− 𝐀) be the characteristic polynomial of 𝐀 and write it as 

𝑝 𝑠 = 𝑐! + 𝑐!𝑠 + 𝑐!𝑠! + 𝑐!𝑠! +⋯+ 𝑐!!!𝑠!!! + 𝑠!. 

They construct the following 𝑛 − 1  by 𝑛 − 1  matrix 

𝐒 =

   𝑐!        𝑐!     …          𝑐!!!               1          0        0       … .  0   
 0         𝑐!      𝑐!           … .               𝑐!!!    1        0         …  0

…
 0          0         …       0                   𝑐!         𝑐!       𝑐!   …        1 
𝑐!        𝑐!     …        𝑐!!!                 0           0        0   …        0

  0          𝑐!      𝑐!      …                   𝑐!!!        0        0…           0  
… .
…

       0         0       …           0                  𝑐!         𝑐!   …     …        𝑐!!!    
 

 . 

Let 𝐒! be obtained by deleting rows 1 and  and columns 1 and 2, and let 𝐒! be 

obtained by deleting rows 1 and and columns 1 and 3. The matrix 𝐀 𝜃  has one pair of 

purely imaginary eigenvalues (Guckenheimer, Myers, and Sturmfels (1997) ), if  

𝑑𝑒𝑡 𝐒 = 0,           𝑑𝑒𝑡 𝐒! 𝑑𝑒𝑡 𝐒! > 0.           (1.1.6) 

2
n

2
n
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If 𝑑𝑒𝑡 𝐒 = 0 and 𝑑𝑒𝑡 𝐒! 𝑑𝑒𝑡 𝐒! = 0, then 𝐀 𝜃  may have more than one pair of 

purely imaginary eigenvalues. The following condition can be used to find candidates for 

bifurcation boundaries: 

𝑑𝑒𝑡 𝐒 = 0,           𝑑𝑒𝑡 𝐒! 𝑑𝑒𝑡 𝐒! ≥ 0.                         (1.1.7) 

Since solving (1.1.7) analytically is difficult, Barnett and He (1999) apply the 

following numerical procedure to find bifurcation boundaries.  Without loss of generality, 

they initially consider only two parameters 𝜃! and 𝜃!. 

Procedure (P1) 

(1) For any fixed 𝜃!, treat 𝜃! as a function of 𝜃!, and find the value of 𝜃! satisfying the 

condition ℎ 𝜃! = 𝑑𝑒𝑡 𝐀 𝜃 = 0.  First find the number of zeros of ℎ 𝜃! .  Starting 

with approximations of zeros, use the following gradient algorithm to find all zeros of 

ℎ 𝜃! : 

𝜃! 𝑛 + 1 = 𝜃! 𝑛 − 𝑎!ℎ(𝜃!)⃒!!!!!(!)             (1.1.8) 

where {𝑎!,𝑛 = 0,1,2… } is a sequence of positive step sizes. 

(2) Repeat the same procedure to find all 𝜃! satisfying (1.7). 

(3) Plot all the pairs (𝜃!,𝜃!). 

(4) Check all parts of the plot to find the segments representing the bifurcation 

boundaries.   Then parts of the curve found in step (1) are boundaries of saddle-node 

bifurcations.  Parts of the curve found in step (2) are boundaries of Hopf bifurcations, 

if the required transversality conditions are satisfied. 
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Pioneers in studies of Hopf bifurcations in economics include Torre (1977) and 

Benhabib and Nishimura (1979). Torre found the appearance of a limit cycle associated with 

a Hopf bifurcation boundary in Keynesian systems. Benhabib and Nishimura showed that a 

closed invariant curve might emerge as the result of optimization in a multi-sector 

neoclassical optimal growth model. These studies illustrate the existence of a Hopf 

bifurcation boundary in an economic model results in a solution following closed curves 

around the stationary state. The solution paths may be stable or unstable, depending upon the 

side of the bifurcation boundary on which the parameter values lie. More recent studies 

finding Hopf bifurcation in econometric models include Barnett and He (1999, 2002, 2008), 

who found bifurcation boundaries of the Bergstrom-Wymer continuous-time UK model and 

the Leeper and Sims Euler-equations model. 

1.1.3.5   Singularity-Induced  Bifurcations    

This section is devoted to a dramatic kind of bifurcation found by Barnett and He 

(2008) in the Leeper and Sims (1977) model—singularity-induced bifurcation.  

Some macroeconomic models, such as the dynamic Leontief model (Luenberger and 

Arbel (1977)) and the Leeper and Sims (1994) model, have the form 

𝐁𝐱 𝑡 + 1 = 𝐀𝐱 𝑡 + 𝐟(𝑡).                  (1.1.9) 

Here  𝐱 𝑡  is the state vector, 𝐟(𝑡) is the vector of driving variables, 𝑡 is time, and 𝐁 and 𝐀 are 

constant matrices of appropriate dimensions. If 𝐟 𝑡 = 𝟎, the system (1.1.9) is in the class of 

autonomous systems. Barnett and He (2006b) illustrate only the autonomous cases of (1.1.9). 

If  𝐁 is invertible, then we can invert 𝐁 to acquire 
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𝐱 𝑡 + 1 = 𝐁!𝟏𝐀𝐱 𝑡 + 𝐁!𝟏𝐟 𝑡 , 

so that 

𝐱 𝑡 + 1 − 𝐱 𝑡 = 𝐁!𝟏𝐀𝐱 𝑡 − 𝐱 𝑡 + 𝐁!𝟏𝐟 𝑡  

= 𝐁!𝟏𝐀− 𝐈 𝐱 𝑡 + 𝐁!𝟏𝐟 𝑡 , 

which is in the form of (1.1.1). 

The case in which the matrix 𝐁 is singular is of particular interest. Barnett and He 

(2006b) rewrite (1.1.9) by generalizing the model to permit nonlinearity as follows: 

𝐁 𝐱 𝑡 ,𝛉 𝐃𝐱 = 𝐅 𝐱 𝑡 , 𝐟 𝑡 ,𝛉 .                    (1.1.10) 

Here 𝐟(𝑡) is the vector of driving variables, and 𝑡 is time. Barnett and He (2006b) consider 

the autonomous cases in which 𝐟 𝑡 = 𝟎.   

Singularity-induced bifurcation occurs, when the rank of 𝐁 𝐱,𝛉  changes, as from an 

invertible matrix to a singular one. Therefore, the matrix must depend on 𝛉 for such changes 

to occur. If the rank of 𝐁 𝐱,𝛉  does not change according to the change of  𝛉, then singularity 

of 𝐁 𝐱,𝛉  is not sufficient for (1.1.10) to be able to produce singularity bifurcation.  

Barnett and He (2006b) consider the two-dimensional state-space case and perform an 

appropriate coordinate transformation allowing (1.1.10) to become the following equivalent 

form: 

B! 𝑥!, 𝑥!,𝛉 Dx! = F! 𝑥!, 𝑥!,𝛉 , 

0 = F! 𝑥!, 𝑥!,𝛉 . 
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They provide four examples to demonstrate the complexity of bifurcation behaviors 

that can be produced from system (1.1.10). The first two examples do not produce singularity 

bifurcations, since 𝐁 does not depend on 𝛉. In the second two examples, Barnett and He 

(2008) find singularity bifurcation, since 𝐁 does depend on 𝛉.  

Example 1.1.   Consider the following system modified from system (1.1.5), which has been 

shown to produce transcritical bifurcation: 

𝐷𝑥 = 𝜃𝑥 − 𝑥!,             (1.1.11) 

   0 = 𝑥 − 𝑦!.              (1.1.12) 

Comparing with the general form of (1.1.10), observe that 

𝐁 = 1  0
0  0  , 

which is singular but does not depend upon the value of 𝜃.   

  The equilibria are 𝑥∗,𝑦∗ = (0,0) and 𝜃,± 𝜃 .  Near the equilibrium 𝑥∗,𝑦∗ =

(0,0), the system ((1.1.11), (1.1.12)) is stable for 𝜃 < 0 and unstable for 𝜃 > 0. The 

equilibria 𝑥∗,𝑦∗ = 𝜃,± 𝜃  are undefined, when 𝜃 < 0, and stable when 𝜃 > 0. The 

bifurcation point is 𝑥,𝑦,𝜃 = (0,0,0).  Notice before and after bifurcation, the number of 

differential equations and the number of algebraic equations remain unchanged. This implies 

that the bifurcation point does not produce singularity bifurcation, since 𝐁 does not depend 

upon 𝜃.  
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Example 1.2.  Consider the following system modified from system (1.1.7), which can 

produce saddle-node bifurcation: 

𝐷𝑥 = 𝜃 − 𝑥!,         (1.1.13) 

   0 = 𝑥 − 𝑦!.         (1.1.14) 

Comparing with the general form of (1.1.10), observe that 

𝐁 = 1  0
0  0  , 

which is singular but does not depend upon the value of 𝜃.  

The equilibria are at 𝑥∗,𝑦∗ = ( 𝜃, ± 𝜃! ), defined only for 𝜃 ≥  0. The system 

((1.1.13), (1.1.14)) is stable around both of the equilibria  𝑥∗,𝑦∗ = ( 𝜃, ± 𝜃! ) and 

 𝑥∗,𝑦∗ = ( 𝜃, ± 𝜃! ). The bifurcation point is 𝑥∗,𝑦∗,𝜃 = (0,0,0). The three-dimensional 

bifurcation diagram in Barnett and He (2006b) shows that there is no discontinuity or change 

in dimension at the origin at the origin. The bifurcation point does not produce singularity 

bifurcation, since the dimension of the state space dynamics remains unchanged on either 

side of the origin.  

Example 1.3.  Consider the following system: 

𝐷𝑥 = 𝑎𝑥 − 𝑥!, with  𝑎 > 0,       (1.1.15) 

𝜃𝐷𝑦 = 𝑥 − 𝑦!.        (1.1.16) 

Comparing with the general form of (1.1.10), observe that 

𝐁 =  1    0
 0    𝜃  , 
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which does depend upon the parameter 𝜃.  

            When 𝜃 = 0, the system has one differential equation (1.1.15) and one algebraic 

equation (1.1.16).  If 𝜃 ≠ 0, the system has two differential equations (1.1.15) and (1.1.16) 

with no algebraic equations for nonzero 𝜃. 

The equilibria are 𝑥∗,𝑦∗ = 0,0  and (𝑎,± 𝑎). For any value of 𝜃, the system 

((1.1.15), (1.1.16)) is unstable around the equilibrium at 𝑥∗,𝑦∗ = 0,0 . The equilibrium 

𝑥∗,𝑦∗ = (𝑎, 𝑎) is unstable for 𝜃 < 0 and stable for 𝜃 > 0. The equilibrium 𝑥∗,𝑦∗ =

(𝑎,− 𝑎) is unstable for 𝜃 > 0 and stable for 𝜃 < 0. 

Without loss of generality, Barnett and He (2006b) normalize 𝑎 to be 1.  When 𝜃 = 0, 

the system’s behavior degenerates into movement along the one-dimensional curve 

𝑥 − 𝑦! = 0. When 𝜃 ≠ 0, the dynamics of the system move throughout the two-dimensional 

state space. The singularity bifurcation caused by the transition from nonzero 𝜃 to zero 

results in the drop in the dimension.  

Barnett and He (2006b) observe that even if singularity bifurcation does not cause a 

change of the system between stability and instability, dynamical properties produced by 

singularity bifurcation can change. For example, if 𝜃 changes from positive to zero, when 

𝑥,𝑦  is at the equilibrium (1,1), the system will remain stable; if 𝜃 changes from positive to 

zero, when 𝑥,𝑦  is at the equilibrium (0,0), the system will remain unstable; if 𝜃 changes 

from positive to zero, when 𝑥,𝑦  is at the equilibrium (1,-1), the system will change from 

unstable to stable. But in all of these cases, the nature of the disequilibrium dynamics changes 

dramatically, even if there is no transition between stability and instability. 

Example 1.4.  Consider the following system: 
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             𝐷𝑥 = 𝑎𝑥 − 𝑥!,  with  𝑎 > 0,       (1.1.17) 

𝜃𝐷𝑦 = 𝑥 − 𝑦.         (1.1.18) 

Comparing with the general form of (1.1.10), observe that 

𝐁 = 1    0
0    𝜃  . 

The equilibria are (𝑥∗,𝑦∗) = (0,0) and (𝑎,𝑎). The system is unstable around the 

equilibrium (𝑥∗,𝑦∗) = (0,0)  for any value of 𝜃 . The equilibrium (𝑥∗,𝑦∗) = (𝑎,𝑎) is 

unstable for 𝜃 < 0 and stable for 𝜃 ≥ 0. When 𝜃 < 0, the system is unstable everywhere. 

When 𝜃 = 0, equation (1.1.18) becomes the algebraic constraint 𝑦 = 𝑥, which is a one-

dimensional ray through the origin. However, when 𝜃 ≠ 0, the system moves into the two-

dimensional space. Even though the dimension can drop from singular bifurcation, there 

could be no change between stability and instability. For example, (0,0) remains unstable and 

(1, 1) remains stable, when 𝜃 ≠ 0 and 𝜃 = 0.  

Barnett and He (2006b) also observe that the nature of the dynamics with 𝜃 small and 

positive is very different from the dynamics with 𝜃 small and negative. In particular, the 

equilibrium at (𝑥∗,𝑦∗) = (1,1) is stable in the former case and unstable in the latter case.  

Hence there is little robustness of dynamical inference to small changes of 𝜃 close to the 

bifurcation boundary. Barnett and Binner (2004, part 4) further investigate the subject of 

robustness of inferences in dynamic models. 

Example 1.5.  Consider the following system: 

𝐷𝑥! = 𝑥!, 
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𝐷𝑥! = −𝑥!, 

0 = 𝑥! + 𝑥! + 𝜃𝑥!,        (1.1.19) 

with singular matrix 

𝐁 =
 1    0     0
 0    1     0
 0    0     0

 ,        (1.1.20) 

where 𝐃𝐱 = (𝐷𝑥!,𝐷𝑥!,𝐷𝑥!)′. 

The only equilibrium is at 𝐱∗ = 𝑥!∗, 𝑥!∗, 𝑥!∗ = 0,0,0 . For any 𝜃 ≠ 0, Barnett and He 

(2006b) solve the last equation for 𝑥! and substitute into the first equation to derive the 

following two equation system:  

1 2
1

x xDx
θ
+= − ,                                                                                    (1.1.21)                                                                                                

 𝐷𝑥! = −𝑥!.           

In this case, the matrix 𝐁 becomes the identity matrix. 

            This two-dimensional system is stable at  𝐱∗ = 𝑥!∗, 𝑥!∗ = 0,0  for 𝜃 > 0 and 

unstable for 𝜃 < 0. However, setting 𝜃 = 0, Barnett and He (2006b) find that system (1.1.19) 

becomes  

 𝑥! = −𝑥!, 

𝐷𝑥! = −𝑥!, 

𝑥! = 𝑥!,         (1.1.22) 

for all  𝑡 > 0. This system has the following singular matrix : 
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𝐁 =
 0    0    0
 0    1    0
 0    0    0

  .        (1.1.23) 

The dimension of system (1.1.22) is very different from that of (1.1.21). In system 

(1.1.22), there are two algebraic constraints and one differential equation, while system 

(1.1.21) has two differential equations and no algebraic constraints. Clearly the matrix 𝐁 is 

different in the two cases with different ranks. This example shows that singular bifurcation 

can results from the dependence of 𝐁 upon the parameters, even if there does not exist a 

direct closed-form algebraic representation of the dependence.        

Barnett and He (2008) find singularity bifurcation in their research on the Leeper and 

Sims’ Euler-equations macroeconometric model, as surveyed in section 1.3. Singularity 

bifurcations could similarly damage robustness of dynamic inferences with other modern 

Euler-equations macroeconometric models. Examples above show that implicit function 

systems (1.1.9) and (1.1.10) could produce singular bifurcation, while closed form 

differential equations systems are less likely to produce singularity bifurcation. Since Euler 

equation systems are in implicit function form and rarely can be solved for closed form 

representations, Barnett and He (2006b) conclude that singularity bifurcation should be a 

serious concern with modern Euler equations models. 

1.2 Bergstrom—Wymer Continuous Time UK Model3 

1.2.1.  Introduction 

Among the models that have direct relevance to this research are the high dimensional 

continuous time macroeconometric models in Bergstrom, Nowman and Wymer (1992), 
																																																													
3	This	section	is	based	on	Barnett	and	He	(1999,2001b,2002).	
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Bergstrom, Norman, and Wandasiewicz (1994), Bergstrom and Wymer (1976), Grandmont 

(1998), Leeper and Sims (1994), Powell and Murphy (1997), and Kim (2000). Surveys of 

macroeconometric models are available in Bergstrom (1996) and in several textbooks such as 

Gandolfo (1996) and Medio (1992). The general theory of economic dynamics is provided, 

for example, in Boldrin and Woodford (1990) and Gandolfo (1992). Various bifurcation 

phenomena are reported in Bala (1997), Benhabib (1979), Medio (1992), Gandolfo (1992), 

and Nishimura and Takahashi (1992). Focused studies of stability are conducted in 

Grandmont (1998), Scarf (1960), and Nieuwenhuis and Schoonbeek (1997). Barnett and 

Chen (1988) discovered chaotic behaviors in economics. Bergstrom, Nowman, and 

Wandasiewicz (1994) investigate stabilization of macroeconomic models using policy 

control. Wymer (1997) describes several mathematical frameworks for the study of structural 

properties of macroeconometric models. 

In section 1.2, we discuss several papers by Barnett and He on bifurcation analysis 

using Bergstrom, Nowman, and Wymer’s continuous-time dynamic macroeconometric 

model of the UK economy. Barnett and He chose this policy-relevant model as their first to 

try, because the model is particularly well suited to these experiments.  The model contains 

adjustment speeds producing Keynesian rigidities and hence possible Pareto improving 

policy intervention. In addition, as a system of second order differential equations, the model 

can produce interesting dynamics and possesses enough equations and parameters to be fitted 

plausibly to the UK data. 

Barnett and He (1999) discovered that both saddle-node bifurcations and Hopf 

bifurcations coexist within the model’s region of plausible parameter setting. Bifurcation 

boundaries are located and drawn. The model’s Hopf bifurcation helps to provide 
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explanations for some cyclical phenomena in the UK macroeconomy. The Barnett and He 

paper designed a numerical algorithm for locating the model’s bifurcation boundaries.  That 

algorithm was provide above in section 1.1.3.4.  

Barnett and He (1999) observed that stability of the model had not previously been 

tested.  They found that the point estimates of the model’s parameters are outside the stable 

subset of the parameter space, but close enough to the bifurcation boundary so that the 

hypothesis of stability cannot be rejected.  Confidence regions around the parameter 

estimates are intersected by the boundary separating stability from instability, with the point 

estimates being on the unstable side. 

Barnett and He (2002) explored the problem of selection of a “stabilization policy.” 

The purpose of the policy was to bifurcate the system from an unstable to a stable operating 

regime by moving the parameters’ point estimates into the stable region.  The relevant 

parameter space is the augmented parameter space, including both the private sector’s 

parameters and the parameters of the policy rule. Barnett and He found that policies 

producing successful bifurcation to stability are difficult to determine, and the policies 

recommended by the originators of the model, based on reasonable economic intuition and 

full knowledge of their own model, tend to be counterproductive, since such policies contract 

the size of the stable subset of the parameter space and move that set farther away from the 

private sector’s parameter estimates.  These results point towards the difficulty of designing 

successful countercyclical stabilization policy in the real world, where the structure of the 

economy is not accurately known. Barnett and He (1999) also proposed a new formula for 

determining the bifurcation boundaries for transcritical bifurcations. 
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1.2.2.  The Model4 

       The Bergstrom, Nowman, and Wymer (1992) model is described by the following 14 

second-order differential equations. 

𝐷! log𝐶 =  𝛾!(𝜆! + 𝜆! − 𝐷 log𝐶)+ 𝛾! log 
  

β1e
− β2 (r−D log p)+β3D log p{ }(Q + P)

T1C
 (1.2.1) 

      
6 6 61 1/

2 4 5
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⎣ ⎦
                       (1.2.2) 

𝐷! log𝐾 =  𝛾!(𝜆! + 𝜆! − 𝐷 log𝐾)+ 𝛾! log
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Q
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⎛
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1+β6

r − β7 D log p + β8

  (1.2.3) 

𝐷! log𝑄 = 𝛾!(𝜆! + 𝜆! − 𝐷 log𝑄)+ 𝛾! log
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𝐷! log𝑝 = 𝛾! 𝐷 log − 𝜆! + 𝛾!" log
  

β11β4T2we−λ1t 1− β5
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β6⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−
1+β6
β6

p
   (1.2.5)  

																																																													
4	The	model	description	is	modified	from	Barnett	and	He	(1999).		

w
p



	 24	

𝐷! log𝑤 = 𝛾!! 𝜆! − 𝐷 log + 𝛾!" 𝐷log
 

pi

qp
   

                                         + 𝛾!" log
  

β4e
−λ1t Q−β6 − β5K −β6{ }−

1
β6

β12e
λ2t          (1.2.6) 
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p(Q + P)

M
− 𝑟         (1.2.7) 
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 𝐷!𝐹 = −𝛾!"𝐷𝐹 + 𝛾!"[𝛽!" 𝑄 + 𝑃 − 𝐹]          (1.2.10) 

𝐷!𝑃 = −𝛾!!𝐷𝑃 + 𝛾!" 𝛽!" + 𝛽!" 𝑟! − 𝐷log𝑝! 𝐾! − 𝑃         (1.2.11) 

𝐷!𝐾! = −𝛾!"𝐷𝐾! + 𝛾!" 𝛽!! + 𝛽!" 𝑟! − 𝑟 − 𝛽!"𝐷log𝑞 − 𝛽!"𝑑! 𝑄 + 𝑃 − 𝐾!    

(1.2.12) 
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              28 29log log
( / ) ( / )

n o n o a

i i

E E P F E E P F DKD
p qp I p qp I

γ γ
⎡ ⎤ ⎡ ⎤+ + − + + − −+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

          (1.2.13) 

      272
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qp p qp I
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            33 log ( / )
n o a

i

E E P F DK
p qp I

γ
⎡ ⎤+ + − −+ ⎢ ⎥
⎣ ⎦                                                           (1.2.14)

                                      (1.2.14)                (2.14) 

where 𝑡 is time, 𝐷 is the derivative operator, 𝐷𝑥 = 𝑑𝑥/𝑑𝑡,𝐷!𝑥 = 𝑑!𝑥/𝑑𝑡!,  and 

𝐶,𝐸!,𝐹, 𝐼,𝐾,𝐾! , 𝐿,𝑀, 𝑃,𝑄, 𝑞, 𝑟,𝑤 are endogenous variables whose definitions are listed 

below: 

𝐶 = real private consumption, 

             𝐸! = real non-oil exports, 

             𝐹 = real current transfers abroad, 

              𝐼 = volume of imports, 

             𝐾 = amount of fixed capital, 

             𝐾! = cumulative net real investment abroad (excluding changes in official reserve), 

             𝐿 = employment, 

             𝑀 = money supply, 

              𝑃 = real profits, interest and dividends from abroad, 

              𝑝 = price level, 

             𝑄 = real net output, 
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              𝑞 = exchange rate (price of sterling in foreign currency), 

              𝑟 = interest rate, 

              𝑤 = wage rate. 

The variables 𝑑! ,𝐸! ,𝐺! ,𝑝! ,𝑝! , 𝑟! ,𝑇!,𝑇!,𝑌! are exogenous variables with the 

following definitions: 

𝑑! = dummy variables for exchange controls (𝑑! = 1 for 1974-79, 𝑑! = 0 for 1980 

onwards), 

𝐸! = real oil exports, 

𝐺! = real government consumption, 

𝑝! = price level in leading foreign industrial countries, 

𝑝! = price of imports (in foreign currency), 

𝑟! = foreign interest rate, 

𝑇! = total taxation policy variable, so (Q + P) /T1  is real private disposable income 

𝑇! =  indirect taxation policy variable so Q /T2  is real output at factor cost   

𝑌! = real income of leading foreign industrial countries. 

According to Barnett and He (1999), the structural parameters 

𝛽! , 𝑖 = 1,2,… ,27,  𝛾! , 𝑗 = 1,2,… ,33,  and 𝜆! , 𝑘 = 1,2,3, can be estimated from historical data. 

A set of their estimates using quarterly data from 1974 to 1984 are given in Table 2 of 
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Bergstrom, Nowman, and Wymer (1992) and the interpretations of those 14 equations are 

also available in Bergstrom, Nowman and Wymer (1992). 

The exogenous variables satisfy the following conditions in equilibrium:  

𝑑! = 0,  

𝐸! = 0,  

𝐺! = 𝑔∗(𝑄 + 𝑃),  

𝑝! = 𝑝!∗𝑒!!! ,  

𝑝! = 𝑝!∗𝑒!!! ,  

𝑟! = 𝑟!∗,  

𝑇! = 𝑇!∗,  

𝑇! = 𝑇!∗,  

𝑌! = 𝑌!∗𝑒
!!!!!
!!"

! , 

where 𝑔∗,𝑝!∗ , 𝑝!∗, 𝑟!∗, 𝑇!∗,  𝑇!∗,  𝑌!∗,  and 𝜆! are constants. It has been proven that 𝐶 𝑡 ,… , 𝑞(𝑡) 

in (1.2.1)-(1.2.14) change at constant rates in equilibrium. To study the dynamics of the 

system around the equilibrium, Barnett and He (2002) make a transformation by defining a 

set of new variables  𝑦! 𝑡 ,𝑦! 𝑡 ,… ,𝑦!" 𝑡  as follows: 

       𝑦! 𝑡 = log {𝐶(𝑡)/𝐶∗𝑒 !!!!! !} , 

𝑦! 𝑡 = log { 𝐿(𝑡)/𝐿∗𝑒!!!} , 
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𝑦! 𝑡 = log {𝐾(𝑡)/𝐾∗𝑒 !!!!! !}, 

𝑦! 𝑡 = log {𝑄(𝑡)/𝑄∗𝑒 !!!!! !} , 

𝑦! 𝑡 = log {𝑝(𝑡)/𝑝∗𝑒 !!!!!!!! !} , 

𝑦! 𝑡 = log {𝑤(𝑡)/𝑤∗𝑒 !!!!! !} , 

𝑦! 𝑡 = 𝑟 𝑡 − 𝑟∗,  

𝑦! 𝑡 = log {𝐼(𝑡)/𝐼∗𝑒 !!!!! !} , 

𝑦! 𝑡 =  log {𝐸!(𝑡)/𝐸!∗𝑒 !!!!! !} , 

𝑦!" 𝑡 = log {𝐹(𝑡)/𝐹∗𝑒 !!!!! !} , 

𝑦!! 𝑡 = log {𝑃(𝑡)/𝑃∗𝑒 !!!!! !} , 

𝑦!" 𝑡 = log {𝐾!(𝑡)/𝐾!∗𝑒 !!!!! !} , 

𝑦!" 𝑡 = log {𝑀(𝑡)/𝑀∗𝑒!!!} , 

𝑦!" 𝑡 = log {𝑞(𝑡)/𝑞∗𝑒 !!!!!!!!!!! !} , 

where 𝐶∗, 𝐿∗,𝐾∗,𝑄∗,𝑝∗,𝑤∗, 𝑟∗, 𝐼∗,𝐸!∗ ,𝐹∗,𝑃∗,𝐾!∗,𝑀∗, 𝑞∗ are functions of the vector (𝛽, 𝛾, 𝜆) 

of 63 parameters in equations (1.2.1)-(1.2.14) and the additional parameters 

𝑔∗,𝑝!∗ ,𝑝!∗, 𝑟!∗,𝑇!∗,𝑇!∗,𝑌!∗, 𝜆!. 

The following is a set of differential equations derived from (1.2.1)-(1.2.14): 

𝐷!𝑦! = −𝛾!𝐷𝑦! + 𝛾! log 𝑄∗𝑒!! + 𝑃∗𝑒!!! − log 𝑄∗ + 𝑃∗ − 𝛽!𝑦! +  𝛽! − 𝛽! 𝐷𝑦! −

𝑦!                                                           (1.2.15) 
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𝐷!𝑦! = −𝛾!𝐷𝑦! + 𝛾!
 

1
β6

log
  

(Q*)−β6 − β5(K *)−β6

(Q*)−β6 e−β6 y4 − β5(K *)−β6 e−β6 y3
− 𝑦!                 (1.2.16) 

𝐷!𝑦! = −𝛾!𝐷𝑦! + 𝛾!{ 1+ 𝛽! 𝑦! − 𝑦! + log 𝑟∗ − 𝛽! 𝜆! − 𝜆! − 𝜆! + 𝛽!   

               − log 𝑦! + 𝑟∗ − 𝛽! 𝐷𝑦! + 𝜆! − 𝜆! − 𝜆! + 𝛽! }      (1.2.17) 
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𝐷!𝑦! = 𝛾!" 𝐷𝑦! + 𝐷𝑦!" − 𝐷𝑦! + 𝛾!"{ 1+ 𝛽!" 𝑦! + 𝑦!" − 𝑦!  

               +log [𝐶∗𝑒!! + 𝑔∗ 𝑄∗𝑒!! + 𝑃∗𝑒!!! + 𝐾∗𝑒!! 𝐷𝑦! + 𝜆! + 𝜆! + 𝐸!∗𝑒!!]  
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               − log 𝐶∗ + 𝑔∗ 𝑄∗ + 𝑃∗ + 𝐾∗(𝜆! + 𝜆! + 𝐸!∗]}       (1.2.22) 

𝐷!𝑦! = −𝛾!"𝐷𝑦! − 𝛾!"{𝛽!" 𝑦! + 𝑦!" + 𝑦!}         (1.2.23) 
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𝐷!𝑦!" = − 𝛾!" + 2 𝜆! + 𝜆! 𝐷𝑦!" − 𝐷𝑦!" ! + 𝛾!"{[𝛽!! + 𝛽!"(𝑟!∗ − 𝑟∗ − 𝑦!)  
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𝐷!𝑦!" = −𝛾!" 𝐷𝑦! + 𝐷𝑦!" − 𝛾!"(𝑦! + 𝑦!")  
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           The equilibrium of the original system (1.2.1)-(1.2.14) corresponds to the equilibrium 

𝑦! = 0, 𝑖 = 1,2,… , 14 of (1.2.15)-(1.2.18). The major advantage of the new system ((1.2.15)-

(1.2.18)) described by (1.2.15)-(1.2.18) is that it is autonomous, but still retains all the 

dynamic properties of the original system (1.2.1)-(1.2.14). In Barnett and He (1999), the 

paper analyzes the local dynamics of (1.2.15)-(1.2.28) in a local neighborhood of the 

equilibrium, 𝑦! = 0, 𝑖 = 1, 2,… , 14.  For simplicity, the system (1.2.15)-(1.2.28) is denoted as  

𝐃𝐱 = 𝐟 𝐱,𝛉 ,                        (1.2.29) 

where 

𝐱 = 𝑦!   𝐷𝑦!   𝑦!   𝐷𝑦!…   𝑦!"   𝐷𝑦!" !  ∊  𝑅!" 

is the state vector, while 

𝛉 = [𝛽!,… ,𝛽!", 𝛾!,… , 𝛾!!, 𝜆!, 𝜆!, 𝜆!]′ ∊  𝑅!"  

is the parameter vector, and 𝐟 𝐱,𝛉  is a vector of smooth functions of 𝐱 and 𝛉 obtained from 

(1.2.15)-(1.2.28). Note that (1.2.29) is a first-order system. The point 𝐱∗ = 𝟎 is an 

equilibrium of (1.2.29). Let 𝛩 denote the feasible region determined by those bounds.  

1.2.3.  Stability of the Equilibrium 

          In section 1.1.2, the discussion on stability describes a means to analyze local stability 

of the system through linearization. The linearized system of (1.2.15)-(1.2.28) is 

𝐷!𝑦! = −𝛾!𝐷𝑦! + 𝛾! −𝛽!𝑦! + 𝛽! − 𝛽! 𝐷𝑦! − 𝑦!       (1.2.30) 

𝐷!𝑦! = −𝛾!𝐷𝑦! + 𝛾! − 𝑦!         (1.2.31) 
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 𝐷!𝑦! = −𝛾!"𝐷𝑦! − 𝛾!"{𝛽!" 𝑦! + 𝑦!" + 𝑦!}         (1.2.38) 
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𝐷!𝑦!" = −𝛾!"𝐷𝑦!" − 𝛾!"𝑦!"  

                  +𝛾!"  + 𝐷𝑦! + 𝐷𝑦!" − 𝐷𝑦!               

                  +𝛾!" + 𝑦! + 𝑦!" − 𝑦! (1.2.42) 

𝐷!𝑦!" = −𝛾!" 𝐷𝑦! + 𝐷𝑦!" − 𝛾!"(𝑦! + 𝑦!")  

                +𝛾!" + 𝐷𝑦! + 𝐷𝑦!" − 𝐷𝑦!   

                +𝛾!! + 𝑦! + 𝑦!" − 𝑦!   (1.2.43) 

              In matrix form, these equations become 

                 𝐱 = 𝐀 𝛉 𝐱.                                               (1.2.44) 

For the set of estimated values of 𝛽! , 𝛾! , and {𝜆!} given in Table 2 of Bergstrom, 

Nowman, and Wymer (1992), all the eigenvalues of 𝐀 𝛉  are stable, having negative real 

parts, except for the following three:  

𝑠! = 0.0033,   𝑠! = 0.009+ 0.0453 𝑖,   𝑠! = 0.009− 0.0453𝑖. 
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Barnett and He (1999) observe that the real parts of the unstable eigenvalues are so small and 

close to zero, that it is unclear whether they are caused by errors in estimation or the 

structural properties of the system itself.  

  Next, they proceed to locate the stable region and the bifurcation boundary by first 

looking for a stable sub-region of 𝛩 and then expanding the sub-region to find its boundary. 

They first look for a parameter vector 𝛉∗ ∈ 𝛩 such that (1.2.44) is stable.  They then search 

for a stable region of 𝛉 and the boundaries of bifurcation regions. To find a 𝛉∗ such that all 

eigenvalues of 𝐀 𝛉∗  have strictly negative real parts, they first consider the following 

problem of minimizing the maximum real parts of eigenvalues of matrix 𝐀 𝛉 : 

                 min𝛉∊! 𝑅!"#(𝐀 𝛉 )       (1.2.45) 

where 

 𝑅!"# 𝐀 𝛉 = max
!
{real 𝜆! : 𝜆! , 𝜆!,… , 𝜆!" are eigenvalues of 𝐀 𝛉 }.  

Barnett and He (1999) could not acquire a closed-form expression for 𝑅!"# 𝐀 𝛉 , 

since the dimension of 𝐀 𝛉  is too high for analytic solution.   Instead they employ the 

gradient method to solve the minimization problem (1.2.45). More precisely, let 𝛉(!) be the 

estimated set of parameter values given in Table 2 of Bergstrom, Nowman, and Wymer 

(1992). At step 𝑛,𝑛 ≥ 0, with 𝛉(!), let 

               𝛉(!!!) = 𝛉 ! − 𝑎!
!"!"# 𝐀 𝛉

!𝛉
|𝛉!𝛉 ! ,  

where {𝑎!,𝑛 = 0,1,2,… } is a sequence of (positive) step sizes. After several iterations (20 

iterations in this case), the algorithm converged to the following point, 𝛉∗ ∈ 𝛩!, 
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𝛉∗ = [0.9400, 0.2256, 2.3894, 0.2030, 0.2603, 0.1936, 0.1829, 0.0183, 0.2470, 

                        −0.2997, 1.0000, 23.5000,−0.0100, 0.1260, 0.0082, 13.5460, 0.4562, 1.0002, 

                0.0097, 0.0049, 0.2812,−0.1000, 44.9030, 0.1431, 0.0004, 71.4241, 0.8213, 

            3.9998, 0.8973, 0.6698, 0.0697, 0.1064, 0.0010, 3.9901, 0.3652, 1.0818,  

             0.0081, 3.5988, 0.6626, 0.1172, 0.8452, 0.0421, 1.4280, 0.3001, 3.9969,  

             3.6512, 3.9995, 4.0000, 3.9995, 3.9410, 0.5861, 0.0040, 0.7684, 0.0427,  

              0.1183, 0.0708, 2.3187, 0.1659, 0.0017, 0.0000, 0.0100, 0.0100, 0.0067]. 

The corresponding 𝑅!"# 𝐀 𝛉∗ = −0.0039 implies that all eigenvalues of 𝐀 𝛉∗  

have strictly negative real parts, and the system (1.2.44) is locally asymptotically stable 

around at 𝛉∗.  Barnett and He (1999) then look for the stable region of the parameter space 

and the bifurcation boundaries starting from this stable point. 

1.2.4  Determination of Bifurcation Boundaries 

            The goal of this section is to find bifurcation boundaries of the model. Since the 

linearized system (1.2.44) only deals with local stability of the system, Barnett and He (1999) 

deal with local bifurcations as opposed to global bifurcations. 

In the previous section, for the set of parameters given in Table 2 of Bergstrom, 

Nowman, and Wymer (1992), 𝐀 𝛉  has three eigenvalues with strictly positive real parts. 

However, at 𝛉 =  𝛉∗, found through the gradient method, all eigenvalues of 𝐀 𝛉  have 

strictly negative real parts. Since eigenvalues are continuous functions of entries of 𝐀 𝛉 , 

there must exist at least one eigenvalue of 𝐀 𝛉  with zero real part on the bifurcation 
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boundary. Different types of bifurcations may occur and three types of bifurcations are 

discussed in Barnett and He (1999,2002): saddle-node bifurcations, Hopf bifurcations, and 

transcritical bifurcations. 

1.2.4.1  Saddle-node and Hopf Bifurcations 

In systems generated by autonomous ordinary differential equations, a saddle-node 

bifurcation occurs, when the critical equilibrium has a simple zero eigenvalue. If 

𝑑𝑒𝑡 𝐀 𝛉 = 0, then 𝐀 𝛉  has at least one zero eigenvalue.  Therefore, Barnett and He 

(1999) start from 𝑑𝑒𝑡 𝐀 𝛉 = 0 to look for bifurcation boundaries. To demonstrate the 

feasibility of this approach, Barnett and He (1999) consider the bifurcation boundaries for 𝛽! 

and 𝛽!.  The following theorem is proved in Barnett and He (1999) as their theorem 1. 

Theorem 1.2.1.  The bifurcation boundary for 𝛽! and 𝛽! is determined by 

1.36𝛽!𝛽! + 21.78𝛽! − 2.05𝛽! − 10.05 = 0.        (1.2.46) 

A Hopf bifurcation occurs at points at which the system has a nonhyperbolic 

equilibrium associated with a pair of purely imaginary, but non-zero, eigenvalues and when 

additional transversality conditions are satisfied. Barnett and He (1999) use the Procedure 

(P1) introduced in section 1.1.3.4 to find Hopf bifurcation. They numerically find boundaries 

of saddle-node bifurcations and Hopf bifurcations for 𝛽! and 𝛽!, the surface of the 

bifurcation boundary for 𝛽!,𝛽! and 𝛽!", Hopf bifurcation boundary for 𝛾! and 𝛽!", and the 

three dimensional Hopf bifurcation boundary for 𝛾!,𝛽!" and 𝛽!. Barnett and He (1999) 

conclude that the method is applicable to any number of parameters. 

1.2.4.2 Transcritical  Bifurcations 
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A new method of finding transcritical bifurcations is proposed in Barnett and He 

(2002). Again Barnett and He (2002) start from 𝑑𝑒𝑡 𝐀 𝛉 = 0 to look for bifurcation 

boundaries. 

Without loss of generality, Barnett and He (2002) consider bifurcations when two 

parameters 𝜃! ,𝜃! change, while others are kept at 𝛉∗. The matrix 𝐀 𝛉  is therefore rewritten 

as  

𝐀 𝛉 = 𝐀 𝛉∗ + 𝐁 𝛉∗ 𝐃 𝛍 𝐂 𝛉∗ ,         (1.2.47) 

where 𝛍 = 𝜃! ,𝜃! , and 𝐃 𝛍  is a matrix of appropriate dimension. The dimension of 𝐃 𝛍  is 

usually much smaller than that of 𝐀 𝛉 . In this case, the following proposition, proved in 

Barnett and He (2002) as their Proposition 1, is useful for simplifying the calculation of 

transcritical bifurcation boundaries. 

Proposition 1.2.1.  Assume that 𝐀 𝛉  has structure (1.2.47) and that all eigenvalues of 𝐀 𝛉∗  

have strictly negative real parts. Then 𝑑𝑒𝑡 𝐀 𝛉 = 0, if and only if 

𝑑𝑒𝑡 𝐈+ 𝐃 𝛍 𝐂 𝛉∗ 𝐀!𝟏 𝛉∗ 𝐁 𝛉∗ = 0.        (1.2.48) 

Barnett and He (2002) demonstrate the usefulness of this approach by considering the 

bifurcation boundary for 𝛍 = 𝜃!,𝜃!" = 𝛽!,𝛽!" .  They find that only the following entries 

of 𝐀 𝛉  are functions of 𝛍: 

𝑎!,!" 𝛍 = 𝛾! 𝛽! − 𝛽! ,             𝑎!,!" 𝛍 = −𝛾!𝛽! , 

*
25

24,7 *( )
a

Qa
K

γ δ=µ ,                    
* *

25 23
24,13 *

( )( )
a

Q Pa
K

γ β += −µ ,  
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*
25

24,21 *( )
a

Pa
K

γ δ=µ ,                   
* *

25
24,23 *

( )( )
a

Q Pa
K

γ δ += −µ  

where 𝛿 = 𝛽!! + 𝛽!" 𝑟! − 𝑟∗ − 𝛽!" 𝜆! + 𝜆! + 𝜆! − 𝜆! . In this case, 𝐁 𝛉∗ ∈ 𝑅!"×! has all 

zero entries except that its (2,1) entry is 1 and its (24,2) entry is 1. The matrix 𝐂 𝛉∗ ∈  𝑅!×!" 

has zero entries, except the entries are 1 at the following locations: (1,7), (2,10), (3,13), (4,21), 

(5,23). The matrix 𝐃(𝛍) is 

            𝐃 𝛍 = 𝐝 𝛍 − 𝐝 𝛉∗ ,  

with 

𝐝 𝛍 =  
0          𝑎!,!" 𝛍       𝑎!,!" 𝛍               0                     0  

     𝑎!",! 𝛍           0             𝑎!",!" 𝛍        𝑎!",!" 𝛍      𝑎!",!" 𝛍        . 

              Using Proposition 1.2.1, Barnett and He (2002) observe that 𝑑𝑒𝑡 𝐀 = 0 is 

equivalent to  

𝑑𝑒𝑡     1        0    
0        1 + 𝐃 𝛍 𝐂 𝛉∗ 𝐀!𝟏 𝛉∗ 𝐁 𝛉∗   = 0,  

where 

𝐂 𝛉∗ 𝐀!𝟏 𝛉∗ 𝐁 𝛉∗ =

      13.7090             − 17.1187       
0                               0

−1.7276                  2.1573    
−616.4935           389.2039   
−616.4935           389.2039  

. 

Equivalently, they obtain the bifurcation boundary: 

−14.23+ 15.91 𝜃! + 0.28 𝜃!" − 0.50𝜃!𝜃!" = 0.  

When parameters take values on the bifurcation boundary, stability of the system 

(1.2.29) needs to be determined by examining the higher order terms in 𝐃𝐱 = 𝐀 𝛉 𝐱+
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𝐅(𝐱,𝛉) with center manifold theory. Barnett and He (2002) write 𝐃𝐱 = 𝐀 𝛉 𝐱+ 𝐅(𝐱,𝛉) 

through appropriate coordinate transformation as (see Glendinning (1994) or Guckenheimer 

and Holmes (1983)): 

𝐷𝑥! =  𝐴! 𝛉 𝑥! + 𝐹! 𝑥!, 𝑥!,𝛉 ,         (1.2.49) 

𝐷𝑥! = 𝐴! 𝛉 𝑥! + 𝐹! 𝑥!, 𝑥!,𝛉  ,         (1.2.50) 

where all eigenvalues of 𝐴! 𝛉  have zero real parts and all eigenvalues of 𝐴! 𝛉  have strictly 

negative real parts. By center manifold theory, there exists a center manifold, 𝑥! = ℎ(𝑥!), 

such that 

ℎ 0 = 0 and  𝐷ℎ 0 = 0. 

By substituting 𝑥! = ℎ(𝑥!) into (2.49), Barnett and He (2002) obtain 

𝐷𝑥! =  𝐴! 𝛉 𝑥! + 𝐹! 𝑥!, ℎ(𝑥!),𝛉 .         (1.2.51) 

The stability of (1.2.29) is connected to that of (1.2.51) through the following theorem. 

Theorem 1.2.2. (Henry (1981), Carr (1981)) If the origin of (1.2.51) is locally asymptotically 

stable (respectively unstable), then the origin of (1.2.29) is also locally asymptotically stable 

(respectively unstable). 

 By substituting 𝑥! = ℎ(𝑥!) into (1.2.50), Barnett and He (2002) observes that ℎ(𝑥!) 

satisfies 

              𝐷𝑥! = 𝐷ℎ 𝑥! 𝐷𝑥! = 𝐷ℎ 𝑥! 𝐴! 𝛉 𝑥! + 𝐹! 𝑥!, ℎ 𝑥! ,𝛉   

                       =  𝐴! 𝛉 ℎ 𝑥! + 𝐹!(𝑥!, ℎ 𝑥! ,𝛉), 

or ℎ(𝑥!) satisfies 
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𝐷ℎ 𝑥! 𝐴! 𝛉 𝑥! + 𝐹! 𝑥!, ℎ 𝑥! ,𝛉 = 𝐴! 𝛉 ℎ 𝑥! + 𝐹! 𝑥!, ℎ 𝑥! ,𝛉 ,      (1.2.52) 

ℎ 0 = 0,𝐷ℎ 0 = 0.             (1.2.53) 

For most cases, especially codimension-1 bifurcations, the dimension of (1.2.51) is 

usually one or two. In the case of transcritical bifurcations, the dimension of (1.2.51) is one. 

Since solving (1.2.52) and (1.2.53) is difficult, Barnett and He (2002) use a Taylor series 

approximation with several terms to determine the local asymptotic stability or instability of 

(1.2.51). In this case, let 

𝐹! 𝑥!, 𝑥!,𝛉 =  𝑎!
!!!

!!
+ 𝑥!𝑎!𝑥! + 𝑎!

!!!

!!
+⋯ , 

𝐹! 𝑥!, 𝑥!,𝛉 =  𝑏!
!!!

!!
+ 𝑥!𝑏!𝑥! + 𝑏!

!!!

!!
+⋯ . 

Barnett and He (2002) assume that ℎ(𝑥!) has the following Taylor expansion 

ℎ 𝑥! = 𝛼 !!!

!!
+ 𝛽 !!!

!!
+⋯ . 

 Then (1.2.52) becomes 

𝑎𝑥! + 𝛽
𝑥!  
!

2! +⋯ 𝐴! 𝛉 𝑥! + 𝑎!
𝑥!  
!

2! +  𝑥!𝑎! 𝛼
𝑥!  
!

2! + 𝛽
𝑥!!

3! +⋯ +  𝑎!
𝑥! 
!

3! +⋯  

= 𝐴! 𝛉 𝛼
𝑥!  
!

2! + 𝛽
𝑥!!

3! +⋯ + 𝑏!
𝑥!  
!

2! + 𝑥!𝑏! 𝛼
𝑥!  
!

2! + 𝛽
𝑥!!

3! +⋯ + 𝑏!
𝑥! 
!

3! +⋯    . 

By comparing coefficients of the same order terms and also observing that 𝐴! 𝛉 = 0 

at a bifurcation point, Barnett and He (1999) observe that 

𝛼 = −𝐴!!! 𝛉 𝑏!,      𝛽 = 𝐴!!! 𝛉 𝛼𝑎! − 𝑏!𝛼 .  

Therefore, (1.2.51) becomes 
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𝐷𝑥! = 𝐴! 𝛉 𝑥! + 𝑎!
!!  
!

!!
+ !!!

!!
+ !!

!!
𝑥!! +⋯.       (1.2.54) 

The stability analysis of (1.2.54) determines the stability characteristics of 𝐃𝐱 = 𝐀 𝛉 𝐱+

𝐅 𝐱,𝛉 . 

Without loss of generality, Barnett and He (2002) consider the stability of the system 

on the transcritical bifurcation boundary for parameters 𝛽!,𝛽!". Considering the point 

𝛽!,𝛽!" = (0.1068, 55.9866) on the boundary and using previous approach, Barnett and 

He (1999) find that (1.2.51) becomes 𝐷𝑥! = 0.1308 𝑥!! + 𝑜 𝑥!! , which is locally 

asymptotically unstable at 𝑥! = 0.  Therefore, it follows from center manifold theory that the 

system (1.2.29) is locally asymptotically unstable at this transcritical bifurcation point. 

Furthermore, Barnett and He (2002) numerically find boundaries of both Hopf and 

transcritical bifurcations for 𝜃! and 𝜃!",  for 𝜃!, 𝜃!"and 𝜃!",  for 𝜃!"and 𝜃!" and for 𝜃!", 

𝜃!"and 𝜃!". 

1.2.5 Stabilization Policy 

We have seen in the previous section that both transcritical and Hopf bifurcations 

exist in the UK continuous time macroeconometric model. In this section, we provide Barnett 

and He’s (2002) results investigating the control of bifurcations using fiscal feedback laws.  

They define stabilization policy to be intentional movement of bifurcation regions through 

policy intervention, with the intent of moving the stable region to include the parameters.  

However, there would be no need for stabilization policy, if the parameters were inside the 

stable region without policy. 
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              Barnett and He (2002) first consider the effect of a heuristically plausible fiscal 

policy of the following form, as suggested in Bergstrom, Nowman, and Wymer (1992): 

𝐷log 𝑇! = 𝛾 𝛽 log
  

Q
Q*e(λ1+λ2 )t − log

  

T1

T1
* .     (1.2.55) 

The control feedback rule (1.2.55) adjusts the fiscal policy instrument, 𝑇!, towards a partial 

equilibrium level, which is an increasing function of the ratio of output to its steady state 

level. In (1.2.55), 𝛽 is a measure of the strength of the feedback, and 𝛾 governs the speed of 

adjustment. According to Bergstrom, Nowman, and Wymer (1992), the control law (1.2.55) 

can reduce the positive real parts of unstable eigenvalues through proper choices of 

parameters 𝛽, 𝛾.  The intent is for the policy to be stabilizing. However, Barnett and He 

(2002) tried the following procedure and found that the control law (1.2.55) is unlikely to 

stabilize the systems (1.2.1)-(1.2.14).  First, they define 𝑦!" = log
  

T1

T1
*

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, and then they find 

that 𝑦!" satisfies 

                    𝐷𝑦!" = 𝛾𝛽𝑦! − 𝛾𝑦!".  

           They add this equation to the system (1.2.29) and obtain 

𝐃𝐰 = 𝐀! 𝛉 𝐰+ 𝐅′(𝐱,𝛉),       (1.2.56) 

where 

𝐰 =
𝐱
𝑦!" ,     𝐅

! 𝐱,𝛉 = 𝐅 𝐱,𝛉
0

 , 

and  𝐀′(𝛉) is the corresponding coefficient matrix. 
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They then consider three sets of parameter values: 𝛽 = 0.04, 𝛾 = 0.02;  𝛽 =

0.01, 𝛾 = 0.05; and 𝛽 = 0, 𝛾 = 0.  The case, 𝛽 = 0, 𝛾 = 0, corresponds to the original 

system (1.2.1)-(1.2.14), in which no fiscal policy control is applied. Barnett and He (2002) 

illustrate the effect of a simple fiscal policy in three cases, indicating that some stable regions 

could be destabilized and some unstable regions could be stabilized. But since the feasible 

region is smaller under control than without control, Barnett and He conclude that the policy 

is not likely to succeed. 

Barnett and He (2002) next consider a more sophisticated fiscal control policy, based 

upon optimum control theory, with the control being  

𝑢 = log
  

T1

T1
*

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.         (1.2.57) 

             Under the control (1.2.57), the system (1.2.29) becomes 

𝐃𝐱 = 𝐀 𝛉 𝐱+ 𝐁𝑢 + 𝐅(𝐱,𝛉),        (1.2.58) 

where 𝐁 = [0  − 𝛾!   0 …   0]! ∈  𝑅!".  The controllability matrix  [𝐁   𝐀𝐁…    𝐀𝟐𝟕𝐁] has 

rank 7, implying that the pair (𝐀,𝐁) is not controllable. Therefore, it is not possible to set the 

closed-loop eigenvalues of the coefficient matrix of (1.2.58) arbitrarily.  

             Nevertheless, the numerical procedure of Khalil (1992) shows that there exists a 

linear transformation, 𝐳 = 𝐓𝐱, such that 

𝐃𝐳 =    𝐀𝟏𝟏      𝟎  
  𝐀𝟐𝟏    𝐀𝟐𝟐

𝐳+   𝟎 
 𝐁𝟐

𝑢,  

where  𝐀𝟏𝟏 ∈  𝑅!"×!",𝐀𝟐𝟏 ∈  𝑅!×!",𝐀𝟐𝟐 ∈  𝑅!×!,𝐁𝟐 =  0… 0 1 ∈  𝑅!,  
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𝐓𝐀 𝛉 𝐓!𝟏 =   𝐀𝟏𝟏      𝟎  
  𝐀𝟐𝟏    𝐀𝟐𝟐

,      𝐓𝐁 =  𝟎  
𝐁𝟐

,  

and (𝐀𝟐𝟐,𝐁𝟐) is controllable. Further, all eigenvalues of 𝐀𝟏𝟏 have negative real parts, 

implying that (𝐀 𝛉 ,𝐁) is stabilizable. 

To obtain a feedback control law stabilizing (1.2.58), Barnett and He (2002) consider 

minimizing  

𝐽 = 𝐱𝐓𝐔𝐱+ 𝑉𝑢𝟐 𝑑𝑡,   
!

!
 

where 𝐔 ∈  𝑅!"×!" and 𝑉 ∈ 𝑅! are positive definite.  According to linear system theory, the 

optimal feedback control law is given by 

      𝑢 = 𝐊𝐱,     𝐊 = −𝑉!!𝐁𝐓𝐏,  

where 𝐏 is positive definite and solves the algebraic Ricatti equation  𝐏𝐀+ 𝐀𝐓𝐏−

𝐏𝐁𝑉!!𝐁𝐓𝐏+ 𝐔 = 𝟎.  Choosing 𝐔 = 𝐈 and 𝑉 = 1, Barnett and He (2002) get 

   𝐊 = [ 1.5036, 0.4754, 0.0178, 0.0307,−1.1897, 18.5851, 7.2979, 1.9063, 2.3147, 

23.2392, 0.7488, 7.2091, 38.9965, 39.4000, 0.1841, 0.2129, 0.3061, 0.0494,−0.0027,  

      0.0000,−0.0013,−0.0002, 0.9550, 1.8482,−0.3329,−0.5475, 0.9369,−1.0402]. 

(1.2.59) 

Under the control 𝑢 = 𝐊𝐱, equation (1.2.58) becomes  

                 𝐃𝐱 = 𝐀 𝛉 + 𝐁𝐊 𝐱+ 𝐅 𝐱,𝛉 .                                                                   (1.2.60) 
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Since all the eigenvalues of 𝐀+ 𝐁𝐊 have strictly negative real parts under the choice 

of 𝐊, the state feedback law 𝑢 = 𝐊𝐱  indeed stabilizes the system (1.2.60). Barnett and He 

(2002) also confirm by direct verification that there exist no bifurcations under the control 

law (1.2.60) for 𝛽!,𝛽! . 

  Barnett and He (2002) further investigate whether there is a parameter 𝛉! ∈ 𝛩 at 

which the system (1.2.60) is unstable.  They check the stability of (1.2.60) under the control 

law (1.2.60) for all parameter 𝛉 ∈ 𝛩. The following  𝛉! ∈ 𝛩! were found 

𝛉! = [0.9400, 0.5074, 2.0913, 0.2030, 0.2612, 0.1933, 0.2309, 0.0000, 0.2510,−0.3423,  

     1.0000, 23.5000,−0.0100, 0.2086, 0.0332, 13.5460, 0.4562, 0.9322, 0.0100, 0.0034,  

      0.1324,−0.5006, 100.0000, 0.0000, 0.0004, 71.4241, 0.8213, 4.0000, 1.0289, 0.3631, 

        0.1201, 0.1000, 0.0010, 3.7015, 0.4860, 1.1270, 0.0042, 3.3994, 0.4802, 0.1300, 0.6851, 

         0.0620, 1.2134, 0.3830, 4.0000, 3.2535, 3.8592, 4.0000,4.0000, 3.5723, 0.4775, 0.0071, 

         0.6104, 0.0143, 0.1718, 0.1227, 2.5551, 0.1833, 0.0035, 0.0000, 0.0018, 0.0004, 0.0100].  

The corresponding 𝑅!"# 𝐀 𝛉! = 0.4971. Hence, there indeed exists a parameter 𝛉! ∈ 𝛩! 

at which (1.2.60) is unstable. 

Barnett and He (2002) investigate whether the use of an optimal control feedback 

policy with a structural model would be easily implemented, if the Lucas critique and time 

inconsistency issues did not exist. It is often believed that designing such active policy would 

be easy, if it were not for the problems produced by the Lucas critique and by the time 

inconsistency of optimal control. However, Barnett and He (2002) find that even without 

those problems, the design of a successful feedback policy can be difficult. They consider a 
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policy to be successful, if the policy shifts the bifurcation boundaries such that the stable 

region moves towards the point estimates of the parameters.  Then the probability is 

increased that the stable region will include the values of the parameters. Barnett and He 

(2002) find that Bergstrom’s proposed selection of a fiscal policy feedback rule for his own 

UK model is counterproductive for three reasons: (1) the resulting policy equation derived 

from optimal control theory is complicated and depends heavily upon the model; (2) the 

problem of robustness of the optimal control policy to specification error is not addressed; 

and (3) the problems of possible time inconsistency of optimal control policy are not taken 

into consideration. The effects of policy feedback rules can depend upon the complicated 

geometry of bifurcation boundaries and how they are moved by augmentation of the model 

by the feedback rule.  As a result, Barnett and He (2002) conclude that such policies can be 

counterproductive. 

1.3 Leeper and Sims Model 

1.3.1 Introduction 

 Barnett and He (2008) conducted a bifurcation analysis of the best-known Euler-

equations general-equilibrium macroeconometric model: the Leeper and Sims (1994) model 

and found the existence of singularity bifurcation boundaries within the parameter space. 

This section surveys Barnett and He’s (2008)’s bifurcation analysis of that model.   

Barnett and He (2008) provided initial confirmation of Grandmont’s views about 

bifurcation. Grandmont (1985) found that the parameter space of even the most classical 

dynamic general-equilibrium macroeconomic models is stratified into bifurcation regions.  

This result challenged the prior common view that different kinds of economic dynamics can 
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only be attributed to different kinds of structures. But he was not able to reach conclusions 

about policy relevance, since his results were based on a model in which all policies are 

Ricardian equivalent, no frictions exist, employment is always full, competition is perfect, 

and all solutions are Pareto optimal. Nevertheless, robustness of dynamical inferences can be 

seriously damaged by the stratification of a confidence region into bifurcated subsets, when a 

bifurcation boundary crosses the confidence region of a parameter. Policy relevance was 

introduced by Barnett and He (1999, 2001a, 2002), who investigated Bergstrom-Wymer 

continuous-time dynamic macroeconometric model of UK economy. That Keynesian model 

does permit introduction of welfare improving countercyclical policy.  Barnett and Duzhak 

(2008, 2010) further explored policy relevance by demonstrating the existence of Hopf and 

flip bifurcations within the more recent class of New Keynesian models. 

There is a large literature on dynamic macroeconometric models.5 In particular, the 

Lucas critique has motivated development of Euler-equations models with policy-invariant 

deep parameters. A seminal example in this class is the Leeper and Sims model, which 

contains parameters of consumer and firm behavior as deep parameters of tastes and 

technology.  The deep parameters are invariant to government policy rule changes, and hence 

immune to the Lucas critique.6 The dimension of the state space in the Leeper and Sims 

model is substantially lower than in the Bergstrom--Wymer UK model, but still too high for 

analysis by available analytical approaches.  Through numerical procedures, Barnett and He 

(2008) find that the dynamics of the Leeper and Sims model are complicated by the model’s 

Euler equations structure.  The model consists of both differential equations and algebraic 
																																																													
5	See	Barnett	and	He		(2008),	footnote	2.	

6	Similar	models	are	developed	in	Kim	(2000)	and	in	Binder	and	Pesaran	(1999),	according	to	Barnett	and	He	(2008),	
footnote	3.	
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constraints. Barnett and He (2008) found that the order of the dynamics of the Leeper and 

Sims model could change within a small neighborhood of the estimated parameter values. 

Within this small neighborhood close to a bifurcation boundary, one eigenvalue of the 

linearized part of the model can move quickly from finite to infinite and back again to finite. 

Barnett and He (2008) state that a large stable eigenvalue indicates that some variables can 

respond rapidly to changes of other variables. A large unstable eigenvalue indicates one 

variable’s rapid diversion away from other variables, while an infinity eigenvalue indicates 

existence of a pure algebraic relationships among the variables. Due to the nature of the 

mapping from parameter space to functional space of dynamical solutions, the sensitivity to 

the setting of the parameters presents serious challenges to the robustness of dynamical 

inferences.  

Barnett and He’s (2008)’s bifurcation analysis of the Leeper and Sims model not only 

confirm the policy relevance of Grandmont’s views but also reveal the existence of a 

singularity bifurcation boundary within a small neighborhood of the estimated parameter 

values. Singularity bifurcation, surveyed in section 1, had not previously been encountered in 

economics, although is known in the engineering and mathematics literatures. On the 

singularity boundary, the number of differential equations will decrease, while the number of 

algebraic constraints will increase. Such change in the order of dynamics had not previously 

been found with macroeconometric models. Barnett and He (2008) speculate that singularity 

bifurcation may be a common property of Euler equations models. Even though the 

dimension of the dynamics can be the same on both sides of a singularity bifurcation 

boundary, the nature of the dynamics on one side may differ dramatically from the nature of 

the dynamics on the other side. Hence the implications of singularity bifurcation are not 
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limited to the change in the dimension of the dynamics directly on the bifurcation boundary. 

These results cast into doubt the robustness of dynamical inferences acquired by simulation 

only at the point estimate of the parameters. Barnett and He (2008) advocate simulating 

models at various settings throughout the parameters’ confidence region, rather than solely at 

the parameters point estimates.     

            Since the US data used in the model include imported and exported goods, the Leeper 

and Sims model, although specified as a closed economy model, is implicitly open economy. 

Barnett and He (2008) consider extension of their analysis to an explicitly open-economy 

Euler-equations model. In section 1.6, we survey research on bifurcation phenomena in 

explicitly open-economy New Keynesian models. 

1.3.2 The Model7 

The Leeper and Sims (1994) model includes the dynamic behavior of consumers, 

firms, and government.  Consumers and firms maximize their respective objective functions, 

and the government pursues countercyclical policy objectives through monetary and tax 

policies satisfying an intertemporal government budget constraint. Parameters of consumer 

and firm behavior are the deep parameters of tastes and technology and are invariant to 

government policy rule changes. The model consists of both ordinary differential equations 

and algebraic constraints.  The resulting system is called a differential/algebraic system in 

systems theory. The detailed derivation of the models is available in Leeper and Sims (1994) 

and will not be repeated in this survey.  

The Leeper and Sims model consists of the following 12 state variables. 

																																																													
7	The	model	description	is	modified	from	Barnett	and	He	(2008).	
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𝐿 = labor supply, 

𝐶∗ = consumption net of transaction costs, 

𝑀 = consumer demand for non-interest-bearing money, 

𝐷 = consumer demand for interesting-bearing money, 

𝐾 = capital, 

𝑌 = factor income from capital and labor, excluding interest on government debt, 

𝐶 = gross consumption, 

𝑍 = investment, 

𝑋 = consumption goods aggregate price, 

𝑄 = investment goods price, 

𝑉 = income velocity of money, 

𝑃 = general price level. 

The consumer maximizes utility according to  

𝐸 exp (− 𝛽 𝑠 𝑑𝑠)
!

!

!

!

𝐶∗! 1− 𝐿 !!! !!!

1− 𝛾 𝑑𝑡  

subject to  

𝑋𝐶 + 𝑄𝑍 + 𝜏 +
𝑀 + 𝐷
𝑃 = 𝑌 +

𝑖𝐷
𝑃 ,  

𝑋𝐶∗ + 𝜙𝑉𝑌 = 𝑋𝐶,  

𝐾 = 𝑍 − 𝛿𝐾, 

 𝑌 = 𝑟𝐾 + 𝑤𝐿 + 𝑆, 

𝑉 =
𝑃𝑌
𝑀 , 
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where 𝜋 ∈ (0,1) and 𝛾 > 0 are parameters; 0 ≤ 𝛽(𝑠) ≤ 1 is the subjective rate of time 

preference at time 𝑠;  𝜏 is the level of lump-sum taxes paid by the representative consumer; 𝑖 

is the nominal rate of return earned on government bonds; 𝑆 is the sum of dividends received 

by the representative consumer, 𝑤 is the wage rate; 𝜑 > 0 is the transaction cost per unit of 

𝑉𝑌;  𝛿 ≥ 0 is the rate of depreciation of capital; and 𝑟 = rental rate of return on capital. 

Parameters in this model are not necessarily assumed to be constant. 

The firms maximize profits according to 

max  𝑋 𝐶 + 𝑔 + 𝑄𝐼∗ + 𝐴 𝛼𝐾! + 𝐿!
!
! − 𝑟𝐾 − 𝑤𝐿 − 𝐶 + 𝑔 ! + 𝜃𝐼∗ !

!
! , 

where 𝑔 is the level of government purchases. The following are parameters: 

 𝐴 > 0,𝛼 > 0,𝜃 > 0, 𝜇 ≥ 0, and 0 ≤ 𝜎 ≤ 1.  

            The market-clearing condition is 𝐼∗ = 𝑍 + 𝑛𝐾, where 𝑛 = the fraction of existing 

capital purchased by the government for distribution to the newborn. Investment goods,  𝐼∗, 

produced by the firm include both those bought by the existing population, and those 

purchased by the government for distribution to the newborn, as indicated by the market-

clearing condition. 

In this model, the state variables satisfy the following differential equations:  

   

1
p

M
i

+ D
i⎛

⎝⎜
⎞
⎠⎟
= Y − XC −QL+ iD

P
+τ                                                                 (1.31) 

             𝐾 = 𝑍 − 𝛿𝐾          (1.3.2) 

           
   
1−π (1−γ )( )C*

i

C* + (1−γ )(1−π ) L
i

1− L
+ X

i

X
+ P

i

P
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= i − β + π

i

π
+π

i

(1−γ ) log
C*

1− L
⎛
⎝⎜

⎞
⎠⎟

,                                                                      (1.3.3) 

   

P
i

P
+ Q

i

Q
= i +δ − (1− 2φV ) r

Q
                                                                              (1.3.4) 

             Equation (1.3.1) represents the consumers’ budget constraint. Equation (1.3.2) is the 

law of motion for capital, and equations (1.3.3) and (1.3.4) are the first-order conditions 

derived from the consumers’ optimization problem. In addition, the state variables also 

satisfy the following algebraic constraints. 

           
  
X = Y

C + g
⎛
⎝⎜

⎞
⎠⎟

1−µ

,                                               (1.3.5) 

          
  
Q = θ Y

Z + nK
⎛
⎝⎜

⎞
⎠⎟

1−µ

,                                               (1.3.6) 

 
  
r = Aσα Y

K
⎛
⎝⎜

⎞
⎠⎟

1−δ

,                                    (1.3.7) 

 
  
w = Aσ Y

L
⎛
⎝⎜

⎞
⎠⎟

1−δ

,                         (1.3.8) 

𝑋𝐶∗ + 𝜙𝑉𝑌 = 𝑋𝐶,              (1.3.9) 

𝑌 = 𝑟𝐾 + 𝑤𝐿 + 𝑆,            (1.3.10) 

  
V = PY

M
,              (1.3.11) 

𝑋 𝐶 + 𝑔 + 𝑄 𝑍 + 𝑛𝐾 = 𝑌,           (1.3.12) 
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(1− 2φV ) w

X
= 1−π

π
C*

1− L
,                                  (1.3.13) 

𝑖 = 𝜙𝑉!.             (1.3.14) 

Equations (1.3.5)-(1.3.8) are obtained from the first-order conditions of the firms’ 

optimization problem. Equation (1.3.9) defines consumption net of transaction costs, with 

total output serving as a measure of the level of transactions at a given point in time. 

Equation (1.3.10) defines income. Equation (1.3.11) is the income velocity of money. 

Equation (1.3.12) is the social resources constraint. Equations (1.3.13)-(1.3.14) are obtained 

from the first-order conditions for the consumers’ optimization problem.  

            The control variables consist of the nominal rate of return on government bonds, 𝑖, 

and the level of lump-sum taxes, τ.  According to Barnett and He (2008), the monetary policy 

rule is       

   

i
i

i
= ap log

P
P

⎛
⎝⎜

⎞
⎠⎟
+ aint

P
i

P
+ ai log

i
β

⎛

⎝⎜
⎞

⎠⎟
+ aL log

L
L

⎛
⎝⎜

⎞
⎠⎟
+ ε i ,                                        (1.3.15) 

and the tax policy is  

                      
   

d
dt

τ
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= bτ
τ
C
− τ
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⎛
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⎛

⎝
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⎞

⎠
⎟ + ετ  .               (1.3.16) 

The free parameters are the steady state debt-to-income level, 𝐷/𝑌, the steady state 

price level, 𝑃, the 𝑎’s, and the 𝑏’s. The disturbance noises are 𝜀! and 𝜀!. The control variables 

are 𝑖 and 𝜏!. Barnett and He (2008) use 
 
τC = τ

C
 rather than τ as a control. The exogenous 

variables are 𝑛,𝑔,𝜋, 𝛿,𝜃,𝛼,𝐴, and 𝜙, which are specified by Leeper and Sims to follow 
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logarithmic first-order autoregressive (AR) processes in continuous time, while 𝛽 is specified 

to be a logarithmic first-order AR in unlogged form. Barnett and He (2008) analyze the 

structural properties of (1.3.1)-(1.3.14) without external disturbances. Barnett and He (2006b, 

2008) treat all parameters in (1.3.3) as fixed parameters and treat the exogenous variables as 

realized at their measured values. The extension of this analysis to the case of stochastic 

bifurcation is a subject for future research. 

Next Barnett and He (2008) reduce the dimension of the problem by temporarily 

eliminating some state variables for the convenience of analytical investigation. They 

contract to the following 7 state variables 

            𝐱 =

𝐷
𝑃
𝐶
𝐿
𝐾
𝑍
𝑌

.          (1.3.17) 

             The remaining state variables can be written as unique functions of 𝐱. By eliminating 

𝑀,𝐶∗,𝑉,𝑄,𝑋 from the independent state variables, it can be determined directly from (1.3.1)-

(1.3.14) that  𝐱  satisfies the following equations. 
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(1.3.18)

   



	 55	

   

1−π (1−γ )( ) 1−φVY µ (1− µ)(C + g)−µ

C −φVY µ (C + g)1−µ − 1− µ
C + g

⎛
⎝⎜

⎞
⎠⎟

C
i

− (1−π (1−γ ))φVµY µ−1(C + g)1−µ

C −φVY µ (C + g)1−µ + 1− µ
Y

⎛
⎝⎜

⎞
⎠⎟

Y
i

+ P
i

P
+ (1−γ )(1−π )

1− L
L
i

= i − β +
Y µ C + g( )1−µ

C −φVY µ (C + g)1−µ

1
2 iφ

i
i

,

                 (1.3.19)
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= −(1− 2φV ) aσα

θ
Y µ−θ Z + nK( )1−µ Kσ −1 + i +δ ,                                                    (1.3.20) 

 𝐾 = 𝑍 − 𝛿𝐾,             (1.3.21) 

 0 = (𝐶 + 𝑔)! + 𝜃(𝑍 + 𝑛𝐾)! − 𝑌! ,          (1.3.22) 

 0 = 𝛼𝐾! + 𝐿! − 𝑎!!𝑌!!                      (1.3.23) 
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1
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L L L

σ µ σ µ
µ µ

σ
π φ πφ

π π

− −
−

−

+ − −= − + + −
− −

 .          (1.3.24) 

 

             Then Barnett and He (2008) write equations (1.3.18)--(1.3.24) as 

𝐡 𝐱,𝐮 𝐱 = 𝐟 𝐱,𝐮 ,            (1.3.25) 

𝟎 = 𝐠(𝐱,𝐮),             (1.3.26) 

where 𝐱 is a 7-dimensional state vector, 𝐮 is a 2-dimensinal control vector, 𝐡 𝐱,𝐮  is a 4×7-

dimensional matrix, and  𝐟 𝐱,𝐮  is a 4×1 vector of functions,  𝐠 𝐱,𝐮  is a 3×1 vector of 

functions. Equation (1.3.25) describes the nonlinear dynamical behavior of the model, and 
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(1.3.26) describes the nonlinear algebraic constraints. The system formed by (1.3.25) and 

(1.3.26) is called nonlinear descriptor systems in the mathematical literature. Barnett and He 

(2006b,2008) use 𝑚 = 7,𝑚! = 4,𝑚! = 3,  and 𝑙 = 2 (with 𝑚 = 𝑚! +𝑚!) to denote 

respectively the dimension of 𝐱, the number of differential equations in (1.3.25), the number 

of algebraic constraints in (1.3.26), and the dimension of the vector of control variables 𝐮. 

Barnett and He (2008) solve the steady state of the system (1.3.25)-(1.3.26) for the 7 

state variables, 𝐱, conditionally on the setting of the controls 𝐮 from the following equations: 

𝟎 = 𝐟 𝐱,𝐮 ,            (1.3.27) 

𝟎 = 𝐠 𝐱,𝐮 .            (1.3.28) 

and get   

  𝑖 = 𝛽   

     i
i

= 0                          (1.3.29) 

 𝜏! =
𝜏
𝐶

  

The first equation of (1.3.29) is found from (1.3.15) in the steady state, the second 

equation from the definition of steady state, and the third equation from (1.3.16) in the steady 

state. The values 𝐱  and 𝐮 are solutions to (1.3.27)-(1.3.28), and (1.3.29). The resulting steady 

state is the equilibrium of (1.3.25)-(1.3.26), when the control variables are set at their steady 

state. 

The vector of parameters in the steady state system is  
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𝐩 = 𝜋  𝛽  𝜃  𝛼  𝑎  𝜙  𝛿  𝜇  𝛾  𝜎 !. 

             Here 𝑔 is taken as a fixed value by the private sector at its setting by the government. 

The constraints on the parameter values and 𝑔 are: 

0 <  𝜋 < 1, 𝛾 > 0, 0 ≤ 𝜎 ≤ 1, 𝜇 ≥ 1, 𝛿 ≥ 0, 0 ≤  𝛽 ≤ 1, 𝛿 > 0,𝑔 ≥ 0.    (1.3.30) 

1.3.3  Singularity in Leeper and Sims Model 

Barnett and He (2008) use local linearization around the equilibrium (𝐱,𝐮) and derive 

the following linearized system of (1.3.25) and (1.3.26): 

𝐄𝟏𝐱 = 𝐀𝟏𝐱+ 𝐁𝟏𝐮,         (1.3.31) 

𝟎 = 𝐀𝟐𝐱+ 𝐁𝟐𝐮,         (1.3.32) 

where 

               1 4 7( , ) m mR R× ×= ∈ =1E h x u  
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= =
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              1 4 2
,

( , ) | m lR R× ×
= =

∂= ∈ =
∂1 x x u u

f x uB
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   2 3 2
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Barnett and He (2008) find the linearized system satisfies the regularity condition 

according to Gantmacher (1974). In particular, they find values of the determinant’s 
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parameter s such that 𝑑𝑒𝑡( 𝑠𝐄𝟏 − 𝐀𝟏−𝐀𝟐
)  ≢ 0.  Since the linearized system is regular, it is 

solvable. Barnett and He (2008) further transform the linearized system (1.3.31)-(1.3.32) into 

the following form. 

Definition 1.3.1  (Barnett and He (2008), Definition 3.1) Two systems  

𝐄𝐱 = 𝐀𝐱+ 𝐁𝐮           (1.3.33) 

and 

𝐄𝐲 = 𝐀𝐲+ 𝐁𝐮           (1.3.34) 

are said to be restricted system equivalent (r.s.e), if there exist two nonsingular matrices 𝐓𝟏 

and 𝐓𝟐 such that  

𝐓𝟏𝐄𝐓𝟐 = 𝐄,   𝐓𝟏𝐀𝐓𝟐 = 𝐀,   𝐓𝟏𝐁 = 𝐁,   𝐱 = 𝐓𝟐𝐲.   

            Barnett and He (2008) note that the form (1.3.34) can be obtained by using the 

coordinate transform 𝐱 = 𝐓𝟐𝐲 into (1.3.33) and then multiplying both sides of (1.3.33) by 

𝐓𝟏from the left. They next transformed (1.3.31)-(1.3.32) into suitable r.s.e. forms. They 

denote 𝑟! = 𝑟𝑎𝑛𝑘 𝐄𝟏 , where 𝑟! ∈ 1,2,3,4 .  Then there exist nonsingular matrices 𝐓𝟏 and 

𝐓𝟐 such that 

𝐓𝟏𝐄𝟏𝐓𝟐 =
 𝐈𝐫𝐄     0  
  0     0  

. 

           They substitute the form  𝐱 = 𝐓𝟐
𝐲𝟏
𝐲𝟐 ,  where 𝐲𝟏 ∈ 𝑅!! and 𝐲𝟐 ∈ 𝑅!!!! = 𝑅!!!! , into 

(1.3.31)-(1.3.32) and also multiply both sides of (1.3.31) by 𝐓𝟏. It follows that (1.3.31)-

(1.3.32) is r.s.e to  
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𝐲𝟏 = 𝐀𝟏𝟏𝐲𝟏 + 𝐀𝟏𝟐𝐲𝟐 + 𝐁𝟏𝟏𝐮,       (1.3.35a) 

𝟎 = 𝐀𝟐𝟏𝐲𝟏 + 𝐀𝟐𝟐𝐲𝟐 + 𝐁𝟏𝟐𝐮,        (1.3.35b) 

𝟎 = 𝐀𝟑𝟏𝐲𝟏 + 𝐀𝟑𝟐𝐲𝟐 + 𝐁𝟐𝐮,        (1.3.35c) 

where 

   𝐀𝟏𝟏     𝐀𝟏𝟐  
  𝐀𝟐𝟏    𝐀𝟐𝟐 =  𝐓𝟏𝐀𝟏𝐓𝟐 ,      

 𝐁𝟏𝟏 
 𝐁𝟏𝟐 =  𝐓𝟏𝐁𝟏,   𝐀𝟑𝟏   𝐀𝟑𝟐 =  𝐀𝟐𝐓𝟐 , 

with  𝐀𝟏𝟏 ∈ 𝑅!!×!! ,𝐀𝟏𝟐 ∈ 𝑅!!× !!!! ,𝐀𝟐𝟏 ∈ 𝑅(!!!!)×!! ,𝐀𝟐𝟐 ∈ 𝑅(!!!!)×(!!!!),𝐀𝟑𝟏 ∈

𝑅!×!! ,𝐀𝟑𝟐 ∈ 𝑅!×(!!!!),𝐁𝟏𝟏 ∈ 𝑅!!×!, and 𝐁𝟏𝟐 ∈ 𝑅(!!!!)×!, while 𝐲𝟏 is an 𝑟!  dimensional 

vector and 𝐲𝟐 is a 7− 𝑟!  dimensional vector. 

            Barnett and He (2008) combine equations (1.3.35a) and (1.3.35b) and acquire the 

following: 

𝐲𝟏 = 𝐀𝟏𝟏𝐲𝟏 + 𝐀𝟏𝟐𝐲𝟐 + 𝐁𝟏𝟏𝐮,      (1.3.36a) 

𝟎 = 𝐀𝟐𝟏𝐲𝟏 + 𝐀𝟐𝟐𝐲𝟐 + 𝐁𝟏𝟐𝐮,                  (1.3.36b) 

where 

𝐀𝟐𝟏 =
  𝐀𝟐𝟏 
  𝐀𝟑𝟏 , 𝐀𝟐𝟐 =  𝐀𝟐𝟐 

𝐀𝟑𝟐  , 𝐁𝟏𝟐 =   𝐁𝟏𝟐
𝐁𝟐

.    

             If 𝐀𝟐𝟐 is nonsingular, it follows from (1.3.36b) that 𝐲𝟐 = − 𝐀𝟐𝟐
!𝟏 𝐀𝟐𝟏𝐲𝟏 + 𝐁𝟏𝟐𝐮 .  

They substitute the form of 𝐲𝟐 into (1.3.36a) and get  

𝐲𝟏 = 𝐂𝐲𝟏 + 𝐃𝐮,         (1.3.37) 
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where 𝐂 = 𝐀𝟏𝟏 − 𝐀𝟏𝟐𝐀𝟐𝟐!!𝐀𝟐𝟏 ∈ 𝑅!!×!! and 𝐃 = 𝐁𝟏𝟏 − 𝐀𝟏𝟐𝐀𝟐𝟐!!𝐁𝟏𝟐 ∈ 𝑅!!×!.  This implies 

that if  𝐀𝟐𝟐 is nonsingular, given the algebraic relationship between 𝐲𝟏 and 𝐲𝟐 in equation 

(1.3.36b), the dynamics of  𝐲𝟏 can be explained in terms of ordinary differential equations 

(1.3.37). 

Linear system ((1.3.31), (1.3.32)) is equivalent to ((1.3.37), (1.3.36b)), only when 𝐀𝟐𝟐 

is nonsingular. If 𝐀𝟐𝟐 were singular, the above transformation would not be possible and 

singular bifurcation would occur. As explained in Barnett and He (2004,2006b), if 𝐀𝟐𝟐 

becomes exactly singular ,the dimension of dynamics change. The dynamics also would 

change substantially, if 𝐀𝟐𝟐 moves between two settings located on opposite sides of a 

singular bifurcation boundary.  

To examine the case when 𝐀𝟐𝟐 is singular in more detail, Barnett and He (2008) 

rewrite the linearized system ((1.3.36a), (1.3.36b)) as 

  𝐈𝐫𝐄     𝟎  
 𝟎      𝟎

𝐲𝟏
𝐲𝟐

=
 𝐀𝟏𝟏     𝐀𝟏𝟐
 𝐀𝟐𝟏    𝐀𝟐𝟐

 𝐲𝟏 
𝐲𝟐 +

 𝐁𝟏𝟏 
 𝐁𝟏𝟐

 𝐮.       (1.3.38) 

            The matrix pair (   𝐈𝐫𝐄     𝟎  
 𝟎      𝟎

,
 𝐀𝟏𝟏     𝐀𝟏𝟐
  𝐀𝟐𝟏     𝐀𝟐𝟐

), which is in the form of a matrix pencil, 

is also regular, since the model is regular. Therefore, there exist nonsingular matrices, 𝐓𝟏 and 

𝐓𝟐 , such that (Gantmacher (1974)): 

𝐓𝟏
  𝐈𝐫𝐄     𝟎  
 𝟎      𝟎

𝐓𝟐 =   𝐈𝐦𝟏    𝟎  
  𝟎      𝐍   

 and  𝐓𝟏
 𝐀𝟏𝟏   𝐀𝟏𝟐

  𝐀𝟐𝟏   𝐀𝟐𝟐 𝐓𝟐 =
𝐀𝟏   𝟎  

  𝟎     𝐈𝐦𝟐    , 
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where m! +m! = m  and 𝐍 is a nilpotent matrix; i.e. there exists a positive integer 𝑑 ≥ 1 

such that 𝐍!=0. The smallest such integer 𝑑 is called the nilpotent index of 𝐍. One example 

of a nilpotent matrix is: 

𝐍 =

  0    1    0   …     0     0   
 0    0    1  …      0     0  

…                … .
0    0    0   …     0     1

  0    0    0   …     0     0  

 .        (1.3.39) 

Barnett and He (2008) next consider the coordinate transform 
𝐲𝟏
𝐲𝟐 = 𝐓𝟐

 𝐳𝟏
 𝐳𝟐 , 

substitute it for 𝐲 in equation (1.3.38), and multiply both sides of (1.3.38) by 𝐓𝟏 from the left.  

The following r.s.e. form of ((1.3.31),(1.3.32)) results: 

𝐳𝟏 = 𝐀𝟏𝐳𝟏 + 𝐁𝟏𝐮,          (1.3.40) 

𝐍𝐳𝟐 = 𝐳𝟐 + 𝐁𝟐𝐮,          (1.3.41) 

where 

 𝐁𝟏 
 𝐁𝟐

= 𝐓𝟏
 𝐁𝟏𝟏
𝐁𝟏𝟐

. 

The solutions to (1.3.40) and (1.3.41) are respectively 

𝐳𝟏 = 𝑒𝐀𝟏 !!!! 𝐳𝟏 0 + 𝑒𝐀𝟏 !!!!
!!

𝐁𝟏𝐮 𝜉 𝑑𝜉 , 

𝐳𝟐 = − 𝛿 !!! 𝑡 𝐍!𝐳𝟐 0 − 𝐍!𝐁𝟐𝐮 ! 𝑡 ,!!!
!!!

!!!
!!!   

where 𝑡! ≥ 0 is the initial time, 𝛿 !!! 𝑡  is the derivative of order 𝑘 − 1 of the Dirac delta 

function, and 𝐮(!) denotes that 𝑘-th order derivative of 𝐮. 
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            If 𝐍 = 𝟎, it follows from (1.3.41) that 𝐳𝟐 = −𝐁𝟐𝐮, which is a smooth algebraic 

relationship between 𝐳𝟐 and 𝐮; and the above solution for 𝐳𝟐 does not apply. Only when 𝐍 is 

nonzero, there exist impulsive terms involving the Dirac delta functions, which could 

produce shock effects in the first summation of the solution for 𝐳𝟐, and smooth derivative 

terms of 𝐮 in the second summation. The solution structure with nonzero 𝐍 is very different 

from the solution of ordinary differential equations as in (1.3.40) for 𝐳𝟏. 

            The following theorem links bifurcation phenomenoa at  𝐍 ≠ 𝟎 to the singularity of 

𝐀𝟐𝟐. The proof is contained in Barnett and He (2008), Theorem 3.1. 

Theorem 1.3.1.  If both (1.3.40)-(1.3.41) and (1.3.36a)-(1.3.36b) are r.s.e forms of the same 

linearized system (1.3.31)-(1.3.32), then 𝐍 = 𝟎, if and only if 𝐀𝟐𝟐 is nonsingular.  Hence it 

follows that 

𝑑𝑒𝑡 (𝐀𝟐𝟐 ) ≠ 0. 

            The next theorem links the singularity of 𝐀𝟐𝟐 to the rank of the original coefficient 

matrix.  The proof is contained in Barnett and He (2008), Theorem 1.3.2. 

Theorem 1.3.2.  Assume that 𝐄𝟏 has full row rank, i.e. 

𝑟𝑎𝑛𝑘 𝐄𝟏 = 𝑚!. 

Then 𝐀𝟐𝟐 is nonsingular, if and only if the 𝑚×𝑚 matrix  
  𝐄𝟏 
  𝐀𝟐

 is nonsingular, so that 

𝑟𝑎𝑛𝑘   𝐄𝟏 
  𝐀𝟐

= 𝑚.  
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           Theorem 1.3.2 provides the condition for the existence of a singularity bifurcation 

boundary, so that 𝑑𝑒𝑡  𝐄𝟏 
𝐀𝟐

= 0.  

             The following corollary says that the singularity condition does not change whenever 

state variables that can be modeled by ordinary differential equations are added or deleted. 

The proof is contained in Barnett and He (2008), Corollary 3.1. 

Corollary 1.3.1.  Consider the following system describing the dynamics of 𝐱, 𝐯 , where 

𝐯 ∈ 𝑅!! for arbitrary 𝑚!. 

𝐄𝟏𝐱+ 𝐄𝟏𝐯𝐯 = 𝐀𝟏𝐱+ 𝐀𝟏𝐯𝐯+ 𝐁𝟏𝐮,         (1.3.42a) 

𝐯 = 𝐀𝐯𝐯+ 𝐁𝐯𝐮,           (1.3.42b) 

𝟎 = 𝐀𝟐𝐱+ 𝐀𝟐𝐯𝐯+ 𝐁𝟐𝐮,          (1.3.42c) 

where 𝐄𝟏𝐯, 𝐀𝟏𝐯,𝐀𝐯,𝐁𝐯,𝐀𝟐𝐯  are arbitrary matrices of dimension  

𝑚!×𝑚!,𝑚!×𝑚!, 𝑚!×𝑚!,𝑚!×𝑙, and 𝑚!×𝑚!,  

respectively, and the other matrices are as defined above. Then the singularity condition for 

(1.3.42a), (1.3.42b), and (1.3.42c) is the same as that for ((1.3.31), (1.3.32)). 

The above corollary says that adding (or deleting) state variable that can be modeled 

by ordinary differential equations does not change the singularity condition.  The corollary is 

useful in reducing the dimension of the problem under consideration. With this corollary, 

Barnett and He (2008) are able to drop the Leeper and Sims’ model’s state variable 𝐾 from 

the state vector (1.3.17) in the system ((1.3.31), (1.3.32)) without affecting the singularity 

condition. The singularity condition then becomes 
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𝑑𝑒𝑡
 𝐄𝟏!  
𝐀𝟐!

= 0,                      (1.3.43) 

in which 

𝐄𝟏! =

     
1
𝑝              

𝑌
𝑃𝑉              0                  0                       0                   

1
𝑉      

  0              
1
𝑃

             𝑒!"      
1− 𝛾 1− 𝜋

1− 𝐿
        0                   𝑒!"

    0               
1
𝑃

             0                     0              −
1− 𝜇
𝑍 + 𝑛𝐾

      
1− 𝜇
𝑌

 

 

and 

𝐀𝟐!

=
   0               0                𝜇 𝐶 + 𝑔 !!!                 0             𝜃𝜇 𝑍 + 𝑛𝐾 !!!             𝜇𝑌!!!   
    0               0                       𝑎!"                            𝑎!"                     0                             𝑎!"        
   0               0                        0                            𝜎𝐿!!!                   0                       𝐴!!𝜎𝑌!!!

 

with 

2
23 *

1 (1 ) 1[1 ( 1)( ) ]e VY C g
C C g

µ µπ γ µφ µ −− − −= − − + −
+

,  

1
26 *

1 (1 ) 1[ ( ) ]e VY C g
C Y

µ µπ γ µφ µ −− − −= − + + , 

1
23

1 1(1 2 ) (1 )( )
1

a V A Y L C g
L

σ µ σ σ µ πφ µ
π

− − − −= − − + −
−

,   

2 1
24 2

1(1 2 ) ( 1) ( )
(1 )
Ca V A Y L C g
L

σ µ σ σ µ πφ σ
π

− − − −= − − + −
−

,   

𝑎!" = 1− 2𝜙𝑉 𝐴! 𝜇 − 𝜎 𝑌!!!!!𝐿!!! 𝐶 + 𝑔 !!! .  
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The prime denotes the deletion of the state variable 𝐾 from the vector 𝐱 in equation 

(1.3.17) and deletion of equation (1.3.21), which is the corresponding differential equation 

for capital 𝐾. 

Barnett and He (2008) also show by direct calculation that (1.3.43) is equivalent to 

𝑑𝑒𝑡 

       𝑒!"                 
  
(1−γ )(1−π )

1− L
                    

  
1− µ

Z + nK
                                𝑒!"!       

𝜇 𝐶 + 𝑔 !!!                0                           𝜃𝜇 𝑍 + 𝑛𝐾 !!!            − 𝜇𝑌!!!
 𝑎!"                          𝑎!"                                    0                                  𝑎!" 

         0                         𝜎𝐿!!!                                   0                             𝐴!!𝜎𝑌!!!

= 0  

(1.3.44) 

where 

𝑒!"! =
1− 𝜋(1− 𝛾)

𝐶∗ −𝜙𝑉𝑌!𝜇 𝐶 + 𝑔 !!! . 

Equation (1.3.44) determines the singularity-induced bifurcation boundary. According 

to Barnett and He (2008), this is the first time that this type of bifurcation has been found in a 

macroeconometric model. 

To investigate bifurcation of the closed-loop system under the control of the monetary 

policy rule and tax policy rule introduced in (1.3.15) and (1.3.16), Barnett and He (2008) 

augment the state variable to include two more controls as follows: 

𝐱𝐜 =

 𝐷 
𝑃
𝐶
𝐿
𝐾
𝑍
𝑌
𝑖
𝜏!

.                 (1.3.45) 
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The corresponding linearized system (1.3.31)-(1.3.32) becomes 

𝐄𝟏𝐜𝐱𝐜 = 𝐀𝟏𝐜 𝐱𝐜,            (1.3.46) 

𝟎 = 𝐀𝟐   𝟎 𝐱𝐜,           (1.3.47) 

where 𝐄𝟏𝐜 ∈ 𝑅!!
!×!! = 𝑅!×!,    𝐀𝟏𝐜 ∈ 𝑅!!

!×!! = 𝑅!×!, 𝑚!
! = 𝑚! + 2,  𝑚! = 𝑚 + 2. 

1.3.4 Numerical Results 

Corollary 1.3.1 allows adding (or deleting) state variables that can be modeled by 

ordinary differential equations without changing the singularity condition.  Barnett and He 

(2008) then apply condition (1.3.44) to the closed-loop system (1.3.47) and look for 

bifurcation boundaries. They vary pairs of parameters with all other parameters set at their 

estimates. They also find the intersection of their theoretically feasible ranges and the 95% 

confidence intervals of their estimated values, in particular, the intersection 𝜩 of (1.3.30) and  

𝑝 𝑖 − 𝑐𝜎! ,𝑝 𝑖 + 𝑐𝜎! ,  where 𝑝 𝑖  is the estimated value of parameter 𝑝 𝑖 , 𝜎! is the 

standard error of the estimate, and 𝑐 is the critical value of the 95th-percentile confidence 

interval for 𝑁 0,1 . 

The estimation information for the parameters 𝜇, g, and 𝛽 is taken directly from the 

Leeper and Sims paper, which is presented in Table 1.3.18. 

 

 

 

																																																													
8	Table	1.3.1	is	a	replicate	of	Barnett	and	He	(2008),	Table	1.	
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Table 1.3.1  Estimation of  𝜇,𝑔, and 𝛽 

Parameter              Estimate Standard Error 𝜩 Interval 
       𝜇 1.0248                      0.324                    [1, 1.6598] 
       𝑔                         0.0773                      0.292                    [0, 0.6496] 
       𝛽                          0.1645                     0.288                    [0, 0.7290] 
 

Note: Since 𝑔 is an exogenous variable, rather than a parameter, the “estimate” is the sample 

mean, and the “standard error” is the sample standard deviation. 

Barnett and He (2008) display a few representative sections of the singularity bifurcation 

boundary. One section is 𝜇 versus 𝑔, the other is 𝜇 versus 𝛽. They then explore what happens 

when 𝛽 crosses the singularity boundary, with 𝛽 ranging between 0.08 and 0.24.  Table 1.3.2 

displays the changes of finite eigenvalues, 𝜆!,… , 𝜆!, corresponding to the changes of 𝛽.9  

Table 1.3.2  Eigenvalue Changes 

   𝛽         0.080         0.120           0.160            0.165         0.170            0.200            0.240   
   𝜆!        1.002         1.002           1.002            1.002        1.002             1.002           1.002 

   𝜆!        0.080         0.120           0.160            0.165        0.170             0.200            0.240 

   𝜆!       -0.303        -0.262          -0.220          -0.215       -0.210            -0.178          -0.135 

   𝜆!       -3.558        -3.559          -3.561          -3.561       -3.561            -3.563          -3.566 

   𝜆!       -0.098        -0.084          -0.077          -0.076       -0.075           -0.072           -0.069 

   𝜆!       -0.002        -0.003          -0.003           -0.003      -0.003           -0.004           -0.004 

   𝜆!        3.101         5.177           8.237            8.682         9.254           13.416          28.401 

   𝜆!     -117.790   -204.703      -1811.413           ∞        1456.294        195.888        58.059 

 

Three more infinite eigenvalues are not shown in Table 1.3.2. The second through the 

ninth rows are the corresponding finite eigenvalues of the linearized model at each setting of 

																																																													
9	Table	1.3.2	is	a	replicate	of	Barnett	and	He	(2008),	Table	2.	
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𝛽 shown in the first row.  Table 1.3.2 shows that when the value of 𝛽 crosses the bifurcation 

boundary, with 𝛽 ranging between 0.08 and 0.24, 𝜆! decreases from negative values rapidly 

to −∞, jumps suddenly from −∞ to +∞, and then decreases while remaining positive. This 

phenomenon shows that the model has a change in dynamic structure, when 𝛽 crosses the 

singularity-induced bifurcation boundary.  The two regions separated by the boundary exhibit 

drastically different dynamical behaviors. Barnett and He (2008) also display that very small 

changes in 𝜇 can cause bifurcation independently of the setting of 𝑔 or 𝛽. They also state that 

the number of dynamic equations and the number of algebraic equations change, when the 

singularity-induced bifurcation boundary is reached. 

1.4 New Keynesian Model10 

1.4.1.  Introduction 

This section surveys Barnett and Duzhak’s (2008, 2010) work on bifurcation analysis 

within the class of New Keynesian models. Their interest in exploring bifurcation in New 

Keynesian models is driven by the increasing policy interest in New Keynesian models. In 

Barnett and Duzhak (2008, 2010), they have studied different specifications of monetary 

policy rules within the New Keynesian functional structure and have found both the existence 

of Hopf bifurcation and the existence of period doubling (flip) bifurcation boundaries through 

numerical procedures. 

The usual New Keynesian log-linearized model consists of a forward-looking IS-

curve describing consumption smoothing behavior, a Phillips curve derived from price 

																																																													
10	This	section	is	summarized	from	Barnett	and	Duzhak	(2008,2010).	
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optimization by monopolistically competitive firms in the presence of nominal rigidities, and 

a monetary policy rule having different specifications.  Barnett and Duzhak (2010) use 

eigenvalues of the linearized system to locate Hopf bifurcation boundaries and investigate 

different monetary policy effects on bifurcation boundary locations for each case.  They use 

two types of New Keynesian models: one can be reduced to produce a 2×2 Jacobian, and the 

other produces a 3×3 Jacobian. In the 3×3 case, Barnett and Duzhak (2010) employ a 

theorem on Hopf bifurcation from the engineering literature. 

Starting from Grandmont’s findings with a classical model, Barnett and Duzhak 

(2008, 2010) continue to follow the path from the Bergstrom-Wymer UK model, then to the 

Euler equations Leeper and Sims’ macroeconometric models, and then to New Keynesian 

models. Barnett and Duzhak (2008, 2010) believe that Grandmont’s conclusions appear to 

hold for all categories of dynamic macroeconomic models and suggest that Barnett and He’s 

initial findings with the Bergstrom-Wymer ‘s UK model appear to be generic. Barnett and 

Duzhak (2008, 2010) suggest that study of the full nonlinear system and analysis of 

continuous-time New Keynesian models will merit future research. 

1.4.2.  The Model11  

The main assumption of New Keynesian economic theory is that there are nominal 

price rigidities preventing prices from adjusting immediately and thereby creating 

disequilibrium unemployment. Price stickiness is often introduced in the manner proposed by 

Calvo (1983). The model used by Barnett and Duzhak (2008, 2010) is based upon Walsh 

																																																													
11	The	model	description	is	modified	from	Barnett	and	Duzhak	(2010).	
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(2003), section 5.4.1, pp. 232-239, which in turn is based upon the monopolistic competition 

model of Dixit and Stiglitz (1977).   

The model consists of consumers, firms, and monetary policy authority. The 

representative consumer can allocate wealth to money and bonds and choose the aggregate 

consumption stream to maximize the utility. Consumers derive utility from the composite 

consumption good 𝐶! , real money balances, and leisure, and supply  labor in a competitive 

labor market, while receiving labor income 𝑤!𝑁! . Consumers own the firms, which produce 

consumption goods, and they receive all profits 𝜋!.  

Firms operate in a monopolistically competitive market, in which each firm has 

pricing power over the goods it sells. A random fraction of firms does not adjust its product 

price in each period.  A result is price rigidity by the firm, while the remaining firms adjust 

prices to their optimal levels. Firms make their production and price-setting decisions by 

solving the cost minimization and pricing decision problems, such that  

1
1

t t t
t t t

i Ex E x π
σ

+
+

−= −                                                                                         (1.4.1) 

𝜋! = 𝛽𝐸!𝜋!!! + 𝜅𝑥!               (1.4.2) 

where 𝜋! is the inflation rate at time 𝑡;  𝑖! is the interest rate; 𝑥! = (𝑦! − 𝑦!
!) is the gap 

between actual output percentage deviation 𝑦! and the flexible-price output percentage 

deviation 𝑦!
!; σ is a degree of relative risk aversion; 𝐸! is the expectations operator, 

conditionally upon information at time 𝑡, and 𝛽 is the discount factor.  

              Equation (1.4.1) represents the demand side of the economy and is a forward-

looking IS curve that relates the output gap to the real interest rate. Equation (1.4.2) 
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represents the supply side and is the New-Keynesian Phillips curve describing how inflation 

is driven by the output gap and expected inflation. The remaining equation to close the model 

will be a monetary policy rule, in which the central bank uses a nominal interest rate as the 

policy instrument. Two main policy classes are targeting rules and instrument rules.  A well-

known instrument rule is Taylor’s rule, using a reaction function responding to inflation and 

output to set the path of the Federal Funds rate. Barnett and Duzhak (2010) initially center 

analysis on specification of the current-looking Taylor rule, then on forward-looking, 

backward-looking, and hybrid Taylor rules. Literature also proposes many ways to define an 

inflation target. Barnett and Duzhak (2010) consider current-looking, forward-looking and 

backward-looking inflation targeting policies. 

1.4.3.  Determinacy and Stability Analysis 

               Barnett and Duzhak (2010) use Theorem 1.1 for the analysis of the reduced 2 2×  

case of 1t t tE + =A x Bx . They also find bifurcations in the 3 3× case by using the following 

Lemma 1.4.1 and Theorem 1.4.1, which arise from the engineering literature.  That approach 

had not previously been used in the economics literature.  According to Barnett and Duzhak 

(2010), in the 3 3×  case with current-looking or backward-looking policy rules, the only 

form of bifurcation detected from the linearized model was Hopf bifurcation.  

      Lemma  1.4.1. (Barnett and Duzhak (2010), Lemma 3.1) For a matrix 𝐀 = [𝑎!"], with 

𝑖, 𝑗 = 1,2,3, a pair of complex conjugate eigenvalues lies on the unit circle and another 

eigenvalue lies inside the unit circle, if and only if 

𝑎    𝑥 < 1,  

𝑏    𝑥 + 𝑧 < 1+ 𝑦,  
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𝑐     𝑦 − 𝑥𝑧 = 1− 𝑥!,  

where 𝑧,𝑦, and 𝑥 are the coefficients of the characteristic equation 𝜆! + 𝑧𝜆! + 𝑦𝜆 + 𝑥 = 0 of 

the matrix 𝐀.  

              The following theorem is Barnett and Duzhak’s (2010), Theorem 3.2. The proof is 

included in that paper. 

Theorem 1.4.1  (Existence of Hopf Bifurcation in 3 Dimensions) Consider a map 

 𝐱 ↦ 𝐟 𝐱,𝛗 , where 𝐱 has 3 dimensions. Let 𝐉 be the Jacobian of the transformation, and let 

the characteristic polynomial of the Jacobian be 𝑃 𝜆 = 𝜆! + 𝑧𝜆! + 𝑦𝜆 + 𝑥 = 0. Assume 

that for one of the equilibria,  𝐱∗,𝛗∗ , there is a critical value, 𝜑!!, for one of the parameters, 

𝜑!∗, in 𝛗∗such that eigenvalue conditions (a),(b), and (c) and transversality condition (d) hold, 

where: 

𝑎    𝑥 < 1,  

𝑏    𝑥 + 𝑧 < 1+ 𝑦,  

𝑐     𝑦 − 𝑥𝑧 = 1− 𝑥!,  

𝑑    **

( , )
| 0c
i i

j

i
ϕ ϕ

λ
ϕ =

∂
≠

∂

* *x φ
 for the complex conjugates with 𝑗 = 1,2. 

Then there is an invariant closed curve Hopf-bifurcating from 𝛗∗. 

i. Current-Looking Taylor Rule 

The current-looking Taylor rule is: 

              𝑖! = 𝑎!𝜋! + 𝑎!𝑥! ,                                  (1.4.3) 
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where  𝑎! is the coefficient of the central bank’s reaction to inflation and 𝑎! is the coefficient 

of the central bank’s reaction to the output gap.  

The 3-equation system ((1.4.1), (1.4.2), (1.4.3)) constitutes a New Keynesian model. 

To analyze the model’s determinacy and stability properties, Barnett and Duzhak (2010) first 

display the system in the following form, which is not a closed form: 

𝐀𝐸!𝐱!!! = 𝐁𝐱! + 𝛅! ,  

where  

𝐀 =
1       

 

1
σ

        0 

0          𝛽        0 
 0          0         0  

,  𝐁 =
1           0         

 

1
σ

  

−𝜅        1          0  
    𝑎!        𝑎!      − 1   

, 𝐱! =
𝑥!
𝜋!
𝑖!
. 

Obtaining the matrix 𝐂 = 𝐀!𝟏𝐁 is impossible, since 𝐴 is a singular matrix. 

Therefore, they reduce the system to a system of two log-linearized equations by 

substituting Taylor’s rule (1.4.3) into the consumption Euler equation. The system of two 

equations has the following form: 

 1        
1
𝜎 

0         𝛽 

 𝐸!𝑥!!!
 𝐸!𝜋!!!

= 1+
𝑎!
𝜎       −

𝑎!
𝜎  

−𝜅              1

𝑥!
𝜋! , 

which can be written as   

𝐀𝐸!𝐱!!! = 𝐁𝐱! , 

where   
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𝐱! =
𝑥!
𝜋! ,𝐀 =

 1         
 

1
σ

0         𝛽 

, and 𝐁 =   1+
  

a2

σ
      −

  

a1

σ
 

−𝜅              1
. 

Premultiply the system by the inverse matrix 𝐀!𝟏, 

𝐀!𝟏 =
  1         −

1
𝛽𝜎   

  0              
1
𝛽

      
, 

results in 

   Etxt+1 = Cxt   or 
 𝐸!𝑥!!!
 𝐸!𝜋!!!

=
  1+ !!!!! 

!"
      

 

α1β −1
σβ

 

 −κ
β

                !
!

  

𝑥!
𝜋! ,  

where 𝐂 = 𝐀!𝟏𝐁.  

The eigenvalues of 𝐂 are the roots of the characteristic polynomial 

𝑝 𝜆 = 𝑑𝑒𝑡 𝐂− 𝜆𝐈 = 𝜆! − 𝜆 1+
𝑎!𝛽 + 𝜅 
𝜎𝛽 +

1
𝛽 +

𝜎𝛽 + 𝑎!𝛽 + 𝜅𝑎!𝛽
𝜎𝛽! . 

Define 𝐷 as 

𝐷 = 1+
𝑎!𝛽 + 𝜅
𝜎𝛽 +

1
𝛽

!

− 4
𝜎𝛽 + 𝑎!𝛽 + 𝜅𝑎! 𝛽

𝜎𝛽! . 

Then the eigenvalues are  

              2
1
1 1(1 )
2

a Dβ κλ
σβ β
+= + + +     and       2

2
1 1(1 )
2

a Dβ κλ
σβ β
+= + + − . 
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          According to Blanchard and Kahn (1980), the system of expected difference equations 

has a determinate solution, if the number of eigenvalues outside the unit circle equals the 

number of forward looking variables. This system has two forward-looking variables, 𝑥!!! 

and 𝜋!!!. Therefore the stability and uniqueness of the solution require both eigenvalues to 

be outside the unit circle. It can be shown that both eigenvalues will be outside the unit circle, 

if and only if  

𝑎! − 1 𝜅 + 1− 𝛽 𝑎! > 0.            (1.4.4) 

         Interest rate rules that satisfy 𝑎! > 1 are called active.  Such active rules define 

Taylor’s principle, stating that the interest rate should be set higher than the increase in 

inflation. When 𝑎! > 1, clearly (1.4.4) holds. Monetary policy satisfying the Taylor’s 

principle is thought to eliminate equilibrium multiplicities. 

In this case, the Jacobian of the New Keynesian model can be written in the form: 

𝐉 =
  1+

𝑎!𝛽 + 𝜅
𝜎𝛽

      
𝑎!𝛽 − 1
𝜎𝛽

 

−
𝜅
𝛽                    

1
𝛽

. 

The model is parameterized by: 

𝛗 =

 𝛽 
𝜎
𝜅
𝑎!
𝑎!

 

Barnett and Duzhak (2008, 2010) use 𝑎! and 𝑎! as candidates for bifurcation 

parameters.  They employ Theorem 1.1.1 to look for the existence of Hopf bifurcation for this 
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New Keynesian model with current looking Taylor rule. The following result is proved in 

Barnett and Duzhak’s (2008), Proposition 1.3.1: 

Proposition 1.4.1  The new Keynesian model with current-looking Taylor rule, equations 

(1.4.1),(1.4.2) and (1.4.3), undergoes a Hopf bifurcation at equilibrium points, if and only if 

the discriminant of the characteristic equation is negative and 𝑎!! = 𝜎𝛽 − 𝜅𝑎! − 𝜎. 

Based on the result in Prop 1.4.1, Barnett and Duzhak (2010) find that the bifurcation 

boundary is the set of parameter values satisfying the following condition: 

−1 <
𝜎 + 𝜎𝛽 − 𝜅𝑎!𝛽 + 𝜅

𝜎𝛽! < 1. 

ii. Forward-Looking Taylor Rule 

A forward-looking Taylor rule is: 

 𝑖! = 𝑎!𝐸!𝜋!!! + 𝑎!𝐸!𝑥!!!.                            (1.4.5) 

The model consisting of (1.4.1),(1.4.2) and (1.4.5) is parameterized by 

𝛗 =

 𝛽 
𝜎
𝜅
𝑎!
𝑎!

. 

The resulting Jacobian has the following form: 

 𝐉 =
  
  

σ
σ − a2

+
κ (1− a1)
(σ − a2 )β

      
  

a1 −1
(σ − a2 )β

 

   −κ
β

                              
 

1
β

 

. 
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Barnett and Duzhak (2010) use 𝑎! and 𝑎! as candidates for bifurcation parameters. 

The  following result is proved in Barnett and Duzhak (2008) as Proposition 3.2: 

Proposition 1.4.2.  The new Keynesian model with forward-looking Taylor rule, equations 

(1.4.1), (1.4.2) and (1.4.5), undergoes a Hopf bifurcation at equilibrium points, if and only if 

the discriminant of the characteristic equation is negative and 
  
a2

C = −σ
β
+σ . 

 Based on the result in Prop 1.4.2, Barnett and Duzhak (2010) find the bifurcation 

boundary is the set of parameter values satisfying the following condition: 

−1 <
1
2 𝛽 +

𝜅 1− 𝑎!
𝜎 +

1
𝛽 < 1. 

Barnett and Duzhak (2010) propose a numerical algorithm to detect a period doubling 

bifurcation, which is based on the following technique. Given the 𝑖!! iterate of the fixed 

point, 𝑓! 𝐱 − 𝐱 = 0, a period-doubling bifurcation will occur whenever 𝜑!" = 0 with 

 𝜑!" = 𝑑𝑒𝑡  𝐉 ! + 𝐈𝐧 , where 𝐉 𝐢  is the Jacobian matrix of the iterated map 𝑓! .  

Barnett and Duzhak (2010) use the software continuation package CONTENT, 

developed by Yuri Kuznetsov and V.V. Levitin, to locate the bifurcation boundary. Barnett 

and Duzhak select the parameter 𝑎! to be a free bifurcation parameter and find a period-

doubling bifurcation point at 𝑎! = 2.994, with the other parameters set constant in 

accordance with their paper’s appendix table. The nature of the state space solution depends 

upon where the bifurcation boundary is located. If parameter 𝑎! is moved to 3 with the other 

parameters set constant, the solution becomes periodic. Along the bifurcation boundary, the 

values of parameter, 𝑎!, are between 2.75 and 3. When values of 𝑎!and 𝑎! are along the 



	 78	

bifurcation boundary with the forward looking Taylor rule, Barnett and Duzhak (2010) find 

that the central bank actively reacts to the expected future values of inflation and even more 

aggressively to the forecasted values of the output gap.           

iii. Hybrid Taylor Rule 

          A Hybrid-Taylor rule is: 

             𝑖! = 𝑎!𝐸!𝜋!!! + 𝑎!𝑥!            (1.4.6) 

This rule was proposed in Clarida, Gali, and Gertler (2000), who maintain that the rule 

reflects the Federal Reserve’s existing policy. 

                      The system ((1.4.1), (1.4.2), (1.4.6)) has the following Jacobian:   

 𝐉 =
 1+ !!

!
+ !(!!!!)

!"
      !!!!

!"
  

        − !
!

                          !
!

  
. 

Barnett and Duzhak (2010) use 𝑎! and 𝑎! as candidates for bifurcation parameters. The 

following result was proved in Barnett and Duzhak (2008), Proposition 3.3: 

Proposition 1.4.3. The new Keynesian model with Hybrid-Taylor rule, equations, (1.4.1), 

(1.4.2), and (1.4.6), undergoes a Hopf bifurcation at equilibrium points, if and only if the 

discriminant of the characteristic equation is negative and 𝑎!! = 𝛽𝜎 − 𝜎. 

Based on Proposition 1.4.3, Barnett and Duzhak (2010) find that the bifurcation 

boundary is the set of parameter values satisfying the following condition: 

              −1 <
𝜎 1+ 𝛽! + 𝜅(1− 𝑎!)

2𝜎𝛽 < 1. 
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iv.        Current-Looking Inflation Targeting 

             The inflation targeting equation is: 

               𝑖! = 𝑎!𝜋!,            (1.4.7) 

which can be used instead of the Taylor rule to complete the New Keynesian model.  

The system ((1.4.1), (1.4.2), (1.4.7)) has the following Jacobian: 

             𝐉 =
  σβ +κ

σβ
      

  

a1β −1
σβ

  

  −κ
β

              
 

1
β

 
 

The model is characterized by 

              𝛗 =
𝛽
𝜎
𝜅
𝑎!

. 

               Barnett and Duzhak (2010) use 𝑎! as a candidate for a bifurcation parameter. The 

following result is proved in Barnett and Duzhak (2008), Proposition 3.4: 

Proposition 1.4.4.  The new Keynesian model with current-looking inflation targeting, 

equations (1.4.1), (1.4.2) and (1.4.7), produces a Hopf bifurcation at equilibrium points, if 

and only if the discriminant of the characteristic equation is negative and 
  
a1

C = σβ −σ
κ

. 

Based on Proposition 1.4.4, Barnett and Duzhak (2010) find that the bifurcation 

boundary is the set of parameter values satisfying the following condition: 
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−3 <
𝜎 + 𝜅
𝜎𝛽 < 1. 

v. Forward-Looking Inflation Targeting 

A forward-looking inflation targeting rule is: 

              𝑖! = 𝑎!𝐸!𝜋!!!.             (1.4.8) 

The system ((1.4.1), (1.4.2), (1.4.8)) has the Jacobian as follows: 

        𝐉 =
 
  
1+

κ (1− a1)
σβ

     
  

a1 −1
σβ

  

  −κ
β

                 
 

1
β

   
. 

The model is parameterized by 

          𝛗 =
𝛽
𝜎
𝜅
𝑎!

. 

The following proposition is proved in Barnett and Duzhak (2008), Proposition 3.5: 

Proposition 1.4.5. The new Keynesian model with forward-looking inflation targeting, 

equations (1.4.1), (1.4.2), and (1.4.8), produces a Hopf bifurcation at equilibrium points, if 

and only if the discriminant of the characteristic equation is negative and 𝛽! = 1.       

Based on Proposition 1.4.5, which does not depend on 𝑎!, Barnett and Duzhak (2010) find 

that the bifurcation boundary is the set of parameter values satisfying the following condition: 

         −3 <
𝜅(𝑎! − 1)

2𝜎 < 1. 
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            Parameter 𝛽 is both the discount factor and the coefficient in (1.4.2) which scales the 

impact of expected inflation. Assuming for simplicity that 𝛽 = 1, Barnett and Duzhak (2010) 

find it surprising that this common setting of parameter 𝛽 can put the model directly onto a 

Hopf bifurcation boundary. This conclusion is conditional upon the assumption that the 

model is a good approximation to the economy and that the discriminant of the characteristic 

equation is negative. In such cases, it is not appropriate to set 𝛽 = 1. 

Barnett and Duzhak (2010) further find that the dynamic solution in phase space, i.e. 

with inflation rate plotted against output gap, will be periodic, if 𝛽 = 0.98.  They find that if 

the parameter value is located directly on the bifurcation boundary, solution in phase space 

will become an invariant limit cycle.  

vi. Backward-Looking Taylor Rule 

Backward-looking monetary policy rules are intended to prevent expectations driven 

fluctuations.  Such rules are constructed with decisions based on observed past values of 

variables. Examples are found in Carlstrom and Fuerst (2000) and Eusepi (2005). Barnett and 

Duzhak (2010) observe that such a policy should be sufficient for determinacy of equilibria.  

In a backward-looking Taylor rule, the central bank sets an interest rate according to 

the past values of inflation and output gap as follows: 

  𝑖! = 𝑎!𝜋!!! + 𝑎!𝑥!!!.            (1.4.9) 

The system ((1.4.1), (1.4.2), (1.4.9)) can be written in the following form: 

𝐸!𝐱!!! = 𝐂𝐱!, 

with 
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𝐂 =
 
1+ κ

σβ
    

 
− 1
σβ

      
 

1
σ

 

   −κ
β

          
 

1
β

          0   

    𝑎!              𝑎!         0 

 ,   𝐱! =
𝑥!
𝜋!
𝑖!
. 

Matrix  𝐂 has the characteristic polynomial 

𝑝 𝜆 = det 𝐂− 𝜆𝐈 = 𝜆! −
𝜎 1+ 𝛽 + 𝜅

𝜎𝛽 𝜆! +
𝜎 − 𝛽𝑎!
𝜎𝛽 𝜆 +

𝜅𝑎! + 𝑎!
𝜎𝛽 . 

The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.6. 

Proposition 1.4.6. The New Keynesian model with backward-looking Taylor rule produces a 

Hopf bifurcation at equilibrium points, if the transversality condition 
!|!!  𝐱∗,𝛗∗ |

!!!
∗  ⃒!!∗!!!! ≠ 0 

holds, and if the parameters 𝛼! and 𝛼! satisfy the following three conditions at the 

equilibrium: 

              𝑎   2 1 1a aκ
σβ
+ < ,   

𝑏   𝑎! 1− 𝛽 + 𝜅 𝑎! − 1 > 0,    

𝑐  22 1 2 1 2
2 2

( )( (1 ) ) 1 ( )a a a a aσ β κ σ β κ κ
σβ σ β σβ
− + + + ++ = − . 

vii. Backward-Looking Inflation Targeting 

A backward-looking inflation targeting rule sets the interest rate according to inflation 

during a previous period, as follows: 

        𝑖! = 𝑎!𝜋!!!.                                           (1.4.10) 
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The system ((1.4.1), (1.4.2), (1.4.10)) has the Jacobian as follows: 

        𝐉 =

1+
𝜅
𝜎𝛽    −

1
𝜎𝛽        

1
𝜎

    −
𝜅
𝛽

            
1
𝛽

          0   

      0             𝑎!          0  

. 

The Jacobian has the characteristic polynomial 

       𝑝 𝜆 = 𝜆! −
𝜎 1+ 𝛽 + 𝜅

𝜎𝛽 𝜆! +
1
𝛽 𝜆 +

𝜅𝑎!
𝜎𝛽 . 

The following proposition is proved in Barnett and Duzhak (2010) as Proposition 3.7. 

Proposition 1.4.7 The New Keynesian model with backward-looking inflation targeting 

produces a Hopf bifurcation at equilibrium points, if the transversality condition  

 
!|!!  𝐱∗,𝛗∗ |

!!!
∗  ⃒!!∗!!!! ≠ 0 holds, and if the parameters 𝜑!∗ satisfy the following three conditions 

at the equilibrium: 

             𝑎    1 1aκ
σβ

< ,  

         𝑏    1 1a > ,  

             𝑐   
22

1 1
2 2

( (1 ) ) 1 .a aσ β κ σ β κ κ
σ β σβ

⎛ ⎞+ + + = −⎜ ⎟
⎝ ⎠

 

 Barnett and Duzhak (2010) note that their numerical search for bifurcations in this 

class of models has found only Hopf bifurcations. 

viii. Current-Looking Taylor Rule with Interest Rate Smoothing Term 
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 A current-looking Taylor rule with interest rate smoothing term allows central 

bankers to avoid volatility in interest rate by including a lagged interest rate term in the rule 

as follows: 

        𝑖! = (1− 𝑎!)(𝑎!𝜋! + 𝑎!𝑥!)+ 𝑎!𝑖!!!.      (1.4.11) 

Parameter 𝑎!, which is assumed to be between 0 and 1, describes the degree of interest rate 

smoothing by the central bank.  The model consisting of (1.4.1),  (1.4.2) and (1.4.11) is 

parameterized by 

       𝛗 =

𝛽
𝜎
𝜅
𝑎!
𝑎!
𝑎!

.  

The model has the following matrix form: 

𝐸!𝐱!!! = 𝐂𝐱!, 

with 

      𝐂 = 

1+                                                                             

                                                                                 0

            

 

and 

κ
σβ

1
σβ

−
1
σ

κ
β

−
1
β

3 1 2
2 3

( 1 )( )( 1) a a aa a σ κ
σβ

− + −− − + 3 1 2( 1 )( )a a aσ
σβ

− + −− 2 3
3

( 1 )a a a
σ
− +− +
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𝐱! =
𝑥!
𝜋!
𝑖!
. 

This system has the following characteristic polynomial:  

       𝑝 𝜆 = 𝜆! + 𝜆!  

                     + 𝜆 − !!
!
.  

The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.8. 

Proposition 1.4.8.  The New Keynesian model consisting of ((1.4.1), (1.4.2), (1.4.11)) 

produces a Hopf bifurcation at equilibrium points, if the transversality condition 
!|!!  𝐱∗, 𝛗∗ |

!!!
∗  

⃒!!∗!!!! ≠ 0 holds, and if the parameters, 𝛗∗, satisfy the following three conditions at the 

equilibrium: 

𝑎    𝑎! − 𝛽 < 0,     

𝑏     𝑎! > 1,    

(𝑐)  
2
3 3 3 3 2 3 1 3 2 3

3 2

1 ( 1) ( 2) (1 )(1 ) 0.a a a a a a a a a aa κ κ
β β σβ
− − − + − + +− − + + =  

ix. Backward-Looking Taylor Rule With Interest Rate Smoothing Term 

                  The backward-looking Taylor rule with interest rate smoothing is:  

       𝑖! = (1− 𝑎!)(𝑎!𝜋!!! + 𝑎!𝑥!!!)+ 𝑎!𝑖!!!.    (1.4.12) 

 

2 3
3

( 1) 11a a a κ
σ σβ β
− − − − −

1 2 3 2 3 1 3
3

(1 ) 1a a a a a a aaκ κ
σβ β

− + + − ++ +
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                  The model consisting of (1.4.1), (1.4.2) and (1.4.12) has the following Jacobian: 

        𝐉 = 

1+                      

                                  0   

             

 

with characteristic polynomial 

   𝑝 𝜆 = 𝜆! − 1+ 𝑎! +
𝜅
𝜎𝛽 +

1
𝛽 𝜆! +

𝑎!𝛽 𝑎! − 1 + 𝜅𝑎! + 𝜎(1+ 𝑎!)
𝜎𝛽 + 𝑎! 𝜆 

                          1 3 2 3 3(1 ) (1 ) .a a a a aκ σ
σβ

− + − −+
 

The following proposition is proved in Barnett and Duzhak (2010) as Proposition 3.9. 

Proposition 1.4.9.  The New Keynesian model consisting of ((1.4.1), (1.4.2), (1.4.12)) 

produces a Hopf bifurcation at equilibrium points, if the transversality condition   

 
!|!!  𝐱∗,𝛗∗ |

!!!
∗  ⃒!!∗!!!! ≠ 0 holds, and if the parameters,  𝛗∗, satisfy the following three 

conditions at the equilibrium: 

𝑎    < 1,     

𝑏     1 3 2 3 3 2 3 3 3
3 3

(1 ) (1 ) ( 1) (1 )1a a a a a a a a aa aκ σ κ σ β κ σ
σβ σβ

− + − − − − − + + +− − < + , 

𝑐   2 3 3 3 2 1 3 3 3
3 2

( 1) (1 ) (( )(1 ) )( (1 ) )
( )

a a a a a a a a aa β κ σ κ σ σβ κ σ
σβ σβ

− + + + + − − + + ++ +   

κ
σβ

1
σβ

−
1
σ

κ
β

−
1
β

2 3(1 )a a− 1 3(1 )a a− 3a

1 3 2 3 3(1 ) (1 )a a a a aκ σ
σβ

− + − −
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2
2 1 3 3( )(1 )1 a a a aκ σ

σβ
⎛ + − − ⎞= −⎜ ⎟
⎝ ⎠

 

Through numerical procedures, Barnett and Duzhak (2010) also find the existence of 

period-doubling bifurcation by varying 𝑎!, while holding other parameters fixed in 

accordance with the appendix in Barnett and Duzhak (2010). The first period doubling 

bifurcation point is found at 𝑎! = 5.7. Starting from this point, Barnett and Duzhak (2010) 

then vary 𝑎! and 𝑎! simultaneously. They discover that period doubling bifurcation will 

occur for large values of the parameter 𝑎!.  As a result, aggressive reaction of the central 

bank to past values of the output gap can lead to a period doubling bifurcation within this 

model.  

Duzhak (2010) started from point 𝑎! = 5.7 and varied parameters 𝑎! and 𝑎! 

simultaneously, while holding the other parameters constant in accordance with their paper’s 

appendix.  They numerically found a period doubling bifurcation boundary with values of the 

parameter 𝑎! within a very narrow range from 5.98 to 6.02. Barnett and Duzhak (2010) also 

found that a change in the interest rate smoothing parameter 𝑎! leads to a different critical 

period-doubling bifurcation value for the parameter 𝑎!. Although previously thought to be 

the least prone to any kind of bifurcations, backward-looking interest rate rules show 

evidence of both Hopf bifurcation and period-doubling bifurcation. 

x. Hybrid Rule With Interest Rate Smoothing Term 

The hybrid rule with interest rate smoothing, proposed in Clarida, Gali and Gertler 

(1998), is often believed to match the empirics of Japan, the United States, and the European 

Union.  That rule allows the central banker to set a short-term interest rate based on 
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forecasted inflation, the current value of the output gap, and a past value of the interest rate, 

as follows: 

  𝑖! = (1− 𝑎!)(𝑎!𝜋!!! + 𝑎!𝑥!)+ 𝑎!𝑖!!!.      (1.4.13) 

The model consisting of equation ((1.4.1), (1.4.2), (1.4.13)) can be written as 

  𝐀𝐸!𝐱!!! = 𝐁𝐱! ,  

with   

𝐀 =
 1              

 

1
σ

             0     

0               𝛽              0    
 0   − 𝑎! 1− 𝑎!    1     

,  𝐁 =
  1                0       

 

1
σ

 

−𝜅              1         0 
 𝑎!(1− 𝑎!)    0         𝑎!     

, 𝐱! =
𝑥!
𝜋!
𝑖!!!

.   

This model has the following Jacobian: 

𝐉 = 

       1+                                         

                                                                 0         

             

 

with characteristic polynomial 

𝑝 𝜆 = 𝜆! − 1+ 𝑎! +
𝜅
𝜎𝛽 +

1
𝛽 𝜆!

+ 𝑎! +
1+ 𝑎!
𝛽 −

𝑎! 1− 𝑎!
𝜎 +

𝑎!𝜅 + 𝑎!𝜅 1− 𝑎!
𝜎𝛽 𝜆 

              .  

κ
σβ

1
σβ

−
1
σ

κ
β

−
1
β

1 3
2 3

(1 ) (1 )a a a aκ
β
− + − 1 3(1 )a a

β
−

3a

3 3 2 2a a a a
β σβ σβ

− − +
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The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.10. 

Proposition 1.4.10. The New Keynesian model consisting of ((1.4.1), (1.4.2), (1.4.13)) 

produces a Hopf bifurcation at equilibrium points, if the transversality condition  
!|!!  𝐱∗, 𝛗∗ |

!!!
∗  

⃒!!∗!!!! ≠ 0 holds, and if the parameters, 𝛗∗, satisfy the following three conditions at the 

equilibrium: 

       𝑎     3 3 2 2 1a a a a
β σβ σβ

− − + < ,   

𝑏     2 3 3 3 2 3 3 1 3
3 3

(1 ) 1 (1 ) (1 )11 1a a a a a a a a aa aκ κ κ
σβ β β β σ σβ
− − + − + −− − − − < + + − + , 

𝑐    3 2 3 3 1 3
3
1 (1 ) (1 )a a a a a aa κ κ
β σ σβ
+ − + −+ − +  

       + 1+ 𝑎! + +   = 1−
!

.  

              Through numerical procedures, Barnett and Duzhak (2010) find the existence of 

period-doubling bifurcation by varying 𝑎! while holding other parameters fixed in 

accordance with their appendix. The critical value of parameter 𝑎! is found at 𝑎! = 3.03. 

Starting with this point, Barnett and Duzhak (2010) first vary parameters 𝑎! and 𝑎! and then 

vary parameters 𝑎! and 𝑎! with the other parameters held constant.  

            In the first case, they find a fold flip bifurcation point at 𝑎! = 3.03 and 𝑎! = 0.46. In 

the second case, they find parameter 𝑎! is located mostly between 3 and 3.15 within the 

period-doubling bifurcation boundary, regardless of the values of parameter 𝑎!. They 

3 2 3(1 )a a a
β σβ

−− +
1
β

κ
σβ

3 2 3(1 )a a a
β σβ

−− +
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conclude that a period doubling bifurcation will occur, if the central bank actively reacts to 

the output gap. Therefore, two types of bifurcations are revealed for the hybrid interest rate 

rule. 

1.5 New Keynesian Model With Regime Switching12 

1.5.1.  Introduction 

Monetary policy has seen major changes over the past decades. In the 1970s, the 

central bank stayed relatively passive in its actions in the presence of high inflation along 

with slow economic growth. Afterwards to help to combat high inflation present at the start 

of the 1980s, the Federal Reserve shifted to a more active regime. The phenomenon “great 

moderation” arose from the following period of moderate inflation along with stable 

economic growth in the mid-1980s. In the 21st century, following the financial crises starting 

in 2007, the Fed had to move aggressively. 

Section 1.5, based on Barnett and Duzhak (2014), investigates whether bifurcations 

can result from monetary policy regime switching over time. Barnett and Duzhak (2014) 

focus on New Keynesian models.  Previous literature like Gali and Gertler (1999), Bernanke, 

Laubach, Mishkin, and Posen (1999), and Leeper and Sims (1994) has shown that the 

original New Keynesian model has been developed into an important tool for monetary 

policy.  In Barnett and Duzhak (2008) and Barnett and Duzhak (2010), the parameter space 

of the standard New Keynesian model has been shown to be stratified into bifurcation subsets. 

Relevant previous work includes, but is not limited to the following.  Andrews (1993) and 

																																																													
12	This	section	is	summaried	from	Barnett	and	Duzhak	(2014).	
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Evans (1985) study monetary policy with parameter instability.  Davig and Leeper (2006) 

and Farmer, Waggoner, and Zha (2007) study determinacy when the Taylor rule is 

generalized to allow for regime switching. There is a literature on methods to determine 

parameter instability in time series (see Hansen (1992) and Nyblom (1989)). Economic 

models of regime switching had been investigated previously in different contexts, such as 

Hamilton (1989) and Warne (2000). Clarida, Gali, and Gertler (1999), Sims and Zha (2006), 

and Groen and Mumtaz (2008) find empirical support for regime switching in monetary 

policy.13 

In Barnett and Duzhak (2014), the policy regime is assumed to follow a Markov chain 

with a fixed transition matrix. As a result, the solution to the model evolved differently 

depending on the state of the regime.  Barnett and Duzhak (2014) investigate three models—

a basic setup with a simple monetary policy rule, a New Keynesian model with regime 

switching, and a New Keynesian model with a hybrid monetary policy rule. They show 

through bifurcation analysis that regime switching can bring changes in the qualitative 

properties of the solution. 

In the first model, the nominal interest rate is set as a function of current inflation with 

the response coefficient depending on the policy regime present at the time. Combining both 

the Fisher equation that links the nominal interest rate to future inflation, and the equation of 

real interest rate, Barnett and Duzhak (2014) get an equation that relates future inflation to 

current inflation and the real interest rate. A system of two linear difference equations is 

acquired for inflation in the two regimes. Barnett and Duzhak (2014) further use the 

eigenvalues of the system’s matrix to perform the bifurcation analysis.   Two main findings 
																																																													
13		This	model	description	is	modified	from	Barnett	and	Duzhak	(2014)	
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with respect to bifurcations are:  first, for the basic setup, Barnett and Duzhak (2014) find no 

possibility of a Hopf bifurcation; second, they find the existence of a period doubling 

bifurcation. In this case, the solution can move from a stable to a periodic solution, where 

periodicity doubles in successive bifurcations. 

In the second model, Barnett and Duzhak (2014) explore whether their analysis of this 

simple setup carries over to the standard New Keynesian model with regime switching and a 

standard Taylor rule. The Taylor (1999) rule makes the nominal interest rate a function of 

both inflation and the output gap. Barnett and Duzhak (2014) use numerical methods and find 

that this model does not exhibit any bifurcations for the range of feasible parameter 

combinations.  

In the third model, Barnett and Duzhak (2014) investigate whether a state-of-the-art 

hybrid Taylor rule exhibits bifurcations. In this model, the Taylor rule allows for forward 

looking response to inflation. Using the same technique, they find that this model might 

exhibit a period-doubling bifurcation. The ideas from the basic setup thus carry over to the 

more prominent model of monetary policy. The analysis reveals that period doubling 

bifurcations and the resulting changes in the dynamics in inflation and output have more 

tendencies to arise in models with the forward-looking Taylor rule than in the model with the 

current-looking counterpart. 

1.5.2.  Dynamics with a Simple Monetary Policy Rule 

The basic setup with simple monetary policy rule consists of the following two 

equations: 

   𝑖! = 𝛼(𝑠!)𝜋!,                                                                                                  (1.5.1)                 
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   𝑖! = 𝐸!𝜋!!! + 𝑟! .                                                                                            (1.5.2) 

  A policy reacts to inflation by changing an interest rate according to (1.5.1), 

where 𝑖! is the nominal interest rate, 𝛼(𝑠!) a state-dependent coefficient which changes with 

the policy regime 𝑠!, and 𝜋! denotes the rate of inflation. 

Under the assumption that there are two possible realizations for the policy regime, 𝑠! , 

the linear reaction function to inflation evolves stochastically between two states, 𝑠! = 1 and 

𝑠! = 2, so that  

𝛼 𝑠! = 𝛼!                   for  𝑠! = 1 
𝛼!                   for  𝑠! = 2, 

where 𝛼! denotes different parameters that govern the aggressiveness of policy to combat 

inflation. An active policy regime is the one with policy parameter 𝛼! > 1. In Barnett and 

Duzhak (2014), the active regime is regime 1.  The policy regime evolves according to a 

Markov chain, where the transitional probabilities are given by the transition matrix with 

entries 𝑝!" = 𝑃[𝑠! = 𝑗|𝑠!!! = 𝑖] where 𝑖, 𝑗 = 1,2.  

Following Davig and Leeper (2006), Barnett and Duzhak (2014) use the Fisher 

equation (1.5.2) as the second equation in the model, where 𝑟! is the real interest rate. The 

Fisher equation links the nominal interest rate to expected inflation and the real interest rate. 

Barnett and Duzhak (2014) use this relationship to solve for expected inflation, which 

evolves as a function of the nominal and real interest rates. 

Combining (1.5.1) and (1.5.2), Barnett and Duzhak (2014) acquire the following 

dynamic system: 
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  𝐸! 𝜋! !!!
 𝐸! 𝜋! !!!

  =
  𝑝!!      𝑝!"   
   𝑝!"      𝑝!!   

!! 𝛼!    0 
 0     𝛼!

 𝜋!!  
 𝜋!!  −

  𝑝!!      𝑝!"   
   𝑝!"      𝑝!!   

!!  𝑟!  
 𝑟!  . 

In this model, the real interest 𝑟! is exogenously given. A fully specified macroeconomic 

model endogenizes this rate.  

As is standard in the (bifurcation) analysis of difference equations, Barnett and 

Duzhak study the economy with parameter certainty. Parameter certainty in that model means 

that agents have no uncertainty about the level of inflation, if a certain state occurs. This does 

not mean agents know the level of inflation in the following period: the state of the policy 

regime determines inflation, and the state of the policy regime itself switches with given 

probabilities. Using parameter certainty, Barnett and Duzhak (2014) restate the system of 

linear difference equations as 

 𝜋! !!! 
 𝜋! !!! 

=
    

𝑝!!𝛼!
𝑝!!𝑝!! − 𝑝!"𝑝!"

              
−𝑝!"𝛼!

𝑝!!𝑝!! − 𝑝!"𝑝!"
 

−𝑝!"𝛼!
𝑝!!𝑝!! − 𝑝!"𝑝!"

              
𝑝!!𝛼!

𝑝!!𝑝!! − 𝑝!"𝑝!"  

 𝜋! ! 
 𝜋! ! 

−
  𝑝!!      𝑝!"   
   𝑝!"      𝑝!!   

!!  𝑟!  
 𝑟!  . 

Since the entries in the transition matrix are probabilities, it follows that 𝑝!! + 𝑝!" = 1 and 

𝑝!! + 𝑝!" = 1. Hence, 𝛥 = 𝑝!!𝑝!! − 𝑝!"𝑝!" as = 𝑝!! + 𝑝!! −1. 

To analyze the stability of the evolution of inflation and its dynamic properties, as 

shown by the linear system above, Barnett and Duzhak (2014) first consider the Jacobian 

matrix and corresponding characteristic polynomial of the above linear system:  
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𝐉 =
    

𝑝!!𝛼!
𝑝!!+𝑝!! − 1

              
−𝑝!"𝛼!

𝑝!! + 𝑝!! − 1
 

−𝑝!"𝛼!
𝑝!! + 𝑝!! − 1

              
𝑝!!𝛼!

𝑝!! + 𝑝!! − 1  

  

            𝑃 𝜆 = 𝜆! − 𝑏𝜆 + 𝑐  with 22 1 11 2

11 22 1
p pb
p p
α α+=
+ −

  and 1 2

11 22 1
c

p p
α α=
+ −

.    

The determinant 𝐷 of the Jacobian matrix is given by 

𝐷 =
𝑝!!𝛼! + 𝑝!!𝛼!
𝑝!! + 𝑝!! − 1

!
−

4𝛼!𝛼!
𝑝!! + 𝑝!! − 1

. 

            For a Hopf bifurcation to exist, the discriminant 𝐷 must be negative, giving a rise to 

complex roots of 𝑃 𝜆 .  Given that (𝑝!! + 𝑝!! − 1)! is always nonnegative, it follows that 

𝐷 < 0, which is equivalent to (𝑝!!𝛼! + 𝑝!!𝛼!)! − 𝑝!! + 𝑝!! − 1 4𝛼!𝛼! < 0.  The term on 

the left-hand side stays positive within the feasible set of parameters. Therefore, a Hopf 

bifurcation which arises only when the roots are complex, is not possible for this economy. 

Barnett and Duzhak (2014) further examine the possibility of a period doubling 

bifurcation. Lemma 1 in Barnett and Duzhak (2014, page 10) provide conditions for the 

existence of the period doubling bifurcation (see Kuznetsov (1998), p.415). Both conditions 

for the period doubling bifurcation hold in this model. According to Barnett and Duzhak 

(2014), if one of the roots of the characteristic polynomial is in the negative part of the unit 

circle, there is a possibility of a period doubling bifurcation. They then analyze the 

eigenvalues of the characteristic polynomial. The characteristic polynomial 𝑃(𝜆) has the 

following roots: 
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𝜆!,! =
1
2
𝛼!𝑝!! + 𝛼!𝑝!!
𝑝!! + 𝑝!! − 1

± 𝐷  

where 𝐷 is the discriminant defined above. 

According to Lemma 1 in Barnett and Duzhak (2014), they need one of the roots to be 

equal to -1. Setting , the condition becomes 

(𝑝!!𝛼! + 𝑝!!𝛼!)! − 𝑝!! + 𝑝!! − 1 4𝛼!𝛼! = 2 𝑝!! + 𝑝!! − 1 + 𝑝!!𝛼! +

𝑝!!𝛼! ,  

 which needs to hold for a period doubling bifurcation to occur. The above expression is 

simplified as 

𝑝!! 1+ 𝛼! + 𝑝!! 1+ 𝛼! + 𝛼!𝛼! = 1.                                              (1.5.3) 

Equation (1.5.3) is a bifurcation boundary, in the form of a function of the parameters of the 

dynamical model.  

To calibrate the economy, Barnett and Duzhak (2014) use the values in Table 1.5.114. 

One of the policy regimes, regime 1, is active with a coefficient greater than 1, whereas 

regime 2 is a passive regime. They further assume that 𝑝!! = 0 is zero, which is the 

probability of remaining in the active regime, conditional on being in the active regime. 

Whenever regime 1 occurs, the economy will be sent to a passive regime with certainty. 

																																																													
14	Table	1.5.1	is	a	replicate	of	Barnett	and	Duzhak’s	(2014)	Table	1.	

1,2 1λ = −
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                            Table 1.5.1 Standard Parameter Combinations 

Parameter Value 

𝛼! 

𝛼! 

𝛾! 

𝛾! 

𝑝!! 

𝑝!! 

𝛽 

𝜅 

𝜎 

1.5 

0.5 

0.3 

0.15 

0.85 

0.9 

0.98 

0.024 

0.3 

 

Using these assumptions, Barnett and Duzhak (2014) find the critical value for the 

transitional probability 𝑝!! to be 𝑝!!! = 0.1. They use this point as a benchmark to trace out 

the bifurcation boundary. Varying the other parameters, i.e. policy parameters 𝛼! and 𝛼!, 

along with the probability of staying in the passive regime 𝑝!!, Barnett and Duzhak (2014) 

demonstrate a period doubling bifurcation boundary as a function of the three control 

parameters 𝑝!!,𝛼!, and 𝛼!. If 𝑝!! = 1, then the policy regime would be passive and stay 

passive indefinitely. In this case, 1+ 𝛼! + 𝛼!𝛼! = 1, so no bifurcation can arise.  If 𝑝!! = 0, 

then 𝛼!𝛼! = 1.  The bifurcation boundary is symmetric with respect to the policy parameters 

𝛼! and 𝛼!. If the policy reaction coefficient 𝛼! of the passive regime is small, the policy 

response coefficient 𝛼! needs to be very large for a bifurcation to arise.  

1.5.3   New Keynesian Model with Regime Switching 
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The standard New Keynesian model, as laid out in, e.g., Woodford (2003) or Walsh 

(2003), traditionally consists of the following equations:  

         𝑥! = 𝐸!𝑥!!! −
!
!
𝑖! − 𝐸!𝜋!!! + 𝑢!!                                                  (1.5.4) 

𝜋! = 𝛽𝐸!𝜋!!! + 𝜅𝑥! + 𝑢!!.                                                                 (1.5.5) 

 𝑖! = 𝛼 𝑠! 𝜋! + 𝛾(𝑠!)𝑥!                                                                      (1.5.6) 

Equation (1.5.4) is the forward-looking IS equation describing the demand side of 

the economy ,and equation (1.5.5) is the Phillips curve representing the supply side. The IS 

curve (1.5.4) relates the output gap, 𝑥!, to the nominal interest rate, 𝑖!, and expectations about 

the future output gap as well as inflation. The coefficient  is the inverse of relative risk 

aversion, which equals the elasticity of intertemporal substitution, since preferences with 

constant relative risk aversion are assumed in deriving the equations. The New Keynesian 

Phillips curve, (1.5.5), describes how inflation is driven by the output gap and expected 

inflation. Both equations for demand and supply side allow for a shock, 𝑢! .  A rule for 

monetary policy is (1.5.6), which takes the form described in Taylor (1999). According to 

that Taylor rule, the monetary authority sets the nominal interest rate by targeting both 

inflation and the output gap, where  governs the Central bank’s reaction to inflation and 𝛾! 

the reaction to the output gap. 

The model can be written in matrix notation 

              𝐀𝐘𝐭!𝟏 = 𝐁𝐘𝐭 + 𝐮𝐭,                                                                                           (1.5.7) 

1
σ

iα
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where 𝐘 denotes the vector of variables 𝐘 = [ 𝜋!!  𝜋!!  𝑥!!   𝑥!!]! and 𝐮𝐭 the vector of 

aggregate demand and supply shocks, while 𝐀  and 𝐁 are given by 

𝐀 =

             𝛽𝑝!!          𝛽 1− 𝑝!!          0              0        
  𝛽 1− 𝑝!!             𝛽𝑝!!               0              0     
           !!!

!
               !!!!!

!
           𝑝!!      1− 𝑝!! 

      !!!!!
!

             !!!
!

          1− 𝑝!!       𝑝!! 

,  

and    

𝐁 =

     1            0          − 𝜅              0     
   0            1             0             − 𝜅 
!!
!

          0         1+ !!
!

         0 

    0         !!
!

             0       1+ !!
!

  

. 

               Rearranging (1.5.7), Barnett and Duzhak (2014) obtain the normal form 

𝐘𝐭!𝟏 = 𝐂𝐘𝐭 + 𝐀!𝟏𝐮𝐭,                                                                                (1.5.8) 

where 𝐂 = 𝐀!𝟏𝐁. 

              Now the system is 4-dimensional instead of having a two-by-two Jacobian matrix in 

the basic form. Since the 4-dimensional model is more difficult to analyze, Barnett and 

Duzhak (2014) employ the software continuation package CONTENT developed by Yuri 

Kuznetsov and V.V.Levitin to trace out bifurcation boundaries. Barnett and Duzhak (2014) 

hold constant the parameters that describe the probabilities of regime, while varying 

structural and policy parameters. They find that neither a Hopf nor a periodic doubling 

bifurcation can occur for any feasible set of parameters. They do find a bifurcation for 

parameter values 𝛾! = 0.179 and 𝜅 = −0.46. However, negative values for 𝜅 are 
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economically nonfeasible.  In this case, the bifurcation boundary never crosses into the 

subspace of feasible parameter combinations. 

1.5.4   New Keynesian Model with a Hybrid Monetary Policy Rule 

Barnett and Duzhak (2014) further provide an analysis of a state-of-the-art model of 

a monetary policy. Proposed by Clarida, Gali and Gertler (1999), the model consists of a 

hybrid rule, which includes both a current-looking and a forward-looking component: 

  𝑖! = 𝛼 𝑠! 𝜋!!! + 𝛾 𝑠! 𝑥! .                                                                                 (1.5.9) 

According to the rule, a policy maker is forward-looking with respect to inflation and current 

looking with respect to the output gap. The corresponding linear system is: 

 𝐘𝐭!𝟏 = 𝐃𝐘𝐭, 

where matrix 𝐃 is given by 

𝐃 =

!!!
! !!!!!!!!!!

                   !!!!!!
! !!!!!!!!!!

                    !!!!!
! !!!!!!!!!!

                 −  !!!!!! !
! !!!!!!!!!!

 

  !!!!!!
! !!!!!!!!!!

                 !!!
! !!!!!!!!!!

                    −  !!!!!! !
! !!!!!!!!!!

              −  !!!!
! !!!!!!!!!!

     

    !!!(!!!!!)
!" !!!!!!!!!!

                (!!!!!!)(!!!!!)
!" !!!!!!!!!!

              !!!(!!!!!!!"!!!!)
!" !!!!!!!!!!

        (!!!!!!)(!!!!!!!"!!!!)
!" !!!!!!!!!!

  

     (!!!!!!)(!!!!!)
!" !!!!!!!!!!

              (!!!!!)!!!
!" !!!!!!!!!!

            !!!!!! (!!!!!!!"!!!!)
!" !!!!!!!!!!

           !!!(!!!!!!!"!!!!)
!" !!!!!!!!!!

  

  

Numerical analysis of this dynamic system to find Hopf and period doubling bifurcations 

leads to two findings, which are the same as for the simple economy.  First, there is no 

possibility of a Hopf bifurcation. Second, a period doubling bifurcation emerges.  

To find a bifurcation boundary, Barnett and Duzhak (2014) first vary parameter 𝛼!, 

while holding all other parameters constant. They use the critical point of 𝛼! at 0.00125 to 
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trace out the bifurcation boundary. After tracking the first period doubling bifurcation point, 

Barnett and Duzhak (2014) choose the second parameter, the risk aversion parameter, 𝜎, to 

vary simultaneously with parameter 𝛼!.  They find a period doubling bifurcation will occur 

for a very narrow set of parameters 𝛼! corresponding to a passive reaction to future inflation, 

in the close proximity of zero. Similarly, they find a period doubling point for parameter 

𝜅 = 3.725. After choosing a second parameter, 𝜎, to be varied, Barnett and Duzhak (2014) 

compute the period doubling bifurcation boundary. Parameter 𝜅 is a nonlinear function of the 

discount factor and the parameter responsible for the degree of price rigidity. It shows that 

the period doubling bifurcation will occur, when the economy is characterized by a high level 

of price stickiness. After analyzing further parameter combinations, Barnett and Duzhak 

(2014) find that a period doubling bifurcation is also possible for lower values of 𝜅 

accompanied by very high values of the policy parameter, 𝛼!, which shows that an aggressive 

reaction of the central bank to future inflation will lead to a period doubling bifurcation. 

1.6  Zellner’s  Marshallian Macroeconomic Model15 

1.6.1  Introduction 

This section describes Banerjee, Barnett, Duzhak, and Gopalan’s (2011) bifurcation 

analysis of the Marshallian Macroeconomic Model. The Marshallian Macroeconomic Model 

(MMM) in Zellner and Israilevich (2005) is described by sectoral demand, supply, and 

entry/exit equations, as well as factor markets, the government, and a monetary sector added 

to complete the model. The explicitly formulated entry/exit behavior model in the MMM can 

																																																													
15		This	section	is	summarized	from	Banerjee,	Barnett,	Duzhak	and	Gopalan	(2011).	
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be described by the equation  !
!
= 𝛾! 𝛱 − 𝐹! ; i.e. the growth rate of firms in the industry is 

proportional to the difference in current industry profitability, 𝛱, and the long-run future 

profitability in the industry, 𝐹!. The speed of adjustment is determined by the parameter 𝛾!. 

With an entry/exit equation for each industry introduced in the model, Zellner and Israilevich 

(2005) describe the dynamics of the model in key variables, such as price and output at the 

sectoral as well as at the aggregate level. Varying some parameters would change the 

equilibria and could possibly cause changes in the nature of the equilibria, such as the 

number of solutions and the stability properties of the equilibria. Banerjee, Barnett, Duzhak, 

and Gopalan (2011) examine the model’s characteristics, as well as the possibility of cyclical 

behavior through bifurcation analysis with respect to the entry/exit parameter 𝐹! . 

Banerjee, Barnett, Duzhak, and Gopalan (2011) show that a Hopf bifurcation exists 

within the theoretically feasible parameter space, giving rise to stable cycles, when taking  𝐹! 

from the entry-exit equation as the candidate for bifurcation parameter. Future work with that 

model could take several directions.  One would be to introduce expectations into firms’ 

future profitability. Another could be to introduce the money market and examine the 

possibility of other kinds of bifurcations with respect to government and monetary policy 

parameters. 

1.6.2  The Model16 

Banerjee, Barnett, Duzhak, and Gopalan (2011) consider a two sector, continuous 

time version of the Marshallian Macroeconomic Model (MMM) as outlined in Zellner and 

Israilevich (2005). Each sector is characterized by an aggregate output demand function, an 

																																																													
16	The	model	description	is	modified	from	Banerjee,	Barnett,	Duzhak,	and	Gopalan	(2011).	
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aggregate supply function, and entry-exit modeling. Banerjee, Barnett, Duzhak, and Gopalan 

(2011) also include the government that collects taxes on output, purchases output from the 

two sectors and inputs from the factor markets. They exclude the presence of money markets 

from the model at this stage. 

i.  Ouput Demand 

  As noted in Banerjee, Barnett, Duzhak, and Gopalan (2011), the total demand for 

goods in the 𝑖th sector, 𝑖 =1,2, is the sum of the demands from the government and the 

aggregate demand from households. Aggregate demand is thus given by 

𝑆! = 𝐺! + 𝑃!
!!!!!𝑃!

!!"(𝑆 1− 𝑇! )!!" ,       (1.6.1) 

where 𝐺! is the nominal government expenditure in sector 𝑖, 𝑆 = 𝑆! + 𝑆! is the total income 

(nominal output), 𝑇! is the tax rate, 𝜂!! is the own price elasticity,  𝜂!"  is the cross price 

elasticity, and 𝜂!" is the income elasticity.  

             To express (1.6.1) in terms of growth rates, the aggregate demand for goods in each 

sector is the weighted sum of growth rates of demand from the government and households, 

𝑆! = 𝑔!𝐺! + 1− 𝑔! 1− 𝜂!! 𝑃! + 𝜂!"𝑃! + 𝜂!" 𝑆 + 𝑇!
! ,                          (1.6.2) 

where 𝑔! is the ratio of government spending in sector 𝑖 to total sales in sector 𝑖 and 

𝑇!! = 1− 𝑇!.  We use the hat over symbols to designate growth rate. 

              ii. Output Supply 

There are 𝑁! identical firms in the 𝑖th sector, each using a Cobb-Douglas type 

production function, 𝑞! = 𝐴!∗𝐿!!𝐾!
! , with 0 < 𝛼! ,𝛽! < 1, and 0 < 𝜃! = 1− 𝛼! − 𝛽! < 1, 
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where 𝑞! is the product of a neutral technological change, labor, and capital augmentation 

factors. The aggregate nominal profit-maximizing output supply of each sector 𝑖 is given by 

𝑆! = 𝑁!𝑃!

!
!!𝑤

!
!!
!!𝑟

!
!!
!! , where 𝑃! ,𝜔, and 𝑟 are the price, wage rate, and rental rate respectively. 

Converting to growth rates, output supply becomes 

𝑆! = 𝑁! +
!
!!
𝑃! −

!!
!!
𝜔 − !!

!!
𝑟.                         (1.6.3) 

iii. Entry/Exit 

Banerjee, Barnett, Duzhak, and Gopalan (2011) consider the simplest form of the 

entry/exit equation proposed by Zellner and Israilevich (2005), 

𝑁! = 𝛾! 𝛱! − 𝐹! ,                          (1.6.4) 

 where  𝛱! = 𝜃!𝑆! is the current nominal aggregate industry profit for sector 𝑖, while 𝐹! > 0 

represents the aggregate long-run equilibrium profits in sector 𝑖, taking account of discounted 

entry costs. These parameters are considered by Banerjee, Barnett, Duzhak, and Gopalan 

(2011) to be time invariant. The coefficient, 𝛾! > 0, is the speed of adjustment for sector 𝑖. 

The larger the value of 𝛾! , the faster the adjustment is. 

           The interpretation of the entry/exit equation in Banerjee, Barnett, Duzhak, and 

Gopalan (2011) is that a positive departure from equilibrium profits 𝐹!! will attract new firms 

into the industry, while a negative departure will induce firms to leave the industry, given  

𝛾! > 0. 

              iv. Government 
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According to Banerjee, Barnett, Duzhak, and Gopalan (2011), total nominal 

government expenditure, 𝐺, is the sum of expenditures in each of the two sectors, 𝐺!, and its 

expenditure on labor, 𝐺!, and capital, 𝐺! .  Zellner and Israilevich (2005) assume that  𝐺! , for 

all 𝑖 = 1,2, 𝐿,𝐾, grows at the same rate as 𝐺.  Under this assumption, Banerjee, Barnett, 

Duzhak, and Gopalan (2011) propose that 𝐺! = 𝜁!𝐺, where 𝜁! is the fraction of total 

government expenditure in the 𝑖th market. Thus in terms of growth rates, we have 𝐺! = 𝐺. 

The government collects a single uniform tax at the rate 𝑇! on output. The tax 

revenue 𝑅 is given by 𝑅 = 𝑇!𝑆, which is expressed as 𝑅 = 𝑇! + 𝑆 in terms of growth rate. 

The exogenously determined deficit/surplus, 𝐷, is defined as the government expenditures as 

a percentage of revenues, i.e. 𝐷 = !
!
. In terms of growth rate, we have 

 𝐺 = 𝐷 + 𝑅 = 𝐷 + 𝑇! + 𝑆.                                                                      (1.6.5) 

v. Factor Markets 

According to Banerjee, Barnett, Duzhak, and Gopalan (2011), the aggregate profit-

maximizing factor demands from sector 𝑖 are 𝐿! =
!!!!
!

  and 𝐾! =
!!!!
!

.  The government 

demand for labor and capital are 𝐿! =
!!
!

 and 𝐾! =
!!
!

 respectively. In terms of growth rates, 

the total demand for each factor is the weighted sum of growth rates of sectoral demands and 

the government demand for that factor, shown as below:  

 !!
!
𝐿! +  !!

!
𝐿! +

!!
!
𝐿! = 𝑙!𝐿! + 𝑙!𝐿! + 𝑙!𝐿!,                             (1.6.6) 

             !!
!
𝐾! +  !!

!
𝐾! +

!!
!
𝐾 = 𝑘!𝐾! + 𝑘!𝐾! + 𝑘!𝐾!.    (1.6.7) 



	 106	

             The dependence of the weights is given in Appendix A in Banerjee, Barnett, Duzhak, 

and Gopalan (2011). According to Zellner and Israilevich (2005), 𝐿 = (!
!
)!(!

!
)!!   and 

 𝐾 = (!
!
)!(!

!
)!! , where 𝛿 (or 𝜙) and 𝛿! (or 𝜙!) are price and income elasticities of labor (or 

capital). In terms of growth rates, the labor and capital supplies equal 

𝐿 = 𝛿 𝜔 − 𝑃 + 𝛿! 𝑆 − 𝑃 ,       (1.6.8) 

𝐾 = 𝜙 𝑟 − 𝑃 + 𝜙! 𝑆 − 𝑃 .                  (1.6.9) 

vi. Quantity and Price Aggregates 

             The growth rates of aggregate nominal sales and the price aggregate are given by 

𝑆 = 𝑠!𝑆! + 𝑠!𝑆!,        (1.6.10) 

𝑃 = 𝑠!𝑃! + 𝑠!𝑃!,        (1.6.11) 

where 𝑠! =
!!
!
.  

vii. Solving the Model 

The MMM model is solved using market clearing conditions in all markets and the 

government’s flow budget identity. The complete solution procedure is outlined in Appendix 

A in Banerjee, Barnett, Duzhak, and Gopalan (2011). All the equations in the model are 

reduced to yield the following two dynamic equations that govern the behavior of 𝑆! and 𝑆!: 

𝑆!
𝑆!

=  ℱ! 𝑆!, 𝑆!;𝛀
ℱ! 𝑆!, 𝑆!;𝛀

= 𝓕 𝑆!, 𝑆!;𝛀 .                          (1.6.12) 

The explicit form of the non-linear functions, ℱ! and ℱ!, can be found in Appendix A 

in Banerjee, Barnett, Duzhak, and Gopalan (2011). The vector 𝛀 consists of all structural 
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parameters. The entry parameter for sector 1, 𝐹!, is taken as the bifurcation parameter in the 

following section. According to Appendix A in Banerjee, Barnett, Duzhak, and Gopalan 

(2011), 

𝓕 𝑆!, 𝑆!;𝛀 = (𝓗 𝑆!, 𝑆!;𝛀 )!!𝓓 𝑆!, 𝑆!;𝛀 ,              (1.6.13) 

where 𝓗 is a matrix of dimension 2×2 and  𝓓 is a vector of dimension 2×1. The elements of 

𝓗 and 𝓓 produce a high degree of nonlinearity in 𝓕.  In determining the dynamics of the 

equilibrium, several equilibria can arise. 

To solve for an equilibrium, (𝑆!, 𝑆!), such that 𝑆! = 0 and 𝑆! = 0, it suffices to solve 

 𝓕 𝑆!, 𝑆!;𝛀 = 0 in the system (6.12). From equation (6.13), the solutions at which 𝓓 = 0 

will always be an equilibrium. Assuming there is no growth in government deficit, 𝐷, and 

taxes, 𝑇!, the solution is based on (1.6.4), so that 

𝑆! =
!
!!
𝐹!  and  𝑆! =

!
!!
𝐹! .                     (1.6.14) 

              The positive solutions are economically relevant and produce long run equilibrium 

by ensuring that there is no further entry/exit in either sector. The next section surveys 

Banerjee, Barnett, Duzhak, and Gopalan’s (2011) results on stability and their bifurcation 

analysis of this equilibrium. 

1.6.3   Stability and Bifurcation Analysis of Equilibrium 

By generalizing the analysis of Veloce and Zellner’s (1985) one sector MMM model 

to two sectors, Banerjee, Barnett, Duzhak, and Gopalan (2011) analyze the dynamics in terms 

of convergence to the equilibrium given by (1.6.14). They consider the effects of cross price 

and income elasticities along with own price elasticities and emphasize two results that arise 
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in the multisector model: (1) the solution may be stable, even when the two sectors have 

elastic demand; and (2) the path to the long run equilibrium may not be monotonic, so 

oscillatory damped convergence may arise.  

Banerjee, Barnett, Duzhak, and Gopalan (2011) explain the occurrence of oscillatory 

convergence to equilibrium in terms of economic theory. They begin the analysis by 

assuming that the two sectors produce normal goods, which are substitutes and have elastic 

demand, and assuming Sector 1 is out of equilibrium, so that 𝑆! >
!
!!
𝐹!, and 𝑆! =

!
!!
𝐹!. 

Since 𝑆! >
!
!!
𝐹!, current profitability is higher than equilibrium profitability, so entry takes 

place in Sector 1. The increase of supply in Sector 1 causes a drop in Sector 1’s price, 𝑃!, and 

consequently causes sales, 𝑆!, having elastic demand, to increase.  In addition, there is a 

decrease in Sector 2’s demand, since the two goods are substitutes.  There are two opposing 

effects on 𝑆!. If Sector 2’s demand decreases, both Sector 2’s price, 𝑃!, and quantity, 𝑄!, 

decline, leading to a decline in Sector 2’s sales, 𝑆!. If this decline in 𝑆! is greater in 

magnitude than the initial increase in 𝑆!, then 𝑆 = 𝑆! + 𝑆! will decline, resulting in a fall in 

𝑆!. Hence cross price and aggregate income effect may offset, having potentially 

destabilizing influence. 

           Banerjee, Barnett, Duzhak, and Gopalan (2011) further note that the decline in 𝑃! 

causes a decrease in Sector 2’s demand and hence a decline in Sector 2’s sales, which drop 

below the equilibrium, so that 𝑆! <
!
!!
𝐹!.  The result is an increase in 𝑆! and consequently an 

increase in 𝑆! through the income effect.  Consequently the oscillatory convergence to 

equilibrium arises from interaction between the magnitudes of the shift and the elasticities. 

The mechanism depends largely on the own price, cross price, and income elasticities, and 
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the magnitude of the shifts in demand and supply in each sector. Banerjee, Barnett, Duzhak, 

and Gopalan (2011) observe it is possible that the insufficiency of these shifts may result in 

the unstable solution, and they emphasize the importance of consistency between the 

elasticity parameters and the values of other parameters in production, input markets, 

entry/exit equations, and government policy. The possibility exists that the economy could 

change its convergence type, if some of these parameters were to change. 

Banerjee, Barnett, Duzhak, and Gopalan (2011) find the existence of a Hopf 

bifurcation, occurring when the Jacobian of 𝓕 has a pair of purely imaginary eigenvalues at 

some critical value of a bifurcation parameter.  In the following analysis, they vary only 

parameter 𝐹!, while keeping all other parameters at values given in their paper’s Appendix B. 

To analyze a codimension-1 Hopf bifurcation for the system (1.6.12), they first search for the 

value of (𝑆!, 𝑆!) and the bifurcation parameter (𝐹!) satisfying the following conditions: 

          ℱ! 𝑆!, 𝑆!,𝐹! = 0,              (1.6.15) 

          ℱ! 𝑆!, 𝑆!,𝐹! = 0,                         (1.6.16) 

   𝑡𝑟(𝐉𝓕 𝑆!, 𝑆!,𝐹! ) = 0,                         (1.6.17) 

𝑑𝑒𝑡 𝐉𝓕 𝑆!, 𝑆!,𝐹! > 0,                         (1.6.18) 

where  𝐉𝓕 is the Jacobian of 𝓕.  

           Banerjee, Barnett, Duzhak, and Gopalan (2011) observe that equations (1.6.15) and 

(1.6.16) yield the equilibrium for the system of differential equations in (1.6.12). Conditions 

(1.6.17) and (1.6.18) ensure that the eigenvalues of 𝐉𝓕 are purely imaginary. They find the 

existence of a Hopf bifurcation at the computed critical value 𝐹! = 6.070386762 by 
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verifying that conditions (1.6.17) and (1.6.18) are satisfied and the slope of the trace is not 

zero. Thus, as the parameter 𝐹! crosses 𝐹! from the right, the solution given in (1.6.14) goes 

from a stable equilibrium to an unstable one. Banerjee, Barnett, Duzhak, and Gopalan (2011) 

illustrate that the system is locally spiraling inward for 𝐹! > 𝐹! , and the system exhibits 

stable cycles in the phase space for 𝐹! close enough to 𝐹!and 𝐹! < 𝐹!. 

1.7   Open-Economy New Keynesian Models17 

1.7.1   Introduction 

The Barnett and Duzhak’s (2008, 2010, 2013) results surveyed in sections 4 and 5 on 

bifurcation of New Keynesian models is based on closed economy models.  Continuing to 

explore bifurcation in macroeconometric models, Barnett and Eryilmaz (2014) explore 

bifurcation of an open economy New Keynesian model proposed by Gali and Monacelli 

(2005).  In addition, Barnett and Eryilmaz (2013) explore bifurcation of the open economy 

New Keyensian model proposed by Claridy, Gali, and Gertler (2002).  In this section, we first 

survey the results of Barnett and Eryilmaz (2014) and then the results of Barnett and 

Eryilmaz (2013). 

With those two models, Barnett and Eryilmaz (2013, 2014) find that the open 

economy framework has more complex dynamics than the closed economy models. As a 

result, stratification of the confidence regions remains an important research topic in the 

context of open-economy New Keynesian structures. In addition to damaging inference 

																																																													
17		This	section	is	summarized	from	Barnett	and	Eryilmaz	(2013,2014).	
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robustness, bifurcation of those models can result from changes in monetary policy.  Such 

phenomena are relevant to evaluating policy risk. 

As surveyed in section 1.7.2 below, Barnett and Eryilmaz (2014) ran bifurcation 

analyses of the Gali and Monacelli (2005) model and found that the degree of openness has a 

significant role in equilibrium determinacy and emergence of bifurcations. The values of 

bifurcation parameters and location of bifurcation boundaries are affected by introducing 

parameters related to the open economy structure. Numerical analyses are performed to 

search for different types of bifurcation. Limit cycles and period doubling bifurcations are 

found, although in some cases only for nonfeasible parameter values. Stratification of the 

confidence regions remains problematic to open economy New Keynesian functional 

structures. 

Comparing the results from Barnett and Duzhak’s (2010) closed economy analysis, it 

is not clear whether openness makes the New Keynesian model more sensitive to 

bifurcations. Barnett and Eryilmaz (2014) do not find evidence that open economies are more 

vulnerable to the problem than closed economies. The evidence from the Gali and Monacelli 

model might be caused by the model’s broad set of parameters, including deep parameters 

relevant to the open economy. The fact that the studies use different sets of benchmark values 

for the parameters makes direct comparison more difficult. Barnett and Eryilmaz (2014) also 

note that the analysis is restricted to special cases within the framework of open-economy 

New Keynesian structures.  Generalizing the results to real economies would require more 

results with other open-economy New Keynesian models. 

As surveyed in section 1.7.3 below, Barnett and Eryilmaz (2013) investigate 

bifurcations in the Clarida, Gali, and Gertler (2002) model. Barnett and Eryilmaz (2013) 
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show that the model is vulnerable to Hopf bifurcation at a critical value of the parameter 

measuring the sensitivity of the nominal interest rate to changes in output gap. Their 

theoretical results need to be confirmed by subsequent numerical analysis to locate the Hopf 

bifurcation boundary and map its shape. The numerical analysis is beyond the scope of 

Barnett and Eryilmaz (2013), but they have provided the theory needed to implement the 

numerical research and locate the Hopf bifurcation boundary. A primary objective of the 

subsequent numerical analysis should be to determine whether the Hopf bifurcation boundary 

crosses relevant confidence regions of the model’s parameters. If so, a serious robustness 

problem would exist in dynamical inferences. But even if the bifurcation boundary does not 

cross the confidence region, policy can move the location of the bifurcation boundary. Within 

this model, the central bank should react cautiously to changes in the rate of domestic 

inflation and the output gap to avoid inducing instability from a possible Hopf bifurcation. 

1.7.2   Gali and Monacelli  Model18 

The Gali and Monacelli (2005) model is described by the following equations: 

1 1
1 ( 1) ( )tt t t t t tx E x r E rα ω π

σ+ +
+ −= − − − ,                                                       (1.7.1) 

  
π t = βEtπ t+1 +

(1− βθ )(1−θ )
θ

σ
1+α (ω −1)

+ϕ
⎛
⎝⎜

⎞
⎠⎟

xt ,                                          (1.7.2) 

 𝑟! = 𝑟! + 𝜙!𝜋! + 𝜙!𝑥!.                               (1.7.3) 

 The Gali and Monacelli (2005) model is based on the following assumptions:  the 

domestic policy does not affect the other countries or the world economy; each economy is 

																																																													
18	The	model	description	is	modified	from	Barnett	and	Eryilmaz	(2014).		
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assumed to have identical preferences, technology, and market structure; both consumers and 

firms are assumed to behave optimally. Consumers maximize expected present value of 

utility, while firms maximize profits. 

The utility maximization problem yields the dynamical intertemporal IS curve 

(1.7.1), which is a log-linear approximation to the Euler equation. In equation (1.7.1), 𝑥! is 

the gap between actual output and flexible-price equilibrium output, 𝑟! is the small open 

economy’s natural rate of interest, and 𝜎! = 𝜎(1− 𝛼 + 𝛼𝜔)!! and 𝜔 = 𝜎𝛾 + (1− 𝛼)(𝜎𝜂 −

1) are composite parameters. The lowercase letters denote the logs of the respective 

variables, 𝜌 = 𝛽!! − 1 denote the time discount rate, and α  is the log of labor’s average 

product. The maximization problem of the representative firm yields the aggregate supply 

curve (1.7.2), also often called the New Keynesian Philips curve in log-linearized form.   

The policy rule (1.7.3) is a version of the Taylor rule, providing a simple (non-

optimized) monetary policy, where the coefficients 𝜙! > 0 and 𝜙! > 0 measure the 

sensitivity of the nominal interest rate to changes in output gap and inflation rate respectively. 

Various versions of the Taylor rule are often employed to design monetary policy in 

empirical DSGE models. Equations (1.7.1) and (1.7.2), in combination with a monetary 

policy rule such as equation (1.7.3), constitute a small open economy model in the New 

Keynesian tradition. 

Gali and Monacelli (2005) observed that closed economy models and open economy 

models differ in two primary aspects:  (1) some coefficients, such as the degree of openness, 

terms of trade, and substitutability among domestic and foreign goods, depend on the 

parameters that are exclusive to the open economy framework; and (2), the natural levels of 
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output and interest rate depend upon both domestic and foreign disturbances, in addition to 

openness and terms of trade. Barnett and Eryilmaz (2014) use the same methodology as in 

section 1.4 to detect bifurcation phenomenon. For two-dimensional dynamical systems, they 

apply Theorem 1.1.1. For three-dimensional dynamical systems, they apply Theorem 1.4.1. 

They employed CL MatCont within MatLab for numerical analysis. Regarding different 

policy rules, Barnett and Eryilmaz (2014) consider contemporaneous, forward, and backward 

looking policy rules, as well as hybrid combinations. The calibrated values of the parameters 

are given in Gali and Monacelli (2005), which are  𝛽 = 0.99,𝛼 = 0.4,𝜎 = 𝜔 = 1,𝜑 =

3, and 𝜇 = 0.086.  For the 𝑁 = 3 policy parameters,  𝜙! = 0.125,𝜙! = 1.5, and 𝜙! = 0.5. 

i. Current-Looking Taylor Rule 

The model consists of the following equations, in which the first two equations 

describe the economy, while the third equation is the monetary policy rule followed by the 

central bank with 𝑁 = 2 policy parameters: 

𝜋! = 𝛽𝐸!𝜋!!! + 𝜇 + 𝜑 𝑥! ,        (1.7.4) 

            1 1
1 ( 1) ( )tt t t t t tx E x r E rα ω π

σ+ +
+ −= − − − ,                                                        (1.7.5) 

𝑟! = 𝑟! + 𝜙!𝜋! + 𝜙!𝑥!.          (1.7.6) 

Rearranging the terms, the system can be written in the form 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭, 

1 ( 1)
σ

α ω+ −
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 𝐸!𝑥!!! 
 𝐸!𝜋!!!

=

  
  
1+ µ

β
+ (1+α (ω −1))

βφx +ϕµ
βσ

⎛
⎝⎜

⎞
⎠⎟

        
  

βφx −1( ) 1+α (ω −1)( )
βσ

   

   
 
− µ
β

ϕ + σ
1+α (ω −1)

⎛
⎝⎜

⎞
⎠⎟

                                    
 

1
β

              

 𝑥! 
𝜋! .      

                                                                                                                                               

(1.7.7)   

             Using Theorem 1.1.1, the conditions for the existence of Hopf bifurcation in the 

system (1.7.7) are presented in the following proposition. 

Proposition 1.7.1  Let 𝛥 be the discriminant of the characteristic equation. Then system 

(1.7.7) undergoes a Hopf bifurcation at equilibrium points, if and only if 𝛥 < 0 and        

                       * ( 1) ( ) .
1 ( 1) 1 ( 1)x π
σ β σφ µ ϕ φ
α ω α ω

−= − +
+ − + −

                                    (1.7.8) 

The corresponding value of the bifurcation parameter in the closed economy case is 

𝜙!∗ = 𝜎 𝛽 − 1 − 𝜅𝜙! , as given by Barnett and Duzhak (2008). For 𝛼 = 0, proposition 1.7.1 

gives the same result as the closed economy counterpart. 

Barnett and Eryilmaz (2014) numerically find a period doubling bifurcation at 

𝜙! = −2.43 and a Hopf bifurcation at 𝜙! = −0.52. Numerical computations indicate that the 

monetary policy rule equation (1.7.6) should have 𝜙!∗ < 0 for a Hopf or period doubling 

bifurcation to occur. That negative coefficient for the output gap in equation (1.7.6) would 

indicate a procyclical monetary policy: rising interest rates, when the output gap is negative, 

or vice versa. Literature seeking to explain procyclicality in monetary policy includes 

Schettkat and Sun (2009), Demirel (2010), and Leith, and Moldovan, and Rossi (2009). A 
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successful countercyclical monetary policy would be bifurcation-free and would yield more 

robust dynamical inferences with confidence regions not crossing a bifurcation boundary.  

Barnett and Eryilmaz (2014) also show there is only one periodic solution, while the 

other solutions diverge from the periodic solution as 𝑡⟶ ∞. This periodic solution is called 

an unstable limit cycle. The model is not subject to bifurcation within the feasible parameter 

space, when 𝜙! > 0 and 𝜙! > 0, although bifurcation is possible within the more general 

functional structure of system (1.7.7). 

ii.    Current-Looking Taylor Rule With Interest Rate Smoothing 

The model consists of the equations (1.7.4) and (1.7.5), along with the following 

policy rule having 𝑁 = 3 policy parameters: 

       𝑟! = 𝑟! + 𝜙!𝜋! + 𝜙!𝑥! + 𝜙!𝑟!!!.                      (1.7.9) 

The system can be written in the form 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 + 𝐝𝐭 as: 

                   
 𝐸!𝑥!!! 
 𝐸!𝜋!!!
𝐸!𝑟!!!

= 𝐂
𝑥!
𝜋!
𝑟!

+

−
 

1−α +αω
σ

𝑟! 

 0

  𝐸!𝑟!!! − 𝜙!𝑟!
 

1−α +αω
σ

 

                  (1.7.10) 

with  

𝐲𝐭 =
𝑥!
𝜋!
𝑟!
, 
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𝐂 =  

          !
!
1+ 𝜑 !!!!!"

!
+ 1                                        − !!!!!"

!"
                                     !!!!!"

!
       

               −  !
!

!
!!! !!!

+ 𝜑                                                  !
!

                                                         0                
 

  𝜙! +
!
!
1+ 𝜑 !!!!!"

!
𝜙!

!!!!!"
!

−  𝜙!        − !
!

 𝜙!
!!!!!"

!
−  𝜙!         𝜙! +   𝜙!  !!!!!"

!
  

.  

Assuming the system (1.7.10) has a pair of complex conjugate eigenvalues and a real-

valued eigenvalue, the following proposition states the conditions for the system to undergo a 

Hopf bifurcation. 

Proposition 1.7.2   The system (1.7.10) undergoes a Hopf bifurcation at equilibrium points, 

if and only if the following transversality condition holds 

 !|!! ! |
!!!

│!!!!!∗  ， 

and also 

𝑎    𝜙! − 𝛽 < 0,                     (1.7.11) 

      𝑏    𝜙!
 

σ (2+ µ + 2β )
1−α +αω

+ 𝜑𝜇 + 𝜙! 𝛽 + 1 + 𝜇
 

σ
1−α +αω

+ 𝜑 𝜙! + 1   

              
2 0,

1 ( 1)
σ

α ω
+ <

+ −
                                                                                          (1.7.12) 

𝑐  𝜙!!𝜉! + 𝜙!𝜉! + 𝜙!𝜙! + 𝜙! 𝜉! + 𝜙!𝜉! + 𝜉! = −1.               (1.7.13) 

Hopf bifurcation cannot occur in the model, since (1.7.12) does not hold. To detect 

the existence of a period doubling bifurcation, Barnett and Eryilmaz (2014) keep the 

structural parameters and policy parameters, 𝜙! and 𝜙!, constant at their baseline values, 

0≠
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while varying the policy parameter 𝜙! over a feasible range. They numerically find period 

doubling bifurcation at 𝜙! = 0.83. When they consider 𝜙! as the bifurcation parameter, they 

numerically find a period doubling bifurcation at  𝜙! = 5.57 and a branching point at 

𝜙! = −1.5.  There is no bifurcation of any type at 𝜔,𝛼 = 0,1 . 

           iii.   Forward-Looking Taylor Rule  

The model consists of equations (1.7.4) and (1.7.5) along with the following policy 

rule: 

   𝑟! = 𝑟! + 𝜙!𝐸!𝜋!!! + 𝜙!𝐸!𝑥!!!.               (1.7.14) 

Rearranging terms, the system can be written in the form 

                𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 ,                                                                                            (1.7.15) 

with  

 𝐲𝐭 =
𝑥!
𝜋! , 

𝐂 =

!"! !"!!" !!! !!! !!!!

!"!!!! !!! !!!
         !!!! !!! !!!

!"!!!! !!! !!!
 

       − !"!!"(!!! !!! )
!!!"(!!!)

                                     !
!

                    
.  

Assuming the system (1.7.15) has a pair of complex conjugate eigenvalues, the 

following proposition provides the conditions for the system to undergo a Hopf bifurcatio  

Proposition 1.7.3  The system (1.7.15) undergoes a Hopf bifurcation at equilibrium points, if 

and only if 𝛥 < 0 and  

* 1
1 ( 1)x

β σφ
β α ω
−=

+ −
                                                                               (1.7.16) 
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Barnett and Eryilmaz (2014) find a period doubling bifurcation at 𝜙! = 1.913 and a 

Hopf bifurcation at  𝜙! = −0.01.  Given the baseline values of the parameters, Hopf 

bifurcation occurs outside the feasible set of parameter values.  There is no bifurcation at 

. The system has a periodic solution at 𝜙! = 2.8 and 𝜙! = 0. The origin is a 

stable spiral point. Any solution that starts around the origin in the phase plane will spiral 

toward the origin. The origin is a stable sink, since the trajectories spiral inward. 

iv. Pure Forward-Looking Inflation Targeting 

                The model consists of equations (1.7.4) and (1.7.5) along with the following 

policy rule: 

        𝑟! = 𝑟! + 𝜙!𝐸!𝜋!!!.                                       (1.7.17) 

Rearranging the terms, the system can be written in the form 

 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 ,                                                                                         (1.7.18) 

with     𝐲𝐭 =
𝑥!
𝜋! , 

𝐂 =
 1− !

!
+ !" !!! !!!

!"
(𝜙! − 1)             !!!! !!! !!!

!"

− !
!

!
!!! !!!

+ 𝜑                                            !
!

        
.  

Assuming the system (1.7.18) has a pair of complex conjugate eigenvalues, the 

following proposition provides the conditions for the system to undergo a Hopf bifurcation.

  

Proposition 1.7.4     The system (1.7.18) undergoes a Hopf bifurcation at equilibrium points, 

if and only if   

( , ) (1,0)α ω =
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                          𝛥 < 0 and 𝛽∗ = 1.                       (1.7.19) 

Barnett and Eryilmaz (2014) show that the solution path for 𝛽 = 1 and 𝜙! = 8 is 

periodic and oscillates around the origin, which is a stable center. Hopf bifurcation appears at 

 regardless of the values of and . This result is the same as in the closed economy 

case under forward-looking inflation targeting in Barnett and Duzhak (2010). But setting the 

discount factor at 1 is not justifiable for a New Keynesian model, whether within an open or 

closed economy framework. Barnett and Eryilmaz (2014) also numerically find a period 

doubling bifurcation at 𝛽 = −0.91, which is not theoretically feasible.  

             Barnett and Eryilmaz (2014) further show that there is only one periodic solution, 

which is an unstable limit cycle, and other solutions diverge from the periodic solution at 

𝑡⟶ ∞. Varying  𝜙! while setting  𝛽 = 1 and keeping the other parameters constant at their 

baseline values, they numerically find a Hopf bifurcation at 𝜙! = 1.0176, a period doubling 

bifurcation at 𝜙! = 12.76, and a branching point at 𝜙! = 1. 

v. Backward-Looking Taylor Rule 

The model consists of equations (1.7.4) and (1.7.5) along with the following 

policy rule: 

           𝑟! = 𝑟! + 𝜙!𝜋!!! + 𝜙!𝑥!!!.                            (1.7.20) 

The system can be written in the form  𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 + 𝐝𝐭:  

          𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 +  
−1+α (ω −1)

σ
𝑟! 

0
𝐸!𝑟!!!

,                (1.7.21) 

1β = α ω
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with 

 𝐲𝐭 =
𝑥!
𝜋!
𝑟!
, 

𝐂 =
    !
!
1+ ! !!! !!!

!
+ 1           − !!! !!!

!"
         !!! !!!

!
 

− !
!

!
!!! !!!

+ 𝜑                      !
!

                        0
                   𝜙!                                        𝜙!                        0           

 . 

Assuming the system (1.7.21) has a pair of complex conjugate eigenvalues, the 

following proposition provides the conditions for the system to undergo a Hopf bifurcation. 

Proposition 1.7.5   The system (1.7.21) undergoes a Hopf bifurcation at equilibrium points, 

if and only if the transversality condition,  !|!! 𝛟 |
!!!

│𝛟!𝛟∗ ≠ 0 , holds  for some 𝑗; and the 

following conditions also are satisfied:  

              𝑖    ( ) 0
1 ( 1) 1 ( 1)x π

σ βσφ φ µ ϕ
α ω α ω

+ + − <
+ − + −

,                                        (1.7.22) 

             𝑖𝑖   𝜙! 𝛽 − 1 + 𝜇
 

σ
1+α (ω −1)

+ϕ (1− 𝜙!) < 0,            (1.7.23) 

𝑖𝑖𝑖  𝜙! + 𝜙!𝜇
 

σ
1+α (ω −1)

+ϕ

!

+ 𝜙! + 𝜙!𝜇
 

σ
1+α (ω −1)

+ϕ 𝜉!  

            −𝜙!𝜉! = 𝜉!.                             (1.7.24) 

Barnett and Eryilmaz (2014) numerically find a period doubling bifurcation at 

𝜙! = 1.91. Starting from the point 𝜙! = 1.91, they construct the period doubling boundary 

by varying 𝜙! and 𝜙! simultaneously. They also show that along the bifurcation boundary, 
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the positive values of 𝜙! lie between 0 and 13. As the magnitude of 𝜙! increases, smaller 

values of 𝜙! would be sufficient to cause period doubling bifurcation under a backward-

looking policy. Their numerical analysis with CL MatCont detects a codimension-2 fold-flip 

bifurcation (LPPD) at 𝜙! ,𝜙! = (0.94,2.01) and a flip-Hopf bifurcation (PDNS) at 

𝜙! ,𝜙! = −6.98, 3.36 . By treating the policy parameter 𝜙! as the potential source of 

bifurcation, numerical analysis also indicates a period doubling bifurcation at 𝜙! = 11.87. 

By varying 𝜙! while keeping the other parameters constant at their benchmark values, 

another period doubling bifurcation is found at relatively large values of the parameter 

𝜙! = 11.87, which is nevertheless still within the feasible subset of the parameter space 

defined by Bullard and Mitra (2002). 

vi. Backward-Looking Taylor Rule with Interest Rate Smoothing 

The model consists of equations (1.7.4) and (1.7.5) along with the following 

policy rule: 

                         𝑟! = 𝑟! + 𝜙!𝜋!!! + 𝜙!𝑥!!! + 𝜙!𝑟!!!.     (1.7.25) 

The system can be written in the form 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 + 𝐝𝐭 : 

                 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 +  
−1+α (ω −1)

σ
𝑟! 

0
𝐸!𝑟!!!

,                 (1.7.26) 

with 

 𝐲𝐭 =
𝑥!
𝜋!
𝑟!
, 



	 123	

𝐂 =

   
 

µ
β

1+ ϕ(1+α (ω −1))
σ

⎛
⎝⎜

⎞
⎠⎟
+1         

 
−1+α (ω −1)

βσ
       

 

1+α (ω −1)
σ

   

−𝜇 
 

1+ ϕ(1+α (ω −1))
σ

⎛
⎝⎜

⎞
⎠⎟

               
 

1
β

                            0       

                       𝜙!                                     𝜙!                           𝜙!       

. 

Proposition 1.7.6.   The system (1.7.26) undergoes a Hopf bifurcation at equilibrium points, 

if and only if the transversality condition, !|!! 𝛟 |
!!!

│𝛟!𝛟∗  ≠ 0, holds  for some 𝑗; and the 

following conditions also are satisfied:  

𝑖  
!!!!!

!
!!! !!! !!!(

!"
!!! !!! !!")

!"
!!! !!!

,                              

with  𝜙! − 𝜙!𝜉! + 𝜙!𝜉! <
!"

!!! !!!
, and   𝜙! < 𝜙!𝜉! + 𝜙!𝜉! + 𝛽,      

𝑖𝑖   𝜙!
!!!!!"

!"
− 𝜙!

!
!
+ 𝜙!𝜇

!
!
+ 𝜑 !!!!!"

!"
− 𝜙! +

!!!
!
+ 𝜑𝜇 !!!!!"

!"
+ 1  

< 1+ 𝜙!
!!!
!
+ 𝜑𝜇 !!!!!"

!"
+ 1 − 𝜙!

!!!!!"
!"

+ !
!

  

with 𝜙!𝜉! + 𝜙!𝜉! − 1+ 𝜙! 𝜉! < 0, and  𝜙!𝜉! − 𝜉!(𝜙! + 𝜙! − 1) < 0,            

          (iii)     𝜙!  !!!
!
+ 𝜑𝜇 !!!!!"

!"
+ 1 − 𝜙!

!!!!!"
!

+ !
!
+ 𝜙!

!!!!!"
!"

− 𝜙!
!
!
+

𝜙!𝜇
!
!
+ 𝜑 !!!!!"

!"
⋅ 𝜙! +

!!!
!
+ 𝜑𝜇 !!!!!"

!"
+ 1  

                 = 1− 𝜙!
!!!!!"

!"
−  𝜙!

!
!
+ 𝜙!𝜇

!
!
+ 𝜑 !!!!!"

!"

!

.  

               Barnett and Eryilmaz (2014) detect a period doubling bifurcation numerically at 

𝜙! = 3, given the benchmark values of the parameters and the setting 𝜙! = 0.5. When 

1<
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𝜙! = 1, period doubling bifurcation occurs at 𝜙! = 4.09. They find bifurcation boundary by 

varying 𝜙! and 𝜙! simultaneously, and then 𝜙! and 𝜙! simultaneously. In (𝜙! ,𝜙!)-space, 

the bifurcation boundary lies within the narrow range from 𝜙! = 3 and 𝜙! = 3.25. In 

contrast, 𝜙! varies more elastically in response to changes in 𝜙! along the bifurcation 

boundary in (𝜙! ,𝜙!)-space. 

Barnett and Eryilmaz (2014) further find codimension-2 fold-flip bifurcations at 

𝜙! ,𝜙! = (0.41,3.19) and at 𝜙! ,𝜙! = 0.78,−0.52 , as well as flip-Hopf bifurcations at 

𝜙! ,𝜙! = (−10.44, 5.04) and 𝜙! ,𝜙! = −0.74,−1.23 . Bifurcation disappears at 

𝛼,𝜔 = 1,0 .  

vii. Hybrid Taylor Rule 

The model consists of equations (1.7.4) and (1.7.5) along with the following 

policy rule: 

            𝑟! = 𝑟! + 𝜙!𝐸!𝜋!!! + 𝜙!𝑥!                             (1.7.27) 

                        The system can be written in the form: 

             𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭 ,                                                     (1.7.28) 

with 

𝐲𝐭 =
𝑥!
𝜋! ,  
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𝐂 =

𝛽𝜙! + 𝜇(
𝜎

1+ 𝛼 𝜔 − 1 + 𝜑) 1− 𝜙!
𝛽𝜎

1+ 𝛼 𝜔 − 1

+ 1         
𝜙! − 1 1+ 𝛼 𝜔 − 1

𝛽𝜎
 

       −
𝜇
𝛽 (

𝜎
1+ 𝛼 𝜔 − 1 + 𝜑)                                               

1
𝛽               

. 

Proposition 1.7.7.  The system (1.7.28) exhibits a Hopf bifurcation at equilibrium points, if 

and only if 𝛥 < 0 and  

              𝜙!∗ =
!(!!!)

!!!(!!!)
.                                     (1.7.29) 

 Barnett and Eryilmaz (2014) find a period doubling bifurcation at 𝜙! = −1.92 as 

well as a Hopf bifurcation at 𝜙! = −0.01, while system parameters are at benchmark values.  

Assuming positive values for policy parameters, values of the bifurcation parameters are 

outside the feasible region of the parameter space.  They conclude that the feasible set of 

parameter values for 𝜙! does not include a bifurcation boundary. They also find that in 

the(𝜙! ,𝜙!)-space, along the period-doubling bifurcation boundary, the bifurcation parameter 

𝜙! varies in the same direction as 𝜙!.  Therefore as 𝜙! increases, higher values of 𝜙! are 

required to cause a period doubling bifurcation. They analyze the solution paths from (1.7.28) 

with stability properties indicating Hopf bifurcation. The inner spiral trajectory is converging 

to the equilibrium point, while the outer spiral is diverging.  

1.7.3  Clarida, Gali, and Gertler  Model     

Barnett and Eryilmaz (2013) conduct bifurcation analysis in the open-economy 

New Keynesian model developed by Clarida, Gali, and Gertler (2002). Clarida, Gali, and 

Gertler (2002) developed a two-country version of a small open economy model, based 

on Clarida, Gali, and Gertler (2001) and Gali and Monacelli (1999).  



	 126	

Following Walsh (2003, pp.539-540), the model of Clarida, Gali, and Gertler 

(2002) can be written as follows:  

𝜋!! = 𝛽𝐸!𝜋!!!! + 𝛿 𝜎 + 𝜂 + !"
!!!

𝑥! ,                     (1.7.30) 

𝑥! = 𝐸!𝑥!!! −
!!!
!

𝑟! − 𝐸!𝜋!!!! − 𝑟! ,          (1.7.31) 

𝑟! = 𝑟! + 𝜙!𝜋!! + 𝜙!𝑥! .                       (1.7.32) 

Equation (1.7.30) is an inflation adjustment equation for the aggregate price of 

domestically produced goods. Equation (1.7.31) is the dynamic IS curve, derived from the 

Euler condition of the consumers’ optimization problem. The monetary policy rule, (1.7.32), 

is a domestic-inflation-based current-looking Taylor rule. 

Let 𝑥! denote the output gap, 𝜋!! the inflation rate for domestically produced goods 

and services, and 𝑟! the nominal interest rate, with 𝐸! being the expectation operator and 𝑟! 

denoting the small open economy’s natural rate of interest. The lowercase letter denotes the 

logs of the respective variables. The coefficients 𝜙! > 0 and 𝜙! > 0 are the policy 

parameters, measuring the sensitivity of the nominal interest rate to changes in output gap 

and inflation rate, respectively. In addition, 𝛿 = 1− 𝜃 1− 𝛽𝜃 /𝜃 is a composite 

parameter with 𝜃 representing the probability that a firm holds its price unchanged in a given 

period of time, while 1− 𝜃 is the probability that a firm resets its price. The parameter 𝜂 

denotes the wage elasticity of labor demand, and 𝜎!! denotes the elasticity of intertemporal 

substitution. The parameter 𝑤 denotes the growth rate of nominal wages, 𝜌 = 𝛽!! − 1 is the 
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time discount rate, and 𝑣 is the population size in the foreign country, with 1− 𝑣 being the 

population size of the home country. Wealth effect is captured by the term 𝑣𝜎. 19 

Substituting (1.7.32) for 𝑟! − 𝑟! into the equation (1.7.31), Barnett and Eryilmaz 

(2013) reduce the system to a first order dynamical system in two equations for domestic 

inflation and output gap.  The system is given by: 

𝜋!! = 𝛽𝐸!𝜋!!!! + 𝛿 𝜎 + 𝜂 +
𝑣𝜎

1+ 𝑤 𝑥! , 

𝑥! = 𝐸!𝑥!!! −
1+ 𝑤
𝜎 𝜙!𝜋!! + 𝜙!𝑥! − 𝐸!𝜋!!!! . 

An equilibrium solution to the system is 𝑥! = 𝜋!! = 0 for all 𝑡. The system can be 

written in the standard form as   

   𝐀𝐸!𝐲𝐭!𝟏 = 𝐁𝐲𝐭,            (1.7.33) 

or 𝐸!𝐲𝐭!𝟏 = 𝐂𝐲𝐭, where 𝐂 = 𝐀!𝟏𝐁, as follows: 

  
 𝐸!𝑥!!!
 𝐸!𝜋!!!! = 𝐂

𝑥!
𝜋!!

,            (1.7.34) 

where  

𝐂 =
  1+ !!! !!

!
+ 𝛿 1+ 𝑤 𝜎 + 𝜂 + !"

!!!
!
!"

              !!! !!
!

− !!!
!"

 

           −𝛿(𝜎 + 𝜂 + !"
!!!

) !
!

                                                     !
!

    
.  

Assuming a pair of complex conjugate eigenvalues, the conditions for the existence of 

a Hopf bifurcation are provided in the following proposition. 

																																																													
19	The	model	description	is	modified	from	Barnett	and	Eryilmaz	(2013).		
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Proposition 1.7.8.  Let 𝛥 be the discriminant of the characteristic equations. Then the system 

(1.7.34) undergoes a Hopf bifurcation at equilibrium points, if and only if 𝛥 < 0 and 

𝜙!∗ =
!"!!
!!!

− 𝜙!  !" !!!!!
!!!

+ 𝛿𝜂 .                                                                (1.7.35) 

Proof.  See Barnett and Eryilmaz (2013), Proposition 1. 

Barnett and Eryilmaz (2013) observe that the Clarida, Gali, and Gertler (2002) model 

differs in several aspects from the Gali and Monacelli (2005) model. The degree to which the 

two models differ depends upon the parameter settings. In the Clarida, Gali, and Gertler 

(2002) model, the parameters 𝑤, 𝑣, and 𝛿 play an important role in determining the critical 

value of the bifurcation parameter. Barnett and Eryilmaz (2013) note that numerical 

implementation of the theory to locating Hopf bifurcation boundaries in the Clarida, Gali, and 

Gerler (2002) model would be a challenging project. 

1.8  Two Endogenous Growth Models20 

1.8.1  Introduction 

This section surveys Barnett and Ghosh (2013, 2014) about bifurcation analyses of 

two endogenous growth models. Previous stability analyses of endogenous growth models 

include the following.  Benhabib and Perli (1994) analyzed the stability property of the long-

run equilibrium in the Lucas (1988) model; Arnold (2000a, 2000b) analyzed the stability of 

equilibrium in the Romer (1990) model; Arnold (2006) has done the same for the Jones 

(1995) model; and Mondal (2008) examined the dynamics of the Grossman-Helpman (1991) 

model of endogenous product cycles. The results derived in those papers provide important 
																																																													
20	This	section	is	summarized	from	Barnett	and	Ghosh	(2013,	2014).		
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insights to researchers.  But a detailed bifurcation analysis had not been provided for many of 

these popular endogenous growth models. Barnett and Ghosh (2014) filled the gap for the 

Uzawa-Lucas endogenous growth model, as surveyed in section 8.2 below, while Barnett and 

Ghosh (2013) do so for a variant of Jones (2002) semi-endogenous growth model, as 

surveyed in section 1.8.3.  

In section 1.8.2, Barnett and Ghosh (2014) conduct bifurcation analysis on the 

Uzawa-Lucas endogenous growth model, which is solved from a centralized social planner 

perspective as well as in the model’s decentralized market economy form. Barnett and Ghosh 

(2014) locate transcritical bifurcation and Hopf bifurcation boundaries for the decentralized 

version of the model using Mathematica, and also investigate the existence of Hopf 

bifurcation, branch point bifurcation, limit point cycle bifurcation, and period doubling 

bifurcations using Matcont. The series of period doubling bifurcations confirm the existence 

of global bifurcation and reveal the possibility of chaotic dynamics. Barnett and Ghosh 

(2014) also point out that the externality of the human capital parameter plays an important 

role in determining the dynamics of the decentralized model. On the contrary, from the 

centralized social planner perspective, the solution is saddle path stable with no possibility of 

bifurcation within the feasible parameter set.  

In section 1.8.3, Barnett and Ghosh (2013) conduct bifurcation analysis on a variant 

of the Jones (2002) model. Jones found that long-run growth arises from the worldwide 

discovery of ideas, which depend on the rate of population growth of the countries 

contributing to world research rather than on the level of population. His model exhibits 

“weak” scale effect, in contrast with the “strong” scale effect, produced by the first 

generation endogenous growth models of Romer (1990) and Grossman and Helpman (1991). 
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Barnett and Ghosh (2013) incorporate human capital accumulation into a Jones model. They 

also consider the possibility that the direction of technology progress is driven by human 

capital investment (Bucci (2008)). As a result, the parameters in the human capital 

accumulation equation play an important role in determining the dynamics of the model. 

Barnett and Ghosh (2013) also introduce the possibility of decreasing returns to scale 

associated with human capital and with time spent accumulating human capital in the 

production equation. This assumption accounts for the scale effects in the model and permits 

a closed form solutions for the steady state of the model. Using the numerical package 

Matcont, Barnett and Ghosh (2013) further show the existence of Hopf bifurcation, branch 

point bifurcation, limit point of cycles, Bogdanov-Takens bifurcation, and generalized Hopf 

bifurcations within the feasible parameter sets. 

In both models, Barnett and Ghosh (2013, 2014) emphasize that bifurcation 

boundaries do not necessarily separate stable from unstable solution domains. Barnett and 

Ghosh (2013, 2014) note that bifurcation boundaries can separate one kind of unstable 

dynamics domain from another kind of unstable dynamics domain.  Not as well known is that 

bifurcation boundaries can separate one kind of stable dynamics domain from another kind of 

stable dynamics domain (called soft bifurcation), such as bifurcation from monotonic 

stability to damped periodic stability or from damped periodic to damped multiperiodic 

stability. Recognizing there are an infinite number of kinds of unstable dynamics as well as 

an infinite number of kinds of stable dynamics, subjective prior views on the stability of 

economies are not reliable without conducting analysis of model dynamics. 
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1.8.2   Uzawa-Lucas Endogenous Growth Model21 

The Uzawa-Lucas endogenous growth model (Uzawa (1965) and Lucas (1988)) is 

one of the most important endogenous growth models. This model has two sectors: the 

human capital production sector and the physical capital production sector, producing human 

capital and physical capital, respectively. Individuals have the same level of work 

qualification and expertise (𝐻). They allocate some of their time to producing final goods 

and dedicate the remaining time to training and studying.  Barnett and Ghosh (2014) solve 

the model from a centralized social planner perspective as well as from the model’s 

decentralized market economy form.  

The production function in the physical sector is defined as follows: 

𝑌 = 𝐴𝐾!(𝜀ℎ𝐿)!!!ℎ!
! ,                      0 < 𝛼 < 1, 

where 𝑌 is output, 𝐴 is technology level, 𝐾 is physical capital, 𝛼 is the share of physical 

capital, 𝐿 is labor, and ℎ is human capital per person. In addition, 𝜀 and 1− 𝜀 are respectively 

the fraction of labor time devoted to producing output and human capital, where 0 < 𝜀 < 1. 

Observe that 𝜀ℎ𝐿 is the quantity of labor, measured in efficiency units, employed to produce 

output, and ℎ!
!  measures the externality associated with average human capital of the work 

force ℎ! , where 𝜁 is the positive externality parameter in the production of human capital. In 

per capita terms, 𝑦 = 𝐴𝑘!(𝜀ℎ)!!!ℎ!
! . 

The physical capital accumulation equation is  

𝐾 = 𝐴𝐾!(𝜀ℎ𝐿)!!!ℎ!
! − 𝐶 − 𝛿𝐾. 

																																																													
21	The	model	description	is	modified	from	Barnett	and	Ghosh	(2014).	
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In per capita terms, the equation is 

𝑘 = 𝐴𝑘!(𝜀ℎ)!!!ℎ!
! − 𝑐 − 𝑛 + 𝛿 𝑘, 

and the human capital accumulation equation is 

 ℎ = 𝜂ℎ 1− 𝜀 ,  

where 𝜂 is defined as schooling productivity. 

The decision problem is  

max!!, !!
  

e−(ρ−n)t c(τ )1−σ −1( )
1−σt

∞

∫ dt ,                         (1.8.1) 

subject to 

𝑘 = 𝐴𝑘!(𝜀ℎ)!!!ℎ!
! − 𝑐 − 𝑛 + 𝛿 𝑘                         (1.8.2) 

and  

ℎ = 𝜂 1− 𝜀 ℎ,                           (1.8.3) 

where 𝜌 (𝜌 > 𝑛 > 0) is the subjective discount rate, and 𝜎 ≥ 0  is the inverse of the 

intertemporal elasticity of substitution in consumption. 

              i. Social Planner Problem 

The social planner takes into account the externality associated with human capital, 

when solving the maximization problem (1.8.1) subject to (1.8.2) and (1.8.3). From the first 

order conditions, Barnett and Ghosh (2014, Appendix 2) derive the equations describing the 

economy of the Uzawa-Lucas model from a social planner’s perspective: 
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𝑘
𝑘 = 𝐴𝑘!!!𝜀!!!ℎ!!!!! −

𝑐
𝑘 − 𝑛 + 𝛿 , 

ℎ
ℎ = 𝜂 1− 𝜀 , 

𝑐
𝑐 =

𝛼𝐴𝑘!!!𝜀!!!ℎ!!!!! − (𝜌 + 𝛿)
𝜎 , 

𝜀
𝜀 = 𝜂

(1− 𝛼 + 𝜁)
1− 𝛼 𝜀 + 𝜂

(1− 𝛼 + 𝜁)
𝛼 −

𝑐
𝑘 +

1− 𝛼
𝛼 𝑛 + 𝛿 , 

𝐿
𝐿 = 𝑛.  

Let Ym
K

= and cg
k

=  .   Taking logarithms of 𝑚 and 𝑔 and differentiating with 

respect to time, the dynamics of the Uzawa-Lucas model is given by equation (1.8.4) and 

(1.8.5): 

!
!
= − 1− 𝛼 𝑚 + !!!

!
𝑛 + 𝛿 + 𝜂 !!!!!

!
 .     (1.8.4) 

!
!
= !

!
− 1 𝑚 − !

!
− 𝛿 !

!
− 1 + 𝑔 + 𝑛.      (1.8.5) 

The steady state (𝑚∗,𝑔∗) is given by 𝑚 = 𝑔 = 0 and is derived to be  

𝑚∗ = 𝜂
(1− 𝛼 + 𝜁)

𝛼 +
(𝑛 + 𝛿)
𝛼 ,  

𝑔∗ =
𝜌 − 𝑛
𝜎 +

1− 𝛼
𝛼 𝑛 + 𝛿 + 𝜂

(1− 𝛼 + 𝜁)
𝛼(1− 𝛼)

(𝜎 − 𝛼)
𝜎 . 

A unique steady state exists, if  
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𝛬 =
1− 𝛼 + 𝜁

𝛼 𝜎 − 1 𝜂 1− 𝜀 + 𝜌 > 0. 

This inequality condition for 𝛬 is the transversality condition for the consumer’s 

utility maximization problem, as shown in Barnett and Ghosh (2014, Appendix 1). It can be 

shown that the social planner solution is saddle path stable.  See, e.g., Barro and Sala-i-

Martín (2003) and Mattana (2004). Linearizing around the steady state, 𝑠∗ = 𝑚∗,𝑔∗ , the 

local stability properties of the system defined by equations (1.8.4) and (1.8.5) can be found. 

The result is  

 𝑚 
𝑔 =

 
𝜕𝑚
𝜕𝑚

|!∗      
𝜕𝑚
𝜕𝑔

|!∗

  
𝜕𝑔
𝜕𝑚 |!∗       

𝜕𝑔
𝜕𝑔 |!

∗

𝐉𝐬

 𝑚! −𝑚∗ 
 𝑔! − 𝑔∗

, 

where 

𝐉𝐬 =
 − 1− 𝛼 𝑚∗       0  

  
𝛼
𝜎 − 1 𝑔∗       𝑔∗ . 

Since 𝑚∗ > 0 and 𝑔∗ > 0, it follows that 𝑑𝑒𝑡 𝐉𝐬 = − 1− 𝛼 𝑚∗𝑔∗ < 0.  Hence the 

saddle path is stable.  

ii. Representative Agent Problem 

From the first order conditions with ℎ = ℎ! , Barnett and Ghosh (2014, Appendix 3) 

derive the following equations describing the dynamics of the decentralized Uzawa-Lucas 

model: 
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𝑘
𝑘 = 𝐴𝑘!!!𝜀!!!ℎ!!!!! −

𝑐
𝑘 − 𝑛 + 𝛿 , 

ℎ
ℎ = 𝜂 1− 𝜀 , 

𝑐
𝑐 =

𝛼𝐴𝑘!!!𝜀!!!ℎ!!!!! − (𝜌 + 𝛿)
𝜎 , 

𝜀
𝜀 = 𝜂

(𝛼 − 𝜁)
1− 𝛼 𝜀 + 𝜂

(1− 𝛼 + 𝜁)
𝛼 −

𝑐
𝑘 +

1− 𝛼
𝛼 𝑛 + 𝛿 , 

𝐿
𝐿 = 𝑛.  

              Taking logarithms of 𝑚 and 𝑔 and differentiating with respect to time, the following 

three equations define the dynamics of the Uzawa-Lucas model   

!
!
= − 1− 𝛼 𝑚 + (!!!)

!
𝑛 + 𝛿 + 𝜂 !!!!!

!
 −  𝜂 !

!
𝜀 ,        (1.8.6) 

!
!

 = !
!
− 1 𝑚 − !

!
− 𝛿 !

!
− 1 + 𝑔 + 𝑛,          (1.8.7) 

!
!

 = 𝜂 !!!
!

𝜀 + 𝜂 !!!!!
!

− 𝑔 +  !!!
!

(𝑛 + 𝛿).                                                 (1.8.8) 

The steady state (𝑚∗,𝑔∗, 𝜀∗), given by 𝑚 = 𝑔 = 𝜀 = 0, is 

𝜀∗ = 1−
1− 𝛼 𝜌 − 𝑛 − 𝜂
𝜂 𝜁 − 𝜎 1− 𝛼 + 𝜁 , 

𝑚∗ = 𝜂
1− 𝛼 + 𝜁 1− 𝜀∗

𝛼 1− 𝛼 +
𝑛
𝛼, 

𝑔∗ = 𝜂
1− 𝛼 + 𝜁 1− 𝜀∗ + 𝛼𝜀∗

𝛼 1− 𝛼 +
𝑛 1− 𝛼

𝛼 . 
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A unique steady state exists, if  

𝛬 =
1− 𝛼 + 𝜁

𝛼 𝜎 − 1 𝜂 1− 𝜀 + 𝜌 > 0, 

and  0 < 𝜀 < 1. 

               The inequality condition on 𝛬 is the transversality condition for the consumer’s 

utility maximization problem (Barnett and Ghosh (2014), appendix 1), while 0 < 𝜀∗ < 1 is 

necessary for 𝑚∗,𝑔∗ > 0.  Linearizing the system around the steady state, 𝑠∗ = 𝑚∗,𝑔∗, 𝜀∗ , 

yields the following: 

 𝑚 
𝑔
𝜀

=

 
𝜕𝑚
𝜕𝑚 |!∗      

𝜕𝑚
𝜕𝑔 |!

∗     
𝜕𝑚
𝜕𝜀 |!

∗   

 
𝜕𝑔
𝜕𝑚 |!∗      

𝜕𝑔
𝜕𝑔 |!

∗      
𝜕𝑔
𝜕𝜀 |!

∗   

𝜕𝜀
𝜕𝑚

|!∗      
𝜕𝜀
𝜕𝑔

|!∗      
𝜕𝜀
𝜕𝜀
|!∗  

𝐉𝐦

 𝑚! −𝑚∗ 
𝑔! − 𝑔∗
𝜀! − 𝜀∗

, 

where   

𝐉𝐦 =

 − 1− 𝛼 𝑚∗        0         − 𝜂
𝜁
𝛼
𝑚∗

 
𝛼
𝜎 − 1 𝑔∗       𝑔∗              0     

                 0               − 𝜀∗      𝜂
(𝛼 − 𝜁)
𝛼 𝜀∗  

. 

The characteristic equation associated with 𝐉𝐦 is 𝑞! + 𝑐!𝑞! + 𝑐!𝑞 + 𝑐! = 0, where  

𝑐! = 𝜂
𝜎 1− 𝛼 + 𝜁 − 𝜁

𝜎 𝑚∗𝑔∗𝜀∗, 

𝑐! = 𝜂!
(𝛼 − 𝜁)
𝛼 𝜀∗! − 1− 𝛼 𝑚∗𝑔∗, 
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𝑐! = −𝜂
2𝛼 − 𝜁
𝛼 𝜀∗. 

              iii. Bifurcation Analysis 

Barnett and Ghosh (2014) analyze the existence of codimension 1 and 2, transcritical, 

and Hopf bifurcation in the system ((1.8.6), (1.8.7), (1.8.8)). They search for the bifurcation 

boundary according to    c0 = det(Jm ) = 0 .  

Theorem 1.8.1   𝐉𝐦 has zero eigenvalues, if 

𝜂 ! !!!!! !!
!

𝑚∗𝑔∗𝜀∗ = 0.          (1.8.9) 

It follows from the Hopf Bifurcation Thereom in Guckenheimer and Holmes (1983), 

that if 𝑐! − 𝑐!𝑐! = 0 and 𝑐! > 0, then  𝐉𝐦 has precisely one pair of purely imaginary 

eigenvalues.  But if 𝑐! − 𝑐!𝑐! ≠ 0 and 𝑐! > 0, then 𝐉𝐦  has no purely imaginary eigenvalues. 

Therefore, Barnett and Ghosh (2014) derive the following theorem: 

Theorem 1.8.2   The matrix  𝐉𝐦 has precisely one pair of pure imaginary eigenvalues, if  

𝛼𝑚∗𝑔∗ 𝛼 − 1 𝛼𝜎 + 𝜁 𝜎 − 𝛼 + 𝜂!𝜎𝜀∗! 2𝛼 − 𝜁 𝛼 − 𝜁 = 0,
𝑎𝑛𝑑

 !
!

!
 𝜀∗! 𝛼 − 𝜁 − 1− 𝛼 𝑚∗𝑔∗ > 0.

     (1.8.10) 

             Furthermore, Barnett and Ghosh (2014) explain cyclical behavior in the model. They 

state that the increase of ζ would bring about the increase of savings rate since consumers are 

willing to cut current consumption in exchange for higher future consumptions. Then the 

movement of labor from output production to human capital production brings an increase in 

human capital, and subsequently faster accumulation of physical capital, if sufficient 

externality to human capital in production of physical capital is present.  On the other hand, a 
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lower subjective discount rate, 𝜌, could cause consumption to rise gradually with faster 

capital accumulation. This leads to greater consumption-goods production in the future, 

which eventually leads to a decline in savings rate.  A cyclical convergence to equilibrium 

comes from these two opposing effects, when savings rate is different from the equilibrium 

rate. Barnett and Ghosh (2014) conclude that interaction between different parameters can 

cause cyclical convergence to equilibrium or may cause instability, and for some parameter 

values convergence to cycles may occur. 

Based on Benhabib and Perli (1994), Barnett and Ghosh (2014) locate bifurcation 

boundaries by keeping some parameters free, while setting the others fixed at 𝛝∗ =

𝜂, 𝜁,𝛼,𝜌,𝜎,𝑛, 𝛿 = (0.05, 0.1, 0.65, 0.0505, 0.15, 0, 0) or 𝛚∗ = 𝜂, 𝜁,𝛼,𝜌,𝜎,𝑛, 𝛿 =

0.05, 0.1, 0.75, 0.0505, 0.15, 0, 0  . Using Matcont, Barnett and Ghosh (2014) then 

investigate the stability properties of cycles generated by different combinations of 

parameters. Some limit cycles, such as supercritical bifurcations, are stable, while some other 

limit cycles, such as subcritical bifurcations, are unstable. A positive value of the first 

Lyapunov coefficient indicates creation of subcritical Hopf bifurcation. Period doubling 

bifurcation occurs, when a new limit cycle, the period of which is twice that of the old one, 

emerges from an existing limit cycle.  

Table 1.8.1 reports the values of the share of capital, 𝛼, the externality in production 

of human capital, 𝜁, and the inverse of the intertemporal elasticity of substitution in 

consumption, 𝜎22.  Since each of the cases reported in Table 1.8.1 has positive first Lyapunov 

coefficient, an unstable limit cycle (i.e., periodic orbit) bifurcates from the equilibrium.  

																																																													
22	Table	1.8.1	is	a	replicate	of	Barnett	and	Ghosh	(2014)	Table	1.	
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When 𝛼 is the free parameter, Barnett and Ghosh (2014) find from continuing 

computation of limit cycles from the Hopf point, that two limit cycles with different periods 

are present near the limit point cycle (LPC) point at 𝛼 = 0.738.  Continuing computation 

further, a series of period doubling (flip) bifurcations arise.  The first period doubling 

bifurcation at 𝛼 = 0.7132369 has positive normal form coefficients, while the other period 

doubling bifurcations have negative normal form coefficients. This indicates that the first 

period doubling bifurcation has unstable double-period cycles, while the rest have stable 

double-period cycles. Barnett and Ghosh (2014) also find that the limit cycle approaches a 

global homoclinic orbit, which is a dynamical system trajectory joining a saddle equilibrium 

point to itself. They also point out the possibility of reaching chaotic dynamics through a 

series of period doubling bifurcation. 

When 𝜁 and 𝜎 are free parameters, Barnett and Ghosh (2014) conduct the bifurcation 

analysis in a similar way by carrying out the continuation of the limit cycle from the first 

Hopf point. They find that both cases give rise to the LPC point with a nonzero normal form 

coefficient, indicating the existence of a fold bifurcation at the LPC point. 
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               Table 1.8.1      Stability Analysis Of Uzawa-Lucas Growth Model     

Parameters Equilibrium Bifurcation Bifurcation of Limit 
Cycle 

   α 

Other parameters set at 
𝜗∗ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hopf (H) 

First Lyapunov coefficient = 
0.00242, α=0.738207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limit Point Cycle (LPC) 

period= 231.206, 
α=0.7382042,normal form 
coefficient=0.007 

Period Doubling (PD) 

period= 584.064, 
α=0.7132369,normal form 
coefficient=0.910 

Period Doubling (PD) 

period= 664.005, 
α=0.7132002,normal form 
coefficient=-0.576 

Period Doubling (PD) 

period= 693.988, 
α=0.7131958,normal form 
coefficient=-0.469 

Period Doubling (PD) 

period= 713.978, 
α=0.7131940,normal form 
coefficient=-0.368 

Period Doubling (PD) 

period= 725.667, 
α=0.7131932,normal form 
coefficient=-0.314 

Period Doubling (PD) 

period= 784.104, 
α=0.7131912,normal form 
coefficient=-0.119 
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 ζ 

Other parameters set at 
𝜔∗ 

 

 

 

 

Hopf (H) 

First Lyapunov coefficient 
=0.00250,ζ=0.107315 

Hopf (H) 

First Lyapunov coefficient 
=0.00246,ζ=0.047059 

Branch Point (BP) 

ζ=0.047059 

Limit Point Cycle (LPC) 

period= 215.751,  
ζ=0.1073147,normal form 
coefficient=0.009 

 

 

 

σ  

Other parameters set at 
𝜔∗ 

 

 

Hopf (H) 

First Lyapunov coefficient 
=0.00264, σ=0.278571 

Hopf (H) 

First Lyapunov coefficient 
=0.00249, σ=0.13939 

Branch Point (BP)    

σ=0.278571 

Limit Point Cycle (LPC) 

Period= 213.83, 
σ=0.1394026,normal form 
coefficient=0.009 

 

 

 

1.8.3  Jones Semi-Endogenous Growth Model23  

The model is based on a variant of Jones’(2002) semi-endogenous growth model.   

The labor endowment equation is given by 

 𝐿!! + 𝐿!! = 𝐿! = 𝜀!𝑁! ,         (1.8.11) 

where at time 𝑡, 𝐿! is employment, 𝐿!! is the labor employed in producing output, 𝐿!! is the 

total number of researchers, and 𝑁! is the total population having rate of growth 𝑛 > 0.  Each 

person is endowed with one unit of time and divides the time among producing goods, 

																																																													
23	The	model	description	is	modified	from	Barnett	and	Ghosh	(2013)	
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producing ideas and human capital, while 𝜀! and 1− 𝜀! represent respectively the amount of 

time the person spends producing output and accumulating human capital. 

            The capital accumulation equation is given by 

 𝐾 = 𝑠!!𝑌! − 𝑑𝐾! ,          𝐾! > 0,        (1.8.12) 

and       𝐾 = 𝑌! − 𝐶! − 𝑑𝐾! ,          (1.8.13) 

where 𝑠!! is the fraction of output invested, 𝑑 is the exogenous, constant rate of depreciation, 

𝑌! is the aggregate production of homogenous final goods, and 𝐾! is capital stock.  

Output is produced using the total quantity of human capital, 𝐻!! , and a set of 

intermediate goods. The total quantity of human capital equation is given by    

𝐻!! = ℎ!𝐿!! ,           (1.8.14) 

with the individual’s human capital accumulation equation is given by 

ℎ! = 𝜂ℎ!
!!(1− 𝜀!)!! − 𝜃𝑔!ℎ! ,       0 <  𝛽!,𝛽!, 𝜀! < 1, 𝜂 > 0, 1+ 𝜃 > 0,   (1.8.15) 

where ℎ! is human capital per person and 𝐿!! is labor employed in producing output. The 

parameter 𝜂 is productivity of human capital in the production of new human capital, 𝜃 

reflects the effect of technological progress on human capital investment, and 𝑔! =
!
!

   is the 

growth rate of technology. Equation (1.8.15) builds on the human capital accumulation 

equation from the Uzawa-Lucas model. 

            As noted in Barnett and Ghosh (2013), the human capital accumulation equation has 

two advantages. It accounts for the scale effects present in the model, and it makes the model 

tractable to solve for possible steady states. To see this, Barnett and Ghosh (2013) introduced 
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the assumption of decreasing returns to scale of the human capital growth rate in (1.8.15) by 

setting 0 <  𝛽! and 𝛽! < 1.  The higher the level of human capital or of time spent 

accumulating human capital, the more difficult it is to generate additional human capital. If 

𝛽! or 𝛽! is equal to 1, the model will exhibit “strong” scale effects.  In models associated 

with strong scale effects, the growth rate of the economy is an increasing function of the 

population.  But this phenomenon is inconsistent with United States data, as shown by Jones 

(1995). Barnett and Ghosh (2013) also include the technological growth rate, 𝑔!, which 

directly influences the human capital growth rate.  As in Bucci (2008), Barnett and Ghosh 

(2013) restrict 𝜃 > −1 to prevent explosive or negative long run growth rates.  

              In Barnett and Ghosh (2013), the production function is given by 

𝑌! = 𝐻!!
!!! 𝑥(𝑖)!  𝑑𝑖!

! ,       (1.8.16) 

where 𝑥(𝑖) is the input of intermediate good 𝑖, 𝐴 is the number of available intermediate 

goods, and 𝛼 ∈ 0,1 , where !
!!!

 is the elasticity of substitution for any pair of intermediate 

goods.  

            Since research and development (R&D) enable firms to produce new intermediate 

goods, the R&D technology equation is given by 

𝐴 = 𝛾𝐻!!
!𝐴!!!! ,                𝜙 > 0, 0 < 𝜆 ≤ 1.               (1.8.17) 

with  

𝐻!! = ℎ!𝐿!! ,                                                     (1.8.18) 
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where 𝐻!! is effective research effort and 𝐴! is the existing stock of ideas, while 𝜙 represents 

the externalities associated with R&D.   

In the final goods sector, the representative final output firm rents capital goods, 𝑥 𝑖 , 

from monopolist 𝑖 at price 𝑝(𝑖) and pays 𝑤 as the rental rate per unit of human capital 

employed. For each durable, the firm chooses quantity 𝑥 𝑖  and 𝐻! to maximize the profit as 

follows: 

max
!,!!

[𝐻!!!!𝑥 𝑖 ! − 𝑝 𝑖 𝑥 𝑖 ] 𝑑𝑖 − 𝑤𝐻! .
!

!
 

             Solving the maximization problem gives 

𝑝 𝑖 = 𝛼𝐻!!!!𝑥 𝑖 !!!,                (1.8.19) 

𝑤 = 1− 𝛼 !
!!
.                 (1.8.20) 

In the intermediate goods sector, each intermediate good, 𝑥 𝑖 , is produced by a 

monopolist, who owns an infinitely-lived patent on a technology determining how to 

transform a unit of raw material, 𝐾, costlessly into intermediate goods.  That production 

function is simply 𝑥 = 𝐾. The producer of each specialized durable takes 𝑝 𝑖  as given from 

equation (1.8.19) in choosing the profit maximizing output, 𝑥, according to the profit level 

𝜋 = max
!
𝑝 𝑥 𝑥 − 𝑟𝑥, 

where 𝑟 is the rental price of raw capital. Solving the monopoly profit maximization problem 

gives 

𝑝 𝑖 = 𝑝 = !
!
.                             (1.8.21) 
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             The flow of monopoly profit is  

𝜋 𝑖 = 𝜋 = 𝑝𝑥 − 𝑟𝑥 = 1− 𝛼 𝑝𝑥.               (1.8.22) 

             In the research and development sector, the decision to produce a new specialized 

input depends on a comparison of the discounted stream of net revenue and the cost of the 

initial investment in a design. Because the market for designs is competitive, the price for 

designs, 𝑃!, will be bid up until equal to the present value of the net revenue that a 

monopolist can extract. Therefore 𝑃! is equal to 

𝑒! ! !  !"!
! 𝜋 𝜏  𝑑𝜏 = 𝑃! 𝑡 ,

!
!                (1.8.23) 

where 𝑟 is the interest rate.  

            If  𝑣(𝑡) denotes the value of the innovation, then 

𝑣 𝑡 =  𝑒! ! !  !"!
! 𝜋 𝜏  𝑑𝜏!

! .                          (1.8.24) 

Assuming free entry into the R&D sector, the zero profit condition is 

𝑤𝐻! = 𝑃! 𝛾𝐻!!𝐴!!!
!

.                            (1.8.25)     

            Therefore, equation (8.25) can equivalently be written as, 

𝑤𝐻! = 𝑣𝛾𝐻!!𝐴!!! .                            (1.8.26) 

            Because of the symmetry with respect to different intermediate goods, Barnett and 

Ghosh (2013) set 𝐾 = 𝐴𝑥. The production function then is  

𝑌 = (𝐴𝐻!)!!!(𝐾)! .                            (1.8.27) 

            Hence, from equation (8.20) and (8.27), it follows that  
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𝑤 = 1− 𝛼 𝐴( !
!!!

)! .                      (1.8.28) 

            From zero profits in the final goods sector, 𝜋 = 𝐻!!!!𝐴𝑥! − 𝑝𝐴𝑥 − 𝑤𝐻! = 0; and 

from equation (1.8.20), the following equation results 

𝑌 − 𝑤𝐻! = 𝑝𝐴𝑥 = 𝛼𝑌.          (1.8.29) 

             Barnett and Ghosh (2013) note that wages equalize across sectors as a result of free 

entry and exit.  

              From the consumers’ perspective, the agent’s utility maximization problem is  

max
!!,!!

𝑒! !!! !!
! 𝑐 𝜏 !!! − 1

1− 𝜎 𝑑𝑡 

subject to 

𝐾 = 𝑟! 𝐾! + 𝑣!𝐴! + 𝑤!𝐻! − 𝑐!𝑁! − 𝑣!𝐴! − 𝑣!𝐴! , 

ℎ! = 𝜂ℎ!
!!(1− 𝜀!)!! − 𝜃𝑔!ℎ!, and 𝜀! ∈ 0,1 , 

where 𝜌 is the subjective discount rate with 𝜌 > 𝑛 > 0,  and 𝜎 ≥ 0 is the inverse of the 

intertemporal elasticity of substitution in consumption. Individuals choose consumption, 𝑐!, 

and the fraction of time devoted to human capital production or to market work, 𝜀!. 

              In order to conduct bifurcation analysis, Barnett and Ghosh (2013) derive the 

following equations, which represent the dynamic equations for the model:    

!
!
= !!

!
− 1 𝑚 − !

!
+ 𝑛 + 𝑔 + 𝑑 ,                       (1.8.30) 

     !
!
= !!!

!
−𝛼!𝑚 + 𝛼𝑣 + 𝜙 𝑢 − 𝑣 ,                  (1.8.31) 
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     !
!

 = 1− 𝛼 𝑚 + 𝑣 − 𝑔 + !!! !
!

− 1 𝑢 − 𝑣 − 𝑑,                           (1.8.32) 

     !
!
= !

! !!!!
−𝑧 − 𝜃𝑔! 𝛽! − 2 + 𝛼𝑣 − 𝛽!

!"#
!
− 1− 𝜙 𝑢 − 𝑣 − 𝑛   

                  −(1− 𝛽!)(𝑧 − 𝜃𝑔!),                                         (1.8.33) 

      !
!
= !!!

!(!!!!)
−𝑧 − 𝜃𝑔! 𝛽! − 2 + 𝛼𝑣 − 𝛽!

!"#
!
− 1− 𝜙 𝑢 − 𝑣 − 𝑛    (1.8.34) 

      !
!
= 𝑧 − 𝜃𝑔! + 𝑛 − 𝜙 𝑢 − 𝑣 + !

!(!!!!)
−𝑧 − 𝜃𝑔! 𝛽! − 2 + 𝛼𝑣 − 𝛽!

!"#
!
−

                    1− 𝜙 𝑢 − 𝑣 − 𝑛 .                     (1.8.35) 

               According to Barnett and Ghosh’s (2013) Definition 1, a steady state is a balanced 

growth path with zero growth rate. The steady state 𝑠∗ = 𝑔∗,𝑚∗, 𝑣∗, 𝑧∗, 𝑓∗,𝑢∗  is derived by 

solving 𝑔 = 𝑚 = 𝑣 = 𝑧 = 𝑓 = 𝑢 = 0. The results are as follows: 

𝑧∗ =
𝑛𝜃
𝜙 , 

𝑣∗ =
𝜌 − 𝑛
𝛼 +

𝑛𝜎
𝜙𝛼, 

𝑢∗ = 𝑣∗ +
𝑛
𝜙, 

𝑚∗ =
𝑣∗

𝛼 +
𝑛
𝛼!, 

𝑔∗ = (1−
𝛼!

𝜎 )𝑚
∗ +

𝜌
𝜎 − 𝑛 − 𝑑, 
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𝑓∗ =
𝑢∗

𝑣∗𝛽!
𝜙𝜌
𝜃𝑛 −

𝜙 + 1− 𝜎
𝜃 − 𝛽! − 1 . 

Barnett and Ghosh (2013) derive the growth rate of technology to be 𝑔! =
!
!

.  The 

goal is to examine the existence of codimension 1 and codimension 2 bifurcations in the 

dynamical system defined by (1.8.30)-(1.8.35). The usual way to identify codimension-1 

bifurcation is by varying a single parameter, while the usual way to identify codimension-2 

bifurcation is by varying 2 parameters. 

Barnett and Ghosh (2013) discuss reasons accounting for the occurrence of cyclical 

behaviors. The economic intuition behind the cycle phenomenon is described as follows. 

Suppose profits for monopolists increase. Then the price for designs, 𝑃!, is bid up, since the 

market for designs is competitive.  From (1.8.26), wages, 𝑤, in the R&D sector will rise. 

Higher wages lead to a shift of labor from output production to the research sector.  

Furthermore, the technological growth rate, 𝑔!, will rise, if externalities to R&D are present. 

Assuming a negative effect of technical progress on human capital investment, i.e., 𝜃 > 0, 

human capital accumulation, ℎ! , declines. According to (1.8.14) and (1.8.19), the price falls 

from a decline of average quality of labor. Monopoly profits then fall, completing the 

mechanism of this cycle. 

Barnett and Ghosh (2013) use the numerical continuation package Matcont to detect 

Andronov-Hopf bifurcations.  Table 1.8.2 reports the values of the subjective discount rate, 𝜌, 

the share of human capital, 𝛽!, and the share of time devoted to the human capital production, 

𝛽!, the effect of technological progress on human capital accumulation, 𝜃, and the 
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depreciation rate of capital, 𝑑.  Those parameters are treated as free parameters, at which 

Hopf bifurcation can occur.24 

As discussed in section 1.8.2, a positive first Lyapunov coefficient indicates the 

existence of subcritical Hopf bifurcation. Therefore, since cases reported in Table 1.8.2 are 

associated with positive first Lyapunov coefficients, an unstable limit cycle with periodic 

orbit bifurcates from the equilibrium. When 𝜌,𝛽!,𝜃, and 𝑑 are treated as free parameters, a 

slight perturbation of them gives rise to branch points (pitchfork/transcritical bifurcations). 

Barnett and Ghosh (2013) investigate the stability properties of cycles generated by 

different combination of such parameters. The parameter, 𝜌, taken as a free parameter, gives 

rise to two period doubling (flip) bifurcations, one of which occurs at 𝜌 = 0.0257 and the 

other at 𝜌 = 0.0258. Both bifurcations have negative normal form coefficients, indicating 

stable double-period cycles. 

Table 1.8.2    Stability Analysis of a Variant of Jones Semi-Endogenous Growth Model 

Parameters varied Equilibrium bifurcation Continuation 

𝛽!: {𝛼 = 0.4,𝜌 =
0.055,

   
 𝛽! = 0.04,𝑛 =

0.01,𝑑 = 0,𝜃 =
0.4,𝜙 = 1,𝜎 = 8} 

Branch Point (BP)                                        
𝛽! = 1  

 

 

𝛽!: {𝛼 = 0.4,𝜌 =
0.025772,𝛽! =
0.04,𝑛 = 0.01,𝑑 =
0,𝜃 = 0.4,𝜙 = 0.8,𝜎 =
0.08} 

Hopf (H)                                                         
First Lyapunov 
coefficient=0.0000230, 
𝛽! = 0.19 

 

 

𝛽!: {𝛼 = 0.4,𝜌 =
0.025772,𝛽! =
0.19,𝑛 = 0.01,𝑑 =
0,𝜃 = 0.4,𝜙 = 0.8,𝜎 =

Hopf (H)                                                       
First Lyapunov 
coefficient=0.00002302, 

 

 

																																																													
24	Table	1.8.2	is	a	replicate	of	Barnett	and	Ghosh	(2013)	Table	1.	
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0.08} 𝛽! = 0.040000 

𝑑:  {𝛼 = 0.4,𝛽! = 0.19,
𝜌 = 0.055,𝛽! =
0.04,𝑛 = 0.01,𝜃 =
0.4,𝜙 = 1,𝜎 = 8} 

Branch Point (BP)                                       
𝑑 = 0.826546  

 

 

𝜌: {𝛼 = 0.4,  𝛽! =
0.19,𝛽! = 0.04,𝑛 =
0.01,𝑑 = 0,𝜃 =
0.4,𝜙 = 1,𝜎 = 0.08}  

 

 

 

 

Hopf (H)                                                       
First Lyapunov 
coefficient=0.0000149, 
𝜌 = 0.025772 

 

Branch Point (BP)     

𝜌 = 0.026726                                                           
Hopf (H)     Neutral saddle 
𝜌 = 0.026698  

Bifurcation of limit cycle                                               
Period doubling 
(period=1569.64; 𝜌 =
0.0257)     Normal form 
coefficient=-4.056657e-013                   

Period doubling 
(period=1741.46; 𝜌 =
0.0258)      Normal form 
coefficient= -7.235942e-015                                  
Limit point cycle 
(period=2119.53; 𝜌 =
0.0258)     Normal form 
coefficient=7.894415e-004                   
Period doubling  
(period=2132.13; 𝜌 =
0.0258)    Normal form 
coefficient=-1.763883e-013           

 

𝜃:      {𝛼 = 0.4,  𝛽! =
0.19,𝛽! = 0.04,𝑛 =
0.01,𝑑 = 0,𝜌 =
0.029710729, 𝜙 =
0.69716983,𝜎 = 0.08} 

 

 

 

 

Hopf (H)                                                        
First Lyapunov 
coefficient=0.0000230, 
𝜃 = 0.40000            

Hopf (H)                                                        
First Lyapunov 
coefficient=0.00001973, 
𝜃 = 0.355216 

 

                                                                                      

 

 

 

 

 

 

Codimension-2 bifurcation                                  
Generalized Hopf(GH)                            
𝜃 = 0.000044,𝜌 =
0.580853,
L2 = 0.000001254                                         
Bogdanov-Takens(BT)                                                        
𝜃 = 0,𝜌 = 0.644247           
𝑎, 𝑏 =
(0.000001642,−0.003441)                  
Generalized Hopf(GH)                                                      
𝜃 = 0.000055,𝛽! =
0.584660,
L2 = 0.0000008949     
Bogdanov-Takens(BT)                                                        
𝜃 = 0,𝛽! = 0.903003           
𝑎, 𝑏 = (0.000006407790,
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Hopf (H)    Neutral saddle,  
𝜃 = 0.612624  

Branch Point (BP)   𝜃 =
0.613596                                                                                                                                                                                              

0.03291344)                                                                                               

                 

From further computation, Barnett and Ghosh (2013) find two limit cycles with 

different periods present near the LPC point at 𝜌 = 0.0258 bifurcating from the Hopf point. 

They also find another period doubling (flip) bifurcation at 𝜌 = 0.0258. Barnett and Ghosh 

(2013) then investigate the existence of codimension-2 bifurcations by first taking 𝜃 and 𝜌 as 

free parameters and then taking  𝜃 and 𝛽! as free parameters. There are two types of 

codimension 2 bifurcations: Bogdanov-Takens and Generalized Hopf.  At each Bogdanov-

Takens point the system has an equilibrium with a double zero eigenvalue. The bifurcation 

point of the Generalized Hopf bifurcation separates branches of subcritical and supercritical 

Andronov-Hopf bifurcations in the parameter plane. The Generalized Hopf points are 

nondegenerate, since the second Lyapunov coefficient is nonzero. The system has two limit 

cycles for nearby parameter values, which collide and disappear through a saddle–node 

bifurcation.                                                                                

1.9   Conclusion 

             At this stage of this research, we believe that Grandmont’s conclusions appear to 

hold for all categories of dynamic macroeconomic models, from the oldest to the newest. So 

far, the findings we have surveyed suggest that Barnett and He’s initial findings with the 

policy-relevant Bergstrom-Wymer model appear to be generic.  We anticipate that further 

studies with other models will produce similar results, and advances in nonlinear and 
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stochastic bifurcation are likely to find even deeper classes of bifurcation behavior, including 

perhaps chaos, which is precluded by linearization. This survey is designed to facilitate such 

future studies.  

            The practical implications of these findings include the following.  (1) Policy 

simulations with macroeconometric models should be run at various points within the 

confidence regions about parameter estimates, not just at the point estimates.  Robustness of 

dynamical inferences based on simulations only at parameters’ point estimates is suspect.  (2) 

Increased emphasis on measurement of variables is warranted, since small changes in 

variables can alter dynamical inferences by moving bifurcation boundaries and their distances 

from parameter point estimates.  (3) While bifurcation phenomena are well known to growth 

model theorists, econometricians should take heed of the views of systems theorists, who 

have found that bifurcation stratification of the parameter space of dynamic systems is 

normal, and should not be viewed as a source of model failure or defect. 
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Chapter 2:  Price Stickiness and Markup Variations 
in Market Games25 
2.1 Introduction 

            Contemporary macroeconomic theory has been built on the three pillars of imperfect 

competition, nominal price rigidity, and strategic complementarity. The stickiness of prices 

(and wages in particular) is a well-established empirical fact, with early observations about 

the phenomenon dating back to Alfred Marshall. Because the friction of price stickiness 

cannot occur in perfectly competitive markets, modern micro-founded (e.g., New Keynesian) 

models have been forced to abandon the standard Arrow-Debreu paradigm of perfect 

competition in favor of models where agents may influence market prices. Strategic 

complementarity enters the picture as a mechanism for explaining the kinds of coordination 

failures that lead to sustained slumps like the Great Depression or the aftermath of the 2007-

2008 financial crisis. Early work by Cooper and John (1988) lay out the importance of these 

three features for macroeconomics.  

           The need for imperfect competition becomes particularly transparent when one notes 

the importance of firms’ markups of prices over marginal costs in allowing for quantity 

adjustments independently of price adjustments in response to market shocks. This is because 

prices equal marginal costs in competitive markets, and any variation in quantities must be 

accompanied by variations in prices. For models with nominal rigidities to work, some 

degree of positive markups is necessary. The role of markups in macroeconomic fluctuations 

has been examined closely by Rotemberg and Woodford (1991, 1992, 1999). These papers 

																																																													
25	This	paper	is	published	as	Chen	et	al.	(2017).	
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have formed the basis for virtually all of the follow-on work in the new classical synthesis, 

and its reliance on imperfectly competitive market structures coupled with the dynamic 

structure of the neoclassical growth model. In most of this work, imperfect competition is 

introduced by imposing monopolistic competition via the Dixit and Stiglitz (1977) 

(hereinafter DS) model.  

            The DS model provides a simple and tractable way to model price-setting behavior in 

an otherwise competitive setting that strips away the sophistication of strategic behaviors that 

appear in settings of tight oligopoly. At the time of its introduction, the tractability of this 

model offset concerns over the empirical fact of oligopoly (in many industries including 

grocery retailing, banking, transportation, energy, telecommunications, and media), though in 

fairness to Dixit and Stiglitz, we note that their original model was one of preferences for 

diversity, rather than specialization in production.  

             Interestingly, there was another model around at that time which showed how to take 

explicit account of imperfect competition and large firms in a general equilibrium setting, the 

market game model developed by Shapley and Shubik (1977) and extended to production 

economies by Dubey and Shubik (1977). The Shapley-Shubik market game (hereinafter, 

market game) model received quite a bit of attention in the general equilibrium literature of 

the 1980’s and 1990’s, but was not considered as an alternative to models of monopolistic 

competition in macroeconomics. While the DS model certainly had important early adoption 

advantages (particularly in its first appearance as a model of production specialization in 

trade theory), the sophistication of the market game model likely deterred its applications, 

despite its distinct claim to being the best general equilibrium extension of well-known 

models in industrial organization, in the sense of following the original Nash framework for 
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showing equilibrium in non-cooperative games (see, for example, Dubey and Geanakoplos 

2003).  

          We believe the market game model can provide a significantly better micro-foundation 

for macroeconomics than do either the conventional real business cycle (hereinafter RBC) 

models based on the neoclassical growth model, or New Keynesian (hereinafter NK) models 

based on the DS model. Our belief is premised on the following three facts. First, as noted 

above, it is a simple empirical fact that modern industrial economies are populated by large 

firms that interact strategically across different markets in which they operate. These strategic 

interactions have been widely studied in partial equilibrium contexts in the theory of 

Industrial Organization (hereinafter IO), but macroeconomics has routinely ignored this 

branch of economics in favor of simpler models involving either perfect competition (RBC 

models) or models of local monopoly (the DS model). The market game model has similarly 

been overlooked, despite its potential of allowing for significant extension of findings in the 

IO literature to general equilibrium. From an empirical perspective, since the adoption of the 

monopolistic competition framework in macroeconomics, there has been a marked increase 

in industrial concentration. The President’s Council of Economic Advisors Issue Brief (2016) 

documents concentration since the 1980’s not only in technology industries (e.g. aerospace, 

microchip, operating system, software, and smart phone) but also in the traditional 

manufacturing and extractive industries, and in finance. As the report notes, some of this 

increase in concentration has been due to technological innovations and associated scale 

phenomena, and some has been due to mergers and acquisitions. Regardless of the cause, the 

new empiricism of market power suggests that economists should be paying more attention to 

the strategic interactions of large firms in oligopolistic market structures. 
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            Second, oligopoly models allow the introduction of an additional strategic dimension 

beyond imperfectly competitive pricing markups, which makes possible equilibrating 

quantity adjustment processes – as we will show here – that do not require variation in prices, 

in some versions of the model. This is in marked contrast to the additional frictions required 

in DS-based models (menu costs or Calvo contracts) for price stickiness to occur. There are 

other papers that employ strategic models to incorporate or generate price stickiness. For 

example, Fershtman and Kamien (1987) study duopolistic competition in a model with a 

homogeneous good, and incorporate sticky prices by assuming that the desirability of the 

good is an exponentially weighted function of accumulated past consumption. Cellini and 

Lambertini (2007) extend Fershtman and Kamien (1987) by considering a dynamic 

oligopolistic game where goods are differentiated with sticky prices. Slade (1999) 

investigates the strategic implications of price adjustments, and empirically shows that 

strategic behavior aggravates price rigidity in a dynamic oligopoly. Both Carvalho (2006)’s 

model on heterogeneity in price stickiness and Fehr and Tyran (2008)’s model on limited 

rationality show that nominal rigidity prevails under strategic complementarity. Finally, 

Bhaskar (2002) provides a model of imperfect competition that produces a continuum of 

stable staggered price equilibria by introducing two levels of strategic interactions of firms 

within and across industries. Bhaskar (2002)’s model is the closest to ours in the sense that it 

shows how strategic interactions can end up generating price rigidities, albeit in terms of 

adjustment staggering rather than general nominal rigidity generated in our model.  

              Third, contemporary dynamic-stochastic-general-equilibrium (DSGE) models 

typically examine fluctuations in output, employment, and prices around a fixed steady state. 

This is done despite the fact that the data on business cycle fluctuations measure deviations in 
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observed quantities from endogenously generated trend growth paths. Before macro models 

can be brought to data, then, the data itself must be detrended, usually based on ad hoc 

assumptions on the nature of economic growth. In RBC models, this is justified for the 

simple reason that long run growth in the neoclassical growth model must be assumed 

exogenously. In NK models, where (as Romer 1990 has shown) long-run growth is possible 

given the increasing returns to specialization inherent in the DS technology, macro 

applications of the model generally just ignore increasing returns and adopt the RBC practice 

of working with detrended data and stochastic steady states. The other well-known model of 

endogenous growth - the Schumpeterian model by Aghion and Howitt (1992) - has seen only 

minor applications at the intersection of IO and macroeconomics (see, for example, Aghion 

and Howitt 2000). The market game model, on the other hand, has the potential to allow for 

explicit consideration of growth in terms of its ability to accommodate increasing- returns-to-

scale technologies, as well as the fact that it nests both DS and Aghion and Howitt (1992) 

models given the abstract specification of production activities in the model. While dealing 

explicitly with increasing-returns-to-scale technologies is more difficult than dealing with 

convex technologies, it is not intractable. In an earlier study, Korpeoglu and Spear (2016) 

extend the market game model with production to allow for increasing-returns-to-scale 

technologies, and show how imperfect competition in the market game remedies the standard 

problem that competitive firms operating under increasing-returns-to-scale technologies face 

of either wishing to produce infinite output, or, if restricted to marginal-cost pricing, needing 

to be subsidized to offset losses. This analysis also provides some weak results on the 

existence of equilibrium, though it should be no surprise that strong existence results are 

unattainable when technology dictates limits on the number of firms that can be active in 

equilibrium.  
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            In this paper, we show that the market game generates equilibria that have two 

important features. First, we show that when firms have market power, their market-shares in 

both input and output markets affect the first-order conditions of their best responses, in ways 

that resemble the effects of price changes. From this observation, we are able to establish that 

firm quantity adjustments (holding input prices fixed) can maintain the Nash equilibrium of 

the model in versions of the model that exhibit indeterminacy of the Nash equilibrium. 

Hence, these versions of the model naturally admit sticky prices, regardless of the 

mechanism(s) that might lead firms to want to keep input prices unchanging. To the best of 

our knowledge, this is a new result. Second, we show that there is a close relationship 

between any individual firm’s markup of price over marginal cost and its market share. As 

we noted above, the case for positive markups in macroeconomic models has been argued 

persuasively by Rotemberg and Woodford (1991, 1992, 1999). The relationship between 

markups and market shares, however, has not received attention, to the best of our 

knowledge.  Rotemberg and Woodford (1992), for example, consider a model of oligopoly, 

but focus on symmetric Nash equilibrium in which each firm’s market share is the same. This 

allows them to make predictions about how markups change as a response to demand or 

productivity shocks. What the market game brings to the discussion of markups that is new, 

is the fact that markets populated by finite numbers of firms operating under possibly 

different technologies will generate data on markup movements over different equilibria that 

can vary positively, negatively, variably, or not at all over business-cycle-like expansions and 

contractions. This is interesting in light of recent work by Nekarda and Ramey (2013) 

showing that “updated empirical methods and data” indicate that markups are weakly 

procyclic or acyclic, in contrast to the results found in the earlier work on markups and 

productivity co-movements.  
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            The remainder of the paper is organized as follows. Section 2.2 lays out the basic 

market game model; Section 2.3 provides the detailed analysis of price stickiness and markup 

variations; and Section 2.4 concludes.  

2.2 Model 

         We work initially with a standard market game model with production along the 

lines first considered by Dubey and Shubik (1977). In this section, we elaborate on the model 

ingredients. Most of our formulation of the model and our notation will follow that of Peck 

and Shell (1990) and Peck et al. (1992).  

2.2.1 Agents 

       The economy consists of two types of agents: consumers (“she”) and firms (“it”). There 

are  M < ∞  consumers who are endowed with production inputs   ei ∈! +
N  and sell these inputs 

to firms that produce outputs from which consumers derive utility. For simplicity, we assume 

that consumers derive no direct utility from the consumption of their input endowments.  

         Preferences of consumers are defined over output goods vectors   xi ∈! +
J . Utility 

functions are assumed to be at least twice continuously differentiable, strictly increasing, 

strictly concave, and satisfy Inada conditions. There are 
 
K j < ∞  firms of finitely many types 

  j ∈ 1,2,..., J{ }  that produce output good  j  using a production technology specified by a 

production function 
  
qk j

j = fk j
(ϕk j

) where 
  
ϕk j

∈! +
N

 is the vector of inputs for firm 

  
k j ∈ 1,2,..., K j{ }  in production sector   j ∈ 1,2,..., J{ } , and each production function is twice 
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continuously differentiable and strictly quasi-concave. We will denote the total number of 

firms by 
  
ℑ= K j

j=1

J

∑ . We assume that consumers are exogenously endowed with ownership 

shares of each firm. Specifically, we let  θ i
k j be consumer  i ’s ownership share of firm 

 
k j  in 

sector  j .   

2.2.1.1 Firm actions 

              Firms purchase production inputs from consumers and use them to produce outputs, 

which they then sell back to consumers based on their expectations of prices they can receive 

for their outputs. Since firms are not endowed with production inputs, they must bid for these 

inputs on input trading posts (which are endemic to the market game). We assume that firms 

aim to maximize their profits.26 We let  p
j  be the price of output good  j , and  r n be the price 

of input good  n , and   r = (r1,r 2 ,...,r N ) be the vector of input prices. The profit of firm 
 
k j  is 

then  

                         
  
π k j

= p jqk j

j − r nϕk j

n

n=1

N

∑ = p j fk j
(ϕk j

)− rϕk j
.                                               (2.1) 

Input prices are determined on input trading posts. We let 
 
wk j

n  denote firm 
 
k j ’s bid on input 

trading post   n∈ 1,2,..., N{ } , and 
   
wk j

= (wk j

1 ,wk j

2 ,...,wk j

N )∈! +
N  denote firm 

 
k j ’s vector of bids 

																																																													
26	In	the	absence	of	perfect	competition,	it	is	well	known	that	shareholders	can	disagree	on	the	objective	of	
the	firm	they	own.	As	it	is	beyond	the	scope	of	this	paper	to	justify	that	profit	maximization	is	the	correct	
objective	for	the	firm	operating	under	increasing-returns-to-scale	technology,	we	just	take	this	assumption	as	
it	is. 
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for inputs.27 The aggregate bid at trading post  n  is 
  
W n = wk j

n

k j=1

K j

∑
j=1

J

∑ . As is standard, we let 

 
W−k j

n denote the aggregate bid at trading post  n  except for the bid of firm 
 
k j  . Moreover, we 

let  ei
n  denote consumer  i ’s offer at input trading post  n , and 

  
En = ei

n

i=1

M

∑  denote the 

aggregate offer at input �trading post  n . Then, the price of input good  n  is then defined as 

 
r n = W n

En . Firm 
 
k j ’s allocation of input good  n  is given by its own bid for the input divided 

by the price of the input  

                                                           
 
ϕk j

n =
wk j

n

r n = wk j

n En

W n .                                               (2.2)  

This is just the standard market game rule that allocates each firm the same proportion of the 

aggregate offer of the input good as its bid is to the aggregate bid. Firms earn unit of account 

revenues from the sale of their outputs on trading posts for output goods. Given  

  
qk j

j = fk j
(ϕk j

) for   j ∈ 1,2,..., J{ } , firm 
 
k j will offer all of its output on the output trading post 

 j , so we can define the aggregate offer at trading post j  as 
  
Q j = qk j

j

k j=1

K j

∑ . As before, we let 

 
Q−k j

j denote the aggregate offer at trading post  j  except for the offer of firm 
 
k j .   Given the 

																																																													
27	The fictional trading posts introduced by Shapley and Shubik (1977) are essentially a metaphor for flows of 

expenditure and product between traders. By collecting these flows for specific markets on “trading posts,” it 
simplifies the actions of choosing demand and supply allocations and streamlines the exposition of the market 
game form. In equilibrium, though, it is only the flows of expenditure and product that matter, not where they 

take place.  
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price  p
j  for the output good  j , firm 

 
k j can spend 

 
p jqk j

j units of account on the purchase of 

input goods. Hence firm 
 
k j  faces the following budget constraint for its bids on inputs  

                                                        
  

wk j

n =
n=1

N

∑ p jqk j

j .                                                            (2.3) 

Note that substituting for 
 
wk j

n  from (2.2) into (2.3) yields 

                                      
  

ϕk j

n r n ≤
n=1

N

∑ p jqk j

j ⇒π k j
= p jqk j

j − ϕk j

n

n=1

N

∑ r n ≥ 0 , 

which means that firm 
 
k j ’s profit cannot be negative. If the firm’s budget constraint (2.3) is 

not satisfied, then its input allocation is zero and all of its offers are confiscated.  

2.2.1.2   Consumer actions 

                Consumers bid on trading posts for output goods. Because consumers derive no 

utility from the consumption of their input endowments, but receive income from selling 

these inputs, consumers will sell as much of their endowments as possible to firms. 

Consumer  i ’s income from the sale of her input endowments, then, is given by 

  
r ⋅ei = r nei

n

n=1

N

∑ = W n

En
n=1

N

∑ ei
n ,  where the aggregate bid  W n on the input market  n  is determined 

by firms’ production decisions. In addition to their income from the sale of input 

endowments, consumers also receive (exogenously given) shares of profits from firms they 

own, so that consumer  i ’s total income is  



	 163	

                                                
  
yi =

W n

En
n=1

N

∑ ei
n + θ i

k jπ k j
k j=1

K j

∑
j=1

J

∑ .                                         (2.4) 

Note that if we had a small number of consumers, given the arbitrary distribution of 

ownership shares across consumers, consumers might want firms they own to deviate from 

profit maximization in order to increase the value of their sales of input endowments. This 

failure of shareholder unanimity in models with imperfect competition is well known. As we 

do not provide any insight into this issue here, we will simply assume that consumers take the 

value of their endowment others and the value of their profit shares as given. This can be 

justified more rigorously by assuming that the number of consumers is much higher than the 

number of firms, so that the ratio 
 

ei
n

En

 
in (2.4) is negligible, and that ownership of firms is 

diffusely distributed. We let  bi
j  denote consumer  i ’s bid on output trading post 

  j ∈ 1,2,..., J{ } , and    bi = (bi
1,bi

2 ,....,bi
J )∈! +

J  denote consumer  i ’s vector of bids for outputs. 

The aggregate bid at trading post j is 
  
B j = bi

j

i=1

M

∑ . As above, we let B− i
j   denote the aggregate 

bid at trading post j except for the bid of consumer i . The price of output good  j  is then 

defined as the ratio of the total bid for the output good  j to the total offer of the output good 

 j , i.e., 
 
p j = B j

Q j . Consumer  i ’s allocation of output good  j  is given by her own bid for the 

output divided by the price of the output  

                                                      
  
xi

j =
bi

j

p j = bi
j Q j

B j .                                                   (2.5)  
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This is just the standard market game rule that gives each consumer the same proportion of 

the aggregate offer of the output good as her bid is to the aggregate bid. Consumer  i faces the 

following budget constraint for bids on outputs  

                                           
  

bi
j ≤ yi =

j=1

J

∑ W n

En
n=1

N

∑ ei
n + θ i

k jπ k j
k j=1

K j

∑
j=1

J

∑ .                         (2.6)  

�As with firms, if the consumer’s budget constraint is violated, her allocation is zero and all of 

her others are confiscated.  

2.2.2  Market Game and Nash Equilibrium 

With these definitions and characterization of agents in the model, we can now formally 

define the market game Γ.  

Definition 2.1 Consumer  i ’s strategy set is  

                                                 
   
Si = (bi ,ei )∈! +

2 J | ei < ei{ }  for   i ∈ 1,2,..., M{ } . 

Firm 
 
k j ’s strategy set is  

                                                          
   
Sk j

= wk j
∈! +

N{ }. 

The full strategy set that then defines the offer-constrained game Γ (  e! ) is  

                                                        
  
S = × i=1

M Si ×k j=1, j=1
K j ,J Sk j

. 

Definition 2.2 A Nash equilibrium of the simultaneous-move market game consists of 
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consumers’ bids for outputs, and firms’ bids for inputs given expectations of other agents’ 

actions such that  

1. all agents’ bids are best responses given their expectations of other agents’ bids, of 

consumers’ input offers, and of firms’ output offers;  

2. the best responses are consistent with all agents’ expectations of other agents’ actions. 

While choosing its profit-maximizing bids, firm 
 
k j  takes the aggregate offer

  
En = ei

n

i=1

M

∑ as 

given, but takes other firms’ (including those of other sectors) bids for inputs into account. 

Firm 
 
k j maximizes its profit in (2.1) subject to the allocation rule in (2.2) and budget 

constraint in (2.3) given the input price 
 
r n = W n

En
 and output price 

 
p j = B j

Q j . Plugging 

constraints (2.2) and (2.3) into the objective (2.1), we obtain the following unconstrained 

profit maximization problem  

                                  
  
max

wk j

B j

Q j fk j
wk j

1 E1

W 1 ,...,wk j

N E N

W N

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
− wk j

n

n=1

N

∑                              (2.7) 

Note that (2.7) is firm 
 
k j ’s best response to other firms’ actions. Taking first-order conditions 

gives 

                                  

  

B j

Q j

∂ fk j

∂ϕk j

n

En

W n −
wk j

n En

W n( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
−

B jqk j

j

Q j( )2

∂ fk j

∂ϕk j

n

En

W n −
wk j

n En

W n( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
−1

= B j

Q j

∂ fk j

∂ϕk j

n

EnW−k j

n

W n( )2

Q−k j

j

Q j −1= 0

          (2.8)  
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Plugging 
 
p j = B j

Q j  and 
 
r n = W n

En into (2.8) gives  

                                                   
  

p j

r n

∂ fk j

∂ϕk j

n

W−k j

n

W n

Q−k j

j

Q j = 1                                               (2.9)  

Note that if the market contains a very large number of firms, ratios 
 

W−k j

n

W n  and 
 

Q−k j

j

Q j  in will 

be almost one, and hence (2.9) boils down to 
 
p j

∂ fk j

∂ϕk j

n = r n , which states that the value of the 

marginal product of input good  n is equal to the price of input good  n .  

        While choosing her utility-maximizing bids, consumer  i  takes the aggregate output  Q
j

as given, but takes other consumers’ bids for outputs into account.  Consumer  i  maximizes 

her utility   ui(xi ) subject to the allocation rule in (2.5) and budget constraint in (2.6).  

Plugging the constraint (2.5) into the objective yields the following budget-constrained utility 

maximization problem  

                                             
max

bi

ui bi
1 Q1

B1 ,...,bi
J QJ

BJ

⎡

⎣
⎢

⎤

⎦
⎥                                                    (2.10) 

                                 
s.t. bi

j

j=1

J

∑ ≤ W n

En
n=1

N

∑ ei
n + θ i

k j

k j=1

K j

∑
j=1

J

∑ B j

Q j qk j

j − r ⋅ϕk j

⎡

⎣
⎢

⎤

⎦
⎥.                           (2.11) 

Note that (2.10)-(2.11) is consumer  i ’s best response to other consumers’ actions. Taking 

first-order conditions gives  
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∂ui

∂xi
j

Q j

B j −
bi

jQ j

B j⎡⎣ ⎤⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ λ

θ i

k j fk j
k j=1

K j

∑
Q j −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
∂ui

∂xi
j

Q j

B j

B− i
j

B j

⎡

⎣
⎢

⎤

⎦
⎥ + λ

θ i

k j fk j
k j=1

K j

∑
Q j −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0

                                             (2.12) 

where λ  is the Lagrange multiplier of consumer  i ’s budget constraint in (2.11).  Note that 

we do not need to consider the effect of a change in consumer  i ’s bid on input prices because 

of the envelope theorem as applied to firms’ profit maximization problems. Finally, note that 

if the market contains a very large number of firms, the total offer  Q
j on output trading post 

 j approaches infinity, and if the market contains a very large number of consumers, the ratio 

 

B− i
j

B j
 approaches one. Then, the consumer first-order condition (2.12) boils down to what we 

get in the competitive limit, the  ratio of marginal utility to the price is equal to the Lagrange 

multiplier, i.e. 
  

∂ui / ∂xi
j

p j = λ  where 
 
p j = B j

Q j . 

2.3 Analysis  

         In this section, we provide the analysis of coordination equilibria, price stickiness, and 

markup variations. Korpeoglu and Spear (2016) show conditions for the existence of a Nash 

equilibrium for a production market game with arbitrary returns-to-scale-technologies. 

Unlike in the case of strictly convex technologies, there are no strong existence results in the 
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case of increasing-returns-to-scale technologies, for the simple reason that the non-negativity 

constraint on profits can become binding when there are many increasing-returns-to-scale 

firms in the market. For our purposes here, then, we will simply assume that there can be 

increasing-returns-to-scale firms in each production sector together with standard constant or 

decreasing-returns-to-scale firms, and that the Nash equilibrium associated with the aggregate 

input endowment  E  exists.  

         The result we present here is essentially just a comparative static result showing that if 

firms cannot (or do not wish to) vary input prices, they can accommodate shocks to 

production or demand via adjustments in output. This is conceptually no different from what 

occurs in competitive models. What is new with the market game is the fact that some of this 

accommodation can be achieved via adjustments in firm market shares on both input and 

output markets. In the presence of coordination indeterminacies, this new adjustment 

mechanism can give rise to novel equilibrium behavior in the model.  

         We will consider two variants of the model. The first is the standard, simultaneous-

move Shapley- Shubik (1977) model with production (as laid out above). It is well-known 

that in pure exchange versions of this model, there are a continuum of Nash equilibria due to 

the fact that agents in the model choose both bids and offers. This choice is indeterminate, 

however, since the first-order conditions with respect to bids or offers are the same. In 

imperfectly competitive markets, one of the choices between bids and offers is redundant for 

individual agents, though it affects prices in the model via variations in market thickness. 

(See Peck and Shell 1991 or Peck et al. 1992 for details.) In the production model, no such 

indeterminacy is possible for the simple fact that consumers earn income from the sale of 

their endowments. Hence, in this version of the model, the comparative static result shows 
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that any accommodation to shocks (with sticky prices) will necessarily involve some degree 

of involuntary unemployment of input resources. We conjecture that same form of neo-

Keynesian coordination failure equilibria can be generated in the model, though not without a 

significantly more sophisticated (likely search-theoretic) micro-foundation for the input 

markets, which we do not pursue here.  

            In the second variant of the model, we introduce a real indeterminacy by allowing 

agents to short sell their endowments by offering more than they own, subject to the 

constraint that in equilibrium, they must buy back the short amount. This version of the 

model is based on one originally introduced by Peck and Shell (1990). Peck and Shell (1990) 

note that this version of the market game must be modified by changing the bankruptcy rules 

so that if any consumer doesn’t satisfy her budget constraint, every consumer is forced to 

consume her endowment. This rule change is necessary because for very large short sales, the 

game “referee” may not be able to find an equilibrium using only the resources of non-

bankrupt consumers. Since this variation on the production market game does not require any 

consumer to offer less than her full endowment, it is consistent with the non-cooperative 

incentive consumers in the production game have for earning income.  

          For both versions of the game, the starting point for our analysis is the individual 

firm’s first- order conditions for profit maximization. For firm 
 
k j , these can be written as  

                                          

   

p j
Q−k j

j

Q j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Dϕ fk j
−W!W! −k j

−1
r = 0 . 

The significance of writing the first-order conditions this way stems from the fact that 
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variations in the terms    W
!W! −k j

−1
r  and 

 

p j
Q−k j

j

Q j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 affect the firm’s optimal choice, in the same 

way that variations in the input output prices do for perfectly competitive firms.    Note also 

that 
  

Q−k j

j

Q j = 1−
qk j

j

Q j , where 
 

qk j

j

Q j is firm 
 
k j ’s market share on the output market  j , and 

  

W−k j

n

W n = 1−
wk j

n

W n , where 
 

wk j

n

W n
 is firm 

 
k j ’s market share on the input market  n . Since market 

shares can be varied independently of aggregate bids on output or expenditures on inputs, this 

suggests the possibility of altering firms equilibrium output quantities via adjustments in 

market shares without changing prices.  

          To analyze the possibility of price preserving perturbations in the market game, we 

note first that since we only have   ℑ−1( )N  independent expenditure shares, we would need 

another N variables in order to make a full-rank perturbation of the system of equations 

consisting of firm first order conditions. We can pick up these variables by allowing for 

variations in the firms’ aggregate expenditures on inputs (which we can think of as flexible 

inside money or credit in the market game setting, or as a monetary policy action in a macro 

interpretation of the model). To get a price rigidity result, we need to append the condition  

                                                               r −W!E = 0  

 (where  E  is the vector of aggregate input offers) to the firm first-order conditions, giving us 

a system of  ℑN + N  equations in  ℑN variables. To get a full-rank perturbation of this 

system, then, we need an additional  N variables. We cannot use the output market shares as 

these variables as they are not independent of firm output quantities. In a partial equilibrium 
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setting, we might think of using the output prices themselves as variables (assuming there are 

at least as many output goods as there are inputs goods). But, in a general equilibrium setting, 

we need the output prices (or, equivalently, the aggregate bids of consumers for output 

goods) to ensure equilibrium in the output markets. This logic, then, gives us our first result.  

Proposition 2.3.1 For the simultaneous-move market game, equilibrium responses to demand 

or technology shocks will generically (in production functions) require variations in prices.  

         The genericity argument here simply requires noting that if some shock left (say) input 

prices constant, then the firm would be moving up or down an expansion path 

homothetically. An arbitrarily small perturbation in the firm’s production function will then 

destroy this homotheticity.  

         We can get a full rank perturbation that keeps input prices constant if we have an 

indeterminacy in consumers’ aggregate offers, since this gives us the additional N variables 

we need. So, we now consider the Peck and Shell (1990) short-sale variant of the model that 

gives rise to indeterminacy. As we noted above, in the short-sale model, consumers are 

allowed to offer more than their total endowment on the input market, as long as they buy 

back the excess offer. This gives consumers the opportunity to affect market shares, which 

will matter if the input markets are strategic, i.e., if firms are not negligible.  

           As Peck and Shell (1990) note, the key to analyzing the short-sale version of the 

market game is the so-called offer-constrained game, in which consumers offers are fixed 

exogenously, and viewed as parameters the underlying game. The utility of the offer-

constrained game stems from the fact that, with bid-offer indeterminacy, any equilibrium in 

the offer-constrained game will also be an equilibrium in the unconstrained game.  
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         We define the offer-constrained game formally as follows. Consumer  i ’s (offer-

constrained) strategy set is  

                         
   
Si(e
!) = (bi ,ei )∈" +

J+N | ei = e! i{ }   for   i = 1,2,..., M .  

Firm 
 
k j ’s strategy set is  

                                                       
   
Sk j

= wk j
∈! +

N{ }. 

The full strategy set that then defines the offer-constrained game Γ (  e! ) is  

                                                    
   
S(e!) = × i=1

M Si(e
!)×k j=1, j=1

K j ,J Sk j
. 

A Nash equilibrium of the simultaneous-move offer-constrained market game consists of 

consumers’ bids for outputs, and firms’ bids for inputs given expectations of other agents’ 

actions such that  

1.   all agents’ bids are best responses given their expectations of other agents’ bids, of 

consumers’ input offers, and of firms’ output offers;  

2.   the best responses are consistent with all agents’ expectations of other agents’ actions.  

           For the short-sale game, we need to modify the punishment (as in Peck and Shell 

1990) to state that if any consumer violates her budget constraint, all agents allocations revert 

to their endowments. In the short-sale game, we would also formally modify the definition of 

the consumer’s strategy set to require that   e
!

i ≥ ei , where, as before,  ei is consumer  i ’s 
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endowment vector.  

          With these preliminaries, we can now show our main result.  

Theorem 2.3.1 Generically, there exist solutions to the production side equilibrium equations 

in variables consisting of firm input wage bill shares, aggregate input quantities, and 

aggregate input bids, in a neighborhood of any given offer-constrained Nash equilibrium for 

the economy.  

Proof: See Appendix 2.A.  

 Given that output prices variables are not used to equilibrate the production side of the 

economy, they will continue to serve their usual purpose in equilibrating the demand side of 

the model. On can apply conventional general equilibrium techniques to show a similar 

generic transversality result for this equilibration process, though since this is not germane to 

our results, we do not pursue it here.  

2.3.1   Discussion  

             The most striking thing about the continuum of equilibria generated in the short-sale 

model is the fact that the economy is always at full employment of input resources. The 

theorem implies that variations in short-sale amounts will lead to adjustments in firm market 

shares (on both input and output markets), which can lead to non-trivial variations in total 

output. One could extend this result to a stochastic market game in which the short-sale offers 

varied according to some extrinsic random variable (i.e. a sunspot), as in Peck and Shell 

(1991). This would result in a stochastic general equilibrium for the model in which 

individual firm market shares are constantly changing. As we will show in the next section, 
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this variation in market shares leads, in turn, to variations in the observed mark-ups that 

imperfectly competitive firms charge. In a heterogeneous returns-to-scale environment, then, 

one of the key relationships in New Keynesian macro models - the variation of mark-ups over 

the business cycle - will be disrupted.  

2.3.2 Markup Variations  

             As we noted in Introduction, it is a stylized fact in NK macro models that markups 

vary counter- cyclically. In a recent study, as Nekarda and Ramey (2013) note, however, the 

estimation of marginal costs from available data is quite tricky, and early attempts to study 

markup variations over the business cycle ended up relying on theoretical relationships 

(based typically on DS-based NK models) for the specification of marginal costs. Nekarda 

and Ramey (2013) revisit the question of cyclical movements in markups using updated 

adjustments of inputs to production functions typically used in such studies, and using a 

combination of aggregate and manufacturing-specific data. Contrary to the conventional 

stylized fact, they establish that markups are unconditionally procyclic. Specifically, they 

found that monetary, government spending, and technology shocks lead to procyclical 

markups, and consumer demand shocks lead to slightly procyclical or acyclical markups. We 

will show in this section that the market game model also makes specific predictions about 

markup variation in response to (comparative static) expansions or contractions, but, because 

firms can exhibit heterogeneity in the returns-to-scale properties of their technologies, the 

aggregate observed markup variation can be quite different from that of any particular rm.  

            We start by writing the firm’s cost-minimization problem: 
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min

w
ι ⋅w   s.t.     f (W!

−1
E!w) ≥ q , 

where the vector  ι = (1,1,...,1)  is a sum vector. The first-order conditions of this problem are  

                                                  ι
T − λDf T W!

−2
W! −k E! = 0 , 

which reduces to  

                                                       r
T W!W! −k

−1
− λDf T = 0 . 

Since the Lagrange multiplier in the cost-minimization problem is just the marginal cost, if 

we assume that the production function is homogeneous of degree δ , then by direct 

calculation we have that  

                                             
   
MC(q) = λ = 1

δq
rT W!W! −k

−1
ϕ(q) . 

To calculate the markup, we note from the first-order conditions for profit maximization that   

                                                            
   
W!W! −k

−1
r = p

Q−k

Q
Df . 

Combining profit maximization and cost minimization results, we have  

                                                
  
λ = 1

δq
p

Q−k

Q
Df ⋅ϕ(q) = p

Q−k

Q
. 

Hence, we obtain  
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p
λ
= Q

Q−k

= 1

1−
qk

Q

. 

This result shows that if firm  k ’s market share increases, its markup also increases. Because 

the firm’s equilibrium market share depends on its own and other firms’ technologies, we 

have no a priori reason to believe that measures of average market shares (and hence 

observed average markups) move in any systematic way during expansions or contractions. 

In the next section, we show in two examples that individual firm market shares can increase 

or decrease as we move from low-input-use equilibrium to high-input-use equilibrium.  

2.3.3 Example 1  

           In this section, we provide a simple example with two firms that use a single input to 

produce a single output good, and carry through the equilibration calculations. We let 

  L(= L1 + L2 )  denote the exogenously given aggregate offer of the input (hereinafter, labor). 

Production functions of firm 1 and 2 are  

                                   q1 = f1(L1) = L1
2   and  

  
q2 = f2(L2 ) = L2 − K⎡

⎣
⎤
⎦
α

,                       (2.13) 

respectively, where  0 <α <1  and  K  is a fixed real cost of production for firm 2. We let 

  Q(= q1 + q2 )  denote the aggregate output. We also let  wi  denote firm  i ’s bid on labor and let 

  W (= w1 + w2 )  denote the aggregate bid on labor. As in the model, the price of input is 

  r =W / L , and the price output is   p = B / Q . The input allocations of firm 1 and 2 are  

                                      
  
L1 =

w1

r
=

w1

W
L   and 

  
L2 =

w2

r
=

w2

W
L ,                                 (2.14) 
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respectively. Firms take the aggregate offer of labor  L  as given, but take the other firm’s bid 

on labor into account. Firm  i ’s best response to the other firm’s action is a solution to the 

following pro t maximization problem:  

                               
  
max

wi

B
Q

qi − wi  s.t. 
 
wi ≤

B
Q

qi , 
 
Li = wi

L
W

,  qi = fi(Li ) . 

The first constraint requires nonnegative profits. The first-order condition of firm 1 is 

            
  

B
Q

f '1(L1) L
W

− w1

L
W 2

⎡

⎣
⎢

⎤

⎦
⎥ + Bf1(L1) − 1

Q2

⎡

⎣
⎢

⎤

⎦
⎥ f '1(L1) L

W
− w1

L
W 2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −1= 0  .   (2.15)  

Reorganizing (2.15), we get  

                                                     
  

B
Q2

w2L
W 2 f2(L2 ) f '1(L1)−1= 0 . 

Substituting (2.13) and (2.14) yields 

                                                     
  
2

BL2 w2

W
⎛
⎝⎜

⎞
⎠⎟

L− K
⎡

⎣
⎢

⎤

⎦
⎥

α

Q2

w2

W
w1

W 2 = 1. 

We denote   si = wi / W  since   wi / W  is firm  i ’s share of the input. Plugging   r =W / L  and 

  p = B / Q  gives  

                                                             
  
2 p

r

L s2L− K⎡
⎣

⎤
⎦
α

Q
s2s1 = 1 .                              (2.16) 

By symmetry, the first-order condition of firm 2 is  
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B
Q2

w1L
W 2 f1(L1) f2 '(L2 )⎡⎣ ⎤⎦ −1= 0 . 

Substituting (2.13), (2.14), and   r =W / L  and   p = B / Q , we get  

                                                     
  
α p

r
s1

Q
s1L⎡⎣ ⎤⎦

2
s2L− K⎡
⎣

⎤
⎦
α−1

−1= 0 .                        (2.17)  

Solving (2.16) and (2.17) together, we obtain 

                                                              
  
2s2 s2L− K⎡

⎣
⎤
⎦ =αs1

2L . 

   If we let 
  
α! = α

2  ,   s2 = s  and   s1 = 1− s , this condition reduces to the following simple 

quadratic form 
   
(1−α! )Ls2 + 2α!L− K⎡

⎣
⎤
⎦s−α!L = 0 .  Furthermore, if   K = 0 , it reduces to 

   
s = α!

α! +1
. Substituting �back into (2.16) or (2.17) will then determine what output price 

must be, given any equilibrium input levels including input price.  

Thus, if   K = 0  and  α = 0.5 , both firms make positive profits.  

2.3.4. Example 2 

         In this section, we provide an example with three firms that use a single input (i.e., 

labor) to produce a single output. Interestingly, this example explicitly shows the existence of 

multiple coordination equilibria even in the one-input, one-output model (for similar 

examples, see Benhabib and Farmer 1994 and references therein). Production functions of 
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firm 1, 2, and 3 are as follows:  

              Firm 1:      q1 = f1(L1) = A ⋅ L1
2 ,  

              Firm 2:      q2 = f2(L2 ) = B ⋅ L2
α ,     0 <α <1  

              Firm 3:      q3 = f3(L3) = C ⋅ L3 . 

We next consider profit maximization problems of these firms. Firm  i ’s best response to 

other firms’ actions is a solution to the following profit maximization problem:  

                                          
  
max

wi

B
Q

qi − wi  

                               s.t.  
  
wi ≤

B
Q

qi ,  
  
Li = wi

L
W

,    qi = fi(Li ).  

The first constraint implies that profits cannot be negative. The first-order condition of firm 1 

is  

                 
  

B
Q

f1 '(L1) L
W

− w1

L
W 2

⎛
⎝⎜

⎞
⎠⎟
+ Bf1(L1) − 1

Q2

⎛
⎝⎜

⎞
⎠⎟

f1 '(L1) L
W

− w1

L
W 2

⎛
⎝⎜

⎞
⎠⎟
−1= 0  

                 

  
⇒ p

r
1

QW
f2(L2 )+ f3(L3)( ) f1 '(L1)(w2 + w3) = 1

                                             (2.18) 

Similarly, the first-order conditions of firm 2 and 3 are  

                             

  

p
r

1
QW

f1(L1)+ f3(L3)( ) f2 '(L2 ) w3 + w1( ) = 1
                                      (2.19) 
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p
r

1
QW

f1(L1)+ f2(L2 )( ) f3 '(L3) w2 + w1( ) = 1
                                      (2.20) 

respectively. We denote the share of input by   si = wi / W , where   i ∈{1,2,3}. The aggregate 

output is given by   Q = A ⋅(s1L)2 + B ⋅(s2L)α +C ⋅s3L . Substituting  si  and  Q into (2.18), 

(2.19), and(2.20),we obtain the following conditions for firms 1, 2, and 3, respectively:  

                                
  

p
r

B(s2L)α +Cs3L( ) ⋅2ALs1(s2 + s3)

A(s1L)2 + B(s2L)α +Cs3L
= 1 

                                
  

p
r

A(s1L)2 +Cs3L( ) ⋅Bα (s2L)α−1(s1 + s3)

A(s1L)2 + B(s2L)α +Cs3L
= 1 

                                
  

p
r

A(s1L)2 + B(s2L)α( ) ⋅C(s1 + s3)

A(s1L)2 + B(s2L)α +Cs3L
= 1. 

We can solve for the equilibrium shares from the following three equations in three variables:  

  (2ABs1(s2 + s3)s2
α −α ABs1

2(s1 + s3)s2
α−1) ⋅ Lα+1 + 2ACs1s3(s2 + s3) ⋅ L2 −αBCs3s2

α−1(s1 + s3)Lα = 0  

  2ABs1(s2 + s3)s2
α Lα+1 + (2ACs1s3(s2 + s3)− AC(s2 + s3)s1

2 ) ⋅ L2 − BCs2
α (s1 + s2 )Lα = 0  

                                                                       s1 + s2 + s3 = 1 

              Figure 2.1 demonstrates equilibrium shares for three equilibria that occur under 

  A = B = C = 1 , and  α = 0.5  as the aggregate input  L varies. Interestingly, in each equilibria, 

the share of at least one firm approaches zero as the aggregate input  L  gets large. This, in 

turn, leaves three possible equilibrium industrial organization modes: i) monopoly with the 
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decreasing-returns-to-scale firm in equilibrium 2 of Figure 2.1, ii) stable duopoly with 

increasing- and constant-returns-to-scale firms in equilibrium 1 of Figure 2.1, and iii) stable 

duopoly with decreasing- and constant-returns-to-scale firms in equilibrium 3 of Figure 2.1. 

In equilibrium 2 of Figure 2.1, increasing-returns-to-scale and constant-returns- to-scale firms 

both make positive profits regardless of the market thickness. However, when the market is 

thin (i.e.,  L  is small), the decreasing-returns-to-scale firm makes positive profit; and when 

the market is thick (i.e.,  L  is large), the decreasing-returns-to-scale firm makes negative 

profit. However, in equilibrium 2 of Figure 2.1, when the market is thick, the decreasing-

returns-to- scale firm dominates the market while incurring negative profit. Thus, for all three 

firms to make positive profits in equilibrium 2, the market must be sufficiently thin (i.e.,  L  is 

sufficiently small). In equilibrium 1 of Figure 2.1, all three firms make positive profits 

regardless of the thickness of the market. In equilibrium 3 of Figure 2.1, the increasing-

returns-to-scale firm always makes negative profits with very small and diminishing market 

share, so it is likely that it will eventually exit the market, and the other two firms will share 

the market and earn positive profits. In this example, we can still obtain the multiplicity result 

if all three firms make positive profits (equilibrium 1 and 3 when market is sufficiently thin).  

              Figure 2.2 illustrates equilibrium shares for two equilibria that occur under 

  A = 1, B = 2,C = 3,α = 2 / 3 , and in both equilibria the decreasing-returns-to-scale and 

constant-returns-to scale firms make positive profits. In equilibrium 1 of Figure 2.2, when the 

market is thin (i.e.,  L  is small) the increasing- returns-to-scale firm has negative profits, and 

when the market is thick (i.e.,  L  is large) the increasing-returns-to-scale firm makes positive 

profit. The equilibrium 2 of Figure 2.2 is similar to the equilibrium 3 of Figure 2.1 in the 

sense that the increasing-returns-to-scale firm always makes negative profit, and has 
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diminishing market shares and it is likely to exit the market eventually, while the other two 

firms share the market and earn positive profits.  

 

Figure 2.1  Input share allocations across increasing-returns-to-scale(IRTS), decreasing- 
returns-to-scale(DRTS), and constant-returns- to-scale(CRTS)  firms as the aggregate input 
 L  varies in logarithmic scale. Setting:   A = B = C = 1 ,  α = 0.5 .  

 

Figure 2.2  Input share allocations across increasing-returns-to-scale (IRTS), decreasing-
returns-to-scale(DRTS), and constant-returns- to-scale(CRTS)  firms as the aggregate input 
 L varies in logarithmic scale. Setting:   A = 1, B = 2,C = 3,α = 2 / 3 .  

          The two examples above show that thin market equilibria may generate negative 

profits while thick market does not, and thick market equilibria may also generate negative 

profits while thin market does not (in which case the dominant firm will eventually exit the 
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market). We also observe that if the increasing-returns-to-scale firm has very small market 

share, it makes negative profit and is likely to exit the market, while the other two firms make 

non-negative profits, and are likely to share the market. If the decreasing-returns-to-scale 

firm dominates the market, it makes negative profit; if it does not dominate the market, which 

is when the market is sufficiently thin, all three firms make nonnegative profits. The 

possibility of profits being negative in these examples reflect the fact that these examples do 

not calculate the full Nash equilibria for the model, but rather only the firms’ responses to 

variations in the input to production, holding the input prices constant. In a full Nash-

equilibrium calculation, firms facing negative profit would need to make an exit decision, 

with the final equilibria then being based on a smaller number of active firms in the market.  

2.4  Discussion and Conclusion  

            We have shown that variants of the Shapley-Shubik market game model with 

production can generate an equilibration mechanism that can lead to multiple coordination 

equilibria when the number of active firms is small. The equilibration process can 

accommodate nominal price rigidities, without any need for enforcing menu costs or other 

additional restraints on price adjustment. We also explicitly show the relationship between a 

typical firm’s markup of price over marginal cost and its market share. The model itself is 

silent on what might cause price rigidities, and how different mechanisms (e.g., menu costs, 

search frictions, and learning) might interact with the basic model. We believe there are some 

interesting arguments in favor of learning and evolutionary dynamics that arise from the 

general equilibrium considerations in our analysis.  

          The problems with finding effective mechanisms for implementing equilibrium prices 
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in competitive economies are well known. Scarf (1960)’s example shows that the presence of 

strong income effects can make simple price adjustment dynamics like the Walrasian 

tatonnement process ineffective. While the market game does provide an explicit price 

formation mechanism via the ratio of expenditure flows to quantity flows, Kumar and Shubik 

(2004) show that the market game is not immune to Scarf (1960)-like problems for simple 

adjustment dynamics akin to tatonnement.  

          On the other hand, there are a series of strong results in the literature on evolutionary 

game theory showing that when the Nash equilibrium to a game is strict (i.e., when the 

equilibrium is in pure strategies), then fitness-based (replicator) dynamics in which better 

responses to other agents’ play are imitated lead to convergence to the Nash equilibrium. 

These results have not received much attention in the conventional general equilibrium 

analysis or related work in macroeconomics because of the time-scales on which these 

dynamics operate, and the often non-market-based nature of the interactions generating the 

convergence.  

              What the evolutionary game theory results do suggest (particularly in light of the 

fundamental problems introduced by income effects) is that equilibrium (either Nash or 

competitive) is something that must be learned rather than mechanically implemented. To the 

extent that Nash equilibria of the market game are evolutionarily stable, i.e., immune to 

deviations from Nash equilibrium strategies, the learning costs will be quite high since 

pricing experiments themselves become costly. Hence, the relatively more complex nature of 

evolutionary learning, as opposed to simple mechanical price adjustment processes, makes 

attaining an equilibrium costly, and provides an incentive for maintaining equilibrium prices 

once they are learned.  
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            From a less heterodox perspective, the literature on search and matching, based on the 

seminal work of Burdett and Judd (1983), is capable of generating both price stickiness and 

staggered price adjustment in otherwise conventional economic models. This framework, 

particularly at the interface between wholesale and retail intermediaries could easily be 

adapted to the model we have presented here.  

            One thing that is clear from this discussion is that further work embedding the market 

game with production in a dynamic quantitative setting is worth undertaking.  
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Chapter 3: Endogenous Business Cycles in the 
Overlapping Generations Market Game Model28

 

3.1 Introduction 

       In this paper, we study whether strategic interactions contribute to instabilities of the 

economic dynamics in the overlapping generations (OLG) version of the Shapley-Shubik 

market game model with production (see, for example, Dubey and Shubik (1977), or Chen et 

al (2017)).  

       The study of complex dynamics in economic models has focused historically on the 

question of whether modern capitalist economies are inherently stable or unstable. The 

argument for instability is based on the fact of business cycles, which first appear historically 

with the onset of industrialization in the early 1800’s in the West. The argument for stability 

first appears in early real business cycle models where exogenous aggregate shocks generate 

deviations from an otherwise stable steady-state of the model.  

       Grandmont (1985) was one of the first papers to raise the possibility that endogenous 

complex dynamics might provide an alternative explanation for business cycle fluctuations, 

in other words, the possibility that business cycles could be generated endogenously, that is, 

without making the assumption that the economy would never fluctuate in the absence of 

exogenous aggregate shocks. Grandmont shows that such dynamics could arise in 

conventional OLG models, although only for the case of sufficiently large risk aversion on 

the part of old agents in the model. Shortly after Grandmont’s work appeared, Boldrin and 

																																																													
28	This	paper	is	Chen	(2018).	
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Montrucchio (1986) showed that complex dynamics could also arise in the neoclassical 

capital model. In both of these modeling approaches, however, the parameter values required 

for chaotic trajectories to arise were unrealistic. For OLG models, Grandmont required 

relative risk aversion coefficients in excess of 8, while in the capital model, discount factors 

were required to be less than 0.35. Neither of these assumptions seemed at all realistic. 

Goenka et al. (1998) showed in the context of a pure exchange OLG market game that the 

nonlinearities introduced by imperfect competition were such that one could obtain chaotic 

dynamics even for log utility, as long as markets were thin in terms of the amount of 

endowment agents offered. Goenka et al. note that extensions of their work with this kind of 

model suggests that production smooths the model in the sense that complex dynamics are 

not as easily generated as in the pure exchange model. In this paper, we show that Goenka et 

al.’s observation is true.  

          Specifically, we will show in the paper that when incorporating production in the 

market game OLG model, the price dynamics depend on market thickness, general 

equilibrium price ratios, individual offers and particular choices of utility functions. Unlike 

standard CRRA utility functions assumed in Grandmont (1985) and Goenka et al. (1998), for 

complex dynamics to occur, the preferences in our model must be a mix of preferences, for 

example, a combination of preferences with constant relative risk aversions and increasing 

relative risk aversions. Endowment assumptions and market thinness alone cannot ensure the 

existence of complicated dynamics. In our paper, we also show impossibility of such price 

dynamics to occur for log-linear preferences. In other words, the case for complex dynamics 

to occur with particular production functions and utility functions is much more limited. As a 

result, complex dynamics are not as easily observable as in models without production. 



	 188	

Finally, we are able to confirm the results from Goenka et al. (1998) on the Pareto rankability 

of Nash equilibria in terms of market thickness under a stricter assumption, which has 

important welfare implications for business cycle-like activity based on the coordination 

equilibria that can arise in market game models (again, see Chen et al. (2017) for details on 

these equilibria).  

            The remainder of the paper is organized as follows. Section 2 specifies the model and 

market equilibrium. Section 3 displays the dynamics analysis. Section 4 studies the special 

case when the preferences are log-linear. Section 5 concludes. Some proofs are contained in 

the appendices.  

3.2 The model 

3.2.1 Agents 

         We consider a market game model of  m  firms with a single type of input goods and a 

single type of output goods. In an OLG setting, in each period there are  n  young agents and 

 n  old agents. The old own the firms that produce the same type of consumption goods. The 

young agents are endowed with labor and offer an exogenously fixed amount of labor. In 

each period, the young agents offer labor, make bids on consumption goods and purchase 

share ownerships of the two firms. The old would purchase consumption goods funded by 

selling their shares of  m  firms and profits of  m  firms.  

Assume consumer i born time t , would offer labor li,t  when young. At time s = t,t +1 , 

consumer i ’s bid for consumption goods is denoted bi,s
t . The share of firm k  purchased by 
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consumer i  is ai,t
k

 and  

                                   ai,t
k

i=1

n

∑ = 1.                                                                                   (3.1) 

Let the asset price for firm k  be qk ,t , k = 1,2,...,m.  The aggregate bid on output good is the 

sum of bids from young agents and bids from old agents, which is  

                             Bt = (bi,t
t

i=1

n

∑ + bi,t
t−1) .                                                                            (3.2) 

Let the aggregate output at time t  be Qt . The price of output good at time t  is  

                                  pt =
Bt
Qt

.                                                                                       (3.3) 

The consumption of consumer i  at time s = t,t +1  is  

                            xi,s
t =

bi,s
t

ps
=
bi,s
t ⋅Qs

Bs
 .                                                                           (3.4) 

The aggregate input good is  

                                  Lt = li,t
i=1

n

∑ .                                                                                     

Let firm k ’s bid for input good be wk ,t . The aggregate bid on input good is  

                                 Wt = wj ,t .
j=1

m

∑                                                                                   (3.5) 
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The input good price is thus given by  

                                   rt =
Wt

Lt
.                                                                                       (3.6) 

Let the production function for firm k  be fk (x)with input Lk ,t , k = 1,2 . The profit function 

for firm k at time t is given by  

                              π k ,t = pt fk (Lk ,t )− rtLk ,t ,           k = 1,2 . 

3.2.2 Strategic interactions  

3.2.2.1 Consumers side  

          At time t , consumer i  uses labor income to purchase consumption goods and share 

ownerships of two firms. At time t +1 , consumer i sells his share ownerships of two firms, 

and his consumption at time t +1  is funded by the time t +1  profits of the shares of the firms 

he owns and selling his shares of two firms.  

We also make the following assumptions on consumers’ utility function  

Assumption 3.2.1 We assume  

1. Utility is additively separable: u(xt
t , xt

t+1) =U(xt
t )+V (xt+1

t ) . 

2.  U  and V are smooth strictly increasing, strictly concave and satisfy Inada conditions.  

Consumer i ’s utility maximization problem is thus given as follows: 
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                                   max{xi ,tt ,xi ,t+1t ,ai ,t
1 ,...,ai ,t

m }
U(xi,t

t )+V (xi,t+1
t )  

subject to                          

                                         pt xi,t
t + ai,t

j q j ,t = rtli,t
j=1

m

∑                                                            (3.7) 

and                             

                                  pt+1xi,t+1
t = (qj ,t+1 +π j ,t+1)ai,t

j

j=1

m

∑                                                       (3.8) 

           In our model, consumers are assumed to be perfectly competitive, that is they take 

consumption good price pt  and asset prices qk ,t , k = 1,2,...,m  as given.29 The input good 

price rt  is not affected by their optimization behavior, and hence it is taken as given by 

consumers. Firms’ profits π k ,t+1 , k = 1,2  are taken as given too.  

        An alternative form of utility maximization problem is as follows:  

                              max{bi ,tt ,bi ,t+1t ,ai ,t
1 ,...,ai ,t

m }
U(
bi,t
t

Bt
⋅Qt )+V (

bi,t+1
t

Bt+1
⋅Qt+1)  

subject to                          bi,t
t + ai,t

j q j ,t = rtli,t
j=1

m

∑  

and             

																																																													
29	We assume asset prices are not all zeros, otherwise it would be akin to allowing the old to make bequests to 

their children, which then turns the model in one with an infinite-lived dynasty, rather than the OLG structure.  
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                                     bi,t+1
t = (qj ,t+1 +π j ,t+1)ai,t

j

j=1

m

∑ . 

Two forms of utility maximization problem are essentially identical except for a change of 

variables.  

3.2.2.2 Firms side  

         At time t , firms will take the aggregate offer of labor Lt  as given but will take account 

of the other firm’s bid for labor. Firm i ’s best response to the other firm’s action is 

determined by the solution to the optimization problem as follows:  

                                              max
wi ,t

Bt
Qt

fi (Li,t )−wi,t  

subject to  

                                                   wi,t ≤
Bt
Qt

fi (Li,t )  

                                               Li,t = wi,t
Lt
Wt

, i = 1,2,...,m . 

The constraint just implies that the net profit should be nonnegative. The profits of two firms 

at time t +1  are given respectively as follows  

                                          
π1,t+1 = pt+1 f1(

w1,t+1
Wt+1

Lt+1)−w1,t+1

π 2,t+1 = pt+1 f2 (
w2,t+1
Wt+1

Lt+1)−w2,t+1
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3.2.3 Best responses  

3.2.3.1 Consumers  

               Replacing xi,t
t

 and xi,t+1
t

 in terms of ai,t
k , k = 1,2,  the two-period utility function can 

be written as  

                                        U
rtli,t − ai,t

j q j ,t
j=1

m

∑
pt

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+V
(qj ,t+1 +π j ,t+1)ai,t

j

j=1

m

∑
pt+1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

The best response functions for consumer i  are solved from the following F.O.Cs:  

F.O.Cs for ai,t
j , j = 1,2,...,m :           

                                                    
U '(xi,t

t )
V '(xi,t+1

t )
=
qj ,t+1 +π j ,t+1

qj ,t
⋅ pt
pt+1

.                                 (3.9)   

According to (3.9), for ∀j,l = 1,2,...,m,  we also have  

                                                         qj ,t+1 +π j ,t+1

qj ,t
=
ql ,t+1 +π l ,t+1

ql ,t
 

3.2.3.2   Firms  

Firm i ’s best response to the other firm’s action is determined by the solution to the 

optimization problem at time t as follows  
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                                                             max
wi ,t

Bt
Qt

fi (wi,t
Lt
Wt

)−wi,t  

subject to  

                                                               wi,t ≤
Bt
Qt

fi (wi,t
Lt
Wt

)  

The constraint just implies that the net profit should be nonnegative. The F.O.C of the 

optimization problem of firm i  with respect to wi,t shows:  

     Bt
Qt

fi '(Li,t )
Lt
Wt

−wi,t
Lt
Wt

2

⎛
⎝⎜

⎞
⎠⎟
+ Bt fi (Li,t ) − 1

Qt
2

⎛
⎝⎜

⎞
⎠⎟
⋅ fi '(Li,t )

Lt
Wt

−wi,t
Lt
Wt

2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
−1= 0 , 

or                                                    pt
rt
⋅ fi '(Li,t ) ⋅

Q− i,t

Qt

W− i,t

Wt

= 1 ,                                    (3.10) 

where Q− i,t =Qt − fi (Li,t )and W− i,t =Wt −wi,t .  

               Since there are m firms, there are m F.O.Cs like (3.10). Since production functions 

are assumed as known, the only variables in thosem equations are input shares
 

wi,t

Wt

, i = 1,2,...,m . Derived from (3.10), we also have the following m −1equations, for 

j = 2,3,...,m : 

                               f1 '(L1,t ) ⋅
Q−1,t

Qt

W−1,t

Wt

= f j '(Lj ,t ) ⋅
Q− j ,t

Qt

W− j ,t

Wt

.                                   (3.11) 
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Since 
wi,t

Wt

= 1
i=1

m

∑ , there are only m −1  variables in the above m −1  equations, thus we are 

likely to solve for input shares 
wi,t

Wt

, i = 1,2,...,m , from these m −1  equations. Substituting 

the input shares back to (3.10), we see that (3.10) determines the price ratio 
pt
rt

, given the 

production function forms.  

3.2.4 Market clearing condition  

3.2.4.1 Goods market  

The market clear condition is  

                                                (xi,t
t + xi,t

t−1) = f j (Lj ,t )
j=1

m

∑
i=1

n

∑ =Qt .                                  (3.12) 

3.2.4.2 Money market  

Assume the money supply in the market is M , then  

                                                            Bt + qj ,t = M
j=1

m

∑ .                                             (3.13) 

The reason we only consider the consumer side is because money circulates between firms 

and agents, while the old agents own the firms. Firms pay wages to the young agents since 

they provide labor. The profit that amounts to Bt −Wt , along with the amount of money equal 

to qj ,t
j=1

m

∑ from sales of assets, is shared by old agents since they own the firms. So the old 
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agents earn in total Bt −Wt + qj ,t
j=1

m

∑ . Young agents give back all their wages Wt  to the firms 

for consumption and share ownerships. Old agents also give back their earnings to the firms 

to purchase consumption. So in total the amount of money in circulation is equal to 

Wt + Bt −Wt + qj ,t
j=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
= Bt + qj ,t

j=1

m

∑ . Hence we have (3.13).  

3.2.4.3 Asset market  

The asset market clearing condition is equation (3.1):  

                                                       ai,t
k

i=1

n

∑ = 1, k = 1,2,...,m . 

3.2.5 Market equilibrium  

The market equilibrium is defined as follows  

Definition 2.2.1   The Nash equilibrium for the market game OLG model is a sequence of 

bids bi,t
t ,bi,t

t−1{ }t=1,2,...
i=1,2,...,n

, wj ,t{ }t=1,2,...
j=1,2,...,m

, qk ,t{ }t=1,2,...
k=1,2,....,m  and ai,t

k{ }i=1,2,....,n
k=1,2,...,m 30

such that  

 1.  labor inputs are exogenously given by the sequence li,t{ }t=1,2,....
i=1,2,...,n ;  

 2.  every agent and every firm’s bids and shares of firms are a best response to the bids of 

other agents and other firms when those bids and shares of firms are taken as given;  

																																																													
30  ai,t

k{ }i=1,2,....,n
k=1,2,...,m

satisfies asset market clearing condition (1). 

	



	 197	

 3. both money market and good markets are clear ;  

 4. the aggregate money supply M is also exogenously given.  

3.3 Equilibrium dynamics 

For this part of analysis, we make the following assumption  

Assumption 3.3.1 All the exogenous labor offers are identical and independent of time,  

i.e. li,t = li = l  for all i  and t .  

Assumption 3.3.2 Agents born at time t are identical.  

          These assumptions together with the stationarity of population imply that the aggregate 

labor input is given by nl = L . Since all agents born at the same period are identical, it makes 

sense to consider a symmetric equilibrium in which asset shares are also identical, that is, 

ai,t
k = 1

n
, i = 1,2,...,n , k = 1,2,...,m . Given the specific production function forms, we also 

have  

1.    according to (3.11), the input labor shares are independent of time, so we denote 

wj ,t

Wt

= s j ; 

2.    according to (3.10),  
pt
rt

 is independent of time, so we denote 
pt
rt

= p
r

; also we notice r
p

is a function of L , we denote this function g(L) .  
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3.    for each firm, the output f j (s jL)  is independent of time, hence the aggregate output  

Q = f j (s jL)
j=1

m

∑  is also independent of time.  

Therefore equation (3.7) and (3.8) are reduced to  

                                                           xi,t
t = r

p
⋅ l − 1

n
qj ,t
ptj=1

m

∑                                          (3.14) 

and  

                                                        
xi,t+1
t = 1

n
qj ,t+1 +π j ,t+1

pt+1j=1

m

∑  

                                                               
= 1
n

qj ,t+1
pt+1

+ f j (s jL)−
rt+1
pt+1

⋅ s jL
⎛
⎝⎜

⎞
⎠⎟j=1

m

∑  

                                                               
= 1
n

qj ,t+1
pt+1

+ Q
n
− r
pj=1

m

∑ ⋅ l
                                 (3.15) 

Notice here Q = f j (s j ⋅nl)
j

m

∑ is a function of population n . According to (3.9), the F.O.C  

for a typical consumer’s optimization problem is reduced to  

                                                
U '(xi,t

t )
V '(xi,t+1

t )
=

U ' r
p
⋅ l − 1

n
qj ,t
pt
)

j=1

m

∑
⎛

⎝⎜
⎞

⎠⎟

V ' 1
n

qj ,t+1
pt+1

+ Q
n
− r
p
⋅ l

j=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
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                                                              =

qj ,t+1
pt+1

+
π j ,t+1

pt+1
qj ,t
pt

 

                                                              =

qj ,t+1
pt+1

+ f j (s jL)−
r
p
⋅ s j ⋅L

qj ,t
pt

 

Notice in the above equation, j is arbitrary, so we have  

                                     

qi,t+1
pt+1

+ fi (siL)−
r
p
⋅ si ⋅L

qi,t
pt

=

qj ,t+1
pt+1

+ f j (s jL)−
r
p
⋅ s j ⋅L

qj ,t
pt

 

for ∀i, j = 1,2,...,m.  Thus we have the following result by summing over j  in both 

numerator and denominator  

                                                     

qj ,t+1
pt+1

+
π j ,t+1

pt+1
qj ,t
pt

=

qj ,t+1
pt+1j=1

m

∑ +Q − r
p
⋅L

qj ,t
ptj=1

m

∑
 

Hence  

                                                    
U '(xi,t

t )
V '(xi,t+1

t )
=

1
n

qj ,t+1
pt+1j=1

m

∑ + Q
n
− r
p
⋅ l

1
n

qj ,t
ptj=1

m

∑
                                   (3.16) 

            We notice from (3.16) that the equation governing the law of motion for the perfectly 
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competitive consumer side has incorporated production, so 
U '(xi,t

t )
V '(xi,t+1

t )
 
is not simply 

pt
pt+1

 . But 

since consumer side is perfectly competitive, we view our model as a generalization of 

Grandmont’s model (Grandmont (1985)).  

           It’s useful to make the following change of variables. We let  

                                                        θt =
1
n

qj ,t
ptj=1

m

∑ ,  

                                                        
 
Q! = Q

n
,  

                                                        
 
l! = r

p
⋅ l = g(L) ⋅ l. 

After the change of variables, equations (3.7) and (3.8) become  

                                                      xi,t
t = l!−θt                                                                (3.17) 

                                                   xi,t+1
t = θt+1 +Q! − l" .                                                      (3.18) 

Also according to money market clearing condition (3.13)  

                                                      θt =

M
pt

−Q

n
                                                           (3.19) 

The input price rt and output price pt  are functions of money supply M , aggregate output Q

, aggregate input L , number of workers n and a parameter θt . Here  Q
!  is the per capita 
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aggregate output,  l!  is the per capita quantity of goods that can be purchased from income 

(i.e. per capita income in terms of quantity of output goods). The equation  

                                                 
 
Q! − l" = pQ − rL

pn
 

implies that  Q
! − l"  is the per capita quantity of goods that can be purchased from firms’ profit 

(i.e. per capita profit in terms of the quantity of output goods).  

          Since 
 
θt = l!− xi,t

t (= 1
n

qj ,t
pt
)

j=1

m

∑ , we see that θt is the per capita remaining quantity of 

goods that can be purchased from income after spending on consumption in the first period 

(i.e. per capita first period savings or investment in terms of quantity of output goods, or per 

capita second period returns from selling the assets in terms of quantity of output goods). We 

can also interpret θt  from the perspective of money supply equation (3.19): it is the per 

capita difference between the real purchasing power of money and the aggregate output. 

Notice  0 <θt < l
!  as asset prices are positive and the consumption in the first period should be 

positive, and  l
! ≤Q"  as per capita profit should be nonnegative.  Q

! and  l! are functions of L and 

independent of any prices (variations of  Q
! and  l! can only affect the price ratio r

p
, but not 

any particular price), hence a full range of θt can be  obtained through input price pt .� 

         Suppose the aggregate output, aggregate input and money supply are all fixed, from 

equation (3.19) we see that the increase of the output price pt would lead to the decrease of 

θt , which implies that per capita first period savings or investment in terms of quantity of 
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output goods would decrease. That is, even if the price ratio r
p

 is fixed as before, the 

increase of output price would lead young agents to consume more goods and lead old agents 

to consume fewer goods. This is perhaps due to the real income effect: when the price 

increases, even though relative price is constant, purchasing power goes up because what the 

young are selling is worth more.  

        We also notice from (3.19) that if output price pt  or the aggregate bid Bt = pt ⋅Q  

changes in the same proposition to the change of money supply M ,  θt wouldn’t change, 

given that aggregate output and input are fixed. Hence real variables like consumption 

wouldn’t change.  

         Given the change of variables, we want to analyze how θt  evolves over time, i.e. the 

dynamics of θt . The F.O.C for a typical consumer’s optimization problem becomes  

                                 −θtU '(l
!−θt )+ (θt+1 +Q" − l!)V '(θt+1 +Q" − l!) = 0 .                        (3.20) 

Equation (3.20) shows an implicit characterization of the dynamics of our model in terms of 

state variable θt . Before analyzing the dynamics of the model, first we show the existence of 

steady state equilibria in the model.  

Lemma 3.3.1 There exists a steady-state equilibrium. 

 Proof.  We define a function  

                                           h(θ ) = −θU '(l!−θ )+ (θ +Q" − l!)V '(θ +Q" − l!). 
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Then      

                                                      
 
lim
θ→0+

h(θ ) = (Q! − l")V '(Q! − l") ≥ 0.  

The above inequality is strict if and only if  Q
! > l" .  

First we consider the case when  Q
! > l" , we have  

                                                      
 
lim
θ→0+

h(θ ) = (Q! − l")V '(Q! − l") > 0.  

On the other hand, we have� 

                                                  
 
lim
θ→l!−

h(θ ) = −l! lim
θ→l!−

U '(l!−θ )+Q"V '(Q" ) < 0  

according to Inada condition. Since h(θ )  is continuous, it must have a zero in  (0,l
!) . Second 

we consider the case when  Q
! = l" , we have 

�                                                      h(θ ) = θ(V '(θ )−U '(l
!−θ )) . 

Since θ ≠ 0 , it suffices to find zeros of function  V '(θ )−U '(l
!−θ ) . Notice  

                                               
 
lim
θ→0+

V '(θ )−U '(l!−θ ) = lim
θ→0+

V '(θ )−U '(l!) > 0  

and  

                                              
 
lim
θ→l!−

V '(θ )−U '(l!−θ ) =V '(l!)− lim
θ→l!−

U '(l!−θ ) < 0  

according to Inada condition. Since  V '(θ )−U '(l
!−θ )  is continuous, there must have a zero in 
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 (0,l
!)  and the same is for the function h(θ ) . In both cases, h(θ )  has a zero in  (0,l

!) , which 

implies that there exists a steady-state equilibrium. � 

Lemma 3.3.2   The steady state equilibrium  θ!  is a nontrivial function of the average output 

per worker  Q
!  if 

 

dh
dQ!

|
θ=θ"

≠ 0 . 

Proof. Let  θ!  satisfies  

                            h(θ
!,Q" ) = −θ!U '(l#−θ! )+ (θ! +Q" − l#)V '(θ! +Q" − l#) ≡ 0.                           (3.21) 

Notice  
 
l! = r

p
⋅ l  is also a function of  Q

!  because r
p

is a function of Q  according to (3.10). 

Differentiating hwith respect to  θ! , we get 

                     
 

dh
dθ!

= −U '(l"−θ! )+V '(θ! +Q# − l")+θ!U ''(l"−θ! )+ (θ! +Q# − l")V ''(θ! +Q# − l").  

Since  h(θ
!,Q" ) ≡ 0 , V ' > 0  and  Q

! ≥ l" , we have  

                              
 
−U '(l!−θ" )+V '(θ" +Q# − l!) = −(Q# − l!)V '(θ" +Q# − l!)

θ"
≤ 0                    (3.22) 

According to Inada condition U '' < 0 , V '' < 0 , together with  θ
! +Q" − l# > 0  we have 

                                                                 
 

dh
dθ!

< 0.  

On the other hand, if 
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dh
dQ!

= −θ"U ''(l#−θ" ) ⋅ dl
#

dQ!
+ 1− dl#

dQ!
⎛
⎝⎜

⎞
⎠⎟
V '(θ" +Q! − l#)+ (θ" +Q! − l#) 1− dl#

dQ!
⎛
⎝⎜

⎞
⎠⎟
V ''(θ" +Q! − l#)  

                 

 

=V '(θ! +Q" − l#)+ (θ! +Q" − l#)V ''(θ! +Q" − l#)

− dl#

dQ"
θ!U ''(l#−θ! )+V '(θ! +Q" − l#)+ (θ! +Q" − l#)V ''(θ! +Q" − l#)( )  

                 ≠ 0  

and according to  h(θ
!,Q" ) ≡ 0  along with  

                                                      
 

dh
dQ!

+ dh
dθ"

⋅ dθ
"

dQ!
|
θ"=θ" (Q! )

≡ 0 , 

we have  

                                                         

 

dθ!

dQ"
|
θ!=θ! (Q" )

= −

dh
dQ"
dh
dθ!

≠ 0,  

hence  θ! is a nontrivial function of  Q
! �.  � 

               According to the definition of market thickness in Peck et al. (1992), when Q  is 

small/large relative to L , we are tempted to say that the market is thin/thick. Therefore  

 

Q!

l
= Q
L

 is a good measure of market thickness. Assuming individual labor offer l  is fixed, 

we use  Q
!  to measure the “thickness” of the market.  

                We have the following result on market thickness:  
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Proposition 3.3.1 If  Q
! = l"  or  

                             Q
! ≠ l" , 

 

dθ!

dQ"
− dl#

dQ"
< θ!

Q" − l#
, 

then thick markets are Pareto superior to thin markets.  

Proof.  Let the lifetime utility function associated with steady-state be  

                                     W (θ
!,Q" ) =U(l#−θ! )+V (θ! +Q" − l#) . 

Then  

                    
 

dW
dQ!

= −U '(l"−θ# ) dθ#

dQ!
− dl"

dQ!
⎛

⎝⎜
⎞

⎠⎟
+V '(θ# +Q! − l") dθ#

dQ!
+1− dl"

dQ!
⎛

⎝⎜
⎞

⎠⎟
 

                           
 
= −U '(l!−θ" )+V '(θ" +Q# − l!)( ) dθ"

dQ#
− dl!

dQ#
⎛

⎝⎜
⎞

⎠⎟
+V '(θ" +Q# − l!)  

                         
 
=

(3.22) −(Q! − l")V '(θ# +Q! − l")
θ#

⋅ dθ#

dQ!
− dl"

dQ!
⎛

⎝⎜
⎞

⎠⎟
+V '(θ# +Q! − l")  

                           

 

= 1−
(Q! − l") ⋅ dθ#

dQ!
− dl"

dQ!
⎛

⎝⎜
⎞

⎠⎟

θ#

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
V '(θ# +Q! − l") . 

By Inada condition,   V '(θ
! +Q" − l#) > 0 . If  Q

! = l" ,  then 
 

dW
dQ!

> 0 .  If  Q
! ≠ l" , since 
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dθ!

dQ"
− dl#

dQ"
< θ!

Q" − l#
 is equivalent to  

 
1−
(Q! − l") ⋅ dθ#

dQ!
− dl"

dQ!
⎛

⎝⎜
⎞

⎠⎟

θ#
> 0 , we still have 

 

dW
dQ!

> 0 . Since 

the steady state marginal utility with respect to average output per worker is strictly positive 

under the assumption, it follows that utility increases as the market gets thick. � 

         Notice if 
 

dθ!

dQ"
− dl#

dQ"
= d(θ
! − l#)
dQ"

< 0 , then the assumption in the above proposition 

naturally holds. Also notice from equation (3.17),   l!−θ"  is the steady state per capita first 

period consumption.  

Corollary 3.3.1 If the marginal steady state first period consumption per capita with respect 

to market thickness is positive, then thick markets are Pareto superior to thin markets.  

Proof. Since  l!−θ"  is the steady state first period consumption per capita, then if the marginal 

steady state first period consumption per capita with respect to market thickness is positive, 

i.e. 
 

d(l!−θ" )
dQ#

> 0 , then  
 

dθ!

dQ"
− dl#

dQ"
= d(θ
! − l#)
dQ"

< 0 <
 

θ!

Q" − l#
, hence the assumption in Proposition 

3.3.1 holds, the conclusion that thick markets are Pareto superior to thin markets holds as 

well. � 

Notice the conditions under which the Pareto rankability of Nash equilibria in terms of 

market thickness holds is stricter than in the Goenka, et al. (1998) paper.  

3.3.1 Backward dynamics  

        Following Grandmont (1985) and Goenka, et al. (1998), we analyze the backward 
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dynamics of the market game OLG model. The reason for studying backward dynamics 

instead of forward dynamics is because forward dynamics are not given by a function, but by 

a correspondence, and hence working with the backward dynamics eliminates the problem. 

As Grandmont was the first one to note, any stationary equilibrium in the backward dynamics 

will also be a stationary equilibrium in the forward dynamics. The only difference will be in 

terms of the stability properties, i.e. the stable state in forward dynamics is the unstable state 

in backward dynamics.  

         We write the backward dynamics as θt =ϕ(θt+1) . We further define two functions    

                                                     
 
v1(θ ) = θU ' l!−θ( )  

and           

                                                      v2 (θ ) = (θ +Q! − l")V '(θ +Q! − l") . 

And we have    

                                                v1(ϕ(θ )) = v2 (θ ) . 

In particular, at steady state,  

                                                      v1(θ
! ) = v2 (θ! ) .                                                           (3.23) 

The first derivatives of v1(θ ) and v2 (θ )  yield  

                                                    
 
v '1(θ ) =U ' l!−θ( )−θU '' l!−θ( ) > 0  
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since U ' > 0  and  U '' < 0  and  

                                                   v '2 (θ ) =V '(θ +Q! − l")+ (θ +Q! − l")V ''(θ +Q! − l")  

We see that v1(θ )  is positive and strictly increasing on the interval  (0,l
!) .  Let  

                                                  R2 (x) = −V ''(x)x
V '(x)

 

be the relative risk aversion of the old agent. We make the following assumption on R2 (x) : 

Assumption 3.3.3 We assume  

1. R2 (x)  is continuous, positive and strictly increasing on the interval  [Q
! − l",Q! ] ;  

2.  R2 (Q
! − l") <1< R2 (Q! ) . 

Assumption 3.3.3 implies that  Q
!  has a positive lower bound under assumption. This is 

because  Q
! must be greater than  x! , which is a positive value satisfying  R2 (x

! ) = 1, by 

monotonicity. The assumption that   Q
!  has a positive lower bound is equivalent to the 

assumption that the number of agents n  must satisfy that the average output per capita is 

bounded away from zero.  

             Then we have the following results  

Proposition 3.3.2 Under Assumption 3.2.1, 3.3.1, 3.3.2, 3.3.3, there exists a unique critical 

point θ * of ϕ(θ ) on interval  (0,l
!) . 
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Proof. Since  

                         
 
v '2 (θ ) =V '(θ +Q! − l") 1+ V ''(θ

# +Q! − l")
V '(θ +Q! − l")

⋅(θ +Q! − l")
⎛

⎝⎜
⎞

⎠⎟
 

                                   
 
=V '(θ +Q! − l") 1− R2 (θ +Q! − l")( ) , 

then under Assumption 3.3.3,   ∃θ
* ∈(0,l!)  such that  R2 (θ

* +Q! − l") = 1  and v '2 (θ
*) = 0 . Since 

R2 (x)  is strictly increasing, such θ *  is unique, and  R2 (θ +Q! − l") <1for θ ∈(0,θ *)  and 

 R2 (θ +Q! − l") >1  for  θ ∈(θ *,l!) . Since  V '(θ +Q! − l") > 0  on the interval  (0,l
!) , we have 

v '2 (θ ) > 0  for θ ∈(0,θ *)  and v '2 (θ ) < 0 for  θ ∈(θ *,l!) . Notice v1(ϕ(θ )) = v2 (θ ) , hence 

ϕ(θ ) = v1
−1(v2 (θ ))  and ϕ '(θ ) = v '2 (θ )

v '1(ϕ(θ ))
. Since v1(θ )  is strictly increasing on  (0,l

!) , it follows 

that ϕ(θ ) has a unique critical point at θ *  and ϕ '(θ ) > 0 for θ ∈(0,θ *)  and ϕ '(θ ) < 0  for 

 θ ∈(θ *,l!) . � 

           Assumption 3.3.3 ensures the uniqueness of critical point θ * , but this assumption also 

sets strict restrictions on the choice of utility function V (x) . We show in Appendix 3.A how 

to construct a utility function that satisfies Assumption 3.3.3 and Inada conditions, and we 

will see that the construction is nontrivial but such utility function exists, which is a 

combination of preferences with constant relative risk aversions and increasing relative risk 

aversions. As such utility functions are far more complicated than standard CRRA utility 

functions showed in Goenka, et al. (1998), we have the hypothesis that for complex dynamics 

to occur, the choice of utility functions must be very special and the phenomenon of wide 
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dynamics will not be as commonly seen as in similar models without production.  

            The uniqueness assumption of the critical point saves the trouble of having to restrict 

the analysis to what happens between the unstable and stable steady states, so in this sense, 

Assumption 3.3.3 would be necessary to be part of a sufficient condition for complex 

dynamics to occur. But notice in particular from the proof that for ϕ '(0) > 0 to be held true, 

 R2 (Q
! − l")  must be less than 1 and for ϕ '(θ ) < 0  to be held true, R2 (Q

! − l"+θ )must be greater 

than 1,  0 <θt < l
! . Hence for complex dynamics to occur, at least a modified second part of 

Assumption 3.3.3 is essential:  

                            R2 (Q
! − l") <1< R2 (Q! − l"+θ ) ,    0 <θt < l

! .                                   (3.24) 

We see this modified second part of Assumption 3.3.3 eliminates the possibility of CRRA 

utility functions to exhibit complex dynamics in our model with production. We will show in 

Section 3.4 by solving explicitly the backward price dynamics when preferences are log-

linear to show the impossibility of the existence of such complex dynamics in our model.  

Corollary 3.3.2 There exists a unique interior steady-state equilibrium point  θ!  on interval 

 (0,l
!) .  

Proof. According to (3.20), we have the following equality� 

                           
 
−ϕ(θt+1)U ' l!−ϕ(θt+1)( ) + (θt+1 +Q" − l!)V '(θt+1 +Q" − l!) = 0.  

If  Q
! > l" , then  
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                                        ϕ(0) ⋅U '(l
!−ϕ(0)) = (Q" − l!)V '(Q" − l!) > 0,  

which implies  

                                                               ϕ(0) > 0 . 

If  Q
! = l" , then  

                                                         ϕ(0) ⋅U '(l
!−ϕ(0)) = 0 , 

which implies  

                                                               ϕ(0) = 0. 

We then analyze ϕ '(0)  in this case, which is  

                                             
 
ϕ '(0) = v '2 (0)

v '1(ϕ(0))
= v '2 (0)
v '1(0)

= V '(0)
U '(l!)

>1. 

From the analysis of ϕ(θ ) , which is unimodal on the interval  (0,l
!)  in Proposition 3.3.2, we 

see that in both cases there exists a unique interior steady-state equilibrium  θ!  such that 

 ϕ(θ
! ) = θ! . � 

3.3.2   Cycles of period 2  

We want to analyze the conditions for the existence of cycles of period 2. Cyclic equilibria of 

order 2 are important because their existence implies the existence of sunspot equilibria. We 

define 
 
θ = U '(l!)

V '(Q" − l!)
, which is the inter-temporal marginal rate of substitution. We then make 
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the following assumptions:  

Assumption 3.3.4 We assume  

1. θ <1 . 

2.  Q
! > l" . 

         The first part of Assumption 3.3.4 corresponds to the Samuelson case, where young 

agents find it optimal to save31. According to Goenka, et.al (1998) and Grandmont (1985), 

under Assumption 3.2.1, 3.3.3, 3.3.4, the sufficient condition for existence of a cycle of 

period 2 is  ϕ '(θ
! ) < −1 .  

Proposition 3.3.3   Under Assumption 3.2.1, 3.3.4, if  

                              
 
R2 (θ! +Q" − l#) > 2 + Q

" − l#

θ!
⎛
⎝⎜

⎞
⎠⎟
+ Q"

l#−θ!
−1

⎛
⎝⎜

⎞
⎠⎟
⋅R1(l#−θ! ) , 

then there exists a cycle of period 2. 

Proof. Note at steady state,  ϕ(θ
! ) = θ! . We have  

                                                    
 
ϕ '(θ! ) = v '2 (θ! )

v '1(ϕ(θ! ))
 

																																																													
31	The classical case where 𝜃 > 1 in a two-period model reduces to autarky, since the classical case involves 

negative saving to get to the stationary Pareto optimal allocation (as a result, it would require taking resources 

from the old without ever compensating them for this loss).  
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= V '(θ
! +Q" − l#)

U '(l#−θ! )
⋅ 1− R2 (θ

! +Q" − l#)

1+ θ!

l#−θ!
⋅R1(l#−θ! )

 

                                                            

 

=
(3.21) θ!

θ! +Q" − l#
⋅ 1− R2 (θ

! +Q" − l#)

1+ θ!

l#−θ!
⋅R1(l#−θ! )

. 

Hence  ϕ '(θ
! ) < −1  is equivalent to� 

                                    
 
R2 (θ! +Q" − l#) > 2 + Q

" − l#

θ!
⎛
⎝⎜

⎞
⎠⎟
+ Q"

l#−θ!
−1

⎛
⎝⎜

⎞
⎠⎟
⋅R1(l#−θ! ) ,                  (3.25) 

i.e. the sufficient condition for the existence of cycles of period 2. � 

         Notice from Proposition 3.3.3, the condition for the existence of cycles of period 2 is 

that old agents are sufficiently risk averse. Apparently  R2 (θ
! +Q" − l#)  has to be greater than 2. 

Under Assumption 3.3.3,  R2 (Q
! ) > R2 (θ" +Q! − l#) > 2 , while  R2 (Q

! − l") <1 , so the set of the 

utility function V (x) such that cycles of period 2 would occur is rather limited.  

3.3.3 Cycles of period 3  

According to Li and Yorke(1975), if a map φ has a cycle of period 3, then it would have a 

cycle of any period. We aim to apply results of Goenka, et al. (1998) and Grandmont(1985) 

to find conditions under which a cycle of period 3 occurs. The conditions under which a cycle 

of period 3 occurs require that for some  l!  and the unique critical point 	θ * of ϕ the following 

conditions are satisfied 
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1a. 
   
ϕ θ *( ) ≤ l!  (equivalently,    v2(θ *) ≤ v1(l

!) ),  

1b.  ∃θ0 ≥θ
* , s.t.   v2(θ *) > v1(θ0 ) , 

1c. 

   

v2(θ0 ) ≤ v1

U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

Proposition 3.3.4  Under Assumption 3.3.3, 3.3.4, the following conditions  

2a.   θ
* <ϕ(θ *) , 

2b.  

   

ϕ ϕ(θ *)( ) < U '(l!)
V ' Q" − l!( ) ⋅θ

* , 

are equivalent to conditions (1a),(1b) and (1c), where  θ
*  is the unique critical point of  ϕ(θ ) .  

Proof. We prove the proposition through two directions. First, we want to show conditions 

(2a) and (2b) imply (1a), (1b) and (1c). Denote   k θ( ) = v1 θ( )− v2 θ *( ) .  When  θ → 0+ , 

  
k θ( )→−v2 θ *( ) < 0 ; when   θ → l! − ,  k θ( )→ +∞ . Therefore by continuity of  k θ( ) there 

exists  θ
⌢

such that    k(θ
⌢

) = 0 . Then 
   
v1(θ
⌢

) = v2 θ *( )  yields    0 <θ
⌢
=ϕ(θ *) < l" , that is, ϕ maps 

interval    (0,l!) to itself. This implies condition (1a).  

            According to Proposition 3.3.2,  ϕ '(θ ) < 0  for 
   
θ ∈ θ *,l!( ) .  Since  θ

* <ϕ(θ *) , then 

 ϕ '(θ ) < 0  on interval  (θ
*,ϕ(θ *)] .  Under the first part of Assumption 3.3.4,

   

θ * > U '(l!)
V ' Q" − l!( ) ⋅θ

* , 
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then 

   

ϕ(θ *) > U '(l!)
V ' Q" − l!( ) ⋅θ

* >ϕ ϕ(θ *)( ) .  

            The inverse of  ϕ(θ ) may consist of two values, we choose the value that is greater 

than  θ
* . Hence we can have 

   

θ * <ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
<ϕ(θ *) as  ϕ '(θ ) < 0  on interval 

 (θ
*,ϕ(θ *)] .  We can choose arbitrary  θ0 such that  

   

ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
<θ0 <ϕ(θ *)  and show 

that  θ0 satisfies: � 

1.  θ0 ≥θ
* , s.t.   v2(θ *) > v1(θ0 ) ;  

2. 

   

v2(θ0 ) ≤ v1

U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

First since 

   

θ * <ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  and 

   

ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
<θ0 , we have  θ0 >θ

* . Since   

 θ0 <ϕ(θ *)  and   v1(θ ) is strictly increasing, we have   v1(θ0 ) < v1 ϕ(θ *)( ) = v2(θ *) . Second  

since 

   

θ * <ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
<θ0 <ϕ(θ *)  and  ϕ '(θ ) < 0  on interval  (θ

*,ϕ(θ *)] , we have 

   

ϕ(θ0 ) <ϕ ϕ−1 U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= U '(l!)

V ' Q" − l!( ) ⋅θ
* . Again since   v1(θ ) is strictly increasing, 
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v2(θ0 ) = v1 ϕ(θ0 )( ) ≤ v1

U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. Hence both 1&2 are satisfied, which shows 

conditions (1b) and (1c) are satisfied. 

             Second, we want to show conditions (1a), (1b) and (1c) imply (2a) and (2b). From 

(1b),  ∃θ0 ≥θ
* , s.t.   v2(θ *) > v1(θ0 ) . Since   v1  is strictly increasing,   v1

−1 is also strictly 

increasing, hence    ϕ(θ *) = v1
−1 !v2(θ *) >θ0 ≥θ

* , which yields (2a). From (1c), 

   

v2(θ0 ) ≤ v1

U '(l!)
V ' Q" − l!( ) ⋅θ

*
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, since   v1
−1  is also strictly increasing, we have 

   

ϕ(θ0 ) = v1
−1 !v2(θ0 ) ≤ U '(l")

V ' Q# − l"( ) ⋅θ
* . Since  ϕ(θ )  is decreasing on the interval 

   
θ *,l!( )  and 

 θ0 ∈[θ *,ϕ(θ *)) , we have 

   

ϕ ϕ(θ *)( ) <ϕ(θ0 ) ≤ U '(l!)
V ' Q" − l!( ) ⋅θ

* , hence (2b) is satisfied.  

We have proved the equivalence between two sets of conditions. � 

          Given the form of utility functions, if we want to find out the set of values 
   

Q! ,l"{ } in 

which chaos would occur, we consider solving the bifurcation points 
   

Q! ,l",θ#{ } , which are the 

solutions of the following equations:  

                                                       

   

U '(l!)
V ' Q" − l!( ) = 1  
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U '(l! −θ" )

V ' θ" +Q# − l!( ) =
θ" +Q# − l!

θ"
 

                                              

   

1+
V '' θ! +Q" − l#( )
V ' θ! +Q" − l#( ) ⋅ θ

! +Q" − l#( ) = 0                   

                                                                                                                                     (3.26) 

The bifurcation points satisfy the conditions in (2a) and (2b) with the exception that 

inequalities are replaced by equalities, as a result the critical point 	θ * and the steady state  θ
!  

are identical, and the marginal substitution of income is 1. Since there are three equations and 

three variables, it’s possible the bifurcation points are solvable. Analyzing bifurcation points 

would direct us to find the set of parameters which may satisfy the conditions in (2a) and 

(2b), in which chaos would occur.  

        As we see from Assumption 3.3.3, the difficulty with finding the values of 
   

Q! ,l"{ }  lies 

mainly at specifying the form of utility functions, as the restrictions on relative risk aversion 

of the utility function are high. We will show in Appendix 3.A how to construct a form of 

utility function that satisfies Assumption 3.3.3, and empirically, it exists. As a result there is 

an open set of parameters in which the existence of utility functions that satisfy Assumption 

3.3.3 is ensured.  

3.4   Special cases: log-linear preferences  

          We study the price dynamics when utility functions are log-linear. The importance and 
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convenience of log-linearity assumption of preferences on studying overlapping generations 

models are addressed in Balasko and Shell(1981). Notice log-linear utility functions do not 

satisfy Assumption 3.3.3. Hence the analysis of price dynamics in section 3.3 does not apply 

to log-linear utility functions.  

         We examine the following cases of firms: (1). when  m= 2; (2). when  m= 3; (3). when 

the production functions have the form   f (L) = L , which is to approximate a pure exchange 

economy.  

(1).  m= 2: 

       Without loss of generality, we assume in the following analysis, when the number of 

firms is 2, the production functions are given by:  

         Firm 1:   q1 = f1 L1( ) = A ⋅ L1
2 , 

         Firm 2:   q2 = f2 L2( ) = L2
α ,  0 <α <1, 

where  A  and α are constant,   f1  and   f2  are production functions for each firm respectively. 

(2).  m= 3: 

        Without loss of generality, we assume in the following analysis, when the number of 

firms is 3, the production functions are given by:  

        Firm 1:   q1 = f1 L1( ) = A ⋅ L1
2 , 

        Firm 2:   q2 = f2 L2( ) = B ⋅ L2
α ,  0 <α <1, 
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        Firm 3:   q3 = f3 L3( ) = C ⋅ L3 , 

where  A , B , C  and α are constant,   f1 ,  f2  and   f3  are production functions for each firm 

respectively. 

To make our example more representative, in our example firm 1 has production function of 

the increasing returns to scale type (IRTS), firm 2 has production function of the decreasing 

returns to scale type (DRTS), firm 3 has production function of the constant returns to scale 

type (CRTS). 

(3). Constant returns to scale (CRTS) production functions: 

     When firms have constant returns to scale (CRTS) production functions   f (L) = L , at time 

 t , firm  i ’s best response is determined by the solution to the optimization problem as 

follows: 

                                                         
  
max

wi ,t

Bt

Qt

Li,t − wi,t  

subject to 

                                                           
  
wi,t ≤

Bt

Qt

Li,t , 

and  

                                                            
  
Li,t =

wi,t

Wt

Lt . 
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             The constraint just implies that the net profit should be nonnegative. However, since 

we all know that each firm has the same production function   f (L) = L , the aggregate output 

 Qt  is exactly  Lt , then the optimization problem setting and solving is a bit different with the 

arbitrary  m  firms case. In other words, we can write the optimization problem of firm  i  as 

follows:  

                                                        
  
max

wi ,t

Bt

Lt

wi,t

Wt

Lt − wi,t , 

equivalently  

                                                        
  
max

wi ,t

Bt

wi,t

Wt

− wi,t . 

The F.O.C with respect to   
wi,t is� 

                                                              
  

BtW− i,t

Wt
2 = 1, 

�where   
W− i,t =Wt − wi,t . Since 

 
p =

Bt

Qt

=
Bt

Lt

 and 
 
r =

Wt

Lt

, we can also write the above equation 

as 

                                                              
  

pt

rt

⋅
W− i,t

Wt

= 1. 

Since  i  is arbitrary, we can conclude that 
  

wi,t

Wt

= 1
m

 and  
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pt

rt

= m
m−1

. 

Hence                                   
π i,t = ptli,t − rtli,t  

  
= ( pt − rt )

wi,t

Wt

Lt  

                                                 
  
= ( pt −

m−1
m

pt )
1
m

Lt
  
=

pt Lt

m2 . 

In the following analysis, we assume   U (x) = log x and   V (x) = β log x . 

3.4.1 Price dynamics  

          We can show in the appendices that for m firms and the CRTS firms,  ϕ(θ ) is a linear 

function. It is well-known in Li and Yorke’s Chaos Theorem (Li and Yorke (1975)) that with 

the difference equation   xt+1 = f xt( ) , for chaos to occur, there must exist  x  in the domain 

such that   f
3(x) ≤ x < f (x) < f 2(x) . Since the price dynamics equations for both  m  firms and 

the CRTS firms case are linear, we conclude that neither cycles of period 2 or cycles of 

period 3 will occur in these cases.  

3.4.2 Analysis  

          We consider two cases when  m  = 2 and when  m  = 3. We show the trends of several 

economic parameters of interest as input labor varies. 

3.4.2.1  Two firms case  

          We set the parameters of the two production functions  f1  and   f2  of firm 1 (increasing 
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return to scale) and firm 2(decreasing return to scale) respectively to be   A = B = 1,  α = 0.5 , 

 β = 0.8 . We do calculations to find average consumption of the young/old, price ratios   qi / r , 

  qi / p ,  i = 1,2  and   r / p .  

           In the two firms case, as labor increases, the average consumption of the young 

decreases to almost zero, while the average consumption of the old almost doubles as input 

good labor doubles according to Figure 3.4.1. The price ratios between two asset prices and 

input price as labor changes are shown in Figure 3.4.3. For IRTS firm,   q1 / r almost doubles 

as labor doubles. For DRTS firm,   q2 / r converges to zero. So if input price  r  is fixed, the 

asset price for IRTS firm increases in the same speed as the increase of the labor, while the 

asset price for DRTS firm decreases to almost zero as labor increases. Price ratios   r / p  and 

  qi / p ,   i = 1,2 , are shown in Figure 3.4.4. We see that   r / p converges to zero,   q1 / p increases 

and   q2 / p converges to zero as labor increases. This shows that if  r is fixed, the output price 

 p  increases as labor increases and the asset price   q1 for IRTS firm increases faster than 

output price p .  

3.4.2.2 Three firms case  

            We set the parameters of the three productions function   f1 ,   f2  and   f3  of firm 

1(increasing returns to scale), firm 2 (decreasing returns to scale) and firm 3 (constant returns 

to scale) respectively to be   A = B = C = 1 ,  α = 0.5 ,  β = 0.8 . We do calculations to find 

average consumption of the young/old, demand for real balances, price ratios   qi / r ,   qi / p , 

  i = 1,2,3  and   r / p .  
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             In the three firms case, as labor increases, the average consumption of the young 

increases and converges to some constant as labor increases, while the average consumption 

of the old almost doubles as labor doubles, as shown by Figure 3.4.2. The price ratios 

between three asset prices and input price as labor changes are shown in Figure 3.4.3. For 

IRTS firm,   q1 / r almost doubles as labor doubles. For DRTS firm,   q2 / r  converges to zero. 

For CRTS firm,   q3 / r  slowly increases and converges to a constant. So if input price  r is 

fixed, the asset price for IRTS firm increases in the same speed as the increase of labor, the 

asset price for DRTS firm decreases to almost zero as labor increases and the asset price for 

CRTS firm converges to almost a constant. Price ratios   r / p and   qi / p ,   i = 1,2,3 , are shown 

in Figure 3.4.4. We see that   r / p  converges to almost a constant. For IRTS firm,   q1 / p  

almost doubles as labor input doubles. For DRTS firm,   q2 / p  converges to zero. For CRTS 

firm,   q3 / p  becomes almost a constant as labor increases. This shows if  r  is fixed,  p will 

converge to a constant since   r / p will converge to a constant. Then   q1  almost doubles as 

labor input doubles,   q2  converges to zero and   q3 converges to a constant, as labor increases.  
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Figure 3.4.1: Average consumption of the young and average consumption of the old in two 
firms case  
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Figure 3.4.2: Average consumption of the young and average consumption of the old in three 
firms case  
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Figure 3.4.3: Price ratios   qi / r ,   i = 1,2,  in two firms case (above) and three firms case 
(below)  
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Figure 3.4.4: Price ratios   r / p ,   qi / r ,   i = 1,2,3 , in two firms case (above) and three firms 
case (below)  
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3.5 Discussion and conclusions  

            In this paper, we characterize conditions under which complex and chaotic 

equilibrium dynamics are possible in the overlapping generations market game model with 

production, which are more complicated than in the OLG market game model without 

production. For such complex dynamics to occur, the consumers’ preferences in the second 

period of the overlapping generations model have to be preferences of a mix of relative risk 

aversions, e.g. a mix of preferences with constant relative risk aversions and increasing 

relative risk aversions, which are more complicated than in Goenka et al. (1998) or 

Grandmont (1985). For cycles of period 2 to occur, the old agents must be sufficiently risk-

averse, which is similar to the conclusions in Goenka et al. (1998) and the Grandmont (1985). 

The number of agents must ensure that the average output per worker is bounded away from 

zero. In general, it must be a very special case for complex dynamics to occur in our model 

with particular choices of production functions and utility functions. Further, we show the 

impossibility of such complex dynamics to occur for log-linear preferences, as price 

dynamics under such preferences are linear.  

            Our paper extends the Goenka et al. (1998) analysis by adding production, and 

demonstrates the validity of the conjecture in Goenka et al.’s paper that production would 

“smooth” out the dynamics, making chaotic dynamics more difficult, and hence less likely to 

occur. This in turn suggests that there is still need to consider the effects of aggregate shocks, 

or, in light of Gabbaix’s work (2011) (which proposes that a large part of aggregate 

fluctuations arises from idiosyncratic firm-level shocks if the distribution of firm sizes is fat-

tailed), on the effects of sectoral shocks as drivers of business cycles.  
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Appendices  

Appendix 2.A: Proof of Theorem 2.1 

          We provide the proof of the generic applicability of the implicit function theorem here. 

It remains, then, to show that the implicit function theorem (or, more generally, a 

transversality result) will apply in the neighborhood of the Nash equilibrium for an economy 

under slack. The Jacobian matrix for the mapping defined by equilibrium conditions has 

 ℑN + N  rows (corresponding to the equilibrium first-order conditions and input price 

equations, respectively), and   (ℑ−1)N + 2N columns (corresponding to the input market 

shares, aggregate input offers, and aggregate expenditures on inputs, respectively). For 

specificity, we note that we are making a change of variables in the first-order conditions by 

defining firm  
k j ’s share of aggregate input expenditure on good  n as  

                                                                 
 
sk j

n =
wk j

n

W n .  

Given this change of variables, variations in the aggregate level of expenditures on inputs 

holding input expenditure shares constant then means that each firms expenditures scale as 

the aggregate does. In the input pricing equation  

                                                                  r − E!
−1

W = 0 . 

We take  r as a vector of parameters indicating the input price level firms at which would like 

prices to remain constant. With these definitions, the Jacobian matrix is:  
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G Φ 0
H Φℑ−1 0

0 −W!E!
−2

E!
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

The derivatives here are evaluated at the sell-all equilibrium values. The adjustments needed 

to show the rank result for the short-sale and low employment cases are straight-forward, so 

we concentrate here on the sell-all game. The derivatives of the first-order conditions with 

respect to aggregate input expenditures are zero because these always appear in the 

expenditure share terms, and not alone. The matrix  G  is given by  

                                               

   

G =

G1 … 0
! " !
0 # Gℑ−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 

where each matrix 
  
Gk j  for   

k j ∈ 1,2,...,ℑ−1{ }  on the main diagonal is an  N × N matrix given 

by  

                      

    

Gk j
= − p j

Q−k j

j

Q j D2 fk j
− 1

Q j Dfk j
Dfk j

T⎡

⎣
⎢

⎤

⎦
⎥E! + W!W! −k j

−1⎡
⎣⎢

⎤
⎦⎥

2

r"
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

i.e., the matrix of derivatives of firm first-order conditions with   E
! = diag  E  and   r

! = diag  r . 

The   (ℑ−1)N × N matrix Φ  is given by  

                                                      

  

Φ =
Φ1

!
Φℑ−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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and consists of the derivatives with respect to aggregate input offers of the firm first-order 

conditions, with each submatrix 
 
Φk j

given by  

                  
   
Φk j

= p j
Qk j

j

Q j D2 fk j
− 1

Q j Dfk j
Dfk j

T⎡

⎣
⎢

⎤

⎦
⎥ I −W! −k j W

! −1⎡
⎣⎢

⎤
⎦⎥
+W!W! −k j

−1
W!E!

−2
.  

The matrix  ΦJ is  N × N . The matrix  H  is  

                                              
  
H = −Gℑ!−Gℑ⎡⎣ ⎤⎦ , 

which reflects the adding up constraint on the input shares.  

            We note that if production functions are all concave, then each   
G j  is positive 

definite. If some production function  f  is strictly quasi-concave, then (assuming  f  is 

homogeneous of degree δ > 1), the associated derivative matrix  G  will be positive definite as 

long as  

        

Df T D2 f − 1
Q

DfDf T⎡

⎣
⎢

⎤

⎦
⎥Df = Df T D2 fDf −

Df
2

Q
Df T Df = (δ −1)−

Df
2

Q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Df
2
< 0 , 

since the strict quasi-concavity assumption implies that the matrix is negative definite in 

directions orthogonal to  Df . This condition, in turn, requires that 
  
δ <1+

Df
2

Q
. In general, 

though, we can  not guarantee definiteness of the {  
G j } matrices. We can, however, 

guarantee that these matrices have full rank generically, and since we will need to make such 

genericity arguments below, we simply assume this for now.  
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           Now, with each of the   
G j  matrices having full rank, we can reduce the Jacobian 

matrix to the following matrix  

                                                                

    

G 0 0
H Ψ 0

0 0 E!
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

where N × N  matrix   Ψ = Φℑ − HG−1Φ . 

           If it turns out that the matrix Ψ is singular, then we can perturb the production 

functions by adding a quadratic quasi-concave perturbation of the form  

  
ε k j

(ϕk j
−ϕ k j

)T Ak j
(ϕk j

−ϕ k j
) to each firm’s production function, where 

 
ε k j  is strictly positive 

and small, 
 
ϕ k j

is the firm’s Nash equilibrium input allocation, and 
 
Ak j

is an arbitrary bordered 

negative definite matrix, with bordering vectors colinear with 
 
Dfk j  . This then allows us to 

perturb the matrices in   HG−1Φ  (without perturbing the gradients of firm production 

functions, and hence of Ψ ) and guarantee that Ψ has full rank generically.  

Appendix 3.A: Construction of utility function  

We aim to construct a utility function   u(x)  such that:  

        •   u(x)  satisfies Inada conditions;  

        •   R(x) ,   x > 0  is strictly increasing in an interval H;  

        •   ∃   x*  such that   x* ∈Η  and   R(x*) = 1.  
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One guess of the function form for   u(x) is  

                                                 
  
u(x) = x1−θ

1−θ
+ εe−kx , 

where θ ,ε , k are parameters to be fixed ( 0 <θ <1,  k > 0 and ε need not to be small).  

3.A.1  Choice of ε 

First, we analyze the conditions under which   u(x) satisfies Inada conditions. We want  

1.    u(x) is twice differentiable on (0, ∞),  

2.    u '(x) > 0  and    u ''(x) < 0  for   0 < x < ∞ , 

3.  
  
lim
x→0

u '(x) = +∞ , 

4. 
  
lim
x→+∞

u '(x) = 0 . 

We can always replace   u(x) with   u(x)− u(0)  to satisfy   u(0) = 0 . Note  

                                                    u '(x) = x−θ − kεe−kx  

                                                   u ''(x) = −θx−θ−1 + k 2εe−kx . 

Then  

                                            
  
lim
x→0

u '(x) = lim
x→0

(x−θ − kεe−kx ) = +∞  

and  
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lim
x→+∞

u '(x) = lim
x→+∞

(x−θ − kεe−kx ) = 0 , 

hence 1,3,4 of Inada conditions are satisfied. The second condition among Inada conditions is 

equivalent to  

                                           kεe−kx < x−θ ,   ∀x > 0 ,                                            (3.A.1) 

                                          k
2εe−kx <θx−θ−1 ,   ∀x > 0 ,                                        (3.A.2) 

and is thus equivalent to  

                                        
  
ε < min x−θ

ke−kx ,θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭

,  ∀x > 0 , 

which is also equivalent to  

                                      
  
ε < min min x−θ

ke−kx

⎧
⎨
⎩

⎫
⎬
⎭

,min θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

Next we try to find values for 
  
min x−θ

ke−kx

⎧
⎨
⎩

⎫
⎬
⎭

 and 
  
min θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭

.  

            To find 
  
min x−θ

ke−kx

⎧
⎨
⎩

⎫
⎬
⎭

, we do some change of variable and let 
  
x =α ⋅θ

k
,  α > 0.

Therefore  

                                  

  

min x−θ

ke−kx

⎧
⎨
⎩

⎫
⎬
⎭
= 1

k
θ
k

⎛
⎝⎜

⎞
⎠⎟

θ ⋅min eα

α
⎛
⎝⎜

⎞
⎠⎟

θ⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  



	 251	

then it suffices to find α  such that 
 
eα

α
is minimized. Let 

  
g(α ) = eα

α
, we see that  

                                    
  
g '(α ) = eα ⋅α − eα

α 2 = eα

α 2 ⋅(α −1) . 

Thus  

                                                   g '(α ) < 0   if   α <1 , 

                                                    g '(α ) = 0  if   α = 1 , 

                                                    g '(α ) > 0  if   α >1 , 

which implies that   g(α )  reaches minimum at  α = 1 . Hence  

                                               

  

min x−θ

ke−kx

⎧
⎨
⎩

⎫
⎬
⎭
= eθ

k
θ
k

⎛
⎝⎜

⎞
⎠⎟

θ . 

Similarly, to find 
  
min θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭

, we again do the change of variable and let 
  
x =α ⋅θ

k
,  α > 0.

Therefore  

                                           

  

min θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭
= θ

k 2 θ
k

⎛
⎝⎜

⎞
⎠⎟

θ+1 ⋅min eα

α
θ+1
θ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

.  

It suffices to find α  such that 

  

eα

α
θ+1
θ

 
is minimum. Let 

  

h(α ) = eα

α
θ+1
θ

, then 
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h '(α ) =
eαα

1
θ (α − θ +1

θ
)

α
θ+1
θ

⎛

⎝⎜
⎞

⎠⎟

2 . 

Then    

                                               h '(α ) < 0   if  
 
α < θ +1

θ
, 

                                               h '(α ) = 0  if  
 
α = θ +1

θ
, 

                                               h '(α ) > 0  if  
 
α > θ +1

θ
, 

which implies that   h(α )  is minimized at 
 
α = θ +1

θ
. Hence  

                                         

  

min θx−θ−1

k 2e−kx

⎧
⎨
⎩

⎫
⎬
⎭
= θeθ+1

k 2 θ +1
k

⎛
⎝⎜

⎞
⎠⎟

θ+1 . 

In all, if ε  satisfies 

                                       

  

ε < min eθ

k θ
k

⎛
⎝⎜

⎞
⎠⎟

θ , θeθ+1

k 2 θ +1
k

⎛
⎝⎜

⎞
⎠⎟

θ+1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

,                                       (3.A.3) 

then the second condition of Inada conditions is satisfied.  
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3.A.2    x* :   R(x*) = 1 

             Given   u(x) , the relative risk aversion is  

                                      
  
R(x) = − u ''(x)x

u '(x)
= θx−θ − k 2ε ⋅ xe−kx

x−θ − kε ⋅e−kx . 

Let    x*  be the point that satisfies   R(x*) = 1. Then    x* satisfies  

                                             kε ⋅e
−kx (1− kx) = (1−θ )x−θ .                                          (3.A.4) 

According to equation (3.A.1), we have  

                                                   (1−θ )x*−θ < x*−θ (1− kx*−θ ) , 

hence   x* satisfies  

                                                             
  
x* < θ

k
.                                                        (3.A.5) 

3.A.3   H: the interval in which   R '(x*) > 0  

            That   R '(x) > 0  is equivalent to  

                    (θx−θ − k 2ε ⋅ xe−kx )'⋅(x−θ − kε ⋅e−kx )− (x−θ − kε ⋅e−kx )'(θx−θ − k 2ε ⋅ xe−kx ) > 0 ,  

which is equivalent to  
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kx + θ

2

kx
+ kε ⋅ xθe−kx − 2θ −1> 0 .                                   (3.A.6) 

Let 
  
f (x) = kx + θ

2

kx
+ kε ⋅ xθe−kx − 2θ −1 . Notice when 

 
x = θ

k
, 

  
f (θ

k
) = kε ⋅(θ

k
)θ e−θ −1. 

According to equation (3.A.3), 

  

ε < eθ

k(θ
k

)θ
, hence 

  
f (θ

k
) < 0 . Also note 

  
lim
x→0

f (x) = +∞ .       

We aim to find an interval in which   R '(x*) > 0 , then by continuity of   R '(x) , there is an 

interval containing   x* such that   R(x)  is strictly increasing on this interval. To find such 

conditions, first   x*  must satisfy equation (3.A.6), i.e.   f (x*) > 0 . Second, we want to locate 

the lower and upper bound of the targeted interval, which are two points  x  and  x that are 

nearest to   x*  and satisfy   f (x) = 0  or   x = 0 . Both lower bound  x  and upper bound  x exist: 

the upper bound is greater than   x* and less than 
 
θ
k

 because   f (x) changes signs between   x*  

and 
 
θ
k

; since 
  
lim
x→0

f (x) = +∞  and   f (x*) > 0 , the lower bound is either 0 or the largest zero of 

  f (x)  less than   x* . 

           We can still do some change of variables to make things simpler. Let 
  
x = β1 ⋅

θ
k

 and 

  
x* = β2 ⋅

θ
k

. Thus equation (3.A.5) is equivalent to  β2 <1. That  x  satisfies   R '(x) = 0 , i.e.

  f (x) = 0  is equivalent to  
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(β1 +

1
β1

− 2)θ + kε ⋅ β1

θ
k

⎛
⎝⎜

⎞
⎠⎟

θ

e−β1θ −1= 0 .                          (3.A.7) 

And   R '(x*) > 0  is equivalent to  

                                              
  
(β2 +

1
β2

− 2)θ + kε ⋅ β2

θ
k

⎛
⎝⎜

⎞
⎠⎟

θ

e−β2θ >1.                           (3.A.8) 

Equation (3.A.4) is equivalent to  

                                                        
  
kε ⋅ β2

θ
k

⎛
⎝⎜

⎞
⎠⎟

θ

e−β2θ = 1−θ
1− β2θ

.                               (3.A.9) 

Substituting (3.A.9) into (3.A.8), we have that   R '(x*) > 0 is equivalent to  

                                                           
 
(β2 +

1
β2

− 2)θ + 1−θ
1− β2θ

>1.                          (3.A.10) 

Let  
  
q(x) = x + 1

x
− 2

⎛
⎝⎜

⎞
⎠⎟
θ + 1−θ

1−θx
. 

  
∀θ ,lim

x→0
q(x) = +∞ , hence given θ ,   x : q(x) >1{ }  is a 

nonempty open set.  

         Since   x* < x  and 
  
f (1⋅θ

k
) < 0 , we have that   

                                                               β2 < β1 <1.                                                 (3.A.11) 

3.A.4   Cycles of period 2  

In the main article, from equation (3.25) we know for cycles of period 2 to occur, it must be 
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that   R(x) > 2 . By substituting  x  with 
  
β1 ⋅

θ
k

 , we have that   R(x) > 2 is equivalent to  

                                             
  
kε ⋅ β2

θ
k

⎛
⎝⎜

⎞
⎠⎟

θ

e−β1θ > 2−θ
2− β1θ

.                                        (3.A.12) 

By substituting according to equation (3.A.7), we have further that   R(x) > 2  is equivalent to 

                                              
 
(β1 +

1
β1

− 2)θ + 2−θ
2− β1θ

<1.                                      (3.A.13) 

Let 
  
p(x) = x + 1

x
− 2

⎛
⎝⎜

⎞
⎠⎟
θ + 2−θ

2−θx
.  We can prove that  ∀θ <1,   x : p(x) <1{ }  is nonempty. 

Consider 
  
p '(x) = 1− 1

x2

⎛
⎝⎜

⎞
⎠⎟
θ + θ(2−θ )

(2−θx)2 .  We see that 
  
lim
x→0

p '(x) = −∞  and 

  
lim
x→1

p '(x) = θ
2−θ

> 0 . Then the critical point of   p(x)  is within interval (0,1) and hence 

  
min
x∈(0,1)

p(x) < p(1) = 1, which implies that   ∃x '  such that   p(x ') <1 . By continuity of   p(x) , 

given θ ,   x : p(x) <1{ }  is a nonempty open set.  

3.A.5   Summary  

Our method is to try many values of  k , θ , ε  and keep the right ones by checking whether 

the resulting utility function satisfies the desired conditions according to the following 

procedure:  

Step 1:  Select  k , θ  and ε  such that (3.A.3) holds.  
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Step 2:  Solve  β2  from (3.A.9) (note there may be multiple roots). Keep those roots if   β2 <1 

and continue. If not, return to Step 1.  

Step 3:  Check if (3.A.10) holds. If yes, we find a critical point 
  
x* = β2 ⋅

θ
k

 such that 

  R '(x*) > 0.  If not, return to Step 1.  

Step 4:  Solve  β1 from (3.A.7) (note there may be multiple roots), choose the ones which are 

nearest to (greater than or less than)  β2  and less than 1. If  β1 > β2 , then the upper bound for 

H is 
  
x = β1 ⋅

θ
k

. If  β1 < β2 , then the lower bound for H is 
  
x = β1 ⋅

θ
k

.  If we only have one 

value for  β1 which is greater than  β2 , then the lower bound for H is 0.   

Step 5:  We can further examine the possibility of the occurrence of cycles of period 2 by 

checking if (3.A.13) holds. If not, then there’s no possibility of cycles of period 2.  

Numerical results show that there exist  k , θ , ε such that   R(x)  is strictly increasing in H. 

Thus we find utility functions that satisfy the three conditions at the beginning of the 

appendix. The problem of finding right values for parameters of the proposed utility function 

  u(x) for the possibility of cycles of period 2 to occur is reduced to solving five variables  k , 

θ , ε ,  β1 ,  β2  from two equations (3.A.7) and (3.A.9), two inequalities (3.A.10) and (3.A.13), 

and constraints (3.A.3), (3.A.11) and   k > 0 ,  0 <θ <1.  

3.A.6   Numerical results  

The following table shows the parameter values such that   R(x) is strictly increasing in H and 
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the lower and upper bounds of H:  

                           Table 3.A.1: Parameter values  k , θ , ε , β  and    x*  

 k  θ  ε  β    x*  Lower 
bound 

Upper 
bound 

5 0.8 0.81 0.2432 0.04 0 0.066 

10 0.8 0.71 0.2387 0.02 0 0.0331 

0.5 0.8 1.29 0.2400 0.38 0 0.6609 

5 0.8 1 0.1536 0.02 0 0.0699 

10 0.8 1 0.1203 0.01 0 0.0368 

0.5 0.8 1.5 0.1707 0.27 0 0.6873 

0.1 0.8 2 0.1829 1.46 0 3.4032 

0.2 0.8 2 0.1404 0.56 0 1.7774 

0.01 0.8 3 0.2061 16.49 0 33.5387 

0.01 0.8 4 0.1194 9.55 0 36.8793 

 

Appendix 3.B: log-linear preferences  

3.B.1   Price dynamics for arbitrary m firms  

According to (3.9), we have  

                                                 
  

xi,t+1
t

xi,t
t = β

q1,t+1 +π1,t+1

q1,t

⋅
pt

pt+1

                                         (3.B.1) 

                                                         
  
= β

qj ,t+1 +π j ,t+1

qj ,t

⋅
pt

pt+1

,      j = 1,2,...,m .             (3.B.2) 
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Hence                                    
  
pt+1xi,t+1

t =
xi,t+1

t

xi,t
t ⋅

pt+1

pt

⋅ pt xi,t
t  

                                                         
  
=

(3.B.2)

β
q1,t+1 +π1,t+1

q1,t

⋅
pt

pt+1

⋅
pt+1

pt

⋅ pt xi,t
t  

                                                           
  
= β

q1,t+1 +π1,t+1

q1,t

⋅ pt xi,t
t  

                                                          
  
=

(3.7)

β
q1,t+1 +π1,t+1

q1,t

rtli,t − ai,t
j q j ,t

j=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
 

                                                          
  
=

(3.8)

(qj ,t+1 +π j ,t+1)
j=1

m

∑ ai,t
j  

                                                         
  
=

(3.B.2) q1,t+1 +π1,t+1

q1,t

⋅ ai,t
j q j ,t

j=1

m

∑ . 

Hence  

                           
  
β ⋅ rtli,t − ai,t

j q j ,t
j=1

m

∑
⎛

⎝⎜
⎞

⎠⎟
= ai,t

j q j ,t
j=1

m

∑ .  

We have     

                                                                
  
xi,t

t =
rt

pt

⋅
li,t

1+ β
 

                                                              
  
xi,t+1

t = β
1+ β

⋅
q1,t+1 +π1,t+1

q1,t

⋅
rt

pt+1

⋅ li,t . 
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          Hence        

                                                               
  
xi,t

t−1 = β
1+ β

⋅
q1,t +π1,t

q1,t−1

⋅
rt−1

pt

⋅ li,t−1 . 

          We assume at each period labor  Lt is constant, i.e.  Lt = L  and   
  

rt

pt

=
rt−1

pt−1

= g(L) . The 

money market clearing condition becomes  

                               

  

(xi,t
t + xi,t

t−1) =
rt

pti=1

n

∑ ⋅ 1
1+ β

⋅ li,t
i=1

n

∑ + β
1+ β

⋅
q1,t +π1,t

q1,t−1

⋅
rt−1

pt

⋅ li,t−1
i=1

n

∑

=
rt

pt

⋅ 1
1+ β

+ β
1+ β

⋅
q1,t +π1,t

q1,t−1

⋅
rt−1

pt

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ L

=
rt

pt

⋅ 1
1+ β

+ β
1+ β

⋅
q1,t +π1,t

q1,t−1

⋅
rt−1

pt−1

⋅
pt−1

pt

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ L

= r
p
⋅ 1
1+ β

⋅ 1+ β
q1,t +π1,t

q1,t−1

⋅
pt−1

pt

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ L

= g(L) ⋅ L ⋅ 1
1+ β

⋅ 1+ β
q1,t +π1,t

q1,t−1

⋅
pt−1

pt

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= Q

 

Hence  

                                 
  

pt−1

pt

⋅
q1,t +π1,t

q1,t−1

= β +1
β

⋅ Q
g(L) ⋅ L

− 1
β

.                                          (3.B.3) 

Denote 
   

qi,t

pt

= q! i,t ,    i = 1,2,3 .  Notice  
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pt−1

pt

⋅
q1,t +π1,t

q1,t−1

=

q1,t

pt

+
π1,t

pt

q1,t−1

pt−1

=
q!1,t +

pt ⋅ f1(s1L)− rts1L
pt

q!1,t−1

=
q!1,t + f1(s1L)−

rts1L
pt

q!1,t−1

=
nθt +Q − g(L) ⋅ L

nθt−1

=
θt +Q" − l!

θt−1

.

 

According to (3.B.3), notice   Q
!  and   l!  are functions of  L ,  

                                           

   

θt =
θt+1 +Q! − l"

β +1
β

⋅ Q
g(L) ⋅ L

− 1
β

,                                                  (3.B.4) 

which shows price dynamics is linear.  

3.B.2 Special case: CRTS firms  

          We study price dynamics like in the previous section. Without loss of generality, we 

consider the case when utility function is log linear. The money market clearing condition 

becomes  
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xi,t
t + xi,t

t−1( ) = r
pi=1

n

∑ ⋅ 1
1+ β

⋅ 1+ β ⋅
pt−1

pt

⋅
q1,t +π1,t

q1,t−1

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ L

= m−1
m

⋅ 1
1+ β

1+ β ⋅
pt−1

pt

⋅
q1,t +

pt Lt

m2

q1,t−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⋅ L

= L  

Denote 
   

qi,t

pt

= q! t ,    i = 1,2,...,m,  since all asset prices are identical. Therefore  

                           
   

q! t +
Lt

m2

q! t−1

=
pt−1

pt

⋅
q1,t +

pt Lt

m2

q1,t−1

= m
m−1

⋅1+ β
β

− 1
β
=

nθt +
Lt

m
nθt−1

,  

and hence  

                                                                 

  

θt =
θt+1 +

l
m

m
m−1

⋅1+ β
β

− 1
β

,

                                

(3.B.5) 

which shows price dynamics is linear and independent of  L . 

 

 

 

 

 


